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Foreword

« Les programmes sont des objets scientifiques bizarres : les uns y cachent la
compréhension mathématique des modèles qui les supportent, les autres en font des
objets expérimentaux. Lieu par excellence d’échanges et de conflits, d’appropriation
souhaitable ou abusive, produit sans auteur présumé pour les camelots de la
démonstration (lesquels programment rarement) ou objet largement surestimé, sa
valeur dépend du moment et de l’environnement. Il faut concilier deux logiques,
celle de l’utilisateur et celle du statisticien. Notons à ce propos qu’on peut militer
pour la libre circulation des programmes ou (exclusif) des données : il faut rassurer
tout le monde. Image d’une méthode pour celui qui l’écrit, le programme change
de nature pour celui qui l’emploie, image d’une problématique pour celui qui
l’acquiert, les données changent de nature quand elles servent d’illustration. La libre
circulation des données et des programmes est un facteur décisif du développement :
une seule chose est inconcevable, c’est qu’il n’y ait qu’un seul point de vue sur ces
objets. »

Daniel Chessel, 1992
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Chapter 1
Introduction

Abstract This introductory chapter presents the intended readership of the book
and a short history of the ade4 software. It also describes the associated packages
of the ade4 family and how to install and use these packages with R. Lastly, we
provide a short presentation of the types of ecological data sets found in real case
studies.

1.1 Intended Readership

Multivariate data analysis methods are not restricted to any particular application
field: they have been used in many scientific domains. However, because of the
background of its authors, ade4 has always been more particularly intended for
biologists, especially in the field of Ecology. The subject area analysis of the list of
scientific papers citing the three ade4 references (Thioulouse et al. 1997; Dray and
Dufour 2007; Thioulouse and Dray 2007) highlights this trend (Fig. 1.1, source: ISI
Web of Knowledge).

Researchers and students in ecological fields are therefore potentially interested
in using multivariate analysis methods, and this book was primarily written for them.
Other areas with fewer citations include, for example, Tropical Medicine, Physics
Particles and Fields, Spectroscopy, Sociology and Literature. Researchers in these
areas can also be interested in this book, but the examples used throughout the text
come from ecological case studies.

Multivariate data analysis methods are particularly useful to analyse large data
sets, for example tens or hundreds of variables measured on hundreds or thousands
of samples. The synthetic properties of these methods are really helpful in this
case. When fewer parameters and/or samples are available, other methods should
be considered. Today, molecular biology methods provide huge data sets belonging
to almost any biology area, that can be analysed very effectively with multivariate
analysis methods.

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Thioulouse et al., Multivariate Analysis of Ecological Data with ade4,
https://doi.org/10.1007/978-1-4939-8850-1_1
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Fig. 1.1 Number of citations of the three ade4 papers by ISI research area (top 15 research areas).
The total number of citations reaches 2655 in March 2018. This figure is created with the treemap
package (Tennekes 2017).

1.2 Evolutions of ade4

1.2.1 The ade4 Add-On Package for R

The current version of ade4 is an add-on package for the R software. This has
important consequences for the user: you need to install R on your computer and
learn to handle it before you can start using ade4. But it also has many advantages:
learning to deal with R will be valuable beyond the use of ade4, as all the common
statistical computations needed by biologists can be performed with R.

There is also an easy-to-use Graphical User Interface (GUI) implemented in the
ade4TkGUI add-on package (Thioulouse and Dray 2007, see Appendix B). This
GUI can facilitate the transition from previous versions of ade4 to the R package,
or help beginners start to use R and ade4.

Another advantage is the fact that R is a multi-platform software. This means
that it runs on Windows, Mac and many Unix-like platforms, with optimised
performances. Multi-platform compatibility also includes datafile format. You can,
for example, start computations on one computer (say a Windows PC) and save the
results in the .RData file created at the end of the work session. You can then copy
this .RData file to another computer (including a Mac or Linux PC) and continue
computations without problem. The .RData file can even be stored on a network
file server and used through the network on a Linux, Mac or Windows computer.

The first version of the ade4 package was submitted to CRAN in late 2002. It has
kept evolving since that time, many functions have been added and several “spin-
off” packages have appeared. The current version of the ade4 package is number
1.7–11. It comprises 225 functions and 108 data sets.
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1.2.2 Previous Versions of ade4

Previous versions of ade4 date back to the early 1980s. Their evolution was
cyclic, with periods of intense development that were needed to catch up with the
fast evolution of operating systems and computer hardware. These periods were
followed by several years of distribution of a stable version, during which the
evolution was limited to the addition of new statistical or graphical methods.

Everything started from a small set of programs written in BASIC on the Data
General Nova 3 minicomputer of the Biometry Lab (Lyon 1 University, France). The
first move occurred in 1985: a diagonalisation procedure in assembly language was
written for the Eclipse S/140 that had replaced the Nova. This procedure allowed to
compute the eigenvalues and eigenvectors of a matrix in a reasonable time, and this
made possible using multivariate data analysis methods interactively on real-size
ecological data sets.

In the late 1980s, the Eclipse was discontinued and we switched from Data
General to the new Apple Macintosh microcomputer. We ported the programs to
Microsoft QuickBasic, and added a HyperCard interface. The first version of this
new setup was called ADECO and its distribution started in 1989.

ADECO developed into ADE-3.7 in 1994, but it was still written in QuickBasic,
which had been abandoned by Microsoft at that time. So in the mid-1990s, we
switched again and started a new version, called ADE-4, completely re-written in
C. This allowed us to propose a multi-platform solution in 1995, using a HyperCard
user interface on Macintosh, and WinPlus on Windows PC.

A few years later, we decided to start teaching S-Plus to Master’s students.
Courses began in 1999, but we eventually switched to R in 2001. After a few months
of hesitation, we started working on the R version of the new ade4 package in early
2002, and submitted ade4-1.0 to CRAN in December 2002. Since that date, ade4
stands for “Analysis of Ecological Data: Exploratory and Euclidean Methods in
Environmental Sciences”.

All these developments, during almost 40 years, were the fruit of the work
of many people. Only a few are cited here, please forgive inconsistencies, errors
or omissions. The first Basic programs were written by (among others) Jean-
Dominique Lebreton, Daniel Chessel and Jean Thioulouse. A little while later,
the ADECO software benefited from the help of Sylvain Dolédec and Jean-
Michel Olivier. During the 1980s and 1990s, many other people contributed to
the work, including Yves Auda, Stéphane Champely, François Chevenet, James
Devillers, Mohamed Hanafi, Yves Lasne, Monique Simier, Claire Boisson. The
ADE-4 development was financially supported by several contracts with the French
Ministry of Environnement and the National Center for Scientific Research (CNRS).
Alain Pavé, Richard Tomassone, Christian Gautier, Claude Amoros, Bernhard
Statzner and Bernard Hugueny helped keep the boat afloat.

The R add-on package (ade4) started a new area, with many new contributors,
among them Stéphane Dray, Anne-Béatrice Dufour, Aurélie Siberchicot, Jean
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Lobry, Sandrine Pavoine, Clément Callenge, Thibaut Jombart, Sébastien Ollier. The
recent switch to GitHub introduced a new open development model (svn/git) and
new contributors:

https://github.com/sdray/ade4/graphs/contributors

1.3 Using ade4

1.3.1 Computer Hardware

Any microcomputer sold today is sufficient to perform most ecological data analysis
tasks. Even small laptops and netbooks have enough computing power to do a
Principal Component Analysis (PCA) on a large ecological data table. Only a few
computing-intensive tasks like permutation tests on large tables can necessitate a
more powerful desktop workstation with a faster CPU.

The size of the disk and of the main memory of mainstream microcomputers
is more than enough for almost any data analysis problem. Even large DNA
fingerprint, microarray or even metagenomic data table will easily fit. Data tables
with thousands of rows and columns can be analysed without problem.

1.3.2 Installing R

The first step to start using ade4 is to install R. The R project homepage is here:

https://www.r-project.org/

and precompiled binary distributions are available for the main operating systems
(Linux, Windows, Mac). A list of international mirrors can be used to choose the
nearest source:

https://cran.r-project.org/mirrors.html

Instructions on how to download, install and run R can be found on all the
mirrors. It is advisable to use the most recent version of the R software. Use the
sessionInfo() function to get information about the current version of R and
of attached or loaded packages.

1.3.3 Installing ade4

After installing R, you need to install the ade4 package. The easiest way to do this
is to launch R and type the following command:
install.packages("ade4")

https://github.com/sdray/ade4/graphs/contributors
https://www.r-project.org/
https://cran.r-project.org/mirrors.html
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This is to be done only once. After package installation, you must load the
package with the following command:

library(ade4)

This must be redone each time R is launched, but it can be automated by placing
the library command in the .Rprofile file. See the Startup documentation in
R for more information about this:

help("Startup")

This documentation page is very important and explains many things about the
R startup mechanism.

The latest development versions of ade4 are available on GitHub:

https://github.com/sdray/ade4

The development version of ade4 can be easily installed using the functionality
provided by the devtools package (Wickham et al. 2018):

library(devtools)
install_github("sdray/ade4")

1.3.4 Dependencies

Using advanced features of the ade4 package can necessitate the use of other
R packages (called dependencies). You can install all the dependencies (i.e., all
the packages potentially needed by ade4) at once by using the following install
command:

install.packages("ade4", dependencies = TRUE)

This will download many other packages and can take some time, depending on
your internet connection speed.

1.3.5 Packages of the ade4 Family

Since the first release of ade4 on CRAN, several associated packages have been
developed. These packages improve or extend the original functionalities of ade4:

• adegraphics: An S4 Lattice-Based Package for the Representation of Multivari-
ate Data

• ade4TkGUI: Tcl/Tk Graphical User Interface
• adespatial: Multivariate Multiscale Spatial Analysis
• adephylo: Exploratory Analyses for the Phylogenetic Comparative Method

https://github.com/sdray/ade4
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• adegenet: Exploratory Analysis of Genetic and Genomic Data
• adehabitat(HR/HS/LT/MA): Analysis of Habitat Selection by Animals
• adiv: Analysis of Diversity

Some chapters of this book also require the use of packages adegraphics,
ade4TkGUI, adespatial and adephylo.

1.3.5.1 adegraphics

The adegraphics package (Siberchicot et al. 2017, see Chapter 4) offers a flexible
framework to create and manage graphics. It is based on the lattice package (Sarkar
2008) and contains the definitions of graphical S4 classes and methods that were
previously implemented in ade4 as plain functions and S3 classes. A full chapter of
this book is dedicated to this package (see Chap. 4).

adegraphics is available from CRAN mirrors, and it can be installed and loaded
independently from ade4. adegraphics replaces some former implementations
of graphical functions in ade4. If both packages should be used, always load
adegraphics after ade4 to make sure you are using the right version of the
functions:

install.packages("adegraphics")
library(ade4)
library(adegraphics)

adegraphics is distributed with a tutorial vignette which can be accessed using:

vignette("adegraphics", package = "adegraphics")

The latest development versions of adegraphics are available on GitHub:

https://github.com/sdray/adegraphics

1.3.5.2 ade4TkGUI

The ade4TkGUI package (Thioulouse and Dray 2007, see Appendix B) provides
a graphical user interface for ade4. It depends on ade4 and adegraphics, which
means that these two packages must be installed and that they are automatically
loaded when ade4TkGUI is loaded. It is also available from CRAN mirrors, and
you can install it just like you installed ade4:

install.packages("ade4TkGUI")
library(ade4TkGUI)

The latest development versions of ade4TkGUI are available on GitHub:

https://github.com/aursiber/ade4TkGUI

https://github.com/sdray/adegraphics
https://github.com/aursiber/ade4TkGUI
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1.3.5.3 adespatial

adespatial (Dray et al. 2018, see Chapter 12) provides tools for the multiscale
spatial analysis of multivariate data. Several methods are based on the use of a
spatial weighting matrix and its eigenvector decomposition (Moran’s Eigenvectors
Maps, MEM).

adespatial is available from CRAN mirrors:

install.packages("adespatial")
library(adespatial)

adespatial is distributed with a tutorial vignette which can be accessed using:

vignette("tutorial", package = "adespatial")

The latest development versions of adespatial are available on GitHub:

https://github.com/sdray/adespatial

1.3.5.4 adephylo

adephylo (Jombart et al. 2010a, see Chapter 13) has been developed at the interface
between packages for exploratory data analysis (ade4), phylogenetic reconstruction
(ape, Paradis et al. 2004) and phylogenetic comparative methods (phylobase, R
Hackathon et al. 2017). adephylo is available from CRAN mirrors:

install.packages("adephylo")
library(adephylo)

adephylo replaces some former implementations of phylogenetic comparative
methods in ade4, which are now deprecated.

adephylo is distributed with a tutorial vignette which can be accessed using:

vignette("adephylo", package = "adephylo")

The latest development versions of adephylo are available on GitHub:

https://github.com/thibautjombart/adephylo

1.3.6 Version of the Packages Used in This Book

The versions of R and of the packages that were used to compile this book are given
by the sessionInfo function:

sessionInfo()

R version 3.5.0 (2018-04-23)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.5

https://github.com/sdray/adespatial
https://github.com/thibautjombart/adephylo
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Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib

/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources

/lib/libRlapack.dylib

locale:
[1] fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

other attached packages:
[1] adephylo_1.1-11 adespatial_0.2-0 adegraphics_1.0-10
[4] ade4_1.7-11 treemap_2.4-2

loaded via a namespace (and not attached):
[1] Rcpp_0.12.17 ape_5.1 lattice_0.20-35
[4] tidyr_0.8.1 deldir_0.1-15 gtools_3.5.0
[7] prettyunits_1.0.2 assertthat_0.2.0 digest_0.6.15

[10] gridBase_0.4-7 mime_0.5 R6_2.2.2
[13] plyr_1.8.4 coda_0.19-1 httr_1.3.1
[16] ggplot2_2.2.1 pillar_1.2.3 rlang_0.2.1
[19] progress_1.1.2 lazyeval_0.2.1 spdep_0.7-7
[22] uuid_0.1-2 adegenet_2.1.1 data.table_1.11.4
[25] gdata_2.18.0 vegan_2.5-2 gmodels_2.16.2
[28] Matrix_1.2-14 RNeXML_2.1.1 splines_3.5.0
[31] stringr_1.3.1 igraph_1.2.1 munsell_0.4.3
[34] shiny_1.1.0 compiler_3.5.0 httpuv_1.4.3
[37] pkgconfig_2.0.1 mgcv_1.8-23 htmltools_0.3.6
[40] tidyselect_0.2.4 expm_0.999-2 tibble_1.4.2
[43] XML_3.98-1.11 permute_0.9-4 dplyr_0.7.5
[46] later_0.7.2 MASS_7.3-50 grid_3.5.0
[49] nlme_3.1-137 spData_0.2.8.3 xtable_1.8-2
[52] gtable_0.2.0 magrittr_1.5 scales_0.5.0
[55] KernSmooth_2.23-15 stringi_1.2.2 reshape2_1.4.3
[58] LearnBayes_2.15.1 promises_1.0.1 bindrcpp_0.2.2
[61] sp_1.3-1 phylobase_0.8.4 latticeExtra_0.6-28
[64] xml2_1.2.0 seqinr_3.4-5 boot_1.3-20
[67] RColorBrewer_1.1-2 tools_3.5.0 rncl_0.8.2
[70] glue_1.2.0 purrr_0.2.5 parallel_3.5.0
[73] colorspace_1.3-2 cluster_2.0.7-1 bindr_0.1.1

1.3.7 The adelist Forum

The ade4 package homepage is here:

http://pbil.univ-lyon1.fr/ade4/home.php?lang=eng

A public forum and mailing list can be found at this address:

http://listes.univ-lyon1.fr/wws/info/adelist

This is the place where questions about all aspects of ade4 and related packages
should be asked. All the users of ade4 should subscribe to this list, at least
temporarily. To report problems or errors, you can use the GitHub functionality (e.g.,
https://github.com/sdray/ade4/issues for ade4). Do no forget to quote the result of
the sessionInfo function.

http://pbil.univ-lyon1.fr/ade4/home.php?lang=eng
http://listes.univ-lyon1.fr/wws/info/adelist
https://github.com/sdray/ade4/issues
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1.3.8 Using the Help System

You are now ready to start using the ade4 package. You can browse through the
package documentation using the html interface (see the help.start functions).
Like in any R package, all the functions and data sets have a documentation page,
that can be accessed with the help command:

help("dudi.pca")

or
?dudi.pca

1.4 Interactive Code Snippets

The code snippets used throughout this book are available online. They can be run,
modified and checked thanks to the shiny system at the following address:

http://pbil.univ-lyon1.fr/ADE-4/book.php

1.5 Ecological Data Sets

The structure of ecological data sets can be very complex, but can generally be
reduced to simpler forms, compatible with R data structures. Figures 1.2 and 1.3
show the main data structures used in ecological data analysis. These structures also
correspond to particular data analysis methods in ade4.

The most frequent data structure is a rectangular table with samples (sites) as
rows and variables as columns (Fig. 1.2A). This structure corresponds to quantitative
environmental variable data tables (sites × variables, see Chap. 5), and also to
floro-faunistic tables (sites × species, see Chap. 6). It perfectly fits the R data
frame structure, and can be used directly in the ade4 package for single-table
multivariate analysis methods. The case of qualitative (or categorical) environmental
variables also fits well R data frames, with columns class set to factor. Mixes of
quantitative and qualitative variables can also be stored in data frames, since data
frame columns can have mixed types.

Another common practice in Ecology is to consider distance matrices. These
distances can be either directly measured by ecologists or derived from original raw
data (see functions dist.binary, dist.quant, etc. in ade4). Distances are
used to describe dissimilarities among individuals such as genetic, morphometric
or geographic distances. The analysis of distance matrices (Fig. 1.2B) requires an
adequate statistical treatment and some methods are implemented in ade4 for that
purpose (Sect. 6.5). In R, distance matrices are stored as objects of class dist.

http://pbil.univ-lyon1.fr/ADE-4/book.php
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Fig. 1.2 Common structures of ecological data sets. A: rectangular data table (site × environmen-
tal variables or site × species), B: distance matrix, C: row and column weights, D: data table with
groups of sites, E: pair of ecological tables (X = environmental variables, Y = species data), F: pair
of ecological tables with groups of sites, G: K-table, H: pair of K-tables.

In ade4, all the multivariate analysis methods make use of row and column
weights, and they are a very important part of the analysis itself. The row and
column weights of a data table can be stored in numeric vectors (Fig. 1.2C). Weights
are generally not defined by the user: they are associated to a particular analysis and
are computed directly by ade4 functions. For instance, in correspondence analysis
(Sect. 6.2), rows and columns weights are derived from the row and column totals of
the data set. However, in some cases, these weights can also be defined by the user
as external constraints. For instance, in the case of differential sampling effort, row
weights can be chosen proportional to sampling intensities so that highly sampled
sites have more weight in the analysis.

In many cases, it is useful to define groups of samples to take into account differ-
ent geographical locations, several types of habitats, or successive sampling dates
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(Fig. 1.2D). More generally, groups of samples can correspond to the experimental
design used to collect the data, and it is very important to be able to take this
information into account in the statistical analysis of the data set. We shall see in
Chap. 7 that several methods exist in the ade4 package for this purpose. In R, a
vector of class factor with a length equal to the number of rows of the data table
(sites, or samples) can be used to define groups of rows in a data table.

When both the abundance of species and environmental variables are recorded
at the same site, it is possible to study how the species respond to environmental
gradients. This is the most classical problem of ecological data analysis (see
Chap. 8) and requires to analyse simultaneously a pair of tables. The rows of the
two tables must be identical, as they correspond to the same sampling sites. In ade4,
one data frame is used to store the environmental variables and another to store
the species data. These two data frames can be pre-processed by simple one-table
analysis methods, and the resulting objects can then be passed to two-table coupling
methods (Fig. 1.2E). If the rows of these two tables are also partitioned in groups,
it is possible to study species-environment relationships in different conditions,
treatments or areas (Fig. 1.2F).

When sampling is repeated over time, one gets a series of tables, called a K-
table. In ade4 this information is stored in a compact and easy-to-use data structure
(a list of class ktab). This structure provides functions allowing a straightforward
manipulation of individual tables and of the whole series (Fig. 1.2G). Many methods
are available in ade4 to analyse ktab globally (see Chap. 9) and study how the
structure of ecological communities change in time. Pairs of ktab can be used
to analyse the evolution of the relationships between species and environment
(Fig. 1.2H, see Chap. 10).
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Fig. 1.3 Common structures of ecological data sets (continued). I: pair of ecological tables
with species traits, J: dissimilarities between species and communities composition tables, K:
rectangular data table (site × environmental variables or site × species) with geographical
coordinates (xy), L: rectangular data table with phylogenetic information between rows.
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To improve our understanding of the functioning of ecological systems, it is pos-
sible to integrate information on species. Species traits can be integrated to identify
which characteristics of species drive their response to environmental conditions.
Several methods focusing on this question are presented in this book (Fig. 1.3I, see
Chap. 11). Species traits can also be used to define species dissimilarities that are
then used to measure functional diversities within or among communities (Fig. 1.3J,
see Chap. 14).

Lastly, it should be noticed that neither sites nor species can be considered as
independent samples. Sites are usually georeferenced and thus have geographical
attributes (Fig. 1.3K, see Chap. 12). On the other hand, species share some common
evolutionary history that can be represented by a phylogenetic tree (Fig. 1.3L, see
Chap. 13). The adespatial and adephylo packages provide tools to study spatial and
phylogenetic autocorrelation, respectively, in order to understand how ecological
properties are affected by spatial and phylogenetic relatedness.



Chapter 2
Useful R Functions and Data Structures

Abstract This chapter explains the basic R functions needed for data import and
export operations, and for handling vectors, data tables and qualitative variables
(factors). This introductory presentation is limited to a few key elements needed for
multivariate data analysis in Ecology with the ade4 package. It is not intended as a
general introduction to R, and if needed, the reader should refer to a basic book on
R. See, for example, here: https://cran.r-project.org/manuals.html or here: https://
cran.r-project.org/other-docs.html.

2.1 Introduction

Data preparation and importation are one of the most time-consuming operations in
the process of analysing ecological data with the ade4 package in R. Raw data sets
are often stored in spreadsheet documents, and there is a long way between these
raw documents and the data table that can be used in a multivariate analysis. Both
technical and theoretical considerations must be taken into account during these
preparation steps.

Technical problems arise in the task of cleaning up the data, that is, for example,
checking for special characters that could prevent normal reading of the raw file,
checking for row and column names, verifying aberrant values, removing missing
data, etc. Some of these steps must be taken in the spreadsheet software, and some
should preferably be done in R.

More theoretical questions appear later, and they are related, for example, to
which variables should be included or not in the data table, which type of data should
be considered, which data analysis method should be used, etc. Most of these steps
should be performed inside R, using its powerful data handling functions.

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Thioulouse et al., Multivariate Analysis of Ecological Data with ade4,
https://doi.org/10.1007/978-1-4939-8850-1_2
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2.2 Basic Data Import and Export Functions

The basic functions for reading and writing data tables in R are read.table and
write.table. The data function can be used to load a predefined data set,
either from the base R distribution or from a contributed package like ade4.

2.2.1 read.table

The main data import function is read.table. This is the function to use when
reading a text file (for example, a spreadsheet exported from Excel).

> read.table(file, header = FALSE, dec = ".")

The first argument (file) is the name of the file which the data are to be
read from. The argument header is a logical value indicating whether the file
contains the names of the variables as its first line. The dec argument can be used
to set the decimal mark (“.” by default). Many other arguments are described in the
read.table documentation. Use help("read.table") in R to get access
to this documentation.

Fig. 2.1 Screenshot of an example Excel spreadsheet “MeauEnv.xls”. The first row contains
variable names, and the first column contains row names. The first cell (A,1) is left empty.
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From the spreadsheet software (see Fig. 2.1), the data table should be saved to
a text file using the “Save as. . . ” command. It is then possible to read this text file
using the read.table function in R, and to store the result in a data frame. In
the following example, the text file “MeauEnv.txt” is read and the resulting data are
stored in the env data frame.

env <- read.table(file = "MeauEnv.txt", header = TRUE)

Note that for R, row names must be unique. Failing to follow this rule will prevent
reading of the file. It results in the error message “duplicate ‘row.names’
are not allowed”.

Column names should not contain any special character, particularly spaces,
as they would be interpreted by default as column separators. These names will
be used by ade4 graphical functions as labels on factor maps, so they should be
kept short and informative. For example, do not use long species names that would
clutter factor maps, but short species codes (like “irve” for Iris versicolor). Usually,
rows correspond to items (individuals, samples, etc.) and columns correspond to
descriptors (variables, species, etc.).

Depending on the spreadsheet software preferences and on the computer system
settings, the decimal mark in the text file can be a dot “.” or a comma “,” (this is
particularly the case in some European countries). It is necessary to check this point
and to set the dec argument accordingly, or to change the decimal mark in the text
file using a compatible text editor.

By default, read.table transforms all the character variables (variables con-
taining character strings) into factors. However, quoted strings containing numerical
values (for example, the quoted string “42”) are transformed into numeric type. The
as.is arguments can be used to prevent character variables form being treated
as factors. And the colClasses argument allows to specify exactly how each
variable should be interpreted.

Other useful functions for importing and exporting data can be found in some
suitable packages. For instance, the readODS package (Schutten et al. 2016) is
relevant to handle OpenDocument spreadsheets and the xlsx package (Dragulescu
and Arendt 2018) to handle Excel files.

2.2.2 write.table

Writing R results to output text files can be done with the write.table function:

write.table(env, "EnvData.txt")

The read.csv and write.csv variants can also be used to ease compatibility
problems with Excel or other spreadsheet software.
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2.2.3 Data

The base R distribution, and also many contributed packages, contain predefined
data sets. They are often used in the R documentation system to illustrate particular
functions. These data sets can be loaded using the data function. Such data sets can
contain a list of elements: data tables, vectors and others. The names function can
be used to get the name of these elements, and the class function gives their type:

library(ade4)
data(meaudret)
names(meaudret)

[1] "env" "design" "spe" "spe.names"

class(meaudret)

[1] "list"

class(meaudret$env)

[1] "data.frame"

2.3 Vectors

Vectors are the base elements of R. A vector is just a series of values, with a
given length and a type (called mode), for example numeric, logical or
character. Vectors can be handled as whole entities, but they can also be indexed
and sub-setted.

x <- 1:4
length(x)

[1] 4

x

[1] 1 2 3 4

Vectors of character strings are particularly useful. The c function can be used to
build vectors:

(x <- c("Eda", "Bsp", "Brh", "Bni"))

[1] "Eda" "Bsp" "Brh" "Bni"
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The square bracket operator can be used to index a vector and select some of its
elements:

x[1]

[1] "Eda"

A range of values can be specified with the colon notation:

x[1:3]

[1] "Eda" "Bsp" "Brh"

A negative index excludes the corresponding element (but positive and negative
indices cannot be mixed):

x[-2]

[1] "Eda" "Brh" "Bni"

Indexing can also be made using logical constants or expressions:

x[c(TRUE, FALSE, TRUE, TRUE)]

[1] "Eda" "Brh" "Bni"

x[substr(x, 1, 1) == "B"]

[1] "Bsp" "Brh" "Bni"

Many other possibilities are available, but they are out of the scope of this book.

2.4 Data Frames

Ecological data sets used for multivariate analysis can be quite complex, but they
must be organised in one or more rectangular data tables. The most common of
these tables is the species table: its rows correspond to the sampling sites, and its
columns correspond to animal or plant species. The values contained in the table
can be, for example, the number of individuals of each species found at each site,
or the presence/absence of the species, or any kind of abundance index. Another
common type of table is the environmental variables table. It contains the values
of some environmental variables (quantitative or categorical) measured in a set of
sites. Here also, sites are in rows and variables in columns.

The most convenient data structure available in R for storing these tables is
the data frame. A data frame is a table with unique row names and (preferably
unique) column names. Columns correspond to variables and they can be of any
type (numeric, character, factor), so it is easy to handle mixed type variables.

The first rows of a data frame can be displayed using the head function, and
argument n gives the number of rows that should be displayed:
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head(env, n = 4)

Temp Flow pH Cond Bdo5 Oxyd Ammo Nitr Phos
sp_1 10 41 8.5 295 2.3 1.4 0.12 3.4 0.11
sp_2 11 158 8.3 315 7.6 3.3 2.85 2.7 1.50
sp_3 11 198 8.5 290 3.3 1.5 0.40 4.0 0.10
sp_4 12 280 8.6 290 3.5 1.5 0.45 4.0 0.73

2.4.1 Dimensions

The dimension of a data frame is given by the dim function. For example, in the
ade4 package, the meaudret data set contains a data frame called env, that has
20 rows and 9 columns, corresponding to 9 physico-chemical variables measured
in 20 sampling sites along a small French stream (Pegaz-Maucet 1980, see the
meaudret help page).

env <- meaudret$env
dim(env)

[1] 20 9

head(env, n = 4)

Temp Flow pH Cond Bdo5 Oxyd Ammo Nitr Phos
sp_1 10 41 8.5 295 2.3 1.4 0.12 3.4 0.11
sp_2 11 158 8.3 315 7.6 3.3 2.85 2.7 1.50
sp_3 11 198 8.5 290 3.3 1.5 0.40 4.0 0.10
sp_4 12 280 8.6 290 3.5 1.5 0.45 4.0 0.73

The number of rows and columns are given by the nrow and ncol functions:

nrow(env)

[1] 20

ncol(env)

[1] 9

2.4.2 Row and Column Names

The names of variables can be accessed and modified with the names function:

names(env)

[1] "Temp" "Flow" "pH" "Cond" "Bdo5" "Oxyd" "Ammo" "Nitr"
[9] "Phos"
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names(env)[2] <- "Disch" # Disch: Discharge = Flow
names(env)

[1] "Temp" "Disch" "pH" "Cond" "Bdo5" "Oxyd" "Ammo"
[8] "Nitr" "Phos"

The corresponding function for rows is the row.names function:

row.names(env)

[1] "sp_1" "sp_2" "sp_3" "sp_4" "sp_5" "su_1" "su_2" "su_3"
[9] "su_4" "su_5" "au_1" "au_2" "au_3" "au_4" "au_5" "wi_1"

[17] "wi_2" "wi_3" "wi_4" "wi_5"

2.4.3 Accessing Data Frame Elements

Data frames can be handled very easily in R, thanks to powerful functions and
operators that can be used to select rows and columns and to perform many
operations on them. The square bracket operator can be used to select rows and
columns within a data frame. The element of a data frame located at row i and
column j is obtained using the syntax [i, j].

env[2, 2]

[1] 158

A range of elements can be selected using the colon operator. The syntax i:j
represents elements i through j, and it can be used for both rows and columns. With
the same example data frame, we get:

env[1:5, 3:6]

pH Cond Bdo5 Oxyd
sp_1 8.5 295 2.3 1.4
sp_2 8.3 315 7.6 3.3
sp_3 8.5 290 3.3 1.5
sp_4 8.6 290 3.5 1.5
sp_5 8.5 285 3.6 1.6

If i or j are not specified, then all the elements are selected. For example, the
syntax [1:3, ] selects all the columns of rows 1–3:

env[1:3, ]

Temp Disch pH Cond Bdo5 Oxyd Ammo Nitr Phos
sp_1 10 41 8.5 295 2.3 1.4 0.12 3.4 0.11
sp_2 11 158 8.3 315 7.6 3.3 2.85 2.7 1.50
sp_3 11 198 8.5 290 3.3 1.5 0.40 4.0 0.10

By default, if the selection has only one dimension, then the type of the object is
set to vector:
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env[1:5, 4]

[1] 295 315 290 290 285

In this case, the drop argument can be used to keep the result as a data frame,
preserving row and column names:

env[1:5, 4, drop = FALSE]

Cond
sp_1 295
sp_2 315
sp_3 290
sp_4 290
sp_5 285

Additionally, the $ syntax can be used to access the columns of a data frame.

env$Cond

[1] 295 315 290 290 285 325 380 385 360 345 315 425 350 330
[15] 305 325 360 370 330 330

The attachment mechanism is also very handy to handle data frames. After a data
frame has been attached to the current environment, its variables can be accessed
directly (i.e., without having to type the name of the data frame).

attach(env)
Cond

[1] 295 315 290 290 285 325 380 385 360 345 315 425 350 330
[15] 305 325 360 370 330 330

detach(env)

2.4.4 Row and Column Sums and Means

R provides two functions to compute automatically the row and column sums
of a data frame. These functions are rowSums and colSums (note that similar
functions rowMeans and colMeans also exist to compute row and column
means). In the meaudret data set, the spe data frame contains the abundance
of 13 Ephemeroptera species in 20 samples (20 rows and 13 columns). The sums by
species and by site can be computed easily:

dim(meaudret$spe)

[1] 20 13

colSums(meaudret$spe)
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Eda Bsp Brh Bni Bpu Cen Ecd Rhi Hla Hab Par Cae Eig
20 104 163 11 35 37 26 41 80 5 35 10 28

rowSums(meaudret$spe)

sp_1 sp_2 sp_3 sp_4 sp_5 su_1 su_2 su_3 su_4 su_5 au_1 au_2
48 12 17 18 24 44 9 16 32 33 53 1

au_3 au_4 au_5 wi_1 wi_2 wi_3 wi_4 wi_5
26 47 58 45 22 5 32 53

2.4.5 Row and Column Selection

Rows and columns of a data frame can be selected based on any complex criteria.
For example, we can select the rows of a data frame for which the row sum is higher
than a given threshold. In the meaudret data set, we can select the samples for
which the total abundance in the spe data frame is higher than 10:
spe <- meaudret$spe
spe2 <- spe[rowSums(spe) > 10, ]
dim(spe2)

[1] 17 13

rowSums(spe) computes the vector of row sums, and rowSums(spe) >10
is a vector of logical values (TRUE or FALSE) that is used to select the rows: TRUE
selects the corresponding row in spe while FALSE excludes it. Here, only three
samples had a row sum less than 10.

2.4.6 Changing Values

Modifying any particular value in a data frame can be done automatically. For
example, replacing negative values by zeroes can be done with a simple user-defined
function. First, we put three negative values in a copy of our example data frame:
envNeg <- env
envNeg[2, 2] <- envNeg[4, 2] <- envNeg[3, 4] <- -1
head(envNeg, n = 4)

Temp Disch pH Cond Bdo5 Oxyd Ammo Nitr Phos
sp_1 10 41 8.5 295 2.3 1.4 0.12 3.4 0.11
sp_2 11 -1 8.3 315 7.6 3.3 2.85 2.7 1.50
sp_3 11 198 8.5 -1 3.3 1.5 0.40 4.0 0.10
sp_4 12 -1 8.6 290 3.5 1.5 0.45 4.0 0.73

Then, we define the function repNeg. This function does the job: it takes one
variable (x) and replaces all negative values by zeroes. The ifelse function makes
this step easy (see the ifelse help page if needed):
repNeg <- function(x) ifelse(x < 0, 0, x)
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The repNeg function is then applied to all the variables of the envNeg data
frame using the apply function (Sect. 2.4.9). The result is stored in the new
envPos data frame.

envPos <- apply(envNeg, 2, repNeg)
head(envPos, n = 4)

Temp Disch pH Cond Bdo5 Oxyd Ammo Nitr Phos
sp_1 10 41 8.5 295 2.3 1.4 0.12 3.4 0.11
sp_2 11 0 8.3 315 7.6 3.3 2.85 2.7 1.50
sp_3 11 198 8.5 0 3.3 1.5 0.40 4.0 0.10
sp_4 12 0 8.6 290 3.5 1.5 0.45 4.0 0.73

2.4.7 Missing Values in Data Frames

Usual multivariate analysis methods cannot be used on data sets that contain missing
values. This is true for most methods available in the ade4 package, although a few
ones do admit missing values. The presence of missing values in a data frame can
be tested using the is.na function. is.na returns a data frame of logical values,
equal to TRUE if the corresponding element in the original data frame is a missing
value (noted NA in R). The any function can then be used to check all the values of
the data frame for missing values.

First, we make a copy of our example data frame, and we check that it does not
contain any missing value:

env2 <- env
any(is.na(env2))

[1] FALSE

Then we put three missing values in the copy, and check it again:

env2[2, 2] <- env2[4, 2] <- env2[3, 4] <- NA
any(is.na(env2))

[1] TRUE

head(env2, n = 4)

Temp Disch pH Cond Bdo5 Oxyd Ammo Nitr Phos
sp_1 10 41 8.5 295 2.3 1.4 0.12 3.4 0.11
sp_2 11 NA 8.3 315 7.6 3.3 2.85 2.7 1.50
sp_3 11 198 8.5 NA 3.3 1.5 0.40 4.0 0.10
sp_4 12 NA 8.6 290 3.5 1.5 0.45 4.0 0.73

It is now possible to remove the rows (or columns) containing missing values.
The expression is.na(env2) returns a data frame of logical values: TRUE if
the corresponding value in env2 is missing, and FALSE if it is not. rowSums
computes the row sums of this logical data frame, taking 1 for TRUE and 0 for
FALSE. This means that if there is no missing value on one row of env2, then the
sum of the same row of is.na(env2) will be equal to 0.
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env3 <- env2[rowSums(is.na(env2)) == 0, ]
dim(env3)

[1] 17 9

head(env3, n = 4)

Temp Disch pH Cond Bdo5 Oxyd Ammo Nitr Phos
sp_1 10 41 8.5 295 2.3 1.4 0.12 3.4 0.11
sp_5 13 322 8.5 285 3.6 1.6 0.48 4.6 0.84
su_1 13 62 8.3 325 2.3 1.8 0.11 3.0 0.13
su_2 13 80 7.6 380 21.0 5.7 9.80 0.8 3.65

Note that the na.omit and complete.cases functions provide other ways
to remove the rows of a data frame that contain missing values. Removing the
columns containing missing values is also very easy:

env4 <- env2[, colSums(is.na(env2)) == 0]
dim(env4)

[1] 20 7

head(env4, n = 4)

Temp pH Bdo5 Oxyd Ammo Nitr Phos
sp_1 10 8.5 2.3 1.4 0.12 3.4 0.11
sp_2 11 8.3 7.6 3.3 2.85 2.7 1.50
sp_3 11 8.5 3.3 1.5 0.40 4.0 0.10
sp_4 12 8.6 3.5 1.5 0.45 4.0 0.73

Missing values for a given variable can be replaced by the mean of this variable,
computed without the missing values. Note that this is probably not the best solution
and there are some other alternatives (see, e.g., Dray and Josse 2015). In R, this can
be done using a simple user-defined function:

envMiss <- env
envMiss[2, 2] <- envMiss[4, 2] <- envMiss[3, 4] <- NA
head(envMiss, n = 4)

Temp Disch pH Cond Bdo5 Oxyd Ammo Nitr Phos
sp_1 10 41 8.5 295 2.3 1.4 0.12 3.4 0.11
sp_2 11 NA 8.3 315 7.6 3.3 2.85 2.7 1.50
sp_3 11 198 8.5 NA 3.3 1.5 0.40 4.0 0.10
sp_4 12 NA 8.6 290 3.5 1.5 0.45 4.0 0.73

repMean <- function(x) {
ifelse(is.na(x), mean(x, na.rm = TRUE), x)

}
envEst <- apply(envMiss, 2, repMean)
head(envEst, n = 4)

Temp Disch pH Cond Bdo5 Oxyd Ammo Nitr Phos
sp_1 10 41.0 8.5 295.0 2.3 1.4 0.12 3.4 0.11
sp_2 11 166.7 8.3 315.0 7.6 3.3 2.85 2.7 1.50
sp_3 11 198.0 8.5 337.9 3.3 1.5 0.40 4.0 0.10
sp_4 12 166.7 8.6 290.0 3.5 1.5 0.45 4.0 0.73

The user-defined function repMean uses the built-in function ifelse to
replace the missing values by the mean of the variable, computed without missing
values (thanks to the na.rm = TRUE argument).
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2.4.8 Data Transformation

Data transformation is a matter of a few lines of R code. Applying a function to a
data frame applies it to all its element, so transforming all the variables of a data
frame is quite straightforward:

envLog <- log(env + 1)
head(envLog, n = 4)

Temp Disch pH Cond Bdo5 Oxyd Ammo Nitr Phos
sp_1 2.40 3.74 2.25 5.69 1.19 0.875 0.113 1.48 0.1044
sp_2 2.48 5.07 2.23 5.76 2.15 1.459 1.348 1.31 0.9163
sp_3 2.48 5.29 2.25 5.67 1.46 0.916 0.336 1.61 0.0953
sp_4 2.56 5.64 2.26 5.67 1.50 0.916 0.372 1.61 0.5481

2.4.9 Apply

apply is a very useful R function that can be used to apply a function to the rows
or to the columns of a data frame. For example, computing the standard deviation
of all the variables in a data frame is easy:

apply(env, 2, sd)

Temp Disch pH Cond Bdo5 Oxyd Ammo Nitr Phos
5.5 130.3 0.3 36.7 8.5 1.7 3.6 3.4 1.8

The first argument (env) is the data frame to which the function should be
applied. The third one (sd) is the function itself, and the second argument is the
margin to which the function should be applied: 1 means rows and 2 means columns.
So computing the row sums of the spe data frame (Sect. 2.4.5) can be done like this:

apply(spe, 1, sum)

sp_1 sp_2 sp_3 sp_4 sp_5 su_1 su_2 su_3 su_4 su_5 au_1 au_2
48 12 17 18 24 44 9 16 32 33 53 1

au_3 au_4 au_5 wi_1 wi_2 wi_3 wi_4 wi_5
26 47 58 45 22 5 32 53

Note, however, that the rowSums function is much faster in this case. apply
can be used not only with built-in R functions but also with any user-defined
function (Sect. 2.4.6).

2.4.10 Summary

The summary function can be useful to check the type and numerical char-
acteristics of the variables of a data frame. For quantitative variables, it gives
the minimum, maximum, first and third quartiles, the median and the mean. For
qualitative variables, it gives the frequency of each level:
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summary(cbind(env[, 1:3], meaudret$design$season))

Temp Disch pH
Min. : 1.0 Min. : 25.0 Min. :7.60
1st Qu.: 3.0 1st Qu.: 77.2 1st Qu.:8.07
Median : 6.5 Median :129.0 Median :8.30
Mean : 7.7 Mean :171.9 Mean :8.25
3rd Qu.:13.0 3rd Qu.:259.0 3rd Qu.:8.43
Max. :16.0 Max. :498.0 Max. :8.60
meaudret$design$season
spring:5
summer:5
autumn:5
winter:5

The summary function is generic, and it is often used in the ade4 package to
print a summary of multivariate analyses outputs.

2.4.11 Other Functions

There are many other utility functions that can be used to handle data frames. Here
are a few among the most useful ones (see the documentation of each function for
more details on how to use them):

• subset returns subsets of vectors, matrices or data frames that meet some
conditions,

• split/unsplit divides the data into groups defined by a factor,
• by splits a data frame and applies a function to the subsets,
• aggregate splits the data and computes summary statistics for each subset,
• with uses a data frame as an environment to simplify the use of variable names,
• merge merges two data frames by common columns or row names, and other

“join” operations.

2.5 Factors

Qualitative variables are often useful in multivariate analysis of ecological data.
For example, they can be used to define groups of samples. In R, qualitative
variables are called factors. In the meaudret data set of the ade4 package, the
meaudret$design data frame contains a description of the experimental design.
There are two factors: season and site. The first one is the sampling season, the
second the site number.

meaudret$design$season

[1] spring spring spring spring spring summer summer summer
[9] summer summer autumn autumn autumn autumn autumn winter

[17] winter winter winter winter
Levels: spring summer autumn winter
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meaudret$design$site

[1] S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3
[19] S4 S5
Levels: S1 S2 S3 S4 S5

The meaudret$design$season factor has 20 elements that can take the
values spring, summer, autumn and winter. These values are called levels,
they are character strings that can be modified with the levels function. Here, this
factor defines groups of samples that were taken during the four seasons. The first
five samples were taken in spring, the five following ones during summer, and so
on.

2.5.1 Using Factors

Factors are used in several multivariate analysis methods that need the definition of
groups, like Discriminant Analysis. They are also very handy to perform selections
in a data frame. For example, to select all the samples that were taken during spring,
we can do:

season <- meaudret$design$season
env[season == "spring", ]

Temp Disch pH Cond Bdo5 Oxyd Ammo Nitr Phos
sp_1 10 41 8.5 295 2.3 1.4 0.12 3.4 0.11
sp_2 11 158 8.3 315 7.6 3.3 2.85 2.7 1.50
sp_3 11 198 8.5 290 3.3 1.5 0.40 4.0 0.10
sp_4 12 280 8.6 290 3.5 1.5 0.45 4.0 0.73
sp_5 13 322 8.5 285 3.6 1.6 0.48 4.6 0.84

A selection in a data frame using a factor can be combined with a selection on
the values of a variable. For example, to select the samples taken in spring where
the water temperature was at least 12 °C:

env[season == "spring" & env$Temp >= 12, ]

Temp Disch pH Cond Bdo5 Oxyd Ammo Nitr Phos
sp_4 12 280 8.6 290 3.5 1.5 0.45 4.0 0.73
sp_5 13 322 8.5 285 3.6 1.6 0.48 4.6 0.84

The levels of a factor, like data frame row and column names, are used by
ade4 graphical functions. They should therefore be kept short and easy to identify.
Changing the levels of a factor can be done with the levels function. For example,
we can replace the season names by a two-character code in the season factor:

levels(season)

[1] "spring" "summer" "autumn" "winter"

levels(season) <- c("sp", "su", "au", "wi")
season
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[1] sp sp sp sp sp su su su su su au au au au au wi wi wi
[19] wi wi
Levels: sp su au wi

The summary function, when applied to a factor, gives the frequency of each
level:

summary(meaudret$design)

season site
spring:5 S1:4
summer:5 S2:4
autumn:5 S3:4
winter:5 S4:4

S5:4

The table function computes the contingency table of the counts for each
combination of several factor levels:

table(meaudret$design)

site
season S1 S2 S3 S4 S5
spring 1 1 1 1 1
summer 1 1 1 1 1
autumn 1 1 1 1 1
winter 1 1 1 1 1

2.5.2 Generating Factors

Several R functions allow to generate automatically factors with the needed struc-
ture. The rep function repeats its first argument several times. The as.factor
function transforms the resulting series of character strings into a factor. For
example, the season and site factors of the meaudret data set can be
generated like this:

as.factor(rep(c("spring", "summer", "autumn", "winter"),
each = 5))

[1] spring spring spring spring spring summer summer summer
[9] summer summer autumn autumn autumn autumn autumn winter

[17] winter winter winter winter
Levels: autumn spring summer winter

as.factor(rep(c("S1", "S2", "S3", "S4", "S5"), times = 4))

[1] S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3
[19] S4 S5
Levels: S1 S2 S3 S4 S5

Note that by default, the levels are sorted in alphabetical order (autumn, spring,
summer, winter).

Another way to get the same result is to use the gl function. Here levels are
sorted in the same order as the user defines.
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gl(4, 5, labels = c("spring", "summer", "autumn", "winter"))

[1] spring spring spring spring spring summer summer summer
[9] summer summer autumn autumn autumn autumn autumn winter

[17] winter winter winter winter
Levels: spring summer autumn winter

gl(5, 1, 20, labels = c("S1", "S2", "S3", "S4", "S5"))

[1] S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3
[19] S4 S5
Levels: S1 S2 S3 S4 S5

2.5.3 Re-ordering Levels

The reorder function can be used to reorder the levels of a factor. In the
meaudret data set, the seasons are in chronological order. The boxplot of
ammonium concentration during the four seasons gives the result displayed in the
left panel of Fig. 2.2. The seasons can be reordered to have increasing seasonal
mean ammonium concentration (middle panel), or to have a different chronological
display starting in winter (right panel).

The relevel function also reorders factor levels, but only one level needs to be
specified. This level is set as being the first one, and the others are just moved down.
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par(mfrow = c(1, 3), mar = c(3, 3, 0, 0))
boxplot(env$Ammo ˜ season)
legend("topleft", "Original", cex = 1.5)
incrAmmo <- reorder(season, env$Ammo, mean)
boxplot(env$Ammo ˜ incrAmmo)
legend("topleft", "Increasing ammo.", cex = 1.5)
chron <- reorder(season, rep(c(2, 3, 4, 1), each = 5))
boxplot(env$Ammo ˜ chron)
legend("topleft", "Chronological", cex = 1.5)

Fig. 2.2 Using the reorder function.



Chapter 3
The dudi Class

Abstract This chapter explains the structure of the dudi (S3) class, which is the
core of the ade4 package. All the multivariate data analysis methods available in
ade4 can be described in the framework of the duality diagram and an object of
class dudi is a translation of this mathematical structure in R. In this chapter, we
explain what is an object of class dudi and which functions are used to generate
and handle it. We detail all its elements, how to use it to analyse data tables, and
how to export its elements to use them outside R.

3.1 Introduction

dudi stands for “duality diagram”. The dudi class has been detailed in the
paper dedicated to the ade4 package (Dray and Dufour 2007). We give here a
short summary of the structure of this class. Basic mathematical definitions and
properties are given in Boxes 3.1 and 3.2. Readers interested in more details
about the duality diagram should refer to Escoufier (1987) and Holmes (2006).
The duality diagram can be seen as a picture of the mathematical objects used
in the theoretical description of a multivariate analysis. This unifying framework
has several objectives, like facilitating the comparisons of different multivariate
methods, making easier to remember the characteristics of particular methods,
finding out the operator needed to complete a given analysis, identifying the
different outputs (row scores and variable loadings), the maximised criteria, how
to compute them and how they are related.

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Thioulouse et al., Multivariate Analysis of Ecological Data with ade4,
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3.2 Principles of Multivariate Analysis

Multivariate analysis provides techniques to identify the main structures of large
data sets. It produces graphical outputs that summarise the information of a large
number of variables by a smaller number of dimensions. Basically, multivariate
methods consist in geometric operations (orthogonal rotation and projection, see
Appendix A) and associated computations are achieved by matrix diagonalisation.

The principles can be illustrated by a simple example where a data table contains
the measurements of two variables (x1 and x2) for 30 individuals. Data can be
represented on a standard scatterplot. On this plot, each observation is a point
in a 2D plane and each dimension (axis) corresponds to a variable (Fig. 3.1A).
Coordinates of individuals in this system of axes are simply given by the observed
values. It is clear that both variables do not vary independently, they share a common
information. Multivariate methods seek for a new system of axes that optimise the
representation of the data by focusing on the common variation between the two
original variables. Individuals are then projected on these new axes. The new set
of orthogonal axes highlights the common variation by maximising the variance
(or inertia) of the projections (Fig. 3.1B). Lastly, the new system of axes is used to
represent the individuals. This new representation corresponds to a rotation of the
original scatterplot. The rotation is also applied to represent the original variables
in this new system of axes (Fig. 3.1C, x1 and x2 arrows). Dimension reduction can
then be applied by selecting not all but only a few axes to represent the individuals
and variables. In this 2D example, the coordinates on the first principal axis can be
kept to summarise the information given by the two variables on a single dimension.

Computations associated to these geometric operations are achieved through
the diagonalisation of the covariance matrix, with the eigen R base function.
The coordinates of principal axes are given by the eigenvectors and associated
eigenvalues are equal to the variance of the projections (or projected inertia).
Coordinates of the individuals in the new system of axes are then obtained by matrix
multiplication (see Box 3.2).
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Fig. 3.1 A simple example with 2 variables and 30 individuals. Data can be represented on a
standard scatterplot (A). A new system of axes can be defined to optimise the representation of the
variation shared by the two variables and individuals are projected on these axes (B). An orthogonal
rotation is performed to represent the individuals and the variables in the new system of axes (C).
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Note that a symmetric viewpoint can be considered where variables are repre-
sented in a space where each axis corresponds to an individual (see Box 3.1). These
two viewpoints are intimately related and the name duality diagram originates from
these links. Details are given in Boxes 3.1, 3.2 and 3.3.

Box 3.1 The Duality Diagram: Basic Mathematical Definitions
Let X be a data table, with n rows (samples) and p columns (variables). This
table can be seen as a cloud of n points in R

p, or symmetrically as a cloud of
p points in R

n:

cloud of n rows (samples)

X
cloud of p columns (variables)

variable 1

variable 2

variable p

sample 1

sample 2

sample n

Multivariate analysis aims to summarise these two representations to
identify (1) the main similarities between the samples and/or (2) the principal
relationships between the variables. To deal with these two objectives, Q, a
p × p positive symmetric matrix and D, an n × n positive symmetric matrix
are defined. Q is a metric used as an inner product in R

p allowing to measure
distances between the n samples. D is a metric used as an inner product in R

n

allowing to measure the links between the p variables. These three matrices
define a statistical triplet (X, Q, D) which can be represented as a duality
diagram:

(continued)
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Box 3.1 (continued)

X� denotes the transpose of X and the operators to navigate between
spaces (Rn, Rp) and their duals (Rn∗

, Rp∗
) are obtained by turning around

the diagram. For instance, in R
p, the diagonalisation of X�DXQ provides

a low-dimensional space where the representation of samples is as close
as possible to the observed one. Symmetrically, in R

n, a small dimension
space where the representation of variables is as close as possible to the
original one is obtained by the diagonalisation of XQX�D. These two different
diagonalisations are intimately linked and are the core of the duality diagram
framework.

Box 3.2 The Duality Diagram: Mathematical Properties
X�DXQ and XQX�D are the Escoufier operators (Escoufier 1987). They
share the same r non-null eigenvalues (λ1, λ2, . . . , λr ) stored in decreasing
order in the � diagonal matrix. r is the rank of the diagram. The matrices A
and B contain the associated eigenvectors as columns (i.e., A = [a1|a2|. . .|ar ]
and B = [b1|b2|. . .|br ]) and satisfy the following conditions:

X�DXQA = A� with A�QA = Ir

and

XQX�DB = B� with B�DB = Ir

The columns of A are the principal axes (Pearson 1901) and those of B are the
principal components (Hotelling 1933). The columns of A are usually known
as the vectors of loadings. Note also that we adopt Hotelling’s notation,
while several authors consider XQA as the principal components (e.g., Jolliffe
2002).

The two diagonalisations are closely related and the two systems of axes
are linked by the following transition formulas:

B = XQA�− 1
2 and A = X�DB�− 1

2

Two other equivalent diagonalisations can be considered:

QX�DXA∗ = A∗� with A∗�Q−1A∗ = Ir

and

DXQX�B∗ = B∗� with B∗�D−1B∗ = Ir

(continued)
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Box 3.2 (continued)
The columns of A∗ are the principal factors and those of B∗ are the

principal cofactors. We have also the following relationships:

A∗ = QA and B∗ = DB

There are some important properties associated to the analysis of a duality
diagram:

Property 3.1 The vectors a1, a2, . . . , ar successively maximise, under the Q-
orthogonality constraint, the quadratic forms ‖XQai‖2

D = λi .

Property 3.2 The vectors b1, b2, . . . , br successively maximise, under the

D-orthogonality constraint, the quadratic forms
∥
∥X�Dbi

∥
∥

2
Q = λi .

Property 3.3 The pairs of vectors (a1, b1), · · · , (ar , br ) successively max-
imise, under the Q- and D-orthogonality constraints, the inner products
〈XQai |bi〉D = 〈X�Dbi |ai

〉

Q = √
λi .

In the following, we simplify the writing of these properties by considering
ai = a, bi = b and λi = λ. The row scores (L), projection of the rows of X
onto the principal axes, and the column scores (C), projection of the columns
of X onto the principal components, are given by:

L = XQA and C = X�DB

3.3 Structure

An object of class dudi is a list that contains both input and output data. The
input data are the elements of the statistical triplet, i.e., the data table (stored as a
data.frame) and the weights for the rows and the columns which are stored as
vectors.

The output data are the results of the analysis of this triplet. The eigenvalues,
eigenvectors (principal components and principal axes) and row and column scores
are stored directly in the dudi object.

The dudi class has several subclasses, corresponding to different types of
analyses. Additionally, other classes exist in ade4, which are not subclasses of
dudi. A summary of the dudi class hierarchy is displayed in Table 3.1.

Objects of class dudi are created by multivariate analysis functions in ade4.
These functions belong to several categories, which are broadly:

• one-table analysis methods (e.g., Principal Component Analysis, Chessel et al.
2004),
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Table 3.1 The dudi class hierarchy and corresponding analysis names.

Class Subclass Sub-subclass Analysis name

dudi pca Principal Component Analysis

dudi pco Principal Coordinate Analysis

dudi coa Correspondence Analysis

dudi coa foucart Foucart Analysis

dudi coa witwit Internal Correspondence Analysis

dudi acm Multiple Correspondence Analysis

dudi dec Decentred Correspondence Analysis

dudi fca Fuzzy Correspondence Analysis

dudi mix Mixed type Analysis

dudi nsc Non-Symmetric Correspondence Analysis

dudi between Between-Class Analysis

dudi within Within-Class Analysis

dudi coinertia Coinertia Analysis

dudi betcoi Between-Class Coinertia Analysis

dudi witcoi Within-Class Coinertia Analysis

dudi niche Niche (OMI) Analysis

dudi rlq RLQ Analysis

dudi pcaiv PCA on Instrumental Variables

dudi pcaivortho Orthogonal PCAIV

dudi pta Partial Triadic Analysis

• one table with groups of items (e.g., Between-Class Analysis, Chessel et al.
2004),

• two-table coupling methods (e.g., Coinertia Analysis, Dray et al. 2007),
• K-table methods (e.g., Partial Triadic Analysis, Dray et al. 2007).

Functions of the first category have a name that begins with dudi (like
dudi.pca for Principal Component Analysis) and they return an object of class
dudi. This object is a list, and its elements can vary according to the function that
created it. But there is a series of eleven basic elements that are always available.
The first three of these constant elements are:

• tab
• cw
• lw

These three elements are used to create the dudi object so they are always
present. tab is a data frame that contains the data (X in Box 3.1), and cw and
lw are vectors containing the column and row weights (leading to Q and D matrices
in Box 3.1). Three other elements are added after the main computations have been
performed:

• eig
• rank
• nf
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biplot(pca1, posieig = "bottomright")
biplot(pca1, permute = TRUE, posieig = "topleft")

Fig. 3.2 PCA (distance) biplot. The left figure is a superimposition of three plots based on
pca1$c1 (arrows = variable loadings), pca1$li (labels = samples) and pca1$eig (eigen-
values screeplot, bottom-right corner). Comparison of the two figures shows the effect of the
permute argument: the left figure is the usual “distance biplot” and the right is the “correlation
biplot” obtained with the permute = TRUE option.

eig is a vector containing the eigenvalues (� in Box 3.2), rank is the rank of
the matrix that has been diagonalised (r in Box 3.2), and nf is the number of axes
(factors) that are kept to represent the results.

In the next step, five elements supplement the dudi object. The call element
contains the function call (i.e., the command line that was typed by the user to
run the analysis). It can be useful to redo the analysis if needed. The c1 element
contains the principal axes (A in Box 3.2) whereas li contains the row scores (i.e.,
projections of the individuals on the principal axes, L in Box 3.2). On the other
hand, l1 contains the principal components (B in Box 3.2) whereas co contains the
column scores (i.e., projections of the variables on the principal components, C in
Box 3.2).

These different elements can be used to draw factor maps where variables and/or
individuals are represented (see Fig. 3.2 for an example).

In the following example, the dudi.pca function is used to do a Principal
Component Analysis (PCA) of the data frame env (see Chap. 2). This provides
the pca1 object:

library(ade4)
library(adegraphics)
data(meaudret)
env <- meaudret$env
pca1 <- dudi.pca(env, scannf = FALSE, nf = 3)

pca1 is an object of the class dudi, and of the subclass pca. We can check that
this is indeed a list, and that the length of this list is equal to 13 (it has 13 elements).
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class(pca1)

[1] "pca" "dudi"

is.list(pca1)

[1] TRUE

length(pca1)

[1] 13

names(pca1)

[1] "tab" "cw" "lw" "eig" "rank" "nf" "c1" "li"
[9] "co" "l1" "call" "cent" "norm"

Two elements have been added to the eleven ones that make the basic dudi class:
cent and norm. These elements are specific to objects created by dudi.pca and
indicate if and how the initial variables have been centred and standardised.

3.4 Functions

Many other user-level functions create dudi objects. These are typically functions
that are used to do multivariate analyses. As explained in the previous section,
these functions belong to several categories. Table 3.2 shows a list of multivariate
data analysis functions that create dudi objects, and Table 3.3 shows a list of
multivariate data analysis functions that create objects similar but not strictly
equivalent to a dudi object.

All these functions take several input arguments that can vary according to the
type of analysis. The user should refer to each function help page to get information
about the list of arguments and their default values. The str function can be used
to obtain the list of arguments of a function.

str(dudi.pca)

function (df, row.w = rep(1, nrow(df))/nrow(df), col.w = rep(1,
ncol(df)), center = TRUE, scale = TRUE, scannf = TRUE,
nf = 2)

Some of these arguments are common to many functions, so we shall detail them
here:

• df: data frame containing the data table
• row.w: vector of row weights (default varies according to the type of analysis)
• col.w: vector of column weights (default varies according to the type of

analysis)
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Table 3.2 Multivariate data analysis functions that create dudi objects.

Function name Analysis name

dudi.pca Principal Component Analysis

dudi.pco Principal Coordinate Analysis

dudi.coa Correspondence Analysis

dudi.acm Multiple Correspondence Analysis

dudi.dec Decentred Correspondence Analysis

dudi.fca Fuzzy Correspondence Analysis

dudi.fpca Fuzzy PCA

dudi.mix Mixed type Analysis

dudi.hillsmith Hill and Smith Analysis

dudi.nsc Non-Symmetric Correspondence Analysis

bca Between-Class Analysis

wca Within-Class Analysis

withinpca Normed Within-Class PCA

witwit.coa Internal Correspondence Analysis

coinertia Coinertia Analysis

bca.coinertia Between-Class Coinertia Analysis

wca.coinertia Within-Class Coinertia Analysis

niche Niche (OMI) Analysis

rlq RLQ Analysis

bca.rlq Between-Class RLQ Analysis

wca.rlq Within-Class RLQ Analysis

pcaiv PCA on Instrumental Variables

pcaivortho Orthogonal PCAIV

pta Partial Triadic Analysis

costatis Coinertia Analysis and STATIS

statico STATIS and Coinertia Analysis

foucart Foucart Analysis

• scannf: logical, toggles screeplot display and asking the user about the number
of axes that should be kept and used in row scores and variable loadings
computations

• nf: if scannf is FALSE, number of kept axes (defaults to nf = 2)
• dudi: duality diagram (created using one of the dudi.* functions)

High-level functions using dudi objects for multivariate data analysis will be
detailed in the following chapters.
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Table 3.3 Multivariate data analysis functions that create other types of objects.

Function name Analysis name

amova Analysis of Molecular Variance

discrimin Discriminant Analysis

discrimin.coa Discriminant Correspondence Analysis

procuste Procrustes Analysis

dpcoa Double Principal Coordinate Analysis

bwca.dpcoa Between and Within-Class DPCoA

statis STATIS Analysis

sepan K-table Separate Analyses

mfa Multiple Factor Analysis

mcoa Multiple Coinertia Analysis

mdpcoa Multiple DPCoA

nipals NIPALS Analysis

multispati Spatial Data Analysis

mbpcaiv Multiblock PCA with Instrumental Variables

mbpls Multiblock Partial Least Squares

3.5 Elements of dudi Objects

We have seen in the previous section the basic elements of a dudi object. Here, we
shall detail them and see how to use them on a simple example.

The pca1 object created in the previous section is a PCA on correlation matrix
(or “standardised PCA”). It is a dudi object, so a list, and this list contains thirteen
elements. The first eleven elements are the basic elements of any dudi object. They
were provided by the as.dudi function which creates the dudi object. The last
two elements (cent and norm) were added to the pca1 object at the end of the
dudi.pca function.

3.5.1 pca1$tab

The first element of pca1 is pca1$tab. This is a data frame, containing the data
table (samples in rows, variables in columns), but the variables have been centred
and standardised: the mean has been subtracted from raw values and they have been
divided by the standard deviation. We can check this on the first values of the data
frame, using the scale function:

pca1$tab[1:3, 1:6]

Temp Flow pH Cond Bdo5 Oxyd
sp_1 0.4270 -1.0310 0.9695 -1.1332 -0.60553 -0.5350
sp_2 0.6127 -0.1095 0.1939 -0.5736 0.03061 0.5821
sp_3 0.6127 0.2056 0.9695 -1.2731 -0.48550 -0.4762
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scale(env)[1:3, 1:6]

Temp Flow pH Cond Bdo5 Oxyd
sp_1 0.4162 -1.0049 0.9449 -1.1045 -0.59019 -0.5215
sp_2 0.5972 -0.1067 0.1890 -0.5591 0.02983 0.5673
sp_3 0.5972 0.2004 0.9449 -1.2409 -0.47321 -0.4642

The difference comes from the fact that the R base function scale uses the
unbiased variance estimator (divided by n−1), while ade4 uses the biased estimator
(divided by n). Introducing the n/(n − 1) correction factor brings back things in
order:

corfac <- sqrt(nrow(env) / (nrow(env) - 1))
scale(env)[1:3, 1:6] * corfac

Temp Flow pH Cond Bdo5 Oxyd
sp_1 0.4270 -1.0310 0.9695 -1.1332 -0.60553 -0.5350
sp_2 0.6127 -0.1095 0.1939 -0.5736 0.03061 0.5821
sp_3 0.6127 0.2056 0.9695 -1.2731 -0.48550 -0.4762

An alternative is to use the scalewt function of ade4 instead of scale:

scalewt(env)[1:3, 1:6]

Temp Flow pH Cond Bdo5 Oxyd
sp_1 0.4270 -1.0310 0.9695 -1.1332 -0.60553 -0.5350
sp_2 0.6127 -0.1095 0.1939 -0.5736 0.03061 0.5821
sp_3 0.6127 0.2056 0.9695 -1.2731 -0.48550 -0.4762

3.5.2 pca1$cw and pca1$lw

The next two elements are pca1$cw and pca1$lw. They contain column and row
weights. In the case of a plain PCA, the default values are equal to 1 for columns
and 1/n for rows:

pca1$cw

[1] 1 1 1 1 1 1 1 1 1

pca1$lw[1:6]

[1] 0.05 0.05 0.05 0.05 0.05 0.05

1 / nrow(env)

[1] 0.05
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3.5.3 pca1$eig, pca1$rank and pca1$nf

After the dudi.pca function has finished computing eigenvalues and eigenvec-
tors, the eigenvalues screeplot is displayed and the user is asked for the number of
dimensions on which row scores and variable loadings should be computed. Three
new elements are added to the pca1 object: pca1$eig is a vector containing the
eigenvalues, pca1$rank is the rank of the correlation matrix, and pca1$nf is
the number of dimensions chosen to perform the analysis.

pca1$eig[1:6]

[1] 5.1747 1.3204 1.0934 0.7321 0.4902 0.1098

pca1$rank

[1] 9

pca1$nf

[1] 3

In a correlation matrix PCA, pca1$rank should be equal to the number of
variables, unless some of the variables are linearly dependent. This is the case, for
example, if one of the variables is a linear combination (e.g., the sum) of some other
variables.

The default value for nf is 2.

3.5.4 pca1$c1, pca1$l1, pca1$co and pca1$li

After the user has answered the question about the number of axes (or immediately
if the scannf argument was set to FALSE), the dudi.pca function computes
variable loadings and row scores and adds them to the pca1 object.

pca1$c1 is a data frame containing the principal axes (i.e., variable loadings),
its rows correspond to the variables (columns of the input data table), and its
columns are the axes on which loadings are computed.

pca1$l1 is a data frame containing the principal components, its rows corre-
spond to the samples (rows of the input data table), and its columns are the axes on
which components are computed.

pca1$c1[1:4, ]

CS1 CS2 CS3
Temp 0.04634 -0.27926 0.80092
Flow -0.11990 -0.41278 -0.55580
pH -0.34881 -0.03483 -0.07268
Cond 0.39986 0.16240 -0.18562
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pca1$l1[1:4, ]

RS1 RS2 RS3
sp_1 -0.77208 -0.4034 1.0799
sp_2 0.01734 -0.9348 0.5774
sp_3 -0.81759 -0.8141 0.5853
sp_4 -0.83512 -1.0326 0.3415

By definition, the norm of these vectors is equal to 1:

sum(pca1$cw * pca1$c1$CS1 ^ 2)

[1] 1

sum(pca1$lw * pca1$l1$RS1 ^ 2)

[1] 1

pca1$co is a data frame containing column coordinates (or scores), its rows
correspond to the variables (columns of the input data table), and its columns are
the components on which scores are computed. The norm of these coordinates is
equal to the square root of the corresponding eigenvalue.

pca1$co[1:4, ]

Comp1 Comp2 Comp3
Temp 0.1054 -0.32090 0.8375
Flow -0.2728 -0.47433 -0.5812
pH -0.7935 -0.04002 -0.0760
Cond 0.9096 0.18661 -0.1941

sqrt(sum(pca1$cw * pca1$co$Comp1 ^ 2))

[1] 2.275

sqrt(pca1$eig[1])

[1] 2.275

pca1$li is a data frame containing row coordinates (or scores), its rows
correspond to the samples (rows of the input data table), and its columns are the
axes on which scores are computed. The norm of these coordinates is equal to the
square root of the corresponding eigenvalue.

pca1$li[1:4, ]

Axis1 Axis2 Axis3
sp_1 -1.75632 -0.4635 1.1292
sp_2 0.03944 -1.0741 0.6038
sp_3 -1.85987 -0.9355 0.6120
sp_4 -1.89974 -1.1865 0.3571

sqrt(sum(pca1$lw * pca1$li$Axis1 ^ 2))

[1] 2.275



42 3 The dudi Class

3.5.5 pca1$cent and pca1$norm

After computations are over, the dudi.pca function adds two new elements to the
pca1 object: cent and norm. cent is a vector containing variable means, except
in the case of a non-centred PCA where it is a vector of 0. We can check this on the
first 6 variables:

pca1$cent[1:6]

Temp Flow pH Cond Bdo5 Oxyd
7.700 171.900 8.250 335.500 7.345 2.310

apply(env, 2, mean)[1:6]

Temp Flow pH Cond Bdo5 Oxyd
7.700 171.900 8.250 335.500 7.345 2.310

For a standardised PCA (PCA on correlation matrix), norm is the vector of
variable standard deviations. Note that in ade4, the variance estimator that is used
is never the unbiased estimator (divided by n − 1) but always the biased estimator
(divided by n). This is different from the var and sd functions, which use the
unbiased estimator:

pca1$norm[1:6]

Temp Flow pH Cond Bdo5 Oxyd
5.3861 126.9618 0.2579 35.7386 8.3316 1.7009

apply(env, 2, sd)[1:6]

Temp Flow pH Cond Bdo5 Oxyd
5.5260 130.2600 0.2646 36.6671 8.5480 1.7450

corfac <- sqrt((nrow(env) - 1) / nrow(env))
corfac * apply(env, 2, sd)[1:6]

Temp Flow pH Cond Bdo5 Oxyd
5.3861 126.9618 0.2579 35.7386 8.3316 1.7009

3.6 Using dudi Objects

Many functions in ade4 allow to handle dudi objects. In this section, we describe
some functions that create, manipulate, display or plot these objects. Note also
that high-level multivariate analysis functions, like bca (Sect. 7.3), coinertia
(Sect. 8.3) or rlq (Sect. 11.2) also use dudi objects as argument.

The as.dudi function creates a dudi object, starting from a data frame
and row and column weights. It is called by high-level functions (dudi.pca,
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dudi.coa, etc.) and not directly by the user. The is.dudi function can test
if an object is a dudi. The redo.dudi function redoes all the computations of
a dudi, eventually changing the number of kept axes. The t.dudi method (t
function) transposes a dudi, switching the roles of rows and columns.

Other useful functions are detailed in this section.

3.6.1 The print and summary Functions

The print function displays the main components of a dudi object. It prints the
class hierarchy of the object, the command-line call, the number of axes kept in the
analysis, the rank of the matrix that was diagonalised, and the list of eigenvalues. It
then lists vectors and data frames making up the dudi, with their dimensions, mode
and content. Depending on the type of dudi, it finally prints the name of additional
elements, like cent and norm in the case of a PCA.

pca1 # equivalent to print(pca1)

Duality diagram
class: pca dudi
$call: dudi.pca(df = env, scannf = FALSE, nf = 3)

$nf: 3 axis-components saved
$rank: 9
eigen values: 5.175 1.32 1.093 0.7321 0.4902 ...
vector length mode content

1 $cw 9 numeric column weights
2 $lw 20 numeric row weights
3 $eig 9 numeric eigen values

data.frame nrow ncol content
1 $tab 20 9 modified array
2 $li 20 3 row coordinates
3 $l1 20 3 row normed scores
4 $co 9 3 column coordinates
5 $c1 9 3 column normed scores
other elements: cent norm

The summary function displays a more useful numerical summary of a dudi
object: the dudi class, the function call, the total inertia, the list of eigenvalues, and
the simple and cumulative projected inertia on the first five axes.

summary(pca1)

Class: pca dudi
Call: dudi.pca(df = env, scannf = FALSE, nf = 3)

Total inertia: 9

Eigenvalues:
Ax1 Ax2 Ax3 Ax4 Ax5

5.1747 1.3204 1.0934 0.7321 0.4902

Projected inertia (%):
Ax1 Ax2 Ax3 Ax4 Ax5

57.497 14.671 12.149 8.135 5.447
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Cumulative projected inertia (%):
Ax1 Ax1:2 Ax1:3 Ax1:4 Ax1:5

57.50 72.17 84.32 92.45 97.90

(Only 5 dimensions (out of 9) are shown)

3.6.2 The scatter and biplot Functions

The scatter function has a scatter.dudi method that draws the biplot of
the dudi passed as argument. The same function is called by the biplot.dudi
method, a function from the generic R biplot (Gabriel 1971). Figure 3.2 shows
the output of this function. Scores and loadings are used to plot samples and
variables on the same graph, with simple labels for samples and arrows for
variables. Arrows are used to symbolise the fact that variables are seen as vectors.
The permute argument of the scatter function is a logical value to switch
between a distance biplot (permute = FALSE, the default) or a correlation
biplot (permute = TRUE). The first biplot is a superimposition of pca1$li and
pca1$c1 whereas the second represents pca1$co and pca1$l1. See Legendre
and Legendre (1998, pp. 403–404) for more information about biplots. If permute
is set to TRUE, then arrows are used for samples, and simple labels for variables.

By default, the screeplot of eigenvalues is inserted in the biplot, to show
the importance of each principal component. On this screeplot, the principal
components kept by the user are coloured in grey, and the two components selected
to form the biplot (by default, the first and second ones) are in black.

3.6.3 The score Function

The score function is another generic graphical function of ade4. Depending on
the class of its input argument, it provides a graph that underlines the canonical
property of a multivariate analysis method. This graph is called the “canonical
graph” of a dudi object.

For a simple PCA (pca and dudi classes), this graph is a collection of plots
displaying the values of each variable against sample scores. The mathematical
property underlined here is the fact that principal components maximise the sum
of squared correlations with all the variables. In the case of normed PCA, the
correlation between variables and the component is indicated in parentheses.

These correlations are strictly equal to the PCA score of variables:

round(pca1$co[, 1, drop = FALSE], 2)

Comp1
Temp 0.11
Flow -0.27
pH -0.79
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Cond 0.91
Bdo5 0.97
Oxyd 0.92
Ammo 0.98
Nitr -0.19
Phos 0.92

By default, the scores on the first principal component are used (see Fig. 3.3), but
any component can be selected thanks to the xax argument of the score function.
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Fig. 3.3 PCA canonical graph. In each plot, the values of one variable are plotted against sample
scores. This underlines one of the main properties of PCA, i.e., the fact that principal components
maximise the sum of squared correlations with all the variables.
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plot(pca1$li[, 1:2], type = "n", asp = 1)
text(pca1$li[, 1:2], label = row.names(env))
abline(h = 0, v = 0)

Fig. 3.4 PCA factor map plotted with the plot and text functions. Note that the limits of the
graph are constrained by the asp argument so that the height/width ratio is equal to 1.

3.6.4 The s.label and plot Functions

Elements of a dudi object can also be used as arguments to ade4 functions, or to
general R graphics functions.

For example, row scores and variables loadings can be used as inputs to graphical
functions. Usual R graphical functions like plot and text can draw the classical
multivariate analysis graphs, called “factor maps” (Fig. 3.4).

The problem is that, by default, the height/width ratio of the graph is not equal to
1, which means that the real factor map can be distorted horizontally or vertically.
The limits of the x-axis and the y-axis should therefore be passed as inputs to the
plot function. The asp argument should also be modified to specify the aspect
ratio of the graph. Figure 3.4 shows how to draw a factor map respecting the true
height/width ratio using the plot function and the asp argument.

The simplest function to draw a factor map is the s.label function. It
automatically draws factor maps with a height/width ratio equal to 1, even if the
graphic window is not square (Fig. 3.5). The value d = 2 in the upper right corner
of the graph gives the scale: it is the size of the background grid.
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Fig. 3.5 PCA factor map plotted with the s.label function of the adegraphics package.

3.6.5 The inertia Function

The inertia function allows to compute inertia statistics described in Box 3.3.

Box 3.3 The Duality Diagram: Inertia Statistics
The total inertia associated to the triplet (X, Q, D) represents the total varia-
tion contained in the data set. If we consider the clouds of points described in
Box 3.1, the total inertia corresponds to a weighted sum of squared distances
(using the appropriate metric) between the origin of the cloud and the points.
For instance, for the cloud of p centred columns x1, x2, . . . , xp in R

n, we
have:

I(X,Q,D) =
p
∑

j=1

ωj

∥
∥xj

∥
∥

2
D = Trace(X�DXQ)

where Q = diag(ω1, . . . , ωp). As the clouds of columns and rows are linked,
we have also:

(continued)
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Box 3.3 (continued)

I(X,Q,D) = Trace(X�DXQ) = Trace(XQX�D)

The analysis of a duality diagram finds two systems of orthogonal axes that
decompose the total inertia (Box 3.2). For a given dimension, the projected
inertia is maximised for the cloud of rows in R

p (‖XQa‖2
D) or column vectors

in R
n (
∥
∥X�Db

∥
∥

2
Q) and is equal to λ (Properties 3.1 and 3.2 in Box 3.2). Hence

the total inertia is decomposed in decreasing order and can be rewritten as:

I(X,Q,D) = Trace(�) =
r
∑

i=1

λi

The inertia associated to each dimension can then be decomposed by
points (i.e., rows or columns of X). If we consider the cloud of variables,
the absolute contribution ACi(j) measures the part of inertia of the i-th
dimension explained by the j -th variable:

ACi(j) = ωj

(

xj
�Dbi

)2

λi

The relative contribution (also known as cos2) measures the part of inertia
of the j -th variable explained by the i-th dimension:

RCi(j) = (xj
�Dbi )

2

∥
∥xj

∥
∥

2
D

Note that, we have:

p
∑

j=1

ACi(j) =
r
∑

i=1

RCi(j) = 1

The previous definitions focused on contributions of variables but these
statistics can also be computed for individuals (i.e., rows of X).

By default, the function returns only the decomposition of the total inertia
per axis:
inertia(pca1)

Inertia information:
Call: inertia.dudi(x = pca1)
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Decomposition of total inertia:
inertia cum cum(%)

Ax1 5.174737 5.175 57.50
Ax2 1.320419 6.495 72.17
Ax3 1.093376 7.589 84.32
Ax4 0.732113 8.321 92.45
Ax5 0.490214 8.811 97.90
Ax6 0.109835 8.921 99.12
Ax7 0.052960 8.974 99.71
Ax8 0.020031 8.994 99.93
Ax9 0.006316 9.000 100.00

Arguments row.inertia and col.inertia of the inertia function can
be set to TRUE to compute relative and absolute contributions (Box 3.3) for samples
or variables.
iner <- inertia(pca1, col.inertia = TRUE)

In this case, the function returns a list (class inertia) containing all the
different inertia statistics. The main results can be obtained by applying the
summary function:
summary(iner)

Total inertia: 9

Projected inertia (%):
Ax1 Ax2 Ax3

57.50 14.67 12.15

(Only 3 dimensions (out of 9) are shown)

Column absolute contributions (%):
Axis1(%) Axis2(%) Axis3(%)

Ammo 18.73 0.2698 0.07917
Bdo5 18.00 0.8780 0.43463
Oxyd 16.39 3.7632 0.25313
Phos 16.37 5.2789 0.17503
Cond 15.99 2.6373 3.44540

Column relative contributions (%):
Axis1 Axis2 Axis3

Ammo 96.95 0.3562 0.08657
Bdo5 93.16 1.1593 0.47521
Oxyd 84.80 4.9691 0.27677
Phos 84.71 6.9704 0.19138
Cond 82.74 3.4824 3.76711

The contributions are presented by decreasing order from the most important
variable (sample respectively) to the least important on a defined axis. By default,
sorting is done on the first axis of the analysis and only the five first variables are
shown.

Inertia statistics can also be represented graphically. In this case, variables
(or samples) are positioned by their coordinates and the size of the symbols or
labels (using the type argument of the plot function) is proportional to their
absolute or relative contributions (see the plot.inertia method, available in
the adegraphics package, Fig. 3.6).
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gcontabs <- plot(iner, contrib = "abs", plot = FALSE)
gcontrel <- plot(iner, contrib = "rel", plot = FALSE)
ADEgS(list(gcontabs, gcontrel))

Fig. 3.6 The left plot shows the part of inertia of the first two axes explained by the variables:
it shows how the axes can be interpreted. The right plot shows the part of inertia of variables
explained by the first two axes: it shows whether variables are well described or not. These two
plots are similar in PCA because all the variables (respectively samples) have the same weights.

In
er

tia

0

1

2

3

4

5

screeplot(pca1, main = " ", xlab = " ")

Fig. 3.7 Eigenvalues screeplot. Grey bars show the eigenvalues kept in the analysis (here, the
first three ones). They correspond to the axes on which row and column coordinates have been
computed.

3.6.6 Other Graphical Functions

There are many other graphical functions to draw multivariate analysis graphs.
For example, the eigenvalues pca1$eig can be passed to the barplot function
to draw the usual eigenvalues screeplot. The generic screeplot function also
has a method for dudi objects (screeplot.dudi) that draws the eigenvalues
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Fig. 3.8 Text file exported from R and imported in Excel.

screeplot (Fig. 3.7). This graph is the one displayed when the user is asked to choose
the number of principal components that should be kept in the dudi, as this choice
should be based on the shape of the decrease of eigenvalues.

The next chapter (Chap. 4) is dedicated to the adegraphics add-on package, and
presents all the graphical functions that can be used with ade4 multivariate data
analysis outputs.

3.7 Exporting dudi Elements

Elements of dudi objects can be exported from R using the write.table
function (see Sect. 2.2). This function creates text files that can be subsequently
imported in a spreadsheet or drawing software. The argument col.names = NA
should be used to include a null column name for the column containing row names.

write.table(pca1$co, file = "pca1.co.txt", col.names = NA)

In the spreadsheet software, during importation, the “delimited” type should be
used with the delimiter set to the space character (Fig. 3.8).



Chapter 4
Multivariate Analysis Graphs

Abstract This chapter outlines the main characteristics of the adegraphics
package. The structure of graphical objects, classes and associated methods are
explained. Several examples show how user-level functions can be used to draw
scientific graphs particularly adapted to multivariate data analysis. Automated
collection of graphs, spatial representations, and the case of big data sets are
detailed.

4.1 Introduction

Multivariate data analysis makes heavy use of graphical display. The first reason
comes from the dimension reduction strategy of multivariate analysis. Indeed,
this strategy leads to draw low-dimensional (1, 2 or 3) graphs, starting from
multidimensional clouds of points (see Chap. 3). Another reason is that graphs can
be seen as an interface between statistical data analysis theorems and biological
interpretations (Thioulouse 1996). This point of view has been explained in the PhD
thesis of Auda (1983) in the early 1980s, and we have continued in this way. The
ideas expressed by Auda about graphs stemmed from the seminal work of Bertin
(1967). They were implemented in a software called “Graphique” (in French), that
was used for several years to drive a Tektronix pen plotter and several video CRT
consoles.

These ideas were developed and adapted to multivariate data analysis in the
ADECO and GraphMu software during the 1980s (Thioulouse 1989, 1990). They
followed the evolution of the ADE-4 software (see Chap. 1) and were implemented
in R in the ade4 package in 2002. This implementation was based on plain R
functions and it was intensively used during ten years. However, some capabilities of
the previous version had been lost, and it was missing flexibility and extendability.
A complete rewrite using the lattice package and S4 classes was undertaken in 2012
and the adegraphics package is the result of this effort (Siberchicot et al. 2017).
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4.2 Basics of adegraphics

In this new implementation, graphs are objects. They are created by a function,
and saved into an R object that can later be displayed, modified or copied. The
adegraphics package is based on S4 classes and on the lattice package developed
by Sarkar (2008). The class architecture description is given in Box 4.1.

adegraphics is exclusively a graphical package, with no statistical or compu-
tational functions. It is a complete reimplementation of the graphical functions
of ade4. Developing a new package for graphics instead of implementing these
functions in ade4 avoids to break other packages or code that used ade4 graphical
functions. However, users are encouraged to prefer the new graphical functionalities
provided by adegraphics as the graphical functions of ade4 will be maintained but
not developed in the future.

Whereas the underlying implementation of adegraphics is completely new, we
tried to keep the name and the basic syntax of ade4 graphical functions. Simple
R code written to draw graphs with ade4 should therefore be re-usable, or easily
re-written for adegraphics. Here we give a summary of the main features of
adegraphics but a more detailed description can be found in Siberchicot et al.
(2017).

4.2.1 ADEg and ADEgS Objects

Two types of graphical objects are defined in the adegraphics package:

• ADEg: elementary graph, with only one data source and one representation
method

• ADEgS: a collection (list) of ADEg, ADEgS and trellis objects. Elements
of this collection may result from several data sources and they can be handled
individually, juxtaposed or superimposed.

ADEg objects are created with simple functions that keep the same name and
the same basic parameters as previous ade4 graphical functions. This makes the
transition from ade4 to adegraphics easier.

An ADEgS is a list of various graphical objects, with position information.

Box 4.1 Class Structure and User-Level Functions
The basic object of adegraphics is an ADEg graph. An ADEgS is simply
a list of ADEg, with position and superposition information. A solid arrow
represents an inheritance relation between two classes: the ADEg.S2 class
inherits from the ADEg class. This inheritance mechanism was implemented

(continued)
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Box 4.1 (continued)
to factorise some of the most common behaviours. For example, limits and
background grid calculations in the ADEg.S2 class are identical in all the
S2.class methods. These computations are all performed by a common
method (prepare) in the ADEg.S2 class.
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An elementary graph (ADEg object) belongs to one of the five categories:

• ADEg.C1: bidimensional graphs for one numeric score
• ADEg.S1: unidimensional graphs for one numeric score
• ADEg.S2: bidimensional graphs for x and y coordinates
• ADEg.T: table representation of distance matrix, contingency table or simple

matrix or data frame
• ADEg.Tr: triangular representation for x, y and z coordinates

ADEg classes implement several methods for handling graphs, like plot,
update, zoom, superpose, add, and the + operator.

4.2.2 Graphical Parameters

The most important graphical parameters defined in adegraphics can be modified
directly. They can be set either globally for all subsequent drawings or during the
creation of a particular graphical object.

The adegpar function (analogous to the par base function) can be used to
get and set the value of all adegraphics parameters. These parameters consist
of sublists that deal with specific elements of a graph and have easy to remember
names: ppoints for point parameters, plabels for label parameters, psub for
subtitle parameters, etc.

library(ade4)
library(adegraphics)
names(adegpar())

[1] "p1d" "parrows" "paxes" "pbackground"
[5] "pellipses" "pgrid" "plabels" "plegend"
[9] "plines" "pnb" "porigin" "ppalette"

[13] "ppoints" "ppolygons" "pSp" "psub"
[17] "ptable"

A summary of available parameters is shown in Fig. 4.1. Columns represent
the different sublists and rows give the name of the parameters available in each
sublist. Parameters consist of dot-separated keys. The first key indicates the first
sublist whereas the last key corresponds to the parameter. For example, parameters
plabels.col and plabels.cex control the graphical aspect (colour and size)
of the text of labels. Parameter plabels.cex is made of the parameter cex
applied to the sublist plabels. These parameters can be set globally (i.e., for all
subsequent drawings) with the adegpar function:

adegpar(plabels.col = "blue", plabels.cex = 1.5)

Here, the label character size is set to 1.5 and its colour to “blue”. As both
parameters applied to the plabels sublist, another syntax can be used to avoid
repetitions:

adegpar(plabels = list(col = "blue", cex = 1.5))
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Fig. 4.1 Parameters that can be set with the adegpar function.

Another strategy is to set the parameters only for a particular graphical object
during its creation:
xy <- cbind.data.frame(rnorm(10), rnorm(10))
s.label(xy, plabels = list(col = "blue", cex = 1.5))

Here parameters are passed using the “dots” (. . . ) argument of the function
s.label but all parameters do not apply to all functions. Figure 4.2 shows
which parameters can be used in which function. The top axis shows the subset
of parameters available through the adegpar function. The left axis lists the user
functions in which these parameters can be set. A black point at position (i, j) means
that a change in the sublist of parameter j will affect the display of the graphical
object created by function i.

For example, all graphs can have a background grid (which gives the scale of the
graph), but only a few graphs use polygons. So the parameters sublist pgrid can
be used in all functions, whereas ppolygons is used in only six functions.
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Fig. 4.2 Use of adegpar parameters in adegraphics functions.

Details about these parameters can be found in the help of the adegpar function
(?adegpar).

All graphical functions of adegraphics have a “dots” (. . . ) argument. Through
this argument, it is possible to pass three type of parameters:

1. adegraphics parameters (see adegpar function)
2. lattice parameters
3. other graphical parameters, e.g.:

• xlim, ylim: x and y bounds of the graph
• main, sub: main title and subtitle
• xlab, ylab: labels for x-axis and y-axis
• scales: this is the scales parameter of the xyplot function of lattice to

determine how x-axis and y-axis are drawn
• Sp, sp.layout: objects from the sp package to display spatial objects
• nbobject: objects of class nb to display neighbour graphs
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The graphical display can be changed by passing these parameters as a “dots”
argument to the graphical functions. It is also possible to modify some of the
parameters globally, using the adegpar function for adegraphics parameters or
the function trellis.par.set for specific lattice parameters.

4.2.3 Main Functions and Methods

All the graphical functions of ade4 have been rewritten in adegraphics, and their
capabilities have been largely improved. Tables 4.1, 4.2 and 4.3 give the list of the
main functions that create ADEg or ADEgS objects.

A user function must be called to create an ADEg (or ADEgS) object (see first
column of Tables 4.1, 4.2 and 4.3). This function sorts the parameters, creates the
object and eventually plots the object (if argument plot = TRUE). This object
will be returned as a temporary copy (using invisible), and stored if assigned
in the command line. If it is stored, it can be modified later as needed.

After creation, various methods can be applied to the object to modify it and get
the desired graphical representation:

• update: modifies the ADEg object after its creation. Most parameters passed
through the “dots” argument (. . . ) of the function can be changed using the
update method.

• zoom: zooms in or out the display, changing the graphical boundaries
• +, add.ADEg, superpose: superposes an ADEg object on another one

(previous plotted for add.ADEg, any ADEg object for +, and ADEg, ADEgS
or trellis objects for superpose)

Table 4.1 One-dimensional graphical functions in adegraphics that return ADEg.C1 and
ADEg.S1 objects.

Function Object class Type of representation

s1d.barchart C1.barchart 1-D plot of a numeric score by bars

s1d.curve C1.curve 1-D plot of a numeric score linked by a curve

s1d.curves C1.curves 1-D plot of a numeric scores linked by curves

s1d.density C1.density 1-D plot of a numeric score by density curves

s1d.dotplot C1.dotplot 1-D plot of a numeric score by dots

s1d.gauss C1.gauss 1-D plot of a numeric score by Gaussian curves

s1d.hist C1.hist 1-D plot of a numeric score by histogram

s1d.interval C1.interval 1-D plot of the interval between two numeric scores

s1d.boxplot S1.boxplot 1-D box plot of a numeric score eventually
partitioned in classes

s1d.class S1.class 1-D plot of a numeric score partitioned in classes

s1d.distri S1.distri 1-D plot of a numeric score by means/standard
deviations computed using an external table of
weights

s1d.label S1.label 1-D plot of a numeric score with labels

s1d.match S1.match 1-D plot of the matching between two numeric
scores
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Table 4.2 Bi-dimensional graphical functions in adegraphics that return ADEg.S2.

Function Object class Type of representation

s.arrow S2.arrow 2-D scatter plot with arrows

s.class S2.class 2-D scatter plot with a partition in classes

s.corcircle S2.corcircle Correlation circle

s.density S2.density 2-D scatter plot with kernel density estimation

s.distri S2.distri 2-D scatter plot with means/standard deviations
computed using an external table of weights

s.image S2.image 2-D scatter plot with loess estimation of an
additional numeric score

s.label S2.label 2-D scatter plot with labels

s.logo S2.logo 2-D scatter plot with logos (pixmap objects)

s.match S2.match 2-D scatter plot of the matching between two sets of
coordinates

s.Spatial S2.label Mapping of a Spatial* object

s.traject S2.traject 2-D scatter plot with trajectories

s.value S2.value 2-D scatter plot with proportional symbols

Table 4.3 Other main graphical functions in adegraphics.

Function Object class Type of representation

table.image T.image Heat map-like representation with coloured cells

table.value T.value or
T.cont

Heat map-like representation with proportional
symbols

triangle.class Tr.class Ternary plot with a partition in classes

triangle.label Tr.label Ternary plot with labels

triangle.match Tr.match Ternary plot of the matching between two sets of
coordinates

triangle.traject Tr.match Ternary plot with trajectories

ADEgS ADEgS Association of multiple plots

• insert: inserts an ADEg or ADEgS object in an existing one or in the current
device

• cbindADEg, rbindADEg: combines several graphs (ADEg, ADEgS or
trellis) by columns or rows

• plot, print, show: displays ADEg or ADEgS objects

4.2.4 (Big) Data Storage

If the storeData argument of a graphical function is TRUE (the default value),
the data used to draw the graphical object is stored inside the object itself. This is
handy to redraw and update the object, but for large data sets it can be very memory
consuming, particularly when many graphs pile up in the R global environment.
To avoid this problem, storeData can be set to FALSE, and in this case only
the name of the data objects (or function call) and their positions inside the R
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environments are stored. The drawback of setting storeData to FALSE is that, if
the data object is no more available (e.g., if it has been deleted), the graph cannot be
redrawn. A simulated data set is used to illustrate this possibility:

set.seed(15)
xy <- matrix(rnorm(1e+05), ncol = 2)
xy2 <- matrix(rnorm(1e+05, mean = 2), ncol = 2)
xy <- rbind(xy, xy2)

The resulting xy matrix has 100,000 rows originating from a mixture of two
normal distributions and the function s.label is used to represent the data-points:

sl1 <- s.label(xy, plot = FALSE)
sl2 <- s.label(xy, storeData = FALSE, plot = FALSE)
print(object.size(sl1), units = "auto")

1.6 Mb

print(object.size(sl2), units = "auto")

92.7 Kb

The effect of setting storeData = FALSE is clear as the size of the ADEg
object is drastically reduced. Note that by default, the s.label function remove
labels when there are more than 1000 points (Fig. 4.3, left) but it remains hard to
observe correctly the points distribution. The use of alpha transparency can help for
this purpose (Fig. 4.3, centre).

sl3 <- s.label(xy, storeData = FALSE, plot = FALSE,
points.alpha = 0.01)

The adegraphics package proposes also alternative graphical representations
that are more suitable to observe structures in large data sets, but also to speed
up the drawing of plots. For instance, the s.density function allows to draw
density plots. Figure 4.3 (right) shows that the representation can be improved with
specific parameters, like contour to add contour lines. ppalette.quanti is
an adegpar parameter defining the colours of the density surface.

sd1 <- s.density(xy, nr = 0, threshold = 0.001, contour = TRUE,
region = TRUE, ppalette.quanti =
colorRampPalette(c(rgb(0, 0, 1, 0.05), rgb(0.5, 0, 0.5,
0.9)), alpha = TRUE), plot = FALSE)

4.3 Simple Examples

We demonstrate adegraphics capabilities using data from the Guerry package
(Friendly and Dray 2014) that contains data sets and maps of France in 1830. These
data were analysed by Dray and Jombart (2011) to illustrate how to consider spatial
information in classical multivariate methods. Although Guerry data are outside
the ecological framework, they are suitable to illustrate graphical representations of
multivariate and spatial data analysis.
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Fig. 4.3 Representing 100,000 individuals by points (left, sl2 object), transparent points (centre,
sl3 object) and density surface (right, sd1 object). Only the representation on the right allows to
visualise that data originate from a mixture of two normal distributions with different means.

library(Guerry)
library(sp)
data(gfrance85)
xy <- coordinates(gfrance85)
dep.names <- data.frame(gfrance85)[, 6]
region.names <- data.frame(gfrance85)[, 5]
df <- data.frame(gfrance85)[, 7:12]
names(df)

[1] "Crime_pers" "Crime_prop" "Literacy" "Donations"
[5] "Infants" "Suicides"

gfrance85 contains a map of France and associated data with 85 rows (depart-
ments) and 26 columns (variables). It is stored as a SpatialPolygonsDataFrame
(class implemented in the sp package, Bivand et al. 2013; Pebesma and Bivand
2005). The map contains the department boundaries (administrative division of
France) in 1830 and the region to which they belong (five regions: South, North,
East, West, Centre). The data contains Guerry’s 1833 data on moral statistics in
France.

Six quantitative variables (numbered from 7 to 12) are kept and saved in the df
data frame. Several variables are expressed as “Population per . . . ” to get a positive
correlation with moral value (e.g., “Population per illegitimate birth” instead of
“Illegitimate birth per 1000 people”).

• Crime_pers: Population per Crime against persons
• Crime_prop: Population per Crime against property
• Literacy: Percent Read and Write, percent of literate military conscripts
• Donations: Donations to the poor
• Infants: Population per illegitimate birth
• Suicides: Population per suicide

A standardised PCA (see Sect. 5.2) is applied to the table of quantitative
variables. The factor map of departments is then built with the s.label function
and stored in the object g.lab.pca (Fig. 4.4, left):
pca.guerry <- dudi.pca(df, scannf = FALSE, nf = 3)
g.lab.pca <- g.lab.pca.u <- s.label(pca.guerry$li, labels =

dep.names, plot = FALSE)
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Fig. 4.4 Simple PCA factor map of the department scores (left, g.lab.pca) and use of the
update function to change some graphical parameters (right, g.lab.pca.u).

This graph is then modified using the update function to draw x-axis and y-
axis with scales, remove the background grid, and colour the labels of departments
according to the region they belong to. Each of the five regions is given a colour
(South = purple, North = green, East = blue, West = orange, Centre = red). These
colours are created using the RColorBrewer package (Neuwirth 2014), and used to
define a new palette for regions (col.region) and departments (col.dep).

library(RColorBrewer)
col.region <- brewer.pal(5, "Set1")
col.dep <- col.region[region.names]
g.lab.pca.u <- update(g.lab.pca.u, paxes.draw = TRUE,

pgrid.draw = FALSE, plabels.col = col.dep, plot = FALSE)

Both graphics are then combined in a multiple graphical object using the ADEgS
function (Fig. 4.4). The use of this function is detailed in Sect. 4.6.

To focus on differences among regions (North, South, Est, West, Centre), a
Between-Class Analysis (BCA, bca function, see Chap. 7) is performed and results
of the analysis are stored in bca.guerry.

bca.guerry <- bca(pca.guerry, fac = region.names, scannf = FALSE)
randtest(bca.guerry)$pvalue

[1] 0.001

The p-value of the permutation test of the BCA is extremely significant,
meaning that there are strong differences in the “moral variables” measured in the
departments belonging to the five regions. The scores of departments on BCA factor
map are represented using the s.label function (Fig. 4.5, left):

g.lab.bca <- s.label(bca.guerry$ls, labels = dep.names,
plabels.cex = 0.7, plot = FALSE)
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Fig. 4.5 Label positions can be optimised (right, g.lab.bca.o) using a simulated annealing
algorithm based on the pointLabel function developed by Tom Short in the maptools package
(Bivand and Lewin-Koh 2017). This algorithm tries to avoid overlapping and outside bounds labels.

Overlapping labels on these types of graphs is often a problem, and an optimi-
sation function has been introduced in the adegraphics package to avoid this. This
option is only available for s.label and triangle.label functions using the
plabels.optim parameter:

g.lab.bca.o <- s.label(bca.guerry$ls, labels = dep.names,
plabels = list(cex = 0.7, optim = TRUE), ppoints.col =
col.dep, plot = FALSE)

Figure 4.5 shows the result of the simulated annealing algorithm used in this
optimisation function. The graph on the left (g.lab.bca) is the standard graph,
with several overlapping labels, while the graph on the right (g.lab.bca.o)
shows how optimised label positions reduces overlapping. Clearly, this optimisation
is really useful only when the number of labels on the factor map is high enough
to cause overlaps but not too high, as overlaps cannot be avoided when hundreds of
labels are present. In this case, an alternative is to draw labels only for individuals
with the strongest contribution to inertia (see Sect. 3.6.5).

However, the representation of scores on the factorial map is not optimal.
When spatial information is available, plotting geographical maps can be very
useful to represent scores provided by multivariate methods and describe their
spatial structure. In this context, the adegraphics package has greatly improved
the possibilities of ade4. The next section shows how to do this, and how to handle
spatial objects to draw nice geographical maps with adegraphics.
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4.4 Spatial Representations

In ade4, background geographical maps could be plotted using custom area
objects. In adegraphics, we decided to use sp, a package that provides classes and
methods for spatial data (Bivand et al. 2013; Pebesma and Bivand 2005). Any kind
of spatial object implemented in sp can be used as a background for ADEg objects
using the Sp or sp.layout arguments.

We applied the s.value function to represent the first score of the BCA
over the geographical map of France using a SpatialPolygonsDataFrame
(gfrance85 object) as background map (Sp parameter). The s.value func-
tion draws factor maps (or any kind of map) with symbols proportional to the
value of a quantitative argument called z. Some graphical parameters are set
globally using the adegpar function: porigin.include, pgrid.draw and
pbackground.box. The value of these parameters will be applied to all graphical
objects, unless stated otherwise during object creation. The new and old values of
parameters are stored in mappar and oldpar, respectively, for further use.

BCA axis 1

−3 −1 1 3 5

oldpar <- adegpar()
mappar <- adegpar(porigin.include = FALSE, pgrid.draw = FALSE,
      pbackground.box = TRUE)
g1.map.bca <- s.value(xy, bca.guerry$ls[, 1], Sp = gfrance85,
      symbol = "circle", pSp.col = col.dep, psub.text = "BCA axis 1",
      psub.cex = 1.5)

Fig. 4.6 Geographical map (g1.map.bca) of the first score of the BCA on the Guerry data.
There is a clear division between the North-East of France (white circles, negative values) and the
South-West/Centre (black circles, positive values).
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The g1.map.bca object (Fig. 4.6) is created so that the size of symbols (black
and white circles) is proportional to the department score on the first axis of the
BCA (bca.guerry$ls[, 1]), and their location is given by the two-columns
xy data frame (centres of the departments). Note that the pSp parameters can be
used to customise the drawing of the map.

The spatial structure of the BCA score is obvious: there is a very clear division
between the North-East of France and the South-West/Centre. BCA (and also PCA)
is therefore able to extract spatial information from a data table, even though the
spatial location of samples is not included explicitly in the analysis. Spatial methods
like the multispati analysis (see Chap. 12) will optimise the mathematical
properties of usual methods from this point of view.

4.5 Automatic Graph Collections

The lattice package introduced Trellis formulae, conditioning variables and panels
to handle graph collections. Although adegraphics is based on lattice, it uses a
different approach to graph collection. We detail here the three main alternatives to
build automatically multiple graphics (ADEgS objects) with adegraphics.

4.5.1 Splitting Individuals with the facets Argument

The facets argument allows to split a graph according to the levels of a factor.
For instance, Fig. 4.7 shows how the BCA factor map can be split into five graphs

(one for each region) using the facets argument of the s.label function and
the region.names factor. This allows to facilitate the reading of the information
compared to Fig. 4.5. Note that we reassigned old values of graphical parameters
(stored in oldpar) using the adegpar functions.

4.5.2 Multiple Variables

Whereas the facets argument allows to produce multiple plots corresponding to
groups of individuals, adegraphics offers also the possibility to build collection
of graphics when a data frame with several variables is given as an argument to a
function that usually requires a vector. For instance, the geographical maps of the
first two BCA axes can be plotted using the s.value function using the same code
than for Fig. 4.6 but using bca.guerry$ls instead of bca.guerry$ls[,1]
as argument z. Figure 4.8 (g2.map.bca object) shows the results of this strategy.

Note that using both a facets argument and multiple variables is not allowed.
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Fig. 4.7 The factor map of the BCA is split by region, using the facets argument of the
s.label function. Note that the same limits on x and y axes are used to allow comparison among
graphs.

4.5.3 Outputs of Multivariate Methods

All functions formerly available in ade4 to display the outputs of multivariate
analyses have been reimplemented in adegraphics. These new functions are
generally (S3) instances of the generic plot function for high-level analyses
(plot.coinertia, plot.rlq, etc.) and return an ADEgS object. For instance,
the main results of BCA are returned by the plot.between function (Fig. 4.9).

The bca.plot object is made of six subgraphs and can be manipulated as a
standard list:
length(bca.plot)

[1] 6

names(bca.plot)

[1] "loadings" "col" "eig" "row" "Xax"
[6] "class"

Each subgraph is an element of this list and can be extracted using the names of
elements (for the $ operator) or their index in the list (for [[]]).
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CS1
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CS2
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adegpar(mappar)
g2.map.bca <- s.value(xy, bca.guerry$ls, Sp = gfrance85,
      symbol = "circle", pSp.col = col.dep, psub.cex = 1.5)

Fig. 4.8 The geographical maps (g2.map.bca object) of the first two BCA axes produced using
the data frame bca.guerry$ls as argument.

identical(bca.plot[[2]], bca.plot$col)

[1] TRUE

The ADEgS object stored in bca.plot can be customised using graphical
parameters to produce publication-ready figures. The adegraphics package also
provides the possibility to create an ADEgS object from several simple graphs. This
strategy is illustrated in the next section.

4.6 Step-by-Step Creation of an ADEgS

The ADEgS function can simply create an ADEgS object, taking as parameter a list
of n graphical objects (ADEg, ADEgS or trellis) and some information about
their respective positions. The position of the subgraphs can be defined using a
positions matrix (positions argument, n rows and four columns) to define the
drawing area (position of the bottom-left and top-right corners) for the n graphs.
An alternative is the layout argument (see the layout function of the graphics
package). If positions and layout are both omitted (as in Figs. 4.4 and 4.5),
the positions matrix is computed automatically as a function of n.

A square matrix (add argument, n × n) handles superpositions: graphs i and j

are superposed if add[i, j ] = 1. The order of graphs in the list is important: the
position of the first element in the list is defined by the first row of the positions
matrix. In Figs. 4.4 and 4.5, the add matrix is equal to its default value, i.e., is null
(no superposition).
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adegpar(oldpar)
bca.plot <- plot(bca.guerry, row.col = TRUE)

Fig. 4.9 Main outputs of BCA produced by the plot method. The returned object bca.plot is
an ADEgS.

The creation of ADEgS objects is very flexible and is a real advantage when
dealing with multiple graphs. In this section, we show how to create ADEgS objects
to summarise the outputs of a multivariate analysis (BCA) on one or two axes.

4.6.1 Graphical Representations of One Axis

To interpret BCA axes, the score of variables on the first BCA axis is represented by
a barchart (g.barch in Fig. 4.10). This one is negatively correlated to Literacy
and positively correlated to variables Crime_prop, Infants, Suicides.
Remember, however, that these last three variables are measured as “Population
per . . . ”. This means that high positive values correspond to low rates of suicides,
crimes against property, and illegitimate births.
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d = 0.5
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Literacy
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Infants

Suicides

g.barch <- s1d.barchart(bca.guerry$co[, 1], xlim = c(-1.2, 1.2),
      labels = row.names(bca.guerry$co), plabels.cex = 1.5,
      p1d.horizontal = TRUE)

Fig. 4.10 Barchart of variable scores on the first BCA axis (g.barch object). The axis
is negatively correlated to Literacy and positively correlated to variables Crime_prop,
Infants, Suicides.

The screeplot of BCA eigenvalues is saved in g.eig (C1.barchart object)
but not displayed here.
g.eig <- s1d.barchart(bca.guerry$eig, p1d.horizontal = FALSE,

pgrid.draw = FALSE, plot = FALSE)

To customise the next graphs, some graphical parameters for one-dimensional
representations are set, using the adegpar function and the p1d parameter list:
adegpar(p1d = list(horizontal = FALSE, rug.tck = 1,

margin = 0.07), porigin.lwd = 0.5, ppoints.cex = 0.8)

Two one-dimension graphs are built (g.1lab.bca and g.1class.bca) but
not displayed here, using s1d.label and s1d.class functions.

g.1lab.bca is an S1.label object and displays the department scores along
the first BCA axis, with associated labels. Labels are department names, with a
colour corresponding to the region to which they belong to.
g.1lab.bca <- s1d.label(bca.guerry$ls[, 1], label = dep.names,

plabels.col = col.dep, ppoints.col = col.dep,
plines.col = col.dep, plabels.box.draw = FALSE,
plabels.cex = 1.6, plot = FALSE)

g.1class.bca is an S1.class object and displays the department scores by
rugs grouped by region. The argument poslab is set to regular, which means
that the region labels will be evenly spaced. The graphical display is reversed (with
p1d.reverse = TRUE) to join the two representations side by side (Fig. 4.11).
g.1class.bca <- s1d.class(bca.guerry$ls[, 1], fac = region.names,

poslab = "regular", col = col.region, p1d.reverse = TRUE,
p1d.rug.margin = 0.1, plabels.cex = 2, plot = FALSE)
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mat.lay <- matrix(c(1, 2, 3, 1, 2, 4, 1, 2, 5), nrow = 3, byrow = TRUE)
g.multi1.bca <- ADEgS(list(g.1class.bca, g.1lab.bca, g1.map.bca, g.barch,
      g.eig), layout = list(mat = mat.lay))

Fig. 4.11 Synthetic graph (g.multi1.bca) of the results on the first BCA axis. Two groups
of departments can be distinguished: North–East (mostly negative scores) and West–South–Centre
(mostly positive scores). The g.1lab.bca graph gives useful information on the position of each
department individually. For example, Seine and Haute-Loire appear as outliers on each sides of
the axis.

At the end, an ADEgS multiple graph object (g.multi1.bca) is created as
a list containing the five previous graphical objects. The positions of subgraphs
are defined in the matrix mat.lay used as layout information. The final figure
(Fig. 4.11) contains the two one-dimensional graphs of the first BCA axis score, the
map of this score on the France background, the barchart of the variable scores, and
the screeplot of eigenvalues.
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4.6.2 Graphical Representations of Two Axes

Here we show how the results of BCA can be represented for the first two axes of
BCA. The final figure will contain graphs to represent:

• the correlation circle of variables, to understand the meaning of the two axes,
• the BCA factor map, with department labels grouped by region,
• the geographical maps of the two BCA axes, to show the spatial structure of these

axes,
• the screeplot of eigenvalues, to evaluate the importance of each dimension.

The correlation circle between observed variables and BCA axes is stored in a
g.cor object (Fig. 4.12). As seen previously, the first axis is negatively correlated
to Literacy and positively correlated to variables Crime_prop, Infants,
Suicides. On the second axis, a high positive score means low values of
donations and a high rate of crime against persons.

The BCA factor map is stored in g.class.bca (S2.class object). It
represents the five regions with convex hulls containing 70% of the departments
of each region (chullSize = 0.7).

Then an S2.label object, named g.lab.bca, is created with the department
names. The position of labels is optimised to avoid superpositions (plabels =
list(optim = TRUE)).

d = 0.4

Crime_pers

Crime_prop

Literacy

Donations

Infants

Suicides

g.cor <- s.corcircle(cor(pca.guerry$tab, bca.guerry$ls),
      porigin.include = TRUE, pbackground.box = FALSE,
      plabels.cex = 1.2)

Fig. 4.12 Correlation circle between observed variables and BCA axis (g.cor object). The first
axis is negatively correlated to Literacy and positively correlated to variables Crime_prop,
Infants, Suicides. On the second axis, a high positive score means low values of donations
and a high rate of crime against persons.
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g.class.bca <- s.class(bca.guerry$ls, region.names,
      ellipseSize = 0, starSize = 0.5, chullSize = 0.7,

ppoints.cex = 0, col = col.region, plabels.cex = 0,
pgrid.text.pos = "bottomright", plot = FALSE)

g.lab.bca <- s.label(bca.guerry$ls, as.character(dep.names),
ppoints.col = col.dep, plabels = list(optim = TRUE,

cex = 1, col = col.dep), plot = FALSE)
g.bca.dep <- g.class.bca + g.lab.bca
g.bca.dep <- insert(g.eig, posi = "topleft", ratio = 0.2)
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Fig. 4.13 Superposition of the two ADEg objects g.class.bca and g.lab.bca, with
eigenvalues screeplot inserted as an ADEg object.

These last two graphs are superposed using the adegraphics + operator and the
result is stored in a new ADEgS object named g.bca.dep.

The screeplot of eigenvalues of the BCA previously created is added to
g.bca.dep with the insert function (Fig. 4.13).

On the first axis, North and East regions are characterised by a high level
of literacy, together with high rates of suicides, crimes against properties, and
illegitimate births. They are opposed to South, Centre and West on these variables.
On the second axis, South is opposed to the four other regions and shows low levels
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of donations to the poors and high levels of crimes against persons. Globally, Centre
and West seem comparable, and North and East too.

The maps of department scores on the two BCA axes have been stored in
g2.map.bca object (Fig. 4.8).

Lastly a new ADEgS object (g.multi2.bca) is created with the ADEgS
function (Fig. 4.14). The list of graphs of this object contains four elements:

• an ADEgS object, g.bca.dep (containing itself three ADEg, see Fig. 4.13),

positions <- rbind(c(0, 0, 0.8, 0.8), c(0.6, 0.6, 1, 1),
      c(0.6, 0.1, 1, 0.5), c(0.2, 0.6, 0.6, 1))
g.multi2.bca <- ADEgS(
      list(g.bca.dep, g2.map.bca[[1]], g2.map.bca[[2]], g.cor),
      positions = positions)
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Fig. 4.14 This figure (g.multi2.bca) sums up the analysis on the selected subset of Guerry’s
data. On the first axis, North and East regions are characterised by a high level of literacy, together
with high rates of suicides, crimes against properties, and illegitimate births. They are opposed to
South, Centre and West on these variables. On the second axis, South is opposed to the four other
regions and shows low levels of donations to the poors and high levels of crimes against persons.
Globally, Centre and West seem comparable, and North and East too.
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• two ADEg objects of class S2.value, g2.map.bca[[1]] and
g2.map.bca[[2]],

• an S2.corcircle object, g.cor.

The position of each object is given in a positions matrix with four columns
(x0, y0, x1, y1) giving the coordinates of the bottom-left and top-right corners of
each graph.

g.multi2.bca is an object of formal class ADEgS, and it is possible to
explore its contents. Its slots can be listed with the slotNames function:

slotNames(g.multi2.bca)

[1] "ADEglist" "positions" "add" "Call"

names(g.multi2.bca)

[1] "g1" "g2" "g3" "g4"

The Call slot contains the command line that was used to create the ADEgS
object (g.multi2.bca@Call). The first slot (ADEglist) is the list of graphs,
and the names function can be used to get their names. It is possible to select a
subset of graphs in this list and to display them, for example using the [ operator to
select the first two subgraphs of the g.multi2.bca object:

g.multi2.bca[c(1, 2)]

4.7 Conclusion

The adegraphics package makes easier the manipulation of complex graphical
displays obtained from multivariate analysis methods. Basic functions can be used
to draw usual multivariate graphs (factor maps), but also special types of graphs,
like one-dimensional graphs to study scores individually, or spatial representations
(with the help of the sp package). Thanks to the lattice package, adegraphics also
brings easy ways to use colours and transparency in multivariate analysis graphs.

Graphs are now objects that can be handled easily. Most of the parameters
of a graph can be changed after its creation, allowing to precisely set all the
characteristics of the final figure. These parameters can be set globally, for all the
graphs subsequently drawn, or locally, for just one particular graph.

Many high-level functions are based on these new functions. They allow to draw
synthetic displays of complex multivariate methods (e.g., plot.coinertia,
plot.rlq, plot.pcaiv, etc.). Many examples of use of these high-level
functions are shown in the next chapters of this book.

Another very important improvement is the automatic management of collections
of graphs. Using the new graphical functions of adegraphics, it is easy to draw auto-
matically all the graphs corresponding to the different columns (variables) of a data
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table, or all the graphs corresponding to any subsets of rows (individuals/samples)
defined by a factor. This is very useful in multivariate analysis in general, and
even more in the case of the analysis of three-way tables (see Chaps. 9 and 10).
Additionally, all the graphs of a collection can be easily arranged, juxtaposed or
superposed to make the final figure more easily understandable.



Chapter 5
Description of Environmental Variables
Structures

Abstract This chapter is organised in three parts, corresponding to three data
analysis methods: standardised PCA for quantitative variables, Multiple Correspon-
dence Analysis (MCA) for qualitative variables (factors in R), and the Hill and
Smith Analysis for tables containing a mix of qualitative and quantitative variables.

5.1 Introduction

Several simple data analysis methods can be used to describe the structure of
environmental variables tables. Simple here means that these methods are adapted
to the analysis of only one data table. If more information is available, for example
information on the structure of the table (e.g., groups of rows or of columns), or if
information is contained in more than one data table, then other methods should be
used. According to the type of measured variables (quantitative, qualitative or both),
different methods can be considered.

These different approaches will be illustrated using the doubs data set, from
ade4 (see Verneaux 1973, and help("doubs", package = "ade4")). The
doubs$env data frame contains eleven environmental variables measured at 30
sites along the Doubs river in the Jura region (France). The doubs$fish data
frame contains the abundances of 27 fish species that were found in the same sites.
The doubs$xy data frame contains the spatial coordinates of the 30 sites (two
columns, x and y).

library(ade4)
library(adegraphics)
data(doubs)
names(doubs)

[1] "env" "fish" "xy" "species"

names(doubs$env)

[1] "dfs" "alt" "slo" "flo" "pH" "har" "pho" "nit" "amm"
[10] "oxy" "bdo"

© Springer Science+Business Media, LLC, part of Springer Nature 2018
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The eleven variables are:

1. dfs: distance from the source (km * 10)
2. alt: altitude (m)
3. slo: log(x + 1) where x is the slope (per mil * 100)
4. flo: minimum average stream flow (m3/s * 100)
5. pH (* 10)
6. har: total hardness of water (mg/l of Calcium)
7. pho: phosphates (mg/l * 100)
8. nit: nitrates (mg/l * 100)
9. amm: ammonia nitrogen (mg/l * 100)

10. oxy: dissolved oxygen (mg/l * 10)
11. bdo: biological demand for oxygen (mg/l * 10)

This environmental table can be represented graphically using the table.value
or table.image function of the adegraphics package. Here, a colour palette
function mypal is defined and the raw data are then represented using the
table.image function. As the ranges of variation of the environmental variables
are quite different, we scaled the data to allow a common and meaningful graphical
representation (Fig. 5.1):

env <- doubs$env
apply(env, 2, range)

dfs alt slo flo pH har pho nit amm oxy bdo
[1,] 3 172 1.099 84 77 40 1 15 0 41 13
[2,] 4530 934 6.176 6900 86 110 422 620 180 124 167

As the spatial coordinates are also available, sites can be plotted in the geograph-
ical space. The s.label function can be used to draw the position of sites, with
the site number as label (Fig. 5.2).

To facilitate the interpretation of environmental data, information of Figs. 5.1
and 5.2 can be combined by creating thematic maps for all variables. To achieve
this, we use the s.value function, with multivariate data in the z argument. It
automatically loops over the variables and produces 11 geographical maps presented
in Fig. 5.3. By default, this function plots squares which size is proportional to
a set of values. The colour of the squares gives the sign of the value (white for
negative values, black for positive). Here, we modify the method, symbol and
ppalette.quanti parameters to obtain figures with coloured circles.

The maps presented in Fig. 5.3 highlight that some environmental variables
have similar spatial distributions (e.g., distance from the source (dfs) and stream
flow (flo)). The objective of multivariate methods is to provide a summary of
this environmental table by identifying the main patterns of variation and which
variables are involved in these structures.
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Fig. 5.1 Graphical representation of the environmental raw data table (sites as rows, variables as
columns). Data are scaled.

5.2 Standardised Principal Component Analysis (PCA)

Principal Component Analysis (Pearson 1901; Hotelling 1933) is the most simple
and the basis of all multivariate analysis methods. It allows to summarise the
structure of a table containing quantitative variables. Many theoretical models
lead to the same computations, but the duality diagram (Escoufier 1987) and the
geometric model (LeRoux and Rouanet 2004) are the ones used in the ade4 package.

Basic mathematical definitions are recalled in Box 5.1. In the ade4 package, the
dudi.pca function is used to compute a PCA. All the outputs of this function are
grouped in a dudi object (subclass pca), and Box 5.2 recalls the corresponding
output elements.

Two types of PCA are generally distinguished: covariance matrix PCA and
correlation matrix PCA. They can be considered as the same method, applied after a
different treatment of the data table: centring (subtracting the mean of each variable)
for covariance matrix PCA and standardisation (subtracting the mean and dividing
by the standard deviation) for correlation matrix PCA.

In the case of the env data table, the choice between covariance or correlation
matrix PCA is easy: variables are not expressed in the same units and have
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xy <- doubs$xy
sl1 <- s.label(xy, ppoints.cex = 0, plot = FALSE)
st1 <- s.traject(xy, ppoints.cex = 0, plabels.cex = 0, plot = FALSE)
s1 <- superpose(st1, sl1, plot = TRUE)

Fig. 5.2 Position of the 30 sampling sites along the Doubs river.

very different variances, ranging from 1 to more than 3.106. Here, differences in
variances are meaningless and should not be considered in the analysis. Using a
correlation matrix PCA is therefore necessary to remove these differences.

When all the variables are measured in the same units (homogeneous tables),
both types of PCA can be applied. PCA on covariance matrix would give more
importance to variables with high variance as they contribute more to the total inertia
and thus will have more weight in the definition of axes. On the other hand, PCA
on correlation matrix will give an equal importance to all the variables so that only
the redundance (i.e., correlations) among variables drives the definition of axes. To
choose between the two possibilities, users must decide if the differences between
variances are (or not) a useful information that should be taken into account in the
analysis. For example, in toxicity tables, all the values are LD50 (lethal dose 50,
i.e., the concentration that kills 50% of organisms), and the columns correspond
to different chemical compounds instead of different variables. Using a correlation
matrix PCA on these tables will probably remove important information about the
difference in toxicity between chemical compounds or between the diversity of
species. In these cases, a covariance matrix PCA (argument scale set to FALSE)
is preferable (see also Chap. 6).
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mypal <- colorRampPalette(c("#EDF8FB", "#006D2C"))
s.value(xy, doubs$env, pgrid.draw = FALSE, porigin.draw = FALSE,
      plegend.drawKey = FALSE, psub.cex = 2, method = "color",
      symbol = "circle", ppalette.quanti = mypal, ppoints.cex = 0.5)

Fig. 5.3 Collection of 11 geographical maps of the doubs data set environmental variables. High
values are in dark green, low values in light green.

Box 5.1 PCA: Basic Mathematical Definitions
Let X be a table of centred quantitative variables, with n rows (samples) and
p columns (variables). Let D = 1

n
In and Q = Ip be the diagonal matrices of

uniform row weights. The duality diagram of the PCA of X is:

The corresponding PCA statistical triplet is
(

X, Ip, 1
n

In

)

and the total inertia

of this statistical triplet is:

(continued)



82 5 Description of Environmental Variables Structures

Box 5.1 (continued)

I(
X,Ip, 1

n
In
) = Trace

(
1

n
X�X
)

=
p
∑

j=1

var(xj )

According to Property 3.1 (Box 3.2) and Appendix A.3, PCA searches for
a principal axis a maximising:

∥
∥XIpa

∥
∥21

n
In

= var(Xa)

In R
n, using Property 3.2 (Box 3.2) and Appendix A.5, it can be demon-

strated that PCA searches for a principal component b maximising:

∥
∥
∥
∥

X�1

n
Inb

∥
∥
∥
∥

2

Ip

=
p
∑

j=1

cov2(xj , b)

As variables are just centred, then this PCA is called a covariance matrix
PCA or a centred PCA and I(

X,Ip, 1
n

In
) is the sum of the variances. If variables

are also scaled to unit variance (dividing them by their standard deviation),
then it is called a correlation matrix PCA or a normed PCA, and the total
inertia I(

X,Ip, 1
n

In
) is equal to the number of variables. In this case, PCA

maximises the sum of squared correlations with variables:

∥
∥
∥
∥

X�1

n
Inb

∥
∥
∥
∥

2

Ip

=
p
∑

j=1

cor2(xj , b)

Box 5.2 PCA: dudi Output Elements
In the ade4 package, the results of a PCA are stored in an object of class
dudi, subclass pca. This object is a list with 13 elements, including the
usual elements of any dudi. In this list, elements of particular interest are:

• $eig: eigenvalues (�)
• $cw: column weights (Q = Ip)
• $lw: row weights (D = 1

n
In)

• $tab: transformed data table (X)

(continued)
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Box 5.2 (continued)
• $c1: principal axes or variable loadings (A)
• $li: row scores (L = XA)
• $l1: principal components (B)
• $co: column scores (C = 1

n
X�B)

The two pairs of coordinates, ($c1, $li) or ($l1, $co), can be
superimposed to draw two types of biplot (respectively, distance biplot and
correlation biplot). See Legendre and Legendre (1998, pp. 403–404) for
details.

In the first interpretation, PCA finds coefficients for variables ($c1) to
compute a linear combination ($li) that provides an ordination of individuals
with the greatest dispersion (maximum variance).

In the second interpretation, PCA provides a linear combination ($l1) that
maximise the correlations ($co) with all variables (or covariances for centred
PCA). Hence, it is the best summary of the variables.

The PCA of the doubs$env table is computed with the dudi.pca function
and stored in the pca1 object:
pca1 <- dudi.pca(env, scale = TRUE, scannf = FALSE, nf = 3)

The scale argument is set to TRUE (the default value), so the PCA will
be computed on the standardised (centred and normed) data table. The result is
therefore a correlation matrix PCA.

The scannf argument (“scan the number of factors”) is set to FALSE, which
means that the number of axes should not be asked to the user, but arbitrarily set to
three. This value (three) is given by the third argument, nf. If nf is not set explicitly,
it defaults to two. When running in interactive mode, the scannf argument should
not be used, and its default value (TRUE) will cause the function to ask the number of
axes (principal components) interactively to the user. This is the number of axes that
should be “kept” in output files, and on which loadings and scores will be computed.

Many methods have been invented to try to guess the number of principal
components that should be kept after a PCA. In ade4, users are simply asked
how many components they want. To help answer this question, dudi functions
display a barplot of eigenvalues in decreasing order. The user should then try to
find a discontinuity in the shape of the decrease, and choose to keep the axes
corresponding to eigenvalues placed before (on the left of) this discontinuity. For
example, in Fig. 5.4, the user should keep (from left to right) 2, 3 and 4 axes.

Of course these examples are quite caricatural, and in real situations, it can be
much harder to choose an appropriate number of principal components. However the
principle remains that the shape of the decrease of eigenvalues is a good indicator of
the presence of structures in the data table. Trying to keep the axes that correspond
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Fig. 5.5 Barplot of PCA eigenvalues for the Doubs environmental table.

to these potentially interesting structures is therefore a good and easy-to-use rule.
As an alternative, the procedure developed by Dray (2008) is implemented in the
testdim function that can be applied on correlation matrix PCA created by the
dudi.pca function with scale = TRUE:
testdim(pca1)$nb.cor

[1] 2

Figure 5.5 shows the barplot of pca1 eigenvalues. Two or three principal
components can be kept (the testdim procedure says two).

The correlation circle (left) to represent variables and the factor map of sites
(right) on the first two principal components are shown in Fig. 5.6.

This correlation circle (sc1 object) shows two nearly orthogonal gradients: a
geomorphological gradient opposing altitude and slope to hardness, distance from
the source and stream flow, and a chemical gradient, opposing dissolved oxygen to
phosphates, ammonium, and biological demand for oxygen. Oxygen concentration
is higher upstream, and pollution is higher downstream, so these two gradients
are not completely orthogonal. The first principal component is an upstream-
downstream gradient, while the second component opposes geomorphology to
chemical processes.
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sc1 <- s.corcircle(pca1$co, plot = FALSE)
sl1 <- s.label(pca1$li, plabels.optim = TRUE,
      ppoints.cex = 0.5, plot = FALSE)
ADEgS(list(sc1, sl1))

Fig. 5.6 Doubs environmental variables PCA factor maps. Left: correlation circle, right: factor
map of sites.

The factor map on the right of Fig. 5.6 (sl1 object) shows that the sites are
ordered along the first principal component, from site 1 (upstream, 300 m from
the source) to site 30 (downstream, 453 km from the source). Departures from this
geomorphology gradient are explained by the chemical gradient: sites with a high
concentration of oxygen (1, 4, 7, 11, 12, 13, 14, 15) are in the lower-left part of
the graph, and sites with a high concentration of ammonium, phosphates and a high
BDO (23, 24, 25) are in the upper-right part of the graph.

The site coordinates can also be used to draw geographical maps of site scores,
using the s.value function. Figure 5.7 shows the map of site scores on the
first two principal components. The first principal component (left) is clearly an
upstream-downstream gradient, with the exception of sites 23 to 25 (see site
numbers in Fig. 5.2). The second principal component (right) cuts this gradient in
four parts: the upper stream (sites 1 to 22) is divided in two, according to altitude
and slope, and the lower stream (sites 23 to 30) is divided according to the pollution
variables (ammonium, phosphates and BDO) which are higher in sites 23 to 26 and
lower in sites 27 to 30.

The upstream-downstream gradients and the particular characteristics of highly
polluted sites (sites 23 to 26) or of sites with high oxygen concentration (11 to 15)
appear very clearly on these maps.

More generally, the geographical maps of site scores and their comparison with
the collection of maps of standardised variables (Fig. 5.3) can be very useful to
help interpret the outputs of a PCA. Drawing these maps is not possible when there
are hundreds of variables (as it is the case for DNA fingerprints, for example), but
then, particular variables of interest (e.g., variables with the most important relative
contributions, see Box 3.3) can be chosen and mapped.
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s.value(xy, pca1$li[, 1:2], pgrid.draw = FALSE, porigin.draw = FALSE,
      method = "size", symbol = "circle", col = mypal(2),
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Fig. 5.7 Geographical maps of the first (left) and second (right) principal components of the PCA
on the doubs data set environmental variables.

5.3 Multiple Correspondence Analysis (MCA)

Multiple Correspondence Analysis (MCA) is the basic method to analyse tables of
qualitative variables (see synthesis by Tenenhaus and Young 1985) that are stored
as factors in R (see Sect. 2.5). We illustrate MCA with the same data set as
in Sect. 5.2 but we obtain qualitative variables by splitting the quantitative variables
into categories. Four categories are defined automatically for each variable using the
cut function. This function is applied to the environmental variables with apply
(Sect. 2.4.9), and the resulting qualitative variables are stored in the fenv data
frame.

fenv <- apply(env, 2, cut, breaks = 4, labels = 1:4)
fenv <- as.data.frame(fenv)

This transformation induces a loss of information as different values for a
quantitative variable are regrouped into a single category of the recoded qualitative
variable (Fig. 5.8). However, this approach can be useful when non-linear relation-
ships occur between variables. In this case, PCA which is based on correlations, will
only be able to extract linear relationships whereas MCA can identify non-linear
trends by reordering the categories. When the relationships between variables are
(at least approximately) linear, the results of both methods should be comparable.

MCA allows to identify associations between the categories (levels) of dif-
ferent qualitative variables (factor). Basic mathematical definitions are recalled
in Box 5.3. The method is implemented in the dudi.acm function of the ade4
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Fig. 5.8 Recoding of the quantitative variable dfs (distance from the source) in four categories.

package. All the outputs of this function are grouped in a dudi object (subclass
acm), and Box 5.4 describes the main output elements. Here, we applied MCA on
the data frame fenv.

Box 5.3 MCA: Basic Mathematical Definitions
Let Z be a table of qualitative variables, coded as integers, with n rows
(samples) and v columns (variables). Let mj be the number of categories of
the j -th variable. The total number of categories for all variables is:

m =
v
∑

j=1

mj

The n×m disjunctive table X is associated to table Z. It is made of the dummy
variables that correspond to the categories of the qualitative variables of table
Z (see Appendix A.7 for details).

The matrix D = 1
n

In is the diagonal matrix of uniform row weights and
Dm = diag(X�D1n) is the m × m diagonal matrix of column weights. It
contains the category frequencies computed as the sum of the weights of the
individuals belonging to each category.

Let Y = XDm
−1 −1n1m

� be the transformed and centred disjunctive table,
where 1n is the n × 1 vector of ones.

The duality diagram of the MCA of Z is defined by:

(continued)



88 5 Description of Environmental Variables Structures

Box 5.3 (continued)

The corresponding MCA statistical triplet is
(

Y, 1
v

Dm, 1
n

In

)

.

According to Property 3.1 (Box 3.2) and Appendix A.3, PCA searches for
a principal axis a maximising:

∥
∥
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In R
n, using Property 3.2 (Box 3.2) and Appendix A.7, it can be demon-

strated that MCA searches for a principal component b maximising:

∥
∥
∥
∥

Y�1

n
Inb

∥
∥
∥
∥
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Dm

The vector 1
n

D−1
m X�b contains means of b per category so that:

∥
∥
∥
∥

Y�1

n
Inb

∥
∥
∥
∥

2

1
v

Dm

= 1

v

v
∑

j=1

η2(zj , b)

This quantity is the mean of correlation ratios computed for all the
variables.

Box 5.4 MCA: dudi Output Elements
In the ade4 package, the results of an MCA are stored in an object of class
dudi, subclass acm. This object is a list with 12 elements, including the usual
elements of any dudi. In this list, elements of particular interest are:

• $eig: eigenvalues (�)
• $cw: column (i.e., category) weights ( 1

v
Dm)

(continued)
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Box 5.4 (continued)

• $lw: row weights (D = 1
n

In)
• $tab: transformed and centred disjunctive data table (Y)
• $c1: category loadings (A)
• $li: row scores (L = 1

v
XA)

• $l1: principal components (B)
• $co: column scores (C = 1

n
D−1

m X�B)
• $cr: correlation ratios between qualitative variables and axes

Two types of interpretation can be defined. In the first one, MCA positions
categories by a normed score $c1. A score for individuals ($li) is derived
from this categories score: an individual is located at the mean of the score
of the categories that it carries. This second score provides an ordination of
individuals with the highest possible dispersion (maximum variance).

In the second type of interpretation, MCA finds normed coordinates for
individuals ($l1) and positions categories at the mean of the individual scores
that belong to them ($co). This maximises the mean of the variance of the
categories for all variables. In other words, it maximises the mean of the
correlation ratios.

The main difference between PCA and MCA is that the columns of the analysed
table are the variables in PCA but the categories of qualitative variables in MCA:

ncol(pca1$tab)

[1] 11

ncol(acm1$tab)

[1] 44

The categories correspond to the different columns in the disjunctive table
analysed by the MCA (see Box 5.3) and their order is not taken into account, just
like different variables in a PCA. As a consequence, the number of eigenvalues is
also increased (Fig. 5.9) in MCA. Another important difference is that MCA weights
columns proportionally to the number of individuals belonging to the categories so
that all variables have the same weights (as in PCA):

acm1$cw[1:4] == table(fenv$dfs)/nrow(fenv)/ncol(fenv)

1 2 3 4
TRUE TRUE TRUE TRUE

as.numeric(by(acm1$cw, rep(1:ncol(fenv), each = 4), sum)) *
ncol(fenv)

[1] 1 1 1 1 1 1 1 1 1 1 1
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Fig. 5.9 Barplot of MCA eigenvalues for the Doubs environmental table.
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sl1 <- s.label(acm1$co, ppoints.cex = 0.5, plabels.optim = TRUE,
      plot = FALSE)
sl2 <- s.label(acm1$li, ppoints.cex = 0.5, plabels.optim = TRUE,
      plot = FALSE)
ADEgS(list(sl1, sl2))

Fig. 5.10 Qualitative environmental variables MCA factor maps. Left: categories of qualitative
variables, right: factor map of sites.

Figure 5.10 shows that, except for an inversion of the sign of the second axis,
the factor map of sites is still very similar to the factor map obtained by the PCA
(Fig. 5.6). The same typology of sampling sites along the stream is found: upper-
stream sites (1 to 10) with high oxygen concentration and low ammonium and
BDO are opposed to lower-stream sites (26 to 30), with sites 23 to 25 having an
exceptionally high level of pollution.

The graph of categories (Fig. 5.10, left) is somewhat different because we now
have one point for each category of each qualitative variable (44 categories as a
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whole) instead of 11 points only. The interpretation is however the same: categories
corresponding to high levels of ammonium and BDO (amm.4, bdo.4) and to low
levels of oxygen (oxy.1) are on the right of the graph, where highly polluted sites
are found. Conversely, categories corresponding to high levels of oxygen (oxy.4),
high values of slope (slo.4), low values of flow (flo.1) and hardness (hard.1,
hard.2) are located on the left of the graph, where upper-stream sites are found.

MCA allows to carry out the interpretation of factors at the level of categories.
This means that one can get a better (finer) explanation of the meaning of factors.
In the ade4 package, this property is used to draw particular graphs that show
which individuals belong to each category. Two types of graphs can be drawn, using
functions score (Fig. 5.11) and plot (Fig. 5.12).

The first type of graph (Fig. 5.11, using score function) shows the results of
MCA for a given axis (specified by the xax argument which is equal to 1 by
default). The normed coordinates of all the individuals (acm1$l1) are placed along
the x-axis and the categories are displayed at the mean of the coordinates of their
individuals. The vertical coordinate is given by the category score (acm1$co). It
is then easy to interpret the meaning of the factor by looking at the positions of
categories and individuals. For example, in Fig. 5.11, one can see that the categories
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Fig. 5.11 The score graph of an MCA. Each elementary graph corresponds to one qualitative
variable. The label of this variable is located in the top-left corner of the graph. In each graph, the
horizontal lines correspond to the categories. See text for details.
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Fig. 5.12 The plot graph of an MCA. Like in Fig. 5.11, each elementary graph corresponds to
one qualitative variable. The label of this variable is located in the bottom-left corner of the graph.
In each graph, ellipses correspond to the categories of the qualitative variable. The coordinates of
the individuals that belong to a category are represented by small dots, and category labels are
placed at the centre of the ellipse. See text for details.

of variables hardness, phosphorus, nitrates, ammonium and BDO are ordered by
increasing values along the first MCA factor. Conversely, the categories of variables
altitude, slope, oxygen are ordered by decreasing values along the first MCA factor.
On the vertical axis, the intervals between labels give information of the differences
among categories (variance between categories). On the horizontal axis, the spacing
among the tick marks allows to evaluate the homogeneity of individuals in a
category (variance within categories). As the individual scores in MCA (acm1$l1)
maximise the mean correlation ratio for all the qualitative variables, it is expected
that the more vertical is the regression line for a qualitative variable, the higher is its
correlation ratio value. Correlation ratios are stored in acm1$cr:

acm1$cr

RS1 RS2
dfs 0.65017 0.54172
alt 0.54860 0.46824
slo 0.36286 0.18819
flo 0.52995 0.57221
pH 0.02396 0.15609
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har 0.37616 0.26756
pho 0.75418 0.33689
nit 0.73984 0.53046
amm 0.71443 0.36912
oxy 0.67304 0.07847
bdo 0.65986 0.38953

The second type of graph is shown in Fig. 5.12. It can be drawn using the plot
function. It is a bidimensional plot, with two MCA axes as abscissae and ordinates
(specified by the xax and yax arguments). Each category of each variable is
displayed by an ellipse. The position of the centre of the ellipse is given by the
means of the coordinates of the individuals ($li) belonging to the category. The
width and height of an ellipse are given by the variance of the coordinates of the
individuals, and the covariance between the coordinates on the two axes gives the
slope of the ellipse. The interpretation of this figure is the same as Fig. 5.10, but
it is much more easy and detailed, as the categories of all the variables are not
superimposed.

5.4 Hill and Smith Analysis (HSA)

Environmental data sets with exclusively qualitative variables are not very frequent.
Some variables are easy to measure automatically on a continuous scale, while
others are intrinsically qualitative. So the most frequent case is a table containing a
mix of qualitative and quantitative variables. In this case, one can choose between
two strategies: transforming quantitative variables to qualitative ones and using
MCA, or considering qualitative variables as quantitative ones and using PCA.

The first strategy can be used when the number of quantitative variables is low.
If this is not the case (most variables are quantitative with just a few qualitative
ones), the loss of information may badly influence the results of the data analysis
procedure. The second strategy can be used when qualitative variables are in fact
ordered qualitative variables (e.g., categories low, medium and high). In this case,
using PCA can be relevant (if linear trends are expected) but it is not a viable solution
when qualitative variables contains categories that cannot be ordered (e.g., blue, red
and green).

The Hill and Smith Analysis (HSA, Hill and Smith 1976) is a data analysis
method that is able to deal directly with a data table containing a mix of quantitative
and (ordered or unordered) qualitative variables. This method does not modify the
original characteristics of the variables, avoiding the arbitrary choices of the two
previous strategies. If all the variables are quantitative, then the results of HSA are
identical to those of PCA. If all the variables are qualitative, then the results are
identical to those of MCA. And if there is a mix of p quantitative variables and q

qualitative variables, then the analysis is an optimal combination of the properties
of the two analyses.

The row weights of this analysis are the same as the row weights of the PCA
of the p quantitative variables, and are also equal to the row weights of the MCA
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hs1 <- dudi.hillsmith(menv, scannf = FALSE)
scatter(hs1, posieig = "bottomleft")

Fig. 5.13 The scatter graph of an Hill and Smith Analysis.

of the q qualitative variables. The column weights are different: for quantitative
variables, column weights are equal to 1/(p + q), instead of 1 in a PCA. For
qualitative variables, the weights are computed as in MCA (sum of the weights of
the individuals belonging to each category, divided by q, see Box 5.3), except that it
is divided here by the total number of variables (p + q) instead of q. The total sum
of column weights is therefore equal to 1, and qualitative and quantitative variables
have the same weights.

To illustrate HSA, we consider the Doubs data where the first six variables are
considered as qualitative and the last five as quantitative:

menv <- cbind(fenv[, 1:6], env[, 7:11])

The Hill and Smith Analysis is then computed on the resulting table using the
dudi.hillsmith function of the ade4 package. The scatter function can
then be used to draw the biplot, where quantitative variables appear as simple labels,
while qualitative ones appear with one label for each category.
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Fig. 5.14 The score graph of a Hill and Smith Analysis.

The score function can also be used to highlight the properties of the method
(Fig. 5.14). HSA maximises the squared correlation for quantitative variables (i.e.,
the criteria of PCA) and the correlation ratio for qualitative variables (i.e., the criteria
of MCA). As a consequence, Fig. 5.14 can be interpreted as Fig. 3.3 for quantitative
variables and Fig. 5.11 for qualitative variables. These values are also stored in
hs1$cr:
hs1$cr

RS1 RS2
dfs 0.70222 0.840069
alt 0.65252 0.741726
slo 0.41026 0.157049
flo 0.63965 0.633381
pH 0.02332 0.225875
har 0.42895 0.320770
pho 0.75512 0.046149
nit 0.85903 0.008401
amm 0.70428 0.069365
oxy 0.61287 0.202631
bdo 0.63870 0.126527

The interpretation of Figs. 5.13 and 5.14 is identical to the interpretation of the
PCA and MCA Figs. 5.6, 5.7, 5.10, 5.11 and 5.12: the first axis is an upstream-
downstream gradient, while the second one opposes geomorphology to chemical
processes. The data set under study is the same, with only quantitative to qualitative
transformation for some variables and the three methods (PCA, MCA, HSA) give
the same results, with the exception of possible axis inversions.
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5.5 Other Simple Methods

The ade4 package provides other methods for the analysis of an environmental table
(see the first part of Table 3.2), but we are not going to detail them here. Here is the
list of the functions and the corresponding methods (see the online documentation
for more information on how to use them and examples of application):

• dudi.fca: Fuzzy Correspondence Analysis. Fuzzy variables are a generalisa-
tion of categorical variables, where items have a given probability of belonging
to the categories of each fuzzy variable.

• dudi.fpca: Fuzzy PCA (see above)
• dudi.mix: Mixed type Analysis. This is an alternative to the dudi.
hillsmith function.



Chapter 6
Description of Species Structures

Abstract Several simple data analysis methods can be used to analyse species
data tables, i.e., tables having sites as rows and species as columns. Like in the
previous chapter, simple means that these methods are adapted to the analysis
of only one table. Three particular data analysis methods will be studied here:
Correspondence Analysis (CA), centred Principal Component Analysis (cPCA),
and Principal Coordinate Analysis (PCoA).

6.1 Introduction

Community ecology aims to study patterns and processes underlying the coexis-
tence of individuals of different species (species assemblage). To achieve this goal,
field works are performed to describe several sites by their species compositions
(e.g., abundance, presence-absence). This information is stored as a sites × species
table that can be graphically represented (Fig. 6.1). Following the continuum
theory of Gleason (1926), a common approach (McIntosh 1978) consisted in
rearranging the sequence of sites and species, both horizontally and vertically, to
highlight the main organisation of ecological communities (Fig. 6.1). In the final
arrangement, sites (respectively species) are ordered so that the position of a given
site (respectively species) should reflect its similarity with others.

In the first works, the rearrangement is performed by hand (Curtis and McIntosh
1951) and the result is often subjective, depending on the experience of the
ecologist. Hence, several methods have been proposed to perform an objective
ordering of sites and species. Goodall (1954) proposed the generic term ordination
to describe any techniques that allow to rearrange an ecological table. He suggested
that this ordination can be performed on several dimensions and used Principal
Component Analysis (PCA) to analyse a floristic data set. PCA has been widely
used by ecologists but also strongly criticised due to its underlying assumption of
linear species responses which is inadequate in the context of gradient analysis
(Box 6.1, Swan 1970; Austin and Noy-Meir 1971; Beals 1973). Based on the
principle of weighted averaging (Box 6.1), Correspondence Analysis (CA) consid-
ers unimodal species responses. This method developed by Benzécri (1969) has

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Thioulouse et al., Multivariate Analysis of Ecological Data with ade4,
https://doi.org/10.1007/978-1-4939-8850-1_6
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library(ade4)
library(adegraphics)
data(dunedata)
afc1 <- dudi.coa(dunedata$veg, scannf = FALSE)
g1 <- table.value(dunedata$veg, symbol = "circle", ppoints.cex = 0.5,
      plot = FALSE)
g2 <- table.value(dunedata$veg, coordsx = rank(afc1$co[,1]),
      coordsy = rank(afc1$li[,1]), symbol = "circle", ppoints.cex = 0.5, plot = FALSE)
cbindADEg(g1, g2, plot = TRUE)

Fig. 6.1 Graphical representation of a floristic table (columns correspond to 30 species, rows to 20
sites). The size of symbols is proportional to species abundance. On the right, rows and columns are
reordered using Correspondence Analysis (Sect. 6.2) to highlight the main structure. Data available
in dunedata in ade4.

been popularised by Hill (1974, 1973) in Ecology using the iterative algorithm of
reciprocal averaging. CA uses the χ2 distance in a symmetric manner for sites and
species. If the study mainly aims to characterise the variations of diversity among
sites (i.e., β diversity), other types of distance can be envisaged. In this case, the
analysis focuses on the similarities between sites (Box 3.1) and Principal Coordinate
Analysis (PCoA) can be applied to summarise the information in few dimensions.

This chapter shows how the choice of a data analysis method should be driven
by the type of data (count tables, presence-absence, abundance indices, etc.) but
also by the objectives of the study. Indeed, each method has its own mathematical
properties, and these properties relate to an underlying ecological model that must
be adapted to the objectives of the study.

Box 6.1 Species Response Curve, Weighted Averaging and Ordination
Methods
Usually, ecologists measure the abundances of m species and the values
of p environmental variables in n sites. These data are stored in matrices

(continued)
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Box 6.1 (continued)
Y and X, respectively. As both types of information are recorded for the
same sites, it is possible to depict the abundance of a given species as a
function of environmental gradient. Species distribution modelling aims to fit
a statistical model to these data to describe species response curves and/or
predict spatial distribution (Austin 2002). Principal Component Analysis
(PCA) and related methods (e.g., Redundancy Analysis, RDA, Sect. 8.4.1) are
based on correlations/covariances and thus assume implicitly linear species-
environment relationships. The main gradients are estimated by PCA and
constrained to be linear combination of environmental descriptors (X) in
RDA. In the real world, linear responses are rarely observed. The main
exception relates to the sampling of a small part of the gradient, leading to
the modelling of a partial response curve:

k−th environmental gradient (xik)
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y ij
)

Unsampled part
 of the gradient

Several widely used statistical methods consider that species responses on
gradient are symmetric and bell shaped (i.e., Gaussian curves) but some more
flexible techniques are available to deal with asymmetric curves (Oksanen and
Minchin 2002). In this context, response of species j to the environmental
gradient k can be easily summarised by the species optimum (niche position
or centroid, μjk), maximum (hjk) and niche width (tolerance, tjk):
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Under the assumption of Gaussian response, the method of weighted
averaging (Whittaker 1956) allows to estimate the niche centroid (μjk) by

(continued)
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Box 6.1 (continued)
computing the average environmental condition where the species is present
(weighted by the abundances):

μ̂jk =
∑n

i=1 yij xik
∑n

i=1 yij

If Dm is an m × m diagonal matrix with the total abundances of species,
then YD−1

m is the table of species profiles containing relative abundances
(yij /
∑n

i=1 yij ). Optima for all species on all environmental variables are then
simply computed by the matrix product (YD−1

m )�X. Hence, all methods that
transform raw data into species profiles implicitly assume that species have
unimodal responses that can be summarised by their optima.

Among these methods, Correspondence Analysis (CA) and Canonical
Correspondence Analysis (CCA, Sect. 8.4.2) are based on the reciprocal aver-
aging algorithm, an iterative procedure based on the successive estimations
of site and species scores by weighted averaging (Hill 1973). They provide
estimates for the position of the niche centroids on the main gradients and
maximise their separation (ter Braak 1985; ter Braak and Looman 1986).
These gradients are estimated by CA (latent gradients) and constrained to
be a linear combination of the environmental variables (X) in CCA. As these
methods maximise the separation of niche positions, they are also particular
cases of Discriminant Analysis (ter Braak and Verdonschot 1995; Lebreton
et al. 1988a).

6.2 Correspondence Analysis (CA)

Correspondence analysis (CA) is designed to analyse two-way contingency tables.
These tables contain counts of individuals belonging to categories of two categorical
variables. In R, the table function allows to build such table by crossing two
factor objects. For instance, the frequency distribution of 70 species (from the
carniherbi49 data set of ade4) according to their order and diet is obtained by:

library(ade4)
data(carniherbi49)
(tab <- table(carniherbi49$taxo$ord, carniherbi49$tab2$clade))

Carnivore Herbivore
Artiodactyla 0 24
Carnivora 19 0
Perissodactyla 0 6
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By definition, a contingency table contains only positive values and its rows and
columns play the same role as they both correspond to categories. It is possible to
compute marginal (i.e., by row and column) and grand totals:

rowSums(tab)

Artiodactyla Carnivora Perissodactyla
24 19 6

colSums(tab)

Carnivore Herbivore
19 30

sum(tab)

[1] 49

The association between the two categorical variables can be evaluated by a χ2

test. The statistics of this test measures the deviation between observed counts and
those expected under the hypothesis of independence between the two variables.
Here, we used a randomisation version of the test:

chisq.test(tab, simulate.p.value = TRUE)

Pearson's Chi-squared test with simulated p-value
(based on 2000 replicates)

data: tab
X-squared = 49, df = NA, p-value = 5e-04

A sites × species table is not a contingency table sensu stricto as the sampling
unit is the site. However, it can be treated as a contingency table by considering that
individuals have been sampled and two categorical variables (namely, the species
and the site) have been measured. This would correspond to sample a number of
individuals so that the list of species is simply the result of the exploration of the
biological diversity of the environment, and the list of sites is simply the result of
the exploration of the spatial extent of the study area.

We considered the doubs data set (see Sect. 5.2). In this data set, the
doubs$fish data frame contains the number of fish of 27 species that were
found in the 30 sites along the Doubs river. In this case, summing values by row,
columns or both makes sense as it produces the number of fishes sampled in each
site, the number of fishes for each species and the total number of fishes:

data(doubs)
fish <- doubs$fish
rowSums(fish)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
3 12 16 21 34 21 16 0 14 14 11 18 19 28 33 40 44 42 46 56 62 72 4

24 25 26 27 28 29 30
15 11 43 63 70 87 89

colSums(fish)

Cogo Satr Phph Neba Thth Teso Chna Chto Lele Lece Baba Spbi Gogo Eslu
15 57 68 73 15 19 18 26 43 56 43 27 55 40

Pefl Rham Legi Scer Cyca Titi Abbr Icme Acce Ruru Blbj Alal Anan
36 33 29 21 25 45 26 18 38 63 31 57 27

sum(fish)

[1] 1004

Several books were dedicated to CA, see, for example, Nishisato (1980) and
Greenacre (1984). The theory of CA in the framework of the duality diagram is
summarised in Box 6.2. In ade4, CA is computed with the dudi.coa function.
The first argument of this function is the data frame containing species counts.
Additional arguments scannf and nf work as in the dudi.pca function to
choose the number of axes on which scores and loadings are computed (see
Sect. 5.2). All the outputs of this function are grouped in a dudi object (subclass
coa), and Box 6.3 recalls the corresponding output elements.

coa1 <- dudi.coa(fish, scannf = FALSE, nf = 2)

Correspondence Analysis allows to summarise the structure of a contingency
table by identifying associations between categories of both variables (sites and
species). The initial data transformation for a CA is different from the transfor-
mation used for a PCA (centring and standardisation). In CA, counts are first
transformed into frequencies (see Box 6.2). These frequencies are then turned into
relative frequencies, dividing them by marginal frequencies, and they are finally
centred. This transformation means that CA is based on relative composition (for
both species and sites) so that quantitative differences are removed contrary to
PCA that works on abundance values. This difference is illustrated with a simulated
data set where the abundance of 3 species are generated for sites using a Gaussian
response model (Box 6.1). Curves for species 1 and species 2 differ only by their
maximum abundance whereas curves for species 2 and 3 differ only for the niche
position.

fgauss <- function(x = 1:20, mu, t, h) h * exp(-(x - mu)^2/
(2 * t^2))

sp1 <- fgauss(mu = 10, t = 5, h = 35)
sp2 <- fgauss(mu = 10, t = 5, h = 10)
sp3 <- fgauss(mu = 13, t = 5, h = 10)
sim <- round(cbind(sp1, sp2, sp3))

PCA and CA are applied on this simulated data set and distances among species
are then computed on data transformed by these two methods.
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Fig. 6.2 Simulation of the response curves of 3 species for 20 sites. On the right, distances
among species are computed in the case of PCA or CA and represented by heatmaps. Black cells
correspond to high distances, white cells to low distances.

dpca <- dist.dudi(dudi.pca(sim, scale = FALSE, scannf = FALSE),
amongrow = FALSE)

dcoa <- dist.dudi(dudi.coa(sim, scannf = FALSE), amongrow = FALSE)
g1 <- s1d.curves(sim, p1d.hori = FALSE, paxes.draw = TRUE,

plines.col = 1:3, ppoints.col = 1:3, xlab = "sites",
ylab = "abundance", key = list(space = "inside",

text = list(lab = colnames(sim), col = 1:3)),
plot = FALSE)

g2 <- table.image(dpca, axis.text = list(col = 1:3),
xlab = "PCA", plot = FALSE)

g3 <- table.image(dcoa, axis.text = list(col = 1:3),
xlab = "CA", plot = FALSE)

In PCA, species 2 and 3 are the closest as their absolute abundances in sites are
similar (Fig. 6.2). In CA, the values themselves have no influence, it is the shape
of the profiles that matters. Hence, species 1 and 2 are the closest as they have the
same niche positions. Hence, CA should be used only when the study should focus
on relative composition and not consider difference in abundance. This is the case
in gradient analysis where species should be ordered by their niche positions on an
environmental or a latent gradient.

The same rationale holds for sites. We consider three sites of the simulated
data set:

sim3 <- sim[c(1, 10, 20), ]
rownames(sim3) <- c(1, 10, 20)
sim3

sp1 sp2 sp3
1 7 2 1
10 35 10 8
20 5 1 4
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When PCA is applied, absolute abundances are considered and site 1 is thus more
similar to site 20 than to site 10:

dist.dudi(dudi.pca(sim3, scale = FALSE, scannf = FALSE))

1 10
10 29.950
20 3.742 31.575

On the other hand, site 1 is much more similar to site 10 than to site 20 when CA
is applied:

dist.dudi(dudi.coa(sim3, scannf = FALSE))

1 10
10 0.1332
20 0.7897 0.6576

These patterns are due to the fact that CA works on relative compositions and
the high proportion of species 1 in sites 1 and 10 (around 70% of the individuals)
explains the high level of similarity between these two sites:

prop.table(sim3, 1)

sp1 sp2 sp3
1 0.7000 0.2000 0.1000
10 0.6604 0.1887 0.1509
20 0.5000 0.1000 0.4000

These differences between PCA and CA are due to different parametrisation for
data transformation ($tab), sites ($lw) and species weights ($cw) which imply
different ways to compute distances among sites: CA uses the χ2 distance whereas
PCA is based on Euclidean distance.

Lastly, note that CA is a symmetric method (see Box 6.2), while PCA is
intrinsically asymmetric. In PCA, rows and columns play a very different role:
columns are variables and rows are observations. The PCA of a table and the PCA
of the transpose of this table give very different results (see, for example, R-mode
and Q-mode PCA, Legendre and Legendre 1998). Conversely, rows and columns
have the same role in CA, and the CA of the transpose of a table gives exactly the
same results as the CA of the table itself. This means that, a priori, CA should be
used on tables where rows and columns play the same role.

Figure 6.3 shows the first two axes factor maps of CA applied on the
doubs$fish data set. Fish species (left) and sampling sites (right) positions
are drawn with the s.label function.

The fish species factor map (Fig. 6.3, left) shows very clearly that three zones
can be distinguished along the stream. The first one is the trout zone (lower left
corner), where the most frequent species are brown trout (Satr), minnow (Phph)
and stone loach (Neba). The second one is the grayling zone (upper left corner),
where grayling (Thth), blageon (Teso) and european bullhead (Cogo) are also
present, while the first three species are decreasing. The last one (on the right of the
figure) is the downstream zone, where all other species are present.
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sl1 <- s.label(coa1$co, plabels.optim = TRUE, ppoints.cex = 0.5,
plot = FALSE)

sl2 <- s.label(coa1$li, plabels.optim = TRUE, ppoints.cex = 0.5,
plot = FALSE)

ADEgS(list(sl1, sl2))

Fig. 6.3 Correspondence Analysis of the Doubs fish species data table. Left: fish species factor
map, right: sampling sites factor map.

The sites factor map shows (Fig. 6.3, right) the sites that belong to the three
zones. The trout zone extends from site 1 to site 10 (with the exception of site
8), the grayling zone goes from site 11 to site 18, and all other sites belong to
the downstream zone. This typology is in good agreement with what is known
about the biology of these species in this region (Verneaux 1973) and with the Huet
zonation.

There is however a problem with the results of this CA: the high pollution peak
that was detected at sites 23 to 26 by the PCA of water physico-chemical parame-
ters (see Fig. 5.6) does not seem to have any effect on fish species distribution. This
is strange, as many fish species are very sensitive to water pollution.

And indeed, looking at the raw fish counts (Fig. 6.4) shows that the effect of this
pollution on fish numbers is obvious.

Figure 6.4 was drawn using the table.value function. This function plots
the whole data table, with black squares proportional to the number of fishes (27
species in columns and 30 sites in row). The trout zone and the grayling zone are
clearly visible on the left of the figure, but the downstream zone is obviously cut in
two parts, just after site 22. At site 23, all species show a dramatic decrease, with
only three species still present: Lece (chub), Ruru (roach) and Alal (bleak). This
effect of pollution persists along sites 24 to 26. Fish numbers increase downstream,
as the stream restoration process takes place and pollution slowly disappears. As CA
considers relative and not absolute abundances, the decrease of abundances due to
pollution cannot be identified with this method.
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Fig. 6.4 Number of fish of the 27 species (columns) found in the 30 sites (rows) of the doubs
data set. The area of black squares is proportional to the number of fishes.

Biplot can be produced for CA using the biplot or scatter functions.
In ade4, three types of biplots can be produced (Boxes 6.2 and 6.3) using the
argument method (Oksanen 1987). If method = 2, species are positioned by
a unit-variance score ($c1) and sites by weighted averaging ($li). If method
= 3, sites are positioned by a unit-variance score ($l1) and species by weighted
averaging ($co). Figure 6.5 illustrates this representation. By default, (method =
1) corresponds to a compromise between these two representations ($li and $co).

Box 6.2 Correspondence Analysis: Basic Mathematical Definitions
Let Y = [yij ] be a contingency table with n rows and m columns. From the
table of frequencies P = [pij ] = [yij /y••] (where y•• is the grand total of the
contingency table), two vectors n = P1m = (p1• · · · pn•)� and m = P�1n =
(p•1 · · · p•m)� of row and column sums are derived. The diagonal matrices of
the row and column weights are:

Dn = diag(n) and Dm = diag(m)

(continued)
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Box 6.2 (continued)
Lastly, the matrix P is doubly centred, such that:

P0 = P − Dn1n1m
�Dm = [pij − pi•p•j ]

Correspondence analysis is the analysis of the triplet:

(

D−1
n P0D−1

m , Dm, Dn

)

and the associated diagram is:

The total inertia of this triplet is:

I(
D−1

n P0D−1
m ,Dm,Dn

) = Trace(D−1
n P0D−1

m DmD−1
m P0

�D−1
n Dn)

= Trace(D−1
n P0D−1

m P0
�)

=
n
∑

i=1

m
∑

j=1

(pij − pi•p•j )2

pi•p•j

This quantity is equal to the χ2 statistic computed on the contingency table
divided by the number of individuals (y••). The standard χ2 test evaluates if
the distribution of individuals among categories (i.e., rows and columns) is
different from a random arrangement. CA decomposes this total inertia and
thus identifies which categories deviate the most from a random distribution.

According to Property 3.1 (Box 3.2), CA searches for a principal axis a
maximising:

∥
∥
∥D−1

n P0D−1
m Dma

∥
∥
∥

2

Dn

=
∥
∥
∥D−1

n P0a
∥
∥
∥

2

Dn

The matrix D−1
n P0 contains the centred row profiles such that the product

D−1
n P0a places rows at the barycentres (weighted averages, see Box 6.1) of the

column points, and thus the quantity maximised is simply a variance between
rows. Hence, in R

m, columns have a unit-variance score a that maximises the
variance between the row barycentres.

(continued)
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Box 6.2 (continued)
In R

n, Property 3.2 (Box 3.2) shows that CA searches for a principal
component b maximising:

∥
∥
∥D−1

m P0
�D−1

n Dnb
∥
∥
∥

2

Dm

=
∥
∥
∥D−1

m P0
�b
∥
∥
∥

2

Dm

By symmetry, the matrix D−1
m P0

� contains the centred column profiles
such that the product D−1

m P0
�b places columns at the barycentres (weighted

averages) of the row points (b). Hence, the rows are placed by a unit-
variance score b that maximises the variance between column barycentres

(
∥
∥D−1

m P0
�b
∥
∥

2
Dm

).
These two viewpoints show that CA treats the rows and columns of the

table simultaneously and in a symmetric manner. Hence, analysing Y or
Y� produces the same results. As CA puts rows at the weighted average of
columns and simultaneously columns at the weighted average of rows, it is
also known under the name of reciprocal averaging (Hill 1973). While CA
is achieved in ade4 using the eigen decomposition of a duality diagram,
reciprocal averaging is an iterative algorithm that converges to the CA
solution.

Box 6.3 Correspondence Analysis: dudi Output Elements
In the ade4 package, the results of a Correspondence Analysis are stored in
an object of class dudi, subclass coa. This object is a list with 12 elements,
including the usual elements of any dudi. In this list, elements of particular
interest are:

• $eig: eigenvalues (�)
• $cw: column weights (Dm)
• $lw: row weights (Dn)
• $tab: centred relative frequencies table (D−1

n P0D−1
m )

• $c1: unit-variance column scores (A)
• $li: row scores as weighted averages (L = D−1

n P0A)
• $l1: unit-variance row scores (B)
• $co: column scores as weighted averages (C = D−1

m P0
�B)

• $N: total sum (y••)

Three types of biplot can be drawn with these coordinates, using the
couples ($li, $c1), ($l1, $co) and ($li, $co). A fourth type (recip-
rocal scaling, Thioulouse and Chessel 1992) can be drawn using the
reciprocal.coa and score functions.
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d = 1

Thth

sc1 <- scatter(coa1, method = 3, posieig = "none", plot = FALSE)
sv1 <- s.value(coa1$l1, fish[, 5], col = 1:2, plegend.drawKey = FALSE,
      symbol = "circle", centerpar = TRUE)
sd1 <- s.distri(coa1$l1, fish[, 5, drop = FALSE], col = "red",

ellipseSize = 0, ppoints.cex = 0, plot = FALSE)
cbindADEg(sc1, sv1 + sd1, plot = TRUE)

Fig. 6.5 CA of Doubs fish data table. Left: CA biplot (method = 3) where sites are positioned
by a unit-variance score ($l1) and species by weighted averaging ($co). Right: principles of
weighted averaging illustrated for the grayling (Thth). Sites are represented using the s.value
function with symbols proportional to the abundance of grayling. The positions are given by $l1.
Then, the function s.distri is used to position the grayling by weighted averaging. The species
is represented by a star linking the species to all the sites where it occurs.

6.3 Centred PCA (cPCA)

CA outputs do not show the effect of the pollution peak on fishes and the loss of
almost all species. This is because CA works on profiles, and therefore removes
quantitative differences between sites and between species. CA compares the shape
of the profiles, which means that sites (or species) with different fish numbers but
with the same profile shape will seem identical. Pollution, by killing almost all the
fishes indistinctly has no influence on the shape of the profiles, since all the species
are affected in the same way.

If a quantitative effect must be evidenced, then a PCA should be used instead.
However, as explained in Sect. 5.2, the difference of variance between species
should not be removed, which means that a covariance matrix PCA (also called
“centred PCA”) should be preferred to a correlation matrix PCA.

Figure 6.6 shows the results of a covariance matrix PCA on the fish count table.
The species factor map shows that the three zones (trout, grayling and downstream)
are still detected and ordered on the first principal component from left to right. On
the sites factor map, downstream sites are on the right, with the exception of sites
23, 24 and 25, which are on the left, near sites 1 and 8. What is the common point
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cpca <- dudi.pca(fish, scale = FALSE, scannf = FALSE, nf = 2)
sl1 <- s.label(cpca$co, plabels.optim = TRUE, plot = FALSE)
sl2 <- s.label(cpca$li, plabels.optim = TRUE, plot = FALSE)
ADEgS(list(sl1, sl2))

Fig. 6.6 Centred PCA of Doubs fish data table. Left: fish species factor map, right: sites factor
map.

between sites 1, 8, and 23, 24, 25? It is simply a very low number of fishes, or
even the absence of any fish in site 8 (see Fig. 6.7).

6.4 Standardised and Non-centred PCA

The choice of centring and standardisation in PCA is very important, and the
corresponding analyses can give very different results. Restricting the choice to the
usual dichotomy “same units ⇒ covariance matrix PCA” and “different units ⇒
correlation matrix PCA” can be inadequate. There are other types of centring and
standardisation: non-centred PCA, de-centred PCA, block-standardised PCA, etc.,
that can prove very useful.

Figures 6.8 and 6.9 show the differences between a correlation matrix PCA (also
called “standardised PCA”) and a non-centred PCA (ncPCA) on the Doubs fish
counts table.

The sites factor map of the normed PCA (Fig. 6.8, right) is very similar to the sites
factor map of the centred PCA. But the correlation circle of the normed PCA shows
that the standardisation has almost completely removed the distinction between the
trout zone and the grayling zone. All the species have been rescaled to unit variance,
and some important information about species distribution has been lost. In this
analysis, all the species have equal importance. In centred PCA, on the other hand,
species with high variations of abundance (and thus high variance) would have more
importance than species with low variation of abundances.
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Fig. 6.7 Total number of fishes in the 30 sites of the doubs$env data set.
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pca <- dudi.pca(fish, scannf = FALSE, nf = 2)
sc1 <- s.corcircle(pca$co, plot = FALSE)
sl1 <- s.label(pca$li, plabels.optim = TRUE, plot = FALSE)
ADEgS(list(sc1, sl1))

Fig. 6.8 Normed PCA of Doubs fish data table. Left: fish species correlation circle, right: sites
factor map.

Conversely, the non-centred PCA (ncPCA) keeps the distinction between the two
zones, and puts the empty site (8) at the origin (0, 0) in Fig. 6.9 (just like CA). In
centred PCA, the origin corresponds to the average composition of the study area.
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ncpca <- dudi.pca(fish, scale = FALSE, center = FALSE, scannf = FALSE)
sl1 <- s.label(ncpca$co, plabels.optim = TRUE, plot = FALSE)
sl2 <- s.label(ncpca$li, plabels.optim = TRUE, plot = FALSE)
ADEgS(list(sl1, sl2))

Fig. 6.9 Non-centred PCA of Doubs fish data table. Left: fish species factor map, right: sites factor
map.

This example illustrates the fact that the choice of a data analysis method should
not be based only on the type of data. The usual shortcuts “quantitative variables
⇒ PCA” and “count tables ⇒ CA” may lead to very bad results. PCA and CA are
very different methods that should be used with caution. The choice must be based
on the adequacy of the mathematical properties of the method with the aims of the
study.

6.5 Principal Coordinate Analysis (PCoA)

Different multivariate methods induce different ways to compute distances among
sites (Euclidean distance for PCA, χ2 distance for CA, see Sect. 6.2). Many
distance measures have been defined in particular situations (genetic data, presence-
absence, etc.), with special properties well adapted to these situations. See Chap. 7
of Legendre and Legendre (1998) for a detailed analysis and comparison of the
ways to measure resemblance between sites (or species) in Ecology. It is therefore
desirable to be able to introduce these particular distance measures in multivariate
data analysis methods. Principal Coordinate Analysis (PCoA, Gower 1966) takes
distance matrix as input and returns coordinates for individuals in a low-dimensional
space that best preserve the original distances.

The advantage of PCoA over PCA or CA is that it allows to choose a particular
distance measure between sites (or species). A drawback is that it focuses either on
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individuals or variables, not both. Hence, only one viewpoint (cloud) of the duality
diagram theory is considered (see Box 3.1).

Principal Coordinate Analysis can be useful in two different situations:

• when the rectangular (individuals × variables) data table is not available for some
reason, for example when the experimental design implies a direct measure of
distances instead of measuring parameters on sampling units,

• when the rectangular measures table is available but a particular distance, more
appropriate to the data set must be used.

The goal of the analysis is to give Euclidean representations (factor maps)
that display individuals, starting from a matrix of Euclidean distances between
these individuals. The use of the dudi.pco function should thus be restricted
to Euclidean distance matrices. It can be tested using the is.euclid function.
If a non-Euclidean distance matrix is used, PCoA will return negative eigenvalues
because the method is not able to return a configuration of individuals that strictly
preserve the distances. An alternative is to approximate the distance matrix by a
Euclidean one with a simple transformation (see cailliez or lingoes).

A very useful characteristic of the dudi.pco function is that it allows to
introduce distance matrices into the duality diagram framework by returning an
object of class dudi. This means that a dudi of class pco can, for example,
be coupled with another data table with a Coinertia Analysis (Sect. 8.3). This
can be used to analyse the relationships between a distance matrix and a table
of environmental variables, like in db-RDA (Borcard et al. 2011; Legendre and
Anderson 1999). An example of application in the field of microbiology and using
Coinertia Analysis instead of Redundancy Analysis is given by Jarraud et al. (2002).

The basic properties and the mathematical notations of PCoA are summarised in
Box 6.4.

Box 6.4 PCoA: Basic Mathematical Definitions
Let � = [δij ] be a Euclidean distance matrix between n individuals. Principal
coordinate analysis (PCoA, Gower 1966) aims to find a configuration of
individuals in a multidimensional space that preserves these distances. We
consider the possibility to assign weights to individuals as proposed by Gower
(1984) and Gower and Legendre (1986) by defining D a diagonal matrix of
weights (this functionality is provided by the function dudi.pco of ade4).

Let � = [− 1
2δ2

ij ] and mi , mj denote the weighted means of the rows and
columns of � and m its global weighted mean. The matrix � is the doubly
centred (by rows and columns) version of �:

� = [ωij ] =
[

−1

2
δ2
ij − mi − mj + m

]

(continued)
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Box 6.4 (continued)

Using matrix notation, we have � = H�H� where H = (In − 1n1n
�D
)

is
the centring operator and 1n is a vector of ones (of length n).

PCoA consists in the following diagonalisation:

D
1
2 H�H�D

1
2 = U�U�

After left and right multiplications by D− 1
2 , it can be rewritten as:

� = H�H� = D− 1
2 U�U�D− 1

2 = XX�

The matrix X = D− 1
2 U�

1
2 contains the coordinates of individuals in

the multidimensional space and it is possible to compute the distances dij

between two individuals i and j in this new space. Let xi and xj be the vectors
of coordinates (i-th and j -th rows of X), the squared distance is equal to (see
Appendix A.2):

d2
ij = ∥∥xi − xj

∥
∥

2
D = ‖xi‖2

D + ∥∥xj

∥
∥

2
D − 2
〈

xi |xj

〉

D = ωii + ωjj − 2ωij

By definition, ωij = − 1
2δ2

ij −mi −mj +m and the distance of an individual
with itself is null (δii = 0). Hence, ωii = −2mi + m and ωjj = −2mj + m

and the previous equation simplifies to:

d2
ij = δ2

ij

Hence, as expected, the configuration of individuals obtained by PCoA
(X) preserves the original distance matrix. If only few dimensions are kept
(few columns in X), the original distances are not strictly preserved but PCoA
provides the best approximation. If � is not Euclidean, the full representation
of the distance is not possible and the diagonalisation step of PCoA will return
negative eigenvalues and complex eigenvectors.

All the outputs of the dudi.pco function are grouped in a dudi object
(subclass pco), and Box 6.5 recalls the corresponding output elements.

The first argument to the dudi.pco function must be an object of class dist
containing a Euclidean distance matrix. Other arguments are similar to arguments of
the other dudi functions, except the full and tol arguments. full = TRUE
means that all dimensions should be kept in returned objects. tol, the tolerance
threshold, is used to test whether the distance matrix is Euclidean: an eigenvalue is
considered positive if it is larger than -tol * lambda1 where lambda1 is the
largest eigenvalue.
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Box 6.5 PCoA: dudi Output Elements
In the ade4 package, the results of a PCoA are stored in an object of class
dudi, subclass pco. This object is a list with 11 elements, including the usual
elements of any dudi. In this list, standard outputs of PCoA are provided:

• $eig: eigenvalues (�)
• $lw: weights for individuals (D)

• $li: coordinates for individuals (X = D− 1
2 U�

1
2 )

• $l1: principal components (D− 1
2 U)

Some other elements are added to the returned object. This allows to use
objects of subclass pco as argument to other functions that deal with dudi
objects:

• $cw: weights for “variables” (I)

• $co: coordinates for “variables” (�
1
2 )

• $tab: individuals by “variables” table (X = D− 1
2 U�

1
2 )

Note that the number of columns of $tab is equal to rank of the distance
matrix whereas it is the number of axes that have been kept by the user (using
the nf argument) for $li.

We used PCoA on the doubs$fish data set. The first step consists in
computing a distance matrix between the rows of the data frame (sites). The
dist.binary function computes the Jaccard index (s) between sites after
presence/absence transformation. The distances are then computed as

√
1 − s. The

dudi.pco function is then used to perform the PCoA:

dfishJ <- dist.binary(fish, method = 1)
(pcoJ <- dudi.pco(dfishJ, scannf = FALSE))

Duality diagram
class: pco dudi
$call: dudi.pco(d = dfishJ, scannf = FALSE)

$nf: 2 axis-components saved
$rank: 26
eigen values: 0.1023 0.03547 0.03034 0.02503 0.02042 ...
vector length mode content

1 $cw 26 numeric column weights
2 $lw 30 numeric row weights
3 $eig 26 numeric eigen values

data.frame nrow ncol content
1 $tab 30 26 modified array
2 $li 30 2 row coordinates
3 $l1 30 2 row normed scores
4 $co 26 2 column coordinates
5 $c1 26 2 column normed scores
other elements: NULL
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Fig. 6.10 Principal Coordinate Analysis of the Doubs fish species data table.

Other packages contain useful functions to compute ecological (di)similarity
indices, distance measures and standardising transformations, like vegan
(vegdist and decostand functions) and labdsv (dsvdis function).

Figure 6.10 shows the same upstream-downstream ordination of sites as with
previous analyses, and the same exceptional position of sites 23, 24 and 25
(absence of fish due to pollution, see Fig. 6.6), near site 8 (zero fish between the
trout zone and the grayling zone) and site 1 (near the source, with only 3 trouts).

6.6 Other Simple Methods

The ade4 package provides other methods for the analysis of one species table (see
the first part of Table 3.2), but we are not going to detail them here. Here is the list
of the functions and the corresponding methods (see the online documentation for
more information on how to use them and examples of application):

• dudi.dec: Decentred Correspondence Analysis. This analysis can be used
when a particular column profile is available. This profile will be used as a
reference in a Correspondence Analysis type analysis.
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• dudi.nsc: Non-Symmetric Correspondence Analysis. This analysis is a Cor-
respondence Analysis with uniform column weights (but keeping usual CA row
weights). See Sect. 14.2.



Chapter 7
Taking into Account Groups of Sites

Abstract This chapter shows how the partitioning of sites can be taken into account
during the analysis of an ecological data table. We present the Between-Class
and Within-Class Analyses and Discriminant Analysis. Then we present several
examples of use of these methods on a small data set with simple structures. The
chapter ends with a comparison between Discriminant Analysis and Between-Class
Analysis.

7.1 Introduction

Taking into account the existence of groups of sites (or “samples”) is achieved by
decomposing a data table into two additive components. The first relates to the
differences between groups and its analysis aims to describe the main characteristics
of the groups. The second component contains only within-groups variations and its
analysis focuses on the characteristics of the residuals (i.e., the data variability if
groups did not exist).

Groups are to be taken here in a very broad sense. They can, for example,
represent space-time structures, like sites belonging to the same geographic region,
or to the same period of time. They can also correspond to an experimental design,
with groups representing different treatments. One of the advantages of the duality
diagram framework used in the ade4 package is that all the simple methods that have
been described in Chaps. 5 and 6 can be used here, which means that the effect of
groups can be analysed in any type of data table (quantitative, qualitative or mixed
tables, counts, presence/absence, row percentages, etc.).

Two types of analyses, called Between-Class and Within-Class Analysis are
implemented in ade4. The corresponding generic functions are named bca (for-
merly between) and wca (formerly within) and several methods are provided:

library(ade4)
methods(bca)

[1] bca.coinertia* bca.dpcoa* bca.dudi* bca.rlq*
see '?methods' for accessing help and source code

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Thioulouse et al., Multivariate Analysis of Ecological Data with ade4,
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119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8850-1_7&domain=pdf
https://doi.org/10.1007/978-1-4939-8850-1_7


120 7 Taking into Account Groups of Sites

methods(wca)

[1] wca.coinertia* wca.dpcoa* wca.dudi* wca.rlq*
see '?methods' for accessing help and source code

Between-Class Analysis models the differences between groups by computing
the group means, and the resulting means table is then analysed. Conversely,
Within-Class Analysis removes the group effect by computing the residuals between
observed data and group means, and analyses the table of these differences (see
Box 7.1).

The first analysis can be used to visually check the existence of groups, to
describe the main characteristics of the differences between the groups (for example,
which variables are best related to which groups?), and to test their statistical
significance using a permutation test. The second one tries to find out whether other
structures remain in the data table that can be revealed after removing a strong group
effect.

Box 7.1 Partitioning the Total Inertia
Let us consider an n×p matrix X with the measurements of p variables for n

individuals (sites). This data table is treated by a simple multivariate analysis
thus defining a statistical triplet (X, Q, D) where D = diag(w1 · · ·wn) is the
n × n diagonal matrix of site weights.

We consider a categorical variable with g categories (groups), namely
G1, . . . ,Gk, . . . ,Gg , measured on the n individuals (colours in figure below).
This variable can be coded as an n × g matrix H = [hik] of dummy variables
(see Appendix A.7), with:

hik =
{

1 if i ∈ Gk

0 if i /∈ Gk

Let PH = H(H�DH)−1H�D be the projection operator on the dummy
variables, the table X can be decomposed in two additive parts:

X = PHX + (In − PH)X = XB + XW

The n × p matrix XB contains groups means (computed using weights

in D), repeated inside each group (XB =
[

x̄k
j

]

for i ∈ Gk) where x̄k
j =

∑

i∈Gk
wixij is the mean of the j -th variable for group k. The n × p

matrix XW contains differences between observed values and group means

(XW =
[

xij − x̄k
j

]

).

This partitioning is illustrated here:

(continued)
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Box 7.1 (continued)
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The total inertia (see Box 3.3) of the analysis of (X, Q, D) can be
decomposed as follows:

I(X,Q,D) = Trace(X�DXQ)

= Trace((XB + XW)�D (XB + XW) Q)

so that

I(X,Q,D) = I(XB,Q,D) + I(XW ,Q,D)

The first element measures the inertia explained by the differences among
groups (between-class inertia). Between-Class Analysis (see Box 7.2) focuses
on these differences and is the analysis of the triplet (XB, Q, D). On the other
hand, the second element measures differences within groups (within-class
inertia). Within-Class Analysis (see Box 7.4) removes differences among
groups and focuses on (XW, Q, D).

If we consider Dg = H�DH the g × g diagonal matrix of groups weights
(obtained by summing individual weights per group), we can define X̄ =
D−1

g H�X the g × p matrix of group means. Then, Between-Class Analysis

corresponds also to the analysis of (X̄, Q, Dg).
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7.2 An Environmental Situation

We have already used the meaudret data set (Pegaz-Maucet 1980) in Chaps. 2, 3
and 4. In this chapter, we use the meau data set which has been chosen by Dolédec
and Chessel (1987) to illustrate the first description of Between-Class and Within-
Class Analyses.

Both data sets contain the same kind of data, physico-chemical parameters
measured four times (four seasons) at several sites along a small stream called
the Méaudret (South-East of France). But in the meaudret data set, the oxygen
variable has been removed because it takes the same values in all the sampling sites
during winter. This can cause an error in some situations (particularly in multiway
analyses). The meaudret$env data frame therefore contains only nine variables,
while the meau$env data frame contains ten variables. The second difference is
the fact that the meaudret data set gives the results of five sampling sites, while
the meau data set includes a sixth site. This site is located on another stream, the
Bourne river, into which the Méaudret flows. It can be used as a control site, as it is
situated upstream the Méaudret and Bourne confluence.

The meau$env data frame therefore has 24 rows and 10 columns:

library(ade4)
library(adegraphics)
data(meau)
env <- meau$env
dim(env)

[1] 24 10

The ten columns correspond to ten environmental variables: water temperature,
flow, pH, conductivity, oxygen, biological oxygen demand (BDO5), oxidability,
ammonium, nitrates, and phosphorus.

names(env)

[1] "Temp" "Flow" "pH" "Cond" "Oxyg" "Bdo5" "Oxyd" "Ammo"
[9] "Nitr" "Phos"

The 24 rows correspond to the six sites, sampled four times (sp = spring, su =
summer, au = autumn, and wi = winter):

row.names(env)

[1] "sp_1" "sp_2" "sp_3" "sp_4" "sp_5" "sp_6" "su_1" "su_2"
[9] "su_3" "su_4" "su_5" "su_6" "au_1" "au_2" "au_3" "au_4"

[17] "au_5" "au_6" "wi_1" "wi_2" "wi_3" "wi_4" "wi_5" "wi_6"

The meau data set also contains the description of the sampling design coded as
two categorical variables (factor):

(seasons <- meau$design$season)
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[1] spring spring spring spring spring spring summer summer
[9] summer summer summer summer autumn autumn autumn autumn

[17] autumn autumn winter winter winter winter winter winter
Levels: spring summer autumn winter

(sites <- meau$design$site)

[1] S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6
[19] S1 S2 S3 S4 S5 S6
Levels: S1 S2 S3 S4 S5 S6

The aim of the study is to analyse the variations of physico-chemical parameters
along the stream and during the year (spatial and temporal components). We first
apply a normed PCA on the environmental data table.

(envpca <- dudi.pca(env, scannf = FALSE, nf = 3))

Duality diagram
class: pca dudi
$call: dudi.pca(df = env, scannf = FALSE, nf = 3)

$nf: 3 axis-components saved
$rank: 10
eigen values: 5.745 1.43 1.084 0.6761 0.5244 ...
vector length mode content

1 $cw 10 numeric column weights
2 $lw 24 numeric row weights
3 $eig 10 numeric eigen values

data.frame nrow ncol content
1 $tab 24 10 modified array
2 $li 24 3 row coordinates
3 $l1 24 3 row normed scores
4 $co 10 3 column coordinates
5 $c1 10 3 column normed scores
other elements: cent norm

Figure 7.1 shows the PCA of the Méaudret environmental data table. The
correlation circle shows that the first axis corresponds to a pollution gradient, with
high levels of pollution toward the right and absence of pollution on the left.
The second axis is a temperature and flow gradient and underlines the particular
behaviour of nitrates (compared to other pollution parameters). The analysis of
the sites factor map is not easy, as many labels are superimposed, and spatial and
temporal structures are mixed.

Interpretation is easier in Fig. 7.2, where the four seasons are grouped using a
star and an ellipse for each site. It is easy to see that site 2 is more polluted than the
others (because it is located on the right of the figure). Sites 3, 4 and 5 are less and
less polluted, and site 5 is in fact comparable to site 1. Site 6 (control site located
on the Bourne river) is on the left of site 1, denoting even lower levels of chemical
pollution.

Figure 7.3 shows the same factor map, with the six sampling sites grouped for
each season, but the temporal structure is less easy to interpret than the succession
of the six sites along the stream.

Here, we show that applying a simple PCA and then using graphical functions
allows to display differences among sites or seasons. However, this approach is
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g1 <- s.corcircle(envpca$co, plot = FALSE)
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ADEgS(list(g1, g2))

Fig. 7.1 Correlation matrix PCA of the Méaudret environmental data table. Left: parameters
correlation circle, right: sites factor map.

d = 1
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s.class(envpca$li, meau$design$site, xlim = c(-4, 8), ylim = c(-2, 4),
          col = TRUE)

Fig. 7.2 PCA sites factor map, with the four samples grouped for each site.

not optimal. Indeed, the spatial structures can be analysed by computing the mean
of the four dates for all the parameters (between-sites analysis), and conversely
the temporal structures can be assessed by computing the mean of the six sites
(between-dates analysis). It is also possible to try to remove the spatial effect using
a within-site analysis and see if temporal structures appear more clearly.
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s.class(envpca$li, meau$design$season, xlim = c(-4, 8), ylim = c(-2, 4),
      col = TRUE)

Fig. 7.3 PCA sites factor map, with the six sampling sites grouped for each season.

7.3 Between-Class Analysis: Analysing Differences Between
Groups

Between-Class Analyses (BCA, Dolédec and Chessel 1987; Culhane et al. 2002)
are methods to separate groups of sites, given a set of variables. There are
several types of Between-Class Analyses, corresponding to the initial analysis after
which Between-Class Analysis is computed (e.g., Principal Component Analysis,
Correspondence Analysis, or Multiple Correspondence Analysis).

BCA is the analysis of a table of group means. Box 7.2 gives the basic definitions
of Between-Class Analysis in the framework of the duality diagram.

Box 7.2 Between-Class Analysis: Basic Mathematical Definitions
Using notations defined in Box 7.1, Between-Class Analysis is the analysis of
triplet (XB, Q, D) or equivalently (X̄, Q, Dg). It corresponds to the following
duality diagram:

(continued)
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Box 7.2 (continued)
Between-Class Analysis is therefore the analysis of the group means table,

leading to the diagonalisation of X̄�DgX̄Q. Note that the rank of this matrix
is defined by r = min(p, g − 1). The total inertia of this analysis equals to
between-class inertia.

According to Property 3.1 (Box 3.2), the Between-Class Analysis searches

for a principal axis a maximising
∥
∥X̄Qa
∥
∥

2
Dg

. Hence, the analysis seeks

coefficients (a) to compute a linear combination of variables (X̄Qa) which
best separates the groups by maximising the between-class inertia. Sites (i.e.,
rows of the initial table) can be projected on the principal axes and their
coordinates are given by XQA.

The main function to compute a Between-Class Analysis in the ade4 package
is the bca function. All the outputs of this function are grouped in a dudi object
(subclass between), and Box 7.3 recalls the corresponding output elements.

The bca function takes two main arguments: an analysis of the initial table (a
dudi object) and a categorical variable (an object of class factor). In ade4,
the user must first perform a simple analysis to identify the main variations in the
data table and then use the bca function to introduce the partitioning in groups.
This two-step implementation has a pedagogical aim by forcing users to interpret
simple structures before analysing differences among groups. The outputs of both
analyses can then be compared to evaluate the role of the categorical variable. The
last two arguments (scannf and nf) have the same meaning as in the other analysis
functions.

As underlined in Sect. 8.4.3.3, Between-Class Analysis is a particular case of
analysis on instrumental variables when only one explanatory categorical variable is
considered. The main advantage to use bca function is that several methods (plot,
summary) are optimised to summarise the results of the analysis.

Box 7.3 Between-Class Analysis: dudi Output Elements
In the ade4 package, the results of a Between-Class Analysis are stored in
an object of class dudi, subclass between. This object is a list with 14
elements, including the usual elements of any dudi. In this list, elements of
particular interest are:

• $tab: table of group means (X̄)
• $lw: group weights (Dg)
• $c1: principal axes (A)
• $li: scores for the groups (X̄QA)

(continued)
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Box 7.3 (continued)
• $ls: projection of the rows of the initial data table (sites) onto the BCA

axes (XQA)
• $as: projection of the axes of the initial analysis of X onto the BCA axes
• $ratio: ratio of the between-class to total inertia

The row scores of the initial data table ($ls) can be superimposed to the
row scores of the Between-Class Analysis ($li). This gives an idea of the
within-class vs. between-class variability.

Permutation test: The statistical significance of these differences can be
tested by a permutation test, with a criterion equal to the ratio of between-
class inertia divided by total inertia. In this test, sites are randomly assigned
to the groups. As the total inertia is invariant to rows permutation, this test is
strictly equivalent to a test based on between-class inertia.

7.3.1 Between-Site Analysis

As explained at the beginning of this chapter, a Between-Class Analysis is the
analysis of the table of class means. So the between-site analysis is the analysis
of the table of site means. The between-site analysis betsite is computed using
the bca function, and the table of site means is stored in the betsite$tab data
frame. We can check that the dimensions of the betsite$tab data frame are
six rows (six sites) and 10 columns (10 physico-chemical parameters), and that the
mean of the standardised temperature in site 1 during the four seasons is equal to
−0.1834:

betsite <- bca(envpca, sites, scannf = FALSE)
dim(betsite$tab)

[1] 6 10

betsite$tab[1:3, 1:5]

Temp Flow pH Cond Oxyg
S1 -0.183449 -0.9966 0.1163 -0.2449 0.39460
S2 -0.039880 -0.4293 -0.8805 1.1023 -1.56390
S3 0.007976 -0.1725 -0.3821 0.5818 -0.06673

mean(envpca$tab$Temp[sites == "S1"])

[1] -0.1834

betsite
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Between analysis
call: bca.dudi(x = envpca, fac = sites, scannf = FALSE)
class: between dudi

$nf (axis saved) : 2
$rank: 5
$ratio: 0.4413

eigen values: 3.335 0.6156 0.4027 0.04589 0.01407

vector length mode content
1 $eig 5 numeric eigen values
2 $lw 6 numeric group weights
3 $cw 10 numeric col weigths

data.frame nrow ncol content
1 $tab 6 10 array class-variables
2 $li 6 2 class coordinates
3 $l1 6 2 class normed scores
4 $co 10 2 column coordinates
5 $c1 10 2 column normed scores
6 $ls 24 2 row coordinates
7 $as 3 2 inertia axis onto between axis

The plot function can be used to display the main components of the betsite
analysis (Fig. 7.4). It provides a composite plot made of six elementary graphs. The
main one (top-right, labeled Row scores and classes) shows the row scores
of the initial data table ($ls data frame). The four sampling seasons for each site
are grouped with a star and an ellipse. Each star and ellipse is labeled with the site
name (S1 to S6), located at the gravity centre of the star (centre of the ellipse).

The bottom-right graph (Classes) shows the scores for the groups of the
Between-Class Analysis ($li data frame). It contains only six points, correspond-
ing to the six sites.

The following graph on the left (Unconstrained axes) shows the projec-
tion of the first three axes of the initial analysis (envpca) onto the Between-Class
Analysis. It contains only 3 arrows, as this is the number of axes kept in the envpca
analysis. This graph provides a convenient way to understand the relationships
between the initial PCA that focuses on total variation and the Between-Class
Analysis. Here, we can see that the first two axes of the simple PCA are nearly
equivalent (apart from the sign) to the first two axes of the between-site analysis.

The lower-left graph is labeled Eigenvalues; this is the usual eigenvalues bar-
chart. The last two graphs on the left are labeled Loadings and Columns. They
both show the ten physico-chemical parameters, and they should be comparable.
Large differences between these two graphs would imply that the analysis is
not coherent. The first one (Loadings) gives the coefficients of the linear
combination that maximise the between-class inertia ($c1 data frame). The second
one (Columns) shows the scores of the variables ($co data frame).

We can see that the first axis of the Between-Class Analysis is very similar to the
first axis of the simple PCA (pollution gradient) indicating that the main structures
(identified by PCA) are also the main differences among groups. The factor map
of row scores in the simple PCA (Fig. 7.2) is very similar to the factor map of the
Between-Class Analysis (Fig. 7.4, Row scores and classes graph). And the
correlation circle of parameters (Fig. 7.1) in the simple PCA is very similar to the
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Fig. 7.4 Plot of the betsite analysis. This is a composite plot made of six graphs (see text for
an explanation of the six graphs).

Columns graph in the between-site analysis (Fig. 7.4). This is because the between-
site structure is very strong in this data set, and the first axis of the simple PCA
already identified it.

The randtest function can be used to check the statistical significance of the
differences between sites. The criterion used in this test is the ratio of the between-
class inertia to the total inertia. The simulated p-value and the observed criterion can
be obtained by displaying the rtbetsite object. By default, 999 permutations are
performed.

(rtbetsite <- randtest(betsite))

Monte-Carlo test
Call: randtest.between(xtest = betsite)
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Fig. 7.5 Plot of the rtbetsite Monte-Carlo test.

Observation: 0.4413

Based on 999 replicates
Simulated p-value: 0.003
Alternative hypothesis: greater

Std.Obs Expectation Variance
3.361814 0.220270 0.004323

The observed value of the criterion is equal to 0.4413, which means that 44% of
the total inertia comes from the differences between sites. The simulated p-value is
equal to 0.003, which means that the difference between sites is highly significant.

The histogram displayed in Fig. 7.5 shows the distribution of the values of the
criterion computed on permuted tables. The observed value for the unpermuted table
(0.4413) is plotted on the graph with a vertical bar and a black diamond sign.

The main characteristic of the spatial structure of physico-chemical parameters
revealed by these analyses is the pollution gradient. Site 1 is not polluted, it is
located opposite of the pollution parameters (phosphates, ammonium, oxidability,
biological oxygen demand) on the factor maps. Site 2 is the most polluted, while
sites 3, 4 and 5 are less and less polluted, as the restoration process takes place
downstream along the stream. Site 6 is a control on the Bourne river, and it is not
polluted. This particular structure is explained by the fact that the Autrans holiday
resort is located between sites 1 and 2. The high tourist activity at this place leads
to an overflow of water treatment capacity.
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7.3.2 Between-Season Analysis

The between-season analysis gives a more interesting insight into the meau data
set. Indeed, the simple PCA did not provide a very convincing picture of the
seasonal structure of physico-chemical parameters (Fig. 7.3). The between-season
analysis is computed using the bca function, and we can check the dimension of
the betseason$tab data frame:

betseason <- bca(envpca, seasons, scannf = FALSE)
dim(betseason$tab)

[1] 4 10

The generic plot function can be used as in the previous section to display
the main components of the betseason analysis. The seasonal structure of the
physico-chemical parameters is much clearer in Fig. 7.6: we see that the temperature
plays a key role in the opposition between warm (spring, summer) and cold (autumn,
winter) seasons on the second axis. The first axis is still a pollution gradient (high
levels of pollution toward the left), and opposes summer to spring in warm seasons
and autumn to winter for cold seasons. This is easy to understand, as Autrans is a
well-known summer resort, with high tourist activity during summer holidays.

In the between-season analysis, the values of each parameter are averaged across
the six sites. This removes the spatial component of the data set, and makes the
seasonal structure much more apparent. Another way to achieve the same result
(underline the seasonal effect) is to explicitly remove the spatial component using a
within-site analysis.

7.4 Within-Class Analysis: Removing Differences Between
Groups of Sites

Within-Class Analysis (Dolédec and Chessel 1987) is the analysis of the residuals
between observed data and group means. This means that the differences between
groups have been removed from the data set, and we are looking for other structures
remaining in the table.

Like in Between-Class Analysis, there is no constraint on the number of sites
compared to the number of variables, and no problem with numerous and/or
correlated variables.

Box 7.4 gives the basic definitions of a Within-Class Analysis in the framework
of the duality diagram.
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Fig. 7.6 Plot of the betseason analysis.

Box 7.4 Within-Class Analysis: Basic Mathematical Definitions
Using notations defined in Box 7.1, Within-Class Analysis is the analysis of
triplet (XW, Q, D). It corresponds to the following duality diagram:

(continued)
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Box 7.4 (continued)
Within-Class Analysis is therefore the analysis of the matrix of the

residuals obtained by eliminating the between-class effect. It is useful when
looking for the main features of a data table after removing an unwanted
characteristic. It leads to the diagonalisation of matrix X

�
W DXW Q. The total

inertia of this analysis equals to within-class inertia.
According to Property 3.1 (Box 3.2), the Within-Class Analysis searches

for a principal axis a maximising ‖XW Qa‖2
D. Hence, the analysis seeks

coefficients (a) to compute a linear combination of variables (XW Qa) which
best separates the sites after removing the differences among groups by
maximising the within-class inertia.

In the ade4 package, the wca function is used to compute Within-Class Analysis.
All the outputs of this function are grouped in a dudi object (subclass within),
and Box 7.5 recalls the corresponding output elements. The arguments of the
wca function are the same as those of the bca function: the dudi object, the
factor describing the groups, and the scannf and nf usual arguments. A generic
plot function is also available in adegraphics to summarise the outputs of a wca
analysis.

Box 7.5 Within-Class Analysis: dudi Output Elements
In the ade4 package, the results of a Within-Class Analysis are stored in an
object of class dudi, subclass within. This object is a list with 16 elements,
including the usual elements of any dudi. In this list, elements of particular
interest are:

• $tab: table of differences between observed data and groups means (XW )
• $c1: principal axes of the WCA (A)
• $li: scores for the sites (XW QA)
• $ls: projection of the rows of the initial data table (sites) onto the WCA

axes (XQA)
• $as: projection of the axes of the initial analysis of X on the WCA axes
• $tabw: weights of groups (useful for K-table analyses)
• $fac: factor defining the groups
• $ratio: ratio of the within-class to total inertia

The within-site analysis on the Méaudret data set is computed using the wca
function. This function calculates the residuals between the environmental data table
and the site means, and performs the analysis on these residuals:
witsite <- wca(envpca, sites, scannf = FALSE)
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g1 <- s.corcircle(witsite$co, plot = FALSE)
g2 <- s.class(witsite$li, sites, col = TRUE, plot = FALSE)
ADEgS(list(g1, g2))
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Fig. 7.7 Plot of the witsite analysis. Left: correlation circle of parameter scores, right: row
coordinates (grouped by sites).

It is easy to check that the site effect has been removed, by plotting the row scores
of the within-site analysis. Figure 7.7 shows that these row scores are centred by site
(all six labels are superimposed at the centre of the graph).

Seasonal variations can be exposed by drawing the same row scores
(witsite$li), but grouped by season (Fig. 7.8).

The same effect as in the between-season analysis (Fig. 7.6) is visible in Fig. 7.8,
with a seasonal effect on the second axis (spring and summer vs. autumn and winter)
and a pollution gradient on the first axis (summer vs. spring and autumn vs. winter).

Note that the information contained in the original PCA (envpca) is fully
decomposed by the Between- and Within-Class Analyses:

sum(envpca$eig)

[1] 10

sum(betsite$eig) + sum(witsite$eig)

[1] 10

And the ratios provided by the analysis are simply obtained by:

sum(betsite$eig) / sum(envpca$eig)

[1] 0.4413

sum(witsite$eig) / sum(envpca$eig)
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s.class(witsite$li, seasons, col = TRUE)

Fig. 7.8 Plot of the witsite analysis.

[1] 0.5587

betsite$ratio

[1] 0.4413

witsite$ratio

[1] 0.5587

betsite$ratio + witsite$ratio

[1] 1

7.5 Discriminant Analysis

The aim of Discriminant Analysis and Between-Class Analysis is the same:
highlighting the differences between groups. However, the constraints associ-
ated to these analyses differ so that both methods do not maximise the same
criteria. Whereas Between-Class Analysis maximises the between-class inertia,
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Discriminant Analysis maximises the between-class inertia relative to the total
inertia. Box 7.6 describes the basis of Discriminant Analysis.

Box 7.6 Discriminant Analysis: Basic Mathematical Definitions
Using notations defined in Box 7.1, Discriminant Analysis is the analysis of

triplet (XB,
(

X�DX
)−1

, D). It corresponds to the following duality diagram:

Hence, Discriminant Analysis shares many similarities with Between-
Class Analysis and the only difference is that it uses the Mahalanobis metrics
(

X�DX
)−1

instead of Q in R
p.

According to Property 3.1 (Box 3.2), Discriminant Analysis searches for a

principal axis a maximising
∥
∥
∥XB

(

X�DX
)−1

a
∥
∥
∥

2

D
. If we consider the principal

factor instead of the principal axis, we have a∗ = (X�DX
)−1 a and the criteria

maximised becomes ‖XBa∗‖2
D. By definition, ‖a∗‖2

(X�DX)
= 1 which can

be rewritten as
∥
∥Xa∗∥∥2

D = 1. Hence, the analysis seeks coefficients (a∗) to
compute a linear combination of variables (XBa∗) which best separates the
groups by maximising the between-class inertia with the constraint that the
total inertia is equal to 1 (

∥
∥Xa∗∥∥2

D = 1).
This viewpoint refers to maximisation of the correlation ratio (See

Appendix A.7) by maximising the between-inertia with the additional con-
straint that the total inertia is equal to 1.

In the MASS package (lda function), the constraint is based on the F-
ratio, i.e., the constraint is that the within-class inertia is equal to 1.

The discrimin function of the ade4 package is used to compute a Discrim-
inant Analysis. All the outputs of this function are grouped in a discrimin
object, and Box 7.7 recalls the corresponding output elements. The arguments of the
discrimin function are the same as those of the bca function: the first argument
is the dudi object corresponding to the preparatory analysis of the data table. The
second argument is a factor describing the groups of rows. The last two arguments
(scannf and nf) have the same meaning as in the other analysis functions.
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Box 7.7 Discriminant Analysis: dudi Output Elements
In the ade4 package, the results of a Discriminant Analysis are stored in an
object of class discrimin. This object is a list with 8 elements. In this list,
elements of particular interest are:

• $fa: loadings for variables (A∗)
• $li: scores for sites (XA∗)
• $va: link between the variables of X and the scores for sites (X�DXA∗)
• $cp: link between the principal components of the initial analysis of X

and the scores for sites
• $gc: scores for groups (XBA∗)

Permutation test: The statistical significance of these differences can be
tested by a permutation test, with a criterion equal to the ratio of between-
class inertia divided by total inertia. Here, total inertia is computed using
(

X�DX
)−1

as a metric in R
p. In this test, sites are randomly assigned to the

groups. As the total inertia is invariant to rows permutation, this test is strictly
equivalent to a test based on between-class inertia.

Discriminant Analysis is applied to study the seasonal structure of physico-
chemical parameters:

discseason <- discrimin(envpca, seasons, scannf = FALSE)

The plot function can be used to display the main components of the
discseason analysis (Fig. 7.9). It provides a composite plot made of six ele-
mentary graphs. The main one (top-right, labeled Row scores and classes)
shows the projections of the sites onto the plane defined by the axes of the
Discriminant Analysis ($li data frame). The six sampling sites for each season
are grouped with a star and an ellipse. Each star and ellipse is labeled with the
season name, located at the gravity centre of the star (centre of the ellipse). The
bottom-right graph (Class scores) shows the group scores ($gc data frame).
It contains only four points, corresponding to the four seasons. The following
graph on the left (Unconstrained axes) shows the projection of the axes
of the initial Principal Component Analysis ($cp data frame) to understand the
relationships between the initial PCA and the Discriminant Analysis. Here, we
can see that the third axis of the simple PCA—temperature—is equivalent (apart
from the sign) to the first axis of the Discriminant Analysis. The lower-left graph
(Eigenvalues) is the usual eigenvalues barchart. The last two graphs on the left
are labeled Loadings and Columns. The first one represents the coefficients of
the variables ($fa data frame). The second one represents the covariances between
the ten physico-chemical parameters ($va data frame) and the axes of the analysis.

The first axis of the Discriminant Analysis is linked to the water temperature and
the second axis to the flow. The seasons define a strong structure where the pollution
component disappeared.
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Fig. 7.9 Plot of the discseason analysis. This is a composite plot made of six graphs (see text
for an explanation).

The randtest function can be used to check the statistical significance of
the differences between seasons. The criterion used in this test is the ratio of the
between-class inertia to the total inertia. The simulated p-value and the observed
criterion can be obtained by displaying the rtdiscseason object. By default,
999 permutations are performed.
(rtdiscseason <- randtest(discseason))

Monte-Carlo test
Call: randtest.discrimin(xtest = discseason)

Observation: 0.2552

Based on 999 replicates
Simulated p-value: 0.001
Alternative hypothesis: greater
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Std.Obs Expectation Variance
5.7955146 0.1306748 0.0004615

The observed value of the criterion is equal to 0.2552, which means that 26%
of the total inertia comes from the differences between seasons. The simulated p-
value is equal to 0.001, which means that the difference between seasons is highly
significant.

The histogram displayed in Fig. 7.10 shows the distribution of the values of the
criterion computed on permuted tables. The observed value for the unpermuted table
(0.2552) is plotted on the graph with a vertical bar and a black diamond sign.

The main characteristic of the temporal structure of physico-chemical parameters
revealed by this analysis is the water cycle, the pollution gradient is eliminated.

Between-Class Analyses and Discriminant Analyses highlight differences
between groups of observations but are not based on the same constraints (see
Boxes 7.2 and 7.6). This implies that Between-Class Analysis maximises the
between-class inertia whereas Discriminant Analysis maximises the between-class
inertia relative to the total inertia. This theoretical difference has important practical
implications. Between-Class Analyses can work on tables with few individuals
compared to the number of variables and is able to deal with collinearities among
variables. On the other hand, Discriminant Analysis requires a high number of
individuals compared to the number of variables. An another important difference
is illustrated by the Row scores and classes graph of the between-season
analysis (Fig. 7.6). On this plot, all the seasons present an elongated ellipse
associated to the pollution gradient kept on the first axis of the analysis. Hence,
BCA maximises the distance between the centres of the ellipses (i.e., the between-
class inertia) but does not control for the size of the ellipses (i.e., the total inertia).
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Fig. 7.10 Plot of the rtdiscseason Monte-Carlo test.
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On the other hand, Discriminant Analysis tries to maximise the between-class
inertia while minimising the total inertia. In the Row scores and classes
graph of the Discriminant Analysis (Fig. 7.9), the ellipses of seasons are thus much
smaller. All the sites gathered to the gravity centre of the seasons, highlighting the
seasonal cycle.

7.6 Conclusion

The main structure of the meau data set is the spatial structure of the pollution
along the six sites. There is a strong pollution peak between sites 1 and 2, and the
restoration process takes place downstream along sites 3, 4 and 5. The simple PCA
of the data table shows this spatial structure very clearly (Figs. 7.1 and 7.2) and it
can be interpreted using the contributions of the ten physico-chemical parameters.
The between-site analysis does not bring much more information (Fig. 7.4).

There is also a strong seasonal structure, which is not very clearly taken into
account by the simple PCA (Fig. 7.3). This structure opposes warm and cold
seasons. In the warm season, pollution is lower in spring than in summer because
stream flow is higher in spring and pollutants are more diluted. Moreover, tourism
is much higher in summer, which still increases pollution. In the cold season,
pollution is higher in autumn because stream flow is at its minimum, so the
concentration of pollutants is maximum, although most tourists have gone. This
structure is adequately revealed by both the between-season analysis (Fig. 7.6) and
the within-site analysis (Fig. 7.8). However, this pollution structure disappeared in
the Discriminant Analysis (Fig. 7.9) because of the supplementary constraint on the
physico-chemical variables keeping only the water cycle (temperature and flow).

These analyses work differently. The between-season and discriminant analyses
compute the mean of each parameter among the six sites, so that the spatial effect
is removed and the seasonal effect is revealed. The within-site analysis computes
the residuals between the raw data table and the spatial model (means by site), thus
removing the spatial effect and revealing the seasonal effect.



Chapter 8
Description of Species-Environment
Relationships

Abstract This chapter shows how direct and indirect gradient analysis can be
handled in the ade4 package, with a special emphasis on three direct ordination
methods: Coinertia Analysis, Redundancy Analysis and Canonical Correspondence
Analysis.

8.1 Introduction

Simple methods presented in Chaps. 5 and 6 describe environmental or species
structures independently. However, an important question in Ecology is the analysis
of the relationships between these two structures with the aim of understanding
if/how the organisation of ecological communities is linked to environmental vari-
ations. In this chapter, we focus on the case where a number of sites are described
by environmental variables and species composition. This leads to consider two
tables with the same rows (i.e., the sites). Historically, ecologists have first used
indirect approaches for interpreting the structures of species assemblages (structural
information extracted by the analysis of the species data) in relation to environmen-
tal variability. Site scores along the ordination axes, which are composite indices
of species abundances were compared a posteriori to environmental variables
(indirect ordination, indirect gradient analysis). Progressively, new techniques
were developed to constrain the ordination according to the table of explanatory
environmental variables (direct ordination, direct gradient analysis).

8.2 Indirect Ordination

The doubs data set has been described in Chaps. 5 and 6. In indirect ordination
methods, community data are first summarised and then interpreted in the light of
environmental information. For instance, we apply a centred PCA on the species
data while the environmental table is treated by a standardised PCA. Two axes are
kept for each analysis.
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library(ade4)
library(adegraphics)
data(doubs)
pca.fish <- dudi.pca(doubs$fish, scale = FALSE, scannf = FALSE, nf = 2)
pca.env <- dudi.pca(doubs$env, scannf = FALSE, nf = 2)

To interpret the outputs of the species ordination, correlations between the axes
kept in the two analyses can be computed:

cor(pca.env$li, pca.fish$li)

Axis1 Axis2
Axis1 0.5682 0.3483
Axis2 -0.4679 0.6309

The two ordinations are strongly linked. The first two axes of the fish ordination
(columns) are linked to the two main environmental gradients (first two axes of
PCA of the environmental table). To facilitate the interpretation, correlations can be
computed between original environmental variables and species ordination scores:

cor(doubs$env, pca.fish$li)

Axis1 Axis2
dfs 0.81691 0.113670
alt -0.67742 0.001439
slo -0.57155 0.093089
flo 0.78476 -0.013730
pH -0.04933 -0.252402
har 0.44764 0.038390
pho 0.11486 0.537131
nit 0.46860 0.309248
amm 0.08400 0.557866
oxy -0.40336 -0.655908
bdo 0.08548 0.702449

The first axis is mainly correlated to geomorphological variables (distance
from the source, flow, altitude, slope) whereas the second axis is more linked to
chemical processes (biological demand for oxygen, dissolved oxygen, ammonium
and phosphate). Note that the computation of these correlations is exactly equivalent
to the projection, as supplementary elements, of the standardised environmental
variables on the factorial map of the fish ordination. This projection step can be
performed by the supcol function.

supcol.env <- supcol(pca.fish, pca.env$tab)
head(supcol.env$cosup)

Comp1 Comp2
dfs 0.81691 0.113670
alt -0.67742 0.001439
slo -0.57155 0.093089
flo 0.78476 -0.013730
pH -0.04933 -0.252402
har 0.44764 0.038390

These correlations can also be depicted on a correlation circle (Fig. 8.1).
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Fig. 8.1 Correlations between environmental variables and sites scores on the first two axes of the
PCA of fish species data.

Symmetrically, ade4 also offers the possibility to represent supplementary sites
(which have not been involved in the computation of an analysis) using the suprow
function. This can be useful for prediction purposes, allowing to compute an
analysis on a number of reference sites and then using this model to evaluate the
position for new sites.

It is usually assumed that environmental variables influence the distribution of
species. In this context, it would be more appropriate to use a regression model
to explain the fish species composition by environmental explanatory variables
(e.g., lm(pca.fish$li[, 1] ~ as.matrix(doubs$env))). A variable
selection procedure can be used to avoid overfitting and multicollinearity issues due
to the high number (relative to the number of statistical units, i.e., sites) of correlated
explanatory variables.

The main advantage of indirect ordination is its simplicity. Its main drawback
is its lack of optimality: species ordination reveals the main patterns of community
assemblage but does not guarantee that these structures are linked to environmental
gradients. If a study focuses on species-environment relationships, two-table meth-
ods, that consider both environmental and species tables simultaneously, should be
preferred.
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8.3 Coinertia Analysis

As shown above, simple multivariate analyses are useful to identify the main
environmental and species structures separately. Coinertia Analysis (Dolédec and
Chessel 1994; Dray et al. 2003) aims to reveal the main co-structures (i.e., the
structures common to both data sets) by combining these separate ordinations
into a single analysis. This two-table method is based on the computation of a
crossed array (cross-covariance matrix) that measures the relationships between the
variables of both data sets. Box 8.1 gives the basic definitions of Coinertia Analysis
in the framework of the duality diagram.

Box 8.1 Coinertia Analysis: Basic Mathematical Definitions
In Coinertia Analysis, two sets of variables are measured on the same set of n

individuals. This information is stored in two tables and each set of variables is
treated by a simple multivariate analysis thus defining two statistical triplets
(X, Q, D) and (Y, M, D) where X and Y are n × p and n × m matrices,
respectively. Note that D is common to the two triplets because we consider
the same individuals in the two analyses. Coinertia Analysis combines these
two analyses into a single one to identify which structures are common to
both data sets (i.e., co-structures):

The above diagram can be rewritten as follows:

Coinertia Analysis (Dolédec and Chessel 1994; Dray et al. 2003) is the
analysis of this diagram and thus is defined by the triplet

(

Y�DX, Q, M
)

. The
total inertia associated to this triplet is equal to:

I(Y�DX,Q,M) = Trace(Y�DXQX�DYM)

(continued)
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Box 8.1 (continued)
This quantity is a measure of the concordance between the two data sets

and is equal to the numerator of the RV coefficient (Box 9.6, Escoufier 1973),
a multivariate generalisation of the squared correlation coefficient. Coinertia
Analysis decomposes this vectorial covariance onto orthogonal axes, and the
general properties of the diagram (Box 3.2) lead to the maximisation of the
following inner product:

〈

Y�DXQa|b
〉

M
= b�MY�DXQa = 〈XQa|YMb〉D = √

λ

If X and Y contain centred variables, the total inertia is simply a sum of
squared covariances between all combinations of variables of the two data
sets (
∑p

i=1

∑m
j=1 cov2(xi , yj )). In this case, Coinertia Analysis finds two

vectors of coefficients a and b to obtain linear combinations of the variables
of X and Y of maximal covariance (〈XQa|YMb〉D = cov(XQa, YMb)). This
covariance can be decomposed as a product of three terms:

cov(XQa, YMb) = cor(XQa, YMb) · ‖XQa‖D · ‖YMb‖D

The first term (cor(XQa, YMb)) is optimised by Canonical Correlation
Analysis (Hotelling 1936). The second (‖XQa‖D) is maximised by the
analysis of X that aims to identify the main structures in this data set. The last
term (‖YMb‖D) corresponds to the simple analysis of Y. Hence, Coinertia
Analysis can be viewed as a compromise between the three analyses aiming
to find linear combinations of the two data sets with maximal co-structure.
Unlike Canonical Correlation Analysis, that requires more individuals than
variables, Coinertia Analysis is based on covariances and thus allows to deal
with tables in which the number of individuals is less than the number of
variables.

In the ade4 package, the coinertia function is used to compute a Coinertia
Analysis. All the outputs of this function are grouped in a dudi object (subclass
coinertia), and Box 8.2 recalls the corresponding output elements.

The first two arguments of the coinertia function are the two dudi objects
corresponding to the analyses of the two data tables. The two other arguments,
scannf and nf, have the same meaning as in the other analysis functions (see
Sect. 5.2).
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Box 8.2 Coinertia Analysis: dudi Output Elements
In the ade4 package, the results of a Coinertia Analysis are stored in an object
of class dudi, subclass coinertia. This object is a list with 18 elements,
including the usual elements of any dudi. In this list, elements of particular
interest are:

• $tab: covariances between original variables (Y�DX)
• $eig: eigenvalues (�)
• $l1: coefficients (loadings) for the variables of Y (B)
• $c1: coefficients (loadings) for the variables of X (A)
• $aX: projection of the axes of the analysis of X on coinertia axes
• $aY: projection of the axes of the analysis of Y on coinertia axes
• $lX: scores of individuals obtained from table X (XQA)
• $lY: scores of individuals obtained from table Y (YMB)
• $mX: normed version of scores of individuals obtained from table X
• $mY: normed version of scores of individuals obtained from table Y

Permutation test: the randtest function can be used to test the statistical
significance of the Coinertia Analysis. The criterion used in this test is the RV
coefficient between the two tables. If the simulated p-value given by this test is
not significant, then the Coinertia Analysis outputs should not be interpreted.

Species and environmental tables should be analysed separately and then the
coinertia function can be applied to compute the Coinertia Analysis:

(coia.doubs <- coinertia(pca.fish, pca.env, scannf = FALSE))

Coinertia analysis
call: coinertia(dudiX = pca.fish, dudiY = pca.env, scannf = FALSE)
class: coinertia dudi

$rank (rank) : 11
$nf (axis saved) : 2
$RV (RV coeff) : 0.4506

eigenvalues: 119 13.87 0.7566 0.5278 0.2709 ...

vector length mode content
1 $eig 11 numeric Eigenvalues
2 $lw 11 numeric Row weights (for pca.env cols)
3 $cw 27 numeric Col weigths (for pca.fish cols)

data.frame nrow ncol
1 $tab 11 27
2 $li 11 2
3 $l1 11 2
4 $co 27 2
5 $c1 27 2
6 $lX 30 2
7 $mX 30 2
8 $lY 30 2
9 $mY 30 2
10 $aX 2 2
11 $aY 2 2

content
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1 Crossed Table (CT): cols(pca.env) x cols(pca.fish)
2 CT row scores (cols of pca.env)
3 Principal components (loadings for pca.env cols)
4 CT col scores (cols of pca.fish)
5 Principal axes (loadings for pca.fish cols)
6 Row scores (rows of pca.fish)
7 Normed row scores (rows of pca.fish)
8 Row scores (rows of pca.env)
9 Normed row scores (rows of pca.env)
10 Corr pca.fish axes / coinertia axes
11 Corr pca.env axes / coinertia axes

CT rows = cols of pca.env (11) / CT cols = cols of pca.fish (27)

The plot function can be used to display the main outputs of the analysis
(Fig. 8.2). The barplot of eigenvalues (bottom-left) clearly indicates that two
dimensions should be used to interpret the main structures of fish-environment
relationships.

Coinertia Analysis computes coefficients for environmental variables ($l1) and
fish species ($c1) which are represented on the two graphs at the bottom of the plot
(Y and X loadings). Hence, it is possible to interpret the different axes and identify
relationships between variables of both data sets. The three groups (trout, grayling
and downstream) are identified and their position is linked to the geomorphological
variables on the first axis and to chemical variables on the second axis. For instance,
the three species of the trout group (Satr, Phph and Neba) are present in upstream
sites (high altitude and slope, low flow, etc.) where the oxygen concentration is
high and the ammonium and phosphate concentrations are low. These loadings are
used to compute two sets of site scores allowing to position sites by their species
composition ($lX) or by their environmental conditions ($lY). Coinertia Analysis
maximises the squared covariances between these two sets of scores.

The top-right graph of the plot represents sites by normed versions of these
scores ($mX and $mY). Each site corresponds to an arrow (the start corresponds
to its species score and the head to its environmental score). A short arrow
reveals a good agreement between the environmental conditions of a site and
its species composition while a long arrow indicates a discrepancy. For instance,
the long arrows for sites 1, 8, 23, 24 and 25 reveal that these sites have few
species and similar composition (the start of the arrows are close and located
at the opposed direction of the species arrows) but very different environmental
conditions (the head of these arrows are spread out). Hence, these sites can be seen
as outliers in the global model of species-environment relationships identified by
Coinertia Analysis because their species composition did not correspond to their
environmental conditions. Indeed, species abundance and richness in these sites are
very low due to pollution (see Sect. 6.3) or to the fact that fish richness is also very
low near the source of the stream.

Lastly, the two graphs on the left show the projection of the first axes of the
two initial simple analyses (pca.fish and pca.env) onto the coinertia axes.
These graphs provide a convenient way to look at the relationships between the
main structures of each data set (identified by simple analyses) and the co-structures
identified by Coinertia Analysis. For fish species data, the first two axes of the simple
PCA are nearly equivalent to the coinertia axes. For environmental data, a rotation
has been performed so that a coinertia axis mixes the structures of two PCA axes.
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Fig. 8.2 Plot of the outputs of a Coinertia Analysis. This is a composite plot made of six graphs
(see text for an explanation of the six graphs).

The summary function provides several useful results about the analysis,
especially concerning the criteria maximised:

summary(coia.doubs)

Coinertia analysis

Class: coinertia dudi
Call: coinertia(dudiX = pca.fish, dudiY = pca.env, scannf = FALSE)

Total inertia: 134.7

Eigenvalues:
Ax1 Ax2 Ax3 Ax4 Ax5

119.0194 13.8714 0.7566 0.5278 0.2709

Projected inertia (%):
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Ax1 Ax2 Ax3 Ax4 Ax5
88.3570 10.2978 0.5617 0.3918 0.2011

Cumulative projected inertia (%):
Ax1 Ax1:2 Ax1:3 Ax1:4 Ax1:5

88.36 98.65 99.22 99.61 99.81

(Only 5 dimensions (out of 11) are shown)

Eigenvalues decomposition:
eig covar sdX sdY corr

1 119.02 10.910 6.423 2.326 0.7302
2 13.87 3.724 2.864 1.685 0.7718

Inertia & coinertia X (pca.fish):
inertia max ratio

1 41.25 42.75 0.9650
12 49.45 50.90 0.9714

Inertia & coinertia Y (pca.env):
inertia max ratio

1 5.412 6.322 0.8561
12 8.251 8.553 0.9647

RV:
0.4506

As for any object inheriting from the dudi class, the eigenvalues and percent-
ages of (cumulative) projected inertia are returned (see Sect. 3.4). Information on
the eigenvalues and their decomposition is also returned. Eigenvalues in Coin-
ertia Analysis are squared covariances between linear combinations of species
abundances ($lX) and environmental variables ($lY). The table Eigenvalues
decomposition returns the eigenvalues (eig) and their square root (covar).
As shown in Box 8.1, the covariance is equal to the product of the correlation
between $lX and $lY (corr), the standard deviation of the environmental score
$lY (sdY) and the standard deviation of the species score $lX (sdX). The maximal
possible values for the standard deviations are produced by the simple analyses
of the initial tables (pca.fish, pca.env) that identify the main structures of
each data set. The two tables Inertia & coinertia compare the quantity of
variance captured by the Coinertia Analysis (inertia) to the maximum possible
value provided by the simple analysis (max). Hence it is possible to ensure that
an important proportion of the information contained in each table (structures) is
preserved when looking for co-structures (ratio).

Lastly, the summary function returns the value of the RV coefficient (Box 9.6,
Escoufier 1973) that measures the link between two tables. It can been seen as an
extension of the bivariate squared correlation coefficient to the multivariate case. It
varies between 0 (no correlation) and 1 (perfect agreement) and its significance can
be tested by random permutation of the rows of both tables (function randtest):

randtest(coia.doubs)

Monte-Carlo test
Call: randtest.coinertia(xtest = coia.doubs)

Observation: 0.4506

Based on 999 replicates
Simulated p-value: 0.001
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Alternative hypothesis: greater

Std.Obs Expectation Variance
9.30113 0.08206 0.00157

In this case, the link between the composition of species assemblages and
environmental conditions is highly significant.

Coinertia Analysis maximises covariances and thus can handle tables containing
more variables than individuals. Its framework is very general and flexible: the
coinertia function takes two dudi objects as arguments and thus can be used
to link tables containing quantitative variables (dudi.pca), qualitative variables
(dudi.acm), mix of both (dudi.hillsmith), fuzzy variables (dudi.fca),
distance matrices (dudi.pco), etc. The only restriction is that rows (i.e., indi-
viduals) of the two tables are identical and that the same row weights are used
in the two separate analyses. This implies to take some precautions, especially
when Correspondence Analysis (CA) is used because this method is based on the
computation of particular row weights (Sect. 6.2). In this case, CA row weights
should be introduced in the analysis of the second table:
coa.fish <- dudi.coa(doubs$fish, scannf = FALSE, nf = 2)
pca.env2 <- dudi.pca(doubs$env, row.w = coa.fish$lw,

scannf = FALSE, nf = 2)
coia.doubs2 <- coinertia(coa.fish, pca.env2, scannf = FALSE, nf = 2)

As CA row weights have been computed using species abundance contained in
the doubs$fish table, the permutation procedure should keep the association
between the row weights and the rows of the first table. This is achieved using the
fixed argument of the randtest function, thus permuting only the rows of the
second table:
randtest(coia.doubs2, fixed = 1)

Warning: non uniform weight. The results from permutations
are valid only if the row weights come from the fixed table.
The fixed table is table X : doubs$fish
Monte-Carlo test
Call: randtest.coinertia(xtest = coia.doubs2, fixed = 1)

Observation: 0.6363

Based on 999 replicates
Simulated p-value: 0.001
Alternative hypothesis: greater

Std.Obs Expectation Variance
11.306596 0.105778 0.002202

8.4 Analysis on Instrumental Variables

In species-environment studies, it is often assumed that environmental conditions
influence species distributions. Coinertia Analysis is based on a covariance criteria
and thus does not take into account this asymmetric relationship. Methods based on
instrumental variables (also known as constrained/canonical ordination) consider
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explicitly that a table contains response variables that must be explained by a
second table of explanatory (instrumental) variables. They allow to identify the main
structures of the first table that are explained by the variables in the second table. In
ade4, this way to go is provided by the pcaiv function. Redundancy Analysis
(RDA, Rao 1964; van den Wollenberg 1977) and Canonical Correspondence
Analysis (CCA ter Braak 1986) are two particular cases of such approach.

The pcaivortho function performs an analysis on orthogonal instrumental
variables that focuses on the structures of the response variables that are not
explained by the instrumental variables (Rao 1964). They are equivalent to pRDA
and pCCA, i.e. partial CCA and RDA. Box 8.3 gives the basic definitions of these
methods in the framework of the duality diagram.

Box 8.3 Analysis on Instrumental Variables: Basic Mathematical Defini-
tions
We consider two sets of variables measured on the same set of n individuals.
The first table X contains p explanatory variables and the second table
(response variables) is treated by a simple multivariate analysis, defining the
statistical triplet (Y, Q, D) where Y is an n × m matrix. Let Ŷ = PXY where
PX = X(X�DX)−1X�D is the projection operator onto X (See Appendix A.8).
The analysis on instrumental variables is defined by the triplet

(

Ŷ, Q, D
)

and
corresponds to the following diagram:

Table Ŷ contains predicted values computed by a multivariate linear
regression (weighted by D) of Y on X. This is equivalent to regress each
individual column of Y on X and then stack all the fitted vectors in the matrix
Ŷ. While the initial simple analysis corresponding to the triplet (Y, Q, D)

identifies the main structures, the analysis on instrumental variables focuses
on the structures of Y that are explained by X. The total inertia of this analysis
is equal to:

I(Ŷ,Q,D
) = Trace(Ŷ�DŶQ)

The ratio RY|X = I(Ŷ,Q,D
)/I(Y,Q,D) varies between 0 and 1 and measures

the proportion of the total inertia of the initial analysis that is explained by the
instrumental variables (Miller and Farr 1971; Miller 1975; Peres-Neto et al.
2006). It is thus the multivariate equivalent of the regression coefficient of
determination R2. The RY|X statistic can be used in a randomisation testing

(continued)
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Box 8.3 (continued)
procedure to evaluate if the instrumental variables (X) explain a significant
part of the variation contained in the response table (Y).

The general properties of a duality diagram (Box 3.2) show that the

principal axes maximise the quantity
∥
∥ŶQa
∥
∥

2
D and the principal components

maximise
∥
∥Ŷ�Db

∥
∥

2
Q. These quantities can have different meanings according

to the initial analysis performed on Y (see Boxes 8.4 and 8.6).

8.4.1 Redundancy Analysis

Redundancy Analysis (RDA) is a particular analysis on instrumental variables
corresponding to the case where the table of response variables (i.e., species
abundances) is treated by a PCA (see Box 8.4 for details).

Box 8.4 Redundancy Analysis: Basic Mathematical Definitions
The case where a centred PCA is applied on Y (see Box 8.3) leads to the

triplet
(

Y, Im, 1
n

In

)

. The corresponding analysis on instrumental variable,

associated to the triplet
(

Ŷ, Im, 1
n

In

)

, is known as Principal Component

Analysis on Instrumental Variables (Rao 1964, PCAIV) or Redundancy
Analysis (van den Wollenberg 1977, RDA).

The principal axis a maximises the quantity:
∥
∥Ŷa
∥
∥

2
1
n

In
= ‖PXYa‖2

1
n

In
= var(Ŷa)

RDA seeks coefficients (a) to construct a linear combination of the variables
of Y. This linear combination Ya maximises the variance explained by X.

On the other hand, the principal component b maximises:

∥
∥
∥
∥

1

n
Ŷ�b

∥
∥
∥
∥

2

Im

=
m
∑

j=1

cov2(b, yj )

If we decompose the duality diagram, we can show that RDA finds
coefficients (e) for the explanatory variables (X). The linear combination b =
Xe is a principal component (or constrained component, Obadia 1978) that
maximises the sum of squared correlations (if Y is treated by a standardised
PCA) or covariances (in the case of a centred PCA) with the response
variables (Y).
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In practice, RDA is the PCA of a table containing the predicted values of species
abundances by environmental variables.

In ade4, the pcaiv function is used to compute an RDA. All the outputs of this
function are grouped in a dudi object (subclass pcaiv), and Box 8.5 recalls the
corresponding outputs elements.

The pcaiv function takes two main arguments: an analysis of the response
table (a dudi object) and a table of explanatory variable (an object of class
data.frame). In ade4, the user must first use the dudi.pca function to identify
the main variations in species composition and then use the pcaiv function to
introduce environmental variables. This two-step implementation has a pedagogical
aim by forcing users to interpret simple (unconstrained) structures before analysing
structures explained by external variables. The outputs of the constrained and
unconstrained analyses can then be compared to evaluate the role of explanatory
variables.

Box 8.5 Redundancy Analysis: dudi Output Elements
In the ade4 package, the results of a Redundancy Analysis are stored in an
object of class dudi, subclass pcaiv. This object is a list with 17 elements,
including the usual elements of any dudi. In this list, elements of particular
interest are:

• $tab: predicted table (Ŷ)
• $eig: eigenvalues (�)
• $c1: coefficients (loadings) for the variables of Ŷ (A)
• $as: projection of the axes of the initial analysis of Y on the instrumental

variables analysis axes
• $li: row scores as linear combination of the explanatory variables

(PXYQA)
• $ls: projection of the rows of Y on the principal axes (YQA)
• $fa: coefficients (loadings) for the explanatory variables of X (E)
• $l1: constrained principal component (B = XE)
• $co: projections of the variables of Y on the principal components

((PXY)�DB)
• $cor: correlations between the variables of X and the principal compo-

nents

Permutation test: the randtest function can be used to test the statistical
significance of the RDA analysis. The criterion used in this test is the RY|X
coefficient (see Box 8.3). If the simulated p-value given by this test is not
significant, then the RDA outputs should not be interpreted.
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RDA is performed by applying the pcaiv function with the pca.fish object
as first argument:
rda.doubs <- pcaiv(pca.fish, doubs$env, scannf = FALSE, nf = 2)

The object rda.doubs inherits from the class dudi. In rda.doubs$tab,
the original fish table (pca.fish$tab) has been replaced by the abundance
values predicted by environmental variables:
head(rda.doubs$tab[, 1])

[1] -0.7111 -0.9018 -0.1837 -0.2879 -0.3884 -0.4447

head(predict(lm(pca.fish$tab[, 1] ~ as.matrix(doubs$env))))

1 2 3 4 5 6
-0.7111 -0.9018 -0.1837 -0.2879 -0.3884 -0.4447

The plot function displays the main outputs of the analysis (Fig. 8.3).
There are two ways to interpret RDA outputs. In the first interpretation, the

analysis computes loadings for the fish species ($c1) which are represented on
the bottom-right graph. The three groups of species are identified. These loadings
are then used to compute scores ($ls) for the sites. These site scores are thus
linear combinations of species abundances maximising the variance explained by
environmental variables. Fitted values of these scores predicted by environmental
variables are contained in $li. Sites are positioned by two sets of score: the
first set is based on the species composition ($ls) and the second relates to the
environmental conditions ($li). Both sets are plotted simultaneously on the top-
right graph of the plot. Residuals of the global species-environment model are
represented by arrows (each site is an arrow and the start corresponds to its fitted
environmental score and the head to its composition). A short arrow reveals a
good agreement between the species composition of a site and its prediction by
environmental conditions while a long arrow indicates a discrepancy.

In the second interpretation, the analysis seeks loadings for environmental vari-
ables ($fa) which are represented on the top-left graph, to compute a constrained
principal component (linear combination of environmental variables stored in $l1).
In this example, the first constrained principal component is mainly defined by
the distance from the source (dfs) that corresponds to the highest loading. The
constrained principal component maximises the sum of squared covariances with
the fish species. Species are thus represented by these covariances ($co). Corre-
lations between the constrained principal component and environmental variables
are stored in $cor and plotted on the middle-left graph. The first constrained
principal component is mainly correlated to geomorphological variables (positively
with distance from the source and flow, negatively with altitude and slope). While
the first dimension is mainly built with the distance from the source, it is strongly
correlated with several other environmental descriptors. This lack of agreement
between loadings and correlations is due to collinearity among variables (Dormann
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Fig. 8.3 Plot of the outputs of a Redundancy Analysis. This is a composite plot made of six graphs
(see text for an explanation of the six graphs).

et al. 2013) so that one variable (distance from the source) is sufficient to explain
the effect of all geomorphological variables. The use of correlations should thus
be preferred to interpret the different dimensions. This sensitivity of coefficients to
collinearity is a major difference between RDA and Coinertia Analysis (Dray et al.
2003).

Lastly, the middle-bottom graph shows the projection of the first axes of the
initial simple analysis (pca.fish) onto the RDA axes. This graph provides a
convenient way to look at the relationships between the unconstrained structures
and the structures explained by environmental variables. Here, there is a perfect
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agreement indicating that the main patterns of variation in species composition are
fully explained by the environmental descriptors included in the analysis.

The summary function provides several useful results about the analysis,
especially concerning the criteria maximised:
summary(rda.doubs)

Principal component analysis with instrumental variables

Class: pcaiv dudi
Call: pcaiv(dudi = pca.fish, df = doubs$env, scannf = FALSE,

nf = 2)

Total inertia: 50.26

Eigenvalues:
Ax1 Ax2 Ax3 Ax4 Ax5

38.4177 5.9540 2.4162 1.3387 0.7431

Projected inertia (%):
Ax1 Ax2 Ax3 Ax4 Ax5

76.441 11.847 4.808 2.664 1.478

Cumulative projected inertia (%):
Ax1 Ax1:2 Ax1:3 Ax1:4 Ax1:5

76.44 88.29 93.10 95.76 97.24

(Only 5 dimensions (out of 11) are shown)

Total unconstrained inertia (pca.fish): 66.08

Inertia of pca.fish explained by doubs$env (%): 76.06

Decomposition per axis:
iner inercum inerC inercumC ratio R2 lambda

1 42.75 42.7 42.59 42.6 0.996 0.902 38.42
2 8.16 50.9 7.76 50.4 0.989 0.767 5.95

As for any object inheriting from the dudi class, the eigenvalues and per-
centages of (cumulative) projected inertia are returned (see Sect. 3.4). The func-
tion returns also the total inertia (variation) of the unconstrained analysis (i.e.,
pca.fish) and the percentage explained by the explanatory variables. In this
example, 76.06% of the variation in species composition is explained by the envi-
ronment. The function randtest is based on this quantity and allows to evaluate
its statistical significance by randomly permuting the rows of the explanatory table:
randtest(rda.doubs)

Monte-Carlo test
Call: randtest.pcaiv(xtest = rda.doubs)

Observation: 0.7606

Based on 99 replicates
Simulated p-value: 0.01
Alternative hypothesis: greater

Std.Obs Expectation Variance
4.782390 0.392281 0.005931
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Lastly, the summary function also returns information on the eigenvalues and
their decomposition. The initial analysis (pca.fish) seeks linear combination of
the variables with maximal variance. These variances and their cumulative sum are
reported in the iner and inercum columns, respectively.
## iner
pca.fish$eig[1]

[1] 42.75

sum(pca.fish$li[, 1]^2 * pca.fish$lw)

[1] 42.75

In Redundancy Analysis, eigenvalues (lambda) measure amounts of variance
in species composition explained by the environmental variables. Hence, each
eigenvalue corresponds to the product of a variance (inerC) by a coefficient of
determination (R2).
## lambda
rda.doubs$eig[1]

[1] 38.42

sum(rda.doubs$li[, 1]^2 * rda.doubs$lw)

[1] 38.42

## inerC
sum(rda.doubs$ls[, 1]^2 * rda.doubs$lw)

[1] 42.59

## R2
summary(lm(rda.doubs$ls[, 1] ~ as.matrix(doubs$env)))$r.squared

[1] 0.9019

summary(lm(rda.doubs$ls[, 1] ~ rda.doubs$li[, 1]))$r.squared

[1] 0.9019

RDA (which maximises the explained variance) can thus be seen as a PCA
(which maximises the variance) with an additional constraint of prediction by the
environmental variables. As RDA considers a compromise (product variance by
coefficient of determination), the maximisation of the variance is not optimal and we
can thus measure the effect of the environmental constraint by computing the ratio
(ratio) between the variance obtained in RDA and the maximal value obtained
in PCA.
## ratio
sum(rda.doubs$ls[, 1]^2 * rda.doubs$lw) / pca.fish$eig[1]

[1] 0.9965
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8.4.2 Canonical Correspondence Analysis

Correspondence Analysis on Instrumental Variables (CAIV) corresponds to the
case where the species response table is treated by Correspondence Analysis (CA).
This method is known by ecologists under the name of Canonical Correspondence
Analysis (CCA). CCA is probably the mostly widely used method for direct gradient
analysis. In ade4, it is performed using the general pcaiv function applied on a CA
dudi object created by the dudi.coa function.

Box 8.6 Canonical Correspondence Analysis: Basic Mathematical Defini-
tions
The case where a CA is applied on Y leads to the triplet (Z, Dm, Dn) where
Z = D−1

n P0D−1
m (see Box 6.2 for details). The corresponding analysis on

instrumental variable is associated to the triplet (PXZ, Dm, Dn) where PX =
X(X�DnX)−1X�Dn. It is known as Correspondence Analysis on Instrumental
Variables (Lebreton et al. 1988a,b) or Canonical Correspondence Analysis
(CCA, ter Braak 1986, 1987). As CCA is a particular analysis on instrumental
variables, it can be interpreted in the general framework presented above.

In community ecology, the success of CCA is due to its close relationships
with the ecological niche theory and the unimodal response model (see
Box 6.1). In CCA, the principal component is a linear combination of
environmental variables (b = Xe) that maximises:

∥
∥
∥(PXZ)�Dnb

∥
∥
∥

2

Dm

= b�DnPXZDm(PXZ)�Dnb

The projector PX is Dn-symmetric (i.e., DnPX = PX
�Dn) and by defini-

tion, we have b = Xe and PXb = b. The previous equation can thus be
rewritten as:

∥
∥
∥(PXZ)�Dnb

∥
∥
∥

2

Dm

= b�DnZDmZ�Dnb =
∥
∥
∥Z�Dnb

∥
∥
∥

2

Dm

As Z = D−1
n P0D−1

m , we obtain:

∥
∥
∥(PXZ)�Dnb

∥
∥
∥

2

Dm

=
∥
∥
∥D−1

m P0
�b
∥
∥
∥

2

Dm

= varDm
(D−1

m P0
�b)

The matrix D−1
m P0

�b contains the centred positions of species, computed
by weighted averaging (see Box 6.1) on the environmental gradient (b).
Hence, CCA looks for a site score, linear combination of environmental
variables (b = Xe) that maximises the separation (weighted variance)

(continued)
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Box 8.6 (continued)
of species means. In this context, it perfectly fits the ecological theory
by assuming Gaussian response curves of species and by identifying the
environmental gradients that maximise the separation of niche centroids. In
this viewpoint, CCA inherits from Green’s Discriminant Analysis (Green
1971, 1974) and also maximises the separation of niche positions. The only
difference is that CCA considers that environmental features are measured
for sites while Discriminant Analysis focuses on individuals (ter Braak and
Verdonschot 1995; Lebreton et al. 1988a). This equivalence is detailed in
Sect. 8.4.3.2.

On the other hand, principal axis a maximises:

‖PXZDma‖2
Dn

=
∥
∥
∥PXD−1

n P0a
∥
∥
∥

2

Dn

= varDn
(PXD−1

n P0a)

CCA seeks a unit-variance species score (a). Sites are positioned by
weighted averaging (D−1

n P0a) so that a site is at the average of the species
that are present in it. This score is usually denoted WA-score in the literature
and maximises the weighted-variance explained by X. The predictions of the
WA-score by the environmental variables are given by PXD−1

n P0a and usually
named LC-score (LC for linear combination). Hence, CCA finds a species
score to position sites by weighted averaging so that the prediction of this
score by the environmental variables is maximised.

These interpretations show that two steps of weighted averaging (for
species and sites) are performed in CCA. Whereas our presentation is based
on the eigen decomposition, CCA can also be performed by adding a multiple
regression step in the iterative reciprocal averaging algorithm (ter Braak
1986).

CCA is a particular analysis on instrumental variables, thus all interpretations of
the outputs described for RDA remain valid. As it is based on CA, the principal
characteristic of CCA is that it relates to weighted-averaging principle and thus
provides an estimation of niche unimodal response to environmental gradient (see
Boxes 6.1 and 8.6 for details). We will focus on this aspect in this chapter. As RDA,
CCA is simply performed using the pcaiv function:

cca.doubs <- pcaiv(coa.fish, doubs$env, scannf = FALSE, nf = 2)

The cca.doubs object inherits from the dudi class (see Box 8.7). As for other
two-table methods, the plot function displays the main outputs of the analysis.
According to the niche viewpoint, CCA seeks loadings for environmental variables
(cca.doubs$fa) that are used to compute a site score (cca.doubs$l1, see
Fig. 8.4).
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cca.coef <- s.arrow(cca.doubs$fa, plot = FALSE)
cca.site <- s.label(cca.doubs$l1, plot = FALSE)
ADEgS(list(cca.site, cca.coef), positions = matrix(c(0, 0.6,
      0.4, 1, 0.3, 0, 1, 0.7), byrow = TRUE, nrow = 2))

Fig. 8.4 Plot of the outputs of a Canonical Correspondence Analysis. Site scores as linear
combination of environmental variables ($l1) and loadings for the environmental variables ($fa).

Box 8.7 Canonical Correspondence Analysis: dudi Output Elements
In the ade4 package, the results of a Canonical Correspondence Analysis are
stored in an object of class dudi, subclass pcaiv. This object is a list with
17 elements, including the usual elements of any dudi. In this list, elements
of particular interest are:

• $eig: eigenvalues (�)

(continued)
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Box 8.7 (continued)
• $fa: coefficients (loadings) for the explanatory variables of X (E)
• $l1: unit-variance site scores, linear combinations of environmental

variables (B = XE)
• $co: species scores obtained by weighted averaging (D−1

m P0
�B)

• $c1: unit-variance species scores (A)
• $ls: site scores (WA) obtained by weighted averaging (D−1

n P0A)
• $li: site scores (LC), linear combinations of the explanatory variables

(PXD−1
n P0A)

Permutation test: the randtest function can be used to test the statistical
significance of the CCA. The criterion used in this test is the ratio of the
inertia (sum of eigenvalues) of the constrained analysis divided by the inertia
of the unconstrained analysis. If the simulated p-value given by this test is not
significant, then the CCA outputs should not be interpreted.

Then, species score can be computed by weighted averaging. For instance, the
brown trout (Satr) is present in the following sites:

t(doubs$fish[doubs$fish[, 2] > 0, 2, drop = FALSE])

1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 29
Satr 3 5 5 4 2 3 5 1 3 5 5 5 4 3 2 1 1

Its position on the first two CCA axes can be computed using the
weighted.mean function:
apply(cca.doubs$l1, 2, weighted.mean, w = doubs$fish[, 2])

RS1 RS2
-1.5269 -0.4276

The s.distri function can be used to position species on the sites plot
(Fig. 8.5). On the plot, the species (brown trout, Satr) is positioned by weighted
averaging and segments link the species to the sites where it is present.

The getstats function returns the different statistics computed to produce the
plot. Here, we obtain:

getstats(cca.Satr)

$means
RS1 RS2

Satr -1.527 -0.4276

Species scores are directly computed when the cca.doubs object is created
and stored in cca.doubs$co:



162 8 Description of Species-Environment Relationships

d = 1

Satr

1

2

3
4

5

6

7

8

9

10

11

12

13

14
15

16

17

18
19

20

21
2223

24

25

26
27
28

29 30

cca.Satr <- s.distri(cca.doubs$l1, doubs$fish[, 2, drop = FALSE],
      ellipseSize = 0, plines.lty = 2, plabels.cex = 2, plot = FALSE)
superpose(cca.Satr, cca.site, plot = TRUE)

Fig. 8.5 Plot of the outputs of a Canonical Correspondence Analysis. Site scores as linear
combination of environmental variables ($l1) and species positioned by weighted averaging (here,
only the brown trout (Satr) is represented).

cca.doubs$co[2, ]

Comp1 Comp2
Satr -1.527 -0.4276

Hence, a biplot can be drawn using the superpose function to represent
simultaneously the site ($l1) and the species scores ($co) on the same plot
(Fig. 8.6).

8.4.3 Related Software and Methods

Links with other methods or software are presented in this paragraph.

8.4.3.1 vegan

The vegan package contains the rda and cca functions and provides many
additional functionalities for this type of analysis (significance tests, formula
interface, conditional effects, etc.). The links between outputs from ade4 and vegan
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cca.species <- s.label(cca.doubs$co, plot = FALSE)
superpose(update(cca.site, plabels.cex = 0, plot = FALSE), cca.species,
      plot = TRUE)

Fig. 8.6 Plot of the outputs of a canonical correspondence analysis. Simultaneous representation
of site and species scores.

Table 8.1 Canonical Correspondence Analysis: equivalency between objects created by the
ade4 and vegan packages. In vegan, the scores for sites and species can be obtained with
the scores.cca function.

ade4 vegan

Eigenvalues $eig $CCA$eig

Site scores (LC) $li

Unit-variance site scores $l1 $CCA$u

Site scores (WA) $ls $CCA$wa

Unit-variance species scores $c1 $CCA$v

Species scores $co

Species weights $cw $colsum

Site weights $lw $rowsum

Correlation with environmental variables $cor $CCA$biplot

packages are summarised in Table 8.1 in the case of Canonical Correspondence
Analysis. The same equivalences exist in the case of Redundancy Analysis but some
discrepancies are observed because vegan uses unbiased estimates for the variance
(i.e., divided by n − 1) while ade4 divides by n to preserve some properties in the
geometric viewpoint.
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8.4.3.2 Discriminant Analysis

Canonical Correspondence Analysis shares many similarities with Green’s Discrim-
inant Analysis (Green 1971, 1974). It can be demonstrated that both methods are
identical except in the statistical objects considered in the analysis: they are the sites
in CCA and the individuals in Discriminant Analysis. This equivalence between
both approaches can be illustrated using ade4 functionalities. Each non-null cell
of the doubs$fish table is associated to a given species, a given site and is
characterised by a number of individuals:

idx <- which(doubs$fish > 0, arr.ind = TRUE)
nind <- doubs$fish[doubs$fish > 0]

It is then possible to inflate the data by duplicating the rows of the original
environmental table doubs$env so that each row corresponds to an individual.
A vector with the species names is also created to indicate the species identity of
each individual:

env.ind <- doubs$env[rep(idx[, 1], nind), ]
species.ind <- names(doubs$fish)[rep(idx[, 2], nind)]
sum(doubs$fish)

[1] 1004

nrow(env.ind)

[1] 1004

length(species.ind)

[1] 1004

Discriminant Analysis is then performed on the inflated tables. The aim of the
analysis is to find a linear combination of environmental variables that maximises
the separation of species identities.

pca.ind <- dudi.pca(env.ind, scannf = FALSE, nf = 2)
dis.ind <- discrimin(pca.ind, factor(species.ind),

scannf = FALSE, nf = 2)

This Discriminant Analysis is equivalent to CCA:

dis.ind$eig

[1] 0.534524 0.121839 0.068703 0.049168 0.027090 0.012941
[7] 0.009867 0.005425 0.003534 0.002166 0.001612

cca.doubs$eig

[1] 0.534524 0.121839 0.068703 0.049168 0.027090 0.012941
[7] 0.009867 0.005425 0.003534 0.002166 0.001612

In practice, this viewpoint has been developed for the analysis of herbarium
data where environmental information is gathered for individuals and not for sites
(Gimaret-Carpentier et al. 2003; Pélissier et al. 2003a).
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8.4.3.3 Between- and Within-Class Analyses

Between- and Within-Class Analyses are presented in Chap. 7. These methods can
be seen as particular cases of (orthogonal) analysis on instrumental variables where
only one explanatory categorical variable is considered:

data(meau)
envpca <- dudi.pca(meau$env, scannf = FALSE, nf = 3)
class(meau$design$season)

[1] "factor"

Analyses performed by the bca (respectively wca) and pcaiv (respectively
pcaivortho) functions are similar but the former produce additional outputs
adapted to the analysis of a partition of individuals into groups.

The bca function is equivalent to the pcaiv when only one categorical variable
is used as explanatory:

envbca <- bca(envpca, meau$design$season, scannf = FALSE)
envpcaiv <- pcaiv(envpca, data.frame(meau$design$season),

scannf = FALSE)
envbca$eig

[1] 1.5551 1.0390 0.5918

envpcaiv$eig

[1] 1.5551 1.0390 0.5918

We have the same link between wca and pcaivortho:
envwca <- wca(envpca, meau$design$season, scannf = FALSE)
envpcaivortho <- pcaivortho(envpca, data.frame(meau$design$season),

scannf = FALSE)
envwca$eig

[1] 4.650543 0.870064 0.556517 0.390037 0.205465 0.065492
[7] 0.031483 0.022419 0.012484 0.009637

envpcaivortho$eig

[1] 4.650543 0.870064 0.556517 0.390037 0.205465 0.065492
[7] 0.031483 0.022419 0.012484 0.009637

These outputs are also equivalent to the results obtained with the rda function
of the vegan package:

library(vegan)
n <- nrow(envpca$tab)
eigenvals(rda(envpca$tab ~ meau$design$season),

"constrained")[1:3]

RDA1 RDA2 RDA3
1.6227 1.0841 0.6175

envpcaiv$eig[1:3] * n/(n - 1)
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[1] 1.6227 1.0841 0.6175

eigenvals(rda(envpca$tab ~ Condition(meau$design$season)),
"unconstrained")[1:5]

PC1 PC2 PC3 PC4 PC5
4.8527 0.9079 0.5807 0.4070 0.2144

envpcaivortho$eig[1:5] * n/(n - 1)

[1] 4.8527 0.9079 0.5807 0.4070 0.2144



Chapter 9
Analysing Changes in Structures

Abstract This chapter is a short introduction to the K-table family of methods. We
first present some examples of ecological K-table, the structure of the ktab object
used in the ade4 package to store a K-table, and the functions that allow to build and
manage them. We briefly present three types of methods: STATIS, Multiple Factor
Analysis and Multiple Coinertia Analysis. We explain the differences between these
three groups of methods, with several examples of use.

9.1 Introduction

When the set of samples (rows of a data table) is split into groups, we have seen
in Chap. 7 that several data analysis methods can take into account these groups
and model their differences (Between-Class Analysis) or remove these differences
(Within-Class Analysis). Another approach consists in considering that the groups
correspond to separate tables, with successive tables stacked vertically (Fig. 9.1B).
This leads to what is called the K-table structure.

The set of columns (environmental variables or species) can also be split into
groups, and this also leads to a K-table structure. One can imagine that, in this case,
tables are stacked horizontally (Fig. 9.1A).

The aim of analysing a set of tables instead of just one table is to find out what
makes these tables different, or conversely, to find common points among all the
tables. Are all the tables structured in the same way? Is the samples typology and the
variables/species typology the same across all the tables, or are there some changes
from one table to another? These questions are particularly interesting when the
series of tables is a time series, with each table corresponding to one date (Fig. 9.1C).
But the series of tables can also correspond to other criteria, like taxonomic groups
for species, or geographical regions for samples.
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Fig. 9.1 Structures of data of K-table. A: Several sets of variables measured on the same sites.
B: A set of variables measured for different groups of sites. C: An example of a data cube with the
measurements of the same variables for the same sites repeated at different dates.

9.2 K-table Management in ade4

9.2.1 K-table Examples

Here are a few examples of K-table data sets taken from ade4 that correspond to the
different cases presented in Fig. 9.1. The friday87 data set (Friday 1987) contains
one table (friday87$fau) with 91 macro-invertebrate species sampled in 16
ponds. The 91 species are grouped in 10 taxonomic groups: Hemiptera, Odonata,
Trichoptera, Ephemeroptera, Coleoptera, Diptera, Hydracarina, Malacostraca, Mol-
lusca, Oligochaeta. These species data can be considered as a K-table with 10
tables (one for each taxonomic group), each table having 16 rows and a number
of columns equal to the number of species in each group (11, 7, 13, 4, 13, 22, 4, 3,
8, 6, respectively). This data set corresponds to the case presented in Fig. 9.1A.

data(friday87)
dim(friday87$fau)

[1] 16 91

friday87$fau.blo

Hemiptera Odonata Trichoptera Ephemeroptera
11 7 13 4

Coleoptera Diptera Hydracarina Malacostraca
13 22 4 3

Mollusca Oligochaeta
8 6

The second example belongs to the field of hydrobiology. In ade4, the data set is
called jv73, and it comes from the PhD thesis of J. Verneaux (Verneaux 1973). It
is a list with six components. The physico-chemistry table (jv73$phychi) has 92
rows (92 sites located along 12 rivers) and 12 variables. A factor (jv73$fac.riv)
gives the name of the stream on which each site is located. This data set corresponds
to the case presented in Fig. 9.1B.
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data(jv73)
names(jv73)

[1] "morpho" "phychi" "poi" "xy" "contour"
[6] "fac.riv" "Spatial"

dim(jv73$phychi)

[1] 92 12

table(jv73$fac.riv)

Allaine Audeux Clauge Cuisance Cusancin Dessoubre
8 5 6 8 4 5

Doubs Doulonnes Drugeon Furieuse Lison Loue
16 3 6 9 5 17

The third example comes from a paper by Blondel and Farré (1988) about the
influence of vegetation successions on bird communities composition in European
forests. The bf88 data set in the ade4 package contains the number of birds of
79 species observed in four regions (Burgundy, Provence, Corsica, Poland) along a
gradient of six stages of vegetation succession (from 1: “open, bushy growth less
than 1 m” to 6: “closed, forest with trees higher than 20 m”). Data are arranged in
a list of six data frames, corresponding to the six ecological stages, each data frame
having 79 rows (bird species) and four columns (the four regions). This data set
corresponds to a data cube as presented in Fig. 9.1C with vegetation stages instead
of dates.

data(bf88)
names(bf88)

[1] "S1" "S2" "S3" "S4" "S5" "S6"

dim(bf88$S1)

[1] 79 4

9.2.2 Building and Using a K-table

In ade4, a K-table is stored in an object of class ktab. A ktab object is a list
of data frames that share the same row names (Fig. 9.2) and the following seven
additional components:

• lw: row weights, common to all the tables (vector)
• cw: column weights (vector)
• blo: number of columns of each table (vector)
• TL: index for rows (data frame: table number, row number)
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Fig. 9.2 Organisation of a K-table in ade4. All the tables of a ktab must have the same rows
(they must share the same row names and row weights), but their columns may be different (A).
This is an arbitrary choice and it does not mean that only tables with the same individuals and
different variables can be used. Indeed, tables having the same variables but different individuals
can be transposed to fit in this scheme (B). while tables having the same individuals and different
variables can be used ‘as is’ (C). Of course data cubes with the same rows and the same columns
(e.g., three-way contingency tables) can also fit (D). Note that tables that do not have at least one
dimension (rows or columns) in common cannot be analysed in the framework of K-table methods.

• TC: index for columns (data frame: table number, column number)
• T4: index for 4 elements of an array (data frame: table number, 1:4), mainly for

internal use
• call: function call

The tables must share the same row names and row weights. This means that one
can consider the tables of a ktab as stacked horizontally. If the common dimension
of the tables is the columns (tables stacked vertically), they must be transposed to
have their common dimension as rows.
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There are five functions to build a ktab. They differ by the type of objects from
which they start:

• ktab.list.df: a list of data frames with the same rows. This function is
adapted for cases A and C of Fig. 9.1. It can be used for case B if data frames are
firstly transposed.

• ktab.list.dudi: a list of dudi objects with the same rows. This function is
adapted for cases A and C of Fig. 9.1. It can be used for case B if dudi objects
are firstly transposed.

• ktab.within: an object created by a wca analysis (see Chap. 7.4). This
function is adapted for cases A and C of Fig. 9.1.

• ktab.data.frame: a data frame that should be split by columns and a vector
indicating the number of columns in each table. This function is adapted for cases
B and C of Fig. 9.1. It can be used for case A if the data frame is firstly transposed.

• ktab.match2ktabs: a pair of ktab objects (see Chap. 10) with the same
structure.

Note that the transformation of the data table (e.g., centring and standard-
isation) must be performed during the creation step of the ktab object and
that row and column weights must also be set at this stage. Some functions
(ktab.list.df, ktab.data.frame) allow to introduce any arbitrary data
transformation and row or column weights, while others (ktab.list.dudi,
ktab.within, ktab.match2ktabs) use the data transformation and row and
column weights of a previous analysis of the data set. In the example presented
in Fig. 9.3, the scalewt function is used to standardise the data table and
the ktab.list.df function creates a standardised PCA ktab object, with
the default uniform row and column weights. In Fig. 9.4, the ktab.within
function uses the dudi object created by the withinpca function to perform
a “Bouroche transformation” where the ktab object can be partially standardised
(standardisation of each table separately) or totally standardised (centring of each
table separately and global standardisation).

Several other functions can then be used to manage ktab objects:

• c: concatenates several ktab objects sharing the same rows
• []: selects tables, rows and/or columns in a ktab
• is.ktab: tests if its argument is a ktab
• t: transposes all the tables of a ktab (tables must have the same column names

and weights)
• row.names: returns or modifies the vector of row names shared by all the tables
• col.names: returns or modifies the vector of column names
• tab.names: returns or modifies the vector of table names
• ktab.util.names: automatically builds unique row, column and tab names
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kp1 <- kplot(sep1, posieig = "none", psub.cex = 0, plot = FALSE)
tr1 <- s.traject(sep1$Li, facets = sep1$TL[, 1], plabels.cex = 0,
      col = "red", psub.cex = 2, plot = FALSE)
s1 <- superpose(kp1, tr1)
plot(s1)

Fig. 9.3 Plot of the four separate PCA (one for each season) of the meaudret data set. Physico-
chemical variables are represented by their labels with arrows from the origin, and the five sites
(S1 to S5) are linked by upstream-downstream red arrows.

9.2.3 Separate Analyses of a K-table

The simplest way to use a ktab is to do the separate analysis of each table. This
can be done automatically for all the tables of a ktab using the sepan function.
The exact analysis that is performed depends on the data transformation and on the
row and column weights. For example, if a table of quantitative variables is centred
and standardised with uniform row and column weights, then the separate analyses
are standardised PCAs.
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wit1 <- withinpca(meaudret$env, meaudret$design$season,
      scannf = FALSE, scaling = "partial")
kta1 <- ktab.within(wit1,
      colnames = rep(c("S1", "S2", "S3", "S4", "S5"), 4))
pta1 <- pta(t(kta1), scannf = FALSE)

plot(pta1)

Fig. 9.4 Plot of the PTA of the meaudret data set (Interstructure and Compromise steps).

As an example, we can use again the meaudret data set (Pegaz-Maucet
1980) that we have already seen in Chaps. 2 and 3. We compute the PCA of
environmental variables measured in the five sampling sites, but separately for
each season. The table of environmental variables meaudret$env is first centred
and standardised for each season, using the by and scalewt functions and the
meaudret$design$season factor. The by function returns a list of matrices
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that must be turned into data frames before they can be used in the ktab.list.df
function. The ktab object ktam is built and the sepan function is used to perform
a PCA on each table. The kplot function can then be used to plot the four separate
biplots (Fig. 9.3).
data(meaudret)
env <- by(meaudret$env, meaudret$design$season, scalewt)
ktam <- ktab.list.df(lapply(env, as.data.frame),

rownames = paste("S", 1:5, sep = ""))
sep1 <- sepan(ktam)

We can see that the same structure is reproduced during each season, with the first
principal component representing a pollution gradient (highly polluted sites on the
left) and the second one showing the upstream-downstream morphological gradient
(Flow, Temperature).

The problem with Fig. 9.3 is that each analysis has been computed independently
from the three others. This means that they are not at the same scale, they cannot
be superimposed or even compared. Indeed nothing guarantees that one axis in one
figure will correspond to the same structure in another figure. Axes can be inverted,
or even be completely different.

We need a way to have these four figures at the same scale and in the same space
and this is the objective of K-table methods.

9.3 Strategies of K-table Methods

According to the structure of the K-table and the type of data, different methods can
be used:

• Partial Triadic Analysis is restricted to data cubes where all tables have the
same individuals and variables

• Foucart COA is restricted to three-way contingency tables (i.e., data cubes with
counts where rows and columns correspond to categories)

• STATIS on operators allows to deal with K-tables with at least the same
individuals (STATIS on WD) or at least the same variables (STATIS on VQ)

• Multiple Factor Analysis is restricted to K-tables with at least the same
individuals

• Multiple Coinertia Analysis is originally restricted to K-tables with at least the
same individuals but can be applied on K-tables with at least the same variables
if they have been firstly transposed.

The first two methods are also named “STATIS on tables”. Both “STATIS on
tables” and “STATIS on operators” methods share many similarities. All these meth-
ods can be decomposed in three steps, called the Interstructure, the Compromise
and the Intrastructure (Lavit 1988; Lavit et al. 1994). The Interstructure uses the RV
coefficients to compute a matrix of scalar products between the tables that measures
their relationships. When all the tables have both the same rows and columns,
STATIS, and the associated computation of the RV coefficient, is performed directly
on tables (see Box 9.1). Two analyses have been developed in this case: Partial
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Triadic Analysis (PTA, Thioulouse and Chessel 1987) and Foucart Correspondence
Analysis (Foucart 1978; Pavoine et al. 2007).

When the tables have only one common dimension (rows or columns), the
analysis, including the computation of RV coefficients, is performed on Escoufier
operators (Escoufier 1973). In this framework, the RV coefficient (see Box 9.6) is
a multivariate generalisation of the squared correlation coefficient that allows to
measure the link between two tables with only one common dimension (rows or
columns). It is used, for example, in Coinertia Analysis (see Box 8.1). The case
where the rows (sites or samples) are common to all the tables is called STATIS-
WD, while the case where the columns (variables or species) are in common is
called STATIS-VQ.

Then, the Compromise is computed as a combination of the K tables, and the
Intrastructure projects the elements (rows and columns) of each table onto the
analysis of the Compromise. This approach gave rise to many generalisations (see,
for example, Abdi et al. 2012).

Box 9.1 The RV Coefficient on Tables
Let Xk and X	 be two tables with the same n rows and the same p columns.

Let (Xk , Q, D) and (X	, Q, D) be the two associated statistical triplets. The
inner-product between the tables is defined by:

Covv(Xk, X	) = Trace(Xk
�DX	Q) = Trace(X	

�DXkQ)

The vectorial variance Vav(Xk) is equal to:

Covv(Xk, Xk) = Trace(Xk
�DXkQ)

The vectorial correlation coefficient, or RV coefficient (Rv) is:

Rv(Xk, X	) = Covv(Xk, X	)√
Vav(Xk)

√
Vav(X	)

Remark: If the K-table contains only quantitative standardised variables,
Covv(Xk, X	) =∑p

i=1 cor(Xi
k, Xi

	) and Vav(Xk) = p.
In this case, the RV coefficient (Rv) is the average of the correlations

between all the pairs of variables:

Rv(Xk, X	) = 1

p

p
∑

i=1

cor(Xi
k, Xi

	)

where Xi
k (Xi

	 respectively) are the column vector associated to the i-th
variable of the k-th table (	 table, respectively).
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9.4 Partial Triadic Analysis

The theoretical background of Triadic Analysis was established in the PhD thesis of
Jaffrenou (1978). He showed that it was in fact equivalent to Tucker’s Three-Mode
Factor Analysis (Tucker 1966). An application of a particular case (called “Partial
Triadic Analysis”) to ecological situations was published by Thioulouse and Chessel
(1987). The extension to the complete case (“Complete Triadic Analysis”) was
then explained by Kroonenberg (1989), in the framework of Three-mode Principal
Component Analysis (Kroonenberg 1983).

The main characteristic of PTA is its simplicity: computations can be done with
a simple PCA software, and interpretations are usually easy. One drawback is the
constraint on the number of samples and variables that have to be the same for all
the tables. Several recent examples of application can be found in hydrobiology
(Rolland et al. 2009; Bertrand and Maumy 2010; Mendes et al. 2010; Slimani et al.
2017). Basic definitions are recalled in Box 9.2.

Box 9.2 PTA: Basic Mathematical Definitions
Let X1, . . . , Xk , . . . , XK be K tables of quantitative variables with the same n

rows (samples) and the same p columns (variables). Let (X1, Q, D), . . . , (Xk ,
Q, D), . . . , (XK , Q, D) be the K associated statistical triplets.

Partial Triadic Analysis is decomposed in three steps.

Step 1: the Interstructure
For each couple of tables (Xk ,X	), we can compute the RV coefficient (see
Box 9.1) and put it in the Rv matrix:

Rv =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Rv(X1, X1) . . . Rv(X1, Xk) . . . Rv(X1, XK)
...

. . .
...

. . .
...

Rv(Xk, X1) . . . Rv(Xk, Xk) . . . Rv(Xk, XK)
...

. . .
...

. . .
...

Rv(XK, X1) . . . Rv(XK, Xk) . . . Rv(XK, XK)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

The eigenvalues �B and the normed eigenvectors UB of the Rv matrix

are used to compute a score of the tables S = UB�
1
2
B , where the letter

B (Between) refers to the interstructure. These scores can be plotted in a
correlation circle.

Step 2: the Compromise
Let uB

� = (α1 . . . αk . . . αK) be the first eigenvector of the Interstructure
analysis with

∑K
k=1 α2

k = 1. The αk are used to define the K-table weighting.
The Compromise table is therefore built as a combination of the K tables:

(continued)
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Box 9.2 (continued)

X =
K
∑

k=1

αkXk

The analysis of the Compromise is the analysis of the triplet (X, Q, D)
in the sense of a duality diagram (maximisation of the projected inertia, see
Boxes 3.1 and 5.1).

The row scores (L) projection of the rows of X onto the principal axes (A)
and the column scores (C) projection of the columns of X onto the principal
components (B) are given by L = XQA and C = X�DB.

An RV coefficient can be calculated between the Compromise table X and
each table Xk: Rv(X, Xk). It represents the squared cosine and defines the
link between the Compromise and each table.

Step 3: the Intrastructure
Let � be the eigenvalues and A the eigenvectors of the Compromise study
(X, Q, D). The rows of each table are projected onto the principal axes:
Rk = XkQA, and the columns of each table are projected onto the principal
components: Ck = Xk

�DB.
Let Ak be the principal axes (Bk the principal components) of the separate

analysis of the k-th table. These principal axes (principal components) can
be projected onto the principal axes A (principal components B) of the
Compromise study: Ak

�QA (Bk
�DB).

In the ade4 package, a PTA can be computed using the pta function. All the
outputs are grouped in a dudi object (subclass pta), and Box 9.3 recalls the
corresponding output elements.

Box 9.3 PTA: dudi Output Elements
In the ade4 package, the results of a PTA are stored in an object of class
dudi, subclass pta. This object is a list with 25 elements, including the
usual elements of any dudi. In this list, elements of particular interest are:

Step 1: the Interstructure

• $RV: matrix of RV coefficients (RV)
• $RV.eig: eigenvalues of RV (�B )
• $RV.coo: scores of tables (S)
• $tab.names: names of tables

(continued)
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Box 9.3 (continued)
Step 2: the Compromise

• $tabw: weights of tables (uB )
• $cw: column weights (Q)
• $lw: row weights (D)
• $eig: eigenvalues (�)
• $cos2: squared cosines between Compromise and tables (Rv(X, Xk))
• $tab: Compromise table (X)
• $li: row coordinates (L)
• $l1: principal components (B)
• $co: column coordinates (C)
• $c1: principal axes (A)

Step 3: the Intrastructure

• $Tli: row coordinates (Rk stacked vertically)
• $Tco: column coordinates (Ck stacked vertically)
• $Tcomp: projection of separate principal components (Bk

�DB stacked
vertically)

• $Tax: projection of separate principal axes (Ak
�QA stacked vertically)

The results on the meaudret data set are shown in Fig. 9.4. The first step uses
the withinpca function to compute a within-class PCA, with the Bouroche “Par-
tial” standardisation (Bouroche 1975). This means that, after a global centring and
standardisation, variables are standardised separately within each table. Variables
have therefore a null mean and unit variance in each table. The ktab object kta1
is then built with the ktab.within function and the same column names are
given to the four tables. The ktab is then transposed to have variables in columns,
and the PTA is computed with the pta function:

wit1 <- withinpca(meaudret$env, meaudret$design$season,
scannf = FALSE, scaling = "partial")

kta1 <- ktab.within(wit1,
colnames = rep(c("S1", "S2", "S3", "S4", "S5"), 4))

pta1 <- pta(t(kta1), scannf = FALSE)

The plot function draws Fig. 9.4. The Interstructure graph (top-left) shows that
the winter table structure is different from the structure of the three other seasons.
The two graphs of the Compromise (Rows = sites plot and Columns = variables
plot) show the pollution gradient on the first axis and the upstream-downstream
morphology gradient on the second. The Typological value graph (bottom-
right) gives the importance of each table in the Compromise and shows that winter
contributes less than the other seasons to the Compromise structure.

The kplot function can then be used to draw the Intrastructure graphs (Fig. 9.5).
This figure displays the projection of the rows and columns of the four tables and
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Fig. 9.5 Plot of the PTA of the meaudret data set (Intrastructure step). The first column of
graphs shows the projection of the principal axes of the PCA of each table into the PTA. The
second column shows the factor map of sites. The third column shows the factor map of physico-
chemical variables. The fourth column shows the projection of the principal components of the
PCA of each table into the PTA.

of the principal axes and components of the four PCA. It shows how the structure
of each table (or its principal axes) differs from the structures of the others but
interpretation is easier in Fig. 9.6.

Figure 9.6 is the same type of display as Fig. 9.3 (one graph for each season), but
it uses the coordinates of the Intrastructure step of the PTA. Compared to Fig. 9.3,
the graphs of four seasons are now at the same scale and can be superimposed and
compared. All the points are in the same space, so the two axes have the same
meaning in all the graphs. In the present case, the interpretation is not changed,
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ar1 <- s.arrow(pta1$Tco * 3, facets = pta1$TC[, 1], psub.cex = 2,
      labels = pta1$TC[, 2], plot = FALSE)
tr1 <- s.traject(pta1$Tli, facets = pta1$TL[, 1], plabels.cex = 0,
      psub.cex = 0, col = "red", plot = FALSE)
la1 <- s.label(pta1$Tli, facets = pta1$TL[, 1], psub.cex = 0,
      labels = pta1$TL[, 2], plot = FALSE)
s1 <- superpose(tr1, la1)
s2 <- superpose(s1, ar1)
plot(s2)

Fig. 9.6 Plot of the PTA of the meaudret data set (Intrastructure step) split by season.

because the structures are very strong and the four separate PCA had already given
the same picture. But in the case where structures are weaker, or when they are more
different across tables, using a K-table approach could help get a better idea of the
global structure, and how it is distorted in each table.
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9.5 Foucart COA

The aim of Foucart COA is to coordinate the Correspondence Analyses of a series of
contingency tables crossing the same two variables (Pavoine et al. 2007). Because
of the properties of contingency tables, Foucart COA is even simpler than PTA,
both from a theoretical point of view and for the implementation in ade4. Indeed,
the Compromise table is simply the mean of the frequencies of all the contingency
tables, and the foucart function in ade4 simply takes a list of data frames as
argument instead of a ktab. Basic mathematical definitions are recalled in Box 9.4.

Box 9.4 Foucart Analysis: Basic Mathematical Definitions
Let X1, . . . , Xk , . . . , XK be K contingency tables with the same I rows and

J columns: Xk =
[

nk
ij

]

. Let (X1, D1
J , D1

I ), . . . , (Xk , Dk
J , Dk

I ), . . . , (XK , DK
J ,

DK
I ) be the K associated statistical triplets.
The Foucart Analysis is decomposed in two steps: the Common Structure

and the Intrastructure.

Step 1: the Common Structure

Let Pk =
[

nk
ij

nk••

]

be the frequency table associated to the k-th contingency

table Xk where nk
•• is the grand total.

The Common table P is therefore built as an average contingency table:

P = 1

K

K
∑

k=1

Pk =
[

1

K

K
∑

k=1

nk
ij

nk
••

]

As for a classical contingency table, we can compute the row and column
sums:

pi• = 1

K

K
∑

k=1

nk
i•

nk
••

and p•j = 1

K

K
∑

k=1

nk
•j

nk
••

These margins define two metrics, DI = diag(p1• · · · pI •) and DJ =
diag(p•1 · · · p•J ).

The Common Structure analysis is the study of the triplet (Z, DJ , DI ) with
Z = D−1

I PD−1
J − 1IJ (see Box 6.2 for more details).

Step 2: the Intrastructure
The rows and columns of the K tables are projected onto the axes of the
analysis of the average table (Step 1).

The projection of columns is obtained by (PJ
k )�B with PJ

k = Pk

(

Dk
J

)−1
.

The projection of rows is obtained by PI
kA with PI

k = (Dk
I

)−1
Pk .
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In the ade4 package, the foucart function is used to compute a Foucart COA.
All the outputs of this function are grouped in a foucart object and Box 9.5 recalls
the corresponding output elements.

Box 9.5 Foucart Analysis: dudi Output Elements
In the ade4 package, the results of a Foucart Analysis are stored in an object
of class dudi, subclass coa, subclass foucart. This object is a list with 18
elements, including the usual elements of any dudi. In this list, elements of
particular interest are:

Step 1: the Common Structure

• $blocks: number of columns in each table
• $tab.names: names of tables
• $tab: transformed average table (Z)
• $cw: column weights (DJ )
• $lw: row weights (DI )
• $c1: principal axes (A)
• $co: column scores as weighted averages (C = Z�DI B)
• $l1: principal components (B)
• $li: row scores as weighted averages (L = ZDJ A)

Step 2: the Intrastructure

• $Tco: column scores ((PJ
k )�B stacked vertically)

• $Tli: row scores (PI
kA stacked vertically)

The bf88 data set (Sect. 9.2.1, page 169) can be used to illustrate this method:
fou1 <- foucart(bf88, scannf = FALSE, nf = 3)

Figure 9.7 is a summary of the Common structure and of the Intrastructure of this
analysis. The two graphs on the top of the figure are the row and column graphs of
the Common structure (mean of the contingency tables). They show the list of bird
species (left) and the four regions (right).

The bottom two graphs show the Intrastructure, i.e., the projections of the rows
and columns of the six contingency tables into the analysis of the Common structure.
They display the projection of the 79 bird species (left) and of the four regions (right)
for the six stages of vegetation succession.

The kplot function can be used to draw Fig. 9.8. This is also a display of the
Intrastructure, but unlike in Fig. 9.7, the six stages of vegetation succession are
split in six separate graphs (S1 to S6). The 79 bird species and the four regions
are displayed in each graph, showing the changes in bird species composition and
relative region positions changes along the vegetation gradient.
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plot(fou1, psub.cex = 2, col.plabels.col = "red",
      colB.plabels.col = "red", rowB.plabels.optim = TRUE)

Fig. 9.7 Plot of the Foucart COA of the bf88 data set.

The final interpretation is made easier in Fig. 9.9, where only the coordinates of
the four regions in the Intrastructure is kept. Grey level polygons are used to show
the between-regions variability of bird species composition along the gradient of
vegetation succession. This variability is high in the first three stages (1–3, light grey
polygons), and low in the last three (4–6, dark grey polygons). This corresponds to
the bird species composition convergence in forest environments.

9.6 STATIS on Operators

When the tables of a K-table have only one dimension in common, the STATIS
method uses the Escoufier operators to compare the tables (see Box 9.6).
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kplot(fou1, col.plabels = list(cex = 3, col = "red",
      label = fou1$TC[, 2]), row.plabels = list(cex = 2,
      label = fou1$TL[, 2], plabels.boxes.draw = FALSE),
      psub.cex = 3, pgrid.text.cex = 2)
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Fig. 9.8 kplot of the Foucart COA of the bf88 data set.
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pols <- s.class(fou1$Tco, fou1$TC[, 1], ppolygons.col = gray(5:0/6),
      chullSize = 1, starSize = 0, ellipseSize = 0, plabels.cex = 0,

plegend.drawKey = FALSE)
pols <- s.label(fou1$Tco, add = TRUE)

Fig. 9.9 Interpretation of Foucart COA of the bf88 data set.
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Box 9.6 The RV Coefficient on the Escoufier Operators
Let Xk and X	 be two tables with the same n rows and different columns.

Let (Xk , Qk , D) and (X	, Q	, D) be the two associated statistical triplets.
The respective analyses of these two triplets lead to two configurations of
rows constructed with XkQkXk

�D and X	Q	X	
�D also called the Escoufier

operators WkD and W	D. As they have different columns, a way to compare
these triplets is to define an inner-product between the operators:

COVV(Xk, X	) = Trace(XkQkXk
�DX	Q	X	

�D)

which can be written using the Escoufier operators

COVV(Xk, X	) = Trace(WkDW	D)

The vectorial variance VAV(Xk) is equal to:

VAV(Xk) = COVV(Xk, Xk)

= Trace(XkQkXk
�DXkQkXk

�D)

= Trace(WkDWkD)

The vectorial correlation coefficient, or RV coefficient is therefore:

RV (Xk, X	) = COVV(Xk, X	)√
VAV(Xk)

√
VAV(X	)

also written

RV (WkD, W	D) = Trace(WkDW	D)
√

Trace((WkD)2)
√

Trace((W	D)2)

Property: 0 ≤ RV (WkD, W	D) ≤ 1

Box 9.7 gives the basic definitions of the STATIS method in the framework of
the duality diagram and of the ade4 package.

Two cases are usually considered: (1) the tables of the series have the same
columns (variables) or (2) the same rows (individuals or samples). If tables
have different rows and different columns, then none of these methods can
be used.

When variables are identical across all the tables, then STATIS compares
covariance matrices (VQ) and analyses similarities between variables. This is called
the “STATIS on VQ” strategy.
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The “STATIS on WD” strategy is used when the tables have the same rows.
It compares matrices of scalar products between individuals (WD), and analyses
similarities between individuals (Box 9.7).

Box 9.7 STATIS Analysis: Basic Mathematical Definitions
Let X1, . . . , Xk, . . . , XK be K tables containing p1, . . . , pK variables respec-
tively (columns) and the same n rows (samples or individuals). Let (X1, Q1,
D), . . . , (Xk , Qk , D), . . . , (XK , QK , D) be the K associated statistical triplets.

Let Wk be the following matrix Wk = XkQkXk
�. Then WkD is the matrix

of the inner product between the individuals of table k. It is also called the
Escoufier operator.

STATIS analysis is decomposed in three steps:

Step 1: the Interstructure
For all the pairs of triplets (Xk , Qk , D) and (X	, Q	, D), we can compute
the RV coefficients and put them in an RV matrix (see Box 9.6, Escoufier
operator).

The eigenvalues �B and the normed eigenvectors UB of the RV matrix

give a score of the tables S = UB�
1
2
B , where the letter B (Between) refers to

the interstructure. This score can be displayed in a correlation circle.

Step 2: the Compromise
Let uB

� = (α1 . . . αk . . . αK) be the components of the first eigenvector of
the Interstructure analysis with

∑K
k=1 α2

k = 1. The αk are used as weights for
table Xk . One can then define the Compromise operator:

WD =
K
∑

k=1

αk

WkD√
VAV(Xk)

Let � and U be the eigenvalues of WD and the eigenvectors, respectively
(U�DU = I). One can compute the coordinates of all n individuals onto the

principal axes L = WDU�
1
2 .

Step 3: the Intrastructure
One can project the variables of each table onto the Compromise to obtain a
score Ck = Xk

�DU.
One can project the scalar product of each k table onto the Compromise

Lk = WkDU�
1
2 .

In the ade4 package, these differences are not considered and the statis
function can be used to analyse both situations. The drawback is that the ktab
object must take this into account. In all cases, the rows of all the tables must be
identical, and the ktab must be prepared accordingly. If variables are the same
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for all the tables and individuals differ (STATIS on VQ), then the tables must be
transposed to have the common dimension in rows.

All the outputs of the statis function are grouped in a statis object, and
Box 9.8 recalls the corresponding outputs elements.

Box 9.8 STATIS Analysis: dudi Output Elements
In the ade4 package, the results of a STATIS Analysis are stored in an object
of class statis. This object is a list with 15 elements. In this list, elements
of particular interest are:

Step 1: the Interstructure

• $RV: matrix of RV coefficients (RV)
• $RV.eig: eigenvalues (�B )
• $RV.coo: table scores (S)
• $tab.names: table names

Step 2: the Compromise

• $RV.tabw: table weights (uB )
• $cos2: squared cosines between Compromise and tables (RV (X, Xk))
• $C.li: coordinates of the rows of the Compromise (L)

Step 3: the Intrastructure

• $C.Co: column coordinates (Ck stacked vertically)
• $C.T4: row scores (Lk stacked vertically)

In the friday87 data set, the fau data frame containing 91 species grouped
in 10 taxa (see Sect. 9.2.1), and one table of environmental variables (mil) make
up 11 tables with the same rows (16 ponds). The fauna and the environmental data
frames are bound together into the w1 data frame with the cbind.data.frame
function. The species are centred, and the environmental variables are standardised.
The kta1 K-table is then built with the ktab.data.frame function (Fig. 9.10).

Figure 9.10 shows the eigenvalues barcharts of the 11 separate analyses (one for
each table). STATIS measures the importance of a table by the sum of the squared
eigenvalues, instead of the sum of eigenvalues as it is the case in one-table analyses.
This change from the sum (mean) to the sum of squares (variance) is equivalent to
the change from abundance to diversity.

The taxa that have the highest importance from this point of view are Diptera,
Trichoptera, Mollusca and Ephemeroptera (on two axes). It is interesting to notice
that this importance is not related to the richness of taxonomic groups, but to the
strength of their structure.
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Hemiptera Odonata Trichoptera Ephemeroptera

Coleoptera Diptera Hydracarina Malacostraca

Mollusca Oligochaeta Environment

w1 <- cbind.data.frame(scalewt(friday87$fau, scale = FALSE),
     scalewt(friday87$mil))

kta1 <- ktab.data.frame(w1, c(friday87$fau.blo, 11),
     tabnames = c(friday87$tab.names, "Environment"))

sep1 <- sepan(kta1)
plot(sep1, psub.cex = 2, paxes.draw = FALSE)

Fig. 9.10 Eigenvalues of the separate analyses of the friday87 data set.

The STATIS analysis is computed with the statis function, and the results
are displayed according to the three steps of K-table analyses: Interstructure,
Compromise and Intrastructure (Figs. 9.11, 9.12, 9.13, 9.14 and 9.15):

statis1 <- statis(kta1, scannf = FALSE)

In the Interstructure step, the matrix of RV coefficients between operators is
diagonalised, and the resulting eigenvalues can be found in statis1$RV.eig.
This gives the eigenvalues barchart of Fig. 9.11. The components of the first
eigenvector are then used as weights in a linear combination of initial operators.
This linear combination is called the Compromise, and the corresponding weights
can be found in statis1$RV.tabw.

The correlation circle of the Interstructure (Fig. 9.11) can be drawn with the
coordinates found in statis1$RV.coo. This figure shows the importance
(Typological value) of each table in the Compromise study. Here, we can see
that the structure is not very coherent among tables, and that the environment will
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d = 0.4

Hemiptera

Odonata
TrichopteraEphemeroptera

Coleoptera

Diptera

Hydracarina

Malacostraca

Mollusca

Oligochaeta
Environment

Eigenvalues

bc2 <- plotEig(statis1$RV.eig, yax = 1, nf = 1, pbackground.box = TRUE,
      psub = list(text = "Eigenvalues", cex = 2) , plot = FALSE)
cs2 <- s.corcircle(statis1$RV.coo, pbackground.box = FALSE, plot = FALSE)
ADEgS(list(cs2, bc2), rbind(c(0, 0, 1, 1), c(0, 0.55, 0.45, 1)))

Fig. 9.11 STATIS analysis of the friday87 data set: eigenvalues barchart and correlation circle
of the Interstructure.

not be able to explain the distribution of all taxa. The environmental variables seem
to be better related to Oligocheta than to Mollusca, Coleoptera and Hydracarina.

The analysis of the Compromise gives a second eigenvalues barchart (Fig. 9.12)
with two prominent eigenvalues. These values can be found in statis1$C.eig.

The factor map of the Compromise for the 16 ponds (Fig. 9.12, left) is drawn
using the coordinates in statis1$C.li. The structure observed in this figure
corresponds to a differential distribution of several taxa in some ponds: Trichoptera,
Ephemeroptera, Hydracarina, Malacostraca, Mollusca and Oligochaeta are mostly
absent from ponds on the left (ponds R, E, J, P, Q).

This structure can be seen directly in the data, in Fig. 9.13. This figure displays
the distribution of the 91 species in the 16 ponds. It is drawn with the s.distri
function and the following code, that builds a new ktab object kta2, containing
only the species data (excluding the environmental variables table).

kta2 <- ktab.data.frame(friday87$fau, friday87$fau.blo)
glc <- list()
for (j in 1:length(friday87$fau.blo)) {

glc <- c(glc, s.distri(statis1$C.li, kta2[[j]],
plot = FALSE, storeData = TRUE, starSize = 0.5,
ellipseSize = 0, pellipses.axes.draw = FALSE,
psub.cex = 2, psub.text = names(kta2)[[j]],
pgrid.text.cex = 2, plabels.cex = 2))

}
ADEgS(glc)
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bcC <- plotEig(statis1$C.eig, yax = 2, nf = 2, pbackground.box = TRUE,
      psub = list(text = "Eigenvalues", cex = 2), plot = FALSE)
slC <- s.label(statis1$C.li, plabels.cex = 1.5, plabels.optim = TRUE,
      plot = FALSE)
ccC <- s.corcircle(statis1$C.Co[statis1$TC[, 1] == "Environment", ],
      pbackground.box = FALSE, plot = FALSE)
ADEgS(list(slC, ccC, bcC), rbind(c(0, 0, 0.5, 1), c(0.5, 0, 1, 1),
      c(0.35, 0, 0.65, 0.4)))

Fig. 9.12 Compromise of the STATIS analysis of the friday87 data set: eigenvalues barchart
(middle), ponds factor map (left), and environmental variables (right).
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Fig. 9.13 Distribution of the abundance of the 91 species in the 16 ponds.
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kp1 <- kplot(statis1, plabels.cex = 2, psub.cex = 2)

Fig. 9.14 Columns Compromise plot of the STATIS analysis.

The for loop operates on the ten tables of the ktab (the ten species groups),
drawing one graph for each group. The resulting ten graphs are collected in the glc
list, and plotted with the ADEgS function of the adegraphics package.

There is one star for each species, with branches that connect the gravity centre
of the species to the ponds where it is present. Species are grouped by taxa, and it is
easy to see that, for example, Ephemeroptera are present only in ponds on the right
(ponds with high pH).

The factor map of the Compromise for variables (species and environmental
parameters) can be drawn with the column coordinates (in statis1$C.co).
Figure 9.12 (right) shows the environmental variables only. Pond size (area and
depth) and water pH are the two main factors that explain the variations in species
distributions. Large ponds tend to be in the top part of the graph, while ponds with
high pH and hardness tend to be on the right.

The factor map of the Compromise for columns can be drawn automatically using
the kplot function (Fig. 9.14), and the plot function can be used to draw the
synthetic graph of a statis object (Fig. 9.15).

The kplot function draws a figure (Fig. 9.14) that has the same organisation
as the graph of species distributions (Fig. 9.13), with one graph for each species
group. In each group (e.g., Hemiptera), each species is represented by an arrow with
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Fig. 9.15 Generic plot of the statis analysis of the friday87 data set.

a label giving the species code. This figure also corresponds to the plot of ponds
(Fig. 9.12), and shows which species is more abundant (or which environmental
variable is higher) in each pond.

The generic plot of the STATIS analysis (plot function, see Fig. 9.15) is a
collection made of the Interstructure plot (top-left), the rows (ponds) Compromise
plot (top-right), the Typological value plot (bottom-left), and the component
projection plot (bottom-right). The Typological value plot gives the impor-
tance of each table in the analysis, and the component projection plot shows the
projection of the first principal vector of each table on the Compromise factor map.
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9.7 Multiple Factor Analysis

Multiple Factor Analysis (MFA, Escofier and Pagès 1994) was developed by B.
Escofier and J. Pages in the early 1980s (INRIA internal research reports). The aim
of MFA is to analyse K groups of variables measured on the same individuals. Many
variants and extensions have been defined in other situations, for example, tables
with mixed quantitative and qualitative variables, variables arranged in a hierarchy,
or dual MFA (groups of individuals instead of groups of variables).

Box 9.9 gives the basic definitions of MFA. Row weights are equal to the row
weights of separate tables, and column weights are equal to the concatenated column
weights of separate tables. Each table is multiplied by a weight that decreases the
importance of large tables and increases the one of small tables.

Box 9.9 MFA: Basic Mathematical Definitions
Let X1, · · · , Xk, · · · , XK be K tables with the same n sampling units (rows).
Table k contains pk variables (columns), and

∑K
k=1 pk = p. Let (X1, Q1, D),

. . . , (Xk , Qk , D), . . . , (XK , QK , D) be the K associated statistical triplets.
The Multiple Factor Analysis is decomposed in two steps:

Step 1: the Reference Structure
A global analysis is performed on the statistical triplet (X, Q, D) where X
contains all tables stacked horizontally X = [X1| . . . |Xk| . . . |XK ], and D is
the diagonal matrix of row weights.

A table weighting πk is applied to each table to avoid those with more
variables, higher total inertia or with a higher first eigenvalue dominate the
global study. Three main propositions can therefore be chosen:

• the inverse of the first eigenvalue of the separate analysis of each table (by
default),

• the inverse of the total inertia of the separate analysis of each table,
• a uniform weighting if tables are comparable.

Let X be the previous one including table weightings:

X = [π1X1| . . . |πkXk| . . . |πKXK ]

Let Q be the diagonal block matrix of column weights:

Q =
⎛

⎜
⎝

Q1 0 0

0
. . . 0

0 0 QK

⎞

⎟
⎠

MFA finds the principal components B of the triplet (X, Q, D) in the sense
of the duality diagram (see Box 3.1). The corresponding analysis is a PCA for

(continued)
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Box 9.9 (continued)
quantitative variables (see Box 5.1) and an MCA for qualitative variables (see
Box 5.3).

Let A, B, C and L be the matrices of principal axes, principal components,
column scores and row scores, respectively.

Step 2: the Intrastructure
The intrastructure links each table to the Reference Structure by

∥
∥Xk

�DB
∥
∥

2
Qk

and computes the projection of the principal components of the separate
analysis of a table onto the principal components of the Reference Structure
by Bk

�DB.
Finally, one can project the n rows of each k table as supplementary rows

onto the Reference Structure (XkQkXk
�DB).

In ade4, the mfa function is used to compute an MFA. All the outputs of this
function are grouped in an mfa object and Box 9.10 recalls the corresponding output
elements.

Box 9.10 MFA: dudi Output Elements
In the ade4 package, the results of an MFA are stored in an object of class
mfa. This object is a list with 19 elements. In this list, elements of particular
interest are:

Step 1: the Reference Structure

• $tab: grand matrix (X)
• $tab.names: table names
• $eig: eigenvalues
• $lw: row weights (D)
• $cw: column weights (Q)
• $l1: row normed scores (B)
• $li: row coordinates (L)
• $c1: column normed scores (A)
• $co: column coordinates (C)

Step 2: the Intrastructure

• $link: link with grand table (
∥
∥Xk

�DB
∥
∥

2
Qk

stacked vertically)

• $T4comp: component projections (Bk
�DB stacked vertically)

• $lisup: row coordinates for each table (XkQkXk
�DB stacked vertically)
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afm1 <- mfa(kta1, scannf = FALSE, nf = 2)
plot(afm1, comp = list(plabels.boxes.draw = FALSE,
      psub.position = "topright"), pgrid.text.pos = "bottomright")

Fig. 9.16 Generic plot of the Multiple Factor Analysis of the friday87 data set.

Figure 9.16 shows the results of MFA on the friday87 data set. The eigenval-
ues barchart is very similar to the eigenvalues barchart of the STATIS Compromise
(see Fig. 9.12, middle graph). The rows and columns coordinates are used to draw
the top two graphs in Fig. 9.16 (Rows = Rows projection and Columns = Columns
projection). The lower left graph (Components (separate analyses))
shows the projection of the principal components of each table into the factor
map of MFA. The result is very similar to the same graph in the STATIS analysis
(Fig. 9.15). The lower right graph (Link) displays the link between each table and
the Reference Structure. It shows, for example, that the environmental variables
table (Environment) has no influence on the second component of the MFA, as
opposed to the Hemiptera table (Hemiptera).
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Fig. 9.17 Plot of the 16 ponds in the MFA of the friday87 data set.

The factor map of the rows (ponds) is displayed in Fig. 9.17. Although compu-
tations are completely different, it is also very similar to the Compromise plot of
STATIS (Fig. 9.15, top-right graph).

It is possible to draw a map of sites (ponds) for each table (taxa), in the same
way as in STATIS trajectories. The coordinates of the rows of each table are in
afm1$lisup. These coordinates can be used to draw a simultaneous display of
ponds and taxa, either with taxa grouped by pond (Fig. 9.18) or with species split
by taxa (Fig. 9.19). The first figure underlines the coherence of species composition
within each pond, while the second one allows to compare the distribution of species
in the ponds for each taxon.

In Fig. 9.18, the coordinates of the rows (ponds) for all the tables (taxa) are
grouped by pond. A star and an ellipse are drawn for each pond. For example, for
pond N (on the right), the 11 branches of the star link the position of pond N for the
eleven tables to their gravity centre. The ellipse is just a graphical summary of the
means, variances and the covariance of the 11 coordinates of the pond. This figure
shows that the species composition of ponds can be very different, some ponds
sheltering particular taxa.

In Fig. 9.19, the same coordinates (afm1$lisup, black dots) are used, but
they are superimposed to the coordinates of species (afm1$co, arrows), and
the resulting plot is split by taxa (one graph for each taxon, plus the graph for
environmental variables). This figure can be used to compare the distribution of
species among the ponds, and it shows very clearly that some taxa prefer particular
ponds.



9.7 Multiple Factor Analysis 197

d = 1

Q

PR JE

C

D

K

B
A

G
M

L F H

N

s.class(afm1$lisup, afm1$TL[, 2], labels = row.names(afm1$tab))

Fig. 9.18 Plot of the 16 ponds for the eleven taxa in the MFA of friday87 data.
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Fig. 9.19 Plot of the 16 ponds for the eleven taxa in the Multiple Factor Analysis of the
friday87 data set. The coordinates of species are split by taxon (plus the set of environmental
variables).
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9.8 Multiple Coinertia Analysis

We have seen in Chap. 3 (Box 3.1) that one table can be seen as a cloud of variables
in R

n, and as a cloud of samples in R
p. In the same way, K tables can be seen

as K clouds of variables in the same space. This is the point of view of MFA (see
Fig. 9.20).

K tables also give K inertia operators and K clouds of samples (or variables) in
the same space: this is the STATIS point of view.

But K tables can also be seen as K clouds of samples in K different variable
spaces, and this is the point of view of Multiple Coinertia Analysis. (MCOA, see
Box 9.11 for basic mathematical definitions and Fig. 9.21).

The successive steps of MCOA can be summed up as follows:

1. start from K tables with the same rows;
2. K tables define K clouds of points (samples) in K Euclidean spaces. These points

are equally weighted in all the clouds. In each space, we look for a normed vector
(axis) on which the cloud of points is projected;

3. a unit variance reference code is defined;
4. axes and reference code optimise the weighted sum of squared covariances

between the reference code and the coordinates of each projection. Iterate under
orthogonality constraint on axes and codes.

Table 1: 10 variables Table k: 6 variables Table K: 14 variables

Sample space Sample space Sample space 

Fig. 9.20 K tables can be seen as K clouds of variables in the same sample space (MFA point of
view).
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Box 9.11 MCOA: Basic Mathematical Definitions
Let X1, · · · , Xk, · · · , XK be K tables with the same n sampling units. Table
k contains pk variables and

∑K
k=1 pk = p.

Let (X1, Q1, D), . . . , (Xk , Qk , D), . . . , (XK , QK , D) be the K associated
statistical triplets.

As for Multiple Factor Analysis, tables with more variables, more inner
total inertia or with stronger first eigenvalues could dominate the global study.
A table weighting πk is therefore applied to each table (see more detail in
(Box 9.9)) and one can analyse the new following triplet (

√
πkXk , Qk , D) for

k = 1,K .
In MCOA, a Reference Structure is built using an iterative process from

the K tables and projections are computed to study the relationships between
this Reference and tables.

Step 1: the Reference Structure

1. First step of the iterative process
We look for K normed vectors u1

k in each R
pk space (k = 1,K) and a

synthesis variable v1 of Rn maximising:

g(u1
1, . . . , u1

k, . . . , u1
K, v1) =

K
∑

k=1

πk〈XkQku1
k|v1〉2

D

The solution of v1 is obtained by the first principal component b1 of the
triplet study (X, Q, D) with X = [√π1X1| . . . |√πkXk| . . . |√πKXK

]

and
Q and D defined as in Box 9.9.

The solution of the u1
k (k = 1,K) is obtained by the decomposition of

the first principal axis a1 in K blocks. Each k block is therefore Qk-normed
(k = 1,K).

2. Second step of the iterative process
Let P1

k be the Qk-orthogonal projector on u1
k (k = 1,K) and Zk =√

πkXk − √
πkXk

(

P1
k

)�.
We look for K normed vectors u2

k in each R
pk space (k = 1,K) and a

synthesis variable v2 of Rn.
The solution of v2 is obtained by the first principal component b1 of the

triplet study (Z, Q, D) with Z = [Z1| . . . |Zk| . . . |ZK ] with 〈v1|v2〉D = 0.
The solution of the u2

k (k = 1,K) is obtained by the decomposition of
the first principal axis a1 in K blocks. Each k block is therefore Qk-normed
with 〈u1

k|u2
k〉Qk

= 0 (k = 1,K).

and the process is reiterated s times.

(continued)
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Box 9.11 (continued)
The vf (f = 1, s) are stored in the V matrix and defines the Reference

Structure. The uf
k (f = 1, s) normed vectors are stored in a Uk matrix and

defines the Reference Structure.

Step 2: the Intrastructure
Each table is projected onto the Reference Structure by rows (Lk =√

πkXkQkUk) and by columns (Ck = √
πkXk

�DV).
The principal axes of each separate analysis can be projected onto the

principal axes of the Multiple Coinertia Analysis: Ak
�QkUk .

And, for a f axis, one can compute the squared covariance between the
row coordinates of each table Lf

k and the Reference Structure for a f axis:
vf .

MCOA is therefore, axis by axis, the inertia analysis of each table with
matched coordinates using synthesis variables (Chessel and Hanafi 1996). The first
coordinate is directly given by the first component of MFA. Further ones are more
precise from the point of view of the geometry of clouds, but the optimality of the
variables representation is lost.

Table 1: 14 samples Table k: 14 samples Table K: 14 samples

Variable space 1
(10 variables)

Variable space k
(6 variables)

Variable space K
(14 variables)

Fig. 9.21 K tables can be seen as K clouds of samples in different variable spaces (MCOA point
of view).
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In ade4, MCOA is computed using the mcoa function (Box 9.12):

mcoa1 <- mcoa(kta1, scannf = FALSE, nf = 2)

Box 9.12 MCOA: dudi Output Elements
In the ade4 package, the results of a Multiple Coinertia Analysis are stored
in an object of class mcoa. This object is a list with 14 elements. In this list,
elements of particular interest are:

• $pseudoeig: pseudo eigenvalues
• $SynVar: synthetic scores (V)
• $axis: coinertia axis (Uk stacked vertically)
• $Tli: coinertia coordinates (Lk stacked vertically)
• $Tl1: coinertia normed scores
• $Tax: inertia axes onto coinertia axis (Ak

�QkUk stacked vertically)
• $Tco: columns onto the synthetic scores (Ck stacked vertically)
• $lambda: eigenvalues of separate analyses
• $cov2: pseudo eigenvalues (synthetic analysis)

The plot of MCOA (Fig. 9.22) is nearly identical to the plot of MFA (Fig. 9.16),
except for an inversion of the second axis.

The kplot of MCOA (Fig. 9.23) compares the projection of the cloud of points
in each space with the synthetic typology (called Reference in Fig. 9.23). This
strategy can be very useful to link a faunistic K-table to an environmental variables
table (Concordance Analysis).

9.9 Conclusion

The K-table data analysis methods that have been broached in this chapter belong to
three families: STATIS, MFA and MCOA. When all the tables of the K-table have
the same individuals and the same variables, the “STATIS on tables” strategy can be
used, with, for example, the PTA and Foucart COA methods. When the tables have
only one dimension in common, then the STATIS on WD (same individuals) and
STATIS on VQ (same variables) can be used.

When the K-table has the same individuals, MFA provides a point of view
oriented to the interpretation of the relationships between the variables, with many
possible generalisations.

Lastly, MCOA is a generalisation of Coinertia Analysis. In this example of
application, it was used to analyse a K-table including ten faunistic tables and an
environmental table. However, in this context, Concordance Analysis (Lafosse and
Hanafi 1997; Bady et al. 2004), a generalisation of MCOA to the analysis of K + 1
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Fig. 9.22 Generic plot of the Multiple Coinertia Analysis of the friday87 data set.

tables, could be preferred as it considers explicitly the environmental table as a
reference table to ordinate the K faunistic tables. Unfortunately, this method is
not yet implemented in ade4. Two other K + 1 methods are available in ade4:
Multiblock Partial Least Square (PLS) and Multiblock PCAIV (Chap. 8). These two
regression-based methods are able to analyse the effect of K explanatory tables on
a response table. They are implemented in the mbpls and mbpcaiv functions
(Bougeard and Dray 2018).

Figure 9.24 shows the main K-table data analysis methods available in the ade4
package. The ktab class allows to handle all these methods in the same way and
using the same utility functions. The same K-table object can thus be analysed using
STATIS, MFA and MCOA and the results of the three methods can be compared
easily.
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Fig. 9.23 kplot of the Multiple Coinertia Analysis of the friday87 data set.

Two methods are particularly simple and easy to use:

• Partial Triadic Analysis, for series of tables having the same rows and the same
columns,

• Multiple Factor Analysis, for tables having the same rows and different sets of
variables.
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STATIS WD MFA MCOA

STATIS VQ MCOA

PTA & Foucart

Fig. 9.24 The main K-table data analysis methods available in the ade4 package.

The use of the RV coefficient is fundamental for coupling two tables. Its
generalisation to the simultaneous analysis of K tables is the basis of the methods
that have been described in this chapter. The analysis of K pairs of tables (see
Chap. 10) is also based on this concept.



Chapter 10
Analysing Changes in Co-structures

Abstract This chapter is dedicated to the analysis of the changes in species-
environment relationships, through the analysis of a series of pairs of tables. Each
pair is made of one species table and one environmental variables table. The rows
of both tables are identical and correspond to the samples where measures were
made. The series of tables comes from the repetition of these two tables at several
occasions. Three methods are compared in the chapter: Between-Class Coinertia
Analysis, STATICO and COSTATIS.

10.1 Introduction

A series of pairs of ecological tables can be obtained when species data and
environmental data are collected several times in the same locations. This data
structure can also be seen as a couple of K-tables: one K-table relates to species
data and a second one to environmental data. The study of changes in species-
environment relationships can be important, for example, from the point of view
of species conservation, or for global change studies.

We have seen previously that one pair of ecological tables can be analysed
with many multivariate data analysis methods (also called “Coupling methods”, see
Chap. 8). We have also seen methods that allow to take into account the existence of
groups of samples in a data table (Between-Class and Within-Class Analyses, see
Chap. 7). In the previous chapter, we have seen methods that can be used to analyse a
K-table (K-table methods, see Chap. 9). Here, we need to mix these three categories
of methods in order to be able to analyse one couple of K-tables, or one series of
pairs of ecological tables. Figure 10.1 sums up these three categories of methods
and presents the three strategies that can be used to mix them: BGCOIA, STATICO
and COSTATIS. A comparison of these methods is presented in Thioulouse (2011).

A real-size example of application to the Ecology of aquatic Heteroptera in the
Medjerda watershed (Tunisia) can be found in Slimani et al. (2017). In this chapter,
we use the meau data set (Pegaz-Maucet 1980) that we have already seen in Chap. 7
(see Fig. 10.2).

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Thioulouse et al., Multivariate Analysis of Ecological Data with ade4,
https://doi.org/10.1007/978-1-4939-8850-1_10
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1 table 

PCA 
CA 

MCA 

1 table + 1 factor 2 tables K-table

2 tables + 1 factor 

BCA
WCA
LDA

COIA 
CCA 
RDA 

CANCOR 

PTA
STATIS
MCOA
MFA

BGCOIA 
STATICO 

COSTATIS 

2 K-tables

Fig. 10.1 Data structures that lead to two K-tables analyses. One table methods: PCA (Principal
Component Analysis), CA (Correspondence Analysis) and MCA (Multiple Correspondence Anal-
ysis). Two tables coupling methods: COIA (Coinertia Analysis), CCA (Canonical Correspondence
Analysis), RDA (Redundancy Analysis) and CANCOR (Canonical Correlations Analysis). Taking
into account groups of rows: BCA (Between-Class Analysis), WCA (Within-Class Analysis)
and LDA (Linear Discriminant Analysis). K-table methods: PTA (Partial Triadic Analysis),
STATIS (Structuration des Tableaux A Trois Indices de la Statistique), MCOA (Multiple Coinertia
Analysis) and MFA (Multiple Factor Analysis). Analysis of a series of pairs of ecological
tables: BGCOIA (Between-Group Coinertia Analysis), STATICO (STATIS and Coinertia) and
COSTATIS (Coinertia and STATIS).
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Fig. 10.2 A pair of data cube, or a series of pairs of ecological tables. This example corresponds
to the meau data set from the ade4 package.

10.2 BGCOIA

BGCOIA (Franquet et al. 1995, see Box 10.1 for basic mathematical definitions) is
a Between-Group Coinertia Analysis. More precisely, it is obtained by considering
each table of the sequence as a group. The mean of the columns in each table is
computed and arranged in two new tables, with one row corresponding to one table.
There is one table for species data means and one table for environmental variables
means. A Coinertia Analysis is then done on this couple of mean tables. In the same
way as in K-table analysis methods, the rows of the initial tables can be projected
into this analysis to help interpret the results.

Box 10.1 BGCOIA: Basic Mathematical Definitions
Let X be the centred table of species data, with n rows and p variables, let Y
be the centred table of environmental variables, with n rows and q variables,
let Dp and Dq be the corresponding matrices of columns weights, and let Dn

be the diagonal matrix of row weights.
The n rows are split into g groups. Let X̄ and Ȳ be the g × p and g × q

matrices of group means, respectively. Let D be the diagonal matrix of group
weights. The Between-Class Analyses of X and Y are the analyses of triplets
(X̄, Dp, D) and (Ȳ, Dq , D) (see details in Box 7.2).

A Coinertia Analysis combines theses two analyses into a single one to
identify which structures are common to both data sets:

BGCOIA is the analysis of the triplet (Ȳ�DX̄, Dp, Dq ).

(continued)
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Box 10.1 (continued)
When the two tables are analysed by a PCA, then Dp = Ip, Dq = Iq

and Dn = 1
n

In. In this case, BGCOIA is simply the analysis of matrix
X̄�DȲȲ�DX̄. This is therefore the Coinertia Analysis of the two tables of
group means (see details in Box 8.1).

The main advantage of this method is its simplicity, from both theoretical and
practical points of view. The two data cubes are reduced to two tables by taking the
means of each elementary table of the cubes, and Coinertia Analysis is then applied
to the two resulting tables.

In the ade4 package, BGCOIA can be seen as the Between-Class Analysis of
a coinertia object. The result is a betcoi object (bgcoia2), and Box 10.2
recalls the corresponding output elements.

Box 10.2 BGCOIA: dudi Output Elements
In the ade4 package, the results of a BGCOIA are stored in an object of class
dudi, subclass betcoi. This object is a list with 24 elements, including the
usual elements of any dudi. In this list, elements of particular interest are:

• $tab: crossed table (Y�DX)
• $l1: coefficients (loadings) for the variables of Y (B)
• $c1: coefficients (loadings) for the variables of X (A)
• $lX: scores of groups obtained from table X
• $lY: scores of groups obtained from table Y
• $mX: normed version of group scores obtained from table X
• $mY: normed version of group scores obtained from table Y
• $aX: projection of the axes of the bca analysis of X on coinertia axes
• $aY: projection of the axes of the bca analysis of Y on coinertia axes
• $msX: normed version of scores of individuals obtained from table X
• $msY: normed version of scores of individuals obtained from table Y
• $acX: projection of the coinertia axes of X on betcoi axes
• $acY: projection of the coinertia axes of Y on betcoi axes

The following code shows how computations can be performed in the first
theoretical framework (Coinertia Analysis of two Between-Class Analyses):
data(meau)
pca.env <- dudi.pca(meau$env, scannf = FALSE, nf = 4)
pca.spe <- dudi.pca(meau$spe, scale = FALSE, scannf = FALSE, nf = 4)
bet.env <- bca(pca.env, meau$design$site, scannf = FALSE, nf = 2)
bet.spe <- bca(pca.spe, meau$design$site, scannf = FALSE, nf = 2)
bgcoia1 <- coinertia(bet.env, bet.spe, scannf = FALSE, nf = 3)
names(bgcoia1)
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[1] "tab" "cw" "lw" "eig" "rank" "nf" "l1" "li"
[9] "co" "c1" "lX" "mX" "lY" "mY" "aX" "aY"

[17] "call" "RV"

In that case, supplementary information are missing such as projections of
individuals and variables from initial tables X and Y. The following code shows
how computations can be performed in the second theoretical framework (Between-
Class Analysis of a Coinertia Analysis):
coi <- coinertia(pca.env, pca.spe, scannf = FALSE, nf = 3)
bgcoia2 <- bca(coi, meau$design$site, scannf = FALSE)
names(bgcoia2)

[1] "tab" "cw" "lw" "eig" "rank" "nf" "l1" "li"
[9] "co" "c1" "lX" "mX" "lY" "mY" "aX" "aY"

[17] "call" "RV" "lsY" "lsX" "msX" "msY" "acY" "acX"

Figure 10.3 shows the results of the BGCOIA on the meau data set, with the
factor map of Ephemeroptera species, of environmental variables, and of sampling
sites. The factor map for sampling sites is double: there is one map for the rows
of the table of environmental variables (red labels), and one map for the rows of
the Ephemeroptera species (blue labels). Both maps are superimposed, to make
comparisons easier.

It is easy to see the pollution gradient (first axis, pollution on the left) and the
upstream-downstream physical gradient (second axis, upstream is upward) on the
environmental variables map and on the sites map (red labels). This structure is
very strong and can be found again for the species on the Ephemeroptera map and
on the sites map (blue labels). See Thioulouse (2011) for further interpretations.

10.3 STATICO

The STATICO method was first published in 1999, as a method for the analysis of
K pairs of tables (Simier et al. 1999; Thioulouse et al. 2004). The principle of the
method is simple: the relations between the two tables of each pair are analysed
using Coinertia Analysis (see Chap. 8). During this step, the two tables are crossed,
producing a cross-covariance table. In a second step, the series of cross-covariance
tables is analysed with a Partial Triadic Analysis (see Chap. 9).

The particular choice of these methods (COIA and PTA) results in constraints
on the set of environmental variables, species and sites that can be analysed by
STATICO. The environmental variables must be the same in all the environmental
tables, and the list of species must be the same in all the species tables too. Some
species (but not too many) may be absent from some species tables, as the values
in the corresponding columns can be set to zero. The sampling sites (rows of the
tables) must be the same for the two tables of one pair, but they may be different
among the series.

The Interstructure step of STATICO, like the Interstructure of the STATIS
method, gives optimal weights that are used to build a Compromise. The Compro-
mise of STATICO is a weighted mean of the cross-covariance tables. The analysis
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ar1 <- s.arrow(bgcoia2$l1, plabels.boxes.draw = FALSE,
plabels.cex = 1.5, plot = FALSE)

ar2 <- s.arrow(bgcoia2$c1, plabels.boxes.draw = FALSE,
plabels.cex = 1.5, plot = FALSE)

xlim1 <- range(bgcoia2$msX[, 1], bgcoia2$msY[, 1])
ylim1 <- range(bgcoia2$msX[, 2], bgcoia2$msY[, 2])
cl1 <- s.class(bgcoia2$msX, meau$design$site, ellipseSize = 0,

xlim = xlim1, ylim = ylim1, ppoints = list(pch = 21, fill = "red"),
plabels = list(cex = 1.5, col = "red"), labels = 1:6, plot = FALSE)

cl2 <- s.class(bgcoia2$msY, meau$design$site, ellipseSize = 0,
xlim = xlim1, ylim = ylim1, ppoints = list(pch = 21,
fill = "blue"), plabels = list(cex = 1.5, col = "blue"),
labels = 1:6, plot = FALSE)

clt <- superpose(cl2, cl1, plot = FALSE)
ADEgS(list(clt, ar1, ar2), rbind(c(0.2, 0, 1, 1), c(0, 0.6, 0.4, 1),

c(0, 0, 0.4, 0.4)))
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Fig. 10.3 BGCOIA of the meau data set. The Ephemeroptera species factor map (top-left) is
drawn with the s.arrow function and the coordinates in bgcoia2$l1. The environmental
variables factor map (bottom-left) is drawn with the s.arrow function and the coordinates in
bgcoia2$c1. The sites factor map (middle graph on the right) is drawn with the s.class
function and the coordinates in bgcoia2$msX (sites for environmental variables, red labels) and
in bgcoia2$msY (sites for Ephemeroptera species, blue labels).
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of this Compromise gives a graphical display of the environmental variables and of
the species. Finally, the Intrastructure step projects the rows and columns of each
table of the sequence in the analysis of the Compromise, with usual supplementary
element projection technique (Lebart et al. 1984). This gives a display of the
environmental variables at each date, of the species at each date, and two displays
of the sampling sites at each date (one from the point of view of environmental
variables and one from the point of view of species).

Basic mathematical definitions are recalled in Box 10.3.
In the ade4 package, the statico function is used to compute a STATICO

Analysis. All the outputs are grouped in a dudi object (subclass pta), and
Box 10.4 recalls the corresponding output elements.

Box 10.3 STATICO Analysis: Basic Mathematical Definitions
Let (Xk, Dp, Dnk

) and (Yk, Dq, Dnk
) be the pair of triplets at date k for k =

1,K .
Xk is the table of environmental variables measured at date k, and Yk is

the table of species observed at the same date. Dp and Dq are the same for all

the dates and Dnk
= diag

(
1
nk

)

is the same for both tables of each pair.

Let Zk be the k-th cross product table: Zk = Yk
�Dnk

Xk . Note that the
triplet (Zk, Dp, Dq ) corresponds to a Coinertia Analysis (see Box 8.1).

STATICO is the Partial Triadic Analysis of the K-table made by this series
of q × p cross product tables.

Step 1: the Interstructure
The Interstructure step gives optimal weights αk (see Box 9.2) such that the
inertia of the triplet (

∑K
k αkZk, Dp, Dq) is maximum with the constraint

∑K
k=1 α2

k = 1.

Step 2: the Compromise The Compromise of STATICO (Z) is a weighted
mean of the cross product tables using weights αk: Z = ∑K

k αkZk (Simier
et al. 1999). The Compromise is the analysis of the triplet

(

Z, Dp, Dq

)

. It
gives a graphical display of the environmental variables (rows of Z) and of
the species (columns of Z).

Step 3: the Intrastructure The Intrastructure step is based on usual row and
column projections (see details in Box 9.2).

Box 10.4 STATICO Analysis: dudi Output Elements
In the ade4 package, the results of a STATICO Analysis are stored in an object
of class dudi, subclass pta. This object is a list with 28 elements, including

(continued)
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Box 10.4 (continued)
the usual elements of any pta, with additional elements to store the results
of the Intrastructure of the rows of the two K-tables. In this list, elements of
particular interest are:
Step 1: the Interstructure

• $RV: The RV coefficients (Rv)
• $RV.eig: eigenvalues
• $RV.coo: scores of the tables

Step 2: the Compromise

• $tabw: table weights
• $tab: Compromise table (Z)
• $li: row scores
• $co: column scores

Step 3: the Intrastructure

• $Tli: projections of the rows of each Zk table onto the principal axes
(stacked vertically)

• $Tco: projections of the columns of each Zk table onto the principal
components (stacked vertically)

• $supIX: projections of the rows of the first K-table stacked vertically
• $supIY: projections of the rows of the second K-table stacked vertically

STATICO is a Partial Triadic Analysis on the sequence of cross product tables,
so the Compromise is also a cross product table, with the 13 Ephemeroptera species
in rows and the 10 environmental variables in columns, in the meau data set.
Sites have disappeared from this table, but they can be projected as supplementary
elements to help interpret the results of the analysis. The following code shows how
computations are performed on the meau data set.

wit.env <- withinpca(meau$env, meau$design$season,
scannf = FALSE, scaling = "total")

pca.spe <- dudi.pca(meau$spe, scale = FALSE, scannf = FALSE)
wit.spe <- wca(pca.spe, meau$design$season, scannf = FALSE)
kta.env <- ktab.within(wit.env, colnames = rep(c("S1",

"S2", "S3", "S4", "S5", "S6"), 4))
kta.spe <- ktab.within(wit.spe, colnames = rep(c("S1",

"S2", "S3", "S4", "S5", "S6"), 4))
statico.envspe <- statico(kta.env, kta.spe, scannf = FALSE)

The statico.krandtest function can be used to test the statistical sig-
nificance of the Coinertia Analyses on the series of pairs of tables. This function
produces a krandtest object and Fig. 10.4 shows the result of the plot function
on this object.
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plot(statico.krandtest(kta.env, kta.spe))
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Fig. 10.4 Graphs of the four permutation tests obtained with the statico.krandtest
function to test the statistical significance of the four Coinertia Analyses.

Figure 10.5 is a compound graph that sums up the first two steps of the STATICO
method: Interstructure and Compromise. It is simply obtained with the generic
plot function.

The Interstructure plot (top-left) shows that autumn and summer are the two most
important seasons for defining the Compromise, while winter and spring are slightly
less important.

The Compromise plots (top-right and bottom-left) are very similar to the
BGCOIA plots (Fig. 10.3). They show that the first axis (horizontal) is also a
pollution gradient: clean water on the right, and pollution on the left. The second
axis (vertical) is also an upstream-downstream physical gradient: discharge (Flow)
and temperature (Temp) increase downstream (downward on the figure). Nitrates
(Nitr) also increase along the whole stream instead of having a maximum at site 2
like other pollution variables, and this is why they are located here. The sensitivity
of all Ephemeroptera species to pollution and the specificity of some species (Bpu,
Hla, Eda upstream and Bsp, Eig, Ecd downstream) are also found again. The
Typological value plot (bottom-right) shows that autumn has the highest
influence in the construction of the Compromise, while spring has the lowest.
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plot(statico.envspe)
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Fig. 10.5 Interstructure and Compromise of STATICO on the meau data set.

Figure 10.6 shows the Intrastructure step for environmental variables (top) and
Ephemeroptera species (bottom). It is drawn using the projection of the columns
of the two series of tables as supplementary elements in the Compromise analysis
(statico.envspe$Tli and statico.envspe$Tco).

Autumn is clearly the season where the structures are the strongest (arrows are
much longer at this date), both for environmental variables and for Ephemeroptera
species. Conversely, spring is the season where the structures are the weakest
(arrows are all very short). This confirms the interpretations made in Fig. 10.5.
However, although the structures may vary in intensity, they are preserved across
dates: the first axis is always a pollution gradient, and the second one is always an
upstream-downstream opposition.

Figure 10.7 shows the Intrastructure step for the sites. It is drawn using
the projection of the rows of the two sequences of tables as supplementary
elements in the Compromise analysis (statico.envspe$supIX and
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sa1 <- s.arrow(statico.envspe$Tli, facets = statico.envspe$TL[, 1],
labels = statico.envspe$TL[, 2], psub.cex = 1.5,
plabels.col = "red", plabels.boxes.draw = TRUE, plot = FALSE)

sa2 <- s.arrow(statico.envspe$Tco, facets = statico.envspe$TC[, 1],
labels = statico.envspe$TC[, 2], psub.cex = 1.5,
plabels.col = "blue", plabels.boxes.draw = TRUE, plot = FALSE)

pos1 <- rbind(c(0, 0, 0.25, 1), c(0.25, 0, 0.5, 1), c(0.5, 0, 0.75, 1),
c(0.75, 0, 1, 1))

sa1@positions <- sa2@positions <- pos1
ADEgS(list(sa1, sa2), layout = c(2, 1))
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Fig. 10.6 Intrastructure of environmental variables (top) and Ephemeroptera species (bottom) of
STATICO on the meau data set.

statico.envspe$supIY). It is very similar to the graph of sites in Fig. 10.3,
but it is split according to seasons instead of sites. The sites of the environmental
variables tables are on the first row of graphs while the sites of Ephemeroptera
species tables are on the second row. This presentation insists on the comparison
between the four seasons, showing mainly the distortions of the upstream-
downstream gradient across seasons, as Ephemeroptera species react to pollution
increase (maximum reached in autumn) or decrease (minimum in spring).

The differences between sites among the seasons for environmental variables are
shown in Fig. 10.7 (top row). In spring, sites are lined up vertically on the upstream-
downstream gradient and only site 2 moves slightly to the left. Structures are clearly
weaker during this season and the permutation test (Fig. 10.4) is not statistically
significant.

In summer, pollution is highest at site 2, and restoration occurs along sites
3, 4 and 5. In autumn, pollution is maximum because stream flow is at its
minimum (pollutants concentrations are maximum). In winter, pollution has almost
disappeared, because Autrans is a summer mountain resort, but the upstream-
downstream gradient is still disturbed.

The position sites for Ephemeroptera species (bottom row) shows the same
structures, because the pollution has a negative impact on species abundance
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st1 <- s.traject(statico.envspe$supIX, facets = statico.envspe$supTI[, 1],
plabels.cex = 0, psub.cex = 0, plot = FALSE)

sla1 <- s.label(statico.envspe$supIX, facets = statico.envspe$supTI[, 1],
psub.cex = 1.5, labels = statico.envspe$supTI[, 2],
plabels.col = "red", plot = FALSE)

st2 <- s.traject(statico.envspe$supIY, facets = statico.envspe$supTI[, 1],
plabels.cex = 0, psub.cex = 0, plot = FALSE)

sla2 <- s.label(statico.envspe$supIY, facets = statico.envspe$supTI[, 1],
psub.cex = 1.5, labels = statico.envspe$supTI[, 2],
plabels.col = "blue", plot = FALSE)

pos1 <- rbind(c(0, 0, 0.25, 1), c(0.25, 0, 0.5, 1),
c(0.5, 0, 0.75, 1), c(0.75, 0, 1, 1))

st1@positions <- st2@positions <- pos1
sla1@positions <- sla2@positions <- pos1
s1 <- superpose(st1, sla1)
s2 <- superpose(st2, sla2)
ADEgS(list(s1, s2), layout = c(2, 1))

Fig. 10.7 Intrastructure of sites for environmental variables (top) and for Ephemeroptera species
(bottom) of STATICO on the meau data set.

(horizontal axis) and because of the upstream-downstream preferences of particular
species (vertical axis).

10.4 COSTATIS

COSTATIS is also based on K-table methods and on Coinertia. It benefits from
the advantages of both STATICO and BGCOIA. Indeed, it has the same optimality
properties of K-table analyses as STATICO (i.e., the maximising properties of the
Compromise), but it retains the simplicity of BGCOIA.

COSTATIS is simply a Coinertia Analysis of the Compromises of the two K-table
analyses. The first step of COSTATIS consists in performing two Partial Triadic
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Analyses: one on the environmental variables K-table, and one on the species K-
table. The second step is simply a Coinertia Analysis of the Compromises of these
two Partial Triadic Analyses. This means that the number of tables does not have
to be the same for the two series of tables, but that the number of species, of
environmental variables, and of sampling sites must be the same for all the tables.

The Coinertia Analysis of the two Compromises decomposes the total coinertia
and maximises the coinertia between species and environmental variable scores. An
additional step can be implemented: like in the STATICO method, it is possible to
project the rows and columns of all the tables of the two series as supplementary
elements into the multidimensional space of this Coinertia Analysis.

Each Compromise represents the “stable structure” of the corresponding series.
COSTATIS brings to light the relationships between these two stable structures, and
it discards the conflicting variations between the whole sequences. It is therefore
very easy to interpret (like a standard Coinertia Analysis), yet it retains the
optimality properties of the Compromises of the two Partial Triadic Analyses.

Basic mathematical definitions are recalled in Box 10.5.
In the ade4 package, the costatis function is used to compute a COSTATIS

Analysis. All the outputs are grouped in a dudi object (subclass coinertia),
and Box 10.6 recalls the corresponding output elements.

The call to the costatis function just passes the two K-tables, using the same
syntax as the statico function:

costatis.envspe <- costatis(kta.env, kta.spe, scannf = FALSE)

Box 10.5 COSTATIS Analysis: Basic Mathematical Definitions
Let X1, . . . , Xk , . . . , XK be K tables of environmental variables with the same
n rows (samples) and the same p columns (variables). Let Y1, . . . , Yk , . . . ,
YK be K tables of species with the same n rows (samples) and the same q

columns (species).
COSTATIS consists in two Partial Triadic Analyses (PTA, see Box 9.2) and

a Coinertia Analysis (see Box 8.1) of the Compromises of these two PTA.

Step 1.
Two partial Triadic Analyses are performed:

– one on the environmental variables K-table, i.e., (Xk, Dp, D) for k = 1,K

– one on the species K-table, i.e., (Yk, Dq, D) for k = 1,K

That leads to the three structures studies and more specifically that of the
Compromises. Let X =∑K

k=1 αkXk be the (n × p) Compromise of the first
PTA (environmental variables) with

∑K
k=1 α2

k = 1. Let Y = ∑K
k=1 βkYk be

(continued)
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Box 10.5 (continued)

the (n × q) Compromise of the second PTA (species data) with
∑K

k=1 β2
k = 1.

Let (X, Dp, D) and (Y, Dq, D) be the two associated triplets.

Step 2.
Coinertia Analysis combines these two analyses in a single one to identify
which structures are common to both Compromises. It is therefore defined
by the triplet (Y�DX, Dp, Dq). The Coinertia Analysis of these two Compro-
mises decomposes the total coinertia:

I(Y�DX,Dp,Dq ) = Trace(Y�DXDpX�DYDq)

and maximises the coinertia between species and environmental variable
scores.

An additional step can be implemented, like in the STATICO method: it is
possible to project the rows and columns of all the tables of the two sequences
as supplementary elements into the multidimensional space of this Coinertia
Analysis.

Box 10.6 COSTATIS Analysis: dudi Output Elements
In the ade4 package, the results of a COSTATIS Analysis are stored in an
object of class dudi, subclass coinertia. This object is a list with 20
elements, including the usual elements of any coinertia, with additional
elements to store the results of the Intrastructure of the rows of the two K-
tables. In this list, elements of particular interest are:

• $tab covariances between the two Compromises (Y�DX)
• $c1 coefficients (loadings) for the variables of the Compromise table X
• $l1 coefficients (loadings) for the variables of the Compromise table Y
• $lX scores of rows-sites obtained from the Compromise table X
• $lY scores of rows-sites obtained from the Compromise table Y
• $supIX: projections of the rows of the first K-table stacked vertically
• $supIY: projections of the rows of the second K-table stacked vertically

COSTATIS results are presented in Fig. 10.8. COSTATIS is a Coinertia Analysis,
and it is therefore possible to use a permutation test to assess the statistical
significance of the relationships between the two tables, just like in a usual Coinertia
Analysis. The result of this permutation test (function costatis.randtest)
gave a p-value of 0.005.
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sa1 <- s.arrow(costatis.envspe$c1 * 4, xlim = c(-3, 2), ylim = c(-2, 3),
plot = FALSE)

sc1 <- s.class(costatis.envspe$supIX, meau$design$site, ellipseSize = 0,
xlim = c(-3, 2), ylim = c(-2, 3), plabels.col = "red",
plot = FALSE)

s1 <- superpose(sa1, sc1)
sa2 <- s.arrow(costatis.envspe$l1 * 3, xlim = c(-2, 2),

ylim = c(-2.5, 1.5), plot = FALSE)
sc2 <- s.class(costatis.envspe$supIY, meau$design$site, ellipseSize = 0,

xlim = c(-2, 2), ylim = c(-2.5, 1.5), plabels.col = "blue",
plot = FALSE)

s2 <- superpose(sa2, sc2)
ADEgS(list(s1, s2))
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Fig. 10.8 Results of the COSTATIS analysis on the meau data set.

The Coinertia Analysis is done on the Compromises of two K-table analyses.
Here, we used two Partial Triadic Analyses, but the results of these two analyses
are not presented. We show only the plots of the Coinertia Analysis, under the
form of two biplots: one for environmental variables (Fig. 10.8, left), and one for
Ephemeroptera species (Fig. 10.8, right). These two biplots are at the same scale and
in the same space, so they could be superimposed on the same figure. Presenting the
results in this way underlines the fact that COSTATIS is looking for the relationships
(co-structure) between the stable structures extracted from two series of tables.

The left graph in Fig. 10.8 shows the results for the environmental variables.
The same structure as the one detected by STATICO and BGCOIA is observed.
The first axis is the pollution gradient (pollution on the left) and the second is the
upstream-downstream opposition (downstream is upward). The four dates for each
site are projected on this plot and, like in the BGCOIA plot (Fig. 10.3), the four
points corresponding to the four sampling dates of each site are grouped to form a
star. The gravity centre of these four points is labeled with the number of the site.
The four points of site 2 are on the left, as pollution is higher in this site for the four
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dates (except for site 3 in winter). Pollution decreases downstream along sites 3, 4
and 5, and is the lowest at site 6.

The second biplot is presented at the right of Fig. 10.8. It shows the
Ephemeroptera species, with the same opposition between upstream and
downstream characteristic species. In the same way as in the figure of environmental
variables, the four dates for each site are projected on the plot and the corresponding
four points are grouped to form a star. The gravity centre of these four points
is labeled with the number of the site. The position of sites corresponds to the
abundance of the species in these sites: sites 2 and 3 have the lowest number of
Ephemeroptera, so they are far on the left. Site 1 has the highest number of species
Eda, and sites 5 and 6 have the highest number of species Bsp, Brh and Eig.

The first axis common to these two biplots (i.e., the first COSTATIS axis)
maximises the covariance between the coordinates of the “Compromise variables”
and the “Compromise species”. The result is that it displays the relationships
between the stable structures extracted from the two data sets. On this example,
this relationship is the fact that the pollution gradient affects the abundance
of Ephemeroptera species. The second axis represents the upstream-downstream
opposition, and the relationships between ecological preferences of Ephemeroptera
species and physical variables or stream morphology.

10.5 Conclusion

In this chapter, we presented the principles and some examples of use of three
methods for analysing a series of pairs of data tables (or a pair of data cubes):
BGCOIA, STATICO and COSTATIS. Figure 10.9 shows a comparison of the three
approaches.

BGCOIA is a Between-Group Coinertia Analysis. It is therefore simply com-
puted by doing a Coinertia Analysis on the two tables of group means, considering
each table as a group (Franquet et al. 1995).

In STATICO, we first use Coinertia Analysis K times to compute the sequence
of K cross-covariance tables, and then Partial Triadic Analysis to analyse this new
K-table. Symmetrically in COSTATIS, we first use two Partial Triadic Analyses
to compute the Compromises of the two K-tables, and then Coinertia Analysis to
analyse the relationships between these two Compromises.

The three methods presented here uncover the same features in the example data
set. This is a small data set, but with strong structure, and strong structures often are
clear with any method. However, the three methods used to analyse even a data set
with clear structure can have advantages and drawbacks. The advantages of these
methods can be summarised as follows:

• BGCOIA: It is the most straightforward method. It is simple to apply and outputs
are easy to interpret. It can be used to favour one point of view (for example,
space vs. time), by choosing the factor of Between-Class Analysis. It can also be
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Fig. 10.9 Comparison of the three methods. BGCOIA is a Between-Group Coinertia Analysis,
considering each table of the series as a group. STATICO is a Partial Triadic Analysis on the series
of cross-product tables obtained by crossing the two tables of a pair at each date. COSTATIS is
a Coinertia Analysis of the Compromises computed by the Partial Triadic Analysis of the two
K-tables. In BGCOIA, the mean of the variables in each table is computed and arranged in two
new tables. A Coinertia Analysis is then done on this couple of new tables. In STATICO, K cross-
covariance tables are computed from the two K-tables, resulting in a new K-table. A Partial Triadic
Analysis is then done on this new K-table. In COSTATIS, two Partial Triadic Analyses are used to
compute the Compromises of the two K-tables. A Coinertia Analysis is then used to analyse the
relationships between these two Compromises.

used in conjunction with WGCOIA (Within-Group Coinertia Analysis, Franquet
and Chessel 1994) to study an effect (time) after removing the other (space).

• STATICO: The main advantage of this method is the optimality of the Com-
promise (maximisation of the similarity with all the initial tables). It gives a
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Compromise of co-structures, which means that it displays the stable compo-
nent of species-environment relationship variations. It benefits from the three-
step computation scheme of STATIS-like methods (Interstructure, Compromise,
Intrastructure), and graphical outputs can be very detailed.

• COSTATIS: This method benefits from the advantages of the two others:
optimality of the Partial Triadic Analysis Compromises, ease of use, simplicity of
Coinertia Analysis graphical outputs. COSTATIS is the Coinertia Analysis of two
Compromises, so it looks for the relationships between two stable structures. This
is different from the STATICO point of view (co-structure of two Compromises
vs. Compromise of a series of co-structures).



Chapter 11
Relating Species Traits to Environment

Abstract This chapter focuses on three-table methods to study the relationships
between species traits and environmental variables mediated by species abundances.
The RLQ and fourth-corner methods are described.

11.1 Introduction

Methods presented in Chap. 8 are based on the analysis of a pair of tables
(species abundances and environmental variables) to understand how environmental
gradients influence the composition of species assemblages. This chapter focuses
on methods that introduce an additional table containing the measures of several
species traits. The aim is to find out if the characteristics of species are related to the
environmental conditions of the sites in which they occur. In this context, the RLQ
and fourth-corner methods are two efficient alternatives that provide a direct way
to analyse trait-environment relationships. RLQ analysis produces a simultaneous
ordination of the three tables whereas the fourth-corner method provides bivariate
tests. This chapter shows how these two approaches can be handled and combined
in a single framework using the ade4 package.

We consider the aravo data set (Choler 2005; Dray et al. 2014), designed to
identify relationships between plant functional traits and habitat heterogeneity along
a snow melting gradient.
library(ade4)
library(adegraphics)
data(aravo)
names(aravo)

[1] "spe" "env" "traits" "spe.names"

It contains the abundances of 82 alpine plant species in 75 sites (aravo$spe).
Sites are described by 6 environmental variables (aravo$env):

• Aspect: Relative south aspect (opposite of the sine of aspect with flat coded 0)
• Slope: Slope inclination (degree)
• Form: Microtopographic landform index. Coded as factor with 5 levels (1:

convexity, 2: convex slope, 3: right slope, 4: concave slope and 5: concavity)

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Thioulouse et al., Multivariate Analysis of Ecological Data with ade4,
https://doi.org/10.1007/978-1-4939-8850-1_11
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• PhysD: Physical disturbance, i.e., percentage of unvegetated soil due to physical
processes

• ZoogD: Zoogenic disturbance, i.e., quantity of unvegetated soil due to marmot
activity. Coded as a factor with three levels (no, some and high)

• Snow: Mean snowmelt date (Julian day) averaged over 1997–1999

Species are characterised by eight traits (aravo$traits):

• Height: Vegetative height (cm)
• Spread: Maximum lateral spread of clonal plants (cm)
• Angle: Leaf elevation angle estimated at the middle of the lamina
• Area: Area of a single leaf
• Thick: Maximum thickness of a leaf cross section (avoiding the midrib)
• SLA: Specific leaf area
• N_mass: Mass-based leaf nitrogen content
• Seed: Seed mass

11.2 RLQ Analysis

RLQ analysis (Dolédec et al. 1996) is an extension of Coinertia Analysis (Sect. 8.3)
to the case of three tables. It aims to identify the main co-structures between
traits and environmental variations mediated by species abundances. It is based
on the computation of a crossed array (cross-covariance matrix weighted by the
abundances) that measures the relationships between traits and environmental
variables. Box 11.1 gives the basic definitions of RLQ analysis in the framework
of the duality diagram and Box 11.2 describes the main outputs provided by the
rlq function.

Box 11.1 RLQ Analysis: Basic Mathematical Definitions
RLQ analyses three tables: Q (p × s) that describes s traits for p species, R
(n × m) that contains the measurements of m environmental variables in n

sites and a third n × p table L with the abundances of the p species within
n sites. RLQ analysis combines the three separate analyses of R, L and Q
to identify the main relationships between environmental gradients and traits
mediated by species abundances.

Correspondence Analysis is applied to L (see Sect. 6.2) leading to the

triplet
(

D−1
n P0D−1

p , Dp, Dn

)

where P0 is the doubly centred matrix of

relative frequencies and Dn and Dp are the associated row and column
weights (see Box 6.2 for more details). The separate analyses of R and Q
should be weighted using CA-derived weights (Dn and Dp) and lead to the
triplets (R, Dm, Dn) and

(

Q, Ds , Dp

)

, respectively. According to the type of

(continued)
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Box 11.1 (continued)
variables, these triplets correspond to different methods: Principal Component
Analysis for quantitative variables, Multiple Correspondence Analysis for
qualitative variables or Hill and Smith Analysis for a mix of qualitative and
quantitative variables (Chap. 5).

RLQ combines the three separate analyses of R, L and Q to inves-
tigate their joint co-structures. It corresponds to the statistical triplet
(

R�P0Q, Ds , Dm

)

:

The matrix R�P0Q is a crossed array that measures the links between the
traits and the environmental variables. It is named the “fourth-corner” by
Legendre et al. (1997) and each cell corresponds to a bivariate association
that can be tested by the fourthcorner or fourthcorner2 functions.

The Property 3.3 of the duality diagram theory (Box 3.2) shows that RLQ
analysis seeks for a principal axis a and a principal component b maximising:

b�Dm

(

R�P0Q
)

Dsa

Vector b contains coefficients for the environmental variables and vector a
contains coefficients for the traits. These loadings are used to compute a score
for sites (x = RDmb) and species (y = QDsa) and the previous equation can
thus be rewritten as:

b�Dm

(

R�P0Q
)

Dsa = x�P0y = covP(x, y) = √
λ

RLQ computes a species score y (linear combination of traits) and a
site score x (linear combination of environmental variables). The absolute
value of the cross-covariance between these two scores is maximised, and
the maximum is equal to the square root of the first RLQ eigenvalue λ.

This cross-covariance can be decomposed as a product of three terms:

covP(RDmb, QDsa) = corP(RDmb, QDsa) · ‖RDmb‖Dn
· ‖QDsa‖Dp

The first term, corP(RDmb, QDsa) is optimised by the Correspondence
Analysis of table L. The second term, ‖RDmb‖Dn

is maximised by the
analysis of R that aims to identify the main structures in this data set. The
last term, ‖QDsa‖Dp

is maximised by the analysis of Q.
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Box 11.2 RLQ Analysis: dudi Output Elements
In the ade4 package, the results of an RLQ analysis are stored in an object of
class dudi, subclass rlq. This object is a list with 17 elements, including the
usual elements of any dudi. In this list, elements of particular interest are:

• $tab: cross-covariances between original variables (R�P0Q)
• $eig: eigenvalues (�)
• $l1: coefficients (loadings) for the environmental variables (B)
• $c1: coefficients (loadings) for the traits (A)
• $aR: projection of the axes of the analysis of R on the RLQ axes
• $aQ: projection of the axes of the analysis of Q on the RLQ axes
• $lR: scores of sites (RDmb)
• $lQ: scores of species (QDsa)
• $mR: normed scores of sites
• $mQ: normed scores of species

The randtest function can be used to check the statistical significance of
the link between traits and environment (see Box 11.3).

A preliminary step of RLQ analysis is to perform the three separate analyses
of abundances, traits and environmental tables. The method is provided by the
rlq function that takes three dudi objects as arguments. Before doing the RLQ
analysis, species abundances should be treated by a Correspondence Analysis
(dudi.coa). Traits and environmental variables are then analysed with any suit-
able methods. The only constraint here is that these analyses should use the species
and site weights computed by the Correspondence Analysis of the abundance table.

In the case of the aravo data set, the quantitative traits are analysed by a
PCA (dudi.pca function) and a Hill and Smith Analysis (dudi.hillsmith
function) is applied on the environmental table, as it contains a mix of numeric and
categorical variables.

coaL.aravo <- dudi.coa(aravo$spe, scannf = FALSE)
pcaR.aravo <- dudi.hillsmith(aravo$env, row.w = coaL.aravo$lw,

scannf = FALSE)
pcaQ.aravo <- dudi.pca(aravo$traits, row.w = coaL.aravo$cw,

scannf = FALSE)
rlq.aravo <- rlq(pcaR.aravo,coaL.aravo,pcaQ.aravo,

scannf = FALSE)

The plot function can be used to display the main outputs of the analysis
(Fig. 11.1). The barplot of eigenvalues (bottom-right) clearly highlights the impor-
tance of the first axis (86.7%) but the second dimension (9.8%) will also be used to
interpret the main structures of traits-environment relationships.

RLQ analysis computes coefficients ($c1) for the traits and for the environmen-
tal variables ($l1) that are represented on the two graphs at the middle-bottom part
of the plot (“R loadings” and “Q loadings”). These loadings are used to compute two
sets of scores allowing to position sites by their environmental conditions ($lR,
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pl1 <- plot(rlq.aravo)
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Fig. 11.1 Plot of the outputs of an RLQ analysis. This is a composite plot made of seven graphs
(see text for an explanation of the seven graphs).

top-left graph) and species by their traits ($lQ, top-right graph). RLQ analysis
maximises the squared cross-covariances, weighted by the abundances, between
these two sets of scores.

Note that the outputs of RLQ analysis displayed by the adegraphics package are
objects and thus can be updated (see Chap. 4). For instance, it is possible to zoom
and update the three graphs representing species (Q row scores), environmental
variables (R loadings) and traits (Q loadings) to facilitate their interpretation
(Fig. 11.2).

The left (negative) part of the first RLQ axis identifies species (Poa supina
(Poa.supi), Alchemilla pentaphyllea (Alch.pent) or Taraxacum alpinum
(Tara.alpi)) with higher specific leaf area (SLA) and mass-based leaf
nitrogen content (N_mass), lower height (Height) and a reduced seed mass
(Seed). These species were mostly found in late-melting habitats. The right
part of the axis highlights traits attributes (upright and thick leaves) associated
with convex landforms, physically disturbed and mostly early-melting sites.
Corresponding species are Sempervivum montanum (Semp.mont), Androsace
adfinis (Andr.brig) or Lloydia serotina (Lloy.sero). The second RLQ
axis outlined zoogenic disturbed sites located in concave slopes. These habitats
were characterised by large-leaved species (Cirsium acaule (Cirs.acau), Geum
montanum (Geum.mont) or Alchemilla vulgaris (Alch.vulg)).

The two correlation circles on the bottom of Fig. 11.1 show the projection of
the first axes of the initial simple analyses (pcaR.aravo and pcaQ.aravo)
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names(pl1)

[1] "Rrow" "Qrow" "Rax" "Rloadings"
[5] "Qloadings" "Qax" "eig"

col <- rep("transparent", nrow(rlq.aravo$lQ))
col[c(17, 19, 20, 21, 22, 25, 33, 40, 47, 65, 74)] <- "black"
up1 <- update(pl1$Qrow, ppoints.cex = 0.5, psub.cex = 1.5,
plabels = list(col = col, optim = TRUE, box = list(draw = FALSE)),
plot = FALSE)

up2 <- update(pl1$Rloadings, plabels = list(cex = 2), psub.cex = 2,
plot = FALSE)

up3 <- update(pl1$Qloadings, plabels = list(cex = 2), psub.cex = 2,
plot = FALSE)

ADEgS(list(up1, up2, up3), layout = list(matrix(c(1, 1, 2, 1, 1, 3),
nrow = 2, ncol = 3, byrow = TRUE)))

Fig. 11.2 Updated graph showing the species (Q row scores), environmental variables
(R loadings) and traits (Q loadings). Only species discussed in the text are labelled.

onto the RLQ axes ($aR and $aQ). These graphs provide a convenient way to
look at the relationships between the main structures of each data set (identified
by simple analyses) and the co-structures identified by RLQ analysis. For the traits
data, the first two axes of the simple PCA are nearly equivalent to the RLQ axes. For
environmental data, RLQ has performed an inversion of sign of the first axis and a
slight clockwise rotation.

The summary function provides several useful results about the analysis,
especially concerning the maximised criteria:
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summary(rlq.aravo)

RLQ analysis

Class: rlq dudi
Call: rlq(dudiR = pcaR.aravo, dudiL = coaL.aravo,

dudiQ = pcaQ.aravo, scannf = FALSE)

Total inertia: 1.578

Eigenvalues:
Ax1 Ax2 Ax3 Ax4 Ax5

1.367618 0.154783 0.045189 0.006948 0.001993

Projected inertia (%):
Ax1 Ax2 Ax3 Ax4 Ax5

86.6481 9.8066 2.8630 0.4402 0.1263

Cumulative projected inertia (%):
Ax1 Ax1:2 Ax1:3 Ax1:4 Ax1:5

86.65 96.45 99.32 99.76 99.88

(Only 5 dimensions (out of 8) are shown)

Eigenvalues decomposition:
eig covar sdR sdQ corr

1 1.3676 1.1695 1.464 1.530 0.5221
2 0.1548 0.3934 1.241 1.152 0.2753

Inertia & coinertia R (pcaR.aravo):
inertia max ratio

1 2.143 2.266 0.9458
12 3.682 4.113 0.8953

Inertia & coinertia Q (pcaR.aravo):
inertia max ratio

1 2.341 2.409 0.9718
12 3.667 3.907 0.9386

Correlation L (coaL.aravo):
corr max ratio

1 0.5221 0.8128 0.6424
2 0.2753 0.6484 0.4246

As for any object inheriting from the dudi class, the eigenvalues and percent-
ages of (cumulative) projected inertia are returned (see Sect. 3.4). Information on the
eigenvalues and their decomposition is also returned. Eigenvalues in RLQ analysis
are squared cross-covariances between linear combinations of species traits ($lQ)
and environmental variables ($lR).

The Eigenvalues decomposition table gives the eigenvalues (eig) and
their square root (covar). As shown in Box 11.1, the covariance is equal to the
product of the correlation between $lR and $lQ (corr), the standard deviation of
the environmental score $lR (sdR) and the standard deviation of the species traits
score $lQ (sdQ).

The maximal possible values for the standard deviations are produced by the
simple analyses of the initial tables (pcaR.aravo, pcaQ.aravo) that identify
the main structures of each data set. The two tables, Inertia & coinertia,
allow to compare the quantity of variance captured by the RLQ analysis (inertia)
to the maximum possible value provided by the simple analysis (max). It is therefore
possible to ensure that an important part of the information contained in each table
(structures) is preserved in the co-structures.



230 11 Relating Species Traits to Environment

The last table, Correlation L, compares the correlation between the traits-
based species scores ($lQ) and the environmental site scores ($lR) captured by
RLQ analysis to the maximum possible value provided by the Correspondence
Analysis of the abundance table (max). For the aravo data set, it is noticeable
that the correlation is quite low for the second axis (0.2753). The variance of the
environmental scores is well preserved on the first two axes (89.53%). For the traits,
the amount of variance preserved (2.341 and 3.667) in nearly equal to the amount
obtained in simple Principal Component Analysis (2.409 and 3.907).

The total inertia (i.e., the sum of eigenvalues) is a multivariate measure of the
global link between traits and environment. Its significance can be tested by a two-
step procedure described in Box 11.3. The link is highly significant:

randtest(rlq.aravo, modeltype = 6, nrepet = 999)

class: krandtest lightkrandtest
Monte-Carlo tests
Call: randtest.rlq(xtest = rlq.aravo, nrepet = 999, modeltype = 6)

Number of tests: 2

Adjustment method for multiple comparisons: none
Permutation number: 999

Test Obs Std.Obs Alter Pvalue
1 Model 2 1.578 27.15 greater 0.001
2 Model 4 1.578 13.24 greater 0.001

11.3 Fourth-Corner Analysis

Whereas RLQ analysis provides a global picture of the traits-environment rela-
tionships, the fourth-corner (Legendre et al. 1997) allows to test the significance
of individual trait-environment associations (i.e., one trait and one environmental
variable at a time). Similarly to RLQ analysis, the fourth-corner method computes
a matrix containing measures of trait-environment associations (see details in
Legendre et al. 1997; Dray and Legendre 2008).

In this array, each cell corresponds to a bivariate association whose statistical
significance can be evaluated. Since the fourth-corner method considers variables
measured on different statistical units (species and sites), appropriate randomisation
techniques should be used to obtain an adequate testing procedure (see Box 11.3).
The only valid method consists in combining the outputs of two tests based on
different types of permutations.

Fourth-corner is implemented in the fourthcorner function and the com-
bined testing procedure can be used if the modeltype argument of the randtest
function is set to 6. As the fourth-corner procedure involves a test for each
combination of one single trait and one environmental variable, many tests are
performed and p-values could be adjusted to avoid multiple comparison issues using
the p.adjust.method.G and p.adjust.method.D arguments. A very high
number of repetitions (nrepet <- 49999) is set in order to have enough power
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in corrected tests. This is time-consuming and could be modified to speed up the
different analyses (e.g., nrepet <- 999).

Box 11.3 Testing the Significance of Traits-Environment Relationships
Testing the significance of the link between traits (Q) and environment
(R) mediated by the abundance (L) is not a trivial issue. As the variables
considered are measured on different statistical units (p species and n sites),
adapted testing procedures should be considered. Several permutation models
have been proposed in the literature to resolve the problem (Model 1–4 in
Legendre et al. (1997), Model 5 in Dolédec et al. (1996)):

• Model 1: Permute abundance values for each species independently (i.e.,
within each column of L)

• Model 2: Permute the n sites (i.e., rows of R or L)
• Model 3: Permute abundance values for each site independently (i.e.,

within each row of L)
• Model 4: Permute the p species (i.e., rows of Q or columns of L)
• Model 5: Permute the p species and after (or before), permute the n sites

(i.e., permute the rows of both tables R and Q)

It is demonstrated in Dray and Legendre (2008) that all these procedures
(Model 1–5) did not truly control the type I error and an alternative based
on the combination of two permutation models is proposed. This procedure
(Model 6) consists in performing two separate tests using models 2 and 4 and
combine the results by keeping the highest p-value (pmax) produced by the
two permutation tests:

Model 2

L

Q

R

Model 4

L

Q

R

p-value = p2 p-value = p4

pmax = max(p2, p4)Model 6

It is demonstrated in ter Braak et al. (2012) that a sequential test with a
global significance level α, that controls the type I error in all cases, is simply
provided by comparing pmax to α.

nrepet <- 49999
four.comb.aravo <- fourthcorner(aravo$env, aravo$spe,
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aravo$traits, modeltype = 6, p.adjust.method.G = "none",
p.adjust.method.D = "none", nrepet = nrepet)

Results can be reported using the summary or print methods. The former
returns outputs for variables whereas the latter provides detailed results for levels in
the case of categorical variables. Outputs can also be plotted. In this example, there
are some associations between categorical traits and quantitative environmental
variables. These associations can be measured in three different ways (Legendre
et al. 1997). The three methods correspond to three possible values of the stat
argument in the plot and print functions:

• stat = “D2”: the association is measured between the quantitative variable
and each category separately. A correlation coefficient is used to indicate the
strength of the association between the given category and the small or large
values of the quantitative variable.

• stat = “G”: the association between the quantitative variable and the whole
categorical variable is measured by a global statistic (F).

• stat = “D”: the association is estimated between the quantitative variable and
each category separately by a measure of the within-group homogeneity. The
strength of the association is indicated by the dispersion of the values of the
quantitative variable for a given category.

In the rest of the chapter, we focus on the D2 statistic. The correction of p-values
by a sequential procedure (Box 11.3, ter Braak et al. 2012) leads to significant
associations if the maximal p-value is lower than α = 0.05. In this case, there
are only 26 significant associations (Fig. 11.3), while there are 51 when α = √

0.05,
i.e., the biased version proposed by Dray and Legendre (2008).

Adjusted p-values for multiple comparisons are obtained with the fdr method
using the p.adjust.4thcorner function.

four.comb.aravo.adj <- p.adjust.4thcorner(four.comb.aravo,
p.adjust.method.G = "fdr", p.adjust.method.D = "fdr")

Note that adjusted p-values can be obtained directly using the fourthcorner
function:

fourthcorner(aravo$env, aravo$spe, aravo$traits,
modeltype = 6, p.adjust.method.G = "fdr",
p.adjust.method.D = "fdr", nrepet = nrepet)

When adjusted p-values are used, there are 18 significant associations (Fig. 11.4).
SLA and N_mass showed the same trend (positive correlation with snow (Snow)
and landform concavity (Form.5), negative correlation with right slope (Form.3)
and physical disturbance (PhysD)). This high number of significant tests is linked
to the strong snow-melting gradient (also depicted by RLQ axis 1).

Other significant bivariate tests could be identified, e.g., the associations between
plant height (Height) and right slopes (Form.3), and between leaf area (Area)
and zoogenic disturbance (ZoogD.high). This last relationship was indeed
described by the second RLQ axis.
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plot(four.comb.aravo, alpha = 0.05, stat = "D2")
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Fig. 11.3 Plot of the outputs of a fourth-corner analysis. Blue cells correspond to negative
significant relationships while red cells correspond to positive significant relationships (this can
be modified using the argument col).

plot(four.comb.aravo.adj, alpha = 0.05, stat = "D2")
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Fig. 11.4 Plot of the outputs of a fourth-corner analysis. p-values have been adjusted for
multiple comparisons using the false discovery rates. Blue cells correspond to negative significant
relationships while red cells correspond to positive significant relationships.
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11.4 Combining Both Approaches

RLQ analysis summarises multivariate structures but it does not provide significance
tests for the associations. Moreover, the factor maps are difficult to read when the
number of variables is large. On the other hand, the fourth-corner analysis only tests
the significance of bivariate associations and it does not consider the covariation
among traits or among environmental variables. The resulting high number of
statistical tests is also difficult to summarise.

To take advantage of both method that share the analysis of a matrix of trait-
environment associations, a single framework can be used to summarise and
simultaneously test the main ecological structures (Dray et al. 2014). A first
approach consists in representing the results of the fourth-corner tests onto the
factorial map produced by the RLQ analysis. In that case, RLQ scores are used to
position traits and environmental variables on a biplot and significant associations
detected by the fourth-corner tests are depicted by lines. This procedure results in
a global representation of the significant links as edges of a correlation network. It
has the main advantage of summarising the results of the two analyses using a single
biplot that facilitates the interpretation of ecological structures.

However, the approach does not solve all the problems described above because
the computation of each analysis is performed separately and their outputs are
combined a posteriori.

Both approaches can be combined if RLQ scores are used to represent traits
and environmental variables on a biplot. Then, significant associations revealed
by the fourth-corner approach can be represented using segments (blue lines for
negative associations, red lines for positive associations, see the col argument).
Only traits and environmental variables that have at least one significant association
are represented. Here, we apply this method using adjusted p-values for multiple
comparisons and a significance level α = 0.05.

The representation of the significant associations identified by the fourth-corner
method onto the RLQ factorial map helps interpreting the main patterns of variation
and correlation (Fig. 11.5). Compared to the classical RLQ outputs (Fig. 11.1),
the interpretation focuses only on traits and environmental variables that are
significantly related. Groups of significant positive associations can be identified
(e.g., SLA, N_mass with Snow and concavity (Form.5), leaf area with high
zoogenic disturbance). However, it is much harder to summarise the high number of
significant negative associations (blue lines in Fig. 11.5).

Another approach (Dray et al. 2014) is provided by the fourthcorner.rlq
function and consists in testing directly the links between RLQ axes and
traits (typetest = “Q.axes”) or environmental variables (typetest =
“R.axes”).
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plot(four.comb.aravo.adj, x.rlq = rlq.aravo, alpha = 0.05,
stat = "D2", type = "biplot")
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Fig. 11.5 Biplot of the outputs of an RLQ analysis. Relationships are tested by the fourth-corner
method and positive significant associations are represented by red lines whereas negative are in
blue.

testQaxes.comb.aravo <- fourthcorner.rlq(rlq.aravo,
modeltype = 6, typetest = "Q.axes", nrepet = nrepet,
p.adjust.method.G = "fdr", p.adjust.method.D = "fdr")

testRaxes.comb.aravo <- fourthcorner.rlq(rlq.aravo,
modeltype = 6, typetest = "R.axes", nrepet = nrepet,
p.adjust.method.G = "fdr", p.adjust.method.D = "fdr")

The outputs of the different tests can be obtained by the print function which
allows to specify which statistic should be display:
print(testQaxes.comb.aravo, stat = "D")
print(testRaxes.comb.aravo, stat = "D")

Results can be represented using a table with colours indicating significance
(Fig. 11.6). Significant association with axes can also be reported on the factor map
of the RLQ analysis (Fig. 11.7). Testing directly the associations between RLQ axes
and traits/environmental variables clearly improves the interpretation of RLQ and
fourth-corner results (Figs. 11.6 and 11.7).

The first axis is significantly negatively correlated with snow cover and concavity
(late-melting) and positively with physical disturbance and slope (early-melting).
Associated traits are higher specific leaf area and nitrogen content for late-melting
sites and higher angle and plant height for early melting sites. Choler (2005)
hypothesised that high leaf angle in the physically disturbed, early-melting habitats
limits nocturnal radiative loss of leaf surfaces and ensures a better structural
photoprotection against low-temperature photoinhibition.
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par(mfrow=c(1,2))
plot(testQaxes.comb.aravo, alpha = 0.05, type = "table", stat = "D2")
plot(testRaxes.comb.aravo, alpha = 0.05, type = "table", stat = "D2")

Fig. 11.6 Plot of the outputs of a fourth-corner analysis testing the link between RLQ axes and
traits and environmental variables. Blue cells correspond to negative significant relationships while
red cells correspond to positive significant relationships.

par(mfrow=c(1,2))
plot(testQaxes.comb.aravo, alpha = 0.05, type = "biplot", stat = "D2",

col = c("black", "blue", "orange", "green"))
plot(testRaxes.comb.aravo, alpha = 0.05, type = "biplot", stat = "D2",

col = c("black", "blue", "orange", "green"))
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Fig. 11.7 Plot of the outputs of a fourth-corner analysis, with a test of the link between RLQ axes
and traits and environmental variables. Significant associations with the first axis are represented
in blue, with the second axis in orange, with both axes in green (variables with no significant
association are in black).

The second axis opposes convex sites with no zoogenic disturbance and concave
slopes where marmots are present. Communities found in these disturbed sites
have higher leaf area and lower angle. Zoogenic disturbance and milder habitat
conditions in the middle part of the mesotopographical gradient may explain the
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occurrence of large-leaved, light-demanding rosette forbs such as Geum mon-
tanum (Geum.mont), Alchemilla glaucescens (Alch.glau) or Arnica montana
(Arni.mont) (Figs. 11.1 and 11.2), a set of species that are more commonly found
at lower elevation.

11.5 Extensions

The fourthcorner2 function computes modified bivariate statistics that sum up
to the global statistic provided by the RLQ analysis (Dray and Legendre 2008).
Extensions of RLQ and fourth-corner methods have been proposed in the literature
to consider spatial and phylogenetic information (e.g., Pavoine et al. 2011) in
the analysis of trait-environment relationships. It is also possible to analyse the
influence of a partition of sites in several groups (Within- and Between-Class
Analyses, Chap. 7) on an object created by the rlq function with the bca.rlq
function (partial RLQ, Wesuls et al. 2012, see example(bca.rlq)).



Chapter 12
Analysing Spatial Structures

Abstract In many cases, multivariate data are collected for entities that are
geographically located (i.e., georeferenced). This chapter describes several tech-
niques to incorporate the spatial information in multivariate methods using packages
sp, spdep and adespatial.

12.1 Introduction

Spatial data are commonly used in Ecology due to the development of technolo-
gies for their gathering (e.g., global positioning system, satellite imagery) and
management (e.g., geographic information system). Hence, sampled entities (e.g.,
sites) are described by the measurements of environmental variables and/or species
abundances as well as geographical attributes. Since the early work of Goodall
(1954), a major concern of Ecology is the identification and explanation of the
spatial patterns of ecological structures. Answering these questions leads to the
notion of spatial autocorrelation and requires multivariate methods that consider
explicitly the spatial information. Whereas traditional approaches used polynomial
of geographical coordinates (trend-surface analysis) or distances (Mantel-based
approaches), this chapter focuses on recent methods that introduce space using a
Spatial Weighting Matrix (SWM).

12.2 Managing Spatial Data

The sp package provides classes and methods to manage spatial data in R (Bivand
et al. 2013; Pebesma and Bivand 2005). It allows to deal with raster (grid of
cells) and vector (lines, points or polygons) data with or without attributes.
This chapter focuses on vector data stored using the SpatialPoints and
SpatialPolygons classes. Usually, spatial data are managed in Geographic
Information System (GIS) and the maptools package (Bivand and Lewin-Koh
2017) contains functions to import these data directly in R. For instance, the
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readShapeSpatial function offers a convenient way to import a shapefile in R.
This chapter will use the mafragh data set (de Bélair and Bencheikh-Lehocine

1987; Pavoine et al. 2011) of the ade4 package. It contains abundance values of 56
plant species at 97 sites located in the Mafragh plain (Algeria). Species names are
recorded in mafragh$spenames, a dataframe with 56 rows and 2 columns: the
scientific name in column 1 and a 4-character code in column 2. The geographical
coordinates of the sites (mafragh$xy) can be used to build an object of class
Spatialpoints (see Fig. 12.1).

In the adegraphics package, the s.Spatial function allows to represent these
Spatial-inherited objects (Fig. 12.2).

library(ade4)
library(adespatial)
library(adegraphics)
library(sp)
data(mafragh)
names(mafragh$flo) <- mafragh$spenames[, 2]
maf.Sp <- mafragh$Spatial.contour
mflo <- mafragh$flo
xy.Sp <- SpatialPoints(mafragh$xy)
plot(xy.Sp, cex = 0.5)
box()

Fig. 12.1 Plot of a SpatialPoints object with 97 sites using the plot method provided by
the sp package.
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s.Spatial(xy.Sp, Sp = maf.Sp, plabels.boxes.draw = FALSE,
pSp.col = "white")
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Fig. 12.2 Position of the 97 sampling sites in the Mafragh plain.

A new object belonging to class SpatialPointsDataFrame is cre-
ated by attaching a dataframe to a SpatialPoints object with the
SpatialPointsDataFrame function. Here, the abundance of the 56 plant
species is attached to the xy.Sp object, producing the xy.SpDF object:

xy.SpDF <- SpatialPointsDataFrame(xy.Sp, as.data.frame(mflo))

The various classes of sp allow to deal with spatial objects that contain
(Spatial*DataFrame) or not (Spatial*) associated data:

showClass("Spatial")

Class "Spatial" [package "sp"]

Slots:

Name: bbox proj4string
Class: matrix CRS

Known Subclasses:
Class "SpatialPoints", directly
Class "SpatialMultiPoints", directly
Class "SpatialGrid", directly
Class "SpatialLines", directly
Class "SpatialPolygons", directly
Class "SpatialPointsDataFrame", by class "SpatialPoints",

distance 2
Class "SpatialPixels", by class "SpatialPoints", distance 2
Class "SpatialMultiPointsDataFrame", by class
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"SpatialMultiPoints", distance 2
Class "SpatialGridDataFrame", by class "SpatialGrid", distance 2
Class "SpatialLinesDataFrame", by class "SpatialLines",

distance 2
Class "SpatialPixelsDataFrame", by class "SpatialPoints",

distance 3
Class "SpatialPolygonsDataFrame", by class "SpatialPolygons",

distance 2

The s.Spatial function allows to represent these Spatial*DataFrame
objects by thematic maps (Fig. 12.3). An alternative to represent spatial data is
provided by the other plotting functions of adegraphics (for example, s.value,
see Sect. 4.4), using the Sp argument.

12.3 From Spatial Data to Spatial Weights

Spatial structures manifest themselves by the relationship (or lack of independence)
between values observed at neighbouring sites in space (Dray et al. 2012; Legendre
1993). In many instances, sampling sites that are closer tend to display values
that are more similar than sites that are further apart, resulting in positive spatial
dependence. In order to detect spatial patterns, a first step is to define spatial
neighbouring relationships between sites. These spatial links are stored in a Spatial
Weighting Matrix (SWM). In its broader sense, an SWM is usually a square
symmetric matrix (sites-by-sites) that contains non-negative values expressing the
strengths of the potential exchanges between the spatial units; conventionally,
diagonal values are set to zero. In its simplest form, an SWM is a binary matrix,
with ones for pairs of sites considered as neighbours and zeros otherwise. The spdep
package (Bivand and Piras 2015; Bivand et al. 2013) provides tools to create and
manipulate spatial weighting matrices.

In the spdep package, the user should first create a spatial neighbourhood object
(nb class) that will be converted, in a second step, to an SWM (listw object).
If sampling sites are polygons (SpatialPolygons), the poly2nb function
creates a neighbourhood object by considering that two sites are neighbours if
they share a common boundary. For regular grid of points, the cell2nb function
allows to define rook and queen neighbourhoods. If sampling sites are points
irregularly spaced, several approaches can be considered. An intuitive way is to
define a distance criteria that sees two sites as neighbours if their distance is below
a threshold value:

library(spdep)
(nb1 <- dnearneigh(xy.Sp, 0, 23))

Neighbour list object:
Number of regions: 97
Number of nonzero links: 316
Percentage nonzero weights: 3.358
Average number of links: 3.258
4 regions with no links:
54 58 96 97
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g1 <- s.Spatial(xy.SpDF[, c("Phco", "Homa", "Mein")],
scale = FALSE, col = c("black", "palegreen3"), Sp = maf.Sp,
psub.cex = 2, plot = FALSE)

spobj <- SpatialPolygonsDataFrame(Sr = mafragh$Spatial,
data = mflo[, c("Phco", "Homa", "Mein")], match.ID = FALSE)

mypal <- colorRampPalette(c("#EDF8FB", "#006D2C"))
g2 <- s.Spatial(spobj, ppalette.quanti = mypal, psub.cex = 2,

plot = FALSE)
g3 <- s.value(mafragh$xy, mflo[, c("Phco", "Homa", "Mein")],

symbol = "circle", Sp = maf.Sp, col = c("black",
"palegreen3"), psub.cex = 2, plot = FALSE)

ADEgS(list(g1, g2, g3), layout = c(3, 1))

Phco Homa Mein

Phco Homa Mein

d = 100Phco

0.5 1.5 2.5 3.5 4.5

d = 100Homa

0.5 1.5 2.5 3.5 4.5

d = 100Mein

0.25 0.75 1.25 1.75

Fig. 12.3 Distribution of the abundance of 3 plant species (Phalaris coerulescens, Hordeum
marinum, and Medicago intertexta) in the 97 sites, using the s.Spatial function with a
SpatialPoints object (top), with a SpatialPolygons object (middle), and using the
s.value function (bottom).
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g1 <- s.label(mafragh$xy, Sp = maf.Sp, nb = nb1,
pSp.col = "grey", pnb.edge.col = "red", ppoints.cex = 1.5,
plabels.cex = 0, plot = FALSE)

g2 <- s.label(mafragh$xy, Sp = maf.Sp, nb = nb2,
pSp.col = "grey", pnb.edge.col = "red", ppoints.cex = 1.5,
plabels.cex = 0, plot = FALSE)

ADEgS(list(g1, g2))

d = 100 d = 100

Fig. 12.4 Neighbourhoods obtained using distance (left) and nearest neighbours (right) criteria.

It is also possible to define neighbourhood by a criteria based on nearest
neighbours. However, this option can lead to non-symmetric neighbourhood: if site
A is the nearest neighbour of site B, it does not mean that site B is the nearest
neighbour of site A. The knearneigh function creates an object of class knn that
can be transformed into an nb object with the knn2nb function. The sym argument
forces the output neighbourhood to be symmetric:

(nb2 <- knn2nb(knearneigh(xy.Sp, k = 2), sym = TRUE))

Neighbour list object:
Number of regions: 97
Number of nonzero links: 260
Percentage nonzero weights: 2.763
Average number of links: 2.68

Neighbourhood objects are directly related to the binary matrix representation of
graphs where sites correspond to nodes. An edge links two neighbours and is coded
by 1 in the associated adjacency matrix (Fig. 12.4).

These definitions of neighbourhood can lead to unconnected subgraphs. The
n.comp.nb function finds the number of disjoint connected subgraphs:

n.comp.nb(nb1)

$nc
[1] 9

$comp.id
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[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 3 3
[29] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 4 2 2
[57] 2 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
[85] 7 7 7 7 7 7 7 7 7 7 7 8 9

More elaborate approaches derived from graph theory are available to depict
connectivity (Jaromczyk and Toussaint 1992; Dale and Fortin 2010). For instance,
Delaunay triangulation is obtained with the tri2nb function that requires the
deldir package (Turner 2018). Other procedures are also available such as
Gabriel graph (see the gabrielneigh function) or relative neighbourhood (see
the relativeneigh function).

The edit.nb function provides an interactive tool to add or delete connections
from an existing nb object. Other utility functions are provided in spdep to
manipulate neighbourhood objects (see diffnb, intersect.nb, union.nb,
setdiff.nb, complement.nb, droplinks and nblag).

In a second step, the nb2listw function is used to convert the neighbourhood
object (class nb) into an SWM (object of the listw class). As binary spatial links
may appear too restrictive to represent complex inter-site relationships, this function
allows to explicitly weight the spatial relationships among sampling locations
using the glist argument. For instance, edges can be weighted by a function of
geographical distances using the nbdists function. The style argument allows
to define a global transformation of the SWM such as standardisation by row sum,
by total sum, binary coding, etc.

For instance, the row-standardised SWM based on a Gabriel graph with edges
weighted by inverse distances is obtained by:

xym <- as.matrix(mafragh$xy)
nb3 <- graph2nb(gabrielneigh(xym), sym = TRUE)
invdist <- lapply(nbdists(nb3, xym), function(x) 1/x)
lw3 <- nb2listw(nb3, glist = invdist, style = "W")
names(lw3)

[1] "style" "neighbours" "weights"

lw3$neighbours[[1]]

[1] 2 4 5 6

lw3$weights[[1]]

[1] 0.2563 0.1997 0.2931 0.2509

To facilitate the building of spatial neighbourhoods (nb object) and associated
spatial weighting matrices (listw object), the adespatial package provides the
listw.candidates function which is a wrapper to spdep functions (Dray et al.
2018). It also provides an interactive graphical interface which can be launched by
the call listw.explore() assuming that spatial coordinates are still stored in
an object of the R session (see Fig. 12.5).

When the listw object has been specified, it is then possible to compute a
spatial autocorrelation index to measure how the values of a variable are more
similar when the sampling sites are closer.
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Fig. 12.5 Interactive interface implemented in the listw.explore function. It provides code
to produce spatial weighting matrices that can be copied and pasted in the console.

12.4 Spatial Autocorrelation

Geary’s ratio (Geary 1954) and Moran’s coefficient MC (Moran 1948) are stan-
dard approaches to measure spatial autocorrelation by quantifying the degree of
dependency among observations in a geographical context (see Box 12.1). The
moran.randtest function (which is a wrapper to the moran.mc function of the
spdep package) allows to compute MC and test its significance by a randomisation
procedure:

moran.randtest(mflo[, "Boma"], listw = lw3, nrepet = 999)

Monte-Carlo test
Call: moran.randtest(x = mflo[, "Boma"], listw = lw3,
nrepet = 999)
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Observation: 0.4195

Based on 999 replicates
Simulated p-value: 0.001
Alternative hypothesis: greater

Std.Obs.statistic Expectation Variance
6.629584 -0.011312 0.004222

Box 12.1 Moran’s Coefficient and Moran Scatterplot
Let us consider the n × 1 vector x = (x1 · · · xn)

� containing measurements
of a quantitative variable for n spatial units and W = [wij ] the n × n spatial
weighting matrix. The usual formulation for Moran’s coefficient of spatial
autocorrelation is:

MC(x) = n
∑

(2) wij (xi − x̄)(xj − x̄)
∑

(2) wij

∑n
i=1 (xi − x̄)2

where
∑

(2)
=

n
∑

i=1

n
∑

j=1

with i �= j

MC can be rewritten using matrix notation:

MC(x) = n

1�W1
z�Wz

z�z

where z = (In − 1n1n
�/n
)

x is the vector of centred values (zi = xi − x̄) and
1n is a vector of ones (of length n).

The numerator of MC corresponds to the covariation between contiguous
observations. The significance of the observed value of MC can be tested
by a Monte-Carlo procedure, in which locations are permuted to obtain a
distribution of MC under the null hypothesis of random distribution. An
observed value of MC that is greater than that expected at random indicates
the clustering of similar values across space (positive spatial autocorrelation),
while a significant negative value of MC indicates that neighbouring values
are more dissimilar than expected by chance (negative spatial autocorrela-
tion).

If the SWM is row-standardised (i.e., wij = wij
n∑

j=1
wij

), we can define the

lag vector z̃ = Wz (i.e., z̃i =
n∑

j=1
wijxj ) composed of the weighted (by the

spatial weighting matrix) averages of the neighbouring values. MC can then
be rewritten as:

MC(x) = z�z̃
z�z

(continued)
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Box 12.1 (continued)
In this case, MC measures the autocorrelation by giving an indication of the
intensity of the linear association between the vector of observed values z and
the vector of weighted averages of neighbouring values z̃ (lag vector). MC
can then be visualised in the form of a bivariate scatterplot of z̃ against z. A
linear regression can be added to this Moran scatterplot, with slope equal to
MC to represent the degree of spatial autocorrelation and detect the presence
of outliers or local pockets of non-stationarity (Anselin 1996).

If the SWM has been row-standardised, it is possible to compute a lag vector that
contains the weighted averages of neighbouring values. In this case, MC is equal
to the slope of the linear model that explains the variability of the lag vector by the
observed values:
xlag <- lag.listw(lw3, mflo[, "Mein"])
lm1 <- lm(xlag ~ mflo[, "Mein"])
coefficients(lm1)

(Intercept) mflo[, "Mein"]
0.2928 0.3961

The relationships between the lag vector and observed values can then be
represented on a Moran scatterplot (Fig. 12.6).

12.5 Detecting Spatial Multivariate Structures

When several variables are considered, it is possible to repeat univariate analysis
(MC) for each species easily using the moran.randtest function of the
adespatial package:

moran.plot(mflo[, "Mein"], listw = lw3)
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Fig. 12.6 Moran scatterplot of Medicago intertexta (Mein). The slope of the linear model is equal
to MC.



12.5 Detecting Spatial Multivariate Structures 249

(kMC <- moran.randtest(mflo[, c("Boma", "Phco",
"Homa", "Mein")], listw = lw3))

class: krandtest lightkrandtest
Monte-Carlo tests
Call: moran.randtest(x = mflo[, c("Boma", "Phco", "Homa","Mein")],

listw = lw3)

Number of tests: 4

Adjustment method for multiple comparisons: none
Permutation number: 999
Test Obs Std.Obs Alter Pvalue

1 Boma 0.4195 6.350 greater 0.001
2 Phco 0.4887 7.243 greater 0.001
3 Homa 0.2080 3.374 greater 0.004
4 Mein 0.3961 5.778 greater 0.001

However, this approach is not optimal as it does not consider properly the
multivariate information: each species is treated independently and it is thus not
possible to detect similarities between spatial distributions.

The identification of spatial structures requires tools that integrate simultaneously
multivariate and spatial aspects. The simplest approach is a two-step procedure
where the data are first summarised with a multivariate analysis (PCA, see Sect. 5.2).
In a second step, univariate spatial statistics or mapping techniques are applied to
PCA scores for each axis separately (Fig. 12.7).

pca.spe <- dudi.pca(mflo, scale = FALSE, scannf = FALSE)
mc1 <- moran.mc(pca.spe$li[, 1], lw3, 999)
s.value(mafragh$xy, pca.spe$li[, 1], symbol = "circle",

Sp = maf.Sp, sub = paste("MC =", round(mc1$statistic, 3)),
pSp.col = "grey")

MC = 0.486

d = 100

−5 −3 −1 1 3

Fig. 12.7 Mapping and MC of the scores on the first PCA axis.
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It is very simple to carry out this two-step approach but it has the major disad-
vantage of being indirect, as it considers the spatial pattern only after summarising
the main structures of the multivariate data set. In the next sections, we present
several approaches that go one step further by considering the identification of
spatial structures and the dimensionality reduction simultaneously.

12.5.1 Moran’s Eigenvector Maps (MEMs)

A common practice is to integrate the geographic information by spatial predictors
that can be used to evaluate the spatial component of ecological structures. Poly-
nomials of geographic coordinates have been traditionally used but new procedures
have been recently proposed as alternatives. Moran’s Eigenvector Maps (MEMs) are
produced by the diagonalisation of the spatial weighting matrix. These eigenvectors
are orthogonal vectors with a unit norm that maximises MC (Box 12.2, Fig. 12.8).

Box 12.2 Moran’s Eigenvectors Maps (MEMs)
Let us consider W = [wij ] the n × n spatial weighting matrix. If a non-
symmetric spatial weighting matrix W∗ has been defined, the results can be
generalised using W = (W∗ + W∗�)/2. Moran’s eigenvectors maps (MEMs)
are the n − 1 eigenvectors obtained by the diagonalisation of the doubly-
centred SWM:

�V = V�

where � = HWH and H = (I − 11�/n
)

is a centring operator.
The upper and lower bounds of MC (de Jong et al. 1984) for a given spatial

weighting matrix W are equal to λmax(n/1�W1) and λmin(n/1�W1) where
λmax and λmin are the extreme eigenvalues of �.

MEMs are stored in matrix V. They are orthogonal vectors with a unit
norm that maximise MC (Griffith 1996). MEMs associated with high positive
(or negative) eigenvalues have high positive (or negative) autocorrelation.
MEMs associated with eigenvalues with small absolute values correspond to
low spatial autocorrelation (Dray et al. 2006). Unlike polynomial functions,
MEMs have the ability to capture various spatial structures at multiple scales
(coarse to fine scales). MEMs have been used for spatial filtering purposes and
introduced as spatial predictors in linear models, generalised linear models
and multivariate analysis.

MEMs provide a basis of orthonormal vectors that are able to decompose the
variance of a variable at multiple scales. They can be used as spatial predictors in
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(me <- mem(lw3))

Orthobasis with 97 rows and 96 columns
Only 6 rows and 4 columns are shown

MEM1 MEM2 MEM3 MEM4
1 0.9859 -2.048 -0.5452 -1.18005
2 0.9438 -1.957 -0.4045 -0.64642
3 0.9090 -1.830 -0.2413 -0.06485
4 1.0213 -1.963 -0.6074 -1.40389
5 0.7473 -1.542 -0.4454 -1.03190
6 1.0157 -2.024 -0.4934 -0.93286

s.value(mafragh$xy, me[, c(1:3, 94:96)], ppoints.cex = 0.75,
Sp = maf.Sp, pSp.col = "grey")

d = 100MEM1

−1.5 −0.5 0.5 1.5

d = 100MEM2

−2.5 −1.5 −0.5 0.5 1.5 2.5

d = 100MEM3

−3.5 −2.5 −1.5 −0.5 0.5 1.5

d = 100MEM94

−3 −1 1 3

d = 100MEM95

−5 −3 −1 1 3 5

d = 100MEM96

−5 −3 −1 1 3 5

Fig. 12.8 Mapping of the first and last three MEMs. These eigenvectors are orthogonal and
maximise MC.

Redundancy Analysis (see Sect. 8.4.1) or variation partitioning methods to identify
the main spatial structures of a given data set. However, as the number of MEMs
is usually equal to the number of samples – 1, a first step of variable selection
is required to avoid overfitting. The mem.select function implements different
procedures described in Bauman et al. (2018) and will not be detailed further.

Another approach consists in decomposing the total variance of a given variable
onto the MEM basis. It is then possible to build a scalogram indicating the part of
variance explained by each MEM:

scalo <- scalogram(mflo[, "Mein"], me)
sum(scalo$obs)

[1] 1
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scalo2 <- scalogram(mflo[, "Mein"], me, nblocks = 10)
plot(scalo2)
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Fig. 12.9 Smoothed scalogram of Medicago intertexta. Spatial components are divided in ten
groups of successive MEMs (nblocks argument).

Results can be more readable using smoothed scalograms (using the nblocks
argument) where spatial components are formed by groups of successive MEMs
(Fig. 12.9, Munoz 2009; Dray et al. 2012).

Figure 12.10 shows how the statistically significant spatial components can be
related to the spatial distribution of abundances for four species.

It is possible to compute scalograms for all the species of the data table. These
scalograms can be stored in a table and analysing this table with a PCA allows to
identify the important scales of the data set and the similarities between species
based on their spatial distributions (Jombart et al. 2009). This analysis named
Multiscale Patterns Analysis (MSPA) is available in the adespatial package.

Figure 12.11 shows the biplot of the MSPA of the mafragh data set. The 96
MEMs and the 56 species are plotted, but the spatial maps of 5 important spatial
scales (MEM1, MEM2, MEM3, MEM6, MEM96) and 3 associated species (Borago
officinalis (Boof), Medicago intertexta (Mein), and Halimione portulacoides
(Hapo)) are superimposed over the MSPA factor map. Species are clearly ordered
by MSPA according to the similarity of their spatial distribution with MEMs spatial
structure.

The number of MEMs can be high, and the results provided by this approach can
be difficult to interpret. The nblocks argument of the mspa function allows to
create groups of MEMs, which makes easier interpretations.
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sc1 <- plot(scalogram(mflo[, "Boma"], me, nblocks = 10))
sv1 <- s.value(mafragh$xy, mflo[, "Boma"], Sp = maf.Sp,

psub = list(text = "Boma", cex = 1.5), plot = FALSE)
sc2 <- plot(scalogram(mflo[, "Mein"], me, nblocks = 10))
sv2 <- s.value(mafragh$xy, mflo[, "Mein"], Sp = maf.Sp,

psub = list(text = "Mein", cex = 1.5), plot = FALSE)
sc3 <- plot(scalogram(mflo[, "Juma"], me, nblocks = 10))
sv3 <- s.value(mafragh$xy, mflo[, "Juma"], Sp = maf.Sp,

psub = list(text = "Juma", cex = 1.5), plot = FALSE)
sc4 <- plot(scalogram(mflo[, "Boof"], me, nblocks = 10))
sv4 <- s.value(mafragh$xy, mflo[, "Boof"], Sp = maf.Sp,

psub = list(text = "Boof", cex = 1.5), plot = FALSE)
ADEgS(list(sc1, sc2, sc3, sc4, sv1, sv2, sv3, sv4),

layout = c(2, 4))
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Fig. 12.10 Smoothed scalograms and abundance maps of four species (Bolboschoenus maritimus,
Medicago intertexta, Juncus maritimus and Borago officinalis).

12.5.2 MULTISPATI Analysis

The MEM framework introduced the spatial information into multivariate analysis
through the diagonalisation of the spatial weighting matrix. Usually, only a part of
the information contained in this matrix is considered because only a subset of MEM
are used as regressors in Redundancy Analysis (Sect. 8.4.1). In this last section, we
present a multivariate method that considers the Spatial Weighting Matrix in its
original form.

MULTISPATI (Multivariate spatial analysis based on Moran’s index) aims to
identify multivariate spatial structures by studying the link between a table of
variables and a table containing their lagged vectors using Coinertia Analysis (8.3).
Hence, it extends MC to the multivariate case (Box 12.3).
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mspa1 <- mspa(pca.spe, me, scannf = FALSE, nf = 2)
oldpar <- adegpar()
adegpar(plegend.drawKey = FALSE, psub.cex = 1.5)
gme <- s.value(mafragh$xy, me[, c(1, 2, 6, 3, 96)], Sp = maf.Sp,

ppoints.cex = 0.5, plot = FALSE)
gv1 <- s.value(mafragh$xy, mflo[, "Boof"], Sp = maf.Sp,

ppoints.cex = 0.5, psub.text = "Boof", col = c("black",
"palegreen2"), plot = FALSE)

gv2 <- s.value(mafragh$xy, mflo[, "Mein"], Sp = maf.Sp,
ppoints.cex = 0.5, psub.text = "Mein", col = c("black",
"palegreen2"), plot = FALSE)

gv3 <- s.value(mafragh$xy, mflo[, "Hapo"], Sp = maf.Sp,
ppoints.cex = 0.5, psub.text = "Hapo", col = c("black",
"palegreen2"), plot = FALSE)

sc1 <- scatter(mspa1, posieig = "topright", plot = FALSE)
gi1 <- insert(gme[[1]], sc1, posi = c(0.01, 0.4), plot = FALSE)
gi1 <- insert(gme[[2]], gi1, posi = c(0.43, 0.06), plot = FALSE)
gi1 <- insert(gme[[3]], gi1, posi = c(0.75, 0.01), plot = FALSE)
gi1 <- insert(gme[[4]], gi1, posi = c(0.15, 0.78), plot = FALSE)
gi1 <- insert(gme[[5]], gi1, posi = c(0.50, 0.79), plot = FALSE)
gi1 <- insert(gv1, gi1, posi = c(0.25, 0.54), plot = FALSE)
gi1 <- insert(gv2, gi1, posi = c(0.4, 0.3), plot = FALSE)
gi1 <- insert(gv3, gi1, posi = c(0.78, 0.24))
adegpar(oldpar)
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Fig. 12.11 Biplot of MSPA applied to the mafragh data set. Plots of important spatial scales
(MEM1, MEM2, MEM3, MEM6, MEM96) and associated species (Borago officinalis, Medicago
intertexta, Halimione portulacoides) are superimposed over the MSPA factor map.



12.5 Detecting Spatial Multivariate Structures 255

Box 12.3 MULTISPATI Analysis
MULTISPATI (Multivariate spatial analysis based on Moran’s index, Dray
et al. 2008) generalised Wartenberg’s multivariate spatial correlation method
(Wartenberg 1985) by introducing the n × n row-standardised spatial weight-
ing matrix W in the analysis of a statistical triplet (X, Q, D). Hence, this
approach is very general and allows to define spatially constrained versions
of various methods (corresponding to different triplets).

By extension of the lag vector (Box 12.1), a lag matrix X̃ = WX can
be defined. The two tables X̃ and X are fully matched, i.e., they have the
same columns (variables) and rows (observations). MULTISPATI aims to
identify multivariate spatial structures by studying the link between X̃ and
X using the Coinertia Analysis (Sect. 8.3) of a pair of fully matched tables. It

corresponds to the analysis of the statistical triplet
(

X, Q, 1
2 (W�D + DW)

)

.

According to Property 3.1 (Box 3.2), MULTISPATI searches for a principal
axis a maximising:

Q(a) = a�Q�X�1

2
(W�D�+ DW)XQa

= 1

2
(a�Q�X�W�D�XQa + a�Q�X�DWXQa)

= 1

2
〈XQa, WXQa〉D + 〈WXQa, XQa〉D

= a�Q�X�DWXQa = r�DWr = r�Dr̃

This analysis maximises the scalar product between a linear combination
of original variables (r = XQa) and a linear combination of lagged variables
(r̃ = WXQa). The maximised quantity can be rewritten as:

Q(a) = a�Q�X�DWXQa
a�Q�X�DXQa

a�Q�X�DXQa

= MCD(XQa) · ‖XQa‖2
D = MCD(r) · ‖r‖2

D

MULTISPATI finds coefficients (a) to obtain a linear combination of variables
(r = XQa) that maximises a compromise between the classical multivariate
analysis (‖r‖2

D) and a generalised version of Moran’s coefficient (MCD(r)).
The only difference between the classical Moran’s coefficient and its gener-
alised version MCD is that the second one uses a general matrix of weights D,
while the first considers only the usual case of uniform weights (D = 1

n
In).

In practice, the Q-symmetric matrix 1
2 X�(W�D + DW)Q is diagonalised.
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In the adespatial package, the multispati function is used to compute a
MULTISPATI Analysis. This function takes an object of the class dudi and a
spatial weighting matrix (object of class listw) as arguments. It is important to
note that this analysis can produce negative eigenvalues, corresponding to negatively
autocorrelated spatial structures. Hence, the function asks for the number of
positive eigenvalues (nfposi) and negative eigenvalues (nfnega) corresponding
to multivariate structures with positive and negative autocorrelations. Here, we
consider only two positive eigenvalues:

ms1 <- multispati(pca.spe, lw3, scannf = FALSE, nfposi = 2,
nfnega = 0)

The outputs produced by the analysis are grouped in a multispati object and
are described in Box 12.4.

Box 12.4 MULTISPATI Analysis: dudi Output Elements
In the adespatial package, the results of a MULTISPATI Analysis are stored
in an object of class multispati. This object is a list with 8 elements. In
this list, elements of particular interest are:

• $eig: eigenvalues (�)
• $c1: coefficients (loadings) for the variables (A)
• $li: scores of individuals (R = XQA)
• $ls: lagged scores of individuals (R̃ = WXQA)
• $as: projection of the axes of the analysis of X on the MULTISPATI axes

Whereas the standard analysis (PCA in this example) identifies the main
structures, MULTISPATI seeks for spatial structures. It is therefore important to
analyse the differences between the criteria maximised by these two analyses. This
comparison is provided by the summary function:

summary(ms1)

Multivariate Spatial Analysis
Call: multispati(dudi = pca.spe, listw = lw3, scannf = FALSE,

nfposi = 2, nfnega = 0)

Scores from the initial duality diagram:
var cum ratio moran

RS1 5.331 5.331 0.2835 0.4863
RS2 1.973 7.304 0.3884 0.4640

Multispati eigenvalues decomposition:
eig var moran

CS1 2.946 4.839 0.6088
CS2 1.217 1.890 0.6437



12.5 Detecting Spatial Multivariate Structures 257

Figure 12.12 includes four graphs. The top graph shows the link between the sites
seen by the original data table and seen through the lag vectors. Like in the Coinertia
Analysis plot, arrows link the two site coordinates (ms1$li and ms1$ls). In this
case, it corresponds to the score of sites and the lagged score (i.e., average score of
the neighbours). The bottom-left graph is the plot of eigenvalues (with positive and
negative values), the bottom-right graph is the plot of the PCA (unconstrained) axes
projected in the MULTISPATI analysis, and the middle graph shows the species
loadings.
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Fig. 12.12 Outputs of MULTISPATI applied to the mafragh data set indicating the main spatial
structures.
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The site score of the analysis (ms1$li) can be mapped to help interpret
the outputs (Fig. 12.13). It highlights the main spatial patterns of changes in the
composition of floristic communities. For instance, the first axis distinguishes the
central part of the study area to the eastern and western parts.

s.value(mafragh$xy, ms1$li, Sp = maf.Sp, nb = nb3,
pSp.col = "grey")

d = 100CS1

−5 −3 −1 1 3

d = 100CS2

−3 −1 1 3

Fig. 12.13 Mapping of MULTISPATI scores corresponding to positive autocorrelated structures.

Figure 12.14 helps interpret species loadings (ms1$c1). It shows the fac-
tor map of species with abundance maps for particular species: Bolboschoenus
maritimus (Boma), Phalaris coerulescens (Phco), Borago officinalis (Boof) and
Schoenoplectus litoralis (Scli). These four species have indeed particular spatial
distribution, that can be interpreted in relation with environmental factors (see
Siberchicot et al. 2017).

Figure 12.15 is the symmetric display of Fig. 12.14 and helps interpret site scores.
It shows the MULTISPATI factor map of sites (ms1$li). For particular sites (sites
number 11, 60 and 97), it shows the species loadings map with species presence
noted with the species label. It is easy to see that these sites present particular
species. For instance, Bolboschoenus maritimus (Boma) is present in site 60, Borago
officinalis (Boof) in site 97 and Phalaris coerulescens (Phco) in site 11. The site
position in the Mafragh plain is given in Fig. 12.2.
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sa1 <- s.arrow(ms1$c1)
gm1 <- s.value(mafragh$xy, mflo[, c("Scli", "Boma", "Boof",

"Phco")], Sp = maf.Sp, plegend.drawKey = FALSE,
ppoints.cex = 0.5, col = c("black", "palegreen3"),
psub.cex = 1.5, plot = FALSE)

p1 <- list(c(0.1, 0.65), c(0.01, 0.24), c(0.74, 0.7),
c(0.55, 0.05))

gi2 <- insert(gm1[[1]], sa1, posi = p1[[1]], ratio = 0.25,
plot = FALSE)

gi2 <- insert(gm1[[2]], gi2, posi = p1[[2]], ratio = 0.25,
plot = FALSE)

gi2 <- insert(gm1[[3]], gi2, posi = p1[[3]], ratio = 0.25,
plot = FALSE)

gi2 <- insert(gm1[[4]], gi2, posi = p1[[4]], ratio = 0.25)
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Fig. 12.14 Outputs of MULTISPATI applied to the mafragh data set. Loadings for species
are represented. Maps of the spatial distributions of Bolboschoenus maritimus (Boma), Phalaris
coerulescens (Phco), Borago officinalis (Boof) and Schoenoplectus litoralis (Scli) are inserted
to help the interpretation.
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sl1 <- s.label(ms1$li)
sl11 <- s.label(ms1$c1, ifelse(mflo[11,] != 0, names(mflo), ""),

plabels = list(col = "green3", cex = 1.5, optim = TRUE),
psub = list(text = "site 11", pos = "topleft", cex = 2))

sl60 <- s.label(ms1$c1, ifelse(mflo[60,] != 0, names(mflo), ""),
plabels = list(col = "green3", cex = 1.5, optim = TRUE),
psub = list(text = "site 60", pos = "topleft", cex = 2))

sl97 <- s.label(ms1$c1, ifelse(mflo[97,] != 0, names(mflo), ""),
plabels = list(col = "green3", cex = 1.5, optim = TRUE),
psub = list(text = "site 97", pos = "topleft", cex = 2))

p1 <- list(c(0.4, 0.72), c(0.01, 0.17), c(0.5, 0.01))
gi3 <- insert(sl97, sl1, posi = p1[[1]], ratio = 0.25,

plot = FALSE)
gi3 <- insert(sl60, gi3, posi = p1[[2]], ratio = 0.25,

plot = FALSE)
gi3 <- insert(sl11, gi3, posi = p1[[3]], ratio = 0.25)
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Fig. 12.15 Outputs of MULTISPATI applied to the mafragh data set. Representation of site
scores. For sites 11, 60 and 97, factorial maps of species are inserted where only species present in
these sites are indicated. Geographical map with site numbers is given in Fig. 12.2.



Chapter 13
Analysing Phylogenetic Structures

Abstract This chapter shows how multivariate approaches can be used for inves-
tigating phylogenetic structures, focussing on methods for measuring, testing,
accounting for and describing a phylogenetic signal.

13.1 Introduction

The constant progress of DNA sequencing technologies combined with powerful
phylogenetic reconstruction methods has made phylogenetic trees an increas-
ingly common element of ecological data analysis. The evolutionary relationships
underlying a phylogeny often induce non-independence (autocorrelation) in the
traits observed in the considered taxa. Simply put, closely related species often
tend to look alike and share similar ecological properties. We will refer to such
patterns as phylogenetic structures. These structures can be a nuisance when
modelling biological traits, as they violate the assumption of independence between
observations (taxa) made by most likelihood-based approaches as well as tests
of association. However, phylogenetic structures can also represent meaningful
biological patterns, indicative of interesting evolutionary processes. This dichotomy,
at the core of phylogenetic comparative methods (Harvey and Pagel 1991), has
motivated a considerable amount of methodological developments over the past
decades (Felsenstein 1985; Abouheif 1999; Martins et al. 2002; Blomberg et al.
2003; Revell and Collar 2009).

In this chapter, we introduce methods for the analysis of phylogenetic structures
implemented in adephylo (Jombart et al. 2010a), a phylogenetic extension of
ade4 for the R software. This package provides a range of statistical tools for
the exploratory analysis of phylogenetic comparative data and is fully integrated
alongside ade4 and the phylogenetic packages ape (Paradis et al. 2004) and
phylobase (R Hackathon et al. 2017). It includes procedures for data visualisation
and handling, computation of phylogenetic proximities and distances, tests and
models of phylogenetic signal, and phylogenetic multivariate analyses.
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13.2 Managing Phylogenetic Comparative Data

Phylogenetic comparative data consist of a phylogeny and some biological traits
observed for the set of taxa analysed. adephylo exploits efficient representations
implemented in ape for phylogenies (S3 class phylo) and in phylobase for
phylogenies and associated traits (S4 class phylo4 for trees, and phylo4d for
trees and traits). Note that the former class phylog from ade4 was less efficient
and flexible, and is now deprecated.

In this chapter, the phylogeny and traits associated to its tips are both assumed
known. In practice, phylogenies can be obtained in R using ape for distance-based
methods and phangorn (Schliep 2011; Schliep et al. 2017) for parsimony and
likelihood based methods, or generated by another software and read into R using
ape. Traits are stored as data.frame objects, where each row corresponds to a tip
of the tree. The essential part in preparing data for analysis in adephylo is making
sure that the tips of the tree match exactly the rows of the data.frame.

The internal structure of phylo4 and phylo4d objects is relatively complex.
However, the user does not have to interact directly with the internal content of a tree
or a phylogenetic comparative data set. Instead, accessors are used to extract some
specific information (see tdata function). More information on these objects can
be found in a vignette distributed with the phylobase package, accessible using the
command:
vignette("phylobase")

after the package has been loaded.
The phylobase package implements a very useful formal (S4) class for storing

a phylogeny and sets of traits matching the tips, the nodes, or the edges of the
tree. This class called phylo4d is used throughout adephylo to store comparative
data. These objects can be obtained either by reading a Nexus file containing tree
and traits data, or by assembling a tree and data provided for its tips. Nexus files
containing both tree and data can be read by phylobase’s function readNexus
(see corresponding help page for more information). Alternatively, a tree and a
data frame of traits can be assembled into a phylo4d object using the constructor
function phylo4d. This function takes two arguments: a tree (phylo or phylo4
format) and a data.frame containing traits data. We provide in Fig. 13.1 a simple
example using a simulated tree (rtree function from ape); the table.phylo4d
function is used to display trait values in front of the tree.

The constructor phylo4d assumes that the rows of the data frame of traits are in
the same order as the tips, whose label is in $tip.label. Different ordering can
be used as long as the same labelling system is used for the tips of the tree and the
rows of the traits data.frame, in which case phylo4d will reorganise the data
adequately. Traits data of a phylo4d object can be accessed and modified using
the tdata function of the phylobase package (see ?tdata for more information).
For instance:
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library(ape)
library(phylobase)
par(mfrow = c(1, 2), mar = c(0.1, 2, 3, 2))
tre <- rtree(10)
plot(tre)
title("simulated tree (phylo object)")
traits <- data.frame(trait1 = c(1, NA, 3:10), trait2 = 10:1)
dat <- phylo4d(tre, traits)
table.phylo4d(dat, center = FALSE, scale = FALSE)
title("tree and traits (phylo4d object)")

t8

t7

t1

t9

t4

t2

t10

t3

t6

t5
t5

t6

t3

t10

t2

t7

t8

t1

t9

t4

102 80

tr
ai
t2

tr
ai
t1

simulated tree (phylo object) tree and traits (phylo4d object)

Fig. 13.1 Example of traits matched with a tree using phylo4d. The left-hand figure was
obtained using the plot method for phylo objects. The right-hand figure was obtained using
table.phylo4d. This function plots the tree and displays the traits in front of their tips using
symbols of different sizes or colours corresponding to different values. Missing data (NA) are
represented by crosses (×).

tdata(dat, type = "tip")

trait1 trait2
t8 1 10
t7 NA 9
t1 3 8
t9 4 7
t4 5 6
t2 6 5
t10 7 4
t3 8 3
t6 9 2
t5 10 1

Now that we have seen how to prepare and format the data, we can focus
on the analysis of phylogenetic structures. Phylogenetic structures occur when
the values of biological traits or ecological features observed in a set of taxa
are not independent from their position in the phylogenetic tree. In this chapter,
we alternatively refer to this dependence as phylogenetic autocorrelation and
phylogenetic signal. We will say that positive phylogenetic autocorrelation occurs
when closely related taxa tend to share similar trait values; conversely, we will refer
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to strong contrasts between sister taxa as negative phylogenetic autocorrelation.
Several procedures are implemented in adephylo to measure and test phylogenetic
autocorrelation (see Box 13.1).

13.3 Computing Phylogenetic Proximities

The quantification and analysis of a phylogenetic signal in adephylo requires the
computation of pairwise phylogenetic proximities between the tips of the tree.
These can be obtained using the proxTips function, which defines phylogenetic
proximities as a function of phylogenetic distances (using argument f) so that
greater values increasing the contrast between close and distant taxa. Several types
of phylogenetic distances are available (see ?distTips) and can be specified
through the method argument:

• patristic: patristic distance, i.e., sum of branch lengths on the shortest path
between two tips

• nNodes: number of nodes on the shortest path between two tips
• Abouheif: Abouheif’s distance (see Box 13.1)
• sumDD: sum of the number of direct descendants of all nodes on the shortest

path between two tips

The choice of a phylogenetic metric is somehow arbitrary, as different distances
reflect different properties of the phylogeny. The patristic distance (method =
“patristic”) is probably the most biologically intuitive as it corresponds to
the amount of evolution separating two taxa. The number of nodes (method =
“nNodes”) is also fairly intuitive, as it can be used as a proxy for the number of
speciation events that separate two taxa. Measures relating to Abouheif’s distance
(method = “Abouheif” or “sumDD”) do not have immediate biological
interpretations, but seem the most powerful for detecting traits evolving under a
Brownian motion model (Pavoine et al. 2008). In practice, it is safer to compare the
results obtained using different metrics before drawing conclusions on the data.

Box 13.1 Modelling Phylogenetic Signal Using Proximities
Let x ∈ R

n be the (centred) vector of a quantitative variable measured on
the tips of a tree. We note W = [wij ] a matrix of phylogenetic proximities
so that wij measures the proximity between tips i and j on the tree, with the
constraints

∑

j wij = 1, wij ≥ 0 for i, j = 1, . . . , n and wii = 0 for i =
1, . . . , n. Consequently, the i-th row of W contains weights (terms are positive
or null and sum to one) which are greater for taxa (tips) phylogenetically
closer to i. The lag vector x̃ = Wx contains, for each tip, the mean values of
x observed in the phylogenetic neighbourhood of this tip.

(continued)
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Box 13.1 (continued)
x̃ can be plotted against x to assess the presence of a phylogenetic

signal: a positive (respectively negative) relationship will indicate positive
(respectively negative) phylogenetic autocorrelation. The underlying linear
model is the basis of autoregressive models (Cheverud and Dow 1985;
Cheverud et al. 1985) of the type:

x = ρx̃ + Zβ + ε

where ρ is an autocorrelation coefficient, Z a matrix of covariates with
coefficients β and ε is the vector of residuals.

An alternative way of measuring phylogenetic signal is using Moran’s
index, defined as (Gittleman and Kot 1990):

IW(x) = x�Wx
nvar(x)

where var(x) is the variance of trait x. The expected value of this statistics
in the absence of phylogenetic signal is −1/(n − 1). Greater (respectively
smaller) values are suggestive of positive (respectively negative) phylogenetic
autocorrelation. Non-parametric tests of IW(x) can easily be obtained by
randomly permuting the values in x.

Interestingly, Abouheif’s test of phylogenetic signal (Abouheif 1999;
Pavoine et al. 2008) turns out to be a test of Moran’s index with a particular
phylogenetic proximity defined as:

wij = aij
∑

j,i �=j aij

with

aij = (
∏

p∈Pij

f (p))−1

where Pij is the set of nodes on the shortest path from tip i to tip j and f (p)

is the number of direct descendants from node p.

We illustrate these differences using the data set maples of the ade4 package,
which contains a phylogeny and morphological measurements for 17 species of
maples (Ackerly and Donoghue 1998). We compute the four different distance
matrices, standardise them and merge them with the phylogeny using phylo4d:
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data(maples)
tre <- read.tree(text = maples$tre)
D1 <- as.matrix(distTips(tre, method = "patristic"))
D1 <- D1/max(D1)
D1 <- phylo4d(tre, D1)
D2 <- as.matrix(distTips(tre, method = "nNodes"))
D2 <- D2/max(D2)
D2 <- phylo4d(tre, D2)
D3 <- as.matrix(distTips(tre, method = "Abouheif"))
D3 <- D3/max(D3)
D3 <- phylo4d(tre, D3)
D4 <- as.matrix(distTips(tre, method = "sumDD"))
D4 <- D4/max(D4)
D4 <- phylo4d(tre, D4)

The table.phylo4d function of the adephylo package is then used to plot
the distances and the phylogeny (see Fig. 13.2). As it can be seen, the four distances
capture different features of the phylogeny.

13.4 Detecting Phylogenetic Structures

When phylogenetic proximities have been defined, they can be used to detect if and
how the variation of traits values is related to the phylogenetic structure. Several
methods can be envisaged.

13.4.1 Moran’s I

The moran.idx function of adephylo computes Moran’s I , an index measuring
the phylogenetic autocorrelation in a quantitative trait (see Box 13.1). If the
argument addInfo is TRUE, the function also returns the null value (IO) and
the range of variation of I (Imin and Imax). In this approach, the phylogenetic
information is included using a matrix of pairwise phylogenetic proximities between
taxa which can be obtained using proxTips (see Sect. 13.3).

We illustrate the use of Moran’s I using the ungulates data set of the ade4
package, which contains 4 life-history traits for 18 ungulate species along with their
phylogeny (Pélabon et al. 1995). Only adult female body weight (afbw) and female
neonatal body weight (fnw) are here analysed.

data(ungulates)
tre <- read.tree(text = ungulates$tre)
W <- proxTips(tre, method = "patristic")
afbw <- ungulates$tab$afbw
moran.idx(afbw, W, addInfo = TRUE)

[1] -0.04101
attr(,"I0")
[1] -0.05882
attr(,"Imin")
[1] -0.1741
attr(,"Imax")
[1] 1.001
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myPal <- colorRampPalette(c("lightgrey", "orange", "red"))
par(mfrow = c(2, 2), mar = c(2, 2, 4, 2), xpd = TRUE)
table.phylo4d(D1, symbol = "colors", cex.symbol = 2,

col = myPal(100), center = FALSE, scale = FALSE,
box = FALSE, cex.label = 0.5)

title("Maple data - patristic distance")
table.phylo4d(D2, symbol = "colors", cex.symbol = 2,

col = myPal(100), center = FALSE, scale = FALSE,
box = FALSE, cex.label = 0.5)

title("Maple data - 'nNodes' distance")
table.phylo4d(D3, symbol = "colors", cex.symbol = 2,

col = myPal(100), center = FALSE, scale = FALSE,
box = FALSE, cex.label = 0.5)

title("Maple data - Abouheif's distance")
table.phylo4d(D4, symbol = "colors", cex.symbol = 2,

col = myPal(100), center = FALSE, scale = FALSE,
box = FALSE, cex.label = 0.5)

title("Maple data - 'sumDD' distance")
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Fig. 13.2 Four distance matrices obtained for the maples data set using distTips.

fnw <- ungulates$tab$fnw
moran.idx(fnw, W, addInfo = TRUE)

[1] 0.02282
attr(,"I0")
[1] -0.05882
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attr(,"Imin")
[1] -0.1741
attr(,"Imax")
[1] 1.001

Moran’s index for afbw appears to be very close to the null value, suggesting
that the trait is not phylogenetically autocorrelated. fnw is slightly greater, and
may exhibit some phylogenetic pattern. Formal tests are needed to support these
intuitions.

It is straightforward to build a non-parametric test based on Moran’s I , using
replicate to permute the values of the variable:

Iobs <- moran.idx(afbw, W)
Iperm <- replicate(999, moran.idx(sample(afbw), W))
library(ade4)
Itest <- as.randtest(obs = Iobs, sim = Iperm)
Itest

Monte-Carlo test
Call: as.randtest(sim = Iperm, obs = Iobs)

Observation: -0.04101

Based on 999 replicates
Simulated p-value: 0.251
Alternative hypothesis: greater

Std.Obs Expectation Variance
0.437735 -0.058230 0.001548

Here, afbw does not appear to be phylogenetically autocorrelated, as the
observed I falls well within the distribution of permuted values.

13.4.2 Abouheif’s Test

Abouheif’s test of phylogenetic signal has proved to be a powerful version of
Moran’s I test for the detection of phylogenetic signal (see Box 13.1). It is
implemented in adephylo by the abouheif.moran function, which generalises
the testing procedure by proposing different phylogenetic proximity measures in
addition to the original one. The simplest way to apply this test to a data set is to
use abouheif.moran directly on a phylo4d object. We illustrate this approach
using the ungulates data set. abouheif.moran runs non-parametric tests of
phylogenetic signal on each trait in the phylo4d object. It returns a krandtest
object, which is the standard class in ade4 for storing multiple Monte Carlo tests.

ung <- phylo4d(tre, ungulates$tab)
abouheif.moran(ung)

class: krandtest lightkrandtest
Monte-Carlo tests
Call: as.krandtest(sim = matrix(res$result, ncol = nvar,

byrow = TRUE), obs = res$obs, alter = alter,
names = test.names)
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Number of tests: 4

Adjustment method for multiple comparisons: none
Permutation number: 999
Test Obs Std.Obs Alter Pvalue

1 afbw 0.1654 1.130 greater 0.134
2 mnw 0.3681 2.725 greater 0.015
3 fnw 0.3843 2.778 greater 0.015
4 ls 0.3002 1.983 greater 0.039

In this case, it seems that all variables but afbm are phylogenetically structured.
Note that other proximities than those proposed in abouheif.moran can

be used: on has just to pass the appropriate proximity matrix to the function
(argument W).

13.5 Describing the Phylogenetic Signal

13.5.1 Orthonormal Bases

Significant phylogenetic signal can reflect a range of biological patterns: from
ancient (near-root) divergence of life-history strategies to tight similarities between
sister species or local contrasts caused by recent diversifying selection. Beyond
the mere testing of phylogenetic signal, there is therefore considerable interest in
assessing the nature of phylogenetic patterns. One way to tackle this objective is
expressing the trait of interest as a combination of known phylogenetic structures.
This approach relies on (1) finding uncorrelated variables which reflect a wide range
of phylogenetic structures and (2) regressing the trait of interest onto these variables
(see Box 13.2).

Box 13.2 Decomposing Phylogenetic Signal Using Orthonormal Bases
Once the presence of phylogenetic signal has been detected in a trait x
(x ∈ R

n), one may be interested in exploring further this signal and locating
where phylogenetic patterns occur in the tree. This can be achieved by
decomposing the variation of the trait of interest onto variables (b1, . . . , br ∈
R

n) which describe the structure of the tree. For such a decomposition to
be practicable, these variables need to be uncorrelated and have the same
variance, which means that geometrically, their vectors are orthonormal. To
decompose fully the variance of x, these variables also need to form a basis
B (B = [b1, . . . , br ]), so that x can be represented as a linear combination of
the columns of b1, . . . , br .

One way to obtain such bases is using Moran’s eigenvectors (Dray et al.
2006). Using the same notations as before (Box 13.1), these eigenvectors
can be derived from a matrix of phylogenetic proximities by taking the

(continued)
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Box 13.2 (continued)
eigenvectors B of the symmetric matrix:

H
(

1

2
(W�+ W)

)

H

where H is the centring operator defined as H = In − 1n1�n/n. It can be
shown that the n − 1 column-vectors of B (sorted by decreasing eigenvalue)
are orthonormal variables ranging from the largest to the lowest possible
phylogenetic autocorrelation (as measured by Moran’s I , see Box 13.1,
Griffith 1996). Therefore, these variables model different observable phylo-
genetic structures. Note that there are other ways of obtaining phylogenetic
orthonormal bases. For instance, one can use classical orthonormalisation
procedures on indicator variables derived from the tree topology to obtain
orthonormal vectors reflecting the structure of the tree (Ollier et al. 2005).

Once a phylogenetic orthonormal basis has been obtained, the trait vari-
ation can be fully decomposed using multiple regression approach, giving
rise to n − 1 squared correlation coefficients (r2

1 , . . . , r2
n−1) between x and

(b1, . . . , bn−1), where a large r2
i indicates that the phylogenetic structure in

x strongly matches bi . These values are exploited in the orthogram approach
(Ollier et al. 2005), which defines four test statistics for detecting phylogenetic
signal.

R2Max(x) = max(r2
1 , . . . , r2

n−1)

is simply the maximum squared correlation.

Dmax(x) = max
1≤m≤n−1

(
m
∑

i=1

r2
i − m

n − 1

)

corresponds to the deviation from a uniform distribution measured by the
Kolmogorov–Smirnov statistic.

SkR2k(x) =
n−1
∑

i=1

ir2
i

measures how close to the tips the phylogenetic structures occur.

SCE(x) =
n−1
∑

i=2

(r2
i − r2

i−1)
2

(continued)
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Box 13.2 (continued)
measures how inequally distributed phylogenetic variation is in the tree: it
is close to 0 when phylogenetic patterns are evenly distributed across the
phylogeny, and close to 1 when phylogenetic signal affects a single area of
the tree.

In the orthogram, these four statistics are tested using non-parametric
approaches relying on the permutation of the values within x. Associated
graphs allow a visual diagnosis of how the phylogenetic signal is structured
in the tree.

The first step can be achieved in adephylo using Moran’s eigenvectors which are
implemented by the me.phylo function. These vectors are derived from a matrix
of pairwise phylogenetic proximities (as returned by proxTips). They are scaled
to unit variance, are uncorrelated, and allow the full decomposition of any trait,
and thus form an orthonormal basis. me.phylo returns a data.frame with the
orthobasis class defined in ade4; columns of this object are Moran’s eigen-
vectors. We illustrate how orthobases can be obtained using different phylogenetic
proximity measures for the ungulates data set in Fig. 13.3.

The orthobases obtained in Fig. 13.3 are very similar. We use the first one
(based on patristic distances) to decompose the variation of the four traits in
the data set. The squared correlations plotted for each trait and each Moran’s
eigenvector (Fig. 13.4) show that phylogenetic structures are mostly observed at a
large phylogenetic scale (close to the root differentiations, Moran’s eigenvectors 2
and 3).

13.5.2 Phylogenetic Decomposition with the Orthogram

The phylogenetic decomposition of the variation of a trait onto a phylogenetic
orthobasis shown in Fig. 13.4 is more than a graphical tool. As a matter of fact,
a series of test statistics can be derived from the r2 values plotted in this figure
(Box 13.2). This approach was originally called orthogram by Ollier et al. (2005),
and is implemented in the orthogram function in adephylo. While initially
formulated for a specific type of phylogenetic orthobasis, we generalised this
approach and the orthogram function can now use any phylogenetic orthonormal
basis as returned by me.phylo.

The orthogram computes four statistics derived from r2 values of a trait
decomposed onto the orthonormal basis, and runs associated non-parametric tests.
A graphical display of the results facilitates the biological interpretation. This is
illustrated using the female neonatal weight (fnw) from the ungulates data. We
first display the orthonormal basis used in the orthogram (Fig. 13.5), and then obtain
the orthogram itself (Fig. 13.6).
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tre <- read.tree(text = ungulates$tre)
temp <- c("patristic", "nNodes", "Abouheif", "sumDD")
ung.listBases <- lapply(temp, function(e) phylo4d(tre,

me.phylo(tre, method = e)))
par(mar = rep(0.1, 4), mfrow = c(2, 2))
par(mar = c(1, 1, 4, 1), xpd = TRUE, mfrow = c(2, 2))
for (i in 1:4) {

table.phylo4d(ung.listBases[[i]], repVar = 1:5,
cex.symbol = 0.7, how.tip.label = FALSE, show.node = FALSE,
box = FALSE)
title(temp[i])

}
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Fig. 13.3 Phylogenetic orthobases formed by Moran’s eigenvectors with four different phyloge-
netic proximity matrices, in the ungulates data set.

The orthogram shows that female neonatal weight (fnw) exhibits a significant
phylogenetic structure at a single, intermediate scale (fourth vector, see Fig. 13.5).
This could reflect some important changes in life-history strategies having occurred
around node W10 (Fig. 13.5).
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B <- me.phylo(tre)
corTab <- cor(ungulates$tab, B)^2
barplot(corTab, beside = TRUE, col = rainbow(4), las = 3,

ylab = expression(r^2))
legend("topright", rainbow(4), title = "traits",

legend = names(ungulates$tab), col = rainbow(4), pch = 15)
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Fig. 13.4 Decomposition of traits variation onto a phylogenetic orthobases derived from patristic
distances, in the ungulates data set. ‘ME’ stands for Moran’s eigenvectors, numbered from 1
(close-to-the-root structures) to 17 (contrasts between sister species).

13.5.3 Removing Phylogenetic Autocorrelation

Phylogenetic autocorrelation is often seen as a nuisance as it violates the assumption
of independence between the observations, required by many statistical approaches
including likelihood-based approaches and tests of associations between variables.
This is particularly a problem when studying the relationships between several
phylogenetically autocorrelated traits.

Moran’s eigenvectors can be used to circumvent this issue. Indeed, these vectors
can be used in a regression approach to account for phylogenetic signal in the
studied traits. The approach is simple: traits are first regressed onto relevant
eigenvectors before including relevant covariates in the model. This is illustrated
through the study of the link between the average weight at birth (neonatw) and the
adult female weight (afbw) in the ungulates data set. We first perform a naive
linear regression on the log-transformed (for normality) data, without accounting
for the phylogeny:

names(ungulates$tab)

[1] "afbw" "mnw" "fnw" "ls"

afbw <- log(ungulates$tab[, 1])
neonatw <- log((ungulates$tab[, 2] + ungulates$tab[, 3])/2)
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tre <- read.tree(text = ungulates$tre)
temp <- phylo4d(tre, treePart(tre, result = "orthobasis"))
par(mar = rep(0.1, 4))
table.phylo4d(temp, ratio.tree = 0.3, show.tip = FALSE,

cex.symbol = 0.6)
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Fig. 13.5 Orthonormal basis used in the orthogram of the ungulates data.

lm1 <- lm(neonatw ~ afbw)
anova(lm1)

Analysis of Variance Table

Response: neonatw
Df Sum Sq Mean Sq F value Pr(>F)

afbw 1 12.16 12.16 159 9.8e-10
Residuals 16 1.22 0.08

There seems to be a very strong relationship between the two variables. However,
the residuals are clearly not independent:

resid1 <- residuals(lm1)
abouheif.moran(phylo4d(tre, resid1))

class: krandtest lightkrandtest
Monte-Carlo tests
Call: as.krandtest(sim = matrix(res$result, ncol = nvar, byrow
= TRUE), obs = res$obs, alter = alter, names = test.names)

Number of tests: 1

Adjustment method for multiple comparisons: none
Permutation number: 999
Test Obs Std.Obs Alter Pvalue

1 dt 0.4566 3.165 greater 0.003

Thus, the tests and estimates of this model (lm1) are probably strongly biased.
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orthogram(fnw, tre)

class: krandtest lightkrandtest
Monte-Carlo tests
Call: orthogram(x = fnw, tre = tre)
Number of tests: 4
Adjustment method for multiple comparisons: none
Permutation number: 999

Test Obs Std.Obs Alter Pvalue
1 R2Max 0.4618 2.253 greater 0.032
2 SkR2k 5.5961 -1.879 greater 0.955
3 Dmax 0.4593 2.187 greater 0.030
4 SCE 1.1111 2.599 greater 0.026
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Fig. 13.6 Orthogram of female neonatal weight (fnw, ungulates data set). The two figures
on the left indicate the decomposition of the variation (r2 values) on each vector of the basis, the
bottom one corresponding to accumulated values. Bars and dots indicate observed values, while
horizontal segments indicate the mean (top) or confidence intervals (bottom) values obtained by
permutation (i.e., in the absence of significant phylogenetic signal). The four graphics on the right
correspond to the non-parametric tests (see Box 13.2), with histograms indicating permuted values.
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We address this issue by regressing the data onto relevant Moran’s eigenvectors
(here chosen based on the highest correlations with the residuals).

B <- me.phylo(tre, method = "patristic")
round(cor(resid1, B)^2, 1)

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6 ME 7 ME 8 ME 9 ME 10
[1,] 0.4 0.2 0.1 0 0 0 0 0.1 0 0.1

ME 11 ME 12 ME 13 ME 14 ME 15 ME 16 ME 17
[1,] 0.1 0 0 0 0.1 0 0

lm2 <- lm(neonatw ~ B[, 1] + afbw)
anova(lm2, lm1)

Analysis of Variance Table

Model 1: neonatw ~ B[, 1] + afbw
Model 2: neonatw ~ afbw
Res.Df RSS Df Sum of Sq F Pr(>F)

1 15 0.745
2 16 1.221 -1 -0.476 9.58 0.0074

summary(lm2)

Call:
lm(formula = neonatw ~ B[, 1] + afbw)

Residuals:
Min 1Q Median 3Q Max

-0.4825 -0.1140 0.0497 0.1429 0.2771

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.3193 0.6325 -2.09 0.0545
B[, 1] -0.1630 0.0527 -3.10 0.0074
afbw 0.8867 0.0560 15.83 9.1e-11

Residual standard error: 0.223 on 15 degrees of freedom
Multiple R-squared: 0.944, Adjusted R-squared: 0.937
F-statistic: 127 on 2 and 15 DF, p-value: 3.9e-10

The link between the two variables remains statistically very significant (about
94% of the variation in neonatal weight is explained by the phylogeny and the
female body mass), but this time the model (lm2) is no longer invalidated by non-
independence in the residuals:

resid2 <- residuals(lm2)
abouheif.moran(phylo4d(tre, resid2))

class: krandtest lightkrandtest
Monte-Carlo tests
Call: as.krandtest(sim = matrix(res$result, ncol = nvar,

byrow = TRUE), obs = res$obs, alter = alter,
names = test.names)

Number of tests: 1

Adjustment method for multiple comparisons: none
Permutation number: 999
Test Obs Std.Obs Alter Pvalue

1 dt 0.1607 1.045 greater 0.161
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13.6 Phylogenetic Principal Component Analysis (pPCA)

Phylogenetic comparative data may often comprise more than a handful of traits,
in which case multiple univariate analyses become cumbersome to perform and
interpret. More fundamentally, univariate approaches may fail to capture complex
relationships between several traits, which may arise when major historical shifts in
life-history strategies affect an entire set of traits. To identify such patterns, we can
therefore look for combinations of traits exhibiting similar phylogenetic signal.

This is the purpose of the phylogenetic Principal Component Analysis (pPCA,
Jombart et al. 2010b) which is an extension of MULTISPATI Analysis (Sect. 12.5.2)
where the spatial weights are replaced by phylogenetic proximities. Unlike usual
PCA which provides synthetic variables with maximum variance, pPCA explicitly
seeks combinations of traits exhibiting both a large variance and an important
phylogenetic autocorrelation (as measured by Moran’s I , see Box 13.1). The theory
of the method is not presented in this chapter as it is strictly equivalent to the
description provided in Box 12.3. Therefore, pPCA can provide positive as well
as negative eigenvalues, the first corresponding to positive autocorrelation (large,
positive I ), the latter to negative autocorrelation (large, negative I ).

pPCA is implemented in adephylo by the ppca function. We illustrate this
approach using the maples data set. Like PCA, pPCA can be applied to any
quantitative data. However, missing data need to be replaced, which we do using
an ad hoc function:
any(is.na(maples$tab))

[1] TRUE

f1 <- function(x) {
m <- mean(x, na.rm = TRUE)
x[is.na(x)] <- m
return(x)

}
maples$tab <- apply(maples$tab, 2, f1)
any(is.na(maples$tab))

[1] FALSE

Missing data have been replaced, set to the mean of available data, for each trait.
We now merge the phylogeny and the traits into a phylo4d object:

tre <- read.tree(text = maples$tre)
map <- phylo4d(tre, maples$tab)

The data are first visualised, but no obvious phylogenetic structure can be
observed (Fig. 13.7). It thus makes sense to use pPCA to investigate possibly hidden
phylogenetic structures.

By default, the ppca function displays a barplot of eigenvalues and asks the
user for the number of axes (positively and negatively autocorrelated) to retain. In
the case of the maples data, only one positive eigenvalue should be retained, and
no negative ones (Fig. 13.8).
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par(mar = rep(1, 4), xpd = TRUE)
table.phylo4d(map, symbol = "color", col = myPal(100),

cex.symbol = 1.5, cex.label = 0.7, box = FALSE)
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Fig. 13.7 Graphical representation of the maples data using table.phylo4d. Variables are
centred (to mean zero) and scaled (to unit variance) so as to be on comparable scales.

ppca1

#############################################
# phylogenetic Principal Component Analysis #
#############################################

class: ppca
$call: ppca(x = map, scannf = FALSE, nfposi = 1, nfnega = 0)

$nfposi: 1 axes-components saved
$nfnega: 0 axes-components saved
$kept.axes: index of kept axes
Positive eigenvalues: 4.223 0.3593 0.2882 0.1494 0.01034
Negative eigenvalues: -0.9876 -0.6857 -0.4088 -0.3051 -0.1393 ...

vector length mode content
1 $eig 16 numeric eigenvalues

data.frame nrow ncol
1 $c1 31 1
2 $li 17 1
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ppca1 <- ppca(map, scannf = FALSE)

0
1

2
3

4

Fig. 13.8 Eigenvalues of the phylogenetic Principal Component Analysis (pPCA) of the maples
data.

3 $ls 17 1
4 $as 2 1
content

1 principal axes: scaled vectors of traits loadings
2 principal components: coordinates of taxa ('scores')
3 lag vector of principal components
4 pca axes onto ppca axes

$tre: a phylogeny (class phylo4)
$prox: a matrix of phylogenetic proximities

other elements: NULL

The ppca1 object is very similar to usual outputs of the dudi functions. A
number of procedures allow to summarise and visualise pPCA results (scatter,
screeplot, summary, see ?ppca). The most complete one is plot (Fig. 13.9).

Figure 13.9 shows that the maples data contains one strong phylogenetic
pattern (large positive eigenvalue, outlying in both variance and autocorrelation),
corresponding to a strong divergence in life-history traits (see loadings) at the very
basis of the tree. The summary provides some complementary information on the
analysis, detailing the composition of each eigenvalue and comparing them to the
results of a usual PCA.
summary(ppca1)

### Phylogenetic Principal Component Analysis ###

Call: ppca(x = map, scannf = FALSE, nfposi = 1, nfnega = 0)

== Moran's I statistics ==
I0 Imin Imax

-0.0625 -0.451 1.009
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plot(ppca1)
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Fig. 13.9 Results of the phylogenetic Principal Component Analysis (pPCA) of the maples data.
Top-left: eigenvalues of the analysis, middle-left: decomposition of the eigenvalues in terms of
variance and autocorrelation (Moran’s I ), as plotted by the screeplot function, bottom-left:
loadings of the variables for the retained axis, right: first principal component of the analysis, as
displayed by the scatter function.

== PCA scores ==
var cum ratio moran

Axis 1 13.31 13.31 0.4293 0.2112

== pPCA eigenvalues decomposition ==
eig var moran

Axis 1 4.223 10.52 0.4013

In this case, the pPCA is clearly better at identifying phylogenetic structures: the
variance of the first component of the analysis is close to that of a PCA (10.52 vs

13.31), but its phylogenetic signal is twice as large (0.40 vs 0.21).



Chapter 14
Analysing Patterns of Biodiversity

Abstract Patterns of functional or phylogenetic diversity among communities can
be described thanks to the Double Principal Coordinate Analysis (DPCoA). This
approach depicts differences among communities in low-dimensional plots and
explains those differences by their species compositions and the functional or
phylogenetic differences among species.

14.1 Introduction

Methods presented in Chap. 6 allow to summarise the structures of ecological
communities. These approaches consider only the information gathered by a sites
× species table to identify (1) similarities between species distributions and (2)
patterns of variation of species composition among sites. This second aspect aims
to capture information on species turnover. On the other hand, measurements
of species diversity are central tools in Ecology. Whittaker (1972) introduced
the important concept of diversity partitioning of total diversity (γ ) into within-
community (α) and between-community (β) components. Species diversity indices
are usually computed as a function of the number of species (species richness) and
the number of individuals per species (e.g., Simpson or Shannon indexes). As both
ordination methods and diversity measurements try to describe ecological commu-
nities, some works have connected these two approaches (ter Braak 1983; Pélissier
et al. 2003b). For instance, Pélissier et al. (2003b) showed that Non-Symmetric
Correspondence Analysis (function dudi.nsc, Kroonenberg and Lombardo 1999)
focuses on β diversity measured using Simpson index.

Rao (1982) proposed a new framework to consider dissimilarities between
species in the context of diversity partitioning. Whereas standard approaches
consider only the number of species and individuals, Rao’s diversity coefficient
also called quadratic entropy allows to introduce distances among species (e.g.,
functional distance based on traits, phylogenetic distance) so that α, β and γ

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Thioulouse et al., Multivariate Analysis of Ecological Data with ade4,
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diversity measurements take into account species distributions (i.e., number of
species and individuals) but also functional or phylogenetic differences among
species.

The Double Principal Coordinate Analysis (DPCoA) is an ordination method that
allows to introduce differences between species so that diversities are measured by
Rao’s quadratic entropy.

This approach is illustrated here to characterise the functional diversity of birds
along an altitudinal gradient. We used the tarentaise data set (Lebreton et al.
1999) of the ade4 package. It contains a total of 98 bird species seen or listened on
376 points at altitudes varying from 600 m to 3000 m in La Tarentaise, an Alpine
Valley in France.

library(ade4)
library(adegraphics)
data(tarentaise)
names(tarentaise)

[1] "ecol" "frnames" "alti" "envir" "traits" "latnames"

14.2 Ordination of the Faunistic Table

We can define here a bird community as the set of bird species observed at one
given point (site). The tarentaise$ecol object contains the occurrences of the
98 bird species for the 376 communities:

fau <- tarentaise$ecol
dim(fau)

[1] 376 98

As described in Chap. 6, this table can be summarised by an ordination method.
We can apply a Non-Symmetric Correspondence Analysis, using the dudi.nsc
function:
nsc1 <- dudi.nsc(fau, scannf = FALSE, nf = 2)

This ordination method considers only abundance data, so similarities among
sites are only due to changes in species composition. To interpret the results, we
used the altitude of sampling points as a supplementary variable: it is not used in
the computation but it helps interpreting the results. Altitude has been coded as a
categorical variable with 14 classes:

alti <- tarentaise$envir$alti
nlevels(alti)

[1] 14

Figure 14.1 represents the factorial map of sites grouped by level of altitude.
It demonstrates that variations in species composition are strongly linked to the
altitudinal gradient.
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s.class(nsc1$li, alti, col = terrain.colors(14),
pbackground.col = "darkgrey", plabels.boxes.col = "black")

d = 2
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Fig. 14.1 Ordination of sites by non-symmetric correspondence analysis. Sites are grouped by
altitude levels.

14.3 From Trait Data to Dissimilarities

Species were characterised by six biological traits (tarentaise$traits):

• Diet habits are described by a fuzzy variable (see Sect. 5.5) with five attributes
denoted as follows: di.inv = invertebrates; di.ver = vertebrates; di.car
= carcass, waste; di.see = permanent plant resources (e.g., seeds, resiniferous
needles; Ericaceae leaves); di.fru = fruits and berries.

• Foranging substrates are described by a fuzzy variable with four attributes
denoted as follows: fo.air = aerial; fo.fol = in the foliage; fo.tru = on
trunks and branches; fo.gro = on the ground.
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• Nest substrates are described by a fuzzy variable with four attributes denoted as
follows: ne.foi = in the foliage; ne.tru = on/in truncks; ne.roc = on rock
faces or cavities; ne.gro = on the ground.

• Size is an ordinal variable with five levels: ]0, 15g]; ]15g, 25g]; ]25g, 80g]; ]80g,
250g]; >250.

• Reproductive investment is an ordinal variable defined by the ratio of the weight
of the clutch to the body weight of the female parent with six levels: ≤30%;
]30%,40%]; ]40%,50%]; ]50%,60%]; ]60%,80%]; >80%.

• Migratory status is an ordinal variable calculated with the time of arrival of the
species on La Tarentaise Valley (in number of days since January first): ≤50days
(this interval contains sedentary species only); ]50, 70] days; ]70, 90] days; ]90,
110] days; ]110, 200] days.

Methods presented in Chap. 5 to summarise one table do not allow to treat
simultaneously fuzzy and ordinal variables. An alternative is provided by Pavoine
et al. (2009) to handle mixed trait data sets. This approach consists in computing
functional distances among species. First, a data frame that includes the first three
fuzzy traits is built:

tabF <- tarentaise$traits[1:13]

The number of categories in each fuzzy trait is specified using the prep.fuzzy
function:

tabF <- prep.fuzzy(tabF, c(5, 4, 4))

A second data frame is built with the three ordinal traits:

tabO <- as.data.frame(matrix(0, 98, 3))
names(tabO) <- c("Size", "ReIn", "Migr")
for (i in 1:5) tabO[tarentaise$traits[, i + 13] == 1, 1] <- i
for (i in 1:6) tabO[tarentaise$traits[, i + 18] == 1, 2] <- i
for (i in 1:5) tabO[tarentaise$traits[, i + 24] == 1, 3] <- i

The two data frames are then transformed in a ktab object (see Sect. 9.2.2) with
the ktab.list.df function:

w <- ktab.list.df(list(tabF, tabO))

A global functional distance matrix among species (object dis) is computed
with the dist.ktab function:

dis <- dist.ktab(w, type = c("F", "O"))

Principal Coordinate Analysis (see Sect. 6.5) can be performed to summarise the
main differences among species based on their functional traits:

pco1 <- dudi.pco(dis, scannf = FALSE, nf = 2)

The link between the ordinations of species based on their functional traits
(pco1$li) and their distributions among the sampling points (nsc1$li) can be
evaluated a posteriori by computing correlations between scores:

cor(pco1$li, nsc1$co)
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Comp1 Comp2
A1 0.1167 -0.08549
A2 0.2325 -0.16083

The link is very low: this indirect method is not optimal because composition and
trait data sets are analysed separately. The Double Principal Coordinate Analysis
provides a relevant alternative that considers both data sets simultaneously.

14.4 Double Principal Coordinate Analysis (DPCoA)

DPCoA (Pavoine et al. 2004) generalises the Principal Coordinate Analysis (PCoA,
see Chap. 6) when two embedded types of objects are studied. Here, species can be
considered as embedded in communities. The objective of DPCoA is to describe
differences in the composition of communities knowing some sort of differences
among these species. Differences among species might be defined according to
functional traits, taxonomy or phylogeny. DPCoA then defines differences among
communities based on the abundance of each species present in the communities
and the (functional, taxonomic or phylogenetic) differences among the species.

DPCoA is defined by the two steps described in Box 14.1. The first step
represents species and communities so that the differences among species are
optimally represented. This is achieved by performing a Principal Coordinate
Analysis to represent functional differences (as described in Sect. 14.3) and then
by positioning communities by weighted averaging (see Box 6.1).

The second step aims to optimally represent the functional differences among
communities. It corresponds to a Principal Component Analysis of community
compositions that turns out to be a PCoA of distances among communities. Hence,
DPCoA connects a PCoA of the species with a PCoA of the communities.

DPCoA defines a new space where species and communities are positioned and
where the positions of the communities depend on the positions of the species
they contain. Species positions are based on biological characteristics, for instance
functional traits, or phylogenetic positions. When species are positioned based on
functional traits for instance, DPCoA optimally represents the functional differences
among communities.

Box 14.1 DPCoA: Basic Mathematical Definitions
Here we consider a general definition of the DPCoA where communities are
compared using their species composition and some functional or phyloge-
netic distances among species.

Let Y = [yij ] be an n × s abundance table with communities as rows
and species as columns. As in Correspondence Analysis (see Box 6.2), the
table of frequencies P = [yij /y••] (where y•• is the grand total of Y) and

(continued)
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Box 14.1 (continued)

the two vectors n = P1s = (p1• · · · pn•)� and s = P�1n = (p•1 · · ·p•s)�
of communities and species weights are computed. The diagonal matrices of
weights are:

Dn = diag(n) and Ds = diag(s)

To perform DPCoA, the following two steps are required.

Step 1: Principal Coordinate Analysis (PCoA) of the distances among
species
Let � = [δkl] and � = [− 1

2δ2
kl] be the s × s matrices where δkl is a distance

between species k and l with Euclidean properties. The matrix � is the doubly
centred (by rows and columns) version of �. Using matrix notation, we have
� = H�H� where H = (In − 1n1n

�Dn

)

is the centring operator. PCoA
consists in the following diagonalisation (see Box 6.4):

� = XX�

The s × k matrix X contains the coordinates of species based on the
functional distances. These coordinates are computed for the k dimensions
that allow a perfect estimation of the distances. Each community can then
be positioned by weighted averaging (see Box 6.1) and their coordinates are
given by:

Z = D−1
n PX

Note that, by construction, the cloud of communities is centred (i.e.,
Z�Dn1n = 0n).

Step 2: Weighted Principal Component Analysis (PCA) of the coordi-
nates of the communities
The table of communities coordinates Z is then summarised by a PCA. In
this analysis, communities are weighted by their relative proportion using Dn.
Hence, DPCoA corresponds to the analysis of the triplet (Z, Ik, Dn). The total
inertia of this analysis is equal to the β component of functional diversity (see
Box 14.3, Pavoine et al. 2004).

The principal axes (A) maximises the quantity ‖Za‖2
Dn

= ∥∥D−1
n PXa

∥
∥

2
Dn

.
The analysis seeks coefficients (a) for the principal axes obtained in Step 1
to get a score for species (Xa). Communities are then positioned by weighted
averaging (D−1

n PXa). Hence, the eigenvalues of this analysis maximise the
variance between communities, i.e., the functional β diversity.
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In the ade4 package, the dpcoa function can be used to compute a DPCoA. All
the outputs are grouped in a dpcoa object and Box 14.2 recalls the corresponding
elements.

The function dpcoa takes two arguments: a sites × species table containing
abundance (or presence-absence) data (df) and an object of class dist containing
dissimilarities between species (dis). By default, dis is NULL so that species are
equidistant. In this case, DPCoA is equivalent to the Non-Symmetric Correspon-
dence Analysis (see Sect. 14.2):
dpcoa1 <- dpcoa(fau, scannf = FALSE, nf = 2)
head(nsc1$eig / dpcoa1$eig)

[1] 98 98 98 98 98 98

head(nsc1$li / dpcoa1$li)

Axis1 Axis2
1 -9.899 9.899
2 -9.899 9.899
3 -9.899 9.899
4 -9.899 9.899
5 -9.899 9.899
6 -9.899 9.899

Box 14.2 DPCoA: dudi Output Elements
In the ade4 package, the results of a DPCoA are stored in an object of
class dpcoa. This object is a list with 14 elements. In this list, elements of
particular interest are:

• $dw: weights of the species (diagonal of Ds)
• $lw: weights of the communities (diagonal of Dn)
• $eig: eigenvalues (�)
• $dls: coordinates of the species (data frame XA)
• $li: coordinates of the communities (data frame ZA)
• $c1: loadings for the principal coordinates of the species (A)

The coordinates of the species ($dls) and those of the communities ($li)
can be superimposed to draw a biplot.

When the dis argument is specified, it is important to ensure that species are
in the same order in the abundance table (df) and in the functional distance matrix
(dis):
fau <- fau[, attributes(dis)$Labels]

Then, the DPCoA and associated graphs can be performed (Fig. 14.2):
dpcoa2 <- dpcoa(fau, dis, scannf = FALSE, nf = 2,

RaoDecomp = FALSE)
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plot(dpcoa2)
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Fig. 14.2 Main plots for DPCoA. The top-left panel contains the projection of the principal axes
of the species on the principal axes of the communities. It also contains the eigenvalue barplot.
The top-right panel is a biplot that contains the species and the communities. Each community
is characterised by its label indicating its position and by an ellipse that indicates the locations
of the species the community contains. The bottom-left panel indicates the positions of species
and the bottom-right panel the positions of communities. Latin names for species can be found in
tarentaise$latnames.

Figure 14.3 shows that communities are distributed on the first axis along an
elevation gradient. According to species coordinates, species traits are different in
different parts of this elevation gradient (Fig. 14.4). Communities of the highest
elevations contain bird with the largest body size and the lowest reproductive
investment. The most altitudinal parts (>2250 m) are dominated by sedentary, spe-
cialised species that can cope with the stressful environment including, for instance,
Cinclus cinclus (White-throated Dipper) and Montifringilla nivalis (White-winged
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s.class(dpcoa2$li, alti, col = terrain.colors(14),
pbackground.col = "darkgrey", plabels.boxes.col = "black")

d = 0.1
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A2250

A2400

A2550

Fig. 14.3 Ordination of communities by DPCoA. Communities are grouped by altitude levels.

Snowfinch). Regarding diet habits, the rapace species are in high elevation, all other
diet categories are represented throughout the elevation gradient (Fig. 14.4, top-
right panel). Foraging substrate and nest position can be simply explained by the
rarefaction of the forest strata at high elevation. At low elevation, a high proportion
of species forages in the foliage whereas at higher elevation most species forage
on the ground or during flights (Fig. 14.4, bottom-left panel). Similarly, at low
elevation, a high proportion of species have their nests in the foliage whereas at
higher elevation most species have their nests on the ground, on rock faces or in
cavities, which corresponds to modifications in the habitat (Fig. 14.4, bottom-right
panel).

The second axis highlights the fact that species at the highest altitudes are
sedentary (Fig. 14.4, top-left panel, variable Migr). These species better exploit
truncks for foraging and nesting and also rocks for nesting (Fig. 14.4, bottom
panels).
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g1 <- s.corcircle(cor(tabO, dpcoa2$dls, method = "spearman"),
plot = FALSE)

g2 <- s.distri(dpcoa2$dls, tabF[, 1:5], plabels.cex = 1,
col = TRUE, plot = FALSE)

g3 <- s.distri(dpcoa2$dls, tabF[, 6:9], plabels.cex = 1,
col = TRUE, plot = FALSE)

g4 <- s.distri(dpcoa2$dls, tabF[, 10:13], plabels.cex = 1,
col = TRUE, plot = FALSE)

ADEgS(list(g1, g2, g3, g4))

d = 0.4
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Fig. 14.4 Top-left: Spearman correlation between the three ordinal traits (ReIn = reproduction
investment; Size = adult body size and Migr = migratory status) and species’ coordinates on the
first principal axis (horizontal axis) and the second principal axis (vertical axis) of DPCoA (the
correlation circle gives the scale: the radius of the circle equals one); top-right: species’s positions
on the first two principal axes grouped by type of diet; bottom-left: species grouped by foraging
substrate; bottom-right: species grouped by nest position. In the top-right and bottom panels, on
the first two principal axes of the communities, points indicate species and labels indicate the
attributes of the factor (either diet type, foraging substrate or nest position depending on the panel).
Labels are positioned at the barycentre of the species concerned by each attribute (i.e., trait value).
A barycentre is weighted by the affinity level species have for each attribute. Segments connect
attributes with the concerned species. An ellipse indicates the dispersion of the points of the species
that share the same attribute.
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14.5 DPCoA and Diversity

DPCoA provides an ordination of communities that considers dissimilarities
between species so that diversities are measured by Rao’s quadratic entropy. DPCoA
analyses the component β as described in Box 14.3.

Box 14.3 DPCoA and Diversity
We used the same notations as in Box 14.1. If we consider the distances

among species provided by −� =
[

δ2
kl

2

]

, the diversity of the community

i, measured by Rao’s quadratic entropy, is equal to:

H (pi ) =
s
∑

k=1

s
∑

l=1

pikpil

δ2
kl

2

where pi = [pij /pi•] is a vector that contains the relative frequencies of
species in community i.

The α diversity is the average diversity within all communities:

α =
n
∑

i=1

pi•H (pi )

The γ diversity is measured over all mixed communities:

γ = H

(
n
∑

i=1

pi•pi

)

=
s
∑

k=1

s
∑

l=1

(
n
∑

i=1

pik

)(
n
∑

i=1

pil

)

δ2
kl

2

The component β measures the average differences in the compositions of
the communities. It can be simply measured as the difference between γ and
α:

β = γ − α

It can also be expressed by considering the n × n matrix � = [ψij ] of
distances among communities. If � is defined as follows:

ψij =
(

2H

(
pi + pj

2

)

− H (pi ) − H
(

pj

)
)

then

(continued)
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Box 14.3 (continued)

β = H (n) =
n
∑

i=1

n
∑

j=1

pi•p•jψij

In DPCoA, the Euclidean distance between the community i and the
community j is equal to

√

2ψij (Pavoine et al. 2004). The total variance of
the coordinates of communities in DPCoA (i.e., total inertia) is thus equal to
the β component of diversity.

The α, β and γ components of functional diversity can be obtained with the
apqe function:

apqe(as.data.frame(t(fau)), dis)

$call
apqe(samples = as.data.frame(t(fau)), dis = dis)

$results
diversity

Between samples 0.02254
Within samples 0.14861
Total 0.17114

In the $results table above, the Between samples row, the Within
samples row and the Total row correspond, respectively, to components β, α

and γ .
The sum of all eigenvalues in DPCoA is equal to component β, i.e., the

component of functional diversity among communities that measures the functional
differences in the compositions of the communities:

sum(dpcoa2$eig)

[1] 0.02254

The diversity within each community can be obtained with function divc while
the distances among communities are provided by the disc function:

div.com <- divc(as.data.frame(t(fau)), dis)
dis.com <- disc(as.data.frame(t(fau)), dis)

Figure 14.5 shows that the α component of functional diversity decreases
strongly with the altitudinal gradient as species become more specialised at higher
altitude.

For smaller data sets, a graphical representation of the matrix of distances among
collections can be obtained with the table.image function.

The randtest.dpcoa function allows to test whether the differences in the
community compositions are higher than expected in the case of random distribu-
tion. The default null model considers a random permutation of the columns of fau
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plot(alti, div.com[, 1], ylab = "Alpha functional diversity",
col = terrain.colors(14), las = 2)
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Fig. 14.5 Boxplot of the functional diversity within each bird community in the region La
Tarentaise here displayed as a function of the altitude classes (in increasing order).

Table 14.1 Functional structure tested by the randtest.dpcoa function. alter is one of
the parameters used by this function to define the alternative hypothesis.

alter Structure Meaning

“greater” Functional clustering Coexisting species are similar

“less” Functional over-dispersion Coexisting species are different

“two-sided” Functional non-randomness Species coexistence depends on
traits

(i.e., species) but keeps the dis object unchanged. The null hypothesis of this test
states that the distribution of species across the communities is independent of their
functional traits. Other null models are available (see ?randtest.dpcoa).

Three alternative hypotheses can be considered (Table 14.1). By default, the
randtest.dpcoa function uses alter = "greater" assuming that coex-
isting species have similar traits. The statistic of the test is the ratio β/γ as defined
in Box 14.1 (Pavoine and Dolédec 2005).
randtest(dpcoa2, nrep = 999)

Monte-Carlo test
Call: randtest.dpcoa(xtest = dpcoa2, nrep = 999)

Observation: 0.1317

Based on 999 replicates
Simulated p-value: 0.001
Alternative hypothesis: greater

Std.Obs Expectation Variance
4.773e+00 8.822e-02 8.288e-05
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Here the test is statistically significant indicating functional clustering, i.e.,
coexisting species have similar traits.

14.6 Conclusions

DPCoA describes the differences among communities based on known biological
differences among their species. In this chapter, we analysed functional diversity
but phylogenetic diversity can be analysed exactly in the same way by replacing
functional distances among species with phylogenetic distances.

DPCoA is very general and can be applied to other issues. For instance, using
the transpose of table fau and environmental distances among sites, we could
compare the environmental niches of the bird species in La Tarentaise Valley instead
of the functional diversity of the sites. In this context, DPCoA can be viewed as
a generalisation of Canonical Correspondence Analysis (see Sect. 8.4.2, ter Braak
1986), as demonstrated by Pavoine et al. (2004). If the focus is on the populations
of a single species, instead of communities of several species, then DPCoA can be
used to analyse the genetic structures of populations and metapopulations (Pavoine
and Bailly 2007). Individuals of several populations can then be compared based on
genetic distances, such as nucleotide differences between haplotypes (e.g., Turroni
et al. 2009). DPCoA has been applied in different contexts such as phylogenetic
diversity in ectoparasite assemblages (Krasnov et al. 2012), functional diversity in
urban plant assemblages (Valet et al. 2010), song diversity in bird communities
(Cardoso and Price 2010) or human intestinal microbial flora (Eckburg et al. 2005).
An extension of DPCoA is provided by Dray et al. (2015) to consider external
information measured on communities.



Appendix A
A Euclidean Viewpoint on Statistics

This appendix gives the main algebraic and geometric principles used in the
descriptive statistic methods presented in this book.

A.1 Inner and Dot Products

Let us consider two vectors x and y of R
n. The inner product is a function that

associates a real number to the pair of vectors x and y:

〈 | 〉 : Rn × R
n → R

with the following properties:

• Symmetric: 〈x|y〉 = 〈y|x〉, ∀x, y ∈ R
n

• Bilinear:

– 〈x|y + z〉 = 〈x|y〉 + 〈x|z〉, ∀x, y, z ∈ R
n

– 〈x|αy〉 = α 〈x|y〉, ∀x, y ∈ R
n and ∀α ∈ R

• Positive definite: 〈x|x〉 ≥ 0, ∀x ∈ R
n

• Non-degenerate: 〈x|x〉 = 0 ⇒ x = 0, ∀x ∈ R
n

In R
n, the dot product is the inner product defined in the standard basis by:

〈x|y〉 =
n
∑

i=1

xiyi = y�x

If A is an n × n symmetric positive definite matrix, then the bilinear form y�Ax
satisfies the four properties and defines thus an inner product denoted:
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〈x|y〉A =
n
∑

i=1

n
∑

j=1

aij xj yi

In R
n, the usual dot product defined in the standard basis is obtained by setting

A to the identity matrix In. More generally, given a basis {v1, . . . , vn} of Rn, the
matrix A defined by aij = 〈vi |vj

〉

A is the unique matrix representing the dot product

〈x|y〉A. Indeed, we have x =
n∑

i=1
xivi and y =

n∑

i=1
yivi , ∀x, y ∈ R

n, and:

〈x|y〉A =
〈

n
∑

i=1

xivi |
n
∑

j=1

yj vj

〉

A

=
n
∑

i=1

n
∑

j=1

xi

〈

vi |vj

〉

A yj

=
n
∑

i=1

n
∑

j=1

xiaij yj = y�Ax

A.2 Length, Projection, Angle and Distance

The norm (or length) of a vector x is defined by:

‖x‖A = √〈x|x〉A

Note that ‖αx‖A = |α| ‖x‖A.
The distance between two vectors x and y is the norm of their difference:

dA (x, y) = ‖x − y‖A

The projection of y on the nonzero vector x is a vector z parallel to x so that y−z
is orthogonal to x. It is given by:

z = 〈x|y〉A

〈x|x〉A
x
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It follows that

cos(θxy) = ‖z‖A

‖y‖A
= 〈x|y〉A

‖x‖A ‖y‖A

0 ≤ θxy ≤ π

and thus

〈x|y〉A = ‖x‖A ‖y‖A cos(θxy)

Hence, two vectors x and y are orthogonal if 〈x|y〉A = 0. Moreover, we have

∣
∣〈x|y〉A

∣
∣ ≤ ‖x‖A ‖y‖A (Cauchy-Schwartz inequality)

and

‖x + y‖A ≤ ‖x‖A + ‖y‖A (triangular inequality)

A.3 Mean and Variance

The observed values of a quantitative variable for n individuals are stored in
x = (x1, · · · , xn)

�, a vector of Rn. The mean of x is equal to

m(x) = 1

n

n
∑

i=1

xi

and its variance is

v(x) = 1

n

n
∑

i=1

(xi − m(x))2

Let us consider the uniform inner product of Rn associated to the diagonal matrix
1
n

In. In a geometric viewpoint, the standard mean is computed by an inner product
and corresponds to a Euclidean projection (Fig. A.1):

m(x) = 〈x|1n〉 1
n

In
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Fig. A.1 Centring a variable seen as an orthogonal projection.

The variance is equal to the squared norm of the centred vector x∗

v(x) = ‖x − m(x)1n‖2
1
n

In
= ∥∥x∗∥∥21

n
In

A.4 Weighted Mean and Varianc

A weighting function can be defined to give some individuals more influence on the
result than other individuals. Weights for the n individuals are stored in a vector w
of Rn. They are positive and their sum is equal to 1:

w = (w1 · · ·wn)
� with

n
∑

i=1

wi = 1 and wi > 0

Using w, the weighted mean of x is

mw(x) =
n
∑

i=1

wixi

and the weighted variance equals

vw(x) =
n
∑

i=1

wi (xi − mw(x))2

Considering the diagonal matrix Dw = diag(w) as the inner product of Rn, the
weighted mean and variance are given by:
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mw(x) = 〈x|1n〉Dw

and

vw(x) = ‖x − mw(x)1n‖2
Dw

The standard mean and variance (m(x), v(x)) correspond to the particular cases
of weighted statistics (mw(x), vw(x)) when uniform weights wi = 1

n
are chosen.

From a geometric viewpoint, computing standard or weighted statistics corresponds
to the same operation (i.e., a projection) but using different inner products.

A.5 Covariance and Correlation

The values of two quantitative variables are stored in the vectors x and y. This
information can be considered either as n points (individuals) in R

2 or as 2 points
(variables) of Rn. In the first case, data centring corresponds to moving the origin of
the system of axes (Fig. A.2a). In the second case, it corresponds to two orthogonal
projections on the vector 1n (Fig. A.2b).

The vectors x∗ and y∗ contain centred data. The standard covariance is equal to

cov(x, y) = cor(x, y)
√

v(x)
√

v(y)

= 1

n

n
∑

i=1

(xi − m(x))(yi − m(y)) = 1

n

n
∑

i=1

x∗
i y∗

i
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3
2 510
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Fig. A.2 Two geometric viewpoints on centring (example with 2 variables and 17 individuals). It
corresponds to (a) move the origin in R

2 and to (b) two orthogonal projections in R
17.
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It can be rewritten as:

cov(x, y) = 〈x∗|y∗〉
1
n

In

= ‖x‖ 1
n In

‖y‖ 1
n In

cos(θxy)

As ‖x‖ 1
n In

= √
v(x) and ‖y‖ 1

n In
= √

v(y), it follows that:

cor(x, y) = cos(θxy)

Hence, the covariance is equal to the dot product between the two vectors
whereas the correlation is the cosine of the angle formed by the two vectors. Note
that weighted covariance and correlation could be obtained by using the appropriate
inner product Dw.

A.6 Linear Regression

The linear model that aims to explain the variation of y by the dependent variable x
can be written as:

y = βx + α1n + ε

Estimates of α and β are chosen to minimise the sum of squared residuals
n∑

i=1
ε2
i =

n∑

i=1
(yi − α − βxi)

2 (Fig. A.3a). The least squares estimates of parameters

are given by:

α̂ = m(y) − β̂m(x) and β̂ = cov(x, y)

v(x)

Considering the centred variables x∗ and y∗, the estimate of the slope can be
rewritten as:

β̂ =
〈x∗|y∗〉 1

n
In

‖x∗‖2
1
n

In

Thus, the vector of predicted values ŷ can be decomposed as follows:

ŷ = β̂x + (m(y) − β̂m(x))1n

= β̂(x∗ + m(x)1n) + (m(y) − β̂m(x))1n

= β̂x∗ + m(y)1n
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=
〈x∗|y∗〉 1

n
In

‖x∗‖2
1
n

In

x∗ + 〈y|1n〉 1
n

In
1n

The previous equation shows that the vector of predicted values y can be
computed as the sum of two vectors (Fig. A.3b). The first vector corresponds to
the projection of the centred variable y∗ on x∗. The second vector corresponds to
the projection of y on 1n.

As x = x∗ + m(x)1n, the three vectors x, x∗ and 1n are linearly dependent and
thus lie in the same plane. It follows that vector of fitted values ŷ corresponds to the
orthogonal projection of y on the plane spanned by the vectors x and 1n. Applying
the Pythagorean theorem to the triangle formed by the vectors y, ŷ and ε = y − ŷ,
we obtained the well-known decomposition of variance (Fig. A.4):

‖y‖2
1
n

In
= ∥

∥ŷ
∥
∥21

n
In

︸ ︷︷ ︸

explained variance

+ ∥
∥y − ŷ

∥
∥21

n
In

︸ ︷︷ ︸

residual variance

The coefficient of determination, R2
y|x measures the proportion of variance of the

dependent variable y explained by the explanatory variable x. Geometrically, it is
the cosine of the angle formed by the vectors ŷ and y (Fig. A.4):

R2
y|x =
∥
∥ŷ
∥
∥21

n
In

‖y‖2
1
n

In

= cos(θŷy)

a b
Fig. A.3 Two geometric viewpoints on linear regression with intercept (example with one
explanatory variable and 20 individuals). In R

2 (a), the usual representation shows that the
regression line minimises the residual sum of squares. In R

20 (b), fitted values are obtained by
orthogonal projection of y on the plane spanned by vectors x and 1n.
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Fig. A.4 Geometric decomposition of the variance using the Pythagorean theorem.

A.7 Categorical Variables

A categorical variable is a variable that can take one of a finite number of possible
values, each individual being assigned to a particular group (category, level or
class). If we consider a categorical variable with m categories measured for n

individuals, the information can be coded as a vector q of integers. An n × m table
X = [x1| . . . |xm] of dummy variables can be built. For the k-th category, the dummy
variable xk is equal to 1 if the individual belongs to this category and 0 otherwise:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Category

1 blue
2 red
3 blue
4 green
...

...

n black

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

q
1
2
1
3
...

m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 x2 x3 · · · xm

1 0 0 · · · 0
0 1 0 · · · 0
1 0 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Whereas a quantitative variable corresponds to a vector, a categorical variable
defines a subspace spanned by vectors x1, . . . , xm. If we consider a diagonal matrix
of weights Dw, the dummy variables are orthogonal by definition (i.e.,

〈

xi |xj

〉

Dw
for

i �= j ). The weight w+
k associated to the k-th category is equal to the sum of the

weights of the individuals belonging to this category. It is equal to the squared norm
of the associated dummy variable, w+

k = ‖xk‖2
Dw

.
Let us consider a quantitative variable y. The projection of y on the k-th dummy

variable is equal to:

Pxk
(y) = 〈y|xk〉Dw

‖xk‖2
Dw

xk =

∑

i/qi=k

wiyi

w+
k

xk = mw/k
(y)xk



Appendix A A Euclidean Viewpoint on Statistics 303

The value mw/k
(y) is the conditional mean of y given k (i.e., the weighted mean

of the variable y computed only on the individuals belonging to the k-th category).
Hence, the vector Pxk

(y) takes the value mw/k
(y) for the individuals of the k-th

category and 0 otherwise.
It follows that the projection of the centred variable y∗ = y − mw(y)1n on xk is

simply given by:

Pxk
(y∗) = (mw/k

(y) − mw(y))xk

As the dummy variables are orthogonal, the projection on the subspace spanned
by the vectors x1, . . . , xm is simply the sum of the individual projections on each
vector xk:

PX(y∗) =
m
∑

k=1

Pxk
(y∗)

After some substitutions, the squared norm of this projection can be rewritten as:

∥
∥PX(y∗)

∥
∥

2
Dw

=
m
∑

k=1

w+
k (mw/k

(y) − mw(y))2 = b(y)

The quantity b(y) is the between-group variance that measures the differences
among categories. Using the Pythagorean theorem, the within-group variance is
defined by

w(y) = ∥∥y∗ − PX(y∗)
∥
∥

2
Dw

and we obtain the standard ANOVA decomposition of variance:

∥
∥y∗∥∥2

Dw
= ∥

∥PX(y∗)
∥
∥2

Dw
︸ ︷︷ ︸

between-group variance

+ ∥
∥y∗ − PX(y∗)

∥
∥2

Dw
︸ ︷︷ ︸

within-group variance

The correlation ratio η2(q, y) = b(y)
vw(y)

measures the proportion associated to the
between-group variance. It varies between 0 and 1. Geometrically, it is the cosine of
the angle formed by the vectors PX(y∗) and y∗.

A.8 Weighted Multiple Regression

Multiple regression aims to explain the variation of a response variable y by
several dependent variables x1, . . . , xp stored in column in an n × p table X
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(X = [x1| . . . |xp] = [xij ]). For a given weighting matrix Dw, the aim of multiple
regression is to predict the observation yi by a linear model:

ŷi = β1xi1 + · · · + βpxip + α = yi − εi

The weighted least-squares estimation leads to minimise the residual sum of
squares:

RSS =
n
∑

i=1

wi(ŷi − yi)
2 = ∥∥y − ŷ

∥
∥2

Dw

The minimisation of the RSS is provided by the orthogonal projection of y on the
subspace spanned by the vectors x1, . . . , xp, 1n. The vector 1n is added to consider
the intercept in the model so that

ŷ = β1x1 + · · · + βpxp + α1n

The vector of predicted values ŷ exists and is unique. The uniqueness of
the coefficients β1, · · · , βp, α is ensured only if the vectors x1, . . . , xp, 1n are
independent (i.e., no multicollinearity). This independence is obtained if and only
if the centred vectors x∗

1, . . . , x∗
p are independent, with x∗

i = xi − mw(xi )1n. If the
centred vectors are independent, the covariance matrix X∗�DwX∗ is invertible (with
X∗ = [x∗

1| . . . |x∗
p]). In this case, we have:

ŷ = PX∗(y) + P1n
(y)

= PX∗(y∗) + P1n
(y∗) + PX∗(mw(y)1n) + P1n

(mw(y)1n)

By definition, the centred vectors x∗
1, . . . , x∗

p, y∗ are orthogonal to 1n so that the
previous equation simplifies to

ŷ = PX∗(y∗) + P1n
(mw(y)1n)

In the standard basis, the projection operator PX∗(.) is simply equal to
X∗(X∗�DwX∗)−1X∗Dw and the previous equation can be rewritten as:

ŷ = X∗(X∗�DwX∗)−1X∗Dwy∗ + mw(y)1n

The estimates of the parameters are then obtained by

⎡

⎢
⎣

β̂1
...

β̂p

⎤

⎥
⎦ = (X∗�DwX∗)−1X∗Dwy∗
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and

α̂ = mw(y) − β̂1mw(x∗
1) − · · · − β̂pmw(x∗

p)

As in simple regression, the part of variance explained by the model is equal to
the ratio of two squared norms (and thus the cosine of the angle formed by these
two vectors):

R2
y|X =

∥
∥ŷ
∥
∥

2
Dw

‖y‖2
Dw



Appendix B
Graphical User Interface

Abstract This chapter is a short presentation of ade4TkGUI, a Tcl/Tk Graphical
User Interface (GUI) package for some basic functions of ade4. The ade4TkGUI
package tries to mix the advantages of a GUI (ease of use, no need to learn numerous
commands) with the possibility to use R expressions in the dialog boxes, to generate
understandable R commands, and to manage a session .Rhistory file.

B.1 Introduction

This chapter is based on the paper by Thioulouse and Dray (2007), but only the
most interesting features of ade4TkGUI are detailed here. The ade4 package is a
part of a previous software that was written in C. This software was mainly used by
ecologists, and it had a rich and very useful GUI, written in HyperTalk and based
successively on HyperCard, WinPlus and MetaCard (see Chapter 1, Thioulouse
et al. 1997).

Switching to R and to the command line interface of ade4 was a hard task for
many users, and we decided to make it easier by providing them with a GUI. The
first aim of ade4TkGUI was to give the users of “Classical ADE-4” an easy access
to the main functions of ade4. As most users would also be new to R, we wanted it to
be easy to install, and using Tcl/Tk was a guarantee of easiness and multi-platform
compatibility.

Only one-table and two-table methods are currently available in ade4TkGUI
and graphical functions are limited to the basic classes. K-table methods are not
included.

We decided to use the Tcl/Tk language to implement ade4TkGUI because the
tcltk package is available in R, and included by default in the base distribution.
Many other GUI development systems are available, but they do not offer the same
level of availability and platform independence as tcltk.

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Thioulouse et al., Multivariate Analysis of Ecological Data with ade4,
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B.2 Overview of the ade4TkGUI Package

It is not possible to give here a detailed description of all the functions of
ade4TkGUI, and only the main characteristics will be presented. The core of
the package is the ade4TkGUI() function, which opens the main GUI window
(Fig. B.1).

In the main GUI window, buttons are grouped in 6 rows, according to their
function: Data sets, One table analyses, One table analyses with groups, Two
tables analyses, Graphic functions, and Advanced graphics. To avoid cluttering
this window, only a limited subset of functions is displayed. Less frequently
used functions are available through the menus of the menu bar, located at the
top of the window. Right-clicking the buttons opens the ade4 help window for
the corresponding function. The question-head button opens the help window of
ade4TkGUI.

The ade4TkGUI() function takes two boolean arguments, show and
history. The first one determines whether the R commands generated by the GUI

Fig. B.1 The main ade4TkGUI window.
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Fig. B.2 The dudi.pca function GUI window (left), the eigenvalues barchart (right) and the
selection of the number of axes by the user (top-right).

should be printed in the console. When users interact with the GUI, they modify
the status of tcltk widgets, and when they click on the “Submit” button, an R
command is generated from the status of these widgets. This command is executed
and can optionally be displayed in the console. If the history argument is set to
TRUE, the commands generated by the GUI are also stored in the .Rhistory
file, where they can easily be retrieved by users. The state of the two parameters is
recalled in the main window heading “ade4TkGUI(T,T)”.

The “Read a data file” button opens a dialog window that can be used
to set the parameters of the read.table command to read a data text file. The
“Load a data set” just displays the list of ade4 data sets. This list can be used
to choose a particular data set and to load it in memory using the data command.

When the “PCA” button is clicked, a new window appears (Fig. B.2): this is the
GUI window of the dudi.pca function.

In this new window, the “Set” button can be used to choose the PCA input
data frame through a listbox showing the list of data frames in the user global
environment. After the “Input data frame” text field has been filled by the
user, the number of rows and columns (20, 9) are displayed next to it. The output of
the dudi.pca function is an object of class dudi and the user can type the name
of this object in the “Output dudi name” field. If this field is left empty, the
name “Untitled1” is used automatically.

The remaining widgets can be used to set particular options for the PCA: centring
and standardisation, number of principal axes used to compute row and column
coordinates, and row and column weights.
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Fig. B.3 The dudi object display window (left) and the biplot obtained by clicking on the
“scatter” button (right).

Most of the windows created by ade4TkGUI are non-blocking, which means that
the user can do other things in the GUI or in the R console before taking the action
required by this window. This was designed to make the interface more flexible and
easier to use.

Clicking the “Submit” button starts the PCA computations. When they are
completed, the barplot of eigenvalues is displayed (right of Fig. B.2) and, if this
option was chosen in the previous dialog window, the user is asked to select the
number of axes on which the row and column scores should be computed.

After scores are computed, the dudi window is displayed (Fig. B.3, left). This
window shows a summary of the analysis, and displays the elements of the dudi
object under the form of buttons. All these buttons can be used to draw graphs of
the corresponding elements. For example, the row and column coordinates buttons
draw the classical factor maps. In the lower part of the window, the user can choose
which axes are used to draw these graphs.

The last row of buttons gives access to special graphs, according to the particular
properties of the dudi that is displayed. For example, in the case of a normed PCA,
the “s.corcircle” button allows to draw a correlation circle. The “scatter”
button draws a biplot, with a small barchart for eigenvalues (Fig. B.3, right). These
additional buttons are adapted to the type of dudi that is displayed, and they allow
to draw graphs that illustrate particular properties of this dudi.

An example of GUI for one of the graphical functions of adegraphics is given
in Fig. B.4. This is the s.class function, which allows to draw factor maps with
groups of individuals. The user can choose the data frame containing the row scores
(here they come from the “envpca” dudi), and the factor that should be used
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Fig. B.4 The s.class GUI window (left) and the corresponding graph (right).

to draw the groups on the factor map. Many other options can be set to enrich the
graphs.

B.3 Conclusion

The main advantage of a GUI is the ease of use for beginners, occasional users, or
teachers and students. It makes easier learning how to use a software by making
the learning curve smoother, or to get back to work after a long period. This
is particularly important in the case of ade4 in ecological data analysis, because
ecologists are mostly occasional users of R.

An important feature in ade4 is the dudi, a complex R object containing all
the information relating to a duality diagram. The dudi GUI window (Fig. B.3)
was designed to display all the components of a dudi, and to draw automatically
default graphs for each of these components. Therefore, it offers a centralised and
synthetic view of an analysis, and it allows to see rapidly and interactively many
graphs. In command line mode, the user must know all the components of a dudi,
and remember which one is needed to draw a particular graph; this is particularly
difficult for occasional users.

The ade4TkGUI package also facilitates the use of ade4 by pre-selecting the
type of objects that are proposed to users when they must do a selection. For
example, in the dudi.pca dialog window (Fig. B.2), when the user clicks on
the “Set” button to select a data frame, the dialog box contains only data frames
present in the global environment (or in lists present in the global environment).
In the same window, if the user wants to set non-uniform row weights, the “Set”
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button for row weights displays only vectors of length equal to the number of rows
of the data frame. More generally, lists are filtered to propose only objects with
properties consistent with the aim of the action. In the same way, in the dudi
window, the buttons and their functions are coherent with the type of dudi and
with the mathematical properties of its components.

Obviously, a GUI is not well adapted to scripting, and even to simple repetitive
tasks. It is also not good for batch, online or remote use, and it is not easy to
integrate into Sweave or R Markdown documents and vignettes. This is probably
the main drawback of GUIs: they are made for personal and instant use, while the
command line interface (CLI) allows many operations like scripting, re-doing the
same analysis later, sharing pieces of code among colleagues, and batch use for
time-consuming computations.

GUIs and CLIs should not be opposed, but considered as complementary. GUIs
make the learning curve smoother for beginners, and can be used in education to
introduce students to CLI mode. CLI mode is more powerful, it allows to build more
complex analyses, particularly when using several packages jointly. When possible,
the joint use of both CLI and GUI is attractive, as the user gets the benefits of the
two approaches. Joint use can be very intimate: for example, it is possible to use R
expressions in the GUI dialogs, and the GUI can return R expressions that can be
copied and pasted in the console. In the case of ade4TkGUI, the strings typed by
the user in the text fields of the GUI are parsed, and it is therefore possible to use R
expressions, for example, to specify a subset of a data frame in a PCA.

When ade4TkGUI is called with argument “show = TRUE”, R commands
built by the GUI are echoed to the console. It is then possible to copy/paste these
commands and execute them when needed in the console. This is also an effective
way for beginners to learn how to use elaborate R function calls. Occasional users
can thus analyse these command lines and possibly adapt them to their needs, with
the additional benefit of gradually learning the R language.

In addition to this Tcl/Tk GUI, we are developing a new Shiny application to use
the main ade4 functionalities through a Web application. Shiny is an R package
that makes very easy building interactive Web Apps in R. The main advantage is
that users do not have to install R and multiple packages: they only need a web
browser. As an example, a first piece of this “in progress” work is deployed on the
shinyapps.io web site. It can be used to perform a PCA at this URL: https://ade4.
shinyapps.io/ShinyPCA. We plan to develop this approach in the near future and
hope to be able to propose a complete Shiny GUI to the ade4 package.

https://ade4.shinyapps.io/ShinyPCA
https://ade4.shinyapps.io/ShinyPCA
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