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Preface

This book is mainly comprised of excellent presentations delivered in the 5th
Workshop on Biostatistics and Bioinformatics held in Atlanta on May 5–7, 2017.
Biostatistics and bioinformatics have been playing a key role in statistics and
other scientific research fields in recent years. The aim of the 5th Workshop on
Biostatistics and Bioinformatics was to stimulate research, foster interaction among
researchers in field, and offer opportunities for learning and facilitating research
collaborations in the era of big data. From this successful workshop, the two editors
selected excellent presentations for this book. All the 22 chapters are peer-reviewed
and revised multiple times before the final acceptance. This book provides the most
recent advances in the field, presenting new methods and case applications at the
frontiers of biostatistics and bioinformatics research and interdisciplinary areas.
This timely book makes invaluable contributions to biostatistics and bioinformatics
and offers insights for researchers, students, and industry practitioners.

The 22 chapters are organized into 5 parts. Part I includes five chapters that
present a review of the theoretical framework in biostatistics. Part II consists of
four chapters on wavelet-based approach for complex data. Part III is composed
of six chapters that present clinical trials and statistical modeling. Part IV outlines
high-dimensional gene expression data analysis. Part V consists of four chapters
on survival analysis. We organize the chapters as self-contained units, and the
references of the chapter are at the end of the each chapter so that readers can refer to
the cited sources easily. To better understand the proposed procedures in the book,
the readers can readily request the data sets and computer programs from the two
editors. Therefore, the readers can apply these new statistical methods of the book
for their own research.

v



vi Preface

Part I: Review and Theoretical Framework in Biostatistics
(Chaps. 1–4)

The chapter “Optimal Weighted Wilcoxon–Mann–Whitney Test for Prioritized
Outcomes” reviews concepts of prioritized outcomes in a two-group randomized
clinical trial of multiple outcomes, where mortality affects the assessment of the
other follow-up outcomes. In this chapter, Matsouaka, Singhal, and Betensky
develop a weighted Wilcoxon–Mann–Whitney test procedure to analyze the data
and determine the optimal weights that maximize its power. The authors obtain the
analytical power formula for the test statistic and compare its results with those
obtained via simulation studies using a range of treatment effects on the outcomes.

In the chapter “A Selective Overview of Semiparametric Mixture of Regression
Models,” Xiang and Yao conduct a systematic overview of new semiparametric
mixture of regression models, which have been popularly used in many applications.
Recent advances and open questions are also discussed.

In the chapter “Rank-Based Empirical Likelihood for Regression Models with
Responses Missing at Random,” Bindele and Zhao consider a general regression
model with responses missing at random. From an imputed rank-based objective
function, the authors derive a rank-based estimator, and its asymptotic distribution is
established. An empirical likelihood approach is proposed based on the rank-based
objective function, from which its asymptotic distribution is established.

In the chapter “Bayesian Nonparametric Spatially Smoothed Density Estima-
tion,” Hanson, Zhou, and de Carvalho develop a Bayesian nonparametric density
estimator, which changes smoothly in space. The estimator is built using the
predictive rule from a marginalized Polya tree so that observations are spatially
weighted by their distance from the location of interest. The authors propose a
simple refinement to accommodate arbitrarily censored data and develop a test for
whether the density is spatially varying.

Part II: Wavelet-Based Approach for Complex Data
(Chaps. 5–8)

The chapter “Mammogram Diagnostics Using Robust Wavelet-Based Estimator
of Hurst Exponent” presents the robust estimation of Hurst exponent in two-
dimensional images based on non-decimated wavelet transforms. The properties
of the proposed estimators are studied both theoretically and numerically. In this
chapter, Feng, Mei, and Vidakovic show how to apply proposed methods to digitized
mammogram images, estimate Hurst exponent, and then use it as a discriminatory
descriptor to classify mammograms to benign and malignant.

In the chapter “Wavelet-Based Profile Monitoring Using Order-Thresholding
Recursive CUSUM Schemes,” Zhang, Mei, and Shi propose a novel wavelet-

http://dx.doi.org/10.1007/978-3-319-99389-8_1
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based profile monitoring procedure, which is based on the order-thresholding
transformation of recursive CUSUM statistics of multiple wavelet coefficients. The
authors carry out extensive simulation studies and a case study of tonnage profile
data, which show that proposed procedure is efficient for detecting the unknown
local changes on the profile.

In the chapter “Estimating the Confidence Interval of Evolutionary Stochastic
Process Mean from Wavelet-Based Bootstrapping,” de Medeiros and de Souza
propose to estimate the uncertainty for the evolutionary mean of a stochastic process
based on bootstrapping of wavelet coefficients. By discrete wavelet transform,
the authors apply bootstrap to estimate the confidence interval of the autocor-
relation for a time series. Moreover, these methods with few modifications are
implemented.

In the chapter “A New Wavelet-Based Approach for Mass Spectrometry Data
Classification,” Cohen, Messaoudi, and Badir propose a statistical methodology of
a reliable diagnosis for classifying mass spectrometry data with a type of cancer.
The authors go over wavelets, principal component analysis, and support vector
machines, and perform a study on low-mass SELDI spectra from patients with breast
cancer and from normal controls. The performance is evaluated with a k-fold cross
validation technique and simulation study. The performance of the proposed method
is excellent with an accurate classification of mass spectrometry.

Part III: Clinical Trials and Statistical Modeling (Chaps. 9–14)

In the chapter “Statistical Power and Bayesian Assurance in Clinical Trial Design,”
Chen and Chen propose a Bayesian assurance as an alternative to the conventional
statistical power to incorporate the uncertainties of this observed treatment effect.
In this chapter, the authors review the transition from conventional statistical power
to Bayesian assurance and discuss the computations of Bayesian assurance using a
Monte Carlo simulation-based method.

The chapter “Equivalence Tests in Subgroup Analyses” proposes that the
consistency of the treatment effect in two subgroups should be assessed using an
equivalence test called consistency test. In this chapter, Ring, Scharpenberg, Grill,
Schall, and Brannath present tests for both quantitative and binary outcome variables
and review the basic properties of these consistency tests using simulation studies.
The authors also indicate that equivalence tests can be used both to assess the
consistency of treatment effects across subgroups and to detect medically relevant
heterogeneity in treatment effects across subgroups.

In the chapter “Predicting Confidence Interval for the Proportion at the Time of
Study Planning in Small Clinical Trials,” Yu and Vexler discuss “future” confidence
interval prediction with binomial outcomes for small clinical trials and sample
size calculation, where the “future” confidence interval emphasizes the confidence
interval as a function of a random sample that is not observed at the planning

http://dx.doi.org/10.1007/978-3-319-99389-8_9
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stage of a study. The authors propose three probabilistic approaches to future
confidence interval prediction when the sample size is small. The approach based
on the expectation of the boundaries has the most desirable properties and is easy to
implement.

The chapter “Importance of Adjusting for Multi-Stage Design When Analyzing
Data from Complex Surveys” illustrates possible discrepancies in point estimates
and standard errors using 2014–2015 TUS data. In this chapter, Ha and Soulakova
show the importance of using the guidelines when analyzing complex surveys.
The authors discuss three methods: method I ignores any weighting, method II
incorporates the main weight only, and method III utilizes the main weight and
balanced repeated replications with specified replicate weights.

In the chapter “Analysis of the High School Longitudinal Study to Evaluate
Associations Among Mathematics Achievement, Mentorship and Student Partici-
pation in STEM Programs,” Murillo, Tiwari, and Affuso analyze a subsample of
the High School Longitudinal Study (2009–2013) dataset (HSLS:09). Regression
models are applied to evaluate mathematics achievement and student enrollment in
STEM major/careers based on their individual participation. Differences based on
sex, race/ethnicity, and socioeconomic status are assessed.

The chapter “Statistical Modeling for the Heart Disease Diagnosis via Multiple
Imputation” addresses a common challenge of missing data during statistical
analysis of clinic data. Missing data causes severe problems in statistical analysis
and leads to invalid conclusions. Multiple imputation is a useful strategy for
handling missing data. In the chapter, Li and Zhao apply the multiple imputation
to a public accessible heart disease dataset, which has a high missing rate, and build
a prediction model for the heart disease diagnosis.

Part IV: High-Dimensional Gene Expression Data Analysis
(Chaps. 15–18)

In the chapter “Learning Gene Regulatory Networks with High-Dimensional Het-
erogeneous Data,” Jia and Liang propose to model the heterogeneous data using a
mixture Gaussian graphical model and apply the imputation-consistency algorithm
to estimate the parameters of the mixture model and cluster the samples to different
subgroups. The proposed method is compared with an existing method for learning
mixture Gaussian graphical models as well as a few other methods for homogeneous
data, such as graphical Lasso, etc.

The chapter “Performance Evaluation of Normalization Approaches for Metage-
nomic Compositional Data on Differential Abundance Analysis” assesses nor-
malization methods for metagenomic sequence data. In this chapter, Du, An,
and Fang further study the impact of normalization on subsequent differential
abundance analysis. The authors suggest the selection of a normalization method
for metagenomic compositional data should be made on a case-by-case basis.

http://dx.doi.org/10.1007/978-3-319-99389-8_15
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The chapter “Identification of Pathway-Modulating Genes Using the Biomedical
Literature Mining” centers on an effective use of biomedical literature for the
identification of the relationships among genes. A Bayesian hierarchical model was
proposed, which allows to identify indirect relationship between genes by linking
them using the gene ontology terms. In this chapter, Yu, Nam, Couch, Lawson, and
Chung illustrate this method using the web interface GAIL. It provides the PubMed
literature mining results, along with the R package by the Bayesian hierarchical
model.

The chapter “Discriminant Analysis and Normalization Methods for Next-
Generation Sequencing Data” studies discriminating and normalization methods for
gene expression analysis with the development of high-throughput techniques. A
number of new discriminant analysis methods have been proposed to discriminate
next-generation sequencing data. In this chapter, Zhou, Wang, Zhao, and Tong
introduce three methods including the Poisson linear discriminant analysis, the
zero-inflated Poisson logistic discriminant analysis, and the negative binomial
linear discriminant analysis and further introduce several normalization methods
for processing next-generation sequencing data.

Part V: Survival Analysis (Chaps. 19–22)

In the chapter “On the Landmark Survival Model for Dynamic Prediction of Event
Occurrence Using Longitudinal Data,” Zhu, Li, and Huang demonstrate that a
joint distribution of longitudinal and survival data exists that satisfy the modeling
assumptions without additional restrictions. In addition, the authors propose an
algorithm to generate data from this joint distribution and generalize the results
to the more flexible landmark linear transformation models, which include the
landmark Cox model.

In the chapter “Nonparametric Estimation of a Cumulative Hazard Function with
Right Truncated Data,” Zhang, Jiang, Zhao, and Akcin develop the nonparametric
inference for the forward-time hazard. The authors study a family of weighted
tests for comparing the hazard function between two independent samples. The
authors analyze the data set about AIDS incubation time to illustrate the proposed
procedures.

In the chapter “Empirical Study on High-Dimensional Variable Selection and
Prediction Under Competing Risks,” Hou and Xu consider competing risk analysis
and explore statistical properties in the presence of high-dimensional predictors. The
authors study the accuracy of prediction and variable selection of existing statistical
learning methods using extensive simulation studies, including different approaches
to choosing penalty parameters in each method.

In the chapter “Nonparametric Estimation of a Cumulative Hazard Function with
Right Truncated Data,” Akcin, Zhang, and Zhao study the nonparametric inference
for the hazard rate function with right truncated data. Kernel smoothing techniques

http://dx.doi.org/10.1007/978-3-319-99389-8_19
http://dx.doi.org/10.1007/978-3-319-99389-8_22
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are used to get smoothed estimates of hazard rates. Three commonly used kernels,
uniform, Epanechnikov, and biweight kernels are applied on the AIDS data to
illustrate the proposed methods.

We are very grateful to all of people, who have supported the creation of
this book with Springer. First, we thank the authors of each chapter for their
wonderful contributions. Second, our deep gratitude goes to all the reviewers for
their dedicated reviews, which improved the quality of the book significantly.
Third, we would like to acknowledge the leadership of the organizing committee
and all the volunteers of the 5th Workshop on Biostatistics and Bioinformatics
because this book would be impossible without this workshop. Last but not least,
our sincere appreciations go to the professional support and great assistance of
Nicholas Philipson (Springer/ICSA Book Series coordinator and editorial director,
Business/Economics & Statistics), Nitza Jones-Sepulveda (associate editor) from
Springer New York, and Sindhuraj Thulasingam (Project Coordinator of Books)
from Springer Nature, which made this book published. We welcome readers’
comments on typos, errors, and improvements about the book. If there is an
exchange, please send comments and suggestions to Dr. Yichuan Zhao (email:
yichuan@gsu.edu) and Dr. Ding-Geng Chen (email: dinchen@email.unc.edu).

Atlanta, GA, USA Yichuan Zhao
Chapel Hill, NC, USA Ding-Geng Chen
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Chapter 1
Optimal Weighted
Wilcoxon–Mann–Whitney Test for
Prioritized Outcomes

Roland A. Matsouaka, Aneesh B. Singhal, and Rebecca A. Betensky

This chapter reviews keys concepts of prioritized outcomes in a two-group random-
ized clinical trial of multiple outcomes, where mortality affects the assessment of
the other follow-up outcomes. The main concepts related to prioritized endpoints
along with the different terminologies used in the literature are discussed. Then,
statistical tenets of worst-rank composite endpoints are reviewed using a combined
endpoint of mortality and a continuous outcome.

We motivate the approach using a randomized clinical trial of normobaric
oxygen therapy on patients who underwent an acute ischemic stroke where we
combine a continuous outcome with mortality into a single composite endpoint
using the worst-rank framework. We develop a weighted Wilcoxon–Mann–Whitney
test statistic to analyze the data and determine the optimal weights that maximize its
power. We provide the rationale for the weights and their relative importance in data
analysis. In addition, we derive the analytical power formula for the test statistic.
To demonstrate that the proposed power formula produces valid power estimations,
we compare its results with those obtained empirically via Monte-Carlo simulations
using a range of treatment effects on the outcomes. Finally, we illustrate the method
using data from the clinical trial of normobaric oxygen therapy.
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1.1 Introduction

In clinical trials of multifaceted diseases, multiple outcomes are usually evaluated to
estimate and compare the effects of a new active treatment over a control treatment.
Although these outcomes can be analyzed separately, they are usually combined
into a single composite endpoint to take into account the complexity of the disease
manifestations and capture different aspects of the treatment effects. Combining
outcomes has several advantages: it increases statistical precision and efficacy,
reduces considerably the number of patients needed to enroll for a given expected
treatment effect or to reach a specific statistical power, circumvents the needs for
multiple testing, and provides an overall assessment of the treatment effect.

One of the most commonly used methods for combining multiple outcomes is
the time-to-first event. For this method, only a patient’s initial event during the
trial is considered in the analysis while all of the subsequent events are ignored.
However, such a composite endpoint have serious practical limitations that often
result in misleading interpretations and poor medical decisions which are of greater
concerns. Usually, component outcomes of a composite endpoint are not equally
important or clinically relevant; they do not occur at the same frequency and are
not similarly impacted by the treatment. More than often, treatment effects and
significant statistical analyses are driven by components of lesser importance. As
such, they do not provide a more comprehensive perspective of the disease burden
that is realistic, congruent with clinical judgment or aligned with the perceptions
and expectations of patients and their caregivers.

This is illustrated in many cardiovascular disease trials where mortality remains
the major outcome of interest which, fortunately, is often less frequent and tends
to occur later in a trial (see, for instance, the relative perceived clinical severity
of typical components of composite endpoints considered in recent cardiovascular
trials given in Fig. 1.1). In a clinical trial of “death or heart failure hospitalization”
(whichever comes first), for example, a patient may experience multiple heart failure
hospitalizations and eventually die. Clearly, a patient who has a minor heart attack
after 1 week of follow-up but remain event-free subsequently for several consecutive
years should not be considered as having a worse outcome compared to another
patient in the trial who dies after 2 months of follow-up.

Therefore, standard statistical analyses based on these time-to-first outcome
event where subsequent events are ignored may skew the assessment of the
treatment effect, lead to biased results, and poorly reflect the true burden of
the patient’s disease experience (Anker and Mcmurray 2012; Anker et al. 2016;
Ferreira-González et al. 2007b; Freemantle et al. 2003; Lubsen and Kirwan 2002;
Prieto-Merino et al. 2013; Freemantle et al. 2003; Heddle and Cook 2011; Claggett
et al. 2013; Brown et al. 2016). Moreover, the composite endpoint of time-to-first
event are not applicable when the component outcomes are on different scales, such
as a mixture of discrete, continuous, time-to-event, and quality-of-life outcomes
(Felker et al. 2008; Tyler et al. 2011; Bebu and Lachin 2015).
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Fig. 1.1 Relative severity of cardiovascular disease outcomes (from death onward out of the
spiral). Acronyms: MI: myocardial infarction; HF: heart failure (used with permission from
Armstrong and Westerhout (2017))

Despite these serious limitations, analyses of composite endpoints are ubiquitous
in a large number of clinical research areas including cardiovascular disease
(Lisa and James 1997; Bakal et al. 2012b,a, 2015; Neaton et al. 2005; Follmann
et al. 1992; Brittain et al. 1997; Felker et al. 2008), infectious diseases (Neaton
et al. 1994; Finkelstein and Schoenfeld 1999; Follmann et al. 2007), oncology
(Freemantle et al. 2003), nephrology (Hariharan et al. 2003; Li et al. 2001),
neurology and psychiatry (Davis et al. 2003), health services, autoimmune disease,
dermatology (Kaufman et al. 1998), respiratory (Spencer et al. 2007), rheumatoid
arthritis, limb ischemia (Subherwal et al. 2012), orthopedics (DeCoster et al. 1999),
urology, anesthesia, migraines, obstetrics, and gynecology (Ross 2007; Wen et al.
2017)—even though their limitations and unsatisfactory characteristics are widely
recognized and genuinely mentioned in most publications (Manja et al. 2017; Zhang
et al. 1997; Anker et al. 2016; Tyler et al. 2011; Cordoba et al. 2010; Rowan et al.
2008; Prieto-Merino et al. 2013).

Several alternative methods have been proposed to combine multiple outcomes
while taking into account their clinical priority (Lisa and James 1997; Bakal
et al. 2015; Neaton et al. 2005; Follmann et al. 1992; Brittain et al. 1997; Felker
et al. 2008). Among them are the methods based on prioritized outcomes where
component outcomes are prioritized and ordered—following a specific, prespecified
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hierarchy and with respect to their clinical importance—from the most severe (e.g.,
mortality) to the least severe one (or more favorable). Usually, the clinical questions
of interest dictate the choice and order of the prioritized endpoints. Treatment
comparison requires pairwise comparisons of patients’ outcomes, where each pair
comprise one patient from one treatment group (e.g., active treatment) and another
patient from the alternative treatment group (e.g., control treatment). The statistical
underpinnings of these methods are based on ranks. These ranks are used to draw
inference as to whether a randomly selected patient in the active treatment will
have, on average, a better overall composite endpoint compared to a randomly
selected patient in the control treatment group by using the Wilcoxon–Mann–
Whitney (WMW) test statistic. These methods, which are considered as part of
the global rank approaches (Huang et al. 2008; Ramchandani et al. 2016), can be
classified into two distinct categories based on the decision rules that dictate how to
proceed from one outcome to a subsequent outcome on the hierarchy of outcomes.

On the one hand, we have the proportion in favor of treatment (PFT) of Buyse
(2010) (also known as the win difference Luo et al. 2017) and the win ratio (WR)
introduced by Pocock et al. (2011), which follow the ideas from Moyé et al.
(1992) and Finkelstein and Schoenfeld (1999). In these methods, pairwise outcome
comparisons between patients from the active and control treatment groups are
conducted, starting from the most severe outcome. For each pairwise comparison,
the patient with a better outcome is declared a winner. If it is not possible to
determine the winner (e.g., comparison inconclusive or indeterminate) on the most
severe outcome, the two patients are then compared on the second most severe
outcome, and so forth. Finally, each patient score is recorded as a win (better
outcome in the pairwise comparison), a loss (worse outcome), or a tie (when unable
to declare a winner after exhausting all available outcomes).

The PFT is defined as the difference between the proportions of wins in the active
and control treatment groups. The null hypothesis of no difference between the
treatment groups corresponds to a PFT that is equal to 0, while a positive (resp.,
negative) value demonstrates that the active treatment is better (worse) than the
control treatment. Similarly, the WR is the ratio of the proportion of wins in the
active treatment over the proportion of wins in the control treatment. Under the null
hypothesis, the WR is equal to 1. It is greater (resp., less) than 1 when the active
treatment is beneficial (disadvantageous) compared to the control treatment.

On the other hand, we have the worst-rank score analysis—based on the original
idea of Gould (1980) and O’Brien (1984). For this method, patients are placed
into “buckets” (to use the analogy from Subherwal et al. 2012) on the hierarchy
of component outcomes. In other words, each patient is categorized based on her or
his worst personally experienced outcome. All the patients who have experienced
the worst outcome (e.g., those who died) are assigned to the lowest-ranked bucket,
patients who did not experience the worst outcome, but the second worst outcome
are placed in the second lowest-ranked bucket, and so forth. Finally, depending on
the predetermined choice of the component outcomes, patients with the less severe
outcome or who did not experience any of the component outcomes are assigned to
the highest-ranked bucket (Lachin 1999; Matsouaka and Betensky 2015; Matsouaka
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et al. 2016). Then, every patient in the active treatment group is compared to every
patient in the control treatment group to determine whether the actively treated
patient’s outcome is better than or the same as the outcome of the patient in the
control treatment.

The final result is determined by the buckets the compared patients belong to and
by their respective outcomes. If the pair of patients is from the same bucket, they are
compared by the magnitude of their outcome measures or by their first times to the
event (whichever characterizes the bucket), where the longer the time-to-event the
better (e.g., later death will be considered better compared to earlier death). If the
two patients belong to two different buckets, the patient in the higher-ranked bucket
is considered to have a better outcome than the patient in the lower-ranked bucket.
Therefore, at the end of the process, all patients are ranked.

Despite the seemingly resemblance between the WR (or the PFT) and the worst-
rank score analysis, there are stark clinical and statistical methodological differences
between them. Therefore, the choice of one method versus the other must be
motivated by the clinical questions of interest and should be predetermined before
any analysis. This choice must not be merely dictated by the convenience to pick a
method that provides the most significant results. Unlike the win ratio where the
focus is put first on the worst outcome and where the next consecutive ranked
outcomes (or events experienced by patients) are leveraged only to break ties, with
the worst-rank score analysis the first most important step is to place patients in
buckets, depending on the worst outcome or event they have personally experienced.
Pairwise comparison of patients in one group versus the other is done within and
between buckets. When the outcomes of patients from the same bucket are tied, the
patients are declared similar and are ranked accordingly. No further comparison is
needed. Likewise, when patients are from two different buckets, the patient in the
higher-ranked bucket is always considered to have a better outcome.

In practice, the win ratio (or the proportion in favor of the treatment) is used in
randomized trials where the most severe outcome is the main outcome of interest.
In those trials, it is anticipated that a good percentage of patients will have the most
severe outcome, which justify the a priori set to such an outcome. For instance,
Pocock et al. (2011) reanalyzed the EMPHASIS-HF data to compare eplerenone
against placebo in 2737 patients with NYHA class II heart failure and an ejection
fraction less than 35% who were recruited at 278 centers in 29 countries. 1364
patients were randomly assigned to eplerenone and 1373 to placebo and the median
follow-up time was 21 months. Pairs of patients from eplerenone and placebo were
compared first on cardiovascular (CV) death and, if it was not possible to determine
who had a CV death before the other, it was then determined who had a heart
failure hospitalization first. Overall, there were a total of 147 deaths (10.8%) in the
eplerenone group and 185 (13.5%) in the placebo group attributed to cardiovascular
causes. Of the patients receiving eplerenone, 164 (12.0%) were hospitalized for
heart failure, as compared with 253 patients (18.4%) receiving placebo.

The worst-rank score analysis is mostly used in trials where the most severe
outcome is not the primary outcome. Usually, it is expected that a small percentage
of patients will experience the most severe outcome. Therefore, it is mostly used in
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settings where the primary interest lies on a nonterminal (nonfatal) outcome, but for
which analyses of the observed data are complicated due to the presence of missing
observations due to death.

Felker and Maisel (2010) proposed the use of worst-rank score analysis in a
hypothetical study of a phase II acute heart failure trial. They suggested a global
rank score analysis of 200 patients with 101 patients in the active treatment group
and 99 in the placebo group. Patients were compared for in-hospital mortality (4%
patients in each group), lack of dyspnea improvement at 24 h (44% patients in active
treatment group and 54% in the placebo group), detectable troponin or an increase
in troponin by 25% during index hospitalization (7 and 5%, respectively), creatinine
increase by more than 0.3 mg/dl (7% and 10%), and finally on change in pro-BNP
from randomization to discharge. In another example, Lachin (1999) reexamined a
clinical trial of the effect of vesnarinone versus placebo on patients with congestive
heart failure and used a worse-rank score analysis of exercise time after 12 weeks
of treatment after treatment and death (Feldman et al. 1991). Of the 80 patients
randomized (40 in each group), six died before week 12 with five of them in the
placebo group.

In this chapter, we consider the worst-rank score analysis and present a frame-
work that allows us to weight the components of a worst-rank (composite) endpoint
by relying uniquely on the data at hand. Matsouaka and Betensky studied the
statistical properties of the worst-rank analyses based on the (ordinary) Wilcoxon–
Mann–Whitney (WMW) test. They considered both tied worst-rank scores (all
patients who died are assigned a fixed score) and untied worst-rank scores (where
patients who died are ranked based on their time to the death, with the longer time
to death the better) in the ranking of the components of the composite outcomes
(Matsouaka and Betensky 2015).

For this chapter, we focus on the untied worst-rank score analyses. We assume
that we have a data set where we can identify approximately well the time-to-
death for each patient who died during the follow-up time. Although, one can
easily adapt our method and result in the context of a tied worst-rank analysis. The
current framework extends the worst-rank analysis of Matsouaka and Betensky by
providing a weighted test statistic where its corresponding weights are optimal in
the sense that they maximize the power of the test under a particular alternative
hypothesis. We explore the statistical properties of the optimal weighted WMW test
on a worst-rank composite endpoint, looking at the null hypothesis of no difference
between treatment against a unidirectional alternative hypothesis that the treatment
has a favorable effect on the components of the worst-rank composite endpoints or
it is at least as effective as the control treatment.

To anchor the framework in the context of worst-rank score analysis, we use, as
an example, a randomized clinical trial of acute ischemic stroke conducted at the
Massachusetts General Hospital in Boston, Massachusetts. In this trial, a total of
85 patients who had acute ischemic stroke were randomly assigned to either room
air (control therapy) or normobaric oxygen therapy (NBO), administered for 8 h.
Then, the patients were assessed serially for clinical function scores including the
National Institutes of Health stroke scale (NIHSS) score—a function rating scale
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(range from 0 to 42) used to quantify neurological deficit due to stroke—and MRI
imaging (Singhal et al. 2005; Singhal 2007). The primary and efficacy endpoints
were, respectively, the mean change in NIHSS scores from baseline to 4 h (during
therapy) and 24 h (after therapy). To illustrate the method, we focus on the secondary
endpoint to examine the change in NIHSS scores from baseline to 3 months or at
discharge.

Of the 85 patients enrolled in the study, 43 were assigned to the NBO group. A
total of 53 patients were discharged prior to the 3-month follow-up period and out
of the 24 patients who died during the follow-up period, 17 of them were from the
NBO group. Early deaths of patients precluded the measurement of their NIHSS
scores at 3 months. As both death from stroke and poor 3-month NIHSS score were
indicative of disease worsening, patients with missing follow-up NIHSS scores must
be included in the analysis. Therefore, we consider a worst-rank composite endpoint
of both death and NIHSS scores; death is considered as the worse outcome on the
same scale as any measured NIHSS score.

The rest of this chapter of the book is organized as follows. In Sect. 1.2, we
generalize the worst-rank endpoints where we introduce first the test proposed by
Matsouaka and Betensky (2015). Then, we provide the rationale for a weighted
test in the context of worst-rank endpoints. In Sect. 1.3, we determine the optimal
weights for such worst-rank endpoints, while accounting for the possible presence of
ties. We describe different algorithms necessary to estimate these weights using the
data at hand. We present the simulation results in Sect. 1.4 and illustrate the method
using the NBO trial data in Sect. 1.5. Finally, we close this chapter by discussing the
merits and limitations of using weighted worst-rank endpoints and how to interpret
the results.

1.2 Wilcoxon–Mann–Whitney Test for Prioritized Endpoints

1.2.1 Notation

We consider a clinical trial involving N independent patients randomized into two
treatment groups of patients, with Ni patients in each group (i = 1, 2), and followed
over a period of time Tmax.

Let (Tij , Xij ) denote the survival time and change in NIHSS scores for a patient
j in the control (i = 1) or the treatment (i = 2) group over a follow-up time
Tmax. The observed data consist of (T ,X, δ) = {(Tij , Xij , δij ), i = 1, 2; j =
1, . . . , Ni}, where δij = I (Tij ≤ Tmax) indicates whether the patient died before
the end of follow-up time Tmax. Since lower values of the change in NIHSS scores
are worse, to define the composite worst-rank endpoints, we consider two constants
ζ = min(X)− 1 and η = ζ − Tmax, such that η + Tij < ζ < Xij . The worst-rank
endpoint of each patient is then defined as:

˜Xij = δij (η + Tij )+ (1− δij )Xij , i = 1, 2 and j = 1, . . . , Ni (1.1)
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The choice of η and ζ is not unique as long as when we replace Tij by η + Tij ,
we can compare observed outcomes where patients who died receive the lowest
ranks compared to the survivors. In addition, the corresponding ranks of patients will
reflect the relative ordering of their respective event times Tij or NIHSS scores Xij .

Consider Fi and Gi the cumulative distributions of the informative survival times
and the NIHSS for such a patient, i.e., Fi(v) = P(Tij ≤ v|0 < Tij ≤ Tmax)

and Gi(x) = P(Xij ≤ x|Tij > Tmax). The distribution of the random variable
˜X = (˜Xi1, . . . , ˜XiNi

){i=1,2} is given by:

˜Gi(x) = piFi(x − η)I (x < ζ)+ (1− pi)Gi(x)I (x ≥ ζ ), (1.2)

with pi = E(δij ) = P(Tij ≤ Tmax) the probability of death before Tmax.
We would like to test the null hypothesis of no difference between the treatment

and the placebo,

Ho : (F1 = F2 and G1 = G2)

against the unidirectional alternative hypothesis that the treatment is at least as
effective as the control treatment for both mortality and the change in NIHSS scores
and that it is not harmful for either treatment

H1 : (F1 ≺ F2 and G1 ≺ G2) or (F1=F2 and G1 ≺ G2) or (F1 ≺ F2 and G1=G2).

The symbol ≺ denotes the stochastic ordering of the cumulative distributions
(Lachin 1999). Thus, the notation G1 ≺ G2 means that G1(x) is shifted to the left
of G2(x), or that the NIHSS scores for patients in the control group tend to be less
than those of patients in the treatment group. In other words, there is a difference in
favor of the treatment group since higher values of the change in NIHSS scores X
are better.

1.2.2 Wilcoxon–Mann–Whitney Test

We define the Wilcoxon–Mann–Whitney U-statistic by

U = (N1N2)
−1

N1
∑

k=1

N2
∑

l=1

[

I (˜X1k < ˜X2l )+ 1

2
I (˜X1k = ˜X2l )

]

. (1.3)

Theorem 1.1 Using the worst-rank endpoints ˜Xij from Eq. (1.1) and qi = 1− pi ,
i = 1, 2 and j = 1, . . . , Ni, we have the following results:

(i) the mean and variance of U under the alternative hypothesis H1 are given by:



1 Optimal Weighted Wilcoxon–Mann–Whitney Test for Prioritized Outcomes 11

μ = E(U) = πU1, (1.4)

σ 2 = V ar(U)

= (N1N2)
−1

[

πU1 (1− πU1)+ (N1 − 1)(πU2 − π2
U1)

+ (N2 − 1)(πU3 − π2
U1)

]

where

πU1 = p1p2πt1 + p1q2 + q1q2πx1,

πU2 = p2
1q2 + p2

1p2πt2 + 2p1q1q2πx1 + q2
1q2πx2,

πU3 = p1q
2
2 + p1p

2
2πt3 + 2p1p2q2πt1 + q1q

2
2πx3,

πt1 = P(T1k < T2l |t1k ≤ Tmax, t2l ≤ Tmax),

πt2 = P(T1k < T2l , T1k′ < T2l |t1k ≤ Tmax, t1k′ ≤ Tmax, t2l ≤ Tmax),

πt3 = P(T1k < T2l , t1k < t2l′ |t1k ≤ Tmax, t2l ≤ Tmax, t2l′ ≤ Tmax),

πx1 = P(X1k < X2l ), πx2 = P(X1k < X2l , X1k′ < X2l ),

πx3 = P(X1k < X2l , X1k < X2l′).

(ii) Under the null hypothesis H0 of no difference between the treatment groups,
the mean and variance become

μ0 = E0(U) = 1

2
, (1.5)

σ 2
0 = V ar0(U) = N1 +N2 + 1

12N1N2

The proofs of Theorem 1.1 (i) and (ii) can be found in Appendix 1.
The asymptotic distribution of the WMW test statistic

Z = U − E0(U)√
V ar0(U)

(1.6)

converges to the standard normal distribution N(0, 1) as N1 and N2 tend to infinity,
and N1/N2 −→ ρ, 0 < ρ < 1. Its power is given by:

Φ

(

σ0

σ
zα

2
+ μ− μ0

σ

)

+Φ

(

σ0

σ
zα

2
− μ− μ0

σ

)

≈ Φ

(

σ0

σ
zα

2
+ |μ− μ0|

σ

)

. (1.7)

See the proof in Matsouaka and Betensky (2015).
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1.2.3 Weighted Wilcoxon–Mann–Whitney Test

In this section, we motivate a weighted WMW test by writing the WMW U-
statistic (1.3) applied to the worst-rank scores (1.1) as a sum of three dependent
WMW U-statistics. This allows us to demonstrate that to optimally compare two
treatment groups using worst-rank scores, we need to use a weighted statistic that
takes into account the dependence that exists among the three statistics.

Assume that there exist weights w = (w1, w2), w1 + w2 = 1, such that (1.1)
becomes

˜Xij = w1δij (η + Tij )+ w2(1− δij )Xij , i = 1, 2 and j = 1, . . . , N. (1.8)

The U-statistic (1.3) then becomes Uw = w2
1Ut+w1w2Utx+w2

2Ux, where Ut, Utx ,
and Ux are defined by:

Ut = (N1N2)
−1

N1
∑

k=1

N2
∑

l=1

δ1kδ2l

[

I (T1k < T2l )+ 1

2
I (T1k = T2l )

]

,

T1k ≤ Tmax, T2l ≤ Tmax

Utx = (N1N2)
−1

N1
∑

k=1

N2
∑

l=1

δ1k(1− δ2l ) (1.9)

Ux = (N1N2)
−1

N1
∑

k=1

N2
∑

l=1

(1− δ1k)(1− δ2l )

[

I (X1k < X2l )+ 1

2
I (X1k = X2l )

]

.

Using vector notation, we can write weighted WMW U-statistic Uw as Uw = c′U
where we define U′ = (Ut , Utx, Ux) and c′ = (c1, c2, c3) = (w2

1, w1w2, w
2
2).

Notice that c1 + 2c2 + c3 = (w1 + w2)
2 = 1.

Theorem 1.2 Based on the worst-rank endpoints ˜Xij , we have

μw = E(Uw) = c′ (p1p2πt1, p1q2, q1q2πx1)
′

σw = V ar(Uw) = c′Σc,

where � = V ar(U) is a 3× 3 matrix defined in Appendix 2.
Under the null hypothesis,

μ0w = E0(Uw) = 1

2
c′
(

p2, 2pq, q2
)′

= 1

2

[

w2
1p

2 + 2w1w2pq + w2
2q

2
]

= 1

2
[w1p + w2q]2

σ0w = V ar0(Uw) = c′�0c,
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where �0 = V ar0(U) is a 3× 3 matrix given in Appendix 2.
(See proof of Theorem 1.2 in Appendix 2.)
As previously, Theorem 2 allows us to define both the weighted WMW test statistic

Zw = Uw − E0(Uw)√
V ar0(Uw)

. (1.10)

It can be shown that Zw converges to the standard normal distribution N(0, 1) as
N1 and N2 tend to infinity, and N1/N2 −→ ρ, 0 < ρ < 1.
Its corresponding power is given by:

Φ

(

σ0w

σw
zα

2
+ μw − μ0w

σw

)

+Φ

(

σ0w

σw
zα

2
− μw − μ0w

σw

)

≈ Φ

(

σ0w

σw
zα

2
+ |μw − μ0w|

σw

)

. (1.11)

Note that when the weights w1 and w2 are equal, i.e., c1 = c2 = c3 = w2
1, the test

statistic Zw coincides with the (ordinary) Wilcoxon–Mann–Whitney test statistic Z
given in (1.6). Indeed, in that case, c′U = w2

1[Ut +Utx +Ux] = w2
1U with U given

by the Eq. (1.3). Thus, c′E0(U) = w2
1E0(U) and V ar0(c′U) = w4

1V ar0(U), which
implies that Z = Zw.

1.2.3.1 Prespecified Weights

When there are prespecified weights, usually determined as to reflect the relative
importance or the severity of component outcomes, they can be used to calculate the
weighted WMW test statistic Zw. For instance, after surveying a panel of clinical
investigators, Bakal et al. (2012a) used prespecified weights in a study that used
composite endpoints of death, cardiogenic shock (Shock), congestive heart failure
(CHF), and recurrent myocardial infarction (RE-MI). The weights were 1 for death,
0.5 for Shock, 0.3 for hospitalization for CHF, and 0.2 for RE-MI, i.e., in this context
w = 1

2 (1, 0.5, 0.3, 0.2).
In another example Sampson et al. (2010), the composite outcome consisted

of events weighted according to their severity: recurrent myocardial infarction
(weight w1 = 0.415), congestive heart failure that required the use of open-
label angiotensin-converting enzyme (ACE) inhibitors (weight w2 = 0.17), and
hospitalization to treat congestive heart failure (weight w3 = 0.415).

Although the use of prespecified weights provides a more nuanced approach
to the importance of individual endpoints of a composite outcome, recognizes
the potential underlying differences that exist among them, and facilitates the
results interpretation compared to traditional composite endpoints, the selection of
appropriate weights is not straightforward since inherently subjective (Ahmad et al.
2015; Sampson et al. 2010; Wilson and Berger 2011). However, when they exist,
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failing to use such utility (or severity) weights to highlight clinical importance of
the component outcomes of a composite endpoint implies that we assume equal
weights, which is sometimes even worse (Ahmad et al. 2015; Armstrong et al. 2011;
Wilson and Berger 2011; Bakal et al. 2012b; Armstrong and Westerhout 2013).

It has been advocated that the method of assigning utility weights can be
relatively reproducible and even refined (Armstrong et al. 2011; Bakal et al. 2015,
2012a), such refinement has been compared to a process used in baseball where
a more refined analysis of a player’s types of hits is taken into account to assess
the value of the player beyond the simple batting average (Anstrom and Eisenstein
2011).

1.2.3.2 Optimal Weights

Now, we want to estimate the optimal weights w for the weighted WMW test
statistic

Zc = c′ (U− E0(U))√
V ar0(c′U)

= c′ (U− E0(U))√
c′V ar0(U)c

, (1.12)

that maximizes its power, with U′ = (Ut , Utx, Ux) and c′ = (c1, c2, c3) =
(w2

1, w1w2, w
2
2).

The goal of maximizing Zc is to obtain the optimal test statistic—which we
will derive from (1.12) by replacing c by copt , the vector of optimal weights that
maximize Zc— that encompasses the contributions of the effects of treatment on
both mortality (via Ut ) and the nonfatal outcome (via Ux) as well as the impact
of the corresponding proportions of deaths and survivors in both treatment groups
(via Utx) and their relative importance and magnitude, where each component is
weighted accordingly through copt .

From the definition of U, we show in Appendix 2 that

E(U) = (E(Ut ), E(Utx), E(Ux))
′

= (πt1p1p2, p1q2, πx1q1q2)
′ . (1.13)

and V ar(U) = �, where � = (N1N2)
−1 (�ij

)

1≤i,j≤3 is a 3× 3 matrix.
Without loss of generality, we have restricted the variance estimations in this

section to the case where there are no ties. Under the null hypothesis of no difference
between the two groups, with respect to both survival and nonfatal outcome, we have
p1 = p2 = p, q1 = q2 = q = 1− p, πt1 = πx1 = 1/2, and πt2 = πx2 = πt3 =
πx3 = 1/3. Thus,

E0(U) = 1

2

(

p2, 2pq, q2
)′

and V ar0(U) = �0, (1.14)
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where �0 = (N1N2)
−1

(

�0ij
)

1≤i,j≤3 is a symmetric matrix with

�011 = p2

12
A(p), �012 = p2q

2
[(N2−1)q−N1p] , �013 = −p

2q2

4
(N2 +N1−1)

�022 = pq
[

1−pq + (N2−1)q2 + (N1−1)p2
]

, �023 = pq2

2
((N1−1)p−N2q) ,

�033 = q2

12
A(q), where A(x) = 6+ 4(N2 +N1 − 2)x − 3(N2 +N1 − 1)x2.

Moreover, since V ar0(Uw) = V ar0(c′U) = c′�0c ≥ 0 by definition, the matrix �0
is semi-positive definite.

The power formula for the weighted WMW, similar to Eq. (1.7), is

Φ

(

σ0w

σ1w
zα

2
+ μ1w − μ0w

σ1w

)

+Φ

(

σ0w

σ1w
zα

2
− μ1w − μ0w

σ1w

)

(1.15)

≈ Φ

[

σ0w

σ1w

(

z α
2
+ |μ1w − μ0w|

σ0w

)]

,

where μ1w = c′E(U), μ0w = c′E0(U), σ 2
1w = c′�c, and σ 2

0w = c′�0c.

Theorem 1.3 Under the assumptions that, when N = N1 +N2 →∞,

(i) N1/N2 converges to a constant ρ (0 < ρ < 1),

(ii) both
√
N{F1(t) − F2(t)} and

√
N{G1(x) − G2(x)} are bounded, i.e.,

σ0w

σ1w
converges to 1,

a weight-vector c maximizes the power of the test statistic Zc if and only if it
maximizes |μ1w − μ0w|/σ0w. The optimal weight vector copt is given by:

copt = Σ−1
0 μ

b′Σ−1
0 μ

, (1.16)

for b′ = (1, 2, 1), μ = E(U) − E0(U) =
(

πt1p1p2 − 1
2p

2, p1q2 − pq, πx1q1q2

− 1
2q

2
)′

and p = (N1p1 +N2p2)/(N1 +N2).

From Theorem 1.3, we derive the weights w1 and w2 as:

w1 = d1
′�−1

0 μ

b′�−1
0 μ

and w2 = d2
′�−1

0 μ

b′�−1
0 μ

, where d1
′ = (1, 1, 0) and d2

′ = (0, 1, 1).

Before we continue to explore the statistical properties of the optimal weighted
WMW test statistic we just defined, we need to make the following observations:
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1. The weight vector copt is proportional to �−1
0 μ, which is indicative of both the

magnitude and the precision of the treatment effects. Therefore, it assigns larger
weights to the effects of treatment on the components of the composite endpoint
that have been estimated with greater precision or are of larger magnitude (or
both). Moreover, the corresponding optimal weights yield a test statistic that has
minimum variance.

2. The optimal weight vector copt = �−1
0 μ depends on unknown population

parameters πt1, πx1, p1, p2, and p which must be estimated in practice. The
naive approach is to plug-in the sample estimates πt1, π̂x1, p̂1, p̂2, and p̂ of these
population parameters. However, by doing so we annihilate the independence
assumption that underlies the existence of the corresponding weights and
facilitates their derivation. Indeed, with Uw = c1Ut + c2Utx + c2Ux , we derived
the corresponding mean and variance using the formulas:

μ1 = E(Uw) = c1E(Ut)+ c2E(Utx)+ c2E(Ux)

and

σ1 = V ar(Uw) = c2
1V ar(Ut )+ c2

2V ar(Utx)+ c2
2V ar(Ux)+

2c1c2Cov(Ut , Utx)+ 2c1c3Cov(Ut , Ux)+ 2c2c3Cov(Ux,Utx),

which presupposed that the weights c1, c2, c3 were constant and independent.
However, when we empirically estimate U′ = (Ut , Utx, Ux), E0(U), and copt
using the same data set at hand, we are introducing a dependence among
these quantities and thus, our independence assumption on which hinges the
derivation of copt does not hold anymore. Such a circular, naive approach to
estimate the weights should be avoided since it is more likely to introduce bias
in the assessment of the treatment effect. Therefore, we need a better method to
estimate the weights in such a way that the independence is preserved in order to
calculate the test statistic Zopt given by Eq. (1.12):

3. Known underlying distributions

(a) When the distributions of the primary endpoint, X, and the survival time, t ,
are known approximately, we can estimate analytically the probabilities πt1
and πx1, p1, p2 (as we have done in Appendix 4 for our simulation studies)
and calculate an estimate of the probability p under the null hypothesis (H0)
as p̂ = (N1p̂1 +N2p̂2)/(N1 +N2) (pooled sample proportion).

4. Unknown underlying distributions
In general, the distributions of the primary endpoint and the survival time are

not known. Optimal weights are estimated using either data from a pilot study
(or from previous studies, when available) or the data at hand.

(a) If we have data from prior studies, we can leverage them to estimate these
parameters. Using Bayesian methods, we can elicit expert opinions to define
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prior distributions associated with �0 and μ that best reflect the character-
istics of the disease under study and determine posterior distributions to
provide a more accurate assessment of the optimal weights (Minas et al.
2012). Alternatively, if the data is structured such that we have multiple strata
available (e.g., different enrollment periods or different clinical centers for
patients), we can use an adaptive weighting scheme to estimate �0 and μ

(Fisher 1998; Ramchandani et al. 2016).
(b) In the absence of data from prior studies, it is recommended to use a

bootstrap approach to estimate the weights. To do this, we generate B
bootstrap samples (e.g., B = 500, 1000, or 2000) and, for each bootstrap
sample, we estimate the corresponding optimal weight vector copt . Then,
we compute the average weights from the B estimates. Finally, using
these average weights, we compute the test statistic Zopt on the original
sample with the average weights estimated in the first part and test the null
hypothesis.

(c) With the data at hand, we can also use a K-fold cross-validation. In that
regard, we divide the data into K subsets of roughly equal size and estimate
the weights copt,k and the test statistic Zopt,k exactly K times. At the k-th
time, k = 1, . . . , K , we use the k-th subset as validation data to calculate
the weights copt,k and combine the remaining K − 1 subsets as training data
to estimate the test statistic Zopt,k using the weights defined at the validation
stage. Then, we estimate the test statistic Zopt by averaging over all the K

test statistics Zoptk , k = 1, . . . , K and run the hypothesis test.

1.3 Simulation Studies

To assess the performance of the weighted test statistic, we conducted simulation
studies generating data to follow the pattern seen in stroke trials, where the outcome
of interest (patient’s improvement on the NIH stroke scale score over a follow-up
period of Tmax = 3 months) may be missing for some patients due to death.

For n = m = 50, we simulated death times Tij under a proportional hazards
model and the nonfatal outcome Xij from normal distributions, that is:

T1k ∼ Exp(λ1), T2l ∼ Exp(λ2), where q2 = exp(−λ2Tmax) and HR = λ1/λ2;
X1k ∼ N(0, 1), X2l ∼ N(

√
2Δx, 1), with Δx = (μx2 − μx1)/(σx1

√
2).

We considered wide range of hazard ratios, from no difference to a highly significant
difference in mortality, i.e., HR = (1.0, 1.2, 1.4, 1.6, 2.0, 2.4, 3.0) and chose two
different mortality rates in the treatment group p2 = (0.6, 0.8). We also set the
standardized difference Δx to 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. The conditional
probabilities, πtγ and πxγ , γ = 1, 2, 3, are given in Appendix 4.
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Knowing the true underlying distributions of Tij and Xij , we calculated the
conditional probabilities, the optimal weights, and the power for the weighted
WMW test using the analytical power formula (1.15) for a two-sided α = 0.05. In
addition, we simulated 10,000 data sets and run both the optimal weighted WMW
test and the ordinary WMW. This allowed us to estimate empirically the powers
of these two tests by counting how many times we rejected the null hypothesis of
no treatment difference out of the 10,000 simulated data sets. We compared the
results on the basis of the type I error, the similitude between the empirical and
analytical powers, the improvement in using the weighted WMW test as opposed
to the ordinary WMW test. Our objective in running the ordinary WMW was to
illustrate their differences and similarities and highlight the importance to consider
optimally weighted WMW test when dealing with prioritized outcomes.

The results, given in Table 1.1, illustrate the accuracy of the analytical power
formula (1.15). As we expected, the power of the test depends on the rate of
mortality as well as the difference of treatment effects on mortality and the nonfatal
outcome. As the rate of mortality increases, the power also increases under either
the weighted or ordinary WMW test. For instance, with the same standardized
difference and hazard ratio, we have more power to detect the difference between
the treatment and the control when mortality rate is higher. Furthermore, the results
regarding the analytical power formula and the empirical power formula are similar
throughout the different hazard ratios and the standard differences.

The results given in Table 1.1 also indicate that the weighted WMW test statistic
is more powerful than the ordinary WMW test for the worst-rank score composite
outcome. The difference between the tests is more remarkable in two following
cases:

1. the standardized difference in the nonfatal outcome Δx is small (Δx < 0.3) and
the difference in mortality is moderate or high (HR ≥ 1.2)

2. the difference in mortality is small (HR< 1.2) and the standard difference in the
nonfatal outcome Δx is moderate or high (Δx ≥ 0.3).

Overall, these results indicate that whenever the effect of treatment on the primary,
non-mortality outcome is small, the larger difference in mortality that could have
been captured by the weighted WMW test is somewhat attenuated when assessing
the overall difference through the ordinary WMW instead, where mortality and the
nonfatal outcome are weighted equally. Likewise, if the difference in mortality is
small, but the difference in the nonfatal outcome is moderate or high, the ordinary
WMW test on the composite outcome has less power compared to the weighted
WMW.

1.4 Application to a Stroke Clinical Trial

Matsouaka et al. (2016) reanalyzed data from a clinical trial of normobaric oxygen
therapy (NBO) for acute ischemic stroke patients Singhal (2006, 2007). In this trial,
85 patients were randomly assigned either to NBO therapy (43 patients) or to room
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air (control) for 8 h and assessed serially with clinical function scores. During the
follow-up time of 3 months, 24 patients died (with seven from the control group)
and 53 were discharged (among which 31 were in the control group). The primary
efficacy and safety endpoints were, respectively, the mean change in NIHSS from
baseline to 4 h (during therapy) and 24 h (after therapy) (Singhal 2006).

For illustration purposes, we focused on one of the secondary endpoints to
examine the mean change in NIHSS scores from baseline to 3 months or at
discharge. The log rank test of survival was significant (χ2 = 6 with 1 d.f., p-value
= 0.016), indicating that the active treatment had an unfavorable effect on mortality.
The ordinary WMW test applied to the survivors was not significant (W = 572.5, p-
value = 0.27). However, using the same test on the worst-rank composite endpoint
of death times and NIHSS scores, we found a significant difference between the two
treatment groups (W = 1112.5, p-value = 0.01), mostly driven by the difference in
mortality.

Finally, we applied our proposed method, the weighted WMW test, to estimate
the weights and calculate the test statistic Zw using B=2000 bootstrap samples. We
obtained the estimated weight vector c′opt = (0.45, 0.16, 0.24), the mean difference
μ = −(0.016, 0.098, 0.073), the probability p = 0.283, and the variance–
covariance matrix for U under the null probability

�0 =
⎛

⎝

0.59 0.50 −0.90
0.50 4.77 −1.27
−0.90 −1.27 5.16

⎞

⎠ .

The optimal weights c′opt = (0.45, 0.16, 0.24) lead to the weights of the component
outcomes of w1 = 0.61 and w2 = 0.39; meaning that mortality was weighted more
heavily (61% of the weight) than NIHSS score, in addition to ranking death worse
than any measure of the continuous outcome (NIHSS score).

The optimally weighted WMW test statistic Zopt was equal to 3.42 with a
corresponding p-value of 6.2×10−4. The weighted WMW test statistic gave a clear
result that was highly significant (than the result from the ordinary WMW test) as it
optimally captured the significant difference in mortality between the two treatment
groups and thus demonstrated its efficiency. The test provided strong evidence that
in this specific trial, the performance of the NBO trial fell short of the room air and
did not deliver on his promising results from the pilot study (Singhal et al. 2005).

1.5 Discussion

In this chapter, we have generalized the Wilcoxon–Mann–Whitney (WMW) test for
a worst-rank composite outcome by deriving the optimally weighted WMW test.
The weighted WMW test assigns weights to different components of the worse rank
composite endpoint that maximize the power of the test. We have motivated the
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worst-rank composite outcome in the context of a randomized clinical trial of a non-
mortality primary outcome, where the assessment of the primary outcome of interest
at a prespecified time point may be precluded by death, any other debilitating event,
or worsening of the disease condition. The corresponding composite outcome takes
into account all patients enrolled in the trial, including those who had terminal events
before the end of follow-up.

When there exists a hierarchy of the constituent outcomes of a composite
endpoint, the method we have presented in this chapter enables these components
to be weighted differentially. Using weights allows for an additional level of
discrimination between the component outcomes beyond the prespecified outcome
ranks alone, which incorporate their individual contributions to the overall treatment
effect. While the worst-rank score mechanism pertains with how the different
component outcomes of the composite endpoint are aggregated, assigning weights
strengthens (or lessens) the influence these prioritized component outcomes exert on
the overall composite. Although we have considered the possibility of using weights
obtained or elicited from expert judgments (utility weights), this chapter focused on
weights that are determined in a way that the corresponding WMW test statistic has
a maximum power.

Therefore, based on a U-statistic method, we first provided the test statistic
and the power of the weighted WMW test when utilities (or severity) weights,
determined a priori, are available. In addition, we demonstrated that the ordinary
(unweighted) WMW test on the worst-rank score outcome is a special case of
the weighted WMW test, i.e., when the weights are all equal. Then, we derived
the optimal weights such that the power of the corresponding weighted WMW
test statistic is maximal. Finally, we conducted simulation studies to evaluate the
accuracy of our power formula and confirmed, in the process, that the weighted
WMW is more powerful than ordinary WMW test.

We applied the proposed method to the data from a clinical trial of normo-
baric oxygen therapy (NBO) for patients with acute ischemic stroke. Patients’
improvement was assessed using the National Institutes of Health Stroke Scale
(NIHSS) Scores. Against the null hypothesis of no difference on both mortality
and continuous endpoint, we have focused on the alternative hypothesis that “the
active treatment has a preponderance of positive effects on the multiple outcomes
considered, while not being harmful for any” (Lachin and Bebu 2015). The results
indicated a statistically significant difference between NBO therapy and room air—
using either the proposed method or the ordinary WMW test on the worst-rank
composite outcome of death and change in NIHSS—which we could not detect
using the ordinary WMW on the survivors alone.

The difference between NBO therapy and room air was driven by the difference
in mortality since there was a disproportionate number of NBO-treated patients who
died. It is actually for this reason the trial was stopped by the Data and Safety
Monitoring Board (DSMB) after 85 patients out of the projected 240 were enrolled.
The stark imbalance between the two treatment group, although not attributed to the
treatment, made it untenable to continue the trial (Singhal 2006; Samson 2013).
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The end result of the NBO trial is one of the dreaded scenarios in the (traditional)
analysis of composite endpoints. That the active treatment must be better than the
control for one or both of the constituent outcomes (mortality and nonfatal outcome)
and not worse for either of them as suggested by our alternative hypothesis, H1, was
clearly not the case for the NBO trial. While the active treatment was equivalent
to the control treatment in change in NIHSS, the data showed also that NBO
therapy increased mortality. Ideally, components of a composite endpoint should
have similar clinical importance, frequency, and treatment effect. However, this is
rarely the case as outcomes of different levels of severity are usually combined to
facilitate the interpretation of such results, several authors have suggested running
complementary analyses on components of the composite outcome (Freemantle
et al. 2003; Cordoba et al. 2010; Tomlinson and Detsky 2010; Ferreira-Gonzalez
et al. 2009; Ferreira-González et al. 2007a,b; Lubsen et al. 1996; Lubsen and Kirwan
2002).

When the impact of the active treatment on mortality is of greater clinical
importance than its effect on the primary outcome of interest, the weighted WMW
test statistic we have presented can be included into a set of testing procedures
that ensure that the treatment is not inferior on both mortality and the outcome
of interest and that it is superior on a least one of these endpoints. In the context
of ischemic stroke, the clinical investigators desired a treatment that would have a
positive impact on mortality while also improving survivors’ functional outcomes.
Testing procedures that incorporate contributions of each individual component
of the composite while penalizing for any disadvantage in the active treatment
when the treatment operates in opposite directions on the components of the
composite outcome have been discussed (Huque et al. 2011; Mascha and Turan
2012; Dmitrienko et al. 2013; Sankoh et al. 2014).

For the analysis of NBO clinical trial, we propose two different stepwise
procedures to analyze data using this weighted test: (1) two individual non-
inferiority tests on mortality and nonfatal outcome, followed (if non-inferiority
established) by a global test using the optimal weighted WMW test on the worst-
rank composite endpoint; or (2) a global test using the optimal weighted WMW
test on the worst-rank composite endpoint, then (if significant global test) two
individual non-inferiority tests followed by individual superiority tests on mortality
and nonfatal outcome. In either scenario, the overall type I error is preserved
(Mascha and Turan 2012; Logan and Tamhane 2008; Röhmel et al. 2006; Huque
et al. 2011).

The method presented in this chapter can be applied or extended to many other
settings of composite endpoints beyond the realm of death-censored observations.
The rationale, advantages (and limitations), and recommendations for using com-
posite outcomes—based on clinical information, expert knowledge, or practical
matters—abound in the literature (Moyé 2003; Gómez and Lagakos 2013; Ferreira-
González et al. 2007a). One can also accommodate ties as well as non-informative
censoring in the definition of the WMW U-statistic (see Matsouaka and Betensky
2015). In particular, when non-informative censoring is present (and, without loss
of generality, assuming that there are no ties), survival times can be assessed using
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Gehan’s U-statistic, which is an extension of the WMW U-statistic to right censored
data (Gehan 1965). In this case, I (t1k < t2l ) will be equal to 1 if subject l in group
2 lived longer than subject k in group 1 and 0 if it is uncertain which subject lived
longer.

Our proposed method can be applied in many disease areas in which different
outcomes are clinically related and represent the manifestation of the same under-
lying condition. Clinical trials of unstable angina and non-ST segment elevation
myocardial infarction are examples of such an application (Braunwald et al. 2002;
Grech and Ramsdale 2003). The method can also be applied in clinical trials where
the overall effect of treatment on a disease depends on hierarchy of meaningful—
yet of different importance, magnitude, and impact—heterogenous outcomes. For
instance, in clinical trials of asthma or of benign prostatic hyperplasia (BPH),
several outcomes are necessary to capture the multifaceted manifestations of the
disease. For patients with asthma, four outcomes (forced expiratory volume in 1 s
(FEV1), peak expiratory flow (PEF) rate, symptom score, and additional rescue
medication use) are necessary to measure the different manifestations of the disease
(National Asthma Education and Prevention Program (National Heart, Lung, and
Blood Institute) 2007). Due to subjective nature of benign prostatic hyperplasia
(BPH) symptoms, in addition to BPH symptom score index, measures to assess
disease progression include: prostate-specific antigen (PSA), urinary cytology, post-
void residual volume (PVR), urine flow rate, cystoscopy, urodynamic pressure-flow
study, and ultrasound of the kidney or the prostate.

Our method does not immediately apply to the case where the treatment effect
is assessed by stratifying for a confounding variable (baseline scores, baseline
disease severity, age, . . . ) prespecified in the study design (Van Elteren 1960;
Zhao 2006; Kawaguchi et al. 2011). For the NBO trial, had the investigators
anticipated the imbalance between subjects on some baseline variables (e.g., large
infarcts, advanced age, comorbidities, and most importantly, withdrawal of care
based on pre-expressed wishes or family preference), they could have stratified
the study population with respect to these variables (Singhal 2006; Samson 2013).
The test statistic we have proposed does not adjust for such baseline covariates
as the appropriate weighted WMW test for this case must take into account the
stratum-specific characteristics in addition to the specificities of the worst-ranking
procedure; this is a topic for future investigations.

A strong case may be made on why one should prefer analysis of covariance
to the analysis of change from baseline score as we have done in this chapter
Senn (2006). In reality, however, issues are more nuanced and the approach to
use depends closely on the nature of the data as well as the clinical question of
interest Fitzmaurice (2001); van Breukelen (2013); Shahar and Shahar (2012); Pearl
(2014); Oakes and Feldman (2001); Willett (1988). For the difference in NIHSS
scores (from baseline to 3 months) used in this chapter as outcome of interest, the
fundamental question of interest was “on average, how much did the NBO-treated
patients change over 3-month period compared to patients assigned to room air?”
The change-from-baseline-score paradigm assumes that the same measure is used
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before and after the treatment and that these two measures are highly correlated
Bonate (2000); Campbell and Kenny (1999).

In the stroke literature, it is proven that change from baseline in NIHSS satisfies
this assumption since baseline NIHSS is a strong predictor of outcome after stroke
(Young et al. 2005; Adams Jr et al. 1999). Moreover, it has been shown that change
in the NIHSS score is a useful tool to measure treatment effect in acute stroke
trials (see, for instance, the chapters by Bruno et al. (2006) and by Parsons et al.
2012). Hence, this justified the choice of improvement (or change) in NIHSS score
as outcome of interest in this chapter.

We have assumed throughout this chapter that mortality is worse than any impact
ischemic stroke may have on patients. Our assumption stems from the common view
that ranks death as inferior to any quality-of-life measure; such a view is advocated
in several medical fields (Follmann et al. 1992; Brittain et al. 1997; Felker et al.
2008; Felker and Maisel 2010; Allen et al. 2009; Sun et al. 2012; Subherwal et al.
2012; Berry et al. 2013). However, some people (patients, their family members,
or caregivers) may argue otherwise and affirm that there are levels of stroke that
are worse than death. For instance, in a study of the effects of thrombolytic therapy
in reducing damage from a myocardial infarction, the hierarchy of the quality of
component outcomes was “stroke resulting in a vegetative state, death, serious
morbidity requiring major assistance, serious morbidity but capable of self-care,
excess spontaneous hemorrhage (≥ 3 blood transfusions), and 1–2 transfusions”
(Hallstrom et al. 1992). There are a number of chapters in the causal inference
literature that offer an alternative approach based on Rosenbaum’s proposal of using
different “placements of death” (Rosenbaum 2006). However, as Rubin pointed out,
this elegant idea “maybe difficult to convey to consumers” (Rubin 2006) and we
have not pursued this avenue here.

Finally, the null hypothesis H0 for WMW test stipulates that the treatment
does not change the outcome distribution, which means that the treatment has no
effect on any patient. However, some studies may require a weaker version of
the null hypothesis, i.e., the treatment does not affect the average group response
(Fay and Proschan 2010; Gail et al. 1996). In such a case, the WMW is not an
asymptotically valid test for the weaker null hypothesis (Pratt 1964; Chung and
Romano 2016). As an alternative, one can use the Brunner–Munzel test (Brunner
and Munzel 2000) where the marginal distribution functions of the two treatment
groups are not assumed to be equal and may have different shapes, even under the
null hypothesis. The use of a weighted Brunner–Munzel test for analysis of the
worst-rank composite outcome of death and a quality-of-life (such as the NIHSS
score) warrants further investigations and is beyond the scope of this chapter. In this
chapter, we have chosen the WMW test because it is simple, widely used, efficient,
and robust against parametric distributional assumptions. It allows to focus on how
we leverage the contribution and the variation of each component of the composite
outcome in the data at hand to better capture the overall treatment effect by assigning
optimal weights accordingly.
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Appendix 1: Proof of Theorem 1.1

We consider ˜Xij = δij (η + Tij )+ (1− δij )Xij , i = 1, 2 and j = 1, . . . , Ni

I (˜X1k < ˜X2l ) = δ1kδ2lI (T1k < T2l |T1k ≤ Tmax, T2l ≤ Tmax)+ δ1k(1− δ2l )

+(1− δ1k)(1− δ2l )I (X1k < X2l ),

I (˜X1k = ˜X2l ) = δ1kδ2lI (T1k = T2l |T1k ≤ Tmax, T2l ≤ Tmax)

+(1− δ1k)(1− δ2l )I (X1k = X2l ).

For qi = 1− pi , we have

μ = E(U)

= E(Ukl) = E

[

I (˜X1k < ˜X2l )+ 1

2
I (˜X1k = ˜X2l )

]

= p1p2

[

P(T1k < T2l |T1k ≤ Tmax, T2l ≤ Tmax)

+1

2
P(T1k = T2l |T1k ≤ Tmax, T2l ≤ Tmax)

]

+p1q2 + q1q2

[

P(X1k < X2l )+ 1

2
P(X1k = X2l )

]

= p1p2πt1 + p1q2 + q1q2πx1 ≡ πU1,

where

πt1 = P(T1k < T2l |T1k ≤ Tmax, T2l ≤ Tmax)

+1

2
P(T1k = T2l |T1k ≤ Tmax, T2l ≤ Tmax)

πx1 = P(X1k < X2l )+ 1

2
P(X1k = X2l ).

Define Ukl = I (˜X1k < ˜X2l ) + 1
2I (

˜X1k = ˜X2l ), for k = 1, . . . , N1 and l =
1, . . . , N2. The binary variable Ukl = I (˜X1k < ˜X2l ) follows Bernoulli distribution
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with probability πU1. Its mean and variance, respectively, E(Ukl) = πU1 and
V ar(Ukl) = E(Ukl) [1− E(Ukl)] = πU1(1−πU1). Thus, we can use these results
to derive the variance of U using the following formula:

V ar(U) = (N1N2)
−2

[

N1
∑

k=1

N2
∑

l=1

V ar(Ukl)+
N1
∑

k=1

N2
∑

l=1

N1
∑

k′=1

N2
∑

l′=1

Cov(Ukl, Uk′l′)

]

= (N1N2)
−1 [V ar(Ukl)+ (N1 − 1)Cov(Ukl, Uk′l )

+(N2 − 1)Cov(Ukl, Ukl′)] .

Note that when k �= k′ and l �= l′, the covariance

Cov(Ukl, Uk′l′) = E(UklUk′l′)− E(Ukl)E(Uk′l′) = 0.

When k �= k′ or l �= l′, we have

Cov(Ukl, Uk′l ) = E(UklUk′l )− E(Ukl)E(Uk′l ) = πU2 − π2
U1;

Cov(Ukl, Ukl′) = E(UklUkl′)− E(Ukl)E(Ukl′) = πU3 − π2
U1.

where πU2 = E(UklUk′l ) and πU3 = E(UklUkl′).
Therefore,

V ar(U) = (N1N2)
−1

[

πU1 (1− πU1)+ (N1 − 1)(πU2 − π2
U1)

+(N2 − 1)(πU3 − π2
U1)

]

1. No ties:
When there are no ties, I (˜X1k = ˜X2l ) = 0. In which case, Ukl = I (˜X1k <
˜X2l ) = δ1kδ2lI (T1k < T2l |T1k ≤ Tmax, T2l ≤ Tmax) + δ1k(1 − δ2l ) + (1 −
δ1k)(1− δ2l )I (X1k < X2l ), for k = 1, . . . , N1 and l = 1, . . . , N2,. We have

E(UklUk′l ) = P(T1k < T2l , T1k′ < T2l |δ1kδ1k′δ2l = 1)E(δ1kδ1k′δ2l = 1)

+ P(X1k′ < X2l )P (δ1k = 1, δ1k′ = δ2l = 0)

+ P(X1k < X2l )E(δ1k = δ2l = 0)E(δ1k′ = 1)

+ P(X1k < X2l , X1k′ < X2l )E(δ1k = δ1k′ = δ2l = 0)

+ E(δ1kδ1k′ = 1)E(δ2l = 0)

= p2
1p2πt2 + 2p1q1q2πx1 + q2

1q2πx2 + p2
1q2 ≡ πU2

E(UklUkl′) = P(T1k < T2l , t1k < t2l′ |δ1kδ2lδ2l′ = 1)E(δ1kδ2lδ2l′ = 1)
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+ P(T1k < T2l |δ1kδ2l = 1, δ2l′ = 0)E(δ1kδ2l = 1)E(δ2l′ = 0)

+ P(t1k < t2l′ |δ1k = 1, δ2l = 0, δ2l′ = 1)E(δ1kδ2l′ = 1)E(δ2l = 0)

+ P(X1k < X2l , X1k < X2l′)E(δ1k = δ2l = δ2l′ = 0)

+ E(δ1k = 1)E(δ2l = δ2l′ = 0)

= p1p
2
2πt3 + 2p1p2q2πt1 + q1q

2
2πx3 + p1q

2
2 ≡ πU3

with πt2 = P(T1k < T2l , T1k′ < T2l |T1k ≤ Tmax, T1k′ ≤ Tmax, T2l ≤ Tmax),

πx2 = P(X1k < X2l , X1k′ < X2l ),

πt3 = P(T1k < T2l , t1k < t2l′ |T1k ≤ Tmax, T2l ≤ Tmax, T2l′ ≤ Tmax),

πx3 = P(X1k < X2l , X1k < X2l′).

Under the null hypothesis of no difference between the two groups, with
respect to survival and nonfatal outcome, we have F1 = F2 = F, G1 = G2 = G

and p1 = p2 = p, q1 = q2 = q. This implies

πt1 = P(T1k < T2l |T1k ≤ Tmax, T2l ≤ Tmax)

= 1

2p2

[

F(Tmax)
2 − F(0)2

]

= 1

2

πt2 = P(T1k < T2l , T1k′ < T2l |T1k ≤ Tmax, T1k′ ≤ Tmax, T2l ≤ Tmax)

= 1

p3

∫ Tmax

0
F(t)2dF(t)

= 1

3p3

[

F(Tmax)
3 − F(0)3

]

= 1

3

πt3 = P(T1k < T2l , T1k < T2l′ |T1k ≤ T , T2l ≤ T , T2l′ ≤ T ))

= 1

p3

∫ Tmax

0
[1− F(t)]2 dF(t)

= 1

3p3

{

[1− F(Tmax)]3 − [1− F(0)]3
}

= 1

3

πx1 = P(X1k < X2l ) =
∫ ∞

−∞
G(x)dG(x) = 1

2

[

G(x)2
]∞
−∞ =

1

2

πx2 = P(X1k < X2l , X1k′ < X2l ) =
∫ ∞

−∞
G(t)2dG(t) = 1

3

[

G(x)3
]∞
−∞ =

1

3

πx3 = P(X1k < X2l , X1k < X2l′)
∫ ∞

−∞
[1−G(t)]2dG(t)

= −1

3

{

[1−G(x)]3
}∞
−∞ =

1

3
.
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Therefore,

πU1 = p1p2πt1 + p1q2 + q1q2πx1

= 1

2
p2 + pq + 1

2
q2 = 1

2
(p + q)2 = 1

2

πU2 = p2
1q2 + p2

1p2πt2 + 2p1q1q2πx1 + q2
1q2πx2

= p2q + 1

3
p3 + pq2 + 1

3
q3 = 1

3
(p + q)3 = 1

3

πU3 = p1q
2
2 + p1p

2
2πt3 + 2p1p2q2πx1 + q1q

2
2πx3

= pq2 + 1

3
p3 + p2q + 1

3
q3 = 1

3
(p + q)3 = 1

3
.

The mean and variance become

μ0 = E0(U) = πU1 = 1

2
;

σ 2
0 = V ar0(U)

= (N1N2)
−1

[

πU1 (1− πU1)+ (N1 − 1)
(

πU2 − π2
U1

)

+(N2 − 1)
(

πU3 − π2
U1

)]

= (N1N2)
−1

[

1

2

(

1− 1

2

)

+ (N1 − 1)

(

1

3
−

(

1

2

)2
)

+(N2 − 1)

(

1

3
−

(

1

2

)2
)]

= (N1N2)
−1

[

1

4
+ 1

12
(N1 − 1)+ 1

12
(N2 − 1)

]

= N1 +N2 + 1

12N1N2
.

2. Ties are present: More generally, we can approximate the probabilities πU2 =
E(UklUk′l ) and πU3 = E(UklUkl′) using their unbiased estimators.

Following Hanley and McNeil (1982), we can show that the variance V ar(U)

can be estimated by:

(N1N2)
−1

[

π̂U1 (1− π̂U1)+ (N1 − 1)(π̂U2 − π̂2
U1)+ (N2 − 1)(π̂U3 − π̂2

U1)
]



30 R. A. Matsouaka et al.

where π̂U1 = (N1N2)
−1

N1
∑

k=1

N2
∑

l=1

Ukl, π̂U2 = (N1N
2
2 )
−1

N1
∑

k=1

U2
k•, and π̂U3 =

(N2
1N2)

−1
N2
∑

l=1

U2•l . In absence of ties, π̂U2 and π̂U3 are, respectively, estimates

of πU3 and πU3.
One can also consider other possible approximations of the variance of U

using the exposition provided by Newcombe (2006).
As we know,

P(˜X1k < ˜X2l )+ P(˜X1k > ˜X2l )+ P(˜X1k = ˜X2l ) = 1.

Under the null hypothesis, i.e., ˜X1k and ˜X2l are identically distributed, we have
P(˜X1k < ˜X2l ) = P(˜X1k > ˜X2l ) which implies P(˜X1k < ˜X2l ) + 1

2P(
˜X1k =

˜X2l ) = 1
2 . Therefore,

E(U) = E(Ukl) = P(˜X1k < ˜X2l )+ 1

2
P(˜X1k = ˜X2l ) = 1

2
.

The variance reduces to:

σ 2
0 = V ar0(U) = 1

12N1N2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

N1 +N2 + 1−

g
∑

ν=1

tν(t
2
ν − 1)

(N1 +N2)(N1 +N2 − 1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where tν is the number of observations with the same value in the ν-th block of
tied observations sharing the same value and g is the number of such blocks (see,
for instance, Rosner 2015).

Appendix 2: Mean and Variance of the Weighted U-Statistic

Consider the weights w = (w1, w2), we define the vector c′ = (c1, c2, c3) =
(

w2
1, w1w2, w

2
2

)

. Let ˜X1k = w1δ1k(η + t1k) + w2(1 − δ1k)X1k, for k = 1, . . . , N1

and ˜X2l = w1δ2l (η + t2l)+ w2(1− δ2l )X2l , for l = 1, . . . , N2.

We define the weighted WMW U-statistic by: c′U = (Ut , Utx, Ux) where U′ =
(Ut , Utx, Ux) and
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Ut = (N1N2)
−1

N1
∑

k=1

N2
∑

l=1

δ1kδ2l

[

I (T1k < T2l)+ 1

2
I (T1k = T2l )

]

, with

T1k ≤ Tmax, T2l ≤ Tmax

Utx = (N1N2)
−1

N1
∑

k=1

N2
∑

l=1

δ1k(1− δ2l)

Ux = (N1N2)
−1

N1
∑

k=1

N2
∑

l=1

(1− δ1k)(1− δ2l ) [I (X1k < X2l )+ I (X1k = X2l )]

E(U) = (E(Ut ), E(Utx), E(Ux))
′

=
(

E(δ1k = 1)E(δ2l = 1)

[

P(T1k < T2l |T1k ≤ Tmax, T2l ≤ Tmax)

+1

2
P(T1k = T2l |T1k ≤ Tmax, T2l ≤ Tmax)

]

, E(δ1k = 1)E(δ2l = 0),

E(δ1k = 0)E(δ2l = 0)

[

P(X1k < X2l )+ 1

2
P(X1k = X2l )

])′

= (p1p2πt1, p1q2, q1q2πx1)
′

In absence of ties, the variance V ar(U) = � = (N1N2)
−1

(

�ij

)

1≤i,j≤3 is a 3 × 3
matrix such that

�11 = E[(Ut − p1p2πt1)(Ut − p1p2πt1)]
= p1p2

[

πt1(1− p1p2πt1)+ p1(N1 − 1)(πt2 − p2π
2
t1)+ p2(N2 − 1)(πt3 − p1π

2
t1)

]

,

�12 = �21 = E[(Ut − p1p2πt1)(Utx − p1q2)] = πt1p1p2q2 [(N2 − 1)q1 −N1p1] ,

�13 = �31 = E[(Ut − p1p2πt1)(Ux − q1q2πx1)] = −πt1πx1(N1 +N2 − 1)p1q1p2q2,

�22 = E[(Utx − p1q2)(Utx − p1q2)] = p1q2 [(1− p1q2)+ (N1 − 1)p1p2 + (N2 − 1)q1q2]

�23 = �32 = E[(Utx − p1q2)(Ux − q1q2πx1)] = πx1p1q1q2 [(N1 − 1)p2 −N2q2] ,

�33 = E[(Ux − q1q2)(Ux − q1q2πx1)]
= q1q2

[

πx1(1− q1q2πx1)+ q1(N1 − 1)(πx2 − q2π
2
x1)+ q2(N2 − 1)(πx3 − q1π

2
x1)

]

.

Therefore,

V ar(c′U) = c′�c.
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Under the null hypothesis of no difference between the two groups, with respect
to both survival and nonfatal outcome, we have p1 = p2 = p, q1 = q2 = q =
1− p, πt1 = πx1 = 1/2, and πt2 = πx2 = πt3 = πx3 = 1/3. Thus,

E0(U) = 1

2

(

p2, 2pq, q2
)′

and V ar0(U) = �0, (1.17)

where �0 = (N1N2)
−1

(

�0ij
)

1≤i,j≤3 is a symmetric matrix with

�011 = p2

12
A(p), �012 = p2q

2
[(N2−1)q−N1p] , �013 = −p

2q2

4
(N2 +N1−1)

�022 = pq
[

1−pq + (N2−1)q2 + (N1−1)p2
]

, �023 = pq2

2
((N1−1)p−N2q) ,

�033 = q2

12
A(q), where A(x) = 6+ 4(N2 +N1−2)x−3(N2 +N1−1)x2.

Moreover, since V ar0(c′U) = c′�0c ≥ 0 by definition, the matrix �0 is positive
semi-definite. In practice, p is estimated by the pooled sample proportion p̂ =
(N1p̂1+N2p̂2)/(N1+N2), and both E0(U) and V ar0(U) are calculated accordingly.
Finally, when ties are present, the foregoing formulas can be modified easily as we
did in the non-weighted case to account for the ties in the variance estimations.

Appendix 3: Optimal Weights

From Eq. (1.15), we have

μ1w−μ0w = c1

(

πt1p1p2 − 1

2
p2

)

+c2 (p1q2 − pq)+c3

(

πx1q1q2 − 1

2
q2

)

= c′μ

where μ′ =
(

πt1p1p2 − 1
2p

2, p1q2 − pq, πx1q1q2 − 1
2q

2
)

, c′ = (c1, c2, c3) with

c1 + 2c2 + c3 = 1.
We assume that det (�0) > 0, i.e., �0 is positive definite. Maximizing

|μ1w − μ0w|
σ0w

, subject to c1 + 2c2 + c3 = 1, with respect to c corresponds to

maximizing the Lagrange function:

O(c, λ) = ∣

∣c′μ
∣

∣

(

c′�0c
)− 1

2 − λ(c′b− 1)

with respect to the vector c and λ, where λ is the Lagrange multiplier and b′ =
(1, 2, 1). Let K(c) = sign(c′μ)[(c′�0c)− 3

2 ], we have
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∂

∂c
O(c, λ) = K(c)

[

(c′�0c)μ− (�0c)(c′μ)
]− λb = 0 (1.18)

∂

∂λ
O(c, λ) = c′b− 1 = 0 (1.19)

From (1.18) and (1.19), we have

0 = c′
{

K(c)
[

(c′�0c)μ− (�0c)(c′μ)
]− λb

}

= K(c)
[

(c′�0c)c′μ− (c′�0c)(c′μ)
]− λc′b = λ,

because both (c′�0c) and (c′μ) are scalars and c′b = c1 + 2c2 + c3 = 1.

Then, Eq. (1.18) implies (c′�0c)μ = (�0c)(c′μ), i.e., μ = (�0c)
(c′μ)
(c′�0c)

=

�0
(c′μ)
(c′�0c)

c. Since we assume that the matrix �−1
0 exists, this implies

�−1
0 μ = (c′μ)

(c′�0c)
c (1.20)

and thus, b′�−1
0 μ = (c′μ)

(c′�0c)
b′c = (c′μ)

(c′�0c)
.

Replacing
(c′μ)
(c′�0c)

by b′�−1
0 μ in Eq. (1.20) yields �−1

0 μ = (b′�−1
0 μ)c.

Therefore, the optimal weight-vector is

copt = �−1
0 μ

b′�−1
0 μ

, (1.21)

as long as b′�−1
0 μ �= 0. In addition,

∂2

∂c2 [O(c)]c=copt = sign(c′μ)(c′�−1
0 c)−

3
2
[

2(c′�0)μ− μ′(�0c)−�0(c′μ)
]

c=copt

−3sign(c′μ)(�0c)(μ′�−1
0 μ)−

5
2
[

(c′�0c)μ−(�0c)(c′μ)
]

c=copt

=2sign(c′μ)(μ′�−1
0 μ)−

3
2 (b′�−1

0 μ)2
[

μμ′−(μ′�−1
0 μ)�0

]

=2sign(b′�−1
0 μ)(μ′�−1

0 μ)−
3
2 (b′�−1

0 μ)2
[

μμ′−(μ′�−1
0 μ)�0

]

.
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Since �0 is positive definite, we can show that the border-preserving principal

minors of order k > 2 have sign (−1)k . Therefore, copt = �−1
0 μ

b′�−1
0 μ

maximizes

O(c).
Let us define two vectors d1

′ = (1, 1, 0) and d2
′ = b′ − d1

′ = (0, 1, 1). To
calculate w1 and w2, we just need to consider the relationships c = (w2

1, w1w2, w
2
2)

and w1 + w2 = 1. We have d1
′c = w2

1 + w1(1 − w1) = w1. Therefore, using

the result given in Eq. (1.21), we can deduce w1 = d1
′c = d1

′�−1
0 μ

b′�−1
0 μ

and w2 =

1− d1
′c = (b′ − d1

′)�−1
0 μ

b′�−1
0 μ

= d2
′�−1

0 μ

b′�−1
0 μ

.

Appendix 4: Conditional Probabilities

Exponential Distribution

Suppose that the death times t1, t2 follow exponential distributions with hazards

λ1, λ2, respectively, and denote θ = λ1

λ2
, q1 = qθ2 , and q2 = e−T λ2 . Given that

P(δ1k = 1) = p1, P(δ2l = 1) = p2, we have

πt1 = P(T1k < T2l |δ1k = δ2l = 1) = (p1p2)
−1

∫ Tmax

0
(1− e−λ1u)λ2e

−λ2udu

= 1

(1− qθ2 )

[

1− 1− q
(1+θ)
2

(1+ θ)(1− q2)

]

;

πt2 = P(T1k < T2l , T1k′ < T2l |δ1k = δ1k′ = δ2l = 1)

= p−2
1 p−1

2

∫ Tmax

0
(1− e−λ1u)2λ2e

−λ2udu

= (1− qθ2 )
−2

{

1+ 1

(1− q2)

[

1− q
(1+2θ)
2

1+ 2θ
− 2(1− q

(1+θ)
2 )

1+ θ

]}

πt3 = P(T1k < T2l , t1k < t2l′ |δ1k = δ2l = δ2l′ = 1)

= p−1
1 p−2

2

∫ T

0
(e−λ2T − e−λ2u)2λ1e

−λ1udu

=
(

q2

1− q2

)2
[

1+ θ(1− q
(2+θ)
2 )

(2+ θ)(1− qθ2 )q
2
2

− 2θ(1− q
(1+θ)
2 )

(1+ θ)(1− qθ2 )q2

]
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Normal Distribution

Suppose that the nonfatal outcomes X1, X2 follow normal distributionsN(μx1, σx1)

and N(μx2 , σx2), respectively.

ConsiderΔx= μx2 − μx1
√

σ 2
x1
+ σ 2

x2

, ρxj=
σ 2
xj

σ 2
x1
+ σ 2

x2

, andZkl = X1k −X2l − (μx1 − μx2)
√

σ 2
x1
+ σ 2

x2

.

We can show that

πx1 = P(X1k < X2l ) = Φ(Δx),

πx2 = P(X1k < X2l , X1k′ < X2l ) = P(Zkl < Δx, Zk′l < Δx),

πx3 = P(X1k < X2l , X1k < X2l′) = P(Zkl < Δx, Zkl′ < Δx),

(Zkl, Zk′l ) ∼ N

((

0
0

)

,

(

1 ρx2

ρx2 1

))

and (Zkl, Zkl′) ∼ N

((

0
0

)

,

(

1 ρx1

ρx1 1

))

.
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Chapter 2
A Selective Overview of Semiparametric
Mixture of Regression Models

Sijia Xiang and Weixin Yao

2.1 Introduction

Finite mixture of regression models have been widely used in scenarios when a
single regression fails to adequately explain the relationship between the variables
at hand. This type of application is commonly seen in econometrics, where it is also
known as switching regression models, and has been widely applied in various other
fields, see, for example, in econometrics (Frühwirth-Schnatter 2001, 2006; Wedel
and DeSarbo 1933) and in epidemiology (Green and Richardson 2002). Another
wide application of finite mixture of regressions is in outlier detection or robust
regression estimation (Young and Hunter 2010). Viele and Tong (2002) described
masked outliers, which appeared in clusters and “cannot be detected individually by
standard techniques.” Pena et al. (2003) used a split and recombine (SAR) procedure
to identify possible clusters in a sample, which can be extended to identify masked
outliers.

In a typical finite mixture of regression models, assume {(xi , yi), i = 1, · · · , n}
is a random sample from the population (x, Y ), where xi = (xi,1, · · · , xi,p)T for
p < n is a vector of predictors. The goal is to describe the conditional distribution
of Yi |xi using a mixture of linear regressions with assumed Gaussian errors. That
is, let C be a latent class variable with P(C = c|x) = πc for c = 1, · · · , C. Given
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C = c, suppose that the response y depends on x in a linear way y = xT βc + εc,
where εc ∼ N(0, σ 2

c ). Then, the conditional distribution of Y given x is

Y |x ∼
C
∑

c=1

πcφ(Y |xT βc, σ
2
c ), (2.1)

and the log-likelihood function for observations {(x1, y1), . . . , (xn, yn)} is

�n(θ) =
n

∑

i=1

log

[

C
∑

c=1

πcφ(yi; xTi βc, σ
2
c )

]

, (2.2)

where θ = (π1, · · · , πC,β1, · · · ,βC, σ
2
1 , · · · , σ 2

C)
T , φ(y|μ, σ 2) is the normal

density with mean μ and variance σ 2, 0 ≤ πc ≤ 1, and
∑C

c=1 πc = 1.
It is well known that the mixture likelihood function (2.2) is unbounded, which

can be seen if we let yi = xTi βc and σc go to 0. Many efforts have been devoted to
solve the unboundedness issue of mixture likelihood. For example, Hathaway (1985,
1986) proposed to find the maximum likelihood estimate (MLE) over a constrained
parameter space. Chen and Tan (2009) and Chen et al. (2008) proposed to use
maximum penalized likelihood estimator that adds a penalty term to the unequal
variance. Yao (2010) proposed a profile log-likelihood method and a graphical way
to find the local maximum points.

Since the advent of the Expectation-Maximization (EM) algorithm, maximum
likelihood (ML) has been most commonly used to fit mixture models. Define a
component label indicator

zic =
{

1, ifobservationiisfromcomponentc,
0, otherwise.

(2.3)

The EM algorithm to fit model (2.1) proceeds iteratively between the following two
steps.

Algorithm 2.1.1
E-step:
Calculate the expectations of component labels based on estimates from lth
iteration:

p
(l+1)
ic = E[zic|xi , θ (l)] = π

(l)
c φ(Yi |xTi β(l)

c , σ
2(l)
c )

∑C
c′=1 π

(l)

c′ φ(Yi |xTi β
(l)

c′ , σ
2(l)
c′ )

,

for i = 1, · · · , n and c = 1, · · · , C.
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M-step:
Update the estimates

π(l+1)
c =

∑n
i=1 p

(l+1)
ic

n
,

β(l+1)
c = arg max

βc

[

n
∑

i=1

p
(l+1)
ic logφ(Yi |xTi βc, σ

2(l)
c )

]

= (XTWcX)−1XTWcy,

σ 2(l+1)
c =

∑n
i=1(yi − xTi β(l+1)

c )2p
(l+1)
ic

∑n
i=1 p

(l+1)
ic

,

for c = 1, · · · , C, where Wc =diag{p(l+1)
1c , · · · , p(l+1)

nc }, X is the design matrix and
y is the vector of response variables. Iterate between the two steps until convergence.

Since Goldfeld and Quandt (1973) first introduced the mixture regression
model, many efforts have been made to extend the traditional parametric mixture
of linear regression models. In the following sections, we are going to give a
selective overview of recently developed semiparametric mixture models, and their
estimation methods. In order to be consistent throughout, we tried our best to use
the same notation system, which might not be the same as the original articles.

2.2 Mixture of Regression Models with Varying Proportions

2.2.1 Continuous Response, p = 1

As assumed by model (2.1), the probability for each regression model to occur is
a fixed value πc, c = 1, · · · , C. But if the covariates x contains some information
about the relative weights, model (2.1) might not be accurate. Therefore, Young and
Hunter (2010) replaced model (2.1) by

Y |x ∼
C
∑

c=1

πc(x)φ(Y |xT βc, σ
2
c ). (2.4)

If πc(x) is modeled as a logistic function, then model (2.4) becomes the hierarchical
mixtures of experts (HME, Jacobs et al. 1991) in neural network. Young and Hunter
(2010), on the other hand, modeled πc(x) nonparametrically for the purpose of a
more flexible model assumption. To be more specific, πc(x) is modeled as

πc(xi ) = E[zic|xi],
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where zic is defined in (2.3). Since zic is not known in reality, p∞ic , where∞ denotes
the converged value, is used as a response value. Applying the idea of local linear
regression (Fan and Gijbels 1996), at each grid point xi , Young and Hunter (2010)
proposed to estimate πc(xi ) by

arg min
α

n
∑

l=1

Kh(xi − xl )

[

p
(∞)
l,c −

(

α0 +
p
∑

t=1

αt (xi,t − xl,t )

)]2

, (2.5)

where α = (α0, α1, · · · , αp)T , p is the length of the predictor vector, and

Kh(xi − xl ) = 1

h1 · · ·hpK
(

xi,1 − xl,1

h1
, · · · , xi,p − xl,p

hp

)

× I

{

|xi,t − xl,t

ht
| ≤ 1∀t = 1, · · · , p

}

is a multivariate kernel density function. The algorithm they used is a global/local
EM-like algorithm, since it iterates between a global step to update βc and σc and a
local step to update πc(xi ).

Algorithm 2.2.1
Global step: Update βc and σc using standard EM algorithm updates:

β(l+1)
c = (XTW(l)

c X)−1XTW(l)
c y,

σ 2(l+1)
c =

∥

∥

∥W
1/2(l)
c (y−XT β(l+1)

c )

∥

∥

∥

2

tr(W(l)
c )

,

for c = 1, · · · , C, where X is the n × p design matrix and W
(l)
c =

diag(p(l)
1c , · · · , p(l)

nc ). Different from other classical EM algorithm, it is then to
update pic, the classification probability, in the middle of the iteration to reflect the
most recent updates of parameters. Let ric = (yi − xTi β(l+1)

c )/σ
(l+1)
c , then

p
(l+0.5)
ic = π

(l)
c (xi )φ(ric|0, 1)/σ (l+1)

c
∑C

c′=1 π
(l)

c′ (xi )φ(ric′ |0, 1)/σ (l+1)
c′

, (2.6)

for i = 1, · · · , n and c = 1, · · · , C.
Local step: Update πc(xi ) by solving (2.5). Re-update the estimates for pic as pl+1

ic

using (2.6).

However, due to the “curse of dimensionality,” they only did simulation study
for p = 1 case, and argued that extra caution should be given for high-dimensional
predictor cases.
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2.2.2 Continuous Response, p > 1

Huang and Yao (2012) also studied model (2.4), but different from Young and
Hunter (2010), they allowed the predictors x to be of dimension p > 1, and model
the mixing proportion πc as πc(u), where u is of dimension one and could be part
of X. In other words, Huang and Yao (2012) proposed

Y |x,u ∼
C
∑

c=1

πc(u)φ(Y |xT βc, σ
2
c ). (2.7)

Note also that Huang and Yao (2012) provided the asymptotic properties of their
estimators, where Young and Hunter (2010) only gave the computation algorithm
without any theoretical results. The identifiability of model (2.7) was shown
under mild conditions. They also proposed a new one-step backfitting estimation
procedure for the model. Specifically,

1. Estimate π(·) locally by maximizing the following local likelihood function

�1(π ,β, σ
2) =

n
∑

i=1

log

{

C
∑

c=1

πcφ(Yi |xTi βc, σ
2
c )

}

Kh(Ui − u),

and let π̃(u), β̃(u) and σ̃ 2(u) be the solution.
2. Update the estimates of global parameters β and σ 2 by maximizing

�2(β, σ
2) =

n
∑

i=1

log

{

C
∑

c=1

π̃c(Ui)φ(Yi |xTi βc, σ
2
c )

}

,

and let β̂(u), and σ̂
2
(u) be the solution.

3. Further improve the estimate of π(z) by maximizing

�3(π) =
n

∑

i=1

log

{

C
∑

c=1

πcφ(Yi |xTi β̂c, σ̂
2
c )

}

Kh(Ui − u),

and let π̂(u) be the solution.

π̂(u), β̂ and σ̂
2 are called the one-step backfitting estimates. Huang and Yao (2012)

proved that the one-step estimators of β and σ 2 were
√
n-consistent, and followed

an asymptotic normal distribution, and π(·) based upon β̂ and σ̂
2 had the same

first-order asymptotic bias and variance as the kernel estimates with true values of
β and σ 2.
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2.2.3 Discrete Response

Model (2.4) can be extended to mixture of GLM with varying proportions (Wang
et al. 2014) to account for discrete responses. That is,

Y |x ∼
C
∑

c=1

πc(x)fc(Y |x, θc), (2.8)

where fc is the component specific density function coming from the exponential
family of distributions, and θc = (βT

c , σ
2
c )

T . The mean of each component is then
given by

μc(x) = g−1
c (xT βc),

where gc(·) is a component specific link function. Wang et al. (2014) established the
identifiability result of the model (e2.15) and gave the corresponding conditions.

Motivated by rain data from a global climate model, Cao and Yao (2012) studied
a special case of (2.8), a semiparametric mixture of binomial regression, where both
the component proportions and the success probabilities depend on the predictors
nonparametrically. That is,

Y |X=x ∼ π1(x)Bin(Y ;N, 0)+ π2(x)Bin(Y ;N,p(x)), (2.9)

where Bin(Y ;N,p) denotes the probability mass function of Y , which is binomially
distributed with number of trials N and success probability p, π1(x) and π2(x) are
two nonparametric functions with π1(x)+π2(x) = 1. Note that the first component
is degenerating with mass 1 on 0, and therefore, model (2.9) has wide application in
data with extra number of zeros. The local log-likelihood at any point x0 is

�(θ(x0)) =1

n

n
∑

i=1

Kh(xi − x0) log[π1(x0)I (yi = 0)

+ {1− π1(x0)}
(

N

yi

)

p(x0)
ti {1− p(x0)}N−yi }], (2.10)

where θ = {π1, p}T , xi is the observation for Y at xi, i = 1, · · · , n, and Kh(·) =
h−1K(·/h) is a scaled kernel function with bandwidth h. Since there is no explicit
solution for maximizing (2.10), the authors proposed the following EM algorithm,
which increased the local log-likelihood (2.10) monotonically.
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Algorithm 2.2.2
E step: Calculate the classification probabilities

p
(l+1)
i1 = π

(l)
1 (x0)Bin(yi;N, 0)

π
(l)
1 (x0)Bin(yi;N, 0)+ {1− π

(l)
1 (x0)}Bin(yi;N,p(l)(x0))

,

p
(l+1)
i2 = 1− p

(l+1)
i1 , i = 1, · · · , n.

M step: Update the estimates

π(l+1)
c (x0) =

∑n
i=1 Kh(xi − x0)p

(l+1)
ic

∑n
i=1

∑2
c′=1 Kh(xi − x0)p

(l+1)
ic′

, c = 1, 2,

p(l+1)(x0) =
∑n

i=1 Kh(xi − x0)p
(l+1)
i2 yi

N
∑n

i=1 Kh(xi − x0)p
(l+1)
i2

.

In Cao and Yao (2012), the researchers also considered a semiparametric mixture
model with constant proportions, that is

Y |X=x ∼ π1Bin(Y ;N, 0)+ π2Bin(Y ;N,p(x)),

as a special case of model (2.9). A one-step backfitting procedure was proposed
to estimate the model, and the estimates were shown to achieve the optimal
convergence rates.

1. Estimate p(·) and π1 locally by maximizing the local log-likelihood function
(2.10) and let p̃(x) and π̃1(x) be the solution.

2. Update the estimates of global parameters π1 by maximizing

�1(π1) = 1

n

n
∑

i=1

log[π1I (yi = 0)+ {1− π1}
(

N

yi

)

p̃(x0)
yi {1− p̃(x0)}N−yi ],

and let π̂1 be the solution.
3. Further improve the estimate of p(t) by maximizing

�2(p(x0)) =1

n

n
∑

i=1

Kh(xi − x0) log[π̂1I (yi = 0)

+ {1− π̂1}
(

N

yi

)

p(x0)
yi {1− p(x0)}N−yi ],

and let p̂(x) be the solution.
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p̂(x) and π̂1 are called the one-step backfitting estimates. The theoretical properties
of both model estimates were discussed.

2.3 Nonparametric Errors

One main drawback of classic mixture of regression models (2.1) is the strong
parametric assumption about the normal error density. The estimation results might
be biased if the error density is misspecified. As a result, several new methods were
proposed to relax the parametric assumption of the error densities.

2.3.1 Semiparametric EM Algorithm with Kernel Density Error

For each component, Hunter and Young (2012) also assumed the basic parametric
linear mixture of regressions

Yi = xTi βc + εi,

but instead of normality, the error term εi was modeled fully nonparametrically as
εi ∼ g, where g was completely unspecified. Therefore, in this semiparametric
model, the conditional distribution might be written as

Y |x ∼
C
∑

c=1

πcg(Y − xT βc), (2.11)

where, without loss of generality, g was assumed to have median zero. The
authors showed that when regression planes were not parallel, the parameters were
identifiable without any assumption on g, on the other hand, when the planes were
parallel, identifiability could still be obtained given some additional assumptions
on g. To estimate the parameters and the nonparametric functions, first define a
nonlinear smoothing operator

Nhg(x) = exp
∫

1

h
K

(

x − u

h

)

log g(u)du,

then a smoothed version of the log-likelihood function of the parameters is
defined as:

�s(π ,β, g) =
n

∑

i=1

log

{

C
∑

c=1

πcNhg(yi − xTi βc)

}

.

Hunter and Young (2012) proposed a minorization-conditional-maximization
(MCM) algorithm.
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Algorithm 2.3.1
Minorization step: Finding the “posterior” probabilities:

p
(l)
ic =

π
(l)
c Nhg

(l)(yi − xTi β(l)
c )

∑C
c′=1 π

(l)

c′ Nhg(l)(yi − xT β
(l)

c′ )
,

for i = 1, · · · , n and c = 1, · · · , C.
Maximization step: Update estimates for parameters

π(l+1)
c =

∑n
i=1 p

(l)
ic

n
,

g(l+1)(u) = 1

nh

n
∑

i=1

C
∑

c=1

p
(l)
ic K

(

u− yi + xTi β(l)
c

h

)

,

β(l+1)
c (x) = arg max

β

n
∑

i=1

π(l+1)
c log Nhg

(l+1)(yi − xTi βc),

for c = 1, · · · , C.

Hunter and Young (2012) showed that the above algorithm possessed the desirable
ascent property enjoyed by all true EM algorithm. That is:

�s(π
(l+1),β(l+1), g(l+1)) ≥ �s(π

(l),β(l), g(l)).

Simulation studies and real data applications showed the effectiveness of the new
methods. One main drawback of this method is that by allowing for a completely
flexible error distribution, the algorithm might not be able to identify all the
components as they are asked to. In addition, those fully nonparametric methods
also face difficulties, such as bandwidth selection for kernel smoothing.

2.3.2 Log-Concave Density Error

Hu et al. (2017) also tried to relax the normality assumption on the error terms.
But instead of completely nonparametric, Hu et al. (2017) proposed to estimate
the mixture regression parameters by only assuming the components to have log-
concave error densities. That is, the model can still be written as (2.11), but in
this case, gc is assumed to be log-concave. That is, gc(x) = exp{φc(x)} for some
unknown concave function φc(x). Examples of log-concave densities are normal,
Laplace, chi-square, logistic, gamma with shape parameter greater than one, beta
with both parameters greater than one, and so on.
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When error terms for different components are assumed to have different
distributions, an EM-type algorithm is proposed.

Algorithm 2.3.2
E step: Compute the classification probabilities

p
(l+1)
ic = π

(l)
c g

(l)
c (yi − xTi β(l)

c )
∑C

c′=1 π
(l)

c′ g
(l)

c′ (yi − xTi β
(l)

c′ )
,

for i = 1, · · · , n and c = 1, · · · , C.
M step:

1. Calculate the log-likelihood for each observation

�
(l)
i = log

C
∑

c=1

π(l)
c g(l)c (yi − xTi β(l)

c ),

for i = 1, · · · , n, and update the trimmed subset of size n− s, denoted by I (l+1),
which has the n− s largest log-likelihoods.

2. Update π as

π(l+1)
c = 1

n− s

∑

i∈I (l+1)

p
(l+1)
ic , c = 1, · · · , C.

3. Update β as

β̃
(l+1)
c = arg max

βj

∑

i∈I (l+1)

p
(l+1)
ic log g(l)c (yi − xTi βj ), c = 1, · · · , C.

4. Shift the intercept of β̃
(l+1)
c for residuals to have mean zero

β̂
(l+1)
c = (β̂

(l+1)
c,0 ), β̃

(l+1)
c,1 , · · · , β̃(l+1)

c,p−1),

for c = 1, · · · , C, where

β̂
(l+1)
c,0 = β̃

(l+1)
c,0 + d(l+1)

c withd(l+1)
c = 1

n− s

∑

i∈I (l+1)

p
(l+1)
ic (yi − xTi β̃

(l+1)
c ).

5. Update gc by

g(l+1)
c = arg max

gc∈G

n
∑

i=1

p
(l+1)
ic log gc(yi − xTi β̂

(l+1)
c ), c = 1, · · · , C,

where G is the family of all log-concave densities.
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The updates of βc and gc in the above algorithm are through existing R package
optim and mlelcd. Similar algorithm can be obtained for the special case when all
components have the same error density g. The main difference lies in the estimate
of gc, where entire residuals, instead of residuals only from the corresponding
component, are used for the estimation of g. Judging from numerical studies, the
new method worked comparable to standard normal mixture EM algorithm when
the underlying component error densities were normal, and much better otherwise.

2.3.3 Mixtures of Quantile Regressions

When the error pdfs are symmetric about zero, the methods studied in the previous
two sections would seem to be reasonable. However, in cases of asymmetric error
distributions, median or other quantile regressions should be considered.

Since quantiles are more robust than the mean, Wu and Yao (2016) studied
a semiparametric mixture of quantile regressions model allowing regressions of
the conditional quantiles on the covariates without any parametric assumption on
the error densities. In practice, the median regression is a regular choice, but the
discussion of the article is not restricted to it. Given C = c, Wu and Yao (2016)
assumed the response depending on the covariates through

Y = xT βc(τ )+ εc(τ ), (2.12)

where βc(τ ) = (β0c(τ ), · · · , βpc(τ ))T are the τ th quantile regression coefficient
for the cth component. Independent of the covariates x, εc(τ ) is assumed to have
pdf’s gc(·), whose τ th quantiles are zero. There are no more restrictions on the
errors, since the distributions will be estimated nonparametrically. By fitting the data
with varying conditional quantile functions, model (2.12) is more robust to non-
normal component distributions and capable of revealing more detailed structure
of the data. Since there is no parametric assumption made on the error densities,
a kernel based EM-type algorithm is proposed to estimate the parameters θ =
(π1,β1, · · · , πC,βC) and the error pdfs g = (g1, · · · , gC).
Algorithm 2.3.3
E step: Compute the classification probabilities

p
(l+1)
ic = π

(l)
c g

(l)
c (r

(l)
ic )

∑C
c′=1 π

(l)

c′ g
(l)

c′ (r
(l)

ic′ )
,

for i = 1, · · · , n and c = 1, · · · , C, where r(l)ic = yi − xTi β(l)
c .

M step: Update the estimates
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π(l+1)
c = 1

n

n
∑

i=1

p
(l+1)
ic ,

β(l+1)
c = arg min

βc

n
∑

i=1

p
(l+1)
ic ρτ (yi − xTi βc),

g(l+1)
c (t) =

n
∑

i=1

2
∑

s=1

w(l+1)
sc p

(l+1)
ic Kh(t − r

(l+1)
ic )Is(r

(l+1)
ic ),

for c = 1, · · · , C, where ρτ (u) = u(τ − I (u < 0)), I1(u) = I (u ≤ 0), and
I2(u) = I (u > 0). w(l+1)

sc s are calculated by solving a system of linear equations

n
∑

i=1

2
∑

s=1

w(l+1)
sc p

(l+1)
ic Is(r

(l+1)
ic ) = 1,

n
∑

i=1

2
∑

s=1

w(l+1)
sc p

(l+1)
ic v

(l+1)
ic Is(r

(l+1)
ic ) = τ,

where v(l+1)
ic = ∫ 0

−∞Kh(t − r
(l+1)
ic )dt .

Through numerical studies, the mixture of quantile regressions were shown to
be robust to non-normal error distributions and capable of revealing more data
information.

2.4 Semiparametric Mixture of Nonparametric Regressions

In traditional finite mixture of regression models (2.1) and previously discussed
semiparametric mixture models, the regressions functions are always assumed to
be linear. In the following, different models were proposed to relax the linearity
assumption to allow for more possibilities.

2.4.1 Nonparametric Mixture of Regressions

Motivated by a US house price index data, Huang et al. (2013) proposed a
nonparametric mixture of regression models, where the mixing proportions, the
mean functions, and the variance functions are all unknown but smooth functions.
However, since the error term is still assumed to be normally distributed, we still
treat it as a semiparametric mixture model. The conditional distribution of Y given
X is
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Y |X=x ∼
C
∑

c=1

πc(x)N{mc(x), σ
2
c (x)}, (2.13)

where πc(·),mc(·), σ 2
c (·) are nonparametric functions, and

∑C
c=1 πc(·) = 1. The

identifiability issue was studied for model (2.13), and kernel regression was applied
for estimation. To be more specific, πc(x),mc(x), and σ 2

c (x) are estimated by
maximizing the following local log-likelihood

n
∑

i=1

log

{

C
∑

c=1

πcφ(Yi |mc, σ
2
c )

}

Kh(Xi − x).

The EM algorithm corresponds to this method is:

Algorithm 2.4.1
E step: calculate the classification probability

p
(l+1)
ic = π

(l)
c (Xi)φ{Yi |m(l)

c (Xi), σ
2(l)
c (Xi)}

∑C
c′=1 π

(l)

c′ (Xi)φ{Yi |m(l)

c′ (Xi), σ
2(l)
c′ (Xi)}

.

M step: update estimates

π(l+1)
c (x) =

∑n
i=1 p

(l+1)
ic Kh(Xi − x)

∑n
i=1 Kh(Xi − x)

,

m(l+1)
c (x) =

∑n
i=1 w

(l+1)
ic (x)Yi

∑n
i=1 w

(l+1)
ic (x)

,

σ 2(l+1)
c (x) =

∑n
i=1 w

(l+1)
ic (x){Yi −m

(l+1)
c (x)}2

∑n
i=1 w

(l+1)
ic (x)

,

where w(l+1)
ic (x) = p

(l+1)
ic Kh(Xi − x).

The identifiability of the model was discussed, and the estimates were shown to have√
nh convergence rate.

2.4.2 Nonparametric Component Regression Functions

Although flexible, model (2.13) assumed by Huang et al. (2013) sacrificed the
efficiency of the estimates in such a setting. Xiang and Yao (2016), on the other
hand, discussed a new class of semiparametric mixture of regression models, where
the mixing proportions and variances were constants, but the component regression
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functions were smooth functions of a covariate. The conditional distribution of Y
given X = x can be written as

Y |X=x ∼
C
∑

c=1

πcφ(Y |mc(x), σ
2
c ), (2.14)

where mc(·) are unknown smooth functions. Compared to the fully nonparametric
mixture of regression models (2.13), this model improves the efficiency of the
estimates of the mean functions by assuming the mixing proportions and variances
to be constants, which are also presumed by the traditional mixture of linear
regressions. Identifiability of model (2.14) is discussed under mild conditions, and
two estimation methods are discussed.

Due to the existence of both global and local parameters, model (2.14) is more
difficult to estimate. First, a regression spline based estimator is applied to transfer
the semiparametric mixture model to a parametric mixture model. Since for any
mc(x), it can be approximated by a cubic spline as

mc(x) ≈
Q+4
∑

q=1

βcqBq(x), c = 1, ..., C,

where B1(x), ..., BQ+4(x) is a cubic spline basis and Q is the number of internal
knots. Then, model (2.14) is then turned into

Y |X=x ∼
C
∑

c=1

πcφ(Y
∣

∣

Q+4
∑

q=1

βcqBq(x), σ
2
c ),

where the parameters can then be estimated by a traditional EM algorithm for
mixture of linear regressions. As Xiang and Yao (2016) pointed out, this method
was easy to carry, but more work remained to be down about its the theoretical
properties. In addition, a more efficient one-step backfitting estimation procedure
was proposed. Specifically,

1. Estimate π = {π1, ..., πC−1}T , m = {m1, ..., mC}T and σ 2 = {σ 2
1 , ..., σ

2
C}T

locally by maximizing the following local log-likelihood function:

�1(π(x),m(x), σ 2(x)) =
n

∑

i=1

log{
k

∑

j=1

πjφ(Yi |mj , σ
2
j )}Kh(Xi − x).

Let π̃(x), m̃(x), and σ̃ 2(x) be the maximizer.
2. To improve the efficiency, update the estimates of π and σ 2 by maximizing the

following log-likelihood function:
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�2(π , σ
2) =

n
∑

i=1

log{
k

∑

j=1

πjφ(Yi |m̃j (Xi), σ
2
j )}.

Denote by π̂ and σ̂
2 the solution of this step.

3. Further improve the estimate of m(·) by maximizing the following local log-
likelihood function:

�3(m(x)) =
n

∑

i=1

log{
k

∑

j=1

π̂j φ(Yi |mj , σ̂
2
j )}Kh(Xi − x).

Let m̂(x) be the solution. Then, π̂ , m̂(x), and σ̂
2 as the one-step backfitting

estimates.

A generalized likelihood ratio test was proposed to compare between model
(2.13) and model (2.14), which was shown to have the Wilks types of results.
Numerical studies showed that the finite sample null distribution was quite close
to a χ2-distribution with the suggested degrees of freedom, especially for larger
sample sizes.

2.4.3 Mixture of Regressions with Single-Index

Model (2.13) and model (2.14) can be used in many applications, but due to
the “curse of dimensionality,” they might not be suitable for predictors with high
dimensions. Applying the ideas of single-index model (SIM) into finite mixture
of regressions, Xiang and Yao (2017) proposed a mixture of single-index models
(MSIM) and a mixture of regression models with varying single-index proportions
(MRSIP), as extensions of some existing models. Many of recently proposed
semiparametric/nonparametric mixture regression models can be considered as
special cases of the proposed models. Efficient estimation methods were proposed to
achieve the optimal convergence rate for both the parameters and the nonparametric
functions, and theoretical results showed that nonparametric functions can be
estimated with the same asymptotic accuracy as if the parameters were known
and the index parameters can be estimated with the traditional parametric

√
n

convergence rate.

Mixture of Single-Index Models (MSIM) The conditional distribution of Y given
x is assumed as

Y |x ∼
C
∑

c=1

πc(α
T x)φ(Yi |mc(α

T x), σ 2
c (α

T x)), (2.15)
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where πc(·), mc(·), and σ 2
c (·) are unknown but smooth functions. Compared to

model (2.13), model (2.15) focuses on index αT x, and so the so-called “curse
of dimensionality” in fitting multivariate nonparametric regression functions is
avoided. When C = 1, model (2.15) reduces to a single index model (Ichimura
1993; Härdle et al. 1993). If x is a scalar, then model (2.15) reduces to model
(2.13). To achieve the optimal convergence rate for both the index parameter and
nonparametric functions, Xiang and Yao (2017) proposed the following algorithm:

Algorithm 2.4.2

1. Given α̂, apply a modified EM-type algorithm to update the estimates of
nonparametric functions.
E step: Calculate the classification probability

p
(l+1)
ic = π

(l)
c (α̂

T xi )φ(Yi |m(l)
c (α̂

T xi ), σ
2(l)
c (α̂

T xi ))
∑C

c′=1 π
(l)

c′ (α̂
T xi )φ(Yi |m(l)

c′ (α̂
T xi ), σ

2(l)
c′ (α̂

T xi ))
.

M-step:
Update the estimates

π(l+1)
c (z) =

∑n
i=1 p

(l+1)
ic Kh(α̂

T xi − z)
∑n

i=1 Kh(α̂
T xi − z)

,

m(l+1)
c (z) =

∑n
i=1 p

(l+1)
ic YiKh(α̂

T xi − z)
∑n

i=1 p
(l+1)
ic Kh(α̂

T xi − z)
,

σ 2(l+1)
c (z) =

∑n
i=1 p

(l+1)
ic (Yi −m

(l+1)
c (z))2Kh(α̂

T xi − z)
∑n

i=1 p
(l+1)
ic Kh(α̂

T xi − z)
.

2. Update the estimate of α by maximizing

�(α) =
n

∑

i=1

log{
C
∑

c=1

π̂c(α
T xi )φ(Yi |m̂c(α

T xi ), σ̂ 2
c (α

T xi ))}.

One can further iterate the steps to improve the efficiency of the estimates.

Mixture of Regression Models with Varying Single-Index Proportions (MRSIP)
The MRSIP assumes that

Y |x ∼
C
∑

c=1

πc(α
T x)N(xT βc, σ

2
c ). (2.16)
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That is, they still assumed linearity in the mean functions, and so kept the easy
interpretation of the linear component regression functions while assuming that the
mixing proportions are smooth functions of an index αT x. When C = 1, model
(2.16) reduces to the traditional linear regression model. If x is a scalar, then model
(2.16) reduces to (2.4) and (2.7), which were considered by Young and Hunter
(2010) and Huang and Yao (2012). Similar to the estimation of MSIM, Xiang and
Yao (2017) proposed to iteratively estimate the global parameters and nonparametric
functions. Detailed algorithm is listed below:

1. Given (α̂, β̂, σ̂
2
), update the estimates of πc(z) by the following modified EM-

type algorithm.

Algorithm 2.4.3
E-step:
Calculate the expectations of component labels based on estimates from lth

iteration:

p
(l+1)
ic = π

(l)
c (α̂

T xi )φ(Yi |xTi β̂c, σ̂
2
c )

∑C
c′=1 π

(l)

c′ (α̂
T xi )φ(Yi |xTi β̂c′, σ̂

2
c′)

.

M-step:
Update the estimate

π(l+1)
c (z) =

∑n
i=1 p

(l+1)
ic Kh(α̂

T xi − z)
∑n

i=1 Kh(α̂
T xi − z)

.

2. Update (α̂, β̂, σ̂ 2
) by maximizing

�(α,β, σ 2) =
n

∑

i=1

log{
C
∑

c=1

π̂c(α
T xi )φ(Yi |xTi βc, σ

2
c )}.

Since there is no explicit solution for this, iterate between the following steps.

a. Given α̂, update (β, σ 2).

Algorithm 2.4.4
E-step:
Calculate the expectations of component identities:

p
(l+1)
ic = π̂c(α̂

T xi )φ(Yi |xTi β(l)
c , σ

2(l)
c )

∑C
c′=1 π̂c′(α̂

T xi )φ(Yi |xTi β
(l)

c′ , σ
2(l)
c′ )

.
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M-step:
Update β and σ 2:

β(l+1)
c = (ST R(l+1)

c S)−1ST R(l+1)
c y,

σ 2(l+1)
c =

∑n
i=1 p

(l+1)
ic (yi − xTi β(l+1)

c )2

∑n
i=1 p

(l+1)
ic

,

where R(l+1)
c = diag{p(l+1)

ic , ..., p
(l+1)
nc }, S = (x1, ..., xn)T , y = (y1, ..., yn)

T .

b. Given (β̂, σ̂
2
), maximize �(α) =∑n

i=1 log{∑C
c=1 π̂c(α

T xi )φ(Yi |xTi β̂c, σ̂
2
c )}

to update the estimate of α, using some numerical methods.

2.5 Semiparametric Regression Models for
Longitudinal/Functional Data

2.5.1 Mixture of Time-Varying Effects for Intensive
Longitudinal Data

Intensive longitudinal data (ILD) are becoming increasingly popular in behavioral
sciences, due to its richness in information. On the other hand, however, hetero-
geneous and nonlinear in nature, ILD is facing numerous analytical challenges.
Dziak et al. (2015) proposed a mixture of time-varying effect models (MixTVCM),
which incorporate time-varying effect model (TVEM) in a finite mixture model
framework. To define the model, Dziak et al. (2015) modeled the latent class
membership as a multiple-category logistic regression model. That is, conditional
on time-invariant subject-level covariates s1, · · · , sQ, the probability that individual
i comes from class c is

πic = P(Ci = c) =
exp

(

γ0,c +∑Q
q=1 γ1qcsq

)

∑C
c′=1 exp

(

γ0,c′ +∑Q
q=1 γ1qc′sq

) .

Within each class, the response yij is modeled as

μij = E(yij |Ci = c) = β0c(tij )+ β10(tij )xij1 + · · · + βpc(tij )xijP , (2.17)

where x1, · · · , xP is the observation-level covariates. Model (2.17) is essentially the
same as the TVEM in Tan et al. (2012). The variance of yij is assumed as

cov(yij , yij ′) = σ 2
a ρ
|tij−tij ′ | + σ 2

e ,
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where σ 2
a is the variance of a normally distributed subject-level error, and σ 2

e is the
variance of a normally distributed observation-level error. Although the mean of
y is modeled nonparametrically, a normal probability distribution for the errors is
assumed for computation feasibility, and therefore, MixTVEM is a semiparametric
mixture model. EM algorithm is used to accommodate the mixture structure. For
identifiability reasons, individuals should be assigned to one and only one latent
class, and therefore, the EM algorithm assigns posterior probabilities to individuals
as a whole rather than to particular observations. Penalized B-spline is used to
approximate β(·), where the penalization is considered to ensure for a smooth and
parsimonious shape.

2.5.2 Mixtures of Gaussian Processes

To incorporate both functional and inhomogeneous data, Huang et al. (2014)
proposed a new estimation procedure for the mixture of Gaussian processes, which
can be used to deal with data collected at irregular, possibly subject-depending time
points. The model studied in Huang et al. (2014) is the following. Suppose that
P(C = c) = πc, c = 1, · · · , C. Conditional on C = c,

yij = μc(tij )+
∞
∑

q=1

ξiqcνqc(tij )+ εij , i = 1, · · · , n; j = 1, · · · , Ni, (2.18)

where εij ’s are iid of N(0, σ 2). μc(t) is the mean of the Gaussian process, whose
corresponding covariance function is Gc(s, t). ξiqc and νqc(t) are the functional
principal component FPC score and eigenfunctions of Gc(s, t) (Karhunen-Loève
theorem; Sapatnekar 2011). Huang et al. (2014) also considered a reduced version
of model (2.18). Given C = c,

yij = μc(tij )+ ε∗il , (2.19)

where ε∗ij ’s are independent with E(ε∗ij ) = 0 and var(ε∗ij ) = σ ∗2c (tij ) with σ ∗2c (t) =
Gc(t, t) + σ 2. That is, in this model, the data within subjects are independent
(Gc(s, t) = 0 if s �= t). The estimation procedure combines the idea of EM
algorithm, kernel regression, and functional principal component (FPC) analysis.
To estimate for model (2.19), Huang et al. (2014) proposed an EM-type algorithm:

Algorithm 2.5.1
E step: calculate the classification probability

p
(l+1)
ic = π

(l)
c [∏Ni

j=1 φ{yij |μ(l)
c (tij ), σ

∗2(l)
c (tij )}]

∑C
c′=1 π

(l)

c′ [
∏Ni

j=1 φ{yij |μ(l)

c′ (tij ), σ
∗2(l)
c′ (tij )}]

.
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M step: To estimate the nonparametric functions μc(·)’s and σ ∗2c (·)’s, maximize the
following local log-likelihood

n
∑

i=1

C
∑

c=1

p
(l+1)
ic

Ni
∑

j=1

[logφ{yij |μc(t0), σ
∗2
c (t0)}]Kh(tij − t0),

where t0 is in the neighborhood of tij . This yields

π(l+1)
c = 1

n

n
∑

i=1

p
(l+1)
ic ,

μ(l+1)
c (t0) =

∑n
i=1

∑Ni

j=1 w
(l+1)
ijc yij

∑n
i=1

∑Ni

j=1 w
(l+1)
ijc

,

σ ∗2(l+1)
c (t0) =

∑n
i=1

∑Ni

j=1 w
(l+1)
ijc {yij − μ

(l+1)
c (t0)}2

∑n
i=1

∑Ni

j=1 w
(l+1)
ijc

,

where wl+1)
ijc = p

(l+1)
ic Kh(tij−t0). Denote π̃c, μ̃c, and σ̃ ∗2c as the resulting estimates.

To estimate for model (2.19), Huang et al. (2014) suggested to use π̃c, μ̃c as the
initial estimates for the estimation of the covariances. Let Ḡic(tij , til) = {yij −
μ̃c(tij )}{yil − μ̃c(til)}, then Gc(s, t) is estimated by minimizing

n
∑

i=1

pic
∑

1≤j �=l≤N
{Ḡic(tij , til)− β0}2Kh∗(tij − s)(til − t)

with respect to β0. Denote Ĝc(s, t) = β̂0 as the estimates. The estimates of λqc and
νqc are calculated by

∫

T

Ĝc(s, t)ν̂qc(s)ds = λ̂qcν̂qc(t),

where
∫

T
ν̂2
qc(t)dt = 1 and

∫

T
ν̂sc(t)ν̂qc(t)dt = 0 if s �= q.

2.5.3 Mixture of Functional Linear Models

Wang et al. (2016) proposed a mixture of functional linear models to analyze
heterogeneous functional data. Conditional on C = c, {y(t), t ∈ T } follows a
functional linear model

y(t)|C=c = X(t)T βc(t)+ εc(t), (2.20)
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where X(t) is a random covariate process of dimension p, and βc(t) is a smooth
regression coefficient function of component c. εc(t) is a Gaussian process with
mean zero, independent of X(t), and is assumed as

εc(t) = ζc(t)+ e(t),

where ζ(t) denotes a trajectory process with covariance�c(s, t) = cov{ξc(s), ξc(t)},
and e(t) is the measurement error with constant variance σ 2. Define yij = yi(tij ),
j = 1, · · · , Ni , and similarly, define εcij , eij , etc. Similar to Huang et al. (2014),
by Karhunen-Loève theorem, model (2.20) is represented as

yij = Xi (tij )
T βc(tij )+

∞
∑

q=1

ξiqcvqc(tij )+ eij ,

where vqc(·)’s are eigenfunctions of �c(s, t) and λqc’s are corresponding eigenval-
ues, and ξiqc’s are uncorrelated FPC of ζc(t) satisfying E(ξiqc) = 0, var(ξiqc) =
λqc. If ignoring the correlation structure, yij can be thought to be coming from the
following mixture of Gaussian process

y(t) ∼
C
∑

c=1

πcN{X(t)T βc(t), σ
∗2
c (t)},

where σ ∗2c (t) = �c(t.t) + σ 2. Then, the parameters πc,βc(·), and σ ∗2c (·) can be
estimated by an EM-type algorithm.

Algorithm 2.5.2
E step: calculate the classification probability

p
(l+1)
ic =

π
(l)
c

[

∏Ni

j=1 φ{yij |Xi (tij )
T β(l)

c (tij ), σ
∗2(l)
c (tij )}

]

∑C
c′=1 π

(l)

c′
[

∏Ni

j=1 φ{yij |Xi (tij )T β
(l)

c′ (tij ), σ
∗2(l)
c′ (tij )}

] .

M step: Update the estimates

π(l+1)
c = 1

n

n
∑

i=1

p
(l+1)
ic ,

β(l+1)
c (t0) =

{

n
∑

i=1

XT
i W

(l+1)
ic (t0)Xi

}−1 { n
∑

i=1

XT
i W

(l+1)
ic (t0)yi

}

,

σ ∗2(l+1)
c (t0) =

∑n
i=1

∑Ni

j=1 w
(l+1)
cij {yij − Xi (tij )

T β(l+1)
c (t0)}2

∑n
i=1

∑Ni

j=1 w
(l+1)
cij

,
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where yi = (yi1, · · · , yiNi
)T ,Xi = (Xi (ti1), · · · ,Xi (tiNi

))T , w
(l+1)
icj =

p
(l+1)
ic Khβ (tij − t0),W

(l+1)
ic (t0) = diag{p(l+1)

ic Khβ (ti1 − t0), · · · , p(l+1)
ic Khβ (tiNi

−
t0)}, and hβ is a bandwidth. The estimates based on this procedure is denoted as
π̂c, β̂c(·), and σ̂ ∗2c (·).
To model for general covariance structure, the parameters can be estimated itera-
tively as follows.

1. Estimate the covariance function �c(s, t)

�c(s, t)
(l+1) =

∑n
i=1 p

(l)
ic

∑

1≤j �=l≤Ni
γ
(l)
ic (tij , til)Kh� (tij − s)Kh� (til − t)

∑n
i=1 p

(l)
ic

∑

1≤j �=l≤Ni
Kh� (tij − s)Kh� (til − t)

,

where γ
(l)
ic (tij , til) = {yij − Xi (tij )

T β(l)
c (tij )}{yil − Xi (til)

T β(l)
c (til)}. Denote

λ
(l+1)
qc and v

(l+1)
qc (·) as the corresponding eigenvalues and eigenfunctions, respec-

tively.
2. Calculate

ξ
(l+1)
iqc =

∫

T

{yi(t)− Xi (t)
T β(l)

c (t)}v(l+1)
qc (t)dt,

y(l+1)
c (tij ) = yij −

∑

q

ξ
(l+1)
iqc I {λ(l+1)

qc > 0}v(l+1)
qc (tij ).

3. One cycle of E-step:

p
(l+1)
ic =

π
(l)
c

[

∏Ni

j=1 φ{y(l+1)
c (tij )|Xi (tij )

T β(l)
c (tij ), σ

2(l)}
]

∑C
c′=1 π

(l)

c′
[

∏Ni

j=1 φ{y(l+1)
c (tij )|Xi (tij )T β

(l)

c′ (tij ), σ
2(l)}

] .

4. One cycle of M-step:

π(l+1)
c = 1

n

n
∑

i=1

p
(l+1)
ic ,

β(l+1)
c (t0) =

{

n
∑

i=1

XT
i W

(l+1)
ic (t0)Xi

}−1 { n
∑

i=1

XT
i W

(l+1)
ic (t0)y

(l+1)
ic

}

,

σ 2(l+1)
c = 1

∑n
i=1 Ni

n
∑

i=1

C
∑

c=1

Ni
∑

j=1

p
(l+1)
ic {y(l+1)

c (tij )− Xi (tij )
T β(l+1)

c (tij )}2,

where y(l+1)
ic = {y(l+1)

c (ti1), · · · , y(l+1)
c (tiNi

)}T .



2 A Selective Overview of Semiparametric Mixture of Regression Models 63

2.6 Some Additional Topics

In addition to what we discussed above, there are some other interesting topics. For
example, Vandekerkhove (2013) studied a two-component mixture of regressions
model in which one component is entirely known while the mixing proportion,
the slope, the intercept, and the error distribution of the other component are
unknown. The method proposed by Vandekerkhove (2013) performs well for data
sets of reasonable size, but since it is based on the optimization of a contrast
function of size O(n2), the performance is not desirable as the sample size
increases. Bordes et al. (2013) also studied the same model as Vandekerkhove
(2013), and proposed a new method-of-moments estimator, whose order is of O(n).
Young (2014) extended the mixture of linear regression models to incorporate
changepoints, by assuming one or more of the components are piecewise linear.
Such model is a great combination of traditional mixture of linear regression models
and standard changepoint regression model. Faicel (2016) proposed a new fully
unsupervised algorithm to learn regression mixture models with unknown number
of components. Unlike the standard EM for mixture of regressions, this method did
not require accurate initialization. Yao et al. (2011) extended the classical functional
linear models to a mixture of non-concurrent functional linear models, so that the
regression structure could be different for different groups of subjects. Montuelle
and Pennec (2014) studied a mixture of Gaussian regressions model with logistic
weights, and proposed to estimate the number of components and other parameters
through a penalized maximum likelihood approach. Huang et al. (2018) proposed
a semiparametric hidden Markov model with non-parametric regression, in which
the mean and variance of emission model are unknown smooth functions. Huang
et al. (2017) established the identifiability and investigated the statistical inference
for mixture of varying coefficient models, in which each mixture component follows
a varying coefficient model.

2.7 Discussion

This article summarizes several semiparametric extensions to the standard para-
metric mixture of regressions model. Detailed model settings and corresponding
estimation methods and algorithms are presented. As we have seen here, this field
has received a lot of interest, but there are still a great number of questions and issues
remained to be addressed. For example, most of the models discussed above assume
the order of the mixture to be known and fixed, and so more work remains to be
done regarding selection of the number of components. In addition, since lots of the
models we discussed above are closely connected or even nested, then in addition
to data driven methods, it is natural to develop some testing procedure to formally
select the model. We hope that this review article could inspire more researchers to
shine more lights on this topic.
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Chapter 3
Rank-Based Empirical Likelihood for
Regression Models with Responses
Missing at Random

Huybrechts F. Bindele and Yichuan Zhao

3.1 Introduction

Missing data problems have captured a lot of attention within the few last decades,
and have become a hot topic of research in the statistical community. The occurrence
of missing data is subject to a number of common reasons. Among them, we have
equipment malfunction, contamination of samples, manufacturing defects, drop out
in clinical trials, weather conditions, incorrect data entry to name a few. As an
example, one may be interested in a survey of families in a city that includes many
socioeconomic variables and a follow-up survey a few months or years later for the
recording of new observations. By the time of the new recording, some families
may have left the city, died, or cannot be located thereby resulting in missing
observations. Also in a clinical trial study, some patients may decide to drop out
during the course of study, which leads to some missing information.

In statistical analysis, the first step to take when dealing with missing data
is to understand the mechanism that causes such missingness. There are many
missing data mechanisms but the most commonly encountered in the literature are
missing at random (MAR), missing completely at random (MCAR), and missing
not at random (MNAR). An elaborate discussion is given in Rubin (1976). These
missing mechanisms exist and are encountered in many fields of study such as
social sciences, survey analysis, biomedical studies, survival analysis, agriculture
economics, phychology among others. Our interest is on a robust and efficient
inference about regression parameters in a general regression model, where some
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responses are MAR. The MAR assumption asserts that the probability that a
response variable is observed can only depend on the values of those other variables
that have been observed. Although it is not trivial to verify the MAR assumption in
practice, it has been proven to be the most plausible assumption to make for missing
data problems in many scenarios (Little and Rubin 2002).

Consider the general regression model

yi = g(xi ,β0)+ εi, 1 ≤ i ≤ n , (3.1)

where g : Rp ×B → R is fully specified, and β ∈ B is a vector of parameters
with B a compact vector space, xi’s are independent and identically distributed
(i.i.d.) p-variable random covariate vectors, and the model errors εi are i.i.d. with
conditional mean zero given the covariates and positive variance. We are interested
in a robust and efficient inference about β0, when there are some responses missing
at random in model (3.1). There is a rich literature on how to handle model (3.1)
for the complete case analysis, that is, when ignoring observations with missing
responses.

Missing data at random in the context of model (3.1) present a lot of challenges,
as both the response probability and the regression parameters need to be estimated.
Several approaches have been proposed in the literature on how to handle them. The
main approach relies on replacing missing values by some plausible values and then
performs the statistical analysis as if the data were complete. This approach known
as imputation was originated in the early 1970s in applications to social surveys
and has gained popularity over the years. Since then, several imputation methods
have been proposed in the literature. In regression modeling, seminal papers include
Healy and Westmacott (1956), Cheng (1994), Zhao et al. (1996), Wang et al. (1997),
Wang and Rao (2002), Rubin (2004), Wang et al. (2004), Wang and Sun (2007)
among others.

When it comes to estimating the regression parameters in model (3.1) with
responses missing at random, several methods have also been proposed in the
literature. Such methods include the least squares (LS) and the maximum likelihood
(ML), among others. Statistical inference based on the LS approach is efficient
when the model assumptions such as normality of the model error distribution
and homogeneity (constant variance of the model errors) are satisfied. Under the
violation of these assumptions, the LS could lead to a misleading inference. The ML
approach, on the other hand, is a very powerful alternative to the LS, but requires
the model distribution specification. One of the main disadvantages of this approach
is that in real life situations, mainly with missing data, it is very unrealistic to
specify the model error distribution. Under the MAR assumption, as pointed out
in Little and Rubin (2002), the complete case analysis (ignoring observations with
missing response) may lead to an efficient ML estimator. It is worth pointing out
that even for the complete case analysis, the rank-based (R) approach introduced by
Jaeckel (1972) outperforms the aforementioned approaches in terms of robustness
and efficiency when dealing with heavy-tailed model errors and/or in the presence
of outliers; see Hettmansperger and McKean (2011) for linear models and Bindele
and Abebe (2012) for nonlinear models. Recently, for missing responses under the
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MAR assumption, a rank-based approach has been proposed by Bindele (2015) for
model (3.1), and by Bindele and Abebe (2015) for the semiparametric linear model.
Most of the approaches listed above are based on the normal approximation as a way
to handle statistical inference. Unfortunately, normal approximation approaches
require estimating the estimator’s covariance matrix, which has been shown to
be complicated in many situations, mainly considering the rank-based objective
function (Brunner and Denker 1994).

Empirical likelihood (EL) approach, on the other hand, is a way of avoiding
estimating such a covariance matrix, conducting a direct inference about the true
parameters and overcoming the drawback of normal approximation method (Owen
1988, 1990). Qin and Lawless (1994) developed the EL inference procedure
for general estimating equations for complete data, and Owen (2001) makes an
excellent summary about the theory and applications of the EL methods. Recent
progress in EL method includes linear transformation models with censoring data
(Yu et al. 2011), the jackknife EL procedure (Jing et al. 2009; Gong et al. 2010;
Zhang and Zhao 2013), high dimensional EL methods (Chen et al. 2009; Hjort
et al. 2009; Tang and Leng 2010; Lahiri and Mukhopadhyay 2012), the signed-rank
regression using EL (Bindele and Zhao 2016), and rank-based EL methods with
non-ignorable missing data (Bindele and Zhao in press), etc.

In this paper, we propose an empirical likelihood approach based on the general
rank dispersion function in an effort to construct robust confidence regions for β0
in model (3.1), where some responses are MAR. We also investigate the adverse
effects of contaminated, heavy-tailed model error distributions and gross outliers on
the least squares estimator of the regression parameter. The motivation beyond the
use of Jaeckel (1972) objective function is that it results in a robust and efficient
estimator compared with many of the existing estimation methods such as the least-
squares (LS), the maximum likelihood (ML), and many other methods of moments
including the least absolute deviation (LAD). Moreover, it has a simple geometric
interpretability. For all these facts, see Hettmansperger and McKean (2011).

The rest of the paper is organized as follows: Imputation of missing responses
under MAR, the normal approximation, and the proposed empirical likelihood
method are discussed in Sect. 3.2. While in Sect. 3.2.1 we give a brief discussion
about the normal approximation approach as well as the estimation of the rank-based
estimator’s covariance matrix, the empirical likelihood approaches are developed
in Sect. 3.2.2. Section 3.3 provides a simulation study and a real data example.
Section 3.4 gives a conclusion of our findings. The proofs of the main results are
provided in the Appendix.

3.2 Imputation

Recall that the missing at random (MAR) asserts that the missingness of y depends
only on the observed inputs x. Parameter estimation under this missing mechanism
has been shown to be a very challenging task, as the response mechanism is
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generally unknown and the parameters in the regressing settings need to be
estimated. To fix some ideas, let δi = 1, if yi is observed, and δi = 0, if yi is
missing. Clearly δi is binary and can be assumed to follow a Bernoulli distribution
with parameter P(δi = 1|xi , yi). The MAR assumption is obtained when δ and y are
conditionally independent given x, that is, P(δ = 1|x, y) = P(δ = 1|x). For more
discussion about this assumption, see Little and Rubin (1987). From model (3.1), if
we consider the complete case analysis, one can obtain a preliminary rank estimator
of the true regression parameter β0. Indeed, premultiplying Eq. (3.1) by δi , we get
δiyi = δig(xi ,β) + δiεi and setting ei = δiεi , a preliminary rank estimator ̂β

c

n of
β0 is the minimizer of

Dc
n(β) =

1

n

n
∑

i=1

ϕ
(R(ei(β))

n+ 1

)

ei(β),

where ϕ : (0, 1) → R is some bounded, nondecreasing, and squared integrable
function, and R(t) =∑n

j=1 I {ej (β) ≤ t}. Asymptotic properties of̂β
c

n are obtained
in a similar manner as discussed in Hettmansperger and McKean (2011) for linear
models, and Bindele and Abebe (2012) and Bindele (2017) for general regression
models. Note that the above rank objective function does not take into account the
missing responses. As pointed out in Little (1992) and Little and Rubin (2002), the
statistical analysis that ignores the missing data reduces the estimation efficiency
and can lead to biased estimates of the regression parameters.

3.2.1 Imputation Under MAR

As in Bindele (2015), denoting π(x) = P(δ = 1|x = x), one can perform data
augmentation in two ways: simple random imputation (j = 1) and the inverse
marginal probability weighting imputation (j = 2) as follows:

yij =
⎧

⎨

⎩

δiyi + (1− δi) g(xi ,β), ifj = 1;
δi

π(xi )
yi +

(

1− δi

π(xi )

)

g(xi ,β), ifj = 2.
(3.2)

While the simple imputation is relatively easy to deal with, it does not account for
the response probability π(x). The MAR assumption implies that P(δ = 1 | x, y) =
π(x) and from the fact that E(ε|xi ) = 0, we have E(Yij |xi ) = g(xi ,β) = E(Yi |
xi ). The missing mechanism being usually unknown, π(x) needs to be estimated.
From the assumption inf

x
π(x) > 0 in (I4), one can carry out a nonparametric

estimation of π(x) by π̂(x) =∑n
j=1 ωnj (x)δj , where
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ωnj (x) = K
(

(x− xj )/h
p
n

)

∑n
i=1 K

(

(x− xi )/h
p
n

) ,

with K being a kernel function and hn a bandwidth satisfying hn → 0 as n→∞.
Following Einmahl and Mason (2005), by assumptions (I2)−(I4), it is obtained that
π̂(x) → π(x) a.s., which further gives π̂−1(x) → π−1(x) a.s. Now the missing
responses can be imputed as follows:

ỹijn =
⎧

⎨

⎩

δiyi +
(

1− δi
)

g(xi ,̂β
c

n) j = 1
δi

π̂(xi )
yi +

(

1− δi

π̂(xi )

)

g(xi ,̂β
c

n) j = 2.

In practice, the inverse marginal probability weighting imputation approach may
be very computationally expensive, as it usually depends on high dimensional
kernel smoothing for estimating the completely unknown probability function π(x),
especially for large p. This issue, known as the curse of dimensionality, may restrict
the use of the resulting estimator. For xi = (x1i , . . . , xpi)

τ and under the assumption
that the xki , k = 1, . . . , p are i.i.d., one way to avoid the curse of dimensionality
issue is to assume that Kh(x − xi ) = ∏p

k=1 Ωh(x − xki), where Ωh(·) = Ω(·/h)
with Ω being a univariate kernel function and h the corresponding bandwidth. The
other issue that comes with kernel smoothing estimation is bandwidth selection. In
general, the m-fold cross-validation (m-CV) procedure can be used to select the
bandwidth h.

The continuity of g together with the MAR assumption, and the fact that
E(ε|xi ) = 0, we have E

[

˜Yijn|xi
] − g(xi ,β) = o(1) with probability 1 and for

n large enough. Setting the residuals as νij (β) = ỹijn− g(xi ,β), the imputed rank-
based objective function is defined as

D
j
n(β) = 1

n

n
∑

i=1

ϕ
(

R(νij (β))/(n+ 1)
)

νij (β),

where R(νij (β)) = ∑n
k=1 I {νkj (β) ≤ νij (β)} is the rank of νij (β) among

ν1j (β), . . . , νnj (β), j = 1, 2. The rank-based estimator is obtained as

̂β
j

n = Argmin
β∈B

D
j
n(β).

By the continuity of g and consistency of ̂β
c

n, it is not hard to see that νij (β0) =
ξij εi+op(1). This together with the continuity of ϕ′ gives ϕ′(νij (β0)) = ϕ′(ξij εi)+
op(1), where ξi1 = δi and ξi2 = δi/π(xi ).

Consider the following notations: λi = ∇βg(xi ,β0) and Fijβ(s) =
P(νij (β) ≤ s) with Fij (s) = P(νij

(

β0) ≤ s
)

. The following theorem establishes
the strong consistency and the asymptotic distribution of the proposed estimator.
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Theorem 3.1 Under assumptions (I1)−(I5),̂β
j

n→ β0 a.s., as n→∞. Moreover,

set Sjn(β) = −∇βD
j
n(β) and Q

j
n(β) = 1

n

n
∑

i=1

λiϕ
(

Fijβ(νij (β))
)

. Under (I1)−
(I7), ∀ μ > 0, we have

(i) lim
n→∞ sup

β∈B
P
(√

n‖Sjn(β)−Q
j
n(β)‖ > μ

)

= 0 a.s. and lim
n→∞∇βQ

j
n(β0) =

Vj a.s., with

∇βQ
j
n(β0) =

1

n

n
∑

i=1

∇βg(xi ,β0)∇T
β g(xi ,β0)fij (νij (β0))ϕ

′(Uij )

+1

n

n
∑

i=1

∇2
βg(xi ,β0)ϕ(Uij )

and

Vj = E[ΛΛT fj (F
−1
j (Uj ))ϕ

′(Uj )] + E
[

∇2
βg(X,β0)ϕ(Uj )

]

,

where Uij = Fij (νij (β0)), i = 1, . . . , n, and j = 1, 2 are i.i.d. uniformly
distributed on (0, 1), Λ = ∇β0

g(X,β0), and fj (t) = dFj (t)/dt .

(ii)
√
nS

j
n(β0)

D−→ Np(0,Σ
j

β0
), j = 1, 2, and

(iii)
√
n(̂β

j

n − β0)
D−→ Np(0,Mj ), where Mj = V−1

j Σ
j

β0
V−1
j .

The proof of the strong consistency can be constructed along the lines as given in
Bindele (2017). For the sake of brevity, it is omitted. The proof of (i) is obtained
in a straightforward manner, while that of (ii) relies on Lemma 3.1 given in the
Appendix. Finally the proof of (iii) follows from (ii).

The normal approximation-based inference relies on the estimation of Mj , which
turns out to be a difficult task in the rank-based estimation framework. A sandwich-
type estimator of Mj can be obtained following Brunner and Denker (1994). Such
an estimator under the MAR assumption, say ̂Mj , was derived in Bindele and Abebe
(2015), who considered a semi-parametric linear regression model. Therefore,
readers seeking for details on how to estimate Mj are referred to the aforementioned
paper.

3.2.2 Empirical Likelihood Method

In this subsection, we adopt the empirical likelihood approach to make inference
about the true regression parameters. The motivation comes from the well-
known fact that the empirical likelihood provides more accurate confidence
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intervals/regions compared to its normal approximation competitor for the
regression parameters. We consider Sjn(β) defined as

S
j
n(β) = −∇Dj

n(β) = 1

n

n
∑

i=1

ϕ
(R(νij (β))

n+ 1

)

∇βg(xi ,β), j = 1, 2.

Set ηij (β) = ϕ
(

R(νij (β))/(n + 1)
)∇βg(xi ,β), and recall that the rank-based

estimator is obtained by solving the estimating equation S
j
n(β) = 0. Under

assumption (I5) and with probability 1, we have E[Sjn(β0)] → 0 as n → ∞.
Therefore such an estimating equation, Sjn(β) = 0, is asymptotically unbiased.
Letting (p1j , · · · , pnj )τ be a vector of probabilities satisfying

∑n
i=1 pij = 1, with

pij ≥ 0, j = 1, 2 the empirical likelihood function of β0 is defined as follows:

L
j
n(β0) = sup

(p1j ,...,pnj )∈(0,1)n

{

n
∏

i=1

pij :
n

∑

i=1

pij = 1, pij ≥ 0,
n

∑

i=1

pijηij (β0) = 0,

}

j = 1, 2.

The empirical likelihood ratio at β0 is given by

R
j
n(β0) = sup

(p1,...,pn)∈(0,1)n

{

n
∏

i=1

npij :
n

∑

i=1

pij=1, pij ≥ 0,
n

∑

i=1

pijηij (β0) = 0

}

,

j = 1, 2. (3.3)

From the Lagrange multiplier method, it is obtained that R
j
n(β0) attains its

maximum when

pij = 1

n(1+ ξ τ ηij (β0))
,

where ξ ∈ B is some vector of the same dimension as β, satisfying the nonlinear
equation:

1

n

n
∑

i=1

ηij (β0)

1+ ξ τ ηij (β0)
= 0. (3.4)

In practice, since β0 is usually unknown, the solution of Eq. (3.4), say ̂ξ , can be

obtained using the Newton-Raphson method, where β0 could be replaced by ̂β
j

n.
Now equating (3.3) and (3.4) together gives
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−2 logRj
n(β0) = −2 log

n
∏

i=1

(

1+ξ τ ηij (β0)
)−1 = 2

n
∑

i=1

log
(

1+ξ τ ηij (β0)
)

, (3.5)

which leads to the following Wilks theorem.

Theorem 3.2 Under assumptions (I1)− (I4) and (I7), one has

−2 logRj
n(β0)

D−→ χ2
p as n→∞.

The empirical likelihood (EL) confidence region for β0 with a confidence level 1−α
is given by

R
j

1 = {β : −2 logRj
n(β) ≤ χ2

p(α)},

where χ2
p(α) is the (1 − α)th percentile of the χ2

p-distribution with p degrees of
freedom. This confidence region enables us to perform statistical inference about
β0.

In practice, when the dimension of β0 is more than 1, confidence regions are no
longer easily interpretable. In this case, it is more preferable to derive confidence
intervals of the components of β0. To this end, we partition β0 as β0 = (βτ

01,β
τ
02)

τ ,
where β01 is the true value of q-dimensional parameter and β02 is the true value of
(p − q)-dimensional parameter. Similarly, for any β ∈ B, write β = (βτ

1,β
τ
2)

τ ,
where β1 is a q-dimensional parameter and β2 is a (p− q)-dimensional parameter.
Setting �

j
n(β) = −2 logRj

n(β) and following Qin and Lawless (1994) and Yang
and Zhao (2012), the profile empirical likelihood is obtained as

ω
j
n(β1) = inf

β2

�
j
n(β).

Following the similar arguments in Yang and Zhao (2012), we establish the
following Wilks theorem.

Theorem 3.3 Under the assumptions of Theorem 3.2, we have that as n → ∞,
ω
j
n(β01)→ χ2

q , j = 1, 2.

The 100(1− α)% profile EL confidence region for β01 is obtained as

R
j

2 = {β1 : ωj
n(β1) ≤ χ2

q (α)},

where χ2
q (α) is the (1 − α)th percentile of the χ2-distribution with q degrees of

freedom. Our simulation studies and real data example are based on this profile
empirical likelihood confidence region.
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3.3 Simulation Study

3.3.1 Simulation Settings

To compare the performance of the proposed rank-based empirical likelihood
approach with the normal approximation approach with MAR responses, an
extensive simulation under different settings is conducted, from which coverage
probabilities (CP) and average lengths of confidence intervals/regions of the true
regression coefficients are reported.

First, in model (3.1), we consider the simple regression function g defined
as g(x,β) = β1 + β2x with β = (β1, β2) = (1.7, 0.7). The random errors
(ε) are generated from the contaminated normal distribution C N (κ, σ ) = (1 −
κ)N(0, 1)+ κN(1, σ 2) for different rates of contamination (κ = 0, 0.1, 0.25) with
σ = 2, the t-distribution with various degrees of freedom (df = 5, 15, 25), and
the standard Laplace distribution (the location parameter set at 0 and the dispersion
parameter set at 1) with different sample sizes (n = 35, 50, 100). These distributions
allow us to study the effect of contamination, tail thickness, and sample sizes,
respectively. The standard normal distribution is recovered by setting κ = 0 in
C N (κ, σ ). The covariate x is generated from N(1, 1).

Second, to accommodate a nonlinear case, as in Bindele (2015), we also consider
the sinusoidal model, where in (3.1), g(x,β) = C + A sin (π

√
12/1.645)ωx + φ,

with β = (C,A,ω, φ)τ . C is a constant defining the mean level, A is an amplitude
for the sine wave, ω is the frequency, x is a time variable generated from the uniform
distribution in the interval [0, 2π ], and φ is the scale parameter known as the phase.
For simplicity, we set C = 0, A = 1, and φ = (1.645/

√
12− 3/2)/(3.29/

√
12) ≈

−0.412. We are interested in the estimation of the true frequency set at ω0 = 1/
√

3,
and for the sake of brevity, the random errors are generated just from C N (0.9, 2)
and t3.

In these two scenarios, δ is generated from a Bernoulli distribution with
probability π(x), where we investigate three different response probabilities:

Case 1: π(x) = 0.8− 0.7|x − 1| if |x − 1| ≤ 1, and 0.65 elsewhere.
Case 2: π(x) = exp{−0.5x + 0.4x2}/(1+ exp{−0.5x + 0.4x2}).
Case 3: π(x) = exp{−0.8 sin x}/(1+ exp{−0.8 sin x}).
These three cases give about 47%, 46%, and 42% of missing responses. As in
practice the functional form of the response probability is more likely to be
unknown, one can consider π̂(x) defined in Sect. 3.2. It is well understood in the
framework of kernel smoothing estimation that the choice of the kernel function
has less importance as long as it satisfies the required assumptions (Einmahl and
Mason 2005). To that end, we consider the Gaussian kernel function, that is, K(t) =
(2π)−1/2 exp(−t2/2). For the bandwidth selection, which is also important in
kernel smoothing estimation, our optimal bandwidth is chosen to be proportional to
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n−1/(2r+1), where r is the order of smoothness of the kernel function K (Delecroix
et al. 2006). For this simulation study, we have found that the rule of thumb for
bandwidth selection suggested by Silverman (1986) works reasonably well. Such
rule of thumb suggests to choose h as h = 1.06sn−1/5, where s be the median of
the standard deviations of the predictor variables from the complete case analysis
and n is the sample size. In our objective function, we considered the Wilcoxon
score function ϕ(u) = √12(u− 0.5).

From 5000 replications, coverage probabilities (CP) and average lengths (AL)
of β2 based on the EL approach are reported and are compared with those based
on the normal approximation (NA) approach; these under both simple imputation
(SI) and inverse marginal probability imputation (IP). The CP and AL based on
the EL approaches for both the LS and the R are obtained with respect to their
corresponding estimating equations, while those for the NA approaches are based
on the estimators of covariance matrices. The results of the simulation study are
given in Tables 3.1, 3.2, 3.3, 3.4.

Considering the t-distribution with a sample size of n = 150 for the three
cases, based on simple imputation (SI) or the inverse marginal probability weighting

Table 3.1 95% Coverage probabilities (average lengths) of β2 under the t-distribution with
different degrees of freedom df = 5, 15, 25 and n = 150 under SI and IP

Imputation Cases df NALS ELLS NAR ELR

5 96.76% (1.03) 95.66% (0.79) 95.93% (0.84) 95.09% (0.53)

Case 1 15 96.25% (0.87) 95.27% (0.54) 95.72% (0.63) 95.05% (0.37)

25 95.89% (0.78) 95.08% (0.35) 95.17% (0.47) 95.00% (0.22)

5 96.87% (1.12) 95.79% (0.89) 95.97% (0.94) 95.14% (0.65)

SI Case 2 15 96.43% (0.95) 95.43% (0.68) 95.53% (0.75) 95.04% (0.42)

25 96.02% (0.84) 95.12% (0.46) 95.18% (0.53) 94.98% (0.27)

5 96.96% (1.22) 95.83% (0.94) 96.01% (0.97) 95.13% (0.71)

Case 3 15 96.31% (0.98) 95.62% (0.74) 95.79% (0.83) 95.06% (0.53)

25 96.12% (0.87) 95.17% (0.57) 95.23% (0.62) 95.01% (0.33)

5 96.71% (0.92) 95.57% (0.68) 95.78% (0.75) 95.03% (0.47)

Case 1 15 96.55% (0.81) 95.38% (0.48) 95.54% (0.54) 95.01% (0.26)

25 96.19% (0.69) 95.07% (0.31) 95.13% (0.43) 94.99% (0.14)

5 96.81% (0.95) 95.65% (0.71) 95.91% (0.87) 95.07% (0.52)

IP Case 2 15 96.24% (0.87) 95.25% (0.49) 95.58% (0.61) 95.06% (0.31)

25 95.87% (0.79) 95.07% (0.32) 95.14% (0.46) 94.94% (0.18)

5 96.98% (1.02) 95.79% (0.77) 95.97% (0.89) 95.11% (0.54)

Case 3 15 96.37% (0.91) 95.32% (0.54) 95.63% (0.66) 95.02% (0.35)

25 96.07% (0.83) 95.12% (0.36) 95.25% (0.49) 94.96% (0.24)
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Table 3.2 95% Coverage probabilities (average lengths) of β2 under the contaminated normal
distribution with different rates of contamination κ = 0, 0.10, 0.25 and n = 150 under SI and
IP

Imputation Cases κ NALS ELLS NAR ELR

0.00 95.96% (0.264) 94.98% (0.223) 96.01% (0.345) 95.07% (0.251)

Case 1 0.10 96.52% (0.653) 95.88% (0.289) 96.26% (0.401) 95.03% (0.268)

0.25 96.76% (0.778) 95.96% (0.295) 96.47% (0.457) 95.05% (0.271)

0.00 95.77% (0.260) 95.01% (0.221) 96.05% (0.336) 95.11% (0.243)

SI Case 2 0.10 96.83% (0.761) 95.76% (0.378) 96.41% (0.445) 94.99% (0.279)

0.25 96.97% (0.953) 95.79% (0.499) 96.59% (0.631) 95.03% (0.301)

0.00 95.56% (0.293) 95.10% (0.225) 96.24% (0.432) 95.03% (0.234)

Case 3 0.10 96.73% (0.698) 95.55% (0.441) 96.34% (0.513) 94.93% (0.257)

0.25 96.99% (0.889) 95.61% (0.567) 96.49% (0.613) 95.02% (0.297)

0.00 95.37% (0.233) 95.02% (0.219) 96.27% (0.331) 95.04% (0.243)

Case 1 0.10 96.15% (0.473) 95.59% (0.275) 96.38% (0.434) 94.97% (0.257)

0.25 96.39% (0.664) 95.73% (0.287) 96.42% (0.437) 95.05% (0.263)

0.00 95.53% (0.242) 95.07% (0.216) 96.12% (0.322) 95.01% (0.237)

IP Case 2 0.10 96.47% (0.565) 95.53% (0.357) 96.33% (0.397) 95.00% (0.261)

0.25 96.68% (0.872) 95.64% (0.473) 96.47% (0.539) 95.03% (0.297)

0.00 95.34% (0.271) 95.06% (0.220) 96.13% (0.343) 95.05% (0.223)

Case 3 0.10 96.64% (0.467) 95.34% (0.419) 96.25% (0.471) 95.03% (0.248)

0.25 96.77% (0.674) 95.56% (0.517) 96.38% (0.527) 94.99% (0.288)

imputation (IP) (see Table 3.1), the EL approach based on LS (ELLS) provides better
coverage probabilities compared to the normal approximation methods (NALS and
NAR). The NA method gives coverage probabilities that are larger than nominal
levels for small degrees of freedom, and the EL approach based on R (ELR) gives
consistent coverage probabilities that are closer to the nominal confidence level.
While ELLS dominates both NAR and NALS in terms of average lengths of the
confidence interval, ELR remains superior to all. Moreover, NAR dominates NALS

in terms of both CP and AL. As the degrees of freedom increase, all the considered
methods have coverage probabilities that converge to the nominal confidence level
and their respective average lengths decrease. It is worth pointing that average
lengths obtained based on IP tend to be smaller compared with those obtained based
on SI.

For the contaminated normal distribution model error with a sample size of n =
150 under the three cases, based on simple imputation (SI) or the inverse marginal
probability imputation (IP) (see Table 3.2), at κ = 0, ELR dominates both NALS and
NALS in terms of CP and AL, and ELLS is superior to all. However, as κ increases,
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Table 3.3 95% Coverage probabilities (average lengths) of β2 under the Laplace distribution with
different sample sizes n = 35, 50, 100 under SI and IP

Imputation Cases n NALS ELLS NAR ELR

35 97.17% (1.345) 95.98% (0.978) 96.29% (1.079) 95.16% (0.843)

Case 1 50 96.73% (0.916) 95.45% (0.727) 95.85% (0.932) 95.08% (0.634)

100 95.69% (0.891) 95.18% (0.635) 95.46% (0.713) 95.01% (0.478)

35 97.04% (1.281) 95.57% (0.842) 96.63% (0.965) 95.03% (0.739)

SI Case 2 50 96.48% (0.857) 95.34% (0.678) 95.67% (0.783) 94.99% (0.573)

100 95.43% (0.768) 95.09% (0.553) 95.21% (0.652) 95.05% (0.368)

35 97.09% (1.333) 95.86% (0.961) 96.17% (0.997) 95.12% (0.812)

Case 3 50 96.63% (0.909) 95.39% (0.713) 95.77% (0.858) 95.04% (0.619)

100 95.58% (0.879) 95.15% (0.623) 95.42% (0.706) 94.97% (0.459)

35 96.35% (0.941) 95.65% (0.756) 95.93% (0.853) 95.05% (0.625)

Case 1 50 96.04% (0.832) 95.24% (0.654) 95.47% (0.741) 95.02% (0.421)

100 95.34% (0.725) 95.11% (0.489) 95.22% (0.657) 95.01% (0.325)

35 96.28% (0.918) 95.41% (0.721) 95.52% (0.837) 95.01% (0.597)

IP Case 2 50 95.96% (0.817) 95.18% (0.636) 95.27% (0.711) 95.07% (0.415)

100 95.24% (0.714) 95.05% (0.474) 95.12% (0.613) 95.02% (0.316)

35 96.31% (0.924) 95.52% (0.735) 95.81% (0.844) 95.09% (0.613)

Case 3 50 95.99% (0.821) 95.19% (0.647) 95.38% (0.733) 95.02% (0.402)

100 95.31% (0.719) 95.06% (0.483) 95.18% (0.638) 94.99% (0.321)

ELR performs better than NALS , NALS , and ELR by providing consistent CP that
are closer to the nominal level and shorter AL. As observed for the t−distribution,
NAR outperforms the NALS as the rate of contamination increases.

When it comes to the Laplace distribution model error for the three cases
and based on either simple imputation (SI) or the inverse marginal probability
imputation (IP) as can be seen in Table 3.3, similar observations are made as in
the previous two error distributions. It is observed that as the sample size increases,
CP converge to the nominal confidence level and AL decrease, as expected, with
ELR showing its superiority over the other three approaches.

When we consider the nonlinear model with the considered model error distri-
butions, similar observations are made as for the linear model, see Table 3.4. The
contaminated normal distribution provides shorter AL compared to the other two
error distributions considered.
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Table 3.4 95% coverage probabilities (average lengths of 95% confidence intervals) of ω0 for the
nonlinear Micheaelis-Menten model under t3 and C N (0.9) with n = 150 and regression simple
imputation (SI)

Imputation Cases Distribution NALS ELLS NAR ELR

Case 1 C N (0.9, 2) 96.53% (2.76) 95.27% (1.19) 95.77% (1.47) 95.07% (0.98)

t3 96.75% (2.93) 95.43% (1.32) 95.92% (1.64) 95.10% (1.05)

SI Case 2 C N (0.9, 2) 96.18% (2.39) 95.21% (1.13) 95.76% (1.32) 95.03% (0.87)

t3 96.26% (2.76) 95.33% (1.27) 95.51% (1.52) 94.98% (0.93)

Case 3 C N (0.9, 2) 96.64% (2.82) 95.31% (1.25) 95.82% (1.58) 95.12% (1.08)

t3 96.87% (3.07) 95.54% (1.36) 96.02% (1.75) 95.17% (1.18)

Case 1 C N (0.9, 2) 96.36% (1.97) 95.14% (0.91) 95.28% (1.13) 95.02% (0.84)

t3 96.52% (2.08) 95.25% (1.07) 95.49% (1.23) 94.95% (0.91)

IP Case 2 C N (0.9, 2) 96.23% (1.86) 95.07% (0.83) 95.18% (1.06) 95.00% (0.78)

t3 96.37% (1.99) 95.13% (0.94) 95.31% (1.15) 95.04% (0.83)

Case 3 C N (0.9, 2) 96.47% (2.08) 95.26% (1.08) 95.43% (1.17) 95.15% (0.92)

t3 96.62% (2.33) 95.37% (1.23) 95.79% (1.41) 95.21% (1.03)

3.3.2 Real Data

To illustrate our methodology, we consider the Air Quality data in R that were
obtained from the New York State Department of Conservation (ozone data)
and the National Weather Service (meteorological data). The data consist of 153
observations on 6 variables. The response of interest is the mean ozone (y) in
parts per billion from 1300 to 1500 h at Roosevelt Island and contains about 24%
of missing information. The covariates are solar radiation (x1) in Langleys in the
frequency band 4000–7700 Angstroms from 800 to 1200 h at Central Park, the
average wind speed (x2) in miles per hour at 700 and 1000 h at LaGuardia Airport,
and the maximum daily temperature (x3) in degrees Fahrenheit at La Guardia
Airport. The data contain other two covariates, which are month and day but are
not being considered in the analysis to avoid the temporal dependence effect. We fit
a linear model, that is, in model (3.1), g(x,β) = xτβ, where x = (x1, x2, x3)

τ

and β = (β1, β2, β3)
τ . As our interest is in modeling the missing responses

under the MAR mechanism, we assume that the missingness of the mean ozone
can only depend on the observed covariates. The same data was considered by
Van Buuren (2012) for the implementation of the mice package. In the inverse
marginal probability weighting imputation process, π(x) = P(δ = 1|x), where
x = (x1, x2, x3) is estimated following the discussion below Eq. (3.2). As x is
multivariate, to avoid the high-dimensional kernel smoothing issue in the estimation
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Fig. 3.1 Residuals and normal plots of the LS and rank for the complete case (CC)
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Fig. 3.2 Studentized residuals and normal plots of the LS and rank for imputed responses

of π(x), we set Kh(x) = ∏3
i=1 Ωh(xi ), where Ωh(t) = Ω(t/h) with Ω(t) taken

as the univariate standard normal probability density function. Figures 3.1, 3.2 and
Tables 3.4, 3.5 display the results of the statistical analysis.

Figures 3.1 and 3.2 reveal that whether we consider the CC analysis or the
imputed analysis, there are issues of heteroscedasticity with few outliers in the
response space. While residuals seem to deviate from the normality for the CC
analysis, imputed residuals can fairly be approximated by a normal distribution,
which is contaminated by few outliers. Considering the normal approximation
approaches, we observe that although both methods provide similar estimates, the R
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Table 3.5 Estimates (SEs) of the regression parameters for the imputed responses based on SI
and IP

Method Variable CC SI IP

LS
Solar 0.060 (0.023) 0.060 (0.022) 0.060 (0.018)

Wind −3.334 (0.654) −3.274 (0.636) −3.334 (0.490)

Temperature 1.652 (0.254) 1.672 (0.251) 1.652 (0.194)

Rank
Solar 0.053 (0.021) 0.053 (0.013) 0.053 (0.010)

Wind −2.754 (0.590) −2.754 (0.352) −2.754 (0.265)

Temperature 1.724 (0.229) 1.724 (0.139) 1.724 (0.105)

Table 3.6 Lengths of 95% confidence intervals for the regression parameters for the Air Quality
data with about 24% of missing responses

CC SI IP

Method Variable NA EL NA EL NA EL

LS
Solar 0.090 0.078 0.086 0.069 0.071 0.063

Wind 2.564 2.045 2.493 1.885 1.921 1.239

Temperature 0.996 0.872 0.984 0.747 0.760 0.712

Rank
Solar 0.082 0.069 0.051 0.036 0.039 0.027

Wind 2.313 1.978 1.380 0.993 1.039 0.945

Temperature 0.898 0.786 0.545 0.397 0.412 0.383

estimator is more efficient by providing smaller SEs and lengths of 95% confidence
intervals compared to the LS estimator; see Tables 3.4 and 3.5. While the estimators
are consistent, there is significant reduction of biases, mainly for the R estimator.
As observed in the simulation study, the analysis based on responses imputed from
IP gives smaller SEs than that based on responses imputed from SI.

Considering EL methods, similar observations are made with the rank-based
empirical likelihood showing its dominance. Also, EL approaches based on imputed
responses show their superiority compared to the EL methods based on the CC
analysis; see Table 3.5. Finally, whether we consider the NA approaches or the EL
approaches, R is more efficient than LS, as R provides shorter lengths compared to
the LS (Table 3.6).

3.4 Conclusion

This paper provides an empirical likelihood approach derived based on the rank-
based objective function. The proposed approach provides better coverage probabil-
ities and shorter lengths of confidence intervals/regions of parameters in regression
models with responses missing at random compared to its normal approximation
counterpart. Moreover, the proposed method is robust and more efficient compared
to the empirical likelihood derived based on the least squares objective function for
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contaminated, skewed, and heavy-tailed model error distributions and/or when data
contain gross outliers.
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Appendix

This Appendix contains assumptions used in the development of theoretical results
as well as the proof of the main results.

Assumptions

(I1) ϕ is a nondecreasing, bounded, and twice continuously differentiable score
function with bounded derivatives, defined on (0, 1), and, satisfying:

∫ 1

0
ϕ(u)du = 0 and

∫ 1

0
ϕ2(u)du = 1.

(I2) g(·) being a function of two variables x and β, it is required that g has
continuous derivatives with respect to β that are bounded up to order 3 by p-
integrable functions of x, independent of β, p ≥ 1.

(I3) K(·) is a regular kernel of order r > 2, with window bn satisfying nb4r
n → 0,

C(log n/n)γ < bn < hn, for any C > 0, γ = 1 − 2/p, p > 2 and hn is a
bandwidth such that C(log n/n)γ < hn < 1 with hn→ 0 as n→∞.

(I4) sup
x

E[|Y |p|x = x] <∞, for p ≥ 1 and inf
x
�(x) > 0.

(I5) For fixed n, β0,n ∈ Int (B) is the unique minimizer of E[Dn(β)] such that
limn→∞ β0,n = β0

(I6) The model error has a distribution with a finite Fisher information.
(I6) V ar(

√
nS

j
n(β0))→ �

j

β0
, where �j

β0
is positive definite.

(I7) Set H = B(BτB)−1Bτ , where B = ∇βg(x,β0). H is the projection matrix
onto the column space of B, which in this case represents the tangent space
generated by B and let hiin, i = 1, · · · , n, be the leverage values that stand
for the diagonal entries of H. We assume that lim

n→∞ max
1≤i≤n hiin = 0

Assumptions (I2)−(I4) are necessary and sufficient to ensure the strong consistency
of π̂(x) used in the imputation process. On the other hand, assumptions (I1),
(I5) − (I7) together with the previous assumptions are necessary to establish the
asymptotic properties (consistency and asymptotic normality distribution) of the
rank-based estimators of β0. An elaborate discussion about these assumptions can
be found in Hettmansperger and McKean (2011), Bindele and Abebe (2012), and
Bindele (2017).
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By definition of Sjn(β), ̂β
j

n is solution to the equation S
j
n(β) = 0. As in Brunner

and Denker (1994), assume without loss of generality that ‖λi‖ = 1 and define

Jjn(s) = 1

n

n
∑

i=1

Fij (s), Ĵjn(s) = 1

n

n
∑

i=1

I (νij (β0) ≤ s), Fjn(s) = 1

n

n
∑

i=1

λiFij (s)

F̂jn(s) = 1

n

n
∑

i=1

λiI (νij (β0) ≤ s), T
j
n (β0) = S

j
n(β0)− E

[

S
j
n(β0)

]

.

The following lemma due to Brunner and Denker (1994) is a key for establishing
asymptotic normality of the rank gradient function for dependent data.

Lemma 3.1 Let ςjn be the minimum eigenvalue of Wjn = V ar(Ujn) with Ujn

given by

Ujn =
∫

ϕ(Jjn(s))(F̂jn − Fjn)(ds)+
∫

ϕ′(Jjn(s))(Ĵjn(s)− Jjn(s))Fjn(ds) .

Suppose that ςjn ≥ Cna for some constants C, a ∈ R and m(n) is such that
M0n

γ ≤ m(n) ≤ M1n
γ for some constants 0 < M0 ≤ M1 < ∞ and 0 < γ <

(a + 1)/2. Then m(n)W−1
jn T

j
n (β0) is asymptotically standard multivariate normal,

provided ϕ is twice continuously differentiable with bounded second derivative.

We provide a sketch of the proof of this lemma. A detailed proof can be found in
Brunner and Denker (1994).

Proof Set

Bjn = −
∫

(F̂jn − Fjn)dϕ(Jjn)+
∫

(Ĵjn − Jjn)
dFjn

dJjn
dϕ(Jjn).

Brunner and Denker (1994) showed that Wjn = n2V ar(Bjn), as Un = nBn. From

its definition, Sjn(β) can be rewritten as

S
j
n(β0) =

1

n

n
∑

i=1

λiϕ
(R(νij (β0))

n+ 1

)

=
∫

ϕ
( n

n+ 1
Ĵjn

)

dFjn.

By (I5), since β0 = lim
n→∞Argmin

β∈B
E{Dj

n(β)}, we have E{Sjn(β0)} → 0 as n→∞.

From the fact that Var(ε|x) > 0, there exists a positive constant C such that ςjn ≥
Cn2 which satisfies the assumptions of Lemma 3.1, as ϕ is twice continuously
differentiable with bounded derivatives, γ < (a + 1)/2 with a = 2, M0 = M1 = 1,
γ = 1, and m(n) = n. Thus, for n large enough, nW−1

jn T
j
n (β0) ≈ nW−1

jn S
j
n(β0),

which converges to a multivariate standard normal, by Lemma 3.1. A direct
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application of Slutsky’s Lemma and putting �jn = n−1/2Wjn give
√
nS

j
n(β0)

D−→
Np(0, �

j

β0
), j = 1, 2, where �j

β0
= lim

n→∞�jn�
τ
jn.

Proof of Theorem 3.2. Let C be an arbitrary positive constant. Recall from
Eq. (3.5) that the log likelihood ratio of β0 is given by

−2 logRj
n(β0) = −2 log

n
∏

i=1

(

1+ ξ τ ηij (β0)
)−1 = 2

n
∑

i=1

log
(

1+ ξ τ ηij (β0)
)

.

Under (I1) and (I2), there exist a positive constant M and a function h ∈ Lp,
p ≥ 1 such that |ϕ(t)| ≤ M for all t ∈ (0, 1), and ‖∇βg(xi ,β0)‖ ≤ h(xi ), where
‖ · ‖ stands for the L2- norm. From this, max

1≤i≤n ‖∇βg(xi ,β0)‖ = op(n
1/2) since

E(|h(xi )|P ) < ∞, p ≥ 1. Also, since �jn�
τ
jn → �

j

β0
a.s., �jn is almost surely

bounded. Thus, ‖ηij (β0)‖ ≤ M × max
1≤i≤n h(xi ), which implies that

max
1≤i≤n ‖ηij (β0)‖ = op(n

1/2) and
1

n

n
∑

i=1

‖ηij (β0)‖3 = op(n
1/2). (3.6)

Moreover, Λnj = V ar(
√
nS

j
n(β0)) = n−1 ∑n

i=1 ηij (β0)η
τ
ij (β0) = �

j

β0
+ op(1)

by assumption (I6), from which �
j

β0
is assumed to be positive definite. Hence,

following the proof of Lemma 3.1, we have �jn�
τ
jn − Λnj → 0 a.s. Since

√
nS

j
n(β0)

D−→ N(0, �j

β0
), we have ‖Sjn(β0)‖ = Op(n

−1/2). Now from Eq. (3.4),
using similar arguments as those in Owen (1990), it is obtained that ‖ξ‖ =
Op(n

−1/2). On the other hand, performing a Taylor expansion to the right-hand
side of Eq. (3.5) results in

−2 logRj
n(β0) = 2

n
∑

i=1

[

ξ τ ηij (β0)−
1

2

(

ξ τ ηij (β0)
)2
]

+ γ n,

where γ n = OP (1)
n

∑

i=1

|ξ τ ηij (β0)|3. Now, using similar arguments as in Owen

(2001), we have

−2 logRj
n(β0) =

n
∑

i=1

ξ τ ηij (β0)+ oP (1)

=
(1

n

n
∑

i=1

ηij (β0)
)τ

(nΛnj )
−1

(1

n

n
∑

i=1

ηij (β0)
)

+ op(1)

=
(√

nΛ
−1/2
nj S

j
n(β0)

)τ(√
nΛ
−1/2
nj S

j
n(β0)

)

+ op(1).
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Using Slutsky’s lemma, we have
√
nΛ
−1/2
nj S

j
n(β0)

D−→ Np(0, Ip) as n → ∞, and
therefore,

−2 logRj
n(β0)

D−→ χ2
p.
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Chapter 4
Bayesian Nonparametric Spatially
Smoothed Density Estimation

Timothy Hanson, Haiming Zhou, and Vanda Inácio de Carvalho

4.1 Introduction

Geographic information systems (GIS) technology has exploded over the last
several decades due to impactful advances in data storage, computing power,
sophisticated processing techniques, and visualization software. Accordingly, there
has been an increasing need for the development of the state-of-the-art statistical
models for spatial data as well (for an overview of developed methods, see Gelfand
et al. 2010). Much recent literature has focused on spatially varying trends in the
form of random fields. Although fundamental, spatially varying density estimation
has received much less attention, perhaps due to challenges inherent in adapting
existing methods to the spatial setting. This paper is then motivated by the need to fill
a particular gap in the literature: provide a conceptually simple and computationally
feasible, yet competitive, approach to modeling spatially dependent distributions.

The field of Bayesian nonparametrics has offered several viable spatially varying
density estimators over the last decade, the majority of which are based on
convolutions of a continuous kernel with a spatially varying discrete measure.
More specifically, all proposed methods have been extensions of Dirichlet process
(DP) mixture models (Escobar and West 1995) towards dependent Dirichlet process
(DDP) mixtures (MacEachern 2001). The first such contribution was proposed by
Gelfand et al. (2005). These authors developed a DDP for point-referenced spatial
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data where the underlying DP base measure was taken to be a Gaussian process over
Euclidean space; as a result, the density estimate is a discrete mixture of normal dis-
tributions where the components’ means are Gaussian process realizations observed
at a spatial location. An extension of this model allowing different surface selection
at different sites was proposed by Duan et al. (2007). In turn, Griffin and Steel
(2006) proposed a spatial DP model that permutes the random variables building the
weights in the stick-breaking representation, allowing the occurrence of the stick-
breaking atoms to be more or less likely in different regions of the spatial domain.
Further, Reich and Fuentes (2007), motivated by the need to analyze hurricane
surface wind fields, developed a spatial stick-breaking prior where the weights are
spatially correlated. Related proposals include Petrone et al. (2009) and Rodríguez
et al. (2010), both developing spatial DP’s where the stick-breaking weights follow a
copula representation. Very recently, Zhou et al. (2015) considered a spatial model
where the marginal distributions follow the linear DDP of De Iorio et al. (2009),
but a copula induces dependence for georeferenced data. The local DP (Chung
and Dunson 2011), developed to accommodate predictor-dependent weights in a
DDP with identical margins, offers an approach to the localized spatial “sharing”
of atoms within neighborhoods of fixed size that could be extended to the spatial
setting. Additionally, Fuentes and Reich (2013) generalize the models of Reich and
Fuentes (2007) and Dunson and Park (2008) to the multivariate spatial setting with
nonseparable and nonstationary covariance functions. A related approach, although
not relying on the stick-breaking representation, was developed by Jo et al. (2017),
who considered spatial conditional autoregressive (CAR) species sampling models.
In contrast, the frequentist literature on spatial density estimation is very scarce,
with an exception being the spatially weighted kernel density estimator proposed by
Fotheringham et al. (2002, Section 8.4, pp. 202–203).

All of the above methods, as already mentioned, rely on discrete mixtures of
smooth kernels; in fact, each is a particular mixture of normal distributions with
some subset of model parameters changing smoothly in space. To the best of
our knowledge, the only approach to spatial density estimation that does not rely
on mixtures is the very recent Polya tree approach of Tansey et al. (2017). This
approach follows Zhao and Hanson (2011) by taking the conditional probabilities
that define the Polya tree to have a spatial structure. Whereas Zhao and Hanson
(2011) consider multiple logistic-transformed independent CAR priors for the Polya
tree conditional probabilities over a lattice (i.e., areal data), in Tansey et al. (2017)
the logistic-transformed Polya tree conditional probabilities from adjacent spatial
locations are shrunk towards each other via a graph-fused LASSO prior. This
latter approach is especially fast and easy to compute when spatial locations lie
on a rectangular grid. However, since the approach is not marginalized, density
estimates at every spatial location need to be computed, and therefore the method
is not immediately amenable to multivariate outcomes. Furthermore, an important
drawback of Tansey et al. (2017) is that the fitting algorithm requires spatial
locations to fall on a rectangular grid, something that rarely happens with typical
observational data, data arising from irregularly placed monitoring stations, et
cetera.
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Our proposed estimator is built upon a modification of the predictive density from
a marginalized Polya tree to accommodate localized behavior. The modification is
readily implemented in existing Markov chain Monte Carlo (MCMC) schemes for
models using marginalized Polya trees (e.g., Hanson 2006). Because we rely on
marginalization, the method is fast, even for multivariate outcomes. Additionally,
and unlike DP priors-based methods, our method does not rely on mixtures; in fact,
a nice feature of Polya trees is that they can be centered at a parametric family (e.g.,
a normal distribution). In a similar fashion to the work of Dunson (2007), Dunson
et al. (2007), and Dunson and Park (2008), observations are weighted according
to a distance measure. However, unlike these approaches, a key property of our
model is that for extreme covariate values, the estimator essentially follows the
parametric family centering the Polya tree. That is, in spatial regions where data are
sparse, the estimate is smoothed towards the parametric family, whereas areas that
are data-heavy provide a more data-driven estimate. Also, our estimator can handle
spatial locations (e.g., longitude and latitude), or covariates, or a mixture of spatial
location and covariates. Additional contributions of our work include a refinement
to accommodate arbitrarily censored data and a test for whether the density changes
across space (and/or covariates). It is worth mentioning that although we are mainly
interested in density regression, the methods developed here can be used to model
the error in a general regression setup.

The remainder of the paper is organized as follows. In Sect. 4.2, we present
our model, associated MCMC scheme, a generalization to censored data, and a
permutation test. Section 4.3 provides several applications of the methods to real
data. Concluding remarks are provided in Sect. 4.4.

4.2 The Predictive Model

The Polya tree and other partition models lead to a beautifully simple updating rule.
A family of densities {Gθ : θ ∈ �} is assumed to approximately hold, and R is
broken up into regions of equal probability 1

2j
under Gθ at level j . As data are

collected, the proportion falling into a region is compared to what is expected under
Gθ ; if this proportion is higher than expected under Gθ , then the region is assigned
higher predictive probability, and vice versa. However, the amount of the increase or
decrease relative to Gθ is attenuated through a smoothing parameter c that signifies
how much confidence one has in the family Gθ to begin with. This simple updating
rule requires only counting the numbers of observations falling into the regions.
This is now developed formally.

Initially, assume that data follow a univariate Polya tree centered at a normal
distribution:

y1, . . . , yn|G iid∼ G, G ∼ PTJ (c,N(μ, σ 2)),
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truncated to level J (Hanson 2006). The predictive density for an observation yi
given the previous values y1:i−1 = (y1, y2, . . . , yi−1) is given by:

p(yi |y1:i−1, c, θ)

= φ(yi |θ)
J
∏

j=1

cj2 +∑i−1
k=1 I {�2j!{ yi−μσ

}� = �2j!{ yk−μ
σ
}�}

cj2 + 1
2

∑i−1
k=1 I {�2j−1!{ yi−μ

σ
}� = �2j−1!{ yk−μ

σ
}�} ,

(4.1)

where φ(y|θ) is the density function for an N(μ, σ 2) random variable, θ =
(μ, log σ), I {A} is the usual indicator function for event A, !(·) is the cumulative
distribution function of N(0, 1), �·� is the ceiling function, and c is a precision
parameter controlling how closely G follows the parametric centering distribution
N(μ, σ 2) in terms of L1 distance (Hanson 2006). Large values of c (e.g., 100 or
1000) lead to a strong belief that yis are closely iid from N(μ, σ 2). On the other
hand, smaller values of c (e.g., 0.01 or 0.1) allow more pronounced deviations of G
from N(μ, σ 2). Therefore, the predictive density in (4.1) can change dramatically
with c. To mitigate the effect of c on the posterior inference, Hanson (2006) suggests
a gamma prior on c which will also be used for our proposal in Eq. (4.2) below.

Now, consider spatial data where the observation yi is observed at spatial location
xi . The full data are then {(xi , yi)}ni=1. Note that xi can simply be spatial location,
e.g., longitude and latitude, or covariates, or a mixture of spatial location and
covariates. In the Polya tree, an observation yk (k < i) contributes the same weight
to the predictive density (4.1) of yi , regardless of how close corresponding spatial
locations xi and xk are. If we replace the indicator functions in (4.1) by a distance
measure dψ(xi , xk) only giving a “whole observation” when xi = xk and some
fraction of unity that is a function of the distance between xi and xk otherwise, we
obtain a predictive process with a tailfree flavor, but the additional flexibility to be
able to adapt locally:

p(yi |y1:i−1, c, θ , ψ)

= φ(yi |θ)
J
∏

j=1

cj2 +∑i−1
k=1 I {�2j!{ yi−μσ

}� = �2j!{ yk−μ
σ
}�}dψ(xi , xk)

cj2 + 1
2

∑i−1
k=1 I {�2j−1!{ yi−μ

σ
}� = �2j−1!{ yk−μ

σ
}�}dψ(xi , xk)

(4.2)

The distance measure used herein is a function of the sample Mahalanobis
distance dψ(xi , xk) = exp{−ψ(xi−xk)′S−1(xi−xk)}, defining an effective window
in which data can affect the predictive density. When ψ = 0, the prediction rule
from a Polya tree with exchangeable observations is obtained as dψ(xi , xk) = 1 for
all i and k. When dψ(xi , xk) ≈ 0, it is essentially as if yk is not in the sample. Note
for xi very far from the sample mean x̄, the distances will all essentially be zero and
the parametric model is obtained. As a consequence, in regions that are data scarce
the estimator will essentially follow the parametric N(μ, σ 2) centering the Polya
tree.
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The Mahalanobis distance gives the commonly used spatial Gaussian correlation
function when Euclidean coordinates are independently observed. Furthermore, the
Mahalanobis distance is anisotropic, allowing for quite different “x” and “y” scales
if present in data, as well as correlated spatial coordinates. Distance measures such
as this are also used in “local Dirichlet process” approaches, e.g., Chung and Dunson
(2011) as well as earlier versions for densities that change smoothly with covariates,
e.g., Dunson (2007), although not incorporating correlation among variables. The
accommodation of correlation is important because it essentially obviates concerns
about multicollinearity as well as mitigates a need for variable selection. Superflu-
ous dimensions of xi are handled naturally within the Mahalanobis distance wherein
the distances between highly positively correlated variables are much less than the
same distances between uncorrelated or negatively correlated variables. We reiterate
that the “locations” xi can be spatial locations, covariates, or mixtures of spatial
locations and covariates.

The joint density for all observations is given by the Markov expansion:

p(y1, . . . , yn|c, θ , ψ) =
n
∏

i=1

p(yi |y1:i−1, c, θ , ψ), (4.3)

where p(y1|c, θ , ψ) = φ(y1|θ). This defines a valid joint probability model;
however, p(y1, . . . , yn|c, θ , ψ) is not invariant to the order in which pairs (xi , yi)
enter into the model. That is, p(y1, y2, y3|c, θ , ψ) is not necessarily equal to
p(y2, y3, y1|c, θ , ψ). This has ramifications in terms of drawing inferences for
(c, θ , ψ |y1:n).

The posterior

p(c, θ , ψ |y1:n) ∝ p(y1, . . . , yn|c, θ , ψ)p(c, θ , ψ)

depends on the order y1, . . . , yn. To make the posterior invariant to the ordering of
the observed data, we propose to instead use the permutation density:

p(c, θ , ψ |y1:n) ∝ p(c, θ , ψ)
1

n!
∑

(i1,...,in)∈P
p(yi1 , . . . , yin |c, θ , ψ),

where P are all permutations of {1, . . . , n}. Dahl et al. (2017) consider a related
scenario in defining a partition distribution indexed by a permutation. Computation
of all permutations is not feasible so Dahl et al. (2017) place a uniform prior
distribution over all permutations, allowing the MCMC to numerically perform the
marginalization. In our setting, there is no reason to favor one permutation over
another so equal weight is placed on all partitions by the model rather than through
only the prior. Thus, the partition is not “updated” during MCMC according to a
Metropolis–Hastings step; rather a different permutation is forced at each MCMC
iteration.
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Although the permutation density avoids order dependence, this dependence is
empirically observed to be quite weak. Simply using the data order as observed
changes posterior inference only slightly from that obtained through the permutation
density. Similarly, Newton and Zhang (1999) noted in a Bayesian nonparametric
setting involving the Dirichlet process with censored data, where exchangeability is
lost, the order of updating affects the predictive distribution negligibly.

We proceed to develop a reasonable prior for ψ . With probability q, assume
that the density is not spatially varying, i.e. P(ψ = 0) = q; setting q = 0.5
gives the posterior odds as the Bayes factor so we consider that here. For spatially
varying densities, assume ψ |ψ > 0 ∼ �(aψ, bψ), where �(a, b) denotes a gamma
distribution with mean a/b. We set aψ = 2 and bψ = (aψ − 1)/ψ0 so that the
prior of ψ |ψ > 0 has mode at ψ0, where ψ0 satisfies exp{−ψ0 max1≤i≤n(xi −
x̄)′S−1(xi − x̄)} = 0.001. Thus, the final prior on ψ is the mixture

ψ ∼ q δ0 + (1− q) �(aψ, bψ),

where δx is Dirac measure at x and the default is q = 1
2 . A Bayes factor for

comparing the spatially varying model to the exchangeable model is given by:

BF = P(ψ > 0|y1:n)/P (ψ = 0|y1:n)
P (ψ > 0)/P (ψ = 0)

= q P (ψ > 0|y1:n)
(1− q) P (ψ = 0|y1:n)

.

Two options are taken for (μ, log σ). The default follows Hanson et al. (2008)
and Chen and Hanson (2014) by simply fixing them at their maximum likelihood
estimates (MLEs) under the parametric N(μ, σ 2) model as c→∞; for uncensored
data, these are of course the sample moments μ̂ = 1

n

∑n
i=1 yi , σ̂

2 = 1
n

∑n
i=1(yi −

μ̂)2. When data are censored, the MLEs are not available in closed form but are
readily computed by most statistical software packages, e.g., survreg in R using
family="gaussian". The second option is to take a bivariate normal prior
N2(θ0,V0) on θ = (μ, log σ) with θ0 = (μ̂, log σ̂ ) and V0 being the estimated
asymptotic “plug-in” covariance for the MLE. The only remaining parameter is c;
c ∼ �(ac, bc) is assumed with the default c ∼ �(5, 1).

The function SpatDensReg is developed within the R package spBayesSurv
(Zhou and Hanson 2018) for the implementation. The usage syntax is

SpatDensReg(formula, data, na.action, prior=NULL,
state=NULL,
mcmc=list(nburn=3000, nsave=2000,
nskip=0, ndisplay=500),
permutation=TRUE, fix.theta=TRUE)

Here, formula is a formula expression with the response returned by the Surv
function in the survival package. It supports right-censoring, left-censoring,
interval-censoring, and mixtures of them. For survival data, the input response
should be log survival times. The argument prior is a list giving the prior
information. The list includes the following elements.
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prior element maxL a0 b0 theta0 V0 phia0 phib0 phiq0

Corresponding symbol L ac bc θ0 V0 aψ bψ q

The argument permutation is a logical flag to indicate whether a random
data permutation will be implemented in the beginning of each iterate; the default
is TRUE. The argument fix.theta is a logical flag to indicate whether the
parameters θ are fixed; the default is TRUE indicating that they are fixed at
(μ̂, log σ̂ ).

4.2.1 Markov Chain Monte Carlo

The MCMC algorithm uses blockwise adaptive MCMC (Haario et al. 2001). The
blocks are (μ, log σ) when the option fix.theta=FALSE is chosen, c, and ψ ; ψ
requires some special care, detailed below. The permutation density can be used by
fixing permutation=TRUE which is the default.

For the mixture prior ψ ∼ qδ0+(1−q)�(aψ, bψ), we need to first conditionally
sample whether ψ = 0 or not. Bayes rule gives

P(ψ = 0|y1:n, c, θ)

= q p(y1:n|c, θ , ψ = 0)

q p(y1:n|c, θ , ψ = 0)+ (1− q)
∫∞

0 p(y1:n|c, θ , ψ)γ (ψ; aψ, bψ)dψ
,

where γ (·; a, b) refers to the density of �(a, b). Set �(·; a, b) to be the cumulative
distribution function of �(a, b). The integral can be approximated by a Riemann
sum:

∫ ∞

0
p(y1:n|c, θ , ψ)γ (ψ; aψ, bψ)dψ

≈
K
∑

k=1

1

ψk − ψk−1
p(y1:n|c, θ , ψk)γ (ψk; aψ, bψ),

where ψk = �−1( k
K+1 ; aψ, bψ) for k = 0, 1, . . . , K , e.g., K = 20. If ψ = 0 is

sampled, we are done, otherwise we need to sample ψ |ψ > 0 using usual adaptive
M-H. When computing the adaptive variance, only those sample values of ψ that
are positive are included. An option forcing ψ > 0 only (q = 0) is also available
which speeds up the MCMC considerably but disallows the computation of a Bayes
factor to test whether spatial location and/or covariates affect the distribution of the
response.
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Given the posterior sample {ψ(j), j = 1, . . . ,M}, the Bayes factor for
the spatial model vs. exchangeable model is simply [ 1−q̄

q̄
]/[ 1−q

q
] where q̄ =

1
M

∑M
j=1 I {ψ(j) = 0}.

4.2.2 Censored Data

Censored observations are readily sampled from Metropolis–Hastings proposals
based on the underlying centering distribution. Define

q(yi |y−i , c, θ , ψ)

=
J
∏

j=1

cj2 +∑

k �=i I {�2j!{ yi−μσ
}� = �2j!{ yk−μ

σ
}�}dψ(xi , xk)

cj2 + 1
2

∑

k �=i I {�2j−1!{ yi−μ
σ
}� = �2j−1!{ yk−μ

σ
}�}dψ(xi , xk)

,

where y−i is y1:n with the ith observation removed.
Let C = {i : δi = 0} be the indices of censored observations where δi = 0 if yi is

only known to lie in the interval yi ∈ (ai, bi), ai < bi , and δi = 1 if yi is observed
exactly. The latent values of Yc = {yi : i ∈ C} are updated via MCMC along with
the model parameters θ , c, and ψ . If i ∈ C propose y∗i ∼ N(μ, σ 2) truncated to
(ai, bi) and accept with probability:

1 ∧ q(y∗i |y−i , c, θ , ψ)

q(yi |y−i , c, θ , ψ)
,

otherwise leave yi at its current value.

4.2.3 Direct Estimation and a Permutation Test p-Value

For uncensored data, estimation can be sped up substantially by avoiding MCMC
entirely and simply using maximum a posteriori (MAP) estimates coupled with
an empirical Bayes approach to fixing the centering distribution. Dunson (2007)
considered a somewhat related approach in a covariate-weighted Dirichlet process
mixture. Chen and Hanson (2014) consider a hybrid approach for uncensored data
by setting θ = (μ̂, log σ̂ ), the MLE’s under normality, and maximizing (4.3) with
ψ = 0 over a grid of c values ci = exp{ 14

19 (i − 1) − 7} for i = 1, . . . , 20.
The spatial version (4.3) allowing for ψ > 0 can similarly be maximized over a
lattice of (ci, ψj ) values. From considerations in Sect. 4.2.1, quantiles of the prior
ψj = �−1(

j
11 ; aψ, bψ) for i = 1, . . . , 10 are reasonable; call these values S .

Similarly, ci ∈ C = {0.001, 0.01, 0.1, 0.5, 1, 5, 10, 50, 100, 1000} could be used
giving 100 values of {(ci, ψj )} to compute and maximize (4.3) over.
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The Bayes factor described in Sects. 4.2.1 and 4.2.2 tests the hypothesis H0 :
ψ > 0 relative to H0 : ψ = 0 via MCMC using the priors described in these
sections. A “maximized Bayes factor” from direct estimation is given by:

BF = max(c,ψ)∈C×S p(c, θ̂ , ψ |y1:n)
maxc∈C p(c, θ̂ , 0|y1:n)

. (4.4)

This Bayes factor gives the “most evidence” in favor of the spatially varying
model and akin to a likelihood ratio test, albeit with added prior information and
a plug-in estimate for θ . Consider that the null H0 : x ∈ X is independent of
y ∈ Y . Under this null, we can repeatedly take random, uniformly distributed
permutations (i1, . . . , in) ∈ P , form “data” {(xj , yij )}nj=1, and compute Bayes
factors from (4.4). The proportion of these larger than the one based on the original
data is a permutation test p-value (Fisher 1935) for testing association between the
response and spatial location (and/or covariates).

The function BF.SpatDensReg is developed within the R package
spBayesSurv to obtain the BF in (4.4) and the permutation test p-value. The
usage syntax is

BF.SpatDensReg(y, X, prior = NULL, nperm = 100,
c_seq = NULL, phi_seq = NULL)

Here, y is a vector of uncensored responses, rows of X are spatial locations and/or
covariates, prior is the same as the one used in SpatDensReg, nperm is an
integer giving the total number of permutations, c_seq is an vector giving grid
values for c, and phi_seq is a vector giving grid values for ψ . To illustrate the

use of this method, we generate the data as follows: yi
ind∼ N(βxi, 0.22), xi

iid∼
Beta(0.3, 0.3), i = 1, . . . , 300, where β = 0.01, 0.05, 0.1, 0.5, 1. The following
R code is used to obtain these BFs and p-values. As expected, we see that as β

increases, so does the Bayes factor while the p-value is approaching zero.

library(spBayesSurv)
set.seed(2017)
beta = c(0.01, 0.05, 0.1, 0.5, 1);
BFs = rep(NA, length(beta));
Pvalues = rep(NA, length(beta));
for(sim in 1:length(beta)){
print(sim);
## Generate data
n = 300;
x = rbeta(n, 0.3, .3)
y = rep(0, n);
uu = runif(n);
for(i in 1:n){
y[i] = rnorm(1, beta[sim]*x[i], .2);
}
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prior = list(maxL=6);
res1 = BF.SpatDensReg(y, x, prior=prior, nperm=500);
BFs[sim] = res1$BF;
Pvalues[sim] = res1$pvalue;
}
###### Outputs:
> BFs

beta=0.01 beta=0.05 beta=0.1 beta=0.5
beta=1

4.624762e-01 3.283394e+00 8.828178e+03 1.290706e+30
4.403196e+83

> Pvalues
beta=0.01 beta=0.05 beta=0.1 beta=0.5 beta=1

0.974 0.922 0.000 0.000 0.000

4.3 Examples

4.3.1 IgG Distribution Evolving with Age

Jara and Hanson (2011) and Schörgendorfer and Branscum (2013) considered serum
immunoglobulin G (IgG) concentrations from n = 298 children aged 6 months
to 6 years old. Like these authors, we consider the log-transformation of the data
yi ; the log-IgG values are plotted versus age in Fig. 4.1f. We consider the spatially
smoothed Polya tree for estimating the log-IgG density as smoothly varying function
of age. Unlike previous authors, we rely on only the Polya tree and do not explicitly
model an IgG trend via fractional polynomials.

The following R code is used to fit the proposed model with J = 4 and the
default prior settings in Sect. 4.2 except for the option fix.theta=FALSE which
provides much smoother posterior density estimates.

#needed packages
library(survival)
library(spBayesSurv)
library(coda)
library(DPpackage)

#data management
data(igg); d = igg; n = nrow(d);
d$logIgG = log(d$igg)

#fitting the model
nburn=20000; nsave=5000; nskip=9;
mcmc=list(nburn=nburn, nsave=nsave, nskip=nskip,



4 Bayesian Nonparametric Spatially Smoothed Density Estimation 97

ndisplay=500);
prior = list(maxL=4, phiq0=0.5);
res1 = SpatDensReg(formula = Surv(logIgG)~age, data=d,

prior=prior,
mcmc=mcmc, permutation = TRUE, fix.theta=FALSE);

#output from summary
summary(fit) # most output removed to save space
Posterior inference of centering distribution
parameters
(Adaptive M-H acceptance rate: 0.1054):

Mean Median Std. Dev. 95%CI-Low
95%CI-Upp

location 1.47804 1.49332 0.05165 1.33244
1.53099

log(scale) -0.70716 -0.70207 0.04997 -0.81437
-0.62347

Posterior inference of precision parameter
(Adaptive M-H acceptance rate: 0.35896):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp
alpha 0.6967 0.6368 0.3025 0.2866 1.4248

Posterior inference of distance function range phi
(Adaptive M-H acceptance rate: 0.38898):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp
range 3.527 3.326 1.212 1.805 6.484

Bayes Factor for the spatial model vs. the
exchangeable model: Inf Number of subjects: n=298

The traceplots for θ , ψ , and c mixed very well (not shown). The Bayes factor for
testing association between age and log-IgG is ∞ indicating a decisive evidence
of dependency. Figure 4.1 presents the posterior mean and 95% pointwise credible
interval of the log-IgG density at five different ages. These fitted densities are similar
to those obtained by Jara and Hanson (2011). The following R code can be used to
provide these plots.

ygrid = seq(min(d$logIgG), max(d$logIgG), length.out
= 200);

xpred = data.frame(age=c(11, 25, 38, 52, 65, 79)/12);
estimates=plot(res1, xnewdata=xpred, ygrid=ygrid);
for(i in 1:nrow(xpred)){
pdf(file =paste("IgG-densities-age", xpred[i,]*12,

"-bf.pdf", sep=""),
paper="special", width=8, height=6)
par(cex=1.5,mar=c(4.1,4.1,2,1),cex.lab=1.4,
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cex.axis=1.1)
plot(estimates$ygrid, estimates$fhat[,i], "l",
main=paste("IgG data, age=", xpred[i,]*12, "months",

sep=""),
xlab="log IgG", ylab="density",
ylim=c(0,1.5), xlim=c(0, 2.5), lty=1, lwd=3);
lines(estimates$ygrid, estimates$fhatup[,i], lty=2,

lwd=2);
lines(estimates$ygrid, estimates$fhatlow[,i], lty=2,

lwd=2);
dev.off()
}
pdf(file ="IgG-scatter.pdf", paper="special", width=8,

height=6)
par(cex=1.5,mar=c(4.1,4.1,2,1),cex.lab=1.4,

cex.axis=1.1)
plot(d$age*12, d$logIgG, main="IgG data",
xlab="age (months)", ylab="log IgG")
for(i in 1:5){
points(xpred[i,]*12, -0.2, pch = 16, cex=1.3,
col = "red", las = 1,xpd = TRUE)
text(xpred[i,]*12, 0, paste("", xpred[i,]*12, sep=""),
col = "red", adj = c(-0.1, .5))
}
dev.off()

4.3.2 Time to Infection in Amphibian Populations

Spatial data on the number of years from discovery to the time-to-arrival of
the fungus Batrachochytrium dendrobatidis (Bd) in mountain yellow-legged frog
populations throughout Sequoia-Kings Canyon National Park was considered by
Zhou et al. (2015). Once infected, the Bd fungus can wipe out a frog population in
a few weeks, and it is of interest to determine the distribution of time-to-infection
and how it varies spatially. The data consist of n = 309 frog populations (Fig. 4.2f)
initially discovered during park-wide surveys conducted from 1997 to 2002, and
then resurveyed regularly through 2011. The observed event time is calculated as the
number of years from the initial survey to either Bd arrival (time actually observed)
or the last resurvey (right censored). By the end of the study, about 11% of the frog
populations remained Bd-negative (right censored), and the rest of populations are
interval censored.

We fit the spatially smoothed Polya tree with the same settings as Sect. 4.3.1.
The Bayes factor for testing spatial variation of time-to-Bd is estimated to be ∞,
strong evidence that the time-to-Bd distribution spatially varies. Figure 4.2 shows
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Fig. 4.1 IgG data. Panels (a)–(e) show the posterior mean (solid) and 95% pointwise credible
interval (dashed) of the density of log IgG at five different ages. Panel (f) shows the five age points
and the scatterplot of the data

the posterior mean and 95% pointwise credible intervals of the log time-to-Bd
density at five different locations (marked in Fig. 4.2f). The distribution of log time-
to-Bd at location 5 has two modes which can also be seen from the predictive log
times-to-Bd around this location.
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Fig. 4.2 Frog data. Panels (a)–(e) show the posterior mean (solid) and 95% pointwise credible
interval (dashed) of the log time-to-Bd density at five different locations. Panel (f) shows the five
considered locations and the data locations with circle size representing the posterior mean of log
times-to-Bd
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4.3.3 Simulated Data

We generate two datasets from the following two scenarios, respectively.

1. yi
ind∼ N(xi, 0.22), xi

iid∼ Beta(0.3, 0.3), i = 1, . . . , 300,

2. yi
iid∼ 0.5N(0.5, 0.22)+ 0.5N(1, 0.32), xi

iid∼ Beta(0.3, 0.3), i = 1, . . . , 300.

Here, we expect a large BF value for scenario 1 and a BF less than 1 for scenario 2.
The censoring times are generated from Uniform(0.5, 2) so that the censoring rate
is 0.13 under scenario 1 and 0.21 under scenario 2.

The spatially smoothed Polya tree is fit with J = 6 and the same prior settings
as Sect. 4.3.1. We retain 5000 scans thinned from 50,000 after a burn-in period of
20,000 iterations. The BF factor for scenario 1 is ∞ as expected, while it is 0.01
under scenario 2. Figures 4.3 and 4.4 present the posterior mean and 95% pointwise
credible interval of the conditional density of y at three different x values under
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Fig. 4.3 Simulated data 1. Panels (a)–(c) show the posterior mean (dashed) and 95% pointwise
credible interval (dotted) of the conditional density at three different x values; the solid curves are
the corresponding true densities. Panel (d) shows the three x points and the scatterplot of the data
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Fig. 4.4 Simulated data 2. Panels (a)–(c) show the posterior mean (dashed) and 95% pointwise
credible interval (dotted) of the conditional density at three different x values; the solid curves are
the corresponding true densities. Panel (d) shows the three x points and the scatterplot of the data

each scenario. The results demonstrate that the proposed model can capture the
conditional densities quite well without any spatial trend component, although the
estimates are a bit spiky.

To investigate the impact of censoring on our model performance, we use the
simulated data 1 (Fig. 4.3d, uncensored version) again under the following two
cases: (1) right-censoring with high censoring rate, and (2) interval-censoring. For
case (1), the censoring times are generated from N(xi − 0.2, 0.52) yielding a
0.67 right-censoring rate. For case (2), we first generate right-censored times from
Uniform(0.5, 2), then transfer uncensored times into internal-censored times using
the endpoints {0, 0.2, 0.4, . . . , 1.8, 2}, yielding a rate of 0.13 for right-censoring,
0.14 for left-censoring and 0.73 for interval-censoring. The BF factors for both
cases are∞ as expected. The posterior conditional density estimates (Fig. 4.5) are
all close to the truth except for the x = 0 and x = 1 under case (1) for which
increasing the sample size can be helpful. In addition, wider credible intervals are
also observed as expected. Overall, our method still performs reasonably well for
right-censored data with high censoring rate and interval-censored data.
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Fig. 4.5 Simulated data 1 with high right-censoring rate (panels (a)–(c)) and interval-censoring
(panels (c)–(e)). Each panel provides the posterior mean (dashed) and 95% pointwise credible
interval (dotted) of the conditional density at three different x values; the solid curves are the
corresponding true densities

4.4 Conclusion

The prediction rule from a marginalized Polya tree is generalized to spatially smooth
densities over spatial regions, weighing data from proximal locations more heavily
than remote ones. Although ideas presented are quite simple and easy-to-implement,
the approach has several advantages quite distinct from other approaches. First,
it is the only method that we are aware of that smooths the density estimate
towards a parametric estimate in data-lean portions of space, e.g., a normal density.
The method is fairly fast and competitive with methods based on the Dirichlet
process. Finally, a freely available R function SpatDensReg is available in the
spBayesSurv package that makes use of compiled C++ to fit the Bayesian model
and report the Bayes factor, for arbitrarily censored (or uncensored) data.

As with nonspatial Polya trees, the spatially smoothed version is easily con-
strained to be median-zero. Thus median regression with a spatially weighted error
density is possible leading to heteroscedastic accelerated failure time models that
retain the interpretability of acceleration factors in terms of the median (e.g., Jara
and Hanson 2011; Zhou et al. 2017). For example, the Polya tree can be shifted
and/or stretched via regressions on the centering distribution parameters such as
μx = x′β and log σx = x′τ . Similarly, extension to multivariate outcomes is
straightforward, including the computation of the Bayes factor for testing spatial
dependence; however, obtaining marginal density estimates requires simulating
from the Polya tree and using univariate smoothers, e.g., Hanson et al. (2008).
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One modification of the model as developed that could potentially improve
prediction is the use of a spatially varying centering distribution θx rather than static
θ . Spatially weighted θx

μx =
∑n

i=1 dψ(xi , x)yi
∑n

i=1 dψ(xi , x)
, σ 2

x =
∑n

i=1 dψ(xi , x)(yi − μx)
2

∑n
i=1 dψ(xi , x)

,

are used in the predictive density p(y|y1:n, c, θx, ψ) so that the location and spread
of the centering normal distribution now change with spatial location. It is unclear,
however, how to create a valid likelihood for the remaining parameters (c, ψ)

in (4.2) with spatial θx. A possible approach is to simply estimate (c, ψ) via
cross-validation methods. This, an exploration of the permutation test for spatial
association in Sect. 4.2.3, and the median-regression version of the model are topics
for the future research.
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Chapter 5
Mammogram Diagnostics Using Robust
Wavelet-Based Estimator of Hurst
Exponent

Chen Feng, Yajun Mei, and Brani Vidakovic

5.1 Introduction

Breast cancer is one of the major health concerns among women. It has been
estimated by the National Cancer Institute that 1 in 8 women will be diagnosed
with breast cancer during their lifetime. Early detection is proven to be the best
strategy for improving prognosis. Most of the references dealing with automated
breast cancer detection are based on microcalcifications (El-Naqa et al. 2002;
Kestener et al. 2011; Bala and Audithan 2014; Netsch and Peitgen 1999; Wang and
Karayiannis 1998). Recently, predicting disease using image data becomes an active
research area in statistics and machine learning (Reiss and Ogden 2010; Zhou et al.
2013; Zipunnikov et al. 2011; Reiss et al. 2005). For example, Reiss and Ogden
proposed a functional generalized linear regression model with images as predictors
(Reiss and Ogden 2010). However, predicting breast cancer based on the tissue
images directly is like a black-box. Physicians will have a hard time to summarize
the common features from the cancerous images, and the prediction results are not
easily interpreted. In this paper, we study the scaling information from the tissue
image and then predict breast cancer based on the estimated scaling parameter. It
has been found in literatures that the scaling information is efficient and accurate in
early detection of breast cancer (Hamilton et al. 2011; Nicolis et al. 2011; Ramírez-
Cobo and Vidakovic 2013; Jeon et al. 2014). In fact, regular scaling is a common
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phenomenon in high-frequency signals and high-resolution digital images collected
in real life. Examples can be found in a variety of fields including economics,
telecommunications, physics, geosciences, as well as in biology and medicine (Feng
and Vidakovic 2017; Engel Jr et al. 2009; Gregoriou et al. 2009; Katul et al. 2001;
Park and Willinger 2000; Woods et al. 2016; Zhou 1996).

The standard measure of regular scaling is the Hurst exponent, denoted by H

in the sequel. Recall that a stochastic process
{

X (t) , t ∈ R
d
}

is self-similar with

Hurst exponent H if, for any λ ∈ R
+, X (t)

d= λ−HX (λt). Here the notation
d= means the equality in all finite-dimensional distributions. The Hurst exponent
quantifies the self-similarity and describes the rate at which autocorrelations
decrease as the lag between two realizations in a time series increases. A value
H in the range 0–0.5 indicates a zig-zagging intermittent time series with long-term
switching between high and low values in adjacent pairs. A value H in the range 0.5
to 1 indicates a time series with long-term positive autocorrelations, which preserves
trends on a longer time horizon and gives a time series more regular appearance.

Multiresolution analysis is one of the many methods to estimate the Hurst
exponent. An overview can be found in Abry et al. (2000, 1995, 2013). In particular,
the non-decimated wavelet transforms (NDWT) (Nason and Silverman 1995;
Vidakovic 2009; Percival and Walden 2006) has several potential advantages when
employed for Hurst exponent estimation. Input signals and images of arbitrary size
can be transformed in a straightforward manner due to the absence of decimation. As
a redundant transform, the NDWT can decrease variance in the scaling estimation
(Kang and Vidakovic 2017). Least square regression can be fitted to estimate H

instead of weighted least square regression since the variances of the level-wise
derived distributions based on log NDWT coefficients do not depend on level.
Local scaling can be assessed due to the time-invariance property. Of course, the
dependence of coefficients in NDWT is much more pronounced. Similar to Soltani
et al. (2004), we will control this dependence by systematic sampling of coefficients
on which the estimator is based.

Different wavelet-based methods for estimation of H have been proposed in the
literature for the one-dimensional case. Abry et al. (2000) suggested the estimation

ofH by weighted least square regression using the level-wise log2

(

d2
j

)

, In addition,

the authors corrected for the bias caused by the order of taking the logarithm and

the average in log2

(

d2
j

)

, where dj indicates any detail coefficient at level j . We

use dj,k to denote the kth coefficient at level j in the sequel. Soltani et al. (2004)

defined a mid-energy as Dj,k =
(

d2
j,k + d2

j,k+Nj /2

)

/

2, and showed that the level-

wise averages of log2 Dj,k are asymptotically normal and more stable, which is used
to estimate H by regression. The estimators in Soltani et al. (2004) consistently
outperform the estimators in Abry et al. (2000). Shen et al. (2007) showed that the
method of Soltani et al. (2004) yields more accurate estimators since it takes the
logarithm of the mid-energy first and then averages.

The robust estimation of H has recently become a topic of interest due to the
presence of outlier coefficients and outlier multiresolution levels, inter and within
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level dependences, and distributional contaminations (Franzke et al. 2012; Park and
Park 2009; Shen et al. 2007; Sheng et al. 2011). Hamilton et al. (2011) came up
with a robust approach based on Theil-type weighted regression (Theil 1992), a
method for robust linear regression that selects the weighted average of all slopes
defined by different pairs of regression points. Like the VA method, they regress the

level-wise log2

(

d2
j

)

against the level indices, but instead of weighted least square

regression, they use the Theil-type weighted regression to make it less sensitive to
outlier levels. Kang and Vidakovic (2017) proposed MEDL and MEDLA methods
based on non-decimated wavelets to estimate H . MEDL estimates H by regressing
the medians of log d2

j on level j , while MEDLA uses the level-wise medians of

log
((

d2
j,k1
+ d2

j,k2

)

/

2
)

to estimate H , where k1 and k2 are properly selected

locations at level j to approximate the independence.
Both MEDL and MEDLA use the median of the derived distribution instead

of the mean, because the medians are more robust to potential outliers that can
occur when logarithmic transform of a squared wavelet coefficient is taken and the
magnitude of coefficient is close to zero. Although median is outlier-resistant, it can
behave unexpectedly as a result of its non-smooth character. The fact that the median
is not “universally the best outlier-resistant estimator” motivates us to develop the
general trimean estimators of the level-wise derived distributions to estimate H ,
where the general trimean estimator was derived as a weighted average of the
distribution’s median and two quantiles symmetric about the median, combining
the median’s emphasis on center values with the quantiles’ attention to the tails.
Tukey’s trimean estimator (Tukey 1977; Andrews and Hampel 2015) and Gastwirth
estimator (Gastwirth 1966; Gastwirth and Cohen 1970; Gastwirth and Rubin 1969)
are two special cases under such general framework.

In this paper, we are concerned with the robust estimation of Hurst exponent
in self-similar signals. Here, the focus is on images, but the methodology applies
to multiscale context of arbitrary dimension. The properties of the proposed
Hurst exponent estimators are studied both theoretically and numerically. The
performance of the robust approach is compared with other standard wavelet-
based methods (Veitch and Abry (VA) method, Soltani, Simard, and Boichu
(SSB) method, median based estimators MEDL and MEDLA, and Theil-type (TT)
weighted regression method).

The rest of the paper consists of six additional sections and an Appendix. Sec-
tion 5.2 discusses background of non-decimated wavelet transforms and wavelet-
based spectrum in the context of estimating the Hurst exponent for fractional
Brownian motion (fBm). Section 5.3 introduces the general trimean estimators
and discusses two special estimators following that general framework; Sect. 5.4
describes estimation of Hurst exponent using the general trimean estimators,
presents distributional results on which the proposed methods are based, and derives
optimal weights that minimize the variances of the estimators. Section 5.5 provides
the simulation results and compares the performance of the proposed methods to
other standardly used, wavelet-based methods. The proposed methods are applied
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to classify the digitized mammogram images as cancerous or non-cancerous in
Sect. 5.6. The paper is concluded with a summary and discussion in Sect. 5.7.

5.2 Background

5.2.1 Non-decimated Wavelet Transforms

The non-decimated wavelet transforms (NDWT) (Nason and Silverman 1995;
Vidakovic 2009; Percival and Walden 2006) are redundant transforms because they
are performed by repeated filtering with a minimal shift, or a maximal sampling
rate, at all dyadic scales. Subsequently, the transformed signal contains the same
number of coefficients as the original signal at each multiresolution level. We start
by describing algorithmic procedure of 1-D NDWT and then expand to 2-D NDWT.
Traditionally, we perform a wavelet transformation as a convolution of an input data
with wavelet and scaling filters. A principal difference between NDWT and DWT
is the sampling rate.

Any square integrable function f (x) ∈ L2(R) can be expressed in the wavelet
domain as

f (x) =
∑

k

cJ0,kφJ0,k(x)+
∞
∑

j≥J0

∑

k

dj,kψj,k(x),

where cJ0,k denote coarse coefficients, dj,k indicate detail coefficients, φJ0,k(x)

represent scaling functions, and ψj,k(x) signify wavelet functions. For specific
choices of scaling and wavelet functions, the basis for NDWT can be formed from
the atoms

φJ0,k(x) = 2J0/2φ
(

2J0 (x − k)
)

and

ψj,k(x) = 2j/2ψ
(

2j (x − k)
)

,

where x ∈ R, j is a resolution level, J0 is the coarsest level, and k is the location
of an atom. Notice that atoms for NDWT have the constant location shift k at all
levels, yielding the finest sampling rate on any level. The coarse coefficients cJ0,k

and detail coefficients dj,k can be obtained via

cJ0,k =
∫

f (x) φJ0,k(x)dx and dj,k =
∫

f (x) ψj,k(x)dx. (5.1)

In a J -level decomposition of an 1-D input signal of size N , an NDWT will yield
N × (J + 1) wavelet coefficients, including N × 1 coarse coefficients and N × J

detail coefficients.



5 Mammogram Diagnostics Using Robust Wavelet-Based Estimator of Hurst. . . 113

Expanding on the 1-D definitions, we could easily describe 2-D NDWT of
f (x, y) with (x, y) ∈ R

2. Several versions of 2-D NDWT exist, but we only focus
on the scale-mixing version based on which our methods are proposed. For the
scale-mixing 2-D NDWT, the wavelet atoms are

φJ01,J02;k(x, y) = 2(J01+J02)/2φ(2J01(x − k1))φ(2
J02(y − k2)),

ψJ01,j2;k(x, y) = 2(J01+j2)/2φ(2J01(x − k1))ψ(2j2(y − k2)),

ψj1,J02;k(x, y) = 2(j1+J02)/2ψ(2j1(x − k1))φ(2
J02(y − k2)),

ψj1,j2;k(x, y) = 2(j1+j2)/2ψ(2j1(x − k1))ψ(2j2(y − k2)),

where k = (k1, k2) is the location index, J01 and J02 are coarsest levels, j1 > J01,
and j2 > J02. The wavelet coefficients for f (x, y) after the scale-mixing NDWT
can be obtained as

cJ01,J02;k =
∫∫

f (x, y) φJ01,J02;k(x, y)dxdy,

hJ01,j2;k =
∫∫

f (x, y) ψJ01,j2;k(x, y)dxdy,

vj1,J02;k =
∫∫

f (x, y) ψj1,J02;k(x, y)dxdy,

dj1,j2;k =
∫∫

f (x, y) ψj1,j2;k(x, y)dxdy.

(5.2)

Note that cJ01,J02;k are coarse coefficients and represent the coarsest approximation,
hJ01,j2;k and vj1,J02 represent the mix of coarse and detail information, and dj1,j2;k
carry information about details only. In our methods, only detail coefficients dj1,j2;k
are used to estimate H .

5.2.2 The fBm: Wavelet Coefficients and Spectra

Among models having been proposed for analyzing the self-similar phenomena,
arguably the most popular is the fractional Brownian motion (fBm) first described
by Kolmogorov (1940) and formalized by Mandelbrot and Van Ness (1968).

In this section, an overview of 1-D fBm and its extension to 2-D fBm is provided.
Consider a stochastic process {X(t), t ∈ R} is self-similar with Hurst exponent H ,
then the 1-D detail coefficients defined in (5.1) satisfy

djk
d= 2−j (H+1/2)d0k,
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for a fixed level j (Abry et al. 2003). If the process has stationary increments, i.e.,
X(t + h) − X(t) is independent of t , then E(d0k) = 0 and E(d2

0k) = E(d2
00). We

obtain

E

(

d2
jk

)

∝ 2−j (2H+1). (5.3)

The Hurst exponent can be estimated by taking logarithms on both sides of Eq. (5.3).

The wavelet spectrum is defined by the sequence
{

S(j) = logE
(

d2
jk

)

, j ∈ Z

}

.

Fractional Brownian motion (fBm), denoted as BH(t) is the unique Gaussian
process with stationary increments that is self-similar (Abry et al. 2003; Abry 2003).
The definition of the one-dimensional fBm can be extended to the multivariate case.
In particular, a two-dimensional fBm, BH(t), for t ∈ [0, 1] × [0, 1] and H ∈ (0, 1),
is a Gaussian process with stationary zero-mean increments, satisfying

BH(at)
d= aHBH (t).

It can be shown that the detail coefficients dj1,j2;k defined in Eq. (5.2) satisfy

log2 E

(

|dj1,j2;k|2
)

= −(2H + 2)j + C,

which defines the two-dimensional wavelet spectrum, from which the Hurst expo-
nent can be estimated. Our proposed methods in next sections are based on but
improve from this spectrum.

5.3 General Trimean Estimators

Let X1, X2, . . . , Xn be i.i.d. continuous random variables with pdf f (x) and cdf
F(x). Let 0 < p < 1, and let ξp denote the pth quantile of F , so that ξp =
inf{x|F(x) ≥ p}. If F is monotone, the pth quantile is simply defined as F(ξp) =
p.

Let Yp = X�np�:n denote a sample pth quantile. Here �np� denotes the greatest
integer that is less than or equal to np. The general trimean estimator is defined as
a weighted average of the distribution’s median and its two quantiles Yp and Y1−p,
for p ∈ (0, 1/2):

μ̂ = α

2
Yp + (1− α) Y1/2 + α

2
Y1−p. (5.4)

The weights for the two quantiles are the same for Yp and Y1−p, and α ∈ [0, 1].
This is equivalent to the weighted sum of the median and the average of Yp and
Y1−p with weights 1− α and α:
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μ̂ = (1− α) Y1/2 + α

(

Yp + Y1−p
2

)

.

This general trimean estimator turns out to be more robust than mean but smoother
than the median. To derive its asymptotic distribution, the asymptotic joint distribu-
tion of sample quantiles is needed, as shown in Lemma 5.1; detailed proof can be
found in DasGupta (2008).

Lemma 5.1 Consider r sample quantiles, Yp1 , Yp2 , . . . ., Ypr , where 1 ≤ p1 <

p2 < . . . < pr ≤ n. If for any 1 ≤ i ≤ r ,
√
n (�npi�/n− pi)→ 0 is satisfied, then

the asymptotic joint distribution of Yp1, Yp2 , . . . ., Ypr is:

√
n
((

Yp1, Yp2 , . . . ., Ypr
)− (

ξp1 , ξp2 , . . . ., ξpr
)) approx∼ MV N (0,Σ) ,

where

Σ = (

σij
)

r×r ,

and

σij = pi
(

1− pj
)

f
(

xpi
)

f
(

xpj
) , i ≤ j. (5.5)

From Lemma 5.1, the asymptotic distribution of general trimean estimator will be
normal as a linear combination of the components each with an asymptotic normal
distribution. The general trimean estimator itself may be defined in terms of order
statistics as

μ̂ = A · y,

where

A =
[α

2
1− α

α

2

]

, and y = [

Yp Y1/2 Y1−p
]T

.

It can be easily verified that
√
n (�pn�/n− p)→ 0 for p ∈ (0, 1/2]. If we denote

ξ = [

ξp ξ1/2 ξ1−p
]T the population quantiles, the asymptotic distribution of y is

√
n (y − ξ)

approx∼ MV N (0, �) ,

where � = (

σij
)

3×3 , and σij follows Eq. (5.5) for p1 = p, p2 = 1/2, and p3 =
1− p. Therefore

μ̂
approx∼ N

(

E
(

μ̂
)

,Var
(

μ̂
))

,
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with the theoretical expectation and variance being

E
(

μ̂
) = E (A · y) = A · E (y) = A · ξ , (5.6)

and

Var
(

μ̂
) = Var (A · y) = AVar (y) AT = 1

n
A�AT . (5.7)

5.3.1 Tukey’s Trimean Estimator

Tukey’s trimean estimator is a special case of the general trimean estimators, with
α = 1/2 and p = 1/4 in Eq. (5.4). To compute this estimator, we first sort the data
in ascending order. Next, we take the values that are one-fourth of the way up this
sequence (the first quartile), half way up the sequence (i.e., the median), and three-
fourths of the way up the sequence (the third quartile). Given these three values, we
then form the weighted average, giving the central (median) value a weight of 1/2
and the two quartiles a weight of 1/4 each.

If we denote Tukey’s trimean estimator as μ̂T , then

μ̂T = 1

4
Y1/4 + 1

2
Y1/2 + 1

4
Y3/4.

The asymptotic distribution is

μ̂T

approx∼ N

(

AT · ξT ,
1

n
AT �T A

T
T

)

,

where AT =
[

1
4

1
2

1
4

]

, ξT =
[

ξ1/4 ξ1/2 ξ3/4
]T , �T =

(

σij
)

3×3 is the

covariance matrix of the asymptotic multivariate normal distribution, and σij
follows Eq. (5.5) with p1 = 1/4, p2 = 1/2, and p3 = 3/4.

5.3.2 Gastwirth Estimator

As Tukey’s estimator, the Gastwirth estimator is another special case of the general
trimean estimators, with α = 0.6 and p = 1/3 in Eq. (5.4).

If we denote this estimator as μ̂G, then

μ̂G = 0.3 Y1/3 + 0.4 Y1/2 + 0.3 Y2/3.

The asymptotic distribution can be derived as
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μ̂G

approx∼ N

(

AG · ξG,
1

n
AG�GA

T
G

)

,

where AG = [0.3 0.4 0.3], ξG =
[

ξ1/3 ξ1/2 ξ2/3
]T , �G =

(

σij
)

3×3, and σij
follows Eq. (5.5) with p1 = 1/3, p2 = 1/2, and p3 = 2/3.

5.4 Methods

Our proposal for robust estimation of Hurst exponent H is based on non-decimated
wavelet transforms (NDWT). In a J -depth decomposition of a 2-D fBm of size
N×N , a scale-mixing 2-D NDWT generates (J+1)×(J+1) blocks of coefficients,
with each block the same size as original image, i.e., N × N . The tessellation of
coefficients of scale-mixing 2-D NDWT is shown in Fig. 5.1a. From the 2-D NDWT
wavelets coefficients, our methods use the diagonal blocks (j1 = j2 = j) of the
detail coefficients dj1,j2;k to predict H , as is shown in Fig. 5.1b.

At each detail level j , the corresponding level-j diagonal block is of size
N × N , the same size as original image. Note that those coefficients dj,j ;k in
level-j diagonal block are not independent, however, their autocorrelations decay
exponentially, that is, they possess only the short memory. We reduce such within
block dependency by dividing the block into M ×M equal grids and then random
sampling one coefficient from each grid, therefore increasing the distance between
two consecutive coefficients. To improve the efficiency, here we apply symmetric
sampling. To be specific, we partition the level-j diagonal block into four equal
parts (top left, top right, bottom left, and bottom right), only sample from the M2/4

Fig. 5.1 (a) Four types of wavelet coefficients with their locations in the tessellation of a 2-D
scale mixing NDWT of depth of 3 (J = 3), with each block the size of N × N . Coefficients c
represent the coarsest approximation, h and v are the mix of coarse and detail information, and d

carry detail information only. (b) Detail coefficients d and its diagonal blocks corresponding to 3
(J = 3) levels. (c) Symmetric random sampling from level-1 (j = 1) diagonal block divided into
6× 6 (M = 6) grids
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grids at the top left, and then get the corresponding coefficients that have the same
location in other parts, which is shown in Fig. 5.1c.

If assuming the coefficient dj,j ;(ki1,ki2) is randomly sampled from grid

i ∈ {1, . . . , M2

4 } at the top left part of level-j diagonal block, and ki1, ki2 ∈
{1, 2, . . . , N2 } being the corresponding location indexes, then we can extract
corresponding coefficients d

j,j ;(ki1,ki2+N
2 )

, d
j,j ;(ki1+N

2 ,ki2)
, and d

j,j ;(ki1+N
2 ,ki2+N

2 )

from the top right, bottom left, and bottom right parts, respectively. From the set

{dj,j ;(ki1,ki2), dj,j ;(ki1,ki2+N
2 )
, d

j,j ;(ki1+N
2 ,ki2)

, d
j,j ;(ki1+N

2 ,ki2+N
2 )
},

we could generate two mid-energies as

Di,j =
d2
j,j ;(ki1,ki2) + d2

j,j ;(ki1+N
2 ,ki2+N

2 )

2

D′i,j =
d2
j,j ;(ki1,ki2+N

2 )
+ d2

j,j ;(ki1+N
2 ,ki2)

2
, i ∈ {1, . . . , M

2

4
},

(5.8)

where Di,j and D′i,j denote the two mid-energies corresponding to grid i at level j .
If we denote Dj as the set of all mid-energies at level j , then

Dj = {D1,j ,D
′
1,j ,D2,j ,D

′
2,j , . . . , DM2

4 ,j
,D′

M2
4 ,j
}. (5.9)

The M2/2 mid-energies at each level j are treated as if they are independent. Note
that M must be divisible by 2.

Our methods have two different versions, one is based on mid-energies Dj , while
the other is using logged mid-energies logDj (in bracket). First, the distribution of
Dj

(

logDj

)

is derived under the independence approximation between dj,j ;(ki1,ki2),
d
j,j ;(ki1,ki2+N

2 )
, d

j,j ;(ki1+N
2 ,ki2)

, and d
j,j ;(ki1+N

2 ,ki2+N
2 )

. Next, we calculate the gen-
eral trimean estimators from the level-wise derived distributions to estimate H .

5.4.1 General Trimean of the Mid-energy (GTME) Method

At each decomposition level j , the asymptotic distribution of the general trimean
estimator on M2/2 mid-energies in Dj is derived, from which we find the
relationship between the general trimean estimators and H . The general trimean
of the mid-energy (GTME) method is described in the following theorem:

Theorem 5.1 Let μ̂j be the general trimean estimator based on the M2/2 mid-
energies in Dj defined by (5.9) at level j in a J -level NDWT of a 2-D fBm of size
N ×N with Hurst exponent H . Then, the asymptotic distribution of μ̂j is normal,
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μ̂j

approx∼ N

(

c (α, p) λj ,
2

M2 f (α, p) λ2
j

)

, (5.10)

where

c (α, p) = α

2
log

(

1

p (1− p)

)

+ (1− α) log 2,

f (α, p) = α(1− 2p)(α − 4p)

4p(1− p)
+ 1,

λj = σ 2 · 2−(2H+2)j ,

and σ 2 is the variance of wavelet coefficients from level 0, the Hurst exponent can
be estimated as

Ĥ = − β̂
2
− 1, (5.11)

where β̂ is the regression slope in the least square linear regression on pairs
(

j, log2
(

μ̂j

))

from level J1 to J2, J1 ≤ j ≤ J2. The estimator Ĥ follows the
asymptotic normal distribution

Ĥ
approx∼ N (H, V1) , (5.12)

where the asymptotic variance V1 is a constant number independent of simple size
N and level j ,

V1 = 6f (α, p)

(log 2)2M2c2 (α, p) q(J1, J2)
,

and

q(J1, J2) = (J2 − J1)(J2 − J1 + 1)(J2 − J1 + 2). (5.13)

The proof of Theorem 5.1 is deferred to the Appendix.
To find the optimal α and p by minimizing the asymptotic variance of μ̂j , we

take partial derivatives of f (α, p) with respect to α and p and set them to 0. The
optimal α̂ and p̂ can be obtained by solving

∂f (α, p)

∂α
= − 2p − 1

2p (1− p)
α + 1+ p

2 (1− p)
− 3

2
= 0,

∂f (α, p)

∂p
= α (2− α)

2 (1− p)2
+ α2 (2p − 1)

4p2 (1− p)2
= 0.

(5.14)
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Since α ∈ [0, 1] and p ∈ (0, 1/2), we get the unique solution α = 2p ≈ 0.6 and
p = 1−√2/2 ≈ 0.3. The Hessian matrix of f (α, p) is

⎡

⎣

∂2f (α,p)

∂α2
∂2f (α,p)
∂α∂p

∂2f (α,p)
∂α∂p

∂2f (α,p)

∂p2

⎤

⎦ =

⎡

⎣

− 2p−1
2p(1−p)

2p2−2αp2+α(2p−1)
2p2(1−p)2

2p2−2αp2+α(2p−1)
2p2(1−p)2

2p3α(2−α)+α2p(1−p)+α2(2p−1)2

2p3(1−p)3

⎤

⎦ .

Since − 2p−1
2p(1−p) > 0 and the determinant is 5.66 > 0 when α = 2p ≈ 0.6 and

p = 1−√2/2 ≈ 0.3, the above Hessian matrix is positive definite. Therefore, α̂ =
2−√2 and p̂ = 1−√2/2 provide the global minima of f (α, p), minimizing also
the asymptotic variance of μ̂j,i . In comparing these optimal α̂ ≈ 0.6 and p̂ ≈ 0.3
with α = 0.6 and p = 1/3 from the Gastwirth estimator, curiously, we find that the
optimal general trimean estimator is very close to the Gastwirth estimator.

5.4.2 General Trimean of the Logarithm of Mid-energy
(GTLME) Method

Previously discussed the GTME method calculates the general trimean estimator of
the mid-energy first and then takes the logarithm. In this section, we will calculate
the general trimean estimator of the logged mid-energies at each level j . The
following theorem describes the general trimean of the logarithm of mid-energy,
the GTLME method.

Theorem 5.2 Let μ̂j be the general trimean estimator based on log(Dj ), which is
the set of M2/2 logged mid-energies at level j in a J -level NDWT of a 2-D fBm
of size N × N with Hurst exponent H , and 1 ≤ j ≤ J . Then, the asymptotic
distribution of μ̂j is normal,

μ̂j

approx∼ N

(

c (α, p)+ log
(

λj
)

,
2

M2 f (α, p)

)

, (5.15)

where

c (α, p) = α

2
log

(

log
1

1− p
· log

1

p

)

+ (1− α) log (log 2) ,

f (α, p) = α2

4g1 (p)
+ α (1− α)

2g2 (p)
+ (1− α)2

(log 2)2 ,
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g1 (p) and g2 (p) are two functions of p given in the Appendix,

λj = σ 2 · 2−(2H+2)j ,

and σ 2 is the variance of wavelet coefficients from level 0. The Hurst exponent can
be estimated as

Ĥ = − 1

2 log 2
β̂ − 1, (5.16)

where β̂ is the regression slope in the least square linear regressions on pairs
(

j, μ̂j

)

from level J1 to J2, J1 ≤ j ≤ J2. The estimator Ĥ follows the asymptotic normal
distribution

Ĥ
approx∼ N (H, V2) , (5.17)

where the asymptotic variance V2 is a constant number independent of simple size
N and level j ,

V2 = 6f (α, p)

(log 2)2M2q(J1, J2)
,

and q(J1, J2) is given in Eq. (5.13).

The proof of Theorem 5.2 is provided in the Appendix. Similarly, as for the
GTME, the optimal α and p which minimize the asymptotic variance of μ̂j can be
obtained by solving

∂f (α, p)

∂α
= 0, and

∂f (α, p)

∂p
= 0. (5.18)

From the first equation in (5.18) it can be derived that

α =
2

log(2)2
− 1

2g2 (p)

1
2g1 (p)− g2 (p)+ 2

(log 2)2
.

The second equation in (5.18) cannot be simplified to a finite form. As an
illustration, we plot the f (α, p) with p ranging from 0 to 0.5 and α being a function
of p. The plot of α against p is also shown in Fig. 5.2. Numerical computation
gives α̂ = 0.5965 and p̂ = 0.24. These optimal parameters are close to α = 0.5
and p = 0.25 in the Tukey’s trimean estimator, but put some more weight on the
median.
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Fig. 5.2 Plot of f (α, p) against p on the left; plot of α against p on the right

5.4.3 Special Cases: Tukey’s Trimean and Gastwirth
Estimators

The Tukey’s trimean of the mid-energy (TTME) method and Gastwirth of the mid-
energy (GME) method are described in the following Lemma.

Lemma 5.2 Let μ̂T
j and μ̂G

j be the Tukey’s trimean and Gastwirth estimators based

on Dj defined in (5.9). Then the asymptotic distributions of μ̂T
j and μ̂G

j are normal:

μ̂T
j

approx∼ N

(

c1λj ,
5

3M2 λ
2
j

)

, (5.19)

μ̂G
j

approx∼ N

(

c2λj ,
1.67

M2
λ2
j

)

, (5.20)

where c1 and c2 are constant numbers and can be found in the Appendix, λj =
σ 2 · 2−(2H+2)j , and σ 2 is the variance of wavelet coefficients from level 0. The
Hurst exponent can be estimated as

Ĥ T = − β̂
T

2
− 1, and ĤG = − β̂

G

2
− 1, (5.21)

where β̂T and β̂G are the regression slopes in the least square linear regression on

pairs
(

j, log2

(

μ̂T
j

))

and pairs
(

j, log2

(

μ̂G
j

))

from level J1 to J2, J1 ≤ j ≤ J2.

The estimators Ĥ T and ĤG follow the asymptotic normal distributions

Ĥ T approx∼ N
(

H,V T
1

)

, and ĤG approx∼ N
(

H,V G
1

)

, (5.22)
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where the asymptotic variances V T
1 and VG

1 are constant numbers,

V T
1 =

5

(log 2)2M2c2
1q(J1, J2)

,

V G
1 =

5.01

(log 2)2M2c2
2q(J1, J2)

.

The function q(J1, J2) is the same as Eq. (5.13) in Theorem 5.1.

The following Lemma describes the Tukey’s trimean (TTLME) and Gastwirth
(GLME) of the logarithm of mid-energy method.

Lemma 5.3 Let μ̂T
j and μ̂G

j be the Tukey’s trimean estimator and Gastwirth
estimator based on log(Dj ) defined in the Theorem 5.2. The asymptotic distributions
of μ̂T

j and μ̂G
j are normal,

μ̂T
j

approx∼ N (− (2H + 2) log 2j + c3, VT ) , (5.23)

μ̂G
j

approx∼ N (− (2H + 2) log 2j + c4, VG) , (5.24)

where c3 ,VT , c4, and VG are constant numbers and can be found in the Appendix.
The Hurst exponent can be estimated as

Ĥ T = − β̂T

2 log 2
− 1, and ĤG = − β̂G

2 log 2
− 1, (5.25)

where β̂T and β̂G are the regression slopes in the least square linear regression on

pairs
(

j, μ̂t
j

)

and pairs
(

j, μ̂
g
j

)

from level J1 to J2, J1 ≤ j ≤ J2. The estimators

Ĥ T and ĤG follow the asymptotic normal distributions

Ĥ T approx∼ N
(

H,V T
2

)

, and ĤG approx∼ N
(

H,V G
2

)

, (5.26)

where the asymptotic variances V T
2 and VG

2 are constant numbers,

V T
2 =

3VT
(log 2)2q(J1, J2)

,

V G
2 =

3VG
(log 2)2q(J1, J2)

.

The function q(J1, J2) is provided in Eq. (5.13).
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Fig. 5.3 Histograms and theoretical distributions of Ĥ

The proofs of Lemmas 5.2 and 5.3 are provided in the Appendix. To verify the
asymptotic normal distributions of predictors in Lemmas 5.2 and 5.3, we perform
an NDWT of depth 10 on 300 simulated fBm’s with H = 0.3. We use resulting
wavelet coefficients from levels 4 to 10 inclusive to estimate H. Figure 5.3 shows
the histograms and theoretical distributions of Ĥ using TTME, TTLME, GME, and
GLME methods, respectively.

5.5 Simulation

We simulate 2-D fBm of sizes 210 × 210 (N = 210) with Hurst exponent H =
0.3, 0.5, 0.7, 0.8, 0.9, respectively. NDWT of depth J = 10 using Haar wavelet
is performed on the simulated signal to obtain wavelet coefficients. The two-
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Table 5.1 Simulation results for 210 × 210 fBm using Haar wavelet (300 replications)

Existing methods Proposed methods

H VA SSB MEDL MEDLA TT TTME TTLME GME GLME GTME GTLME

Ĥ

0.3 0.3103 0.3055 0.3018 0.3031 0.3054 0.3032 0.3028 0.3032 0.3034 0.3028 0.3030

0.5 0.5220 0.5132 0.5095 0.5102 0.5151 0.5126 0.5111 0.5108 0.5100 0.5118 0.5116

0.7 0.7382 0.7235 0.7175 0.7165 0.7326 0.7193 0.7179 0.7193 0.7184 0.7199 0.7181

0.8 0.8458 0.8261 0.8200 0.8204 0.8398 0.8222 0.8214 0.8208 0.8206 0.8212 0.8221

0.9 0.9593 0.9328 0.9241 0.9274 0.9641 0.9303 0.9282 0.9287 0.9278 0.9295 0.9287

Variances

0.3 0.0014 0.0016 0.0026 0.0020 0.0017 0.0015 0.0016 0.0016 0.0016 0.0015 0.0016

0.5 0.0020 0.0017 0.0027 0.0018 0.0034 0.0013 0.0016 0.0014 0.0016 0.0014 0.0016

0.7 0.0037 0.0019 0.0030 0.0026 0.0086 0.0018 0.0021 0.0020 0.0021 0.0019 0.0020

0.8 0.0050 0.0021 0.0027 0.0023 0.0095 0.0018 0.0020 0.0020 0.0021 0.0019 0.0020

0.9 0.0073 0.0021 0.0028 0.0022 0.0168 0.0018 0.0019 0.0019 0.0020 0.0018 0.0019

MSEs

0.3 0.0015 0.0016 0.0026 0.0020 0.0017 0.0015 0.0016 0.0016 0.0016 0.0015 0.0016

0.5 0.0025 0.0019 0.0027 0.0019 0.0037 0.0015 0.0017 0.0016 0.0017 0.0015 0.0017

0.7 0.0052 0.0025 0.0033 0.0028 0.0097 0.0022 0.0024 0.0024 0.0025 0.0023 0.0024

0.8 0.0070 0.0027 0.0031 0.0028 0.0110 0.0023 0.0024 0.0024 0.0025 0.0023 0.0025

0.9 0.0108 0.0032 0.0033 0.0030 0.0208 0.0027 0.0027 0.0027 0.0028 0.0027 0.0027

dimensional fBm signals were simulated based on the method of Wood and Chan
(1994).

The proposed methods (with six variations) are applied on the NDWT detail
coefficients to estimate Hurst exponent H . Each level diagonal block is divided
into 16 × 16 grids (M = 16) for all proposed methods, and we use wavelet
coefficients from levels 4 to 10 for the least square linear regression. The estimation
performance of the proposed methods is compared to five other existing methods:
Veitch and Abry (VA) method, Soltani, Simard, and Boichu (SSB) method, MEDL
method, MEDLA method, and Theil-type regression (TT) method. The GTME
and GTLME methods are based on the optimal parameters which minimize the
variances. Estimation performance is reported in terms of mean, variance, and mean
square error (MSE) based on 300 repetitions for each case.

The simulation results are shown in Table 5.1. For each H (corresponding to each
row in the table), the smallest variances and MSEs are highlighted in bold. From
simulations results, all our six variations outperform SSB, MEDL, MEDLA, and
TT methods for all H ’s regarding variances and MSEs. Compared with VA method,
our methods yield significantly smaller variances and MSEs when H > 0.5. When
H = 0.3, our methods are still comparable to VA. Although the performances of
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our six variations are very similar regarding variances and MSEs, the TTME method
based on Tukey’s trimean estimator of the mid-energy has the best performance
among all of them. The variances of GTME based on the optimal parameters are
very close or equal to those of GME and TTME methods in most cases. Besides, in
most cases the optimized GTLME method is superior to other logged mid-energy
methods TTLME and GLME with respect to variances; however, such superiority
is not significant, since the variances are close to each other.

5.6 Application

In this section, we apply the proposed methodology to classification of digitized
mammogram images. The digitized mammograms were obtained from the Uni-
versity of South Florida’s Digital Database for Screening Mammography (DDSM)
(Heath et al. 2000). All cases examined had biopsy results which served as ground
truth. Researchers used the HOWTEK scanner at the full 43.5-micron per pixel
spatial resolution to scan 45 mammograms from patients with normal studies
(control group) and 79 from patients with confirmed breast cancer (study group).
Figure 5.4 shows an example of mammograms from study group, and it is almost
impossible for physicians to distinguish a cancerous mammogram with a non-
cancerous mammogram just by eyes. Each subject contains two mammograms from
a screening exam, one craniocaudal projection for each side breast. We only keep
one projection for each subject, either right side or left side breast image. A sub-
image of size 1024× 1024 was taken manually from each mammogram.

Our methods were then applied on each sub-image to estimate the Hurst exponent
parameter for each subject. To be specific, the NDWT of depth J = 10 using
Haar wavelet was performed on each sub-image to obtain wavelet coefficients. The
proposed methods (with six variations) are applied on the NDWT detail coefficients

Fig. 5.4 An example of
mammograms with breast
cancer



5 Mammogram Diagnostics Using Robust Wavelet-Based Estimator of Hurst. . . 127

Table 5.2 Descriptive statistics group summary

Existing methods Proposed methods

Group VA SSB MEDL MEDLA TT TTME TTLME GME GLME GTME GTLME

Mean of Ĥ

Control 0.3570 0.3457 0.3323 0.3403 0.3716 0.3454 0.3422 0.3444 0.3420 0.3450 0.3430

Study 0.4310 0.4038 0.3935 0.4023 0.4203 0.4061 0.4026 0.4031 0.4019 0.4053 0.4027

Median of Ĥ

Control 0.3368 0.3339 0.3326 0.3140 0.3871 0.3248 0.3188 0.3198 0.3240 0.3263 0.3278

Study 0.4286 0.4147 0.3865 0.4165 0.4204 0.4194 0.4211 0.4178 0.4150 0.4168 0.4209

Variance of Ĥ

Control 0.0267 0.0270 0.0268 0.0298 0.0305 0.0284 0.0279 0.0285 0.0279 0.0281 0.0277

Study 0.0159 0.0172 0.0198 0.0175 0.0128 0.0169 0.0173 0.0174 0.0175 0.0175 0.0174

Fig. 5.5 Using GME method to estimate Hurst exponent, boxplots in cancer and non-cancer
groups on the left; normal density curves fitted in cancer and non-cancer groups on the right

to estimate Hurst exponent H . Each level diagonal block is divided into 16×16 grids
(M = 16) for all proposed methods, and we use levels 4 to 10 for the least square
linear regression. Veitch and Abry (VA) method, Soltani, Simard, and Boichu (SSB)
method, MEDL method, MEDLA method, and Theil-type regression (TT) method
were applied, as well, to compare with our methods.

Table 5.2 provides descriptive statistics of the estimated Hurst exponent Ĥ in
each group using our proposed methods and other standard methods to compare
with. To visualize the difference in Ĥ across cancer and non-cancer groups, we
present in Fig. 5.5 the boxplots of estimated H and fitted normal density curves in
two groups based on proposed GME method. As can be seen, the non-cancer group
exhibited a smaller value for Ĥ in both the mean and median, and the variance of
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Table 5.3 Results of classification by logistic regression

Existing methods Proposed methods

VA SSB MEDL MEDLA TT TTME TTLME GME GLME GTME GTLME

Overall
accuracy

0.629 0.597 0.645 0.589 0.547 0.622 0.613 0.654 0.605 0.628 0.645

Sensitivity 0.695 0.659 0.709 0.623 0.543 0.659 0.659 0.722 0.647 0.684 0.708

Specificity 0.511 0.491 0.532 0.534 0.553 0.553 0.534 0.536 0.532 0.528 0.534

Ĥ is slightly larger. In fact, images with smaller Hurst exponent tend to be more
disordered and unsystematic, therefore healthy individuals tend to have more rough
breast tissue images.

For subject i, we generated the data {Yi,Hi}, where Hi represents the estimated
Hurst exponent, and Yi is the indicator of the disease status with 1 and 0 signifying
cancer and non-cancer, respectively. The subjects were classified using a logistic
regression model by treating Hi as the predictor and Yi as the response. The
overall classification accuracy, true positive rate (sensitivity), and true negative
rate (specificity) were obtained by using a fourfold-cross validation. Instead of the
constant 0.5 threshold, we used a training-data-determined adaptive threshold, i.e.,
each time the threshold of the logistic regression was first chosen to maximize
Youden index on the training set and then applied to the testing set to classify.

Table 5.3 summarizes the results of the classification for each estimation method.
The best classification rate (0.6538) and sensitivity (0.7217) were both achieved
using GME estimator, and the best specificity (0.5530) was achieved using TT or
TTME estimator (highlighted in bold). In general, the six variations of our robust
method performed better as compared to other methods in classification of breast
cancers using mammograms.

Real-world images like mammograms may be characterized by non-stationary
conditions such as extreme values, causing outlier coefficients in multiresolution
levels after NDWT. VA method estimates H by weighted least square regression

using the level-wise log2

(

d2
j,j

)

, and SSB method uses log2 Dj , with Dj defined

in (5.9), they are easily affected by those within level outliers, in that they both
use mean of derived distributions on level-wise detail coefficients to estimate H .
Besides, potential outliers can also occur when logarithmic transform is taken and
the magnitude of coefficient is close to zero. Like the VA method, TT method

regress the level-wise log2

(

d2
j,j

)

against the level indices, but instead of weighted

least square regression, they use the Theil-type weighted regression, the weighted
average of all slops between different pairs of regression points, to make it less
sensitive to outlier levels. However, it is still not robust to within level outlier
coefficients. MEDL and MEDLA use the median of the derived distribution instead
of the mean. Although median is outlier-resistant, it can behave unexpectedly as
a result of its non-smooth character. To improve, our methods (six derivations)
use the general trimean estimator on non-decimated wavelet detail coefficients of
the transformed data, combining the median’s emphasis on central values with the
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quantiles’ attention to the extremes. Besides, in the context of our scenario, Theil-
type regression is equivalent to least square regression, since the variance of our
pair-wise slop is independent of levels and sample size. Those explain why our
robust methods performed the best in classification of mammograms.

5.7 Conclusions

In this paper, we proposed methodologies and derived six variations to improve
the robustness of estimation of Hurst exponent H in two-dimensional setting. Non-
decimated wavelet transforms (NDWT) are utilized for its redundancy and time-
invariance. Instead of using mean or median of the derived distribution on level-wise
wavelet coefficients, we defined the general trimean estimators that combine the
median’s emphasis on center values with the quantiles’ attention to the extremes
and used them on the level-wise derived distributions to estimate H .

The proposed variations were: (1) Tukey’s trimean of the mid-energy (TTME)
method; (2) Tukey’s trimean of the logged mid-energy (TTLME) method; (3)
Gastwirth of the mid-energy (GME) method; (4) Gastwirth of the logged mid-
energy (GLME) method; (5) general trimean of the mid-energy (GTME) method;
(6) general trimean of the logarithm of mid-energy (GTLME) method. The GTME
and GTLME methods are based on the derived optimal parameters in general
trimean estimators to minimize the asymptotic variances. Tukey’s trimean and
Gastwirth estimators are two special cases following the general trimean estimators’
framework. These estimators are applied on both mid-energy (as defined by Soltani
et al. 2004) and logarithm of the mid-energy at each NDWT level detail coefficient
diagonal block. The estimation performance of the proposed methods is compared
to five other existing methods: Veitch and Abry (VA) method, Soltani, Simard, and
Boichu (SSB) method, MEDL method, MEDLA method, and Theil-type regression
(TT) method.

Simulation results indicate all our six variations outperform SSB, MEDL ,
MEDLA, and TT methods for all H ’s regarding variances and MSEs. Compared
with VA method, our methods yield significantly smaller variances and MSEs when
H > 0.5. When H = 0.3, our methods are still comparable to VA. Although the
performances of our six variations are very similar regarding variances and MSEs,
the TTME method based on Tukey’s trimean estimator of the mid-energy has the
best performance among all of them.

The proposed methods have been applied to digitized mammograms to classify
patients with and without breast cancer. Our methods helped to differentiate
individuals based on the estimated Hurst parameters Ĥ . Higher values for Ĥ have
been found in cancer group, and individuals with breast cancer have smoother breast
tissue images. This increase of regularity with increase of the degree of pathology
is common for many other biometric signals: EEG, EKG, high frequency protein
mass-spectra, high resolution medical images of tissue, to list a few.
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Appendix

Proof of Theorem 5.1

Proof A single wavelet coefficient in a non-decimated wavelet transform of a 2-D
fBm of size N × N with Hurst exponent H is normally distributed, with variance
depending on its level j . The four coefficients in each set

{dj,j ;(ki1,ki2), dj,j ;(ki1,ki2+N
2 )
, d

j,j ;(ki1+N
2 ,ki2)

, d
j,j ;(ki1+N

2 ,ki2+N
2 )
}

are assumed to be independent and follow the same normal distribution.

dj,j ;(ki1,ki2), dj,j ;(ki1,ki2+N
2 )
, d

j,j ;(ki1+N
2 ,ki2)

, d
j,j ;(ki1+N

2 ,ki2+N
2 )

∼ N
(

0, 2−(2H+2)j σ 2
)

.

Then the mid-energies in Dj defined in (5.9) and (5.8) can be readily shown to have
exponential distribution with scale parameter λj = σ 2 · 2−(2H+2)j . Therefore at

each detail level j , the mid-energies in Dj are i.i.d. E xp
(

λ−1
j

)

, and when applying

general trimean estimator μ̂j on Dj , following the derivation in Sect. 5.3, we
have

ξ =
[

log

(

1

1− p

)

λj log (2) λj log

(

1

p

)

λj

]T

,

and

� =
⎡

⎢

⎣

p
(1−p)λ

2
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p
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2
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(1−p)λ

2
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j

p
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⎥

⎦

3×3

,

therefore, the asymptotic distribution of μ̂j,i is normal with mean

E
(

μ̂j,i

) = A · x

=
(

α

2
log

(

1

p (1− p)

)

+ (1− α) log 2

)

λj

� c (α, p) λj ,

and variance
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Var
(

μ̂j,i

) = 2

M2A�AT

= 2

M2

(

α(1− 2p)(α − 4p)

4p(1− p)
+ 1

)

λ2
j

� 2

M2 f (α, p) λ2
j .

Since the Hurst exponent can be estimated as

Ĥ = − β̂
2
− 1, (5.27)

where β̂ is the regression slope in the least square linear regression on pairs
(

j, log2
(

μ̂j

))

from level J1 to J2, J1 ≤ j ≤ J2. It can be easily derived that β̂
is a linear combination of log2

(

μ̂j

)

,

β̂ =
J2
∑

j=J1

aj log2
(

μ̂j

)

, aj = j − (J1 + J2)/2
∑J2

j=J1
(j − (J1 + J2)/2)2

.

We can check that
∑J2

j=J1
aj = 0 and

∑J2
j=J1

aj j = 1. Also, if X ∼ N (μ, σ 2), the
approximate expectation and variance of g(X) are

E (g(X)) = g(μ)+ g′′(μ)σ 2

2
, and Var (g(X)) = (

g′(μ)
)2
σ 2,

based on which we calculate

E
(

log2
(

μ̂j

)) = −(2H+2)j+Constant, and Var
(

log2
(

μ̂j

)) =
2
M2 f (α, p)

(log 2)2c2 (α, p)
.

Therefore

E

(

β̂
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=
J2
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j=J1

ajE
(

log2
(

μ̂j

)) = −(2H + 2), and Var
(

β̂
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=
J2
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j=J1

a2
j Var

(

log2
(

μ̂j

)) := 4V 1,

and

E

(

Ĥ
)

= H, and Var
(

Ĥ
)

= V 1, (5.28)
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where the asymptotic variance V1 is a constant number independent of simple size
N and level j ,

V1 = 6f (α, p)

(log 2)2M2c2 (α, p) q(J1, J2)
,

and

q(J1, J2) = (J2 − J1)(J2 − J1 + 1)(J2 − J1 + 2).

Proof of Theorem 5.2

Proof We have stated that each mid-energy in Dj follows E xp
(

λ−1
j

)

with scale

parameter λj = σ 2 · 2−(2H+2)j . If we denote the kth element in log
(

Dj

)

as yj,k for

k = 1, . . . , M
2

2 and j = 1, . . . , J , the pdf and cdf of yj,k are

f
(

yj,k
) = λ−1

j e
−λ−1

j e
yj,k

eyj,k ,
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F
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−λ−1
j e
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.

The p-quantile can be obtained by solving F
(

yp
) = 1 − e

−λ−1
j eyp = p, and yp =

log
(−λj log (1− p)

)

. Then it can be shown that f
(

yp
) = − (1− p) log (1− p).

When applying the general trimean estimator μ̂j on log
(

Dj

)
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derivation in Sect. 5.3, we get
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thus, the asymptotic distribution of μ̂j,i is normal with mean

E
(

μ̂j,i

) = A · ξ

= α

2
log
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log
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1− p
· log
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)
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and variance
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log 1
2 logp
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Since the Hurst exponent can be estimated as

Ĥ = − 1

2 log 2
β̂ − 1, (5.29)

where β̂ is the regression slope in the least square linear regressions on pairs
(

j, μ̂j

)

from level J1 to J2, J1 ≤ j ≤ J2. It can be easily derived that β̂ is a linear
combination of μ̂j ,

β̂ =
J2
∑

j=J1

aj μ̂j , aj = j − (J1 + J2)/2
∑J2

j=J1
(j − (J1 + J2)/2)2

.
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Again, we can check that
∑J2

j=J1
aj = 0 and

∑J2
j=J1

aj j = 1. Therefore
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) = −(2H + 2) log 2, and Var
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and

E

(

Ĥ
)

= H, and Var
(

Ĥ
)

= V2, (5.30)

where the asymptotic variance V2 is a constant number independent of simple size
N and level j ,

V2 = 6f (α, p)

(log 2)2M2q(J1, J2)
,

and q(J1, J2) is given in Eq. (5.13).

Proof of Lemma 5.2

Proof When applying Tukey’s trimean estimator μ̂T
j on Dj , following the deriva-

tion in Sect. 5.3.1, we have
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therefore, the asymptotic distribution of μ̂T
j is normal with mean
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and variance
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When applying Gastwirth estimator μ̂G
j on Dj , following the derivation in

Sect. 5.3.2, we have
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therefore, the asymptotic distribution of μ̂G
j is normal with mean
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Based on Eq. (5.28), we have

Ĥ T approx∼ N
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H,V T
1

)

, and ĤG approx∼ N
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1
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, (5.31)

where the asymptotic variances V T
1 and VG

1 are constant numbers,
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,
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The function q(J1, J2) is the same as Eq. (5.13) in Theorem 5.1.

Proof of Lemma 5.3

Proof When applying Tukey’s trimean estimator μ̂T
j on log
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)
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derivation in Sect. 5.3.1, we have
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When applying Gastwirth estimator μ̂G
j on log

(
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, following the derivation
in Sect. 5.3.2, we have

ξG =
⎡

⎢

⎣

log
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log
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3
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))

+ log
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λj
)

log (log 2)+ log
(
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)
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)
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⎥

⎦
,

and

�G =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1

2
(

log 2
3

)2
1

2 log
(

2
3

)

log
(

1
2

)

1

2 log
(

1
3

)

log
(

2
3

)

1

2 log
(

2
3

)

log
(

1
2

)

1
(log 2)2

1

log
(

1
2

)

log
(

1
3

)

1

2 log
(

1
3

)

log
(

2
3

)

1

log
(

1
2

)

log
(

1
3

)

2
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⎦

,

therefore, the asymptotic distribution of μ̂G
j is normal with mean

E

(

μ̂G
j,i

)

= Ag · ξG
= − (2H + 2) log 2 · j + log σ 2+

0.3× log

(

log

(

3

2

)

· log 3

)

+ 0.4× log (log 2)

� − (2H + 2) log 2 · j + c4

and variance

Var
(

μ̂G
j,i

)

= 2

M2
AG�GA

T
G

= 2

M2

(

0.09

2
(

log 2
3

)2
+ 0.12

log 2
3 log 1

2

+ 0.09

log 1
3 log 2

3

+

0.16
(

log 1
2

)2
+ 0.24

log 1
2 log 1

3

+ 0.18
(

log 1
3

)2

)

� VG.

Based on Eq. (5.30), we can easily derive

Ĥ T approx∼ N
(

H,V T
2

)

, and ĤG approx∼ N
(

H,V G
2

)

, (5.32)
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where the asymptotic variances V T
2 and VG

2 are constant numbers,

V T
2 =

3VT
(log 2)2q(J1, J2)

,

V G
2 =

3VG
(log 2)2q(J1, J2)

.

The function q(J1, J2) is provided in Eq. (5.13).
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Chapter 6
Wavelet-Based Profile Monitoring Using
Order-Thresholding Recursive CUSUM
Schemes

Ruizhi Zhang, Yajun Mei, and Jianjun Shi

6.1 Introduction

With the rapid development of advanced sensing technologies, rich and complex
real-time profile or curve data are available in many processes in biomedical
sciences, manufacturing, and engineering. For instance, physiologic monitoring
systems generated real-time profile conditions of a patient in intensive care units. In
modern manufacturing, profile data are generated to provide valuable information
about the quality or reliability performance of the process or product. In these
applications, it is often desirable to utilize the observed profile data to develop
efficient methodologies for process monitoring and fault diagnosing.

A concrete motivating example of profile data in this article is from a progressive
forming process with five die stations including preforming, blanking, initial
forming, forming, and trimming, see Fig. 6.1 for illustration. Ideally, when the
process is in control, a work piece should pass through these five stations. However,
a missing part problem, which means that the work piece is not settled in the
right die station but is conveyed to the downstream stations, may occur in this
process (Lei et al. 2010; Zhou et al. 2016). Such a fault often leads to unfinished
or nonconforming products and/or severe die damage. The tonnage signal measured
by the press tonnage sensor, which is the summation of all stamping forces, contains
rich process information of forming operations and widely used for monitoring
the forming process. Figure 6.2 shows the tonnage profiles collected under normal
condition and five faulty conditions corresponding to missing operations occurring
in each of the five die stations. It is clear from the figure that each profile is
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Fig. 6.1 Illustration of a progressive forming process

highly nonlinear, since the observed forces at different segments correspond to
different stages of the operation within one production cycle. In addition, the
difference between normal profiles and fault profiles is also nonlinear. For some
particular faults, i.e., Fault 4, profiles are quite overlapping with the normal profiles.
Under a high-production rate environment, it is highly desirable but challenging to
effectively online monitor these profiles and detect those different types of unknown
but subtle changes quickly.

In the profile monitoring literature, much research has been done for monitoring
linear profiles, see, for example, Kang and Albin (2000), Chang and Gan (2006),
Zou et al. (2007b,a), Kazemzadeh et al. (2008). However, in many real-world
applications including those profiles in Fig. 6.2, the form of the profile data is too
complicated to be expressed as a linear or parametric function. Several nonlinear
profile monitoring procedures have been developed in the literature based on
nonparametric regression techniques such as smoothing splines (Gardner et al.
1997; Chang and Yadama 2010), Fourier analysis (Chen and Nembhard 2011),
local kernel regression (Qiu et al. 2010; Zou et al. 2009), and functional principal
component analysis (FPCA) (Hall et al. 2001; Paynabar et al. 2016). However all
these approaches tend to monitor a smooth, in-control profile, and thus may loss
information about local structures such as jumps or cusps. Moreover, all these
approaches are based on monitoring the changes of selected model coefficients,
while it will be difficult to interpret their meanings back to the original profiles.
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Fig. 6.2 Six profile samples from a forming process: one is in-control, normal sample and the
other five are out-of-control, fault samples

In this article, we propose to monitor nonlinear profiles based on the discrete
wavelet transform (DWT). Besides a useful dimensional reduction tool, wavelet-
based approaches have other advantages: the multi-resolution decomposition of the
wavelets could be useful to locate the anomaly of the profile, and fast computational
algorithms of the DWT are available (Mallat 1989). Indeed, DWT has been applied
to detect and diagnose process faults in the offline context, see Fan (1996) and Jin
and Shi (1999). In the online monitoring context, many existing methods follow
the suggestions of Donoho and Johnstone (1994) to first conduct wavelet shrinkage
for dimension reduction under the in-control state, and then monitor the changes
on the selected wavelet coefficients for the out-of-control state, see Hotelling T 2

control chart (Jeong et al. 2006; Zhou et al. 2006), and the CUSUM-type control
chart (Lee et al. 2012). However, one will lose detection power if the change of
the out-of-control state is on the wavelet coefficients that are not selected under
the in-control state. To illustrate the importance of the out-of-control state on the
wavelet coefficients selection, we provide a simple two-dimensional example in
Fig. 6.3. As can be seen in this figure, the magnitude of wavelet coefficient 2 is
very small compared with wavelet coefficient 1. However, if we just select wavelet
coefficient 1 based on the in-control estimation, it would be difficult to detect the
out-of-control samples since the changes occurred on the wavelet coefficient 2.
To address this issue, it was proposed in Chicken et al. (2009) to use all wavelet
coefficients to conduct a likelihood ratio test. However, as we will show later
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Fig. 6.3 A simulated dataset in the 2-dimensional wavelet domain, where blue circles indicate IC
observations and red stars indicate OC observations. The mean shift is along the second wavelet
coefficient, and the change is undetectable if using the first wavelet coefficient

in the simulation and case study, their methods are based on some asymptotic
approximated likelihood ratio statistics, therefore may lose some detection power
especially when the changed wavelet coefficients are sparse. Moreover, their method
is not scalable and requires a lot of memory to store past observations.

In this paper, we propose to first construct the local adaptive CUSUM statistics
as in Lorden and Pollak (2008) and Liu et al. (2017) for monitoring all wavelet
coefficients by the hard-shrinkage estimation of the mean of in-control coefficients.
Then we use the order-shrinkage to select those wavelet coefficients that are
involved in the change significantly. Thus, from the methodology point of view,
our proposed methodologies are analogous to those offline statistical methods such
as (adaptive) truncation, soft-, hard-, and order-thresholding, see Neyman (1937),
Donoho and Johnstone (1994), Fan and Lin (1998), and Kim et al. (2010). However,
our motivation here is different and our application to profile monitoring is new.

The remainder of this article is as follows. In Sect. 6.2, we present problem for-
mulation and background information of wavelet transform. In Sect. 6.3, we develop
our proposed schemes for online nonlinear profile monitoring. In Sect. 6.4, a case
study about monitoring tonnage signature is presented. In Sect. 6.5, a simulation
study about monitoring the Mallet’s piecewise smooth function is conducted.
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6.2 Problem Formulation and Wavelet Background

In this section, we will first present the mathematical formulation of the profile
monitoring problem based on an additive change point model. Then we give a
brief review of wavelet transformation that will be used for our proposed profile
monitoring procedure.

Assume we obverse p-dimensional profile data, y1, y2, · · · , sequentially from a
process. Each profile yk consists of p coordinates yk(xi), for i = 1, 2, . . . , p, with
xi equispaced over the interval [0, 1], and can be thought of as the realization of a
profile function yk(x). In the profile monitoring problem, we assume that the profile
functions yk(x)’s are from the additive change-point model:

yk(x) =
{

f0(x)+ εk(x), for k = 1, 2, .., ν
f1(x)+ εk(x), for k = ν + 1, . . .

(6.1)

where f0(·) and f1(·) are the mean functions that need be estimated from the data,
and εk(x)’s are the random noise, which are assumed to be normally distributed with
mean 0 that are independent across different time k. The problem is to utilize the
observed profile data yk(xi)’s to detect the unknown change-time ν as quickly as
possible when it occurs.

Since our proposed methods are based on monitoring the coefficients of the
wavelet transformations of yk(x)’s, let us provide a brief review of wavelet
transformation of profile data and discrete wavelet transform (DWT). For any
square-integrable function f (x) on R, it can be written as an (infinite) linear
combinations of wavelet basis functions:

f (x) =
∑

k∈Z
ckj0

φj0k(x)+
∞
∑

j=j0

∑

k∈Z
dkj ψjk(x). (6.2)

Here the sets of two bases, φjk(x)’s and ψjk(x)’s, are known as scaling and wavelet
basis functions, respectively, and are generated from two parent wavelets: one is
the father wavelet φ(x) that characterizes basic wavelet scale, and the other is
the mother wavelet ψ(x) that characterizes basic wavelet shape. Mathematically,
φjk(x) = 2j/2φ(2j x − k) and ψjk(x) = 2j/2ψ(2j x − k), and the decomposed
coefficients ckj0

and dkj are called the scaling and detail coefficients, which represent
the low-frequency and high-frequency components of original function f (x).

The discrete wavelet transform (DWT) is a numeric and fast algorithm to
determine the wavelet coefficients c when the observed data are discrete and dyadic,
i.e., y = (y(x1), y(x2), . . . , y(xp))

T with p a dyadic integer, p = 2J . The
matrix form of DWT is represented as c = Wy, where W is orthonormal wavelet
transformation matrix (Mallat 1999), which depends on the selected orthogonal
wavelet basis. A large families of choices for wavelet basis functions are available
for use, see, for example, Daubechies (1992). Also see Mallat (1999) for an efficient
algorithm to implement DWT. In this article, the Haar transform is chosen as one
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way of DWT because Haar coefficients have an explicit interpretation of the changes
in the profile observations. Also see Jin and Shi (2001) and Zhou et al. (2006) as
examples of applying Haar transform to monitor profile samples.

For the observed p-dimension profile, y = (y(x1), . . . , y(xp)), we consider the
Haar transformation with wavelet basis functions:

φ00(x) = 1, x ∈ [0, 1] (6.3)

ψkm(x) =

⎧

⎪

⎨

⎪

⎩

2
k−1

2 , m−1
2k−1 < x <

m−1/2
2k−1

−2
k−1

2 ,
m−1/2

2k−1 < x < m
2k−1

0, elsewhere

(6.4)

where k represents the scale of Haar transform and m = 1, 2, . . . , 2k−1.
For simplicity, we assume p = 2J (otherwise we can add new extra zero

coordinations to the original profile if needed). When Haar transform is cho-
sen, the wavelet coefficients c = (c(1), c(2), . . . , c(p))T are often written as
(c0

0, c
1
1, c

1
2, c

2
2, . . . , c

1
J , . . . , c

2J−1

J )T , which represent the Haar coefficients for dif-
ferent levels from 0 to J .

For any new observed p-dimension profile, y = (y(x1), . . . , y(xp)), the explicit
expression of these Haar coefficients is given by

c0
0 = 2−

J
2

2J
∑

�=1

y(x�),

cmk = 2
J−k−1

2 {s[(m− 1)2J−k+1 + 1, (m− 1

2
)2J−k+1]

−s[(m− 1

2
)2J−k+1 + 1,m2J−k+1]},

= 2−
J−k+1

2 {
(m− 1

2 )2
J−k+1

∑

�=(m−1)2J−k+1+1

y(x�)−
m2J−k+1
∑

�=(m− 1
2 )2

J−k+1+1

y(x�)} (6.5)

for k = 1, . . . , J ;m = 1, 2, . . . , 2k−1 and s[i, j ] is defined by s[i, j ] =
1

j−i+1

∑j
�=i y(x�). In other words, the Haar coefficient c0

0 is proportional to the
mean of all data and the other coefficients cmk are proportional to the mean difference
of two adjacent intervals of length 2J−k.

6.3 Our Proposed Method

At the high-level, our proposed profile monitoring method is based on monitoring
the mean shifts on wavelet coefficients of nonlinear profiles yk(x)’s. First, we use
the in-control profiles from the historical training data to estimate the pre-change
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distributions of the wavelet coefficients. Second, we construct local monitoring
statistics for each wavelet coefficient by recursively estimating the post-change
mean of the wavelet coefficients. Third, we construct global monitoring procedure
based on the information of the first several largest monitoring statistics.

It is necessary to emphasize that in the literature, wavelets are usually used for
dimension reduction to select significant features and filter out noise (Donoho and
Johnstone 1994). Here our proposed method is constructing efficient monitoring
statistic for each wavelet coefficients and then performs dimension reduction on
the monitoring statistics. There are two technical challenges that need special
attention. The first one is that we do not know which wavelet coefficients will
be affected under the out-of-control state, and the second one is that we do
not know what are the changed magnitudes or the post-change distributions for
those affected wavelet coefficients. To address these two challenges, we propose
a computationally efficient algorithm that can monitor a large number of wavelet
coefficients simultaneously in parallel based on local recursive CUSUM procedures,
and then combine these local procedures together to raise a global alarm using the
order-thresholding transformation in Liu et al. (2017) to filter out those unaffected
Haar coefficients. The recursive CUSUM procedure is to adaptively update the
estimates of the post-change means, and it was first proposed in Lorden and Pollak
(2008) for detecting a normal mean shift from 0 to some unknown, positive values.
Here we extend it to the wavelet context when one wants to detect both positive and
negative mean shifts of the wavelet coefficients.

For the purpose of demonstration, in the remaining of the paper, we consider
Haar coefficients as an example since they can easily be calculated and interpreted.
Furthermore, they can capture the local changes on the profile efficiently.

For better presentation of our proposed nonlinear profile monitoring methods,
we split this section into four subsections. Section 6.3.1 focuses on estimating the
in-control means of Haar coefficients, and Sect. 6.3.2 discusses how to recursively
estimate possible mean shifts of Haar coefficients and constructs local monitoring
statistics for each wavelet coefficient. Section 6.3.3 derives our proposed monitoring
method and Sect. 6.3.4 discusses how to choose tuning parameters.

6.3.1 In-Control Estimation

In our case study and in many real-world applications, it is reasonable to assume that
some in-control profiles are available for learning the process variables. Without loss
of generality, assume that there are m in-control profiles before online monitoring,
and denote c� as the vector of Haar coefficients of the �th profile y�(x) under the
in-control status for � = −m+ 1, · · · ,−1, 0. If we denote c(ic) as the mean vector
of Haar coefficients under the in-control state, then Haar coefficients under the in-
control state are assumed as

c� = c(ic) + e�, where e� ∼ N(0, �p). (6.6)
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for � = −m + 1, · · · ,−1, 0. In other words, when there are no changes, the Haar
coefficients c� are i.i.d. multivariate normally distributed with in-control mean c(ic)

and diagonal covariance matrix �p = diag(σ 2
1 , . . . , σ

2
p).

It is well known that the sample mean based on the in-control Haar coefficients
c� is not always a good estimator for c(ic) when the dimension p is large (James and
Stein 1961). In the offline wavelet context, it is often assumed that the in-control
p-dimensional mean vector of the Haar coefficients, c(ic) = (c

(ic)
1 , · · · , c(ic)p ), has a

sparsity structure and applying shrinkage techniques to filter out noise and obtain an
accurate estimation (Donoho and Johnstone 1995, 1994). In this article, we follow
the literature and apply hard shrinkage on the sample mean of in-control Haar
coefficients. Specifically, let c̄ be the sample mean of m in-control Haar coefficient
vectors, i.e.,

c̄ = 1

m

0
∑

�=−m+1

c�.

Then the estimator of c(ic) = (c
(ic)
1 , · · · , c(ic)p ) is

ĉ
(ic)
i =

{

c̄
(ic)
i , if |c̄(ic)i | > ρ1σ̂i

0, if |c̄(ic)i | ≤ ρ1σ̂i
(6.7)

where σ̂i is the sample standard deviation of the i-th Haar coefficient, and ρ1 is a
crucial tuning parameter to control the sparsity of the mean vector c(ic). The choice
of ρ1 will be discussed in detail later.

6.3.2 Out-of-Control Estimation and Local Statistics

In the profile monitoring context, the p-dimensional mean vector of the Haar
coefficients is assumed to shift from the in-control value c(ic) to an out-of-control
value c(oc) = (c

(oc)
1 , · · · , c(oc)p ). The difficulty is that one generally has limited

knowledge about the out-of-control or fault samples in online profile monitoring,
and thus one may not be able to accurately estimate the out-of-control mean c(oc)

even if we also put the sparsity constraints on c(oc). For that reason, it makes more
sense in online profile monitoring to assume that the difference vector c(oc) − c(ic),

instead of c(oc) itself, is sparse. To be more concrete, below we assume that only a
few components of c(oc) − c(ic) are non-zero, and |c(oc)i − c

(ic)
i |/σi > ρ2 if the i-th

component is affected, for some constant ρ2 > 0, where σi is the standard deviation
in (6.6).

Note that the change may affect those components with in-control value c(ic)i =
0, and thus one cannot simply monitor those non-zero components under the in-
control state. Also, since we do not know which Haar coefficients will have mean



6 Wavelet-Based Profile Monitoring 149

shifts and do not know what the magnitudes of mean shift are, one intuitive idea is
to adaptively and accurately estimate the post-change mean c(oc) as we collect data
for online monitoring under the sparsity assumption of c(oc) − c(ic). Unfortunately,
such an approach is generally computationally expensive and infeasible for online
monitoring. Here we observe that the focus of profile monitoring is not necessarily
on the accurate estimation of c(oc), but on accurately raising a global alarm when
there is a change. Hence, we propose a different approach that first locally monitors
each component for a possible significant local mean shift, and then apply the order-
thresholding technique to raise a global alarm under the sparse assumption that only
a few local components are affected by the change.

When monitoring online profiles yk’s, at each time k, we first use (6.5) to derive
the corresponding p-dimension Haar coefficients ck , and then standardize each of p
components by

Xi,k = ck(i)− ĉ
(ic)
i

σ̂i
, (6.8)

for i = 1, · · · , p, where {ĉ(ic)i , σ̂i}i=1,··· ,p are estimators of the in-control mean
c(ic) and standard deviation σ in (6.7) based on in-control samples.

By (6.7), rigorously speaking, the normalized coefficients Xi,k might not be
i.i.d. N(0, 1) unless the tuning parameter ρ1 = 0. In the context of online profile
monitoring, the tuning parameter ρ1 will often be small, and thus it is not bad to
assume that the Xi,k’s satisfy the normality assumption from the practical viewpoint.
Hence, the profile monitoring problem is reduced to the problem of monitoring
the possible mean shifts of p-dimensional multivariate normal random vectors
Xk = (X1,k, · · · , Xp,k), where the means of some components may shift from
0 to some positive or negative value with magnitude of at least ρ2 > 0.

If we know the exact post-change mean μi for the i-th component that is
affected by the change, it is straightforward to develop an efficient local detection
scheme, since one essentially faces the problem of testing the hypotheses in the
change-point model where Xi,1, · · · , Xi,ν−1 are i.i.d. f0(x) = pdf of N(0, 1) and
Xi,ν, · · · , Xi,n are i.i.d. f1(x) = pdf of N(μi, 1). At each time k, we repeatedly
test the null hypothesis H0 : ν = ∞ (no change) against the alternative hypothesis
H1 : ν = 1, 2, · · · (a change occurs at some finite time), see Lorden (1971). Thus
the log generalized likelihood ratio statistic at time k becomes

W ∗i,k = max
1≤ν≤k

∏ν
�=1 f0(Xi,�)

∏k
�=ν+1 f1(Xi,�)

∏k
�=1 f0(Xi,�)

, (6.9)

which can be recursively computed for normal distributions as

W ∗i,k = max

(

W ∗i,k−1 + μiXi,k − 1

2
(μi)

2, 0

)

, (6.10)
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for k = 1, · · · , with the initial value W ∗i,k=0 = 0. In the literature, the statistic W ∗i,k
in (6.10) was first defined by Page (1954), and is called cumulative sum (CUSUM)
statistics and enjoys theoretical optimality (Lorden 1971; Moustakides 1986).

In our context of profile monitoring, we do not know the value of the post-change
mean μi except that |μi | ≥ ρ2, thus we cannot use the CUSUM W ∗i,n in (6.10)
directly. One natural idea is to estimate μi from observed data, and then plug-in the
estimated μ̂i into the CUSUM statistics in (6.10). For that purpose, at time k, denote
by ν̂k the largest � ≤ k − 1 such that W ∗i,� = 0. Then the generalized likelihood
ratio properties suggest that ν̂k is actually the maximum-likelihood estimate of the
change-point ν at time k, and thus one would expect that the data between time
[ν̂k, k] would likely come from the post-change distributions, which allows us to
provide a reasonable estimate of the post-change mean μ̂i at time k. This idea was
first rigorously investigated in Lorden and Pollak (2008) for detecting positive mean
shifts of normal distributions, and here we aim to detect either positive or negative
mean shifts. Specifically, at time k, for the i-th standardized Haar coefficients Xi,k’s,
we define μ̂

(1)
i,k and μ̂

(2)
i,k as the estimates of the post-change mean of Xi,k when

restricted to the positive and negative values, respectively, under the assumption
that |μi | ≥ ρ2, with the explicit expressions as:

μ̂
(1)
i,k = max

(

ρ2,
s + S

(1)
i,k

t + T
(1)
i,k

)

> 0, μ̂
(2)
i,k = min

(

− ρ2,
−s + S

(2)
i,k

t + T
(2)
i,k

)

< 0, (6.11)

and for j = 1, 2 and for any k, the sequences (S(j)i,k , T
(j)
i,k ) are defined recursively

(

S
(j)
i,k

T
(j)
i,k

)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

S
(j)

i,k−1 +Xi,k−1

T
(j)

i,k−1 + 1

)

if W(j)

i,k−1 > 0

(

0
0

)

if W(j)

i,k−1 = 0

. (6.12)

Roughly speaking, for each estimate μ̂(j)
i,k , if ν̂(j)k is the candidate change-point, then

T
(j)
i,k denotes the time steps between ν̂

(j)
k and k, whereas S(j)i,k is the summation of

all observations in the interval [ν̂(j)k , k]. The constants s and t in (6.11) are pre-
specified, non-negative constants, and s/t can be thought of as a prior estimate of
the post-change mean.

By plugging the adaptive estimations μ̂
(j)
i,k of the post-change mean μi in the

CUSUM statistics in (6.10), we can derive the local monitoring adaptive CUSUM
statistics by

Wi,k = max(W(1)
i,k ,W

(2)
i,k ), (6.13)
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where W
(1)
i,k and W

(2)
i,k are the local detection statistics for detecting positive and

negative mean shifts:

W
(1)
i,k = max

(

W
(1)
i,k−1 + μ̂

(1)
i,kXi,k − 1

2
(μ̂

(1)
i,k )

2, 0

)

,

W
(2)
i,k = max

(

W
(2)
i,k−1 + μ̂

(2)
i,kXi,k − 1

2
(μ̂

(2)
i,k )

2, 0

)

. (6.14)

6.3.3 Global Online Monitoring Procedure

At time k, we have p local detection statistics Wi,k’s for i = 1, · · · , p, one for
monitoring each specific Haar coefficient locally. In general, the larger values of the
Wi,k’s, the more likely the Haar coefficient is affected. Since we don’t know which
Haar coefficients are affected by the change, we follow Liu et al. (2017) to raise
a global alarm based on the largest r values of the Wi,k’s. This allows us to filter
out those non-affected Haar coefficients, and provides the list of candidate affected
Haar coefficients.

Specifically, at each time k, we order p local detection statistics Wi,k’s for p
Haar coefficients, say, W(1),k ≥ W(2),k ≥ . . . ≥ W(p),k are order statistics of Wi,k’s.
Then our proposed profile monitoring scheme N(b, r) is to raise an alarm at first
time when the summation of the top r statistics W(1),k, . . . ,W(r),k exceed some pre-
defined threshold b, i.e.,

N(b, r) = inf{k :
r

∑

i=1

W(i),k ≥ b}, (6.15)

where r is the tuning parameter that is determined by the sparsity of the post-change,
b is the pre-specified constant to control false alarm.

In summary, our proposed profile monitoring scheme N(b, r) in (6.15) is based
on monitoring Haar coefficients. We use recursive CUSUM procedures, which can
adaptively estimate unknown changes, to monitor each Haar coefficient individually,
and use order-thresholding to address the sparse post-change scenario when only a
few Haar coefficients are affected by the change.

It is important to emphasize that our proposed procedure N(b, r) is robust
in the sense that it can detect a wide range of possible changes on the profiles
without requiring any knowledge on the potential failure pattern. Additionally,
by the recursive formulas in (6.12) and (6.14), for a new coming profile, our
proposed procedure only involves a computational complexity of order O(p) to
update local detection statistics for p Haar coefficients, as well as additional order
of O(p log(p)) to sort these p local detection statistics. Thus at each fixed time
step, the overall computational complexity of our proposed methodology is of
order O(p log(p)). Meanwhile, for the GLR procedure in Chicken et al. (2009),
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the computational complexity is of order O(t2p2) at time step t, which can be
reduced to the order of O(K2p2) if one only uses a fixed window size of K latest
observations to make decisions instead of all t observations, where K often needs
to be at least of order O(log(p)) to be statistically efficient. Hence, as compared to
the GLR procedure, our proposed procedure can be easily implemented recursively
and thus is scalable when online monitoring high-dimension profile data over a long
time period.

Algorithm 1 Implementation of our proposed procedure N(b, r) in (6.15)
Initial parameters: ρ1, ρ2, s, t , and r.

In-control estimation: Using a set of m in-control p-dimensional profile samples y1, .., ym,

perform the following steps.
Step 1: get the Haar coefficients c1, .., cm by Eq. (6.5).
Step 2: get the estimation of standard deviation of the ith Haar coefficient σ̂i .
Step 3: get ĉ(ic) by Eq. (6.7) with the threshold ρ1.

Online monitoring:
initialize k = 0, and set all initial observations Xi = 0 and all S(j)i = T

(j)
i = W

(j)
i = 0, for

i = 1, . . . , p and j = 1, 2.
While the scheme N(b, r) has not raised an alarm
do 1. Update (S(j)i , T

(j)
i ) via (6.12).

2. Compute the intermediate variables μ̂(j)
i from (6.11) which are the estimates of

the post-change means.
3. Input new p-dimensional profile y, using the estimated in-control mean ĉ(ic)

and standard deviation σ̂ to get the updated standardized p components
{X1, . . . , Xp} by (6.8).

4. For i = 1, . . . , p, recompute the local monitoring statistics W(j)
i in (6.14) and Wi in (6.13).

5. Get the order statistics of {W1, . . . ,W(p)} denoted by W(1) ≥ W(2) ≥ . . . ≥ W(p)

6. Compute the global monitoring statistics

G =
r

∑

i=1

W(i)

if G ≥ b terminate: Raising an alarm at time k and declaring that a change has occurred;
end the while loop

6.3.4 Parameter Settings

For our proposed monitoring procedure N(b, r), there are two global parameters, r
and b, and four local parameters, ρ1, ρ2, s, t . Optimal choices of these parameters
will depend on the specific applications and contexts, and below we will discuss how
to set the reasonable values of those parameters based on our extensive numerical
experiences.
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Let us first discuss the choices of two global parameters, r and b. The optimal
choice of r that maximizes the detection power of the proposed procedure N(b, r)

is the number of truly changed Haar coefficients, which is often unknown. Based on
our extensive simulations (Liu et al. 2017), when monitoring hundreds or thousands
of Gaussian data streams simultaneously with an unknown number of affected local
streams, the value r ∈ [5, 10] often can reach a good balance on the detection power
and the robustness to detect a wide range of possible shifts. Hence, in the case study
and simulation study, we choose r = 8. As for the global parameter b, it controls
when to stop the monitoring procedure and is often chosen to satisfy the pre-
specified false alarm constraints. A standard approach in the literature is to choose b
by repeatedly sampling in-control measurements either from in-control training data
or from Monte Carlo in-control models, so that the monitoring procedure N(b, r)

will satisfy false alarm constraint.
Next, the local parameter ρ1 in (6.7) essentially conducts a dimension reduction

for in-control profiles. A good choice of the ρ1 will depend on the characteristics of
in-control profile data in specific applications, and in general the cutoff threshold ρ1
should be chosen balance the bias-variance trade-off of estimation of the in-control
mean profile. Much theoretical research has been done on how to choose ρ1 for the
single profile (Donoho and Johnstone 1994, 1998). These existing approaches focus
more on the wavelet coefficient or mean profile estimation in the context of de-
noising while the main objective in our context is to detect the changes of wavelet
coefficients. Since we will conduct another dimension reduction at the layer of local
detection statistics, it is often better to be conservative to choose a small constant
ρ1 > 0 value so as to keep more Haar coefficients from the in-control profiles.
Also automatic or tuning-free approaches have been developed to choose the cutoff
threshold such as ρ1 adaptively in other contexts, see Zou and Qiu (2009) and Zou
et al. (2015). However, such approaches are often computationally expensive, and
it is unclear how to extend them to multiple profiles monitoring while keeping the
proposed procedure to be scalable. In our simulation and case study, we found out
that a simple choice of ρ1 = 0.15 will yield significantly better results as compared
with the existing methods in the literature. It remains an open problem to derive the
optimal choice of ρ1 under the general setting so that our proposed procedures are
efficient in both computational and statistical viewpoints.

Finally, the local parameter ρ2 represents the interested-smallest magnitude of
mean shift of wavelet coefficients to be detected. In practice, it can be set based on
the engineering domain knowledge to ensure production yield. In this paper, we set
ρ2 = 0.25. In addition, the local parameters, s and t in (6.11), are related to the
prior distribution of the unknown post-change mean μi , so that the corresponding
estimators of μi is a Bayes estimator and will be more robust than using the sample
mean directly. In this paper, we follow Lorden and Pollak (2008) to choose s = 1
and t = 4.
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6.4 Case Study

In this section, we apply our proposed wavelet-based methodology to a real
progressive forming manufacturing process dataset in Lei et al. (2010) that includes
307 normal profiles and 5 different groups of fault profiles. Each group contains
69 samples which are collected under the faults due to missing part occurring in
one of these five operations, respectively. Additionally, there are p = 211 = 2048
measurement points in each profile.

The original research on Lei et al. (2010) focuses on the offline classification
of normal and fault profile samples, while our research mainly emphasizes on the
fast online detection. We will compare the performance of our proposed monitoring
procedure with the other two common used procedures to illustrate the efficiency
of our scheme. First one is the Hotelling’s T 2 control chart based on selected
wavelet coefficients (Zhou et al. 2006). The second one is based on the asymptotic
maximum-likelihood test in Chicken et al. (2009). Specifically, we consider the
following three procedures:

• Our proposed method N(b, r) in (6.15);
• Hotelling’s T 2 control chart based on the first r out of p wavelet coefficients:

T (b, r) = inf
{

j ≥ 1 : wj ≥ b
}

. (6.16)

where

wj =
r

∑

i=1

(
cj (i)− ĉ

(ic)
i

σ̂i
2 )2

• The method in Chicken et al. (2009), where the generalized likelihood ratio test
was used on all p wavelet coefficients:

M∗(b)

= inf

⎧

⎨

⎩

n ≥ 1 : max
1≤i<n

⎧

⎨

⎩

[
∑n

j=i+1 w̃j

n−i −
∑i

j=1 w̃j

i
] ∗

n
∑

j=i+1

(
wj

p
−1)

⎫

⎬

⎭

≥ b

⎫

⎬

⎭

.

where

w̃j = 1

σ̂ 2

p
∑

i=1

{max(0, |cj (i)− ĉ
(ic)
i | − λ)}2

λ =
√

2
logp

p
σ̂ .
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Table 6.1 A comparison of the detection delays of three methods with in-control average run
length equal to 200 based on 500 repetitions in Monte Carlo simulations

Method Fault 1 Fault 2 Fault 3 Fault 4 Fault 5

N(b=73,r=8) 1(0) 1(0) 1(0) 1.51(0.03) 1.01(0.01)

T(b=23.33,r=8) 1(0) 1(0) 1(0) 17.71(0.78) 1(0)

M∗(b = 600) 1(0) 1(0) 1(0) 4.47(0.13) 1.22(0.02)

The standard errors of the detection delays are reported in the bracket

In order to have a fair comparison, r is chosen as 8 for our proposed method
N(b, r) in (6.15) and the Hotelling’s T 2 control chart T (b, r) in (6.16).

To evaluate the detection efficiency of those methods, we first find the appropriate
values of the global threshold b such that the average run length of each scheme is
200 when the samples are collected by sampling from the 307 normal profiles with
replacement. Then, using the obtained global threshold value b, we simulate the
detection delay when the samples are sequentially collected by sampling from the
69 fault profiles. All Monte Carlo simulations are based on 500 repetitions. The
results of detection delay and standard error are summarized in Table 6.1.

From Table 6.1, we can see all of these three methods can detect the change
of Fault 1, 2, 3, and 5 very fast (on average, just need one sample to detect
such change). It is necessary to emphasize that although as shown in Fig. 6.2, the
difference between normal profile and the Fault 4 profile is very subtle, and our
proposed method can detect the Fault 4 change much faster than the other two
methods.

6.5 Simulation Study

In this section, we present the simulation study results to illustrate the efficiency
of our proposed procedure. We follow the nonlinear profile monitoring literature
to consider the in-control mean profile as the Mallet’s piecewise smooth function in
Mallat (1999) , see Fig. 6.4. This testbed curve is a complicated function with several
non-differentiable points and difficult patterns, including several transient jumps,
therefore cannot easily be modeled by parametric models or other nonparametric
models and has been popularly used in much research to evaluate the performance
of nonlinear profile monitoring procedures, see Jeong et al. (2006), Chicken et al.
(2009), and Lee et al. (2012).

The out-of-control mean profile follows the same setup in the previous literature
Lee et al. (2012) and assumes a local mean shift on some intervals. Specifically, the
out-of-control mean profiles are designed as f1(x) = f0(x)+μIδ(x) where the shift
magnitude μ ∈ {0.25, 0.5, 1} and three different changed intervals: (1) δ = [0, 1],
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Fig. 6.4 Mallat’s piecewise smooth function

which is referred as Global shift; (2) δ = [ 73
512 ,

76
512 ]∪[ 288

512 ,
296
512 ], which is referred as

Local shift I, and (3) δ = [ 3
512 ,

15
512 ] ∪ [ 344

512 ,
347
512 ], which is referred as Local shift II.

Based on the mean profiles, we generate in-control and out-of-control sample
profiles, which consist of a realization of p = 512 pairs (xi, y(xi)) with x1, . . . , xp
equal spaced on [0, 1] and y(xi) = f0(xi) + ε(xi) as in-control sample profile and
y(xi) = f1(xi)+ε(xi) as out-of-control sample profile, where ε(xi) is i.i.d standard
normally distributed N(0, 1).

We will compare the performance of our proposed method N(b, r = 8) in (6.15)
with the same two methods in the previous section: the method M∗(b) in (6.16)
and the method T (b, r = 8) in (6.16). In this simulation study, we still set ρ1 =
0.15, ρ2 = 0.25, s = 1, t = 4 for our proposed scheme.

Specifically, based on 1000 Monte Carlo simulations, we keep the in-control
average run length of those schemes as 200 and compare the detection delay under
the Global shift, Local shift I, and Local shift II with different magnitudes of mean
shift. The results are summarized in Table 6.2.

From Table 6.2 we can see that (1) our proposed method N(b, r) yields the
smallest detection delay for detecting local shifts compared with the other two
methods M∗(b) and T (b, r); (2) a competitive results for detecting the global
shifts under different magnitudes of shifts. This implies our proposed wavelet-based
monitoring procedure is more robust to the unknown changes.
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Table 6.2 A comparison of the detection delays of 3 methods with in-control average run length
equal to 200 based on 1000 repetitions in Monte Carlo simulations

Method μ Global shift Local shift I Local shift II

0.25 2.59(0.01) 92.38(0.52) 67.41(0.42)

N(b = 51, r = 8) 0.5 1(0.01) 31.63(0.18) 22.17(0.14)

1 1(0.00) 9.46(0.05) 6.53(0.04)

T(b=21.7, r=8) 0.25 1.03(0.01) 151.82(4.68) 253.57(7.15)

0.5 1.00(0) 144.38(4.39) 100.59(2.99)

1 1.00(0) 79.08(2.58) 24.81(0.74)

M∗(b = 10.1) 0.25 8.26(0.18) 157.40(4.81) 151.55(4.73)

0.5 1.29(0.02) 125.24(4.09) 106.31(3.58)

1 1.00(0) 35.97(0.87) 24.55(0.55)

The standard errors of the detection delays are reported in the bracket

6.6 Conclusions

In this article, we develop a new scalable scheme for monitoring nonlinear profiles
with unknown post-change distribution. This article makes three methodological
contributions. First, we propose to use all wavelet coefficients to monitor the
process, while the prior literature of nonlinear profile monitoring is dominated by
analyzing and using just significant coefficients. Second, we propose to use two
shrinkage techniques to filter out the noise introduced by using all wavelet coeffi-
cients. One is using hard shrinkage to estimate the in-control mean coefficients. The
other one is to build monitoring procedure only focusing on the information of a
few coefficients, which have higher likelihood to be changed. Third, we propose
to utilize a recent developed adaptive-CUSUM procedure in Liu et al. (2017)
to efficiently monitor the standardized wavelet coefficients without knowing the
information about the post-change.

There is plenty of room for improving our proposed scheme for monitoring
nonlinear profiles, calling for further research. First, this article mainly focuses on
the detection of mean shift of the normal distributed profile. Although there are
many applications of our proposed scheme, it is also necessary to work on the
detection procedures for more generally distributed profiles. Second, this article
makes an independence assumption on the noise distribution in (6.1). It will be
useful to develop a more robust method that can handle different correlation
structure of the profile data.
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Chapter 7
Estimating the Confidence Interval of
Evolutionary Stochastic Process Mean
from Wavelet Based Bootstrapping

Aline Edlaine de Medeiros and Eniuce Menezes de Souza

7.1 Introduction

Time series data are naturally found in a range of fields such as Agriculture,
Geophysics, Meteorology, Health, Economy and Social Sciences, among several
others (Chatfield 2016; Wei 2006). Given a parametric space T and a probability
space (Ω,A, P ), a stochastic process is a family Z = {Z(t), t ∈ T }, such that,
for each t ∈ T , Z(t) is a random variable (Morettin and Toloi 2006). A time series
is considered as the finite realization of a stochastic process. In other words, an
observed time series is a trajectory of a stochastic process.

Indeed, Z(t) is a two variable function Z(t, w) wherein t ∈ T , and w ∈ Ω .
Considering fZ(z) as the probability density function of Z(t, w), Fig. 7.1, adapted
from Morettin and Toloi (2006), represents a stochastic process as aforementioned.

In many situations, accessing more than one observation of a phenomenon for
each instant of time is impossible. In general, the function Z(t, w) is assumed
to follow a Gaussian distribution for each instant, and the observed time series
represents the mean μt of the stochastic process for each t ∈ T . But, this assumption
is not always true and fZ(z) can be different at each instant of time. It would be
very important to estimate the uncertainty associated with μt , from its confidence
interval.

The technique called bootstrap (Efron and Gong 1983), which is an appropriate
methodology for solving a variety of inferential problems, could be a good
alternative to estimate the uncertainty for μt . However, bootstrap is more designed
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Fig. 7.1 A stochastic process
represented as a family of
random variables

for uncorrelated data, and not for those exhibiting short or long-range dependence
as time series. Fortunately, in the last years, several methods were developed to deal
with resampling time series, some of them based on wavelets, especially using DWT
(Angelini et al. 2005; Golia 2002; Percival et al. 2000; Yi et al. 2007).

To estimate the confidence interval for μt , we aim to evaluate and implement
some methods from the literature but with some modifications, and propose others
involving NDWT:

M1: Naive bootstrapping based on NDWT;
M2: DWT two-step wavestrapping (TSWDWT);
M3: NDWT two-step wavestrapping (TSWNDWT);
M4: Reinflation of the bootstrap resamples of TSWDWT.
M5: Reinflation of the bootstrap resamples of TSWNDWT.

The methods M1, M2, M3, M4, and M5 are going to be applied and compared
for estimation of the uncertainty for bronchiolitis hospitalization rate in Paraná State
from 2000 to 2014. Bias, standard errors, and coefficients of variation can evaluate
the ensembles of resampled time series.

This work is organized as follows. Section 7.2 presents a brief review of the
techniques usually used to resample time series. In Sect. 7.3, we describe the
methods we are using to estimate the uncertainty associated with the bronchiolitis
hospitalization rate. In Sects. 7.4 and 7.5, the main results and conclusions of our
study are presented, respectively.

7.2 Resampling Time Series

One of the most important characteristics of a time series is the dependence on
nearby observations. Because of this correlation structure, maintaining the data
order is of great importance. So, resampling time series requires appropriate
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techniques that consider the dependence and the order of the observations. One of
the usual approaches is the Stationary Bootstrap (SB) (Politis and Romano 1994).

Considering Yt as a strictly stationary and weakly dependent time series, the SB
is a special case of blocks resampling, which consists in defining two sequences
of random variables L1, L2, . . . and I1, I2, . . ., both independent of each other and
independent of Yt , and such that L1, L2, . . . follow a geometric distribution with
parameter p and I1, I2, . . . follow a uniform distribution on {1, 2, . . . , n}. Then, the
random blocks BIi,Li

, with random blocks length Li−1, are given by

BIi,Li
= (YIi , YIi+1, . . . , YIi+Li−1). (7.1)

However, SB is not applicable to those time series exhibiting non-stationary and
long-range dependence.

In the last years, the wavelet analysis has been standing out as a tool for
resampling time series (Angelini et al. 2005; Breakspear et al. 2003; Golia 2002;
Percival et al. 2000). Basically, considering we have a multiresolution analysis
(MRA) (Mallat 1989), a time series Y = (y0, y1, · · · , yn−1) can be represented
as a function f in terms of the scaling function φ and wavelet function ψ as

f (t) =
n−1
∑

k=0

cJ0,kφJ0,k(t)+
J−1
∑

j=J0

n−1
∑

k=0

dj,kψj,k (7.2)

where J − 1 < log2 n ≤ J , j = J0, · · · , J − 1 representing a multiresolution level,
and k = 0, · · · , n−1. The coefficients cJ0,k and dj,k are called the smooth (scaling)
and detail (wavelet) coefficients, respectively (Kang and Vidakovic 2017).

When we take φJ0,k(t) = 2J0/2φ(2J0 t − k) and ψj,k(t) = 2j/2ψ(2j t − k), the
coefficients cJ0,k and dj,k comprise the DWT of the time series Y . On the other
hand, taking φJ0,k(t) = 2J0/2φ(2J0(t − k)) and ψj,k(t) = 2j/2ψ(2j (t − k)), the
detail and smooth coefficients represent the NDWT of the time series Y .

The DWT wavelet coefficients have less autocorrelation than the observed time
series, and this allows applying bootstrap (wavestrap), even for non-stationary time
series (Golia 2002; Tang et al. 2008; Yi et al. 2007). However, in conditions where
translation or shift-invariance (Nason and Silverman 1995) is important, as for time
series, the NDWT is a good alternative.

One difficulty in applying bootstrap on DWT is the number of wavelet coef-
ficients which becomes smaller at each resolution level. NDWT has the same
number of wavelet coefficients in each resolution level, overcoming this DWT
limitation. NDWT is also more flexible with respect to the time series length, being
appropriate for all those which are a multiple of two. Furthermore, NDWT has
an easy implementation with more than one algorithm, including the pyramidal
algorithm (Mallat 1989).
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Fig. 7.2 Wavelet based stationary bootstrap

7.2.1 Bootstrap Based on Wavelets

Golia (2002) applied the stationary bootstrap to the wavelet coefficients of time
series exhibiting long memory (Golia 2002). This application was possible because
the wavelet coefficients are wide-sense stationary and weakly correlated in each
scale (Wornell and Oppenheim 1996). In her work, she used the Daubechies wavelet
with four vanishing moments and coarsest level of details equals to 4 in DWT.
The results were good, however, the author comments the need of evaluating this
approach for other long memory processes. The procedure of this wavelet based
stationary bootstrap is described in Fig. 7.2.

Considering the SB and its use combined with wavelets, Yi et al. (2007) devel-
oped a DWT-based method called Two-Step Wavestrapping (TSW), to simulate
non-stationary acceleration data in the mobile computing context (Yi et al. 2007).
In this context, they intended to simulate the acceleration data collected from a
group composed by one hundred twenty six undergraduate students. In this sort of
data, each student provides one time series for each one of the three evaluated axes
forming a group of time series. Each group of time series was divided into subgroups
statistically characterized by Hurst exponents, and then TSW procedure is applied
by subgroups.

Describing TSW for only one time series, the first part of the TSW consists in
performing the SB in one-step DWT, which is called Stationary Parallel Bootstrap-
ping. In other words,

1. Given a time series Y of power-of-two length, apply the DWT to generate the
coarsest level of detail (J0) and scale coefficients;

2. Resample these scaling and wavelet coefficients using the Stationary Bootstrap
(Politis and Romano 1994);

3. Apply the inverse discrete wavelet transform (IDWT) to the resampled wavelet
coefficients to generate a surrogate time series Yb, wherein b indicates the
performed bootstrap.

The second step consists in adjusting the trend and energy. For trend adjustment,
both the time series Y and its surrogate Yb are decomposed using the DWT.
Then, the scaling coefficients cb obtained from Yb are surrogated by the scaling
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Fig. 7.3 Two step wavestrap (TSW) algorithm

coefficients c generated from Y . For the energy adjustment, the following steps can
be performed:

1. Generate the average energy for each decomposition level of Y and Yb, given by

ēj =
2j−1
∑

k=0

dj,k

2j

2

, j = J0, · · · , J − 1, (7.3)

where dj,k is the kth wavelet coefficient in the j th decomposition level.
2. Adjust the average energy for each decomposition level of Yb to the average

energy of the levels of Y , doing

dbaj,k = dbj,k

√

ēj

ēbj
, (7.4)

where dba represents the adjustment done in each decomposition level of Yb;

Figure 7.3 summarizes the TSW algorithm. An important contribution of this
methodology is the idea of an energy adjustment in the levels to preserve the
inherent variability of the original data, even after the resampling. Furthermore, each
realization of this procedure provides a surrogate time series with the same feature
of the original time series. Another important point is that the vertical correlation
of wavelet coefficients among scale levels was taken into account, since the scaling
and wavelet coefficients were resampled together.

In the next section, we present the proposed bootstrap methods, that are based on
NDWT, SB, and TSW of the wavelet coefficients.
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7.3 Proposed Methods

Using the statistical language R (R Core Team 2016), we implemented five methods
to generate the proposed confidence interval for μt .

The first bootstrap technique consists in performing a decomposition of the time
series using NDWT, applying the naive bootstrap to detail coefficients and then
generating a surrogate time series using INDWT. Figure 7.4 presents the NDWT
naive algorithm.

The next approaches were implemented following the same steps as TSW. The
first one, called TSWNDWT, follows the same steps of TSW but replacing the
DWT by NDWT. In the second step, we work only with NDWT coefficients that
comprise the first level of details. As in TSW we also developed the trend and
energy adjustment as described in Sect. 7.2.1. Figure 7.5 describes the TSWNDWT
algorithm.

Fig. 7.4 Naive bootstrap based on NDWT

Fig. 7.5 TSWNDWT algorithm
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The method called TSWDWT follows the same steps of TSWNDWT, but the
decomposition and reconstruction of the time series is performed using DWT. The
latest approaches consist in reinflating the surrogate time series obtained from
TSWDWT and TSWNDWT. In the literature, reinflation means multiplying the
correlation factor correction

√
1.1 to the surrogate time series (Tang et al. 2008).

To illustrate the confidence interval of the evolutionary stochastic process mean
we used the month rate of bronchiolitis hospitalizations time series from the Paraná
State—BR, in the period from 2000 to 2014. This time series was collected from
DATASUS database and contains 180 observations.

The resampling methods based on DWT require data of power-of-two size. So,
we extend the time series by reflection to 256 observations.

For each one of the proposed methods, we fixed the orthonormal Daubechies’
wavelet (Daubechies 1992), with two vanishing moments (d4). This family of
wavelets has been frequently used in similar works (Golia 2002; Tang et al. 2008).
Furthermore, to obtain the mean of the stochastic process μt , the level mean of the
time series, standard errors, and bias we resampled the time series 5000 times for
each one of the proposed methods.

7.4 Results

Figure 7.6 presents the time series of the rate of monthly hospitalizations for
bronchiolitis (Y ), and the mean of the group of surrogate time series for Y from
each presented bootstrap method. From Fig. 7.6 all the bootstrap means seems to be
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Fig. 7.6 Averages of the surrogate time series: Y—rate of bronchiolitis time series, M1—naive
bootstrap based on NDWT, M2—TSWNDWT, M3—TSWDWT, M4—reinflated TSWNDWT and
M5—reinflated TSWDWT
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Fig. 7.7 Standard errors of surrogate time series: M1—naive bootstrap based on NDWT, M2—
TSWNDWT, and M4— reinflated TSWNDWT
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Fig. 7.8 Standard errors of surrogate time series: M3—TSWDWT, and M5—reinflated
TSWDWT

similar to the observed time series. We can also generate the standard errors of the
surrogate time series, as presented in Figs. 7.7 and 7.8.

We can see that the naive bootstrap based on wavelet, TSWNDWT and reinflated
TSWNDWT methods presented low variability, whereas TSWDWT, and reinflated
TSWDWT standard errors present a high level of oscillation. Possibly this behavior
is related to the number of coefficients in each decomposition level. While the
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Table 7.1 Average of standard errors (SE), coefficient of variation (CV) and bias of the surrogate
time series

Classes NDWT TSNDWT TSDWT Reinflated Reinflated

bootstrap TSNDWT TSDWT

SE 0.63 0.61 0.90 0.64 0.95

CV 11.23 10.79 16.05 10.79 16.05

Bias 2.74× 10−5 −7.71× 10−6 6.15× 10−5 −2.74× 10−1 −2.74× 10−1
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Fig. 7.9 Bias: M1—naive bootstrap based on NDWT, M2—TSWNDWT, and M4—reinflated
TSWNDWT

number of coefficients in each level of NDWT remains the same as the observed
time series, in DWT, the number of coefficients decreases by half in each level.
In general, the TSWNDWT presented the best standard errors and coefficient of
variation.

The averages of the standard errors, coefficient of variation, and bias are
represented in Table 7.1. The results corroborate with the graphical analyses,
pointing the TSWNDWT as the method with the smallest variability.

The results in Table 7.1 also corroborate with Fig. 7.8 indicating the largest
variability for the methods that use DWT.

We also can see that the naive bootstrap based on wavelet, TSWNDWT, and
reinflated TSWNDWT average bias is smaller than those for TSWDWT and
reinflated TSWDWT methods. The TSWNDWT presented the best average of bias,
which is about −0.000008.

Figures 7.9 and 7.10 present the bias of the mean of the surrogate time series
for each one of the evaluated methods. As in the standard errors analyse, the
naive bootstrap based on wavelet, TSWNDWT, and reinflated TSWNDWT methods
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Fig. 7.10 Bias: M3—TSWDWT, and M5—reinflated TSWDWT
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Fig. 7.11 Confidence interval (CI) obtained from naive bootstrap for the rate of bronchiolitis
hospitalizations time series (TS)

presented best results. On the other hand, TSWDWT and reinflated TSWDWT bias
reached largest values.

In Figs. 7.11, 7.12, 7.13, 7.14, and 7.15 the confidence interval for the rate
bronchiolitis hospitalizations time series obtained from each discussed method is
presented. In all graphs, the time series Y is represented as a black dotted line and
the confidence interval as a red line.
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Fig. 7.12 Confidence interval obtained from TSWNDWT
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Fig. 7.13 Confidence interval obtained from TSWDWT

Figure 7.11 presents the confidence interval generated from the naive bootstrap
based on NDWT. The CI constructed from this method included almost all the
values of the observed time series, which represents the mean of the stochastic
process.

From Fig. 7.12 one can observe the confidence interval generated from
TSWNDWT. This method also includes almost all the values of that observed
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Fig. 7.14 Confidence interval obtained from reinflated TSWNDWT

Time

B
ro

nc
hi

ol
its

 ra
te

2000 2005 2010 2015

0
5

10
15

20

TS

CI

Fig. 7.15 Confidence interval obtained from reinflated TSWDWT

time series, but we can observe that this interval is little more narrower than in the
confidence interval using only naive NDWT bootstrap.

Figure 7.13 presents the confidence interval generated from TSWDWT. The CI
obtained from this method contains the most part of the observed values, and it
seems to have less point out of the interval than the two methods already analyzed.
However, each one of the time series that compose the confidence interval has more
noise than those obtained from naive NDWT bootstrap and TSWNDWT.
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The presence of more noise in the confidence interval generated from TSWDWT
is expected since this method based on DWT seems to present more variability, bias,
besides fewer wavelet coefficients in each multiresolution level to be resampled.

Figure 7.14 presents the confidence interval generated from reinflated
TSWNDWT. The CI obtained from this method contains almost all the observed
process values, and a few outside points. In general, we observe that the methods
based on NDWT have a similar behavior.

In Fig. 7.15, the confidence interval generated from the reinflated TSWNDWT is
represented. The CI obtained from this method also contains almost all the observed
process values, but as in TSWDWT, the time series that compose the confidence
interval is more noisy than those NDWT based methods.

In general, the built confidence intervals include almost all the time series values
that represent the mean of the stochastic process. But, when the bronchiolitis
hospitalizations are high producing spikes in the time series, mainly in May of 2012
and June 2014 the CI does not contain the time series values.

Although all the methods contain observed points that are not inside of the con-
fidence intervals, those based on NDWT have less outside points. The TSWNDWT
share more interesting results presenting low variability and the smaller bias.

7.5 Final Considerations

The difficulty or impossibility in accessing more than one trajectory in a stochastic
process such as the monthly rate of bronchiolitis hospitalizations is well known.
Providing a method to estimate the uncertainty associated with the evolutionary
stochastic process mean without considering the presupposition of normality is a
challenging problem. With the presented possibilities, this problem can be taken
into account from wavelet-based bootstrapping.

All the evaluated methods provide a measure of the confidence interval of
the mean μt for the monthly hospitalization rate for bronchiolitis via wavelet
decomposition using the Daubechies’ wavelet d4. At the moment, we are analyzing
these methods considering different wavelet families and vanishing moments, as
well as other time series with diverse behaviors and lengths. In the literature, the
usual methods for resampling time series are based on DWT. In this work, we
observed that NDWT provides good estimates, with the smallest standard errors
and coefficient of variations.

The generation of the confidence interval for μt can also be used to estimate the
uncertainty for wavelet regression models, since they also represent the mean of a
stochastic process.

Acknowledgements The authors acknowledge and appreciate the anonymous reviewers for the
valuable comments and such a positive feedback. The authors also thank the financial support of
the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES).



174 A. E. de Medeiros and E. M. de Souza

References

Angelini, C., Cava, D., Katul, G., & Vidakovic, B. (2005). Resampling hierarchical processes
in the wavelet domain: A case study using atmospheric turbulence. Physica D: Nonlinear
Phenomena, 207(1), 24–40.

Breakspear, M., Brammer, M., & Robinson, P. A. (2003). Construction of multivariate surrogate
sets from nonlinear data using the wavelet transform. Physica D: Nonlinear Phenomena,
182(1), 1–22.

Chatfield, C. (2016). The analysis of time series: an introduction. Boca Raton: CRC Press.
Daubechies, I. (1992). Ten lectures on wavelets || 1. The what, why, and how of wavelets. https://

doi.org/10.1137/1.9781611970104.
Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation.

The American Statistician, 37(1), 36–48.
Golia, S. (2002). Evaluating the GPH estimator via bootstrap technique. In W. Härdle, B. Rönz

(Eds.), Compstat (pp. 343–348). Heidelberg: Physica.
Kang, M., & Vidakovic, B. (2017). MEDL and MEDLA: Methods for assessment of scaling by

medians of log-squared nondecimated wavelet coefficients. arXiv preprint arXiv:1703.04180.
Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet representa-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7) , 674–693.
Morettin, P. A., & Toloi, C. (2006). Análise de séries temporais. Spindale: Blucher.
Nason, G. P., & Silverman, B. W. (1995). The stationary wavelet transform and some statistical

applications. In A. Antoniadis & G. Oppenheim (Eds.), Wavelets and statistics (pp. 281–299).
New York: Springer.

Percival, D., Sardy, S., & Davison, A. (2000). Wavestrapping time series: Adaptive wavelet-based
bootstrapping. In Nonlinear and nonstationary signal processing (pp. 442–471). Cambridge:
Cambridge University Press.

Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical
association, 89(428), 1303–1313.

R Core Team (2016). R: A language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing.

Tang, L., Woodward, W. A., & Schucany, W. R. (2008). Undercoverage of wavelet-based resam-
pling confidence intervals. Communications in Statistics – Simulation and Computation®,
37(7), 1307–1315.

Wei, W. S. W. (2006). Time series analysis: univariate and multivariate methods. Boston: Pearson
Addison Wesley.

Wornell, G., & Oppenheim, A. V. (1996). Signal processing with fractals: A wavelet-based
approach. Upper Saddle River: Prentice Hall Press.

Yi, J.-S., Jung, Y.-Y., Jacko, J., Sainfort, F., & Vidakovic, B. (2007). Parallel wavestrap:
Simulating acceleration data for mobile context simulator. Current Development in Theory and
Applications of Wavelets, 1, 251–272.

https://doi.org/10.1137/1.9781611970104
https://doi.org/10.1137/1.9781611970104


Chapter 8
A New Wavelet-Based Approach for Mass
Spectrometry Data Classification

Achraf Cohen, Chaimaa Messaoudi, and Hassan Badir

8.1 Introduction

Application of new technologies of big data and statistical learning theory to mass
spectrometry data classification problem can have a valuable impact on public
health. This need is particularly critical in early detection and identification of can-
cer. Many strategies can be implemented to combat cancer such as early detection,
close monitoring of the patient after initial treatment, and others (Diamandis 2004).
Proteomic patterns through mass spectrometry techniques have shown a promising
strategy to diagnose cancer.

Mass Spectrometry (MS) is an analytical chemistry technique that was intro-
duced to help to identify the amount and type of chemicals present in a sample
by measuring the mass-to-charge ratio and abundance of gas-phase ions. The mass
spectrometers consist of three principal elements: an ion source, a mass analyzer,
and an ion detection system (Aebersold and Mann 2003). The ionization is the first
step in mass spectrometry analysis. The second step is the separation of the ions
according to their mass to charge ratio. Finally, the compounds are detected and
the relative abundance of each of the resolved ionic species is recorded. The output
of the detector is a mass spectrum presented in a plot of the relative abundance or
relative intensity as a function of the mass-to-charge ratio, see Fig. 8.1.
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Fig. 8.1 Components of a mass spectrometer

In the last decade, MS data analysis has become an increasingly prominent field
allowing the identification, quantification, and characterization of peptides and pro-
teins in biological samples. It has been applied to discover patterns of differentially
expressed protein in clinical samples such as blood serum. Especially, biomarker
identification that can be used for diagnosis and monitoring of many diseases
(Cravatt et al. 2007). The Matrix Assisted Laser Desorption/Ionization Time-Of-
Flight (MALDI-TOF) and Surfaced-Enhanced Laser Desorption/Ionization Time-
Of-Flight (SELDI-TOF) are high-throughput technologies for the acquisition of
protein expression profiles from biological fluids (serum, plasma, etc.). The use of
these technologies, with statistical modeling, is essential for (1) the identification of
novel protein biomarkers of disease and (2) the classification of a new unseen mass
spectrum.

MS data are given by the number of mass-to-charge ratios (m/z). Tens of
thousands of m/z are available in the data but not necessarily all are used to MS data
classification. It is reasonable to have a feature extraction procedure that is able to
decrease the effects of noise, reduce dimension, and define new features to represent
the data. These new features are used to develop a good classification model (Das
2001). In the last decades, MS data analysis for cancer identification has focused
on two main concepts (1) selecting features from MS spectrum and (2) developing
classification models for prediction. Both concepts should work together in order to
provide an accurate model for classifying MS data.

The conventional method for processing an MS spectrum is to perform a number
of preprocessing steps before developing any statistical models. These tools include
baseline correction, normalization, and denoising (Dubitzky et al. 2007, pp. 79–
102). The authors in Petricoin et al. (2002) developed a bioinformatics tool to
identify ovarian cancer using self-organizing clustering analysis and genetic algo-
rithm. In Tang et al. (2010), the authors proposed an approach for dimensionality
reduction and tested it using mass spectrometry data for ovarian cancer. They used
the mean, variance, skewness, and kurtosis in order to reduce the dimension. A
Kernel Partial Least Squares model is then developed for ovarian cancer classifi-
cation. Moreover, Li and Zeng (2016) proposed a method based on the model of
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uncorrelated linear discriminant analysis combined with variable selection method,
applied to serum SELDI-TOF MS for ovarian cancer identification. Wu et al. (2016)
proposed a classification model based on probabilistic principal component analysis
and support vector machine. The model was applied to ovarian cancer. Sharma
and Singh (2016) suggested the use of the neural network for diagnosis of ovarian
cancer.

de Noo et al. (2006) studied colorectal cancer using the MALDI-TOF serum.
In a randomized block design, pre-operative samples from 66 colorectal cancer
patients and 50 controls were used, and a classification model is built using a linear
discriminant analysis with double cross-validation. Another study on colorectal
cancer is given in Ward et al. (2008). The authors used a logistic regression
model to classify MS spectrum for 67 patients with colorectal cancer and 72 non-
cancer control subjects. Lung cancer was studied in Yildiz et al. (2007), the paper
investigated MS data to identify lung cancer cases from matched controls. MALDI-
MS data were used with two methods of analysis: the weighted flexible compound
covariate method and support vector machine.

Pancreatic cancer was the goal of the study given in Ge and Wong (2008).
The authors investigated the utility of three feature selection schemas Student t-
test, Wilcoxon rank sum test, and genetic algorithm. Some of the selected features
were then used to classify MS Pancreatic cancer through six different decision tree
classifier ensembles, such as Random forest, Adaboost, and others. Ohn et al. (2016)
used 2D polyacrylamide gel electrophoresis (2D PAGE) approach to generate the
2D proteome patterns, and they then compared three classification methods: genetic
algorithm combined with SVM, stepwise forward feature selection with K-NN, and
random forest. These methods were applied to identify breast cancer.

Lancashire et al. (2009) presented a review of the concepts related to neural
networks with their applications in mass spectrometry and focus on cancer studies.
In this study (Gromski et al. 2014), the researchers compared feature selection
methods with some classification approaches such as Random Forest with its
variable selection techniques and SVM combined with support vector machines-
recursive feature elimination, and they showed better performance is given by SVM.
Awedat et al. (2016) proposed a compressive sensing sampling approach to reducing
the dimension. They showed L2-algorithm with regularization terms has better
performance than standalone L2-algorithm.

Wavelet analysis has been shown potential application for MS classification to
(a) reducing dimension, (b) extracting features, or (c) denoising data. In Yu et al.
(2005), a procedure to classify ovarian cancer based on MS data was developed. The
authors combined binning, Kolmogorov-Smirnov test, wavelet analysis, and support
vector machines to preprocess and develop a classification model, The authors used
the db4 wavelet. Another classification approach of proteomic MS data based on bi-
orthogonal discrete wavelet transform and support vector machines was proposed in
Schleif et al. (2009). The authors used bior3.7 wavelet for denoising purposes. Du
et al. (2009) proposed a workflow for MS classification based on wavelet analysis,
Kolmogorov-Smirnov test with bagging predictor. The wavelet sym8 was used to
denoise the MS data. Nguyen et al. (2015) showed that combining Haar wavelet



178 A. Cohen et al.

coefficients and genetic algorithm provides a good selection feature subset for the
performance classification, but genetic algorithms require a random initialization
that may lead to different results. The Wavelet-based function mixed model, which
generalizes the linear mixed models to the case of functional data was used in order
to analyze MS-data (Morris et al. 2006).

The goal of this chapter is to present a new approach for MS data classification.
The proposed approach is original and based on a combination between principal
component and wavelet analyses in addition to a new T 2 statistic. Most of the
previous research using wavelet analysis did not show how they did select the
wavelet family for their analysis. To this end we propose a prior study to select
the best-suited wavelet for the analysis. This will help future MS research to
have a subjective tool for wavelet selection. The principal component analysis is
applied to six features (statistics) that are calculated on the wavelets coefficients

(approximation and details). Next, we propose a new statistic T 2 =
√

T 2
a + T 2

d

combining T 2 on the approximation and details coefficients, respectively. Finally,
a support vector machine model is built on the new aforementioned statistic. The
proposed approach shows high accuracy, specificity, and sensitivity. We provide a
detailed description of each step to ensure the reproductivity of the present research
work.

This chapter is organized as follows. Section 8.2 presents the proposed approach
for mass spectrometry data classification. In Sect. 8.3, experiments and results are
given, and Sect. 8.4 presents conclusions and some directions of research.

8.2 The Proposed Approach

We have designed and implemented a new approach to classify mass spectrometry
data. The main steps of our proposed approach are illustrated in Fig. 8.2. The
philosophy of the method consists of subdividing the MS sample into several
windows and extracting from them some features that will help discriminate/classify
the entire MS spectrum. The wavelets analysis has potential capabilities to extract
features especially when noisy data is used such as the case with MS data. The
principal component analysis with T 2 statistic is used in order to aggregate the
features from the wavelets coefficients into one statistic.

The proposed approach can be implemented as follows:
In this approach, each MS spectrum is represented by a T 2 statistic calculated

into the feature space of the principal component analysis. The latter is applied to the
features (Energy, Mean, Kurtosis, Skewness, Variance, and Coefficient of Variation)
of the wavelets coefficients. This approach will be applied to a real dataset in the
next section.
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1: Input data: MS spectrum X of length L
2: Divide X into n samples of length N = 2J , and rearrange X into a data matrix Z(N×n)
3: Apply Discrete Wavelet Transform using bior3.1 to each column of Z(N×n); see Sect. 8.2.1
4: Compute [Energy, Mean, Kurtosis, Skewness, Variance, and Coefficient of Variation (CV)] of

the approximation and details wavelets coefficients as follows:

Energy =
∑

w2
i ; Mean =

∑

wi/m (8.1)

V ariance =
∑

(wi −Mean)2/(m− 1); CV =
√
V ariance

Mean
(8.2)

Skewness = E

[

(

X − μ√
V ariance

)3
]

; Kurtosis = E

[

(

X − μ√
V ariance

)4
]

(8.3)

The data look now as follows, for both approximation and details coefficients:

Feature =

Energy Mean Variance Skewness Kurtosis CV
Window1 E1 M1 V1 Sk1 Ku1 CV1

Window2 E2 M2 V2 Sk2 Ku2 CV2
.
.
.
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.
.
.

.

.
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.
.
.

.

.

.
.
.
.

Windown En Mn Vn Skn Kun CVn

5: Apply Principal Component Analysis to Featureaj and Featuredj data matrices, and select
a number of principal components (reduced space)

6: Compute T 2
aj

and T 2
dj

statistics corresponding to the approximation and details wavelets
coefficients, respectively, in the reduced space, see Sect. 8.2.2

7: Develop an SVM model on the T 2 =
√

T 2
aj
+ T 2

dj
statistic, see Sect. 8.2.3

where wi are the wavelet coefficients (either approximations or details), m is the number of
coefficients, L is the length of the MS, J is a natural number, and aj and dj are the approximations
and details wavelet coefficients, respectively.

8.2.1 Wavelets Analysis

Wavelet analysis is a mathematical tool that consists of projecting data into a
time-frequency representation. The theory of Multi-Resolution Analysis (MRA)
has linked wavelets theory to filter analysis. It opened the door to apply wavelets
to image processing and also resulted in the implementation of the Fast Wavelet
Transform (FWT) algorithm (Mallat 1989; Misiti et al. 1996). Wavelets func-
tions are grouped by families such as Haar, Daubechies, Coiflet, Symlet, and
Biorthogonal (Daubechies 1992). The Continuous Wavelet Transform (CWT) is a
redundant transformation since the scale and the translation parameters are changed
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Fig. 8.2 The proposed method for MS classification

Fig. 8.3 The discrete wavelet transform through filter banks

continuously. The Discrete Wavelet Transform (DWT) is computationally efficient
and can be achieved by the discretization of the scale s and translation τ parameters,
as follows:

ψj,k(t) = 2j/2ψ(2j t − k) (8.4)

where s = 2j and τ = ks; j, k ∈ Z.
These wavelet bases are orthogonal and defined in the framework of the Multi-

Resolution Analysis (MRA), which provides a multiscale decomposition using
orthogonal wavelets families across filter banks, see Fig. 8.3.
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The wavelets coefficients of the DWT, approximations aj (k) and details dj (k),
are given as follows:

aj (k) =
l

∑

i=0

h[i]aj−1[2k − i] (8.5)

dj (k) =
l

∑

i=0

g[i]aj−1[2k − i] (8.6)

where a0 = x the original signal, j represents the decomposition scale; k ∈ Z; l is
the filter length; h and g are the scaling and wavelets filters, respectively.

The past research publications in bioinformatics have used the shrinkage tech-
niques, which consist of thresholding wavelets coefficients. These techniques
have shown a good performance for reducing noise in mass spectrometry data.
Several thresholds have been developed, VisuShrink (Donoho and Johnstone 1994),
RiskShrink, SUREShrink (Donoho and Johnstone 1995; Donoho 1995), FirmShrink
(Gao et al. 1997; Gao 1998), to name a few. One of the benefits of the wavelet
transform is the plenty of the wavelets functions developed over the past decades,
but from such advantage arises the question of how to select a wavelet that is best
suited for analyzing MS data.

There are two approaches in order to choose a wavelet for a specific signal. First,
the qualitative methods such as orthogonality, symmetry, and compact support.
Second, the quantitative measures such as energy, entropy, mutual Information,
conditional entropy, and energy-to-Shannon entropy ratio. In this work, we used
the energy-to-Shannon entropy ratio, which is defined as:

R = Energy

Entropy
=

∑N | wt(s, i) |2
−∑N

pi log2 pi
(8.7)

where N is the number of wavelet coefficients and wt represents the wavelets

coefficients, s is the scaling parameter, and pi = |wt(s,i)|2Energy
.

The set of wavelets that has given a large energy-to-Shannon entropy ratio
should be considered the candidate wavelets, one can choose the wavelets that have
produced the largest energy-to-Shannon entropy ratio.

We conducted a preliminary study to choose which wavelet will be used to
extract features. We considered 58 wavelets, and by using the Breast cancer Mass
Spectrometry data presented in Sect. 8.3. The largest average energy-to-Shannon
entropy ratio is equal to 49.88 and given by bior3.1, see Fig. 8.4. Therefore, we
chose the biorthogonal wavelet (Cohen et al. 1992) bior3.1 as the best-suited
wavelet of the analysis.
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Fig. 8.4 The average energy-to-Shannon entropy ratio using 30 MS Spectrum and 58 Wavelets.
dbN: Daubechies of order N; Sym: Symlet; Coif: Coiflet; bior: Biorthogonal, dmey: discrete Meyer

8.2.2 Principal Component Analysis and Hotelling T 2 Statistic

Principal component analysis (PCA) (Jolliffe 1986) is widely used for data explo-
ration and interpretation. Principal component analysis of a data matrix provides
new uncorrelated variables (principal components) whose variances are as large as
possible. Consider a normalized data matrix, with p variables and N observations.

Z =

⎛

⎜

⎜

⎜

⎝

z11 z12 . . . z1p

z21 z22 . . . z2p
...

...
. . .

...

zN1 zN2 . . . zNp

⎞

⎟

⎟

⎟

⎠

(8.8)

The covariance matrix of Z can be approximated as:

�̂ = 1

N − 1
ZT Z = PΛPT (8.9)
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where Λ = diag(λ1, λ2, . . . , λp) with λ1 ≥ λ2 ≥ . . . ,≥ λp. λi are the eigenvalues
and P are the eigenvectors of �̂. According to λi’s, P and Λ could be divided into
a feature space (feat) and a residual space (res). We can then rewrite P and Λ as
follows:

P = [

Pf eat Pres

]

(8.10)

Λ =
[

Λfeat 0
0 Λres

]

(8.11)

The Hotelling T 2 statistic can then be computed as follows:

T 2 = ZPfeatΛ
−1
f eatP

T
f eatZ

T (8.12)

where T 2 is the Hotelling statistic calculated into the multivariate feature space of
the principal component analysis, and PT is the transpose of P . The number of
components in the feature space can be determined by using techniques such as the
cumulative explained variance and the scree plot. In our approach, the number of
principal component in the feature space is determined by the cumulative explained
variance technique.

8.2.3 Support Vector Machines

The Support Vector Machines (SVM) are one of the most used statistical learning
methods for classification and regression. Classification using SVM can handle
problems where a training set S is linearly separable or linearly non-separable. The
kernel approach allows the training data to be projected into a higher dimensional
feature space where the data become separable (Shawe-Taylor and Cristianini 2004;
Cristianini and Shawe-Taylor 2000; Vapnik 2013). This property makes the use of
SVM valuable for many applications.

Given a training set of pairs (Xi, Yi), i = 1, . . . , N where Xi ∈ Rn and Y ∈
{1(cancer),−1(Non − cancer)}N , the support vector machines find a hyperplane
that separates the two classes. The generalized optimal separating hyperplane is
determined by w that minimizes the following optimization problem (Cortes and
Vapnik 1995):

1

2
wTw + C

N
∑

i=1

εi (8.13)

subject to

yi(w
T φ(xi)+ b) ≥ 1− εi; εi ≥ 0 (8.14)
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where the training set xi is mapped into a higher dimension space using the function
φ. C is a positive constant (regularization parameter). It is shown that the problem
presented in Eqs. (8.13)–(8.14) depends only on the inner product of x. Therefore,
the inner product in the high dimensional feature space can be performed in the
input space via the kernel functions. Many kernel functions exist such as polynomial
and Gaussian Radial Basis Function (RBF). The Gaussian kernel has given a great
attention and defined by:

K(x, x′) = exp

(

− γ || x − x′ ||2
)

(8.15)

where γ is the Kernel parameter. In order to find the best decision boundaries,
the hyperparameters C and γ should be controlled. The hyperparameter opti-
mization can be used to select C and the Kernel parameter. Methods such as
grid search, random search, and Bayesian optimization are often used for such
purpose. In this work, we used a grid search on C ∈ {2−8, 2−7, . . . , 28} and
γ ∈ {2−10, 2−9, . . . , 210} to select the hyperparameters C and γ . We run a 50-fold
cross validation on the training data set to determine the hyperparameters as follows:
C = 2 and γ = 0.0009765

8.3 Experiments and Results

The data used are low-mass range SELDI spectra derived from patients with breast
cancer and from normal controls. They can be found online at the Department
of Bioinformatics and Computational Biology at the University of Texas M.D.
Anderson Cancer Center (P. datasets for Breast Cancer 2004). The datasets were
generated using IMAC-3 protein chip and sample application was performed using
the Biomek 2000 Laboratory Automation Workstation robot (Beckman Coulter,
Fullerton, CA). There are 33,885 m/z values and 156 samples where control
(normal) patients contribute with 57 samples and 99 samples are cancer. The
analysis was done using Matlab and R. The authors are willing to share the code
used in this work if requested by e-mail. An example of a sample of cancer and a
sample from normal patients is in Fig. 8.5.

In the experiment, each MS sample is subdivided into 64 windows of 28 = 256
observations that is 32,768 m/z values. Since the data have 33,885 values the
remaining values are not used. The data then are arranged into a matrix data of 256
rows and 64 columns. Next, the discrete wavelet transform is applied to each column
(window) using the bior3.1 wavelet as shown in Sect. 8.2.1. This results in obtaining
the approximation coefficients and details coefficients for each window. Afterwards,
the features presented in Sect. 8.2 are computed for each window, therefore the
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Fig. 8.5 An example of MS samples from cancer and normal patients

data are now arranged as two matrices data of 64 rows (windows) and 6 columns
(features), one matrix data is based on the approximations and the other is given by
the details coefficients. Each window is represented by six features of the wavelets
coefficients, namely Energy, Mean, Variance, Skewness, Kurtosis, and Coefficient
of Variation (CV).

Next, the principal component analysis is conducted on the two data matrices,
and the number of principles components are selected based on the explained
variances. We selected a number of principal components that explain at least 90%
and at most 95% of the data. Then, the Hotelling T 2

aj
and T 2

dj
are calculated into

the reduced space, see Sect. 8.2.2, for the approximation and details coefficients,

respectively. Finally, T 2 =
√

T 2
aj
+ T 2

dj
statistic is then calculated to represent the

original MS spectrum, see Fig. 8.6. Each MS sample will be given by T 2 statistic,
and the classification model will be built on T 2 statistics for each patient.

8.3.1 Results and Performance

The classification model is built in two phases, a training phase, and a test phase.
80% of the dataset is used as the training dataset (78 Cancer, 46 Normal) and 20%
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Fig. 8.6 T 2 statistic for normal and cancer MS spectrum

as the testing data set. The MS data are then classified as normal or cancer. The
classification results will be given in terms of accuracy, sensitivity, and specificity,
as follows:

Accuracy = T P + TN

T P + TN + FP + FN
, (8.16)

Sensitivity = T P

T P + FN
, (8.17)

Specificity = TN

TN + FP
, (8.18)

where TP is True Positive, TN True Negative, FP False Positive, and FN False Neg-
ative. The proposed framework achieves a reasonable classification performance.
The combination of wavelets coefficients and higher order statistics provide useful
discriminatory information about MS data.

The classification model is developed using the training set and then tested using
the testing samples. The predictive procedure optimizes the model parameters to
build a model that fits the training data as well as possible, which then may lead
to an overfitting. Cross-validation can be used as a model validation technique for
assessing how the results of a statistical analysis will generalize to an independent
data set, therefore, this will help overcome the overfitting problem.

We performed a k-fold cross-validation procedure in order to avoid overfitting
and evaluate the generalization capabilities of our model. The parameter k varies
into {5, 10, 20, 50}. A Monte-Carlo simulation repeating the whole process includ-
ing the selection of the training and testing sets is also performed. 100 simulation
runs were conducted. Consequently, the results reported are the averages and
standard errors of the performance measures given in Eqs. (8.16)–(8.18).

Table 8.1 shows a summary of the performance results of our proposed method.
The accuracy classification is 100% on average with 0 standard error. The average
sensitivity and specificity are equal to 100% for the training set and the testing set.
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Table 8.1 The average (standard error) of the performance results using 100 replications of
k-Fold cross validation, and the hyperparameters C = 2 and γ = 0.0009765 obtained from the
grid search optimization

k ↓ Accuracy(SE) % Sensitivity Specificity

Training set Testing set Training set Testing set

5 99.91 (0.12) 1 (0) 1 (0) 1 (0) 1 (0)

10 100 (0) 1 (0) 1 (0) 1 (0) 1 (0)

20 100 (0) 1 (0) 1 (0) 1 (0) 1 (0)

50 100 (0) 1 (0) 1 (0) 1 (0) 1 (0)
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Fig. 8.7 The first two principal components on T 2 statistic for 99 cancer samples and 57 normal
samples

In order to investigate the excellent performance of the proposed method, we
conducted a principal component analysis (PCA) on the 156 samples of MS data (57
normal and 99 cancer). The PCA is applied to a data matrix of 156 rows (patients)
and 64 columns (T 2 statistics). The results given in Fig. 8.7 show clearly that the
proposed method ingeniously separates the cancer MS samples from the Normal
MS samples.

This result has a valuable scientific impact on public health, especially on the
early cancer detection. In fact, automatic classification of these mass spectrometry
patterns will definitely help physicians in the diagnosis of diseases such as cancer.
In addition, the higher classification performance we have, the more confident in the
diagnosis we become.
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8.4 Conclusion

The MS data are important for clinical diagnosis and health advances. Preprocessing
methods and transformation such as wavelets analysis and principal component
analysis can help face high dimensionality and reduce noise.The accuracy of the
proposed model is 100% on average with 0 standard error. The average sensitivity
and specificity are equal to 100% for the training set and the testing set. This paper
contributes to the development of accurate models for MS classification. We aim at
applying the proposed method to other MS data of different types of cancer.
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Chapter 9
Statistical Power and Bayesian Assurance
in Clinical Trial Design

Ding-Geng Chen and Jenny K. Chen

9.1 Introduction

A well-known practice in clinical trial design is to determine the appropriate
number of patients (i.e., sample size) needed for adequate statistical power and
for addressing clinical objectives. Based on this common knowledge, most clinical
trials are “powered” at 80% to ensure the “success” of the planned clinical trials.
However, it is not uncommon that a failed trial could be found even when all the
protocols are followed. What could be wrong then? We often hear the statement,
“my clinical trial is powered at 80%, so I have an 80% chance of being successful.”
Intuitively this seems correct, but in reality this is unlikely, and the actual chance
for a successful trial could be much lower. In fact, statistical power is often not the
same as the probability of success, even if we purely define “success” as seeing a
statistically significant treatment effect.

Let’s consider a typical superiority trial, which provides evidence that a new
drug treatment is better than a current standard placebo treatment. In designing this
trial, we usually aim for a statistical power of 80%. Does this mean that the new
trial has an 80% chance of showing the better efficacy of the new drug treatment?
Unfortunately no, as this is not true for many reasons. For example, one of the
many reasons is how we perform power calculations. In order to calculate statistical
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power, we have to have prior knowledge of the expected treatment difference, the
underlying inter-patient variability, the accepted type-I error rate (alpha), and the
sample size. However, we don’t know the true value of the expected treatment
effect, so we resort to estimates instead, estimates that are mostly based on previous
experiences. These estimates, however, can have different levels of uncertainty. The
true treatment effect may be smaller than the estimate, which would then give a
smaller statistical power. As a result, the statistically powered trial may not provide
a good assurance of success for the trial being planned.

Conceptually, the statistical power is defined as the probability of rejecting the
null (such as when the new drug has similar efficacy to the placebo) given that
the true clinical trial treatment effect equals a predetermined value. Therefore,
the statistical power is a conditional probability to this unknown predetermined
value, which could be very different from the observed treatment effect estimate.
Whenever this prior estimate is far away from the truth, the calculated statistical
power could be very misleading. This could lead to a scenario where a well-designed
clinical trial is ineffective and a failure.

By incorporating the uncertainties of prior estimates on treatment effects and
other clinical parameters, a Bayesian assurance has been developed as an alternative
to statistical power, which is a paradigm change in clinical trial design. This is seen
in O’Hagan and Stevens (2001), and O’Hagan et al. (2005). Bayesian assurance
calculates the unconditional probability that a trial will lead to the desired outcome,
which is different from statistical power, the conditional probability based on the
assumed unknown treatment effect. More development are followed by Chuang-
Stein (2006), and Chen and Ho (2017). Even though this new concept is intuitively
important, it still remains new to most clinical trialists. As a result, further promotion
of this concept is needed, and thus leads to this chapter. In this chapter, we outline
the concept of assurance and discuss the computations of assurance using a Monte-
Carlo simulation-based approach.

In Sect. 9.2, we outline the concept of paradigm change from conventional
statistical power to Bayesian assurance. In Sect. 9.3, we show the Monte-Carlo
simulation-based approach to calculate statistical power and assurance. Finally, in
Sect. 9.4, a discussion is provided.

9.2 A Paradigm Change from Statistical Power to Bayesian
Assurance

9.2.1 Conventional Statistical Power and Its Limitations

Every clinical trial compares whether a new drug is better than the placebo. In order
to demonstrate the efficacy of a new drug, a large enough sample of patients is
needed so that statistical tests (such as t-test and χ2-test) can be used to statistically
test whether the new drug is more effective than the placebo.
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Expressing this in statistical terms, we define the null hypothesis, H0, as the new
drug and the placebo having no difference in efficacy. The alternative hypothesis,
Ha, is that the new drug is more effective than the placebo. The hypothesis test will
test whether or not there is a statistically significant drug effect. Associated concepts
include type-I error and type-II error, where type-I error (α, typically controlled at
5%) is defined as the probability of rejecting the null hypothesis when it is true, and
type-II error (β) as the probability of failing to reject the null hypothesis when it
is false. Statistical power (π ) is then defined as the probability of rejecting the null
hypothesis when it is false (i.e., π = 1 − β), which is typically set between 0.8 and
0.9 in most clinical trials. The associated sample size is then determined based on
this power and the type-I error rate.

Following the notations from O’Hagan et al. (2005), we denote R as rejecting
the null hypothesis. The conventional definition of statistical power can then be
expressed as

π (θ) = P (R|θ) (9.1)

where π(.) is the power function and θ is a vector of the assumed parameters, such
as the treatment effect, sampling variance, and possible others. It can be seen that
the statistical power equation (9.1) is a conditional probability of R conditioned on
the unknown parameter vector θ. The value of this power and the associated sample
size calculation is then dependent on the unknown parameter vector θ.

However, θ cannot be obtained precisely in real clinical trials as pointed out in
O’Hagan et al. (2005) and others. It is rare that the estimate of θ from previous
clinical trials will be close to the predetermined parameter value, which then leads
to overpowered or underpowered clinical trials.

To illustrate the limitations of conventional statistical power in designing a
confirmatory trial on a promising new drug, let’s say that we had a small trial with
n0 = 20 (for each treatment) patients against a matching placebo which yielded an
estimated treatment effect of d = 2.5 units and standard deviation of σ = 8 units.
The effect size is calculated to be 0.3125 (=2.5/8) with a t-statistic of 0.988 and a
one-sided p-value of 0.165. This p-value is larger than the one-sided significance
level of 0.025, so the trial is not statistically significant. However, it is promising for
further study due to the moderate effect size of 0.3125.

Based on this finding, a new confirmatory trial is planned with a one-sided test at
α = 2.5%, power = 0.80, and a sample size of 162 per group.

However, the estimated treatment effect of d = 2.5 and standard deviation of
σ = 8 are point estimates and are subject to errors. It is then more practical to
say that both the treatment effect and the population standard deviation are in a
range where the treatment effect is mostly in the range of (1.5, 3.5) and the standard
deviation is in the range of (6, 10). With these guesstimates, we can further assume
that the treatment effect is distributed normally with a mean of the observed 2.5
and a standard deviation of 0.5, i.e., d ∼ N(2.5, 0.5). The standard deviation would
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be distributed as an inverse-gamma distribution where the two parameters can be
determined from the observed σ = 8 and 1 standard deviation away from the true
σ. With these data from the small trial, if d = 2, the power would be 0.61 (i.e.,
underpowered confirmative trial) with a sample size of 162. If d = 3, the power
would be 0.92 (i.e., overpowered confirmative trial). Similarly, instead of σ = 8
estimated from the small trial, if σ = 7, the power would be 0.89 (i.e., overpowered
confirmative trial) and if σ = 9, the power would be 0.70 (i.e., underpowered
confirmative trial).

In practice, we rarely know the truth of d and σ as well as other design
parameters. Therefore, the resulting power calculation and sample size are subject
to all these uncertainties and seriously limit the success of designed clinical trials.

9.2.2 Bayesian Assurance in Clinical Trials

To eliminate these limitations of conventional statistical power, O’Hagan and
Stevens (2001) advocated the use of “assurance” (denoted by γ ), which is defined
as an unconditional probability to reject the null hypothesis, i.e., γ = P(R), where
R is rejection of the null hypothesis. Using the Bayesian framework, the assurance
can be expressed as the expected power to the parameter vector space of θ . It can be
seen that

γ = P(R) =
∫

P (R, θ) dθ =
∫

P (R|θ) P (θ) dθ = Eθ (P (R|θ)) (9.2)

where the expectation is to the (prior) probability distribution of parameter vector
space of θ .

With this definition, the “Bayesian assurance” provides a bridge between the
frequentists’ approach with statistical power and the Bayesian paradigm of aver-
aging or integrating out the conditional statistical power with all possible (prior)
values of the parameter vector space of θ . Bayesian assurance can then provide an
unconditional probability or evidence to assess the success of a clinical trial and is
therefore more realistic and robust than that of conventional statistical power.

To our experience and knowledge in clinical trials, it is very reasonable to use
this hybrid frequentist-Bayesian approach in study design since prior information
has always been used to calculate sample size. Whenever this prior information for
the unknown parameter θ, (such as treatment effect) is sufficiently strong, the prior
variance would approach zero, and the assurance equation (9.2) would approach the
conventional statistical power defined in Eq. (9.1). On the other hand, if the prior
information is weak, the prior variance would be large and the assurance defined in
Eq. (9.1), which averages all the potential values of this vague prior distribution,
would be more appropriate than the conventional statistical power to assess the
probability of a successful trial.
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9.3 Computational Implementation on Bayesian Assurance

With the conceptual paradigm change from the conventional statistical power
defined in Eq. (9.1) to the Bayesian assurance defined in Eq. (9.2), the next logical
step to actually show how to calculate the Bayesian assurance. It can be seen
that the Bayesian assurance defined in Eq. (9.2) is the expected power of the
parameter vector space of θ. θ can be high dimensional, such as the treatment
effect or the associated variance from normally distributed data. In this situation, the
computation in Eq. (9.2) would involve high-dimensional integration which would
be impractical to implement in statistical software. This, however, can be resolved
with a Monte-Carlo (MC) simulation-based statistical computing algorithm.

As proposed in O’Hagan et al. (2005) for assurance calculation, the general
principle is to incorporate sampling from the prior distribution of θ before sampling
from the data. Specifically, the general algorithm to compute the Bayesian assurance
with MC of outcomes A1, A2, . . . , Ak is as follows:

1. Define counters I for iteration and T1, T2, . . . ,Tk for the assurances, and set all
counters to 0. Set the required number, N. Set I = 0 and start looping.

2. Sample θ from the prior distribution.
3. Sample the data and calculate the sufficient statistics using the model and the

sampled value of θ from step 2.
4. For j = 1, 2, . . . , k, increment Tj by 1 if the outcome Aj has occurred.
5. Increment I: If I < N; go to step 2.
6. For j = 1, 2, . . . , k, estimate assurance γ j = P(Aj) by Tj/N.

Chen and Ho (2017) detailed the MC for several types of data and provided the
R program for implementation. In this chapter, we illustrate this MC for normally
distributed data due to its extensive use in clinical trials.

For normally distributed data, we typically consider two situations depending
on whether the variance parameter is known or not. In the situation where the
variance is assumed to be known (although this is rare in reality), the computational
implementation of Bayesian assurance would be very straightforward since an
analytical formula can be derived from Eq. (9.2) as seen in Chen and Ho (2017).
A more realistic situation is that the variances are unknown. In this situation, the
commonly used test statistic is the Student t with the test statistic formulated as
t = x2−x1

σ̂
√

1
n1+ 1

n2

which follows the Student t-distribution with degrees of freedom,

df = n1 + n2 − 2, where σ̂ is the estimated pooled standard deviation (see Chen et
al. 2017, for details).

The standard test for superiority of a new drug has a null hypothesis of no
treatment difference H0: δ = 0, against the one-sided alternative Ha: δ > 0, which
is to reject the null hypothesis if t > tα, df with α = 0.025. The statistical power can
then be calculated based on this t-distribution.

Based on this distribution, the calculation of Bayesian assurance can also be done
by using two-dimensional numerical integration over the parameter space of δ and
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σ 2 with the non-central t-distribution. However, the Monte-Carlo simulation-based
approach can be easily implemented in the following steps:

1. Set counter I = 0 and the number of simulations, N (say, N = 1,000,000).
2. Sample δ and σ 2 from their prior distributions.

3. Sample x2 − x1 ∼ N
(

δ,
(

n−1
1 + n−1

2

)

σ 2
)

and (n1 + n2 − 2) σ̂
2/

σ 2 ∼ χ2
df ,

calculate the t-test statistic and statistical power.
4. Estimate the assurance with the average of the resulted sample of N statistical

powers.

This MC approach can be easily implemented in R as follows:

# Function for Bayesian Assurance for Normal Data with unknown sigma (ANDus)
where:

# nsimu = the number of MC simulations, recommended to be >1,000,000
# prior.mean = mean value for prior distribution
# prior.sd = standard deviation for prior distribution
# prior.size = sample size from the prior clinical trial
# post.size = sample size from planned new trials so Bayesian assurance will be

calculated
ANDus = function(nsimu,prior.mean,prior.sd,prior.size,post.size){
sim.pow = rep(0, nsimu) # temp-holder for the statistical power
# for-loop to calculate the statistical power
for(i in 1:nsimu){

# sample chisq for sigma since (n-1)*sˆ2/sigmaˆ2 ∼chisq(n-1)
sd = sqrt((prior.size-1)*prior.sdˆ2/rchisq(1,df=prior.size-1))
# calculate the standard deviation for the mean
prior.sdm = sqrt(2/prior.size)*sd # prior sd for the mean
post.sdm = sqrt(2/post.size)*sd # posterior sd for the mean
# sample the prior
Delta = rnorm(1, prior.mean,prior.sdm)
# with the sampled prior, calculate the power
sim.pow[i] = pnorm(1.96*post.sdm,mean=Delta,

sd=post.sdm,lower.tail=FALSE,log.p=FALSE)
} # end of i-loop

# Bayesian assurance is the average of simulated power
mean(sim.pow)
} # end of “ANDus” function

We can then call this function to calculate the Bayesian assurance using

> ANDus(1000000,2.5,8,20,162)

which produces the Bayesian assurance of 0.605. This is smaller than the
conventional statistical power of 0.8.
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Table 9.1 The conventional
statistical power and Bayesian
assurance for different sample
size per treatment with the
setup of mean difference of
2.5, standard deviation of 8,
and sample size of 20 from
prior clinical trial

Sample size Statistical power Bayesian assurance

10 0.097 0.151
40 0.281 0.370
70 0.451 0.475

100 0.594 0.535
130 0.709 0.576
160 0.796 0.604
200 0.876 0.631
250 0.937 0.656
300 0.969 0.673

Fig. 9.1 Statistical power and Bayesian assurance for a range of sample sizes

For further illustration, we calculated the conventional statistical power and
Bayesian assurance for a series of different sample sizes in Table 9.1.

It can be seen from Table 9.1 that the statistical power is generally larger than the
Bayesian assurance for larger sample sizes (>80 in this simulation) since Bayesian
assurance is an average of the 1,000,000 MC simulated statistical powers. However,
for small sample sizes (<80 in this simulation), the Bayesian assurance is larger than
the conventional statistical power due to the incorporation of prior information. It
is observed that the statistical power is equal to 0.8 for sample size 162 per group
due to the design. These properties can be graphically seen in Fig. 9.1, where the
dashed line indicates the conventional statistical power and the solid line indicates
Bayesian assurance. The vertical arrows indicate the associated statistical power at
0.8 and the Bayesian assurance of 0.605 for the designed sample size of 162.
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9.4 Discussion

In this chapter, we discussed the transition from conventional statistical power to
Bayesian assurance proposed in O’Hagan and Stevens (2001) in designing clinical
trials. The conventional statistical power is the probability of rejecting the null
hypothesis conditional on the specified treatment effect, whereas the Bayesian
assurance is the unconditional probability of a successful clinical trial averaged
over the parameter space of this pre-specified treatment effect. The calculation
of assurance involves a high-dimensional integration that would have to resort to
numerical integration. We promote the Monte-Carlo simulation-based approach and
illustrated its implementation in R for clinical trials with normally distributed data.

It is common knowledge that a traditionally powered clinical trial at 80% does
not guarantee 80% probability of success since the power calculation is based on a
pre-specified, fixed treatment effect that will most likely be different from the true
treatment effect. Typically, the Bayesian assurance is lower than the statistical power
for a sufficient sample size, even though we observe that the Bayesian assurance
could be higher than the statistical power for underpowered clinical trials as seen
in Table 9.1 and Fig. 9.1. When compared to traditional power, we believe that
Bayesian assurance can provide a more realistic and robust measure of probability of
success. Therefore, we recommend the application and implementation of Bayesian
assurance in clinical trial design.
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Chapter 10
Equivalence Tests in Subgroup Analyses

A. Ring, M. Scharpenberg, S. Grill, R. Schall, and W. Brannath

10.1 Introduction

10.1.1 Why Are Subgroup Analyses Important Within
the Framework of Evidence-Based Medicine?

When aiming to receive marketing authorisation for a new drug product, the critical
step in drug development is the performance of the drug in confirmatory Phase 3
trials, in the general patient population of the relevant therapeutic area. Within
the clinical development programme, these confirmatory trials are typically larger
than earlier, exploratory Phase 1/2 trials, and include a wider patient population
(Friedman et al. 2010; Machin and Campbell 2005).

A. Ring (�)
Department of Mathematical Statistics and Actuarial Science, University of the Free State,
Bloemfontein, South Africa

medac GmbH, Wedel, Germany
e-mail: ringa@ufs.ac.za

M. Scharpenberg · W. Brannath
Faculty of Mathematics/Computer Sciences, Competence Center for Clinical Trials Bremen,
University of Bremen, Bremen, Germany

S. Grill
Faculty of Mathematics/Computer Sciences, Competence Center for Clinical Trials Bremen,
University of Bremen, Bremen, Germany

Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany

R. Schall
Department of Mathematical Statistics and Actuarial Science, University of the Free State,
Bloemfontein, South Africa

IQVIA Biostatistics, Bloemfontein, South Africa

© Springer Nature Switzerland AG 2018
Y. Zhao, D.-G. Chen (eds.), New Frontiers of Biostatistics and Bioinformatics,
ICSA Book Series in Statistics, https://doi.org/10.1007/978-3-319-99389-8_10

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99389-8_10&domain=pdf
mailto:ringa@ufs.ac.za
https://doi.org/10.1007/978-3-319-99389-8_10


202 A. Ring et al.

The primary objective of confirmatory Phase 3 trials is to demonstrate superior
(or sometimes non-inferior) efficacy of the new treatment over the control. There-
fore, these trials are randomised controlled trials which are powered adequately. It
is generally expected that the patient characteristics are balanced among the trial
treatments due to the randomisation; however, it is possible that the treatment effect
may vary within subgroups.

The statistical analysis is first performed for the primary endpoint, a pre-specified
outcome variable, for which average effects in each treatment group are compared.
However, both random variability and the impact of non-random variables could
have an impact on the outcome.

The magnitude of random variability (e.g. measurement errors) will affect the
precision of the estimates of treatment effect, and the sample size is selected at
the design stage to accommodate this variability. If non-random variables—patient
characteristics such as gender, age, ethnicity or metabolic genetic variations, or
comorbidities, such as previous experience of stroke, or exacerbations—have an
impact on the outcome, the average treatment effect in the total study population
might not be representative of the treatment effect in subgroups of the patient
population. Ultimately, it is important both from the public health perspective and
in the treatment of individuals to identify treatment effect modifiers in order to
select the best treatment for each condition (Varadhan and Seeger 2013). Therefore,
assessment of consistency of the treatment effect across subgroups is an important
part of Phase 3 clinical trials, which is also requested by regulatory guidelines (EMA
2013).

Confirmatory Phase 3 trials collect and report a large number of patient character-
istics. It is not uncommon that published trial reports present up to 20 or 30 analyses
aimed to statistically detect signals of heterogeneity for the overall interpretation of
the benefit-risk profile—including efficacy and safety—of the new drug (examples
are the empagliflozin outcome trial (Zinman et al. 2015) or the dabigatran RE-
LY trial (Dans et al. 2013)). As these subgroup analyses are typically uncontrolled
for multiplicity, signals may be generated due to the sheer volume of data and the
applied analyses that are generated in such trials, and due to the multiple medical
and demographic conditions that can be investigated for their impact; multiple
testing invariably inflates the type-I error for generating such findings.

A COCHRANE evaluation of gender-by-treatment interaction in meta-analyses
of randomised clinical trials found that “statistically significant . . . interactions are
only slightly more frequent than what would be expected by chance and there is
little evidence of subsequent corroboration or clinical relevance of sex-treatment
interactions” (Wallach et al. 2016). Thus almost all statistically significant gender-
by-treatment interaction effects represent type-I errors. However, there might be
other subgroups which could be more prone to interactions (e.g. comorbidities).
This problem leads to the need to separate the real subgroup differences from the
apparent subgroup differences (significant differences due to type-I error), and more
importantly, relevant from non-relevant heterogeneities (that is, heterogeneities that
are not only statistically significant but also clinically important). This second
question—namely to identify heterogeneity of drug efficacy of a relevant magnitude
within the therapeutic area—has often been neglected.
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10.1.2 Approaches to Perform and Interpret Subgroup
Analyses

Many strategies for subgroup analyses have been developed and discussed, sum-
marised in the reviews by Varadhan et al. (2013), Hemmings (2014) and Dmitrienko
et al. (2016).

• Descriptive subgroup analyses which only provide the estimate of the treatment
effect in each subgroup in addition to the average overall treatment effect, without
statistical testing.

• Exploratory subgroup analyses which aim to detect heterogeneity by performing
statistical interaction tests for a large number of subgroups. These types of
analyses should be interpreted in a non-confirmatory way but could be employed
to generate signals for further confirmatory investigation.

• Confirmatory subgroup analyses which test and confirm hypotheses that affect
subgroup effects. Few pre-specified covariates (e.g. identified in previous trials
or by pre-clinical or epidemiological plausibility) are examined regarding their
(statistically significant) impact on the endpoint.

Sometimes, challenges may arise because the trial data is reviewed from a
different perspective than originally planned during the design of the trial. Signals of
subgroup heterogeneity often only arise when large patient populations are studied,
which is during Phase 3. In the absence of information from pre-clinical studies or
medical knowledge about typical subgroup heterogeneity in a particular therapeutic
area, the sponsor designs Phase 3 trials for meeting the primary objective, and
hence plans subgroup analyses with the purpose to describe the data and to perform
exploratory subgroup analyses. Any finding of potential subgroup heterogeneity
would often not be resolved before applying for marketing authorisation unless
these signals are strong. When the data are later reviewed, e.g. by health authorities
searching for generalisability of the results and hence epidemiological evidence,
those authorities might interpret findings of subgroup heterogeneity in a confirma-
tory way when they would need to decide on the implementation and reimbursement
of new health technologies (Kent et al. 2010).

One of the fundamental issues is that the subgroup-by-treatment interaction (see
Sect. 10.2) as a covariate of the analysis is tested for statistical significance—that is,
one determines whether the hypothesis of subgroup homogeneity can be rejected.

Here we present an alternative, rather contrary approach: We propose to use tests
that allow one to confirm the homogeneity of treatment effects across subgroups
by rejecting heterogeneity. Thus we answer the question about the relevance
of apparent heterogeneity of treatment effects across subgroups by performing
equivalence tests (which in the present context we call consistency tests). Using
an appropriate characteristic, consistency of treatment effects across subgroups is
shown when the confidence interval for the characteristic is fully included within
pre-defined consistency margins. This approach allows one to demonstrate the
absence of relevant differences in treatment effects between the subgroups. Conven-
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tional tests of subgroup-by-treatment interaction cannot do that: the conventional
test can neither confirm homogeneity of treatment effects (absence of differences in
treatment effects between the subgroups), nor does it address the clinical relevance
of such differences (Ting 2017).

Importantly, this investigation is based on the scenario when the primary
objective, e.g. the demonstration of the superiority of one treatment over the other,
has already been accomplished. There are other methods which aim to estimate
treatment effects in promising subgroups when the trial failed to demonstrate the
primary objective (Tanniou et al. 2017), as well as adaptive designs which seek
to identify promising subgroups during the conduct of the trial and recruit more
patients in the subgroups in question (enrichment designs (Wassmer and Dragalin
2015)). These methods are not considered here because their aim is to utilise
heterogeneity between subgroups when it exists, while we aim to demonstrate the
consistency of subgroup effects.

10.1.3 Objectives and Organisation of This Chapter

This investigation has two aims:

1. To present a framework of using equivalence tests for judging the consistency of
treatment effects across subgroups; and to apply this framework to both normally
distributed and binary endpoints.

2. To develop considerations on the selection of appropriate equivalence margins
for such tests.

In Sect. 10.2, the general concept of those tests is developed, and the generalised
linear model as the basis for subgroup investigations is presented. In addition, the
setup of the simulations is described.

In Sect. 10.3, the tests are applied to models with quantitative (normally
distributed) endpoints, and results on the performance of the tests in relation to the
chosen margins are shown. Similarly Sect. 10.4 is devoted to binary endpoints. The
final Sect. 10.5 discusses similarities and differences of subgroup investigations for
the two types of endpoint, and summarises the recommendations for the selection
of the equivalence margins.

Throughout we assume that one randomised clinical trial with two treatments
has been performed, which aims to demonstrate the superiority of one treatment
over the other. For simplicity we assume that both treatments and the two subgroups
are balanced independently so that each combination of treatment and subgroup
comprises 25% of the trial subjects.
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10.2 The Concept of Testing Equivalence of Subgroup
Outcomes

10.2.1 Generalised Linear Model

The generalised linear model underlying the developments in this chapter is as
follows:

h (E (Yi |XiT ,XiS)) = β0 + βT XiT + βSXiS + βT SXiT S, (10.1)

where E(Yi|XiT , XiS) is the expected value of the response variable for the i-th
individual, h is a measurable function (link function),

XiT =
{

1 if subject i is in treatment group
0 if subject i is in control group

XiS =
{−0.5 if subject i belongs to subgroup 1

0.5 if subject i belongs to subgroup 2

(10.2)

and XiTS = XiTXiS. That is, βT represents the treatment effect on h(E(Y)), βS is
the subgroup effect, and βTS is the subgroup-by-treatment interaction. The above
parameterisation of XiS ensures that E(XiS) = 0 for the case of equally sized
subgroups considered here. Model (10.1) will be applied to the case of normally
distributed responses in Sect. 10.3, and to the case of binary responses in Sect. 10.4.

In further discussions, the subgroup specific treatment effects will be of interest.
They are defined as

δ1=h (E (Yi |XiT=1, XiS=− 0.5))−h (E (Yi |XiT=0, XiS=− 0.5))

=βT−0.5βT S (10.3)

and

δ2=h (E (Yi |XiT=1, XiS=0.5))− h (E (Yi |XiT = 0, XiS = 0.5))

= βT + 0.5βT S. (10.4)

From (10.3) and (10.4) it is easy to see that the difference in subgroup specific
treatment effects, δ2 − δ1, equals the interaction parameter βTS.

Furthermore, we define the overall treatment effect as

� = E (h (E (Yi |XiT = 1))− h (E (Yi |XiT = 0))) = βT . (10.5)

The parameter � thus quantifies the average effect of treatment on the expected
outcome on the linear predictor scale.
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In order to characterise the magnitude of the interaction, the following parameter
is defined:

φ = 1− min (δ1, δ2)

max (δ1, δ2)
. (10.6)

The parameter φ provides a simple characteristic of treatment effect heterogene-
ity in the subgroups. It tells us by which percentage the smaller subgroup specific
treatment effect is below the larger one. The parameter equals zero if the treatment
effect is homogenous across subgroups, and is equal to 1 if there is no treatment
effect in one of the subgroups. A value of φ = 0.5 indicates that the effect in
one of the subgroups is half of that in the other subgroup, which is a convenient
interpretation. The parameter φ is bounded by 2 when the treatment effect is non-
negative. Values of φ > 1 indicate a qualitative interaction (the treatment effects
in the two subgroups have different signs). Since qualitative interactions require
typically a rather complex biologic action (a reverse effect in one of the subgroups,
e.g. Mok et al. 2009) and values of φ ≤ 1 are sufficient to investigate the statistical
properties of the consistency test, only quantitative interactions are considered here.

Brookes et al. (2001, 2004) defined another parameter for the quantification of
the interaction in this context. This is done by regarding the subgroup-by-treatment
interaction (δ2 − δ1) relative to the overall treatment effect �, which leads to the
following ratio denoted by ψ :

ψ = δ2 − δ1

�
= βT S

βT
. (10.7)

While the formula for ψ is simpler than that of φ, its values are less convenient
to interpret. Again, ψ = 0 corresponds to no difference between the subgroups
(because βTS = 0), while given the overall treatment effect is positive (βT > 0), the
case of no effect in subgroup 1 leads to ψ = 2 (because the subgroups are balanced),
the case of subgroup 1 having half the effect of the other leads to ψ = 2/3. If the
treatment effect in subgroup 1 exceeds that in subgroup 2, we obtain negative values
of the same magnitude for ψ .

For further considerations in this section we assume that δ2 ≥ δ1, i.e. the
treatment effect in subgroup 1 does not exceed that in subgroup 2. This can always
be achieved by reordering the subgroups considered and can be formalised by
βTS ≥ 0. For δ2 < δ1 the sign of ψ respectively βTS in the formulas (10.8) and
(10.9) changes.

Both parameters can be transformed into the other. The following equations hold:

φ = 2ψ

2+ ψ
and ψ = 2φ

2− φ
. (10.8)

Figure 10.1 shows the relationship between φ and ψ . Since the parameter φ has
the above-mentioned interpretation on the interval (0, 1) we will use φ in the rest of
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Fig. 10.1 Relation between the two alternative parameters ψ and φ that quantify the magnitude
of the treatment-subgroup interaction

this chapter. An alternative formula which can be obtained from the transformations
above is given by:

φ = 2 βT S

2βT + βT S
. (10.9)

This shows, how φ depends on the overall treatment effect and the interaction
term, which as stated above is the difference in subgroup specific treatment effects.
Solving for βTS in (10.9) shows how the interaction parameter depends on the
magnitude of interaction measured by φ:

βT S = βT
2φ

2− φ
. (10.10)

Finally, we want to show how the magnitude of interaction affects the subgroup
specific treatment effects δ1 and δ2:

δ1 = βT

(

1− φ

2− φ

)

and δ2 = βT

(

1+ φ

2− φ

)

. (10.11)

10.2.2 Equivalence Tests

Traditionally, interaction effects are tested using a null hypothesis of the type
H0: βTS = 0. The objective of such a test is the rejection of the null hypothesis with
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a pre-specified type-I error, in order to claim that there is a “significant difference”.
When the null hypothesis can be rejected, the difference is demonstrated (by the
level of significance). When the null hypothesis cannot be rejected, no sufficient
evidence against the null hypothesis has been seen, but this does indeed not imply
that the null hypothesis is true.

For the evaluation of subgroup homogeneity such test of H0: βTS = 0 is of
little relevance. When the overall trial result was positive, a minor difference in
the treatment effect between two subgroups might be clinically acceptable and
hence unimportant for the interpretation of the benefits or risks of the new therapy.
Furthermore, the test outcome might just depend on the sample size of the trial:
A larger sample size might have high power to confirm a particular difference,
although such a difference might not be clinically relevant; in contrast, a small
sample size will be associated with low power to reject the null hypothesis so
that a potentially clinically relevant difference between the subgroups might not
be detected. This setup is neither in the interest of the trial sponsor nor of the
patients, since differences detected as statistically significant might not be clinically
important, and vice versa, statistically non-significant differences might be clinically
important.

Equivalence tests address the above-mentioned problems directly: By defin-
ing a medically relevant margin θc—a value which should not be exceeded as
the “heterogeneity” between the two subgroups—an appropriately specified null
hypothesis and test can potentially demonstrate the similarity of the effects between
the two subgroups (Fig. 10.2). There are two null hypothesis, which claim that there
is a relevant difference to either direction:

H0,1 : −θc ≥ x and H0,2 : x ≥ θc (10.12)

where x is the parameter of interest. Rejection of both one-sided hypotheses at level
α would allow one to conclude

−θc < x < θc (10.13)

and thus the consistency of the treatment effect across the subgroups. This way
of specifying the null and alternative hypotheses is called the Two One-Sided Test
procedure (TOST—Schuirmann (1987)) or interval inclusion principle (Ocaña et al.
2008). The test decision is illustrated in Fig. 10.2. Figure 10.3 indicates the general
principle, showing possible scenarios for treatment contrasts within each subgroup,
which should ultimately lead to decisions similar to those depicted in Fig. 10.2.

The key issue for the equivalence test is the selection of an appropriate margin
θc. While there will always be some statistical considerations to determine the
margin, the main input would have to be provided by medical experts, to address
the question which difference would just be large enough to be considered relevant
in the therapeutic area of interest. The relevance would be determined based on
the current experience with regard to therapy benefits in this area, and the efficacy
that is expected on average in the whole population. The ICH E10 2000 guideline
describes general considerations when selecting equivalence margins, which would
need to be adapted for the case of subgroup heterogeneity.



10 Equivalence Tests in Subgroup Analyses 209

Fig. 10.2 Concept of equivalence tests illustrated for hypothetical scenarios with different
magnitudes of the estimated characteristic and confidence intervals with equivalence margins −θc
and θc

Fig. 10.3 Schematic representation of subgroup heterogeneity when both subgroups are of equal
size. The value of φ describes the magnitude of the heterogeneity. For each subgroup, the mean
estimate for the treatment contrast and its confidence interval are given. As the sample size in each
subgroup is half the total sample size, the confidence intervals are wider than that of the overall
average treatment effect

In the rest of the chapter, we will describe statistical properties of the developed
equivalence tests for subgroup heterogeneity for both normally distributed and
binary endpoints. While the technical details for the two types of endpoint are
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different (which will be developed separately in Sects. 10.3 and 10.4), the key ideas
are similar: To develop an appropriate statistic for each type of endpoint which
allows one to test heterogeneity using a TOST, and to assess different equivalence
margins with respect to reject the null hypotheses of inequivalence.

10.2.3 Outline of the Simulations

The key objective of Sects. 10.3 and 10.4 is to apply the equivalence tests for
quantitative and binary endpoints and evaluate their performance in relation to the
selected equivalence margin.

All simulations were set-up such that the treatments (active and placebo) are
balanced, and the two subgroups are balanced independently. Hence the total
number of subjects in each simulated trial was divisible by 4.

The Monte-Carlo simulation was performed by individually simulating and
analysing clinical trials. For a given set of simulation parameters (e.g. model
parameters of (10.1), power for the test of the overall treatment effect), the following
steps were performed:

1. Determine the number of subjects to achieve the specified power for demonstrat-
ing overall superiority using a two-sided significance level of α= 0.05 (based on
an average effect size).

2. Derive the effect size in each subgroup from the selected value of the subgroup
difference φ.

3. Generate data according to the underlying model derived from (10.1) (for more
details, see Sects. 10.3 and 10.4).

4. Analyse the data using the statistical model that accounts for treatment, subgroup
and their interaction and capture the selected test statistic to test the subgroup
heterogeneity for each type of endpoint and its 90% confidence interval (CI).

5. If the CI is fully included within the given margins, the TOST hypotheses are
rejected and the consistency test is declared positive.

The above procedures were repeated 10,000 times for each case, which yielded
sufficient precision of the estimated power for the consistency test, as the percentage
of trials which declare similarity would be determined with a standard error of less
than 0.5% points (Koehler et al. 2009).

Note that for large values of φ rejection of the hypotheses in (10.12), i.e.
concluding treatment effect homogeneity across subgroups, is not favourable since
it constitutes a type-I error for the question at hand. However, we will nevertheless
speak of “power” in these cases.

The analyses were performed in R (R Development Core Team 2008), version
3.4.3, with additional packages lsmeans (Russell 2015), snow and snowfall.
For the Monte-Carlo simulations and analyses of binary data, the packages snow
and snowfall were used for parallel computing.
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10.3 An Equivalence Test for Consistency of Subgroup
Effects with a Quantitative Endpoint

10.3.1 Definition of the Test

In the case of a quantitative (normally distributed) endpoint Y, the general linear
model in Eq. (10.1) with identity link function becomes

E (Yi |XiT ,XiS) = β0 + βT XiT + βSXiS + βT SXiT S. (10.14)

Therefore, we can write

Yi = β0 + βT XiT + βSXiS + βT SXiT S + εi (10.15)

where βT is the effect of treatment vs. control, βS is the difference between the
subgroups, βTS is the interaction between treatment and subgroup, and εi is the
common error term for subject i, normally distributed with mean 0 and common
standard deviation σ . The effect size is denoted as �/σ = βT /σ .

As noted in Sect. 10.2 in Eqs. (10.3) and (10.4), the treatment contrasts in the
two subgroups are

δ1 = βT − 0.5βT S and δ2 = βT + 0.5βT S. (10.16)

The difference in subgroup specific treatment contrasts is δ2 − δ1 = βTS, which
corresponds to the interaction coefficient of the linear model in Eq. (10.14).

The key idea for the equivalence test with normally distributed data is to
relate the interaction term to the residual: A small residual variability implies
that the interindividual variance is small; therefore the therapy effect within both
subgroups should not be allowed to deviate too much from each other. However,
when the overall variability is large, a larger difference in subgroup effects would
be acceptable, as is the (random) difference between two arbitrary subjects in
the overall population. Hence, the aim of the consistency test is to judge the
relevance of the subgroup differences relative to the underlying variability of the
quantitative endpoint. This leads to the construction of a characteristic through
scaling the subgroup difference by standard deviation σ . This ratio—the contrast
of the treatment effects in the two subgroups, divided by the overall residual
variability—is called the “consistency ratio”:

CR = βT S

σ
. (10.17)

It has been shown (Ring et al. 2018, using Schall 1995), that a (1-α)*100%
confidence interval for this consistency ratio can be derived based on the non-central
t-distribution as follows (LCL and UCL are the lower and upper confidence limit):

[LCL,UCL] =
[

m ·Qν

(

1− α/2; ̂βT S
mσ̂r

)

,m ·Qν

(

α/2; ̂βT S
mσ̂r

)]

. (10.18)
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Here Qν(t; x) is the inverse of Fν when Fν(x; λ) is viewed as a function of λ for
fixed x, and Fν(x; λ) denotes the value of the cumulative distribution function of the
t-distribution with ν = n − 4 degrees of freedom (n is the total sample size) and
non-centrality parameter λ, evaluated at x.

Furthermore,

m =
√

1

nA1
+ 1

nA2
+ 1

nB1
+ 1

nB2
(10.19)

with nXj denoting the sample size of treatment j in subgroup X (and
n = nA1 + nA2 + nB1 + nB2). As we assume that the subgroups and treatments
are completely balanced, all nXi fulfil nXi = n/4, so that m = 4/

√
n.

This leads to an equivalence test, which compares the confidence interval of the
consistency ratio against the pre-defined equivalence margin as

−θc < δ1 − δ2

σr
< θc. (10.20)

Hence the two one-sided null hypotheses to be tested are H0,1: − θc ≥ δ1−δ2
σr

and

H0,2: δ1−δ2
σr
≥ θc.

In order to investigate the impact of particular equivalence margins on the
performance of the test, we apply formulas (10.6) and (10.9) to the quantitative
case. The introduction of the residual variability into (10.15) does not alter these
formulas, so that we have

φ = 1− min (δ1, δ2)

max (δ1, δ2)
= 2βT S

2βT + βT S
.

As before, φ is varied between 0 (no differential subgroup effect) and 1 (no
treatment effect in the second subgroup).

10.3.2 Performance of the Consistency Test with Respect
to the Equivalence Margins

The Monte-Carlo simulations have been performed as outlined in Sect. 10.2.3,
aiming to estimate the power of the equivalence test in relation to the subgroup
heterogeneity φ for various values of the effect size (�/σ ) and selected values of the
equivalence margins θc. The true overall drug effect was selected to be � = 0.4. As
the overall variability is a scaling factor, one of the key objectives was to investigate
the impact of smaller vs. larger effect sizes (0.3–0.6) by choosing different residual
variabilities (σ). These effect sizes cover a typical range as seen in clinical trials (for
examples, see Sect. 10.3.3).
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Three investigations were performed. The first two cases examine the relation-
ship between subgroup heterogeneity φ and the power of the consistency test. In
the first case, the sample size was fixed across all effect sizes, in the second case the
power to demonstrate superiority was fixed (leading to higher sample sizes when the
effect size was smaller). The third investigation analysed the relationship between
the pre-selected margins and the power of the consistency test.

When the sample size was fixed (Fig. 10.4), then the power curves of the
equivalence test are quite similar for a given margin. For example with a margin
of θc = 0.5, the power for the equivalence test with a sample size of 400 (blue
curve) is about 82% when there is no subgroup divergence (φ = 0) across all effect
sizes.

As expected, the equivalence test is more powerful when φ is small. Up to
a value of about φ = 0.3, the power of the test is only reduced slightly; this
appears to be consistent for many combinations of the other parameters (effect
sizes and margins). On the other end of the scale, when φ approaches 1 (where
there is no treatment effect in one of the subgroups), the probability of successfully
demonstrating equivalence is around 5%. The steepest decrease in power (inflection
point) in the cases that have been investigated is reached with φ of 0.7–0.8. (As
indicated, the term “power” might not be the best for large values of φ, as they
specify a clear heterogeneity.)

Despite these similarities, there are remarkable quantitative differences for
intermediate subgroup differences of around φ = 0.5. For a larger effect size of
0.6 and a margin of 0.5, the power is about 40% for the whole range of sample
sizes. For a smaller effect size such as 0.3, the power of the equivalence test is
between 55 and 75%, depending on the sample size. When the effect size increases
(while the same margin is selected), then the power for demonstrating equivalence
decreases, because a reduction of the variability σ leads to a larger consistency ratio.
This finding implies that the S-shaped power curve is flatter for smaller values of φ
and steeper for larger values when the residual variability is larger (and hence the
effect size is smaller).

This result is in line with the aims for constructing the test (Sect. 10.3.1): In the
consistency ratio CR, the residual variance σ is a scaling factor for the observed
subgroup differences. A larger residual variability means that the differences
between individuals within each subgroup are larger, and hence it might be more
acceptable when the efficacy between subgroups differs more.

The impact of the chosen margin among those margins that have been investi-
gated is merely proportional—a larger margin leads to more power to demonstrate
equivalences, but the shape of the power curve is quite similar. Hence a particular
margin should be selected with the whole potential spectrum of subgroup differ-
ences (φ) in mind, and which medical relevance such a difference would have. The
benefits and risks of such differences with respect to the given drug, its therapeutic
area and the particular endpoint studied need to be balanced when determining the
equivalence margin for a clinical trial.

The case of fixed sample sizes for various effect sizes might, however, not
be fully realistic, because clinical trials will usually not primarily be powered to
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demonstrate equivalence between subgroups. Instead, clinical trials are typically
designed with regard to a primary objective like demonstrating superiority of one
treatment over the other, and the trial would be powered for this objective. Showing
equivalence between subgroups would rather be a secondary objective. In the cases
above, the power to demonstrate superiority was above 95% for all sample sizes
when the effect size was 0.6, while it was below 80% when the effect size was
only 0.3.

In the second case (Fig. 10.5) the power for the test of superiority was fixed at
80%, 85%, 90% and 95% and the sample size was calculated accordingly. Otherwise
the analysis was similar. (Of note, the sample size in Fig. 10.4 was the same for the
effect size of 0.5, so that these results would overlap between both figures.)

The general S-shape of the curves is similar for Figs. 10.4 and 10.5 with parts
that are flat for rather small (φ ≤ 0.3) and steeper for rather large (φ ≥ 0.8) subgroup
differences.

However, it can also be seen that the power of the consistency test strongly
depends on the effect size for a given power for demonstrating superiority. When
the effect size is rather large (0.6), the sample size to demonstrate superiority is
moderate (44–74 to obtain a power of 80–95% for the superiority test). In this case,
the consistency test would only have a power of less than 50%, when the margin was
selected with a value of 0.5. In order to reach acceptable power for the consistency
test, a much larger sample size would be required for the selected margin.

For smaller effect sizes in the range of up to 0.3, the sample size for demonstrat-
ing superiority must be about four times as large as for an effect size of 0.6, which
leads to more power for the consistency test at any given margin. With a margin of
0.5, the power for the consistency test would be about 80% or more for values of
the subgroup divergence φ of up to 0.5, when the trial is powered with at least 80%.
For (φ ≤ 0.3), the power for the consistency test is more than 90%.

Hence, the effect size (or the residual variability for a given treatment effect) has
a “double effect” on the power to demonstrate equivalence between subgroups: on
one hand, a lower variability increases the consistency ratio and hence reduces the
power of the consistency test; on the other hand, a lower variability requires less
sample size to demonstrate superiority, but the lesser sample size also reduces the
power for the consistency test.

The expected effect, that larger residual variability leads to better chance of
demonstrating equivalence, could be demonstrated. But when equivalence hypothe-
ses are tested subsequently to superiority hypotheses only based on their sample
sizes, the power of the equivalence test might largely deviate from the range of 80–
95%, which is typically selected for the power.

As before in Fig. 10.4, the choice of the equivalence margin has merely a
proportional effect on the power. However, it seems that the selection of a margin
could compensate for small or large sample sizes. When the sample size is already
fixed by the trial, the margin could be selected to get the statistical properties
of the equivalence test aligned with the medical relevance of actual subgroup
differences. While this procedure sounds meaningful, such an approach would in
other circumstances generally be discouraged: Selecting an equivalence (or non-
inferiority) margin or other design element (such as the power) of a clinical trial to
account for a given sample size would be a reversion of cause and outcome.
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Whether such a procedure would be acceptable for a (secondary) test of subgroup
equivalence will need to be further discussed. This discussion should explicitly
include the option of “not testing” for subgroup equivalence, because the statistical
properties of such a test might not be acceptable.

The third investigation was performed similarly, but the independent axis (Fig.
10.6) is now the equivalence margin θc (between 0.1 and 1.0), and 4 different values
for the subgroup divergence φ (0.0, 0.33, 0.66 and 1.0) were used. As before, the
sample size was adapted to the power of the superiority test of 80 or 90%.

Again, the power for demonstrating equivalence is very similar for both smaller
values of φ, as the red and the green line almost overlap for any value of the
equivalence margins. With larger divergence, the power is largely reduced. However,
when the effect size is small (and hence the sample size was larger), the power
of the equivalence test becomes quite large, up to 80% and more, even when φ

approaches 1.

10.3.3 Implications of the Variance Scaling

The main concept for the development of the consistency test for normally
distributed endpoints was the scaling of the treatment contrast by the residual
variability. The idea is to judge the relevance of the between-group variation relative
to the between-subject variation: The larger the variability between subjects (after
accounting for the subgroup covariate), the higher the variability between the
subgroups that might be acceptable.

The simulations have shown that there might not be a universally acceptable
equivalence margin θc for the proposed consistency test: If the margin is small,
then the power for demonstrating equivalence is below 50% in some cases, even
when there is no difference between the subgroups. If the margin is large, then large
heterogeneity up to the point of no effect in one of the subgroups is accepted by the
test in many cases, if only the residual variability is large as well.

The latter outcome is indeed implied by the construction of the test: as the value
of σ is not limited in the consistency ratio, its magnitude could be large, hence
reducing the value of the consistency ratio (as it is the denominator). Furthermore, as
the sample size usually increases with increasing variability, the confidence intervals
around the estimated consistency ratio decrease and hence the consistency tests get
again more powerful.

It is not uncommon to observe variabilities which exceed the magnitude of
the clinically relevant effects of the new medication (having effect sizes of less
than 1). For example, drugs for Type-II diabetes should demonstrate a medically
relevant decrease of HbA1c in the range between 0.5% and 0.7% compared to
placebo, with a standard deviation of about 1.0% (Forst et al. 2010). In the area
of hypertension, a placebo adjusted reduction in the range of 6–8 mmHg of systolic
blood pressure (SBP) and 3–4 mmHg of diastolic blood pressure (DBP) might be
considered clinically relevant, while these endpoints have a σ of 17 mmHg (SBP)
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Fig. 10.6 The power of the consistency test related to the selected margin θc for various effect
sizes and a power for the overall superiority test of 80 or 90%. The line colours show the subgroup
difference φ with values of 0 (red), 0.33 (green), 0.66 (pink) and blue (1.0)
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or 11 mmHg (DBP), respectively (Plavnik and Ribeiro 2002; Bath et al. 2009).
Finally, the minimal clinically important differences of the key endpoint for chronic
obstructive pulmonary disease (COPD), the forced expiratory volume in 1 s (FEV1),
should be increased by 60–100 mL in comparison with placebo. This endpoint
typically has a standard deviation in the range between 150 and 190 mL (Beeh et al.
2015; Donohue 2005). These magnitudes of the effect sizes have been reflected in
the simulations above.

Another aspect of variance scaling in the consistency ratio is that the observed
variance in a trial combines different sources of variation. Some of these sources
are “natural variability” of the endpoint in question in the patient population which
is independent of the trial or study, and includes between-subject and within-
subject variability. These variance components should preferably be involved in the
consistency ratio.

However, some additional variability of the endpoint might be introduced by
the design of the trial, how the measurements are taken, or how the data quality
is monitored. This is a limitation of the method, as study specific parts of the
variability can most often not be quantified. In general, it is in the interest of the
sponsor and the principal investigator to minimise these types of variability, as
variability reduces the overall power for the primary objective of the trial (e.g. to
demonstrate a particular treatment difference). In the light of the performance of
“pragmatic trials,” which aim to demonstrate the efficacy and effectiveness of drugs
in the “real world” situation, the variability could be inflated compared to standard
trials with more controlled processes and measurements. This inflation is typically
compensated by an increase of sample size, but for the consistency test, this would
actually be counterproductive, as shown by the above simulations. In other words,
the consistency ratio is for the parameter βTS what the effect size is for βT , as both
have the variance as denominator. But when the treatment effect is evaluated for
superiority, while the interaction effect is evaluated for equivalence, then the impact
of an inflation of the variance is opposed for both tests.

Finally, the new drug itself could introduce additional variability of the endpoint
relative to existing therapies. This element could be controlled, e.g. in repeated-
measurement trials, by using the within-subject variance within the control group
as the denominator of the consistency ratio, which is a solution that is used in the
field of scaled average bioequivalence (Haidar et al. 2008). We will continue the
discussion on modifications of or alternatives to the consistency test in Sect. 10.5.

10.3.4 Example for Planning the Study Design

An example shall illustrate how clinical and statistical team members could discuss
and select appropriate equivalence margins:

Suppose a Phase 3 trial is to be designed with the primary objective to demon-
strate the superiority of treatment A over control C using a normally distributed
endpoint. The trial is planned for an expected treatment effect of 0.8, with a standard
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deviation σ of 1.6, leading to an effect size of 0.5. In order to demonstrate the
primary hypothesis with a two-sided significance level α = 0.05 with a power of
90%, a sample size of 86 subjects per group is necessary. While a-priori there might
be no indication of effect heterogeneity between the two genders (φ = 0), the team
would like to perform an appropriate consistency test as a secondary hypothesis,
aiming to reject the null hypothesis of non-consistency using α= 0.05 with a power
of 75%. To be conservative, they would power this test using a value of φ of at most
0.2 (to allow for contingency).

When reviewing Fig. 10.5 for the effect size of 0.5, consistency margin θc = 0.6
leads to the desired power for the consistency test (the red graph corresponds to a
trial that has a sample size for the rejection of the primary hypothesis of 90%). The
same graph also indicates that such a test would demonstrate consistency with a
power of 50% when φ = 0.5, and still with a probability of about 30% when φ = 0.7.
Similar conclusions can be drawn from Fig. 10.6, the panel with effect size of 0.5
and overall power of 90%.

A medical consideration in this trial could be that differential subgroup effects
which are twice as large in one subgroup compared to the other would be acceptable
(φ = 0.5). With an overall treatment effect of 0.8, the subgroup effects would be
about 0.54 and 1.08.

If the team would feel that this margin (0.6) would be too liberal for larger values
of heterogeneity φ, they could discuss using a lower value, such as 0.5. However, as
can be seen from the corresponding panel in Fig. 10.5, the consistency test would
not get the desired power, given the sample size for the primary hypothesis.

In this case, if the test for consistent effects for both genders would be important,
a solution would be to increase the overall sample size and to select a lower
equivalence margin. For example, a sample size of 104 subjects per group would
lead to 95% overall power, and a consistency margin of about 0.55 would lead to
75% power for φ = 0.2, about 55% power for φ = 0.5, and about 25% power for
φ = 0.7. Of course, whether the additional costs could be justified against the gain
of information would need to be discussed. Further sensitivity analyses should be
performed, in particular for the case when σ is slightly smaller than expected, as this
would reduce the power of the consistency test for larger values of φ.

To understand the analysis for the subgroup equivalence, let’s assume that the
trial has been performed with a pre-specified margin θc = 0.6. The subgroups of
interest are defined by the genders. The randomisation might have been stratified
by gender, so that all groups are fully balanced. The simulated results are shown in
Table 10.1.

The parameters of interest are estimated as ̂βT S = ̂δ1 − ̂δ2 = −0.275
and σ = 1.092. As all subgroups were fully balanced, formula (10.19) leads to
m = 4√

176
. Hence applying formulas (10.17) and (10.18) using α = 0.05 leads

to ̂CR = ̂βT S
σ̂
= 0.252 and its confidence limits LCL = 0.002 and UCL = 0.499.

Notably, the p-value for the interaction effect βTS was 0.009, hence well below the
α-level.

The conventional interpretation for such a trial could have been that an overall
significant treatment effect has clearly been demonstrated. However, the p-value for
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Table 10.1 Fictional
outcome of a randomised
controlled trial in 176
patients, with balanced
treatment groups and
subgroups

Comparison A–C

Total
Number of subjects 176
Adj. mean (SE) 0.581 (0.165)
95% CI 0.256, 0.906
p-value <0.001

Men
Number of subjects 88
Adj. mean (SE) 0.443 (0.233)
95% CI −0.016, 0.903
p-value 0.058

Women
Number of subjects 88
Adj. mean (SE) 0.718 (0.233)
95% CI 0.258, 1.177
p-value 0.002

the gender interaction effect was quite small, raising concerns that the effect might
be heterogeneous across both genders.

An analysis within the subgroups would lead to the result that the superiority of
the treatment could not have been demonstrated in men. The pre-specification of the
equivalence test with a margin of 0.6 for the consistency ratio allows rejecting the
heterogeneity of the treatment effect between genders, so that the homogeneity of
the subgroup effects was demonstrated.

10.4 An Equivalence Test for the Consistency of Subgroup
Effects with a Binary Endpoint

10.4.1 Definition of the Test

We now apply the ideas of Sect. 10.2 to binary data. When considering binary data,
the expectation of the target variable is given by the event probability p. A popular
model for binary data is the logistic regression model where the link function h of
Eq. (10.1) is given by

h: (0, 1)→ R, p �→ logit(p). (10.21)

The model formulation in (10.1) then yields

logit(P (Yi = 1|XiS,XiT )) = β0 + βT XiT + βSXiS + βT SXiT S. (10.22)

Again, the subgroup specific treatment effects are the basis of the assessment of
treatment effect homogeneity between subgroups
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δ1 = βT − 0.5βT S and δ2 = βT + 0.5βT S. (10.23)

In the logistic regression model (10.22) considered here, the subgroup specific
treatment effects coincide with the subgroup-wise log odds ratios, i.e. the log of the
odds ratio of having the event under consideration of treatment versus control group,
under the condition that the subject is in the respective subgroup:

δ1 = log
(

P(Y=1|XiS=−0.5,XiT=1)
P (Y=0|XiS=−0.5,XiT=1) /

P (Y=1|XiS=−0.5,XiT=0)
P (Y=0|XiS=−0.5,XiT=0)

)

= log (OR1) ,

δ2 = log
(

P(Y=1|XiS=0.5,XiT=1)
P (Y=0|XiS=0.5,XiT=1) /

P (Y=1|XiS=0.5,XiT=0)
P (Y=0|XiS=0.5,XiT=0)

)

= log (OR2) .

(10.24)

Therefore δk (k = 1, 2) is the usual treatment effect of the logistic regression
model, when only subjects from subgroup k are considered.

In the case of normally distributed endpoints of Sect. 10.3, the consistency
test was based on the idea to scale the difference between the subgroup specific
treatment effects by the residual variance. The variance scaling was necessary for
normally distributed endpoints to obtain a scale free effect size measurement. In
the case of binary endpoints, we already have a scale free effect size measure at
hand—the odds ratio. Therefore, the equivalence test for binary endpoints is based
on a comparison of the odds ratios across subgroups. The odds ratio of treatment
is homogeneous across subgroups, if and only if OR2/OR1 = 1. This ratio of odds
ratios can be expressed as the exponential of the difference of the subgroup specific
treatment effects eδ2−δ1 = eβT S . Therefore, the equivalence test can be based on
the interaction parameter coefficient βTS, which equals zero if and only if the odds
ratio of treatment is homogeneous across treatment groups. To assess homogeneity
across subgroups we need to reject the null hypotheses

H0,1: − θc ≥ βT S and H0,2: βT S ≥ θc (10.25)

for the pre-specified consistency margin θc. As before, we want to test both
hypotheses simultaneously by computing a confidence interval for βTS and rejecting
the hypotheses of a heterogeneous treatment effect across subgroups, when this
confidence interval is included within the consistency margins.

An approximate confidence interval for the interaction coefficient βTS can be
based on the maximum likelihood estimator of the log odds ratio, and is given by

CI =
[

̂βT S ∓ z1−ασ̂̂βT S
]

(10.26)

where z1 − α is the upper α quantile of the standard normal distribution and σ̂
̂βT S

is
an estimate of the standard deviation of the maximum likelihood estimator ̂βT S ,
which can be deduced from the inverse fisher matrix F−1

(

̂βT S
)

of the logistic
regression model (Hosmer Jr. et al. 2013). Of course any other confidence interval
for βTS, like the profile likelihood interval (Venzon and Moolgavkar 1988), could
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Fig. 10.7 Subgroup specific treatment effects and odds ratios for given φ. The overall treatment
effect βT was chosen as 0.3 (corresponding to the horizontal dashed line)

be used as basis for the test decision. However, in the simulations performed here
we used the interval in (10.26).

10.4.2 Quantification of the Interaction

We again consider the parameter φ, which describes the magnitude of the interac-
tion. In the setup of the logistic regression model considered here, combining (10.6)
and (10.24), φ results in

φ = 1− min (log (OR1) , log (OR2))

max (log (OR1) , log (OR2))
(10.27)

As before φ will be varied between 0 (no interaction) and 1 (no treatment effect
in the second subgroup). As a first step the influence of φ on the subgroup specific
treatment effects δ1,δ2 and odds ratios is illustrated (Fig. 10.7). From Sect. 10.2 we
know that for positive interaction terms βTS

δ1 = βT

(

1− φ

2− φ

)

, δ2 = βT

(

1+ φ

2− φ

)

holds. Furthermore, from Eq. (10.24) we know that ORk = eδk (k = 1, 2).
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10.4.3 Simulation Setup

In the following simulation study, the influence of the consistency margin θc on the
power of the homogeneity test derived in Sect. 10.4.1. is investigated. The model
underlying the simulation uses the same event probability, denoted by pC, in both
subgroups for the control treatment. This can be formalised by setting βS = 0 in
(10.22). From (10.22), together with the constraint βS = 0, it follows that the event
probability in the control group is

pC = P(Yi = 1|Xit = 0) = eβ0

1+ eβ0
. (10.28)

Hence, different values of the event probability in the control group can be
achieved by varying the intercept β0 of the regression model. In the simulations
β0 is chosen such that pC takes values 0.12, 0.27 and 0.5.

For the further specification of the model parameters, the overall (average) event
probability in the treatment group which according to the parameterisation chosen
(we have E(XiTS) = E(XiS) = 0 in (10.22)) can be calculated as

pT = logit−1(E(P (Yi = 1|Xit = 1))) = eβ0+βT /
(

1+ eβ0+βT ) (10.29)

is considered.
For each β0 the corresponding treatment effect coefficient βT is determined

such that the χ2 test comparing the average event probabilities of the treatment
groups has a power of 80% with a sample size of N = 100. Furthermore, for those
parameters β0 and βT , the sample size is adjusted to achieve a power of 80–95%.
The parameter φ is varied over a grid from 0 to 1, and the corresponding βTS is
calculated using (10.10). For each combination of parameters, 10,000 simulation
runs were performed to determine the power of the homogeneity test depending on
different values of the consistency margin θc.

The parameters chosen in the simulations reflect treatment effects and associated
odds ratios that are observed in a variety of oncological indications. A common
endpoint in cancer trials is the objective response rate (ORR), which is “the
proportion of patients with tumour size reduction of a pre-defined amount and for a
minimal time period” (CDER 2007).

In different types of non-small cell lung cancer (NSCLC), ORRs ranging from
12 to 65% are observed for various treatments in randomised controlled Phase 3
trials (Natale et al. 2011; Khozin et al. 2014). For metastatic renal-cell carcinoma,
the observed ORRs were 31% and 6% for different treatment groups by Motzer et
al. (2007) leading to an odds ratio of 7.04. Odds ratios observed in other Phase 3
trials ranged from 1.4 for 1 year survival in patients with ALK-positive lung cancer
to 9.75 in a special type of NSCLC (Khozin et al. 2014). These ranges of event
probabilities and odds ratios were covered by the simulations.
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10.4.4 Power of the Consistency Test for Binary Endpoints

As for normally distributed endpoints of Chap. 3, two cases have been examined:
First, the sample size was fixed across all values of the event probability in the
control group. Second, the power to demonstrate superiority was fixed (leading to
higher sample sizes when the relative treatment effect was smaller).

When the sample size was fixed (Fig. 10.8), then, for a given consistency margin,
the power curves of the equivalence test are quite similar for event probabilities of
0.5 and 0.27 in the control group. However, when the event probability in the control
group is smaller (0.12) the power of the equivalence test drops noticeably for small
margins.

As expected, the equivalence test is more powerful when φ is small. Up to a value
of about φ = 0.3, the power of the consistency test is only reduced slightly. This
appears to be consistent for many combinations of the other parameters (treatment
effects and margins). For larger margins, the power of the test remains stable up to
φ = 0.4 and even up to φ = 0.6. On the other end of the scale, when φ approaches
1 (meaning one of the subgroups has not any effect), the probability of declaring
equivalence, which would correspond to a type-I error, is around 5% for the smaller
margins and up to 30% for a margin of 3. The steepest decrease in power (inflection
point) in the cases that have been investigated is reached when φ is between 0.6 and
0.8.

The dependence of the power of the consistency test on the chosen sample size
is more pronounced for smaller consistency margins. For example, for an event
probability of 0.5 and a margin of 3 the power of the consistency test varies between
0.85 and 0.99 for φ = 0. For the same event probability and value for φ, but a margin
of 1.5, the power of the consistency test varies between approximately 0.05 and 0.95.

Furthermore, the dependence of the power of the consistency test on the sample
size depends non-monotonically on the event probability in the control group in the
scenarios considered here. For example, with a margin of 2 and φ = 0, the power
varies between 0.4 and 0.99 for an event probability of 0.5, between 0.45 and 0.99
for an event probability of 0.27 and between 0.15 and 0.95 for an event probability
of 0.12.

In the second case (Fig. 10.9) the power for the test of superiority was fixed
and the sample size was adapted to simulate trials with 80%, 85%, 90% and 95%
power to demonstrate superiority. Otherwise, the analysis was similar. Note that
the red curves are the same in Figs. 10.8 and 10.9 which makes the results more
comparable.

The shape of the S-curves is very similar between Figs. 10.8 and 10.9. They
are flat for rather small (φ ≤ 0.3) and steeper for rather large (φ ≥ 0.8) subgroup
differences.

The required sample size to reach adequate power for the consistency test
depends strongly on the event probability in the control group. Again this behaviour
is non-monotonic for fixed φ and fixed margin. For example, with a margin of 2.5
the sample size to achieve a power of 80% to show superiority in the trial (red

http://dx.doi.org/10.1007/978-3-319-99389-8_3
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Fig. 10.8 Power of the consistency test as a function of the subgroup differences φ, using various
event probabilities in the control group (0.12–0.5) and consistency margins (1.5–3.0) for fixed
sample sizes. The colours of the lines depict the total sample size of: red 100, green 140, cyan
200 and blue 400 patients. The event probability in the treatment group is chosen such that with
a sample size of N = 100 the test for the average event probability between treatment groups has
the specified power of 80%
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Fig. 10.9 Power of the consistency test as a function of the subgroup differences φ, using various
event probabilities in the control group (0.12–0.5) and consistency margins (1.5–3.0). The colours
of the lines depict the overall power of the trial to demonstrate superiority: red 80%, green 85%,
cyan 90% and blue 95%
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Table 10.2 Sample size used
for the simulations of Fig.
10.10

Power
pT OR βT 0.8 0.85 0.9

0.3 1.3 0.25 1504 2864 3348
0.4 2.0 0.69 304 348 408
0.5 3.0 1.10 116 132 156
0.6 4.5 1.50 64 72 80
0.7 7.0 1.95 40 44 48

curves) leads to a power of approximately 70% for the consistency test (for φ = 0)
when the event probability is 0.5 in the control group. With the same margin and
an event probability of 0.12, the sample size to reach 80% power in the overall test
to show superiority leads to a power of approximately 40% for the consistency test
(with φ = 0).

Similarly, a third investigation was conducted where the event probability in
the control group was fixed at 0.25, and different values for the event probability
in the treatment group were examined. The independent axis (Fig. 10.10) was the
consistency margin (between 1.0 and 3.0), and five different values for the subgroup
divergence φ (0.0, 0.25, 0.50, 0.75 and 1.0) were considered. As before, the sample
size was determined such that the power of the superiority test was 80–90%. In
Tables 10.2 and 10.3 the parameters underlying the simulations, as well as resulting
odds ratios, are given. Since for all simulations pC = 0.25 was fixed, the intercept
of the regression model (10.22) was β0 = − 1.099 in all cases.

The power for demonstrating equivalence is very similar for the two smallest
values of φ, since the red and the yellow curves nearly overlap over the whole range
of consistency margins for all parameter combinations. With increasing divergence,
the power is reduced as expected. When the event probability in the treatment group
is close to that of the control group (and hence the sample size is large), the power
for demonstrating equivalence is close to one even for φ close to 1.

10.4.5 Discussion

The results of the simulation studies presented in Sect. 10.4.4 show that, as expected,
the power of the consistency test depends on the magnitude of the subgroup-by-
treatment interaction (as characterised by φ). For small values of φ the power is
highest, and remains relatively stable for values smaller than 0.3–0.4, depending on
the chosen margin. For higher values of φ the power drops considerably and flattens
out as φ approaches 1, resulting in an S-shaped curve.

For small consistency margins a stronger dependence of the power of the
consistency test on the chosen sample size was observed than for larger margins.
Furthermore, the power of the consistency test depends non-monotonically on the
event probabilities in the treatment groups, also when fixing the magnitude of
interaction φ. This is partly because βTS depends non-monotonically on the event
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Table 10.3 Model
parameters, resulting event
probabilities and odds ratios
for the simulations of Fig.
10.10

pT OR βT φ βTS pT1 pT2 OR1 OR2

0 0 0.30 0.30 1.3 1.3
0.25 0.07 0.29 0.31 1.2 1.3

0.3 1.3 0.25 0.5 0.17 0.28 0.32 1.2 1.4
0.75 0.30 0.27 0.33 1.1 1.5
1 0.50 0.25 0.36 1.0 1.7

0 0 0.40 0.40 2.0 2.0
0.25 0.20 0.38 0.42 1.8 2.2

0.4 2.0 0.69 0.5 0.46 0.35 0.46 1.6 2.5
0.75 0.83 0.31 0.50 1.3 3.0
1 1.39 0.25 0.57 1.0 4.0

0 0 0.50 0.50 3.0 3.0
0.25 0.31 0.46 0.54 2.6 3.5

0.5 3.0 1.10 0.5 0.73 0.41 0.59 2.1 4.3
0.75 1.32 0.34 0.66 1.6 5.8
1 2.20 0.25 0.75 1.0 9.0

0 0 0.60 0.60 4.5 4.5
0.25 0.43 0.55 0.65 3.6 5.6

0.6 4.5 1.50 0.5 1.00 0.48 0.71 2.7 7.4
0.75 1.80 0.38 0.79 1.8 11.1
1 3.01 0.25 0.87 1.0 20.3

0 0 0.70 0.70 7.0 7.0
0.25 0.56 0.64 0.75 5.3 9.2

0.7 7.0 1.95 0.5 1.30 0.55 0.82 3.7 13.4
0.75 2.34 0.42 0.88 2.2 22.5
1 3.89 0.25 0.94 1.0 49.0

The fixed pC = 0.25 leads to β0 = − 1.099 in all cases

probability in the control group, when the power of the test of overall treatment
effect (or the sample size) is fixed.

Considering the relationship between the interaction term βTS of the logistic
regression model and the parameter φ, for a fixed event probability in the control
group as done in Table 10.3, it becomes evident that for fixed values of φ the value
of βTS varies with the event probability in the treatment group. For example, when
the event probability in the control group pC is fixed at 0.25, a value of βTS = 0.3
indicates a strong interaction (φ = 0.75) when the event probability in the treatment
group is pT = 0.3. For a higher event probability in the treatment group (pT = 0.5),
a βTS of about 0.3 corresponds to a moderate interaction (φ = 0.25).

Since the consistency test for binary data presented here makes statements about
βTS, its results cannot be translated directly to the φ-scale without knowledge of the
event probabilities observed in the study. Hence, the choice of consistency margin
should be based on the specific event probabilities expected for each trial, to ensure
consistent results and interpretations of the consistency test across different trials.
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10.4.6 Example for Planning the Study Design

As for the case of normally distributed endpoints, an example shall illustrate
how clinical and statistical team members could discuss and select appropriate
equivalence margins:

Suppose a Phase 3 trial is to be designed with the primary objective to
demonstrate superiority of treatment A over control C using a binary endpoint. The
trial is planned for an expected treatment effect (overall OR) of 3.95, with an event
probability of 0.12 in the control group, leading to an event probability of 0.35 in
the treatment group. Aiming to demonstrate the primary hypothesis with a two-sided
α= 0.05 with a power of 90% leads to a sample size of 68 subjects per group. While
a-priori there might be no indication of a gender-dependent subgroup heterogeneity
(φ = 0), the team would like to perform an appropriate consistency test as a
secondary hypothesis, aiming to reject the null hypothesis of non-consistency using
α= 0.05 with a power of 80%. To be conservative, they would power this test using
a value of φ of at most 0.2 (to allow for contingency).

When reviewing Fig. 10.9 for event probability of 0.12 in the control group, a
consistency margin of 3 leads to the desired power for the interaction test (the cyan
curve shows the graph for a trial that has a sample size for the rejection of the
primary hypothesis of 90%). The same graph also indicates that such a test would
demonstrate consistency with a power of 65% when φ = 0.5, and still with a power
of about 40% when φ = 0.7.

A medical consideration in this trial could be that differential subgroup effects
which are twice as large (on the log-scale) in one subgroup compared to the other
would be acceptable. With an overall odds ratio of 3.95, this leads to φ = 0.5, and
hence subgroup specific odds ratios of about 2.53 and 6.49.

If the team would feel that such a margin would be too liberal for larger values of
heterogeneity φ, they could discuss using a lower consistency margin, such as 2.5.
However, as can be seen from this panel in Fig. 10.9, in this case the consistency test
would not get the desired power, given the sample size for the primary hypothesis.

In this case, if the test for consistent effects for both genders would be important,
a solution would be to increase the overall sample size and to select a lower
equivalence margin. Of course, whether the additional costs could be justified
against the gain of information would need to be discussed.

10.5 Discussion

10.5.1 Subgroup-by-Treatment Interaction in the General
Linear Model

The objective of the investigations in this chapter was to find an alternative to
the interaction test of the subgroup-by-treatment interaction for various types of
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endpoints. A significant interaction term is generally understood to make the overall
trial result less interpretable so that the outcome of each individual subgroup should
be interpreted separately. However, when numerous cofactors are tested, apparent
interactions might arise, and they would need to be investigated further. The best
way of doing so would be to repeat the trial in order to confirm or reject the finding,
but the costs would generally not outweigh the gain in information.

The main drawback of the interaction test is that it is only powerful when the
heterogeneity is very large. In fact, the power of the interaction test only reaches the
power of the overall test of treatment superiority when φ = 1. With intermediate
heterogeneity of up to φ = 0.7, its power is much smaller (Ring et al. 2018).

The null hypothesis of the interaction test is homogeneity. When this hypothesis
is rejected, then interaction is claimed, without considering the magnitude of the
interaction. When the null hypothesis cannot be rejected, no claim at all can be
made. In addition, the test of interaction does not address the question whether the
difference of the effects between subgroups would be relevant.

The equivalence test could be a potential solution, because it is based on a
pre-defined (medically and statistically relevant) margin to judge the estimated
differences. Within the limits of these margins, differences of the subgroups could
occur, but would not alter the overall interpretation of the trial, because the
differences are considered small enough when the new treatment option is to be
implemented.

We have investigated two different types of endpoints, binary and normally
distributed, which lead to slightly different equivalence hypotheses. The starting
point was the generalised linear model and its interaction term βTS. For the normally
distributed endpoints, the consistency ratio—the difference between the subgroup
specific treatment effects divided by the residual variability—was defined, aiming
to relate the magnitude of the explained subgroup heterogeneity to the unexplained
variability. For the investigation of binary endpoints the interaction term was used
directly for the test, as the model does not contain a term for residual variability.

10.5.2 Selection of the Equivalence Margin

The selection of appropriate equivalence margins is a critical step during the design
of a clinical trial. The margin must be stated in the clinical trial protocol with sound
scientific reasoning. ICH E10 requests: “The determination of the margin in a non-
inferiority trial is based on both statistical reasoning and clinical judgment, should
reflect uncertainties in the evidence on which the choice is based, and should be
suitably conservative.”

A challenge for the selection of the margin is that the consistency test will
generally be a secondary hypothesis, which will be evaluated after successful
demonstration of the primary hypothesis. Indeed, the test can be imbedded into
a multiple-testing strategy (Bretz et al. 2009), and the sample size could be
determined accordingly. Based on the results of Sects. 10.3 and 10.4, the sample
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sizes could become much larger than those required for the primary hypothesis. The
implementation of such statistical considerations into the selection of the margin
could be a potential solution, as indicated in the examples in Sects. 10.3.4 and
10.4.6.

The simulations for the power of the consistency tests covered a broad range of
parameters (effect sizes or event probabilities and the heterogeneity parameter φ),
and one of the main results may be that a universally acceptable margin cannot be
recommended across all parameter ranges. Based on the expected outcomes of the
trial and the medically acceptable deviations from homogeneity in the therapeutic
area, simulations may be required to provide sensible margins for the consistency
test.

There were a number of common elements in the simulations of both types of
endpoints. As expected, the probability to reject the hypothesis of non-consistency
decreases with increasing values of the heterogeneity parameter φ. This decrease
was small within the interval between 0 and 0.3, which is the range in which there is
rather little effect discrepancy between both subgroups. However, when the margin
was rather small, the power of the consistency test was less than 50% for sample
sizes which provide 90% power for the superiority hypothesis. If a larger margin
was selected, then the power was appropriate for small φ; however when φ was
large, the probability for rejecting the heterogeneity was quite large for some cases,
which is not desirable since it constitutes a type-I error.

A limitation of these investigations was that the treatments and the subgroups
were fully balanced so that each combination of treatments and subgroups was
present in a quarter of the total number of subjects. This may be true when
the randomisations were stratified by the subgroup, but in general the subjects
are not balanced in subgroups. For example, gender subgroups rarely have the
exactly balanced distributions, even if the treated disease was balanced (e.g. 60%
male subjects in clinical trials compared to 50% in registries for atrial fibrillation
(Tanislav et al. 2015)). For other types of subgroups—such as age groups, presence
or non-presence of comorbidities or subjects with disease specific criteria, the
imbalance might be even stronger.

The proposed consistency tests will generally have less power with unequal
distribution (for example in the normal case, the confidence interval for the
consistency ratio will be larger due to formula (10.19)). Alternative tests which have
been developed (Grill 2017) could not be discussed here, but generally show similar
properties to the presented tests.

10.5.3 Considerations for Improvement of the Consistency Test

While we feel that an equivalence test would be a good method to assess the
relevance of subgroup heterogeneity, the currently examined characteristics—the
consistency ratio for normally distributed values and the βTS for binary endpoints—
do not completely fulfil our expectations. The consistency test has the aim of judging
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the relevance of heterogeneity in contrast to the pure significance of the interaction
test by reversing the null hypothesis towards a TOST procedure. However, the
statistical properties of both tests are somewhat similar in that they require rather
large sample sizes to reject either homogeneity or heterogeneity, respectively.

When the consistency test for the normally distributed endpoints was developed,
the following objectives were considered:

• There should be adequate power (e.g. > 75%) to demonstrate equivalence when
the subgroup heterogeneity (φ ≤ 0.3) is small.

• The test should lead to rather little probability (< 25%) to demonstrate equiva-
lence when subgroup heterogeneity is large (φ ≥ 0.7).

• The power curve with respect to φ should be S-shaped (with decreasing
probability for increasing φ), with an inflection point that depends on the effect
size, but which would be have a value within the interval of 0.3 and 0.7.

The third item shall particularly address the question of the relevance of subgroup
heterogeneity, as a smaller effect size means a relatively large variability, and in this
case the effect difference between subgroups may be somewhat larger as well.

While some curves in the simulations in Sects. 10.3 and 10.4 fulfil these
conditions, there was no universal equivalence margin that would fulfil all three
conditions. To improve the test, a number of considerations could be raised.

The variance scaling for the normally distributed consistency test could be
improved by limiting the value of the common standard deviation σ with a maximum
value σ0. This would imply that the consistency ratio would not be arbitrarily
reduced, in particular due to quality issues that would be in control of the study
sponsor. Such a limitation is also suggested in the field of bioequivalence: While
the European bioequivalence guideline allows for scaled bioequivalence methods,
it limits the method to variabilities which are smaller than the geometric coefficient
of variation of 50%. Such a modification needs sophisticated methods in order to
reduce the risk for bias, as the estimated variability might be different from the
actual, but these methods have already been developed (Tothfalusi 2017).

Another option for the normally distributed endpoints could be to evaluate the
unscaled interaction term βTS, as this would remove the dependence from the
variability. However this would fail to address the third item so that the relevance
of the heterogeneity would be judged less. A compromise might be to involve a
suitable function g(σ ), which would reduce, but not completely ignore the impact
of the variability.

For both the binary and the normally distributed endpoints it could be considered
to develop a test involving the heterogeneity parameter φ instead of βTS. This way
the dependence of the equivalence test on the overall treatment effect might be
reduced. Furthermore, the test results might be better comparable across different
trials.

Finally, it could also be discussed whether the use of the same type-I error α
for the primary (e.g. superiority) test and the consistency test would always be a
requirement. As mentioned in Sect. 10.1, the aims of subgroup evaluations vary
between descriptive, exploratory and confirmatory investigations. The investigation
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of Ocaña et al. (2015) showed that the relevance of carry-over effects in crossover
trials can be evaluated using equivalence tests, and these tests could define their
magnitude of type-I error independently from other study hypotheses. This idea
could be extended towards balancing the power and type-I error for the sample size
that has been given for the primary objective, similar to the proposal by Ioannidis et
al. (2013).

10.5.4 Future Developments

Evaluations of subgroup effects are not restricted to the settings that have been
described in this chapter, and extensions to those areas can be imagined.

The application of the generalised linear model to normally distributed and
binary endpoints could be expanded to survival endpoints, and similar results as
above could be obtained.

The analysis has been restricted to a single subgroup with two categories. Evalu-
ations of more than two categories would be particularly important when analysing
comorbidities. For example, a trial in subjects with cardiovascular diseases could
recruit patients with various conditions, such as stroke, myocardial infarction or
heart failure, and the clinical outcomes of a new treatment could potentially be
different. One option could be to merge some categories together so that only two
categories are analysed using the consistency test. However it might be difficult
to judge clinically which categories should be merged together so that alternative
methods to assess consistency more directly are warranted.

Another challenge is that there would often be more than one subgroup for
which evaluations of effect consistency shall be made. The consistency test could
be imbedded into a multiple-testing procedure and hence several subgroups could
be tested with appropriate adjustment for multiplicity. This would still be limited to
a few subgroups, and extensions towards more exploratory procedures might be a
better option to address multiple evaluations simultaneously.

A promising approach for the evaluation of subgroups is the Bayesian shrinkage
method (Henderson et al. 2016). This method estimates within-subgroup effects
based on the overall global treatment effect. The underlying idea is that (smaller)
subgroups might be more variable and hence less reliable than the whole population
so that the subgroup estimates are moved towards the global mean. Although this
method implicitly relies on the assumption of full exchangeability of the study
subjects, it may serve a starting point for further analyses.

Bayesian analyses might be particularly valuable when prior data have been
obtained before the confirmatory Phase 3 trial is performed, as it is most often the
case. Pre-clinical and early clinical data could be summarised and evaluated. Even
if these trials had been performed in much smaller populations, they could provide
signals for subgroup heterogeneity that are worth exploring further.

Finally, the performance of well-designed meta-analyses could provide more
insight into subgroup effects. In general, at least two Phase 3 trials are required
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for regulatory approval of new health technologies, and a combined analysis of all
confirmatory trials of a Phase 3 programme —while accounting for their inherent
design heterogeneity—would often directly rule out or strengthen signals of non-
consistent subgroup effects, because of the larger amount of individual data. This
analysis would need additional assumptions, for example that there is no study-by-
subgroup interaction, which however is generally plausible.

10.5.5 Conclusion

Evidence-based medicine requires detailed evaluations of risks and benefits of
new treatment options, not only for the whole population, but also for individual
subjects with their demographic factors and medical history. The evaluation of the
consistency of subgroup effects is an important part of this evaluation, and the
identification of real vs. apparent heterogeneity is often difficult. The application
of equivalence tests to assess subgroup consistency might offer a new solution. The
equivalence margins for such tests need to be evaluated carefully with medical and
statistical evaluations for each individual trial, and simulation studies provide insight
into the statistical properties of these tests.
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Chapter 11
Predicting Confidence Interval for
the Proportion at the Time of Study
Planning in Small Clinical Trials

Jihnhee Yu and Albert Vexler

11.1 Introduction

Frequently, the goal of a limited accrual clinical trial is a confidence interval
estimate of a success rate (e.g., efficacy or safety rate of a drug) rather than
conducting a hypothesis test. Such trials are carried out with very small sample
sizes (e.g., 25 subjects for Bougnoux et al. (2009), 20 subjects for Martin-Schild
et al. (2009), 10 subjects for Schiffer et al. (2009), and 19 subjects for Rino et al.
(2010). Small sample sizes may be a result of a priori limitations such as the budget,
study duration, institution size, and difficulty of accruing subjects due to the rareness
of disease and eligibility criteria. Nevertheless, these small clinical trials contribute
highly to investigations of novel treatments of diseases and play an important part
in the medical literature.

In the study protocols for such trials, a statement of the accuracy of the estimation
is more relevant than the study power. In such cases, the confidence interval width
is used as the precision of the parameter estimate that will be computed at the end
of the study.

Suppose that Y1, . . . , Yn is a random sample of Bernoulli random variables.
That is, the Yis are independent random variables each assuming the value 0
or 1, where P(Yi = 1) = p, 0 < p < 1, and i = 1, 2, . . . , n. Notice that

X =
n
∑

i=1
Yi is a binomial random variable based on a sample of size n with

success probability p. The realization of the random variable X is denoted as x.
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At a planning stage of a study, the lower and upper bounds, respectively, of a
confidence interval may be defined as l(Y1, . . . , Yn) and u(Y1, . . . , Yn), functions
of the “future” sample of Bernoulli random variables. Throughout this chapter, we
discuss predicting values of l(Y1, . . . , Yn) and u(Y1, . . . , Yn), i.e., prediction of the
“future confidence interval” and relevant sample size calculation. We use the term
“future” emphasizing that the sample is not obtained yet. In this chapter, we discuss
probabilistic approaches for the prediction of the future confidence interval and
compare approaches to predicting the width of a future confidence interval and the
corresponding sample size calculation for limited accrual clinical trials.

There are many methods available to obtain a confidence interval for a binomial
proportion, p (see Newcombe and Vollset 1994; Brown et al. 2001; Pires and Amado
2008; Vollset 1993). When the sample size is small and/or p is an extreme value
(e.g., less than 0.1 or greater than 0.9), the performances of many of these confidence
interval estimates are not satisfactory because of actual coverage probabilities below
the confidence level (Brown et al. 2001; Pires and Amado 2008). When the sample
size is small and/or p is an extreme value, confidence intervals that assure the user-
specified confidence level need to be used such as the exact confidence interval (e.g.,
Blaker 2000; Blyth and Still 1983; Wang 2014).

This chapter explains the prediction of the future interval and relevant sample size
calculations for small sample size and extreme p based on the Clopper-Pearson exact
method (Clopper and Pearson 1934). We propose three approaches to assess the
future exact confidence interval, namely Simple plugging-in approach, Hypothesis
testing approach, and Expected confidence interval approach. We note that the
proposed approaches can be applied to other exact confidence interval strategies,
e.g., Blaker (2000), Blyth and Still (1983) and Wang (2014), or other approximated
methods.

In particular, we will also discuss the prediction of the confidence interval

strategies based on the angular transformation Zi = arcsin

(√

X
/

n

)

(henceforth,

referred to as arcsine intervals), which has the coverage probability above the
confidence level with small sample sizes (Pires and Amado 2008). This statistic
has the favorable property that its variance, 1/(4n), does not depend on the success
probability.

This chapter has the following structure. In Sect. 11.2, we discuss ways to predict
future confidence intervals based on the Clopper-Pearson exact method (henceforth,
referred to as the exact method). In Sect. 11.3, comparisons among these approaches
are given. In Sect. 11.4, we discuss the prediction of the future confidence interval
based on the arcsine transformation. In Sect. 11.5, we conclude with some remarks
regarding the proposed approaches, provide some examples, and briefly discuss
a Bayesian strategy. Computer codes in R (http://www.r-project.org) to calculate
predicted widths are provided in the Appendix.

http://www.r-project.org
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11.2 Predictions of Future Exact Confidence Intervals

In the consideration of the small sample size, we first discuss the prediction of the
exact confidence interval (Clopper and Pearson 1934). This interval is called exact
because its general form is based on the exact binomial probability distribution.
The exact confidence interval is conservative, having a coverage probability that is
greater than the user-specified confidence level, even in cases with small sample
sizes and/or extreme values of p (Pires and Amado 2008). Although the exact
method has been criticized as being too conservative, its guaranteed coverage
probability is very appealing, particularly for small sample sizes and/or extreme p.
Let us define the width of a confidence interval w as its upper bound minus its lower
bound. At the planning stage, p is often derived from existing information based on
accumulated data (i.e., previous trials with a similar treatment based on different
diseases or available literature). Then, one may calculate the sample size based
on the predicted width of the confidence interval by using a confidence interval
estimation strategy given p. Three probabilistic approaches, i.e., simple plugging in,
hypothesis testing approach, and the expected confidence interval are considered as
follows.

11.2.1 Approach 1: Simple Plugging In

We can simply plug the value p into sample estimation of the proportion (say,
p̂) in a confidence interval formula. This approach is more in the context of a
“common” practice of the sample size calculation. For instance, suppose that an
investigator assumes that the safety rate of a study drug is p = .775. Based on the
Wald interval formula with a 95% confidence level (i.e., p̂ ± 1.96

√
p̂ (1− p̂) /n),

the future confidence interval is predicted as (0.659, 0.891) with n = 50 by simple
plugging in, producing w = 0.232. The sample size for the desired width w∗ is
obtained by solving w∗ = 2(1.96)

√
p (1− p) /n. When the confidence interval

formula includes the observed value x instead of p̂ (e.g., Score interval in Pires and
Amado 2008), one may use E(X| p) = np in place of x.

Once the observation x is made, the lower and upper bounds of the exact
confidence interval may be expressed as

πL=
[

1+ n−x + 1

xF2x,2(n−x+1),1−α/2

]−1

, and πU =
[

1+ n−x
(x + 1) F2(x+1),2(n−x),α/2

]−1

,

(11.1)

for x = 1, . . . , n − 1 (Agresti and Coull 1998), where Fa, b, c denotes the 1 − c
quantile of an F-distribution with degrees of freedom a and b. If x = 0, πL = 0,
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and if x = n, πU = 1. Let L and U denote the prediction of the lower and upper
bounds of the future confidence interval. Using simple plugging in, one may use the
expected value of X in the form of

L =
[

1+ n− E (X|p)+ 1

E (X|p)F2E(X|p),2(n−E(X|p)+1),1−α/2

]−1

for p ∈ (0, 1] , and

U =
[

1+ n− E (X|p)
(E (X|p)+ 1) F2(E(X|p)+1),2(n−E(X|p)),α/2

]−1

for p ∈ [0, 1) ,

where E(X| p) = np. Also, L = 0 if p = 0 and U = 1 if p = 1.

11.2.2 Approach 2: Hypothesis Testing Approach

The direct use of hypothesis testing may provide a valid approach for future
interval prediction. Consider testing the null and alternative hypotheses H0 : p = π

vs. H1 : p �= π at the significance level α. We define the acceptance region,
A(π ), and the collection of the parameters corresponding to the acceptance region,
C(X)= {π |X ∈ A(π )}. Then, similar to the statement by Chang and O’Brien (1986),

π ∈ C(X) ⇐⇒ X ∈ A (π) . (11.2)

Note that Chang and O’Brien (1986) stated Eq. (11.2) in the context of group
sequential designs. In a typical confidence interval estimation, the focus is finding
the boundaries of π corresponding to the confidence level based on the observed
value of X. Here, based on the equivalent expressions in Eq. (11.2), we obtain
the boundaries of X based on the parameter π . For example, suppose that the test
statistic t(X| p) has the standard normal distribution under the assumed proportion
p. The typical confidence interval is obtained by solving

t (X|p) = −zα/2, and t (X|p) = zα/2, (11.3)

with respect to p where zc is 1 − c quantile of the standard normal distribution.
For the prediction of the future confidence interval, we solve for X instead of
p and the sample size calculation can be carried out based on the predicted
width. Note that X values which satisfy Eq. (11.3) are the boundaries of A(p).
With the Wald confidence interval, solving for X (or equivalently p̂) based on
Eq. (11.3) provides the confidence interval prediction of (p − zα/2

√
p (1− p) /n,

p+zα/2
√
p (1− p) /n), which is, in this case, the same as the plugging in approach.

Approach 2 gives rise to two additional approaches using the exact confidence
interval, namely a discrete version (Approach 2-1) and a continuous version
(Approach 2-2). The discrete version is constructed in the following manner.
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11.2.2.1 Approach 2-1: Discrete Hypothesis Testing Approach

We will reject H0 if the outcome x results in either P{X ≤ x|π} or P{X ≥ x|π}
being less than or equal to α/2. Let xL and xU denote the predicted lower and upper
bounds of X for the future confidence interval, respectively. Being consistent with
exact hypothesis testing, xL and xU that guarantee the user-specified significance
level should satisfy

P {X ≤ xL|π} =
∑xL

k=0

(

n

k

)

πk(1− π)n−k ≤ α/2, xL ∈ [0, n)

and

P {X ≥ xU |π} =
∑n

k=xU

(

n

k

)

πk(1− π)n−k ≤ α/2, xU ∈ (0, n] . (11.4)

According to Eq. (11.4) and incorporating a continuity adjustment, we can define
L and U specifically as

nL = max {x|P {X ≤ x|p} ≤ α/2} + 0.5,

nU = min {x|P {X ≥ x|p} ≤ α/2} − 0.5, (11.5)

and nL= 0 if the maximum in Eq. (11.5) does not exist, and nU = n, if the minimum
in Eq. (11.5) does not exist.

11.2.2.2 Approach 2-2: Continuous Hypothesis Testing Approach

For a continuous version of Approach 2, Formula (11.4) is expressed using the
incomplete beta function

Iy (a, b) = � (a + b)

�(a)�(b)

∫ y

0
ta−1(1− t)b−1dt.

Then, we obtain solutions of xL and xU satisfying

Ip (xL + 1, n− xL) = 1− α/2 for p ∈ (0, 1] , and

Ip (xU , n− xU + 1) = α/2 for p ∈ [0, 1) , (11.6)

where xL and xU are real number solutions in [0, n], and solution xL is replaced by
0 if xL < 0, and solution xU is replaced by n if xU > n. Subsequently, the upper and
lower bounds of the confidence interval are L = xL/n and U = xU/n.
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11.2.3 Approach 3: Expected Confidence Interval

Considering that X is a random variable, we can use the expectation of the lower and
upper bounds of the confidence interval. To see how this strategy affects the interval
width prediction, again, assume n = 50 and p = .775 as the example in Approach
1. Applying Approach 3 to the Wald confidence interval, we obtain (0.661, 0.889),
which is slightly different than the future confidence interval prediction that we
obtained based on simple plug in approach (Approach 1).

Based on the exact confidence interval Eq. (11.1), the lower and upper bounds of
the future interval can be predicted as

L = E (πL(X)|p) , and U = E (πU(X)|p) , (11.7)

where πL(X) =
[

1+ n−X+1
XF2X,2(n−X+1),1−α/2

]−1
for X ∈ {1, 2, . . . , n}, and πU(X) =

[

1+ n−X
(X+1) F2(X+1),2(n−X),α/2

]−1
for X ∈ {0, 1, . . . , n − 1}. Also, πL(0) = 0 and

πU(1) = 1.
The values of L and U are found by summing the quantities inside parenthesis of

Eq. (11.7) over X = 0, 1, . . . , n with corresponding probabilities. This approach is
easily understandable, and it predicts the future interval without approximation or
solving certain equations.

Using Taylor’s expansion, it can be shown that Approach 1 approximates
Approach 3 with an order of O(n−1). Since F2X, 2(n − X + 1), 1 − α/2 in πL(X) and
F2(X + 1), 2(n − X), α/2 in πU(X) are concave and convex functions in X, respectively,
around the reasonable values of α (e.g., 0.01, 0.05, or 0.10), Approach 1 produces
a smaller lower bound and a greater upper bound than Approach 3 using Jensen’s
inequality (Breiman 1992), implying that Approach 1, in general, provides a wider
confidence width than Approach 3 (Table 11.1). However, when the sample size
increases, the differences between these methods decrease.

11.3 Sample Size Calculation Based on the Future Exact
Confidence Interval Prediction

Examples of confidence interval predictions based on the different approaches
are shown for the various sample sizes and p in Table 11.1. Results in Table
11.1 demonstrate that Approach 1 indeed provides wider confidence intervals than
Approach 3, but they can be very close when the sample sizes increase. While
Approaches 2-1 and 2-2 both use the concept of the exact hypothesis test, because of
the discreteness of the binomial distribution, there are sizable differences in interval
assessments between the two approaches. It is shown that the confidence interval
prediction based on Approach 2 can be very different than that of Approach 1 or
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Table 11.1 Comparisons of the prediction of the future 95% exact confidence intervals by
Approaches (App.) 1 to 3 for various proportions (p) and sample sizes (n). For each cell of the
table, the values of L and U are presented as L−U

p

n App. 0.05 0.1 0.3 0.5

10 1 0–0.3813 0.0025–0.445 0.0667–0.6525 0.1871–0.8129
2-1 0–0.2500 0–0.3500 0–0.6500 0.1500–0.8500
2-2 0–0.2813 0–0.3631 0–0.6457 0.1470–0.8521
3 0.0035–0.3740 0.0114–0.4347 0.0811–0.6400 0.2001–0.7999

20 1 0.0013–0.2487 0.0123–0.317 0.1189–0.5428 0.2720–0.7280
2-1 0–0.1750 0–0.2750 0.0750–0.5250 0.2750–0.7250
2-2 0–0.1864 0–0.2713 0.0870–0.5326 0.2585–0.7415
3 0.0057–0.2437 0.0193–0.3112 0.1247–0.5377 0.2770–0.7230

30 1 0.0036–0.1971 0.0211–0.2653 0.1473–0.4940 0.3130–0.6870
2-1 0–0.1500 0–0.2500 0.1167–0.4833 0.3167–0.6833
2-2 0–0.1557 0–0.2343 0.1275–0.4855 0.3058–0.6942
3 0.0077–0.1934 0.0259–0.2616 0.1505–0.4910 0.3158–0.6842

100 1 0.0164–0.1128 0.0490–0.1762 0.2124–0.3998 0.3983–0.6017
2-1 0.0500–0.1050 0.0450–0.1650 0.2050–0.3950 0.3950–0.6050
2-2 0.0074–0.1014 0.0410–0.1672 0.2074–0.3965 0.3972–0.6078
3 0.0176–0.1119 0.0499–0.1755 0.2129–0.3993 0.3988–0.6012

Approach 3 in cases with small sample sizes and extreme values of p. When the
sample size increases and p is closer to 0.5, the differences in the confidence interval
prediction between different approaches decrease.

To find the sample size, first we set the desired confidence interval width, w∗ .
Let w(n) denote the future confidence interval width prediction as a function of n.
Given n, the interval width is easily obtained for each approach. For Approaches 1,
2-2, and 3, the sample size is obtained as min{n : w(n) ≤ w∗}. For Approach 2-1, the
sample size is min{n : w(n) ≤ w∗ , and w(n + i) ≤ w∗ for i = 1, 2, . . . } where the
second condition is required since the width is not a monotone decreasing function
of the sample size due to the discreteness of the binomial distribution.

Table 11.2 shows that the sample size calculations to achieve the desirable
confidence interval width (upper bound minus lower bound) based on each of the
four approaches. For a full investigation, various desired widths and the values of p
are used although some sample size calculations are more relevant to a large clinical
trial. Table 11.2 also presents the simulated exact confidence interval width using a
Monte Carlo study (10,000 simulations) based on each calculated sample size.

When p is an extreme value (e.g., 0.05), the sample size calculations by
Approaches 2-1 and 2-2 are too small, giving simulated widths that are far greater
than the desired width. This strongly suggests that the hypothesis testing approach
(Approach 2) may not be appropriate to calculate the sample size when p is an
extreme value. The differences between the sample size calculations decrease when
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Table 11.2 The sample sizes (n) to achieve the desired confidence interval width (w∗ ) and the
Monte-Carlo simulated confidence interval width based on the 95% exact confidence interval and
each calculated sample size (n) for each of the four approaches (App.)

p

0.05 0.1 0.15 0.3 0.5
w∗ App. n width n width n width n width n width

0.2 1 29 0.1891 44 0.1923 58 0.1951 89 0.1977 104 0.1984
2-1 18 0.2541 45 0.1910 56 0.1989 86 0.2012 101 0.2014
2-2 18 0.2537 43 0.1951 58 0.1954 90 0.1967 106 0.1965
3 27 0.1975 42 0.1981 56 0.1989 87 0.2001 103 0.1994

0.25 1 20 0.2378 29 0.2397 38 0.2429 58 0.2458 67 0.2478
2-1 10 0.3706 26 0.2535 36 0.2493 57 0.2477 65 0.2515
2-2 12 0.3298 25 0.2596 39 0.2394 59 0.2435 69 0.2441
3 19 0.2462 27 0.2493 36 0.2489 56 0.2498 66 0.2497

0.3 1 15 0.2853 21 0.2849 27 0.2881 40 0.2957 47 0.2957
2-1 9 0.3962 15 0.3398 24 0.3057 40 0.2955 47 0.2957
2-2 10 0.3700 16 0.3297 28 0.2829 42 0.2886 49 0.2897
3 14 0.2993 19 0.2991 25 0.2984 39 0.2995 46 0.2989

0.35 1 12 0.3293 16 0.3289 20 0.3350 30 0.3407 35 0.3419
2-1 8 0.4269 10 0.4232 16 0.3730 35 0.3159 35 0.3419
2-2 8 0.4284 11 0.4030 20 0.3340 32 0.3300 37 0.3327
3 11 0.3494 15 0.3399 19 0.3431 29 0.3462 34 0.3468

p becomes closer to 0.5 or smaller widths are desirable (so that a large sample is
required).

Approaches 1 and 3 provide a simulated confidence interval width smaller than
the target confidence interval width, a characteristic that we may consider desirable;
however, Approach 3 provides consistently smaller sample sizes while keeping
the simulated width close to the target confidence interval width. When a small
study is planned, this reduction of the sample size can be meaningful. Thus, in the
consideration of the sample size and the interval width prediction, we recommend
Approach 3 to be the best way to calculate the sample size for the desired interval
width without wasting study resources.

The results in Table 11.2 also demonstrate that the required sample size can
vary dramatically as a function of p. For example, to achieve the same confidence
interval width of 0.25, the sample size requirements based on Approach 3 are 19
for p = 0.05, and 66 for p = 0.5. This shows that, for the sample size calculation,
using p = 0.5 a most conservative approach may result in an unnecessarily large
sample size if the true p is, in fact, a much smaller value than 0.5 (e.g., 0.1). This
emphasizes an importance of a proactive use of existing information for the sample
size calculation.
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11.4 Prediction of the Arcsine Confidence Interval

In this section, we discuss confidence intervals based on normal approximation
focusing primarily on arcsine intervals. Even if arcsine intervals are based on
asymptotic results, Pires and Amado (2008) argue that these intervals generally
keep the coverage probability above the confidence level even with samples sizes as
small as 10. We note that our approach can be easily applied to other normal approx-
imation confidence interval strategies. If strict conservativeness matters, Pires and
Amado (2008) recommend an arcsine interval with Anscombe’s correction as well
as the exact confidence interval.

The basic idea of the arcsine interval is that, through the arcsine transformation
(f (p) = arcsin

√
p), the tails of the distribution of the proportion are expanded

while the middle part of the distribution compresses (Sokalr and Rohlf 1981). Based
on the delta method (Rao 1973), it can be shown that the asymptotic variance
of the confidence interval is independent of p. To improve the performance of
the approximation of the arcsine transformation at the extreme values, Anscombe
(1948) and Freeman and Tukey (1950) propose the arcsine transformation with
some corrections (Sahai and Ageel 2000). In this chapter, our method is based on
Anscombe’s correction:

πL = sin2

(

arcsin

√

x + 3/8

n+ 3/4
− Zα/2

2
√
n

)

, and

πU = sin2

(

arcsin

√

x + 3/8

n+ 3/4
+ Zα/2

2
√
n

)

(11.8)

Let πL(X) and πU(X) denote πL and πU in (11.8), respectively, where x is
replaced by the random variable X. For Approach 1, the prediction of the future
confidence interval can be obtained by using E(X| p) in place of X.

For Approach 2, the distribution of X (or p̂) is approximated by a normal
distribution so that the discreteness of the random variable is no longer a problem.
Applying Approach 2, the prediction of the arcsine interval based on Anscombe’s
correction is

L = max

{

sin2
(

arcsin
√
p − Zα/2

2
√
n

)(

1+ 3

4n

)

− 3

8n
, 0

}

, and

U = min

{

sin2
(

arcsin
√
p + Zα/2

2
√
n

)(

1+ 3

4n

)

− 3

8n
, 1

}

. (11.9)

Note that the minimum and maximum in Eq. (11.9) are used to restrict L and U
to be from 0 to 1, inclusive.
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Table 11.3 The sample sizes (n) to achieve the desired 95% confidence interval width (w∗ ) and the
Monte-Carlo simulated confidence interval width based on the arcsine interval using Approaches
(App.) 1 to 3

p

0.05 0.1 0.15 0.3 0.5
w∗ App. n width n width n width n width n width

0.2 1 22 0.1849 36 0.1926 50 0.1947 80 0.1982 95 0.1987
2 15 0.2291 35 0.1951 50 0.1945 81 0.1968 97 0.1967
3 20 0.1950 34 0.1982 48 0.1981 79 0.1994 94 0.1997

0.25 1 15 0.2299 24 0.2338 32 0.2404 51 0.2463 61 0.2463
2 10 0.2908 22 0.2435 32 0.2403 52 0.2441 62 0.2444
3 13 0.2484 21 0.2482 30 0.2479 50 0.2488 60 0.2483

0.3 1 12 0.2620 17 0.2740 22 0.2867 35 0.942 42 0.2944
2 7 0.3632 14 0.3204 22 0.2866 37 0.2869 43 0.2912
3 10 0.2949 15 0.2919 20 0.3002 34 0.2987 41 0.2978

0.35 1 9 0.3116 13 0.3132 16 0.3315 26 0.3385 31 0.3394
2 6 0.3989 10 0.3589 17 0.3221 27 0.3318 32 0.3344
3 8 0.3360 11 0.3403 15 0.3398 25 0.3440 29 0.3499

For Approach 3, we predict the future confidence interval in a same manner as
Eq. (11.7). Since πL(X) and πU(X) are convex and concave functions in X around
the reasonable values of α (e.g., 0.01, 0.05, or 0.10), respectively, Approach 3
produces a narrower future confidence interval prediction than Approach 1. Similar
to the exact method, we can show that the arcsine interval prediction based on
Approach 1 is a first-order approximation of Approach 3 using the Taylor expansion.

Some examples of sample size calculations and simulated confidence interval
widths for the arcsine interval based on Approaches 1, 2, and 3 are shown in Table
11.3. Since Approach 3 has a shorter interval width than Approach 1, Approach 3
provides smaller sample sizes; however, Approach 3 intervals are closer to the user-
desired confidence interval width without exceeding it. With the extreme values
of p, Approach 2 largely does not achieve the desired confidence interval width,
indicating that Approach 2 may not be appropriate for the sample size calculation.
When p becomes close to 0.5 and a smaller confidence interval width is desirable,
the differences between Approaches 1 and 3 decrease.

It is noteworthy that the sample sizes for the arcsine confidence interval for
extreme values of p are smaller than those for the exact confidence interval.
According to our Monte Carlo study (not shown in this chapter), with the extreme
value of p (e.g., 0.05 and 0.10), both the arcsine interval and the exact confidence
interval have much higher coverage probabilities than the target confidence level,
consistent with the results of Pires and Amado (2008). Considering that the arcsine
interval requires a smaller sample size, this result suggests that the arcsine interval
may be a viable alternative to the exact confidence interval for the extreme value
of p.
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11.5 Applications

Following is an example demonstrating how the proposed approaches can work.
For the past few years, the effectiveness of various stenting treatments in patients
with acute stroke has been investigated through many small studies. Suppose that
a new intracranial occluded artery stenting treatment for revascularization in acute
ischemic stroke patients is investigated in a small pilot study. Such a study will
not provide a definitive conclusion on efficacy of the treatment but rather focus on
technical feasibility of the treatment before the treatment is tested in a large-scale
randomized clinical trial. The primary endpoint of the study is the re-establishment
of blood flow (recanalization) in occluded vessels. The recanalization is indicated by
TIMI (Thrombolysis In Myocardial Infarction) grade 2 or 3 flow, i.e., delayed distal
flow or distal flow without delay (TIMI Study Group 1985). Recently, a balloon-
mounted stent treatment with similar patient groups reports an overall recanalization
rate of 79% (Levy et al. 2006). Although the new study uses a different kind of stent
treatment, investigators can reasonably assume that the study will have a similar
recanalization rate to 79% or better as the study procedure has a slightly improved
feature. Suppose that the desirable confidence interval width is 0.4 with the 95%
confidence level for the exact confidence interval. The required sample sizes are 19,
21, 21, and 20 for Approaches 1, 2-1, 2-2 and 3. Because of the better properties
discussed in Sect. 11.3, we recommend using Approach 3, of which sample size is
about the middle of the three approaches.

The following example demonstrates a sensitivity analysis for different values of
p and how the proper sample size can be decided. As briefly addressed at the end
of Sect. 11.3, the choice of p impacts the prediction of confidence interval widths
and subsequent sample size calculations. As described in the example above, also in
our experiences, relevant information regarding study treatment commonly exists in
the form of investigators’ accumulated knowledge or in the published literature. For
a study of a novel stenting treatment in patients with acute ischemic stroke, it may
be of interest to investigate the rate of the symptomatic intracranial hemorrhage, an
important safety endpoint of a stroke study, and one wishes to estimate the 95%
confidence interval of the rate with the interval width, 0.3. The MERCI trial (Smith
et al. 2005), a large clinical trial treating acute ischemic stroke patients with an
embolectomy device, reports the intracranial hemorrhage rate, 7.8%. For a stenting
treatment, the SARIS trial (Levy et al. 2006) reports the intracranial hemorrhage
rate, 5.3%. Since no direct association between stenting and the adverse event is
assumed in general, these numbers can be used for the prediction of the confidence
interval width for the symptomatic intracranial hemorrhage rate. Based on Approach
3, the required sample sizes range from 15 to 17 for the rates from 5.3 to 7.8%. For a
relevant sample size calculation, we choose the larger sample size as a conservative
strategy. Based on the sample size 17, if the true rate is 5.3%, the predicted width is
0.267, a smaller width than the target width that is often more desirable.
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11.6 Discussion

In this chapter, a few approaches were applied to predict future confidence intervals,
and it was demonstrated that the prediction of the confidence interval can be widely
different based on the approaches applied. The approach based on the expectation
of boundaries of the confidence intervals (Approach 3) may be generally preferable
in terms of adequate sample sizes and the desired confidence interval width. We also
note that an application of Approach 3 to any confidence interval strategy is easily
carried out since its computation is straightforward.

For normal approximation confidence intervals, while Approaches 1 and 2 can
sometimes provide the same solutions (e.g., Wald’s confidence interval), such a fact
does not apply to the prediction of the arcsine interval used in this chapter. Such non-
matching between Approaches 1 and 2 is generally true for the confidence interval
strategy with corrections. The simulated results show that, for the extreme values of
p, the arcsine interval with the correction may be comparable to the exact confidence
interval in terms of the coverage rate. Also, note that the required sample sizes can be
much different due to different confidence interval schemes (e.g., exact confidence
interval in Table 11.2 vs. arcsine interval in Table 11.3). Thus, it is recommended
that the same confidence interval strategy should be used at the planning stage of a
study and after completing the study.

We briefly remark a potential Bayesian strategy in the prediction of the future
confidence interval. In theory, if information regarding the rate of interest exists
in various studies, this information can be aggregated in a form of the posterior
distribution. Suppose that p has a known prior distribution F(p) and the posterior
distribution F(p| x∗ ) is based on the observations x∗ . In case of Approach 3, the
boundaries for the future confidence interval can be predicted as

∫ ∞

−∞
E {πL(X)|p} dF (

p|x∗) , and
∫ ∞

−∞
E {πU(X)|p} dF (

p|x∗) ,

And, subsequently, the relevant sample size to achieve the target width can be
calculated. Similar methods can be applied to Approaches 1 and 2. Commonly, the
rate is considered to have a beta distribution (Stallard 1998), and the beta distribution
with α = β = 1 (equivalent to the uniform distribution on the support of (0, 1)) can
be a reasonable choice of a prior distribution. A future research project would be
to develop and investigate a method to properly incorporate information existing
in various forms (e.g., studies with different sizes and correlation within a study)
into the posterior distribution, together with the investigation of the impact of the
Bayesian strategy on the actual interval width prediction in a small study.

We remark that the Clopper-Pearson exact interval may not be the most prefer-
able confidence interval with the cases of extreme p and small n. If someone is
willing to reduce the width of intervals while an actual confidence level is slightly
compromised, other interval approaches can be more desirable. As we stated earlier,
the proposed approaches are easily implemented for other methods to obtain the
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confidence interval. Consider an interval based on the log-likelihood ratio of the
binomial distribution,

−2
[

x log (p0)+ (n− x) log (1− p0)− {x log (p̂)+ (n− x) log (1− p̂)}] ,

which is approximated to the χ1
2 distribution in a large n. When x is 0 (or n), we

can use 0.5 (or n − 0.5). Given the knowledge of p, for Approach 1, we let x = np
and p̂ = p. Then, p0 satisfies a quantile of χ1

2 distribution (e.g., 0.95-th quantile)
will be obtained. For Approach 2, we let p0 = p and p̂ = x/n, then x satisfying a
quantile of χ1

2 distribution will be obtained. For Approach 3, x is replaced by the
values of 1, . . . , n, which will produce n intervals. The expectation of low and upper
boundaries will be obtained using the low and upper boundaries of those intervals.
The likelihood method has a benefit that it can be extended to the Bayesian approach
easily. For the Bayesian approach, the relevant posterior density will be considered
to construct the likelihood ratio.

We finally comment that the concept proposed in this chapter can be extended
to other statistics of interest, e.g., relative risk in two sample comparison. An
implementation of the proposed approaches for various relevant confidence interval
strategies warrants further investigations.

A.1 Appendix

The following R codes are to calculate the predicted width of confidence intervals
proposed in Sects. 11.2 and 11.3. The parameters needed are n, p, and alpha for the
sample size, true success rate, and 100(1-alpha)% confidence interval. The results
of each function consist of predicted lower, upper bounds, and width.

R codes for Sect. 11.2

#####Approach 1######
approach1<-function(n,p,alpha){
x<-n*p
lc<-1/(1+(n-x+1)/(x*qf(0.025,2*x,2*(n-x+1))))
rc<-1/(1+(n-x)/((x+1)*qf(0.975,2*(x+1),2*(n-x))))
cat(round(lc,4),round(rc,4),round((rc-lc),4), fill=T)
}
#Usage
approach1(20,0.07,0.05)

#####Approach 2-1####
approach2.1<-function(n,p,alpha){
x<-seq(0,n,1)
probs<-pbinom(x,n,p)
L<-max(x[probs<=(alpha/2)],-0.5)+0.5
U<-min(min(x[probs>=(1-alpha/2)])+1-0.5,n)
cat(round(L/n,4),round(U/n,4), round((U/n-L/n),4), fill=T)
}
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#Usage
approach2.1(20,0.07,0.05)

#####Approach 2-2####
#Functions to solve Eq. (11.6)

incbetaL<-function(x,p,n,alpha){
duhaeyo<-0
ele1<-x+1
ele2<-n
for(i in ele1:ele2){
duhaeyo<-duhaeyo+factorial(ele2)/(factorial(i)*factorial

(ele2-i))*
pˆi*(1-p)ˆ(ele2-i)
}
crit<-abs(duhaeyo-(1-alpha/2))
return(crit)
}
incbetaU<-function(x,p,n,alpha){
duhaeyo<-0
ele1<-x
ele2<-n
for(i in ele1:ele2){
duhaeyo<-duhaeyo+factorial(ele2)/(factorial(i)*factorial

(ele2-i))*
pˆi*(1-p)ˆ(ele2-i)
}
crit<-abs(duhaeyo-(alpha/2))
return(crit)
}

approach2.2<-function(nn,pp,alphaa){
nval<-nn
pval<-pp
alphaval<-alphaa
x<-nval*pval
clow<-1/(1+(nval-x+1)/(x*qf((alphaval/2),2*x,2*(nval-x+1))))
cupp<-1/(1+(nval-x)/((x+1)*qf((1-alphaval/2),2*(x+1),

2*(nval-x))))
lowval<-optimize(incbetaL, c(((clow-0.1)*nval),

((clow+0.1)*nval)),p=pval, n=nval, tol = 0.0001,
alpha=alphaval)

uppval<-optimize(incbetaU, c(((cupp-0.1)*nval),
((cupp+0.1)*nval)),p=pval, n=nval, tol = 0.0001,
alpha=alphaval)

lc<-max(lowval[[1]]/nval,0)
rc<-min(uppval[[1]]/nval,1)
cat(c(lc,rc,(rc-lc)))
}

#Usage
approach2.2(20,0.07,0.05)

####Approach 3#######
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approach3<-function(n,p,alpha){
truep<-p
x<-seq(0,n,1)
probs<-dbinom(x,n,truep)
counts<-0
clc<-c()
crc<-c()
for(i in 1:(n+1)){
lc<-binom.test(x[i], n, conf.level = (1-alpha))$conf.int[1]
rc<-binom.test(x[i], n, conf.level = (1-alpha))$conf.int[2]
clc<-c(clc,lc*probs[i])
crc<-c(crc,rc*probs[i])
}
cat(round(sum(clc),4),round(sum(crc),4),round((sum(crc)-sum(clc)),

4), fill=T)
}

#Usage
approach3(20,0.07,0.05)

R codes for Sect. 11.3

#Approach 1
approach1<-function(n,p,alpha){
c<-qnorm((1-alpha/2))
x<-n*p
lc<-max(sin(asin(sqrt((3/8+x)/(n+3/4)))-c/(2*sqrt(n)))ˆ2,0)
rc<-min(sin(asin(sqrt((3/8+x)/(n+3/4)))+c/(2*sqrt(n)))ˆ2,1)
cat(round(lc,4),round(rc,4),round((rc-lc),4))
}

#Approach 2
approach2<-function(n,p,alpha){
c<-qnorm((1-alpha/2))
lc<-max(((sin(asin(sqrt(p))-c/(2*sqrt(n)))ˆ2)*(1+3/(4*n))

-3/(8*n)),0)
rc<-min(((sin(asin(sqrt(p))+c/(2*sqrt(n)))ˆ2)*(1+3/(4*n))

-3/(8*n)),1)
cat(round(lc,4),round(rc,4),round((rc-lc),4))
}

#Approach 3
approach3<-function(n,p,alpha){
c<-qnorm((1-alpha/2))
truep<-p
x<-seq(0,n,1)
probs<-dbinom(x,n,truep)
counts<-0
clc<-c()
crc<-c()
for(i in 1:length(probs)){
lc<-max(sin(asin(sqrt((3/8+x[i])/(n+3/4)))-c/(2*sqrt(n)))ˆ2,0)
rc<-min(sin(asin(sqrt((3/8+x[i])/(n+3/4)))+c/(2*sqrt(n)))ˆ2,1)
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clc<-c(clc,lc*probs[i])
crc<-c(crc,rc*probs[i])
}
crc<-c(crc,1*probs[(n+1)])
cat(round(sum(clc),4),round(sum(crc),4),round((sum(crc)

-sum(clc)),4))
}
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Chapter 12
Importance of Adjusting for Multi-stage
Design When Analyzing Data
from Complex Surveys

Trung Ha and Julia N. Soulakova

12.1 Introduction

12.1.1 Use of National Surveys in Behavioral Research

Data from national surveys are widely used to monitor the nation’s health status,
access to health care, improvements toward achieving national health objectives,
and other important health-related goals. The Tobacco Use Supplement (TUS)
to the Current Population Survey (CPS) data have been used to estimate trends
in prevalence of smoking (U.S. Bureau of Labor Statistics and U.S. Census
Bureau 2006; U.S. Department of Health and Human Services, Centers for Disease
Control and Prevention, National Center for Health Statistics 2010; Fiore et al.
1989; Jemal et al. 2011; Soulakova et al. 2009), smoking initiation (Cummings
and Shan 1995; Gilpin and Pierce 1997), and smoke-free workplaces (Shopland
et al. 2001). Reliability of the TUS-CPS measures was demonstrated in several
studies (Soulakova et al. 2012, 2015a, b; Soulakova and Crockett 2014). The
National Health Interview Survey (NHIS) and Supplements (U.S. Department of
Health and Human Services, Centers for Disease Control and Prevention, National
Center for Health Statistics 2010) have been used to estimate the prevalence of
chronic conditions and diseases including heart disease, hypertension, diabetes, and
migraines (Blackwell et al. 2014; Burch et al. 2015; Stang and Osterhaus 1993),
to address mental health (Allison et al. 1999; Blackwell et al. 2014), and to study
health disparities among populations with diverse sexual orientations (Dahlhamer
et al. 2014; Ward et al. 2014).
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Because national surveys commonly aim to gather a sample that is representative
of the civilian noninstitutionalized US population, they use complex sampling
(Centers for Disease Control and Prevention 2016; Parsons et al. 2014; U.S. Bureau
of Labor Statistics and U.S. Census Bureau 2006). Thus, when performing analysis
of data from these surveys, researchers should incorporate additional adjustments
outlined in the survey’s methodological guidelines. Specifically, the analytical
approach for the 2006–2015 NHIS data is outlined in the Variance Estimation
Guidelines; the Guidelines state that Taylor Linearization should be used when
deriving the standard errors of the population estimates (Centers for Disease Control
and Prevention 2016). Similarly, to adjust for the complex, multi-stage sampling in
the TUS-CPS, the Balanced Repeated Replications (BRR) method should be used
in data analysis (U.S. Bureau of Labor Statistics and U.S. Census Bureau 2006).

12.1.2 Variance Estimation Using BRR

For surveys utilizing complex designs, it is not sufficient to just incorporate the main
weight in the analyses (Wolter 2007; Lohr 1999). The BRR method is one such
common method that allows to correctly adjust for the design specifics. We briefly
describe the BRR in the simplest case, where the population consists of L strata and
each stratum has at least two Primary Sampling Units (PSUs). For simplicity, we
consider the BRR method for sampling with replacement. While the BRR method
can be used for sampling without replacement, the method is simpler in the former
case (Wolter 2007).

First, we draw a stratified sample with 2 PSUs per stratum. As a result, we have
a full sample containing L subsamples of two PSUs. Next, we draw one PSU from
each subsample. The resulting set is termed a replicate or half sample. In general,
we can draw as many as 2L distinct replicates from the full sample. Because the
maximum number of distinct replicates 2L may be very large in practice, it is more
convenient to consider only a subset of these replicates, e.g., a subset of k replicates.
The number of replicates k should be chosen as the smallest integer, multiple of 4
such that k ≥ L. To minimize computing time, however, one may choose the number
of replicates to be less than L; this is illustrated in Sect. 12.1.3. The k replicates, i.e.,
balanced half samples, are chosen using Hadamard matrix (Wolter 2007, Chapter 3).

Then, the replicates and the full sample are used to compute k + 1 values of
the statistic of interest. To avoid possible computing ambiguities, e.g., division by
zero when computing a statistic based on a replicate, one can use Fay’s method,
also termed the modified half sample technique (Judkins 1990). In the final step,
computed values are used to estimate variance via a scaled mean square difference.
The formula for computing variance is depicted in formula (12.2) in Sect. 12.1.3.

The BRR and modified half sample technique have been extended and discussed
for other types of complex sampling (Judkins 1990; Wolter 2007, Chapters 3
and 8). For example, in Sect. 12.1.3 we refer to a method termed Successive Dif-
ference Replication (SDR). The SDR was based on Successive Difference method
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(Wolter 1984, 2007, Chapter 8) and initially was proposed for estimating variance
of the estimated total when a systematic random sample is drawn from an ordered
list (Fay and Train 1995). The SDR can be used when a stratum contains only one
PSU and can also be applied to estimate variance of a general estimator (Ash 2014).

12.1.3 Application of BRR for the TUS-CPS Data Analysis

Since 2000 onwards, the CPS monthly sample size is about 60,000 households
(U.S. Department of Commerce, U.S. Census Bureau 2015). These households
(also termed housing units) are sampled using the following multi-stage sampling
strategy (U.S. Bureau of Labor Statistics and U.S. Census Bureau 2006, Chapter 3).
First, the PSUs are defined, where PSUs are usually a metropolitan area, a large
county, or a group of smaller counties. The PSUs are grouped into 824 strata so
that the strata are within state boundaries and are homogenous in terms of the
labor force characteristics; there are 2025 PSUs. The strata are of two types: self-
representing (SR) and non-self-representing (NSR). Each SR stratum consists of a
single PSU, such as one of the 151 most populated metropolitan areas. Each NSR
stratum consists of at least two PSUs. All 2000-based designs include 446 SR and
378 NSR strata. For each SR stratum, the PSU from the stratum is selected, and
for each NSR stratum, only one PSU from the stratum is selected (using unequal
probability sampling). As a result, there are 824 PSUs sampled in the first stage.

In the second stage, the Ultimate Sampling Units (USUs) are defined and selected
from the sampled PSUs. The USUs represent a small group (usually four addresses)
of housing units with similar demographic composition and geographic proximity.
All housing units are surveyed within a sampled USU when the USU is small
(15 housing units or less). The third stage, termed field subsampling, is implemented
to select a subset of housing units when a USU is large (i.e., has more than 15
housing units identified for interview).

The sampled housing units are surveyed and a 4-8-4 rotation scheme is used
(U.S. Bureau of Labor Statistics and U.S. Census Bureau 2006, Chapter 3).
Specifically, each household is surveyed for 4 consecutive months, and 8 months
later it is surveyed for 4 additional months. In any single month, 1/8 of the sample
housing units is interviewed for the first time; another 1/8 is interviewed for the
second time, and so on. The rotation chart was illustrated visually in Appendix 1 in
Soulakova et al. (2009).

In research using TUS-CPS and other CPS Supplements, one needs to adjust for
the multiple stages and other design characteristics, e.g., the number of sampled
households differs across the Supplements. Specifically, one needs to incorporate
the BRR with the main and replicate weights computed for the Supplement by the
U.S. Census Bureau (U.S. Bureau of Labor Statistics and U.S. Census Bureau 2006,
Chapter 14). The replicate weights are based on the main weight and correct for the
difference in sampling the PSUs from the SR and NSR (Ash 2014; U.S. Bureau of
Labor Statistics and U.S. Census Bureau 2006, Chapter 14). For the SR PSUs, the
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replicate weights are obtained using the SDR, while for the NSR PSUs, the weights
are obtained using the modified half sample technique. For the 2000-based designs,
there are 160 replicate weights, i.e., k = 160, that are available for public use and
should be incorporated in all analyses (U.S. Bureau of Labor Statistics and U.S.
Census Bureau 2006).

Let Y denote the parameter of interest, e.g., average age of single parents in the
USA. Let n denote the total number of respondents in the sample, ̂Y denote the
estimator of Y based on the sample and the main weight, and ̂Yr , r = 1, 2, . . . , R,
denote the estimator of Y based on the r − th replicate weight. For example, in a
case of estimating the mean, the following formulas should be used for computing
̂Y and ̂Y

′
r s:

̂Y = 1
∑n

i=1 Wi

n
∑

i=1

WiYi (12.1)

and

̂Yr = 1
∑n

i=1 Wr,i

n
∑

i=1

Wr,iYi, r = 1, 2, . . . , R,

where Yi is the measurement for the i − th respondent (e.g., age of the i − th
respondent in the sample), Wi is the main weight corresponding to the i − th
respondent, and Wr, i is the value of the r − th replicate weight corresponding to
the i − th respondent.

The estimated variance via BRR is given by

var
(

̂Y
) = 1

R(1− ε)2

R
∑

r=1

(

̂Yr − ̂Y
)2
, (12.2)

where 0 < ε < 1 is Fay’s factor. For the 2000-based TUS-CPS data, R = 160 and
ε = 0.5. Thus, formula (12.2) reduces to

varT US

(

̂Y
) = 1

40

160
∑

r=1

(

̂Yr − ̂Y
)2
. (12.3)

We note that Fay’s factor 0.5 is a default option in BRR-Fay variance estimation
method in SAS

®
(SAS Institute Inc. 2016).

12.1.4 Three Analytical Methods

We discuss three methods of estimating several parameters and standard errors of
estimators based on TUS-CPS data. Method I ignores any weighting and incorrectly
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treats the sample as if it is a simple random sample. Let ̂YI denote the mean
estimated via method I, then

̂YI = 1

n

n
∑

i=1

Yi (12.4)

and

var
(

̂YI
) = 1

n (n− 1)

n
∑

i=1

(

Yi − ̂YI
)2
. (12.5)

Method II uses the main weights when computing the point estimates but ignores
the replicate weights when estimating variance. Method III uses the main weight
when computing the point estimate, and the main and replicate weights when
computing the variance via formula (12.3). Let ̂YII and ̂YIII denote the means
estimated via methods II and III, respectively. Note that both point estimates are
computed using formula (12.1) and thus, ̂YII = ̂YIII .

Several methods can be used to estimate the variance of ̂YII while ignoring
the replicate weights. Method II incorporates Taylor linearization. This is a default
approach when one specifies the main weight but does not use any stratum/cluster
option and does not specify variance method in the built-in procedures in SAS 9.4
survey package (SAS Institute Inc. 2016). Method II utilizes the following formula:

var
(

̂YII
) = n

n− 1

n
∑

i=1

(ei − e)2, (12.6)

where

ei = Wi
∑n

i=1 Wi

(

Yi − ̂YII
)

and

e = 1

n

n
∑

i=1

ei .

For methods I, II, and III, standard errors can be computed, respectively, using

SE
(

̂YI
) =

√

var
(

̂YI
)

, SE
(

̂YII
) =

√

var
(

̂YII
)

and

SE
(

̂YIII
) =

√

varT US

(

̂YIII
)

,

(12.7)

where var
(

̂YI
)

is computed via formula (12.5), var
(

̂YII
)

is computed via formula
(12.6), and varT US

(

̂YIII
)

is computed via formula (12.3).
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We illustrate three study claims:

Claim 1: All three methods could result in very similar point estimates.
Claim 2: Methods I and II/III could result in different point estimates.
Claim 3: Methods I, II, and III could result in discrepant standard errors and

the pattern of these discrepancies can be different, e.g., method II could result in a
smaller or larger standard error relative to method III.

Discrepancies in the results of the three methods are illustrated using 2014–
2015 TUS-CPS data. While we used built-in procedures in SAS 9.4 survey package
(SAS Institute Inc. 2016), we also performed additional computing to illustrate
formulas presented in Sect. 12.1.3. We considered adult (18+ years old) single
parents who lived with underage children (younger than 18 years old) in the USA.
The measures of interest included parental smoking status (never smoker, former
smoker, occasional smoker, and daily smoker), parental attitudes toward smoking
bans, i.e., whether they support complete smoking bans in public places and cars,
and smoking rules at home (a smoke-free home or not a smoke-free home).

The sample consisted of 6119 single parents and corresponded to the population
of 9,223,391 single parents, i.e.,

∑6119
i=1 Wi = 9, 223, 391. As depicted in Tables

12.1 and 12.2, the sample size slightly differed depending on the measure. For
convenience of computing, we used the same population count of 9, 223, 391 for
all measures when estimating the population total. About 10.4% of parents were
between 18 and 24 years old, 66.3% of parents were between 25 and 44 years old,
and 23.3% of parents were 45 years old or older. The parents were 16.6% male
and 83.4% female, 46.0% non-Hispanic White, 28.3% non-Hispanic Black/African
American, 20.1% Hispanic, and 5.6% other; 48.5% had a single child, 33.4% had
two children, 12.1% had three children, and 6.0% had more than three children. We
used the main weights when computing these sample summary statistics.

12.2 Examples

Claim 1. Table 12.1 illustrates that all three methods resulted in the same proportion
of single parents who support complete smoking bans in outdoor children’s areas
(e.g., playgrounds): the proportion is 88.7% (when percentages are rounded to the
tenths). The estimated value of ̂YI is computed via formula (12.4), where n = 6057
and the unweighted sample total is

∑n
i=1Yi = 5371. Thus, ̂YI = 5371

6057 = 88.7%.
The estimated value of ̂YII

(

̂YIII
)

is based on formula (12.1), where the weighted
sample total is

∑n
i=1WiYi = 8, 098, 238 and the total population weight is

∑n
i=1Wi = 9, 132, 015. Thus, ̂YII = 8,098,238

9,132,015 = 88.7%.
Table 12.1 also shows that the methods could result in very similar (if not

equal upon rounding) prevalence estimates. For example, the differences did not
exceed 0.2% for proportions of parents who support complete smoking bans in
bars, cocktail lounges, and clubs, casinos, and cars when children are present. A
similar discrepancy of 0.2% was observed in the estimated prevalence of occasional
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Table 12.1 Proportion and total number of single parents supporting complete smoking bans in
public places and cars

Single parents who
support complete
smoking bans in . . . Method I Method II Method III

Outdoor children’s areas (n = 6057)
Estimated proportion (SE) 88.7% (0.4072%) 88.7% (0.4743%) 88.7% (0.4459%)

95% CI for proportion 87.9–89.5% 87.7–89.6% 87.8–89.6%

Estimated total (SE) 8,181,148 (37,558) 8,181,148 (43,747) 8,181,148 (41,127)

95% CI for total 8,107,361–8,254,935 8,088,914–8,264,158 8,098,137–8,264,158

Bars, cocktail lounges, and clubs (n = 6001)
Estimated proportion (SE) 52.6% (0.6446%) 52.7% (0.7657%) 52.7% (0.6774%)

95% CI for proportion 51.4–53.9% 51.2–54.2% 51.3–54.0%

Estimated total (SE) 4,851,504 (59,454) 4,860,727 (70,624) 4,860,727 (62,479)

95% CI for total 4,740,823–4,971,408 4,722,376–4,999,078 4,731,600–4,980,631

Casinos (n = 5983)
Estimated proportion (SE) 51.2% (0.6463%) 51.0% (0.7677%) 51.0% (0.7527%)

95% CI for proportion 49.9–52.5% 49.5–52.5% 49.5–52.5%

Estimated total (SE) 4,722,376 (59,611) 4,703,929 (70,808) 4,703,929 (69,424)

95% CI for total 4,602,472–4,842,280 4,565,579–4,842,280 4,565,579–4,842,280

Car when children are present (n = 6027)
Estimated proportion (SE) 94.2% (0.3005%) 94.3% (0.3467%) 94.3% (0.3022%)

95% CI for proportion 93.6–94.8% 93.6–95.0% 93.7–94.9%

Estimated total (SE) 8,688,434 (27,716) 8,697,658 (31,977) 8,697,658 (27,873)

95% CI for total 8,633,094–8,743,775 8,633,094–8,762,221 8,642,317–8,752,998

Car when other people are present (n = 6040)
Estimated proportion (SE) 72.3% (0.5760%) 73.3% (0.6687%) 73.3% (0.6013%)

95% CI for proportion 71.2–73.4% 72.0–74.6% 72.1–74.5%

Estimated total (SE) 6,668,512 (53,127) 6,760,746 (61,676) 6,760,746 (55,460)

95% CI for total 6,567,054–6,769,969 6,640,842–6,880,650 6,650,065–6,871,426

Note: CI stands for “confidence interval”

Table 12.2 Proportion of smoke-free homes among single-parent households in the USA
(n = 6119)

Method I Method II Method III

Proportion (SE) 86.1% (0.4%) 86.4% (0.5%) 86.4% (0.6%)

95% confidence interval for proportion 85.2–87.0% 85.4–87.4% 85.3–87.5%

smokers (see Fig. 12.1). A discrepancy of 0.3% was observed in the estimated
prevalence of smoke-free homes among single-parent households (see Table 12.2).

The above results could incorrectly suggest that the discrepancies are so minor
that it is sufficient to incorporate the main weight in the analyses. However, the
examples below illustrate that even small discrepancies in the proportions could be
meaningful when the estimates are projected to the totals.
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Fig. 12.1 Parental smoking status

Claim 2. Let us further discuss the results for smoke-free homes depicted in
Table 12.2. While the difference in the proportions of smoke-free homes was only
0.3%, the estimated total numbers of smoke-free homes were quite different: they
were 7,941,340 and 7,969,010 based on method I and methods II/III, respectively.
The difference in the estimated totals was 27,670 households.

Figure 12.1 depicts the difference in the estimated prevalence of never smokers,
former smokers, and daily smokers when methods I and II/III are used. The differ-
ence between the proportions (in absolute value) were relatively high: discrepancies
ranged from 1.7 to 3.5%. The estimated total numbers of never smokers were
5,765,560 (method I) and 6,089,181 (methods II/III), the total numbers of former
smokers were 1,403,330 (method I) and 1,250,618 (methods II/III), and the total
number of daily smokers were 1,561,603 (method I) and 1,415,034 (methods II/III).
The specific differences in the estimated totals for never smokers, former smokers,
and daily smokers, respectively, were 323,621, 152,712, and 146,569.

Table 12.1 illustrates additional differences in the estimated total numbers of
single parents who support complete smoking bans in bars, cocktail lounges, and
clubs, casinos, and cars when children are present. The differences in estimated
totals (in absolute value) ranged from 9223 to 92,234.

Claim 3. Table 12.1 depicts standard errors for estimated prevalence and totals
computed via formulas (12.7). For example, standard errors for the estimated
prevalence of parents who support complete smoking bans in cars when children
are present (n = 6027) are based on the following formulas:

SE
(

̂YI
) =

√

1

6027 (6027− 1)
327.9 = 0.3005%,

SE
(

̂YII
) =

√

6027

6027− 1
1.1875× 10−5 = 0.3467%,
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Fig. 12.2 Point estimates, statndard errors (SEs), and 95% confidence intervals for the total
number of smoke-free homes among single-parent households in the USA

and SE
(

̂YIII
) =

√

1

40
3.6531× 10−4 = 0.3022%.

Table 12.1 illustrates that while the standard errors for estimated proportions
were somewhat similar, the differences in the standard errors for estimated totals
were quite pronounced. Note that method II led to larger standard errors relative
to method III for all attitudinal measures depicted in Table 12.1. Method II corre-
sponded to wider confidence intervals for the proportions and totals in comparison
to method III (see Table 12.1). However, method II led to smaller standard errors
relative to method III for the estimated proportion (see Table 12.2) and total number
of smoke-free homes (see Fig. 12.2). Therefore, method II corresponded to narrower
confidence intervals for the proportion (see Table 12.2) and total number of smoke-
free homes in comparison to method III (see Fig. 12.2).

12.3 Discussion

The importance of incorporating the main weight in statistical analyses of survey
data has been discussed in many survey sampling texts and publications (Hansen
et al. 1953; Lohr 1999; Nassiuma 2001; Scheaffer et al. 2011). For example, in one
study the distribution of annual salary was estimated using weighted and unweighted
survey data; the corresponding histograms clearly showed a difference in the results
(Lohr 2012).

While we have shown that incorporating the main weight is necessary when
computing a point estimate, we have also found this is not sufficient when analyzing
data from complex surveys such as TUS-CPS. Standard errors computed via
methods I, II, and III could be very different, especially with respect to a total for a
large population. In the latter case, the three methods could result in very different
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confidence intervals. For example, the standard error of the estimated total of smoke-
free homes among single-parent households was largest for method III, smaller for
method II, and smallest for method I. Thus, method I resulted in the narrowest
confidence interval for the total number of smoke-free homes. However, it would be
a mistake to claim that the result is valid because the method ignored the complex
design features and thus, incorrectly underestimated the standard error. Because
only method III incorporates the correct adjustments for the design specifics using
the main and replicate weights, method III should be used in all analyses despite
possibly giving less preferable results.

The study and considered examples have some limitations. First, the total count
for the sample of single parents considered in the study was 9,223,391. This count
was used when estimated totals (and standard errors) were computed based on
estimated proportions (and standard errors). The count appears to be smaller than
the total number of single-parent households with co-resident underage children
reported by the U.S. Census Bureau in 2015: 10,432,000 (U.S. Census Bureau
2015). Thus, the presented population totals could be underestimated. An additional
limitation is that method I resulted in smaller estimated variance relative to methods
II and III in all considered examples. This, however, is not always the case.

We used simple built-in options in the survey package in SAS 9.4 (SAS Institute
Inc. 2016), such as proc surveyfreq with BRR, main weight, and 160 replicate
weights. Other major computing packages also provide built-in options for the
variance estimation via BRR. From a computing standpoint, implementing correct
adjustments is rather straightforward. We suggest following recommendations
presented in the technical documentation for analysis of data from a national survey.
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Chapter 13
Analysis of the High School Longitudinal
Study to Evaluate Associations Among
Mathematics Achievement, Mentorship
and Student Participation in STEM
Programs

Anarina L. Murillo, Hemant K. Tiwari, and Olivia Affuso

13.1 Introduction

Training the next generation of scientists is critical for the continued growth and
success of technological and scientific developments in the United States. Many
efforts have aimed to recruit, retain, and train individuals in the science, technology,
engineering, and mathematics (STEM) fields. The National Science Foundation
(NSF) (NSF 2012b) Math and Science Partnership (MSP) program as well as the
NSF INCLUDES initiatives (NSF 2012a) have been put in place to improve K-12
STEM education and broaden the participation of diverse individuals in the STEM
workforce. The American Statistical Association (ASA) has developed initiatives
and programs to promote K-12 outreach as well as improve the recruitment and
retention of students in statistics programs. However, according to the National
Center for Education Statistics (NCES) (Chen 2013), only 28% of students surveyed
during the 2003–2004 academic year pursued a bachelor’s degree in a STEM field
and 48% of those students left college or switched majors at the end of 6 years in
Fall 2009.

To address these issues, several summer and year-long extracurricular programs
have been created at the local, state, and national levels in order to recruit and
retain STEM students. These programs expose students to opportunities in STEM
fields, as well as prepare students for STEM programs through knowledge and
skill development (King et al. 2017). It is well known that a strong background
in mathematics and science is necessary for advanced training (e.g., baccalaureate
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and graduate school programs) in statistics, biostatistics, and bioinformatics. Data
demonstrate that lower student retention rates are more prevalent among those with
lower academic preparation and achievement in high school mathematics. More
specifically, 41–46% of students with less than Algebra II/Trigonometry coursework
completed and below a 2.5 High School GPA left STEM fields (Chen 2013). In
contrast, only 12–14% of students with a High School GPA of 3.5 or higher and
who took calculus in high school left STEM fields (Chen 2013). At the K-12 levels,
mathematical literacy and comprehension set the foundation for statistics education
and statistical literacy (BenZvi and Garfield 2008). This includes developing: a good
understanding of the language of algebra and algebraic processes (e.g., proportional
relationships and change; linear and nonlinear equations, inequalities, sequences
and recursive relationships, etc.). While mathematics and statistics require different
reasoning and intellectual skills (Kader and Perry 2006), a strong understanding of
algebraic processes is an essential skill for statistical literacy and can be developed
in both primary and secondary schools (Inter-university Consortium for Political and
Social Research 2016). Thus, a strong foundation in the mathematical and statistical
sciences is an essential skill for preparing students for STEM majors/careers.

Another benefit of these programs is creating the opportunity to foster relation-
ships between students, peers, role models, and mentors. Mentorship is essential
for career development and particularly important for recruiting and retaining
underrepresented minorities (Griffin et al. 2010; Syed et al. 2012) who might be
more susceptible to leaving STEM fields, such as women (Griffith 2010) and first
generation college students, which is defined as students who are first members
of their families to attend a college/university (Chen 2013). Additionally, prior
studies showed that parental role modeling and mentoring may play a significant
role in (Anderson and Minke 2007; Harackiewicz et al. 2012) shaping students
interests in STEM majors/careers. In 2012–2013, STEM degrees conferred to
underrepresented minorities were below average (16%) including non-Hispanic:
Native Hawaiian/Pacific Islander (15%), American Indian/Alaska Native (14%),
and Black/African-American (11%) students (Musu-Gillette et al. 2016). In the
Hispanic population, only 14% of students graduated with a STEM degree (Musu-
Gillette et al. 2016). Bachelor’s degrees in STEM fields were awarded to a higher
proportion of non-Hispanic Asian students (30%) in comparison with other students
(Musu-Gillette et al. 2016). According to the NCES, the students who leave STEM
programs at a higher rate include: underrepresented minorities, particularly non-
Hispanic Black/African-American, Hispanic, and American Indian/Alaska Natives,
and first-generation students (Chen 2013). Furthermore, a higher proportion of
females (43%) were likely to leave STEM programs in comparison to males
(Chen 2013). Hence, mentorship might be one approach to recruiting and retaining
students in STEM majors/careers.

In this study, we investigated the effects of student participation in STEM
activities, mentorship received from parents, teachers, and counselors on mathe-
matics achievement and student enrollment plans in STEM majors/careers. The
first aim was to evaluate the relationships among math achievement, student’s
participation in STEM activities, intent to pursue a STEM major/career, and
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mentorship received from parents, teachers, and counselors. The second aim was to
evaluate the probability that students will pursue a STEM major/career given their
math achievement, participation in STEM activities, and mentorship received. The
overall goal was to assess these factors in order to inform potential STEM programs
and policies aimed at high school students and underrepresented minorities to
increase the STEM workforce. In particular, the results of this study may shed light
on programs in the biostatistics, bioinformatics, statistics, and mathematics fields.
This paper is organized as follows: methods are outlined in Sect. 13.2, results in
Sect. 13.3, and discussion in Sect. 13.4.

13.2 Methods

13.2.1 Data and Sample

Data collected by The National Center for Education Statistics (NCES) as part of
the High School Longitudinal Study (HSLS:09) in 2009–2013 were analyzed (Inter-
university Consortium for Political and Social Research 2016). The HSLS:09 is a
nationally representative longitudinal study that investigates 9th graders’ paths from
secondary to postsecondary transition plans including education and career choices.
Baseline data were collected for Fall-term 9th graders in the 2009–2010 school year.
The first follow-up took place in Spring of 2012. The same students were asked to
complete the surveys, and dropouts and transfer students were also followed. In
the Summer of 2013, data were collected for a postsecondary update, which only
includes information for a subset of questions from the complete survey in order to
track the cohort’s postsecondary career/education plans. The second follow-up took
place in 2016, a third follow-up is planned for 2021, and the final follow-up will
take place in 2025. This present study only includes data collected from 2009 to
2013 since the 2016 data has not been released yet.

In the base year (2009), a sample of Fall-term 9th graders was randomly selected
from more than 900 public and private high schools with both a 9th grade and a
11th grade class. The students, as well as the students’ parents, principals, teachers
in mathematics and science, and the school’s main counselor completed surveys in
order to evaluate the effects of social and educational factors on career paths into
and out of STEM fields. Thus, the HSLS:09 is an ideal dataset for the goals of this
present study and offers rich information on STEM participation at the high-school
level and student’s transition into future STEM career choices.

Participants were recruited for this complex survey design in a two-stage process.
First, 1889 eligible schools were identified through stratified random sampling and
school recruitment. Approximately 944 of eligible schools participated in HSLS:09,
yielding a response rate of 55.5% (weighted) or 50.0% (unweighted). Second,
students were randomly sampled from enrollment lists. There were 25,206 eligible
selections, which is approximately 27 per school. Data were collected by computer-
assisted telephone interviews (CATI), on-site questionnaires, telephone interviews,
or through web-based surveys.
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Sampling weights calculated by the HSLS:09 for the complex sampling design of
the study were used to produce estimates for the target population with appropriate
standard errors. Analytic weights were calculated at the school-level (e.g., for school
administrator and counselor variables) and at the student-level. The student-level
weights were provided for contextual data on science and math coursework at the
school-level variables and for family and home contextual data for use with parent-
level variables.

13.2.2 Study Variables

Data were collected at both the student-level and school-level. The students as
well as students’ parents, teachers (math and science only), school’s principals and
school’s lead counselors were interviewed. Questions at the student-level included
the following topics: career and school interests, STEM interests, coursework,
attitudes and beliefs, social and cultural experiences, and exposure to STEM
programs and majors/careers. At the parent-level, interview questions addressed:
demographics, involvement and discussions with students career and postsecondary
plans, as well as knowledge of options for college, career, and financing college
education. At the teacher-level, respondents provided information on their own
training and qualifications, quality of math and science curriculum at the school,
and other topics pertaining to perceptions of parental involvement and attitudes
about the school environment. At the administrator-level, information on school
curriculum and career-related or transition programs were provided. Lastly, at the
counselor-level, students’ transition from high school to postsecondary education
and/or careers transitions, coursework, advising, and availability of support were
discussed.

In this analysis, we used publically available data collected between 2009
and 2013. The study variables included: demographic, mathematics achievement,
mentoring, participation in STEM activities, and STEM interests collected in
Fall 2009 and Spring 2012. Three additional questions on STEM major/career
interests were obtained from Summer 2013. These variables are described in detail
below. Primary outcome measures included: the student’s mathematics achievement
standardized theta score and student’s intention to pursue a STEM career. Predictor
variables included: student participation in STEM activities and mentoring.

Demographic and School Information Demographic variables collected at baseline
used in this analysis included: sex, race/ethnicity, and school characteristics. Sex of
the students, race/ethnicity, and school characteristics (type of school, urbanicity,
and geographic region). Student’s sex was recorded as either male or female.
Student’s self-reported race/ethnicity was categorized into seven dichotomous
groups: (1) American Indian/Alaska Native, non-Hispanic; (2) Asian, non-Hispanic;
(3) Black/African-American, non-Hispanic; (4) Hispanic, race specified or not
specified; (5) More than one race, non-Hispanic; (6) Native Hawaiian/Pacific
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Islander, non-Hispanic; and (7) White, non-Hispanic. The school environment
(urbanicity) was recorded into four categories: (1) city, (2) suburb, (3) town, and (4)
rural. The types of school included: (1) public or (2) private. The school geographic
region was recorded into four dichotomous groups: (1) northeast, (2) midwest, (3)
south, and (4) west.

Socioeconomic Status The socioeconomic status (SES) quintile variable was cal-
culated by the NCES (Inter-university Consortium for Political and Social Research
2016) using parent/guardian’s education, occupation, family income, and weighted
using the estimated student weight collected at baseline and first follow-up (Spring
2012). This information was then used to categorize SES into three groups: (1) low
SES (≤20th percentile), (2) middle SES between the 20th and 80th percentile, and
(3) high SES (>80th percentile).

Mathematics Achievement Mathematical comprehension was assessed using a 118-
item test to measure algebraic reasoning which involved questions on algebraic
content (e.g., linear equations, inequalities, proportional relationships) and algebraic
processes (e.g., reasoning and problem solving). The mathematics standardized
theta score is a rescaled estimate of the student’s mathematics assessment score
relative to the whole population (Fall 2009 9th graders) was used in this study. Math
achievement scores obtained in Fall 2009 and Spring 2012 were used.

Intention to Pursue a STEM Career The student’s intention to pursue a STEM
career by age 30 was assessed using the coding scheme developed by the Occu-
pational Information Network (O*NET) for the U.S. Department of Labor. Students
selected which career they wanted by age 30, after which their responses were
categorized as either desiring to pursue a STEM-related career or not a STEM-
related occupation. Observations from Fall 2009 and Spring 2012 were used.
Student’s interests in STEM majors/careers obtained in the postsecondary update
in Summer of 2013 were also analyzed.

Mentoring Mentoring variables were created using four specific survey questions
including: (1) “Why are you taking Fall 2009 math courses”?, (2) “Why are you
taking Fall 2009 science courses”?, (3) “Why are you taking Spring 2012 math
courses”?, and (4) “Why are you taking Spring 2012 science courses”? Students
were allowed to select one or more of the following responses: your parent(s)
encouraged you to take it, a teacher encouraged you to take it, or a counselor
suggested it. Three mentoring variables were created for parents, teachers, and
school counselors. For each “yes” response to a mentoring-related question a score
of “1” was recorded for the corresponding mentoring variable, and thus, each
mentoring variable had a maximum value of 4.

STEM Activities The variables representing participation in STEM activities were
created using two specific survey questions including: (1) “Since 08–09, which
activities did you participate in”? (Fall 2009 question) and (2) “Since Fall 2009,
which activities did you participate”? (Spring 2012 question). Students were
allowed to select one or more of the following responses: math competition, math
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club, math camp, math summer program, science competition, science club, science
program, or science camp. A score of “1” was recorded for each response selected
to create one STEM variable for Fall 2009 (baseline) and for Spring 2012 (first
follow-up). Each variable had a maximum value of 6.

13.2.3 Statistical Methods

Descriptive information including frequency (%), range (minimum and maximum
values), mean ± SD are shown for all variables. Data were coded as missing by
the NCES if at least one of the following criteria was met: (1) questions were
not answered within the questionnaire, (2) sample member did not respond to
the questionnaire, (3) questions were not answered because prior answered routed
the respondent to another question, (4) participant didn’t know, and for a few
other reasons (e.g., item not administered because an abbreviated version of the
questionnaire was not administered, unit nonresponse, etc.) detailed in the HSLS:09
User Guide (Inter-university Consortium for Political and Social Research 2016).
All residuals were tested for normality from the regression models. Variance of
residuals were also checked for equality from the regression models.

For the first aim, analysis of variance (ANOVA) tests was used to evaluate mean
differences in mathematics achievement based on predictor variables (e.g., sex and
race/ethnicity, student’s engagement in STEM activities, intent to pursue a STEM
career, and mentorship received from parents, teachers, and school counselors).
Multiple regression models were used to predict math achievement scores in Fall
2009 and Spring 2012 based on these predictor variables. For the second aim,
logistic regression models were used to evaluate the probability that students will
pursue a STEM major/career given their math achievement, STEM activities, and
mentorship received from parents, teachers, and school counselors. All statistical
analyses were performed with statistical significance accepted when P < 0.05
and using sampling weights. The regression models were implemented using
PROC SURVEYREG and PROC SURVEYLOGISTIC procedures in SAS 9.4 (SAS
Institute 2015).

13.3 Results

13.3.1 Study Participants

The demographic and school characteristics are summarized in Table 13.1. A total
of n = 23,503 students (50.95% male/49.05% female) were included. The study
population was diverse including non-Hispanic: White (55.10%), Black/African-
American (10.42%), and Asian (8.18%), as well as Hispanic (16.43%) participants.
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Table 13.1 Demographic characteristics of the study sample (n = 23,503) are shown

Variable Total, n (%) Male, n (%) Female, n (%)

(n = 23,503) (n = 11,975) (n = 11,528)

Race/ethnicity

American Indian/Alaska Native 181 (0.77) 101 (0.43) 80 (0.34)

Asian 1922 (8.18) 970 (4.13) 952 (4.05)

Black/African-American 2448 (10.42) 1276 (5.43) 1172 (4.99)

Hispanic 3862 (16.43) 1939 (8.25) 1923 (8.18)

Native Hawaiian/Pacific Islander 118 (0.50) 60 (0.26) 58 (0.25)

White 12,951 (55.10) 6594 (28.06) 6357 (27.05)

Other 2021 (8.60) 1035 (4.40) 986 (4.20)

SES

Low SES 3262 (13.88) 1676 (7.13) 1586 (6.75)

Middle SES 14,815 (63.03) 7548 (32.12) 7267 (30.92)

High SES 5426 (23.09) 2751 (11.70) 2675 (11.38)

School type

Public 19,273 (82.00) 9882 (42.05) 9391 (39.96)

Private 4230 (18.00) 2093 (8.91) 2137 (9.09)

School locale (urbanicity)

City 6689 (28.46) 3369 (14.33) 3320 (14.13)

Suburb 8467 (36.03) 4307 (18.33) 4160 (17.70)

Town 2788 (11.86) 1418 (6.03) 1370 (5.83)

Rural 5559 (23.65) 2881 (12.26) 2678 (11.39)

School geographic region

Northeast 3662 (15.58) 1794 (7.63) 1868 (7.95)

Midwest 6224 (26.48) 3215 (13.68) 3009 (12.80)

South 9587 (40.79) 4968 (21.14) 4619 (19.65)

West 4030 (17.15) 1998 (8.50) 4619 (19.65)

STEM major/career (Fall 2009)

Yes 6490 (30.88) 2545 (12.11) 3945 (18,77)

No 14,528 (69.12) 8083 (38.46) 6445 (30.66)

Missing 2485 1347 1138

STEM major/career (Spring 2012)

Yes 7098 (35.07) 2800 (13.83) 4298 (21.24)

No 13,142 (64.93) 7377 (36.45) 5765 (28.48)

Missing 3263 1798 1465

STEM job expected (Summer 2013)

Yes 399 (4.72) 197 (2.33) 202 (2.39)

No 8052 (95.28) 4050 (47.92) 4002 (47.36)

Missing 15052 7728 7324

(continued)
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Table 13.1 (continued)

Variable Total, n (%) Male, n (%) Female, n (%)

(n = 23,503) (n = 11,975) (n = 11,528)

STEM field expected (Summer 2013)

Yes 2935 (25.54) 1920 (16.71) 1015 (8.83)

No 8558 (74.46) 3417 (29.73) 5141 (44.73)

Missing 12010 6638 5372

STEM current job (Summer 2013)

Yes 245 (2.71) 113 (1.25) 132 (1.46)

No 8786 (97.29) 4378 (48.48) 4408 (48.81)

Missing 14,472 7484 6988

Less than 1% of the population were American Indian/Alaska Native (0.77%) and
Native Hawaiian/Pacific Islander (0.50%). Approximately 14%, 63%, and 23% of
the population were categorized as low, medium, and high SES, respectively.

Students represented both public (82%) and private (18%) schools. Approxi-
mately 52% of schools offered programs to encourage underrepresented students
in STEM fields and 39% of schools had programs to inform parents about STEM
higher education/careers. In Fall 2009 and Spring 2012, 69% and 65% of all
students were not interested in pursuing a STEM major/career. In Summer 2013,
approximately 95% of students expected a STEM major/career by November
2013 and 74% expected to pursue a STEM major/career field in November 2013.
However, only 3% had a current job that was considered STEM-related.

13.3.2 Assessment of Student Mathematics Achievement

The mean(±SD) math achievement scores for the study sample was 51.11±10.08
in Fall 2009 and 51.50±10.15 in Spring 2012. No significant differences were
found based on sex in Fall 2009 (F(1, 21443) = 0.94, P = 0.3327) nor Spring
2012 (F(1, 21443) = 0.12, P = 0.7262). However, math achievement scores
did significantly vary by race in Fall 2009 F(6, 21443) = 134.40, P < 0.001)
and Spring 2012 (F(6, 20593) = 124.37, P < 0.001). In Fall 2009 and Spring
2012, Asian students consistently had higher scores (58.07±10.62 in Fall 2009
and 58.68±10.58 in Spring 2012) followed by White, Native Hawaiian/Pacific
Islander, Hispanic, and Black/African-American (see Table 13.2). Low scores were
observed in American Indian/Alaska Native students (44.68±10.91 in Fall 2009 and
47.19±10.15 in Spring 2012), and was significantly lower in low SES individuals
in comparison with medium and high SES student’s in Fall 2009 (F(3, 21443) =
654.68, P < 0.001) and in Spring 2013 (F(3, 20593) = 627.92, P < 0.001).
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Table 13.2 Summary of math achievement scores in Fall 2009 and Spring 2012 based on
demographic, mentoring, STEM activities, and STEM interests

Fall 2009 Spring 2012

Variable n Mean (SD) P -value n Mean (SD) P -value

All 21,444 51.11 (10.08) 20,594 51.50 (10.15)

Sex 0.332 0.776

Maleref 10,887 51.08 (10.47) 10,384 51.59 (10.62)

Female 10,557 51.15 (9.66) 10,210 51.41 (9.66)

Racea,b <0.0001 <0.0001

Amer. Ind./Alaska
Native

163 44.68 (10.91) 142 47.19 (10.15)

Asian 1672 58.07 (10.62) 1675 58.68 (10.58)

Black/African-American 2219 46.40 (9.27) 2121 46.80 (8.80)

Hispanic 3515 48.21 (9.38) 3271 48.64 (9.14)

Native Haw./Pac. Islan. 1912 51.13 (9.48) 1756 51.45 (9.75)

Other 110 49.24 (9.90) 97 50.52 (9.67)

Whiteref 11,853 51.97 (9.69) 11,532 52.20 (9.94)

SESa,b <0.0001 <0.0001

Lowref 2862 46.39 (9.15) 3167 46.21 (9.03)

Medium 13,512 49.94 (9.60) 12,066 50.29 (9.44)

High 5070 56.90 (9.35) 5361 57.36 (9.66)

Mentoring

Teachera,b <0.0001 <0.0001

None 13,818 51.20 (9.68) 7607 51.70 (9.44)

Once 1916 55.76 (9.41) 3334 54.55 (9.95)

At least twice 845 58.09 (9.26) 3225 56.00 (9.90)

Counselora <0.0001 0.728

None 14,460 51.89 (9.75) 7759 53.28 (9.84)

Once 1390 52.59 (10.33) 2915 52.89 (10.11)

At least twice 729 54.81 (10.17) 3507 53.81 (9.62)

Parenta,b <0.0001 <0.0001

None 13,410 50.90 (9.58) 12,958 49.62 (9.62)

Once 1877 56.17 (9.39) 4047 52.85 (10.20)

At least twice 1292 58.26 (9.12) 3589 56.77 (9.88)

Activitiesa,b <0.0001 <0.0001

0 18,935 50.43 (9.71) 16,142 50.51 (9.50)

1 1432 55.91 (10.57) 1837 55.66 (10.37)

2 510 59.98 (10.02) 861 58.51 (10.86)

3 102 62.11 (10.60) 286 60.26 (12.64)

4 62 64.30 (11.93) 191 62.40 (12.10)

5 9 53.90 (15.08) 57 63.05 (13.5)

6 26 51.77 (14.78) 67 52.19 (15.65)

(continued)
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Table 13.2 (continued)

Fall 2009 Spring 2012

Variable n Mean (SD) P -value n Mean (SD) P -value

STEMa,b <0.0001 <0.0001

No 14,528 50.32 (10.07) 13,142 50.34 (10.08)

Yes 6490 53.11 (9.75) 7098 53.84 (9.85)

Mean (SD) with minimum and maximum values are shown. Statistically significant mean
differences were determined by one-way ANOVA tests. The reference groups are denoted with
subscript “ref ”
aBonferroni correction was used to correct for multiple testing (8 tests) for outcomes measured in
Fall 2009 and in Spring 2012, significance was accepted when P < 0.00625(0.05/8) in Fall 2009
bBonferroni correction was used to correct for multiple testing (8 tests) for outcomes measured in
Fall 2009 and in Spring 2012, significance was accepted when P < 0.00625(0.05/8) in Spring
2012

Fig. 13.1 Math achievement based on mentoring received from parents in Fall 2009 ((a) on the
left) and in Spring 2012 ((b) on the right)

The largest differences in math achievement scores were found based on
mentoring from parents in comparison with counselors and teachers in Fall 2009
and Spring 2012 (see Table 13.2 and Fig. 13.1). In Fall 2009, most students received
no mentoring from teachers, counselors, and parents on science and math courses.
However, mentoring received at least twice was greatest for parents in comparison
with teachers and school counselors (see Table 13.2).

The students with no mentoring had a math achievement score of 51.20±9.68,
which was significantly lower in comparison with students who received mentoring
at least twice from teachers 58.09±9.26 (F(1, 16578) = 446.29, P < 0.001),
school counselors 54.81±10.17 (F(1, 16578) = 20.80, P < 0.001), and parents
58.26±9.12 (F(1, 16578) = 534.20, P < 0.001). In contrast to Fall 2009, most
students in Spring 2012 received mentoring from teachers (79.2%), counselors
(82.8%), and parents (73.5%) on math and science courses at least twice since their
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Fig. 13.2 Math achievement scores based on STEM activities are shown for Fall 2009 ((a) on
top-left) and Spring 2012 ((b) on top-right), and also shown by STEM interests reported in Fall
2009 ((c) on bottom-left) and Spring 2012 ((d) on bottom-right)

freshman year. Math achievement scores were significantly higher for those that
received mentoring from teachers (F(1, 14165) = 127.83, P < 0.001) or parents
(F(1, 20593) = 572.96, P < 0.001). However, no significant differences in math
achievement scores were found based on mentoring experience from counselors
(F(1, 14180) = 0.12, P = 0.7286). Details of mentoring variables are shown in
Table 13.10 in the Appendix.

Student participation in STEM activities remained low in Fall 2009 and Spring
2012 (see Fig. 13.2). Approximately 99% and 96% of students reported that they
participated in two or less STEM activities in Fall 2009 and Spring 2012, respec-
tively. Math achievement scores were significantly different based on participation
in STEM activities in Fall 2009 (F(1, 21075) = 143.70, P < 0.001) and Spring
2012 (F(1, 19440) = 95.82, P < 0.001). Nearly 31% and 35% of students were
interested in STEM majors/careers in Fall 2009 and Spring 2012, respectively (see
Table 13.2). Math achievement scores were significantly different based on student’s
interest in STEM major/careers in Fall 2009 (F(21017) = 120.94, P < 0.001) and
Spring 2012 (F(1, 20239) = 160.76, P < 0.001).
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Table 13.3 Math achievement scores for Fall 2009 are presented in Model 1

Variable β [95% CI] P -value

Model 1

Intercept 47.82 [47.04,48.60] <0.001

Sex

Female −0.44 [−0.89,0.01] 0.057

Race/ethnicity

American Indian/Alaska Native −3.07 [−5.72,−0.42] 0.023

Asian 4.75 [3.81,5.69] <0.001

Black/African-American −4.64 [−5.50,−3.78] <0.001

Hispanic −1.45 [−2.14,−0.77] <0.001

Native Hawaiian/Pacific Islander −2.08 [−6.12,1.96] 0.312

Other −1.62 [−2.42,−0.82] <0.001

SES

Medium 2.12 [1.40,2.85] <0.001

High 6.82 [6.06,7.58] <0.001

Mentoring

Teacher 1.99 [1.58,2.40] <0.001

Counselor −0.65 [−1.14,−0.16] 0.011

Parent 1.96 [1.59,2.33] <0.001

Activities 2.12 [1.63,2.61] <0.001

STEM 1.53 [1.06,2.00] <0.001

The reference groups for sex and race/ethnicity were male and White, respectively

Multiple regression models were used in this study to predict math achieve-
ment scores based on sex, race/ethnicity, mentoring, STEM activities, and STEM
major/career interests. The first model predicted math achievement scores in Fall
2009 and the second model is used to predict math achievement scores in Spring
2012 (see Model 1 and 2 in Tables 13.3 and 13.4). In Model 1, significant
predictors included SES, mentoring by teachers and parents, STEM activities, and
STEM major/career interest (R2 = 0.17, F (8, 14104) = 149.04, P < 0.001). In
Model 2, significant predictors included sex, SES, mentoring, STEM activities and
STEM major/career interest (R2 = 0.18, F (8, 13383) = 123.03, P < 0.001).
Race/ethnicity was significant for most groups but not all in Models 1 and 2. To
check the normality assumption of the data, Q-Q plots and histograms, as well
as descriptive statistics of the residuals were checked. Residuals for Model 1 (see
Fig. 13.3a, b) had mean of−5.96, variance of 1.00, skewness of−0.18, and kurtosis
of 0.08. Similarly, Model 2 (see Fig. 13.3c, d) has mean of −1.37, variance of 1.00,
skewness of−0.18, and kurtosis of 0.01. Furthermore, given the large sample size of
N = 23,503 and no heavy tails, we proceed with our analyses under the assumption
that the data is approximately normally distributed.
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Table 13.4 Math achievement scores for Spring 2012 are presented in Model 2

Variable β [95% CI] P -value

Model 2

Intercept 47.99 [47.09,48.89] <0.001

Sex

Female −0.77 [−1.26,−0.28] 0.002

Race

American Indian/Alaska Native −1.94 [−4.63,0.75] 0.158

Asian 4.32 [3.24,5.40] <0.001

Black/African-American −4.52 [−5.42,−3.62] <0.001

Hispanic −1.55 [−2.30,−0.81] <0.001

Native Hawaiian/Pacific Islander −1.18 [−5.10,2.74] 0.556

Other −1.49 [−2.35,−0.63] <0.001

SES

Medium 2.69 [1.87,3.51] <0.001

High 7.55 [6.67,8.43] <0.001

Mentoring

Teacher 1.20 [0.83,1.57] <0.001

Counselor −1.16 [−1.45,-0.87] <0.001

Parent 1.11 [0.75,1.46] <0.001

Activities 1.68 [1.25,2.11] <0.001

STEM 1.96 [1.49,2.43] <0.001

The reference groups for sex and race/ethnicity were male and White, respectively

13.3.3 Assessment of Student Enrollment in a STEM
Major/Career

To assess student enrollment in STEM careers, participants were asked to indicate
which job they expected to have at age 30. The percentage of students that were
interested in STEM major/careers were 31% in Fall 2009 and 35% in Spring 2012.
Logistic regression models were used to predict the probability of selecting a STEM
major/career based on sex, race, SES, mentoring, participation in STEM activities,
and math achievement scores (see Table 13.5 where Model 3 corresponds to Fall
2009 data and Table 13.6 where Model 4 corresponds to Spring 2012 data).

In Fall 2009, significant predictors were sex (P < 0.001), STEM activities (P <

0.001), math achievement (P < 0.001), and mentoring from parents (P < 0.001).
However, mentoring by teachers (P = 0.397) and counselors (P = 0.252) were
not significant (see Table 13.5). In Spring 2012, sex (P < 0.001), STEM activities
(P < 0.001), and math achievement (P < 0.001) were significant (see Table 13.6).
The c-statistic was 0.626 and 0.637 for models 3 and 4, respectively. The Hosmer-
Lemeshow (H-L) test yielded a χ2(8) of 86.79 (P < 0.0001), suggesting that the
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Table 13.5 Results for predicting expected STEM major/careers in Fall 2009 (Model 3)

Variable OR [95% CI] P -value

Model 3

Sex

Female 2.1 [1.9,2.3] <0.001

Race

American Indian/Alaska Native 0.9 [0.5,1.5] 0.467

Asian 1.4 [1.1,1.8] 0.020

Black/African-American 1.2 [0.9,1.5] 0.284

Hispanic 0.9 [0.8,1.0] 0.093

Native Hawaiian/Pacific Islander 0.9 [0.4,2.0] 0.745

Other 1.1 [0.9,1.4] 0.453

SES

Medium 1.0 [0.8,1.3] 0.507

High 1.0 [0.8,1.2] 0.532

Mentoring

Teacher 1.0 [0.9,1.2] 0.397

Counselor 1.1 [0.9,1.2] 0.252

Parent 1.2 [1.1,1.3] <0.001

Activities 1.2 [1.1,1.4] <0.001

Math 1.0 [1.0,1.0] <0.001

The reference groups for sex and race/ethnicity were male and White, respectively

model was not fit to the data well. Similarly, the H-L test yielded a χ2(8) of 102.83
(P < 0.0001), also suggesting that the model was not fit to the data well.

During the Summer of 2013 update, study participants were also asked to indicate
which job they were expected to have in November 2013. Approximately 5% of
students expected to have a STEM-related career by the end of the year. In Model
5, a logistic model was fit to the data to identify the significant predictors of STEM
major/career by November 2013. Significant predictors included race (P < 0.001).
Other variables such as sex, mentoring (in Fall 2009 and Spring 2012), and math
achievement scores were not statistically significant (see results for Model 5 in
Table 13.7). The c-statistic was 0.754 for model 5. The H-L test yielded a χ2(8)
of 6.27 (P = 0.616), suggesting that the model was fit to the data well.

In the Summer of 2013, 25% of students indicated that they were considering
a STEM-related college major. Results of estimated model parameters for the
probability that a student will enter a STEM-related major are shown in Table 13.8
(χ2(13) = 45.62, P < 0.001). Significant predictors (P < 0.001) included: sex,
STEM activities (Spring 2012), and math achievement scores (Spring 2012). Other
variables such as race/ethnicity and mentoring were not significant (see Table 13.8).
The c-statistic was 0.626 for model 6. The H-L test yielded a χ2(8) of 9.13
(P = 0.331), suggesting that the model was fit to the data well.
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Table 13.6 Results for predicting expected STEM major/careers in Spring 2012 (Model 4)

Variable OR [95% CI] P -value

Model 4

Sex

Female 2.0 [1.8,2.3] <0.001

Race

American Indian/Alaska Native 1.4 [0.8,2.6] 0.268

Asian 0.9 [0.7,1.2] 0.382

Black/African-American 1.1 [0.9,1.4] 0.576

Hispanic 1.0 [0.8,1.2] 0.758

Native Hawaiian/Pacific Islander 1.0 [0.4,2.2] 0.823

Other 0.9 [0.8,1.2] 0.394

SES

Medium 1.0 [0.8,1.2] 0.878

High 1.0 [0.8,1.2] 0.637

Mentoring

Teacher 1.1 [0.9,1.2] 0.314

Counselor 1.0 [1.0,1.1] 0.314

Parent 1.1 [1.0,1.2] 0.041

Activities 1.2 [1.2,1.3] <0.001

Math 1.0 [1.0,1.0] <0.001

The reference groups for sex and race/ethnicity were male and White, respectively

Students also reported their current job in the Summer of 2013 at the time of the
interview. Approximately 3% of students indicated that their current job was STEM-
related (e.g., biological and biomedical sciences, engineering, etc.). Results of the
model fitted to predict the probability that a student would have a STEM-related
current job are shown in Table 13.9. Significant predictors included: all race groups
except American Indian/Alaskan Native and individual in the category “other” (P <

0.001). Participation in STEM activities in Fall 2009 and mentoring by teachers in
Spring 2012 were not significant. The c-statistic was 0.625 for model 7. The H-L
test yielded a χ2(8) of 14.30 (P = 0.074), suggesting that the model was fit to the
data well.

13.4 Conclusions

The aim of this work was to assess the associations among mentorship (par-
ents, teachers counselors), math achievement, student’s intent to pursue STEM
major/careers, and participation in STEM activities, and further, to investigate
differences based on race/ethnicity, sex, and SES. Math achievement scores signifi-
cantly varied in Fall 2009 and Spring 2012 based on race with the Asian race having
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Table 13.7 Results for model fitted to predict the probability that the student expected to have a
STEM career by November 2013

Variable OR [95% CI] P -value

Model 5

Sex

Female 1.0 [0.6,1.6] 0.959

Race

American Indian/Alaska Native −0.0 [0.0,0.0] <0.001

Asian 2.4 [1.1,5.2] <0.001

Black/African-American 1.5 [0.7,3.1] <0.001

Hispanic 1.5 [0.8,2.8] <0.001

Native Hawaiian/Pacific Islander 0.5 [0.2, 1.1] <0.001

Other 0.5 [0.2, 1.1] <0.001

SES

Medium 0.8 [0.4,1.6] 0.262

High 1.2 [0.6,2.4] 0.304

Mentoring (Fall 2009)

Teacher 0.9 [0.6,1.4] 0.701

Counselor 1.1 [0.8,1.7] 0.536

Parent 1.3 [0.9,1.9] 0.170

Activities (Fall 2009) 1.0 [0.7,1.5] 0.940

Math (Fall 2009) 1.0 [0.9,1.0] 0.356

Mentoring (Spring 2012)

Teacher 0.9 [0.6,1.3] 0.561

Counselor 0.9 [0.6,1.2] 0.459

Parent 1.0 [0.7,1.5] 0.906

Activities (Spring 2012) 1.2 [0.9,1.5] 0.143

Math (Spring 2012) 1.0 [0.6,1.6] 0.136

The reference groups for sex and race/ethnicity were male and White, respectively. Observations
were recorded in Fall 2009 and in Spring 2012

the highest scores (Fall 2009 and Spring 2012) and the American Indian/Alaska
Native race (Fall 2009) or Black/African-American (Spring 2012) having the lowest
scores, which is consistent with prior findings (Musu-Gillette et al. 2016). SES
was significantly associated with math achievement scores in Fall 2009 and Spring
2012, where low SES had lowest scores and high SES had the highest scores in
both Fall 2009 and Spring 2012. Math achievement scores were greater among
students who received mentoring at least twice from teachers, school counselors,
and parents in Fall 2009 and Spring 2012. Participation in STEM activities was
significantly associated with math achievement scores in Fall 2009 and Spring
2012. Additionally, average math achievement scores were greater among students
that were interested in STEM majors/careers. Among all the variables included
in Models 1 (Fall 2009) and 2 (Spring 2012), significant predictors of math
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Table 13.8 Results for model used to predict the probability that student will consider a STEM
field for a future major/career

Variable OR [95% CI] P -value

Model 6

Sex

Female 0.3 [0.3,0.4] <0.001

Race

American Indian/Alaska Native 1.2 [0.3,3.9] 0.802

Asian 1.6 [1.1,2.5] 0.330

Black/African-American 1.1 [0.7,1.6] 0.289

Hispanic 0.2 [0.9,1.7] 0.561

Native Hawaiian/Pacific Islander 2.7 [0.9,7.8] 0.135

Other 1.1 [0.8,1.6] 0.372

SES

Medium 1.2 [0.8,2.0] 0.910

High 1.5 [0.7,1.9] 0.741

Mentoring (Fall 2009)

Teacher 1.2 [1.0,1.4] 0.032

Counselor 1.0 [0.9,1.1] 0.450

Parent 1.0 [0.9,1.1] 0.016

Activities (Fall 2009) 1.0 [0.9,1.2] 0.402

Math (Fall 2009) 1.0 [1.0,1.0] 0.281

Mentoring (Spring 2012)

Teacher 1.0 [0.8,1.1] 0.708

Counselor 0.8 [0.7,0.9] 0.010

Parent 1.2 [1.0,1.4] 0.016

Activities (Spring 2012) 1.2 [1.1,1.4] <0.001

Math (Spring 2012) 1.1 [1.0,1.1] <0.001

The reference groups for sex and race/ethnicity were male and White, respectively. Observations
were recorded in Fall 2009 and in Spring 2012

achievement scores were: sex, SES, mentoring (teachers, counselors, and parents),
participation in STEM activities, and students interests in STEM major/careers.
Race was significant for all groups except for Native Hawaiian/Pacific Islander (in
Fall 2009 and Spring 2012) and American Indian/Alaska Native in Spring 2012.

Approximately 31% and 35% of students were interested in STEM major/careers
in Fall 2009 and Spring 2012, respectively. The probability of students interest in
STEM major/careers in Fall 2009 were significantly based on sex, the Asian race,
mentoring by parents, participation in STEM activities and math achievement scores
in Fall 2009. Similarly, the probability of students interest in STEM major/careers
was significantly dependent on sex, mentoring by parents, participation in STEM
activities, and math achievement scores in Spring 2012. However only 5% and
25% of students expected a major or career in STEM by November of 2013
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Table 13.9 Results of model used to predict whether the current job will be in a STEM field

Variable OR [95% CI] P -value

Model 7

Sex

Female 0.8 [0.5,1.3] 0.415

Race

American Indian/Alaska Native 1.3 [0.2,10.4] 0.088

Asian 2.6 [0.8,8.0] <0.001

Black/African-American 1.4 [0.5,3.5] <0.001

Hispanic 1.0 [0.4,2.3] <0.001

Native Hawaiian/Pacific Islander 0.0 [0.0,0.0] <0.001

Other 0.3 [0.1,1.5] 0.700

SES

Medium 0.9 [0.4,2.2] 0.989

High 0.8 [0.3,2.0] 0.592

Mentoring (Fall 2009)

Teacher 0.8 [0.4,1.3] 0.332

Counselor 1.0 [0.6,1.6] 0.943

Parent 1.1 [0.8,1.7] 0.474

Activities (Fall 2009) 1.5 [1.1,2.0] 0.003

Math (Fall 2009) 1.0 [1.0,1.0] 0.979

Mentoring (Spring 2012)

Teacher 1.6 [1.1,2.4] 0.010

Counselor 0.9 [0.7,1.3] 0.600

Parent 0.7 [0.5,1.1] 0.140

Activities (Spring 2012) 0.9 [0.7,1.3] 0.735

Math (Spring 2012) 1.0 [1.0,1.1]2 0.411

The reference groups for sex and race/ethnicity were male and White, respectively. Observations
were recorded in Fall 2009 and in Spring 2012

which was mainly based on race, math achievement, mentoring by teachers and
parents, or participation in STEM activities. Interestingly, parents education levels
and occupation (STEM or not STEM-related) were associated with fewer proportion
of students interested in STEM major/careers. In other words, a greater proportion
of students interested in STEM major/careers had one or more parent with either a
high school education level only and/or were not in a STEM occupation.

Hence, parental mentoring was a significant predictor of math achievement
scores and for the probability of students entering a STEM major/college, which
is supported by prior studies (Anderson and Minke 2007; Harackiewicz et al.
2012). Participation in STEM activities was a significant indicator of math achieve-
ment scores, entering a STEM major/career, and student’s future interests in
STEM major/careers. Thus, our work suggests that programs aimed to recruit and
retain STEM students may be effective if parents (Anderson and Minke 2007;
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Harackiewicz et al. 2012) are involved in activities with these students. Math
competition, summer programs, and other activities (King et al. 2017) may also play
a significant role in exposing students to careers in biostatistics and bioinformatics,
and furthermore, may help to develop their interests in these career areas earlier
in life. Some limitations of this work include the statistical methods used. For
instance, a multilevel model would have been ideal for this type of study design.
Unfortunately, the cluster and strata data needed for a multilevel analysis were
restricted and unavailable for this present study. Future work, may be to use a
multilevel model as well as other school-level variables.

Acknowledgements This research was in part funded by the National Heart, Lung, and Blood
Institute (NHLBI) of the National Institutes of Health (NIH) under grant number T32HL072757.

Appendix

Summary of observations used in this analysis are summarized in Table 13.10.

Table 13.10 Summary of variables used to create the mentoring and STEM activities variables

Variable Total, n (%) Male, n (%) Female, n (%)

Since 08-09, the 9th grader participated in:

Math competition 874 (4.15) 464 (2.20) 410 (1.95)

Math club 670 (3.18) 372 (1.77) 298 (1.41)

Math camp 123 (0.58) 67 (0.32) 56 (0.27)

Science competition 842 (4.00) 449 (2.13) 393 (1.86)

Science club 493 (2.34) 275 (1.30) 218 (1.03)

Science camp 205 (0.97) 109 (0.52) 96 (0.46)

Since Fall 2009, teenager participated in:

Math competition 1102 (5.57) 614 (3.10) 488 (2.47)

Math club 895 (4.52) 464 (2.34) 431 (2.18)

Math Summer program 775 (3.92) 392 (1.98) 383 (1.94)

Science competition 1207 (6.10) 683 (3.45) 524 (2.65)

Science club 1253 (6.33) 601 (3.04) 652 (3.30)

Science program 742 (3.75) 365 (1.85) 377 (1.91)

9th grader is taking Fall 2009 math because:

Teacher encouraged it 2504 (13.16) 1094 (5.75) 1410 (7.41)

Counselor suggested it 1784 (9.38) 878 (4.62) 906 (4.76)

Parent(s) encouraged it 2879 (15.14) 1300 (6.83) 1579 (8.30)

(continued)
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Table 13.10 (continued)

Variable Total, n (%) Male, n (%) Female, n (%)

9th grader is taking Spring 2012 math because:

Teacher encouraged it 6075 (35.13) 2872 (16.61) 3203 (18.52)

Counselor suggested it 6010 (34.73) 2927 (16.91) 3083 (17.81)

Parent(s) encouraged it 5950 (34.43) 2875 (16.64) 3075 (17.79)

Family member encouraged it 2811 (16.29) 1435 (8.31) 1376 (7.97)

9th grader is taking Fall 2009 science because:

Teacher encouraged it 1460 (8.33) 656 (3.74) 804 (4.59)

Counselor suggested it 1378 (7.86) 652 (3.72) 726 (4.14)

Parent(s) encouraged it 1942 (11.07) 843 (4.81) 1099 (6.27)

9th grader is taking Spring 2012 science because:

Teacher encouraged it 5022 (32.24) 2328 (14.95) 2694 (17.30)

Counselor suggested it 5478 (35.14) 2564 (16.45) 2914 (18.69)

Parent(s) encouraged it 4708 (30.24) 2184 (14.03) 2524 (16.21)

Family member encouraged it 2467 (15.85) 1205 (7.74) 1262 (8.11)
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Chapter 14
Statistical Modeling for the Heart Disease
Diagnosis via Multiple Imputation

Lian Li and Yichuan Zhao

14.1 Introduction

Missing data is a common challenge when analyzing data from the clinic. Missing
data causes serious problems in statistical analysis, namely, reducing the power of
a study, producing biased estimates, and even possibly leading to invalid conclu-
sions. Incomplete datasets can occur via different means, such as mishandling of
samples, low signal-to-noise ratio, measurement error, non-responses to questions,
or aberrant value deletion. Based on the missing mechanism, Rubin (1976) defined
the missing data as occurring in one of the three categories: (1) missing completely
at random (MCAR): the probability of missingness for a variable is dependent on
neither the known values nor the missing data; (2) missing at random (MAR): The
probability of missingness for a variable may relate to the known values but not
on the value of the missing data itself; (3) missing not at random (MNAR): The
probability of missingness for a variable may depend on unobserved predictors or
the missing value (Kang 2013).

The most common analytical procedure to deal with missing data is to exclude
observations with any missing variable values from the analysis. Although this
method of dealing with missing data is simple, a lot of information is lost with
the decision to delete such data. Furthermore, if the missingness of data is not
completely at random, excluding observations with missing values may cause a
biased conclusion through ignoring the possible systematic difference between the
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original dataset and the incomplete dataset. Single imputation is an alternative
strategy for dealing with missing data. In this method, each missing value will
be replaced by the variable mean which is obtained under the assumption of the
data completeness. The uncertainty about the predictions of the missing data is not
considered in this approach. Therefore, the estimated parameters drawing from this
method may be biased (Graham 2009).

Multiple imputation (MI) is a more useful strategy for handling missing data. In
multiple imputation, missing values are substituted with a set of derived possible
values which contain the original variability and uncertainty of the actual values.
Then a subset of complete data is used for standard analyses. Eventually, an
inference is drawn from the combined results of a series of imputed datasets. The
benefits of multiple imputation are that it not only restores the natural variability
of the missing values, but also incorporates uncertainty due to the data missing.
Therefore, the statistical inference of multiple imputation is widely accepted as
a less biased and more valid result. Furthermore, multiple imputation is robust
with regard to resisting violation of the normality assumptions and can produce
appropriate results even with a small sample size or in the presence of a high rate of
missing data (Sterne et al. 2009).

The goal of this chapter is to apply multiple imputation to a heart disease
dataset and build a prediction model for heart disease diagnosis. The dataset comes
from the UCI Machine Learning Repository website: http://archive.ics.uci.edu/ml/
datasets/heart+-Disease. This dataset includes 920 observations and 14 variables.
The outcome is the diagnosis of heart disease (1 = yes, 0 = no). In this dataset, ten
variables have different extents of missing data. The most significant percentage of
missingness is about 66%, and the variable with the second highest missed data rate
is 53%. We will test if multiple imputation is appropriate to deal with such a large
proportion of missing data.

The rest of the chapter is organized as follows. In Sect. 14.2, we first discuss the
concept of two ways to impute missing data: a Markov chain Monte Carlo (MCMC)
method and a fully conditional specification (FCS) method. Then, we outline the
steps of model building with multiple imputation. In Sect. 14.3, we discuss some
strategies, which combine with multiple imputation to build better statistical models.
Finally, we make a conclusion in Sect. 14.4.

14.2 Data Analysis

14.2.1 Descriptive Analysis

This dataset includes 920 observations and 14 variables. “Age,” “trestbps,” “chol,”
“thalach,” and “oldpeak” are continuous variables. “Slope” and “ca” are ordered
variables. “Sex,” “fbs,” and “exang” are binary variables. “Restecg,” “cp,” and
“thal” are nominal variables. The information about each variable in the dataset
is presented in Table 14.1.

http://archive.ics.uci.edu/ml/datasets/heart+-Disease
http://archive.ics.uci.edu/ml/datasets/heart+-Disease
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Table 14.1 Code book for the heart disease dataset

Variable information
age: age in years
sex: sex (1 = male; 0 = female)
cp: chest pain type

– Value 1: typical angina
– Value 2: atypical angina
– Value 3: non-anginal pain
– Value 4: asymptomatic

trestbps: resting blood pressure (in mm Hg on admission to the hospital)
chol: serum cholesterol in mg/dl
fbs: (fasting blood sugar >120 mg/dl) (1 = true; 0 = false)
restecg: resting electrocardiographic results

– Value 0: normal
– Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or

depression of >0.05 mV)
– Value 2: showing probable or definite left ventricular hypertrophy by Estes’ criteria

thalach: maximum heart rate achieved
exang: exercise induced angina (1 = yes; 0 = no)
oldpeak = ST depression induced by exercise relative to rest
slope: the slope of the peak exercise ST segment

– Value 1: up sloping
– Value 2: flat
– Value 3: down sloping

ca: number of major vessels (0–3) colored by fluoroscopy
thal: 1 = normal; 2 = fixed defect; 3 = reversible defect
num: diagnosis of heart disease (angiographic disease status)

– Value 0: <50% diameter narrowing
– Value 1: >50% diameter narrowing

By exploring the dataset, some of the extrema can be easily found. For example,
some of the patients have a value of “chol” (serum cholesterol in mg/dl) set at zero,
which is impossible for the clinical test. The occurrence of zero values for this
variable is probably caused by unstandardized data entry. Therefore, zero values are
set as missing. After clearing the out-ranges, the continuous variables “age,” “chol,”
“thalach,” and “trestbps” resemble a bell-curve distribution without much skewness.
Hence, those variables are kept as continuous variables in the dataset for imputation.
Another continuous variable, “oldpeak,” has about 45 of its values set to zero. To
solve this problem, we generated a binary variable “oldpeak_c” basing on whether
the value of “oldpeak” is higher than 0 or not. The proportion of “oldpeak_c” is
different between the heart disease and non-heart disease groups. “Slope,” “restecg,”
“thal,” and “ca” are categorical variables with more than two levels. Some levels
of variables are combined based on the results of the pair-wise chi-square test, and
corresponding new binary variables are created. A Cochran-Armitage Trend Test did
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Table 14.2 Descriptive
statistics for categorical
variables in dataset

Variable Level N = 920 %

HD 0 410 44.7
1 510 55.3

Exang 0 528 57.4
1 337 36.6
Missing 55 6.0

Fbs 0 692 75.2
1 138 15.0
Missing 90 9.8

Sex 0 194 21.1
1 726 78.9

slope_1 0 408 44.3
1 203 22.1
Missing 309 33.6

restecg_1 0 739 80.3
1 179 19.5
Missing 2 0.2

thal_3 0 238 25.9
1 196 21.3
Missing 486 52.8

ca_0 0 128 13.9
1 181 19.7
Missing 611 66.4

oldpeak_c 0 382 41.5
1 476 51.7
Missing 62 6.7

Table 14.3 Descriptive statistics for continuous variables in dataset

Variable N N Miss Mean Std Dev Median Maximum Minimum

Age 920 0 53.51 9.42 54 77 28
Trestbps 860 60 132.29 18.54 130 200 80
Chol 718 202 246.83 58.53 239.5 603 85
Thalach 865 55 137.55 25.93 140 202 60

not find a trend for variable “cp.” Therefore, “cp” was deleted from the dataset for
imputation. Descriptive statistics for categorical variables are listed in Table 14.2,
and continuous variable descriptive statistics are listed in Table 14.3.

14.2.2 Multiple Imputation

For multiple imputation, the variables in the dataset cannot be highly correlated.
Otherwise, the EM algorithm (Expectation-Maximization) will not converge. There-
fore, the correlation coefficient matrix must be checked first. Table 14.4 shows that



14 Statistical Modeling for the Heart Disease Diagnosis via Multiple Imputation 295

Ta
bl

e
14

.4
Sp

ea
rm

an
co

rr
el

at
io

n
co

ef
fic

ie
nt

m
at

ri
x

fo
r

da
ta

se
t

A
ge

se
x

T
re

st
bp

s
ch

ol
fb

s
T

ha
la

ch
ex

an
g

H
D

ol
dp

ea
k_

c
sl

op
e_

1
re

st
ec

g_
1

th
al

_3
ca

_0

A
ge

1.
00

0.
06

0.
26

0.
10

0.
23

−0
.3

5
0.

20
0.

29
0.

30
−0

.1
2

0.
14

−0
.1

3
−0

.3
8

Se
x

0.
06

1.
00

0.
02

−0
.0

8
0.

09
−0

.1
8

0.
18

0.
31

0.
07

−0
.1

1
0.

07
−0

.3
8
−0

.1
2

T
re

st
bp

s
0.

26
0.

02
1.

00
0.

09
0.

16
−0

.0
9

0.
15

0.
11

0.
12

−0
.0

9
0.

08
−0

.1
0
−0

.0
4

C
ho

l
0.

10
−0

.0
8

0.
09

1.
00

0.
05

−0
.0

3
0.

11
0.

13
0.

09
−0

.0
4

−0
.0

4
0.

04
−0

.1
4

Fb
s

0.
23

0.
09

0.
16

0.
05

1.
00

−0
.0

5
0.

03
0.

14
0.

09
−0

.0
5

0.
14

−0
.1

2
−0

.1
2

T
ha

la
ch

−0
.3

5
−0

.1
8
−0

.0
9

−0
.0

3
−0

.0
5

1.
00

−0
.3

8
−0

.4
0
−0

.1
7

0.
42

−0
.1

6
0.

36
0.

29
E

xa
ng

0.
20

0.
18

0.
15

0.
11

0.
03

−0
.3

8
1.

00
0.

46
0.

39
−0

.3
5

0.
09

−0
.3

3
−0

.1
9

H
D

0.
29

0.
31

0.
11

0.
13

0.
14

−0
.4

0
0.

46
1.

00
0.

35
−0

.3
8

0.
11

−0
.5

0
−0

.4
8

ol
dp

ea
k_

c
0.

30
0.

07
0.

12
0.

09
0.

09
−0

.1
7

0.
39

0.
35

1.
00

−0
.3

7
0.

02
−0

.2
1
−0

.1
7

sl
op

e_
1

−0
.1

2
−0

.1
1
−0

.0
9

−0
.0

4
−0

.0
5

0.
42

−0
.3

5
−0

.3
8
−0

.3
7

1.
00

−0
.0

8
0.

32
0.

12
re

st
ec

g_
1

0.
14

0.
07

0.
08

−0
.0

4
0.

14
0.

16
0.

09
0.

11
0.

02
−0

.0
8

1.
00

−0
.1

6
−0

.0
5

th
al

_3
−0

.1
3
−0

.3
8
−0

.1
0

0.
04

−0
.1

2
0.

36
−0

.3
3
−0

.5
0
−0

.2
1

0.
32

−0
.1

6
1.

00
0.

25
ca

_0
−0

.3
8
−0

.1
2
−0

.0
4

−0
.1

4
−0

.1
2

0.
29

−0
.1

9
−0

.4
8
−0

.1
7

0.
12

−0
.0

5
0.

25
1.

00



296 L. Li and Y. Zhao

Table 14.5 Distribution of missing values in heart disease group and non-heart disease group

Heart disease N Obs Variable N N Miss Miss percentage

0 410 Trestbps 410 20 4.87
Chol 410 19 4.62
Thalach 410 20 4.87
Oldpeak_c 410 21 5.11
Fbs 410 14 3.41
Restecg_1 410 0 0.00
Exang 410 20 4.87
Slope_1 410 193 46.96
Ca_0 410 246 59.85
Thal_3 410 224 54.50

1 510 Trestbps 510 39 7.66
Chol 510 11 2.16
Thalach 510 35 6.88
Oldpeak_c 510 41 8.06
Fbs 510 76 14.93
Restecg_1 510 2 0.39
Exang 510 35 6.88
Slope_1 510 116 22.79
Ca_0 510 365 71.71
Thal_3 510 262 51.47

there is no highly correlated pair of variables in the dataset. Thus, the multiple
imputation dataset will keep all variables in the original dataset.

Multiple imputation assumes that the missing data follows the missing at random
(MAR) pattern. However, sometimes this assumption is hard to verify in a real
situation. Here, we only compare the percentage of the missing data in different
outcome groups to ensure that the missingness is not related to heart disease status.
Table 14.5 shows that there is no apparent pattern of missingness in different groups.

For datasets with arbitrary missing patterns, there are two methods that can be
used to impute missing values: a Markov chain Monte Carlo (MCMC) method and
a fully conditional specification (FCS) method.

The MCMC method assumes multivariate normality. The specific algorithm
used in MCMC method is called the data augmentation (DA) algorithm developed
by Tanner and Wong (1987). The algorithm imputes missing data by drawing
the pseudo-random samples from a joint conditional distribution of Ymis and
θ given Yobs: P(Ymis,θ |Yobs). The process of the MCMC method for imputing
missing data is: Using some assumed numbers substitute the missing data Ymis

to get a complete data posterior distribution P(θ |Ymis,Yobs), then simulate θ from
the posterior distribution. Let θ (t)be the current simulated value of θ from the
complete data posterior distribution, then Ymis

(t) can be drawn from the conditional
predictive distribution Ymis

(t + 1)∼ P(Ymis|Yobs, θ (t)). Conditioning on Ymis
(t + 1),

the next simulated value of θ can be drawn from its complete data posterior
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distribution θ (t + 1)∼P(θ |Yobs, Ymis
(t + 1)). Repeat the above loop to yield a Markov

chain {(θ (t), Ymis
(t)) : t = 1, 2, . . . ..} which will reach its stationary distribution, the

joint distribution of θ and Ymis give Yobs: P(Ymis,θ |Yobs). For the details of MCMC
method for multiple imputation, please refer to Zhang (2003) and the SAS support
file for the MI procedure (Cary 2015).

The FCS method requires the existence of a joint distribution for all variables. In
each imputation, FCS method includes two phases: preliminary filled-in phase and
imputation phase. The procedure first replaces missing values with filled-in values
for each variable in filled-in phase. That is, with P ordered variables Y1, Y2, . . . Yp,
the missing values are filled in by using the sequence,

θ
(0)
1 ∼ P

(

θ1|Y1(obs)
)

Y
(0)
1(∗) ∼ P

(

Y1|θ(0)1

)

Y
(0)
1 =

(

Y1(obs), Y
(0)
1(∗)

)

. . .

θ
(0)
p ∼ P

(

θp|Y (0)
1 , . . . Y

(0)
p−1, Yp(obs)

)

Y
(0)
p(∗) ∼ P

(

Yp|θ(0)p

)

Y
(0)
p =

(

Yp(obs), Y
(0)
p(∗)

)

Then, in the imputation phase, these filled-in values Y
(0)
p(∗) will be replaced by

imputed values. For the details of FCS method for multiple imputation, please refer
to (Van Buuren et al. 2006) and the SAS support file for the MI procedure (Cary
2015).

SAS 9.4 statistic software not only provides those two methods to impute the
missing values but also has the MIANALYZE procedure to combine the results of
the analyses of imputations and generates valid statistical inferences. The process
of imputation in this chapter will be:

1. The missing data are imputed 5 times by MCMC method or FCS method to
generate five complete datasets.

2. The imputed datasets are analyzed by using standard proc. logistic procedures.
3. Use “proc mianalyze” to combine the results from the imputed datasets for the

inference.

14.2.3 Model Building

To avoid overfitting, the original dataset is randomly split 1:1 into a training dataset
and a validation dataset. MI is applied to each dataset using both MCMC and
FCS methods. Then, using the imputed training dataset, the model is built, and the
imputed validation dataset is used to check the quality of the model.
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Table 14.6 Stepwise selection of variables for model of original dataset

MCMC-imputed
dataset

FCS-imputed
dataset Original dataset

Parameter Estimate
Std
Error Pr > |t| Estimate

Std
Error Pr > |t| Estimate Standard

Pr >
ChiSq

Intercept 4.368 1.224 0.001 4.383 1.148 0.0002 6.728 1.848 0.0002
Thalach −0.016 0.007 0.032 −0.017 0.007 0.015 −0.031 0.011 0.005
thal_3 −1.803 0.395 <0.0001 −1.735 0.388 <0.0001 −1.922 0.490 <0.0001
ca_0 −2.764 0.523 <0.0001 −2.620 0.505 <0.0001 −2.694 0.520 <0.0001
Exang 2.192 0.393 <0.0001 2.195 0.398 <0.0001 2.189 0.557 <0.0001

Table 14.7 Predicted results of the stepwise selection model

MCMC-imputed dataset FCS-imputed dataset Original dataset

Subset
False
negative

False
positive Missing

False
negative

False
positive Missing

False
negative

False
positive Missing

Training 14.33 17.26 0 14.91 17.72 0 24.32 8.70 323
Valid 13.40 27.29 0 13.34 26.85 0 15.87 23.53 298

Because the outcome of heart disease (HD) is a binary variable, the logistic
regression is a good model to predict the diagnosis of heart disease. Through
stepwise selection, the best combination of independent variables is picked for
the prediction model in the original training dataset. Variables “thalach,” “thal_3,”
“ca_0,” and “exang” are selected for the model by this method. Those variables
are also used in MCMC and FCS imputation datasets to fit the regression. The
estimated parameters and significant test p-values are listed in Table 14.6. Table
14.7 represents the predicted results.

The variables in the model are selected by the stepwise method based on the
original dataset, which has a good deal of missingness. If we were to use the
imputed dataset that has missing information replaced through multiple imputation,
the model might be different. We used the MCMC imputed dataset and a backward
selection method to get the best combination of variables, which are “slope_1,”
“thal_3,” “ca_0,” “exang,” and “sex” (Table 14.8). The prediction accuracy after
backward selection of variables and either MCMC- or FCS-imputation methods is
shown in Table 14.9.

In the logistic regression modeling, outliers can produce extremely large residu-
als and may affect the results of the analysis and lead to incorrect inferences (Sarkar
et al. 2011). Through different types of diagnostic plots, we found some outliers and
deleted them from the training dataset (Fig. 14.1). The prediction accuracy of the
backward selection model without outliers is presented in Table 14.10.

Some researchers have reported that stratifying the dataset before imputation may
produce better results (Von Hippel 2009). Therefore, we also used this strategy on
the heart disease dataset. The best model from the stratified imputation dataset was
slightly different from the earlier model building on imputation (Table 14.11). But,
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Table 14.8 Backward selection of variables into model by imputed dataset

MCMC-imputed
dataset FCS-imputed dataset Original dataset

Parameter Estimate
Std
Error Pr > |t| Estimate

Std
Error Pr > |t| Estimate Standard

Pr >
ChiSq

Intercept 1.952 0.618 0.002 1.787 0.583 0.002 1.607 0.667 0.016
slope_1 −1.352 0.376 0.000 −1.381 0.392 0.001 −0.781 0.485 0.107
thal_3 −1.419 0.447 0.002 −1.350 0.430 0.002 −1.442 0.521 0.006
ca_0 −2.987 0.527 <0.0001 −2.843 0.520 <0.0001 −2.901 0.530 <0.0001
Exang 2.206 0.410 <0.0001 2.235 0.412 <0.0001 2.447 0.564 <0.0001
Sex 0.932 0.417 0.026 0.977 0.404 0.016 0.879 0.548 0.109

Table 14.9 Predicted results by backward selection model

MCMC-imputed dataset FCS-imputed dataset Original dataset

Subset
False
negative

False
positive Missing

False
negative

False
Positive Missing

False
negative

False
positive Missing

Training 12.63 17.41 0 14.16 18.33 0 20.27 11.96 323
Valid 10.60 24.85 0 11.69 24.54 0 15.87 25.00 298

Influence on the Model Fit and Parameter Estimates
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Fig. 14.1 Finding outliers in the backward selection model

the prediction accuracy with stratification was not better than direct imputation in
the validation dataset (Table 14.12).

Based on the prediction accuracy, “slope_1,” “thal_3,” “ca_0,” “exang,” and
“sex” are selected to build a final model. For the odds ratio estimates (Table
14.13), we find that the up sloping of the peak exercise ST segment, and that there
is a reversible defect of “thal,” such that zero for the number of major vessels
colored by fluoroscopy has a negative effect on odds of heart disease. Exercise
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Table 14.10 Predicted results by backward selection model without outliers

MCMC-imputed dataset FCS-imputed dataset Original dataset

Subset
False
negative

False
positive Missing

False
negative

False
positive Missing

False
negative

False
positive Missing

Training 5.96 8.95 0 8.60 10.48 0 9.23 5.81 323
Valid 10.34 21.87 0 9.83 20.31 0 13.11 23.88 298

Table 14.11 Comparison of models for stratified imputation dataset and direct imputation dataset

Stratified imputation by MCMC Direct imputation by MCMC
Parameter Estimate Std Error Pr > |t| Parameter Estimate Std Error Pr > |t|
Intercept 0.7618 0.4901 0.1217 Intercept 1.9522 0.6177 0.0018
slope_1 −1.6521 0.3641 <0.0001 slope_1 −1.3516 0.3762 0.0004
ca_0 −2.9005 0.6144 <0.0001 thal_3 −1.4189 0.447 0.0017
Exang 2.5774 0.4195 <0.0001 ca_0 −2.9869 0.5267 <0.0001
Sex 1.4872 0.3815 0.0001 Exang 2.2061 0.410 <0.0001

Sex 0.9320 0.4174 0.0259

Table 14.12 Predicted results by model for stratified imputation dataset and direct imputation
dataset

Stratified imputation_MCMC Direct impution_MCMC
Subset False negative False positive Missing Subset False negative False positive Missing

Training 12.33 17.79 0 Training 12.63 17.41 0
Valid 16.19 22.12 0 Valid 10.60 24.85 0

Table 14.13 Odds ratio estimates for final model

Estimates by MCMC
imputed

Estimates by FCS
imputed Estimates by original

Effect
Point
estimate

95% Wald
confidence
limits

Point
estimate

95% Wald
confidence
limits

Point
estimate

95% Wald
confidence
limits

slope_1 0.26 0.12 0.54 0.25 0.12 0.54 0.46 0.18 1.19
thal_3 0.24 0.10 0.58 0.26 0.11 0.60 0.24 0.09 0.66
ca_0 0.05 0.02 0.14 0.06 0.02 0.16 0.06 0.02 0.16
Exang 9.08 4.06 20.32 9.35 4.16 21.01 11.55 3.83 34.85
Sex 2.54 1.12 5.76 2.64 1.20 5.83 2.41 0.82 7.06

induced angina and being a male have positive impacts on odds of heart disease.
The final model for MCMC-imputed dataset will be: logit(probability of heart dis-
ease) = 1.877 − 1.362 × slope _ 1 − 1.398 × thal _ 3 − 2.991 × ca _ 0 + 2.234 ×
Exang + 0.922 × Sex.
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14.3 Discussion

The heart disease dataset examined in this chapter has a high missing rate. Excluding
observations with any missing variable values from the analysis would remove about
67.5% of patient information, which would then not be used for prediction. Through
MI, we can use all the information provided by the dataset and give a predicted value
for each missing piece of data. Comparing the models built on different datasets,
the MCMC dataset and FCS dataset generated coefficients, which have a smaller
standard error than the same datasets without MI. Therefore, the models based on
imputed data are more precise than the model of the original dataset. The predicted
results generated by imputation datasets demonstrate a lower false negative rate and
higher false positive rate for training and validation datasets than for the original
dataset (Table 14.8). In addition, if one takes the false penalty into account, the
predicted results of using the imputed dataset will be much better than using the
original dataset because the penalty for a false negative is five times that of a false
positive.

Comparing the coefficients and predicted results generated by MCMC dataset
and FCS dataset, there is no significant difference between those two methods. The
real-time of the procedure MCMC MI is shorter than the real-time of the procedure
FCS MI. This difference may be due to the FCS method’s including an additional
preliminary filled-in phase.

Using the dataset without outliers to fit the model further significantly improved
a prediction accuracy in the training dataset. However, the accuracy of the model fit
on the validation dataset did not change much (Table 14.10). This method can only
detect outliers by fitting a model for the original dataset that does not have complete
information. For the imputation data, each imputed dataset can generate different
outliers. A better way to combine the imputed datasets and discover outliers in the
imputation dataset needs further investigation.

The method that stratifies the dataset before imputation separately imputes data
for patients and non-patients, which may reduce the bias in the imputation. However,
we did not get a better result from the stratified method for this heart disease dataset.
The possible reason could be the high missing rate and a difference in missing rates
for patients and non-patients. After stratifying, some variables have an even higher
missing rate for the patient group or non-patient group. Hence, the imputation loses
its precision in comparison to the non-stratified imputation.

14.4 Conclusion

Multiple imputation is a good strategy for dealing with missing values in the above
heart disease dataset. Using multiple imputation, we maximize the information
provided by the dataset. The coefficients in the model built on the imputed dataset
have a more precise confidence interval and a better prediction accuracy than the
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model established on the original dataset. Furthermore, even with a high missing
rate, as occurs in this dataset, multiple imputation is seen to be robust and to produce
appropriate results.
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Chapter 15
Learning Gene Regulatory Networks
with High-Dimensional Heterogeneous
Data

Bochao Jia and Faming Liang

15.1 Introduction

The emergence of high-throughput technologies has made it feasible to measure
the activities of thousands of genes simultaneously, which provides scientists
with a major opportunity to infer gene regulatory networks. Accurate inference
of gene regulatory networks is pivotal to gaining a systematic understanding
of the molecular mechanism, to shedding light on the mechanism of diseases
that occur when cellular processes are dysregulated, and to identifying potential
therapeutic targets for the diseases. Given the high dimensionality and complexity
of high-throughput data, inference of gene regulatory networks largely relies on the
advance of statistical modeling and computation. The Gaussian graphical model is
a promising tool to achieve this challenge.

The Gaussian graphical model uses a network to depict conditional independence
relationships for a large set of Gaussian random variables, where the absence
of an edge between two variables indicates independence of the two variables
conditioned on all other variables. In the literature, a variety of methods have
been proposed to learn Gaussian graphical networks. To name a few, they include
covariance selection (Dempster 1972), nodewise regression (Meinshausen and
Bühlmann 2006), graphical Lasso (Yuan and Lin 2007; Friedman et al. 2008),
adaptive graphical Lasso (Fan et al. 2009), projected covariance matrix method (Fan
et al. 2015), and ψ-learning (Liang et al. 2015). In general, these methods assume
that the data are homogeneous, i.e., all samples are drawn from a single Gaussian
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distribution. However, in practice, we have often the data that are heterogeneous,
i.e., the samples are drawn from a mixture Gaussian distribution, while a single
Gaussian graphical network still needs to be learned for all the samples in a fashion
of data integration. Here are some examples:

1. Data with hidden biological/clinical subtypes. It is known that complex dis-
eases such as cancer can have significant heterogeneity in response to treatments,
and this heterogeneity is often reflected in gene expression. For example, the gene
expression patterns can vary with subtypes of the cancer. Since for many types of
cancers, the definition of subtypes is still unclear and the number of samples from
each subtype can be very small, it is impractical to construct an individual gene
regulatory network for each subtype. In this case, we might still be interested
in constructing a single gene regulatory network for the heterogeneous data in
a fashion of data integration. Such an integrated gene regulatory network can
facilitate us to identify fundamental patterns common to the development and
progression of the disease.

2. Data with hidden confounding factors. In real-world applications, the gene
expression data may contain some systematic differences caused by known or
unknown confounding factors, such as study cohorts, sample collection, and
experimental batches. Due to the limited number of samples from each level of
the confounding factors, we also prefer to learn a single gene regulatory network
for the heterogeneous data in a fashion of data integration. Moreover, for many
problems, the confounding factors can be unknown.

In this paper, we develop a mixture model method to learn Gaussian graphical
networks for heterogeneous data with hidden clusters. The new method is developed
based on the imputation-consistency (IC) algorithm proposed by Liang et al. (2018)
and the ψ-learning algorithm proposed by Liang et al. (2015). The IC algorithm is
a general algorithm for dealing with high-dimensional missing data problems. Like
the EM algorithm (Dempster et al. 1977), the IC algorithm works in an iterative
manner, iterating between an I-step and a C-step. The I-step is to impute the missing
data conditioned on the observed data and the current estimate of parameters, and
the C-step is to find a “consistent” estimator for the minimizer of a Kullback–
Leibler divergence defined on the pseudo-complete data. For high-dimensional
problems, the “consistent” estimate can be found with sparsity constraints or
screened data. Refer to Fan and Lv (2008) and Fan and Song (2010) for variable
screening methods. Under quite general conditions, Liang et al. (2018) showed
that the average of the “consistent” estimators across iterations is consistent to
the true parameters. The ψ-learning algorithm is originally designed for learning
Gaussian graphical models for homogeneous data. The proposed method can be
viewed as a combination of the IC algorithm and the ψ-learning algorithm, which
simultaneously clusters samples to different groups and learn an integrated network
across all the groups. When applying the IC algorithm to cluster samples, their
cluster membership is treated as missing data.
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We note that the proposed mixture model method is different from the methods
for joint estimation of multiple Gaussian graphical models, such as fused Lasso
(Danaher et al. 2014) and Bayesian nodewise regression (Lin et al. 2017). For the
latter methods, the samples’ cluster membership is known a priori and the goal is
to learn an individual network for each cluster of samples. In contrast, the proposed
method works for the case that the cluster membership is unknown and the goal is to
learn an integrated network across all hidden groups. The proposed method is also
different from the methods proposed by Ruan et al. (2011) and Lee et al. (2018). For
the former, the goal is to learn an individual network for each cluster of samples,
although it assumes that the cluster membership is unknown. The latter is to first
group samples to different clusters using an eigen-analysis-based approach and then
apply the ψ-learning algorithm to learn the network structure. Since the method did
not account for the uncertainty of sample clustering, it often performs less well.

The rest part of this paper is organized as follows. In Sect. 15.2, we describe
the proposed method. In Sect. 15.3, we illustrate the performance of the proposed
method using simulated examples. In Sect. 15.4, we apply the proposed method
to learn a gene regulatory network for breast cancer with a heterogeneous gene
expression dataset. In Sect. 15.5, we conclude the paper with a brief discussion.

15.2 Mixture Gaussian Graphical Models

15.2.1 Algorithms for Homogeneous Data

To have a better description for the proposed method, we first give a brief review for
the existing Gaussian graphical model algorithms for homogeneous data.

Let V = {X1, . . . ,Xp} denote a set of p Gaussian random variables, where
Xi = {Xi1, . . . Xin} denotes n observations of variable i. In the context of gene
regulatory networks, Xij refers to the expression level of gene i measured in
experiment j . Let X(j) = (X1j , . . . , Xpj )

T denote the expression levels of all p
genes measured in experiment j , which is assumed to follow a Gaussian distribution
Np(μ,) with the mean vector μ and covariance matrix . Let E = (eij ) denote
the adjacency matrix, where eij = 1 if the edge is present and 0 otherwise. The
adjacency matrix specifies the structure of the Gaussian graphical network. Let
ρij |V \{i,j} denote the partial correlation coefficient of variable i and variable j

conditioned on all other variables. Let C = (Cij ) = −1 denote the concentration

matrix, also known as the precision matrix. Let β(j)
i ’s denote the coefficients of the

regressions

Xj = β
(j)
i Xi +

∑

r∈V \{i,j}
β
(j)
r Xr + ε(j), j = 1, 2, . . . , p, (15.1)
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where ε(j) is a zero-mean Gaussian random vector. Since ρij |V {i,j} can be expressed

as ρij |V \{i,j} = −Cij /CiiCjj and β
(j)
i ’s can be expressed as β(j)

i = −Cji/Cjj and

β
(i)
j = −Cji/Cii , the following relationship holds:

eij = eji = 1⇔ ρij |V \{i,j} �= 0⇔ Cij �= 0⇔ β
(j)
i �= 0 and β

(i)
j �= 0. (15.2)

Based on the relation between partial correlation coefficients and the concentration
matrix, Dempster (1972) proposed the covariance selection method, which identifies
the edges of the Gaussian graphical network by identifying the nonzero elements of
the concentration matrix. However, this method cannot be applied to the problems
with p > n, where the sample covariance matrix is nonsingular and thus the
concentration matrix cannot be calculated. To tackle this difficulty, Yuan and Lin
(2007) proposed to estimate the concentration matrix with l1-regularization. Soon,
this method was accelerated by Friedman et al. (2008) using the coordinate descent
algorithm in a similar way to Lasso regression (Tibshirani 1996), which leads
to the so-called graphical Lasso algorithm. Based on the relation between partial
correlation coefficients and regression coefficients, Meinshausen and Bühlmann
(2006) proposed the nodewise regression method, which is to learn Gaussian
graphical networks by identifying nonzero regression coefficients of the regressions
given in (15.1) with a sparsity constraint.

Alternative to estimating the concentration matrix and regression coefficients, the
ψ-learning algorithm (Liang et al. 2015) is to provide an equivalent measure for the
partial correlation coefficient in the sense that

ψij = 0⇐⇒ ρij |V \{i,j} = 0, (15.3)

where ψij is the partial correlation coefficient of variable i and variable j condi-
tioned on a subset of V \ {i, j} and the subset is obtained via correlation screening.
Since the ψ-learning algorithm is used as a component of the proposed mixture
model method for learning Gaussian graphical models with grouped samples, the
details of the algorithm are given below.

Algorithm 1 (ψ-learning)

(a) (Correlation screening) Determine the reduced neighborhood for each vari-
able Xi .

(i) Conduct a multiple hypothesis test to identify the pairs of variables for
which the empirical correlation coefficient is significantly different from
zero. This step results in a so-called empirical correlation network.

(ii) For each variable Xi , identify its neighborhood in the empirical correlation
network, and reduce the size of the neighborhood to O(n/ log(n)) by
removing the variables having lower correlation (in absolute value) with
Xi . This step results in a so-called reduced correlation network.
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(b) (ψ-calculation) For each pair of variables i and j , identify a subset of nodes
Sij based on the reduced correlation network resulted in step (a) and calculate
ψij = ρij |Sij , where ρij |Sij denotes the partial correlation coefficient of Xi and
Xj conditioned on the variables {Xk : k ∈ Sij }. In this paper, we set Sij =
Si \ {j} if |Si \ {j}| ≤ |Sj \ {i}| and Sj \ {j} otherwise, where Si denotes the
neighborhood of node i in the reduced correlation network, and | · | denotes the
cardinality of a set.

(c) (ψ-screening) Conduct a multiple hypothesis test to identify the pairs of vertices
for which ψij is significantly different from zero, and set the corresponding
element of the adjacency matrix to 1.

The multiple hypothesis tests involved in the algorithm can be done using the
empirical Bayesian method developed in Liang and Zhang (2008), which allows
for the general dependence between test statistics. Other multiple hypothesis testing
procedures that account for the dependence between test statistics, e.g., the two-
stage procedure of Benjamini et al. (2006), can also be applied here. The correlation
screening step involves two procedures, (1) multiple hypothesis test and (2) sure
independence screening, to control the neighborhood size for each variable. The two
procedures seem redundant, but actually they are not. Indeed the multiple hypothesis
test is able to identify the pairs of independent variables, but the size of each
neighborhood cannot be guaranteed to be less than O(n/ log(n)) as established in
Liang et al. (2015). We have tried to use the sure independence screening procedure
only, which results in the same neighborhood size O(n/ log(n)) for each variable.
However, in this case, the enlarged neighborhood may contain some variables that
are independent of the central one, and thus the power of the followed ψ-screening
test will be reduced.

The ψ-learning algorithm consists of two free parameters, namely α1 and α2,
which refer to the significance levels used in correlation screening and ψ-screening,
respectively. Following the suggestion of Liang et al. (2015), we specify their values
in terms of q-values (Storey 2002); setting α1 = 0.2 and α2 = 0.05 or 0.1 in
all computations. In particular, we set α2 = 0.05 for the simulated examples and
α2 = 0.1 for the real data example. A large value of α2 avoids to lose more potential
interactions between different genes.

Under mild conditions, e.g., the joint Gaussian distribution of X1, . . . ,Xp

satisfies the faithfulness condition, Liang et al. (2015) showed that the ψ-partial
correlation coefficient is equivalent to the true partial correlation coefficient in
determining the structure of Gaussian graphical models in the sense of (15.3).
Compared to other Gaussian graphical model algorithms, the ψ-learning algorithm
has a significant advantage that it has reduced the computation of partial correlation
coefficients from a high-dimensional problem to a low dimensional problem via
correlation screening and thus can be used for very high-dimensional problems. As
shown in Liang et al. (2015), the ψ-learning algorithm is consistent; the resulting
network will converge to the true one in probability as the sample size becomes
large. The ψ-learning algorithm tends to produce better numerical performance
and cost less CPU time than the existing algorithms, such as gLasso and nodewise
regression, especially when p is large.
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15.2.2 The Mixture Gaussian Graphical Model Method

Let X = {X(1), . . . ,X(n)} denote a set of n independent samples which are drawn
from a mixture Gaussian distribution with M components, where the sample size
n can be much smaller than the dimension p. Suppose that M is known. Later, we
will describe a Bayesian information criterion (BIC) to determine the value of M .
The log-likelihood function of the samples is given by

�(X |Θ) =
M
∑

k=1

log (πkφ(Xi |μk,�k)) , (15.4)

where Θ = {(πk, μk,�k) : k = 1, . . . ,M} denotes the collection of unknown
parameters, πk’s are mixture proportions, μk’s are mean vectors, and �k’s are
covariance matrices of the M Gaussian components, respectively; and φ(·|μk,�k)

denotes the density function of the multivariate Gaussian distribution. Let τi denote
the indicator variable for the component/cluster membership of sample i, for
i = 1, 2, . . . , n. That is, p(τi = k) = πk and Xi |τi = K ∼ N(μk, �k) for
k = 1, . . . ,M and i = 1, 2, . . . , n. Henceforth, we will use cluster to denote the
group of samples assigned to a component of the mixture Gaussian graphical model.
Cluster and component are also used exchangeably in this paper.

If the sample size n is greater than p, then the parameters Θ can be estimated
using the EM algorithm as described in what follows. Let π(t)

k , μ(t)
k and �

(t)
k denote,

respectively, the estimates of πk , μk , and �k obtained at iteration t . Let Θ(t)
k =

(π
(t)
k , μ

(t)
k , �

(t)
k ). The E-step calculates the conditional expectation of τi given Xi

and the current estimate of Θ , i.e.,

γ
(t)
ik = P(τi = k|Xi;Θ(t)) = π

(t)
k φ(Xi |μ(t)

k , �
(t)
k )

∑M
l=1 π

(t)
l φ(Xi |μ(t)

l , �
(t)
l )

. (15.5)

which leads to the so-called Q-function,

Q(Θ,Θ(t)) =
M
∑

k=1

[

n
∑

i=1

log(φ(Xi |μ(t)
k , �

(t)
k ))γ

(t)
ik

]

=
M
∑

k=1

Qk(Θ,Θ(t)). (15.6)

The M-step updates Θ(t) by maximizing the Q-function, which can be done by
maximizing Qk with respect to Θk = (πk, μk,�k) for each k. For each value of k,
Θ

(t)
k can be updated by setting



15 Mixture Gaussian Graphical Models 311

π
(t+1)
k = 1

n

n
∑

i=1

γ
(t)
ik ,

μ
(t+1)
k =

∑n
i=1 γ

(t)
ik Xi

∑n
i=1 γ

(t)
ik

,

�
(t)
k =

n
∑

i=1

(

γ
(t)
ik

∑n
j=1 γ

(t)
jk

(Xi − μ
(t+1)
k )(Xi − μ

(t+1)
k )′

)

.

(15.7)

However, this algorithm does not work when n < p, as �(t)
k ’s will be singular in

this case.
When n < p, to avoid the issues caused by the singularity of �

(t)
k ’s, we

propose the following algorithm. For the proposed algorithm, we assume that all
components of the mixture Gaussian graphical model share a common adjacency
matrix, although their covariance and precision matrices can be different from
each other. The new algorithm consists of two stages. The first stage is to apply
the imputation-consistency (IC) algorithm to generate a series of estimates for the
common adjacency matrices, and the second stage is to average the estimates to get
a stable estimate for the common adjacency matrix. Note that, as can be seen below,
the IC algorithm generates a Markov chain.

To learn the common adjacency matrix at each iteration, a ψ-integration
procedure is needed, which is to integrate the adjacency matrices learned for each
component into one adjacency matrix. This procedure can be described as follows.
Let ψ(t)

kij denote the ψ-partial correlation coefficient calculated for the k-th cluster
at iteration t , which can be transformed to a z-score via Fisher’s transformation:

Z
(t)
kij =

√

n
(t)
k − |S(t)kij | − 3

2
log

[

1+ ψ̂
(t)
kij

1− ψ̂
(t)
kij

]

, i, j = 1, . . . p, k = 1, . . .M.

(15.8)
where |S(t)kij | denotes the conditioning set used in calculating ψ

(t)
kij , and n

(t)
k is the

number of samples assigned to cluster k at iteration t . For convenience, we call
the z-score a ψ-score. The ψ-scores from different clusters can be combined using
Stouffer’s meta-analysis method (Stouffer et al. 1949) by setting

Z
(t)
ij =

∑M
k=1 ω

(t)
k z

(t)
kij

√

∑M
k=1(ω

(t)
k )2

, i, j = 1, . . . p, (15.9)

where ω
(t)
k is a nonnegative weight assigned to cluster k at iteration t . In this

paper, we set ω
(t)
k = n

(t)
k /n. Stouffer’s method falls into the class of Fisher’s

combined probability tests used for combining the results from several independent
tests bearing upon the same overall hypothesis. For mixture GGMs, since for each



312 B. Jia and F. Liang

t and each pair of nodes (i, j), z(t)kij ’s are mutually independent and thus Z
(t)
ij

defined in (15.9) approximately follows a standard normal distribution under the
null hypothesis H0 : eij = 0. Then a multiple hypothesis test can be conducted on

Z
(t)
ij ’s to identify the pairs of nodes for which Z

(t)
ij is differentially distributed from

the standard normalN(0, 1), and the adjacency matrix common to all components of
the mixture model can be determined thereby. In this paper, we adopted the multiple
hypothesis testing procedure of Liang and Zhang (2008) to conduct the test. This
testing procedure allows general dependence between test statistics. Alternative to
the meta-analysis method, some regularization approaches, such as fused graphical
Lasso and group graphical Lasso (Danaher et al. 2014), can also be applied here
for estimating the common adjacency matrix, as long as the resulting estimator is
consistent following from the theory of the IC algorithm (Liang et al. 2018).

Given the ψ-integration procedure, the first stage of the proposed method can be
summarized as follows: It starts with an initial estimate Θ(0) = {(π(0)

k , μ
(0)
k , �

(0)
k ) :

k = 1, . . . ,M}, and then iterates between the following steps:

Algorithm 2 (IC Estimation for Mixture Gaussian Graphical Models)

(a) (imputation) Impute the indicator variable τ (t+1)
i by drawing from the multino-

mial distribution as defined in (15.5) for each i = 1, 2, . . . , n.
(b) (consistency) Based on the imputed values of τ

(t+1)
i ’s, update the estimate

Θ(t) by

(i) setting n
(t+1)
k =∑n

i=1 I (τ
(t+1)
i = k), π(t+1)

k = n
(t+1)
k /n, and

μ
(t+1)
k =∑

j∈{i:τ (t+1)
i =k}Xj /n

(t+1)
k ;

(ii) applying the ψ-learning algorithm to learn an adjacency matrix for each
cluster of the samples.

(iii) applying the ψ-integration procedure to integrate the adjacency matrices
learned in step (ii) into one.

(iv) applying the algorithm given in Hastie et al. (2009, p. 634) to recover the
covariance matrices for each cluster, given the common adjacency matrix
learned in step (iii).

Let τ (t) = {τ (t)1 , . . . , τ
(t)
n } for t = 1, 2, . . .. As in the stochastic EM algorithm

(Celeux and Govaert 1995; Nielsen 2000), the sequence Θ(0) → τ (1) → Θ(1) →
. . . → τ (t) → Θ(t) → · · · forms two interleaved Markov chains. Intuitively, the
Markov chain {Θ(t)} will converge to a stationary distribution whose mean is close
to the true parameter value Θ and variance reflects the variation of τ (t) introduced in
imputation. This intuition has been justified rigorously in Liang et al. (2018) under
quite general conditions. Following from Theorems 3 and 4 of Liang et al. (2018),
the Markov chain {Θ(t)} is almost surely ergodic if the sample size n is sufficiently
large, and the average of Θ(t)’s along with iterations forms a consistent estimate of
Θ when t is sufficiently large. In this paper, the adjacency matrices are averaged in
the following way, which corresponds to the second stage of the proposed method.
Define
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Zij =
T
∑

t=t0+1

Z
(t)
ij /(T − t0), i, j = 1, 2, . . . , p,

where t0 denotes the number of burn-in iterations of the IC algorithm, and then
the final estimate of the adjacency matrix can be obtained by conducting another
multiple hypothesis test for Zij ’s. As before, under the null hypothesis H0: eij = 0,
Zij follows the standard normal distribution.

Thus far, we have treated the number of clusters M as known. In practice, M can
be determined using an information criterion, such as AIC or BIC. Following Ruan
et al. (2011), we define the degree of freedom for a model with M components as

df (M) = M

⎡

⎣p +
∑

i�j

êij

⎤

⎦ , (15.10)

where p represents the dimension of the mean vector, and êij denotes the (i, j)-th
element of the estimated common adjacency matrix. Although we have assumed
that the mixture Gaussian graphical model has a common adjacency matrix for
all components, it can have a completely different concentration matrix for each
component. Hence, for each component, we count each nonzero entry of the
concentration matrix as a different parameter. The BIC score is then given by

BIC(M) = −2�(X |Θ̂(M))+ log(n)df (M), (15.11)

where �(X |Θ̂(M)) is the log-likelihood function given by Eq. (15.4), and M can
be determined by minimizing BIC(M).

In (15.10), we did not count for the parameters π1, . . . , πM−1. This is due to
two reasons. First, the problem is considered under the high-dimensional scenario
where p is allowed to be greater than and grow with n. However, M is considered
as fixed or to grow at a lower order of log(n). Therefore, including M − 1 or not in
(15.10) will not affect much the performance of the criterion when n becomes large.
Second, we ignore M − 1 in (15.10) to make the definition of the BIC score (15.11)
consistent with the one used in Ruan et al. (2011), which facilitates comparisons.

15.3 Simulation Studies

We compare the performance of the proposed method with some methods developed
for homogeneous data such as gLasso (Friedman et al. 2008), nodewise regression
(Meinshausen and Bühlmann 2006), and ψ-learning (Liang et al. 2015), as well as
the EM-regularization method developed by Ruan et al. (2011) for mixture Gaussian
graphical models. As aforementioned, the method by Ruan et al. (2011) is different
from the proposed one, as whose goal is to estimate an individual Gaussian graphical
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network for each cluster. Moreover, since Ruan et al. (2011) applied the gLasso
algorithm to learn an individual Gaussian graphical network for each cluster, it will
be very hard to integrate those networks into a common one.

15.3.1 Example 1

We began with the case where the number of clusters M of the mixture model is
known and the components are different in means. For this simulation study, we
fix M = 3 and the total number of samples n = 300, and varied the dimension p

between 100 and 200. We set the component means as μ1 = 0, μ2 = m1p, and
μ3 = −m1p, where 1p denotes a p-dimensional vector of ones. We let all the three
components share the same precision matrix C:

Cij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.5, if |j − i| = 1, i = 2, . . . , (p − 1),
0.25, if |j − i| = 2, i = 3, . . . , (p − 2),
1, ifi = j, i = 1, . . . , p,
0, otherwise,

(15.12)

and generated 100 samples from each component of the mixture model. The samples
from different components are combined and shuffled. Three different values of m
are considered, including m = 0, 0.3, and 0.5. Under each setting of m and p, 50
independent datasets were generated.

The proposed method was applied to this heterogeneous dataset. To initialize
πk’s and μk’s, we randomly grouped the samples into three clusters and calculated
their respective proportions and means. To initialize the covariance matrices, we first
applied the ψ-learning algorithm to the whole dataset to obtain a common adjacency
matrix, and then applied the algorithm by Hastie et al. (2009, p. 634) to estimate
the covariance matrix for each cluster with the common adjacency matrix. The IC
algorithm converges very fast, usually in about 10 iterations. For this example, the
algorithm was run for 20 iterations for each dataset.

To access the performance of the proposed method, we calculated the precision
and recall for the estimate of the adjacency matrix obtained with each dataset.
Estimating the adjacency matrix can be viewed as a set of binary decision problems
with each corresponding to one potential edge. For a set of binary decision problems,
the precision and recall are defined by

precision = T P

T P + FP
, recall = T P

T P + FN
,

where T P , FP , and FN denote true positives, false positives, and false negatives,
respectively, and they are defined via a binary decision table (see Table 15.1).
In general, the method producing a larger area under the precision–recall curve
is considered as a better method. The area under the precision–recall curve
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Table 15.1 Outcomes of
binary decision

Aij = 1 Aij = 0

Âij = 1 True positive (TP) False positive (FP)

Âij = 1 False negative (FN) True negative (TN)

is often denoted by AUC (area under curve) in the literature. Unlike receiver
operating characteristic (ROC) curves, which are always increasing monotonically,
the precision–recall curves are not monotonic; that is, an increase in recall does not
always lead to a reduction in precision. Refer to Aggarwal (2018, pp. 228–230)
for more discussions on this issue. Figure 15.1 shows the averaged precision–
recall curves produced by the proposed method, where each curve was obtained
by averaging over those from 50 different datasets.

For comparison, we have applied other methods, including the EM-regularization
method of Ruan et al. (2011), ψ-learning, gLasso, and nodewise regression, to this
example. As shown in Fig. 15.1, under both scenarios with m = 0 (representing
homogeneous data) and m �= 0, the proposed method outperforms all others.
Moreover, when the value of m increases, the performance of the ψ- learning,
gLasso, and nodewise regression methods deteriorates as they are designed for
homogeneous data. The EM-regularization method is robust to the value of m, and
tends to outperform gLasso, nodewise regression, and ψ-learning when m becomes
large. Note that the EM-regularization method produced a different network for
each cluster and thus three precision–recall curves in total. Figure 15.1 showed only
the best one, i.e., the curve with the largest value of AUC. Table 15.2 summarizes
the areas under the precision–recall curves produced by different methods, where
the average areas (over 50 datasets) were reported with the standard deviations
given in the corresponding parentheses. The comparison indicates that the proposed
method significantly outperforms other methods for the heterogeneous data. For
the homogeneous data (i.e., m = 0), the proposed method performs as well
as the ψ-learning method, while significantly outperforms others. This indicates
generality of the proposed method, which can be applied to homogeneous data
without significant harms. For the EM-regularization method, its poor performance
for the homogeneous data may be due to two reasons. Firstly, the gLasso procedure
employed there tends to perform less well than the ψ-learning and nodewise
regression methods as shown in Fig. 15.1a, b. Secondly, the EM-regularization
method produced three different networks, which are not allowed to be integrated
under its current procedure. For the purpose of comparison, we reported only the
result for the network with the largest AUC area. However, this “best” network may
still be worse than the properly integrated one for the homogeneous data.

In addition to underlying networks, we are interested in parameter estimation
and cluster identification for the mixture Gaussian graphical model. To access the
accuracy of parameter estimation, we adopt the criteria used by Ruan et al. (2011),
which include the averaged spectral norm defined by
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Fig. 15.1 Comparison of different methods for recovering underling networks for heterogeneous
data with different cluster means: “gLasso” refers to the graphical Lasso method, “NodeReg” refers
to the nodewise regression method, “Penalized” refers to the EM-regularization method of Ruan
et al. (2011), ψ-learning refers to the ψ-learning methods, and “IC” refers to the proposed method.
The plots (a) and (b) represent the scenario of homogeneous data. (a) m = 0 and p = 100, (b)
m = 0 and p = 200, (c) m = 0.3 and p = 100, (d) m = 0.3 and p = 200, (e) m = 0.5 and
p = 100, (f) m = 0.5 and p = 200

SL = 1

M

M
∑

k=1

‖�̂−1
k −�−1

k ‖, (15.13)

where ‖A‖ is the largest singular value of matrix A; the averaged Frobenius norm
defined by
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Table 15.2 Average AUCs produced by different methods for the heterogeneous data with
different cluster means

m gLasso NodeReg ψ-learning Penalized IC

p = 100
0 0.696(0.002) 0.765(0.003) 0.859(0.003) 0.662(0.003) 0.888(0.004)

0.3 0.437(0.002) 0.453(0.003) 0.602(0.003) 0.634(0.003) 0.892(0.004)

0.5 0.084(0.001) 0.112(0.001) 0.095(0.003) 0.459(0.020) 0.876(0.004)

p = 200
0 0.658(0.002) 0.731(0.002) 0.834(0.002) 0.654(0.002) 0.855(0.004)

0.3 0.402(0.002) 0.421(0.002) 0.585(0.002) 0.597(0.008) 0.857(0.004)

0.5 0.059(0.001) 0.084(0.001) 0.051(0.002) 0.439(0.015) 0.829(0.004)

FL = 1

M

M
∑

k=1

‖�̂−1
k −�−1

k ‖F (15.14)

= 1

M

M
∑

k=1

√

∑

i,j

(�̂−1
k (i, j)−�−1

k (i, j))2, (15.15)

and the averaged Kullback–Leibler (KL) loss defined by

KL = 1

M

M
∑

k=1

KL(�k, �̂k), (15.16)

where

KL(�, �̂) = tr(��̂−1)− log|��̂−1| − p. (15.17)

To assess the accuracy of cluster identification, we calculated the averaged false
and negative selection rates over different clusters. Let sk denote the index set of
observations for cluster k, and let ŝk denote its estimate. Define

f sr = 1

M

M
∑

k=1

|ŝk\sk|
|ŝk| , nsr = 1

M

M
∑

k=1

|sk\ŝk|
|sk| (15.18)

where | · | denotes the set cardinality. The smaller the values of fsr and nsr are,
the better the performance of the method is. The comparison was summarized in
Table 15.3 where, for each setting of m and p, each method was evaluated based
on 50 datasets with the averaged evaluation results reported. The numbers in the
parentheses represent the standard deviations of the corresponding averages. The
comparison indicates that the proposed method significantly outperforms the other
methods in both parameter estimation and cluster identification.
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15.3.2 Example 2

To make the problem harder, we consider the model for which each component
has a different mean vector as well as a different concentration matrix, although the
adjacency matrix is still the same for all components. As for Example 1, we fix M =
3 and the total sample size n = 300, varied the dimension p between 100 and 200,
and set the cluster mean vectors as μ1 = 0, μ2 = m1p, and μ3 = −m1p, where 1p
denotes a p-dimensional vector of ones. The common pattern of the concentration
matrix is given by

C
(k)
ij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ck, if |j − i| = 1, i = 2, . . . , (p − 1),
ck/2, if |j − i| = 2, i = 3, . . . , (p − 2),
1, ifi = j, i = 1, . . . , p,
0, otherwise,

(15.19)

for k = 1, 2, 3. We set c1 = 0.6, c2 = 0.5, and c3 = 0.4 for the three components,
respectively. From each component, we generated 100 samples. Three different
values of m are considered, which are 0, 0.3, and 0.5. Under each setting of m

and p, 50 independent datasets were generated.
Figure 15.2 shows the precision–recall curves produced gLasso, nodewise

regression, ψ-learning, EM-regularization, and the proposed method. It indicates
that the proposed method outperforms others. The two plots in the first row of
Fig. 15.2 compare the performance of different methods when m = 0, which
represents a very difficult scenario that each cluster is only slightly different in
precision matrices and thus the samples will be extremely difficult to be clustered.
However, the proposed method still outperform others under this scenario.

Table 15.4 compares the areas under the precision–recall curves produced by
different methods, and Table 15.5 compares the performance of different methods
in parameter estimation and cluster identification. For each setting of m and p, each
method was evaluated based on 50 datasets the averaged evaluation results reported.
The numbers in the parentheses of the two tables represent the standard deviations
of the corresponding averages. The comparison indicates that the proposed method
outperforms others in both parameter estimation and cluster identification.

15.3.3 Identification of Cluster Numbers

When the number of clusters M is unknown, we propose to determine its value
according to the BIC criterion give in (15.11). In what follows, we illustrated the
performance of the proposed method under this scenario using some simulated
examples. We considered the cases with M = 2 and 3 and p = 100 and 200.
For each combination of (M, p), we simulated 100 samples from each cluster with



320 B. Jia and F. Liang

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on

gLasso
NodeReg
ψ−learning
Penalized
IC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on

gLasso
NodeReg
ψ−learning
Penalized
IC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on

gLasso
NodeReg
ψ−learning
Penalized
IC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on
gLasso
NodeReg
ψ−learning
Penalized
IC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on

gLasso
NodeReg
ψ−learning
Penalized
IC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on

gLasso
NodeReg
ψ−learning
Penalized
IC

(a) (b)

(c) (d)

(e) (f)

Fig. 15.2 Comparison of different methods for recovering underlying networks for heterogeneous
data with different cluster means as well as different cluster precision matrices: “gLasso” refers to
the graphical Lasso method, “NodeReg” refers to the nodewise regression method, ψ-learning
refers to the ψ-learning method, “Penalized” refers to the EM-regularization method, and “IC”
refers to the proposed method. (a) m = 0 and p = 100, (b) m = 0 and p = 200, (c) m = 0.3 and
p = 100, (d) m = 0.3 and p = 200, (e) m = 0.5 and p = 100, (f) m = 0.5 and p = 200

Table 15.4 Comparison of average AUCs produced by different methods for the heterogeneous
data with different cluster means as well as different cluster precision matrices

m gLasso NodeReg ψ-learning Penalized IC

p = 100
0 0.653(0.002) 0.732(0.002) 0.888(0.003) 0.595(0.003) 0.927(0.003)

0.3 0.416(0.003) 0.429(0.003) 0.624(0.002) 0.571(0.003) 0.926(0.003)

0.5 0.162(0.001) 0.184(0.001) 0.434(0.005) 0.460(0.003) 0.914(0.003)

p = 200
0 0.625(0.002) 0.711(0.002) 0.858(0.001) 0.573(0.002) 0.896(0.002)

0.3 0.388(0.002) 0.401(0.003) 0.615(0.002) 0.555(0.002) 0.898(0.003)

0.5 0.136(0.001) 0.161(0.001) 0.380(0.004) 0.358(0.018) 0.878(0.003)
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Fig. 15.3 BIC scores produced by the EM-regularization (Penalized) method and the proposed
method (IC) for different settings of (M, p). (a) M = 2 and p = 100, (b) M = 2 and p = 200,
(c) M = 3 and p = 100, (d) M = 3 and p = 200

the same precision matrix as defined in (15.12). For the cluster means, we set
μ1 = 0.51p and μ2 = −0.51p for M = 2, and set μ1 = 0, μ2 = 0.51p, and
μ3 = −0.51p for M = 3.

Figure 15.3 compares the performance of the EM-regularization method and
the proposed method in identification of cluster numbers. It indicates that for the
simulated example, the proposed method was able to correctly identify the true value
of M according to the BIC criterion, while the EM-regularization method could
not.
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15.4 A Real Data Example

Breast cancer is one of the most prevalent types of cancer which can be classified
into four molecular subtypes, namely luminal A, basal-like, HER2-enriched, and
luminal B, based on their tumor expression profiles (Haque et al. 2012). In this
study, we aim to construct a single gene regulatory network across the four
subtypes to discover the overall gene regulation mechanism in breast cancer.
The gene expression data for breast cancer are available at The Cancer Genome
Atlas (TCGA), which contains 768 patients and 20,502 genes. For each patient,
some clinical information such as survival time, age, gender, and tumor stages
are also available, but the cancer subtypes are unknown. Since the data might be
heterogeneous given the existence of breast cancer subtypes, the proposed method
can be applied here. For this study, we are interested in learning a gene regulatory
network related to the survival time of patients. For this reason, we first applied
a marginal screening method to select the survival time-related genes. For each
gene, we calculated its p-value using the marginal Cox regression after adjusting
the effects of age, gender, and tumor stages, and then selected 592 genes according
to a multiple hypothesis test at a false discovery rate (FDR) level of 0.05. We used
the empirical Bayes method of Liang and Zhang (2008) to conduct the test.

To determine the number of components for the mixture model, we calculated
BIC scores for M = 1, 2, . . . , 5 with the results shown in Fig. 15.4. According
to the BIC scores, we set M = 3. The resulting three clusters consist of 338,
191, and 238 patients, respectively. Figure 15.5a shows the Kaplan–Meier curves
of the three clusters. A log-rank test for the three curves produced a p-value of
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Fig. 15.4 BIC scores produced by the proposed method for breast cancer data
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Fig. 15.5 The left panel shows the Kaplan–Meier curves for three different patient groups, and
the right panel shows the histogram of the logarithm of p-values obtained for each gene in the
ANOVA test

3.89×10−5, which indicate that the patients in different clusters have different
survival probabilities. Further, for each gene, we conducted an ANOVA test for its
mean expression level across the three clusters. The resulting p-values are shown
in Fig. 15.5b, where most p-values are very close to 0. This implies that the three
clusters have different means and thus the data are heterogeneous. We note that the
clustering results produced by the proposed method are biologically meaningful,
which is likely due to the existence of hidden subtypes of breast cancer. As stated
in Haque et al. (2012), women with luminal A tumors had the longest survival time,
women with HER2-enriched and luminal B tumors had a much shorter survival
time, and women with basal-like tumors had an intermediate survival time with
deaths occurring earlier than those with luminal A tumors.

With M being set to 3, the proposed method produced a gene regulatory network
(shown in Fig. 15.6), from which some hub genes can be identified. The hub genes
refer to those with high connectivity in the gene regulatory network, and they tend
to play important roles in gene regulation. To provide a stable way to identify hub
genes, we consider a cross-validation like method. We divide the dataset into five
subsets equally and then run the proposed method for five times, each applying to
four of the five subsets only. In each run, we identified ten hub genes according to
their connectivity. The results were summarized in Table 15.6, where the genes were
ranked by their frequencies being selected as the hub gene among the 5 runs. The
results indicate that the performance of the proposed method is quite stable: quite a
few genes are frequently selected as the hub gene in different runs.

Our findings of hub genes are pretty consistent with the existing knowledge.
Among the top 10 hub genes, 8 of them have been verified in the literature
to be related with breast cancer. For example, LHFPL3, the gene has the most
connectivities in the networks, is characteristic of primary glioblastoma which are
important processes for cancer development and progression (Milinkovic et al.
2013). The gene SEPP1 is significantly associated with breast cancer risk among



15 Mixture Gaussian Graphical Models 325

Fig. 15.6 The gene
regulatory network
constructed by the proposed
method for breast cancer

Table 15.6 Top ten hub genes identified by the proposed method, where “Freq” denotes the
number of times that the gene was selected as a hub gene in the five subset runs, “Links” denotes
the average number of edges connected to the gene in the five networks with its standard deviation
given in the parentheses, and the superscript * indicates that this gene has been verified in the
literature to be related with breast cancer

Rank Gene Freq Links Rank Gene Freq Links

1 LHFPL3∗ 4 49.2(9.6) 6 KRT12 3 13.4(5.1)

2 SEPP1∗ 4 8.4(1.4) 7 FXYD1∗ 2 5.4(2.3)

3 MYH11 4 8.6(1.4) 8 SCARA5∗ 2 6.4(1.6)

4 F13A1∗ 3 12.2(3.8) 9 CLEC3B∗ 2 7.8(2.8)

5 MAMDC2∗ 3 5.4(1.0) 10 LRRC70∗ 2 5.8(1.7)

women (Mohammaddoust et al. 2018). The gene F13A1 is known as a thrombotic
factor that plays a major role in tumor formation (Ahmadi et al. 2016). In the cancer
coexpression network developed by Meng et al. (2016), they found that MAMDC2
plays a key role in the development of breast invasive ductal carcinoma. Our results
also reveal some new findings, such as the gene MYH11. Li et al. (2016) reported
that MYH11 plays a role in tumor formation by disturbing stem cell differentiation
or affecting cellular energy balance and has been identified as a driver gene in human
colorectal cancer, although few researches identify its function in breast cancer.
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15.5 Discussion

In this paper, we have proposed a new method for constructing gene regulatory
networks for heterogeneous data, which is able to simultaneously cluster samples to
difference groups and learn an integrated network across the groups. The proposed
method was illustrated using some simulated examples and a real-world gene
expression data example. The numerical results indicate that the proposed method
significantly outperforms the existing ones, such as graphical Lasso, nodewise
regression, ψ-learning, and EM-regularization. For the real-world gene expression
data example, we conducted a detailed post-clustering analysis, which indicates the
heterogeneity of the data and justifies the importance of the proposed method for
real problems.

In addition to microarray gene expression data, the proposed method can be
applied to next generation sequencing (NGS) data based on the transformations
developed in Jia et al. (2017). To learn gene regulatory networks from NGS data,
which are often assumed to follow a Poisson or negative binomial distribution, Jia
et al. (2017) developed a random effect model-based transformation to continuize
the NGS data. Further, the continuized data can be transformed to Gaussian using
the nonparanormal transformation (Liu et al. 2012), and the proposed method can
be applied then. We expect that the proposed method can also find wide applications
in other scientific fields.
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Chapter 16
Performance Evaluation
of Normalization Approaches for
Metagenomic Compositional Data
on Differential Abundance Analysis

Ruofei Du, Lingling An, and Zhide Fang

16.1 Introduction

Classical microbiological research requires microbial culture, by which the studied
microbes reproduce in culture medium (Handelsman 2004). However, since a
community of microbes (i.e., microbiome) is usually not able to survive under the
predetermined laboratory condition, our understanding of microbes at aggregate
level had been much hindered (National Research Council 2007). The scenario
started to change since mid-1980s when a different approach was innovated
(Woese 1987), in which microbiome samples are obtained from the site in situ;
DNA contents are extracted and sequenced; sequence alignment is subsequently
performed, and then followed by computational or statistical analysis (Wooley et al.
2010). The related study is named metagenomics, especially boosted by the rapid
advancement of DNA sequencing technologies in the past decade (Metzker 2010;
Bragg and Tyson 2014).

Having the entire genomic DNA or particular DNA contents (e.g., 16S rDNA)
sequenced, metagenomic datasets can be classified as whole-genome sequence
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(WGS) data or marker-gene survey data. They are together termed as metagenomic
sequence data, or metagenomic count data in this chapter. The obtained sequence
reads can be aligned against a database for taxonomic analysis (e.g., RDP database
(Cole et al. 2013)) or functional analysis (e.g., COGs (Tatusov et al. 2003),
eggNOGs (Powell et al. 2014) databases). The number of reads aligned to a
feature, either a taxonomic unit or a functional family, indicates the abundance
level of the feature in a sample. It is often of primary interest to identify the
features of which the abundance levels differ between conditions, for example,
to find the microbial species more abundantly appeared in a diseased human gut
than in a healthy gut (Shreiner et al. 2015). This comparative study is named
differential abundance analysis. However, due to the fact that the total amount of
DNA undergone sequencing, conventionally referred as to library size, may differ
substantially as observed, normalization of library size is inescapable before the
differential abundance analysis is performed. Otherwise, a differentially abundant
feature may be claimed because of uneven library sizes instead of the difference in
the abundance of study interest.

Various normalization methods have also been developed for RNA-Seq data
analysis (Dillies et al. 2013). As both metagenomic sequence data and RNA-Seq
data share a common structure: the count of reads aligned to a feature (e.g., a gene
for RNA-Seq data), there have been suggestions proposed to treat metagenomic
sequence data as another variant of RNA-Seq data and simply apply the existing
normalization methods for RNA-Seq data to metagenomics data analysis (Fernandes
et al. 2014; Anders et al. 2013). Towards differential abundance analysis, McMurdie
and Holmes (2014) classified the existing normalization methods widely used for
metagenomic count data into three groups: (1) Model/None, in which a parametric
model is employed to normalize the data or no normalization is applied in some
cases, includes the Upper Quartile (UQ) (Bullard et al. 2010), Relative Log
Expression (RLE) (Anders and Huber 2010), Trimmed Mean of M-value (TMM)
(Robinson and Oshlack 2010), and Cumulative Sum Scaling (CSS) (Paulson et al.
2013); (2) Rarefied (McMurdie and Holmes 2013), in which samples with library
size being less than a specified value will be discarded and the remaining samples
will be subsampled such that all library sizes equal to the specified value (detailed
later); (3) Proportion, in which raw counts are divided by total library size, is
named as Total Sum Scaling (TSS) in this chapter. The UQ normalization shares
the same spirit with CSS method, so we do not evaluate UQ method. The basic
conclusion McMurdie and Holmes drew from their study is that “both proportions
and rarefied counts result in a high rate of false positives in tests for species that are
differentially abundant across sample classes” and they suggest that it is fine to use
the normalization methods from Model/None group, “In particular, an analysis that
models counts with the Negative Binomial—as implemented in DESeq2 or in edgeR
with RLE normalization—was able to accurately and specifically detect differential
abundance over the full range of effect sizes, replicate numbers, and library sizes
that we simulated” (McMurdie and Holmes 2014).

There is increasing evidence that many metagenomic count data may be regarded
as samples from the microbial ecosystems, and the count of reads to a feature
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indicates the relative abundance (i.e., compositional proportion) of the feature
in the ecosystem (Tsilimigras and Fodor 2016; Gloor et al. 2016). Mandal et
al. (2015) provided an excellent example explaining the difference between the
comparison of abundance across specimens, and that across microbial ecosystems.
We summarize that the former is about absolute abundance, while the latter
is about relative abundance. Weiss et al. (2017) explicitly pointed out that the
metagenomic data from 16S rDNA amplicon sequencing possess the composi-
tional data characteristics, and studied six normalization methods combined with
different test approaches for differential abundance analysis. The simulation studies
conducted in their paper utilized Multinomial, Dirichlet-multinomial, and Gamma-
Poisson distributions. However, as indicated in the same paper, both Multinomial
and Dirichlet-multinomial distributions may not be appropriate for metagenomic
compositional data as these distributions imply a negative correlation between any
pair of the features, while Gamma-Poisson distribution does not impose the simplex
(i.e., the relative abundances sum to 1). Adequate simulation criteria are strongly
needed for drawing correct conclusions about the performance of normalization
methods on metagenomic compositional data.

In this chapter, we adopt a metagenomic dataset to show the ineffectiveness
of some normalization methods, list the details of conducting simulation based
on the characteristics learned from the dataset, and demonstrate the impact of
normalization methods on the differential abundance analysis. We advocate, in order
to avoid ineffective normalization, case-by-case simulation should be conducted
according to the dataset to be analyzed. We are drawing attention to the research
community and calling for normalization methods specially designed for metage-
nomics compositional data.

16.2 Motivating Example

The NIH Human Microbiome Project (HMP) (https://hmpdacc.org/hmp/ (Peterson
et al. 2009)) provides the 16S rDNA sequencing output and the processed datasets,
collected from different sites of healthy human bodies. We downloaded the saliva
and stool sample data (170 saliva samples vs. 191 stool samples) from http://www.
hmpdacc.org/HMQCP/ (last visited on February 28, 2018). The sequencing reads
were processed by the bioinformatics tool Quantitative Insights Into Microbial
Ecology (QIIME, (Caporaso et al. 2010)). For each taxonomic unit, the coefficients
of variation (CV: the ratio of the sample standard deviation over the sample mean)
of the counts can be calculated for the saliva and the stool samples, respectively. As
the CV is an indication of the level of standardized variation between the samples
for a feature, it is expected that after appropriate normalization the CV values from
all the features under the same condition will decrease in general since the variation
due to unequal library sizes should have been reduced. A subsampled dataset is
obtained using the steps: randomly selecting the same number (i.e., 361) of samples
from the HMP saliva and stool dataset with replacement, and then removing the

https://hmpdacc.org/hmp/
http://www.hmpdacc.org/HMQCP/
http://www.hmpdacc.org/HMQCP/
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Fig. 16.1 Boxplots of the median values of Coefficients of Variation of the counts in the non-
normalized subsampled datasets (Raw), and the normalized subsampled datasets by five different
methods from the HMP saliva and stool dataset

duplicated ones. The resampling process repeated one hundred times. Figure 16.1
shows the boxplots of the median CV values of the non-normalized subsampled
datasets (Raw), and the normalized subsampled datasets by five different methods.
We can see instead of reducing the CV, the TMM normalization has noticeably
increased CV values in both saliva and stool samples. This may imply that the TMM
normalization is ineffective for the data intended for differential abundance analysis
between saliva and stool microbiota. The TSS normalization results in higher CV
values for the datasets subsampled from the saliva samples as well. However, it is
worth noting that reduced CV itself does not sufficiently mean a good normalization
because overreducing sample variation could lead to additional false positives. That
is, we cannot conclude that RFY is superior than the other normalizations for this
dataset either. This CV analysis on the HMP saliva and stool dataset shows a striking
example, which motivated us to investigate how the existing normalization methods
perform with metagenomic compositional datasets.

16.3 Data Notation and Methods

A metagenomic dataset can be organized as shown in Table 16.1. A column contains
the sequence counts for all the features in a sample; a row lists the counts for a
feature across all the samples. For example, yij denotes the count for feature i from
sample j.

With these notations, the steps and the formula of the normalization methods
studied in this chapter are briefly introduced as follows.
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Table 16.1 Format of a metagenomic dataset of two conditions

Condition 1 Condition 2
Sample 1 · · · Sample n1 Sample n1 + 1 · · · Sample n1 + n2

Feature 1 y11 · · · y1n1 y1,n1+1 · · · y1,n1+n2

Feature 2 y21 · · · y2n1 y2,n1+1 · · · y2,n1+n2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Feature m ym1 · · · ymn1 ym,n1+1 · · · ym,n1+n2

TSS (White et al. 2009): The total sum of the counts in a sample serves as the
estimate of the library size of the sample. A TSS normalized count is calculated as

ỹT SSij = yij
∑

i yij
NT SS,

where NTSS is an appropriately chosen normalization constant.
RLE (Anders and Huber 2010): The geometric mean of the counts to a feature

from all the samples is first calculated. The ratio of a raw count over the geometric
mean to the same feature is then computed. The scale factor of a sample is obtained
as the median of the ratios for the sample. A RLE normalized count can be
calculated as

ỹRLEij = yij /mediani

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yij
(

∏

j yij

) 1
n1+n2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

TMM (Robinson and Oshlack 2010): The ratio of two observed relative abun-
dances for a feature in two samples is considered to be an estimate of the scale factor
between the two samples. The log2 of the ratio is named M value; and the log2 of
the geometric mean of the observed relative abundances is called A value. This name
convention follows the M and A values given originally in the M-A plot (Yang et al.
2002). That is, for feature i from samples j, l,

Mi(jl) = log2
yij /

∑

iyij

yil/
∑

iyil
; Ai(jl) = 1

2
log2

(

yij
∑

i yij

yil
∑

i yil

)

.

The features with specified upper or lower percent of M (default 30%) or A
(default 5%) values are trimmed out. The weighted sum of the M values can be
used to derive the scale factor,

log2

(

SFTMM
jl

)

=
∑

i∈mTMM
jl

(

wi(jl)Mi(j l)

)

∑

i∈mTMM
jl

(

wi(jl)

) ,
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where SFTMM
jl denotes the scale factor of sample j relative to sample l by TMM

method, and mTMM
jl denotes the remaining features after the trimming step for the

two samples. The weight wi(jl) is computed by,

wi(jl) =
∑

i yij − yij

yij
∑

iyij
+

∑

i yil − yil

yil
∑

iyil
.

After appropriate steps, a TMM normalized count can also be expressed as the
quotient of yij and some attainable value.

CSS (Paulson et al. 2013): For a sample, CSS is defined as the sum of counts that
are less than or equal to a percentile, determined by the data. This cumulative sum
excludes the raw counts from features that are preferentially amplified, and thus is
considered to be relatively invariant across the samples. Using this sum as the scale
factor, a CSS normalized count can be calculated as

ỹCSSij = yij
∑

i∈mCSS

(

yij
)NCSS,

where NCSS is an appropriately chosen normalization constant, and mCSS denotes
the features included in the cumulative summation for the sample.

RFY (McMurdie and Holmes 2013): Rarefying normalization starts with selec-
tion of a library size, NRFY . Then any sample, with library size less than NRFY ,
is considered defective and discarded. For any remaining sample, the features are
resampled using their counts as sampling weights. The resampled dataset, or the
normalized samples, share the same library size. In this chapter, we use the same
criterion as that in McMurdie and Holmes (2014) to set the 15th percentile of total
sums of the counts of raw samples as the NRFY . Note that, RFY does not provide an
estimate of scale factor of a sample as other normalizations do. In this sense, TSS,
RLE, TMM, and CSS are called scaling normalizations, but RFY is not.

16.4 Simulation Study

16.4.1 Parameters and Data Characteristics

Mandal et al. (2015) has made a remarkable comment for metagenomic composi-
tional data analysis: “It is critical to understand what the observed data represent
and what statistical parameters are being tested.” As discussed in Introduction,
in our opinion, the answer to the comment is: metagenomic compositional data
should be deemed as samples from the microbial ecosystems, and the read counts
to the features should be used as the indication of the relative abundances (i.e.,
compositional proportions) of the features in the ecosystems. For a statistical
test, the relative abundance is the underlying parameter to be compared between
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conditions. The relative abundance of feature i for condition k is denoted by p
(k)
i ,

subject to the simplex, i.e.,
∑m

i=1 p
(k)
i = 1.

Through more than a decade of metagenomics research, it has been recognized
that metagenomic data possess at least three outstanding characteristics: (1) a great
proportion of the features have a sparse count, meaning that the data contain an
inflated proportion of zero counts (Paulson et al. 2013; Sohn et al. 2015); (2) the
data suffer from the under-sampling issue, that is, more features are found from
sample with larger library size, in other words, zero counts could also be associated
to library size (Srinivas et al. 2013); (3) the counts are usually overdispersed
(McMurdie and Holmes 2014).

16.4.2 Data Simulation

Data simulation encompasses two consecutive steps: learning of real dataset on
the characteristics outlined above, and statistical simulation using the parameters
learned. To emphasize, both the learning of real dataset and statistical simulation
are carried out for each condition separately.

Learning of real dataset. The expectation of yij is expressed as μij = μjp
(k)
i ,

where μj is the expectation of the sum of the counts in sample j and is named
sample scale here. An estimate of μij can be obtained by,

μ̂ij = μ̂j · p̂(k)
i =

∑

i

yij ·
∑

j∈(k) yij
∑

i,j∈(k) yij
,

where j ∈ (k) represents the samples from condition k only. Note that, as an estimate
of count, μ̂ij is rounded to the nearest integer.

The observed counts, with the same estimated expectation, of all the samples
under the same condition, are put together to fit a Negative Binomial (NB)
distribution. There is a fitted size parameter of NB distribution from each of the
grouped raw counts. This size parameter indicates the level of overdispersion of the
counts, which is detailed in Appendix. We will use the average of the fitted size
values for the simulation.

After the NB fitting, for the group of observed counts that share the same
estimated expectation, the probability of zero can be calculated using the fitted NB
distribution. If the observed proportion of zeros is greater than this probability, their
difference is recorded as the estimated probability of inflated zero counts for that
expectation.

The samples (or columns in Table 16.1) under the same condition are sorted
according to the values of μ̂j (i.e.,

∑

iyij) from the least to the greatest. Then, for a
feature (or a row in Table 16.1), the cumulative sums of the counts from sample 1 to
another sample are calculated, i.e.,

∑J
j=1yij , J = 1, . . . nc, where nc is the sample

size under that condition. Thus, for a feature, we use the maximum of the μ̂j ’s, over
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the samples (or columns) with the cumulative sums ≤3, to estimate the boundary
library size of the under-sampling.

Simulation steps. Simulation is carried out for each of the conditions separately
as well. First, the μ̂j ’s from the real dataset are used to build an empirical
distribution from which random numbers can be generated and serve as the sample
scales (μsim

j ’s) for the simulation. Second, the expectation of count is obtained

following μsim
ij = μsim

j · p̂(k)
i . The simulated count (ysimij ) is randomly selected

from either a zero point, or a random number from the NB distribution with the
learned parameter values. Third, in simulated sample j, if the estimated boundary
size of under-sampling for a feature is greater than

∑

iy
sim
ij , the corresponding

count is replaced by zero. R codes for learning of a real dataset and subsequently
data simulation are available at a Github webpage https://github.com/rdu2017/
Normalization-Evaluation.

16.4.3 Normalization Performance

The purpose of normalization is to adjust all the samples to the same scale for differ-
ential abundance analysis. Although it is conventional to say that normalization is
for library size, it is essentially the sample scale that needs to be normalized. After
normalization, the counts for a feature in different samples under the same condition
are assumed to have the same expectation. The expectations are compared between
conditions to draw the conclusion for the analysis. Thereupon, the sample scale, the
sum of expectations of counts in the sample, needs to be normalized among all the
samples. In turn, the relative abundance is compared.

Using the HMP saliva and stool sample data as template, we generated 100
simulated datasets. The four methods (TSS, RLE, TMM, and CSS) were applied
for estimation of the sample scales in the normalization. Since the RFY approach
does not perform normalization through estimating sample scale, it is not included
here. The Pearson correlation coefficient between the estimated sample scales and
the true values is calculated to show how well a normalization works. The estimate
is better when the coefficient is closer to one. Figure 16.2 displays the boxplots
of the coefficients from the 100 simulated datasets. Among these four methods,
TMM appears uncompetitive. Both TSS and CSS perform better than RLE, while
the median of TSS (0.625) is slightly higher than that of CSS (0.61) but with two
times larger standard deviation (0.08 vs. 0.04).

16.4.4 Impact of Normalization on Differential Abundance
Analysis

To be able to set true/false differentially abundant features explicitly, we take only
the simulated data from one condition, i.e., the stool metagenome. A simulated

https://github.com/rdu2017/Normalization-Evaluation
https://github.com/rdu2017/Normalization-Evaluation
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Fig. 16.2 Boxplots of Pearson correlation coefficients of sample scales estimated after different
normalization methods and the true values, using the 100 simulated datasets

dataset, containing 191 samples, is randomly partitioned into two smaller datasets
with 96 and 95 samples in each. Meanwhile, we intend to keep the compositional
characteristics of the data. The quartiles of p(k)

i ’s are calculated. In the dataset that
contains 96 samples, the features (i.e., rows) from the third and fourth quartiles are
randomly swapped with the features from the first and second quartiles. By so doing,
the two partitioned datasets share 50% true and 50% false differentially abundant
features with the compositional structure still maintained. A two-sided T test is first
performed to compare the normalized counts for each feature, and followed by the
Benjamini-Hochberg procedure (Benjamini and Hochberg 1995) for false discovery
rate controlling at 0.05 among all the tests. Figure 16.3a shows the boxplots of the
observed false discovery rates (FDR) in the analysis output after a normalization
procedure. It is noticeable that TMM normalization has much higher FDR, with
46% tests showing FDR greater than 0.05. RFY normalization performs the second
worst regarding FDR controlling, with 12% tests having FDR greater than 0.05. As
indicated in Fig. 16.3b, the true positive rates (TPR) associated with TMM and non-
normalization are lower than TPR associated with the other normalizations. It is
clear that an ineffective normalization (TMM here) will discourage the differential
analysis in error rate controlling or statistical power, or both.

Our focus is to examine how a normalization impacts subsequent differential
analysis. However, it should be pointed out that differential abundance analysis itself
is influenced by both normalization and the statistical approach used for analysis.
Figure 16.4 shows FDR and TPR on the same shuffled datasets above but analyzed
using NB regression approach. It seems NB approach has better TPR rate but worse
FDR controlling compared to T test. Nonetheless, TMM still shows ineffectiveness
in the NB approach.
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Fig. 16.3 Impact of normalization on differential abundance analysis in both FDR and TPR, by
two-sided T test with 100 datasets shuffled from stool metagenome dataset. (a) False discovery
rate. (b) True positive rate

Fig. 16.4 Impact of normalization on differential abundance analysis in both FDR and TPR, by
Negative Binomial regression with 100 datasets shuffled from stool metagenome dataset. (a) False
discovery rate. (b) True positive rate
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16.5 Discussion

16.5.1 TMM and RLE with Metagenomic Compositional
Dataset

For gene expression studies, there is a widely used assumption that the majority
of genes do not express differentially between conditions. Many of RNA-Seq nor-
malization methods were developed based on this assumption, including TMM and
RLE. The “non-differential” in the assumption is implemented as non-differential
absolute abundance after normalization. Subsequent differential analysis is also
to compare the normalized counts between conditions, instead of comparing the
relative abundances as it is for compositional data. In Appendix, we use hypothetical
datasets to explain why TMM and RLE normalizations may not work well with
metagenomic compositional dataset. We would then like to suggest using RNA-Seq
normalization with caution for metagenomic compositional data analysis.

16.5.2 Simulation Benchmark

Metagenomic studies have been frustrated by lack of good simulation benchmarks
(Johnson et al. 2014). Meanwhile, contrary conclusions have been seen from the
simulation studies conducted with different criteria (McMurdie and Holmes 2014;
Weiss et al. 2017; Costea et al. 2014; Paulson et al. 2014). In our vision, the practice
needs improvement from at least two aspects. First, the idea that a simulation study
should be designed to apply for overall situations may not be realistic. Instead, a
case-by-case simulation practice should be encouraged, based on the real dataset to
analyze. Second, in terms of metagenomic compositional data, all the important data
characteristics should be included when designing a simulation. Using a convenient
statistical distribution is not a good strategy because it may not be capable to reflect
the complex in a real dataset.

We suggest that a simulation be carried out for each condition independently
for metagenomic compositional data. The distribution of library size, the relative
abundance, the overdispersion parameter, the probability of zero count from a zero
mass state, and the boundary library size in terms of under-sampling are learned
from a real metagenomic dataset. Hopefully, the simulation approach we provide in
this chapter can serve as a good basis for building up simulation benchmarks in the
research community of metagenomic data analysis.

16.5.3 Novel Normalization Methods Are Needed

As observed, TMM method should be avoided for analysis of the HMP saliva
and stool dataset. In Appendix, we also provide a figure showing that the RLE
normalization does not work well for the mouse stool metagenomic dataset, which
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has been used as the benchmark dataset in the chapter where CSS was introduced
(Paulson et al. 2013). From our experience, no matter with real or simulated data,
in most situations the CSS does not identify the data-driven percentile, up to which
the raw counts will be summed, and then the default value 50th percentile is used. It
is questionable to us whether there commonly exists a claimed percentile so that the
raw counts are distributed differently lower or greater than it (see Supplementary
Figure 1 in Paulson et al. 2013). In addition, there is no specific consideration of the
compositional characteristics in the development of CSS. Conceptually, TSS may
be fine for compositional data normalization as it uses a count divided by the total
sum of the counts of a sample, as an estimate of the relative abundance. However,
as many previous studies have shown, TSS is unreliable against the overdispersed
counts, under-sampling issue, and aberrant counts in many situations. In a word,
novel normalizations, specifically designed for metagenomic compositional data,
are highly in demand. Developing novel normalization methods is our future
research topics.
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A.1 Appendix

A.1.1 Supplementary Data Distribution

Negative Binomial Distribution. A NB distribution is defined as,

P (X = x) = � (x + r)

� (r) x! p
r(1− p)x,

where r and p are two parameters, and r is called size parameter. The mean of the
NB distribution is,

μ = r (1− p)

p
,

and the variance is,

V = r (1− p)

p2 = μ+ 1

r
μ2.

Thus, r indicates the level of overdispersion in the counts.



16 Performance Evaluation of Normalization Approaches for Metagenomic. . . 341

Fig. 16.5 TMM normalization on a hypothetical dataset

A.1.2 Supplementary Illustration of TMM and RLE
with Compositional Dataset

For gene expression studies, there is a widely used assumption that the majority
of genes do not express differentially between conditions. Many of RNA-Seq nor-
malization methods were developed based on this assumption, including TMM and
RLE. The “non-differential” in the assumption is implemented as non-differential
absolute abundance after normalization. Subsequent differential analysis is also
to compare the normalized counts between conditions, instead of comparing the
relative abundances as it is for compositional data.

Focusing on the essence of a normalization procedure, the hypothetical datasets
are made of the expectations of counts. For TMM approach, the logarithm function
and the weighted sum are not applied since those are designed for reducing the effect
of count variation. In Fig. 16.5, the relative abundance ratio, compared to the first

sample, is first calculated from the raw counts, i.e.,
yij /

∑

i yij
yi1/

∑

i yi1
. The trimmed mean of

the ratios for each sample, after trimming the largest and smallest values, is used as
the scale factor. The true scale factor is 2.6 (390/150), but the output from TMM
is 1.73. Figure 16.5 shows a very likely situation for metagenomic compositional
data, in which the relative abundances vary largely between conditions. TMM may
not work well for such data since it merely relies on the assumption that after
normalization most of features should share the same absolute abundance.

For RLE normalization, the geometric mean of the counts to each feature from
all the samples is first calculated, see Fig. 16.6. Next, the ratio of a raw count over
the mean count for the same feature is computed. The scale factor for a sample is
obtained as the median of the ratios for the sample. For this hypothetic dataset, RLE
approach does not suggest any normalization adjustment since all the scale factors
equal to 1; however, the true library sizes are very different (e.g., 210 vs. 310).
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Fig. 16.6 RLE normalization steps on a hypothetical dataset

In Fig. 16.6, it is clear that the scale factor is determined by the absolute count of
Feature 2, 3, 4, or 5, instead of the relative abundance of one of those features.
A subsequently comparative analysis would reach the conclusion that there is no
differential abundance for Feature 2, 3, 4, or 5 between the conditions. However, the
relative abundances of the features have altered, for Feature 4 it is 14% and 10%
under the two conditions, respectively.

A.1.3 Supplementary Example

Mouse stool metagenomic data. Fresh or frozen adult human fecal microbial com-
munities were transplanted into guts of germ-free C57BL/6J mice. Here, germ-free
environment is referred to as mice gut that does not previously expose to microbes.
Following the transplanting, 12 recipient mice were fed with a standard low-fat,
plant polysaccharide-rich diet for 4 weeks; after that, six mice were switched
to take high-fat/high-sugar Western diet for another 6 weeks. Amplification and
pyrosequencing of V2 region of 16S rRNA genes were performed periodically to
record the changes of microbial community structure of fecal samples of the mice
(Turnbaugh et al. 2009). There are 85 samples under condition one (associated to
low-fat diet fed mice), and 54 samples under condition two (associated to Western
diet fed mice). The bioinformatic tool RDP (Wang et al. 2007) was used to generate
the count data, which is featured at species level.Together, there are 52 genera
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Fig. 16.7 Boxplots of coefficients of variation of counts in the raw data, and the normalized data
for the mouse stool metagenomic data

shown under both conditions, and the data is considered to represent low complex
metagenomic data. Figure 16.7 demonstrates that RLE and RFY should not be
recommended for normalization of the metagenomic data.
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Chapter 17
Identification of Pathway-Modulating
Genes Using the Biomedical Literature
Mining

Zhenning Yu, Jin Hyun Nam, Daniel Couch, Andrew Lawson,
and Dongjun Chung

17.1 Introduction

In system biology, each gene is not considered as an independent player but instead
they are studied in the context of a complex network among them. As a result,
a biological pathway is considered as the de facto functional unit and hence, the
accurate and effective identification of novel pathways is of great interest. Here, a
biological pathway is often defined as a set of genes that share and constitute a com-
mon biological function. Various experimental approaches such as RNA-seq and
ChIP-seq are often employed to study functions of genes and pathways. However,
they are still limited in the sense that each of these experiments focuses only on
one aspect of biology while two genes can be related through various biological
functions and in multiple layers. Biomedical literature, especially those available
in the PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/), is considered as
a valuable resource to overcome this limitation because relationship among genes
is comprehensively characterized in the biomedical literature. However, effective
utilization of biomedical literature to study relationship among genes still remains
challenging because most abstracts have information for only a single gene and as
a result, it is not straightforward to infer the relationship among genes from the
biomedical literature (Qin et al. 2014).

In order to address this issue, we recently developed a framework of literature
mining and its Bayesian analysis focusing on indirect relationship among genes
mediated by gene ontology (GO) terms (Chung et al. 2017). This framework does
not suffer from the fact that most abstracts have information for only a single
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gene because two genes in two different abstracts can still be linked through GO
terms shared between these two abstracts. Moreover, this approach also facilitates
easy interpretation of novel findings because it identifies GO terms relevant to
each gene without any additional downstream analysis, which will significantly
reduce burden of biologists. In this approach, we first implemented a text mining
of PubMed literature to recognize gene and GO term entities. Then, we quantified
the association between a gene and a GO term using a hypergeometric test, which
also takes into account how much each gene and each biological function has
been studied in the literature. Finally, after assembling the hypergeometric test p-
values as a matrix of GO terms × genes, a novel Bayesian bi-clustering approach,
namely bayesGO, was applied to simultaneously identify gene clusters and GO term
clusters and to figure out the association between each gene and each GO term.
This Bayesian model also allows computationally efficient posterior inference based
on the Metropolis-Hastings within Gibbs sampler and the poor man’s reversible
jump Markov chain Monte Carlo approaches. We validated this approach using the
experimental validation data and an application to studies of pathway-modulating
genes in yeast. In order to further facilitate easy application of this approach, we
developed a web interface “GAIL” for the PubMed literature mining and an R
package “bayesGO” for identifying pathways and facilitating their interpretation.
In this chapter, we provide a step-by-step guideline showing how to use these
software to investigate the relationship among genes with the PubMed literature
mining data obtained using human gene entities and GO terms.

17.2 Methods

The overall workflow of the proposed GAIL-bayesGO analysis is shown in
Fig. 17.1. Specifically, users can query genes and GO terms of interest using the
web interface GAIL (Sect. 17.2.2) and investigate relationships among genes, along
with associated GO terms, in the PubMed literature (Sect. 17.2.1). Using this web
interface, users can download the corresponding hypergeometric p-value matrix
indicating association between genes and GO terms in the literature. This matrix
can be used as input of the R package bayesGO (Sect. 17.2.2). By taking this
matrix as input, bayesGO allows users to identify pathway-modulating genes and
GO terms enriched for these gene using a simple interface (Sect. 17.2.3).

17.2.1 Text Mining of Biomedical Literature

We use a text mining approach to find associations between genes and GO
terms in PubMed abstracts. The first step involves cooccurrence-based name entity
recognitions for genes and GO terms. Cooccurrence-based approaches have been
used in many biomedical text mining studies (Frijters et al. 2008; Jenssen et al.
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Fig. 17.1 Overall workflow of the GAIL-bayesGO analysis framework

2001). It simply looks for the concepts that appear in the same texts, and in our
study, if a gene and a GO term appear in the same abstract text, it assumes a
relationship between the gene and the GO term. Notably, the same gene and the
GO term can be expressed in various ways by different authors. For example,
“CARTPT,” “CART,” “cocaine and amphetamine regulated transcript” all refer to
the same cocaine-related gene. To address the variability issues, we built dictionaries
for variants of genes and GO terms through integrating multiple data sources.
Specifically, we used genes with approved gene symbol in the HUGO Gene
Nomenclature Committee (HGNC) (https://www.genenames.org/) as our keys and
mapped alternative symbols and names from Ensembl (https://www.ensembl.org/
index.html) and GenBank (https://www.ncbi.nlm.nih.gov/genbank/) to them. As
such, gene and GO dictionaries were constructed based on their identifiers, names,
and synonyms. Though similar dictionaries were introduced in other studies (Liu
et al. 2005; Mitsumori et al. 2005), none of them consider the invalid name entity
problems. Invalid entities can occur due to common words that are used in other
concepts or can be some short-length words, both of which cause ambiguous
meanings. For example, the GO identifier “GO:0007612” corresponds to the name
“learning” and if we search this term against abstracts, we retrieve many abstracts
discussing irrelevant topics such as “machine learning” and “medical learning”
rather than this actual GO term. To solve this problem, we used methods proposed
by Koike and Takagi (2004). Specifically, we used WordNet, a lexical database for
general English, to filter out genes and GO entities corresponding to common words.
Finally, NCBI EFetch was used to search abstracts associated with genes and GO
terms by querying the PubMed database and then associations between genes and
GO terms were built if they appear together in the same abstract.

https://www.genenames.org/
https://www.ensembl.org/index.html
https://www.ensembl.org/index.html
https://www.ncbi.nlm.nih.gov/genbank/
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17.2.2 Database and Web Interface for Biomedical Literature
Mining

Using the Django web framework, we developed GAIL (Gene-gene Association
Inference based on Literature mining), a web interface to facilitate analysis and
visualization of the data obtained from the literature mining. We use the graph
database Neo4j (https://neo4j.com/) as its backend since it is very efficient at storing
and retrieving graph-structured data (e.g., gene-GO-abstract relationships). The
interface contains a Query page (Fig. 17.2) wherein the user inputs a list of genes
and GO terms of interest. For the genes, valid forms of input include gene IDs from
Entrez, Ensembl, and HUGO, as well as the HUGO-approved official gene symbol.
GO terms can be inputted either by their GO ID or by their name.

After submitting their query, the user is redirected to an Association Network
page, providing a graph-based visualization of the results (Fig. 17.3). Currently,
the D3.js (https://d3js.org/) JavaScript library is being used for rendering the
network. The nodes in the graph represent genes and the edges represent the
association between genes, determined by hypergeometric p-values obtained via
literature mining between genes and GO terms. Clicking on an edge provides
additional information on the relationship, including a partial correlation coefficient
between the genes and showing the GO terms shared by the two. Along with all
of this information, the Association Network page allows the user to download
the data retrieved by the interface. Among others, users can download a matrix of
hypergeometric p-values for genes and GO terms in the comma-separated values
(CSV) file format. This file can be taken as input for the bayesGO software that
will be described in detail in the following sections. The interface and database are
currently hosted at http://chunglab.io/GAIL.

Fig. 17.2 Web interface “GAIL” for biomedical literature mining: the “Query” page

https://neo4j.com/
https://d3js.org/
http://chunglab.io/GAIL
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Fig. 17.3 Web interface “GAIL” for biomedical literature mining: the “Association Network”
page

17.2.3 bayesGO: Bayesian Hierarchical Model to Identify
Pathway-Modulating Genes

Next, we identify pathway-modulating genes and facilitate functional interpretation
of these genes using bayesGO, the Bayesian hierarchical model proposed in Chung
et al. (2017). Here we provide a brief review of bayesGO. In this approach, we
first calculate a hypergeometric test p-value for each pair of a gene and a GO
term using the literature mining data obtained as described in the previous section.
We denote the hypergeometric test p-value for i-th gene and t-th GO term as Yti
for i = 1, · · · ,G and t = 1, · · · , T . Note that this p-value reflects degree of
association between a gene and a GO term. Then, we take a probit transformation of
these p-values to facilitate data visualization and modeling. We denote the probit-
transformed p-value as Zti = !−1 (Yti), where !(·) is the cumulative standard
normal distribution function.

Given this dataset, bayesGO identifies gene clusters and GO term clusters as
follows. Here, it is assumed that G genes constitute unobserved K gene clusters and
T GO terms constitute V unobserved GO term clusters. This assumption is based
on the rationale that genes in the same cluster are considered to be related to similar
biological functions and that there is also strong correlation among GO terms. Note
that here we allow that a gene can belong to only a single gene cluster and similarly,
a GO term can belong to only a GO term cluster. We denote the membership of
i-th gene to a gene cluster as Mi and the membership of t-th GO term to a GO
term cluster as Lt , where Mi ∈ {1, · · · ,K} and Lt ∈ {1, · · · , V }. Finally, in order
to reflect the fact that each gene cluster can be described with a set of related GO
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terms, we introduce a latent binary indicator for the enrichment of t-th GO term for
i-th gene, denoted as Eti , where Eti = 1 if t-th GO term is enriched for i-th gene
and Eti = 0 otherwise.

The main distribution hierarchy of the Bayesian model can be described as
follows:

(Zti |Eti = 1, μi1, τi1) ∼ N(μi1, 1/τi1),

(Zti |Eti = 0, μi0, τi0) ∼ N(μi0, 1/τi0),

(Eti |Θ, Lt ,Mi) ∼ Bernoulli(θLtMi
),

(Mi |α) ∼ Categorical (α1, · · · , αK) ,
(Lt |β) ∼ Categorical (β1, · · · , βV ) ,

for t = 1, · · · , T and i = 1, · · · ,G. In other words, we model the enrichment status
of a GO term for a gene cluster (Eti) using a Bernoulli mass function by taking into
account their clustering structure (Mi and Lt ). Then, conditional on this enrichment
status, the emission distribution of probit-transformed p-values (Zti) is modeled
using a mixture of Gaussian densities. Finally, we consider semi-conjugate priors
for the conditional emission distributions and a conjugate prior for the enrichment
status.

In the description above, K and V are assumed to be known in advance. However,
in practice, it is usually not easy to know or determine these values a priori. Based
on this rationale, we implement a data-driven selection method to determine the
optimal values of K and V using the poor man’s reversible jump Markov chain
Monte Carlo approach. Let us denote the maximum possible number of gene
clusters as Kmax while letting K be the effective number of gene clusters considered
above, i.e., K ≤ Kmax . Then, we generate the cluster index for i-th gene (Mi) as
follows:

(α∗1 , · · · , α∗Kmax
|α0) ∼ Dirichlet (α0, · · · , α0),

(φk|η) ∼ Bernoulli(η),

αk = φkα
∗
k

∑Kmax

k′=1 φk′α∗k′
,

(Mi |α) ∼ Categorical
(

α1, · · · , αKmax

)

,

for i = 1, · · · ,G and k = 1, · · · ,Kmax . Here α∗k can be interpreted as the relative
proportion of genes belonging to the k-th cluster while φk indicates whether the k-
th cluster participates in the model or not. Then, the final value for proportion of
genes belonging to the k-th cluster (αk) is calculated using only the clusters that
participate in the model, i.e., those such that φk = 1. Similarly, we can determine
the cluster index for t-th GO term (Lt ) and the effective number of GO term cluster
(V ) which is less than or equal to the maximum possible number of GO term
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clusters (Vmax). We used weakly informative priors for remaining hyperpriors. We
implemented sensitivity analyses to evaluate potential impacts of hyperpriors on
gene and GO term clustering and confirmed that bayesGO is relatively robust against
misspecification of priors, especially for gene and GO term clusters with high
confidence. We also implemented convergence diagnostics for various simulation
studies and real data analyses and found that the proposed algorithm converges
relatively quickly for most cases. Please check Chung et al. (2017) for more details
about the hyperprior settings, the sensitivity analysis results, and the convergence
diagnostics results.

In practice, it is relatively easy to set the values of Kmax and Vmax because
Kmax and Vmax affect only upper bounds for the numbers of gene clusters and
GO term clusters and as a result, it suffices to set them large enough so that
K ≤ Kmax and V ≤ Vmax . Based on our experience of analyzing real datasets,
we recommend to set Kmax = 0.1G and Vmax = 0.1T . Moreover, it is also
straightforward to check whether our setting of Kmax or Vmax is appropriate (i.e.,
large enough) by monitoring K and V values across MCMC iterations. Please check
Chung et al. (2017) for more details about the guidelines for parameter settings and
interpretation. We implemented this approach as an R package bayesGO, which is
currently publicly available in its GitHub webpage (https://dongjunchung.github.io/
bayesGO/).

17.3 Results

17.3.1 Summary and Preprocessing of Literature Mining
Results

The gene dictionary contains 39,820 genes with their HGNC approved symbol as
keys and other synonyms as associated values. The GO dictionary contains 16,386
terms related to homo sapiens, with their official GO identifiers as keys and their
names and other synonyms as values. From the literature mining, a total number of
8,453,254 and 5,599,412 abstracts were found to be related to at least one gene and
GO term, respectively. After the co-occurrence analysis, a final total of 1,138,344
associations between genes and GO terms were stored in the database. Based on
this literature mining result, in the section, we focus on a small subset of this data
for purpose of illustration. Specifically, we first considered top 200 genes with the
smallest numbers of missing cells. Then, we selected GO terms with less than 5%
missing for these genes, which gave us 95 GO terms. Finally, we removed genes
with an average p-value that is larger than or equal to 0.8 for these 95 GO terms in
order to exclude the set of genes that will clearly not be benefited from this analysis.
This preprocessing step resulted in a matrix of 95 GO terms and 77 genes, where
only 86 cells were missing among the 7315 cells in this matrix (= 77 × 95), i.e.,
less than 2% cells are missing. This dataset will be used for the analysis described
below.

https://dongjunchung.github.io/bayesGO/
https://dongjunchung.github.io/bayesGO/
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17.3.2 bayesGO Analysis

The R package bayesGO can be installed from its GitHub webpage
(https://dongjunchung.github.io/bayesGO/) using the R package devtools.

R> library(devtools)
R> install_github("dongjunchung/bayesGO")

The small subset of literature mining data described above is included as an example
data in this R package. This example dataset can be loaded using the following
command line and it can be found as an object named pmat, which is a matrix of
95 rows (GO terms) and 77 columns (genes).

R> library(bayesGO)
R> data(pmat)

The bayesGO model can be fitted using the following command line. The maximum
possible numbers of gene and GO term clusters can be specified using the arguments
Kmax and Vmax, respectively. Here, both Kmax and Vmax are set to 10. When we
ran this command line using a single core CPU at 2GHz, it took about 294 min
to analyze this pmat matrix, which contains 95 GO terms and 77 genes. This
assumed the MCMC updates of two chains, each of 30,000 iterations. In practice,
a smaller number of MCMC iterations can also be considered as we set 30,000
iterations conservatively. In general, the computation time increases as a function of
numbers of both genes and GO terms. We are currently working on improving the
computation efficiency, especially using multi-core parallel computing approaches.

R> fit.bayesGO <- bayesGO( pmat, Vmax=10, Kmax=10 )

Simply typing the resulting object name (here fit.bayesGO) gives the summary
of model fit, as shown below. Specifically, while we allowed at most 10 clusters for
each of gene and GO term clusters, we ended up finding 7 gene clusters and 8 GO
term clusters.

https://dongjunchung.github.io/bayesGO/
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R> fit.bayesGO
Summary: Bayesian ontology fingerprint analysis
results
(class: BayesGO)
--------------------------------------------------
Model settings:
Number of genes to be analyzed: 77
Number of GO terms to be analyzed: 95
Maximum possible number of gene clusters: 10
Maximum possible number of GO term clusters: 10
--------------------------------------------------
Data analysis results:
Number of identified gene clusters: 7
Number of identified GO term clusters: 8
Association between GO terms (rows) and genes
(columns):

0.00 0.83 0.08 1.00 0.00 0.00 0.56
0.01 0.03 0.07 0.00 0.00 0.61 0.58
0.09 0.00 0.02 0.67 0.03 0.82 0.58
0.05 0.02 0.02 0.04 0.01 0.24 0.03
0.45 0.04 0.08 0.28 0.54 0.59 0.19
0.06 0.03 0.01 0.03 0.57 0.83 0.01
0.71 0.31 0.02 1.00 0.21 0.73 1.00
0.03 0.38 0.02 0.70 0.10 0.21 0.10

--------------------------------------------------

This summary also gives a matrix of enrichment of each GO term cluster for each
gene cluster (the last part), which is also provided in Table 17.1. In this association
matrix, the number in each cell indicates the proportion that the enrichment is
observed for a pair of a gene and a GO term across the MCMC iterations, averaged
over a block of the gene cluster and the GO term cluster. Hence, each cell has a value
between zero and one and the value close to one means that the GO term cluster
might be important to explain the function of the gene cluster. The enrichment
matrix of each GO term for each gene (i.e., not at the level of clusters, but each
element) can also be visualized using the function plot(), as depicted in Fig. 17.4.

R> plot( fit.bayesGO )
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Table 17.1 Enrichment of each GO term cluster for each gene cluster

GO term Gene cluster

cluster 1 2 3 4 5 6 7

1 0.00 0.83 0.08 1.00 0.00 0.00 0.56

2 0.01 0.03 0.07 0.00 0.00 0.61 0.58

3 0.09 0.00 0.02 0.67 0.03 0.82 0.58

4 0.05 0.02 0.02 0.04 0.01 0.24 0.03

5 0.45 0.04 0.08 0.28 0.54 0.59 0.19

6 0.06 0.03 0.01 0.03 0.57 0.83 0.01

7 0.71 0.31 0.02 1.00 0.21 0.73 1.00

8 0.03 0.38 0.02 0.70 0.10 0.21 0.10

The number in each cell indicates the proportion that the enrichment is observed for a pair of a
gene and a GO term across the MCMC iterations, averaged over a block of the gene cluster and
the GO term cluster

Finally, members of each of the gene and GO term clusters can be checked using
the following command line. Specifically, the function predict() returns a list
object with three elements: (1) a list object for gene clusters (Mi), where each
element provides the information about members of each gene cluster and the
corresponding assignment probabilities (Tables 17.4, 17.6, 17.7, and 17.8); (2) a list
object for GO term clusters (Lt ), where each element provides the information about
members of each GO term cluster and the corresponding assignment probabilities
(Tables 17.2, 17.3, and 17.5); and (3) an association matrix (Eti ; Table 17.1). In
Tables 17.2, 17.3, 17.4, 17.5, 17.6, 17.7, and 17.8, the assignment probabilities
indicate the degree of confidence for the membership of each gene or GO term to
the corresponding cluster, where assignment probabilities closer to 1 indicate higher
degree of assignment confidence. For example, the assignment probability of 0.90
means that a gene or a GO term is assigned to a certain cluster in 90% of times
across the MCMC iterations. In practice, assignment probabilities larger than 0.9
can be considered to be assignments with high confidence.

R> predict( fit.bayesGO )

Tables 17.2 and 17.3 show members of each of 6 among the 8 GO term clusters
identified by bayesGO. GO term clusters 2, 3, 5, 6, 7, and 8 essentially represent
programmed cell death, kinase activity, growth factor receptor binding, immune
response, cell growth, and receptor binding, respectively. The GO term cluster 4
turns out to be a “garage collector,” a cluster of GO terms that are not enriched for
any of gene clusters (Table 17.1), and hence is not presented in these tables. As
expected, this GO term cluster is a mixed bag of GO terms representing different
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Fig. 17.4 Enrichment heatmap of each GO term (row) for each gene (column), where each cell
indicates the proportion that the enrichment is observed for a pair of a gene and a GO term across
the MCMC iterations. The row (L) and column sidebars (M) indicate the GO term and gene cluster
indices, respectively

biological functions. The GO term cluster 1 is also not presented here either because
it has only a single GO term, i.e., singleton. Readers who are interested in these GO
term clusters can still find their members in Appendix (Table 17.5).

Next, Table 17.4 shows 5 among the 7 gene clusters identified by bayesGO.
Similar to the case of GO term clustering, gene clusters 2 and 3 turn out to be
“garbage collectors,” for which none of GO term clusters are enriched (Table 17.1),
and hence are not presented in this table. We note that the genes belonging to these
gene clusters are not necessarily “garbage” but instead it simply means that we do
not have GO terms that are associated with these genes in our data matrix. Hence,
a larger set of GO terms needs to be considered for more meaningful analysis of
these genes. Similarly, the gene cluster 5 is also not presented here either to avoid
over-interpretation because in this gene cluster, assignment probabilities are not
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Table 17.2 Members of each GO term cluster, along with their assignment probabilities and
descriptions (GO term clusters 2, 3, and 5)

GO term cluster 2

GO term name Assignment probability Description

GO:0006914 0.96 Autophagy

GO:0016236 0.96 Macroautophagy

GO:0007050 0.96 Cell cycle arrest

GO:0007049 0.96 Cell cycle

GO:0051726 0.82 Regulation of cell cycle

GO:0006309 0.80 Apoptotic DNA fragmentation

GO:0008219 0.80 Cell death

GO:0031966 0.76 Mitochondrial membrane

GO:0006915 0.70 Apoptotic process

GO:0012501 0.60 Programmed cell death

GO term cluster 3

GO term name Assignment probability Description

GO:0004691 1.00 cAMP-dependent protein kinase activity

GO:0016301 0.99 Kinase activity

GO:0004697 0.99 Protein kinase C activity

GO:0016477 0.99 Cell migration

GO:0016246 0.97 RNA interference

GO:0005952 0.95 cAMP-dependent protein kinase complex

GO:0005790 0.93 Smooth endoplasmic reticulum

GO:0033673 0.88 Negative regulation of kinase activity

GO:0048870 0.62 Cell motility

GO:2000144 0.58 Positive regulation of DNA-templated transcription,

initiation

GO:0004722 0.33 Protein serine/threonine phosphatase activity

GO term cluster 5

GO Term name Assignment probability Description

GO:0005160 0.91 Transforming growth factor beta receptor binding

GO:0005104 0.88 Fibroblast growth factor receptor binding

GO:0006412 0.86 Translation

GO:0071897 0.85 DNA biosynthetic process

GO:0005161 0.75 Platelet-derived growth factor receptor binding

GO:0003677 0.51 DNA binding

GO:0010467 0.49 Gene expression

GO:0006955 0.49 Immune response

GO:0009058 0.36 Biosynthetic process
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Table 17.3 Members of each GO term cluster, along with their assignment probabilities and
descriptions (GO term clusters 6, 7, and 8)

GO term cluster 6

GO term name Assignment probability Description

GO:0045087 0.56 Innate immune response

GO:0030246 0.56 Carbohydrate binding

GO:0006954 0.56 Inflammatory response

GO:0005777 0.56 Peroxisome

GO:0001775 0.56 Cell activation

GO:0004298 0.56 Threonine-type endopeptidase activity

GO:0004601 0.55 Peroxidase activity

GO:0031386 0.50 Protein tag

GO term cluster 7

GO term name Assignment probability Description

GO:0016310 1.00 Phosphorylation

GO:0008283 1.00 Cell proliferation

GO:0007165 1.00 Signal transduction

GO:0005154 1.00 Epidermal growth factor receptor binding

GO:0016049 0.99 Cell growth

GO:0004707 0.99 MAP kinase activity

GO term cluster 8

GO term name Assignment probability Description

GO:0005102 0.96 Receptor binding

GO:0031012 0.95 Extracellular matrix

GO:0006897 0.94 Endocytosis

GO:0070085 0.93 Glycosylation

GO:0043235 0.91 Receptor complex

GO:0016021 0.88 Integral component of membrane

GO:0005006 0.81 Epidermal growth factor-activated receptor activity

GO:0005783 0.80 Endoplasmic reticulum

GO:0044214 0.65 Spanning component of plasma membrane

GO:0009986 0.54 Cell surface

GO:0007155 0.48 Cell adhesion
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Table 17.4 Members of each
gene cluster, along with their
assignment probabilities
(gene clusters 1, 4, 6, and 7)

Gene cluster 1

Gene name Assignment probability

IGF1 1.00

LIF 0.99

EGR1 0.99

FOS 0.99

PTPN11 0.98

IGF2 0.96

MAP2 0.43

PNO1 0.41

SOAT1 0.40

Gene cluster 4

Gene name Assignment probability

NRP1 1.00

EPHA8 1.00

ACKR3 0.99

EPHA3 0.99

HSPG2 0.58

Gene cluster 6

Gene name Assignment probability

RUNX1 0.96

PCNA 0.96

NFKBIA 0.45

NFKB1 0.44

Gene cluster 7

Gene name Assignment probability

MARK2 0.94

MAPK3 0.92

FOXM1 0.78

YWHAQ 0.76

PI3 0.74

MAPK8 0.73

MSMP 0.63

MCL1 0.63

CFDP1 0.62

PROK1 0.54

MTOR 0.53
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high enough for any of its gene members. Readers who are interested in these gene
clusters can still find the relevant information in Appendix (Tables 17.6, 17.7, and
17.8).

The gene cluster 1 includes genes such as IGF1 (insulin-like growth factor
1), IGF2, EGR1 (early growth response 1), and FOS (Fos proto-oncogene, AP-1
transcription factor subunit), all of which are known to be involved in cell growth
and proliferation. This is consistent with the fact that the GO term clusters 5 (growth
factor) and 7 (cell proliferation and growth) are enriched for the gene cluster
1. The gene cluster 4 includes genes such as NRP1 (neuropilin-1; a membrane-
bound coreceptor to a tyrosine kinase receptor), EPHA8 (ephrin type-A receptor 8),
EPHA3, and ACKR3 (atypical chemokine receptor 3). These genes are associated
with various receptor functions and this is consistent with the GO term cluster 8
(receptor) being enriched for this gene cluster. The gene cluster 6 includes genes
such as RUNX1 (runt-related transcription factor 1), NFKB1 (nuclear factor NF-
kappa-B p105 subunit), and NFKBIA (NFKB inhibitor alpha). These genes are
involved in various immune and inflammatory responses and this is consistent
with the GO term cluster 6 (immune response) being enriched for this cluster.
Finally, the gene cluster 7 includes genes such as MAPK2 (mitogen-activated
protein kinase 2), MAPK3, MAPK8, FOXM1 (forkhead box protein M1), and MTOR
(mechanistic target of rapamycin). These genes are involved in cell proliferation,
cell differentiation, cell cycle, apoptosis, and autophagy, among other functions.
We note that the GO term clusters 2 (autophagy, cell cycle, apoptosis), 3 (kinase
activity), and 7 (cell proliferation) are enriched for these gene clusters.

17.4 Conclusion

In this chapter, we described approaches for the text mining of biomedical literature
and the statistical analysis of this literature mining data. In particular, we described
the web interface and the R package bayesGO that allow easy application of these
approaches for various biological applications. We illustrated that these approaches
can provide a principled way of utilizing the biomedical literature to investigate
pathway-modulating genes and facilitating interpretation of these novel genes,
which can be useful for the investigation of various biological problems. Currently,
we are actively improving the user interface and implementing additional features
for both the web interface and the R package bayesGO, which will further enhance
user experiences in the future.

Acknowledgements This work was supported by the NIH/NIGMS grant (R01 GM122078) and
the NIH/NCI grant (R21 CA209848).
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Appendix

See Tables 17.5 for GO term clusters and Tables 17.6–17.8 for gene clusters omitted
in the main text.

Table 17.5 Members of each GO term cluster, along with their assignment probabilities and
descriptions (GO term clusters 1 and 4)

GO term cluster 1

GO term name Assignment probability Description

GO:0005886 0.51 Plasma membrane

GO term cluster 4

GO term name Assignment probability Description

GO:0042060 0.99 Wound healing

GO:0009056 0.99 Catabolic process

GO:0001503 0.99 Ossification

GO:0043657 0.99 Host cell

GO:0016032 0.99 Viral process

GO:0005604 0.99 Basement membrane

GO:0045098 0.99 Type III intermediate filament

GO:0008081 0.99 Phosphoric diester hydrolase activity

GO:0006281 0.99 DNA repair

GO:0042493 0.99 Response to drug

GO:0046323 0.99 Glucose import

GO:0030163 0.99 Protein catabolic process

GO:0006629 0.98 Lipid metabolic process

GO:0006260 0.98 DNA replication

GO:0010468 0.98 Regulation of gene expression

GO:0006119 0.98 Oxidative phosphorylation

GO:0051301 0.98 Cell division

GO:0007268 0.98 Chemical synaptic transmission

GO:0043005 0.97 Neuron projection

GO:0009792 0.97 Embryo development ending in birth or egg hatching

GO:0016458 0.97 Gene silencing

GO:0006006 0.96 Glucose metabolic process

GO:0043234 0.96 Protein complex

GO:0048468 0.94 Cell development

GO:0005524 0.94 ATP binding

GO:0032259 0.93 Methylation

GO:0009790 0.93 Embryo development

GO:0007585 0.91 Respiratory gaseous exchange

GO:0043687 0.90 Post-translational protein modification

(continued)
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Table 17.5 (continued)

GO term cluster 4

GO term name Assignment probability Description

GO:0051641 0.90 Cellular localization

GO:0030073 0.89 Insulin secretion

GO:0030154 0.89 Cell differentiation

GO:0005131 0.87 Growth hormone receptor binding

GO:0016791 0.86 Phosphatase activity

GO:0019835 0.64 Cytolysis

GO:0019787 0.53 Ubiquitin-like protein transferase activity

GO:0045155 0.53 Electron transporter, transferring electrons from
CoQH2-cytochrome c reductase complex and
cytochrome c oxidase complex activity

GO:0004842 0.52 Ubiquitin-protein transferase activity

GO:0003824 0.36 Catalytic activity

Table 17.6 Members of the
gene cluster 2, along with
their assignment probabilities

Gene cluster 2

Gene name Assignment probability

CD177 1.00

GNPDA1 0.99

INSR 0.96

CD53 0.94

CAV1 0.88

DNAH8 0.84

CDH17 0.81

ABCA1 0.78

FAS 0.36
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Table 17.7 Members of the
gene cluster 3, along with
their assignment probabilities

Gene cluster 3

Gene name Assignment probability

HK1 0.94

PNP 0.93

SOD1 0.93

REG1A 0.93

CFP 0.92

CXCR4 0.92

DSP 0.92

ABCB1 0.91

HSPA4L 0.88

ARTN 0.87

XRCC1 0.87

RIMS2 0.86

B3GAT1 0.84

RMDN2 0.84

RB1 0.83

MAPK14 0.82

RAC1 0.81

NGF 0.81

HDAC9 0.81

HSPD1 0.80

CTSD 0.80

ZNF629 0.80

ANXA5 0.79

SNCA 0.78

CTSB 0.76

PRH2 0.76

PROS1 0.75

RUNX2 0.75

BCL2L1 0.74

IFNB1 0.73

NR5A1 0.72

TH 0.71

CNBP 0.71

TIMP1 0.69

RNASEH2A 0.67

BCL2 0.64
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Table 17.8 Members of the
gene cluster 5, along with
their assignment probabilities

Gene cluster 5

Gene name Assignment probability

IL1B 0.64

RELA 0.48

IL1A 0.48
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Chapter 18
Discriminant Analysis and Normalization
Methods for Next-Generation Sequencing
Data

Yan Zhou, Junhui Wang, Yichuan Zhao, and Tiejun Tong

18.1 Introduction

Next-generation sequencing data are getting more popular in biological and medical
researches for the increased specificity and sensitivity of gene expression (Mardis
2008; Wang et al. 2009; Morozova et al. 2009). They aim to analyze much low cost
and less noisy data as well as to enable certain applications that are not achievable
by microarray data.

In medical and biological studies, it is a fundamental issue to discriminate
which type of diseases a new patient or sample belongs to. With the reduced
cost in sequencing, more and more researchers or practitioners have adopted
next-generation sequencing data to diagnose diseases (Lorenz et al. 2014). For
discriminant analysis of microarray data, the discriminant methods have been well
developed in the past years. To name a few, they include the diagonal linear
discriminant analysis, the diagonal quadratic discriminant analysis in Dudoit et al.
(2002), the bias-corrected rules for discriminant analysis in Huang et al. (2010) and
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the bias-corrected geometric diagonalization method for regularized discriminant
analysis in Zhou et al. (2017b).

To describe the next-generation sequencing technology and it difference from
microarray data, we note that next generation sequencing (Shendure and Ji 2008)
is a revolutionary technology for the modern biomedical and biological research.
The increasing popularity of next-generation sequencing has indirectly triggered a
competition among several companies, which aims to manufacture a sequencing
platform for high-quality sequences with longer read and more throughput at low
cost.

There are many notable papers in the area of transcriptome or gene analysis using
next-generation sequencing technology, such as yeast sequencing in Nagalakshmi
et al. (2008), human sequencing in Cloonan et al. (2008), Morin et al. (2008),
mouse sequencing in Mortazavi et al. (2008), and so forth. There are millions of
short reads from the transcript population of interest in next-generation sequencing
technology and these reads are mapped to the reference genome, thus next-
generation sequencing produces counts and offers a better way to detect novel
transcripts. That is, a count number is measured for the expression level of each
gene in next-generation sequencing data. We note that there are many methods for
analyzing next-generation sequencing data in Anders and Huber (2010), Birchler
and Kavi (2008), The Cancer Genome Atlas Research Network (2014), Dillies et al.
(2013).

Discriminant analysis is to predict the category of a new observation with the
features from the training data. First, the training data are divided into a number
of categories with the dependent variables. One main objective of discriminant
analysis is to develop discriminant score functions that will discriminate between
the categories of the dependent variables in a perfect way. Researchers can examine
whether significant features exist among the groups, i.e., among the predictor
variables. It also evaluates the accuracy of the classification.

Unlike microarray data that follow a Gaussian distribution, RNA-seq data follow
a discrete distribution such as a Poisson or negative binomial distribution (Bullard
et al. 2010; Robinson and Smyth 2008; Robinson et al. 2010; Love et al. 2014; Lin
et al. 2014). As a result, the existing methods for discriminating microarray data may
not perform well or may not even be applicable for next-generation sequencing data.
In this chapter, we introduce a few newly developed discriminant analysis methods
and normalization methods for next-generation sequencing data.

The rest of the chapter is organized as follows. In Sect. 18.2, we briefly introduce
the discriminant analysis methods for continuous microarray data. In Sect. 18.3,
we present in detail the three discriminant analysis methods for next-generation
sequencing data. In Sect. 18.4, we introduce some normalization methods for
next-generation sequencing data. In Sect. 18.5, simulation studies are carried out
to evaluate the performance of the introduced methods. We further illustrate
their practical usefulness by analyzing two next-generation sequencing datasets in
Sect. 18.6. Finally, we conclude the chapter in Sect. 18.7 with some future work.
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18.2 Discriminant Analysis for Microarray Data

We first introduce the discriminant analysis methods for microarray data. With
proper normalization, we assume that the samples in each class are randomly
drawn from a G-dimensional multivariate normal distribution with mean vector
μk = (μk1, . . . , μkG)

T and covariance matrix Σk , where k = 1, . . . , K with K

being the total number of classes, and T represents the transpose. To be specific,
there are nk independent and identically distributed (i.i.d.) random vectors in the
kth class such that

xk,1, . . . , xk,nk

i.i.d.∼ MVN(μk,Σk). (18.1)

Let n = ∑K
k=1 nk be the total sample size of all classes. Given a new observation,

x∗, the main goal of discriminant analysis is to assign the class label that the new
observation belongs to.

18.2.1 Linear Discriminant Analysis

Let πk be the prior probability of observing a sample from the kth class such that
∑K

k=1 πk = 1. By the Bayes rule, the posterior probability that the new observation,
x∗, belongs to the kth class is

P(y∗ = k|x∗) = fk(x
∗)πk

∑K
k=1 fk(x

∗)πk
, (18.2)

where y∗ represents the class label of x∗, and fk is the probability density function
of the sample in class k. We then select the value of k that maximizes the posterior
probability P(y∗ = k|x∗) as the assigned label of the new observation. The linear
discriminant analysis (LDA) (Wald and Kronmal 1977) assumes that the covariance
matrices are equal for all classes, i.e. Σk = Σ . With formulas (18.1) and (18.2), the
linear discriminant scores are given as

dLk (x
∗) = (x∗ − μk)

T Σ−1(x∗ − μk)− 2 lnπk. (18.3)

Note that μk , Σ , and πk in (18.3) are unknown and they need to be estimated from
the sample data. One common procedure for estimating these parameters are as
follows:

(a) Estimate μk with the sample mean in each class, x̄k =∑nk
i=1 xk,i/nk .

(b) Estimate Σ with the pooled sample covariance matrix Spool = ∑K
k=1(nk −

1)Sk/(n − K), where Sk = ∑nk
i=1(xk,i − x̄k)(xk,i − x̄k)

T /(nk − 1) are the
respective sample covariance matrices.
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(c) Estimate πk with π̂k = nk/n.

With the above estimates, we have the sample version of the linear discriminant
scores as

d̂Lk (x
∗) = (x∗ − x̄k)

T S−1
pool(x

∗ − x̄k)− 2 ln π̂k. (18.4)

Given that LDA assumes equal covariance matrices for all classes, it may not be
realistic in practice. Taking into account the discrepancy among the covariance
matrices, one may consider the quadratic discriminant analysis (QDA) with the
discriminant scores as

d
Q
k (x∗) = (x∗ − μk)

T Σ−1
k (x∗ − μk)+ ln |Σk| − 2 lnπk. (18.5)

Accordingly, the sample version of the quadratic discriminant scores is given as

d̂
Q
k (x∗) = (x∗ − x̄k)

T S−1
k (x∗ − x̄k)+ ln |Sk| − 2 ln π̂k. (18.6)

18.2.2 Diagonal Linear Discriminant Analysis

For microarray data, the number of genes (or features) is often larger than the sample
size. Under the “large G small n” scenario, LDA and QDA may not be applicable
due to the singularity of the sample covariance matrices. To overcome this problem,
a simple yet efficient approach in the literature is to apply the diagonalization
methods to LDA and QDA for discrimination (Dudoit et al. 2002).

Let Dk = diag(s2
k1, . . . , s

2
kG) be the diagonal matrix of the sample covariance

matrix Sk , where skg is the sample variance of gene g. Let also Dpool =
diag(s2

1 , . . . , s
2
G) be the diagonal matrix of the pooled sample covariance matrix

Spool. Since a diagonal matrix without any zero entries is often invertible, by
replacing Spool by Dpool in (18.4), we have the diagonal linear discriminant analysis
(DLDA) with the discriminant scores as

d̂DL
k (x∗) =

G
∑

g=1

(x∗g − x̄kg)
2/s2

g − 2 ln π̂k. (18.7)

Similarly, we can define the diagonal quadratic discriminant analysis (DQDA) with
the discriminant scores as

d̂
DQ
k (x∗) =

G
∑

g=1

(x∗g − x̄kg)
2/s2

kg +
G
∑

g=1

ln s2
kg − 2 ln π̂k. (18.8)
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Even though DLDA and DQDA are widely applicable, they are not the optimal
rules, and improvements over them are available in the recent literature. For
instance, Huang et al. (2010) proposed two bias-corrected rules for DLDA and
DQDA, and Zhou et al. (2017b) developed a diagonalization method for the regular-
ized discriminant analysis (RDA) with the same spirit as DLDA and DQDA. Other
directions for extending DLDA and DQDA are also available, e.g. in Friedman
(1989), Hastie et al. (1995, 1994), Hastie and Tibshirani (1996), Clemmensen et al.
(2011), Grosenick et al. (2008), Leng (2008), Mai et al. (2012).

18.3 Discriminant Analysis for Next-Generation Sequencing
Data

Next-generation sequencing data are entirely different from microarray data, and
the discriminant analysis methods for microarray data cannot be directly applied
to next-generation sequencing data. In this section, we introduce some newly
developed discriminant methods for analyzing next-generation sequencing data.
They include the Poisson linear discriminant analysis in Witten (2011), the zero-
inflated Poisson logistic discriminant analysis in Zhou et al. (2018), and the negative
binomial linear discriminant analysis in Dong et al. (2016).

18.3.1 Poisson Linear Discriminant Analysis

For next-generation sequencing data, Witten (2011) proposed a Poisson linear dis-
criminant analysis (PLDA) by assuming that the data follow a Poisson distribution.
Let Xig be the number of reads mapped to gene g in sample i, where i = 1, . . . , n
and g = 1, . . . ,G. We assume that

Xig ∼ Poisson(liλg), (18.9)

where li is the size factor that scales the gene counts for the ith sample, and λg is
the total number of reads for the gth gene. Let K be the number of classes and n be
the total number of observations drawn from all K classes. Then the class-specific
model for next-generation sequencing data is

(Xig|yi = k) ∼ Poisson(liλgdkg), (18.10)

where dkg allows the differential expression between different classes for the gth
gene (Witten 2011). Let x∗ = (x∗1 , . . . , x∗G)T be a new observation with size factor
l∗ and class label y∗.
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By the Bayes rule, we have

P(y∗ = k|x∗) ∝ fk(x
∗)πk, (18.11)

where fk is the probability mass function associated with the kth class, and πk is
the prior probability that one sample is drawn from the kth class. This leads to the
discriminant scores of PLDA as

lnP(y∗ = k|x∗) =
G
∑

g=1

x∗g ln dkg −
G
∑

g=1

l∗λgdkg + lnπk + C, (18.12)

where C is a constant independent of k. For the estimation of the unknown
parameters, one may refer to Witten (2011). Finally, we choose k that maximizes
the discriminant score as the class label of the new observation.

18.3.2 Zero-Inflated Poisson Logistic Discriminant Analysis

In practice, however, there may have excess zeros in next-generation sequencing
data, especially for small RNA or microRNA. For example, the cervical cancer
dataset in Witten et al. (2010), Witten (2011) contains about 47.6% zeros, and
the liver and kidney dataset in Marioni et al. (2008) contains about 45.5% zeros,
among all numerical values. In such cases, the zero-inflated distributions ought to
be considered for modeling next-generation sequencing data.

Let Xkikg be the number of reads mapped to gene g in sample ik of the kth class,
where k = 1, . . . , K , ik = 1, . . . , nk and g = 1, . . . ,G. Let nk be the sample size
in class k and n =∑K

k=1 nk be the total sample size of all classes. The zero-inflated
Poisson distribution is given as

Xkikg ∼
{

δ{0} pkikg

Poisson(μkikg) (1− pkikg),
(18.13)

where δ{0} is the zero distribution, μkikg and pkikg are the expected value and the
probability of δ{0} for gene g in sample ik in class k, respectively. We further assume
μkikg = lik λgdkg is the same as in Sect. 18.3.1.

Following the logistic models in Ridout et al. (1998) and Mouatassim and
Ezzahid (2012), one may also consider a logistic relation between the probability
of zeros and the mean of the genes with the sequencing depth as

ln{ P(Xkikg = 0)

1− P(Xkikg = 0)
} = α + β1(

Nkik

N1i1
)+ β2μkikg, (18.14)
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where Nkik is the total sequencing depth of sample ik in class k, and α, β1, and β2
are the intercept and coefficients of Nkik /N1i1 and μkikg , respectively.

Given the new observation x∗, Zhou et al. (2018) proposed the zero-inflated
Poisson logistic discriminant analysis (ZIPLDA) with the discriminant scores as

lnP(y∗ = k|x∗) =
G
∑

g=1

I(x∗g=0) ln
(

p∗kg + (1− p∗kg)e(−dkgl
∗λg)

)

−
G
∑

g=1

I(x∗g>0)dkgl
∗λg +

G
∑

g=1

I(x∗g>0) ln(1− p∗kg)

+
G
∑

g=1

I(x∗g>0)x
∗
g ln(dkg)+ lnπk + C, (18.15)

where C is a constant independent of k. For the estimation of the unknown
parameters, one may refer to Zhou et al. (2018). Finally, we choose k that maximizes
the discriminant score as the class label of the new observation. When p∗kg → 0, by
formula (18.15) it yields that

ln
(

p∗kg + (1− p∗kg)e(−dkgl
∗λg)

)

→ dkgl
∗λg.

That is, the discriminant scores of ZIPLDA will reduce to the discriminant scores
of PLDA in (18.12) when there are no excess zeros.

18.3.3 Negative Binomial Linear Discriminant Analysis

For genes with adequate sequencing depth, the Poisson or zero-inflated Poisson
distribution may not provide a good modeling due to the overdispersion issue in
the data. This section introduces the negative binomial linear discriminant analysis
(NBLDA) in Dong et al. (2016) for next-generation sequencing data.

Let Xig be the number of reads mapped to gene g in sample i, where i = 1, . . . , n
and g = 1, . . . ,G. By assuming a negative binomial distribution for the data, we
have

Xig ∼ NB(μig, φg), μig = liλg, (18.16)

where li and λg are the same as in Sect. 18.3.1, and φg ≥ 0 is the dispersion
parameter. We have E(Xig) = μig and Var(Xig) = μig + μ2

igφg . Further, the
class-specific model for the data is

(Xig|yi = k) ∼ NB(μigdkg, φg), (18.17)
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where dkg is defined the same as in Sect. 18.3.1, and yi = k ∈ {1, . . . , K} is the
class label of sample i.

Then for the new observation, x∗, by the Bayes rule and the probability mass
function of Xig = xig in (18.17), the discriminant scores of NBLDA are given as

lnP(y∗ = k|x∗) =
G
∑

g=1

x∗g
[

ln dkg − ln(1+ l∗λgdkgφg)
]

−
G
∑

g=1

φ−1
g ln(1+ l∗λgdkgφg)+ lnπk + C, (18.18)

where C is a constant independent of k. For the estimation of the unknown
parameters, one may refer to Dong et al. (2016). Finally, we assign the new
observation x∗ to class k that maximizes the quantity (18.18). It is noteworthy that
NBLDA will be equivalent to PLDA when there is no dispersion in the data, i.e.
when φg = 0 for all genes.

18.4 Normalization Methods for Next-Generation
Sequencing Data

It is well known that normalization is an important step for pre-processing the
gene expression microarray data. Accordingly, it is equally important to perform
normalization for next-generation sequencing data. In this section, we review several
methods for RNA-seq data normalization, including those for same species and
different species.

18.4.1 Normalization for Same Species

We introduce two normalization methods for RNA-seq data with same species:
a scale normalization method in Robinson and Oshlack (2010) and a hypothesis
testing based normalization method in Zhou et al. (2017a). For ease of notation, we
assume that the true expression level and the observed count of gene g in library k

are μgk and Ygk , respectively, where k = 1, 2 and g = 1, . . . ,G. Let also Lg be the
length of gene g, and Nk be the total number of reads in library k. By formulating
the expected value of the count in a sample by the product of the true expression
level and the gene length, the expected value of Ygk is given as

E[Ygk] = μgkLg

Sk
Nk, (18.19)
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where Sk = ∑G
g=1 μgkLg is referred to as the total RNA-seq expression of sample

k.

18.4.1.1 The Trimmed Mean of M-Values Normalization Method

A trimmed mean of M-values normalization method (TMM) based on model (18.19)
was proposed in Robinson and Oshlack (2010). We first introduce the gene log-
fold-changes and the absolute expression levels (MA). Note that the unknown Sk
in model (18.19) may not be estimated directly from the data. As an alternative,
however, we can estimate fkr = Sk/Sr which is the relative RNA production of
two samples. The log-fold-changes for sample k relative to sample r for gene g are
defined as

Mr
gk = log2

YgkNr

YgrNk

,

and the absolute expression levels are defined as

Ar
gk =

1

2
log2(

Ygk

Nk

× Ygr

Nr

).

The TMM method takes the average value after removing the upper and lower
5% of the log-fold-changes Mr

gk and the absolute expression levels Ar
gk . The

trim method means removing the different expression genes which may effect the
normalization. In order to balance the data, the TMM method takes a weighted mean
of Mr

gk by the inverse of the approximate asymptotic variances in Casella and Berger
(2002). After trimming, there are G∗ valid Mr

gk and Ar
gk values. Consequently, a

global scaling factor TMM(r)
k for sample k relative to sample r can be calculated as

follows:

log2(TMM(r)
k ) =

∑

g∈G∗
Mr

gk

wr
gk

∑

g∈G∗ 1
wr
gk

,

where

wr
gk =

Nk − Ygk

NkYgk
+ Nr − Ygr

NrYgr
, Ygk > 0, Ygr > 0.

Note that the genes with Ygk = 0 or Ygr = 0 are excluded from the computation of

the scaling factor TMM(r)
k . The main reason is that the log-fold-changes cannot be

calculated in the case of Ygk = 0 or Ygr = 0. Finally, we combine the test method
in Robinson and Oshlack (2010) and the TMM normalization factor to detect DE
genes.
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18.4.1.2 A Hypothesis Testing Based Normalization Scaling Factor
Method

For normalization of RNA-seq data with same species, a number of other methods
are also available in the literature, e.g. in Bolstad et al. (2003), Bullard et al.
(2010), Anders and Huber (2010), Huang et al. (2014), Huang and Girimurugan
(2018), Huang and Yu (2016), Huang (2016). In this section, we introduce another
efficient method called the hypothesis testing based normalization (HTN) method,
which was proposed in Zhou et al. (2017a) that utilizes the available knowledge of
housekeeping genes to reduce the bias of normalization. The main objective is to
test which genes are differentially expressed in two samples or libraries. For gene
g, we test

H0g : μg1 = μg2 vs H1g : μg1 �= μg2 for all g. (18.20)

Under the assumptions that the read counts for each gene follow a Poisson
distribution, by model (18.19) the above hypothesis is equivalent to

H0g : λg1 = c
N1

N2
λg2 vs H1g : λg1 �= c

N1

N2
λg2 for all g, (18.21)

where c = S2/S1 is the scaling factor of sample 2 relative to sample 1.
Based on the above hypothesis testing framework, we are able to calculate the p-

value for each gene g. Specifically, conditioning on Yg1+Yg2 = ng , the probability
of Yg1 equals yg1 is given as

P(Yg1 = yg1 | Yg1 + Yg2 = ng) = ng!
yg1!(ng − yg1)!p

yg1
0 (1− p0)

ng−yg1 . (18.22)

From the above equation, we can see that Yg1 follows a binomial distribution, where
p0 = λg1/(λg1 + λg2) = (cN1/N2)/(1+ cN1/N2).

By the conditional distribution of Yg1 in (18.22), the p-values are

pg(c) = P(|Yg1 − ngp0| ≥ |yg1 − ngp0|
∣

∣ng)

= P

(∣

∣

∣

∣

(1+ c
N1

N2
)Yg1 − c

N1

N2
ng

∣

∣

∣

∣

≥
∣

∣

∣

∣

(1+ c
N1

N2
)yg1 − c

N1

N2
ng

∣

∣

∣

∣

∣

∣ng

)

,

(18.23)

where yg1 and yg2 = ng − yg1 are the observed values of Yg1 and Yg2, respectively.
Given the true value of scaling factor c, we can calculate the p-values for

all genes and test which genes are differentially expressed. The HTN method is
proposed to find the optimal scaling factor by utilizing the stability of housekeeping
genes. Since housekeeping genes are assumed to be non-DE genes, its p-values
follow a uniform distribution on (0, 1) when the true value of c is given. Then for
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the significance level α, the false positive rate of those genes is supposed to be
around the nominal level. In real data, we can get a set H of housekeeping genes
in priori from the published studies or based on certain biological information, e.g.,
the GO terms of the genes (Chen et al. 2014). Finally, we find the optimal c value
by the following criterion:

copt = argmin
c>0

∣

∣

∣

∣

∣

∣

1

m

∑

g∈H
I (pg(c) < α | H0, c)− α

∣

∣

∣

∣

∣

∣

, (18.24)

where m is the number of housekeeping genes in set H . Theoretically, the choice
of α has no effect on the copt value. Simulations also show that copt keeps stable for
varying α. For this, we suggest to find the copt value with a grid search method.

18.4.2 Normalization for Different Species

One significant difference between the same and different species is the numbers
and lengths of genes. For RNA-seq data with same species, the numbers and lengths
of genes are equal to each other. However, those with different species may have
different gene numbers and different gene lengths. The normalization methods
for same species cannot be applied to different species directly. In the section,
we introduce a scale based normalization (SCBN) method for RNA-seq data with
different species, which was recently proposed in Zhou et al. (submitted).

Let Go be the set of one-to-one orthologous genes that are to be tested for
differential expression, which is a subset of the complete gene set from two species.
Let Ygis be the random variable that represents the count of reads mapped to the
orthologous gene gi in species s, and ygis be the real observation, where gi ∈ Go

and s ∈ {1, 2}.
We consider the hypothesis testing to detect differential expressions of each

orthologous gene gi between two species as follows:

H
gi
0 : μgi1 = μgi2 vs H

gi
1 : μgi1 �= μgi2, (18.25)

where μgis is the true expression level for orthologous gene gi in specie s.
Let c = S2/S1 be the scaling factor for normalization. Based on model (18.19),

we assume that the reads mapped to the orthologous genes follow a Poisson
distribution so that Ygis ∼ Poisson(λgis), where λgis = E(Ygis). The above
hypothesis is then equivalent to

H
gi
0 : λgi1 =

Lgi1

Lgi2

N1

N2
cλgi2 vs H

gi
1 : λgi1 �=

Lgi1

Lgi2

N1

N2
cλgi2.
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The difference between the above hypothesis and that for the same species is that
the length Lgis may vary for different s.

Next, we calculate the p-value for each orthologous gene. Similar to the same
species, conditioning on Ygi1 + Ygi2 = ngi , the random variable Ygi1 follows a
binomial distribution, with parameters as follows:

Ygi1
∣

∣Ygi1 + Ygi2 = ngi ∼ Binomial(ngi , p
gi
0 ), (18.26)

where

p
gi
0 =

λgi1

λgi1 + λgi2
= cLgi1N1

Lgi2N2 + cLgi1N1

is the probability of success under the null hypothesis of (18.25). By formula
(18.26), we get the p-value of the test for different species for a given scaling factor
c, that is

pgi (c) = P(|(1+ Lgi1

Lgi2

N1

N2
c)Ygi1 −

Lgi1

Lgi2

N1

N2
cngi | ≥

|(1+ Lgi1

Lgi2

N1

N2
c)ygi1 −

Lgi1

Lgi2

N1

N2
cngi |

∣

∣ngi ). (18.27)

The purpose of the SCBN method is to find the optimal scaling factor c and
then detect the DE genes for two species. By the reported studies or by certain
biological measures (Brawand et al. 2011; Chen et al. 2014), we may know some
non-DE genes in priori. Assume that we know in priori a set H of conserved
orthologous genes, which are considered as non-DE genes for its stability between
species. Then for the significance level α and the scaling factor c, the value
of

∑

gi∈H (1/m)I (pgi (c) < α|H0; c) for conserved orthologous genes and the
nominal level at α should be close to each other. This hence suggests to search
for the optimal scaling factor by the following criterion:

copt = argmin
c>0

∣

∣

∣

∣

∣

∣

∑

gi∈H

1

m
I (pgi (c) < α|H0; c)− α

∣

∣

∣

∣

∣

∣

, (18.28)

where m be the number of genes in the set H . As in Sect. 8.1, the optimal c value
can be derived by the grid search method.

18.5 Simulation Studies

In this section, we assess the performance of the classification methods via a number
of simulation studies. We consider a total of five classification methods, including
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PLDA in Witten (2011), ZIPLDA in Zhou et al. (2018), NBLDA in Dong et al.
(2016), the support vector machines (SVM) classifier in Meyer et al. (2014), and
the k nearest neighbors (kNN) classifier in Ripley (1996). As described in Tan et al.
(2014), SVM and kNN can be applied to discrete data without modification when
p > n. In our experiments, we use the R packages “PoiClaClu" for PLDA and
“e1071" for SVM. We also consider the number of nearest neighbors as 1, 3, or 5
for kNN.

18.5.1 Simulation Design

We first generate the data from the negative binomial distribution:

Xkikg ∼ NB(likλgdkg, φ), (18.29)

and then set Xkikg = 0 with probability pkikg , which is related to dkglikλg and
the sequence depth. Note that Xkikg follows a negative binomial distribution when
pkikg = 0, and it follows a Poisson distribution when pkikg = 0 and φ = 0. In
each simulation study, we compare the misclassification rates by varying only one
parameter and fixing all others.

We consider the binary classification with K = 2. The parameters lik , λg , and
dkg are set as the same as those in Witten (2011). Specifically, the size factors lik are
from the uniform distribution on [0.2, 2.2], the λg values are from the exponential
distribution with expectation 25, and the ln dkg values are from N(0, σ 2). In each
experiment, we generate n (the summation of all classes) samples as the training set
and generate another n samples as the test set.

First, we generate the data from the Poisson distribution with pkikg = 0 and
φ = 0. In Study 1, we fix σ = 0.2 and consider the case that the number of features
p = 100 or 1000, 20% or 40% of which are differentially expressed between the two
classes. Then we compare the misclassification rates of all methods with different
sample sizes, n = 8, 16, 24, 40 and 64, for two classes. In Study 2, we investigate
the performance of the methods when the proportions of differentially expressed
genes are 0.2, 0.4, 0.6, 0.8, and 1.0 with fixed sample size n = 8 or 20. In this study,
we also set σ = 0.2 and p = 100 or 1000.

Second, we generate the data from the zero-inflated Poisson distribution. In Study
3, we fix φ = 0.001 and σ = 0.2 and consider the case that the number of features
p = 100 or 1000, 20% or 40% of which are differentially expressed between the two
classes. We set pkikg as a random variable following a uniform distribution on [0,1]
for each sample. Then we compare the misclassification rates of all methods with
different sample sizes, n = 8, 16, 24, 40, and 64, for two classes. In Study 4, we
investigate the performance of the methods when the proportions of differentially
expressed genes are 0.2, 0.4, 0.6, 0.8, and 1.0 with fixed sample size n = 8 or 20. In
this study, we also set φ = 0.001, σ = 0.2, and p = 100 or 1000.
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Third, we generate the data from the negative binomial distribution with pkikg =
0. In Study 5, we fix φ = 1 and σ = 0.2 and consider the case that the number
of features p = 100 or 1000, 40% or 80% of which are differentially expressed
(DE) between the two classes. Then, we compare the misclassification rates of all
methods with different sample sizes, n = 16, 24, 40, 64, and 80, for two classes.
In Study 6, we investigate the performance of the methods when the proportions of
differentially expressed genes are 0.2, 0.4, 0.6, 0.8, and 1.0 with fixed sample size
n = 40 or 80. In this study, we set φ = 1, σ = 0.2 and p = 100 or 1000.

18.5.2 Simulation Results

For each simulated data, we use the misclassification rate for evaluation, which
is computed by repeating the simulation 1000 times and taking an average over
all the simulations. Here, we use the TMM method to normalize the data before
classification. We report the misclassification rates along with various parameters in
Figs. 18.1 and 18.2.

Studies 1 and 2 investigate the effect of different sample sizes and the proportions
of differentially expressed genes for the binary classification when the data are from
the Poisson distribution. Figure 8 of the supplement in Zhou et al. (2018) showed
that the misclassification rates of all methods have decreased with an increasing
number of sample sizes. ZIPLDA and PLDA perform significantly better than
the other methods in all settings, especially for small number of genes. ZIPLDA
performs nearly the same as PLDA. Figure 9 of the supplement in Zhou et al. (2018)
showed that the misclassification rates of all methods are the same tend as Study 1.
ZIPLDA and PLDA are better than the other methods in Study 2.

Studies 3 and 4 investigate the effect of different sample sizes and the proportions
of differentially expressed genes for the binary classification when the data are from
zero-inflated Poisson distribution. Figure 2 in Zhou et al. (2018) showed that the
misclassification rates of all methods have decreased with an increasing number
of sample sizes. ZIPLDA performs significantly better than the other methods in all
settings, especially for small number of genes. Figure 3 in Zhou et al. (2018) showed
that the misclassification rates of all methods are decreased with an increasing
number of differentially expressed genes. ZIPLDA shows its superiority over the
other methods in Study 4.

Studies 5 and 6 investigate the effect of different sample sizes and the proportions
of differentially expressed genes for the binary classification when the data are from
the negative binomial distribution. Figure 18.1 showed that the misclassification
rates of NBLDA are totally better than the other methods except small sample
size. ZIPLDA performs nearly the same as PLDA. Figure 18.2 showed that the
misclassification rates of all methods are decreased with an increasing number of
differentially expressed genes. NBLDA is better than the other methods in Study 6.
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Fig. 18.1 The misclassification rates of all methods with different sample sizes for three classes
(Study 5). Here, σ = 0.2 and the data are drawn from negative binomial distribution for all plots.
The left panels have 100 features with different DE rates. The right panels have 1000 features with
different DErates

18.6 Real Data Analysis

We apply the five methods to analyze two RNA-seq datasets: the cervical cancer
dataset in Witten et al. (2010) and the Caucasian race dataset in Wang et al. (2008).

The first dataset is a microRNA-seq dataset from the Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79017) with
access number GSE79017, which is also available in Wolenski et al. (2017).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79017
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Fig. 18.2 The misclassification rates of all methods with different DE rates for three classes (Study
6). Here, σ = 0.2 and the data are drawn from Poison distribution for all plots. The left panels have
100 features with different sample sizes. The right panels have 1000 features with different sample
sizes

MicroRNA is a type of small RNAs and the length is from 18 to 30 nucleotides.
MicroRNA plays important regulatory roles in diverse biological processes
(Birchler and Kavi 2008; Stefani and Slack 2008). There are three classes in
the dataset, including 12 samples from liver, 18 samples from urine, and 18 samples
from plasma.

The second dataset is a Caucasian race dataset from ReCount (http://bowtie-
bio.sourceforge.net/recount/), an online resource consisting of RNA-seq gene count
datasets built from the raw data. The dataset is also released in Wang et al. (2008).

http://bowtie-bio.sourceforge.net/recount/
http://bowtie-bio.sourceforge.net/recount/
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Fig. 18.3 The misclassification rates of all methods for the cervical cancer dataset and the
Caucasian race dataset

There are 11 Caucasian race and 9 non-Caucasian race samples with measurements
on 52,580 transcripts.

To compare the classification methods, we randomly draw some of the samples
from each class to build the training set, and set the rest samples as the test set.
We also apply the TMM method to normalize the data before classification. We
repeat 1000 times and calculate the average misclassification rates for each method.
For the cervical cancer dataset (see the left panel of Fig. 18.3), it is evident that
the performance of ZIPLDA is better than those of the other methods for different
sample sizes. For the Caucasian rate dataset (see the right panel of Fig. 18.3),
however, NBLDA outperforms all other methods.

18.7 Discussion

Discrimination of different disease types for next-generation sequencing data is of
great importance in medical research, such as disease diagnosis and drug discovery.
In this chapter, we introduce three discriminant analysis methods and also three
normalization methods for next-generation sequencing data. Simulations and two
real data examples are examined to compare these methods.
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Unlike microarray data, we note that the current methods are still far less
satisfactory for classification and normalization of next-generation sequencing data.
Many problems remain to be solved, such as the very high overdispersion in RNA-
seq data, e.g., when the dispersion is larger than 5. In such situations, the existing
discriminant methods may not provide the optimal performance in practice. As a
future work, a mixture distribution with a point mass at zero and a negative binomial
distribution can be considered for analyzing RNA-seq data.
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Chapter 19
On the Landmark Survival Model for
Dynamic Prediction of Event Occurrence
Using Longitudinal Data

Yayuan Zhu, Liang Li, and Xuelin Huang

19.1 Introduction

Predicting the risk of adverse clinical events is important to both medical research
and clinical practice. When the time of the occurrence of the adverse event differs
among patients, the prediction is often carried out through survival regression
models such as the Cox proportional hazard model, with predictors being the
baseline variables and the outcome being the time from baseline to the event
occurrence (Steyerberg 2009). In many longitudinal cohort studies and electronic
health record databases, the prognostic information is collected longitudinally over
a series of clinical visits, until the occurrence of the adverse clinical event. Building
a prediction model with only the prognostic variables at baseline may be suboptimal
because it does not fully utilize the large amount of longitudinal information
collected at the follow-up visits. Since these follow-up visits are temporally closer
to the occurrence of the event of interest, the data at these visits may have stronger
association with the risk of the event. From the perspective of clinical practice,
the patient and physician may want to review the disease progress and update
the prognosis at each clinical visit when new data become available. Developing
a prediction model with baseline predictors and applying it at the follow-up visits is
generally not appropriate because that model fails to adjust for the changing at-risk
population, i.e., the population of patients who have not experienced the adverse
event at the time of the follow-up visit.

Our research is motivated by a study of chronic myelogenous leukemia (CML)
with a focus on the early detection of disease progression (Quintás-Cardama et al.
2014). CML is a myeloproliferative disorder of blood stem cells (Sawyers 1999).
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The causative molecular defect is the BCR-ABL protein (Faderl et al. 1999).
BCR-ABL fusion gene has been found in up to 95% of the patients who were
diagnosed with CML (Yan et al. 2017). An increase of the BCR-ABL transcript
levels is often noted before clinical symptoms of progression in clinical practice.
Therefore, BCR-ABL can be viewed as an important biomarker to predict the time
to progression (Quintás-Cardama et al. 2014). Imatinib has been used as the first
generation Tyrosine kinase inhibitor (TKI) to treat patients with CML by inhibiting
the expression of BCR-ABL. In spite of the significant efficacy, resistance to this
agent has been widely considered as a notable clinical issue (Gorre and Sawyers
2002). Dasatinib, as the second generation TKI, is indicated for the treatment of
patients with CML who are resistant to or intolerant of imatinib (Wong 2009)
and has been found to significantly improve the patient outcome (Hochhaus et al.
2007). The study that we considered was a randomized trial that used dasatinib
to treat patients with chronic phase CML after failure of imatinib therapy and
compared different dose schedules of dasatinib. Our analysis set is composed of
618 patients who are resistant to imatinib. Follow-up is defined as the time between
the start and the end of certain dose schedule, and our interest is in the prediction
of time to progression under this dose schedule. In this data set, the follow up
is up to 6.5 years with a median of 2.5 years, and patients have on average
8–9 measurements of BCR-ABL per person before disease progression occurs or
dose schedule ends. Figure 19.1 shows the Kaplan-Meier estimate of the marginal
progression-free survival and the longitudinal trajectories of log(BCR-ABL) for 20
randomly selected patients. We normalized the biomarker BCR-ABL to be between
0 and 100. Left panel in Fig. 19.1 indicates that progression rate is low among
the patients who are treated with dasatinib; only up to 25% of the patients had
progression while using dasatinib, and most of progressions occurred within the
first 3 years. Right panel in Fig. 19.1 displays highly diverse patterns of BCR-ABL
trajectories on individual level. In fact, patients were scheduled to be followed every
3 months in the first year, every 6 months in the second year, and annually thereafter,
though the actual visit times vary among different subjects. Later, we will use this
CML data set as an illustration of dynamic prediction to predict the risk of disease
progression using BCR-ABL as a time-varying predictor.

Dynamic prediction methodology has been studied in the statistical literature to
generate subject-specific prediction of the probability of the event using longitudinal
data at any time during follow-up in the aforementioned context (Rizopoulos 2011;
van Houwelingen and Putter 2011). Let i = 1, 2, . . . , n indicate the n subjects in
the dataset from which the prediction model is to be developed. For the i-th subject,
Ti denotes the time when the event of interest occurs and Ci denotes the censoring
time. We observe Yi = min(Ti, Ci) and the censoring indicator δi = 1{Ti ≤ Ci}.
Let Xi (s) denote the vector of the predictors at time s. The predictors Xi (s)

may include proper numerical summaries of the longitudinal history of subject
i from baseline to the time of prediction s, including time-invariant covariates
and both internal and external time-dependent covariates (Kalbfleisch and Prentice
2002). The predictor Xi (s) is defined on [0, Ti) but can only be observed at the
measurement times {tij ; j = 1, 2, . . . , ni}, where 0 = ti1 < . . . < tini < Yi .
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Fig. 19.1 Kaplan-Meier curve for marginal progression-free survival (left) and the longitudinal
trajectories of log(BCR-ABL) for 20 randomly selected patients (right). Each color represents the
trajectory for one individual

Denote the longitudinal data by Xij = Xi (tij ). The data from the n subjects,
consisting of {Yi, δi,Xij , tij |i = 1, 2, . . . , n; j = 1, 2, . . . , ni}, are independent
and identically distributed from the population to which the prediction model is to
be applied. The measurement times are assumed to be non-informative in the sense
that {tij } are independent of Xi (.) and Ti . The censoring time Ci is assumed to be
independent of Ti , Xi (.) and {tij }. The goal of dynamic prediction is to estimate the
predicted probability

pr(T ∈ (s, s + τ ]|T > s,X(s)) (19.1)

for any new subject from the same at-risk population (i.e., did not experience
the event) at the time of prediction s. The prediction is based on X(s) and the
prediction horizon is τ . For example, (19.1) may be the subject’s probability of
disease occurrence in the next τ years, given that this subject survived s years since
baseline without the disease, and conditional on X(s), the average biomarker test
results in the last 12 months prior to s.

There are generally two approaches to dynamic prediction: an approach based
on the joint model of longitudinal and time-to-event data (Blanche et al. 2015;
Rizopoulos 2011; Rizopoulos et al. 2014; Taylor et al. 2013) and an approach
based on the landmark or “partly conditional” model of survival (Huang et al. 2005;
van Houwelingen 2007; van Houwelingen and Putter 2011; Zheng and Heagerty
2005). Each approach has advantages and disadvantages (Li et al. 2017). Generally
speaking, the landmark approach is computationally much simpler than joint
modeling and may be the only viable option when there are multiple time-varying
predictor variables, predictors with diverse nonlinear longitudinal trajectories, or
categorical time-varying predictors (e.g., hospitalization episodes and medication
use). Therefore, the landmark approach has broader scope of application. Recent
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empirical research suggests that the two approaches have comparable prediction
accuracy for scenarios to which both are applicable (Maziarz et al. 2016).

This paper studies the following landmark Cox model (Li et al. 2017) and its
extensions. Let R(s) be the population of subjects at risk at time s, i.e., subjects
with T > s. The landmark Cox model specifies that, for a subject in R(s), the
conditional distribution of the residual survival time T (s) = T − s given predictors
X(s) follows a Cox model. Its survival function, evaluated at time s+u (u ≥ 0) and
conditional on the covariates at time s, is given by

pr(T (s) > u|X(s)) = exp

[

− exp{X(s)T β(s)}
∫ u

0
h0(v, s)dv

]

(u ≥ 0). (19.2)

Here s is called the landmark time, which is the time that has elapsed since the
baseline. It can also be viewed as the time of prediction when the model is used
to estimate the predicted probabilities. A prediction at landmark time s can only
be made for subjects in R(s). The time u denotes the time elapsed since s. For
a given s, model (19.2) is a Cox model with time-independent covariates in the
sense that X(s) does not vary with u. But X(s) may vary with the landmark
time s. All the parameters of this model, including the baseline hazard function
h0(u; s) and the log hazard ratio β(s), may vary with the landmark time s. Both
the univariate function β(s) and the non-negative bivariate function h0(u; s) are
assumed to take smooth but otherwise unrestricted shapes. This is a general class
of landmark dynamic prediction models. The partly conditional survival model
(Maziarz et al. 2016; Zheng and Heagerty 2005) is a special case of (19.2) with
the baseline hazard function not dependent on s. The super Cox models of van
Houwelingen and Putter (2008, 2011) involve some additional assumptions on the
shape of β(s) and h0(u, s). Nonparametric estimation of this model was studied by
Li et al. (2017). With model (19.2), the predicted probability (19.1) is estimated by

1− exp{−H0(τ ; s)θi(s)},

where H0(τ ; s) =
∫ τ

0 h0(u; s)du is the baseline cumulative hazard function evalu-
ated at the prediction horizon τ , and θi(s) = exp{Xi (s)

T β(s)} is the exponentiated
linear predictor.

Here is an illustration of the aforementioned landmark dynamic prediction
model in the context of the CML example. The research interest is to predict
the risk of disease progression at a selected landmark time s among the at-risk
patients, using all the available prognostic information collected up to that time.
To illustrate, we select two landmark times, s = 6 and s = 18 months, to
predict the risk of progression in 1 year (i.e., prediction horizon τ is 12 months).
In addition to the time-varying biomarker, BCR-ABL, we also include gender,
age at baseline (≥60), and dose schedule (four categories) as subject-specific
predictors in the prediction model (19.2). We plot the predicted conditional survival
curves exp{−H0(τ ; s)θi(s)} and the observed trajectories of log(BCR-ABL) for
two randomly selected patients at each s in Fig. 19.2. Prediction performance is
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Fig. 19.2 Trajectories of log(BCR-ABL) along with the predicted survival probability curves for
four patients; black dashed vertical line denotes the landmark time, red solid vertical line denotes
where the prediction is evaluated (prediction horizon is 12 months). The two plots at the bottom
are the time-dependent receiver operating characteristic (ROC) curves for prediction at landmark
time s = 6 months and s = 18 months
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evaluated by a time-dependent receiver operating characteristic (ROC) curve and
the area under the ROC (i.e., AUC). The time-dependent ROC curves and the
AUCs are estimated based on a nonparametric method proposed by Li et al. (2018),
which has been implemented in the R package tdROC. Figure 19.2 shows that the
AUC of the prediction at s = 6 and s = 18 months is, respectively, 0.80 and
0.84. Please note that the results above serve as an illustration of the use of a
landmark dynamic prediction model. We have focused on the simple case where
separate Cox models are fitted at two selected landmark times. More sophisticated
estimation methodology has been developed for more complicated situations where
it is necessary to estimate β(s) as a smooth function with irregularly spaced clinical
visit times (e.g., Li et al. (2017)), but that is not related to the main focus of this
article and will not be discussed here.

Model (19.2) implies infinitely many Cox models, each defined at a different
landmark time s and linking T (s) and X(s). A fundamental difficulty in the current
research of landmark dynamic prediction models is that it is unclear whether
a joint probability distribution of {T ,C,X(s)} exists that satisfies model (19.2)
and, if so, how to simulate datasets from such a distribution for the purpose of
simulation studies. This difficulty is widely recognized (Li et al. 2017; Maziarz
et al. 2016; van Houwelingen and Putter 2011; Zheng and Heagerty 2005). As a
result, statistical properties of the landmark model sometimes have to be studied
in simulations in which the datasets are simulated from the shared parameter
model (Huang et al. 2005; Maziarz et al. 2016). In such situations, the landmark
model operates under misspecification, which complicates the interpretation of its
numerical performance. This problem also makes it difficult to study the asymptotic
property of the estimation procedure theoretically. Zheng and Heagerty (2005)
presented a method for data simulation but it works only with constant β(s)

functions, a single longitudinal biomarker variable on equally spaced measurement
times, and a positive stable distribution assumption on the biomarker. Due to this
unsolved problem, the landmark model is sometimes viewed as a working model
or an algorithm (Maziarz et al. 2016) instead of a comprehensive probability model
(van Houwelingen and Putter 2011).

In this paper, we show that there exists a joint distribution of longitudinal
and survival data that satisfies the landmark Cox model (19.2) without additional
restrictions other than the model assumptions themselves. We provide an algorithm
to generate data from this joint distribution. The work in this paper may facilitate
further research on the landmark survival model in both the theoretical and empirical
fronts. In Sect. 19.2, we derive the joint distribution and propose a data generating
algorithm. We further demonstrate that the landmark Cox model can be generalized
to a landmark linear transformation model that includes both the Cox model and
the accelerated failure time model as special cases. This extension gives greater
flexibility to the landmark dynamic prediction models than the models presently
in the literature, but the proposed joint distribution and data generating algorithm
can still be extended to this situation (Sect. 19.3). We present a simulation to
demonstrate the proposed methodology in Sect. 19.4.
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19.2 Joint Distribution of the Longitudinal and
Time-to-Event Data for the Landmark Cox Model

According to model (19.2), the Cox model at landmark time s can be expressed as

G0(T (s); s) = −X(s)T β(s)+ ε(s) = − log θ(s)+ ε(s) ,

where G0(t; s) = logH0(t; s) and ε(s) has a standard extreme value distribution
with density function f (x) = exp(x − ex), x ∈ (−∞,∞) (Cheng et al. 1995). We
first consider the situation where θ(s) among the subjects in R(s) follows a gamma
distribution with shape parameter α(s) and rate parameter η(s). Under this situation,
the marginal survival function of T (s) can be calculated as

pr(T (s) > u) =
[

η(s)

H0(u; s)+ η(s)

]α(s)

, ∀ u ≥ 0 . (19.3)

The conditional distribution of θ(s) given W(s) = G0(T (s); s) is

f (θ(s)|W(s)) ∝ f (W(s)|θ(s))f (θ(s))
∝ θ(s)(α(s)+1)−1 exp

{

−(η(s)+ eW(s))θ(s)
} (19.4)

This is a gamma distribution with shape parameter α(s) + 1 and rate parameter
η(s)+ eW(s) = η(s)+H0(T (s); s).

A key observation of this paper is that the following equality holds:

pr(T (s) > u) = pr(T > s + u|T > s) , ∀ u ≥ 0 , s ≥ 0. (19.5)

The left-hand side of this equality is the survival probability of the residual survival
time among subjects in the risk set R(s). The conditional probability on the right-
hand side is specified for all the subjects in the population. The probabilities on both
sides of the equality are marginal probabilities involving survival time T only, i.e.,
not conditional on X(.).

Both (19.3) and (19.5) imply that

[

H0(u; s)+ η(s)

η(s)

]α(s)

=
[

H0(s + u; 0)+ η(0)

H0(s; 0)+ η(0)

]α(0)

.

Hence, given α(s), η(s) and H0(u; 0), H0(u; s) is uniquely determined by

H0(u; s) = η(s)

{

[

H0(s + u; 0)+ η(0)

H0(s; 0)+ η(0)

]α(0)/α(s)

− 1

}

. (19.6)
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It can be shown that H0(u; s) is a monotone increasing function in u at any fixed s

and equals 0 when u = 0. Therefore, H0(u; s) as given by this equation is a proper
cumulative hazard function.

The two parameter functions α(s) and η(s) characterize the distribution of θ(s),
the exponentiated linear predictor, in the time-varying risk set R(s). The univariate
function H0(t; 0) is the baseline cumulative hazard function of the Cox model at
baseline (i.e., s = 0). Equation (19.6) shows that these three functions uniquely
determine the baseline cumulative hazard function of all the subsequent Cox models
(i.e., ∀s > 0).

Based on the result above, we propose the following algorithm to generate data
from the joint distribution of the longitudinal data X(s) and survival data {T ,C}
that satisfies the landmark Cox model (19.2).

1. Prespecify a time grid for the longitudinal measurement times of all subjects,
denoted by s1 = 0 < s2 <, . . . , < sK .

2. Prespecify α(s), η(s), β(s), H0(t; 0), and calculate H0(u; s) using Eq. (19.6).
3. For subject i = 1, 2, . . . , n,

(a) Simulate Ti from its marginal distribution. Since Ti = Ti(0), the survival
function of this distribution is given by (19.3), with s = 0. Let Ki be the
number of longitudinal measurement times that fall within [0, Ti). Calculate
Ti(s) = Ti − s with s = s1, s2, . . . , sKi

.
(b) We generate {θi(s); s = s1, . . . , sKi

} from a Ki-dimensional Gaussian
copula distribution with correlation parameter ρ. Based on (19.4), the
marginal distribution of θi(sj ) (j = 1, 2, . . . , Ki) in the copula is a gamma
distribution with shape parameter α(sj ) + 1 and rate parameter η(sj ) +
H0(Ti(sj ); sj ).

(c) When there is a single covariate in X(s), calculate Xi(s) = log θi(s)/β(s)
for s = s1, s2, . . . , sKi

. When there are M covariates (M > 1), write
log θi(s) = ∑M

m=1 βm(s)Xmi(s). Since θi(s) is generated in Step 3(b),
and all the βm(.) functions are pre-specified, any time-invariant or time-
dependent longitudinal covariate processes Xmi(s) (m = 1, 2, . . . ,M) that
satisfy the linear constraint above are sufficient.

4. Generate a random censoring time Ci for each subject and censor both Ti and the
longitudinal data process.

Remark 19.1 The algorithm above uses a common grid of longitudinal measure-
ment times for all the subjects. In applications where it is desirable to allow for
irregularly spaced measurement times, two approaches can be used. The first one is
to use a very dense grid of time points and large ρ, generate all the longitudinal data,
and then randomly “knock out” some data. The second approach is to randomly
generate different longitudinal measurement times for each subject in Step 1, and
parameterize the copula so that the correlation among adjacent θ(s) is adaptive to
their time gap. The autocorrelation structure in Generalized Estimating Equations
analysis can be used for this purpose (Diggle et al. 2002).
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Remark 19.2 In Step 3(b), when there is an sj where β(sj ) = 0, there is no
association between Xi(sj ) and Ti(sj ) and Xi(sj ) cannot be generated by dividing
log θi(sj ) with β(sj ). In such a situation, any distribution for Xi(sj ) can be used.
However, it would be more plausible to use a distribution that is similar to the
distribution of X(s) at the adjacent measurement times and incorporate some
correlation among them.

In the derivation above, we show that the joint distribution of longitudinal and
survival data that satisfies the landmark Cox model (19.2) exists, and provide
an algorithm to generate data from such a joint distribution. The only additional
assumption, other than the assumptions of the model (19.2) itself, is that θ(s) has a
gamma distribution. This assumption is used here for illustration. In the following,
we show that the joint distribution and data generating algorithm above can be
extended to situations where θ(s) is any distribution.

Let the density function of θ(s) in the risk set R(s) be denoted by f (θ(s); s).
Then

pr(T (s) > u) =
∫ ∞

0
exp {−H0(u; s)θ(s)} f (θ(s); s)dθ(s) , ∀ u ≥ 0

= Eθ(s)

[

exp {−H0(u; s)θ(s)}
]

,

where Eθ(s)(.) denotes the expectation with respect to the distribution of θ(s) among
subjects in the risk set R(s). In this situation, equality (19.5) implies that

Eθ(s)

[

e−H0(u;s)θ(s)
]

= Eθ(0)
[

e−H0(s+u;0)θ(0)]

Eθ(0)
[

e−H0(s;0)θ(0)] . (19.7)

For data generation, the density function f (θ(s); s) is pre-specified, which is
analogous to the pre-specification of α(s) and η(s) above. H0(t; 0) is also pre-
specified. For given values of s and u, we can solve (19.7) for H0(u; s) numerically
in Step 2 of the data generating algorithm. Moreover, it can be easily seen that
H0(u; s) is an increasing function with respect to u and H0(0; s) = 0 for any fixed
s. Hence it is a proper cumulative hazard function. A required regularity condition
in Eq. (19.7) is that all the expectations must exist. This is satisfied in practical
situations where θ(s) has a bounded support.

Step 3(b) of the data generating algorithm above can be modified for any
marginal distribution of θ(s), with the following conditional distribution of θi(s)
given Wi(s) = G0(Ti(s); s):

f (θi(s)|Wi(s)) = f (Wi(s)|θi(s))f (θi(s); s)
∫∞

0 f (Wi(s)|θi(s))f (θi(s); s)dθi(s)
. (19.8)
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19.3 Extension to the Landmark Linear Transformation
Model

To our knowledge, the landmark dynamic prediction models reported in the current
literature are all based on the Cox model. In this section, we extend model (19.2)
to a more general landmark linear transformation model and show that the joint
distribution and data generation results in Sect. 19.2 still apply. Following Cheng
et al. (1995), linear transformation models can be written as

g{S(t)} = γ (t)+XT β , (19.9)

where γ (t) is an unspecified increasing function, which maps the positive real line
onto the whole real line, β is a vector of unknown regression coefficients, and X is a
vector of time-independent covariates. The link function g(x) is a known decreasing
function that maps from (0, 1) to the real line. It links the survival function of the
failure times given covariates and the linear predictor. When g(x) = log{− log(x)}
and γ (t) is the log of the baseline cumulative hazard function, (19.9) produces the
Cox model. When g(x) = − log{x/(1 − x)}, it produces the proportional odds
model. The accelerated failure time (AFT) model has the following form: log(T ) =
XT β + σξ , where ξ is a random disturbance term with a standard location-scale
distribution, and σ > 0 is the scale parameter. The AFT model is also a special case
of the linear transformation model, as it can be expressed as

S−1
ξ {S(t)} = log(t)/σ −XT β/σ

.= γ (t)+XT β† ,

where Sξ (x) = pr(ξ > x) is the survival function of ξ , g(x) = S−1
ξ (x), γ (t) =

log(t)/σ , and β† = −β/σ .
The landmark linear transformation model assumes that at each landmark time

s, T (s) given X(s) follows the model

g{S(u; s)} = γ (u; s)+ log θ(s) ,

where θ(s) = exp{XT (s)β(s)}, S(u; s) is the survival function of T (s) given θ(s),
and γ (u; s) is an unspecified bivariate function that increases in u (defined for T (s)).
The γ (u; s) function resembles G0(u; s) in the landmark Cox model of Sect. 19.2.
The marginal survival distribution of T is

pr(T > t) = Eθ(0)

[

g−1 {γ (t; 0)+ log θ(0)}
]

.

The data generating algorithm is similar to that in Sect. 19.2. Equation (19.7)
becomes
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Eθ(s){g−1[γ (u; s)+ log θ(s)]} = Eθ(0){g−1[γ (s + u; 0)+ log θ(0)]}
Eθ(0){g−1[γ (s; 0)+ log θ(0)]} .

We can use this equation to solve for γ (u; s) at any s and u, with pre-
specified γ (t; 0) and f (θ(s); s). The conditional distribution of θ(s) given
W(s) = γ (T (s); s) is obtained from Eq. (19.8).

19.4 Simulation

We illustrate the proposed data generating algorithm with the following simulation.
The landmark times are pre-specified at s = 0, 2, 4, · · · , 10. The marginal
distribution of θ(s) is a gamma distribution with α(s) = 1 + 0.15 s and η(s) =
1.2−0.02 s. The cumulative hazard function at s = 0 is from a Weibull distribution
with H0(u; 0) = (λu)κ , λ = 0.15 and κ = 3. The administrative end of follow-up
is 15.

Given α(0), η(0), and H0(u; 0), following the algorithm described in Sect. 19.2,
we first generate the event time T at s = 0 by (19.3). Based on (19.4), θ(s) is
simulated from the gamma distribution with shape parameter α(s) + 1 and rate
parameter η(s) + H0(T (s); s), where T (s) = T − s. We use an exchangeable
correlation structure with ρ = 0 or 0.6 in the Gaussian copula to impose serial
correlation on θ(s). We set the regression coefficient as a function of the landmark
time s, β(s) = 0.3 − 0.015 s. The time-varying biomarker is obtained as Xi(s) =
log θi(s)/β(s). In addition, random drop-out times are generated from a Weibull
distribution to keep the censoring rate between 20% and 25%. Two sample sizes
n = 100 and n = 500 are examined in this simulation study. For each sample size,
N = 1000 datasets are simulated.

We fit a separate Cox model at each landmark time on the at-risk subjects, and
compare the estimated β(s) with its true value at that landmark time. The results are
summarized in Table 19.1. It can be seen that at each landmark time, the estimated
regression coefficient from the Cox model has negligible bias and the coverage
probability is close to the nominal level of 95%. We also conduct a 0.05-level
z-test by function cox.zph in R to check the proportional hazards assumption in
model (19.2) at each landmark time. From Table 19.1, we see that the acceptance
rate over 1000 simulations is around 95%. Trajectories of X(s) for 20 randomly
selected subjects for ρ = 0 or 0.6 are plotted in Fig. 19.3, which shows that a higher
correlation parameter ρ leads to visually smoother trajectories. Figure 19.3 also
shows that the estimated baseline cumulative hazard function at each landmark time
is close to the true curve in the analysis of a single simulated dataset with n = 500.
The average results over all 1000 simulated datasets completely overlap with the
true curves (plot omitted).
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Table 19.1 Bias, empirical standard error (ESE), coverage probability (CP) of 95% confidence
intervals for estimating β(s) and the acceptance rate (AR) of the z-test for the proportional hazards
assumption

Landmark n=100 ρ = 0 ρ = 0.6

time (s) True Bias ESE CP AR Bias ESE CP AR

0 0.30 0.006 0.044 0.955 0.944 0.007 0.044 0.957 0.957

2 0.27 0.006 0.044 0.956 0.948 0.006 0.043 0.950 0.950

4 0.24 0.006 0.047 0.952 0.943 0.005 0.047 0.958 0.937

6 0.21 0.007 0.055 0.947 0.958 0.006 0.056 0.960 0.955

8 0.18 0.009 0.075 0.950 0.954 0.010 0.076 0.937 0.955

10 0.15 0.024 0.114 0.963 0.955 0.115 2.996 0.949 0.958

Landmark n=500 ρ = 0 ρ = 0.6

time (s) True Bias ESE CP AR Bias ESE CP AR

0 0.30 0.002 0.020 0.941 0.945 0.001 0.020 0.939 0.945

2 0.27 0.001 0.020 0.945 0.947 0.001 0.020 0.935 0.949

4 0.24 0.002 0.020 0.944 0.952 0.002 0.020 0.950 0.948

6 0.21 0.002 0.023 0.952 0.946 0.002 0.023 0.951 0.956

8 0.18 0.002 0.028 0.962 0.952 0.002 0.028 0.953 0.950

10 0.15 0.003 0.036 0.943 0.949 0.003 0.036 0.954 0.951

Results are obtained at landmark times s = 0, 2, · · · , 10, with a sample size of n = 100 or n = 500
and N = 1000 Monte Carlo replicates

19.5 Discussion

This paper presents some new results that are of fundamental importance to the
landmark survival model for dynamic prediction. First, we extend the conventional
Cox model based landmark model to a more general class of landmark linear
transformation model. Second, we show that models in this class no longer need to
be viewed as “working models”: joint distributions of the longitudinal and survival
data exist that satisfies the model assumptions at infinitely many landmark times.
Third, we propose an algorithm to simulate data from such distributions. This work
facilitates the future development of the landmark dynamic prediction models in
both the theoretical and empirical fronts. The R code for the proposed algorithm is
available upon request.

Our results do not imply that the landmark models in this paper satisfy the
consistency condition of Jewell and Nielsen (1993). In the context of model (19.2),
the consistency condition requires

E
[

h0(0, s2) exp
{

X(s2)
T β(s2)

}

|X(s1)
]

= h0(s2, s1) exp
{

X(s1)
T β(s1)

}

for any landmark times s1 < s2. It remains an open question whether the landmark
survival models, in general or in certain practically meaningful special cases, are
consistent according to that definition. In survival prediction, the estimand of
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Fig. 19.3 Trajectories of X(s) for 20 subjects (left) and the estimated H0(u; s) from one simulated
dataset (right). ρ = 0 (top) or 0.6 (bottom). In this dataset, the number of at-risk subjects at
landmark times 0, 2, 4, 6, 8, 10 are 500, 479, 393, 261, 159, 95

interest is usually the survival probability at a prediction horizon, not the hazard
function at a future time point. For this reason, our paper studies a different question
from that in Jewell and Nielsen (1993). We study whether the pair of residual life
time T (s) and time-varying predictor X(s) can satisfy the Cox model (or linear
transformation model) at all landmark times simultaneously. If this is not the case,
then the landmark model must work under misspecification in some landmark times,
causing biased prediction. Our result shows that the landmark survival model is an
appropriate probability model that can be used to obtain unbiased prediction at all
landmark times.
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Chapter 20
Nonparametric Estimation of a
Cumulative Hazard Function with Right
Truncated Data

Xu Zhang, Yong Jiang, Yichuan Zhao, and Haci Akcin

20.1 Introduction

A truncated sample contains realizations of random variables (L, T ) subject to the
constraint L ≤ T . Two types of truncation coexist in a truncated sample: T is
left truncated by L and L is right truncated by T . In many real-world truncated
samples T is the failure time and of study interest while L is the study entrance
time. Consequently, left truncation is also known as late entrance (Kaplan and
Meier 1958). Right truncation may occur due to retrospective sampling. The AIDS
incubation time described in the following example is right truncated.

Records of AIDS cases have been collected at the Centers for Disease Control
and Prevention (CDC). If infection of HIV virus was due to blood transfusion, the
precise infection date could be traced back. For a particular study closing date,
patients developing AIDS after the closing date would not be included in the sample.
Therefore, the AIDS incubation time is right truncated by the time between the
infection date and the closing date. Kalbfleisch and Lawless (1989) provided one
AIDS data set that included 295 AIDS cases infected by blood transfusion by July
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1, 1986 and reported to CDC by January 1, 1987. It has been noted that the right
truncation nature of incubation time should be properly addressed. This AIDS data
set were analyzed by Lui et al. (1986), Medley et al. (1987), Kalbfleisch and Lawless
(1989) among others.

In a truncated sample, distribution functions of T and L are routinely esti-
mated by the truncated version Kaplan-Meier estimators (Kaplan and Meier 1958;
Woodroofe 1985). Asymptotic properties of the truncated version Kaplan-Meier
estimators have been studied by Woodroofe (1985), Wang et al. (1986), Chao
and Lo (1988), Keiding and Gill (1990), assuming quasi-independence between
T and L (Tsai 1990). Bilker and Wang (1996) and Chi et al. (2007) studied two-
sample comparison of the distribution functions for right truncated data. Bilker
and Wang (1996) extended the Mann-Whitney test to truncated samples, assuming
parameterized truncation mechanism. Chi et al. (2007) developed a test to compare
the integrated weighted differences between two survival functions.

For a truncated sample, variable transformation is often employed for right
truncation. Let τ be a large constant. The transformed variable τ−L is left truncated
by τ −T . Because of this feature, some survival quantities of the variable subject to
right truncation are defined on the reversed time axis and the existing inferences for
left truncation are applicable to these reverse-time quantities. Much research work
has been done on the reverse-time hazard. Lagakos et al. (1988) proposed a weighted
log-rank test for equivalent reverse-time hazards throughout the entire study period.
Kalbfleisch and Lawless (1991), as well as Gross and Huber-Carol (1992), studied
the Cox model on the reverse-time hazard.

It has been noted that the reverse-time hazard is very different from the forward-
time hazard function (Lagakos et al. 1988) and there is no natural interpretation
associated with a reverse-time hazard (Finkelstein et al. 1993). Several statisticians
started to focus on the hazard function for the right truncated data. Finkelstein et al.
(1993) studied the proportional hazards regression model and constructed a score
test to assess effects of covariates. Using the inverse probability weighting technique
(Wang 1989), Shen (2010) proposed a class of semiparametric tests to compare
the weighted integrated hazard functions given known parametric distribution of
truncation variable. Shen proved asymptotic properties of the proposed test statistic
and suggested the resampling method to estimate the asymptotic variance of the test
statistic because semiparametric weighting causes complexity in the composition
of the asymptotic variance. Here we focus on the setting of random truncation that
the distribution of the truncation variable is unspecified. We develop a family of
weighted tests and derived the asymptotic distribution of the test statistic.

The remainder of this book chapter is organized as follows. Section 20.2
describes the technical background for the reverse-time hazard. Section 20.3 centers
on the nonparametric inference for the cumulative hazard function, as well as a one-
sample log-rank test. Section 20.4 introduces a group of weighted log-rank tests for
the two-sample context. Results of the simulation studies are presented in Sect. 20.5.
In Sect. 20.6, the AIDS blood transfusion data set is analyzed to illustrate the two-
sample tests. Concluding remarks are given in Sect. 20.7.
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20.2 Nonparametric Inference for the Reverse-Time Hazard
Function

A truncated sample contains realizations of the random variables (L, T ) with the
constraint L ≤ T . The sample can be described as {L0

i , T
0
i }, i = 1, · · · , n, and

L0
i ≤ T 0

i . Right truncation occurs if the variable L is of study interest and the
variable T is the truncation variable. Suppose that L and T are positive random
variables with distribution functions G and F , and satisfy the condition of quasi-
independence (Tsai 1990).

We define (ak, bk) be the inner support of a distribution function K(t), where
ak = inf{z > 0 : K(z) > 0}, bk = sup{z > 0 : K(z) < 1}. Consequently,
(aG, bG) and (aF , bF ) are, respectively, the interior supports of G and F . G

and F are estimable only if aG < bF . Identifiability is a challenging issue for
a truncated sample. Practically, one can choose a∗ = min(L0

1, · · · , L0
n), b

∗ =
max(T 0

1 , · · · , T 0
n ), and then the conditional distribution functions F ∗(t) = P(T ≤

t |T ≥ a∗) and G∗(t) = P(L ≤ t |L ≤ b∗) are identifiable (Wang 1989; Klein and
Moeschberger 2003). In general, the study interest on L has to be restricted to the
quantities associated with the conditional distribution function G∗. For the purpose
of simplicity we assume aG = 0 and bG < b∗, so that G∗ would agree with the
unconditional distribution function G.

Let λ(t) and Λ(t) be, respectively, the hazard and cumulative hazard functions
of L, with the definitions

λ(t) = lim
�t→0

P(t ≤ L < t +�t |L ≥ t)

�t

and

Λ(t) =
∫ t

0
λ(s)ds =

∫ t

0

dG(s)

P (L ≥ s)
. (20.1)

For a truncated sample, variable transformation is often employed for right
truncation. Let τ be the largest observed time of the sample. The transformed
variable L∗ = τ − L is left truncated by τ − T . The hazard function of L∗, which
is measured on the reversed time axis, is called as the reverse-time hazard or “retro-
hazard.” Let λ∗(t) denote the reverse-time hazard function and its definition can be
found in Lagakos et al. (1988),

λ∗(t)dt = P(t − dt < L ≤ t |L ≤ t).

The cumulative reverse-time hazard is defined as

Λ∗(t) = −
∫ τ

t

dΛ∗(s)ds =
∫ τ

t

λ∗(s)ds =
∫ τ

t

dG(s)

P (L ≤ s)
. (20.2)
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Note that the negative sign in the second term reflects monotone decreasing inΛ∗(t).
The Nelson-Aalen estimator is a routine estimator of a cumulative hazard

function (Nelson 1969; Aalen 1978). For a truncated sample, define the counting
processes, Ni(t) = I (L0

i ≤ t), Yi(t) = I (L0
i ≤ t ≤ T 0

i ) and let N̄(t) =
∑n

i=1 Ni(t), Ȳ (t) = ∑n
i=1 Yi(t). The Nelson-Aalen estimator of the reverse-time

cumulative hazard is given by

̂Λ∗(t) =
n

∑

i=1

∫ τ

t

dNi(s)

Ȳ (s)
. (20.3)

Weak convergence of
√
n{̂Λ∗(t)−Λ∗(t)}was discussed by Keiding and Gill (1990),

based on the standard result of a martingale. Here, we wish to provide some details
about the martingale associated with the reverse-time hazard. Consider the counting
process NL

i (t) = I (L0
i ≥ t). It increases from 0 to 1 when moving backwards

along the time axis from the origin τ .
∫ t

τ
Yi(s)dΛ

∗(s) is the compensator of the
counting process. The martingale is yielded when we subtract the compensator from
the counting process,

Mi(t) = NL
i (t)−

∫ t

τ

Yi(s)dΛ
∗(s).

The estimator ̂Λ∗(t) can be alternatively expressed as
∑n

i=1

∫ t

τ
{dNL

i (u)/Ȳ (u)}. It
follows that ̂Λ∗(t) − Λ∗(t) = ∑n

i=1

∫ t

τ
{dMi(u)/Ȳ (u)}. Based on the martingale

central limit theorem, it can be proved that n1/2{̂Λ∗(t) − Λ∗(t)} →D Wt . Wt is a
Gaussian process with mean zero and variance σ 2

t , where σ 2
t =

∫ τ

t
{λ∗(u)du/v(u)}

and v(u) = E[n−1Ȳ (u)].
The optional variation process of martingale leads to a variance estimator of

̂Λ∗(t),

ˆvar(1)[̂Λ∗(t)] =
n

∑

i=1

∫ τ

t

dNi(s)

Ȳ (s)2
. (20.4)

In the following context, this estimator is referred to as the naive variance estimator.
Klein (1991) suggested an alternative variance estimator, by assuming a binomial
distribution for a jump in the event counting process. It can be also explained by the
predictable variation process of a martingale (Andersen et al. 1993). This alternative
variance estimator has the form

ˆvar(2)[̂Λ∗(t)] =
n

∑

i=1

∫ τ

t

(Ȳ (s)−�Ni(s))dNi(s)

Ȳ (s)3
. (20.5)
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20.3 Nonparametric Inference for the Cumulative Hazard
Function

20.3.1 Estimation of the Cumulative Hazard Function

Definition of Λ(t) (Eq. (20.1)) suggests a plug-in estimator if an estimator of G(t)

is inserted in the formula. Since G(t) = P(L ≤ t) = P(L∗ ≥ τ − t), G(t)

can be viewed as the survival function of L∗ on the reversed time axis. Conse-
quently, the truncated version Kaplan-Meier estimator is utilized for estimating G(t)

(Woodroofe 1985; Keiding and Gill 1990),

̂G(t) =
∏

s>t

(

1− dN̄(s)

Ȳ (s)

)

. (20.6)

Then the plug-in estimator of Λ(t) (Kalbfleisch and Lawless 1989) is given by

̂Λ(t) =
∫ t

0

d̂G(s)

1− ̂G(s−)
, (20.7)

where ̂G(s−) is the Kaplan-Meier estimate of distribution probability prior to time s.
The regular Nelson-Aalen estimator is not feasible for Λ(t) because proper weights
should be assigned to observations to correct for biased selection. A weighted
version Nelson-Aalen estimator of Λ(t) can be found in Shen (2010).

Lagakos et al. (1988) noted the relation between the reverse-time and forward-
time hazard functions, when investigating the weight of the weighted log-rank test
between two independent truncated samples. Using another subscript to indicate
sample 1 or 2, the following relation exists:

λ∗1(t)
λ∗2(t)

= λ1(t){1−G1(t)}G2(t)

λ2(t){1−G2(t)}G1(t)
.

One can easily conclude that, when two forward-time hazards have a constant ratio,
the proportionality on the reverse-time hazards does not hold.

Assuming that G(t) is differentiable, we further clarify the relation between Λ(t)

and Λ∗(t) as follows:

Λ(t) = − log(1− exp[−Λ∗(t)]). (20.8)

The above equation is true because G(t) = exp(−Λ∗(t)) and 1 − G(t) =
exp(−Λ(t)). Using weak convergence of

√
n{̂Λ∗(t) − Λ∗(t)} and applying the

generalized delta method, we have the result,

n1/2{̂Λ(t)−Λ(t)} →D κ(Λ∗(t))Wt (20.9)
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where

κ(Λ∗(t)) = − exp(−Λ∗(t))
1− exp(−Λ∗(t)) = −

G(t)

1−G(t)
.

It follows that the asymptotic variance of ̂Λ(t) is given by

var[̂Λ(t)] ≈
[

G(t)

1−G(t)

]2

var[̂Λ∗(t)]. (20.10)

The variance estimators of ̂Λ∗(t) given in Eqs. (20.4) and (20.5) can be plugged
into the above equation, leading to two variance estimators of ̂Λ(t). The naive
variance estimator will be

ˆvar(1)[̂Λ(t)] =
[

̂G(t)

1− ̂G(t−)

]2 n
∑

i=1

∫ τ

t

dNi(s)

Ȳ (s)2
. (20.11)

The alternative variance estimator is given by

ˆvar(2)[̂Λ(t)] =
[

̂G(t)

1− ̂G(t−)

]2 n
∑

i=1

∫ τ

t

(Ȳ (s)−�Ni(s))dNi(s)

Ȳ (s)3
. (20.12)

In above two formulas, we particularly chose 1 − ̂G(t−), instead of 1 − ̂G(t),
for estimating 1 − G(t) in Eq. (20.10), because the same form is used in ̂Λ(t)

(Eq. (20.7)).

20.3.2 One-Sample Log-Rank Test

In survival analysis, one practical question is to compare the mortality rate of the
target population to a standard population. The hypothesis needs to be tested is given
by

H0 : λ(s) = λ0(s), ∀s ≤ t,

where λ0(t) is the known hazard rate function. Let Λ0(t) =
∫ t

0 λ0(u)du. Let W(t)

be a weight process. Here we consider a general test statistic, which is an integrated
process,

U(t) =
∫ t

0
W(u)d[̂Λ(u)−Λ0(u)].
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A common choice of W(t) is the risk set process. For the complete data or for the
context of right censoring and/or left truncation, the statistic is exactly the difference
between observed and expected number of events. Consequently, the statistic is
equivalent to the one-sample log-rank statistic. Under the context of right truncation,
usage of Ȳ (t) for W(t) does not lead to the interpretation of observed or expected
number of events. The test studied in this section is indeed a closed-form log-rank
test.

Under the null hypothesis, we show in the appendix that a variance estimator of
U(t) is given by

σ̂ (t)2 =
∫ t

0

[

W(s)
̂G(s)

1− ̂G(s−) −
∫ s

0
W(u)d

(

̂G(u)

1− ̂G(u−)
)]2

dN̄(s)

Ȳ (s)2

+
∫ τ

t

[∫ t

0
W(u)d

(

̂G(u)

1− ̂G(u−)
)]2

dN̄(s)

Ȳ (s)2
.

The appendix sketches the asymptotic distribution of the test statistic U(t). There-
fore, the statistic Z(t) = U(t)/σ̂ (t) asymptotically follows a standard normal
distribution when the null hypothesis is true.

20.4 Two-Sample Weighted Tests

In this section, we introduce a family of weighted tests comparing the hazard
rate function between two independent samples. Two truncated samples can be
summarized as {L0

i1, T
0
i1}(i = 1, · · · , n1) and {L0

i2, T
0
i2}(i = 1, · · · , n2), where

L0
i1 ≤ T 0

i1 and L0
i2 ≤ T 0

i2. The following notations are needed for the two-
sample tests: N̄1(t) = ∑n1

i=1 I (L
0
i1 ≤ t), N̄2(t) = ∑n2

i=1 I (L
0
i2 ≤ t), N̄•(t) =

N̄1(t) + N̄2(t), Ȳ1(t) =∑n1
i=1 I (L

0
i1 ≤ t ≤ T 0

i1), Ȳ2(t) =∑n2
i=1 I (L

0
i2 ≤ t ≤ T 0

i2),
and Ȳ•(t) = Ȳ1(t)+ Ȳ2(t).

Let λ1(t) and λ2(t) be the hazard functions of L1 and L2, respectively. Tests
should be developed for the hypothesis, H0 : λ1(s) = λ2(s), ∀s ≤ t . The standard
integrated process for testing such hypothesis has the form

U∗(t) =
∫ t

0
L(s)d ̂Λ1(s)−

∫ t

0
L(s)d ̂Λ2(s).

According to Andersen et al. (1993, V.2), the weight process L(s) is expressed as

L(s) = K(s)Ȳ1(s)Ȳ2(s){Ȳ1(s)+ Ȳ2(s)}−1.
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Under the general context, K(t) should be a non-negative process depending on
(N̄•, Ȳ•) only, and it is defined to be zero whenever Ȳ• is zero. Several options for
K(t) lead to a few standard tests. For example, K(t) = I (Ȳ•(t) > 0) leads to the
two-sample log-rank test. A few other choices include Ȳ•(t) and

√

Ȳ•(t), leading
to Gehan test and Tarone and Ware test, respectively (Andersen et al. 1993, V.2).
However, one should note that, for the right truncated data, these tests do not have
the usual interpretation about observed and expected number of events.

Following similar derivation developed for the one-sample test, we can establish
the asymptotic distribution of U∗(t) at time t . It is mean zero normal distribution
with variance

√

n1n2

n

[∫ t

0
L(s)d ̂Λ1(s)−

∫ t

0
L(s)d ̂Λ2(s)−

(∫ t

0
L(s)dΛ1(s)−

∫ t

0
L(s)dΛ2(s)

)]

.

The variance of statistic U∗(t) can be estimated by

σ̂ ∗(t)2 =
∫ t

0

[

L(s)
̂G•(s)

1−̂G•(s−)
−
∫ s

0
L(u)d

(

̂G•(u)
1− ̂G•(u−)

)]2
d
[

N̄1(s)+ N̄2(s)
]

Ȳ1(s)Ȳ2(s)

+
∫ τ

t

[∫ t

0
L(u)d

(

̂G•(u)
1− ̂G•(u−)

)]2
d
[

N̄1(s)+ N̄2(s)
]

Ȳ1(s)Ȳ2(s)
.

The test statistics Z∗(t) = U∗(t)/σ̂ ∗(t) asymptotically follows a standard normal
distribution.

20.5 Simulation Studies

20.5.1 Study I

We preferred to choose distribution of L to be defined on a bounded interval.
Two such distributions were considered in Study I, uniform[0, 1] and exponential
distribution truncated at 1.2, with the respective cumulative hazard functions

Λ(t) = − log(1− t), 0 ≤ t ≤ 1

and

Λ(t) = − log

(

1− 1− e−t

1− e−1.2

)

, 0 < t < 1.2.
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The truncation variable T was generated from an exponential distribution with
the rate parameter γ . The value of γ was searched to yield the predetermined
truncation rates, 25% and 50%. The truncation rate for one sample is defined as
(N − n)/N , where N is the size of the pool from which the truncated sample
of size n is selected. Two levels of sample size, 200 and 400, were considered.
Each simulated setting contained 1000 replicates. Let ̂Λ(i)(t) denote the cumulative
hazard estimate for the ith replicate at t . Let ¯̂Λ(t) be the average cumulative hazard
estimate across 1000 replicates, where ¯̂Λ(t) =∑1000

i=1
̂Λ(i)(t). The bias was defined

as the deviation between average cumulative hazard estimate and the true value, that
is, Bias = ¯̂Λ(t)−Λ(t). The variation among 1000 cumulative hazard estimates was
evaluated by the sample variance,

Sample variance = 1

1000− 1

1000
∑

i=1

(

̂Λ(i)(t)− ¯̂Λ(t)
)2

.

We evaluated two variance estimators, Eqs. (20.11) and (20.12), for individual
sample, and further obtained the averages,

Estimated variance = 1

1000

1000
∑

i=1

ˆvar(k)[̂Λ(i)(t)], k = 1, 2.

For each variance estimator, 95% confidence interval was calculated for each
replicate and actual coverage rate across 1000 replicates was obtained.

For the settings that L followed uniform distribution, we report the estimation
result at t = 0.2, 0.5, 0.8, corresponding to 0.2, 0.5, 0.8 in G(t) (Table 20.1). For
the settings that L followed the truncated exponential distribution, we evaluated
at t = 0.15, 0.43, 0.82, still relating to 0.2, 0.5, 0.8 in G(t) (Table 20.2). In both
tables, biases are about zero across all settings. Both variance estimators were
evaluated very close to each other, and the averages match the variation existing
among the cumulative hazard estimates. The coverage percentages are close to the
nominal level, with the exception for small t and heavy truncation, in which slight
undercoverage is observed.

20.5.2 Study II

The performances of the weighted tests were investigated in this study. We still
used the uniform and truncated exponential distributions for L and exponential
distribution for T . For the first set of the simulated settings, uniform[0, 1] was
consistently used as the underlying distribution of L for sample 1, while distribution
of L for sample 2 varied among uniform[0, 1], uniform[0, 1.2], uniform[0, 1.3]
(see Table 20.3). Variable T in samples 1 and 2 was generated from exponential
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Table 20.1 Simulation results for variance estimation of ̂Λ(t) when the underlying distribution is
uniform[0, 1]

Naive variance estimator Alternative variance estimator

n L% t Bias SVar EVar Coverage EVar Coverage

200 25 0.20 0.000 0.0012 0.0012 0.943 0.0012 0.944

0.50 −0.003 0.0059 0.0056 0.941 0.0056 0.941

0.80 −0.005 0.0269 0.0253 0.950 0.0253 0.950

50 0.20 −0.002 0.0014 0.0012 0.929 0.0012 0.933

0.50 0.001 0.0081 0.0077 0.949 0.0076 0.950

0.80 0.002 0.0445 0.0408 0.937 0.0404 0.937

400 25 0.20 0.000 0.0006 0.0006 0.950 0.0006 0.951

0.50 0.002 0.0027 0.0029 0.952 0.0029 0.952

0.80 0.000 0.0135 0.0128 0.939 0.0128 0.939

50 0.20 0.000 0.0006 0.0006 0.947 0.0006 0.947

0.50 0.003 0.0038 0.0038 0.959 0.0038 0.959

0.80 0.004 0.0207 0.0207 0.947 0.0207 0.947

SVar: sample variance; EVar: estimated variance

Table 20.2 Simulation results for variance estimation of ̂Λ(t) when the underlying distribution is
truncated exponential

Naive variance estimator Alternative variance estimator

n L% t Bias SVar EVar Coverage EVar Coverage

200 25 0.15 0.000 0.0012 0.0012 0.947 0.0012 0.945

0.43 −0.003 0.0059 0.0058 0.941 0.0058 0.941

0.82 −0.005 0.0286 0.0279 0.942 0.0276 0.942

50 0.15 −0.002 0.0012 0.0012 0.935 0.0012 0.933

0.43 0.001 0.0090 0.0088 0.941 0.0086 0.937

0.82 0.008 0.0620 0.0562 0.945 0.0552 0.944

400 25 0.15 0.000 0.0006 0.0006 0.953 0.0006 0.953

0.43 0.002 0.0031 0.0029 0.954 0.0029 0.954

0.82 0.000 0.0144 0.0142 0.933 0.0142 0.933

50 0.15 0.000 0.0006 0.0006 0.948 0.0006 0.947

0.43 0.002 0.0048 0.0045 0.951 0.0045 0.948

0.82 0.004 0.0306 0.0286 0.948 0.0282 0.948

SVar: sample variance; EVar: estimated variance

distributions with different rate parameters, to produce the same level of truncation
rate between two samples. The exponential distributions truncated at 1.2 was the
underlying distribution of L for the second set of the settings. The rate parameter
values for two samples are provided in Table 20.4.

The null hypothesis, H0 : λ1(s) = λ2(s), ∀s ≤ t , was rejected at the significance
level 0.05 using the log-rank, Gehan, Tarone, and Ware tests discussed in Sect. 20.4.
The proportions of rejection among 1000 replicates at the selected time points are
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shown in Tables 20.3 and 20.4. In both tables, when the distributions of L for two
samples are identical, the observed rejection rates are close to the significance level
0.05. When the distributions vary between two samples, in Table 20.3, the observed
power increases by time, while Table 20.4 shows a different trend that the observed
power increases first but declines when t gets large. We depicted the underlying
cumulative hazard functions, to explore the reason of different trends between
these two tables. When the underlying distributions are uniform, the difference
between two cumulative hazard functions monotonically increases by time. When
the underlying distributions are exponential, the difference increases first and then
declines when t becomes larger.

The observed power levels look similar between three tests. There is a trend that
the log-rank test has a higher level of power when t is small. It is known that the
log-rank test is most powerful under the context of proportional hazards. For the
simulated settings, the hazards are close to proportional for small t , leading to a
better power result in the log-rank test.

20.6 The Blood Transfusion Infected AIDS Data

We analyzed the AIDS data set described in Sect. 20.1, focusing on the cumulative
hazard function of the incubation time. Let L denote the incubation time. The
truncation time T is the time from infection to the study closing date, July 1, 1986.
This data set was conventionally divided into three subgroups, children (age range
1–4), adults (age range 5–59), and elderly patients (age ≥ 60), with the sizes 34,
120 and 141, respectively. The largest incubation times were, respectively, 43, 89,
and 83 months in children, adults, and elderly patients.

Figure 20.1 depicts the cumulative hazard estimates for the three subgroups.
Children was clearly associated with a greatly higher intensity of AIDS onset, while
the adults and elderly patients had similar level of intensity. We further conducted
the weighted tests discussed in Sect. 20.4 between any two subgroups. Table 20.5
shows the test results for comparing hazards up to 12, 24, and 36 months. There are
strong evidences supporting different hazards for children versus adults (log-rank
test P < 0.001, up to 36 month), and children versus elderly patients (log-rank test
P < 0.001, up to 36 month). For adults versus elderly patients, these two groups are
not significantly different on the hazard (log-rank test P = 0.66, up to 36 month).

20.7 Discussion

With right truncation, earlier researches about the hazard function are limited to
the proportional hazards regression model by Finkelstein et al. (1993) and semi-
parametric two-sample tests by Shen (2010). This paper focuses on nonparametric
inferences of the forward-time hazard function. The two-sample tests studied here
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Fig. 20.1 Cumulative hazard estimates of AIDS incubation time for (a) children, (b) adults and
(c) elderly patients

provide a useful tool for analyzing right truncated data. A future research direction
is the Kolmogorov-Smirnov type of test for the cumulative hazard function. Since
difference in cumulative hazard function between two samples can be expressed
as a function of martingale process, the simulation method (Lin et al. 1994) can
be employed to produce a confidence band for the differences over a time interval.
The supremum test over an interval [t1, t2] can be implemented using the realized
processes. This test is expected to be more powerful in detecting a difference when
two cumulative hazard functions cross at some time point.

Appendix: Asymptotic Distribution of U(t)

Suppose that λ0(t) is the true hazard function. Let λ∗0(t) and Λ∗0(t) denote the
corresponding reverse-time hazard and cumulative hazard functions. Let G0(t) be
the true distribution function. The following equation specifies the relation between
Λ0(t) and Λ∗0(t),

∫ t

0
W(u)dΛ0(u) = −

∫ t

0
W(u)

G0(u)

1−G0(u)
dΛ∗0(u).

The first step is to decompose the test statistic into two components,
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√
n

∫ t

0
W(u)d[̂Λ(u)−Λ0(u)]

= √n
∫ 0

t

W(u)
̂G(u)

1− ̂G(u)
d
[

̂Λ∗(u)−Λ∗0(u)
]

+√n
∫ 0

t

W(u)

[

̂G(u)

1− ̂G(u)
− G0(u)

1−G0(u)

]

dΛ∗0(u).

In the following context≈ indicates asymptotic equivalence. The first component is
asymptotically equivalent to the sum of martingales

√
n

∫ 0

t

W(u)
̂G(u)

1− ̂G(u)
d
[

̂Λ∗(u)−Λ∗0(u)
] ≈ √n

∫ 0

t

W(u)
G0(u)

1−G0(u)

dM̄(u)

Ȳ (u)
.

Applying the delta method on the second component, we have

√
n

∫ 0

t

W(u)

[

̂G(u)

1− ̂G(u)
− G0(u)

1−G0(u)

]

dΛ∗0(u)

≈ √n
∫ 0

t

W(u)
−G(u)

[1−G(u)]2
[

̂Λ∗(u)−Λ∗0(u)
]

dΛ∗0(u)

= √n
∫ 0

t

W(u)

[∫ u

∞
dM̄(s)

Ȳ (s)

]

d

(

G0(u)

1−G0(u)

)

.

For the above double integrals, changing order of integration leads to

√
n

{∫ t

0

[∫ s

0
W(u)d

(

G0(u)

1−G0(u)

)]

dM̄(s)

Ȳ (s)

+
∫ τ

t

[∫ t

0
W(u)d

(

G0(u)

1−G0(u)

)]

dM̄(s)

Ȳ (s)

}

.

Combining the derived results, one can show that

√
n

∫ t

0
W(u)d[̂Λ(u)−Λ0(u)] ≈

√
n

{∫ 0

t

[

W(s)
G0(s)

1−G0(s)
−

∫ s

0
W(u)d

(

G0(u)

1−G0(u)

)]

dM̄(s)

Ȳ (s)

−
∫ t

τ

[∫ t

0
W(u)d

(

G0(u)

1−G0(u)

)]

dM̄(s)

Ȳ (s)

}

.
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Using the martingale central limit theorem,
√
n
∫ t

0 W(u)d[̂Λ(u)−Λ0(u)] converges
in distribution to zero-mean normal random variable, with the variance

∫ t

0

[

W(s)
G0(s)

1−G0(s)
−

∫ s

0
W(u)d

(

G0(u)

1−G0(u)

)]2 λ∗0(s)ds
y(s)

+
∫ τ

t

[∫ t

0
W(u)d

(

G0(u)

1−G0(u)

)]2
λ∗0(s)ds
y(s)

.
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Chapter 21
Empirical Study on High-Dimensional
Variable Selection and Prediction Under
Competing Risks

Jiayi Hou and Ronghui Xu

21.1 Introduction

Competing risks occur when multiple types of failures co-exist and the occurrence
of one type of failure may prevent the observation of the other types of failure.
In addition the failure times may be subject to right-censoring. In the regression
settings the Cox proportional hazards model can be used to model the so-called
cause-specific hazards, and existing software for fitting the Cox model for classical
survival data without competing risks can be used to fit the proportional cause-
specific hazards model (Kalbfleisch and Prentice 2011). Under this model, however,
the dependence of the cumulative incidence function of a particular failure type
on the covariates involves also the effects of the covariates on the cause-specific
hazards of all other types of failures. Beyersmann et al. (2007) showed as an
example in patients receiving peripheral blood stem-cell transplantation, while the
cause-specific hazard ratio for certain baseline risk factors of bloodstream infection
(competing with the event of neutropenia) might be similar, the corresponding
cumulative incidence functions can be quite different. In order to link the covariates
directly to the cumulative incidence functions (CIF), Fine and Gray (1999) proposed
to model the subdistribution hazards.The proportional hazards modeling of the
subdistribution hazards, also known as Fine-Gray model, has gained popularity in
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recent years. The proportional cause-specific hazards model, and the proportional
subdistribution hazards model are typically not valid at the same time, and limited
empirical experiences seem to indicate that in real data applications the two models
can lead to similar conclusions (Geskus 2016).

Researchers have studied different approaches to analyze survival data with
high dimensional covariates. Notably, Tibshirani (1997) proposed the least absolute
shrinkage and selection operator (LASSO) under the Cox proportional hazards
model. Zhang and Lu (2007) investigated the statistical properties of adaptive
LASSO for the Cox proportional hazards model. Hothorn et al. (2006) introduced
a random forest algorithm and a generic gradient boosting algorithm for right-
censoring data. When considering theoretical aspects, Bradic et al. (2011) studied
a group of penalty functions and established strong oracle properties of non-
concave penalized methods for ultra high dimensional covariates in the presence
of right-censoring. In comparison, very few high-dimensional methods have been
developed in the presence of competing risks. Binder et al. (2009) first proposed
a boosting approach for fitting the proportional subdistribution hazards model.
Very recently, Fu et al. (2016) considered penalized approaches under the same
model. In this chapter, we will consider both the proportional cause-specific hazards
(PCSH) model and the proportional subdistribution hazards (PSDH) model, and
empirically investigate the accuracy of variable selection and prediction using
existing computational software under either model. This leads to the Binder et al.
approach under the PSDH model, and LASSO approach under the PCSH model,
both being readily implemented. Both approaches rely critically on the selection of
a “penalty” parameter, and there are different ways to select this parameter. We will
empirically evaluate these different methods using Monte Carlo simulations.

21.2 Competing Risk Models

Let ε = 1, . . . , J be the cause or type (we use the two words interchangeably in the
following) of failure. Let T = minJj=1 T̃j denote the observed failure time if there
is no censoring which is due to one of the causes, while failures from other types or
causes are latent. Let Xi = min(Ti, Ci), δi = I (Ti ≤ Ci), where Ci is the potential
censoring time, and is assumed non-informative. Denote S(t) = P(T > t) the
survival function of T . The cumulative incidence function (CIF) for failure type j is
Fj (t) = P(T ≤ t, ε = j). Obviously S(t) = 1−∑J

j=1 Fj (t), and
∑J

j=1 Fj (∞) =
1. Denote the cause-specific hazard function of type j as λj (t) = lim�t→0+ Pr(t ≤
T < t +�t, ε = j |T ≥ t)/�t . Then one can also show that

Fj (t) =
∫ t

0
λj (u)S(u)du, (21.1)
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leading to a nonparametric estimate of the CIF (Fleming and Harrington 2011):

λ̂j (ti) = dji

ni
(21.2)

where dji denotes the number of failures from cause j at ordered time ti , where
t1 < t2 · · · ti · · · <∞, and ni the number of subjects at risk at ti , and

Ŝ(t) =
∏

i:ti≤t

(

1−
J
∑

j=1

λ̂j (ti)

)

. (21.3)

Then we have F̂j (t) =∑

i:ti≤t p̂j (ti), where p̂j (ti) = λ̂j (ti)Ŝ(t
−
i ).

21.2.1 The PCSH Model

Given a vector of covariates Z, under the proportional hazards assumption of the
cause-specific hazard function we have

λj (t |Z) = λ0j (t) exp(β ′jZ), (21.4)

where βj is a vector of coefficients associated with cause j , for j = 1, . . . , J .
To estimate βj , we can use any software for the regular Cox model to model

one type of event at a time and treat all other types of event as if censored. This is
because the (partial) likelihood for all event types factors into a separate likelihood
function for each event type, and the likelihood function for each event type treats
all other types of events as if censored.

To estimate the cumulative incidence function given Z = z0, we have similar to
the above nonparametric estimation:

F̂j (t; z0) =
∫ t

0
Ŝ(u; z0)d%̂j (u; z0) (21.5)

=
n

∑

i=1

Ŝ(Xi; z0)δjiI (Xi ≤ t) exp(β̂ ′j z0)
∑n

i′=1 I (Xi ≤ Xi′) exp(β̂ ′jZi′)
,

where Ŝ(u; z0) = exp{−∑J
j=1 %̂j (u; z0)}, %̂j (u; z0) = %̂0j (u) exp(β̂j

′
z0), the

baseline cumulative hazard %̂0j (u) is a Breslow-type estimator (Breslow 1974), and
δji = I (εi = j)δi indicates if an event occurs at time Xi due to cause j .
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Notice that in estimating the overall survival function Ŝ we need to fit the models
for all event types, even if we are only interested in the CIF of type j .

21.2.2 The PSDH Model

Gray (1988) introduced the subdistribution hazard function as λ̃j (t) = − d
dt

log{1−
Fj (t)}. Under the proportional hazards assumption of the subdistribution hazard
function for cause 1 we have (Fine and Gray 1999)

λ̃1(t |Z) = λ̃0(t) exp(β ′Z). (21.6)

It is easy to see that model (21.6) provides a direct way to estimate the CIF of cause
1, so that there is no need to fit models for the other causes in order to estimate CIF1,
which is the cumulative incidence function due to cause 1. Fine and Gray (1999)
proposed estimating equations for β. Geskus (2011) further showed that these
estimating equations can be solved using weighted Cox regression, i.e. software for
the regular Cox model incorporating weights. The baseline subdistribution hazard
is again estimated using a modified version of Breslow’s estimator.

21.3 Regularization

Classical statistical methods, such as stepwise regression, have been known to
suffer from inconsistency and are computationally infeasible when the number
of covariates is equal to or greater than the (effective) sample size. A group
of statistical learning methods, in particular supervised learning has shown good
performance empirically when the data is of high dimensionality (Fan and Li 2001).
The goals of these methods are (Bühlmann and van de Geer 2011) (1) prediction:
to find a set of covariates which results in minimal prediction error in independent
test data; (2) variable selection: estimate the true sparsity pattern with low false
positive rate for each covariate. In theory, consistent variable selection requires
stronger assumptions, which are more difficult to meet in practice. In this paper,
we will study the performance of statistical learning methods in estimating the true
cumulative incidence function Fj . These statistical learning methods often involve
the selection of a tuning parameter, based on the minimal estimated prediction
error. There are two ways to estimate this prediction error: cross-validation which is
computationally intensive, or approximation methods such as the Cp type statistics.
When a log-likelihood loss function is used, the latter leads to the well-known
Akaike information criterion (AIC). Another commonly used information based
criterion is Bayesian information criterion (BIC), which imposes a larger penalty
than the AIC.
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21.3.1 LASSO

LASSO is an L1 penalization method proposed by Tibshirani (1996) for building
parsimonious models when the performance of classical methods such as stepwise
regression or best subset selection is not satisfactory. For linear regression LASSO
solves a penalized least squares problem along the regularization path, where the
regression coefficients associated with unimportant covariates shrink to exactly
zero while granting non-zero coefficients for important covariates. The theoretical
properties of LASSO have been extensively studied under the linear regression
model. Meinshausen and Bühlmann (2006) showed consistency of LASSO under
the neighborhood stability condition, when the true non-zero coefficients are
sufficiently large in absolute value. This condition is equivalent to the irrepre-
sentable condition used by Zhao and Yu (2006). Although some of these theoretical
conditions might be difficult to achieve in practice, LASSO has gained numerous
attention as a technique to reduce dimensionality and construct predictive models.
One of the main reasons for its popularity is its computational simplicity, involving
convex optimization only. Alternative versions of LASSO have been proposed to
handle grouped and categorical data. For example, Yuan and Lin (2006) introduced
group LASSO to include or exclude the grouped variable by replacing the L1
penalty with ‖β‖K = (βT Kβ)1/2, where K is a symmetric positive definite matrix.
In a more recent paper, Gertheiss and Tutz (2010) introduced a different penalty
function J (β) = ∑

i>j wij |βi − βj |, which is similar to the adaptive LASSO Zou
(2006).

Tibshirani (1997) extended LASSO to the Cox regression model, where the
log partial likelihood is penalized by λ‖β‖1. In fitting the PCSH model, the Cox
regression software is used, and we apply the same LASSO algorithm as proposed in
Tibshirani (1997). The penalty parameter λ can be determined by different methods,
and in the following we consider:

• CV10: λ associated with the minimum tenfold cross-validated (CV) negative
predictive log partial likelihood (referred to as “error” in the following);

• CV+1SE: λ associated with the minimum tenfold CV error plus one standard
error of the CV estimated errors;

• min AIC: λ associated with the minimum AIC criteria;
• elbow AIC: λ associated with the largest descent in AIC.

In the above under the Cox model, the AIC is defined as −2 log(L) + 2s, where
L is the partial likelihood and s = |S(β̂)| is the number of non-zero regression
coefficients, i.e. the size of the active set S(β̂) (Verweij and Van Houwelingen 1993;
Xu et al. 2009). We apply these definitions to the PCSH model, where k would be
the number of observed events from the cause of interest. The “elbow” criteria are
described in Tibshirani et al. (2001) as a way to avoid over-selection in practice.
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21.3.2 Boosting

Freund and Schapire (1997) introduced the AdaBoost algorithm to solve classifi-
cation problems by combining rough and moderately accurate “rules of thumb”
repeatedly. Later, Friedman (2001) developed boosting methods for linear regres-
sion as a numerical optimization method to minimize the squared error loss function.
Boosting can be viewed as a gradient descent optimization algorithm in function
space, and is essentially the same as the matching pursuit algorithm in signal
processing (Mallat and Zhang 1993). Bühlmann (2006) proved that boosting with
the squared error loss is consistent in high-dimensional linear models, where the
number of predictors is allowed to grow as fast as exponential to the sample size.

For the PSDH model with high-dimensional data, Binder et al. (2009) proposed
a likelihood based boosting approach, where the likelihood is the same as the
partial likelihood in Fine and Gray (1999) for complete (i.e., no censoring) data,
but otherwise with weights in the risk sets to account for censoring:

L(β) =
n
∏

i=1

[

exp(β ′Zi)
∑

l∈Ri
wl(Xi) exp(β ′Zl)

]I (δiεi=1)

, (21.7)

where Ri = {l : Xl ≥ Xi or δlεl > 1} is the risk set consisting of individuals
who have not had any event or who have had an event of other causes, and
wl(t) = Ĝ(t)I (t ≥ Xl)δl/Ĝ(Xl) + I (t < Xl) (Binder et al. missed the second
summand) where Ĝ is the Kaplan-Meier estimate of P(C > t). This boosting
procedure incorporates the gradient descent in function space (Friedman 2001)
to maximize the partial likelihood from PSDH model. This procedure has been
implemented in R package ‘CoxBoost’.

The number of boosting steps γ , which is the main tuning parameter for this
approach, can be determined by the following criteria:

• CV10: γ associated with the minimum tenfold CV negative predictive log partial
likelihood;

• min AIC: γ associated with the minimum AIC criteria;
• elbow AIC: γ associated with the largest descent in AIC.

21.4 Simulations

21.4.1 Setup

To investigate the performance of LASSO and boosting under the PCSH and
PSDH models, respectively, we conducted comprehensive simulation studies with
both continuous and dichotomized covariates in competing risks data. We assumed
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J = 2, and we considered sample size n = 500 and number of covariates p = 20,
500, and 1000. We repeated each simulation setting 100 times.

For continuous covariates, the covariate vector for each subject was generated
for the following correlation structures:

1. Independent: each covariate was independently generated from N(0, 1);
2. Exchangeable: the covariate vector was generated from a multivariate normal

distribution with mean zero, marginal variance of one, and a block diagonal
covariance matrix—each block of size 10 and within a block the pairwise
correlation ρ(i, i′) = 0.5.

3. AR(1): the covariate vector was generated from a multivariate normal distribu-
tion with mean zero, marginal variance of one, and a block diagonal covariance
matrix—each block of size 10 and within a block the pairwise correlation
ρ(i, i′) = 0.5|i−i′|.

For binary covariates, the covariate vector was first generated the same as in
the above, then dichotomized at threshold 0, which results in a balanced binary
distribution. We set the number of non-zero regression coefficients, i.e. the size
of the active set, to be s1 = 5 and s2 = 3 for causes 1 and 2, respectively. We
let β1,1··· ,5 = (1.96,−0.79,−0.5,−1.35, 1.29), β2,11··· ,13 = (−1.16,−0.86, 0.5)
and the rest of the β1 and β2 values were zero. These β values were used under both
the PCSH and the PSDH models.

To simulate survival outcomes under the PCSH model we followed the approach
described in Beyersmann et al. (2009); that is, we simulated the event time T first,
then we simulated the cause ε given T . We assumed the baseline hazard functions
for type 1 and 2 failures to be λ01(t) = 0.15 and λ02(t) = 0.10, respectively. The
overall (not cause-specific) cumulative hazard function for T was then %(t |z) =
t{λ01 exp(β1

′z) + λ02 exp(β2
′z)}, and T was generated using the fact that U =

exp(−%(T )) ∼ U(0, 1) given z. The cause ε was generated proportional to the
cause-specific hazard function, i.e. P(ε = 1|z) = λ01 exp(β1

′z)/{λ01 exp(β1
′z) +

λ02 exp(β2
′z)}. Under this model, the true CIF for cause j was

CIFj (t |z) =
∫ t

0
S(u|z)λ0j exp(βj

′z)du = λ0j exp(βj
′z)e

tM

M
, (21.8)

where M = −{λ01 exp(β1
′z)+λ02 exp(β2

′z)}. The censoring times were generated
from U(0, 20), which resulted in an average event rate of 45.8% for cause 1 and
33.6% for cause 2 with continuous covariates, an average event rate of 51.8% for
cause 1 and 27.2% for cause 2 with balanced binary covariates.

To simulate under the PSDH model we followed the approach described in Fine
and Gray (1999). The CIF for failure from cause 1 was given by

CIF1(t |z) = P(T ≤ t, ε = 1|z) = 1− {1− p(1− e−t )}exp(β ′
1z), (21.9)
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where we used p = 0.6. As this was a subdistribution function, with a point mass
1−CIF1(∞|z) at infinity, the proper distribution function that was used to generate
T was F(t |z) = CIF1(t |z)/CIF1(∞|z), so that F(T ) ∼ U(0, 1) given z. Note
that P(ε = 1|z) = CIF1(∞|z), and P(ε = 2|z) = 1 − P(ε = 1|z). Finally the
event times for failure from cause 2 were generated according to an exponential
distribution with rate exp(β ′

2z). The censoring times were generated from U(0, 20),
resulting in an average event rate of 53.5% for cause 1 and 35.1% for cause 2 with
continuous covariates, an average event rate of 55.8% for cause 1 and 33.4% for
cause 2 with binary covariates.

21.4.2 Results

We evaluate the performance of prediction at a given covariate vector value z0. We
set z0 = (0.5, · · · , 0.5)1×p for the continuous case; and for all the binary cases
each element of z0 was independently drawn with a fixed seed from Bernoulli
distribution with p = 0.5. Figures 21.1, 21.2, 21.3, and 21.4 show the empirical
distributions of the estimated CIF1(2) over the 100 simulation runs, where the
vertical line marks the true CIF1(2); the empirical distributions were plotted using
the R function “density()”. The PCSH model with LASSO was used to estimate
CIF1(2) in Figs. 21.1 and 21.2, and the PSDH model with boosting was used in
Figs. 21.3 and 21.4.

In the figures the blue dashed lines are for the oracle estimator, which fits the
exact true active set S(β). The oracle estimator varied extremely slightly when the
three correlation structures for Z were generated separately, which appeared to be
due to Monte Carlo variation, and the one under the AR(1) structure is plotted here.
The solid lines are the estimated CIF1(2) under each model after regularization
using LASSO or boosting, with different colors representing different correlation
structures of Z.

Under the PSDH model using LASSO to regularize, the performances were gen-
erally not satisfactory as compared to the oracle estimator. The worst performances
were seen when using minimum AIC to choose the penalty parameter; some of
these results were so extreme that “density()” failed to work. Elbow AIC criteria is
slightly better. CV10 had the best performance for binary covariates for p = 20, but
it too deteriorated for p = 500 and 1000.

Under the PSDH model using boosting, in Fig. 21.3 we see that for continuous
covariates, the estimators performed reasonably well when CV10 or minimum AIC
was used to choose the number of boosting steps; with CV10 the estimation was
perhaps the best. The performance deteriorated with binary covariates for p = 500
and 1000. We note that in Bühlmann (2006) simulation studies (Table 1) the mean
squared error for boosting with correlated design was also smaller than that with
uncorrelated design, and their Figure 1 showed that boosting tended to select more
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Fig. 21.1 The (smoothed) empirical distribution of ˆCIF 1(2), estimated under the PCSH model
with LASSO, for continuous covariates. The three columns correspond to p = 20, 500, and 1000.
The rows correspond to different ways of selecting λ, from top to bottom: (1) CV10, (2) CV+1SE,
(3) minimum AIC and (4) elbow AIC. The true CIF1(2|z0) = 0.32



430 J. Hou and R. Xu

−0.2 0.0 0.2 0.4

0
5

10
15

20
25

30

−0.2 0.0 0.2 0.4
0

5
10

15
20

25
30

−0.2 0.0 0.2 0.4

0
5

10
15

20
25

30
−0.2 0.0 0.2 0.4

0
5

10
15

20
25

30

−0.2 0.0 0.2 0.4

0
5

10
15

20
25

30

−0.2 0.0 0.2 0.4
0

5
10

15
20

25
30

−0.2 0.0 0.2 0.4

0
5

10
15

20
25

30

−0.2 0.0 0.2 0.4

0
5

10
15

20
25

30

−0.2 0.0 0.2 0.4

0
5

10
15

20
25

30

−0.2 0.0 0.2 0.4

0
5

10
15

20
25

30

−0.2 0.0 0.2 0.4

0
5

10
15

20
25

30

−0.2 0.0 0.2 0.4

0
5

10
15

20
25

30

Ind Exch AR1 Oracle

Fig. 21.2 The (smoothed) empirical distribution of ˆCIF 1(2), estimated under the PCSH model
with LASSO, for balanced binary covariates. The three columns correspond to p = 20, 500, and
1000. The rows correspond to different ways of selecting λ, from top to bottom: (1) CV10, (2)
CV+1SE, (3) minimum AIC and (4) elbow AIC. The true CIF1(2|z0) = 0.11



21 Empirical Study on High-Dimensional Variable Selection and Prediction. . . 431

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Ind Exch AR1 Oracle

Fig. 21.3 The (smoothed) empirical distribution of ˆCIF 1(2), estimated under the PSDH model
with boosting, for continuous covariates. The three columns correspond to p = 20, 500, and 1000.
The rows correspond to different ways of selecting γ , from top to bottom: (1) CV10, (2) minimum
AIC and (3) elbow AIC. The true CIF1(2|z0) = 0.63
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Fig. 21.4 The (smoothed) empirical distribution of ˆCIF 1(2), estimated under the PSDH model
with boosting, for balanced binary covariates. The three columns correspond to p = 20, 500, and
1000. The rows correspond to different ways of selecting γ , from top to bottom: (1) CV10, (2)
minimum AIC and (3) elbow AIC. The true CIF1(2|z0) = 0.27
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covariates in the uncorrelated design than the correlated design. This may explain
the bias introduced due to under-selection in the uncorrelated design (Fig. 21.3).

The results of variable selection are presented in Tables 21.1, 21.2, 21.3, 21.4,
21.5, 21.6, and 21.7. In the following tables, |S(β̂)| is the size of the estimated
active set, i.e. number of non-zero estimated regression coefficients. The median
number of selected variables are reported, and in () are the median absolute deviation
(MAD) of selection. One can see it was difficult to achieve good model consistency
(i.e., selection). When the selection is extremely poor, for example a couple of
hundred false positives, then the prediction results were very poor as well. Boosting
had no more than five false positives in all cases.

Table 21.1 The median (MAD) number of selected variables by LASSO under the PCSH model

Continuous |S(β̂)| #True positives #False positives

p = 20

Independence 12(1) 5(0) 7(1)

Exchangeable 12(2) 5(0) 7(2)

AR1 12(1) 5(0) 7(1)

p = 500

Independence 35(7) 5(0) 30(7)

Exchangeable 35(5) 5(0) 30(5)

AR1 37(6) 5(0) 32(6)

p = 1000

Independence 41(8) 5(0) 36(8)

Exchangeable 44(7) 5(0) 39(7)

AR1 41(7.5) 5(0) 36(7.5)

Binary (balanced) |S(β̂)| #True positives #False positives

p = 20

Independence 11(2) 5(0) 6(2)

Exchangeable 12(2) 5(0) 7(2)

AR1 12(2) 5(0) 7(2)

p = 500

Independence 22(6) 5(0) 17(6)

Exchangeable 27(6) 5(0) 22(6)

AR1 25(6) 5(0) 20(6)

p = 1000

Independence 23(6) 5(0) 18(6)

Exchangeable 29(5) 5(0) 24(5)

AR1 27(8) 5(0) 22(8)

The penalty parameter is chosen using CV10
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Table 21.2 The median (MAD) number of selected variables by LASSO under the PCSH model

Continuous |S(β̂)| #True positives #False positives

p = 20

Independence 6(1) 5(0) 1(1)

Exchangeable 6(1) 5(0) 1(1)

AR1 6(1) 5(0) 1(1)

p = 500

Independence 9(2) 5(0) 4(3)

Exchangeable 12(3) 5(0) 7(3)

AR1 10(3) 5(0) 5(3)

p = 1000

Independence 9(3) 5(0) 4(3)

Exchangeable 13(4) 5(0) 8(4)

AR1 12(4) 5(0) 7(4)

Binary (balanced) |S(β̂)| #True positives #False positives

p = 20

Independence 5(0) 5(0) 0(0)

Exchangeable 5(1) 5(0) 0(0)

AR1 5(0) 5(0) 0(0)

p = 500

Independence 5(1) 5(0) 1(1)

Exchangeable 6(1) 4(0) 2(1)

AR1 7(2) 5(0) 2(2)

p = 1000

Independence 5(1) 5(0) 0(0)

Exchangeable 6(2) 4(0) 1(1)

AR1 6(1) 5(0) 1(1)

The penalty parameter is chosen using CV+1SE

21.5 Discussion

The rapid accumulation of data across many fields, medicine in particular, has
created unique challenges in statistics. The distinct issues with high-dimensional
data have come to be recognized recently, including for example, the rapid noise
accumulation, the unrealistic independence assumption, and the necessity for novel
robust data analysis methods (Fan et al. 2014). While researchers work to meet these
challenges, some of the methods proposed in the literature do not necessarily scale
well to large data sets. In this paper, we considered the feasible implementations
of statistical learning methods under the PCSH and PSDH models. We empirically
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Table 21.3 The median (MAD) number of selected variables by LASSO under the PCSH model

Continuous |S(β̂)| #True positives #False positives

p = 20

Independence 7(1) 5(0) 2(1)

Exchangeable 7(1) 5(0) 2(1)

AR1 7(1) 5(0) 2(1)

p = 500

Independence 280(16.5) 5(0) 275(16.5)

Exchangeable 303.5(13) 5(0) 298.5(13)

AR1 295.5(11.5) 5(0) 290.5(11.5)

p = 1000

Independence 260(15) 5(0) 255(15)

Exchangeable 292(16.5) 5(0) 287(16.5)

AR1 282(17) 5(0) 277(17)

Binary (balanced) |S(β̂)| #True positives #False positives

p = 20

Independence 7(1) 5(0) 2(1)

Exchangeable 7(1) 5(0) 2(1)

AR1 7(1) 5(0) 2(1)

p = 500

Independence 364.5(16.5) 5(0) 359.5(16.5)

Exchangeable 372(17) 5(0) 367(17)

AR1 369(15) 5(0) 364(15)

p = 1000

Independence 344(17.5) 5(0) 339.5(17.5)

Exchangeable 352(14.5) 5(0) 347(14.5)

AR1 362(16.5) 5(0) 357(16.5)

The penalty parameter is chosen using min AIC

studied their performance in variable selection and prediction through comprehen-
sive simulations in both low- and high-dimensional settings with different covariate
structures.

In the limited comparisons that we are aware of in the literature, the two models
seem to give somewhat comparable results (Geskus 2016). While the PSDH model
was proposed in order to associate the CIF due to one cause directly with the
covariates without having to specifically model the other causes, the PCSH model
might be more flexible precisely due to the fact that it allows different modeling
of different causes in the CIF. This is certainly worth future investigation. We also
note that while the proportional hazards assumption is used in both models, there
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Table 21.4 The median (MAD) number of selected variables by LASSO under the PCSH model

Continuous |S(β̂)| #True positives #False positives

p = 20

Independence 5.5(0.5) 5(0) 0.5(0.5)

Exchangeable 5(1) 5(0) 0(0)

AR1 5(1) 5(0) 0(0)

p = 500

Independence 225(21) 5(0) 220(21)

Exchangeable 27.5(18.5) 5(0) 22.5(18.5)

AR1 200(51) 5(0) 195(51)

p = 1000

Independence 162.5(72) 5(0) 157.5(72)

Exchangeable 31.5(22) 5(0) 26.5(22)

AR1 61(49) 5(0) 56(49)

Binary (balanced) |S(β̂)| #True positives #False positives

p = 20

Independence 6(1) 5(0) 1(1)

Exchangeable 5(1) 5(0) 0(0)

AR1 5(1) 5(0) 0(0)

p = 500

Independence 271.5(41) 5(0) 266.5(41)

Exchangeable 171.5(127.5) 5(0) 166.5(127.5)

AR1 277(40) 5(0) 272(40)

p = 1000

Independence 271(26) 5(0) 266(26)

Exchangeable 70.5(60) 5(0) 65.5(59.5)

AR1 247(68) 5(0) 242(68)

The penalty parameter is chosen using elbow AIC

has been recent work considering other modeling approaches such as the additive
hazards in the presence of competing risks (Zheng et al. 2017).

Finally, we note that in the high-dimensional context methods developed for
continuous data may behave differently for binary data especially if sparsity
presents. In a recent paper Mukherjee et al. (2015) showed that when a binary
design matrix is sufficiently sparse, no signal can be detected irrespective of its
strength. This finding echoes the challenges that we have observed in our simulation
studies.



Table 21.5 The median (MAD) number of selected variables by Boosting under the PSDH
model

Continuous |S(β̂)| #True positives #False positives

p = 20

Independence 7(2) 5(0) 2(2)

Exchangeable 10(3) 5(0) 5(3)

AR1 9(2) 5(0) 4(2)

p = 500

Independence 5(0) 5(0) 0(0)

Exchangeable 6(1) 5(0) 1(1)

AR1 6(1) 5(0) 1(1)

p = 1000

Independence 5(0) 5(0) 0(0)

Exchangeable 5(0) 5(0) 0(0)

AR1 5(0) 5(0) 0(0)

Binary (balanced) |S(β̂)| #True positives #False positives

p = 20

Independence 6(1) 5(0) 1(1)

Exchangeable 7(2) 5(0) 2(2)

AR1 6(1) 5(0) 1(1)

p = 500

Independence 5(1) 5(0) 0(0)

Exchangeable 4(1) 4(0) 0(0)

AR1 4.5(0.5) 4(0) 0(0)

p = 1000

Independence 5(1) 4(1) 0(0)

Exchangeable 4(0) 4(0) 0(0)

AR1 4(0) 4(0) 0(0)

The number of steps is chosen using CV10

Table 21.6 The median (MAD) number of selected variables by Boosting under the PSDH
model

Continuous |S(β̂)| #True positives #False positives

p = 20

Independence 7(1) 5(0) 2(1)

Exchangeable 7(1) 5(0) 2(1)

AR1 7(1) 5(0) 2(1)

p = 500

Independence 7(1) 5(0) 2(1)

Exchangeable 8(1) 5(0) 3(1)

AR1 7.5(1.5) 5(0) 2.5(1.5)

p = 1000

Independence 7(1) 5(0) 2(1)

Exchangeable 7(1) 5(0) 2(1)

AR1 7(1) 5(0) 2(1)

(continued)



Table 21.6 (continued)

Continuous |S(β̂)| #True positives #False positives

Binary (balanced) |S(β̂)| #True positives #False positives

p = 20

Independence 7(1) 5(0) 2(1)

Exchangeable 7(1) 5(0) 2.5(1.5)

AR1 7(1) 5(0) 2(1)

p = 500

Independence 7(1) 5(0) 2(0)

Exchangeable 7(1) 5(0) 2(1)

AR1 7(0) 5(0) 2(0)

p = 1000

Independence 7(1) 5(0) 2(1)

Exchangeable 6(1) 5(0) 2(1)

AR1 7(0) 5(0) 2(0)

The number of steps is chosen using min AIC

Table 21.7 The median (MAD) number of selected variables by Boosting under the PSDH
model

Continuous |S(β̂)| #True positives #False positives

p = 20

Independence 3(0) 3(0) 0(0)

Exchangeable 4(1) 4(1) 0(0)

AR1 4.5(0.5) 4.5(0.5) 0(0)

p = 500

Independence 3(0) 3(0) 0(0)

Exchangeable 4(0) 4(0) 0(0)

AR1 4(1) 4(1) 0(0)

p = 1000

Independence 4(1) 4(1) 0(0)

Exchangeable 4(1) 4(1) 0(0)

AR1 4.5(0.5) 4.5(0.5) 0(0)

Binary (balanced) |S(β̂)| #True positives #False positives

p = 20

Independence 3(0) 3(0) 0(0)

Exchangeable 3.5(0.5) 3.5(0.5) 0(0)

AR1 4(0) 4(0) 0(0)

p = 500

Independence 3(0) 3(0) 0(0)

Exchangeable 3(1) 3(1) 0(0)

AR1 4(0) 4(0) 0(0)

p = 1000

Independence 3(0) 3(0) 0(0)

Exchangeable 3(1) 3(1) 0(0)

AR1 4(0) 4(0) 0(0)

The number of steps is chosen using elbow AIC
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Chapter 22
Nonparametric Estimation of a Hazard
Rate Function with Right Truncated Data

Haci Akcin, Xu Zhang, and Yichuan Zhao

22.1 Introduction

Truncation is one type of incompleteness often appearing in time-to-event data. A
truncated sample contains replicates of the variables (L, T ) subject to the constraint
L < T . For a truncated sample, T is left truncated by L and L is right truncated
by T . Truncation is closely related to biased sampling, where the probability of
selection depends on the length of the variable.

Analysis of left truncated survival data has received much attention. The survival
function of T can be estimated by the truncated version of Kaplan-Meier estimator
(1958). Woodroofe (1985), Wang et al. (1986), Keiding and Gill (1990), and Chen
et al. (1995) studied asymptotic properties of the left truncated version of the
Kaplan-Meier estimator. Lai and Ying (1991) and Gurler et al. (1993) focused
on the nonparametric inference of survival function with left truncated and right
censored data. Uzunogullari and Wang (1992) studied the kernel estimators of the
hazard rate function with left truncated and right censored data. They particularly
considered adaptive bandwidth to get smoother curves and more precise estimation
result. Regression analysis in the context of left truncation and right censoring
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was studied by Klein and Zhang for its application in evaluating outcome of bone
marrow transplantation (1996).

Right truncation has been routinely tackled by transforming it to left truncation.
Let τ be a large constant. The transformed variable τ − L is left truncated by
τ − T . Using this relationship, the distribution function of L coincides with the
survival function of the transformed variable τ − L, and the truncated version of
the Kaplan-Meier estimator became the natural estimation method (Lagakos et al.
1988; Woodroofe 1985; Keiding and Gill 1990). In recent years, Chi et al. (2007)
developed a test to compare integrated weighted differences between two survival
functions. An important survival quantity related to the transformed variable τ − L

is its hazard rate function. This function is commonly interpreted as a hazard rate
function with τ as the origin and counting backwards along the time axis. Therefore,
it is known as reverse-time hazard or retro-hazard. Lagakos et al. (1988) proposed a
weighted log-rank test to compare the reverse-time hazard rate functions. Gross and
Huber-Carol (1992) and Kalbfleisch and Lawless (1991) studied Cox regression
modeling the reverse-time hazard rate function. The Nelson-Aalen estimator is
applicable for estimating the cumulative reverse-time hazard.

Natural interpretation of reverse-time hazard does not exist. A few statisticians
noted this drawback and developed the inferences about the forward-time hazard
rate function. Finkelstein et al. (1993) considered Cox regression modeling the
hazard rate function and proposed the full likelihood approach to estimate the
regression coefficients. Shen (2010) utilized the inverse probability technique to
estimate the cumulative hazard function and proposed a semiparametric test to
compare weighted cumulative hazard functions. In general, inference about the
hazard rate function under right truncation is scarce. In this study we directly
estimate the hazard rate function and develop the nonparametric inferences. Our
motivation for estimating the hazard rate function was based on the dynamic feature
of this function.

The remainder of this book chapter is organized as follows. Section 22.2
describes non-parametric inference of reverse-time hazard rate function and its
kernel smoothing estimate. Subsequently, kernel smoothing of forward-time hazard
rate function is provided in Sect. 22.3. Results of simulation study for forward-time
hazard rate are presented in Sect. 22.4. As an example, AIDS blood transfusion data
set is analyzed using forward-time hazard rate in Sect. 22.5. A brief discussion is
given in Sect. 22.6.

22.2 Nonparametric Inference of Reverse-Time Hazard Rate
Function

In survival analysis, one often needs to find the risk of an individual at a certain time.
Estimation becomes cumbersome under random truncation. Formally, let (L, T ) be
random variables with the constraint L < T . A truncated sample can be described
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as {Li, Ti}, i = 1, 2, . . . , n, and Li < Ti . The variable of study interest, L, is
right truncated by the truncation variable, T . Let F and G be distribution functions
for T and L, respectively. Let (aC, bC) be the inner support for any distribution
function C and defined as aC = inf{z > 0 : C(z) > 0} and bC = sup{z > 0 :
C(z) < 1}. Consequently the inner supports for F and G are (aF , bF ) and (aG, bG),
respectively. F and G are estimable only if aG < bF . Another issue with truncated
sample is indentifiability. In general one can choose a∗ = min(L1, . . . , Ln) and
b∗ = max(T1, . . . , Tn), then the conditional distribution functions F ∗(t) = P(T ≤
t |T ≥ a∗) and G∗(t) = P(L ≤ t |L ≤ b∗) are identifiable (Klein and Moeschberger
2003). For simplicity aG = 0 and bG < b∗ are assumed so that G agrees with the
conditional distribution function G∗ and becomes identifiable.

Let α(t) and A(t) be the hazard rate function and cumulative hazard function of
L, respectively, with the definitions

α(t) = lim
Δt→0

P [t ≤ L < t +Δt |L ≥ t]

Δt
(22.1)

and

A(t) =
∫ t

0
α(u)du =

∫ t

0

dG(u)

P (L ≥ u)
, (22.2)

where G(t) is the distribution function of L, G(t) = P(L ≤ t).
To estimate α(t) one should first obtain estimates of A(t), and then apply some

smoothing technique to find smoothed slopes of A(t). Different smoothing methods
were proposed to estimate hazard rate. Kernel smoothing, spline method, and local
polynomial method are the most common techniques. Kernel smoothing and local
polynomial method are theoretically more tractable than spline method (Wang
2005). Kernel smoothing is used here to estimate hazard rate function.

With a truncated sample, right truncation can be easily transformed to become
left truncation. Let τ be a large constant greater than max{T1, · · · , Tn} and consider
the transformed variables L∗ = τ − L, T ∗ = τ − T . For the newly constructed
sample {L∗i , T ∗i }, i = 1, · · · , n, there is the constraint L∗i > T ∗i . Therefore, the
variable L∗ is left truncated by the variable T ∗. The hazard rate function of L∗ is
a quantity with τ as its origin and counting backwards along the time axis towards
zero. As a result, such a quantity is called as “reverse-time hazard” by Lagakos
et al. (1988) or “retro hazard” by Keiding and Gill (1990). Let α∗(t) and A∗(t),
respectively, denote the reverse-time hazard rate function and cumulative hazard
function, with the definitions

α∗(t) = lim
Δt→0

P [t ≥ L > t −Δt |L ≤ t]
Δt

(22.3)

and
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A∗(t) =
∫ τ

t

α∗(u)du =
∫ τ

t

dG(u)

P (L ≤ u)
. (22.4)

The function A∗(t) can be estimated by the Nelson-Aalen estimator. A definition
about the reverse-time martingale is needed in order to establish the inference of the
Nelson-Aalen estimator. For a truncated sample, we define the following counting
processes NL

i (t) = I (Li ≥ t), N̄L(t) = ∑n
i=1 N

L
i (t) and Yi(t) = I (Li ≤ t ≤

Ti), Ȳ (t) = ∑n
i=1 Yi(t). Also define Ni(t) = I (Li ≤ t) and N̄(t) = ∑n

i=1 Ni(t).
The counting process NL

i (t) is defined to count an event via the reversed-time axis.
The corresponding martingale is given by

M∗i (t) = NL
i (t)−

∫ t

τ

Yi(u)d%
∗(u)

It is the standard result thatM∗(t) is a local square integrable martingale (Keiding
and Gill 1990). Let M̄∗(t) = ∑n

i=1 M
∗
i (t), the Nelson-Aalen type estimator of

A∗(t) is given by

̂A∗(t) =
∫ t

τ

J (u)

Ȳ (u)
dN̄L(u) =

n
∑

i=1

∫ τ

t

J (u)

Ȳ (u)
dI (Li ≤ u),

where J (t) = I (Ȳ (t) > 0), if Ȳ (t) = 0, then J (t)/Ȳ (t) is defined as 0. Consider
A∗s(t) = ∫ t

τ
α∗(u)J (u)du. It follows that

̂A∗(t)− A∗s(t) =
∫ t

τ

J (u)

Ȳ (u)
dM̄∗(u)

and ̂A∗(t)− A∗s(t) has the predictable variation process
∫ t

τ
{J (u)α∗(u)/Ȳ (u)}du.

It can be proven that
√
n{̂A∗(t)−A∗s(t)} converges in distribution to a zero-mean

Gaussian process with the predictable variation process
∫ t

τ
{J (u)α∗(u)/y(u)}du,

where y(t) = E[n−1Ȳ (t)]. Watson and Leadbetter (1964) defined the kernel
function estimator of hazard rate. Andersen et al. (1993) generalized the kernel
function estimator based on counting process proposed by Ramlau-Hansen (1983).

Using the similar approach, we can estimate reverse-time hazard α∗(t) by

α̂∗(t) = 1

b

∫ 0

τ

K

(

t − u

b

)

d̂A∗(u) (22.5)

The kernel function is a bounded function between [−1, 1] and should be integrated
to 1. The bandwidth b is a positive parameter. Estimation of the reverse-time hazard
rate function has not been studied before, because its interpretation is not natural.
Our interest centered on the inference of the forward-time hazard rate function
because it is the natural and basic function for a time-to-event variable. We sketched
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the result for α̂∗(t) as follows. Let α∗s(t) be the smoothed version of α∗(t),

α∗s(t) = 1

b

∫ 0

τ

K

(

t − u

b

)

dA∗s(u). (22.6)

Regarding the smoothed hazard rate estimate, it can be shown that

α̂∗(t)− α∗s(t) = 1

b

∫ 0

τ

K

(

t − u

b

)

d(̂A∗ − A∗s)(u)

= 1

b

∫ 0

τ

K

(

t − u

b

)

J (u)

Ȳ (u)
dM̄∗(u). (22.7)

α̂∗(t) − α∗s(t) is a stochastic integral with respect to local martingale M̄∗(t).
Asymptotic normality follows the martingale central limit theorem. A naive variance
estimator of α̂∗(t) is given by

1

b2

∫ 0

τ

J (u)

{

K( t−u
b
)

Ȳ (u)

}2

dN̄L(u) = 1

b2

∫ τ

0
J (u)

{

K( t−u
b
)

Ȳ (u)

}2

dN̄(u). (22.8)

22.3 Nonparametric Inference of Hazard Rate Function

Estimation of the distribution function of L has been well studied. G(t) can be
estimated by the right truncated version of the Kaplan-Meier estimator (Woodroofe
1985; Keiding and Gill 1990),

̂G(t) =
∏

u>t

(

1− d[∑n
i=1 I (Li ≤ u)]
Ȳ (u)

)

. (22.9)

Under the context of right truncation, Nelson-Aalen estimator of the cumulative
hazard function is not applicable. Instead, one has to consider a plug-in estimator,

̂A(t) =
∫ t

0

d̂G(u)

1− ̂G(u−) . (22.10)

The forward-time hazard rate can be estimated by

α̂(t) = 1

b

∫ τ

0
K

(

t − u

b

)

d̂A(u). (22.11)

Based on the definitions of A∗(t) and A(t), we can have
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dA(t) = −G(t)

1−G(t−)dA
∗(t).

Using this relationship and estimators given by (22.9) and (22.10), α(t) can be
identically estimated by

α̂(t) = 1

b

∫ τ

0
K

(

t − u

b

) −̂G(u)

1− ̂G(u−)d
̂A∗(u). (22.12)

Define As(t) = ∫ t

0 α(u)J (u)du. The smoothed function αs(t) can be written as

αs(t) = 1

b

∫ τ

0
K

(

t − u

b

)

dAs(u)

= 1

b

∫ τ

0
K

(

t − u

b

) −G(u)

1−G(u−)dA
∗s(u). (22.13)

We showed in the appendix that (nb)1/2 [̂α(t)− αs(t)] is asymptotically equivalent
to the sum of functions of martingales, and through the martingale central limit
theorem, (nb)1/2 [̂α(t)−αs(t)] converges in distribution to a normal random variable
with mean zero. Based on the results given in the appendix, we will estimate the
variance of α̂(t) by the formula

ˆvar[̂α(t)] = 1

b2

∫ 0

τ

[

K

(

t − u

b

)

̂G(u)

1− ̂G(u−)

−
∫ u

0
K

(

t − x

b

)

d

(

̂G(x)

1− ̂G(x−)
)]2

J (u)
dN̄L(u)

Ȳ (u)2
.

The kernel smoothed estimator of α(t) is a weighted average of crude hazard
estimates over event times close to t . Most kernel functions allow the event times
closer to t to have more weight than those farther from t . Bandwidth, b, controls
the width of window. b is chosen to include those events that fall in the interval
[t − b, t + b]. Symmetric kernel functions are commonly used such as uniform,
Epanechnikov and biweight, with the following expressions:

K(x) = 1/2, −1 ≤ x ≤ 1 (uniform kernel),

K(x) = 3(1− x2)/4, −1 ≤ x ≤ 1 (Epanecnikov kernel),

K(x) = 15(1− x2)2/16, −1 ≤ x ≤ 1 (biweight kernel).
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The above kernels are applicable if b ≤ t ≤ tn − b, where tn is the largest event
time. When t < b, adjustment is necessary because t − b is less than zero. In this
case symmetric kernels need to be modified and asymmetric kernels should be used.
Gasser and Muller (1979) suggested the boundary kernel method to modify kernels.
The boundary kernel method uses linear multiples of the kernel function around the
boundary.

The main question is to find the best bandwidth for kernel smoothed estimates of
hazard rate. There is a trade off between bias and variance in terms of choosing the
bandwidth b. Generally speaking, small bandwidth will result in less smooth curve.
Consequently, there will be smaller bias but larger variance. One way to choose the
optimum bandwidth is to use mean integrated squared error (MISE) to see what
value of b minimizes such error (Klein and Moeschberger 2003). MISE of α̂ is
defined by

MISE(b) = E

[∫ τ

0
[̂α(u)− α(u)]2du

]

= E

[∫ τ

0
α̂2(u)du

]

−2E

[∫ τ

0
α̂(u)α(u)du

]

+ E

[∫ τ

0
α2(u)du

]

MISE(b) depends both on the kernel used to estimate α and on the bandwidth b.
Since the last term is independent from both kernel and bandwidth, it can be ignored.
Let t1 < t2 < . . . < tn be distinct event times, first term can be estimated by using
trapezoidal rule, and the second term can be estimated by using cross-validation
estimate given by Ramlau-Hansen (1983). Optimum bandwidth, b, minimizes the
following function (Klein and Moeschberger 2003);

g(b) =
n−1
∑

i=1

(

ti+1 − ti

2

)

[̂α2(ti)+ α̂2(ti+1)]

−2

b

∑

i �=j
K

(

ti − tj

b

)

Δ̂A(ti)Δ̂A(tj ). (22.14)

22.4 Simulation Study

We conducted a simulation study to assess the performance of the kernel smoothed
hazard function. Random variables (L, T ) were generated with constraint of L < T .
Two settings were considered for distribution of L, uniform [0,1] and exponential(1)
truncated at 1.2. The truncation variable T was generated from exponential(λ) for
both settings. The following steps were taken to get a sample with size n: first,
random variables (L, T ) were generated; second, if L > T , we regenerate the pair
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until getting a pair satisfying L < T . Let size of truncated sample be nt , then
the truncation rate is calculated by nt/(n + nt ). In our simulation study truncation
rates were chosen to be 25% and 50%. In order to obtain these truncation rates, we
searched for appropriate λ values.

Each simulated setting contained 1000 replicates. For simplicity, uniform kernel
was used in estimation. In order to obtain optimum bandwidth, we have searched for
b, which minimized g(b) given in (22.14) for each replicate. Searching for optimum
bandwidth can be computationally challenging when sample size is large. Due to
this limitation, the sample sizes of simulation settings were chosen to be 100 and
200. Let ¯̂α(t) be the average of kernel smoothed hazard estimates of 1000 replicates
and α̂(i)(t) be the kernel smoothed hazard estimate for the ith replicate, then ¯̂α(t) =

1
1000

∑1000
i=1 α̂(i)(t).

The relative bias provides a measure of the magnitude for the bias,

Relative bias = B[ ¯̂α(t)]
α(t)

= ¯̂α(t)− α(t)

α(t)
,

where the bias, B[ ¯̂α(t)], was defined as the deviation between the average kernel
smoothed hazard estimate and the true value.

The variance estimator ˆvar[̂α(t)] evaluated for each replicate and the average of
these variance estimates was calculated as

Estimated variance = 1

1000

1000
∑

i=1

ˆvar[̂α(i)(t)].

Sample variances were evaluated by the formula

Sample variance = 1

1000− 1

1000
∑

i=1

(

α̂(i)(t)− ¯̂α(t)
)2

.

The 95% confidence intervals of variance estimators and coverage probabilities
for each replicate were calculated. The estimation results were reported at time
points that corresponds to 0.2, 0.5, 0.8 in G(t). For this reason, results were
evaluated at t = 0.2, 0.5, 0.8 for uniform distribution and at t = 0.15, 0.43, 0.82
for truncated-exponential distribution (see Table 22.1). True hazard rates for
Uniform[0,1] at 0.2, 0.5, and 0.8 are 1.25, 2.0, and 5.0, respectively. Similarly, true
hazard rates for exponential(1) truncated at 1.2 are 1.53, 1.85, and 3.13, respectively.
Relative biases are very small for both distributions. Estimated variances have very
close values to sample variances. There is an optimum bandwidth search for each
setting, so it is not possible to observe a clear trend for relative bias and variance.
There is obvious under-coverage for sample size 100. The coverage probabilities
improved when the sample size increased to 200 though they are still slightly below
0.95. We anticipate improvement should a larger size be employed.
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Table 22.1 The simulation results for estimating αs(t)

Sample Distribution Truncation Relative bias Sample Estimated 95% CI

size of L rate t (%) variance variance coverage

n = 100 U[0,1] 25 0.20 0.33 0.497 0.499 0.924

0.50 1.05 0.905 0.868 0.913

0.80 0.90 2.255 2.296 0.913

50 0.20 −0.96 0.414 0.415 0.920

0.50 0.26 0.881 0.803 0.897

0.80 −1.07 2.525 2.330 0.897

Exp(1) 25 0.15 −0.24 0.427 0.413 0.923

truncated 0.43 −0.21 0.662 0.609 0.900

at 1.2 0.82 2.64 1.409 1.371 0.920

50 0.15 −0.81 0.377 0.370 0.939

0.43 0.34 0.683 0.597 0.898

0.82 0.76 1.711 1.501 0.888

n = 200 U[0,1] 25 0.20 1.23 0.492 0.484 0.930

0.50 1.84 0.860 0.844 0.926

0.80 1.24 2.194 2.249 0.926

50 0.20 −0.93 0.389 0.377 0.920

0.50 −0.80 0.735 0.742 0.937

0.80 0.36 2.304 2.262 0.919

Exp(1) 25 0.15 0.74 0.391 0.380 0.937

truncated 0.43 −1.30 0.570 0.559 0.918

at 1.2 0.82 1.39 1.352 1.278 0.908

50 0.15 0.35 0.314 0.301 0.924

0.43 0.67 0.488 0.498 0.942

0.82 1.03 1.385 1.322 0.911

22.5 The Blood Transfusion Infected AIDS Data

For illustration purpose we analyzed the blood transfusion infected AIDS data set.
The data were collected by Centers for Disease Control and Prevention (CDC)
which required reporting of all AIDS onsets up to July 1, 1986. Study of interest
is the AIDS incubation time, which is the duration between infection with HIV
and the onset of AIDS. If blood transfusion was the cause of HIV infection, then
the infection date can be determined retrospectively. The study population was
defined to be all blood transfusion infected HIV subjects by the closing date, July,1
1986. Since only subjects whose AIDS onsets occurred earlier than the closing date
could possibly be included in the sample, the AIDS incubation time in the data set
would be shorter than the duration between infection date and the closing date. In
other words, the AIDS incubation time was right truncated by the duration between
infection date and the closing date.
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This AIDS data set can be found in Kalbfleisch and Lawless (1989). The data
set contained 295 AIDS cases diagnosed between January 1, 1978 and July 1, 1986,
with the earliest infection date in April 1978 and the latest one in February 1986.
The data set included the following variables, AIDS incubation time in months,
infection time in months starting from January 1, 1978 and age at blood transfusion.

Let L denote the incubation time. The truncation time T is the time from
infection to end of study which is July 1, 1986. Our goal was to obtain kernel
smoothed hazard rate estimates and compare them between different age groups.
Similar to previous researches, we considered three age groups for analysis, children
(1–4 years), adults (5–59 years), and elderly patients (≥60). Sample sizes were 34
for children 120 for adults and 141 for elderly people. The largest incubation times
recorded were respectively 43, 89, and 83 months for children, adults, and elderly
patients.

We used kernel smoothing to estimate smoothed hazard rate function for right
truncated data. We looked for optimum bandwidths for three kernels in each age
group. Optimum bandwidth selected for adults were b = 5, 12, 11 with respective
of using uniform, Epanechnikov, and biweight kernels. We chose b = 8, 61, 31
for elderly and b = 8, 32, 8 for children for these three kernels, respectively.
Figure 22.1 depicts smoothed hazard functions using three kernels for each age
group. Epanechnikov and biweight kernels assign higher weight in the middle and
less weight towards the tails where uniform kernel assigns homogeneous weight.
There is a great similarity in the estimation results of three kernels. Therefore, we
only present the results regarding precision evaluation and two-sample comparison
based on the uniform kernel. Figure 22.2 shows the smoothed hazard rate curves
and pointwise 95% confidence intervals for each group. Figure 22.3 shows the
differences between two kernel smoothed hazard rate functions and 95% pointwise
confidence intervals. Comparisons between adults versus children and elderly versus
children have been depicted until 40 months as the largest incubation time for
children was 43 months. Due to the similar reason, comparison between adults
versus elderly has been depicted up to 80 months.

The hazard rate curves using Epanechnikov and biweight kernels for adults
increase by time for all three kernels. There is a sudden decrease at about 65 months
for uniform kernel smoothed curve. In elderly patients, Epanechikov kernel results
in a much flat curve. For hazard rate smoothed curves using biweight and uniform
kernels, rapid increase occurs after 50 months. Children had much higher smoothed
hazard rate curves compared to the other two groups. The hazard rate curves using
uniform and biweight kernels increase steadily up to 30 months and then increase
rapidly. The Epanechnikov kernel smoothed hazard rate curve remains at the almost
the same level after 20 months.

In Fig. 22.3, the pointwise confidence intervals for differences in hazard rate
function between adults and elderly contain value zero for almost whole study
period, indicating highly similar risk level between these two populations. For
comparison between children and each of the other two groups, the pointwise
confidence intervals for differences do not include value zero starting from early
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study period. The results suggest that children were consistently subject to elevated
risk of infection compared to people of senior ages.

22.6 Discussion

Our motivation was to study one important survival quantity, the hazard rate
function, for right-truncated data. The reverse-time hazard has been studied by many
researchers but the forward-time hazard didn’t receive the same degree of attention.
One of the earliest researches on forward-time hazard was the Cox model studied by
Finkelstein et al. (1993). Our study is useful in examining the shape of hazard rate
function and can provide direct assessment of proportional hazards assumption. The
nonparametric inference provided here permits comparison of hazard rate functions
in forward-time between two samples. The result is easily interpretable in real-life
applications.

Additional researches can be conducted for hazard rate function with right
truncated data. A test about proportional hazards is practically needed for justifying
inclusion of a covariate in a Cox model. Sometime one may be interested in testing
whether a hazard rate function monotonically increase or decrease over a time
interval.
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Appendix

Asymptotic properties of kernel estimator of intensity were established by Ramlau-
Hansen (1983). In this study we exploratively investigate the limiting distribution
of α̂(t). In the following context, “≈” indicates asymptotic equivalence. Note that
(nb)1/2 [̂α(t)− αs(t)] can be expressed as

(nb)1/2 [̂α(t)− αs(t)] = (nb)1/2

b

∫ τ

0
K

(

t − u

b

)[ −̂G(u)

1− ̂G(u)
d(̂A∗ − A∗)(u)

]

− (nb)
1/2

b

∫ τ

0
K

(

t − u

b

)(

̂G(u)

1− ̂G(u−) −
G(u)

1−G(u−)
)

dA∗(u)

For the first term on the right-hand side of the above equation, it can be shown that

(nb)1/2

b

∫ τ

0
K

(

t − u

b

) −̂G(u)

1− ̂G(u−)d(
̂A∗ − A∗)(u)
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≈
√

n

b

∫ 0

τ

K

(

t − u

b

)

G(u)

1−G(u−)d(̂A
∗ − A∗)(u)

=
√

n

b

∫ 0

τ

K

(

t − u

b

)

G(u)

1−G(u−)J (u)
dM̄∗(u)
Ȳ (u)

To investigate the second term on the right-hand side, we first consider the Taylor
series expansion,

̂G(u)

1− ̂G(u−)
− G(u)

1−G(u−) ≈
d

dA∗(u)

(

G(u)

1−G(u−)
)

(̂A∗ − A∗)(u).

Then we will have

(nb)1/2

b

∫ τ

0
K

(

t − u

b

)[

−
(

̂G(u)

1− ̂G(u−) −
G(u)

1−G(u−)
)

dA∗(u)
]

≈
√

n

b
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(

t − u
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∞
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.

Combining the above results, (nb)1/2 [̂αn(t)− αsn(t)] is asymptotically equal to

√

1

nb

∫ 0

τ

[

K

(

t − u

b

)

G(u)

1−G(u−)

−
∫ u

0
K

(
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b

)

d

(

G(y)

1−G(y−)
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J (u)
dM̄∗(u)
Ȳ (u)/n

. (22.15)

Through the martingale central limit theorem, when n → ∞, b → 0, nb → ∞,
(nb)1/2 [̂α(t) − αs(t)] converges in distribution to a normal random variable with
mean zero and the following variance function,

1

b

∫ 0

τ

[

K

(

t − u

b

)

G(u)

1−G(u−) −
∫ u

0
K

(

t − x

b

)

d

(

G(x)

1−G(x−)
)]2

α(u)du

y(u)
.

In addition, it needs to prove that (nb)1/2[αsn(t)−α(t)] is asymptotically negligible.
Some regularity conditions for establishing such a result can be found in Ramlau-
Hansen (1983, §4). We do not investigate this topic here.
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