
Use R !

Modern
Psychometrics
with R

Patrick Mair

Use R!

Series Editors

Robert Gentleman Kurt Hornik Giovanni Parmigiani

More information about this series at http://www.springer.com/series/6991

http://www.springer.com/series/6991

Patrick Mair

Modern Psychometrics
with R

123

Patrick Mair
Department of Psychology
Harvard University
Cambridge, MA, USA

ISSN 2197-5736 ISSN 2197-5744 (electronic)
Use R!
ISBN 978-3-319-93175-3 ISBN 978-3-319-93177-7 (eBook)
https://doi.org/10.1007/978-3-319-93177-7

Library of Congress Control Number: 2018946544

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-93177-7

Preface

We are living in exciting times when it comes to statistical applications in
psychology. The way statistics is used (and maybe even perceived) in psychology
has drastically changed over the last few years – computationally as well as
methodologically. From a computational perspective, up to some years ago many
psychologists considered R as an analysis tool used by the nerdiest quants only. In
recent years, R has taken the field of psychology by storm, to the point that it can
now safely be considered the lingua franca for statistical data analysis in psychology.
R is open source, makes statistical analyses reproducible, and comes with a vast
amount of statistical methodology implemented in a myriad of packages. Speaking
of packages, in the past decade a flourishing psychometric developer community
has evolved; their work has made R a powerful engine for performing all sorts of
psychometric analyses.

From a methodological perspective, the latent continuum of statistical methods in
modern psychology ranges from old school classical test theory approaches to funky
statistical and machine learning techniques. This book is an attempt to pay tribute
to this expansive methodology spectrum by broadening the standard “psychological
measurement” definition of psychometrics toward the statistical needs of a modern
psychologist. An important aspect of this book is that in several places uncommon,
maybe even exotic techniques are presented. From my own experience consulting
and teaching at a psychology department, these techniques turned out to be very
useful to the students and faculty when analyzing their data.

The broad methodological range covered in this book comes at a price: It is
not possible to provide in-depth narrative details and methodological elaborations
on various methods. Indeed, an entire book could probably be written about each
single chapter. At the end of the day, the goal of this book is to give the reader
a starting point when analyzing data using a particular method (including fairly
advanced versions for some of them), and to hopefully motivate him/her to delve
deeper into a method based on the additional literature provided in the respective
sections, if needed. In the spirit of Springer’s useR! series, each method is presented
according to the following triplet: (1) when to apply it and what is it doing, (2) how
to compute it in R, and (3) how to present, visualize, and interpret the results.

v

vi Preface

Throughout the book an effort has been made to use modern, sparkling, real-life
psychological datasets instead of standard textbook data. This implies that results
do not always turn out perfectly (e.g., assumptions are not always perfectly fulfilled,
models may not always fit perfectly, etc.), but it should make it easier for the reader
to adapt these techniques to his/her own datasets. All datasets are included in the
MPsychoR package available on CRAN. The R code for reproducing the entire
book is available from the book website.

The target audience of this manuscript is primarily graduate students and
postdocs in psychology, thus the language is kept fairly casual. It is assumed that
the reader is familiar with the R syntax and has a solid understanding of basic
statistical concepts and linear models and preferably also generalized linear models
and mixed-effects models for some sections. In order to be able to follow some of
the chapters, especially those on multivariate exploratory techniques, basic matrix
algebra skills are needed. In addition, some sections cover Bayesian modeling
approaches. For these parts, the reader needs to be familiar with basic Bayesian
principles. Note that no previous exposure to psychometric techniques is required.
However, if needed, the reader may consult more narrative texts on various topics
to gain a deeper understanding, since explanations in this book are kept fairly crisp.

The book is organized as follows. It starts with the simplest and probably
oldest psychometric model formulation: the true score model within the context
of classical test theory, with special emphasis placed on reliability. The simple
reliability concept is then extended to a more general framework called general-
izability theory. Chapter 2 deals with factor analytic techniques, exploratory as well
as confirmatory. The sections that cover confirmatory factor analysis (CFA) focus
on some more advanced techniques such as CFA with covariates, longitudinal,
multilevel, and multigroup CFA. As a special exploratory flavor, Bayesian factor
analysis is introduced as well. The CFA sections lay the groundwork for Chap. 4 on
structural equation models (SEM). SEM is introduced from a general path modeling
perspective including combined moderator-mediator models. Modern applications
such as latent growth models are described as well.

Chapter 4 covers what is often called modern test theory. The first four
sections cover classical item response theory (IRT) methods for dichotomous and
polytomous items. The remaining sections deal with some more advanced flavors
such as modern DIF (differential item functioning) techniques, multidimensional
IRT, longitudinal IRT, and Bayesian IRT. Chapter 5, the last parametric chapter
for a while, tackles a special type of input data: preference data such as paired
comparisons, rankings, and ratings.

Then, a sequence of multivariate exploratory methods chapters begins. Chapter 6
is all about principal component analysis (PCA), including extensions such as
three-way PCA and independent component analysis (ICA) with application on
EEG (electroencephalography) data. What follows is a chapter on correspondence
analysis which, in the subsequent section, is extended to a more general framework
called Gifi. An important incarnation of Gifi is the possibility to fit a PCA on
ordinal data or, more generally, mixed input scale levels. Chapter 9 covers in detail
multidimensional scaling (MDS). Apart from standard exploratory MDS, various

Preface vii

sections illustrate extensions such as confirmatory MDS, unfolding, individual
differences scaling, and Procrustes. Chapter 10 explores techniques for advanced
visualization techniques by means of biplots, which can be applied to each of the
preceding exploratory methods.

The remaining chapters of the book cover various special techniques useful for
modern psychological applications. Chapter 11 introduces correlation networks, a
hot topic in clinical psychology at the moment. These simple network approaches
are extended to various advanced techniques involving latent networks and Bayesian
networks, the latter based on the concept of directed acyclic graphs.

Chapter 12 is all about sophisticated parametric clustering techniques. By way
of the concept of mixture distributions, various extensions of the well-known
psychometric technique called latent class analysis are presented. This mixture
distribution idea is then integrated into a regression framework, which leads to
mixture regression and Dirichlet process regression. Since text data are of increasing
importance in psychology, a special clustering approach called topic models is
included as well.

Many modern psychological experiments involve longitudinal or time series
measurements on a single participant. Chapter 13 offers some possibilities for how
to model such data. It starts with Hidden Markov models, yet another approach
from the parametric clustering family. The subsequent section presents time series
analysis (ARIMA models), where the main goal is to forecast future observations.
Finally, functional data analysis is introduced, a modeling framework for data
settings where each participant is represented by a function.

The final chapter is somewhat special since it is completely driven by a particular
type of input data: functional magnetic resonance imaging (fMRI) data. The aim of
this chapter is to give the reader more insight into what is going on in standard fMRI
modeling techniques. He/she will, for instance, learn how to establish statistical
parametric maps and how to deal with the heavy duty multiple comparison problem.
In addition, in this chapter various techniques from previous chapters such as ICA
and latent networks are applied to fMRI data.

That should do it.
I would like to thank a few people who had a vital impact on this book.

First of all, a resounding “thank you” goes out to all the folks at the Harvard
Psychology Department for sharing datasets and for allowing me to make them
publicly available, such that the entire book can be reproduced. This includes
Mahzarin Banaji, Robin Bergh, Tessa Charlesworth, Peter Franz, Benedek Kurdi,
Richard McNally, Ken Nakayama, Erik Nook, Hrag Pailian, Maryam Pashkam,
Leah Somerville, Rachel Vaughn-Coaxum, and John Weisz. Researchers from other
institutions who generously shared their datasets are Alexandra Grand, Pascal
Haegeli, Christine Hooker, Ingrid Koller, Kimberley Lakes, Daniel Levitin, Matea
Paškvan, Horst Treiblmaier, and Jeremy Wilmer. I also forced several experts to
volunteer to read various chapters or sections, whom I would like to thank explicitly:
Ingwer Borg, Regina Dittrich, Pieter Kroonenberg, Thomas Rusch, Jim Sidanius,
Mark Thornton, Remi Piatek, and Achim Zeileis. Deep gratitude goes out to my
psychometric and statistical mentors: Peter Bentler, Jan de Leeuw, Anton Formann

viii Preface

(deceased on July 12, 2010), Wilfried Grossmann, Reinhold Hatzinger (deceased on
July 17, 2012), Kurt Hornik, and Alexander von Eye.

In addition, I would like to thank all the graduate students who attended my
advanced classes on psychometrics, statistical learning, and Bayesian data analysis.
They have been a great source of inspiration and pushed me to get the whole thing
done. Also, thanks to all the psychometric R package developers who invested
countless night shifts to make R such a powerful engine for psychometric modeling.

Last but not least I would like to thank my family for their support, especially
my wife Haley for keeping me balanced during the writing process and for proof-
reading.

Cambridge, MA, USA Patrick Mair
January, 2018

Contents

1 Classical Test Theory . 1
1.1 Classical True Score Model. 1
1.2 Reliability . 3

1.2.1 Cronbach’s α . 3
1.2.2 Other Reliability Coefficients . 6

1.3 Generalizability Theory . 7
1.3.1 Reliability and Generalizability . 8
1.3.2 Multiple Sources of Error . 10

References . 14

2 Factor Analysis . 17
2.1 Correlation Coefficients . 17
2.2 Exploratory Factor Analysis . 23

2.2.1 EFA Model Formulation and Computation. 23
2.2.2 Factor Rotation and Interpretation . 26
2.2.3 Factor Scores. 29
2.2.4 Determining the Number of Factors . 30

2.3 Bayesian Exploratory Factor Analysis . 35
2.4 Confirmatory Factor Analysis . 39

2.4.1 CFA Model Formulation and Computation 40
2.4.2 Higher-Order CFA Models . 45
2.4.3 CFA with Covariates: MIMIC . 47
2.4.4 Multigroup CFA . 48
2.4.5 Longitudinal CFA . 52
2.4.6 Multilevel CFA . 55

2.5 Bayesian Confirmatory Factor Analysis . 57
References . 60

3 Path Analysis and Structural Equation Models . 63
3.1 Multivariate Regression as Path Model . 63
3.2 Moderator and Mediator Models . 66

3.2.1 Moderator Models . 67

ix

x Contents

3.2.2 Mediator Models. 70
3.2.3 Combined Moderator-Mediator Models 73

3.3 Structural Equation Models . 76
3.3.1 SEM Model Formulation and Computation 76
3.3.2 Multigroup SEM. 79
3.3.3 Remarks on SEM Extensions . 81

3.4 Latent Growth Models . 82
3.4.1 Simple Latent Growth Modeling . 82
3.4.2 Extended Latent Growth Modeling . 86

References . 91

4 Item Response Theory . 95
4.1 Introductory Remarks and Dimensionality Assessment 95

4.1.1 Classification of IRT Models. 95
4.1.2 Assessing Dimensionality . 95

4.2 Unidimensional Dichotomous IRT Models . 98
4.2.1 The Rasch Model . 98
4.2.2 Two-Parameter Logistic Model . 105
4.2.3 Three-Parameter Logistic Model . 109

4.3 Unidimensional Polytomous IRT Models . 110
4.3.1 Rating Scale Model . 111
4.3.2 Partial Credit Model and Generalizations 116
4.3.3 Graded Response Model . 119
4.3.4 Nominal Response Model . 121

4.4 Item and Test Information . 123
4.5 IRT Sample Size Determination . 126
4.6 Differential Item Functioning . 131

4.6.1 Logistic Regression DIF Detection . 131
4.6.2 Tree-Based DIF Detection . 134

4.7 Multidimensional IRT Models . 136
4.7.1 IRT and Factor Analysis. 137
4.7.2 Exploratory Multidimensional IRT . 138
4.7.3 Confirmatory Multidimensional IRT . 143

4.8 Longitudinal IRT Models . 145
4.8.1 Linear Logistic Models for Measuring Change 145
4.8.2 Two-Tier Approach to Longitudinal IRT 148
4.8.3 Latent Growth IRT Models. 151

4.9 Bayesian IRT . 152
4.9.1 Bayesian 2-PL Estimation. 152
4.9.2 Dynamic 2-PL Model . 155

References . 157

5 Preference Modeling . 161
5.1 Models for Paired Comparisons . 161

5.1.1 Bradley-Terry Model . 162
5.1.2 Bradley-Terry Trees . 163

Contents xi

5.1.3 Bradley-Terry Lasso . 164
5.2 Log-Linear Models for Preference . 168

5.2.1 Pattern Model for Ratings . 169
5.2.2 Pattern Model for Paired Comparisons . 172
5.2.3 Pattern Model for Rankings . 173

5.3 Other Methods for Preference Data . 175
References . 176

6 Principal Component Analysis and Extensions . 179
6.1 Principal Component Analysis . 179

6.1.1 Singular Value and Eigenvalue Decomposition 179
6.1.2 PCA Computation . 183
6.1.3 PCA Application and Practical Issues . 187

6.2 Some PCA Variants . 192
6.3 Three-Way Principal Component Analysis . 194

6.3.1 Parafac . 195
6.3.2 Tucker . 198

6.4 Independent Component Analysis . 201
6.4.1 ICA Formulation. 201
6.4.2 Example: ICA on EEG Data . 202

References . 208

7 Correspondence Analysis . 211
7.1 Simple Correspondence Analysis . 211

7.1.1 Profiles, Masses, Inertia . 211
7.1.2 Simple CA Computation and Interpretation 218
7.1.3 Example: Harvard Psychology Faculty . 222

7.2 Multiple Correspondence Analysis . 223
7.3 Configural Frequency Analysis . 225

7.3.1 Two-Dimensional Tables . 226
7.3.2 Higher-Dimensional Tables . 228

References . 229

8 Gifi Methods . 231
8.1 Setting the Stage. 231

8.1.1 Optimal Scaling: Measurement Levels as Functions 231
8.1.2 Gifi Theory . 233

8.2 Princals . 235
8.2.1 Mimicking PCA with Princals . 236
8.2.2 Princals on Ordinal Data . 238
8.2.3 Princals on Mixed Input Data . 241

8.3 Homals . 244
8.3.1 Multiple Correspondence Analysis Using Homals 244
8.3.2 Homals on Mixed Input Data . 246
8.3.3 Combined Homals-Princals Strategies . 247

8.4 Lineals for CFA/SEM Preprocessing . 252
References . 255

xii Contents

9 Multidimensional Scaling . 257
9.1 Proximities. 257
9.2 Exploratory MDS . 258

9.2.1 SMACOF Theory . 259
9.2.2 Exploratory MDS Example: PTSD Symptoms 260
9.2.3 Goodness of Fit in MDS . 262

9.3 Confirmatory MDS . 269
9.3.1 MDS with External Constraints . 270
9.3.2 MDS with Internal Constraints: Spherical SMACOF. 274

9.4 Unfolding . 276
9.4.1 Data Structure for Unfolding. 276
9.4.2 Rectangular SMACOF: Theory . 277
9.4.3 Unfolding Example: Personal Values . 278

9.5 MDS Extensions and Related Models . 280
9.5.1 Procrustes . 280
9.5.2 Individual Differences Scaling . 283

References . 285

10 Biplots . 289
10.1 Variable Space and Subject Space Representation. 289
10.2 Regression Biplots . 291
10.3 Principal Component Analysis Biplots . 296
10.4 Multidimensional Scaling Biplots . 305
10.5 Correspondence Analysis Biplots . 306
References . 311

11 Networks . 313
11.1 Network Basics: Relational Data Structures . 313
11.2 Correlation Networks . 314
11.3 Latent Network Models . 319

11.3.1 Eigenmodels . 320
11.3.2 Latent Class Network Models. 321

11.4 Bayesian Networks . 326
11.4.1 Directed Acyclic Graphs . 326
11.4.2 Bayesian Networks Taxonomy. 327
11.4.3 Bayesian Network Depression/OCD Data 328

References . 333

12 Parametric Cluster Analysis and Mixture Regression 335
12.1 Model-Based Clustering Approaches: Mixture Models 335

12.1.1 Normal Mixture Models. 336
12.1.2 Latent Class Analysis. 340
12.1.3 Parametric Clustering with Mixed Scale Levels 344
12.1.4 Concomitant Variables . 346

12.2 Mixture Regression Models . 349
12.2.1 Mixture Regression Theory . 349
12.2.2 Mixture Regression Applications . 350

Contents xiii

12.3 Dirichlet-Based Clustering. 354
12.3.1 Dirichlet Process Regression . 355
12.3.2 Clustering Texts: Topic Models . 356

References . 363

13 Modeling Trajectories and Time Series . 365
13.1 Introductory Remarks . 365
13.2 Hidden Markov Models . 365

13.2.1 Markov Chains. 366
13.2.2 Simple Hidden Markov Modeling Strategies. 369
13.2.3 Hidden Markov Models with Covariates 374

13.3 Time Series Analysis . 379
13.3.1 Linear Models and Structural Change Detection. 379
13.3.2 ARIMA Models . 383
13.3.3 Time Series with Covariates: Intervention Analysis 392

13.4 Functional Data Analysis . 394
13.4.1 Smoothing Curves and Derivatives . 395
13.4.2 FDA Descriptives and Bootstrap . 397
13.4.3 Functional ANOVA and Regression Modeling. 399
13.4.4 Functional Principal Component Analysis 402

References . 405

14 Analysis of fMRI Data . 409
14.1 fMRI Data Manipulation in R . 409

14.1.1 fMRI Data Structures . 409
14.1.2 fMRI Preprocessing . 411
14.1.3 Registration and Regions of Interest . 414

14.2 Linear Modeling of fMRI Data . 419
14.2.1 The Correlational Approach . 419
14.2.2 Design Matrix. 421
14.2.3 Fitting the Linear Model . 423
14.2.4 Example: Neural Representation of Mental States 424
14.2.5 Group Analysis . 430

14.3 Multiple Comparisons in fMRI . 431
14.3.1 Controlling for the FDR . 433
14.3.2 Gaussian Random Fields . 433
14.3.3 Permutation Tests . 434

14.4 Independent Component Analysis in fMRI . 437
14.5 Representational Similarity Analysis. 440
14.6 Functional Connectivity Analysis . 442

14.6.1 Seed-Based Correlational Analysis . 443
14.6.2 Wavelet Correlational Analysis . 445

14.7 Conclusion and Outlook . 446
References . 448

Index . 451

Chapter 1
Classical Test Theory

1.1 Classical True Score Model

It is always good to start a book with a formula right away:

X = T + E. (1.1)

X is the observed score in a test, T is the true score (unknown), and E is the error
(unknown). This equation is called the true score model and is at the core of classical
test theory (CTT). Before we dissect this equation with two unknowns and perform
various computations, let us elaborate on some general measurement issues related
to classical test theory.

Psychological measurement can be a difficult task. We aim to measure not
directly observable variables like cognitive abilities, personality traits, motivation,
quality of life, diseases in psychopathology, etc. Measuring such latent constructs is
much more challenging than determining body height or weight (for which we have
a measuring tape and a scale as measurement instruments). Obviously we cannot
simply ask: “How depressed are you?” or “How intelligent are you?”. We need
a measurement instrument such as a test or questionnaire to assess a participant’s
location on the underlying latent variable. There are at least two problems associated
with this task:

• Precision of a test: No test measures a latent variable perfectly; we have to deal
with some degree of measurement error.

• Instability over time: If we were to perform repeated measurements on a single
person over time (under the same external conditions), we cannot expect that the
results will be identical. This repeated measurement concept (without necessarily
being able to obtain multiple measurements per participant) plays an important
role when assessing the quality or consistency of a test.

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_1&domain=pdf
https://doi.org/10.1007/978-3-319-93177-7_1

2 1 Classical Test Theory

CTT is an old approach that attempts to formalize a statistical theory of (psycholog-
ical) measurement and, eventually, allows us to make statements about the quality
of a scale. What Eq. (1.1) basically tells us is that an individual has a true value T

on the underlying latent variable which cannot be directly observed. We can only
observe X resulting from the test we constructed. In practice, X is often a composite
score based on k items: X = ∑k

i=1 Xi . Equation (1.1) implies that X can deviate
from T , that is, our measurement X is associated with an error E.

Let us embed Eq. (1.1) into a statistical sampling context. In general, persons
are drawn from a population, and for each person we have (in theory) an infinite
sequence of repeated measurements. Items are drawn from a universe of items
supposed to measure the underlying latent variable. Depending on the sampling
level we consider for both items and persons, Eq. (1.1) can come in different flavors.
As usual, we use capital letters for random variables and lower case notation for
non-stochastic variables:

• X = T + E: randomly drawn persons from a population (repeated measure-
ments), randomly drawn test/items from a universe.

• Xi = Ti + Ei : randomly drawn persons from a population (repeated measure-
ments), fixed item i.

• Xv = tv + Ev: fixed person v (repeated measurements), randomly drawn
test/items from a universe.

• Xvi = tvi + Evi : fixed person v (repeated measurements), fixed item i.
• xvil = tvi + evil : fixed person v (fixed measurement l), fixed item i.

The first formulation is the most general population/universe model, whereas the
second equation “zooms in” on a particular item. If we formulate the true score
model for an individual person v (third variant), the true score tv is not random
anymore since it remains constant across multiple measurements. The same applies
to the fourth variant at an item level for each individual. The last variant is at a
sample level. What we observe in practice is one particular realization of the random
variable Xvi on measurement occasion l. Thus, xvil represents the observed sample
value of an item (e.g., a 0 or 1 score of person v on item i).

Regardless which representation we use, certain properties need to hold, here
illustrated using the variant involving Xvi . If we were to present the same item i to
an individual v many times, the true score is the average of the observed scores. At
a population level, this means that the expected value E(Xvi) = tvi . It follows that
the expected value E(Evi) = 0, that is, in the long run the error is 0 on average, just
as in regression. In addition, again similar to regression, we assume that the error is
normally distributed and uncorrelated with the true score.

A crucial point in CTT is the magnitude of the error variance. The smaller the
error variance, the more accurately the true score is reflected by our observed scores
(across multiple individuals). In a perfect world, all error values (across individuals)
are 0. That is, each participant scores exactly his/her true score. This is not realistic,
of course. Thus, we have some variance in the errors. The corresponding standard
deviation of the errors has its own name: the standard error of measurement, denoted
by σE . In the subsequent section, we will illustrate how to get an estimate for σE .

1.2 Reliability 3

1.2 Reliability

As we have seen so far, CTT is concerned about relationships among X, T , and E.
Our ultimate goal is to make statements about the quality of the scale. Quality within
the context of CTT means that we are able to replicate the results if the individuals
were tested multiple times. As Hoyt and Melby (1999) put it, the concept referring
to the tendency toward consistency among repeated attempts to measure the same
thing is called reliability. In other words, reliability represents the accuracy with
which a test can measure true scores (Coaley, 2014):

• If the reliability is large, σE is small: X has little measurement error and will be
close to T .

• If the reliability is small, σE is large: X has large measurement errors and will
deviate from T .

Formally, reliability is defined as

reliability = σ 2
T

σ 2
X

= σ 2
T

σ 2
T + σ 2

E

= ρ2
XT . (1.2)

It is the proportion of variance of T in X which is the same as the squared correlation
between X and T (see, e.g., Revelle (2015) for how this formal relationship can be
derived). Thus, if the (squared) correlation between the observed scores and the
true scores is high, the test has a high reliability. In this case the standard error of
measurement is small.

The reliability ρ2
XT is bounded between [0; 1]. It becomes 1 if σ 2

T = σ 2
X, that

is, our instrument measures T perfectly. It approaches 0 as the error variance σ 2
E

increases: the observed scores are scattered broadly around T . Still, the problem is
that we cannot directly compute ρ2

XT since we do not know σ 2
T .

1.2.1 Cronbach’s α

A trick that makes it possible to get an estimate of reliability is to establish a parallel
form of the original test X (with standard deviation σX). Let us denote this parallel
form by X′ (with standard deviation σX′). A parallel test is a second version of the
original test with the same true score and the same error variance. Let σXX′ denote
the covariance between these two tests which can be transformed into a squared
correlation (i.e., a reliability measure). Equation (1.2) becomes

ρXX′ = σXX′

σXσX′
= σ 2

T

σ 2
X

= ρ2
XT . (1.3)

4 1 Classical Test Theory

From this equation we can derive an expression for the standard error of measure-
ment:

σE = σX

√
1 − ρ2

XT . (1.4)

In practice, establishing a good parallel test is very hard to come by. One option
to obtain a parallel test is to split the original test in half and treat the two halves
as parallel tests (split-half reliability). Another option, widely used in practice, was
proposed by Cronbach (1951). The basic idea is that the total score is made up of the
k individual item scores (X = ∑k

i=1 Xi). Thus, each item is considered as a single
test, and we have, at least conceptually, constructed k parallel tests. This allows us
to compute a lower bound for the reliability, which is known as Cronbach’s α:

reliability ≥ α = k

k − 1

(

1 −
∑k

i=1 σ 2
Xi

σ 2
X

)

(1.5)

It is a lower bound since we cannot assume that the composites are strictly parallel.
The amazing news at this point is—and we cannot take this for granted in CTT—that
we can actually compute something.

Let us illustrate the computation of Cronbach’s α by means of a simple example.
The dataset we use is based on a larger study presented in Mair et al. (2015)
on motivational structures (intrinsic, extrinsic, hybrid) of R package authors.
The authors were interested in exploring the question: What motivates package
developers to contribute to the R environment? Here we focus on hybrid motivation
only and select 19 dichotomous items associated with this latent variable. After
removing missing values, 777 package authors are left in the sample.

library("MPsychoR")
library("psych")
data("Rmotivation")
ind <- grep("hyb", colnames(Rmotivation))
HybMotivation <- na.omit(Rmotivation[,ind]) ## item selection
k <- ncol(HybMotivation) ## number of items

Computing Cronbach’s α by hand is fairly simple. The first step is to calculate
the variance-covariance (VC) matrix of the items (i.e., a matrix with variances in the
main diagonal and covariances in the off-diagonals).

vcmat <- cov(HybMotivation)

1.2 Reliability 5

From this matrix we extract the individual item variances σ 2
Xi

from the main
diagonal and take the sum, as suggested by Eq. (1.5). The sum of the main diagonal
elements of a matrix is called trace:

sigma2_Xi <- tr(vcmat)

The total variance consists of the sum of the variances and the sum of the
covariances on both sides of the diagonal.1 We can simply say:

sigma2_X <- sum(vcmat)

Now we are all set to compute α according to Eq. (1.5):

cronalpha <- k/(k-1)*(1-sigma2_Xi/sigma2_X)
round(cronalpha, 2)
[1] 0.82

Using Eq. (1.4), we can compute the standard error of measurement according to
σE = σX

√
1 − α:

sqrt(sigma2_X)*sqrt(1-cronalpha)
[1] 1.710338

As a shortcut for Cronbach’s α computation, we can use the alpha function
included in the psych package (Revelle, 2017). This functions also computes a
confidence interval (CI) for α (including options for bootstrapping), determines
changes in α if a particular item would be eliminated, and returns other descriptive
item statistics.

alpha.hyb <- psych::alpha(HybMotivation)
round(alpha.hyb$total[1], 2) ## Cronbach's alpha
raw_alpha
0.82

1This is based on an extension of the simple variance sum law: V ar(X+Y) = V ar(X)+V ar(Y)+
2Cov(X, Y).

6 1 Classical Test Theory

In practice, we aim for an α in the area of 0.8–0.9. Values of α > 0.9 may
reflect a scale burdened by question redundancy (see, e.g., Streiner, 2003) and will
generally have a lower correlation with external variables (which is an indication
of low validity). In such cases it is suggested to do a closer item inspection in
order to determine if, in fact, wording redundancy is the problem. Note that in
the case of a high α value, we cannot conclude that the scale is unidimensional
(i.e., all items measure the same construct), as Ten Berge and Sočan (2004) show.
Dimensionality assessment will be discussed in Sect. 4.1.2 within the context of
item response models.

Cronbach’s α became the biggest rock star of all reliability measures and is
still widely applied. However, it has been criticized repeatedly in the literature.
For instance, a thorough discussion on the limited usefulness of α is given in
Sijtmsa (2009). Therefore, the next section presents some alternative coefficients
for reliability assessment.

1.2.2 Other Reliability Coefficients

Sijtmsa (2009) advocates a reliability measure called the greatest lower bound
(glb; Jackson and Agunwamba, 1977). Cronbach’s α is a reasonable lower bound
for reliability if the items in a test are essentially τ -equivalent. This implies that
each item measures the same latent variable but with possibly different degrees of
precision and that the inter-item covariances are constant across item pairs (see
Graham, 2006, for details). This is not a very realistic assumption in practice.
If violated, α underestimates the reliability, whereas the glb provides a better
reliability approximation. It holds that glb ≥ α.

In our hybrid motivation example, we can compute the glb using the following
function call:

glb(HybMotivation)

We get a glb of 0.89 which, as expected, is larger than Cronbach’s α from above.
Other coefficients for reliability assessment are McDonald’s ωt and ωh (McDon-

ald, 1999; Revelle and Zinbarg, 2009). Their computation is based on factor analysis
which we will discuss in Chap. 2. The ωh coefficient gives the proportion of variance
in observed scores accounted for by a single general factor (i.e., a single latent
variable). Note that the general factor concept is weaker than unidimensionality:
it tells us whether our scale has a dominating single factor and, possibly, some
additional, “weaker” subfactors. The ωt does not care too much about the general
factor issue. Rather, it represents the proportion of test variance due to all common
factors. Details on their computation can be found in Revelle and Zinbarg (2009).

1.3 Generalizability Theory 7

Using our hybrid motivation example we can apply the following psych function
call to estimate these ω-coefficients:

omega(HybMotivation)

We get an ωt of 0.85 which is close to Cronbach’s α. Note that in case of
unidimensionality ωt = α. For ωh we get a value 0.58 which tells us that 58%
of the variance in observed scores is due to the general factor and the remaining
portion is due to possible subfactors of hybrid motivation. As Revelle (2015) points
out, ωh is particularly relevant when evaluating the importance and reliability of the
general factor of a test. Its upper limit is not 1 (as opposed to ωt).

Other reliability measures are Guttman’s λ-coefficients (where λ3 = α). They
can be computed using the guttman function in psych. Other helpful R packages
within this context are CTT (Willse, 2014) and psychometric (Fletcher, 2010).
The cocron package (Diedenhofen, 2016) offers functions to statistically compare
two or more α coefficients based on either dependent or independent groups of
individuals. The CMC package (Cameletti and Caviezel, 2012) calculates and
plots the Cronbach-Mesbach curve, a method based on Cronbach’s α for checking
unidimensionality.

This concludes our introductory elaborations on CTT and reliability. More
comprehensive treatments can be found in the following publications. An excellent,
nontechnical introduction to this topic is presented in Coaley (2014); more technical
beef is given in Crocker and Algina (1986), Algina and Penfield (2009), and Revelle
(2015), the latter showing additional options implemented in psych.

1.3 Generalizability Theory

The classical true score model in Eq. (1.1) has only one source of error: E. Cronbach
(1972) extended the reliability concept by combining the true score model with
ANOVA techniques in order to account for multiple sources of measurement
errors. This framework is called generalizability theory (G-theory). In G-theory
slang, these multiple error sources are called facets. Examples of facets are items,
raters, measurement occasions, etc. Excellent G-theory introductions within a
psychological context can be found in Hoyt and Melby (1999) and Lakes and Hoyt
(2009). The G-theory bible is Brennan (2001). Shavelson and Webb (1991) provide
a more lightweight introduction to the topic.

8 1 Classical Test Theory

1.3.1 Reliability and Generalizability

We start our elaborations with a single facet example using the motivation data
from above. Note that the following explanations are designed to illustrate basic G-
theory concepts based on classical reliability and ANOVA. We will show alternative
ways to compute Cronbach’s α and introduce the idea of variance components. In
practice, G-theory is applied to multiple facets, as shown in Sect. 1.3.2. The true
score concept from CTT is replaced by the notion of the universe score.

In Sect. 1.2.1, using the hybrid motivation data, we obtained a Cronbach’s α

of 0.82. This coefficient can be also computed through ANOVA (see Algina and
Penfield, 2009, p. 101) with main effects for persons and items. Before fitting the
fixed-effects ANOVA, we need to convert the data into a long format.

library("reshape2")
Hyb1 <- data.frame(HybMotivation,

person = 1:nrow(HybMotivation))
Hyblong <- melt(Hyb1, id.vars = c("person"),

variable.name = "item")
Hyblong$person <- as.factor(Hyblong$person)
summary(aov(value ~ person + item, data = Hyblong))
Df Sum Sq Mean Sq F value Pr(>F)
person 776 663.0 0.85 5.549 <2e-16 ***
item 18 573.8 31.88 207.048 <2e-16 ***
Residuals 13968 2150.5 0.15

An approximation of Cronbach’s α can be obtained via the person mean squares
MSp and residual mean squares MSe: (MSp − MSe)/MSp.

round((0.85-0.15)/0.85, 2)
[1] 0.82

Note such an ANOVA strategy is also pursued when computing the intraclass
correlation coefficient (ICC; Shrout and Fleiss, 1979), often applied in the medical
area to determine the reliability of ratings (e.g., participants being rated by judges).
In our hybrid motivation example, the items play the role of raters. The following
function from the psych package computes a sequence of ICCs2:

icchyb <- ICC(HybMotivation)

2Details on different types of ICCs can be found in Shrout and Fleiss (1979).

1.3 Generalizability Theory 9

For our purposes ICC(3, k) = 0.82 is the relevant one (average fixed raters).
We see that in our simple one-facet example, the ICC is the same as Cronbach’s α.

Instead of computing a fixed-effects ANOVA, we can also fit a random-
effects ANOVA which gives us variance components. As we will see, variance
components play a crucial role in G-theory. They can be derived from the fixed-
effects computation involving the mean squares (persons p, items i, residuals e)
according to σ 2

p = (MSp − MSe)/ni and σ 2
i = (MSi − MSe)/np, with ni and np

as the number of items and persons, respectively. Expressed as standard deviations,
they are

sqrt((0.85-0.15)/19)
[1] 0.191943
sqrt((31.88-0.15)/777)
[1] 0.2020806

A more efficient way is to compute them directly through a random-effects
ANOVA using the lme4 package (Bates et al., 2015):

library("lme4")
VarCorr(lmer(value ~ (1|person) + (1|item), data = Hyblong))
Groups Name Std.Dev.
person (Intercept) 0.19200
item (Intercept) 0.20206
Residual 0.39238

In G-theory we use these variance components to compute the generalizability
coefficient. Formal expressions are given further below. For the moment it is only
important to know that the generalizability coefficient is a reliability coefficient
which, in our simple one-facet example, is equivalent to Cronbach’s α. We can
use the gtheory package (Moore, 2016) which performs the lme4 call from above
internally, and, based on these results, it computes the generalizability coefficient.

library("gtheory")
gfit <- gstudy(data = Hyblong,

formula = value ~ (1|person) + (1|item))
dfit <- dstudy(gfit, colname.objects = "person",

colname.scores = "value", data = Hyblong)
round(dfit$generalizability, 3)
[1] 0.82

10 1 Classical Test Theory

We see that once more we obtained Cronbach’s α. Now let us move on with
multiple facets and explain in more detail what the last code chunk is actually doing.

1.3.2 Multiple Sources of Error

In the computations above, the items were the only facet since persons are typically
not considered as facets. G-theory can be seen as an extension of both ICC (which
in its classical definition has a single rater facet only) and CTT, involving multiple
sources of errors by using random-effects ANOVA techniques.

The dataset we use to illustrate a multi-facet G-theory application is taken from
Lakes and Hoyt (2009). The authors used the RCS (response to challenge scale; see
Lakes and Hoyt, 2004; Lakes, 2012) in order to assess children’s self-regulation in
response to a physically challenging situation. The scale consists of three domains:
cognitive, affective/motivational, and physical.

Here we focus on the physical domain only. Each of the 194 children in the
sample is rated by five raters on three items on his/her self-regulatory ability. The
ratings are on a scale from 1 to 7. Let us start with the data preparation:

data("Lakes")
phydat <- subset(Lakes, subtest == "physical")
phydat$item <- droplevels(phydat$item)
head(phydat)
personID raterID item score subtest
12611 1 7 phy1 5 physical
12612 1 1 phy1 5 physical
12613 1 3 phy1 5 physical
12614 1 8 phy1 4 physical
12615 1 5 phy1 6 physical
12616 2 3 phy1 5 physical

We consider two facets: items and raters. Note that in case of multiple measure-
ment occasions, time could be included as third facet.

The starting point of a generalizability analysis is to conduct a so-called G-study.
This implies that we fit a random-effects ANOVA model of the form:

Xpir = μ + νp + νi + νr + νpi + νpr + νir + νpir,e. (1.6)

The indices are p for the persons, i for the items, and r for the raters. The grand
population mean is μ; the remaining ν-parameters are the main and interaction
effects. Note that the last effect is actually a residual effect involving the three-
way interaction and all other sources of error not captured by the specification. The
gstudy function in the gtheory package fits a random-effects ANOVA (via lme4)

1.3 Generalizability Theory 11

and extracts the variance components. Based on Eq. (1.6), the total variance can be
decomposed as follows (see Shavelson and Webb, 1991):

σ 2(Xpir) = σ 2
p + σ 2

i + σ 2
r + σ 2

pi + σ 2
pr + σ 2

ir + σ 2
pir,e. (1.7)

Here, σ 2
p indicates how much the children differ in their self-regulation; σ 2

i shows

how homogeneous the items are; σ 2
r tells us whether some raters are more lenient

than others in their scoring; σ 2
pi denotes relative differences in relative self-

regulation across items, averaged over raters; σ 2
pr denotes the relative differences

self-regulation across raters, averaged over raters; σ 2
ir shows the inconsistency of

raters’ average ratings of children from one item to the next; σ 2
pir,e captures the

three-way interaction plus error (i.e., the systematic variation due to sources not
controlled for in this design and unsystematic variation due to sources that cannot
be controlled). We get the following result:

formula <- score ~ (1|personID) + (1|raterID) + (1|item) +
(1|personID:raterID) + (1|personID:item) + (1|raterID:item)

gfit <- gstudy(formula = formula, data = phydat)
gfit
$components
source var percent n
1 personID:raterID 0.12729986 10.7 1
2 personID:item 0.15122340 12.7 1
3 personID 0.45876447 38.5 1
4 raterID:item 0.00880244 0.7 1
5 raterID 0.13906434 11.7 1
6 item 0.03339230 2.8 1
7 Residual 0.27270445 22.9 1
##
attr(,"class")
[1] "gstudy" "list"

We see that most of the variance in the data is explained by the differences in
the children (σ̂p) and that there is some amount of unexplained variance left. This
concludes the G-study.

The second part of a G-theory analysis consists of a D-study. According to
Shavelson and Webb (1991, p.12), the purpose of a G-study is to anticipate the
multiple uses of a measurement and to provide as much information as possible
about the sources of variation in the measurement. A D-study makes use of the
information provided by the G-study to design the best possible application of
the measurement. For instance, we might be interested in whether fewer raters
are sufficient or more raters are needed or whether fewer items are sufficient or
more items are needed. Thus, a D-study helps us to set up a final design for our
measurement tasks.

12 1 Classical Test Theory

Let nr denote the number of raters and ni the number of items. We first print out
the D-study variance components. These variance components are for person mean
scores over three items and five raters and result from dividing the G-study variance
components by the corresponding n (last column; ni = 3, nr = 5, nrni = 15; see,
e.g., Brennan, 2001, p. 11):

dfit <- dstudy(gfit, colname.objects = "personID",
colname.scores = "score", data = phydat)

dfit$components
source var percent n
1 personID:raterID 0.0254599720 4.3 5
2 personID:item 0.0504077998 8.5 3
3 personID 0.4587644723 77.4 1
4 raterID:item 0.0005868294 0.1 15
5 raterID 0.0278128690 4.7 5
6 item 0.0111307655 1.9 3
7 Residual 0.0181802970 3.1 15

In this example we used the same nr and ni as in the G-study; this is not necessary
however.3 Based on these new variances, we can compute various measures. First,
we focus on the error variance. The absolute error variance is simply the difference
between a person’s observed and universe scores, that is, the sum of all the variance
components except the one for the persons:

σ 2(Δ) = σ 2
i + σ 2

r + σ 2
pi + σ 2

pr + σ 2
ir + σ 2

pir,e. (1.8)

dfit$var.error.abs
[1] 0.1335785

The square root of σ 2(Δ) is interpretable as an absolute standard error of
measurement, which can be used to construct a confidence interval (CI) for the
observed scores:

dfit$sem.abs
[1] 0.365484

3At the point this book was written, the package did not provide options to specify different n’s
explicitly.

1.3 Generalizability Theory 13

If this standard error is too large for our purposes, we can change ni and nr

accordingly in order to get a smaller CI. The relative error variance is defined as
the difference between a person’s observed deviation score and the universe score.
Equation (1.8) simplifies to

σ 2(δ) = σ 2
i + σ 2

r + σ 2
ir . (1.9)

The square root of σ 2(δ) is the relative standard error of measurement.

dfit$var.error.rel
[1] 0.09404807
dfit$sem.rel
[1] 0.3066726

At this point we are able to compute the following two important coefficients.
Both are based on the variance of universe scores (which in this design is simply
σ 2

p). The first one is called dependability coefficient and involves the absolute error
variance:

Φ = σ 2
p

σ 2
p + σ 2(Δ)

. (1.10)

dfit$dependability
[1] 0.7744912

The second one is the generalizability coefficient which involves the relative error
variance:

ρ2 = σ 2
p

σ 2
p + σ 2(δ)

. (1.11)

dfit$generalizability
[1] 0.8298735

We see that both equations are strikingly similar to the reliability formulation
in Eq. (1.2). The main difference is that the error variance is more complex.
Equation (1.10) is based on the absolute error variance, whereas Eq. (1.11) is based
on the relative error variance. Φ can be used if it makes sense to interpret the
observed scores in an absolute way. In general, more attention is paid to ρ2: it is the

14 1 Classical Test Theory

analogue of a reliability coefficient in CTT. In our application, the generalizability
coefficient is fairly high. In the D-study, it can be examined how it would change if
we would have, for instance, fewer raters. Conversely, if ρ2 is too low, the user can
study how it can be increased by modifying ni and nr . Corresponding examples can
be found in Brennan (2001, Chapter 4).

In this section we just scratched on the surface of G-theory using a fully crossed
two-facet design. Extensions include three or more facets, hierarchical designs (e.g.,
raters are nested within items), and multivariate G-theory by defining strata (e.g.,
for multiple subtests). In order to compute such extensions using gtheory, all that
needs to be changed is the lme4 formula specification. Detailed descriptions of these
extensions can be found in Brennan (2001).

References

Algina, J., & Penfield, R. D. (2009). Classical test theory. In: R. E. Millsap & A. Maydeu-Olivares
(Eds.), The sage handbook of quantitative methods in psychology (pp. 93–122). Thousand
Oaks: Sage.

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using
lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01.

Brennan, R. L. (2001). Generalizability theory. New York: Springer.
Cameletti, M., & Caviezel, V. (2012). CMC: Cronbach-Mesbah curve. R package version 1.0.

https://CRAN.R-project.org/package=CMC
Coaley, K. (2014). An introduction to psychological assessment & psychometrics (2nd ed.).

London: Sage.
Crocker, L. M., & Algina, J. (1986). Introduction to modern and classical test theory. Belmont:

Wadsworth Group/Thomson Learning.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16,

297–334.
Cronbach, L. J. (1972). The dependability of behavioral measurements. New York: Wiley.
Diedenhofen, B. (2016). cocron: Statistical comparisons of two or more alpha coefficients. R

package version 1.0-1. https://CRAN.R-project.org/package=cocron
Fletcher, T. D. (2010). psychometric: Applied psychometric theory. R package version 2.2. https://

CRAN.R-project.org/package=psychometric
Graham, J. M. (2006). Congeneric and (essentially) tau-equivalent estimates of score reliability:

What they are and how to use them. Educational and Psychological Measurement, 66,
930–944.

Hoyt, W. T., & Melby, J. N. (1999). Dependability of measurement in counseling psychology: An
introduction to generalizability theory. The Counseling Psychologist, 27, 325–352.

Jackson, P., & Agunwamba, C. (1977). Lower bounds for the reliability of the total score on a test
composed of nonhomogeneous items: I: Algebraic lower bounds. Psychometrika, 42, 567–578.

Lakes, K. D. (2012). The response to challenge scale (RCS): The development and construct
validity of an observer-rated measure of children’s self-regulation. The International Journal
of Educational and Psychological Assessment, 10, 83–96.

Lakes, K. D., & Hoyt, W. T. (2004). Promoting self-regulation through school-based martial arts
training. Journal of Applied Developmental Psychology, 25, 283–302.

Lakes, K. D., & Hoyt, W. T. (2009). Applications of generalizability theory to clinical child
and adolescent psychology research. Journal of Clinical Child & Adolescent Psychology, 38,
144–165.

https://doi.org/10.18637/jss.v067.i01
https://CRAN.R-project.org/package=CMC
https://CRAN.R-project.org/package=cocron
https://CRAN.R-project.org/package=psychometric
https://CRAN.R-project.org/package=psychometric

References 15

Mair, P., Hofmann, E., Gruber, K., Zeileis, A., & Hornik, K. (2015). Motivation, values, and
work design as drivers of participation in the R open source project for statistical computing.
Proceedings of the National Academy of Sciences of the United States of America, 112, 14788–
14792.

McDonald, R. P. (1999). Test theory: A unified treatment. Hillsdale: Erlbaum.
Moore, C. T. (2016). gtheory: Apply generalizability theory with R. R package version 0.1.2.

https://CRAN.R-project.org/package=gtheory
Revelle, W. (2015). An introduction to psychometric theory with applications in R. Freely available

online, http://www.personality-project.org/r/book/
Revelle, W. (2017). psych: Procedures for psychological, psychometric, and personality research.

R package version 1.7.8. http://CRAN.R-project.org/package=psych
Revelle, W., & Zinbarg, R. E. (2009). Coefficients alpha, beta, omega, and the glb: Comments on

Sijtsma. Psychometrika, 74, 145–154.
Shavelson, R. J., & Webb, N. M. (1991). Generalizability theory: A primer. Newbury Park: Sage.
Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability.

Psychological Bulletin, 86, 420–428.
Sijtmsa, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha.

Psychometrika, 74, 107–120.
Streiner, D. L. (2003). Starting at the beginning: An introduction to coefficient alpha and internal

consistency. Journal of Personality Assessment, 80, 99–103.
Ten Berge, J. M. F., & Sočan, G. (2004). The greatest lower bound to the reliability of a test and

the hypothesis of unidimensionality. Psychometrika, 69, 613–625.
Willse, J. T. (2014). CTT: Classical test theory functions. R package version 2.1. https://CRAN.

R-project.org/package=CTT

https://CRAN.R-project.org/package=gtheory
http://www.personality-project.org/r/book/
http://CRAN.R-project.org/package=psych
https://CRAN.R-project.org/package=CTT
https://CRAN.R-project.org/package=CTT

Chapter 2
Factor Analysis

2.1 Correlation Coefficients

Before we dive into factor analytic techniques, it is worthwhile to have a closer look
at correlation coefficients, since the techniques presented in the next two chapters
are based on input correlations or covariances. The most well-known correlation
coefficient is, of course, the Pearson product-moment correlation. Let x and y be
two metric variables in a dataset (i = 1, . . . , n observations in total).

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)
√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
. (2.1)

The formula divides the covariance between x and y by the product of the standard
deviations such that the correlation coefficient is normalized to a [−1, 1] interval.
It is important to point out that the Pearson correlation is suited for two metric
variables, accounts for bivariate linear relationships only, and does not allow us to
make any causal statements.

Another classical correlation coefficient is the Spearman correlation, which
simply applies Pearson’s formula to the ranks of the data. Thus, it takes the data
on an ordinal scale level and is able to detect monotone relationships between
x and y. There should not be too many ties in the data when using Spearman
correlation. Other versions of Pearson’s correlation formula include the point
biserial correlation (one variable dichotomous, one variable metric) and the φ-
coefficient (both variables dichotomous).

In psychology, we often have to deal with ordinal data, being it at a dichotomous
level (0/1 values) as well as at a polytomous level (e.g., Likert scales). Several
correlation-based latent variable methods such as structural equation models or
some variants of factor analysis are based on a (multivariate) normality assumption

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_2&domain=pdf
https://doi.org/10.1007/978-3-319-93177-7_2

18 2 Factor Analysis

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Depression Item

θ

de
ns

ity

τ

Fig. 2.1 Threshold visualization for a single dichotomous item measuring depression

on the input data. Assuming normality makes sense for metric variables only; for
ordinal variables the normal distribution is conceptually the wrong distribution.

We can apply a little trick, however, by assuming that an ordinal response
is generated by an underlying normal distribution. Let us consider the following
simple example. We have a single dichotomous item which is supposed to measure
the latent variable “depression.” Depression is on a metric continuum denoted
by θ , ranging from (in theory) −∞ (infinitely non-depressed) to ∞ (infinitely
depressed). We assume a normal distribution for this latent variable. Highly
depressed individuals will score 1 on this item, whereas individuals with weak or no
depression will score 0. We can imagine the item being a rater that separates highly
depressed from weakly depressed persons. The question arising at this point is:
What is the cut point (i.e., a threshold τ) for the depression degree, above which an
individual scores 1 on this item and below which an individual scores 0. Figure 2.1
illustrates this setup for a fixed τ .

Since correlation coefficients are based on two input variables, let us extend this
setup to two items, both measuring depression. The two items switch from 0 to 1 at
two different degrees of depression τ1 and τ2. If we look at this problem jointly, we
look at a bivariate normal distribution. Figure 2.2 illustrates this concept. Our two
items slice the distribution into four quadrants.

2.1 Correlation Coefficients 19

τ1

τ2

−4 −2 0 2 4

θ1
−4

−2
0

2
4

θ 2

τ1

τ 2

Fig. 2.2 Tetrachoric correlation involving two dichotomous items. The shaded area to the upper
right reflects X1 > τ1 and X2 > τ2

Let us use a real-life dataset from Vaughn-Coaxum et al. (2016) who used the
children’s depression inventory (CDI) that rates the severity of symptoms related
to depression children and adolescents. We pick two items: “I am sad all the time”
(item 1) and “I look ugly” (item 2). The items are on a three-point scale with values
0, 1, and 2. For simplicity, we dichotomize the items by merging categories 1 and
2 into a single category. The following code chunk performs the data manipulation
and organizes the scores as 2 × 2 table.

library("MPsychoR")
data("YouthDep")
item1 <- YouthDep[, 1]
levels(item1) <- c("0", "1", "1")
item2 <- YouthDep[, 14]
levels(item2) <- c("0", "1", "1")

(continued)

20 2 Factor Analysis

table(item1, item2)
item2
item1 0 1
0 1353 656
1 115 166

We see that item 2 switches to a score of 1 at a lower part of the depression
continuum, compared to item 1. For instance, someone with a moderate depression
may score 1 on item 2 but 0 on item 1. Thus, ultimately, τ2 should be lower than τ1.

A correlation coefficient suited for dichotomous data and based on this under-
lying normal strategy is the tetrachoric correlation. It gives us a single number
describing the degree of dependence in the table above with the extreme values of 1
if the off-diagonals are 0 and −1 if the diagonals are 0. In addition, we get estimates
for the thresholds τ1 and τ2. In order to compute the tetrachoric correlation, we can
use the corresponding function from the psych package (Revelle, 2017).

library("psych")
tetcor <- tetrachoric(cbind(item1, item2))
tetcor
Call: tetrachoric(x = cbind(item1, item2))
tetrachoric correlation
item1 item2
item1 1.00
item2 0.35 1.00
##
with tau of
item1 item2
1.16 0.36

We get a tetrachoric correlation coefficient of 0.35, and the threshold parameters
are τ1 = 1.162 and τ2 = 0.361. Details on the computation of a tetrachoric
correlation are given in Kirk (1973). The draw.tetra() function in the psych
package provides some helpful illustrations. An approach to test assumptions
underlying tetrachoric correlations is presented in Muthén and Hofacker (1988).

The concept of underlying normal traits as used in tetrachoric correlation for
dichotomous items can be generalized to settings with two polytomous items. In this
case, the coefficient is called polychoric correlation. For each item we get multiple
threshold parameters (number of categories −1). It can be visualized in the same
way as we did in Fig. 2.2. To illustrate, we use the same two items as above; but
this time we keep them on the original three-point scale. Thus, we get two threshold
parameters for each item denoting the switching points for the categories on the
underlying depression trait.

2.1 Correlation Coefficients 21

item1 <- YouthDep[, 1]
item2 <- YouthDep[, 14]
polcor <- polychoric(cbind(item1, item2))
polcor
Call: polychoric(x = cbind(item1, item2))
Polychoric correlations
item1 item2
item1 1.00
item2 0.33 1.00
##
with tau of
1 2
item1 1.16 2.3
item2 0.36 1.2

We get a polychoric correlation coefficient of 0.333 and two threshold parameters
for each item.

Another variant of this correlation concept is the polyserial correlation, where
one of the two variables is metric and the other one is ordinal (see polyserial
function in psych). Similar to tetrachoric correlations, the computation of poly-
choric/polyserial correlations is rather technical. Details can be found in Drasgow
(1986).

A final note concerns two warnings we sometimes get when applying the
functions tetrachoric and polychoric, which we should not blindly ignore.
The first one says that some “cells were adjusted for 0 values using the correction
for continuity.” As we have seen, tetrachoric/polychoric correlations are based
on frequency tables. Sometimes, especially having small samples and/or many
categories, some cells become 0. In such cases a continuity correction is applied
(by default the 0’s are replaced by 0.5; see the correct argument). If there are
many 0’s, the results may become unstable, and different corrections lead to heavily
different results (see Savalei, 2011). Let us look at an example using all the CDI
items of the youth depression dataset:

DepItems <- YouthDep[,1:26]
Depnum <- data.matrix(DepItems) - 1 ## convert to numeric
Rdep <- polychoric(Depnum)
7 cells were adjusted for 0 values using the correction for
continuity. Examine your data carefully.

Note that the dataset is fairly large (n = 2290) and only seven cells were 0. In
such a case, we can assume that the solution is fairly stable.

Note that as the number of response categories increases, one can use the Pearson
correlation instead of polychoric since both correlation coefficients lead to the

22 2 Factor Analysis

same results. A detailed study of this phenomenon within the context of structural
equation models can be found in Rhemtulla et al. (2012). The authors suggest that
in the area of 6, 7, or more categories, differences between Pearson and polychoric
become negligible.

A second warning we can get is that the matrix was not positive definite and that
some smoothing was done. A positive definite matrix is a matrix whose eigenvalues
are positive.1 Correlation matrices have to be positive semidefinite, that is, eigen-
values need to be larger than 0. In the case of tetrachoric/polychoric correlation
computations, we can end up in a situation where one or more eigenvalues are
negative. Here is an example using data taken from Mair et al. (2015) who examined
motivational structures of R package developers. In Sect. 1.2 we used the hybrid
motivation items. Here we use the intrinsic and extrinsic motivation items (17 items
in total) and compute the correlation matrix. Since the items are dichotomous, we
use the tetrachoric correlation.

data("Rmotivation")
vind <- grep("ext|int", colnames(Rmotivation))
Rmotivation1 <- Rmotivation[, vind]
Rmot1 <- tetrachoric(Rmotivation1, smooth = FALSE)
tail(round(eigen(Rmot1$rho)$values, 3))
[1] 0.384 0.268 0.176 0.114 0.062 -0.035

We print out the last six eigenvalues and see that the last eigenvalue is negative.
Thus, this matrix does not fulfill the properties of a correlation matrix. The trick is
now to apply some smoothing on the correlations. The psych package provides the
cor.smooth function which we can evoke in the tetrachoric call by setting
the smooth argument to TRUE (default2).

Rmot <- tetrachoric(Rmotivation1)
tail(round(eigen(Rmot$rho)$values, 3))
[1] 0.383 0.268 0.176 0.114 0.062 0.000

We see that the eigenvalues are all non-negative which implies that we have
obtained a proper correlation matrix. In general, in such situations we have to
consider how many eigenvalues are negative and what their magnitude is. In this
example we only had one eigenvalue slightly below 0, and thus it is fairly safe to
proceed with this smoothed correlation matrix. Details on how the smoothing is
done can be found in the cor.smooth help file.

1Eigenvalues will be introduced in Sect. 6.1.1.
2This call gives a warning that the matrix is not positive definite.

2.2 Exploratory Factor Analysis 23

2.2 Exploratory Factor Analysis

Exploratory factor analysis (EFA) is one of the very classical latent variable tech-
niques. The basic idea is to find latent variables (factors) based on the correlation
structure of the manifest input variables (indicators).

First, EFA needs to be clearly distinguished from confirmatory factor analysis
(CFA; introduced in Sect. 2.4). As we will see, in EFA each indicator loads on
each factor, and the factors are generally uncorrelated. In CFA the user determines
which indicator is associated with which factor, based on an underlying substantive
theory. The factors are generally correlated. Second, we should also distinguish
EFA from principal component analysis (PCA; see Chap. 6), a dimension reduction
technique for metric data. Corresponding differences between the two techniques
will be outlined at the end of Sect. 6.1.2. Third, factor analysis was originally
designed for metric input variables. Having ordinal data, tetrachoric/polychoric
correlations can be used. This strategy is sometimes called the underlying variable
approach since we assume that the ordinal variable comes from an underlying
normal distribution. An alternative, modern way of performing factor analysis on
categorical data that avoids the computation of correlations entirely is called item
factor analysis. This approach will be described in Sect. 4.7 within the context of
item response theory. Further details on relationships between these techniques can
be found in Bartholomew and Knott (1999) and Bartholomew et al. (2008).

2.2.1 EFA Model Formulation and Computation

EFA operates on a multivariate dataset with m manifest variables (indicators). Let
X denote the n × m data matrix, with n being the sample size. In EFA applications,
some sets of variables are typically related to each other and therefore show a
particular correlation structure, captured by an m × m correlation matrix R.

In EFA each set (or block) of variables reflects a latent variable. In other words,
EFA tries to find p latent variables on the basis of the correlation structure of
the m manifest variables. These underlying latent variables influence the manifest
variables. Mathematically, the EFA problem can be formulated as follows:

x1 = λ11ξ1 + λ12ξ2 + · · · + λ1pξp + ε1

x2 = λ21ξ1 + λ22ξ2 + · · · + λ2pξp + ε2

...

xm = λm1ξ1 + λm2ξ2 + · · · + λmpξp + εm (2.2)

This looks suspiciously like a collection of regression equations—which it actually
is but with one problem: the right-hand side of the equation is fully unknown. It

24 2 Factor Analysis

also shows similarities with the true score model in Eq. (1.1). While G-theory (see
Sect. 1.3) is concerned with a complex error structure, factor analysis deals with a
more complex latent variable (i.e., true score) structure.

On the left-hand side of Eq. (2.2), we have our indicators x1, . . . , xm. The ξ ’s on
the right-hand side are the factors. They are sometimes also called common factors
since they influence all our manifest variables. The λ’s determine how strong the
influence of each common factor on the respective manifest variable is. They are
typically referred to as factor loadings. The ε’s are the unique factors since each
manifest variable gets its own unique ε. The number of factors p is typically much
smaller than m. Using matrix notation, Eq. (2.2) becomes

x = Λξ + ε. (2.3)

Λ is a m × p matrix of loadings, and x and ξ are random vectors of length
m containing indicators and the factors. In this form, since there are so many
unknowns, the model is indeterminate (i.e., we cannot estimate it in a simple way).

However, the problem can be reformulated using either the model variance-
covariance (VC) matrix or the correlation matrix (see, e.g., MacCallum, 2009). Here
we show the equation for the model correlation matrix:

P = ΛΦΛ′ + Ψ , (2.4)

which is the fundamental equation in factor analysis. P is the m×m implied model
correlation matrix, Ψ is an m × m diagonal matrix containing the unique factor
variances, and Φ is the correlation matrix of the factors. If we assume that the factors
are independent from each other, Φ is an identity matrix and Eq. (2.4) simplifies to

P = ΛΛ′ + Ψ . (2.5)

We see that the variances of the manifest variables are partitioned into a portion
accounted for by the common factor effects (i.e., ΛΛ′ called communalities) and a
portion accounted for by the unique factors given in Ψ .

To summarize, the two main constituents of factor analysis are the loadings and
the communalities; both of them are unknown. The problem is that in order to
estimate the communalities, we need the loadings. Conversely, in order to estimate
the loadings, we need the communalities. In EFA, this dilemma is referred to as
the communality problem. Over the years several estimation approaches have been
proposed in order to be able to fit the EFA model. The most relevant ones are
maximum likelihood (ML) and least squares approaches that minimize various
versions of residuals.3 Differences among these methods are described in Revelle
(2015). Regardless which algorithm we use (unless we do it in a Bayesian way as
presented in Sect. 2.3), we need to fix the number of factors p a priori.

3In EFA, residuals are defined by (R − P̂), where R is the sample correlation matrix and P̂ the
estimated model correlation matrix.

2.2 Exploratory Factor Analysis 25

R has a basic EFA implementation by means of the function factanal that
uses ML. ML assumes that the data are multivariate normally distributed. The psych
package offers a more comprehensive implementation (fa function) which we will
use throughout this chapter. To illustrate, let us use the tetrachoric correlation matrix
from Sect. 2.1 on the intrinsic/extrinsic motivation items from Mair et al. (2015) and
fit an EFA. We fix the number of factors to p = 2, use ML estimation, and print out
the loadings matrix Λ. Note that we blank out loadings <0.2 while keeping in mind
that each indicator gets a loading on each factor according to Eq. (2.2).

motFA <- fa(Rmot$rho, nfactors = 2, rotate = "none", fm = "ml")
print(motFA$loadings, cutoff = 0.2)
##
Loadings:
ML1 ML2
ext1 0.282
ext2 0.218
ext3 0.288
ext4 0.237 0.626
ext5
ext6
ext7 0.306 0.430
ext8 0.909
ext9 0.361 0.430
ext10 0.593
ext11 0.582
ext12 0.765
int1 0.817
int2 0.721
int3 0.804
int4 0.736
int5 0.881
##
ML1 ML2
SS loadings 3.667 3.105
Proportion Var 0.216 0.183
Cumulative Var 0.216 0.398

Note that the fa function takes as input either a correlation matrix or the raw
data. By providing the raw data, the type of correlation can be specified via the cor
argument. The communalities can be extracted as follows:

round(motFA$communality, 2)
ext1 ext2 ext3 ext4 ext5 ext6 ext7 ext8 ext9 ext10
0.11 0.08 0.09 0.45 0.00 0.00 0.28 0.83 0.31 0.37
ext11 ext12 int1 int2 int3 int4 int5
0.37 0.61 0.70 0.54 0.68 0.55 0.80

26 2 Factor Analysis

These communalities are simply the sum of the squared loadings and represent
the proportion of variance (i.e., squared multiple correlations) explained by the
common factors. The intrinsic items have fairly high communalities (the higher,
the better), whereas some of the extrinsic items have low values. In order to fully
interpret the solution, there are still two more aspects that need to be addressed:
factor rotation and how to determine the number of factors.

2.2.2 Factor Rotation and Interpretation

After fitting an EFA, we typically want to interpret (i.e., label or name) the factors
based on the loading patterns. By looking at the loadings matrix in the example
above, we see, for instance, that the intrinsic motivation items load highly on factor
1. Their loadings on the second factor are small. Thus, factor 1 can be interpreted as
“intrinsic motivation.” However, in order to get an even clearer picture, in EFA we
typically apply a rotation on the loadings matrix. Such a rotation does not change
the fit of the model; it is only done for interpretation purposes by transforming the
loadings. We distinguish between two basic types of rotations: orthogonal and non-
orthogonal rotation.4

Let us start with orthogonal rotation techniques. Using linear algebra, rotations
are achieved by multiplying a matrix with a rotation matrix T. In EFA geometry, the
loadings represent vector coordinates. Thus, a rotation is carried out on the basis of
the estimated m × p loadings matrix Λ̂:

Λ̂r = Λ̂T. (2.6)

Λ̂r is the m × p matrix of rotated loadings, and T is the p × p rotation matrix.
In orthogonal rotation we impose the following restriction on the rotation matrix:
TT′ = I with I as identity matrix. This keeps the orthogonal factor structure intact,
and the fundamental equation from Eq. (2.5) holds:

P̂ = Λ̂rΛ̂
′
r + Ψ̂ = Λ̂Λ̂

′ + Ψ̂ , (2.7)

Thus, the loadings are altered but the fit remains unchanged.
Still, we need to find T. This problem was successfully solved by Kaiser (1958)

who found T by maximizing the sum of the variances of the squared factor loadings
on the separate factors. This strategy is called varimax rotation and is the most
popular orthogonal rotation technique. Alternatives are quartimax (should be used
if a researcher suspects a single dominating general factor), and equimax as a

4An overview of rotation techniques and corresponding comparisons can be found in Browne
(2001).

2.2 Exploratory Factor Analysis 27

compromise between varimax and quartimax. Let us apply a varimax rotation on
the motivation EFA solution from above:

motFA2 <- fa(Rmot$rho, nfactors = 2, rotate = "varimax",
fm = "ml")

Since this is a two-dimensional solution, we can represent the loadings by
means of a 2D loadings plot. Figure 2.3 shows the effect of the rotation which,
in this example, was only minor. This is due to the fact that the unrotated solution
already gave us a fairly good loadings picture. Note that the communalities remain
unchanged with respect to the unrotated solution. We see that the items with low
communalities are close to the origin and items with high communalities go clearly
into either factor 1 direction or factor 2 direction. In terms of interpretation, it is safe
to name factor 1 as “intrinsic motivation” and factor 2 as “extrinsic motivation.” The
two factors are independent from each other.

For p > 2, a loadings plot matrix can be obtained using the factor.plot
function in psych. Alternatively, we can look at the loadings matrix and look for
corresponding loading patterns in order to achieve a reasonable factor interpretation.

Let us proceed with non-orthogonal rotation which abandons the TT′ = I
restriction. As a consequence, the factors are not independent from each other
anymore. Such rotations are also called oblique rotations. Popular oblique rotation
approaches are oblimin and promax (Hendrickson and White, 1964). In practice,
EFA with oblique rotation is often used prior to a CFA in order to explore whether
the underlying latent structure theory is reflected by the data. Most often, theories
do not assume that the underlying factors are independent. In such cases non-
orthogonal rotation is a very attractive instrument.

We consider once more the R motivation example from above. In addition to
extrinsic and intrinsic motivation items, we include the items on hybrid motivation
and fit a three-factor solution. It would not be wise to assume independence between
the three factors since we can expect that hybrid motivation is not completely
independent from neither intrinsic nor extrinsic motivation.

Rmot2 <- tetrachoric(Rmotivation[,1:36])
motFA3 <- fa(Rmot2$rho, nfactors = 3, rotate = "oblimin",

fm = "ml")
motFA3$loadings

From the loadings matrix (not shown here), we see that the first factor can be
interpreted as intrinsic motivation, the second factor as extrinsic motivation, and the
third factor as hybrid motivation. Note that some of the hybrid motivation items have

28 2 Factor Analysis

0.0 0.5 1.0

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Loadings Plot

Factor 1

Fa
ct

or
 2 ext1

ext2

ext3

ext4

ext5

ext6

ext7

ext8

ext9

ext10ext11

ext12

int1
int2

int3

int4

int5

ext1
ext2

ext3

ext4

ext5

ext6

ext7

ext8

ext9

ext10ext11

ext12

int1int2 int3

int4
int5

l

l

rotated
unrotated

Fig. 2.3 Unrotated (gray labels) and rotated (black labels) solution for the extrinsic/intrinsic
motivation items

considerably high loadings on factor 1, not so much on factor 2. Since the factors
are correlated, we can also request the factor correlation matrix:

round(motFA3$Phi, 3)
ML1 ML2 ML3
ML1 1.000 0.119 0.505
ML2 0.119 1.000 0.090
ML3 0.505 0.090 1.000

The correlation among the first two factors (intrinsic vs. extrinsic) is quite low.
The third factor (hybrid motivation) shows a fairly high correlation with intrinsic
motivation.

2.2 Exploratory Factor Analysis 29

2.2.3 Factor Scores

Before we discuss how to determine the number of factors, let us have a quick look
at factor scores. Factors represent “new” variables in our dataset. That is, each of the
n individuals gets a score on each of the p factors (called factor score). Unlike PCA,
which estimates the scores directly, in EFA the factor scores are computed post hoc.
The most common approach to obtain factor scores is via a regression approach.
First, a factor score coefficient matrix B̂ is estimated from the sample correlation
and loadings matrix according to

B̂ = R−1Λ̂. (2.8)

This matrix is subsequently subject to a regression fit using the standardized version
of the input data matrix X, here denoted by Z:

F̂ = ZB̂. (2.9)

The n × p matrix F̂ contains the factor scores.
In order to get the factor scores in our example, we need to re-fit the model

using the raw data matrix as input. Note that our data contain some missing values.
The psych package provides some simple imputation mechanisms (here we use the
median). We focus again on the orthogonal (varimax rotated) two-factor solution
involving intrinsic and extrinsic motivation items, for which the factor scores can be
computed as follows:

motFA2 <- fa(Rmotivation1, nfactors = 2, rotate = "varimax",
cor = "tet", fm = "ml", scores = "regression",
missing = TRUE, impute = "median")

dim(motFA2$scores)
[1] 852 2

For each person we get a score on the intrinsic and the extrinsic factor. Care
is advised with using the factor scores for further analyses since the factor scores
are not unique (due to factor indeterminacy, i.e., the factors cannot be determined
exactly from the manifest variables). Details can be found in McDonald and Mulaik
(1979). Other algorithms to compute the factor scores can be specified via the
scores argument.

30 2 Factor Analysis

2.2.4 Determining the Number of Factors

There is one final ingredient missing in our EFA toolbox: How many factors should
we extract? Several statistical criteria for the choice of p have been proposed in the
literature which we will discuss in this section. However, it is important to point out
that we should not rely on a single criterion but rather consider multiple criteria in
conjunction with the interpretability of the solution. We group the criteria as follows:
ad hoc criteria, parallel analysis and very simple structure, and statistical goodness-
of-fit indices. Throughout this section we use the CDI dataset from Vaughn-Coaxum
et al. (2016), introduced in Sect. 2.1. From the theory we can expect a single
depression factor. EFA helps us to assess whether our data are in line with this
single factor theory or whether a multiple-factor solution is needed.

Before fitting an EFA, we can look at some ad hoc criteria. One of them is to
carry out an eigenvalue decomposition of the input correlation matrix. As we will
see in Chap. 6, this means that we are fitting a PCA. An eigenvalue tells us how
much variance is explained by each factor (or component, to be precise). Thus,
the higher an eigenvalue of a particular factor/component, the more variance this
factor/component explains with respect to our original data.

Since we have 26 variables in our CDI dataset, we can extract 26 eigenvalues
from R (polychoric, in our example). Note that eigenvalues are always of decreasing
order. We can plot the number of components on the x-axis and the eigenvalues on
the y-axis. This strategy is called a scree plot (Cattell, 1966) and shown in Fig. 2.4.

Rdep <- polychoric(Depnum)$rho
evals <- eigen(Rdep)$values
scree(Rdep, factors = FALSE)

In this plot we should look at two things. First, we hope to see a clear cut point
which separates the systematic structure (rock) from the random structure (scree).
This point is called the elbow and we retain the number of factors from the elbow to
the left. In our example we have a strongly dominating first factor. Second, Kaiser
(1960) suggests that eigenvalues should be larger than 1. The rationale behind it is
that if a factor is associated with an eigenvalue smaller than 1, it accounts for less
variability than a single variable does. In our example we would retain four factors.
Both rules have been criticized in the literature for subjectivity (elbow criterion) and
overestimation of the factor number (eigenvalues larger 1). Nevertheless, the scree
plot gives us a good first picture of data reduction possibilities.

Note that since eigenvalues tell us how much variance is explained by each factor,
we can easily compute the proportion of explained variance (in %) of, for instance,
the first two factors:

2.2 Exploratory Factor Analysis 31

l

l

l
l l

0 5 10 15 20 25

0
2

4
6

8
10

component number

E
ig

en
 v

al
ue

s
of

 c
om

po
ne

nt
s

Scree plot

Fig. 2.4 Scree plot for CDI data. The horizontal line denotes an eigenvalue of 1

(evals/sum(evals)*100)[1:2]
[1] 41.143134 6.655083

The first factor already explains around 41.1% of the variance in the data, the
second factor additional 6.7%.

A scree plot is also the main output of parallel analysis (Horn, 1965). Parallel
analysis performs a full model fit (i.e., p = m) on the original dataset, on resampled
data (bootstrap) as well as on random, uncorrelated data matrices drawn from a
normal distribution. Based on the eigenvalues, three scree plots are produced as
shown in Fig. 2.5.

set.seed(123)
resPA <- fa.parallel(Depnum, fa = "pc", cor = "poly",fm = "ml")

In parallel analysis, the criterion to be used in order to determine the number of
factors is the following: A factor is considered as “significant” if its eigenvalue is
larger than the 95% quantile (red line) of those obtained from random or resampled
data. In our example we would pick two or three factors. Note that as Revelle (2015,
p. 176) points out, parallel analysis is partially sensitive to sample size in that for
large samples (as in our example), the eigenvalues of random factors will tend to be
very small and thus the number of components or factors will tend to be more than
using other rules.

32 2 Factor Analysis

Another criterion is called very simple structure (VSS; Revelle and Rocklin,
1979) analysis and is based on the following idea (see Revelle, 2015, p. 177). When
it comes to factor interpretation, we often set a cutoff point (e.g., 0.2 as in Sect. 2.2.1
or even higher) for blanking out loadings. That is, we interpret a loadings matrix

0 5 10 15 20 25

0
2

4
6

8
10

Parallel Analysis Scree Plots

Component Number

ei
ge

n
va

lu
es

 o
f p

rin
ci

pa
l c

om
po

ne
nt

s

 PC Actual Data
 PC Simulated Data
 PC Resampled Data

Fig. 2.5 Parallel analysis scree plot: The solid line is simply the scree plot based on observed data
(cf. Fig. 2.4). The red lines reflects the 95% quantiles of the bootstrapped data (resampled; dotted)
and random data (generated from a normal distribution; dashed)

which is much simpler than the one actually fitted. Such simple loadings matrices
are at the core of VSS. VSS fits factor models by varying p systematically. We
define a number c denoting the amount of non-zero loadings of a variable in the
model fit. This is called complexity. For instance, c = 2 means that we only consider
two non-zero loadings per variable. The two largest loadings (absolute values) go
into a loadings matrix Λ̂pc; the remaining elements are 0. Thus, Λ̂pc represents a
simplified version of the original loadings matrix. The corresponding communalities

are Λ̂pcΛ̂
′
pc. How well these communalities approximate our observed correlation

matrix R can be quantified by the residual matrix Spc = R − Λ̂pcΛ̂
′
pc. The VSS

criterion is defined as follows:

V SSpc = 1 − MSSpc

MSR

. (2.10)

The higher this value, the better the simple loadings structure represents our data.
For a given c, V SSpc is computed systematically for varying p with p ≥ c. In our
example we get the following solution:

2.2 Exploratory Factor Analysis 33

resvss <- vss(Rdep, fm = "ml", n.obs = nrow(Depnum), plot = FALSE)
resvss
##
Very Simple Structure
Call: vss(x = Rdep, fm = "ml", n.obs = nrow(Depnum))
VSS complexity 1 achieves a maximimum of 0.9 with 1 factors
VSS complexity 2 achieves a maximimum of 0.92 with 2 factors
##
The Velicer MAP achieves a minimum of 0.01 with 3 factors

By default the vss function prints out the maximum V SS values for c = 1 and
c = 2. For c = 1 it suggests a one-factor solution, whereas for c = 2 a two-factor
solution is a good choice. Note that for c = 2, it is not possible to obtain a one-factor
solution since p cannot be smaller than c.

The last line reports a criterion called minimum average partial (MAP; Velicer,
1976). The basic idea is to partial out the factors/components from the input
correlation matrix R. This leads to a partial correlation matrix R∗ (see Velicer,
1976; Revelle, 2015, for details). The MAP criterion can be computed by the sum-
of-squares of the lower triangular part of R∗. The smaller the partial correlations
(and therefore the sum-of-squares), the smaller the MAP and the better the fit. In
our example, the MAP criterion suggests three factors.

Finally, we look at some parametric goodness-of-fit indices based on the sample
correlation matrix R and the implied (fitted) correlation matrix P̂. The closer these
two matrices are to each other, the better the model fit. The indices presented below
will be especially important in CFA and structural equation modeling (see Chap. 3).
The first criterion is the root mean squared residual (RMSR):

RMSR =
√∑

j

∑
k<j (rjk − r̂jk)2

m(m − 1)/2
(2.11)

Here, rjk denotes a single element in R and r̂jk a single element in P̂. The smaller
the RMSR, the better the fit.

Another useful measure is the root mean squared error of approximation
(RMSEA) which is based on the discrepancy function of the ML estimation (see,
e.g., MacCallum, 2009, for technical details). The classical guidelines for RMSEA
evaluations are given by Browne and Cudeck (1993): values smaller than 0.05
indicate good fit, 0.6–0.8 fair fit, and values larger than 0.10 poor fit. One should also
look at the corresponding confidence interval (CI; typically a 90% CI is reported).

Another popular measure is the Tucker-Lewis index (TLI; Tucker and Lewis,
1973). The idea is again very simple: it compares a worst-case model Q0 (i.e., a
zero-factor model) and a best-case model with our fitted model Qp.

T LIp = Q0 − Qp

Q0 − 1
. (2.12)

34 2 Factor Analysis

T LIp is in the [0, 1] interval; the larger its value the better the fit. Hu and Bentler
(1999) consider values above 0.90 as “good” fit.

Let us fit a one-dimensional solution on our CDI data and print out the indices
covered so far:

fadep <- fa(Depnum, 1, cor = "poly", fm = "ml")
summary(fadep)
The root mean square of the residuals (RMSA) is 0.06
The df corrected root mean square of the residuals is 0.07
##
Tucker Lewis Index of factoring reliability = 0.76
RMSEA index = 0.099
and the 10 % confidence intervals are 0.097 0.101

We see that the TLI is considerably low, and the RMSEA is barely within an
acceptable range.

Other options for determining the number of factors in R are the following. The
psych package offers the convenience function nfactors, which fits a sequence
of EFA models with varying p and prints out several criteria. Below we specify a
maximum of eight factors (output not shown here).

resnf <- nfactors(Depnum, n = 8, fm = "ml", cor = "poly")
resnf

The nFactors package (Raiche and Magis, 2011) offers additional possibilities
for assessing the factor number.

Last but not least, the final criterion is the interpretability. Of course, there
is always some subjectivity involved when it comes to using interpretability as
criterion. In our example we achieve the best interpretability with one factor
since the scale is supposed to measure a single underlying latent variable, that
is, depression. Some of the statistical criteria support this assertion; some others
suggest to extract more factors. At the end it also comes down how strict we want to
be. If we want to construct a scale, we should be strict but then item response theory
is a more attractive modeling framework. If we merely want to explore the factor
structure of a well-established scale, as in our example, we see that the CDI gives a
highly dominating general factor of depression.

2.3 Bayesian Exploratory Factor Analysis 35

2.3 Bayesian Exploratory Factor Analysis

This is the first Bayesian section in this book and at the same time the most difficult
one. It is assumed that the reader has some basic knowledge of Bayesian techniques.
If not, accessible introductory texts are Kruschke (2014) and Kaplan (2014).

Conti et al. (2014) proposed Bayesian version of EFA (BEFA), implemented in
the BayesFM package (Piatek, 2017). Technical BEFA details are beyond the scope
of this book and can be found in the corresponding publication. Here we focus on
applied BEFA aspects, that is, we show how to specify the priors, how to fit a BEFA
in R using a real-life dataset, and how to interpret the results.5

The dataset we use is from Treiblmaier (2006, see also Treiblmaier et al.
2011). It contains items measuring various advantages and disadvantages online
users perceive when providing personal information on the Internet. The items are
based on 25 qualitative interviews and represent opinions of both organizations
and individuals. Advantages of providing personal information online include
support for purchasing decisions, increased satisfaction, targeted communication,
participation in raffles, time savings, and interesting content. Disadvantages include

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ap
c1

ap
c2

ap
c3

ap
c4

ap
c5

ap
c6

dp
c1

dp
c2

dp
c3

dp
c4

apc1

apc2

apc3

apc4

apc5

apc6

dpc1

dpc2

dpc3

dpc4

Fig. 2.6 Correlation structure in the Privacy dataset

unsolicited advertising, excessive data collection, lack of information about data
usage, and decreasing service quality. In this analysis we include six items related

5Thanks to Rémi Piatek and Sylvia Frühwirth-Schnatter for their support with this application.

36 2 Factor Analysis

to advantages of personal communication (variable names starting with apc) and
four items related to disadvantages of personal communication (dpc). Each item
was scored on a slide bar from 1 to 100.

We start the analysis with using the corrplot package (Wei and Simko, 2016)
to display the entire correlation matrix (see Fig. 2.6). Note that for BEFA it is
recommended to standardize the variables.

library("MPsychoR")
library("corrplot")
library("BayesFM")
data("Privacy")
Privstd <- scale(Privacy)
corrplot(cor(Privstd))

The plot shows two separate sets of variables (advantage items vs. disadvantage
items) with high correlations among the items within each set. By having a closer
look, we see that the advantage itemset could potentially be split up into another
two subsets.

BEFA uses the same basic equations as EFA, and it generates correlated factors.
However, the way the problem is technically solved is completely different from
standard EFA since it uses Markov Chain Monte Carlo (MCMC) to get the posterior
distributions of the parameters. Major selling points of this approach are that it
allows the factors to be correlated and that it estimates the number of factors p,
instead of fixing them a priori. In BEFA, the rotation problem is solved by specifying
a dedicated structure for the factor loadings matrix: factors are either associated
with least 2–3 measurements, or not associated with any measurements, in which
case they are discarded from the model (Conti et al., 2014, p. 8).

In order to fit a BEFA in R, we first need to set an upper limit for the number of
factors. This is a necessary identification constraint in the model. To do so we first
need fix the minimum number of manifest variables per factor (here we set it to 2).6

Based on this value, the maximum number of factors can be computed as follows:

Nid <- 2 ## minimum number of variables per factor
pmax <- trunc(ncol(Privstd)/Nid) ## maximum number of factors
pmax
[1] 5

6In their original paper, Conti et al. (2014) use the more restrictive assumption of at least three
manifest variables per active factor, to rule out potential identification problems due to extreme
cases with zero correlation between some factors. With correlated factors, however, the weaker
assumption of two manifest variables per factor is sufficient for identification.

2.3 Bayesian Exploratory Factor Analysis 37

The prior setup in BEFA is a bit tricky. Let us start with the correlation (or
covariance) matrix for which the package uses an inverse Wishart distribution with
parameters ν0 (degrees of freedom) and S0 (scale parameter). The ν0 parameter
is of critical importance since it steers the correlation among the factors. The
larger ν0, the larger the a priori factor correlation, and, consequently, the larger
the number of factors p since factor splitting can occur. In order to determine a
feasible prior distribution for the correlation matrix, we vary ν0 systematically from
6 to 15. We keep S0 at a default value of 1. For each parameter setting, the function
below simulates 10,000 matrices and computes the maximum absolute correlation
and the minimum eigenvalue of each correlation matrix. Each of these measures
summarizes the overall factor correlation structure by a single number.

set.seed(123)
Rsim <- simul.R.prior(pmax, nu0 = pmax + c(1, 2, 5, 7, 10))
plot(Rsim)

In Fig. 2.7 we look for a distribution based on ν0 which bounds the prior suffi-
ciently away from extreme regions (i.e., regions where we run into identifiability
issues). In our example a value of ν0 = 10 leads to a good prior that avoids
extreme cases. If we would pick a ν0 of 6 or 7, most likely we would run into
identifiability issues since these priors allow for multiple highly correlated factors
(factor splitting problem). Picking values in the area of ν0 = 12–15 would imply
low factor correlations. Consequently, the number of factors tends to be lower.

0

1

2

3

0.25 0.50 0.75 1.00
max(|R|)

pr
io

r d
en

si
ty

0

2

4

6

0.0 0.2 0.4 0.6 0.8
min(eigen(R))

pr
io

r d
en

si
ty

nu0 = 10, S0 = 1 nu0 = 12, S0 = 1 nu0 = 15, S0 = 1 nu0 = 6, S0 = 1 nu0 = 7, S0 = 1

correlation matrix of the latent factors

Fig. 2.7 Prior parameterizations for correlation matrix R. Left panel: absolute maximum correla-
tion. Right panel: smallest eigenvalue

38 2 Factor Analysis

Next, we need a prior for the number of factors, since they will be estimated
by the model as well. BEFA uses a Dirichlet prior with concentration parameter κ .
Again, we perform a quick simulation for a fixed sequence of κ-parameters.

Ksim <- simul.nfac.prior(nvar = ncol(Privstd), Nid = Nid,
Kmax = pmax, kappa = c(.1, .2, .5, 1))

plot(Ksim)

Figure 2.8 shows the prior probabilities of the different numbers of factors for
different values of κ (all bars of the same color sum up to 1). We pick a value of
κ = 0.2 in order to put more prior weight on a two-factor solution. Note that we
could also pick κ = 0.5 if we want a three-factor solution to be almost equally
likely than a two-factor solution. Of course, other values between 0.2 and 0.5 can be
examined as well using this simulation function. At the end of the day, it is a matter
of Bayesian taste which value we pick.

Next we need a prior for the probability that a manifest variable does not load on
any factor τ0. The package uses a beta prior with shape parameters κ0 and ξ0. We set
both of them to 0.1, which implies a U-shaped informative prior. That is, we believe
that τ0 is either close to 0 or to 1. The default settings of the befa function are
κ0 = ξ0 = 1, reflecting a uniform prior. The remaining prior parameters we keep at
the uninformative default settings.

Now we are ready to fit the model. We use a burn-in of 5,000 samples and
subsequently draw 50,000 MCMC samples. The last two lines post-process the
solution in terms of restoring the identification of the model and the consistency of
the signs of the factors loadings (see Conti et al., 2014, for details). It is necessary to
perform these two operations after fitting the BEFA model; otherwise the solution
cannot be interpreted.

set.seed(222)
fitbefa <- befa(Privstd, Nid = 2, Kmax = pmax, nu0 = 10,

kappa = 0.2, kappa0 = 0.1, xi0 = 0.1,
burnin = 5000, iter = 50000)

fitbefa <- post.column.switch(fitbefa) ## column reordering
fitbefa <- post.sign.switch(fitbefa) ## sign switching
sumbefa <- summary(fitbefa)

The summary(fitbefa) call gives a detailed output of the results. Let us
first have a look at the number of factors p proposed by the BEFA fit. For p = 3
factors, we get a posterior probability of 0.98. Thus, we have strong evidence that a
three-factor solution fits best.

Using the plot(fitbefa) call, various plots can be produced. Figure 2.9
shows heatmaps for the loadings (those with highest posterior probabilities) and the

2.4 Confirmatory Factor Analysis 39

0.0

0.2

0.4

1 2 3 4 5

number of factors

pr
io

r p
ro

ba
bi

lit
y

kappa = 0.1 kappa = 0.2 kappa = 0.5 kappa = 1

Fig. 2.8 Dirichlet prior parameterizations for number of factors with concentration parameter κ

factor correlations. For the apc variables, we get two factors, moderately correlated
in positive direction. The dpc variables load on a third factor, which has a smaller
negative correlation with the remaining two factors.

The BayesFM package also provides options for the inclusion of covariates into
the factor model. Further details can be found in Conti et al. (2014).

2.4 Confirmatory Factor Analysis

Confirmatory factor analysis (CFA) is conceptually different from EFA. In EFA, the
number of factors is determined in an exploratory manner according to the strategies
presented in Sect. 2.2.4. In addition, each indicator loads on each factor. A CFA is
specified according to an underlying theory concerning the number of factors and a
particular loadings structure. Factors are generally allowed to be correlated. CFA is
often embedded into a larger path modeling framework called structural equation
modeling (SEM) which will be introduced in the next chapter.

40 2 Factor Analysis

0.88

0.83

0.63

0.51

0.74

0.74

0.56

0.54

0.51

0.47dpc4

dpc3

dpc2

dpc1

apc6

apc5

apc4

apc3

apc2

apc1

f1 f2 f3
latent factors (active factors only)

m
an

ife
st

 v
ar

ia
bl

es

0.5

0.6

0.7

0.8

posterior
mean

factor loading matrix

1

0.46

−0.29

0.46

1

−0.21

−0.29

−0.21

1f3

f2

f1

f1 f2 f3
latent factors (active factors only)

−0.25

0.00

0.25

0.50

0.75

1.00

posterior
mean

correlation matrix of the factors

Fig. 2.9 Left panel: Maximum posterior factor loadings. Right panel: Maximum posterior factor
correlation matrix

2.4.1 CFA Model Formulation and Computation

We start with the basic CFA model formulation. Let Y be the n × m data matrix
containing the indicators.7 Represented as random vector y of scores on the m

variables, the CFA model (measurement model) with p factors can be formulated
as follows:

y = Λη + ε, (2.13)

with Λ as the m × p matrix containing the loadings, η as the p × 1 latent variable
vector, and ε as the m × 1 vector of errors associated with the latent variables.

The implied covariance matrix is expressed through the fundamental equation
in factor analysis (cf. Eq. (2.4) where we expressed it in terms of the correlation
matrix)8:

Σ = ΛΨ Λ′ + Θ, (2.14)

7We switch the notation for the input data (Y instead of X) in order to be consistent with the
standard SEM model formulation presented in the next chapter.
8Note that compared to Eq. (2.4) we slightly change the notation (i.e., Ψ instead of Φ, and Θ

instead of Ψ) in order to be consistent with the names of the output objects in the lavaan package
(Rosseel, 2012), which is used throughout this chapter.

2.4 Confirmatory Factor Analysis 41

with Ψ as the p×p latent variable covariance matrix and Θ as the m×m covariance
matrix of the errors. In general we assume multivariate normally distributed errors
ε ∼ N(0,Θ).

EFA and CFA are mathematically very similar, since we have the same funda-
mental equation in both cases. In EFA we assumed uncorrelated factors by setting
Ψ = I. In CFA we do not include such a restriction since we typically allow for
correlated factors. By hypothesizing which indicators load on which factor(s), we
put restrictions on the loadings matrix Λ: the elements related to indicators that do
not load on a particular factor are set to 0.

Several estimation approaches have been developed in the CFA/SEM literature.
Most software implementations use maximum likelihood (ML) by default, which
assumes multivariate normality of the manifest variables, an assumption often not
fulfilled in practice. In such cases robust ML approaches can be used. A detailed
discussion on normality assumptions in CFA/SEM can be found in Finney and
DiStefano (2013).

As a first, simple CFA example, we use the R motivation dataset (Mair et al.,
2015) from Sect. 2.2.1. We focus on intrinsic and extrinsic motivation items pre-
sented to R package developers. We use tetrachoric correlations since the indicators
are binary. When we fitted an EFA on these data, each item loaded on each factor.
Here we force the intrinsic items (according to an underlying theory on motivation)
to load on one factor (“intrinsic motivation”) and the extrinsic items to load on a
second factor (“extrinsic motivation”). The two factors are allowed to be correlated.

In lavaan, in order to use the tetrachoric correlation, we can either define
the corresponding variables in the input data frame as ordinal factors or set the
ordered argument accordingly (see below). In case of mixed scale levels, a
corresponding subset of variables can be defined as ordinal. Even though the
package is able to handle missing values, we use the full responses only. In lavaan
model syntax, we specify the CFA model in a regression-like way. We need two
equations: one for the extrinsic factor and one for the intrinsic factor. The syntax
uses the =~ symbol which can be read as “is manifested by.”

library("MPsychoR")
library("lavaan")
data("Rmotivation")
vind <- grep("ext|int", colnames(Rmotivation)) ## ext/int items
Rmot <- na.omit(Rmotivation[, vind])
mot_model <- '
extrinsic =~ ext1 + ext2 + ext3 + ext4 + ext5 + ext6 +

ext7 + ext8 + ext9 + ext10 + ext11 + ext12
intrinsic =~ int1 + int2 + int3 + int4 + int5'

fitMot <- lavaan::cfa(mot_model, data = Rmot,
ordered = names(Rmot))

The corresponding CFA path diagram (see Fig. 2.10) with unstandardized esti-
mates can be produced using the semPlot package (Epskamp, 2015):

42 2 Factor Analysis

0.05

0.15

0.18

0.19

0.33

0.33

0.36

0.37

0.42

0.43

0.45

0.45

0.48

0.53

0.62

0.66

0.67

0.69

0.84

0.85

0.91

0.92

0.96

0.97

1.00

1.00

1.00

1.00

1.02

1.10

1.42

1.49

1.58

1.84

1.89

2.03

2.05

ext1

ext2

ext3

ext4

ext5

ext6

ext7

ext8

ext9

ex10

ex11

ex12

int1

int2

int3

int4

int5

extr

intr

Fig. 2.10 Path diagram with unstandardized parameters of the intrinsic/extrinsic motivation CFA
model. Manifest variables are presented as squares with their associated error variances, and latent
variables as circles with their associated variances and covariance (edge). The values on the arrows
are the loadings. The red lines in the squares denote the thresholds of the tetrachoric correlations

library("semPlot")
semPaths(fitMot, what = "est", edge.label.cex = 0.7,
edge.color = 1, esize = 1, sizeMan = 4.5, asize = 2.5,
intercepts = FALSE, rotation = 4, thresholdColor = "red",
mar = c(1, 5, 1.5, 5), fade = FALSE, nCharNodes = 4)

2.4 Confirmatory Factor Analysis 43

For standardized estimates in the diagram, the user can set what="std". The
dashed arrows show which loadings were fixed to a value of 1 for identifiability
reasons. The manifest variables (indicators) are plotted as squares and the latent
variables as circles. Each indicator is associated with an error variance (Θ in
Eq. (2.14)), which can be obtained as follows (due to space restrictions, we omit
showing the outputs).

inspect(fitMot, what = "est")$theta

The loadings (Λ) and the corresponding standardized versions can be extracted
as follows:

inspect(fitMot, what = "est")$lambda
inspect(fitMot, what = "std")$lambda

The final term in Eq. (2.14) is the latent variable covariance matrix Ψ :

inspect(fitMot, what = "est")$psi
inspect(fitMot, what = "std")$psi

The second call returns the standardized version, that is, the correlation matrix.
Explicit tests whether loadings (and other model parameters) differ from 0 including
95% CIs can be requested via:

parameterEstimates(fitMot, standardized = TRUE)

The significance tests are carried out on the unstandardized parameters. The
standardized=TRUE argument adds the columns std.lv and std.all,
denoting standardized estimates when only the latent variables are standardized,
and standardized estimates when latent and observed variables are standardized,
respectively.

44 2 Factor Analysis

To get the full model output including goodness-of-fit measures, we can say:

summary(fitMot, standardized = TRUE, fit.measures = TRUE)

The standard is to report the following measures (including generally accepted
fit rules from Hu and Bentler 1999):

• χ2-statistic including the degrees of freedom (df) and the p-value: a nonsignifi-
cant result suggests that the model fits. However, we do not have to put too much
emphasis on this output since for reasonably large samples, the statistic becomes
most likely significant anyway, and for small samples it has low power.

• Comparative fit index (CFI): should be ≥ 0.95.
• RMSEA including 90% CI: RMSEA should be ≤ 0.05, upper CI bound ≤ 0.10.
• Standardized root mean square residual (SRMR): should be ≤ 0.08.

Discussions related to these rules as well as additional fit measures can be found in
Kline (2016, Chapter 12).

In our example we get a CFI of 0.913, a RMSEA of 0.063 with a corresponding
90% CI of [0.058, 0.069], and an SRMR of 0.119. The χ2-statistic is 492.422 (df =
118, p = 0).

How can we improve the model fit? From the parameterEstimates()
output, we see that item ext5 (“R packages are a by-product of my empirical
research”) has a nonsignificant loading:

parameterEstimates(fitMot)[5,]
lhs op rhs est se z pvalue ci.lower ci.upper
5 extrinsic =~ ext5 0.181 0.175 1.034 0.301 -0.162 0.523

We can eliminate this item and re-fit the model:

mot_model2 <- '
extrinsic =~ ext1 + ext2 + ext3 + ext4 + ext6 + ext7 +

ext8 + ext9 + ext10 + ext11 + ext12
intrinsic =~ int1 + int2 + int3 + int4 + int5'

fitMot2 <- lavaan::cfa(mot_model2, data = Rmot,
ordered = names(Rmot)[-5])

At this point all loadings are significant. We get a CFI of 0.944, a RMSEA of
0.054 with a corresponding 90% CI of [0.047, 0.06], and an SRMR of 0.109. The
model fit has improved.

2.4 Confirmatory Factor Analysis 45

It is also possible to work with modification indices in order to improve the model
fit. The modindices function can be used, and the mi value tells us how much
the χ2-statistic would improve by freeing fixed parameters. However, the user has
to keep in mind that this is an exploratory, data-driven re-specification of the model
which contradicts the confirmatory nature of CFA.

The estimated values of the latent variables (factor scores) can be extracted via
lavPredict(fitMot2). They can be used for further statistical analyses as
they are, since they do not suffer from the factor indeterminacy problem as the ones
from EFA (see Sect. 2.2.3).

2.4.2 Higher-Order CFA Models

Higher-order CFA models, sometimes also called hierarchical CFA, add additional
layers of latent variables that are associated with other latent variables in a
hierarchical manner. Let us use the R motivation dataset once more. In addition
to intrinsic and extrinsic motivation, we consider a hybrid motivation factor as well.
In order to keep the path diagram fairly simple, we use the first four items of each
subscale only.

vind <- c(1:4, 13:16, 32:35)
Rmot2 <- na.omit(Rmotivation[, vind])

In the lavaan model syntax, we begin with specifying the first-order factor
structure involving the indicators. Subsequently, we add one more line that defines
the second-order layer in terms of merging extrinsic, hybrid, and intrinsic motivation
to a general motivation factor.

mot_model3 <- '
extrinsic =~ ext1 + ext2 + ext3 + ext4
hybrid =~ hyb1 + hyb2 + hyb3 + hyb4
intrinsic =~ int1 + int2 + int3 + int4
motivation =~ extrinsic + hybrid + intrinsic'

fitMot3 <- lavaan::cfa(mot_model3, data = Rmot2,
ordered = names(Rmot2))

The corresponding path diagram, this time with standardized parameters, is given
in Fig. 2.11. Again, the model output can be investigated by saying:

46 2 Factor Analysis

0.23

0.24

0.27

0.28

0.31

0.32

0.36

0.38

0.42

0.46

0.47

0.50

0.51

0.60

0.60

0.63

0.64

0.72

0.73

0.73

0.75

0.76

0.79

0.82

0.83

0.85

0.86

0.87

0.94

0.95

1.00

ext1

ext2

ext3

ext4

hyb1

hyb2

hyb3

hyb4

int1

int2

int3

int4

extr

hybr

intr

mtvt

Fig. 2.11 Path diagram of second-order R motivation CFA model (standardized parameters): a
general motivation factor causes extrinsic, intrinsic, and hybrid motivation

summary(fitMot3, standardized = TRUE, fit.measures = TRUE)

The model fits fairly well. We obtain a CFI of 0.955, a RMSEA of 0.052 with a
corresponding 90% CI of [0.043, 0.061], and an SRMR of 0.088.

Note that if we would do a second-order specification for the intrinsic/extrinsic
CFA model from the section above, lavaan would scream. This is due to the fact that
we only have two first-order factors loading to the general motivation construct. In
that case the model is not identifiable, and we would have to work with restrictions
(either fixing both loadings to 1 or restricting the two loadings to be equal in addition
to a variance-1 restriction for the general motivation factor). As a general rule, in
CFA/SEM we need to have at least two indicators per factor in order to have the

2.4 Confirmatory Factor Analysis 47

model mathematically identified. But this does not necessarily guarantee that we
obtain reasonable estimates. For instance, we could get negative variances. Such
weird outcomes are called Heywood cases. As Kenny (1979) puts it (cited from
Kline, 2016, p. 195): “Two might be fine, three is better, four is best, and anything
else is gravy.”

2.4.3 CFA with Covariates: MIMIC

MIMIC stands for multiple indicators multiple independent causes (Jöreskog and
Goldberger, 1975) and is a general structural latent variable concept where CFA is
extended in terms of linking covariates with latent variables. MIMIC models can be
used to control for sociodemographic or other types of covariates in CFA and more
general SEM specifications.

Let us extend the second-order CFA model from above in terms of two covariates:
number of R packages (npkgs; count variable) and the academic degree (phd;
dichotomous variable). Compared to the second-order CFA, we need to add one
line at the bottom of the model syntax that specifies the regression of the general
motivation factor on the covariates. The lavaan syntax uses the ~ symbol which
means “is regressed on.”

vind <- c(1:4, 13:16, 32:35, 39:41)
Rmot3 <- na.omit(Rmotivation[, vind])
mot_model4 <- '
extrinsic =~ ext1 + ext2 + ext3 + ext4
hybrid =~ hyb1 + hyb2 + hyb3 + hyb4
intrinsic =~ int1 + int2 + int3 + int4
motivation =~ extrinsic + hybrid + intrinsic
motivation ~ npkgs + phd'

fitMot4 <- lavaan::cfa(mot_model4, data = Rmot3,
ordered = names(Rmot3[1:12]))

The path diagram is shown in Fig. 2.12. The parameter estimates for the
covariates are:

parameterEstimates(fitMot4)[16:17,]
lhs op rhs est se z pvalue ci.lower ci.upper
16 motivation ~ npkgs -0.003 0.004 -0.715 0.474 -0.01 0.005
17 motivation ~ phd 0.025 0.028 0.893 0.372 -0.03 0.080

48 2 Factor Analysis

0.03

−0.04

0.05

0.20

0.24

0.25

0.26

0.27

0.32

0.34

0.35

0.36

0.38

0.49

0.49

0.56

0.59

0.60

0.64

0.64

0.67

0.76

0.76

0.79

0.80

0.81

0.81

0.82

0.86

0.87

0.93

0.93

0.96

1.00

1.00

1.00ext1

ext2

ext3

ext4

hyb1

hyb2

hyb3

hyb4

int1

int2

int3

int4

npkg

phd

extr

hybr

intr

mtvt

Fig. 2.12 Path diagram of CFA model with covariates (standardized parameters)

We see that these covariates barely have an influence on motivation. Therefore,
compared to the model in Fig. 2.11, there were only slight changes in the measure-
ment model parameters.

2.4.4 Multigroup CFA

An important CFA extension is multigroup CFA where we are interested in testing
parameter differences across groups. One of the key concepts in multigroup CFA are
mean structures which, simply speaking, extend the t-test/ANOVA idea to latent
variables. Including the means of latent variables in a CFA model implies that
we need to consider intercepts in the CFA model specification. That is, we extend

2.4 Confirmatory Factor Analysis 49

Eq. (2.13) in terms of an m × 1 intercept vector ν:

y = ν + Λη + ε. (2.15)

In multiple group settings, we can test hypotheses on group differences by incorpo-
rating various restriction patterns on the loadings and the intercepts (measurement
invariance). The three most important measurement invariance structures are the
following:

• Configural invariance: unrestricted loadings and intercepts across groups.
• Weak invariance: the factor loadings are constrained to be equal across groups;

the intercepts are free.
• Strong invariance: the factor loadings and indicator intercepts are restricted to be

equal across groups.

For each invariance type, we impose the same factor structure on all groups. In addi-
tion to these generic invariance structures, specific user-defined loadings/intercepts
restrictions can be considered, as we will show below.

In R, the measurementInvariance function from semTools (semTools
Contributors, 2016) can be used to fit the standard invariance sequence from above.
We illustrate this approach using a dataset from Bergh et al. (2016). Part of their
analysis consisted of a multigroup CFA, where ethnic prejudice (EP), sexism (SP),
sexual prejudice against gays and lesbians (HP), and prejudice toward mentally
people with disabilities (DP) were modeled as indicators of a generalized prejudice
factor (GP). The four manifest variables are composite scores, determined by
averaging across the underlying sets of items. The multigroup aspect comes in
by exploring differences in CFA parameters across gender. We use a robust ML
estimator since some of the prejudice measures deviate from normality.

library("semTools")
data("Bergh")
GP_model <- 'GP =~ EP + HP + DP + SP'
minvfit <- measurementInvariance(GP_model, data = Bergh,

group = "gender", estimator = "MLR")
##
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
fit.configural 4 7376.1 7490.2 1.6552
fit.loadings 7 7382.9 7482.8 14.4960 11.372 3 0.009876 **
fit.intercepts 10 7417.7 7503.3 55.2875 47.707 3 2.459e-10 ***
fit.means 11 7469.3 7550.2 108.9365 43.818 1 3.603e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This code chunk fits four invariance models: configural, weak, strong, and a
fourth model where, in addition to the indicator intercepts, the means of the latent
variables are restricted to be equal as well. Each model is tested against the previous
one, and a significant result indicates that the higher restricted model is significantly
worse (!) than the previous model.

50 2 Factor Analysis

In our example we would go with the configural model, for which the output can
be requested as follows:

summary(minvfit$fit.configural, standardized = TRUE,
fit.measures = TRUE)

Instead of using these generic invariance sequences of models, we can approach
multigroup CFA from a more hypothesis-driven direction. In the first model we are
going to fit, the loadings for ethnic minorities (EP), gays/lesbians (HP), and people
with disabilities (DP) are held equal across men and women. We keep the sexism
(SP) loadings free. This gives the factor a similar meaning for men and women (i.e.,
as much measurement invariance as possible while testing our hypothesis about one
particular loading). Note that all intercepts are free to vary.

In lavaan, this can be achieved by using one of the following two equivalent
model formulations. In the first variant, we explicitly incorporate the loadings
restrictions in the model formulation. We specify a vector of length 2, the first
element denoting the loading for the first gender category and the second element
denoting the loading for the second category. Since we use the same loadings
symbols for both categories, they are restricted to be equal.

GP_model <-'GP =~ c(v1,v1)*EP + c(v2,v2)*HP + c(v3,v3)*DP + SP'
fitBase <-lavaan::cfa(GP_model, data = Bergh, group = "gender",

estimator = "MLR")

In the second variant, we restrict all the loadings to be equal across groups
using the group.equal argument. We then free up the SP loading through the
group.partial argument.

GP_model <- 'GP =~ EP + HP + DP + SP'
fitBase <- lavaan::cfa(GP_model,data = Bergh, group = "gender",

group.equal = c("loadings"),
group.partial = c("GP=~ SP"), estimator = "MLR")

Both variants lead to the same results. Using the fitMeasures(fitBase)
call, we get a χ2-value of 7.321 (df = 6, p = 0.292), a RMSEA of 0.023 with a 90%
CI of [0, 0.069], a CFI of 0.998, and an SRMR of 0.028. The model fits well.

Since the difference in intercepts between men and women is negligible for the
EP indicator, we can force the intercepts to be equal for this indicator. Let us build on
the second specification variant from above, in order to set up this model. Through
group.equal we constrain all loadings and intercepts to be equal across groups

2.4 Confirmatory Factor Analysis 51

and, subsequently, free up the SP loading as well as the intercepts for DP, HP, and
SP using group.partial:

fitBase1 <- lavaan::cfa(GP_model, data = Bergh,
group = "gender", group.equal = c("loadings", "intercepts"),
group.partial = c("GP=~SP", "DP~1", "HP~1", "SP~1"),
estimator = "MLR")

Again, this model fits well. We now use this model as baseline model and
compare it to two additional models. First, we constrain the SP loading to be 0
for the women (ingroup-outgroup model). We can specify this restriction directly in
the model specification through c(NA,0). NA means free to vary across men (first
group), whereas the second element fixes the parameter to 0 for the women. Note
that this is quite a restrictive assumption.

GP_model2 <- 'GP =~ c(v1,v1)*EP + c(v2,v2)*HP + c(v3,v3)*DP +
c(NA, 0)*SP'

fitIO <- lavaan::cfa(GP_model2, data = Bergh, group = "gender",
group.equal = c("intercepts"),
group.partial = c("DP~1", "HP~1", "SP~1"),
estimator = "MLR")

It gives a χ2-value of 233.756 (df = 7, p = 0), a RMSEA of 0.274 with a 90%
CI of [0.245, 0.305], a CFI of 0.678, and an SRMR of 0.148. Bad fit.

In the next model, we restrict all the loadings to be equal (marginalization
model). The intercepts have the same constraints as above.

fitMarg <- lavaan::cfa(GP_model, data = Bergh,group = "gender",
group.equal = c("loadings", "intercepts"),
group.partial = c("DP~1", "HP~1", "SP~1"),
estimator = "MLR")

We get a χ2-value of 14.496 (df = 7, p = 0.043), a RMSEA of 0.05 with a 90%
CI of [0.008, 0.086], a CFI of 0.989, and an SRMR of 0.036. In terms of goodness-
of-fit statistics, we do not see much of a difference compared to the baseline model.

Let us do some model comparison. Since the marginalization model is nested in
the base model, we can apply the following χ2-difference test. Note that a significant
result suggests that the higher parametrized model fits significantly worse.

52 2 Factor Analysis

anova(fitMarg, fitBase1)
Scaled Chi Square Difference Test (method = "satorra.bentler.2001")
##
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
fitBase1 6 7377.7 7482.4 7.3214
fitMarg 7 7382.9 7482.8 14.4960 5.974 1 0.01452 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Even though significant, the AIC/BIC barely differ across the two groups,
and from the fit indices above, we learned that both models fit well. Thus, the
marginalization model may be an attractive option to go with.

2.4.5 Longitudinal CFA

CFA can also be extended to longitudinal settings, where indicators are presented
to the same individual at multiple points in time t (Tisak and Meredith, 1990).
Equations (2.13) and (2.15) need to be extended accordingly. Here we extend
Eq. (2.15) in order to point out that we can fit combined longitudinal-multigroup
CFA models:

yt = νt + Λtηt + εt . (2.16)

This CFA version extends the repeated measurement ANOVA concept to latent
variables, and we are interested in differences over time. Across the time points,
we can consider the same measurement invariance principles as in multigroup CFA
(configural, weak, and strong invariance). However, in longitudinal CFA we need
to account for correlated residuals since we cannot assume that independence holds
across time points.

To illustrate longitudinal CFA, we use a dataset on social dominance orientation
(SDO; Sidanius and Pratto, 2001). SDO is assessed on the same individuals from
1996 to 2000 (Sidanius et al., 2010), involving the following four items, scored on
a 7-point scale:

• It is probably a good thing that certain groups are at the top and other groups are
at the bottom (I1).

• Inferior groups should stay in their place (I2).
• We should do what we can to equalize conditions for different groups (I3,

reversed).
• Increased social equality is beneficial to society (I4, reversed).

For the moment, let us consider a simple latent variable structure where all four
items load on a general SDO dimension. We pick 2 years only: 1996 vs. 1998.
The most relevant model within this context is the strong invariance model, which

2.4 Confirmatory Factor Analysis 53

allows us to compare the latent means across the two time points. We restrict the
factor loadings as well as the corresponding intercepts of each item to be equal in
both measurement occasions. Also, we need to allow for residual covariances (using
the ~~ symbol in the syntax) for each item across time points.

library("MPsychoR")
library("lavaan")
data("SDOwave")
model_sdo1 <- '
SDO1996 =~ 1*I1.1996 + a2*I2.1996 + a3*I3.1996 + a4*I4.1996
SDO1998 =~ 1*I1.1998 + a2*I2.1998 + a3*I3.1998 + a4*I4.1998
SDO1996 ~~ SDO1998

intercepts
I1.1996 ~ int1*1; I1.1998 ~ int1*1
I2.1996 ~ int2*1; I2.1998 ~ int2*1
I3.1996 ~ int3*1; I3.1998 ~ int3*1
I4.1996 ~ int4*1; I4.1998 ~ int4*1

residual covariances
I1.1996 ~~ I1.1998
I2.1996 ~~ I2.1998
I3.1996 ~~ I3.1998
I4.1996 ~~ I4.1998

latent means: 1996 as baseline
SDO1996 ~ 0*1
SDO1998 ~ 1'

fitsdo1 <- cfa(model_sdo1, data = SDOwave, estimator = "MLR")

The parameters of main interest are the latent variable means:

parameterEstimates(fitsdo1)[22:23,]
lhs op rhs label est se z pvalue ci.lower ci.upper
22 SDO1996 ~1 0.000 0.000 NA NA 0.000 0.000
23 SDO1998 ~1 -0.047 0.019 -2.432 0.015 -0.085 -0.009

We see that the mean for 1996 was fixed to 0 and is therefore used as the reference
year. The second line suggests that there is a significant decrease in SDO from 1996
to 1998.

Note that a weak invariance version of this model can be fitted by restricting both
latent means to 0 and freeing up the intercepts. For a configural invariance version,
the loadings need to be freed up as well (first two syntax lines). If we do not want
to do this by hand, the longInvariance function from semTools can be used
to establish such a generic sequence. Using the anova function, the models can be
again tested against each other.

54 2 Factor Analysis

By examining the goodness-of-fit statistics of the model fitted above, we see that
it does not fit particularly well (e.g., RMSEA = 0.151). This is not too surprising
since research has shown that there are two subdimensions of SDO (Ho et al., 2015):
anti-egalitarianism and dominance. According to the theory, the first two items are
supposed to load on the dominance dimension (SDO-D), whereas the remaining two
items load on anti-egalitarianism (SDO-E). Using the second-order CFA concept,
we specify a general SDO factor which influences SDO-D and SDO-E. To make
the model specification a bit more challenging, we also add a third year (1999 in
addition to 1998 and 1996). Again, we restrict the parameters according to the strong
invariance principle.

model_sdo2 <- '
1st CFA level, constant loadings across time
SDOD1996 =~ 1*I1.1996 + d1*I2.1996
SDOD1998 =~ 1*I1.1998 + d1*I2.1998
SDOD1999 =~ 1*I1.1999 + d1*I2.1999
SDOE1996 =~ 1*I3.1996 + a1*I4.1996
SDOE1998 =~ 1*I3.1998 + a1*I4.1998
SDOE1999 =~ 1*I3.1999 + a1*I4.1999

2nd CFA level, constant loadings across time
SDO1996 =~ 1*SDOD1996 + sd1*SDOE1996
SDO1998 =~ 1*SDOD1998 + sd1*SDOE1998
SDO1999 =~ 1*SDOD1999 + sd1*SDOE1999

Constant 1st level intercepts
I1.1996 ~ iI1*1; I1.1998 ~ iI1*1; I1.1999 ~ iI1*1
I2.1996 ~ iI2*1; I2.1998 ~ iI2*1; I2.1999 ~ iI2*1
I3.1996 ~ iI3*1; I3.1998 ~ iI3*1; I3.1999 ~ iI3*1
I4.1996 ~ iI4*1; I4.1998 ~ iI4*1; I4.1999 ~ iI4*1

residual covariances:
I1.1999 ~~ I1.1998; I1.1996 ~~ I1.1998; I1.1999 ~~ I1.1996
I2.1999 ~~ I2.1998; I2.1996 ~~ I2.1998; I2.1999 ~~ I2.1996
I3.1999 ~~ I3.1998; I3.1996 ~~ I3.1998; I3.1999 ~~ I3.1996
I4.1999 ~~ I4.1998; I4.1996 ~~ I4.1998; I4.1999 ~~ I4.1996

latent means
SDO1996 ~ 0*1 ## 1996 baseline year
SDO1998 ~ 1 ## 1998 vs. 1996
SDO1999 ~ 1 ## 1999 vs. 1996

'
fitsdo2 <- cfa(model_sdo2, data = SDOwave, estimator = "MLR")

Note that in this model we have two indicators per construct only but we did not
get any weird estimates (Heywood cases). The path diagram is given in Fig. 2.13.
We plot the unstandardized estimates such that the imposed parameter restrictions
are nicely reflected.

2.4 Confirmatory Factor Analysis 55

The goodness-of-fit measures suggest that the model fits fairly well (e.g.,
RMSEA = 0.061). Let us extract the latent means reflecting changes in relation
to the baseline year 1996:

parameterEstimates(fitsdo2)[43:45,]
lhs op rhs label est se z pvalue ci.lower ci.upper
43 SDO1996 ~1 0.000 0.000 NA NA 0.000 0.000
44 SDO1998 ~1 -0.057 0.024 -2.331 0.02 -0.104 -0.009
45 SDO1999 ~1 -0.033 0.025 -1.311 0.19 -0.082 0.016

We see that, as above, we have a significant change from 1996 to 1998, but no
significant change from 1996 to 1999 (again, 1996 is used as baseline year).

We can now think of several extensions of longitudinal CFA. First, we can
combine longitudinal CFA with multigroup models (multigroup-longitudinal CFA).
Second, instead of estimating covariances between the latent variables across
time, we can specify directed paths which allow us to study trends in a more
sophisticated way (instead of ANOVA-type comparisons). Such models are called
CFA panel models. Details on these extensions can be found in Little (2013).
Another alternative to study longitudinal developments of latent variables are latent
growth models which we introduce in Sect. 3.4 within a larger SEM context.

2.4.6 Multilevel CFA

Recent lavaan developments (v0.6-0 and higher) extend the syntax and estimation
engine to multilevel CFA modeling. Multilevel models are a general modeling
framework where individuals are nested within aggregate units (see, e.g., Hox,
2010). To illustrate multilevel CFA, we use a dataset from Hox (2010) involving six
intelligence measures: word list, cards, matrices, figures, animals, and occupations.
We have a two-level data structure: children (first level) are nested within families
(second level). The model we are going to present here involves a two-factor
solution at an individual level (“within”; factors are “numeric” and “perception”)
and a one-factor solution at a family level (“within”; g-factor).

In lavaan syntax we need to specify the factor structure for each level separately
(see level). The cluster argument denotes the clustering variable.9

9At the time this book was written, lavaan allows for two-level structures only. Also, thanks to
Yves Rosseel for sharing the code.

56 2 Factor Analysis

−0.01

−0.05

−0.070.10

0.10

0.14

0.14

0.15

0.180.18

0.19

0.19

0.20

0.20

0.22

0.25

0.26

0.27

0.27

0.28

0.30

0.32

0.35

0.41

0.47

0.48

0.49

0.57

0.65

0.67

0.69

0.74

0.74

0.74

0.77

0.80

0.91

0.92

0.96

0.96

0.96

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.05

2.41

2.41

2.41

I1.1996

I2.1996

I1.1998

I2.1998

I1.1999

I2.1999

I3.1996

I4.1996

I3.1998

I4.1998

I3.1999

I4.1999

SDOD1996

SDOD1998

SDOD1999

SDOE1996

SDOE1998

SDOE1999

SDO1996

SDO1998

SDO1999

Fig. 2.13 Path diagram for longitudinal CFA model on SDO data (unstandardized parameters).
The parameters are restricted according to the strong invariance principle

data("FamilyIQ")
modelIQ <- '
level: 1
numeric =~ wordlist + cards + matrices
perception =~ figures + animals + occupation

level: 2
general =~ wordlist + cards + matrices + figures + animals +

occupation'

(continued)

2.5 Bayesian Confirmatory Factor Analysis 57

fitIQ <- cfa(modelIQ, data = FamilyIQ, cluster = "family",
std.lv = TRUE)

fitIQ
lavaan (0.6-1.1179) converged normally after 64 iterations
##
Number of observations 399
Number of clusters [family] 60
##
Estimator ML
Model Fit Test Statistic 11.927
Degrees of freedom 17
P-value (Chi-square) 0.805

Unfortunately, the classical goodness-of-fit indices (CFI, RMSEA, etc.) are not
sensitive to level-2 misspecifications (Hsu et al., 2015) and therefore only of limited
use. This leaves us with the χ2-statistic which, in our example, tells us that the
model fits. Hox (2010) interprets the fact that we need two factors at an individual
level in the tradition of Cattell’s theory of fluid and crystallized intelligence: As a
result of influences at an individual level (social/physical environment, education),
the g-factor crystallizes into specific individual competencies. At the family level,
where shared genetic and environmental influences play a role, a single g-factor is
sufficient.

2.5 Bayesian Confirmatory Factor Analysis

Thanks to the development of the blavaan package (Merkle and Rosseel, 2018),
Bayesian versions of CFA models can be fitted easily. Basically, all we have to do is
to replace the cfa call by bcfa and we are all set; the syntax is exactly the same.
However, we have the opportunity to specify additional MCMC-related arguments.
In terms of priors, the default setting is to use uninformative priors for Λ, Θ , and Ψ

(cf. Eq. (2.14)).

library("blavaan")
dpriors()[c("lambda", "itheta", "ipsi")]
lambda itheta ipsi
"dnorm(0,1e-2)" "dgamma(1,.5)" "dgamma(1,.5)"

The user can specify his/her own more informative priors, if desired. When
fitting a model using one of the blavaan functions, the package establishes a
JAGS file internally, does the MCMC sampling using runjags (Denwood, 2016),
and organizes the results such that they look as lavaan-like as possible. As
always in Bayesian analysis, we aim for a low autocorrelation of the samples.

58 2 Factor Analysis

The number of MCMC iterations needs to be considerably high to get reasonably
low autocorrelation patterns. Thus, some patience is required when estimating the
model.

Iteration

la
m

bd
a

[2
,1

,1
]

0.
6

0.
8

1.
0

1.
2

1.
4

4000 6000 8000 10000 12000

Iteration

la
m

bd
a

[3
,1

,1
]

0.
6

0.
7

0.
8

0.
9

4000 6000 8000 10000 12000

Lag

Au
to

co
rr

el
at

io
n

of
la

m
bd

a
[2

,1
,1

]

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40

Lag

Au
to

co
rr

el
at

io
n

of
la

m
bd

a
[3

,1
,1

]

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40

Fig. 2.14 Left panel: MCMC trace plots for the first two loading parameters. Right panel:
autocorrelation plots for the first two loading parameters

To illustrate how to use the package, we use the data from Bergh et al. (2016)
once more and fit a simple one-factor CFA model. This is similar to what we did
in Sect. 2.4.4, but here we ignore the multigroup aspect. We set the number burn-in
samples to 2,000, we draw 10,000 MCMC samples, and we run 2 chains.

library("MPsychoR")
data("Bergh")
GP_model <- 'GP =~ EP + HP + DP + SP'
set.seed(123)
fitBCFA <- bcfa(GP_model, data = Bergh, burnin = 2000,

sample = 10000, n.chains = 2,
jagcontrol = list(method = "rjparallel"))

Before we look at the posterior distributions of the parameters, let us check
whether we did a good MCMC job. Autocorrelation and trace plots can be produced
as follows (we show the first two loading parameters only; see Fig. 2.14):

plot(fitBCFA, pars = 1:2, plot.type = "trace")
plot(fitBCFA, pars = 1:2, plot.type = "autocorr")

2.5 Bayesian Confirmatory Factor Analysis 59

The two MCMC chains seem to be fairly well mixed. We see that especially
for the second parameter, there is still some autocorrelation present. Increasing the
number MCMC samples may lead to an improvement. A full model output can be
requested as follows:

summary(fitBCFA)
##
Number of observations 861
##
Number of missing patterns 1
##
Statistic MargLogLik PPP
Value -3803.682 0.577
##
Parameter Estimates:
##
##
Latent Variables:
Estimate Post.SD HPD.025 HPD.975 PSRF
GP =~
EP 1.000
HP 0.985 0.119 0.762 1.228 1.000
DP 0.739 0.045 0.651 0.828 1.000
SP 0.946 0.058 0.837 1.064 1.000
##
Intercepts:
Estimate Post.SD HPD.025 HPD.975 PSRF
.EP 1.990 0.024 1.941 2.036 1.001
.HP 1.217 0.053 1.111 1.318 1.000
.DP 2.059 0.018 2.022 2.094 1.001
.SP 2.115 0.023 2.07 2.16 1.001
GP 0.000
##
Variances:
Estimate Post.SD HPD.025 HPD.975 PSRF
.EP 0.232 0.018 0.197 0.266 1.000
.HP 2.175 0.108 1.97 2.391 1.001
.DP 0.138 0.010 0.118 0.157 1.000
.SP 0.226 0.016 0.195 0.26 1.000
GP 0.274 0.026 0.224 0.325 1.001

The first important output is the Bayesian posterior predictive p-value (PPP)
which uses the difference between observed χ2-values and χ2-values based on
internally replicated data. A value close to 0.5 suggests that the model fits well,
which is the case in our example. For each (freely estimated) parameter, we get the
posterior mean, the posterior standard deviation, and a 95% highest posterior density
(HPD) interval. The potential scale reduction factor (PSRF) is another convergence
diagnostic. Values should be smaller than 1.2.

Additional model information can be extracted via blavInspect. Having
multiple competing CFA models, a Bayesian model comparison can be carried out
using the blavCompare function. Details on these statistics, estimation, as well
as additional modeling options can be found in Merkle and Rosseel (2018).

60 2 Factor Analysis

References

Bartholomew, D. J., & Knott, M. (1999). Latent variable models and factor analysis (2nd ed.).
London: Hodder Arnold.

Bartholomew, D. J., Steele, F., Moustaki, I., & Galbraith, J. I. (2008). Analysis of multivariate
social science data (2nd ed.). Boca Raton: CRC Press.

Bergh, R., Akrami, N., Sidanius, J., & Sibley, C. (2016). Is group membership necessary
for understanding prejudice? A re-evaluation of generalized prejudice and its personality
correlates. Journal of Personality and Social Psychology, 111, 367–395.

Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivari-
ate Behavioral Research, 36, 111–150.

Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In: K. A. Bollen &
J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Beverly Hills: Sage.

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research,
1, 245–276.

Conti, G., Frühwirth-Schnatter, S., Heckman, J. J., & Piatek, R. (2014). Bayesian exploratory factor
analysis. Journal of Econometrics, 183, 31–57.

Denwood, M. J. (2016). runjags: An R package providing interface utilities, model templates,
parallel computing methods and additional distributions for MCMC models in JAGS. Journal
of Statistical Software, 71(9), 1–25. https://www.jstatsoft.org/article/view/v071i09

Drasgow, F. (1986). Polychoric and polyserial correlations. In: S. Kotz & N. L. Johnson (Eds.),
Encyclopedia of statistical sciences (Vol. 7, pp. 68–74). New York: Wiley.

Epskamp, S. (2015). semPlot: Unified visualizations of structural equation models. Structural
Equation Modeling: A Multidisciplinary Journal, 22, 474–483.

Finney, S. J., & DiStefano, C. (2013). Nonnormal and categorical data in structural equation
modeling. In: G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second
course (2nd ed., pp. 439–492). Charlotte: Information Age Publishing.

Hendrickson, A. E., & White, P. O. (1964). PROMAX: A quick method for rotation to oblique
simple structure. British Journal of Mathematical and Statistical Psychology, 17, 65–70.

Ho, A. K., Sidanius, J., Kteily, N., Sheehy-Skeffington, J., Pratto, F., Henkel, K. E., Foels, R., &
Stewart, A. L. (2015). The nature of social dominance orientation: Theorizing and measuring
preferences for intergroup inequality using the new SDO7 scale. Journal of Personality and
Social Psychology, 109, 1003–1028.

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika,
30, 179–185.

Hox, J. J. (2010). Multilevel analysis: Techniques and applications (2nd ed.). New York:
Routledge.

Hsu, H. Y., Kwok, O. M., Lin, J. H., & Acosta, S. (2015). Detecting misspecified multilevel
structural equation models with common fit indices: A Monte Carlo study. Multivariate
Behavioral Research, 50, 197–215.

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis:
Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.

Jöreskog, K. G., & Goldberger, A. S. (1975). Estimation of a model with multiple indicators and
multiple causes of a single latent variable. Journal of the American Statistical Association, 70,
631–639.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika,
23, 187–200.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and
Psychological Measurement, 20, 141–151.

Kaplan, D. (2014). Bayesian statistics for the social sciences. New York: Guilford.
Kenny, D. A. (1979). Correlation and causality. New York: Wiley.
Kirk, D. B. (1973). On the numerical approximation of the bivariate normal (tetrachoric)

correlation coefficient. Psychometrika, 38, 259–268.

https://www.jstatsoft.org/article/view/v071i09

References 61

Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). New York:
Guilford Press.

Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan (2nd ed.).
Cambridge: Academic.

Little, T. D. (2013). Longitudinal structural equation modeling. New York: Guilford.
MacCallum, R. C. (2009). Factor analysis. In: R. E. Millsap, & A. Maydeu-Olivares (Eds.), The

Sage handbook of quantitative methods in psychology (pp. 123–177) London: Sage.
Mair, P., Hofmann, E., Gruber, K., Zeileis, A., & Hornik, K. (2015). Motivation, values, and

work design as drivers of participation in the R open source project for statistical computing.
Proceedings of the National Academy of Sciences of the United States of America 112, 14788–
14792.

McDonald, R., & Mulaik, S. A. (1979). Determinacy of common factors: A nontechnical review.
Psychological Bulletin, 86, 430–445.

Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation models via parameter
expansion. Journal of Statistical Software, 85(4), 1–30.

Muthén, B. O., & Hofacker, C. (1988). Testing the assumptions underlying tetrachoric correlations.
Psychometrika, 83, 563–578.

Piatek, R. (2017). BayesFM: Bayesian inference for factor modeling. R package version 0.1.2.
https://CRAN.R-project.org/package=BayesFM

Raiche, G., & Magis, D. (2011). nFactors:An R package for parallel analysis and non graphical
solutions to the Cattell scree test. R package version 2.3.3. http://CRAN.R-project.org/
package=nFactors

Revelle, W. (2015). An introduction to psychometric theory with applications in R. Freely available
online. http://www.personality-project.org/r/book/

Revelle, W. (2017). psych: Procedures for psychological, psychometric, and personality research.
R package version 1.7.8. http://CRAN.R-project.org/package=psych

Revelle, W., & Rocklin, T. (1979). Very simple structure: An alternative procedure for estimating
the optimal number of interpretable factors. Multivariate Behavioral Research, 14, 403–414.

Rhemtulla, M., Brosseau-Liard, P. E., & Savalei, V. (2012). When can categorical variables be
treated as continuous? A comparison of robust continuous and categorical SEM estimation
methods under suboptimal conditions. Psychological Methods, 17, 354–373.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical
Software, 48(2), 1–36. http://www.jstatsoft.org/v48/i02/

Savalei, V. (2011). What to do about zero frequency cells when estimating polychoric correlations.
Structural Equation Modeling: A Multidisciplinary Journal, 18, 253–273.

semTools Contributors. (2016). semTools: Useful tools for structural equation modeling. R
package version 0.4-14. https://CRAN.R-project.org/package=semTools

Sidanius, J., & Pratto, F. (2001). Social dominance: An intergroup theory of social hierarchy and
oppression. Cambridge: Cambridge University Press.

Sidanius, J., Levin, S., van Laar, C., & Sears, D. O. (2010). The diversity challenge: Social identity
and intergroup relations on the college campus. New York: The Russell Sage Foundation.

Tisak, J., & Meredith, W. (1990). Longitudinal factor analysis. In: A. von Eye (Ed.), Statistical
methods in longitudinal research (Vol. 1, pp. 125–149). San Diego: Academic.

Treiblmaier, H. (2006). Datenqualität und individualisierte Kommunikation [Data Quality and
Individualized Communication]. Wiesbaden: DUV Gabler Edition Wissenschaft.

Treiblmaier, H., Bentler, P. M., & Mair, P. (2011). Formative constructs implemented via common
factors. Structural Equation Modeling: A Multidisciplinary Journal 18, 1–17.

Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis.
Psychometrika, 38, 1–10.

Vaughn-Coaxum, R., Mair, P., & Weisz, J. R. (2016) Racial/ethnic differences in youth depression
indicators: An item response theory analysis of symptoms reported by White, Black, Asian,
and Latino youths. Clinical Psychological Science 4, 239–253.

Velicer, W. F. (1976). Determining the number of components from the matrix of partial
correlations. Psychometrika, 41, 321–327.

Wei, T., & Simko, V. (2016) corrplot: Visualization of a correlation matrix. R package version
0.77. https://CRAN.R-project.org/package=corrplot

https://CRAN.R-project.org/package=BayesFM
http://CRAN.R-project.org/package=nFactors
http://CRAN.R-project.org/package=nFactors
http://www.personality-project.org/r/book/
http://CRAN.R-project.org/package=psych
http://www.jstatsoft.org/v48/i02/
https://CRAN.R-project.org/package=semTools
https://CRAN.R-project.org/package=corrplot

Chapter 3
Path Analysis and Structural Equation
Models

3.1 Multivariate Regression as Path Model

The simplest path model we can think of is a multiple linear regression with m

predictors and a single response Y . It can be fully estimated through a path model
framework, but there is not really a statistical reason to do so. Therefore, in this
section we start our elaborations with multivariate regression path models. Note
that multivariate regression should not be confounded with multiple regression.
In multivariate regression we have, in general, multiple predictors and multiple,
potentially correlated responses. Let us collect these response variables in an n × q

matrix Y with n as the sample size and q as the number of response variables. The
multivariate regression model can be written as

Y = XB + E. (3.1)

The design matrix X is of dimension n×(m+1) (since we have a unit vector for the
intercept), the parameter matrix B is correspondingly (m + 1) × q, and the matrix
of error terms E is n × q.

There are several ways of computing multivariate regression models: One
approach is to stay within a classical linear model context, estimate a multiple
regression model for each response separately, and then compute various measures
known from MANOVA (multivariate analysis of variance), subject to inference.
A second approach is to fit the model through a path-analytic framework. A third
approach is to use mixed-effects models and specify a random effect for the response
variables. In this section we focus on the first two approaches: classical MANOVA
approach and path modeling. Details regarding the third approach can be found in
Berridge and Crouchley (2011).

Let us start with MANOVA. We use the generalized prejudice dataset from Bergh
et al. (2016), already presented in Sect. 2.4.4. This time we consider two indicators
from the agreeableness scale (A1, A2) and two indicators from the openness scale

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_3

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_3&domain=pdf
https://doi.org/10.1007/978-3-319-93177-7_3

64 3 Path Analysis and Structural Equation Models

(O1, O2) as predictors, as well as two responses related to prejudices: ethnic
prejudice (EP) and prejudice toward mentally people with disabilities (DP). All
variables represent composite scores, based on averaging underlying items. Note
that there are no latent variables involved. The two regression models look as follows
(i = 1, . . . , n):

Yi1 = β10 + β11Xi1 + β12Xi2 + β13Xi3 + β14Xi4 + εi1,

Yi2 = β20 + β21Xi1 + β21Xi2 + β21Xi3 + β21Xi4 + εi2.

Let us fit these two multiple regression models using cbind on the left-hand side
of the R formula specification in the lm call.

library("MPsychoR")
data("Bergh")
fitmvreg <- lm(cbind(EP, DP) ~ A1 + A2 + O1 + O2, data = Bergh)

Note that we would get the same results with two separate lm calls. The
multivariate aspect comes in by evoking the Manova function from the car package
(Fox and Weisberg, 2010):

library("car")
Manova(fitmvreg)
##
Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)
A1 1 0.001205 0.516 2 855 0.5971
A2 1 0.103297 49.247 2 855 < 2.2e-16 ***
O1 1 0.023774 10.411 2 855 3.411e-05 ***
O2 1 0.026217 11.510 2 855 1.168e-05 ***

By default, it prints out Pillai’s trace. Other popular measures such as Wilks’
lambda and Roy’s largest eigenvalue can be obtained using summary. These
measures are based on a decomposition of the total sum-of-squares cross-products
matrix into regression and residual sum-of-squares matrices. From the output we see
that all variables, except the first agreeableness item A1, have a significant influence
on both prejudice responses jointly. This is the statement we can make from this

3.1 Multivariate Regression as Path Model 65

output; additional MANOVA illustrations can be found in an Appendix chapter of
Fox and Weisberg (2010).1

Let us now consider a second strategy for multivariate regression by specifying a
path model using lavaan (Rosseel, 2012) which, as we will see, gives us a more
detailed insight into how each predictor influences each response variable. This
approach uses the same idea as factor analysis, meaning that it aims to fit a model
covariance matrix which is as close as possible to the empirical covariance matrix.
Since only observed variables are involved in the model, we use the ~ symbol (“is
regressed on”) in the syntax.

library("lavaan")
mvreg.model <- '
EP ~ b11*A1 + b12*A2 + b13*O1 + b14*O2
DP ~ b21*A1 + b22*A2 + b23*O1 + b24*O2'

fitmvreg2 <- sem(mvreg.model, data = Bergh)

The corresponding path representation using the semPlot package (Epskamp,
2015) can be produced as follows (see Fig. 3.1):

library("semPlot")
semPaths(fitmvreg2, what = "est", edge.label.cex = 1,
layout = "tree", residuals = FALSE, edge.color = 1,
esize = 1, rotation = 3, sizeMan = 8, asize = 2.5,
fade = FALSE, optimizeLatRes = TRUE)

Let us have a look at some parameters of interest:

parameterEstimates(fitmvreg2)[c(1:8, 11),]
lhs op rhs label est se z pvalue ci.lower ci.upper
1 EP ~ A1 b11 -0.005 0.058 -0.079 0.937 -0.118 0.109
2 EP ~ A2 b12 -0.455 0.064 -7.133 0.000 -0.580 -0.330
3 EP ~ O1 b13 -0.259 0.059 -4.430 0.000 -0.374 -0.145
4 EP ~ O2 b14 -0.248 0.061 -4.061 0.000 -0.368 -0.128
5 DP ~ A1 b21 -0.041 0.043 -0.971 0.332 -0.125 0.042
6 DP ~ A2 b22 -0.428 0.047 -9.132 0.000 -0.519 -0.336
7 DP ~ O1 b23 -0.118 0.043 -2.748 0.006 -0.202 -0.034
8 DP ~ O2 b24 -0.176 0.045 -3.930 0.000 -0.264 -0.088
11 EP ~~ DP 0.106 0.010 10.382 0.000 0.086 0.127

1See https://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix/Appendix-Multivariate-
Linear-Models.pdf

https://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix/Appendix-Multivariate-Linear-Models.pdf

66 3 Path Analysis and Structural Equation Models

For each predictor we get regression coefficients on each response while taking
into account that the response variables are correlated. We see that A1 does not have
a significant influence on neither EP nor DP; all other predictors are significant. The
estimate for the covariance between the two responses is given in the last line.

−0.00

0.02
0.03

−0.04

0.05
0.06

0.11

−0.12

0.15 0.16

−0.18 −0.26−0.43 −0.46

EPDP

A1A2O1O2

Fig. 3.1 Multivariate regression as path model (unstandardized parameters). Agreeableness/open-
ness predictors: A1, A2, O1, O2. Prejudice responses: DP, EP

3.2 Moderator and Mediator Models

Moderator and mediator models are regression models with more complex depen-
dency structures and can be estimated through a path-analytic framework. Baron
and Kenny (1986) give the following definitions of moderators and mediators:
“A moderator is a qualitative (e.g., sex, race, class) or quantitative (e.g., level of
reward) variable that affects the direction and/or strength of the relation between an
independent variable and a dependent variable” (p. 1174). “A given variable may
be said to function as a mediator to the extent that it accounts for the relation
between the independent variable and the dependent variable. Mediators explain
how external physical events take on internal psychological significance” (p. 1176).

3.2 Moderator and Mediator Models 67

We see that in both cases we have a predictor X and a response Y . The
relationship between X and Y is influenced by a third variable (moderator Z or
mediator M).

• A moderator interacts directly with X (e.g., X = alcohol consumption, Z = social
context, Y = social acceptance).

• A mediator acts “in between” X and Y (e.g., X = alcohol consumption, M =
driving back home, Y = waking up in jail).

In the following sections, we elaborate on various moderator, mediator, and simple
combined moderation-mediation strategies. An excellent, applied textbook on this
topic is Hayes (2013) which illustrates many additional flavors of this modeling
framework.

3.2.1 Moderator Models

Statistically speaking, moderation is expressed as interaction: in order to account for
the moderation effect of Z in a regression model, we need to allow for an interaction
between the predictors X and Z. The corresponding regression model (with the
usual assumptions) looks as follows2:

Yi = int + a1Xi + a2Zi + a3XiZi + εi . (3.2)

The crucial point in moderator analysis is to look at the interaction: if a3 is
significant, we say that Z has a moderating effect on the relationship X → Y .

Note that centering for multicollinearity purposes has been debunked as myth
and is therefore not necessary (see, e.g., Kromrey and Foster-Johnson, 1998; Dalal
and Zickar, 2012; Hayes, 2013). However, in terms of interpretation, centering Z

and/or X can be helpful since parameters can be interpreted relative to the mean
levels of the other variables. If X or Z are categorical, the interpretation of the
effects depends on the coding scheme used in the model. Note that centering does
not affect the model fit.

Let X∗ and Z∗ denote the centered versions of X and Z. Equation (3.2) can be
rewritten as

Yi = int + a1X
∗
i + a2Z

∗
i + a3X

∗
i Z

∗
i + εi, (3.3)

To illustrate a simple moderator model, let us consider the following example. Pašk-
van et al. (2016) present a model which explores the effects of work intensification
on various outcomes. Here we focus on the effect of work intensification X on

2We use a slightly nonstandard notation for the regression parameters in order to make it consistent
with the symbols used in the moderator/mediator literature.

68 3 Path Analysis and Structural Equation Models

cognitive appraisal Y (i.e., how an individual views a situation) and explore whether
participative climate Z (i.e., provision of information, participation in decision-
making) has a moderating effect on this relationship. Figure 3.2 depicts the basic
moderator relationship. Note that this is a simple conceptual representation of the
moderator setup and does not represent a statistical path model.

Before we fit the moderator model, let us check the effects of the centered
predictors X∗ and Z∗ on Y by means of two simple regressions.

Fig. 3.2 Moderating effect
of participative climate on the
relationship between work
intensification and cognitive
appraisal (conceptual
representation)

Work
Intensification

Participative
Climate

Cognitive
Appraisal

library("MPsychoR")
data("Paskvan")
wintense.c <- scale(Paskvan$wintense, scale = FALSE) ## center
fit.YX <- lm(cogapp ~ wintense.c, data = Paskvan) ## Y on X
round(summary(fit.YX)$coefficients, 4)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.7265 0.0227 164.4470 0
wintense.c 0.5458 0.0237 22.9954 0
pclimate.c <- scale(Paskvan$pclimate, scale = FALSE) ## center
fit.YZ <- lm(cogapp ~ pclimate.c, data = Paskvan) ## Y on Z
round(summary(fit.YZ)$coefficients, 4)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.7265 0.0272 136.8341 0
pclimate.c -0.3324 0.0304 -10.9408 0

Both variables have a significant effect on Y , and the R2 values are 0.398 and
0.13, respectively.

At this point we have two options: either use the lm function and fit the model
according to Eq. (3.3) or we use the moderate.lm function from the QuantPsyc
package (Fletcher, 2012) which, by default, centers X and Z. Let us explore the
latter option.

3.2 Moderator and Mediator Models 69

library("QuantPsyc")
fit.mod <- moderate.lm(x = wintense, z = pclimate, y = cogapp,

data = Paskvan)
round(summary(fit.mod)$coefficients, 4)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.7097 0.0227 163.0954 0.0000
mcx 0.5003 0.0241 20.7653 0.0000
mcz -0.1790 0.0257 -6.9765 0.0000
mcx:mcz -0.0663 0.0236 -2.8094 0.0051

We see that the interaction between the centered work intensification (mcx) and
the centered participative climate (mcz) is significant. Thus, there is evidence that
participative climate moderates the relationship between work intensification and
cognitive appraisal. We get an R2 = 0.436, which is slightly larger than the one
in first regression model without moderator. As mentioned above, due to centering
parameters can be interpreted relative to the mean levels of the other variables. For
instance, a1 denotes the change in cognitive appraisal Y by a 1-unit change in work
intensification X for individuals with average participate climate Z (as opposed to
Z = 0 in the uncentered case).

In order to get a more detailed insight into the interaction, we can perform
a simple slope analysis. In case of a metric moderator, this strategy splits the
moderator into a set of levels and reports the regression parameters for each
of these levels. By default, the sim.slopes function categorizes the centered
moderator Z∗ as follows: “low” for observations smaller than −sd(Z∗), “high”
for observations larger than sd(Z∗), and “medium” for the observations within the
±sd(Z∗) range.

fit.ss <- sim.slopes(fit.mod, Paskvan$pclimate)
round(fit.ss, 4)
INT Slope SE LCL UCL
at zHigh 3.5492 0.4407 0.0313 0.3793 0.5022
at zMean 3.7097 0.5003 0.0241 0.4530 0.5475
at zLow 3.8703 0.5598 0.0328 0.4953 0.6242

A simple slopes plot can be produced using the graph.mod function. We see
that none of the confidence intervals (CIs) for the slope parameters includes 0. Thus,
moderation happens at each level of participative climate.

As we have seen, from a statistical perspective, a moderator model is nothing else
than a regression model with an interaction. This model can be extended in several
directions. First, we can include additional covariates into the model. Second,
we can have scenarios where the predictor and/or the moderator are categorical
(see Baron and Kenny, 1986; Aiken and West, 1991). Third, we can extend this
concept to arbitrary generalized linear model (GLM) settings such as, for instance,

70 3 Path Analysis and Structural Equation Models

a moderated logistic regression in case of a binary response. Fourth, moderator
models can also be fitted within a repeated measurement design context as shown in
Judd et al. (2001).

3.2.2 Mediator Models

The simplest mediator model involves a predictor X, a response Y , and a mediator
M which influences the effect of X on Y but in a different way than in moderator
models. Figure 3.3 shows such a simple mediation relationship using the dataset
from above. Here we focus on the relationship between work intensification X and
emotional exhaustion Y , with cognitive appraisal acting as mediator M between
the two.

Readers who have some familiarity with mediator models may have heard about
the causal steps approach to mediation laid out by Baron and Kenny (1986). For
many years this has been the standard strategy to assess partial or full mediation.
In recent years, there has been a growing consensus in the community to disregard
this strategy since it is not based on a quantification of an indirect effect of X on Y

(through M). Another reason for abandoning the distinction between partial and full
mediation is that they are too sample size dependent. Details can be found in Hayes
(2013, Chapter 6).

Fig. 3.3 Relationship
between work intensification
and emotional exhaustion
mediated by cognitive
appraisal

Work
Intensification

Cognitive
Appraisal

Emotional
Exhaustionc’

a b

A simple mediator model consists of the following set of regression equations:

Mi = int1 + aXi + εi1,

Yi = int2 + c′Xi + bMi + εi2. (3.4)

We use c′ for the effect of X on Y , a for the effect of X on M , and b for the effect
of M on Y . The intercepts are denoted by int1 and int2.

The indirect effect of X on Y (through M) is simply ab. This indirect effect
is of key importance since it determines the strength of mediation. It has been
found (Preacher and Hayes, 2004) that the sampling distribution of ab deviates from
normality (as assumed by the classical Sobel test). The gold standard nowadays is

3.2 Moderator and Mediator Models 71

to perform a bootstrap and look at the corresponding bootstrap confidence interval
(CI) for assessing significance.

In R we have at least two options to compute mediator models including
bootstrapped CIs. We can either use the mediation package (Tingley et al., 2014),
or we specify a mediator path model in lavaan. Below we show both strategies
using the work intensification dataset (missings eliminated3). Let us start with
the mediation package. First we need to compute the following two regressions
according to Eq. (3.4):

library("mediation")
fit.MX <- lm(cogapp ~ wintense, data = Paskvan)
fit.YXM <- lm(emotion ~ wintense + cogapp, data = Paskvan)

Now we feed these objects into the mediate function. Through the treat
argument, we specify X, and through the mediator argument M . The remaining
arguments set up the bootstrap.

set.seed(123)
fitmed <- mediation::mediate(fit.MX, fit.YXM,

treat = "wintense", mediator = "cogapp",
sims = 999, boot = TRUE, boot.ci.type = "bca")

summary(fitmed)
##
Causal Mediation Analysis
##
Nonparametric Bootstrap Confidence Intervals with the BCa Method
##
Estimate 95% CI Lower 95% CI Upper p-value
ACME 0.334 0.263 0.42 <2e-16 ***
ADE 0.249 0.138 0.35 <2e-16 ***
Total Effect 0.583 0.503 0.66 <2e-16 ***
Prop. Mediated 0.572 0.438 0.73 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Sample Size Used: 803
##
##
Simulations: 999

In this output the ACME (average causal mediation effect) represents the indirect
effect ab, including the 95% bootstrap CI. Since ACME = 0 (null hypothesis) is
not contained in the CI, we conclude that cognitive appraisal M mediates the
relationship between work intensification X and emotional exhaustion Y .

ADE stands for average direct effect which, in our model, is the coefficient
c′. The total effect is simply ab + c′. The final line reports the proportion of

3The packages mediation and lavaan treat missing values differently.

72 3 Path Analysis and Structural Equation Models

the mediated effect which is the indirect effect divided by the total effect. In
this example 57.6% of the total effect of work intensification (X) on emotional
exhaustion (Y) is mediated by cognitive appraisal (M). This measure can be used as
effect size; additional effect sizes are outlined in Hayes (2013, Chapter 6) and can
be easily computed from the mediate output objects.

Now let us fit the same model using lavaan. In the syntax, we first specify the
two regressions,4 then the indirect effect, and, if needed, the total effect and the
mediated proportion as well. For each parameter we get a 95% bootstrap CI.

library("lavaan")
med.model <- '
emotion ~ c*wintense + b*cogapp
cogapp ~ a*wintense
ind := a*b
tot := ind+c
prop := ind/tot'

set.seed(123)
fitmedsem <- lavaan::sem(med.model, Paskvan, se = "bootstrap",

bootstrap = 999)
parameterEstimates(fitmedsem, zstat = FALSE, pvalue = FALSE,
boot.ci.type = "bca.simple")[c(7,1,8,9),]

lhs op rhs label est se ci.lower ci.upper
7 ind := a*b ind 0.334 0.038 0.262 0.414
1 emotion ~ wintense c 0.249 0.057 0.136 0.359
8 tot := ind+c tot 0.583 0.043 0.504 0.676
9 prop := ind/tot prop 0.572 0.079 0.431 0.740

The last line extracts the effects in the same order as in the mediate output:
indirect effect ab, direct effect c′, the total effect, and the mediation proportion.
For all of them, we get bootstrapped CIs. These outcomes match the results from
the mediation package, apart from slight deviations due to the stochastic nature of
the bootstrap. The model can be visualized using semPaths(fitmedsem) from
semPlot which results in Fig. 3.3.

Which package should we use? The mediation package provides a large amount
of modeling possibilities. First, multiple mediator models (see Hayes, 2013, Chapter
5) can be fitted easily. Second, the underlying regression specifications can be of
any GLM type (e.g., logistic mediator regression if Y is binary, Poisson mediator
regression in case of counts). In addition, ordinal/multinomial mediator models,
mixed-effects mediator models, as well as nonlinear spline regressions can be
computed. Tingley et al. (2014) illustrates how to fit such extensions. The advantage
of lavaan is that it allows to specify more complex path structures (including options
for visualization via semPlot). In the next section, we will look at such a structure.

4Note that in the syntax we use the symbol c instead of c′ as in Eq. (3.4).

3.2 Moderator and Mediator Models 73

3.2.3 Combined Moderator-Mediator Models

At this point we can think of combining moderator and mediator strategies into
a single model. Simple setups are often called moderated mediation or mediated
moderation (see Muller et al., 2005, for details on this distinction). Here we use
the more general term condition process analysis, where the goal is to model the
conditional mechanisms by which a variable transmits its effects on another (Hayes,
2013).

A simple example is given in Fig. 3.4, where we combine the moderator and
mediator models from above into a single model. The indirect effect of work inten-
sification (X) on emotional exhaustion (Y) through cognitive appraisal (mediator
M) is contingent on participative climate (Z). The latter moderates the relationship
between X and M and represents a conditional indirect effect where the magnitude
of the effect depends on the levels of the moderator. As pointed out in the moderation
section, variables can be centered for interpretability reasons. The same applies to
moderator relations in conditional process analysis. In the example below, we will
not center in order to accentuate that doing so is not necessary.

The set of regression equations in this example is a combination of Eqs. (3.2)
and (3.4):

Mi = int1 + a1Xi + a2Zi + a3XiZi + εi1,

Yi = int2 + c′Xi + bMi + εi2. (3.5)

The conditional indirect effect is (a1 + a3Zi)b. This implies that the indirect effect
needs to be evaluated for different values of Z. In case of categorical moderators,
we can use corresponding factor levels of interest. For metric moderators, as in
our example, we can use quantiles or any other moderator value of interest. For

Fig. 3.4 A simple
conditional process model
(moderated mediation) for
work intensification,
participative climate,
cognitive appraisal, and
emotional exhaustion
(conceptual diagram)

Work
Intensification

Participative
Climate

Cognitive
Appraisal

Emotional
Exhaustion

more complex models, more than two equations may be required. Examples of such
structures are presented in Hayes (2013, Chapter 10), including the corresponding
regression equations and expressions for the conditional indirect effects.

74 3 Path Analysis and Structural Equation Models

The mediation package is able to fit some moderator-mediator structures.
However, we cannot fit the structure given in Fig. 3.4 unless we would include the
moderator in both model parts (think of an arrow going from participative climate
to X → Y). In this case the second equation changes accordingly in order to
account for XZ interaction. The package also includes a test (see test.modmed)
on pairwise differences of indirect effects between two moderator strata. Details can
be found in Tingley et al. (2014).

Here we use the lavaan package and evaluate the conditional indirect effect
at the quartiles. In the lavaan syntax, we first specify the regressions according
to Eq. (3.5). Subsequently, the conditional indirect effects are computed for given
quartiles of participative climate. Note that we could also include equations for
direct and total effects. As above, we bootstrap the CIs.

quantile(Paskvan$pclimate)
0% 25% 50% 75% 100%
1.0 2.0 3.0 3.5 5.0
medmod.model <- '
set of regressions
cogapp ~ a1*wintense + a2*pclimate + a3*wintense:pclimate
emotion ~ c*wintense + b*cogapp

conditional indirect effects
cie.q1 := (a1 + a3*2)*b ## first quartile
cie.q2 := (a1 + a3*3)*b ## median
cie.q3 := (a1 + a3*3.5)*b ## third quartile
'
set.seed(123)
fitmedmod <- lavaan::sem(medmod.model, data = Paskvan,

se = "bootstrap", bootstrap = 999)

The corresponding path model can be plotted as follows using the semPlot
package (see Fig. 3.5):

semPaths(fitmedmod, layout = "spring", asize = 2.5,
sizeMan = 10, residuals = FALSE, nCharNodes = 7,
edge.label.cex = 1)

Now we extract the moderator interaction, the direct effect, and the conditional
indirect effects, evaluated at the three quartiles.

3.2 Moderator and Mediator Models 75

a1

a2

a3

c

b

cogapp

emotion

wintens

pclimat

wntns:p

Fig. 3.5 Moderated mediation path model for work intensification (X), emotional exhaustion (Y),
cognitive appraisal (M), and participative climate (Z). Node names are abbreviated (wntns:p
denotes the interaction between X and Z)

parameterEstimates(fitmedmod, zstat = FALSE, pvalue = FALSE,
boot.ci.type = "bca.simple")[c(3, 4, 14:16),]

lhs op rhs label est se ci.lower ci.upper
3 cogapp ~ wintense:pclimate a3 -0.066 0.030 -0.130 -0.009
4 emotion ~ wintense c 0.249 0.057 0.136 0.359
14 cie.q1 := (a1+a3*2)*b cie.q1 0.338 0.034 0.280 0.417
15 cie.q2 := (a1+a3*3)*b cie.q2 0.297 0.036 0.231 0.373
16 cie.q3 := (a1+a3*3.5)*b cie.q3 0.277 0.040 0.201 0.360

The interaction parameter a3 is significant (note that the upper CI bound is
close to 0) which suggests that participative climate moderates the relationship
between work intensification and cognitive appraisal. The direct effect of work
intensification on emotional exhaustion (c′ in Eq. (3.5)) is significant as well. All
three indirect effects are significant, meaning that for given levels of participative
climate, cognitive appraisal mediates the relationship between work intensification
and emotional exhaustion. This mediated relationship is weaker for employees
working in a favorable participative climate (i.e., the effect is getting smaller for
higher quantiles).

76 3 Path Analysis and Structural Equation Models

Covariates such as age and gender can be included as well by simply adding them
to both regression equations. For this dataset this extension is presented in Paškvan
et al. (2016).5

3.3 Structural Equation Models

3.3.1 SEM Model Formulation and Computation

Structural equation models (SEM) integrate confirmatory factor analysis (CFA) into
a larger path analytic framework. Formally, we extend the basic CFA expression
(measurement model) as given in Eq. (2.13), or, more generally, the multigroup
CFA expression in Eq. (2.15), by an additional linear specification reflecting
dependencies among the latent variables (structural model). This leads to the
following system of equations, involving m observed variables (indicators) and p

latent variables6:

y = ν + Λη + ε (3.6)

η = α + Bη + ζ . (3.7)

As in CFA, y is the random vector containing the m observed variables, ν the m × 1
intercept vector, η the p × 1 latent variable vector, Λ the m × p matrix containing
the loadings, and ε the m × 1 vector of errors associated with the latent variables.
In the second equation, α is the p × 1 latent variable intercept vector, B the p × p

matrix of directed path coefficients, and ζ a p×1 vector of errors associated with the
latent variables. The conventional assumptions for the errors are ε ∼ N(0,Θ) and
ζ ∼ N(0,Ψ), which can be relaxed by corresponding robust estimation approaches.

To demonstrate how to fit a simple SEM using lavaan, we use again the
prejudice dataset from Bergh et al. (2016). This time we consider three latent
variables (factors): The first two factors (i.e., agreeableness and openness) pertain
to personality traits, each of them is measured by three indicators. The third latent
variable is a generalized prejudice (GP) factor which is associated with ethnic
prejudice (EP), sexism (SP), sexual prejudice against gays and lesbians (HP),
and prejudice toward mentally people with disabilities (DP). The structural model
connects these three measurement models specifying paths from both agreeableness
and openness to GP. The syntax is as follows:

5Note that the authors obtained slightly different results since, apart from including covariates,
they had special missing value treatments and did centering.
6This notation is called “LISREL all-y” notation and is used by lavaan internally. There are several
other options for SEM formulation (see Bollen, 1989; Kline, 2016).

3.3 Structural Equation Models 77

0.17

0.19

0.28

0.29

0.32

0.32

0.35 −0.35

0.36

0.44

0.45

−0.47

0.53

0.56

0.69

0.74

0.75

0.80

0.82

0.83

0.85

0.88

0.90

0.91

1.00

1.00

EP

HP

DP

SP

A1

A2

A3

O1

O2

O3

GP

Agr

Opn

Fig. 3.6 Diagram of the generalized prejudice SEM (standardized parameters)

library("MPsychoR")
library("lavaan")
data("Bergh")
Bergh.model <- 'GP =~ EP + HP + DP + SP

Agree =~ A1 + A2 + A3
Open =~ O1 + O2 + O3
GP ~ Agree + Open'

fitGP <- sem(Bergh.model, data = Bergh, estimator = "MLR")

The path diagram with standardized parameters can be produced as follows and
is given in Fig. 3.6.

78 3 Path Analysis and Structural Equation Models

semPaths(fitGP, what = "std", edge.label.cex = 0.7, esize = 1,
intercepts = FALSE,rotation = 4, edge.color = 1, asize = 2.5,
sizeMan = 5, mar = c(1, 1.5, 1.5, 3), fade = FALSE)

We get a CFI of 0.963, a RMSEA of 0.075 with a corresponding 90% CI of
[0.065,0.085], and an SRMR of 0.054. The χ2-statistic is 186.62 (df = 32, p = 0).
Note that here the same rules of thumb apply as in CFA (see Sect. 2.4.1). The model
fits fairly well.

A full model summary including standardized parameters and fit measures can
be obtained as follows:

summary(fitGP, standardized = TRUE, fit.measures = TRUE)

Here, we only show the relevant structural model parameters since the measure-
ment model parameters can be interpreted as in CFA.

Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
GP ~
Agree -0.435 0.056 -7.773 0.000 -0.350 -0.350
Open -0.626 0.057 -11.000 0.000 -0.473 -0.473
##
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
Agree ~~
Open 0.049 0.007 6.761 0.000 0.286 0.286

From the regressions we see that both agreeableness and openness have a signif-
icant influence on GP in negative direction. The correlation between agreeableness
and openness is 0.286 (see Std.lv in covariances output).

Admittedly, this was a very simple example; structural relations can be way
more complicated. In practice, it is suggested to build up a complex SEM step-
by-step. First, get the measurement models right and make sure that they fit.
Reliability indices as presented in Sect. 1.2 are helpful within this context. After that,
establish the structural relations step-by-step and examine the goodness of fit for
each submodel. At the end, modification indices can be considered for additional fit
improvement. However, as mentioned in Sect. 2.4, they have to be used with caution
since they are purely data-driven and the corresponding model re-specification
might be difficult to justify from a substantive point of view.

3.3 Structural Equation Models 79

3.3.2 Multigroup SEM

In terms of multigroup models, we already did all the hard work in Sect. 2.4.4.
There is nothing really new here except that the constraints can be extended to
structural model parameters. Let us continue with the generalized prejudice SEM
from Fig. 3.6 and examine potential parameter differences across gender. We are
going to fit a series of models which build on the multigroup CFA strategy we used
in Sect. 2.4.4. We start with a first model M1 where the loadings and the structural
regression parameters are free to vary across gender. We force the EP intercept to
be equal for men and women by first constraining all intercepts to be equal through
group.partial and subsequently freeing up this restriction for DP, HP, and SP
through the group.partial specification.

fit.free <- sem(Bergh.model, group = "gender",
group.equal = c("intercepts"),
group.partial = c("DP~1", "HP~1", "SP~1"),
data = Bergh, estimator = "MLR")

This model gives a RMSEA of 0.077 with a 95% CI of [0.067,0.088], a CFI of
0.958, an SRMR of 0.054, and a χ2-value of 241.266 (df = 68, p = 0).

In the second model M2, we use the same intercept restrictions as in M1. In
addition, we constrain the loadings to be equal, except the SP loading on GP.

fit.load <- sem(Bergh.model, group = "gender",
group.equal = c("loadings", "intercepts"),
group.partial = c("GP=~SP", "DP~1", "HP~1", "SP~1"),
data = Bergh, estimator = "MLR")

This model gives a RMSEA of 0.076 with a 95% CI of [0.066,0.086], a CFI of
0.956, an SRMR of 0.06, and a χ2-value of 256.084 (df = 74, p = 0). Both models
computed so far fit moderately well.

As a third model M3, again, we use the same intercept restrictions as above and
free up all loadings. This time, we restrict all structural path coefficients to be equal
through "regressions" in group.equal.

fit.prestrict <- sem(Bergh.model, group = "gender",
group.equal = c("intercepts", "regressions"),
group.partial = c("DP~1", "HP~1", "SP~1"),
data = Bergh, estimator = "MLR")

80 3 Path Analysis and Structural Equation Models

For this model we obtain a RMSEA of 0.076 with a 95% CI of [0.065,0.086], a
CFI of 0.958, an SRMR of 0.055, and a χ2-value of 242.295 (df = 70, p = 0).

Let us now perform some model comparison. M3 is nested within the mode
general model M1. That is, all the parameters from M3 are contained in M1
since M3 simply specifies additional parameter restrictions. For such nested model
comparisons, we can apply the usual χ2-difference test:

anova(fit.free, fit.prestrict)
Scaled Chi Square Difference Test (method = "satorra.bentler.2001")
##
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
fit.free 68 11308 11603 241.27
fit.prestrict 70 11305 11590 242.29 0.89287 2 0.6399

We see that AIC and BIC are of similar magnitude across both models, and the
p-value tells us that M3 is not significantly worse than M1.

If we want to test M2 against M3, we cannot apply anova since the two models
are not nested: neither of the two is a restricted version of the other one. In such
cases we have the following options. Either we just look at the AIC/BIC and pick
the one with the (substantially) smallest AIC/BIC, or we apply a variant of the χ2-
difference test for non-nested models according to Vuong (1989). The nonnest2
package (Merkle et al., 2016) provides a corresponding implementation which we
are going to illustrate.

The icci function computes the AIC and BIC including CI for AIC/BIC differ-
ences. Vuong’s test statistic can be computed using vuongtest. Both functions
require the models to be fitted via maximum likelihood (ML); the update calls
below refit the models accordingly. Note that this idea can be applied to CFA as well.

library("nonnest2")
fit.load1 <- update(fit.load, estimator = "ML")
fit.prestrict1 <- update(fit.prestrict, estimator = "ML")
compIC <- icci(fit.load1, fit.prestrict1)
compIC

##
Model 1
Class: lavaan
Call: lavaan::lavaan(model = Bergh.model, data = Bergh, ...
AIC: 11310.695
BIC: 11577.148
##
Model 2
Class: lavaan
Call: lavaan::lavaan(model = Bergh.model, data = Bergh, ...

(continued)

3.3 Structural Equation Models 81

AIC: 11304.905
BIC: 11590.390
##
95% Confidence Interval of AIC difference (AICdiff = AIC1 - AIC2)
-10.544 < AICdiff < 22.123
##
95% Confidence Interval of BIC difference (BICdiff = BIC1 - BIC2)
-29.576 < BICdiff < 3.091

We see that both the AIC and the BIC differences CIs contain 0 which implies
that the model fits are sufficiently close that neither can be preferred over the other.

Vuong’s non-nested testing strategy gives the following results:

vuongtest(fit.load1, fit.prestrict1)
##
Model 1
Class: lavaan
Call: lavaan::lavaan(model = Bergh.model, data = Bergh, ...
##
Model 2
Class: lavaan
Call: lavaan::lavaan(model = Bergh.model, data = Bergh, ...
##
Variance test
H0: Model 1 and Model 2 are indistinguishable
H1: Model 1 and Model 2 are distinguishable
w2 = 0.020, p = 0.0533
##
Non-nested likelihood ratio test
H0: Model fits are equal for the focal population
H1A: Model 1 fits better than Model 2
z = -1.655, p = 0.951
H1B: Model 2 fits better than Model 1
z = -1.655, p = 0.04899

First, we look at the variance test output which gives a nonsignificant result. This
confirms what we have detected using AIC/BIC: the models are indistinguishable,
and there is no need to proceed with the likelihood ratio (LR) test further below in
the output. If the variance test was significant, we can compare the models via the
non-nested LR test (Merkle et al., 2016).

3.3.3 Remarks on SEM Extensions

Before covering a somewhat special SEM topic in the next section (i.e., latent
growth models), we give a few remarks on various SEM extensions and related path

82 3 Path Analysis and Structural Equation Models

modeling approaches. In Sect. 2.4.6 we illustrated multilevel CFA. Multilevel SEM
models can be specified in an analogous way using lavaan. To date, the package
allows for two-level specification only. Bayesian CFA was introduced in Sect. 2.5
using the bcfa function from blavaan (Merkle and Rosseel, 2017). In order to fit a
Bayesian SEM, the bsem function from the same package can be used. The model
syntax is the same as in lavaan.

Sample size planning in SEM is described in detail in Beaujean (2014, Chapter
8). The author shows how to perform corresponding Monte Carlo simulations in
R. The simsem package (Pornprasertmanit et al., 2016) facilitates such sample size
simulations as well as other SEM-related simulation studies.

SEM in relation to causality has been widely discussed in the literature (see,
e.g., Pearl, 2012). Causal modeling/inference (Pearl, 2009) builds on concepts from
graph theory, and corresponding path analysis/SEM approaches integrated into a
larger causal framework are sometimes referred to as structural causal models (see
Kline, 2016, Chapter 8).

Another approach to path modeling are partial least squares (PLS) models,
which are popular in economics and marketing. PLS can handle latent variables with
corresponding measurement models, in addition to the structural specification. The
main difference is that SEM is covariance based, whereas PLS is variance based.
An extensive treatment of PLS model in R can be found in Sanchez (2013) using
the plspm package (Sanchez et al., 2015).

3.4 Latent Growth Models

3.4.1 Simple Latent Growth Modeling

In Sect. 2.4.5 we presented a longitudinal CFA approach which gave us the oppor-
tunity to test hypotheses of change in latent variables in an ANOVA-like manner.
Here we present an approach called latent growth model (LGM) which, in its basic
form, does not involve any latent variables that are based on a measurement model.
However, we create artificial latent variables that allow us to study longitudinal
changes. In the simplest form of an LGM, we specify two growth factors:

• Latent intercept: allows us to describe individual starting points of the trajectories
(as opposed to each individual starting at the same consumption level).

• Latent shape: allows us to specify various shapes or trend patterns for the growth
trajectories.

To illustrate these concepts, throughout this section we use a dataset from Duncan
et al. (1998), where alcohol, cigarette, and marijuana consumption is studied on n =
1204 individuals at four points in time. The dataset is included in the aspect package
(Mair and De Leeuw, 2010). For the moment, we focus on cigarette consumption
only. We specify two latent variables: intercept and shape. In an LGM we typically
fix the latent intercept loadings to 1. This is analogous to what we do in a regression
model where the first column of the design matrix is a full 1-vector.

3.4 Latent Growth Models 83

For the latent shape, we have several options. For the moment we do not specify
any functional relationship (i.e., linear or quadratic). We simply fix the first loading
to 0. This reflects out initial level at time 1; thus, the intercept factor will be
based on the time 1 measurement. For identifiability reasons we need to restrict
one more shape factor loading: we fix the second loading to 1 while keeping the
remaining ones open. Since the sample is fairly large, we use a weighted least
squares estimator, sometimes also called asymptotically distribution free (ADF),
such that we do not have to worry about potential normality violations. Using the
growth function from lavaan, the model can be specified and fitted as follows:

library("lavaan")
library("aspect")
data("duncan")
model_shape <- '

inter =~ 1*CIG_T1 + 1*CIG_T2 + 1*CIG_T3 + 1*CIG_T4
shape =~ 0*CIG_T1 + 1*CIG_T2 + CIG_T3 + CIG_T4'

fitCig1 <-growth(model_shape, data = duncan, estimator = "WLS")

Before interpreting the parameters, let us examine the goodness of fit using the
usual CFA/SEM indices. We get a RMSEA of 0.064 with a 95% CI of [0.037,0.094],
a CFI of 0.975, an SRMR of 0.025, and a χ2-value of 17.644 (df = 3, p = 0.001).
Good fit.

The path diagram with standardized estimates can be produced as follows (see
Fig. 3.7).

semPaths(fitCig1, what = "std",edge.label.cex = 0.7, esize = 1,
edge.color = 1, sizeMan = 6, asize = 2.5, intercepts = FALSE,
rotation = 4, mar = c(3, 5, 3.5, 5), fade = FALSE)

Let us have a look at the parameter estimates:

summary(fitCig1, header = FALSE)
##
Latent Variables:
Estimate Std.Err z-value P(>|z|)
inter =~
CIG_T1 1.000
CIG_T2 1.000
CIG_T3 1.000
CIG_T4 1.000
shape =~
CIG_T1 0.000
CIG_T2 1.000
CIG_T3 2.408 0.456 5.275 0.000
CIG_T4 5.571 1.258 4.428 0.000

(continued)

84 3 Path Analysis and Structural Equation Models

##
Covariances:
Estimate Std.Err z-value P(>|z|)
inter ~~
shape -0.038 0.013 -2.854 0.004
##
Intercepts:
Estimate Std.Err z-value P(>|z|)
.CIG_T1 0.000
.CIG_T2 0.000
.CIG_T3 0.000
.CIG_T4 0.000
inter 1.981 0.035 57.210 0.000
shape 0.050 0.013 3.797 0.000
##
Variances:
Estimate Std.Err z-value P(>|z|)
.CIG_T1 0.179 0.032 5.658 0.000
.CIG_T2 0.145 0.019 7.558 0.000
.CIG_T3 0.198 0.016 12.338 0.000
.CIG_T4 0.078 0.047 1.666 0.096
inter 1.308 0.065 20.255 0.000
shape 0.022 0.010 2.139 0.032

0.05

0.10

0.12

0.13

0.14

−0.22

0.30

0.65

0.89

0.94

0.95

0.97 1.00

1.00

CIG_T1

CIG_T2

CIG_T3

CIG_T4

int

shp

Fig. 3.7 Standardized parameter outputs of the cigarette consumption LGM (4 time points)

3.4 Latent Growth Models 85

The first interesting output are the two free loadings for the shape factor. They
determine the growth rate. Note that a linear growth loading sequence would be 0,
1, 2, and 3. We see that there is some accelerated growth on T4 (5.571 vs. 3 as
expected with a linear growth). In a subsequent model, we will test whether a linear
growth would fit equally well.

Furthermore, we get a significant intercept-shape covariance of −0.038 indicat-
ing that higher consumption levels at T1 predict lower rates of consumption after
T1. Figure 3.7 shows the corresponding negative correlation (since we are plotting
standardized parameters).

In the intercepts part of the output, the two non-zero estimates represent the
fitted grand means for the latent intercept (at T1) and for the latent shape variable,
respectively. The second estimate suggests an average consumption increase of
0.05 from T1 to T2. The remaining output refers to the error variances and the
variances of the latent variables. Note that in this model we assume that the errors
are uncorrelated. We will relax this assumption later.

Let us fit two additional models: In the first model, we specify a linear trend
on the consumption, whereas in the second model, we use a quadratic trend. This
quadratic trend results in a second latent shape construct. As mentioned above, a
linear growth across the time points corresponds to a loadings sequence of 0, 1,
2, and 3. A quadratic trend corresponds to a loadings sequence of 0, 1, 4, and 9.
Below we fix these loadings accordingly. After each model fit, we print out the
trend parameters and some fit indices:

model_lin <- '
inter =~ 1*CIG_T1 + 1*CIG_T2 + 1*CIG_T3 + 1*CIG_T4
linear =~ 0*CIG_T1 + 1*CIG_T2 + 2*CIG_T3 + 3*CIG_T4'

fitCig2 <- growth(model_lin, data = duncan, estimator = "WLS")
parameterEstimates(fitCig2)[21,]
lhs op rhs est se z pvalue ci.lower ci.upper
21 linear ~1 0.086 0.009 9.598 0 0.069 0.104
round(fitMeasures(fitCig2)[c("rmsea", "cfi", "srmr")], 3)
rmsea cfi srmr
0.072 0.948 0.027
model_quad <- '
inter =~ 1*CIG_T1 + 1*CIG_T2 + 1*CIG_T3 + 1*CIG_T4
linear =~ 0*CIG_T1 + 1*CIG_T2 + 2*CIG_T3 + 3*CIG_T4
quad =~ 0*CIG_T1 + 1*CIG_T2 + 4*CIG_T3 + 9*CIG_T4'

fitCig3 <- growth(model_quad, data = duncan, estimator = "WLS")
parameterEstimates(fitCig3)[28:29,]
lhs op rhs est se z pvalue ci.lower ci.upper
28 linear ~1 0.055 0.020 2.74 0.006 0.016 0.094
29 quad ~1 0.013 0.006 2.04 0.041 0.001 0.026
round(fitMeasures(fitCig3)[c("rmsea", "cfi", "srmr")], 3)
rmsea cfi srmr
0.077 0.988 0.015

86 3 Path Analysis and Structural Equation Models

Both models fit fairly well. Of main interest are the trend parameters (intercepts).
In the first model, there is a significant linear trend. The second model suggests a
significant quadratic trend (note that the lower CI bound is very close to 0, however).

Let us now compare the linear trend model with the first model fitted above,
where we did not specify a functional trend pattern:

anova(fitCig1, fitCig2)
Chi Square Difference Test
##
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
fitCig1 3 17.644
fitCig2 5 35.947 18.303 2 0.0001061 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This test suggests that the model with the linear growth rate is significantly
worse than the first model, where the growth parameters for T3 and T4 were freely
estimated. This is due to the fact that we had an accelerated growth rate at T4. We
could also test the linear model against the quadratic model in the same fashion.
Comparing the quadratic model with the first model is somewhat trickier since they
are non-nested. We cannot apply the vuongtest function because we used ADF
estimation. We would have to refit the models using ML and then apply the same
decision strategy as in the previous section.

3.4.2 Extended Latent Growth Modeling

In this section we extend the LGM from above into several directions. Note that the
purpose of this section is to show various options for model specification using the
lavaan syntax, rather than finding a best fitting model. In the first model fitted below,
we treat the manifest variables as ordinal and use polychoric correlations; we keep
the trend linear. We need to impose some restrictions on the threshold parameters in
order to get a feasible solution. Below we set the first threshold parameters for the
consumption at T1 and T2 to 0.

model_ord <- '
inter =~ 1*CIG_T1 + 1*CIG_T2 + 1*CIG_T3 + 1*CIG_T4
linear =~ 0*CIG_T1 + 1*CIG_T2 + 2*CIG_T3 + 3*CIG_T4
CIG_T1 | 0*t1 + t2 + t3 + t4
CIG_T2 | 0*t1 + t2 + t3 + t4'

fitCigord <- growth(model_ord, data = duncan,
ordered = names(duncan)[5:8])

3.4 Latent Growth Models 87

The resulting parameter estimates can be interpreted in the same way as above.
In the second model, we treat the manifest variables as continuous (as in the

previous section) and specify again a linear trend. However, this time we include a
second variable: marijuana consumption. We impose a linear trend on this variable
as well. Of course, we could easily try, for instance, a quadratic trend for the
marijuana consumption, while keeping cigarette trend linear. To add an additional
flavor to the model, we specify correlated errors across subsequent time points.
Without any further restrictions, we would end up in a Heywood case. To avoid
this, we restrict the error variances to be constant for the cigarette and marijuana
indicators.

model_pc <- '
cint =~ 1*CIG_T1 + 1*CIG_T2 + 1*CIG_T3 + 1*CIG_T4
clin =~ 0*CIG_T1 + 1*CIG_T2 + 2*CIG_T3 + 3*CIG_T4
pint =~ 1*POT_T1 + 1*POT_T2 + 1*POT_T3 + 1*POT_T4
plin =~ 0*POT_T1 + 1*POT_T2 + 2*POT_T3 + 3*POT_T4

correlated errors
CIG_T1 ~~ CIG_T2; CIG_T2 ~~ CIG_T3; CIG_T3 ~~ CIG_T4
POT_T1 ~~ POT_T2; POT_T2 ~~ POT_T3; POT_T3 ~~ POT_T4

fix error variances
CIG_T1 ~~ rc*CIG_T1
CIG_T2 ~~ rc*CIG_T2
CIG_T3 ~~ rc*CIG_T3
CIG_T4 ~~ rc*CIG_T4
POT_T1 ~~ rp*POT_T1
POT_T2 ~~ rp*POT_T2
POT_T3 ~~ rp*POT_T3
POT_T4 ~~ rp*POT_T4'

fitPC1 <- growth(model_pc, data = duncan, estimator = "WLS")
round(fitMeasures(fitPC1)[c("rmsea", "cfi", "srmr")], 3)
rmsea cfi srmr
0.055 0.923 0.046

The path diagram is shown in Fig. 3.8 and includes the unstandardized param-
eters in order to reflect the corresponding parameter restrictions. Again, we get a
reasonably good fit. The linear trend parameters can be interpreted in the same way
as above. Let us have a look at the correlation parameters of the latent variables:

inspect(fitPC1, "std")$psi
cint clin pint plin
cint 1.000
clin -0.197 1.000

(continued)

88 3 Path Analysis and Structural Equation Models

pint 0.609 -0.213 1.000
plin -0.098 0.736 -0.182 1.000

We get a considerably high correlation in positive direction between the cigarette
and marijuana intercepts (0.609). This indicates that at T1, the higher the cigarette
consumption, the higher the marijuana consumption. The correlation between the
linear constructs is −0.213. Hence, the higher the increase in cigarette consumption,
the lower the increase in marijuana consumption. The remaining correlations can be
interpreted in an analogous fashion.

0.01

0.02

−0.02

0.03

0.03

−0.03

0.03

0.03

0.04

−0.04

0.04

0.04

−0.05

0.14

0.14

0.14

0.14

0.17

0.17

0.17

0.17
0.56

0.65

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.28

2.00

2.00

3.00

3.00

CIG_T1

CIG_T2

CIG_T3

CIG_T4

POT_T1

POT_T2

POT_T3

POT_T4

cnt

cln

pnt

pln

Fig. 3.8 LGM path diagram for cigarette and marijuana consumption (unstandardized parameters,
correlated errors)

Finally, let us include a covariate. Covariates can be either time-dependent or
time-independent. In this dataset there is an additional set of variables related to the
alcohol consumption which we can use as covariates. In the first model, let us treat
them as time-independent as we simply average the alcohol consumption across the
four time points (i.e., we have one covariate only):

3.4 Latent Growth Models 89

duncan$ALCavg <- rowMeans(duncan[, 9:12])

In order to keep the model specification somewhat slim, we remove the correlated
errors from the specification above and get rid of the variance restrictions once more.
We are interested in studying whether the average alcohol consumption influences
the marijuana latent variables (i.e., intercept and trend). This time we use a robust
ML estimator (since ADF screams and gives negative variances).

model_pca1 <- '
cint =~ 1*CIG_T1 + 1*CIG_T2 + 1*CIG_T3 + 1*CIG_T4
clin =~ 0*CIG_T1 + 1*CIG_T2 + 2*CIG_T3 + 3*CIG_T4
pint =~ 1*POT_T1 + 1*POT_T2 + 1*POT_T3 + 1*POT_T4
plin =~ 0*POT_T1 + 1*POT_T2 + 2*POT_T3 + 3*POT_T4

effects of alcohol on marijuana
pint ~ ALCavg
plin ~ ALCavg'

fitPCA1 <- growth(model_pca1, data = duncan, estimator = "MLR")
round(fitMeasures(fitPCA1)[c("rmsea", "cfi", "srmr")], 3)
rmsea cfi srmr
0.163 0.900 0.278

The fit is getting worse. Nevertheless, for illustration, let us pull out the path
coefficients for alcohol on marijuana:

parameterEstimates(fitPCA1)[17:18,]
lhs op rhs est se z pvalue ci.lower ci.upper
17 pint ~ ALCavg 0.316 0.026 12.213 0 0.265 0.366
18 plin ~ ALCavg 0.048 0.008 5.686 0 0.032 0.065

We see that alcohol has a significant influence on the initial marijuana consump-
tion as well as on the increase of marijuana consumption. Both effects point in a
positive direction. The model structure including the unstandardized estimates is
given in Fig. 3.9.

Finally, we climb the Mount Everest in this section and include alcohol as time-
dependent covariate associated with marijuana consumption. The corresponding
path diagram is given in Fig. 3.10.

model_pca2 <- '

(continued)

90 3 Path Analysis and Structural Equation Models

cint =~ 1*CIG_T1 + 1*CIG_T2 + 1*CIG_T3 + 1*CIG_T4
clin =~ 0*CIG_T1 + 1*CIG_T2 + 2*CIG_T3 + 3*CIG_T4
pint =~ 1*POT_T1 + 1*POT_T2 + 1*POT_T3 + 1*POT_T4
plin =~ 0*POT_T1 + 1*POT_T2 + 2*POT_T3 + 3*POT_T4

effects of alcohol on marijuana
POT_T1 ~ ALC_T1
POT_T2 ~ ALC_T2
POT_T3 ~ ALC_T3
POT_T4 ~ ALC_T4'

fitPCA2 <- growth(model_pca2, data = duncan, estimator = "MLR")
round(fitMeasures(fitPCA2)[c("rmsea", "cfi", "srmr")], 3)
rmsea cfi srmr
0.104 0.938 0.163

The fit has slightly improved compared to the time-independent model. Again,
let us extract the path coefficients for alcohol on marijuana:

parameterEstimates(fitPCA2)[17:20,]
lhs op rhs est se z pvalue ci.lower ci.upper
17 POT_T1 ~ ALC_T1 0.159 0.018 8.642 0 0.123 0.195
18 POT_T2 ~ ALC_T2 0.163 0.015 10.552 0 0.133 0.193
19 POT_T3 ~ ALC_T3 0.179 0.015 11.779 0 0.149 0.208
20 POT_T4 ~ ALC_T4 0.182 0.018 10.302 0 0.148 0.217

We see that alcohol has a significant influence on marijuana consumption at each
point in time.

This concludes the section on LGMs. The possibilities for specifying such
growth models are vast. Some additional flavors of these models can be found in
Beaujean (2014) and in Little (2013). They can be also integrated into a wider SEM
framework where, instead of growth on manifest variables, we are interested in
growth of latent variables. The indicators in the models above are then replaced
by latent variables which, in turn, are measured by a CFA. Illustrations can be found
in Little (2013, Chapter 8) who calls this type of model multivariate growth curve
model.

Another option to specify growth curve models is through a mixed-effects
framework (see, e.g., Mirman, 2014). Compared to this modeling framework, LGM
offer more flexibility in terms of multivariate settings and the potential to embedding
it into a larger latent variable framework. For LGM it is easy to obtain global fit
statistics and parameter testing can be carried out in a very extensive manner. We
also have the possibility to have detailed specification of covariance structures and
perform corresponding inference on them. A shortcoming of LGM is that we need
observations of each individual at each point in time. Thus, the design has to be
balanced, apart from potential missing values that lavaan can handle. Using mixed-
effects models, the data can be unbalanced (e.g., due to subject attrition). In addition,

References 91

0.10

0.11

0.12

0.15

0.17

0.18

0.19

0.19

0.20

0.23

0.23

−0.26

−0.32

0.38

0.41

0.45

0.55

0.60

0.81

0.86

0.88

0.90

0.90

0.93

0.95

0.95

0.96

0.97

1.00

1.00

1.00

CIG_T1

CIG_T2

CIG_T3

CIG_T4

POT_T1

POT_T2

POT_T3

POT_T4

ALC

cnt

cln

pnt

pln

Fig. 3.9 LGM path diagram for cigarette and marijuana consumption with alcohol as time-
independent covariate (unstandardized estimates)

mixed-effects models give us all the GLM modeling opportunities in terms of
handling all sorts of response types. They make it easy to incorporate autocorrelation
structures and other extensions from time series analysis. Elaborations on these two
“competing” approaches can be found in Grimm et al. (2016).

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions.
Newbury Park: Sage.

Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psy-
chological research: Conceptual, strategic, and statistical considerations. Journal of Personality
and Social Psychology, 51, 1173–1182.

92 3 Path Analysis and Structural Equation Models

0.09

0.11

−0.12

0.12

0.16

0.17

0.18

0.19

0.19

0.20
0.21

0.21

0.22

−0.22

0.22

0.23

−0.26

−0.26

0.41

0.44

0.56
0.58

0.58

0.59

0.70

0.70

0.73

0.74

0.78

0.78
0.81

0.87

0.88
0.88

0.90

0.95

0.96

0.97

1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00

CIG_T1

CIG_T2

CIG_T3

CIG_T4

POT_T1

POT_T2

POT_T3

POT_T4

ALC_T1

ALC_T2

ALC_T3

ALC_T4

cnt

cln

pnt

pln

Fig. 3.10 LGM path diagram for cigarette and marijuana consumption with alcohol as time-
dependent covariate (unstandardized estimates)

Beaujean, A. A. (2014). Latent variable modeling using R: A step-by-step guide. New York:
Routledge.

Bergh, R., Akrami, N., Sidanius, J., & Sibley, C. (2016). Is group membership necessary
for understanding prejudice? A re-evaluation of generalized prejudice and its personality
correlates. Journal of Personality and Social Psychology, 111, 367–395.

Berridge, D. M., & Crouchley, R. (2011). Multivariate generalized linear mixed models using R.
Boca Raton: CRC Press.

Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.
Dalal, D. K., & Zickar, M. J. (2012). Some common myths about centering predictor variables in

moderated multiple regression and polynomial regression. Organizational Research Methods,
15, 339–362.

Duncan, S. C., Duncan, T. E., & Hops, H. (1998). Progressions of alcohol, cigarette, and marijuana
use in adolescence. Journal of Bahavioral Medicine, 21, 375–388.

Epskamp, S. (2015). semPlot: Unified visualizations of structural equation models. Structural
Equation Modeling: A Multidisciplinary Journal, 22, 474–483.

References 93

Fletcher, T. D. (2012). QuantPsyc: Quantitative psychology tools. R package version 1.5. http://
CRAN.R-project.org/package=QuantPsyc

Fox, J., & Weisberg, S. (2010). An R companion to applied regression. Thousand Oaks: Sage.
Grimm, K. J., Ram, N., & Estabrook, R. (2016). Growth modeling: Structural equation and

multilevel modeling approaches. New York: Guilford.
Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A

regression-based approach. New York: Guilford.
Judd, C. M., Kenny, D. A., & McClelland, G. H. (2001). Estimating and testing mediation and

moderation in within-participant designs. Psychological Methods, 6, 115–134.
Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). New York:

Guilford Press.
Kromrey, J. D., & Foster-Johnson, L. (1998). Mean centering in moderated multiple regression:

Much ado about nothing. Educational and Psychological Measurement, 58, 42–67.
Little, T. D. (2013). Longitudinal structural equation modeling. New York: Guilford.
Mair, P., & De Leeuw, J. (2010) A general framework for multivariate analysis with optimal

scaling: The R package aspect. Journal of Statistical Software, 32(1), 1–23. https://www.
jstatsoft.org/index.php/jss/article/view/v032i09

Merkle, E. C., & Rosseel, Y. (2017, Forthcoming). blavaan: Bayesian structural equation models
via parameter expansion. Journal of Statistical Software. 85(4), 1–30.

Merkle, E. C., You, D., & Preacher, K. J. (2016). Testing non-nested structural equation models.
Psychological Methods, 21, 151–163.

Mirman, D. (2014). Growth curve analysis and visualization using R. Boca Raton: Chapman &
Hall, CRC.

Muller, D., Judd, C. M., & Yzerbyt, V. Y. (2005). When moderation is mediated and mediation is
moderated. Journal of Personality and Social Psychology, 89, 852–863.

Paškvan, M., Kubicek, B., Prem, R., & Korunka, C. (2016). Cognitive appraisal of work
intensification. International Journal of Stress Management, 23, 124–146.

Pearl, J. (2009). Causality: Models, reasoning, and inference. New York: Cambridge University
Press.

Pearl, J. (2012). The causal foundations of structural equation modeling. In: R. H. Hoyle (Ed.),
Handbook of structural equation modeling (pp. 68–91). New York: Guilford.

Pornprasertmanit, S., Miller, P., & Schoemann, A. (2016). simsem: Simulated structural equation
modeling. R package version 0.5-13. https://CRAN.R-project.org/package=simsem

Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects
in simple mediation models. Behavior Research Methods, Instruments, and Computers, 36,
717–731.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical
Software, 48(2), 1–36. http://www.jstatsoft.org/v48/i02/

Sanchez, G. (2013). PLS path modeling with R. Berkeley: Trowchez Editions. http://www.
gastonsanchez.com/PLS_Path_Modeling_with_R.pdf

Sanchez, G., Trinchera, L., & Russolillo, G. (2015). plspm: Tools for partial least squares path
modeling (PLS-PM). R package version 0.4.7. https://CRAN.R-project.org/package=plspm

Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2014). mediation: R package for
causal mediation analysis. Journal of Statistical Software, 59, 1–38. http://www.jstatsoft.org/
v59/i05/

Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses.
Econometrica, 57, 307–333.

http://CRAN.R-project.org/package=QuantPsyc
http://CRAN.R-project.org/package=QuantPsyc
https://www.jstatsoft.org/index.php/jss/article/view/v032i09
https://www.jstatsoft.org/index.php/jss/article/view/v032i09
https://CRAN.R-project.org/package=simsem
http://www.jstatsoft.org/v48/i02/
http://www.gastonsanchez.com/PLS_Path_Modeling_with_R.pdf
http://www.gastonsanchez.com/PLS_Path_Modeling_with_R.pdf
https://CRAN.R-project.org/package=plspm
http://www.jstatsoft.org/v59/i05/
http://www.jstatsoft.org/v59/i05/

Chapter 4
Item Response Theory

4.1 Introductory Remarks and Dimensionality Assessment

4.1.1 Classification of IRT Models

Item response theory (IRT) is often also referred to as latent trait analysis or
modern test theory. It is a measuring paradigm, designed for categorical data, that is
fundamentally different from classical test theory1 (CTT; see Chap. 1). IRT models
can be generally classified according to

• the nature of the input data (dichotomous vs. polytomous items),
• the dimensionality of the underlying latent trait (unidimensional vs. multidimen-

sional).

Dimensionality assessment will be covered in the following subsection. Subse-
quently, we focus on various popular unidimensional models for dichotomous and
polytomous items, before extending them to multidimensional traits.

4.1.2 Assessing Dimensionality

Prior to fitting an IRT model, the dimensionality of the scale should be assessed
carefully. There are several ways to explore the dimensionality of a scale:

• categorical principal component analysis (Princals),
• exploratory factor analysis (EFA) on tetrachoric/polychoric correlations,
• item factor analysis (IFA).

1Detailed elaborations on differences between IRT, CTT, and factor analysis can be found in Rusch
et al. (2017).

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_4

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_4&domain=pdf
https://doi.org/10.1007/978-3-319-93177-7_4

96 4 Item Response Theory

Princals will be explained in detail in Sect. 8.2. For the moment, it is just important
to know that it is a dimension reduction technique suited for categorical data, which
gives us hints about the number of underlying dimensions. EFA was covered in
Sect. 2.2. IFA will be discussed in Sect. 4.7.1. What we need to know for this section
is that IFA is a variant of EFA suited for categorical data.

To illustrate dimensionality assessment using these approaches, we consider a
dataset from Koller and Alexandrowicz (2010). They used the Neuropsychological
Test Battery for Number Processing and Calculation in Children (ZAREKI-R; von
Aster et al., 2006) for the assessment of dyscalculia in children. There are n =
341 children (2nd to 4th year of elementary school) in their sample, eight items on
addition, eight items on subtraction, and two covariates (time needed for completion
in minutes as well as grade). In this example we consider eight binary subtraction
items only.

library("MPsychoR")
library("mirt")
data("zareki")
zarsub <- zareki[, grep("subtr", colnames(zareki))]

We are interested in whether the subtraction items measure a single latent trait
or if multiple traits are needed. We start our dimensionality assessment with fitting
a two-dimensional Princals solution using the Gifi package (Mair and De Leeuw,
2017) in order to get a picture of item associations in a 2D space:

library("Gifi")
prinzar <- princals(zarsub)
plot(prinzar, main = "Zareki Loadings")

Figure 4.1 shows the corresponding loadings plot. If the items were unidimen-
sional, the arrows should approximately point in the same direction. We see that
item subtr5 is somewhat separated from the rest, whereas the remaining ones look
fairly homogeneous. This plot suggested that unidimensionality might be violated
due to subtr5.

As a second tool, we use an EFA on the tetrachoric correlation matrix and use
criteria from Sect. 2.2.4 such as VSS, MAP, and BIC to assess dimensionality. We
set the maximum number of factors to four and use the following function call from
the psych package (Revelle, 2017):

The VSS (output not show here) suggests two factors, the MAP one factor, and
the BIC three factors. As an additional diagnostic tool, a parallel analysis using the
fa.parallel function can be performed as well. Note that if the input items are
polytomous, setting cor="poly" does the job.

4.1 Introductory Remarks and Dimensionality Assessment 97

−0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

Zareki Loadings

Component 1

C
om

po
ne

nt
 2

subtr1

subtr2

subtr3

subtr4

subtr5

subtr6

subtr7

subtr8

Fig. 4.1 Princals loadings plot for subtraction items in ZAREKI data

As a third tool, let us use IFA as implemented in the mirt package (Chalmers,
2012). We fit a one-factor model and a two-factor model, and we compare these
nested fits via a likelihood-ratio (LR) test, in addition to the usual AIC/BIC criteria.

fitifa1 <- mirt(zarsub, 1, verbose = FALSE)
fitifa2 <- mirt(zarsub, 2, verbose = FALSE, TOL = 0.001)
anova(fitifa1, fitifa2, verbose = FALSE)
AIC AICc SABIC BIC logLik X2 df
1 2558.405 2560.084 2568.959 2619.715 -1263.202 NaN NaN
2 2561.249 2564.732 2576.422 2649.383 -1257.625 11.155 7
p
1 NaN
2 0.132

98 4 Item Response Theory

The nonsignificant result of the LR-test suggests that the 2D fit is not superior to
the 1D fit. AIC and BIC are (slightly) lower for the 1D solution.

Using all these tools in combination, we conclude that there is no drastic
unidimensionality violation in these data. Still, we obtained some hints that it might
be slightly violated. Princals gave a good indication that item 5 may not behave
in the same way as the remaining items. We do not have to exclude any items at
this point since, as we will see, for simple dichotomous IRT models, various tests
are sensitive to unidimensionality violations. If we would have detected two clearly
separated sets of items, we could fit two separate unidimensional IRT models, one
for each itemset. Alternatively, as we will see later in this chapter, there are also
options for fitting a two-dimensional IRT model on the entire set of items.

Other approaches for unidimensionality assessment in R are implemented in the
sirt package (Robitzsch, 2017, see expl.detect and unidim.test.csn) as
well as in ltm (Rizopoulos, 2006, see unidimTest).

Before we start elaborating on various IRT models, a few general remarks
regarding fit assessment in IRT. IRT models can be used for several purposes. On the
one extreme, we can use IRT for scale construction. That is, we want to find a set of
“high-quality” items that measure an underlying construct as good as possible. On
the other extreme, we use a (well-established) scale, and our main interest is to score
the persons, and not so much to eliminate (slightly) misfitting items. Depending on
the purpose of the IRT analysis, different criteria may be used for fit assessment and
interpreted with various degrees of strictness: in a scale construction scenario, we
want to be strict, whereas in a person scoring scenario, we can be more laid back
in terms of misfit. The point is that users should not rely blindly on p-values spit
out by various model tests but rather assess the fit in relation to the purpose the
model is being used for (see Maydeu-Olivares, 2015). In any case, a good a priori
dimensionality assessment is crucial.

4.2 Unidimensional Dichotomous IRT Models

4.2.1 The Rasch Model

The probabilistic model proposed by Rasch (1960) revolutionized psychometrics.
Despite the fact that the model is mathematically embarrassingly simple, it is
extremely profound from a measurement point of view (see Rasch, 1961; Fischer
and Molenaar, 1995). The Rasch model can be used if we aim to construct a scale
that fulfills highest measurement standards.

Let X be an n × m data matrix with n individuals in the rows (v = 1, . . . , n) and
m items in the columns (i = 1, . . . , m). All items are scored dichotomously (i.e., 0
or 1). The Rasch model is formally defined as:

P(Xvi = 1) = exp(θv + βi)

1 + exp(θv + βi)
. (4.1)

4.2 Unidimensional Dichotomous IRT Models 99

We model the probability that person v scores 1 on item i. Each item gets its
individual item location parameter βi . Using the parameterization from Eq. (4.1),
within the context of ability tests, βi is often referred to as item easiness parameter.2

Correspondingly, −βi is the item difficulty parameter. Each person gets a person
parameter θv , often called person ability parameter, which is obtained in a second
estimation step. Both the β’s and the θ ’s are on an interval scale and can be mapped
on the same latent trait (i.e., they are directly comparable). The Rasch model has
three fundamental assumptions:

• unidimensionality of the latent trait,
• parallel item characteristic curves (ICCs),
• local independence.

Unidimensionality was covered in detail in the section above. ICCs in conjunction
with parallel shifts will be explained further below, after fitting the Rasch model.
Local independence means that given a person parameter, item responses become
independent. This assumption is difficult to check and often omitted in practice.
Below we present a nonparametric test which helps us to assess potential violations.
A bootstrap-based approach is presented in Finch and French (2015, p. 238).

Let us fit a Rasch model on the ZAREKI-R subtraction items from above. If
these data fit the Rasch model, all three assumptions can be considered as fulfilled.
In R, Rasch models can be computed using the eRm package (Mair and Hatzinger,
2007b) which uses a conditional maximum likelihood (CML) approach, which has
some advantages over other IRT estimation approaches (see Mair and Hatzinger,
2007a).

library("eRm")
fitrasch1 <- RM(zarsub)
fitrasch1
##
Results of RM estimation:
##
Call: RM(X = zarsub)
##
Conditional log-likelihood: -646.9202
Number of iterations: 12
Number of parameters: 7
##
Item (Category) Difficulty Parameters (eta):
subtr2 subtr3 subtr4 subtr5
Estimate -0.7552998 1.6808330 -0.4774069 -0.280543
Std.Err 0.1619353 0.1310474 0.1515977 0.145557

(continued)

2We use the easiness parameterization in order to be consistent with the implementation in the
eRm package.

100 4 Item Response Theory

subtr6 subtr7 subtr8
Estimate 0.4163264 1.5508677 -0.1884142
Std.Err 0.1316531 0.1296646 0.1430740

This model call fits the item parameters only. In the print output, the item
parameters are called η. There seems to be one parameter missing: the one for item
1. This is due to the fact that there is a restriction involved in the estimation, in
order to make the model identifiable. The full vector of β parameters for all items
can be obtained via a multiplication with a design matrix W which is constructed
internally (i.e., β = Wη). Details can be found in Mair and Hatzinger (2007b). In
order to extract the entire set of easiness parameters, we can say

round(fitrasch1$betapar, 3)
beta subtr1 beta subtr2 beta subtr3 beta subtr4 beta subtr5
1.946 0.755 -1.681 0.477 0.281
beta subtr6 beta subtr7 beta subtr8
-0.416 -1.551 0.188

The difficulty parameters, sorted from the easiest to the most difficult item, are

round(sort(-fitrasch1$betapar), 3)
beta subtr1 beta subtr2 beta subtr4 beta subtr5 beta subtr8
-1.946 -0.755 -0.477 -0.281 -0.188
beta subtr6 beta subtr7 beta subtr3
0.416 1.551 1.681

Still, we need to verify whether the model fits, otherwise the interpretation of
these parameters is meaningless. A good strategy is to apply the LR-test proposed by
Andersen (1973), which is based on the following idea. Rasch measurement implies
that the item parameters have to be invariant across person subgroups (measurement
invariance). Therefore, for the Rasch model to fit, the item parameters based on
separate subgroup fits have to be approximately the same. This needs to hold for
any subgroup split. For instance, we can split the sample according to a median
or mean split based on the number of items solved or, even better, perform the split
according to one or multiple binary covariates. Here we use time as external splitting
variable (fast vs. slow according to a median split):

4.2 Unidimensional Dichotomous IRT Models 101

timecat <- factor(zareki$time <= median(zareki$time),
labels = c("fast", "slow"))

fitLR <- LRtest(fitrasch1, timecat)
fitLR
##
Andersen LR-test:
LR-value: 24.097
Chi-square df: 7
p-value: 0.001

It gives a significant result which implies that the likelihoods differ across the
two groups. The model does not fit. Which item is responsible for the misfit? We
can explore this question in detail using a Wald test with the same split criterion:

Waldtest(fitrasch1, timecat)
##
Wald test on item level (z-values):
##
z-statistic p-value
beta subtr1 -0.360 0.719
beta subtr2 0.237 0.813
beta subtr3 -2.342 0.019
beta subtr4 0.730 0.465
beta subtr5 4.199 0.000
beta subtr6 -0.548 0.584
beta subtr7 -1.529 0.126
beta subtr8 -0.469 0.639

Here, we can use the magnitudes of the p-values to judge the degree of misfit and
come to the conclusion that subtr5, already suspicious in the Princals solution
above, is most responsible for the misfit. A graphical illustration reflecting this
deviation can be produced as follows:

plotGOF(fitLR, ctrline = list(col = "gray"), conf = list())

The plot is given in Fig. 4.2. If the parameters were exactly the same across the
two subsamples, they would lie on the diagonal, and the model would fit. The gray
lines reflect the confidence bands around the diagonal. The 95% confidence ellipses
for the item parameters are shown in red. We see that subtr5 is clearly outside
the confidence band, and we have good evidence for eliminating it. We are going to
refit the model without this item, apply the LR-test once more, and check whether
the Rasch model fits:

102 4 Item Response Theory

Graphical Model Check

Beta for Group: timecat fast

B
et

a
fo

r G
ro

up
: t

im
ec

at
 s

lo
w

−3 −2 −1 0 1 2

−3
−2

−1
0

1
2

beta subtr1

beta subtr2

beta subtr3

beta subtr4

beta subtr5 beta subtr6

beta subtr7

beta subtr8

l

l

l

l

l l

l

l

Fig. 4.2 Graphical Rasch model check based on time subgroup split, including 95% confidence
ellipses (red) and diagonal confidence band (gray)

fitrasch2 <- RM(zarsub[, -5])
LRtest(fitrasch2, timecat)
##
Andersen LR-test:
LR-value: 5.715
Chi-square df: 6
p-value: 0.456

The nonsignificant p-value suggests that the model fits.
In practice, it is suggested to run these tests on multiple external binary

covariates. It is important to eliminate only one item at a time and then refit the
model which, of course, can be tedious in cases where many items need to be
eliminated. The eRm package provides the convenience function stepwiseIt
which eliminates items until a particular test of choice fits.

It has been shown in simulation studies (Suárez-Falcón and Glas, 2003) that the
LR-test works well for detecting violations of unidimensionality and parallel ICC
violations. Based on the nonsignificant result from above, we can conclude that
these assumptions are not violated. If we want to test assumptions more explicitly,

4.2 Unidimensional Dichotomous IRT Models 103

the nonparametric testing framework proposed by Ponocny (2001) provides a
large amount of testing possibilities. The eRm package uses the RaschSampler
package (Verhelst et al., 2007) internally determine to compute the test statistics.
As an example, we examine item-specific local independence (T1-test) and local
independence at a global level (T11-test).

set.seed(123)
T1 <- NPtest(as.matrix(zarsub[, -5]), n = 1000, method = "T1")
T1
Nonparametric RM model test: T1 (local dependence -
increased inter-item correlations)
(counting cases with equal responses on both items)
Number of sampled matrices: 1000
Number of Item-Pairs tested: 21
Item-Pairs with one-sided p < 0.05
none
T11 <- NPtest(as.matrix(zarsub[, -5]),n = 1000, method = "T11")
T11
Nonparametric RM model test: T11 (global test - local
dependence)
(sum of deviations between observed and expected
inter-item correlations)
Number of sampled matrices: 1000
one-sided p-value: 0.927

The first output suggests that none of the item pairs show significant local
dependence. The second test output confirms this result by telling us that local
independence holds at a global level.

Additional tests implemented in eRm are various itemfit statistics and indices
(function itemfit, see Bond and Fox, 2015, for details) and the Martin-Löf LR-
test (see MLoef).

At this point we can conclude that our data fit the Rasch model. This gives our
scale the highest seal of approval. Thus, we can interpret the item parameters and,
finally, elaborate on what (parallel) ICCs are. The sorted item difficulties are the
following:

round(sort(-fitrasch2$betapar), 2)
beta subtr1 beta subtr2 beta subtr4 beta subtr8 beta subtr6
-2.08 -0.83 -0.54 -0.24 0.39
beta subtr7 beta subtr3
1.58 1.72

104 4 Item Response Theory

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ICCs Subtraction Items

Subtraction Trait

P
ro

ba
bi

lit
y

to
 S

ol
ve

Item 1
Item 2
Item 4
Item 7
Item 5
Item 6
Item 3

− β3

Fig. 4.3 ICCs for 7 ZAREKI-R subtraction items. The item difficulty parameter (i.e., negative
easiness parameter from the eRm fit) is marked for item 3

ICCs, sometimes also called item response functions, determine the item behav-
ior (i.e., endorsement probability) along the latent trait. Figure 4.3 plots the ICCs
for all items in a single device.

plotjointICC(fitrasch2, xlab = "Subtraction Trait",
main = "ICCs Subtraction Items")

First of all, we see that all ICCs are parallel, and all of them have a slope of 1.
This is an implication of the Rasch model which will be relaxed in the next section.
The plot shows that item 1 is the easiest item, since it is located furthest to the left
on the trait. Item 3 is to the far right and consequently the most difficult one. In
this plot, the item parameters are reflected the value on the x-axis for which the
endorsement probability is exactly 0.5. In the plot, this is demonstrated for item 3.

Once the model fits, we can estimate the person parameter in a second step:

4.2 Unidimensional Dichotomous IRT Models 105

zarppar <- person.parameter(fitrasch2)

Each individual gets its own person parameter. Children who answered the same
number of items correctly3 will get the same person parameter. They are mapped on
the same latent trait as the items. For instance, in Fig. 4.3, we could draw another
vertical line at a particular θ̂v value, which would give us the response probabilities
of person v for each item. If the person parameter and an item parameter coincide,
this means that this person has a probability of 0.5 to score 1 on this particular item.

The person parameters can be added to the data matrix and used for further
statistical analysis as metric variable. Here we show an ANOVA with school year as
factor (three levels).

zareki$theta <- zarppar$theta.table[,1]
summary(aov(theta ~ class, data = zareki))
Df Sum Sq Mean Sq F value Pr(>F)
class 2 129.1 64.55 31.8 2.23e-13 ***
Residuals 338 686.2 2.03

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The result suggests significant differences in ability across the 3 years. Still, the
subtraction scale is fair since the Rasch model holds: fairness is a property of the
item parameters, and not a person parameter property.

An important contribution to the Rasch ecosystem was the idea to embed Rasch
models into a mixed-effects models framework. To be more precise, Rasch models
are nothing else than mixed-effects logistic regressions with, in their most basic
form, items as fixed effects and persons as random effects. The random intercepts
correspond to the person parameters, the fixed effect parameters to the item location
parameters. This idea of explanatory item response models adds many modeling
possibilities (see De Boeck et al., 2011, for details).

4.2.2 Two-Parameter Logistic Model

The parallel ICC assumption involving constant slope parameters of 1 is a rather
strict one. One-parameter logistic model versions of Rasch (called 1-PL or OPLM)

3In the Rasch model, it does not matter which particular items are solved correctly, as long as the
sum scores are the same. This property is called sufficiency.

106 4 Item Response Theory

relax this assumption slightly by estimating a single item discrimination parameter
α, generally different from 1. Still, the ICCs are parallel. This idea represents a
different philosophical measurement perspective. Under the Rasch paradigm, we
modify the data such that it fits the Rasch model. Under the 1-PL and the other
models presented in this section, we try to find a model that fits our data.

In practice, the two-parameter logistic model (2-PL Birnbaum, 1968) is more
relevant than the 1-PL. It estimates an item discrimination parameter αi for each
item individually, which allows the ICCs to cross. Equation (4.1) changes as
follows4:

P(Xvi = 1) = exp(αi(θv − βi))

1 + exp(αi(θv − βi))
. (4.2)

Compared to the Rasch model, it relaxes the assumption of parallel ICCs through
αi , while unidimensionality and local independence still need to hold.

The dataset we use to illustrate the 2-PL is taken from Mair et al. (2015). In this
study, the authors were interested in finding out why package developers contribute
to R. Among other things, they presented three subscales of the Work Design
Questionnaire (WDQ) by Morgeson and Humphrey (2006), in order to explore
whether certain work design characteristics had an influence on the participation
in package developments. In our little IRT application below, the main interest is
not to remove many items in order to achieve a strong measurement instrument.
Rather, the main objective is to score the developers and only remove items that are
heavily misfitting. Hence, we use a more flexible 2-PL since a Rasch model might
be too strict.

We consider a single WDQ subscale only: “knowledge characteristics” which
includes 18 dichotomous items related to job complexity, information processing,
problem solving, skill variety, and specialization.5 Let us fit a 2-PL using the ltm
package.

library("ltm")
data("RWDQ")
fit2pl1 <- ltm(RWDQ ~ z1)

Note that z1, on the right-hand side of the formula interface, is a generic
placeholder for the single latent dimension. The item parameters, here shown for
the first six items only, are the following:

4Note that in order to be consistent with the ltm package output, we state the model in terms of
difficulty parameters, i.e., (θv − βi).
5Due to space restrictions, we do not show the dimensionality assessment for this example. In
practice, this should be done prior to fitting the 2-PL.

4.2 Unidimensional Dichotomous IRT Models 107

head(coef(fit2pl1))
Dffclt Dscrmn
wdq_22 -9.4899518 0.1235779
wdq_23 1.0673713 -0.7324307
wdq_24 0.3893959 -0.8157724
wdq_25 1.4559338 -1.5614798
wdq_26 2.1251683 -0.6637341
wdq_27 0.5713899 -1.1531809

The first column contains the item difficulty parameters βi . Since the construct
is knowledge characteristics, speaking about difficulty does not make sense. A
large βi simply means that the item is located at the upper end of the knowledge
characteristics continuum. That is, it allows us to discriminate among persons
with high-knowledge characteristics. Conversely, a low item parameter measures
knowledge characteristics at its lower end and, correspondingly, discriminates
among persons with low knowledge characteristic. The second column shows the
item discrimination parameters αi which reflect the varying ICC slopes.

In the print output above, the item location parameter of item 22 (first row) is
unreasonably low, compared to the other parameters. Reasons for such a heavily
outlying parameter are that either the algorithm did not converge or the item violates
an assumption. Plotting a Princals solution on this dataset (not shown here), suggests
that item 22 deviates strongly from the remaining ones. Thus, let us eliminate
wdq_22 and refit the 2-PL model.

RWDQ1 <- RWDQ[,-1]
fit2pl2 <- ltm(RWDQ1 ~ z1)
head(coef(fit2pl2))
Dffclt Dscrmn
wdq_23 -1.0635633 0.7357065
wdq_24 -0.3869728 0.8219136
wdq_25 -1.4557177 1.5613090
wdq_26 -2.1132467 0.6681285
wdq_27 -0.5699980 1.1569626
wdq_28 -1.1383853 0.8076892

All item parameters look reasonable now.6 Let us do a final itemfit check by
computing a χ2-based itemfit statistic called Q1, following Yen (1981). In general,
a significant p-value suggests that the item does not fit. But based on the fact that
the Q1 statistic exhibits inflated Type I error rates and considering what we have
said at the end of Sect. 4.1.2 on scale construction vs. evaluation, we do not have to
use these p-values as our only criterion to keep or eliminate items.

6Again, due to space restrictions, we show the first six parameters only.

108 4 Item Response Theory

item.fit(fit2pl2)

The results (not shown here) suggest that the entire set of items fits; none of the
p-values is significant. Thus, no further item elimination steps are needed. The ICCs
for the first five items can be produced as follows and are given in Fig. 4.4.

plot(fit2pl2, item = 1:5, legend = TRUE)

Compared to the Rasch model, the striking difference is that the 2-PL ICCs are
allowed to cross. Item locations can be displayed in the same way as in the Rasch
model: think of a horizontal line at p = 0.5, and then drop vertical lines down to the
x-axis from where it intersects with the ICC. We see that wdq_25 has the largest
discrimination parameter, leading to the steepest ICC slope:

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Item Characteristic Curves

Ability

P
ro

ba
bi

lit
y

wdq_23
wdq_24
wdq_25
wdq_26
wdq_27

Fig. 4.4 ICCs for the 2-PL fit on WDQ data

4.2 Unidimensional Dichotomous IRT Models 109

round(coef(fit2pl2)[1:5, 2], 3)
wdq_23 wdq_24 wdq_25 wdq_26 wdq_27
0.736 0.822 1.561 0.668 1.157

“Good” discrimination parameters are typically in the range from 0.8 to 2.5 (de
Ayala, 2009). Outside this range, the ICCs are either too flat (such items do not
discriminate well along the entire continuum) or too steep (such items discriminate
only within a very narrow trait range).

Since the 2-PL fits, we can compute the person parameters:

ppars <- ltm::factor.scores(fit2pl2,
resp.patterns = RWDQ1)$score.dat[, "z1"]

As in the Rasch model, these parameters can be used for further analyses. The
reason why ltm calls the person parameter function factor.scores will be
explained in Sect. 4.7.1.

4.2.3 Three-Parameter Logistic Model

Let us add another parameter to Eq. (4.2) which brings us to the three-parameter
logistic model (3-PL; Birnbaum, 1968):

P(Xvi = 1) = γi + (1 − γi)
exp(αi(θv − βi))

1 + exp(αi(θv − βi))
. (4.3)

The new parameter γi reflects the probability of a 1-response on item i due to chance
alone and is often referred to as pseudo-guessing parameter. With respect to the
ICCs, it reflects a lower asymptote parameter. That is, even someone with infinite
low ability has a certain probability to score 1 on item i. These probabilities vary
across items. With the 3-PL, we create a model that is even more flexible than the
2-PL, but still, unidimensionality and local independence need to be fulfilled.

To illustrate a 3-PL model fit, we reproduce some of the analyses carried out
in Wilmer et al. (2012). Within the context of a face recognition experiment, they
presented the Verbal Paired-Associates Memory Test (VPMT; Woolley et al., 2008)
to the participants. The authors used a 3-PL since their main goal was to score the
persons, rather than being strict on the item side in terms of eliminating items. Let
us load the dataset and extract the 25 VPMT items:

110 4 Item Response Theory

data("Wilmer")
VPMT <- Wilmer[,3:27]

We fit a 3-PL using ltm and print the item parameter estimates (three per item)
for the first six items.

fit3pl <- tpm(VPMT)
round(head(coef(fit3pl)), 3)
Gussng Dffclt Dscrmn
vpmt1 0.071 -0.216 1.531
vpmt2 0.280 1.020 1.736
vpmt3 0.384 1.527 1.763
vpmt4 0.103 0.470 1.264
vpmt5 0.023 -0.299 1.247
vpmt6 0.135 0.504 1.192

In addition to the item locations and the discrimination parameters, we get
pseudo-guessing parameters. Again, we can examine the fit of the items via the
item.fit function (not shown here). The ICCs for the first six items can be
plotted as follows:

plot(fit3pl, item = 1:6, legend = TRUE)

Figure 4.5 shows the resulting ICCs. We see the effect of the γ -parameters in
terms of lower ICC asymptotes. Item 3 has the largest pseudo-guessing parameter.
As in the 2-PL, the ICCs are allowed to cross due to the α’s in the model.

4.3 Unidimensional Polytomous IRT Models

In the previous section, the input data had to be dichotomous. Here we present
popular IRT models for polytomously scored items. Again, for all models used
in this section, unidimensionality can be assessed using the tools presented in
Sect. 4.1.2 prior to fitting the model.

4.3 Unidimensional Polytomous IRT Models 111

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Item Characteristic Curves

Ability

P
ro

ba
bi

lit
y

vpmt1
vpmt2
vpmt3
vpmt4
vpmt5
vpmt6

Fig. 4.5 ICCs for the 3-PL fit on VPMT data (first six items only)

4.3.1 Rating Scale Model

The rating scale model (RSM; Andrich, 1978) is one of the simplest IRT models for
polytomous data. Let X be n × m data matrix with ordinal items. Each item has the
same number of categories k (h = 1, . . . , k). The RSM expresses the probability
that a person v scores category h on item i as follows:

P(Xvi = h) = exp(h(θv + βi) + ωh)
∑k

l=0 exp(l(θv + βi) + ωl)
. (4.4)

As in the Rasch model, θv denotes the person parameter and βi the item location
parameter, here again written as easiness parameter in order to be consistent with the
specification used in the eRm package. Each category h gets a category parameter
ωh, constant across items. This means that item differences are solely reflected by
the shifts in βi across items. Belonging to the Rasch family, the RSM shares all the
desirable Rasch measurement properties. The downside is that the model is pretty
strict since the same assumptions need to be fulfilled as in the Rasch model.

112 4 Item Response Theory

To illustrate an RSM fit, we use data analyzed in Bond and Fox (2015). The
Children’s Empathic Attitudes Questionnaire (CEAQ; Funk et al., 2008) is a 16-
item scale to measure empathy of late elementary and middle school-aged children.
Each item has three ordered responses: “no” (1), “maybe” (2), and “yes” (3). The
sample size is n = 208. Three covariates (age, gender, grade) were collected as
well. Let us extract the items and set the lowest category to 0 in order to make it
eRm compatible.

data("CEAQ")
itceaq <- CEAQ[,1:16] - 1

Now we fit the RSM, estimate the person parameters, and compute some χ2-
itemfit statistics (for which we need the person parameters).

fitrsm <- RSM(itceaq)
ppar <- person.parameter(fitrsm)
ifit0 <- eRm::itemfit(ppar)
ifit0
##
Itemfit Statistics:
Chisq df p-value Outfit MSQ Infit MSQ Outfit t
ceaq1 210.938 205 0.373 1.024 0.918 0.20
ceaq2 190.205 205 0.763 0.923 0.897 -0.50
ceaq3 259.718 205 0.006 1.261 0.966 1.30
ceaq4 222.146 205 0.196 1.078 0.995 0.72
ceaq5 167.622 205 0.974 0.814 0.864 -1.58
ceaq6 191.085 205 0.749 0.928 0.914 -0.76
ceaq7 162.424 205 0.987 0.788 0.886 -1.51
ceaq8 146.463 205 0.999 0.711 0.738 -3.41
ceaq9 181.586 205 0.879 0.881 0.891 -1.31
ceaq10 380.868 205 0.000 1.849 1.650 3.96
ceaq11 149.579 205 0.999 0.726 0.753 -3.30
ceaq12 192.132 205 0.731 0.933 0.980 -0.42
ceaq13 188.073 205 0.796 0.913 0.924 -0.89
ceaq14 232.512 205 0.091 1.129 1.206 0.75
ceaq15 249.571 205 0.018 1.212 1.166 1.88
ceaq16 184.072 205 0.850 0.894 0.920 -0.93

We show the output for the first five items only. We can compare the p-values
across items since the degrees of freedom (df) are constant across the tests. Note
that these χ2-statistics exhibit inflated Type I error rates. Other measures reported
here are the mean square fit (MSQ) statistics related to the amount of misfit in the
original data. They should be within a [0.7, 1.3] interval. Outfit statistics result from
dividing the χ2-value by the corresponding df. Due to their sensitivity to outlying

4.3 Unidimensional Polytomous IRT Models 113

scores, a modified statistic called infit is typically preferred. Both infit and outfit can
be standardized t-values which should be between −2 and 2. Details on infit/outfit
can be found in Bond and Fox (2015, Chapter 12).

For goodness-of-fit assessment, we should look at these measures in combi-
nation. In the output above, item 10 has the lowest p-value and high outfit/infit
statistics. Let us eliminate this item and refit the model.

ind <- match("ceaq10", colnames(itceaq))
itceaq1 <- itceaq[,-ind]
fitrsm1 <- RSM(itceaq1)
ppar1 <- person.parameter(fitrsm1)
ifit1 <- eRm::itemfit(ppar1)

In the output table (not shown here), we get a significant p-value for item 15
and considerably high infit/outfit statistics. Let us eliminate this item as well and do
another round of model fitting:

ind <- match("ceaq15", colnames(itceaq1))
itceaq2 <- itceaq1[, -ind]
fitrsm2 <- RSM(itceaq2)
ppar2 <- person.parameter(fitrsm2)
ifit2 <- eRm::itemfit(ppar2)

There is no item left which shows a suspicious combination of significant p-
values and extreme infit/outfit values.

Let us double-check the model fit using Andersen’s LR-test, which has better
inferential properties than the itemfit statistics. We use grade as splitting criterion.
Note that we have some missing grade values which we impute using the mice
package (van Buuren and Groothuis-Oudshoorn, 2011), since we need to have full
responses on the split criterion:

library("mice")
set.seed(222)
imp <- mice(CEAQ)
gradevec <- complete(imp)$grade

Now we binarize the grade variable and compute the LR-test:

114 4 Item Response Theory

levels(gradevec) <- c("grade56","grade56","grade78","grade78")
LRtest(fitrsm2, gradevec)
##
Andersen LR-test:
LR-value: 23.853
Chi-square df: 14
p-value: 0.048

Even though the p-value is slightly below 0.05, in conjunction with the itemfit
outcomes, it is safe to assume that the data fit the RSM.

Note that another option for testing at an item-category level is to use the
Waldtest function which computes a p-value for each item-category parameter.
There is no clear rule for situations where, for instance, two item-category param-
eters are significant and two are not significant. Whether such an item should be
eliminated or not depends on how strict we want to be when constructing the scale.

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ICC plot for item ceaq1

Empathy

P
ro

ba
bi

lit
y

to
 S

ol
ve

Category 0
Category 1
Category 2

Fig. 4.6 Item-category characteristic curve for first CEAQ item. The vertical lines denote the
threshold parameters

In this example, let us proceed with the fitrsm2 model. The item parameters
shown in the print or summary output are difficult to interpret. Let us convert
them into threshold parameters:

4.3 Unidimensional Polytomous IRT Models 115

thpar <- thresholds(fitrsm2)
thpar
##
Design Matrix Block 1:
Location Threshold 1 Threshold 2
ceaq1 -0.16252 -0.89441 0.56937
ceaq2 0.07933 -0.65255 0.81122
ceaq3 -0.58160 -1.31348 0.15029
ceaq4 0.73797 0.00608 1.46986
ceaq5 0.46689 -0.26500 1.19878
ceaq6 2.04031 1.30842 2.77219
ceaq7 0.04391 -0.68798 0.77579
ceaq8 1.38216 0.65027 2.11405
ceaq9 1.92245 1.19056 2.65434
ceaq11 1.71188 0.97999 2.44377
ceaq12 0.06169 -0.67020 0.79358
ceaq13 2.26829 1.53640 3.00018
ceaq14 -0.39327 -1.12516 0.33862
ceaq16 0.66895 -0.06294 1.40084

We get a location parameter for each item and k − 1 threshold parameters.
The meaning of these threshold parameters is displayed in Fig. 4.6 for item 1
(vertical lines). The threshold parameters reflect the point on the empathy trait
continuum where a respondent would switch from scoring 0 to scoring 1 (first
parameter) and would switch from scoring 1 to scoring 2 (second parameter).
Using the plotICC function such curves can be produced for each item. Note
that for polytomous models, we get a curve for each item category (item-category
characteristic curves)7.

Another plotting option, which summarizes nicely the entire set of parameter
estimates, is the person-item map as illustrated in Fig. 4.7.

plotPImap(fitrsm2, latdim = "Empathy",
main = "Person-Item Map CEAQ")

As this plot nicely illustrates, item differences occur due to location shifts only.
That is, we fit one set of threshold parameters for all items, which is then shifted
across the items via the location parameter. This is a main feature of the RSM and
will be relaxed in the next section.

Muraki (1990) developed an generalized rating scale model (GRSM) which
includes item discrimination parameters. This model can be fitted using the mirt
package by saying itemtype="grsm" in the mirt function call.

7We continue to use ICC as abbreviation.

116 4 Item Response Theory

ceaq16

ceaq14

ceaq13

ceaq12

ceaq11

ceaq9

ceaq8

ceaq7

ceaq6

ceaq5

ceaq4

ceaq3

ceaq2

ceaq1

−1 0 1 2 3 4
Empathy

l l

1 2
l

l l

1 2
l

l l

1 2
l

l l

1 2
l

l l

1 2
l

l l

1 2
l

l l

1 2
l

l l

1 2
l

l l

1 2
l

l l

1 2
l

l l

1 2
l

l l

1 2
l

l l

1 2
l

l l

1 2
l

Person−Item Map CEAQ

Person
Parameter

Distribution

Fig. 4.7 Person-item map for RSM fit on CEAQ data. The top histogram shows the distribution of
the person raw scores. The ticks below mark the estimated person parameters. The solid dots are
the item location parameters and the hollow dots the threshold parameters

4.3.2 Partial Credit Model and Generalizations

The partial credit model (PCM; Masters, 1982) is a generalization of the RSM
where we estimate specific item-category parameters for each item. Items do not
need to have the same number of categories. Master’s motivation was to develop
a model suited for partial credit scenarios (e.g., 0 = “totally wrong,” 1 = “partially
correct,” 2 = “almost correct,” 3 = “correct”). As usual in IRT models, these scores
are taken at an ordinal scale level. The PCM formulation, based on an n × m data
matrix X where each item i has h = 1, . . . , ki categories, looks as follows:

P(Xvih = 1) = exp(hθv + βih)
∑ki

l=0 exp(lθv + βih)
(4.5)

4.3 Unidimensional Polytomous IRT Models 117

Apart from potentially differing numbers of categories, the most striking difference
between the PCM and RSM is that each item-category gets its own item-category
parameter βih. As the RSM, the PCM belongs to the Rasch family as well and the
three Rasch assumptions need to be fulfilled. The PCM can be fitted using the eRm
package, and itemfit can be assessed in the same way as we did for the RSM.

To illustrate the PCM, we use a dataset from Koller et al. (2017) who analyzed
the Adult Self-Transcendence Inventory (ASTI; Levenson et al., 2005), a self-report
scale measuring the target construct of wisdom. The ASTI has five subscales: self-
knowledge and integration (SI), peace of mind (PM), non-attachment (NA), self-
transcendence (ST), and presence in the here-and-now and growth (PG). Let us
analyze the PG subscale by means of a PCM. This subscale has six items; four
of them are on a 3-point scale and two of them on a 4-point scale.

We fit the PCM using the eRm package and, subsequently, convert these
parameters into the thresholds for better interpretability.

data("ASTI")
PGitems <- ASTI[,c(11,14,15,17,18,23)] ## extract PG items
fitpcm <- PCM(PGitems)
thresholds(fitpcm)
##
Design Matrix Block 1:
Location Threshold 1 Threshold 2 Threshold 3
ASTI11 -0.25342 -0.95748 0.45065 NA
ASTI14 0.55114 -0.36856 0.14314 1.87882
ASTI15 -0.23452 -1.10152 0.63248 NA
ASTI17 0.36189 -0.03309 0.75686 NA
ASTI18 0.60182 -0.60759 0.53785 1.87519
ASTI23 0.26095 -0.36529 0.88720 NA

The four items with three response categories get two threshold parameters only.
Goodness-of-fit evaluation is not shown here but can be performed in the same
manner as for the RSM. Figure 4.8 shows the person-item map which can be
produced as follows:

plotPImap(fitpcm, latdim = "Presence/Growth",
main = "Person-Item Map ASTI")

As opposed to the RSM, the distances between the category thresholds vary
across items. Note that sometimes it can happen that two threshold parameters
appear to be switched in the PI-map. In this case, a look at the corresponding ICC
plot helps. For instance, if the threshold 2 is lower than the threshold 1, this means
nowhere on the latent trait a category 2 has an endorsement probability higher than
the remaining categories (see de Ayala, 2009, for some examples).

118 4 Item Response Theory

ASTI23

ASTI18

ASTI17

ASTI15

ASTI14

ASTI11

−2 −1 0 1 2 3
Presence/Growth

l l

1 2
l

l l l

1 2 3
l

l l

1 2
l

l l

1 2
l

l l l

1 2 3
l

l l

1 2
l

Person−Item Map ASTI

Person
Parameter

Distribution

Fig. 4.8 Person-item map for PCM fit on PG subscale

An extension of the PCM was proposed by Muraki (1992): the generalized
partial credit model (GPCM), which can be expressed by

P(Xvih = 1) = exp(αi(hθv + βih))
∑ki

l=0 exp(αi(lθv + βih))
. (4.6)

Similar two a 2-PL model, it adds item discrimination parameters αi to the
model. Whereas the PCM belongs to the Rasch family, the GPCM does not. The
GPCM can be fitted using the ltm package via the gpcm function. This function
allows us to put restrictions on the discrimination parameters. For instance, setting
constraint="rasch", we end up with a PCM. Thus, the PCM is nested within
a GPCM. We can use this property for constructing an LR-test.

4.3 Unidimensional Polytomous IRT Models 119

Let us illustrate this PCM/GPCM strategy using the ASTI data once more, but
this time using a different subscale: self-transcendence (ST) with seven polytomous
items.

data("ASTI")
STitems <- ASTI[,c(2,4,7,13,16,24,25)] ## ST items
stpcm <- gpcm(STitems, constraint = "rasch") ## PCM
stgpcm <- gpcm(STitems) ## GPCM
anova(stpcm, stgpcm) ## LR-test
##
Likelihood Ratio Table
##
AIC BIC log.Lik LRT df p.value
stpcm 18610.23 18705.78 -9286.11 19
stgpcm 18190.04 18320.79 -9069.02 434.19 26 <0.001

We see that the GPCM fits significantly better than the PCM. AIC and BIC are
clearly lower for the GPCM compared to the PCM.

The ICCs in Fig. 4.9, produced using plot(stpcm) and plot(stgpcm),
show the difference between the PCM and the GPCM. The top panels present the
ICCs for the first two ST items based on a PCA fit. We see that the ICC slopes within
and across items are constant. The ICCs for these two items look very similar, but
they are not exactly the same. The bottom panels contain the ICCs from the GPCM
fit. The slopes vary across items; within each item, they are the same. This variation
is due to the αi’s added to the model.

4.3.3 Graded Response Model

Another popular polytomous IRT model, similar to the GPCM in terms of including
discrimination parameters, is the graded response model (GRM; Samejima, 1969):

P(Xvi ≥ h) = exp(αi(θv − βih))

1 + exp(αi(θv − βih))
(4.7)

By looking at the left-hand side of the equation, we see that the model is formulated
in terms of cumulative logits, whereas the GPCM was formulated by means of
adjacent logits.8 Thus, the GRM estimates the probability for scoring category h

or higher. The βih parameter is often referred to as category boundary location. As
in the PCM/GPCM, the items can have different numbers of categories.

8For connections between the GRM and the GPCM, see Ostini and Nering (2005).

120 4 Item Response Theory

A GRM can be fitted using the ltm package. We illustrate the GRM on the self-
transcendence (ST) subscale from the ASTI data, already used in the GPCM fit

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ICC PCM (Item 1)

Ability

P
ro

ba
bi

lit
y

1

2
3

4

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ICC PCM (Item 2)

Ability

P
ro

ba
bi

lit
y

1

2
3

4

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ICC GPCM (Item 1)

Ability

P
ro

ba
bi

lit
y

1

2
3

4

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ICC GPCM (Item 2)

Ability

P
ro

ba
bi

lit
y

1 2

3 4

Fig. 4.9 Top panels: item-category curves for the first two items (PCM fit). Bottom panels: item-
category curves for the same two items (GPCM fit)

above. The first line fits the model according to Eq. (4.7) with item discrimination
and category boundary parameters. The second line estimates the person parameter.

fitgrm <- grm(STitems)
ppargrm <- ltm::factor.scores(fitgrm)

Figure 4.10 shows two plots, both related to the first item. The left panel,
produced using plot(fitgrm, type="OCCu"), displays what is actually
fitted: the cumulative logits (called operation characteristic curves) from Eq. (4.7).

4.3 Unidimensional Polytomous IRT Models 121

The first curve (from left to right) reflects the probability for scoring 1 or higher,
the second curve the probability for scoring 2 or higher, and the third curve the
probability for scoring 3. The right-hand panel shows the ICC version of it, produced
using plot(fitgrm, type="ICC").

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OCC Item 1

Ability

P
ro

ba
bi

lit
y

1

2

3

β11 β12 β13

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ICC Item 1

Ability

P
ro

ba
bi

lit
y

1

2

3

4

Fig. 4.10 Left panel: operation characteristic curves with corresponding GRM boundary parame-
ter estimates (first item). Right panel: item-category curves resulting from GRM fit (first item)

4.3.4 Nominal Response Model

The last unidimensional polytomous model we consider here is the nominal
response model (NRM; Bock, 1972). As the name already suggests, this model
abandons the ordinality restriction on the item input categories. It is attractive to
apply on multiple choice items or if there are response formats of the form “yes,”
“no,” and “don’t know.” It is more general than the GRM/GPCM in the sense that
each item-category gets its own individual discrimination parameter, in addition to
the item-category location. The probability that person v scores category h on item
i is expressed by

P(Xvi = h) = exp(αih(θv − βih))

1 + exp(αih(θv − βih))
. (4.8)

Here, αih is the item-category discrimination parameter. This implies that, neither
within nor across items, the item-category characteristic curves have to be parallel.

In R, the NRM can be fitted using the mirt package. The dataset we use
contains a modified version of the Wilson-Patterson conservatism scale (Wilson
and Patterson, 1968). We use the first 15 “conservative” items. Each item has three
response categories: 1 = “approve,” 0 = “disapprove,” and 2 = “don’t know.”

122 4 Item Response Theory

Unidimensionality assessment for nominal responses requires some adaption of
the tools presented in Sect. 4.2. We can use a nominal Princals version which gives
us an insight into the dimensionality structure. The top panel of Fig. 4.11 shows
the Princals loadings plot. We eliminate the four items pointing to the bottom-left.
On the remaining items, we fit a Homals solution. Simply speaking, Homals is
a more general model than Princals where the focus is on scoring the categories,
and it is described in detail in Sect. 8.3. Homals gives us insight into the category
associations (see bottom panel of Fig. 4.11). The first dimension discriminates
between responses 1 and 2; the second dimension is mostly determined by the 0
responses. Homals and Princals can be fitted as follows:

library("Gifi")
data("WilPat")
wpit15 <- WilPat[,1:15]
wpiprin <- princals(wpit15, ordinal = FALSE)
elim <- c("Nationalism", "Patriotism", "ChurchAuthority",

"Obedience")
ind <- match(elim, colnames(wpit15))
wpitnew <- wpit15[, -ind]
wpihom <- homals(wpitnew)

At this point, we are ready to fit the NRM using the mirt package. The second
argument in the mirt call refers to the dimensionality of the model.

library("mirt")
nrmwp <- mirt(wpitnew, 1, itemtype = "nominal")

The ICCs can be obtained using the itemplot function. Figure 4.12 presents
ICCs for four interesting items. The further left a person is placed on the trait,
the more conservative he/she is. Genetically modified foods are only approved
by very conservative people. The remaining persons are most likely against it
or say “don’t know.” For the capitalism, free market, and lower taxes items, the
probability for scoring 0 (“disapprove”) is low throughout the trait. Lower taxes are
approved over a wide range of the continuum; very liberal persons most likely say
“don’t know.” As we see, the NRM gives a highly detailed insight into the item-
category/person behavior. Item-category discriminations can vary drastically within
and across items, as in our example.

In terms of goodness-of-fit assessment, the mirt offers a highly attractive
function. Here we demonstrate it for the NRM, but since mirt allows us to fit
basically every model considered so far, these test criteria are generally applicable
(also for multidimensional IRT models described further below).

4.4 Item and Test Information 123

M2(nrmwp)
M2 df p RMSEA RMSEA_5 RMSEA_95
stats 24.97443 22 0.2982992 0.01297576 0 0.03322548
TLI CFI
stats 0.9895378 0.9947689

The first set of outputs is related to the M2 statistic proposed by Maydeu-
Olivares and Joe (2005). It is a limited information version of a χ2-test involving
observed probabilities and model probabilities. The nonsignificant p-value suggests
that the model fits. The RMSEA (including 90% CI), TLI, and CFI are borrowed
from confirmatory factor analysis (CFA) and structural equation models (SEM),
respectively (see Sect. 2.4.1 for details). For the CFI, we can use the same 0.95 fit
cutoff as in CFA/SEM. For the RMSEA, the CFA/SEM cutoff was 0.05 for a good
fitting model. In IRT, it is suggested to use 0.05/k (with k being the number of
categories per item) as fit cutoff. In our example k = 3, thus, the RMSEA should be
smaller than 0.017. This is the case in our example. Overall we can conclude that
the model fits. Further details on these statistics can be found in Maydeu-Olivares
(2015).

4.4 Item and Test Information

In many applications, it is of interest in which area of the trait an item is particularly
informative. In other words, what is the degree to which an item reduces the
uncertainty in estimation of a person’s trait value? This concept is called item
information. All IRT packages used so far provide corresponding plot functions for
item information. Here we sketch it for the NRM fit above using the mirt package.
The following function call generates the item information curves for each of the 11
conservatism items (see Fig. 4.13):

plot(nrmwp, type = "infotrace", main = "Item Information")

From the information curve, we see that “privatization” is highly informative
within a narrow range at the center of the trait (average conservative respondents).
“Lower taxes” is not a very informative item; ultimately no one likes to pay taxes.
The curve has a little bump located in the liberal respondents’ area. The remaining
curves can be interpreted in a similar fashion.

These item information curves can be aggregated. This leads us to the concept of
test information.

124 4 Item Response Theory

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

Loadings WP Conservatism

Component 1

C
om

po
ne

nt
 2

Patriotism

Capitalism

Privatization

Nationalism

FreeMarket

LowerTaxes

FreeTrade

ChurchAuthority

PrivateHealthcare

NuclearEnergy

PrivatePensions

SmallGovernment

Obedience

GeneticallyModifiedFoods

ConsumerCulture

−0.02 0.00 0.02 0.04 0.06

−0
.0

6
−0

.0
4

−0
.0

2
0.

00
0.

02

Categories WP Conservatism

Dimension 1

D
im

en
si

on
 2

l

l

l

Capitalism.0

Capitalism.1
Capitalism.2

ll

l

l

Privatization.0

Privatization.1

Privatization.2

l

l

l

FreeMarket.0

FreeMarket.1

FreeMarket.2

l

l

l

LowerTaxes.0

LowerTaxes.1

LowerTaxes.2

l

l

l

FreeTrade.0

FreeTrade.1

FreeTrade.2

l

l

l

PrivateHealthcare.0

PrivateHealthcare.1

PrivateHealthcare.2

l

l l

NuclearEnergy.0

NuclearEnergy.1 NuclearEnergy.2

l

l

l

PrivatePensions.0

PrivatePensions.1

PrivatePensions.2

l

l

l

SmallGovernment.0

SmallGovernment.1
SmallGovernment.2

l

l

l

GeneticallyModifiedFoods.0

GeneticallyModifiedFoods.1

GeneticallyModifiedFoods.2

l

l

l

ConsumerCulture.0

ConsumerCulture.1
ConsumerCulture.2

Fig. 4.11 Top panel: nominal Princals loadings plot. Bottom panel: 2D Homals joint category plot
after eliminating four misfitting items through Princals

4.4 Item and Test Information 125

Capitalism

θ

P
(θ

)

0.0

0.2

0.4

0.6

0.8

1.0

−6 −4 −2 0 2 4 6

disapprove
approve
don't know

l

l

l

FreeMarket

θ
P

(θ
)

0.0

0.2

0.4

0.6

0.8

1.0

−6 −4 −2 0 2 4 6

disapprove
approve
don't know

l

l

l

LowerTaxes

θ

P
(θ

)

0.0

0.2

0.4

0.6

0.8

1.0

−6 −4 −2 0 2 4 6

disapprove
approve
don't know

l

l

l

GeneticallyModifiedFoods

θ

P
(θ

)

0.0

0.2

0.4

0.6

0.8

1.0

−6 −4 −2 0 2 4 6

disapprove
approve
don't know

l

l

l

Fig. 4.12 NRM item-category characteristic curves for four selected items. The trait represents
conservative (negative direction) and liberal (positive direction)

plot(nrmwp, type = "info")

This plot (not shown here) tells us in which trait area our entire scale is
informative and thus able to assess a person’s location on the conservatism trait
with good precision.

126 4 Item Response Theory

Item Information

θ

I(θ
)

0.0

0.2

0.4

0.6

0.8

−6 −4 −2 0 2 4 6

Capitalism Privatization

−6 −4 −2 0 2 4 6

FreeMarket LowerTaxes

FreeTrade PrivateHealthcare NuclearEnergy

0.0

0.2

0.4

0.6

0.8

PrivatePensions
0.0

0.2

0.4

0.6

0.8

SmallGovernment

−6 −4 −2 0 2 4 6

GeneticallyModifiedFoods ConsumerCulture

Fig. 4.13 Item information curves resulting from the NRM on Wilson-Patterson conservative
items

4.5 IRT Sample Size Determination

How many persons do we need in an IRT analysis? While it is tempting to dig out
some IRT sample size rules of thumb,9 the best way to assess n is to set up a Monte
Carlo simulation. Such a simulation starts with generating many data matrices based
on a population parameter specification of a particular IRT model of interest. For
each of these matrices, we fit the IRT model of choice and check how well the
estimated parameters recover the population parameters. This is repeated for varying
sample sizes n.

9In the book by de Ayala (2009), almost each chapter gives some guidelines of how large a
calibration sample should be with respect to a particular IRT model.

4.5 IRT Sample Size Determination 127

A general purpose package which supports us to perform such simulation tasks is
SimDesign (Chalmers, 2017). A Monte Carlo IRT sample size simulation involves
the following four steps:

1. Specify the population parameters of an IRT model.
2. Simulate data according to the population parameterization (“generate” step).
3. Fit the model on the data (“analyze” step).
4. Determine how well the population parameters are recovered (“summarize”

step).

Let us walk through this process step-by-step. Assume we have m = 20 binary
items and our IRT model of choice is a 2-PL model. We vary the sample size n

systematically from 50 to 300.

library("SimDesign")
m <- 20
n <- c(50, 75, 100, 150, 200, 300)
design <- as.data.frame(n)
set.seed(222)
poppars <- rbind(alpha = round(rlnorm(m, 0, 0.25), 2),

d = round(rnorm(m), 2))

The last line draws the population parameters. For the slopes αi , the log-normal
distribution is very attractive since this distribution does not allow for negative
values. We fix the spread (sd on a log-scale) to a value of 0.25 which gives us
reasonable αi values from 0.8 to 2.5.

According to Eq. (4.2), the second parameter would be the difficulty. Since we
are using the mirt package for the simulation, we need to consider that mirt
parameterizes the model a bit differently: di = −αiβi (more details on this
parameterization will follow in Sect. 4.7.1). Thus, we could draw the βi’s apply
this conversion formula to get di , or we draw the di’s right away. The latter is done
above. For the di’s, drawing from a standard normal distribution is a reasonable
choice.

In the second step, we generate the data by means of the following function:

irtGenerate <- function(condition, fixed_objects = FALSE) {
n <- condition$n
a <- fixed_objects['alpha',]
d <- fixed_objects['d',]
dat <- simdata(a, d, n, itemtype = '2PL')
return(dat)

}

128 4 Item Response Theory

Eventually, conditionwill be our design variable from above (i.e., it varies n),
and the fixed_objects will include the population parameters. For generating
0/1 data matrices, we use the simdata function from mirt. We need to provide
the parameter vectors and the sample size as input. The person parameter vector
is drawn internally from N(0, 1). At the end of this stage, we have a binary data
matrix.

The next step is “analyze,” that is, we fit the 2-PL on the data matrix generated
above by means of the following function:

irtAnalyze <- function(condition, dat, fixed_objects = NULL) {
mod <- mirt(dat, 1, itemtype = '2PL', verbose = FALSE)
simpars <- coef(mod, simplify = TRUE, digits = Inf)$items
irtpars <- c(a = simpars[,1], d = simpars[,2])
return(irtpars)

}

The core of this function is the mirt call which fits the 2-PL. Whether the
resulting parameter estimates recover the population parameters depends on the
sample size. If n is too small, there will be substantial differences. The remaining
lines in this function are just parameter cosmetics in order to get the object ready for
the final step. We repeat these two steps L times for each given n value. This implies
that we generate L replication datasets, and for each one, we fit the 2-PL. Here we
use L = 100 in order to keep the running time low; in real-life applications, it is
suggested to work with a larger L. Eventually for each item i, we get 100 α and 100
d parameters, for each given n.

At the end, this information needs to be summarized. In this last step, we compare
the IRT estimates with the population parameters. How close they are to each other
depends on n: the larger n, the closer they will be. A common measure to judge this
parameter recovery is the root mean squared error (RSME). For instance, for the
first discrimination parameter, the RMSE is

RMSE =
√

∑L
l=1(α1l − α∗

1)2

L
, (4.9)

with α1l as the discrimination parameter for item 1 in replication l and α∗
1 as the

population parameter. We apply this formula to each parameter separately which
gives us a RMSE for each α and for each d parameter. Obviously, the smaller the
RMSE, the better the parameters are recovered. We repeat this process for each n.

4.5 IRT Sample Size Determination 129

irtSummarize <- function(condition, results,
fixed_objects = NULL) {

apop <- fixed_objects['alpha',]
dpop <- fixed_objects['d',]
simrmse <- RMSE(results, c(apop, dpop))
out <- c(RMSE = simrmse)
return(out)

}

Other measures such as the bias (i.e.,
∑L

l=1(α1l − α∗
1)/L) are often reported as

well, for which the mirt package provides a corresponding bias function.
Now we are ready to actually run the simulation using the population parameters

from above and the three functions: generate, analyze, and summarize.

set.seed(222)
simres <- runSimulation(design, replications = 100,
parallel = TRUE, generate = irtGenerate,
analyse = irtAnalyze, summarise = irtSummarize,
packages = c('mirt'), fixed_objects = poppars)

simres

This function call collects the results in a data frame, subject to further
plotting. Let us pull out the RMSEs for the discrimination parameters and plot the
parameter trajectories across varying sample sizes (see Fig. 4.14). Note that we use
log(RMSE) on the y-axis for better visualization.

colind <- grep(".a.", colnames(simres))
sima <- as.data.frame(simres[, colind])
nvec <- as.numeric(levels(simres$n))
matplot(nvec, log(sima), type = "l", col = 1, lty = 1,
ylab = "log(RMSE)", xlab = "sample size",
main = "2-PL Monte Carlo", xaxt = "n")

axis(1, at = nvec)

The average RMSEs for each n are

meanRMSE <- rowMeans(sima)
names(meanRMSE) <- n
round(meanRMSE, 2)
50 75 100 150 200 300
0.84 0.49 0.39 0.31 0.25 0.20

130 4 Item Response Theory

By looking at these means in conjunction with the trajectories, we see that an
n lower than 100 is certainly not a good idea. The RMSE becomes stable in the
150–200 area. This would be our n of choice. The same type of post simulation
inspection can be done for the di parameters.

In this section, we focused on a simple 2-PL, but we can carry out this type of
simulation for any other IRT model as well. For polytomous models, item-category
population parameters need to be specified/drawn. The mirt call in the analyze
step can be replaced by corresponding functions from eRm or ltm call. An example
of a Monte Carlo sample size determination for a more complex model (i.e., a
multidimensional GRM) can be found in Jiang et al. (2016).

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

2−PL Monte Carlo

sample size

lo
g(

R
M

S
E

)

50 75 100 150 200 300

Fig. 4.14 Log-RMSE trajectories for 2-PL discrimination parameters (20 items) for varying
sample sizes n. Each line represents a discrimination parameter trajectory across varying n

4.6 Differential Item Functioning 131

4.6 Differential Item Functioning

Differential item functioning (DIF; see Osterlind and Everson, 2009) is concerned
with different item behavior across person subgroups. Corresponding differences in
the item parameters are sometimes referred to as item bias. This bias is tied to the
concept of fairness. The aim of DIF analysis is to identify (i.e., “flag”) such biased
items. DIF items can then be reconsidered by experts during the scale construction
process and potentially reformulated or eliminated. If our aim is to score persons on
a well-established scale, the person parameters for the flagged items can be adapted
without removing these items. We can distinguish between two forms of DIF:

• Uniform DIF: the ICCs are shifted in location across subgroups, but they remain
parallel (i.e., a group main effect).

• Nonuniform DIF: the ICCs across subgroups are shifted, and they cross (i.e., an
interaction effect between group and the trait).

Basic DIF detection methods using the difR package (Magis et al., 2010) are
illustrated in Finch and French (2015). Here we focus on two modern, flexible
approaches: DIF detection using logistic regression and tree-based DIF assessment.

4.6.1 Logistic Regression DIF Detection

The idea of this approach (Zumbo, 1999) is to specify a set of logistic regression
equations and predict the original item responses from the person parameters θ

and the external grouping variable z. This method works for dichotomous as well
as polytomous responses and allows for a single grouping variable with multiple
categories. The following set of proportional odds models is formulated (Choi et al.,
2011):

M1 : logit(P (xi)) = τ0 + τ1θ

M2 : logit(P (xi)) = τ0 + τ1θ + τ2z

M3 : logit(P (xi)) = τ0 + τ1θ + τ2z + τ3θz (4.10)

We are interested in comparing the following models via the LR-principle:

• M2 vs. M1: if significant, we have uniform DIF.
• M3 vs. M2: if significant, we have nonuniform DIF.

As an alternative to the LR-test, we can also look at differences in pseudo-R2 values
(e.g., McFadden’s R2) with corresponding effect sizes: < 0.13 “negligible,” 0.13–
0.26 “moderate,” and > 0.26 “large” (Zumbo, 1999).

This approach, including Monte Carlo simulated empirical criteria, is imple-
mented in the lordif package (Choi et al., 2011). Internally, this approach fits a

132 4 Item Response Theory

GRM (default) or a GPCM using mirt, uses Stocking-Lord equating for the item
parameters, and estimates person parameters based on DIF and non-DIF items.

As an example, we use a dataset from Vaughn-Coaxum et al. (2016) on youth
depression. The 26 items come from the Children’s Depression Inventory (CDI);
each item is scored on a scale from 0 to 2. The authors were interested in DIF
analyses on an external race variable (four categories). Note that the aim was
not to eliminate items from the CDI, which is a well-established scale. Rather,
the authors wanted to identify DIF items (which already gives useful substantive
information) and score all individuals in a “fair” way by means of group-specific
person parameter estimates for items flagged as DIF.

library("lordif")
library("MPsychoR")
data("YouthDep")
cdi <- YouthDep[,1:26] ## extract CDI items
cdiDIF <- lordif(cdi, YouthDep$race, criterion = "Chisqr")

In total, 20 out of 26 items are flagged as DIF. Let us print out the p-values of
the LR-tests for the first three items:

cdiDIF$stats[1:3, 1:5]
item ncat chi12 chi13 chi23
1 1 2 0.352 0.3799 0.3718
2 2 2 0.000 0.0000 0.2084
3 3 2 0.000 0.0000 0.0022

We see that for the first item, none of the LR-χ2 values is significant. In fact, item
1 was not flagged. For the second item, χ2

12 (i.e., M2 vs. M1) is significant, whereas
χ2

23 (i.e., M3 vs. M2) is not significant. Thus, the second item has uniform DIF. For
the third item, all p-values are significant; we have the case of nonuniform DIF.10

Corresponding plots can be produced as follows:

plot(cdiDIF, labels = c("White", "Black", "Asian", "Latino"))

Figure 4.15 shows the item true score functions (i.e., the GRM model probabili-
ties related to the original 0–2 scale) for the first two DIF items. For the items shown
in Fig. 4.15, the true score functions result in simple ICCs since two categories

10χ2
13 is an additional LR-test for M1 vs. M3.

4.6 Differential Item Functioning 133

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Item True Score Functions − CDI2r

theta

Ite
m

 S
co

re

White
Black
Asian
Latino

Pr(χ12
2 ,3)=0,R12

2 =0.0231

Pr(χ13
2 ,6)=0,R13

2 =0.0248

Pr(χ23
2 ,3)=0.2084,R23

2 =0.0017

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Item True Score Functions − CDI3

theta

Ite
m

 S
co

re

White
Black
Asian
Latino

Pr(χ12
2 ,3)=0,R12

2 =0.0226

Pr(χ13
2 ,6)=0,R13

2 =0.0316

Pr(χ23
2 ,3)=0.0022,R23

2 =0.009

Fig. 4.15 Left panel: ICC for the first DIF item (uniform DIF). Right panel: ICC for the second
item (nonuniform DIF). Each panel contains information on the p-values of the corresponding
LR-tests according to the models in Eq. (4.10) as well as differences in McFadden’s R2

were collapsed by lordif due to an insufficient number of responses within each
subgroup (details follow below). We see that CDI2r has uniform DIF, whereas
CDI3 has nonuniform DIF.

Let us print out the GRM parameters (discrimination, category boundaries) for
the six non-DIF items (non-DIF) and the first DIF item (I2):

head(cdiDIF$ipar.sparse, 10)
a cb1 cb2
I1 2.055572 1.5197578 NA
I9 1.942808 1.6169260 NA
I12 1.224337 0.3175138 2.674436
I15 1.424712 1.1699027 2.507799
I19 2.107288 1.1153563 NA
I21 1.129338 1.9135221 NA
I2.1 1.638530 0.9251430 NA
I2.2 1.564181 0.9395047 NA
I2.3 1.611274 0.5323336 NA
I2.4 1.987255 1.0579461 NA

Note that for some items, there is only one category boundary. This results from
the fact that there were not enough observations in a particular category (here,
category 2) for parameter estimation. For such cases, lordif collapses categories
automatically. Item 2 was flagged as DIF. We get four sets of discrimination/bound-
ary parameters, one of each race category.

134 4 Item Response Theory

The calibrated, group-specific person parameter vector can be extracted using

ppar <- cdiDIF$calib.sparse$theta

Based on the DIF subgroup structure, they are fairly scored, are on the same
scale, and can be subject to further analysis (see Vaughn-Coaxum et al., 2016).

4.6.2 Tree-Based DIF Detection

Decision trees aim to classify/predict a response variable from a set of predictors.
They find predictor splits in a recursive manner with the goal to maximize
classification/prediction performance in the terminal nodes (see James et al., 2013,
for an introduction). Model-based partitioning trees (Zeileis et al., 2008) follow the
same concept with the difference that the “response” is an entire model. This leads
to a set of splits with heterogeneous parameter estimates across the terminal nodes.

Strobl et al. (2015) adapted this idea to the Rasch world and implemented it in
the psychotree package. Based on multiple external metric or categorical variables,
the algorithm tries to find splits for which the item parameters differ (i.e., it looks
for DIF). If no split is found, there is no DIF.

We explore this technique by means of a mathematics exam dataset (13 binary
items). We use the following seven covariates, subject to DIF analysis: number
of items solved (nsolved), number of online test exercises (tests), gender
(gender), two types of degrees (study), semester enrolled (semester), number
of times the exam has been attempted (attempt), and whether the students were in
the first or second batch (group). The data are included in the psychotools package
(Zeileis et al., 2016). Below we eliminate persons with 0/full responses and define
the factor levels for the covariates properly. Note that the item responses, in order to
be processed by the raschtree function, have to be provided as object of class
"itemresp".11

library("psychotree")
library("psychotools")
data("MathExam14W")
itmath <- as.list.data.frame(MathExam14W$solved)

(continued)

11The "MathExam14W" dataset from the package is already prepared that way. Here we bring it
back to the standard data frame form and illustrate how to get them in shape for the tree function
call.

4.6 Differential Item Functioning 135

covars <- MathExam14W[,3:9]
mex <- data.frame(solved = itemresp(itmath), covars)
mex <- subset(mex, nsolved > 0 & nsolved < 13)
mex$tests <- ordered(mex$tests)
mex$nsolved <- ordered(mex$nsolved)
mex$attempt <- ordered(mex$attempt)

group
p < 0.001

1

1 2

tests
p = 0.031

2

Node 3 (n = 81)

l

l

l

l

l

l

l

l

l

l

l

l
l

1 5 10 13

−2.72

3.42 Node 4 (n = 227)

l
l

l

l

l

l

l

l
l

l

l

l

l

1 5 10 13

−2.72

3.42

nsolved
p = 0.004

5

Node 6 (n = 65)

l

l l

l

l
l

l

l

l

l

l

l

l

1 5 10 13

−2.72

3.42 Node 7 (n = 315)

l

l l

l

l l

l

l

l

l

l

l

l

1 5 10 13

−2.72

3.42

≤ 16 > 16 > 4≤ 4

Fig. 4.16 Rasch partitioning tree for math exam dataset. The dot trajectories in the terminal nodes
denote the 13-item parameters for the corresponding student subgroup of size n

In total, we have 688 students in our sample. We use all seven covariates and let
the algorithm do the rest. The item responses are on the left-hand side of the formula
and the covariates to the right.

set.seed(1)
mrt <- raschtree(solved ~ group + tests + nsolved + gender +
attempt + study + semester, data = mex, vcov = "info",
minsize = 50, ordinal = "l2", nrep = 1e5)

136 4 Item Response Theory

The fitted tree structure can be plotted as follows (see Fig. 4.16):

plot(mrt)

The first split is according to the student group variable (there were two batches
of students). Students in the first batch were again split according to the test variable
(i.e., the number of online test exercises solved correctly prior to the written exam).
Note that the algorithm splits this metric variable at a value of 16. Depending on
whether batch 1 students solved more or less than 16 exercises correctly, the item
parameters differ. For the students in batch 2, a split according to the student’s raw
score was obtained (four or less items correct vs. more than four items correct). The
item parameter profiles (items on the x-axis, difficulty parameters on the y-axis) are
given at the bottom. We see clearly deviating patterns in the item parameters across
the nodes.

Let us extract the item difficulty parameters for the first four items. The rows
refer to the node in the plot and the columns to the corresponding item.

round(itempar(mrt)[,1:4], 2)
solvedquad solvedderiv solvedelasticity solvedintegral
3 -0.84 -0.49 -0.84 0.64
4 -0.70 -0.53 -1.07 0.41
6 0.34 -1.01 -1.07 0.01
7 1.02 -0.97 -1.08 0.31

This partitioning tree concept has been extended to the RSM and PCM as well
(Komboz et al., 2018). Corresponding functions can be found in psychotree.

Another DIF package allowing for multiple covariates is DIFlasso (Tutz and
Schauberger, 2015) which uses a lasso penalty approach on the covariates for DIF
detection.

4.7 Multidimensional IRT Models

All IRT models considered so far were unidimensional, that is, the items were
supposed to measure a single underlying latent trait. In this section, we relax
this restriction by considering multiple traits and model the item responses via
multidimensional IRT models (MIRT; see Reckase, 2009). Before presenting various
specific modeling approaches, let us have a look at some relationships between IRT
and factor analysis (FA).

4.7 Multidimensional IRT Models 137

4.7.1 IRT and Factor Analysis

EFA and CFA, as presented in Chap. 2, are designed for metric input variables
(unless we use specific correlation coefficients suited for categorical data). The
main outcomes are factor loadings and factor scores. IRT models are designed for
categorical data with item-category parameters (location, discrimination) and person
parameters as main outcomes. However, it has been found that there is a strong
parametric relationship between FA and IRT (Takane and De Leeuw, 1986). Let us
consider a simple unidimensional 2-PL, as given in Eq. (4.2), rewritten in logit form:

logit(P (Xvi)) = αi(θv − βi)). (4.11)

We can re-parameterize this model as

logit(P (Xvi)) = αiθv + di . (4.12)

The second equation reflects a factor analytic intercept-slope representation of the
2-PL. The discrimination parameter αi can be interpreted as loading (i.e., slope as
reflected in the ICC plot). The parameter di is the intercept. From the first equation,
it follows that di = −βiαi . Note that both equations fit the same model, they are just
parameterized differently. Consequently, the parameters θv are the same, regardless
which expression we use. Within an IRT context (Eq. (4.11)), we call them “person
parameters,” whereas within a FA context (Eq. (4.12)), we call them “factor scores.”

To illustrate, we repeat the 2-PL analysis from Sect. 4.2.2 which involved
dichotomous items on knowledge characteristics from the WDQ (first item elimi-
nated due to misfit). We use ltm package and request the two different parameteri-
zations:

library("MPsychoR")
library("ltm")
data("RWDQ")
RWDQ1 <- RWDQ[,-1] ## eliminate first item (misfit)
irtpar <- ltm(RWDQ1 ~ z1)
fapar <- ltm(RWDQ1 ~ z1, IRT.param = FALSE)
round(head(cbind(coef(irtpar), coef(fapar))), 3)
Dffclt Dscrmn (Intercept) z1
wdq_23 -1.064 0.736 0.782 0.736
wdq_24 -0.387 0.822 0.318 0.822
wdq_25 -1.456 1.561 2.273 1.561
wdq_26 -2.113 0.668 1.412 0.668
wdq_27 -0.570 1.157 0.659 1.157
wdq_28 -1.138 0.808 0.919 0.808

138 4 Item Response Theory

The first two columns are based on the parameterization in Eq. (4.11), involving
αi and βi . The last two columns correspond to di and αi from Eq. (4.12). Let us
compute the person parameters and confirm that they are the same for both models.

irtppar <- factor.scores(irtpar)$score.dat$z1
fappar <- factor.scores(fapar)$score.dat$z1
identical(irtppar, fappar)
[1] TRUE

Note that all unidimensional IRT models presented in Sects. 4.2 and 4.3 can be
reformulated using the intercept-slope parameterization.

Moving on to more general multidimensional representations, there are factor
analytic techniques that make use of these connections and apply particular methods
for parameter estimation, suited for categorical data. This variant is often referred
to as item factor analysis (IFA; see Wirth and Edwards, 2007, for an overview).
IFA marries IRT and FA so that we get the best of both worlds: On the one hand,
we have all the possibilities exploratory/confirmatory model specification, good
opportunities for goodness-of-fit assessment, and options for rotation from the FA
world. On the other hand, we can make use of the wide range of developed IRT
models and get a deep probabilistic insight into the behavior of items and persons.

Since FA uses aggregate measures (correlations, covariances), the corresponding
estimation concept is called limited information estimation, as opposed to full
information estimation which is based on the raw input data. IFA uses full
information estimation; the mirt package (Chalmers, 2012) provides corresponding
implementations. IFA can be estimated in an exploratory as well as in a confirmatory
way, as illustrated in the following two subsections. Note that the terms “MIRT” and
“IFA” are often used synonymously. Here, from now on, we use “MIRT.”

4.7.2 Exploratory Multidimensional IRT

The mirt package allows us to fit all dichotomous and polytomous IRT models
presented above in a multidimensional exploratory or confirmatory fashion. The
main function is mirt. Through the itemtype argument, a particular IRT model
can be specified. In this section, we focus on exploratory specifications, that is, each
item is free to load on each factor.

MIRT models are typically formulated via the intercept-slope parameterization.
For instance, a p-dimensional 2-PL can be written as

logit(P (Xvi)) = αiθ
′
v + di . (4.13)

4.7 Multidimensional IRT Models 139

In this equation, αi is a vector of length p containing the slope/discrimination
parameters of item i on each dimension. Unfortunately, we cannot interpret di

(which is a scalar) as item location parameter. However, the following transforma-
tion does the trick:

βi = − di√
αi

′αi
(4.14)

The denominator reflects the multidimensional item discrimination. Note that in
MIRT models, we cannot obtain an item location for item i on each dimension.
Rather, βi denotes the multidimensional item location. As illustrated in the next
section, in MIRT, unidimensional ICCs generalize to item characteristic surfaces
(ICS) in the p-dimensional space. A βi indicates the distance from the origin in
the multidimensional trait space to the point of maximum slope of the surface.
Corresponding illustrations can be found in de Ayala (2009, pp. 281–288) and
Reckase (2009, pp. 86–91). Finally, θv is the multidimensional person parameter.
Each person gets a parameter (i.e., a factor score) on each dimension.

Let us illustrate an exploratory multidimensional 2-PL model fit using all binary
ZAREKI addition and subtraction items described in Sect. 4.2.1. First, we compute
an exploratory Princals in order to get an idea of the structure and dimensionality.

library("MPsychoR")
library("Gifi")
data("zareki")
itzareki <- zareki[, 1:16]
przar <- princals(itzareki)
plot(przar)
plot(przar, "screeplot")

The scree plot in Fig. 4.17 (right panel) suggests that two dimensions should be
sufficient. From the loadings plot in the left panel, we see that the dimensions are
not addition vs. subtraction, as we might have expected.

Let us fit two models: a unidimensional 2-PL and a two-dimensional 2-PL12:

zar1d <- mirt(itzareki, 1, itemtype = "2PL")
zar2d <- mirt(itzareki, 2, itemtype = "2PL")

12Note that we fitted these models already in Sect. 4.1.2 on dimensionality assessment.

140 4 Item Response Theory

−0.2 0.0 0.2 0.4 0.6 0.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

Loadings Plot

Component 1

C
om

po
ne

nt
 2

addit1

addit2

addit3

addit4 addit5

addit6
addit7

addit8

subtr1

subtr2

subtr3

subtr4

subtr5

subtr6subtr7

subtr8

l

l

l
l

l l
l

l l
l

l l
l l

l l

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Scree Plot

Number of Components

E
ig

en
va

lu
es

1 2 3 4 5 6 7 8 9 11 13 15

Fig. 4.17 Left panel: Princals loadings plot for addition/subtraction items in ZAREKI data. Right
panel: Princals scree plot

We can apply an LR-test which suggests that the 2D-model fits significantly
better than the 1D-model13:

anova(zar1d, zar2d)
##
Model 1: mirt(data = itzareki, model = 1, itemtype = "2PL")
Model 2: mirt(data = itzareki, model = 2, itemtype = "2PL")
AIC AICc SABIC BIC logLik X2 df
1 4568.562 4575.419 4589.671 4691.182 -2252.281 NaN NaN
2 4564.952 4580.351 4595.957 4745.051 -2235.476 33.61 15
p
1 NaN
2 0.004

For further fit examination of the 2D model, let us compute the M2 statistic
including the CFA/SEM fit indices:

13There is some ambiguity in AIC/BIC in relation to the LR-test result. We could further explore
the fit of the 1D solution via M2(zar1d) which suggests a slight misfit.

4.7 Multidimensional IRT Models 141

M2(zar2d)
M2 df p RMSEA RMSEA_5 RMSEA_95
stats 94.11394 89 0.3350678 0.013 0 0.03274862
SRMSR TLI CFI
stats 0.04382372 0.9943675 0.9958225

We get a low RMSEA (here we use 0.05/2 as cutoff since we have binary items)
and a high CFI, and the M2 p-value is not significant. The 2D model fits well.

Itemfit statistics can be computed using the corresponding function in mirt. Here
we print out the misfitting items only.

ifit2D2pl <- mirt::itemfit(zar2d)
ifit2D2pl[ifit2D2pl[, 4] < 0.05,] ## misfitting items
item S_X2 df.S_X2 p.S_X2
2 addit2 15.986 8 0.043
12 subtr4 20.871 8 0.007

The subtr4 item could be eliminated since it shows some misfit, and then the
model needs to be refitted again. However, since the global model fit suggested a
well-fitting solution, let us keep it.

The factor analytic parameterization can be obtained through the summary call.
We can also request to apply an orthogonal or non-orthogonal rotation for better
interpretability (output not shown here):

summary(zar2d, rotate = "varimax")
summary(zar2d, rotate = "oblimin")

The mirt package provides several plotting options for 2D models. Figure 4.18
shows the 2D-ICS for the third item:

itemplot(zar2d, 3, main = "ICS addit3",
rot = list(xaxis = -70, yaxis = 50, zaxis = 10))

The intercept-slope IRT parameterization, as given in Eq. (4.13), can be obtained
via coef(zar2d). The multidimensional item location, according to Eq. (4.14),
is (only first six items shown here)

142 4 Item Response Theory

head(MDIFF(zar2d))
MDIFF_1
addit1 -3.7228677
addit2 -2.7192539
addit3 -1.4413654
addit4 -2.3763393
addit5 -1.0631562
addit6 -0.5634567

Finally, we can compute the person parameters, one for each dimension (only
first six persons shown here):

head(fscores(zar2d))
F1 F2
[1,] 0.3162909 -0.08593608
[2,] -0.1304509 0.26424651
[3,] -0.3173961 -0.07663827
[4,] 0.1257834 -0.45310387
[5,] -0.3173961 -0.07663827
[6,] -0.4318470 0.89689762

Fig. 4.18 Item characteristic
surface (2D) for the third item

ICS addit3 (rotate = 'none')

−6
−4

−2
0

2 4 6

−6
−4

−2
0

2
4

6

0.0

0.2

0.4

0.6

0.8

1.0

θ1
θ2

P(θ)

0.0

0.2

0.4

0.6

0.8

1.0

4.7 Multidimensional IRT Models 143

In this example, it is difficult to interpret the two dimensions without considering
additional specific characteristics of the items itself since, as mentioned above, the
dimensions are certainly not addition and subtraction.

In a second example, we illustrate how to fit an exploratory multigroup MIRT
model on the same data which, within an IRT context, means nothing else than
testing for DIF. We group the class variable into two categories and fit a multigroup
2D-2PL which results in separate sets of parameter estimates for both groups.
We are interested in testing whether the discrimination parameters (on the first
dimension) and the intercepts differ across the two groups. For testing parameter
equality across the groups, we apply a Wald test and correct the p-values by means
of the false discovery rate (FDR; see Sect. 14.3 for details).

class2 <- zareki$class
levels(class2) <- c("second", "thirdfourth", "thirdfourth")
modMG <- multipleGroup(itzareki, model = 2, group = class2,

SE = TRUE, verbose = FALSE)
astiDIF <- DIF(modMG, c('a1', 'd'), Wald = TRUE,

p.adjust = 'fdr')
round(astiDIF$adj_pvals[astiDIF$adj_pvals < 0.05], 4)
addit3 addit6 addit8 subtr3 subtr6 subtr7 subtr8
0.0145 0.0002 0.0005 0.0005 0.0000 0.0024 0.0007

The last row prints out the p-values for the items flagged for DIF (i.e., the
corresponding p-values are significant). Note that strictly speaking, these results
reflect a combination of DIF and latent trait distribution effects. The baseline model
should contain a set of anchor items such that we properly equate the groups.
Examples can be found in the DIF help file.

In general, the multipleGroup function is highly flexbile in terms of putting
all sorts of parameter restrictions on multiple group models, similar to lavaan
(Rosseel, 2012) in the CFA/SEM world.

4.7.3 Confirmatory Multidimensional IRT

In this section, we illustrate how MIRT models can be fitted in a confirmatory way.
As in CFA, we assign items to load on a particular dimension. We use once more
the polytomous ASTI data from Sect. 4.3.2 and assign the items to the following five
factors, based on the underlying ASTI theory: self-knowledge and integration (si),
peace of mind (pm), non-attachment (na), self-transcendence (st), and presence
in the here-and-now and growth (pg), as described in Koller et al. (2017). We fit a
multidimensional GRM (five dimensions).

144 4 Item Response Theory

Note that the mirt model specification syntax is a bit different from lavaan.
Below we specify the item assignments to the factors and the corresponding
covariance structure of the latent variables (we allow for a full correlation pattern).

data("ASTI")
itasti <- ASTI[, 1:25]
modASTI <- mirt.model('
si = 10,19,20,21
pm = 1,5,9,22
na = 3,6,8,12
st = 2,4,7,13,16,24,25
pg = 11,14,15,17,18,23
COV = si*pm*na*st*pg

')
asti5d <- mirt(itasti, model = modASTI, itemtype = 'graded',
method = 'MHRM', SE.type = 'MHRM', verbose = FALSE)

Compared to the 2D-2PL from above, here we use a different estimation
algorithm which is suggested to employ for higher-dimensional models.

First, we print out correlation matrix of the trait dimensions. Second, from the
loadings in astisum$rotF, we see that item 18 (“I often lose myself in what I
am doing”) has a very small loading on the personal growth dimension and could
therefore be subject to elimination.

astisum <- summary(asti5d, verbose = FALSE)
round(astisum$fcor, 3)
si pm na st pg
si 1.000 0.695 0.217 0.101 0.836
pm 0.695 1.000 0.546 0.159 0.735
na 0.217 0.546 1.000 0.155 0.175
st 0.101 0.159 0.155 1.000 0.345
pg 0.836 0.735 0.175 0.345 1.000
round(astisum$rotF["ASTI18",], 4)
si pm na st pg
0.0000 0.0000 0.0000 0.0000 -0.0061

The global fit indices and model test suggest a poor model fit.

M2(asti5d, QMC = TRUE)
M2 df p RMSEA RMSEA_5 RMSEA_95
stats 1399.775 228 0 0.06749943 0.06409668 0.07088774
SRMSR TLI CFI
stats 0.1064949 0.6875048 0.7290916

4.8 Longitudinal IRT Models 145

For such complex scenarios, an exploratory version of the model with oblique
rotation would give us the possibility to explore in more detail what is going
on. Another good strategy, before even considering fitting a confirmatory MIRT
model, is to compute unidimensional models for each subscale individually and
eliminate misfitting items already at that level. The items kept in the model can be
subsequently subject to a higher-dimensional IRT fit.

4.8 Longitudinal IRT Models

IRT models can be applied to longitudinal/repeated measurements designs as well.
In this case, it is of interest to study changes over time. We start with presenting
some approaches from the Rasch world, followed by specifications within an MIRT
framework.

4.8.1 Linear Logistic Models for Measuring Change

Using a design matrix approach for Rasch model fitting, as the eRm package does,
offers many possibilities to test specific hypotheses on the items. One option is to
test whether change in item parameters occurs over time. As Fischer (1995) claims,
any change in person parameters occurring between the testing occasions can be
described as a change in the item parameters. For instance, an increase in ability is
equivalent to a decrease in difficulty.

Models that allow us to test for such item changes are the linear logistic test
model (LLTM), the linear logistic model with relaxed assumptions (LLRA), the
linear logistic rating scale model (LRSM), and the linear logistic partial credit
model (LPCM), all implemented in eRm. The LLTM is designed for dichotomous
items, the LLRA for dichotomous and polytomous items, and LRSM/LPCM for
polytomous items. Technical details on these models can be found in Fischer (1995)
and Mair and Hatzinger (2007b), applied instructions in Glück and Spiel (1997). All
of these models obey the Rasch measurement principle.

Let us start with an LLTM application using a dataset on social dominance
orientation (SDO; Sidanius and Pratto, 2001). SDO items were assessed over 5 years
on 612 persons. The four items are scored on a 7-point scale. Here we binarize them
according to 1 vs. higher and use the first 3 years only (1996–1998). The input
data matrix X is in wide format and of dimension n × (mT), where m denotes the
number of items within each time point and T is the number of time points. The
data preparation steps are the following:

146 4 Item Response Theory

library("MPsychoR")
data("SDOwave")
SDO3 <- SDOwave[,c(1:12)]
SDO3 <- sapply(SDO3, function(bin) ifelse(bin == 1, 0, 1))

In order to apply the LLTM, the data need to be unidimensional, and within each
time point, the Rasch model should fit. This should be checked before fitting the
LLTM, using the strategies presented in Sect. 4.2.1. Let us compute an LLTM using
the eRm package:

library("eRm")
sdolltm1 <- LLTM(SDO3, mpoints = 3)
sdolltm1$W
eta 1 eta 2 eta 3 eta 4 eta 5
I1 t1 -1 -1 -1 0 0
I2 t1 1 0 0 0 0
I3 t1 0 1 0 0 0
I4 t1 0 0 1 0 0
I1 t2 -1 -1 -1 1 0
I2 t2 1 0 0 1 0
I3 t2 0 1 0 1 0
I4 t2 0 0 1 1 0
I1 t3 -1 -1 -1 0 1
I2 t3 1 0 0 0 1
I3 t3 0 1 0 0 1
I4 t3 0 0 1 0 1

By inspecting the design matrix, we see that we estimate m − 1 = 3 item
parameters (η1, η2, and η3). In addition, we get T − 1 = 2 dummy coded time
contrasts (η4 and η5; 1996 as baseline year). The parameters associated with these
contrasts are of crucial interest since they tell us whether a general change occurred
in 1997 vs. 1996 and 1998 vs. 1996.

summary(sdolltm1)
##
Basic Parameters eta with 0.95 CI:
Estimate Std. Error lower CI upper CI
eta 1 -1.383 0.058 -1.498 -1.268
eta 2 1.040 0.058 0.927 1.153
eta 3 0.558 0.054 0.452 0.665
eta 4 -0.145 0.076 -0.294 0.005
eta 5 0.067 0.076 -0.083 0.216

The upper boundary of the η4 CI is barely including 0. We get a hint that there
might be an overall change in SDO (negative direction) from 1996 to 1997, but here
it is not significant. There is no change from 1996 to 1998.

4.8 Longitudinal IRT Models 147

As an alternative testing strategy, we can apply an LR-test based on a more
restrictive model where we delete both time contrasts from the design matrix (i.e.,
we eliminate all options for time change).

W0 <- sdolltm1$W[,-c(4:5)]
sdolltm0 <- LLTM(SDO3, W0)
anova(sdolltm0, sdolltm1)
Analysis of Deviances Table
##
Model 1: LLTM(X = SDO3, mpoints = 3)
Model 2: LLTM(X = SDO3, W = W0)
##
cond. LL Deviance npar LR df p-value
Model 1 -2224.5 4449.1 5
Model 2 -2228.6 4457.1 3 4.0347 2 0.133

This test suggests that there is no significant overall time effect in the item
parameters which translates to no overall change in participants’ SDO over these
3 years.

Another modeling option in LLTM is to incorporate a group contrasts. Since
there are no person covariates in the dataset, let us, for illustration, create an artificial
grouping variable, refit the model with time and group effect, and compare the two
models via the LR-test. Not too surprisingly, it shows that there is no significant
group effect.

group <- rep(c(1, 2), each = nrow(SDO3)/2) ## fake covariate
sdolltm2 <- LLTM(SDO3, mpoints = 3, group = group)
anova(sdolltm2, sdolltm1)
Analysis of Deviances Table
##
Model 1: LLTM(X = SDO3, mpoints = 3, groupvec = group)
Model 2: LLTM(X = SDO3, mpoints = 3)
##
cond. LL Deviance npar LR df p-value
Model 1 -2224.3 4448.5 6
Model 2 -2224.5 4449.1 5 0.2783 1 0.5978

Note that the LLTM is pretty restrictive since we only obtain a single global
time effect on all items jointly, rather than item-specific ones. That is, we assume
that the change over time is the same across all items. The LLRA relaxes this
assumption: each item gets its own dimension, and, consequently, for each item,
we get an individual time effect. In eRm, an LLRA can be fitted as follows:

148 4 Item Response Theory

sdollra <- LLRA(SDO3, mpoints = 3)
summary(sdollra)
Reference group: CG
Estimate Std.Error lower.CI upper.CI
trend.I1.t2 0.320 0.144 0.037 0.603
trend.I2.t2 -0.109 0.156 -0.415 0.196
trend.I3.t2 -0.416 0.162 -0.735 -0.098
trend.I4.t2 -0.478 0.156 -0.784 -0.172
trend.I1.t3 0.444 0.145 0.160 0.728
trend.I2.t3 0.060 0.155 -0.243 0.363
trend.I3.t3 -0.094 0.164 -0.414 0.227
trend.I4.t3 -0.219 0.156 -0.526 0.087

We see that for items 3 and 4, there is a significant change in location
(decreasing) from 1996 to 1997 (effects: trend.I3.t2 and trend.I4.t2),
whereas for item 1 there is a significant increase (trend.I1.t2) during that
period. For the years 1998 vs. 1996, there was a significant increase in item 1 only
(trend.I1.t3). This tells us that the participants change over time with respect
to these particular SDO items.

The design matrix approach makes LLTM/LLRA models highly flexible. A
manual-like instruction on LLRA model specification can be found in Hatzinger and
Rusch (2009), who present additional LLRA modeling options, including LLRA
group contrasts.

4.8.2 Two-Tier Approach to Longitudinal IRT

The two-tier item factor approach by Cai (2010) is a confirmatory multidimensional
model which allows us to set specific structural restrictions. Here we focus on
restrictions related to longitudinal IRT modeling. These models can be fitted using
mirt’s bifactor model function (bfactor).

Bifactor models are a general structural concept for latent variable models. In a
simple bifactor model, the indicators load on a general factor (also called primary
factor) as well as on specific factors (i.e., specific to a particular indicator set). An
overview can be found in Reise (2012), and an illustration on how to fit them within
a classical FA context using lavaan is given in Beaujean (2014) and Finch and
French (2015).

To illustrate the two-tier approach fitted through a bifactor model, let us use the
SDO data from the previous section once more. Here we consider the first 2 years
only and re-categorize the items by collapsing categories 5–7 into a single category
5 (i.e., we have 5-point responses):

4.8 Longitudinal IRT Models 149

SDO2 <- SDOwave[,1:8]
SDO2 <- sapply(SDO2, function(co) cut(co, c(0,1,2,3,4,7),

labels = 1:5))
class(SDO2) <- "numeric"

The structure of the longitudinal two-tier bifactor model we are going to fit is
given in Fig. 4.19. We need two primary factors which reflect the two time points:
The first four items load on the 1996 factor; the remaining four items load on the
1997 factor. The pairwise residual correlations are captured by specific factors (S1
through S4).

I1.1996 I2.1996 I3.1996 I1.1997I4.1996 I2.1997 I3.1997 I4.1997

T1996 T1997

S1 S2 S3 S4

Fig. 4.19 Two-tier factor structure for SDO data (four items, 2 years). T1996 and T1997 are the
primacy factors and S1, S2, S3, and S4 the specific factors

150 4 Item Response Theory

Let us specify this model in mirt.14 Below, the first line determines the loading
structure for the specific factors. We allow the time factors to be correlated, estimate
a variance for T1997while fixing the T1996 variance to 1, fix the mean for T1996
to 0, and estimate the T1997 in relation to it. This mean estimate will capture the
degree of change over time.

iloads <- rep(1:4, 2)
ttmodel <- mirt.model('
T1996 = 1-4
T1997 = 5-8
COV = T1996*T1997, T1997*T1997
MEAN = T1997
CONSTRAIN = (1, 5, d1), (2, 6, d1), (3, 7, d1), (4, 8, d1),

(1, 5, d2), (2, 6, d2), (3, 7, d2), (4, 8, d2),
(1, 5, d3), (2, 6, d3), (3, 7, d3), (4, 8, d3),
(1, 5, d4), (2, 6, d4), (3, 7, d4), (4, 8, d4)')

fitSDO2 <- bfactor(SDO2, iloads, ttmodel, SE = TRUE)

I1.1996 I2.1996 I3.1996 I4.1996 I1.1997 I2.1997 I3.1997 I4.1997

int shp

Fig. 4.20 IRT growth model for SDO data, two time points

14Note that there is also the option to specify it in lavaan and convert it into mirt syntax using the
lavaan2mirt function in the sirt package. This can be especially useful for more complicated
models with constraints.

4.8 Longitudinal IRT Models 151

Note that, by default, this function uses a GRM. Through the itemtype
argument, other specifications can be set. By saying summary(fitSDO2), we get
the FA output. With coef(fitSDO2, simplify=TRUE), we get the intercept-
slope parameterization. If our focus is on the change parameter, we can pull it out
as follows (including the 95% CI):

round(coef(fitSDO2)$GroupPars[,2], 4)
par CI_2.5 CI_97.5
-0.1235 -0.2209 -0.0261

It suggests a significant change in SDO (negative direction) from 1996 to 1997.
Further options for two-tier specifications can be found in Cai (2010).

4.8.3 Latent Growth IRT Models

Another approach to assess longitudinal changes are latent growth models (LGMs),
as introduced in Sect. 3.4, involving a latent intercept and a latent shape. For fitting
an LGM within an IRT context, we can use the bfactor function in mirt once
more. Compared to lavaan, it uses a different estimation algorithm suited for
categorical data. In addition, we can request the IRT parameterization as output
(by default it uses the FA parameterization).

Again, we use the SDO dataset (5-point response scale, two time points) from
above. The structure of the latent growth model is given in Fig. 4.20 and can be
specified as follows:

itloads <- rep(1:4, 2)
modgr <- mirt.model('

Intercept = 1-8
Slope = 1-8
COV = Intercept*Slope, Intercept*Intercept, Slope*Slope
MEAN = Intercept, Slope
START = (1-8, a1, 1), (1-4, a2, 0), (5-8, a2, 1)
FIXED = (1-8, a1), (1-4, a2), (5-8, a2)
CONSTRAIN =(1, 5, d1), (2, 6, d1), (3, 7, d1), (4, 8, d1),

(1, 5, d2), (2, 6, d2), (3, 7, d2), (4, 8, d2),
(1, 5, d3), (2, 6, d3), (3, 7, d3), (4, 8, d3),
(1, 5, d4), (2, 6, d4), (3, 7, d4), (4, 8, d4)')

fitGIRT <- bfactor(SDO2, itloads, modgr, SE = TRUE)

We print out the slope parameter and the covariance between the intercept and
slope constructs (including 95% CI).

152 4 Item Response Theory

coef(fitGIRT)$GroupPars[, c(2,8)]
MEAN_2 COV_21
par -0.4569969 -2.124596
CI_2.5 -0.7028949 -2.968603
CI_97.5 -0.2110988 -1.280590

The mean tells us that, on the average, there was a significant overall decrease in
SDO from 1996 to 1997. The significant negative covariance indicates that there is
less SDO decrease in persons that had higher SDO in 1996 than those with lower
SDO.

This concludes the section on longitudinal IRT models for the moment. In
Sect. 4.9.2 below, we present another option for longitudinal IRT modeling by
means of dynamic models fitted within a Bayesian framework. Dynamic models
put emphasis on individual changes in the person parameters.

4.9 Bayesian IRT

In this last IRT section, we show how item response models can be fitted the
Bayesian way. Bayesian IRT estimation is especially useful for hierarchical/mul-
tilevel settings and for incorporating response times. Detailed elaborations can be
found in Fox (2010) who uses WinBUGS for Markov Chain Monte Carlo (MCMC)
sampling. Here we use functions from MCMCpack (Martin et al., 2011) and,
therefore, avoid to write our own BUGS, JAGS, or Stan code.15 The package
includes the following functions for dichotomous 2-PL IRT modeling:

• Unidimensional models: MCMCirt1d with MCMCirtHier1d as hierarchical
extension.

• Multidimensional models: MCMCirtKdwith MCMCirtKdHet as heteroscedas-
tic variant and MCMCirtKdRob as robust variant.

• Dynamic IRT models: MCMCdynamicIRT1d.

4.9.1 Bayesian 2-PL Estimation

MCMCpack uses an intercept-slope IRT parameterization using the following
symbols: −αi + βiθv . This is similar to Eq. (4.12), but here βi is the discrimination
parameter and −αi is the negative intercept (which corresponds to di in Eq. (4.12)).
Thus, we have to be careful when interpreting the output.

15See Luo and Jiao (2017) for how to specify IRT models in Stan.

4.9 Bayesian IRT 153

By default, MCMCpack functions use standard normal priors for the person
parameters and normal priors for the item parameters (mean 0 and precision, i.e.,
inverse variance, of 0.25). For many applications, this setting may not be the best
choice, and the user should carefully consider the prior specification (details on
IRT priors can be found in Natesan et al., 2016). Unfortunately, the options for
customizing priors are very limited in MCMCpack.

To illustrate a simple Bayesian 2-PL fit, we use the eight items from the WDQ
example from Sect. 4.2.2. First, we fit an ordinary 2-PL using the ltm package and
extract the parameters which, in turn, will act as starting values for the MCMC
sampler.

library("MPsychoR")
data("RWDQ")
RWDQ1 <- RWDQ[, 2:9] ## select 8 items
freq2pl <- ltm(RWDQ1 ~ z1)
intstart <- -coef(freq2pl)[,1]
discstart <- coef(freq2pl)[,2]

Now we are going to fit three MCMC chains, each with a burn-in of 5000 and
50,000 Gibbs iterations. We lower the prior precision to AB0=0.15 in order to keep
the prior slightly more vague than the default setting.

library("MCMCpack")
chainWDQ1 <- MCMCirt1d(RWDQ1, burnin = 5000, mcmc = 50000,
seed = 111, AB0 = 0.15, store.item = TRUE,
store.ability = FALSE, verbose = TRUE,
alpha.start = intstart, beta.start = discstart)

chainWDQ2 <- MCMCirt1d(RWDQ1, burnin = 5000, mcmc = 50000,
seed = 222, AB0 = 0.15, store.item = TRUE,
store.ability = FALSE, verbose = TRUE,
alpha.start = intstart, beta.start = discstart)

chainWDQ3 <- MCMCirt1d(RWDQ1, burnin = 5000, mcmc = 50000,
seed = 333, AB0 = 0.15, store.item = TRUE,
store.ability = FALSE, verbose = TRUE,
alpha.start = intstart, beta.start = discstart)

WDQlist <- mcmc.list(chainWDQ1, chainWDQ2, chainWDQ3)

By saying summary(WDQlist) the posterior means and corresponding quan-
tiles are shown. Geweke’s convergence diagnostics, for which the z-values should
be within a [−2, 2] interval, can be requested via geweke.diag(WDQlist).
Figure 4.21 shows the trace plots for the first two items and the posterior densities.

154 4 Item Response Theory

Fig. 4.21 Trace plots and posterior densities for the first two items: “alpha” represents the
intercepts, “beta” the slope parameters

plot(WDQlist, auto.layout = FALSE, ask = FALSE)

The chains are fairly well mixed. If the posterior distributions for the person
parameters are of interest, setting store.ability=TRUE in the MCMCirt1d
call stores the corresponding posterior distributions.

4.9 Bayesian IRT 155

4.9.2 Dynamic 2-PL Model

As a second Bayesian IRT example, we fit a dynamic 2-PL model. Dynamic IRT
models (see, e.g., Wang et al., 2013) can be used to study individual learning
effects or, more general, changes at an individual level. Thus, the main interest
in the following analysis is in the person parameter trajectories across multiple
measurements per individual.

We use data from a questionnaire assessing health risk behaviors,16 including
smoking, drinking, and marijuana consumption. The questionnaire was presented
to teenagers at five points in time (from middle school to high school). The items
are dichotomously scored. We only use teenagers who scored 1 on at least one item
and create a time variable denoting the measurement point. We then fit a dynamic
2-PL using default prior settings and request to store the posteriors for the person
parameters only. In order to keep the computing time considerably low, we only run
a single, short MCMC chain.

data("HRB")
HRB1 <- HRB[rowSums(HRB) > 0,]
rownames(HRB1) <- 1:nrow(HRB1)
time <- rep(1:5, each = 4)
fitdyn <- MCMCdynamicIRT1d(HRB1, item.time.map = time,
mcmc = 20000, burnin = 5000,seed = 111, store.ability = TRUE,
store.item = FALSE, verbose = TRUE)

dynsum <- summary(fitdyn)

Due to space restrictions, we omit to show the MCMC diagnostics here. Each
person gets a posterior distribution (see dynsum object). Below we pull out the
posterior means and organize the data for trajectory plotting as given in Fig. 4.22.

nt <- 5 ## number of time points
postmean <- dynsum$statistics[,1] ## posterior means
pertraj <- t(matrix(postmean[1:(nrow(HRB1)*nt)], nrow = nt))
colnames(pertraj) <- paste0("T", 1:5)
round(head(pertraj), 3)
T1 T2 T3 T4 T5
[1,] -0.464 -0.635 -0.687 -0.517 -0.578
[2,] 0.987 0.583 0.455 -0.294 -0.675
[3,] 0.636 1.261 2.430 2.273 1.496
[4,] 0.092 0.292 0.704 0.622 0.233

(continued)

16Thanks to Peter Franz for sharing this dataset.

156 4 Item Response Theory

[5,] -0.622 -0.931 -1.166 -1.204 -1.366
[6,] -0.775 -1.140 -1.402 -1.564 -1.523
matplot(t(pertraj), type = "l", lty = 1, cex = 0.8,
col = adjustcolor(1, alpha.f = 0.3),
ylab = "person parameter", xlab = "time points",
main = "Individual Trajectories")

The spaghetti plot suggests that there is a set of teenagers that started with a low
consumption at time 1 which then decreased even more over the 5 years. There are
a few outliers for which the consumption increased drastically. However, there is no
obvious general trend in these trajectories.

This concludes the section on Bayesian IRT which adds a great deal of modeling
flexibility to the IRT environment. Additional Bayesian IRT modeling options can
be found in Fox (2010).

1 2 3 4 5

−2
0

2
4

Individual Trajectories

time points

pe
rs

on
 p

ar
am

et
er

Fig. 4.22 Individual person parameter trajectories for health risk behavior dataset across five time
points, resulting from a dynamic 2-PL fit

References 157

References

Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123–140.
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561–

573.
Beaujean, A. A. (2014). Latent variable modeling using R: A step-by-step guide. New York:

Routledge.
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In:

F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 395–479).
Reading: Addison-Wesley.

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in
two or more nominal categories. Psychometrika, 37, 29–51.

Bond, T. G., & Fox, C. M. (2015). Applying the Rasch model: Fundamental measurement in the
human sciences (3rd ed.). New York: Routledge.

Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychome-
trika, 75, 581–612.

Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R
environment. Journal of Statistical Software, 48(6), 1–29. http://www.jstatsoft.org/v48/i06/

Chalmers, R. P. (2017). SimDesign: Structure for organizing Monte Carlo simulation designs. R
package version 1.6. https://CRAN.R-project.org/package=SimDesign

Choi, S., Gibbons, L., & Crane, P. (2011). lordif: An R package for detecting differential item
functioning using iterative hybrid ordinal logistic regression/item response theory and Monte
Carlo simulations. Journal of Statistical Software, 39(1), 1–30. https://www.jstatsoft.org/index.
php/jss/article/view/v039i08

de Ayala, R. J. (2009). The theory and practice of item response theory. New York: Guilford Press.
De Boeck, P., Bakker, M., Zwitser, R., Nivard, M., Hofman, A., Tuerlinckx, F., & Partchev,

I. (2011). The estimation of item response models with the lmer function from the lme4
package in R. Journal of Statistical Software 39(1), 1–28. https://www.jstatsoft.org/index.php/
jss/article/view/v039i12

Finch, W. H., Jr., & French, B. F. (2015). Latent variable modeling with R. New York: Routledge.
Fischer, G. H. (1995). Linear logistic models for change. In: G. Fischer & I. Molenaar (Eds.),

Rasch models: Foundations, recent developements, and applications (pp. 157–180). New York:
Springer.

Fischer, G. H., & Molenaar, I. W. (1995). Rasch models: Foundations, recent developements, and
applications. New York: Springer.

Fox, J. P. (2010). Bayesian item response modeling. New York: Springer.
Funk, J. B., Fox, C. M., Chang, M., & Curtiss, K. (2008). The development of the children’s

empathic attitudes questionnaire using classical and Rasch analyses. Journal of Applied
Developmental Psychology, 29, 187–196.

Glück, J., & Spiel, C. (1997). Item response models for repeated measures designs: Application
and limitations of four different approaches. Methods of Psychological Research, 2(6). http://
www.dgps.de/fachgruppen/methoden/mpr-online/issue2/art6/article.html

Hatzinger, R., & Rusch, T. (2009). IRT models with relaxed assumptions in eRm: A manual-like
instruction. Psychology Science Quarterly, 51, 87–120.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning
with applications in R. New York: Springer.

Jiang, S., Wang, C., & Weiss, D. J. (2016). Sample size requirements for estimation of item
parameters in the multidimensional graded response model. Frontiers in Psychology, 7(109),
1–10.

Koller, I., & Alexandrowicz, R. W. (2010). Eine psychometrische Analyse der ZAREKI-R
mittels Rasch-Modellen [A psychometric analysis of the ZAREKI-R using Rasch-models].
Diagnostica, 56, 57–67.

Koller, I., Levenson, M. R., & Glück, J. (2017). What do you think you are measuring? A mixed-
methods procedure for assessing the content validity of test items and theory-based scaling.
Frontiers in Psychology, 8(126), 1–20.

http://www.jstatsoft.org/v48/i06/
https://CRAN.R-project.org/package=SimDesign
https://www.jstatsoft.org/index.php/jss/article/view/v039i08
https://www.jstatsoft.org/index.php/jss/article/view/v039i08
https://www.jstatsoft.org/index.php/jss/article/view/v039i12
https://www.jstatsoft.org/index.php/jss/article/view/v039i12
http://www.dgps.de/fachgruppen/methoden/mpr-online/issue2/art6/article.html
http://www.dgps.de/fachgruppen/methoden/mpr-online/issue2/art6/article.html

158 4 Item Response Theory

Komboz, B., Zeileis, A., & Strobl, C. (2018, Forthcoming). Tree-based global model tests for
polytomous Rasch models. Educational and Psychological Measurement, 78, 128–166.

Levenson, M. R., Jennings, P. A., Aldwin, C. M., & Shiraishi, R. W. (2005). Self-transcendence:
Conceptualization and measurement. The International Journal of Aging and Human Develop-
ment, 60, 127–143.

Luo, Y., & Jiao, H. (2017). Using the Stan program for Bayesian item response theory. Educational
and Psychological Measurement, 77, 1–25.

Magis, D., Beland, S., Tuerlinckx, F., & De Boeck, P. (2010). A general framework and an R
package for the detection of dichotomous differential item functioning. Behavior Research
Methods, 42, 847–862.

Mair, P., & De Leeuw, J. (2017). Gifi: Multivariate analysis with optimal scaling. R package
version 0.3-2. https://R-Forge.R-project.org/projects/psychor/

Mair, P., & Hatzinger, R. (2007a). CML based estimation of extended Rasch models with the eRm
package in R. Psychology Science Quarterly, 49, 26–43.

Mair, P., & Hatzinger, R. (2007b). Extended Rasch modeling: The eRm package for the application
of IRT models in R. Journal of Statistical Software, 20(9), 1–20.

Mair, P., Hofmann, E., Gruber, K., Hatzinger, R., Zeileis, A., & Hornik, K. (2015). Motivation,
values, and work design as drivers of participation in the R open source project for statistical
computing. Proceedings of the National Academy of Sciences of the United States of America
112(48), 14788–14792.

Martin, A. D., Quinn, K. M., & Park, J. H. (2011). MCMCpack: Markov Chain Monte Carlo in
R. Journal of Statistical Software, 42(9), 1–22. http://www.jstatsoft.org/v42/i09/

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.
Maydeu-Olivares, A. (2015). Evaluating the fit of IRT models. In: S. P. Reise & D. A. Revicki

(Eds.), Handbook of item response theory modeling: Applications to typical performance
assessment (pp. 111–127). New York: Routledge.

Maydeu-Olivares, A., & Joe, H. (2005). Limited- and full-information estimation and goodness-
of-fit testing in 2n contingency tables: A unified framework. Journal of the American Statistical
Association, 100, 1009–1020.

Morgeson, F. P., & Humphrey, S. E. (2006). The work design questionnaire (WDQ): Developing
and validating a comprehensive measure for assessing job design and the nature of work.
Journal of Applied Psychology, 91, 1321–1339.

Muraki, E. (1990). Fitting a polytomous item response model to Likert-type data. Applied
Psychological Measurement, 14, 59–71.

Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied
Psychological Measurement, 16, 159–176.

Natesan, P., Nandakumar, R., Minka, T., & Rubright, J. D. (2016). Bayesian prior choice in IRT
estimation using MCMC and variational Bayes. Frontiers in Psychology, 7(1422), 1–11.

Osterlind, S. J., & Everson, H. T. (2009). Differential item functioning (2nd ed.). Thoursand Oaks:
Sage.

Ostini, R., & Nering, M. L. (2005). Polytomous item response theory models. Thousand Oaks:
Sage.

Ponocny, I. (2001). Nonparametric goodness-of-fit tests for the Rasch model. Psychometrika, 66,
437–459.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen:
Danish Institute for Educational Research.

Rasch, G. (1961). On general laws and the meaning of measurement in psychology. In Proceedings
of the IV. Berkeley Symposium on Mathematical Statistics and Probability (Vol. IV, pp. 321–
333). Berkeley: University of California Press.

Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer.
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral

Research, 47, 667–696.
Revelle, W. (2017). psych: Procedures for psychological, psychometric, and personality research.

R package version 1.7.8. http://CRAN.R-project.org/package=psych

https://R-Forge.R-project.org/projects/psychor/
http://www.jstatsoft.org/v42/i09/
http://CRAN.R-project.org/package=psych

References 159

Rizopoulos, D. (2006). ltm: An R package for latent variable modelling and item response theory
analyses. Journal of Statistical Software, 17(5), 1–25. http://www.jstatsoft.org/v17/i05/

Robitzsch, A. (2017). sirt: Supplementary item response theory models. R package version 1.15-
41. https://CRAN.R-project.org/package=sirt

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical
Software 48(2), 1–36. http://www.jstatsoft.org/v48/i02/

Rusch, T., Lowry, P. B., Mair, P., & Treiblmaier, H. (2017). Breaking free from the limitations of
classical test theory: Developing and measuring information systems scales using item response
theory. Information & Management, 54, 189–203.

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores
(Psychometrika monograph supplement, Vol. 17). Chicago: Psychometric Society.

Sidanius, J., & Pratto, F. (2001). Social dominance: An intergroup theory of social hierarchy and
oppression. Cambridge: Cambridge University Press.

Strobl, C., Kopf, J., & Zeileis, A. (2015). Rasch trees: A new method for detecting differential item
functioning in the Rasch model. Psychometrika, 80, 289–316.

Suárez-Falcón, J. C., & Glas, C. A. W. (2003). Evaluation of global testing procedures for item fit
to the Rasch model. British Journal of Mathematical and Statistical Society, 56, 127–143.

Takane, Y., & De Leeuw, J. (1986). On the relationship between item response theory and factor
analysis of discretized variables. Psychometrika, 52, 393–408.

Tutz, G., & Schauberger, G. (2015). A penalty approach to differential item functioning in Rasch
models. Psychometrika, 80, 21–43.

van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained
equations in R. Journal of Statistical Software, 45(3), 1–67. http://www.jstatsoft.org/v45/i03/

Vaughn-Coaxum, R., Mair, P., & Weisz, J. R. (2016). Racial/ethnic differences in youth depression
indicators: An item response theory analysis of symptoms reported by White, Black, Asian,
and Latino youths. Clinical Psychological Science, 4, 239–253.

Verhelst, N. D., Hatzinger, R., & Mair, P. (2007). The Rasch sampler. Journal of Statistical
Software, 20(4), 1–14. https://www.jstatsoft.org/article/view/v020i04/

von Aster, M., Weinhold Zulauf, M., & Horn, R. (2006). Neuropsychologische Testbatterie für
Zahlenverarbeitung und Rechnen bei Kindern (ZAREKI-R) [Neuropsychological Test Battery
for Number Processing and Calculation in Children]. Frankfurt: Harcourt Test Services.

Wang, X., Berger, J. O., & Burdick, D. S. (2013). Bayesian analysis of dynamic item response
models in educational testing. The Annals of Applied Statistics, 7, 126–153.

Wilmer, J. B., Chabris L. G. C. F., Chatterjee, G., Gerbasi, M., & Nakayama, K. (2012). Capturing
specific abilities as a window into human individuality: The example of face recognition.
Cognitive Neuropsychology, 29, 360–392.

Wilson, G. D., & Patterson, J. R. (1968). A new measure of conservatism. British Journal of Social
and Clinical Psychology, 7, 264–269.

Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current approaches and future
directions. Psychological Methods, 12, 58–79.

Woolley, A. W., Gerbasi, M. E., Chabris, C. F., Kosslyn, S. M., & Hackman, J. R. (2008). Bringing
in the experts: How team ability composition and collaborative planning jointly shape analytic
effectiveness. Small Group Research, 39, 352–371.

Yen, W. (1981). Using simulation results to choose a latent trait model. Applied Psychological
Measurement, 5, 245–262.

Zeileis, A., Hothorn, T., & Hornik, K. (2008) Model-based recursive partitioning. Journal of
Computational and Graphical Statistics, 17, 492–514.

Zeileis, A., Strobl, C., Wickelmaier, F., Komboz, B., & Kopf, J. (2016). psychotools: Infrastructure
for psychometric modeling. R package version 0.4-2. https://CRAN.R-project.org/package=
psychotools

Zumbo, B. D. (1999). A handbook on the theory and methods of differential item functioning
(DIF): Logistic regression modeling as a unitary framework for binary and likert-type (Ordinal)
item scores. Ottawa: Directorate of Human Resources Research and Evaluation, Department of
National Defense.

http://www.jstatsoft.org/v17/i05/
https://CRAN.R-project.org/package=sirt
http://www.jstatsoft.org/v48/i02/
http://www.jstatsoft.org/v45/i03/
https://www.jstatsoft.org/article/view/v020i04/
https://CRAN.R-project.org/package=psychotools
https://CRAN.R-project.org/package=psychotools

Chapter 5
Preference Modeling

5.1 Models for Paired Comparisons

Let us introduce paired comparison data by means of a simple toy example where
200 persons stated their preferences on five bands. An item consisted of a pair
of bands, and participants had to state which of the two bands they prefer. Each
participant was exposed to all possible pairs of bands. No undecided answers were
allowed in this study.

library("MPsychoR")
data("bandpref")
bandpref
Band1 Band2 Win1 Win2
1 Slayer Rush 142 58
2 Slayer Death 54 146
3 Slayer Emperor 158 42
4 Slayer Scorpions 34 166
5 Rush Death 121 79
6 Rush Emperor 147 53
7 Rush Scorpions 155 45
8 Death Emperor 72 128
9 Death Scorpions 140 60
10 Emperor Scorpions 159 41

Each row corresponds to a series of 200 “games.” The first row says that Slayer
won 142 games against Rush (i.e., 142 persons like Slayer more than Rush), whereas
Rush won 58 games against Slayer (i.e., 58 persons like Rush more than Slayer).
Having five bands in total, there are

(5
2

) = 10 possible pairwise comparisons
presented to each person (complete design). Note that most models presented below
work for incomplete designs as well and also allow for undecided answers.

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_5

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_5&domain=pdf
https://doi.org/10.1007/978-3-319-93177-7_5

162 5 Preference Modeling

5.1.1 Bradley-Terry Model

In this section we introduce a classical model for paired comparison data which
maps the objects (i.e., bands in our example) on a latent continuum. The Bradley-
Terry model (BT; Bradley and Terry, 1952) estimates a parameter for each band.
In performance settings these parameters are often called “abilities,” just as in item
response theory (cf. Chap. 4). They tell us which bands have similar preferences,
which is the least favorite band, which one the most favorite band, etc. In the BT
model, the probability that object i is preferred over object j (or i “beats” j) is
given by

P(i > j) = αi

αi + αj

, (5.1)

where αi and αj are the object parameters (“abilities”) on an interval scale.
Equivalently, the model can be expressed as

logit(P (i > j)) = λi − λj , (5.2)

with λi = log(αi) as the object parameters on a log-scale.1

Let us fit a simple BT model on the band preferences using the BradleyTerry2
package (Turner and Firth, 2012):

library("BradleyTerry2")
bandsBT <- BTm(cbind(Win1, Win2),Band1, Band2, data = bandpref)
bandsAbil <- BTabilities(bandsBT)
round(sort(bandsAbil[,1]), 3)
Scorpions Emperor Slayer Death Rush
-0.312 -0.024 0.000 0.199 0.380

These values are the λi’s, that is, the abilities on a log-scale (cf. Eq. (5.2)). One
object (in this case Slayer) was taken as baseline category and gets a log-ability of
0. This restriction needs to be imposed in order to fix the latent trait at a particular
point. The remaining bands are scaled relatively to this object. We see that Rush has
the highest ability; in our setting this means that Rush is the most preferred band.
The Scorpions are the least preferred band.

If the α-parameterization from Eq. (5.1) is preferred, we can simply say:

1Note that there is a strong connection between the BT model and the Rasch model from
Sect. 4.2.1. In fact, it can be shown that the Rasch model in its multiplicative form is a special
case of the BT model.

5.1 Models for Paired Comparisons 163

alphas <- exp(bandsAbil[,1])
sort(alphas)
Scorpions Emperor Slayer Death Rush
0.7321361 0.9759494 1.0000000 1.2200734 1.4621035

This representation is attractive if we want to have an odds interpretation. For
instance, the odds that Rush is preferred to Death is

alphas["Rush"]/alphas["Death"]
Rush
1.198373

This original version of the BT model can be extended by incorporating object-
specific covariates and order effects. This can be achieved by extending Eq. (5.2)
in terms of λi = Xβ + ε. That is, the ability parameter is formulated through a
regression model with predictor matrix X and corresponding regression parameter
β. Simple examples can be found in Turner and Firth (2012). In the next two
sections, we present two modern approaches for incorporating covariates: recursive
partitioning trees and lasso.

5.1.2 Bradley-Terry Trees

Model-based partitioning trees (Zeileis et al., 2008) were already demonstrated in
Sect. 4.6.2 within the context of item response models. In BT models the idea is to
find predictor splits for which the object parameters differ between the terminal
nodes. This strategy is implemented in the psychotree package (Strobl et al.,
2011). Let us demonstrate the fit of a BT tree using the topmodel data from the
psychotree package. In this experiment 192 respondents judged the attractiveness
of the top six contestants (Barbara, Anni, Hana, Fiona, Mandy, Anja) in the TV
show “Germany’s Next Topmodel.” The preferences are stated in terms of paired
comparisons, organized as an object of class "paircomp."

We study the influence of the covariates gender, age, and three questions
regarding whether the participant is familiar with the TV show (q1), whether
he/she watches the TV show regularly (q2), and whether he/she watched the final
show (q3). The following call computes the tree structure and returns the object
parameters for the subgroups in the terminal nodes.

164 5 Preference Modeling

library("psychotree")
data("Topmodel2007")
topmtree <- bttree(preference ~ age + gender + q1 + q2 + q3,

data = Topmodel2007)

Figure 5.1, produced using plot(topmtree), shows the fitted tree structure.
Persons older than 52 years have a strong preference for Barbara and low preference
for Anna. Participants of age 52 or younger who watch the TV show regularly
(q2="yes") have a strong preference for Hana. If they do not watch it regularly,

age
p < 0.001

1

≤ 52 > 52

q2
p = 0.017

2

yes no

Node 3 (n = 35)

l
l

l

l

l

l

Brb AnnHan Fin Mnd Anj

0.02

0.41

gender
p = 0.007

4

male female

Node 5 (n = 71)

l

l

l

l

l
l

Brb AnnHan Fin Mnd Anj

0.02

0.41
Node 6 (n = 56)

l

l

l

l

l

l

Brb AnnHan Fin Mnd Anj

0.02

0.41
Node 7 (n = 30)

l

l

l l l

l

Brb AnnHan Fin Mnd Anj

0.02

0.41

Fig. 5.1 BT tree structure with optimal predictor splits

the algorithm finds another split for gender, since the preferences for this subgroup
are different for male and female participants.

5.1.3 Bradley-Terry Lasso

Another option, especially attractive for situations with many predictors/covariates,
is to use a lasso approach (see James et al., 2013, for an introduction). BT lasso
models were proposed by Schauberger and Tutz (2017) and perform a predictor

5.1 Models for Paired Comparisons 165

selection with respect to each predictor’s influence on the paired comparisons.
This approach is implemented in the BTLLasso package (Schauberger, 2017).
Covariates can be subject-specific as well as object-specific. In the example below,
once more using the topmodel dataset, we only consider subject-specific covariates.

The BTLLasso package requires the data in a slightly different form. First, let
us convert the paired comparisons (given as "paircomp" object) into long format
with values of 1 if the first model was preferred and values of 0 if the second model
was preferred.

pcmat <- as.matrix(Topmodel2007[[1]])
pcvec <- as.vector(pcmat)
pcvec[pcvec == -1] <- 0

Now we need to get the labels for the paired comparisons (first model name,
second model name) in shape:

library("stringr")
modnames <- t(str_split(colnames(pcmat), ":", simplify = TRUE))

Next, we extract the predictors, convert them into numerics (starting with 0), and
standardize all variables (as generally required in lasso modeling).

preds <- Topmodel2007[2:6]
ind <- sapply(preds, is.factor)
preds[ind] <- sapply(preds[ind],

function(f) c(0:(length(levels(f))-1))[f])
preds <- scale(preds)
rownames(preds) <- paste0("P", 1:nrow(preds))
head(preds)
gender age q1 q2 q3
P1 -0.9973924 2.1396096 1.1675757 0.4709234 0.8796174
P2 -0.9973924 -0.9476026 -0.8520147 -2.1124278 -1.1309367
P3 0.9973924 -0.9476026 -0.8520147 -2.1124278 -1.1309367
P4 0.9973924 -1.0162074 -0.8520147 0.4709234 -1.1309367
P5 -0.9973924 -0.9476026 -0.8520147 -2.1124278 -1.1309367
P6 0.9973924 -1.0162074 -0.8520147 0.4709234 -1.1309367

The last line prints the covariates for the first six respondents. As a final data
preparation step, we create the response object which will then be processed by the
BTLLasso function. Note that we also need a subject ID since the data are in long
format, as well as both object names involved in the paired comparisons.

166 5 Preference Modeling

library("BTLLasso")
sid <- rep(rownames(preds), ncol(pcmat))
mfirst <- rep(modnames[1,], each = nrow(preds))
msecond <- rep(modnames[2,], each = nrow(preds))
BTresp <- response.BTLLasso(response = pcvec, subject = sid,
first.object = mfirst, second.object = msecond)

Lasso requires the specification of a tuning parameter λ (i.e., shrinkage parame-
ter). Note that this parameter should not be confounded with the log-abilities λi in
Eq. (5.2). The tuning parameter is typically determined by cross-validation (CV)2

for which we define a grid of λ-parameters. A standard setup for this grid is values
between 0 and 20; but for running time purposes, we keep the grid between 0 and
10 and perform five CV-folds only (10 is be the default). The following chunk fits
the BT lasso model based on the optimal λ (CV happens internally).

set.seed(123)
lambda <- exp(seq(log(10), log(1), length = 20))-1
modLasso <- cv.BTLLasso(Y = BTresp, X = preds, lambda = lambda,

folds = 5, trace = FALSE)

The output below shows the parameter estimates. For each model we get an
intercept, that is, a baseline preference parameter. The restriction used in this
implementation is that the intercepts sum up to 0. For each model we also get the
object parameters in relation to the subject-specific covariates. The final line shows
the optimal λ found through CV.

modLasso
Intercepts:
Anja Anni Barbara Fiona Hana Mandy
-0.371 -0.097 0.350 0.185 0.400 -0.467
##
Object-specific effects for subject-specific covariate(s):
Anja Anni Barbara Fiona Hana Mandy
gender -0.115 0.204 0.204 -0.064 -0.115 -0.115
age 0.162 -0.322 0.162 -0.136 -0.029 0.162
q1 0.165 0.123 0.012 0.012 -0.207 -0.105
q2 0.230 -0.101 0.082 0.166 -0.277 -0.101
q3 -0.152 0.033 -0.152 0.033 0.120 0.120

(continued)

2An easy-to-read introduction to CV can be found in James et al. (2013).

5.1 Models for Paired Comparisons 167

##

##
Optimal lambda: 0.8329807

From the intercepts we see that Hana is the most preferred model. The object-
specific parameters based on the subject-specific covariates across the entire λ-grid
are visualized in Fig. 5.2 using plot(modLasso). The vertical line is placed at an
optimal λ value of 0.833. Let us have a look at the parameter values for the gender
covariate (first row in the object-specific effects output above). We see that Anni and
Barbara get the same effect (top path), Fiona has her own parameter (middle path),
and Hana, Mandy, and Anja get a single parameter (bottom path). The remaining
predictors in conjunction with the plots can be interpreted in the same way.

As a final step, we can request confidence intervals for the parameters using
bootstrap. Note that the bootstrap is performed on the level of the CV. That is, the
bootstrap samples are again cross-validated based on a specified λ grid. Here, we
narrow it down to seven values, located around the optimal value from above. For
running time purposes, we keep the number of bootstrap samples low (the user may
set it to something like B=500).

optind <- which.min(modLasso$criterion)
lambda2 <- lambda[(optind-3):(optind+3)]
set.seed(111)
bootLasso <- boot.BTLLasso(modLasso, lambda = lambda2,

cores = 4, B = 50, trace = FALSE, trace.cv = FALSE)

The plot of the parameters including the confidence intervals (CIs) can be
produced as follows and is given in Fig. 5.3.

plot(bootLasso, plots_per_page = 6, ask_new = FALSE)

It displays the bootstrap point estimates with the 95% CIs around it. Let us pick
a few interesting effects which are in line with the BT tree from above (see Fig. 5.1).
We see that there is a strong age effect for Anni and strong q2 effects (in opposite
directions) for Hana and Anja. The gender effect for Barbara and Anni came out in
the BT tree as well (see Nodes 5 and 6 in Fig. 5.1). However, we have to keep in
mind that the two approaches are different: the lasso approach describes the global
influence of the covariates on the preferences, whereas the tree approach tries to find
fine-grained subgroup combinations that influence the preferences.

168 5 Preference Modeling

2.0 1.5 1.0 0.5 0.0

−0
.1

5
−0

.1
0

−0
.0

5
0.

00
0.

05
0.

10
0.

15
0.

20

log(λ+1) log(λ+1) log(λ+1)

es
tim

at
es

gender

2.0 1.5 1.0 0.5 0.0

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

es
tim

at
es

age

2.0 1.5 1.0 0.5 0.0

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

es
tim

at
es

q1

2.0 1.5 1.0 0.5 0.0

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

log(λ+1) log(λ+1)

es
tim

at
es

q2

2.0 1.5 1.0 0.5 0.0

−0
.2

−0
.1

0.
0

0.
1

0.
2

es
tim

at
es

q3

Fig. 5.2 BT lasso parameter trajectories for different λ values. The red line denotes the optimal
shrinkage parameter λ found through CV

5.2 Log-Linear Models for Preference

Dittrich et al. (1998) proposed a log-linear modeling framework for paired compar-
isons, ratings, and rankings. It is implemented in the prefmod package (Hatzinger
and Dittrich, 2012). In this section we focus on a particular version of log-linear
preference models called pattern models (Dittrich et al., 2002). The log-linear BT
model assumes that the recorded paired comparisons are independent. In contrast,
pattern models use the responses of an individual simultaneously by formulating a
joint probability distribution of the preferences. Depending on the type of preference
data, the package provides the following functions to fit pattern models:

• pattL.fit for ratings (e.g., Likert items),
• pattPC.fit for paired comparisons,
• pattR.fit for (partial) rankings.

5.2 Log-Linear Models for Preference 169

l

l

l

l

l

l

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Anja

Anni

Barbara

Fiona

Hana

Mandy

Intercept

l

l

l

l

l

l

−0.2 −0.1 0.0 0.1 0.2 0.3

Anja

Anni

Barbara

Fiona

Hana

Mandy

gender

l

l

l

l

l

l

−0.4 −0.2 0.0 0.2

Anja

Anni

Barbara

Fiona

Hana

Mandy

age

l

l

l

l

l

l

−0.2 0.0 0.2 0.4

Anja

Anni

Barbara

Fiona

Hana

Mandy

q1

l

l

l

l

l

l

−0.4 −0.2 0.0 0.2 0.4

Anja

Anni

Barbara

Fiona

Hana

Mandy

q2

l

l

l

l

l

l

−0.4 −0.2 0.0 0.2 0.4

Anja

Anni

Barbara

Fiona

Hana

Mandy

q3

Fig. 5.3 BT Lasso bootstrap CIs for the intercepts and the subject-specific covariate effects

For the ratings and rankings versions, repeated measurement extensions are imple-
mented (see pattLrep.fit and pattRrep.fit). The package also provides
options for incorporating covariates, as we will show below, and is considerably fast
for a small amount of rated objects.

5.2.1 Pattern Model for Ratings

Let us first consider a simple example using a dataset from the prefmod package
related to musical preferences. Each participant had to rate music styles on a scale
from 1 (“like it very much”) to 5 (“dislike it very much”). Here we pick a subset
of five musical styles: easy listening ("mood"), reggae ("regg"), rap ("rap"),
heavy metal ("hvym"), and contemporary rock music ("conr"). We use sex as
covariate (1 = male, 2 = female).

170 5 Preference Modeling

library("prefmod")
music5 <- music[,c("mood", "regg", "rap", "hvym",

"conr", "sex")]
head(music5)
mood regg rap hvym conr sex
1 1 5 5 5 4 1
2 3 3 4 5 3 1
3 1 4 4 4 3 2
4 3 5 5 5 3 2
5 3 NA NA NA 5 2
6 2 3 3 5 3 1

As we see, this dataset includes missing values which prefmod is able to handle.
Note that by default the function estimates an undecided parameter. This parameter
is useful in our example since we have many tied ratings. Let us fit a pattern model
for the ratings with the covariate sex.

pattmus <- pattL.fit(music5, nitems = 5, formel = ~sex)
pattmus
estimate se z p-value
mood 0.05640 0.02573 2.192 0.0284
regg -0.23223 0.02519 -9.219 0.0000
rap -0.56284 0.02718 -20.708 0.0000
hvym -0.56745 0.02732 -20.770 0.0000
mood:sex2 0.03543 0.03440 1.030 0.3030
regg:sex2 -0.00625 0.03332 -0.187 0.8517
rap:sex2 0.03466 0.03425 1.012 0.3115
hvym:sex2 -0.13737 0.03571 -3.847 0.0001
U 0.63768 0.01235 51.634 0.0000

The undecided parameter (last row) is positive (and significant). This suggests
that there is a strong tendency that participants assigned the same ratings to various
musical styles. A negative parameter value would imply the opposite. As far as the
music effects are concerned, by default, the function uses the last object ("conr")
as reference group. From the main effects, we see that easy listening is the most
preferred style and heavy metal the least preferred style. The most interesting part
of this output is the significant interaction between heavy metal and gender.

For an easier interpretation of the parameters, we can request the object
parameters on a log-scale (i.e., λi ; see Eq. (5.2)):

round(patt.worth(pattmus, outmat = "lambda"), 3)
sex1 sex2
mood 0.056 0.092

(continued)

5.2 Log-Linear Models for Preference 171

regg -0.232 -0.238
rap -0.563 -0.528
hvym -0.567 -0.705
conr 0.000 0.000
attr(,"class")
[1] "wmat" "matrix"

E
st

im
at

e

Musical Preferences

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

male female

ll

l

l

l

hvymrap

regg

conr

mood

l

l

l

l

l

hvym

rap

regg

conr

mood

Fig. 5.4 Worth parameters for rating pattern model across gender. The larger the value of the
estimate, the more the musical style is liked by the participants

This parameterization reflects nicely the difference in heavy metal preference
across gender: females dislike it even more than males. We can also convert the
λ parameterization into worth parameters. It simply re-parameterizes the output in
terms of a sum-0 restriction instead of fixing one parameter to 0.

pworth <- patt.worth(pattmus)
plot(pworth, main = "Musical Preferences")

Figure 5.4 shows the corresponding plot. We see that easy listening music is
highly preferred by both males and females. All musical styles are scored similarly
across males and females, except for heavy metal. Males equally dislike heavy metal

172 5 Preference Modeling

and rap, whereas females dislike heavy metal even more than males. This explains
the significant interaction in the output above.

5.2.2 Pattern Model for Paired Comparisons

In this section we adapt the pattern model to paired comparisons. We use a
discretized version of the data presented in Grand and Dittrich (2015) on learning-
related emotions in mathematics. The authors consider achievement emotions
students typically experience when learning mathematics. The five emotions are the
following: enjoyment (coded as 1), pride (2), anger (3), anxiety (4), and boredom
(5). They were interested if the ordering of learning-related emotions depends on
particular subject covariates. Let us have a look at the dataset structure:

library("MPsychoR")
data("learnemo")
head(learnemo)
pc1_2 pc1_3 pc2_3 pc1_4 pc2_4 pc3_4 pc1_5 pc2_5 pc3_5 pc4_5 sex
1 2 0 0 0 0 0 0 0 0 0 1
2 2 2 0 0 0 1 0 0 1 1 1
3 2 2 0 0 0 0 0 0 0 2 1
4 0 0 2 2 2 2 0 0 0 0 1
5 2 1 0 1 0 1 1 0 1 2 2
6 1 2 2 2 2 0 2 2 2 2 1

In the columns we have all possible
(5

2

)
paired comparisons according to the

emotion codings. This particular order of paired comparisons is often referred to
as standard order. The entries have the following meaning: 0 if the first emotion
was “preferred” (i.e., more dominant when learning mathematics), 2 if the second
emotion was preferred, and 1 if no decision was made. The entries have to be coded
in this way such that prefmod recognizes the corresponding preference pattern.
Each participant (n =111) was exposed to all paired comparisons (complete design).
We include sex as covariate (1 = male, 2 = female) as well as an explicit undecided
parameter (default in the function below). Let us fit the pattern model with boredom
as reference category.

pattemo <- pattPC.fit(learnemo, nitems = 5, formel = ~ sex,
obj.names = c("enjoyment", "pride", "anger", "anxiety",

"boredom"))
pattemo
##
estimate se z p-value
enjoyment -0.03143 0.10237 -0.307 0.7588

(continued)

5.2 Log-Linear Models for Preference 173

pride 0.27615 0.10435 2.646 0.0081
anger 0.14168 0.10278 1.379 0.1679
anxiety -0.28450 0.10502 -2.709 0.0067
enjoyment:sex2 0.15310 0.13377 1.145 0.2522
pride:sex2 0.46263 0.13917 3.324 0.0009
anger:sex2 0.28106 0.13468 2.087 0.0369
anxiety:sex2 0.61195 0.13605 4.498 0.0000
U -1.44182 0.10070 -14.318 0.0000

The undecided parameter, here expressed on a log-odds scale, tells us something
about the participants’ tendency of stating a preference vs. being undecided. In case
of U = 0, there is a 50-50 chance to make a decision or not. A positive U means
that participants tend to be undecided. A negative U , as in our example, implies that
participants tend to make a decision.

For the remaining parameters, it is easier to interpret them using the worth param-
eterization as produced by patt.worth(pattemo). From the corresponding
plot in Fig. 5.5, we see that boredom and anxiety are ordered differently by males
and females. Pride is the top emotion for both groups but gets a considerably larger
worth estimate for the females than for the males. Anger and enjoyment are fairly
similarly scored.

5.2.3 Pattern Model for Rankings

The third pattern model we illustrate uses rankings as input data. In questionnaires
or experiments, persons sometimes have to rank items/stimuli according to their
preference. If they have to rank all of them, this is called a full ranking. In cases of
many stimuli, persons are often required to rank only part of the stimuli. Or, as in
the example below, it was left up to the respondent whether he/she wanted to rank
all the stimuli or only a subset of it. This setup is often referred to as partial ranking.

The dataset we use here is from the marketing area and included in the prefmod
package. Dabic and Hatzinger (2009) studied partial rankings of 435 participants
who, through an online configuration system, ranked the following six car attributes:
price, exterior design, brand, technical equipment, producing country, and interior
design. A rank of 1 denotes the highest preference. Participants had the option to
rank only a subset of attributes. This leads to the following partial ranking structure
with age as categorical covariate (1 = 17–29 years, 2 = 30–49 years, 3 = 50 years and
older).

174 5 Preference Modeling

E
st

im
at

e

Achievement Emotions

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

male female

l

l
l

l

l

anxiety

enjoyment
boredom

anger

pride

l

l

l

l

l

boredom

enjoyment

anxiety

anger

pride

Fig. 5.5 Worth parameters for paired comparison pattern model across gender. The larger the
value of the estimate, the more often the emotion is experienced when learning mathematics

carconf1 <- carconf[, c(1:6, 8)]
head(carconf1)
price exterior brand tech.equip country interior age
1 3 2 5 6 4 1 1
2 4 1 5 2 6 3 3
3 6 3 2 5 4 1 2
4 1 4 2 3 6 5 3
5 NA 2 4 NA 3 1 2
6 NA 2 4 3 NA 1 1

From printing the first six participants, we see that participants 1–4 provided a
full ranking, whereas participants 5 and 6 ranked four attributes only. The ranking
pattern model with age as covariate can be fitted as follows:

5.3 Other Methods for Preference Data 175

pattcar <- pattR.fit(carconf1, nitems = 6, formel = ~ age)
pattcar
estimate se z p-value
price -0.11658 0.02949 -3.953 0.0001
exterior 0.03656 0.02948 1.240 0.2150
brand 0.02036 0.02930 0.695 0.4871
tech.equip -0.04360 0.02906 -1.500 0.1336
country -0.26050 0.03255 -8.003 0.0000
price:age2 0.07488 0.04499 1.664 0.0961
exterior:age2 0.01337 0.04521 0.296 0.7672
brand:age2 -0.02031 0.04476 -0.454 0.6498
tech.equip:age2 0.03947 0.04469 0.883 0.3772
country:age2 0.09782 0.04837 2.022 0.0432
price:age3 0.12133 0.04629 2.621 0.0088
exterior:age3 0.04558 0.04653 0.979 0.3276
brand:age3 0.02727 0.04595 0.593 0.5532
tech.equip:age3 0.15565 0.04670 3.333 0.0009
country:age3 0.06621 0.05138 1.289 0.1974

The first age category (age1) is used as baseline. We start interpreting the model
by considering the interactions first (as in ANOVA). The 50+-year-old persons
differ significantly from the young participants in terms of their price ranking and
technical equipments ranking: both attributes are more important to older customers
(see price:age3 and tech.equip:age3). Middle-aged participants differ
from young participants in terms of country (country:age2). The interpretable
main effects for exterior and brand are not significant. The worth parameters
obtained through patt.worth(pattcar) are given in Fig. 5.6 and can be
interpreted in a similar fashion as in the other pattern models.

5.3 Other Methods for Preference Data

In Sect. 9.4 we present an exploratory technique for rankings and ratings called
unfolding. Unfolding represents associations among the rows and the columns of a
preference data matrix in a low-dimensional space.

Other paradigms to analyze preference data, beyond the scope of this book, are
conjoint analysis and discrete choice experiments. Both of them have their roots in
psychology: Luce and Tukey (1964) and Krantz and Tversky (1971) developed the
theory of conjoint measurement, whereas Thurstone (1927) developed the random
utility theory used in discrete choice experiments. Conjoint analysis involves a
systematic manipulation of factors (attributes) in a factorial design. In a discrete
choice experiment, the respondent has to state his/her preferences based on attribute
bundles (choice sets) which are created according to a discrete choice design. A
discussion regarding the differences between these two concepts can be found in

176 5 Preference Modeling

E
st

im
at

e

Car Ratings

0.
12

0.
14

0.
16

0.
18

0.
20

17−29 years 30−49 years 50+ years

l

l

l

l

l

l

country

price

tech.equip

interior

brand

exterior

l

l

l
ll

l

country

price

tech.equipinterior brand

exterior

l

l
l

l

l

l

country

interior price

brand

exterior

tech.equip

Fig. 5.6 Worth parameters for rating pattern model across age groups

Louviere et al. (2010). In R, conjoint analysis can be computed using the conjoint
package (Bak and Bartlomowicz, 2012). Discrete choice experiments are typically
modeled by discrete choice models (i.e., multinomial logistic regression models and
related specifications). The Rchoice package (Sarrias, 2016) provides a flexible
modeling infrastructure. How to design and analyze such experiments in R is
described in detail in Aizaki et al. (2015).

References

Aizaki, H., Nakatami, T., & Sato, K. (2015). Stated preference methods using R. Boca Raton: CRC
Press.

Bak, A., & Bartlomowicz, T. (2012). Conjoint analysis method and its implementation in conjoint
R package. In: J. Pociecha & R. Decker (Eds.), Data analysis methods and its applications
(pp. 239–248). Warsaw: Beck.

Bradley, R. A., & Terry, M. E. (1952). Rank analysis of incomplete block designs I: The method
of paired comparisons. Biometrika, 39, 324–345.

Dabic, M., & Hatzinger, R. (2009). Zielgruppenadäquate Abläufe in Konfigurationssystemen: Eine
empirische Studie im Automobilmarkt – Partial Rankings [Targeted processes in configuration
systems: An empirical study on the car market – Partial rankings]. In R. Hatzinger, R. Dittrich,
& T. Salzberger (Eds.), Präferenzanalyse mit R: Anwendungen aus Marketing, Behavioural
Finance und Human Resource Management [Analysis of preferences with R: Applications

References 177

in marketing, behavioral finance and human resource management] (pp. 119–150). Vienna:
Facultas.

Dittrich, R., Hatzinger, R., & Katzenbeisser, W. (1998). Modelling the effect of subject-specific
covariates in paired comparison studies with an application to university rankings. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 47, 511–525.

Dittrich, R., Hatzinger, R., & Katzenbeisser, W. (2002). Modelling dependencies in paired
comparison experiments. Computational Statistics & Data Analysis, 40, 39–57.

Grand, A., & Dittrich, R. (2015). Modelling assumed metric paired comparison data – Application
to learning related emotions. Austrian Journal of Statistics, 44, 3–15.

Hatzinger, R., & Dittrich, R. (2012). prefmod: An R package for modeling preferences based on
paired comparisons, rankings, or ratings. Journal of Statistical Software, 48(10), 1–31. https://
www.jstatsoft.org/v048/i10

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning
with applications in R. New York: Springer.

Krantz, D. H., & Tversky, A. (1971). Conjoint measurement analysis of composition rules in
psychology. Psychological Review, 78, 151–169.

Louviere, J. J., Flynn, T. N., & Carson, R. T. (2010). Discrete choice experiments are not conjoint
analysis. Journal of Choice Modelling, 3, 57–72.

Luce, R. D., & Tukey, J. W. (1964). Simultaneous conjoint measurement: A new scale type of
fundamental measurement. Journal of Mathematical Psychology, 1, 1–27.

Sarrias, M. (2016). Discrete choice models with random parameters in R: The Rchoice package.
Journal of Statistical Software, 74(10), 1–31. https://www.jstatsoft.org/v074/i10

Schauberger, G. (2017). BTLLasso: Modelling heterogeneity in paired comparison data. R
package version 0.1-7. https://CRAN.R-project.org/package=BTLLasso

Schauberger, G., & Tutz, G. (2017). Subject-specific modelling of paired comparison data: A lasso-
type penalty approach. Statistical Modelling, 17, 223–243.

Strobl, C., Wickelmaier, F., & Zeileis, A. (2011). Accounting for individual differences in Bradley-
Terry models by means of recursive partitioning. Journal of Educational and Behavioral
Statistics, 36, 135–153.

Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34, 273–286.
Turner, H., & Firth, D. (2012). Bradley-terry models in R: The BradleyTerry2 package. Journal

of Statistical Software, 48(9), 1–21. http://www.jstatsoft.org/v48/i09/
Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of

Computational and Graphical Statistics, 17, 492–514.

https://www.jstatsoft.org/v048/i10
https://www.jstatsoft.org/v048/i10
https://www.jstatsoft.org/v074/i10
https://CRAN.R-project.org/package=BTLLasso
http://www.jstatsoft.org/v48/i09/

Chapter 6
Principal Component Analysis and
Extensions

6.1 Principal Component Analysis

Principal component analysis (PCA) is an exploratory, descriptive technique for
dimensionality reduction of multivariate data. The aim of PCA is to form new
“prototype” variables, called principal components (PCs), out of a set of possibly
correlated, metric input variables (indicators). These PCs are independent from each
other and are formulated through a linear combination of the indicators. The PCA
problem is solved by means of a matrix decomposition technique called singular
value decomposition (SVD).

In the tradition of Joliffe (2002), which is the most comprehensive PCA book
on the market, we treat PCA as a purely descriptive multivariate data reduction
technique, different from exploratory factor analysis (EFA; see Sect. 2.2), even
though these two approaches often lead to similar results.

6.1.1 Singular Value and Eigenvalue Decomposition

The origins of PCA can be traced back to Pearson (1901), although he did
not call it PCA. This expression was introduced later by Hotelling (1933), and
important analytical developments were made by Eckart and Young (1936). These
developments are based on matrix decomposition techniques called singular value
decomposition (SVD) and eigenvalue decomposition. In this section we will invest
some time in explaining these decompositions in a nontechnical fashion, since
several multivariate methods in subsequent chapters use these techniques as well.

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_6

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_6&domain=pdf
https://doi.org/10.1007/978-3-319-93177-7_6

180 6 Principal Component Analysis and Extensions

Let X be our n × m data matrix. SVD decomposes X into three parts, each of
them giving us valuable structural information about the data. Formally, it is defined
as follows1:

X = UDV′. (6.1)

U is an n × m matrix containing the left singular vectors, V is an m × m matrix
containing the right singular vectors, and D is an m × m diagonal matrix with the
singular values on the diagonal.

Let us explore these three matrices in more detail based on an artificial example.
We simulate a dataset X with n = 1000 observations and m = 3 variables, each of
them centered (i.e., mean 0).

library("mvtnorm")
sigma <- matrix(c(2, 0.8, 0, 0.8, 0.5, 0, 0, 0, 0.1), ncol = 3)
set.seed(123)
baguette <- rmvnorm(1000, mean = c(0,0,0), sigma = sigma)

We can visualize the data by means of a 3D scatterplot and discover that our
data look like a baguette. SVD aims to describe the structure and orientation of the
baguette in the 3D space. Let us see what happens if we perform an SVD on the
baguette.

svdb <- svd(baguette)
D <- diag(svdb$d) ## singular values
round(D, 3)
[,1] [,2] [,3]
[1,] 47.493 0.000 0.000
[2,] 0.000 12.238 0.000
[3,] 0.000 0.000 10.108
V <- svdb$v ## right singular vectors
round(V, 3)
[,1] [,2] [,3]
[1,] 0.917 -0.399 -0.020
[2,] 0.399 0.916 0.048
[3,] -0.001 -0.052 0.999

V tells us something about the orientation of the baguette in the 3D space.
More technically, it defines three orthogonal vectors (v1, v2, and v3), meaning
that they are perpendicular to each other. Formally, this implies that the inner

1For readers who are more attracted to a sonic introduction to SVD rather than a formal one,
Michael Greenacre composed an SVD song (“It had to be U”), available on YouTube.

6.1 Principal Component Analysis 181

product (also called dot product or scalar product) between two vectors is 0 (e.g.,
〈v1, v2〉 = ∑

i vi1vi2 = 0, where v1 and v2 are the first two right singular nvectors).
In addition, each of these vectors is of length 1 which can be stated using the

Euclidean norm. For instance, ‖v1‖ =
√

v2
11 + v2

21 + v2
31 = 1. Vectors that are

orthogonal and of length 1 are called orthonormal. Let us check these properties for
the first two vectors in R:

v1 <- V[,1]
v2 <- V[,2]
round(v1 %*% v2, 7) ## inner product
[,1]
[1,] 0
sqrt(sum(v1^2)) ## length
[1] 1
sqrt(sum(v2^2))
[1] 1

Back to the geometric interpretation in relation to our baguette. The first vector
in V points in the “long” baguette direction; the remaining two vectors describe the
“round” part of the baguette (i.e., a slice). The user can visualize the baguette and
the vectors as follows (plot not shown here):

library("rgl")
plot3d(baguette, col = "gray", xlim = c(-4, 4), ylim = c(-4,4),

zlim = c(-4,4), aspect = 1, size = 2)
arrow3d(c(0,0,0), V[,1], col = "red")
arrow3d(c(0,0,0), V[,2], col = "red")
arrow3d(c(0,0,0), V[,3], col = "red")

Each vector in V is associated with a singular value in the diagonal matrix
D. These singular values tell us something about the variance of the points along
these new axes. Note that singular values are always in descending order, that is,
the first one is always the largest and the last one always the smallest. From the
output above, we see that the first singular value is by far the largest since it tells us
something about the stretch of the data on the first axis (“long” baguette direction).
The remaining two singular values are of approximately the same length since they
describe the round-ish slice. This information can be incorporated in the 3D plotting
code above by, for instance, multiplying each singular vector with the square root
of its associated singular value. This stretches/squeezes the arrows according to the
variance in the respective direction.

If our data would look more like a pizza, the first two singular values would be
roughly the same, whereas the third singular value would be tiny in case of a thin

182 6 Principal Component Analysis and Extensions

crust pizza and increases as the pizza approaches Chicago style. If we do not care
about whether the pizza is thin or thick crust, we can ignore the third eigenvalue:
the first two eigenvalues describe the properties we are interested in. This idea is
important when it comes to using SVD in PCA as a dimension reduction technique,
since in practice we consider the first few eigenvalues/eigenvectors only, hoping that
they describe the most important properties (i.e., variance) of the data.

The role of the U matrix will be described in the next section when looking at
SVD within a PCA context. For the moment we will merely use it to check whether
X can be reconstructed from the three SVD matrices, according to Eq. (6.1):

U <- svdb$u
baguette1 <- U %*% D %*% t(V)
identical(round(baguette, 7), round(baguette1, 7))
[1] TRUE

Another decomposition, strongly related to SVD, is called eigenvalue decompo-
sition. Whereas SVD works for general n×m matrices, an eigenvalue decomposition
is restricted to square matrices (i.e., matrices with the same number of rows
and columns). In statistical applications we often apply correlation or covariance
matrices. For an m × m covariance matrix Σ , we get

Σ = UΛU′. (6.2)

U is the m × m orthogonal matrix containing the eigenvectors, and Λ an m × m

diagonal matrix containing the eigenvalues. Here the eigenvalues play a similar role
as the singular values in SVD: they provide us with information about the variance
in the data.

covb <- cov(baguette)
eigend <- eigen(covb)
L <- diag(eigend$values) ## eigenvalues
round(L, 3)
[,1] [,2] [,3]
[1,] 2.258 0.00 0.000
[2,] 0.000 0.15 0.000
[3,] 0.000 0.00 0.102
U <- eigend$vectors ## eigenvectors
round(U, 3)
[,1] [,2] [,3]
[1,] 0.917 0.399 -0.021
[2,] 0.399 -0.916 0.050
[3,] -0.001 0.054 0.999

6.1 Principal Component Analysis 183

The eigenvectors in U correspond to the right singular vectors in V from
above. Since in the covariance formula we divide by n − 1, and given the fact
that an eigenvalue is the square of a singular value, we can apply the following
transformation in order to make eigenvalues and singular values match:

n <- nrow(baguette)
l <- (diag(D)/sqrt(n-1))^2 ## from singular values
round(l, 3) ## eigenvalues
[1] 2.258 0.150 0.102

The bottom line is that SVD is a generalization of an eigenvalue decomposition
in terms of input matrices with unequal number of rows and columns. The next
section shows which role these matrix decompositions play in PCA.

6.1.2 PCA Computation

The general PCA data setup is the following. Let X be an n × m data matrix with m

metric variables. PCA extracts m new independent variables ξ1, ξ2, . . . , ξm called
PCs. The set of linear equations relating the PCs to the indicators is the following:

ξ1 = w11x1 + w12x2 + · · · + w1mxm

ξ2 = w21x1 + w22x2 + · · · + w2mxm

...

ξm = wm1x1 + wm2x2 + · · · + wmmxm. (6.3)

W is an m × m matrix containing the weights (also called loadings), and Ξ an
n×m matrix containing the principal component scores (PC scores). In crisp matrix
notation, Eq. (6.3) can be rewritten as

Ξ = XW′. (6.4)

Comparing these equations to Eqs. (2.2) and (2.3) from EFA (see Sect. 2.2.1), we
see clear differences. EFA formulates a statistical model that includes an error term
(unique factors), whereas PCA expresses the PCs by means of a simple linear
combination, which is easy to solve. Thus, PCA is a purely descriptive method
without involving a statistical model and which can be illustrated geometrically (see
Sharma, 1996).

PCA can be computed in two ways: we can either perform an eigenvalue
decomposition on the covariance or correlation matrix or an SVD on the centered

184 6 Principal Component Analysis and Extensions

version of X, divided by
√

n − 1. In R, the princomp function takes the eigenvalue
decomposition route, whereas prcomp uses SVD. As the prcomp help file points
out, SVD is the preferred method for numerical accuracy reasons.

Let us illustrate both approaches by means of a simple dataset from Willerman
et al. (1991), involving the following three indicators: verbal IQ (VIQ), performance
IQ (PIQ), and brain size (measured in MRI pixel counts).

library("MPsychoR")
data("BrainIQ")
X <- BrainIQ[, c("VIQ", "PIQ", "MRI_Count")]
head(X, 4)
VIQ PIQ MRI_Count
1 132 124 816932
2 150 124 1001121
3 123 150 1038437
4 129 128 965353

In this dataset the variables are measured on different units: the brain size
magnitude is in the 1M area, whereas the VIQ and PIQ are on the usual IQ scale. If
we throw these data into a PCA, the brain size variable would dominate the solution
because of the differences in magnitude compared to the other variables. The reason
for this is that PCA tries to explain variance in the data. Due to the magnitude of the
brain size values, the variance of this variable is much larger than the variance in the
IQ values. Thus, the first PC would be fully determined by brain size simply because
of the measurement units, something we most likely want to avoid. Whenever we
encounter a scenario like this, the data should be standardized (mean 0, variance 1).
If all indicators are on the same measurement units, we can either standardize or
not, depending on to which degree the sample variances should affect the solution.

Let us proceed with this example and, first, compute a PCA via an eigenvalue
decomposition (through princomp and by hand). Using the correlation matrix
instead of the covariance matrix implies standardization.

PCAfit <- princomp(X, cor = TRUE)
PCAfit
Call:
princomp(x = X, cor = TRUE)
##
Standard deviations:
Comp.1 Comp.2 Comp.3
1.4256144 0.8647244 0.4689087
##
3 variables and 40 observations.
round(unclass(PCAfit$loadings), 3) ## weights (loadings)

(continued)

6.1 Principal Component Analysis 185

Comp.1 Comp.2 Comp.3
VIQ -0.627 -0.356 0.693
PIQ -0.639 -0.272 -0.719
MRI_Count -0.445 0.894 0.057
evIQ <- eigen(cor(X)) ## eigenvalue decomposition
sqrt(evIQ$values) ## standard deviations
[1] 1.4256144 0.8647244 0.4689087
round(evIQ$vectors, 3) ## weights (loadings)
[,1] [,2] [,3]
[1,] -0.627 -0.356 0.693
[2,] -0.639 -0.272 -0.719
[3,] -0.445 0.894 0.057

Since we have three indicators, we can extract three PCs. These new variables
have standard deviations that correspond to the square roots of the eigenvalues. The
loadings matrix W corresponds to the U matrix from Eq. (6.2). Loadings tell us
to which extend each indicator is associated with each component. Based on these
loadings, we can label the PCs, similar to factors in EFA. From the eigenvalues we
can directly determine the amount of explained variance of each component.

summary(PCAfit)
Importance of components:
Comp.1 Comp.2 Comp.3
Standard deviation 1.4256144 0.8647244 0.46890866
Proportion of Variance 0.6774588 0.2492495 0.07329178
Cumulative Proportion 0.6774588 0.9267082 1.00000000
evIQ$values/sum(evIQ$values)
[1] 0.67745877 0.24924945 0.07329178

Second, we perform the same PCA fit based on an SVD involving the standard-
ized data matrix (and divided by

√
n − 1). This is what prcomp is doing internally.

PCAfit2 <- prcomp(X, scale = TRUE)
print(PCAfit2, digits = 3)
Standard deviations (1, .., p=3):
[1] 1.426 0.865 0.469
##
Rotation (n x k) = (3 x 3):
PC1 PC2 PC3
VIQ -0.627 0.356 -0.6926
PIQ -0.639 0.272 0.7191
MRI_Count -0.445 -0.894 -0.0569

186 6 Principal Component Analysis and Extensions

We get the same component standard deviations as above and the same loadings
(here called rotation). Note that some signs can be switched which only matters
with respect to the directional interpretation of the corresponding PC.

If we want to do the same computation by hand via an SVD call, we can say

n <- nrow(X)
svdIQ <- svd(scale(X)/sqrt(n-1)) ## SVD
round(svdIQ$d, 3) ## singular values
[1] 1.426 0.865 0.469
round(svdIQ$v, 3) ## right singular vectors
[,1] [,2] [,3]
[1,] -0.627 0.356 -0.693
[2,] -0.639 0.272 0.719
[3,] -0.445 -0.894 -0.057

This gives again the same result as in the prcomp call. The component scores
can be computed from the SVD output using UD

√
n − 1 or simply via Eq. (6.4):

head(PCAfit2$x, 4)
PC1 PC2 PC3
[1,] -0.3262983 1.5890699 -0.08878183
[2,] -1.9374031 -0.4173517 -0.76173409
[3,] -2.1895933 -0.9709755 0.83271829
[4,] -1.2734095 -0.2432148 0.01031501
head(svdIQ$u %*% diag(svdIQ$d)*sqrt(n-1), 4)
[,1] [,2] [,3]
[1,] -0.3262983 1.5890699 -0.08878183
[2,] -1.9374031 -0.4173517 -0.76173409
[3,] -2.1895933 -0.9709755 0.83271829
[4,] -1.2734095 -0.2432148 0.01031501

So far we have shown how a PCA can be computed via simple matrix decompo-
sitions: we get the amount of explained variance, the loadings, and the PC scores.
We see that PCA computation is much simpler than EFA, which typically uses
maximum likelihood (ML) or least squares (LS) estimation. Another important
difference between PCA and EFA arises when we consider fitting them on the
basis of a covariance matrix Σ . EFA concentrates on explaining the off-diagonal
elements of Σ , whereas PCA concentrates on the diagonal elements of Σ . Thus,
EFA tries to explain covariance in the data, and PCA tries to explain variance in the
data (although it is not totally blind to the covariances). Regarding the PC scores,
they are a direct result of the SVD, as opposed to EFA where the factor scores are
computed post hoc using one out of several possible methods (see Sect. 2.2.3).

As far as the dimensionality p of the solution is concerned, in EFA, we had
to fix p before fitting the model. In PCA we typically fit the full solution and

6.1 Principal Component Analysis 187

then determine p using simple ad hoc tools such as a scree plot (elbow criterion,
eigenvalue larger 1 criterion). We used this strategy already in Sect. 2.2.4 when we
produced a scree plot within an EFA context. What we actually did was fitting a PCA
(since it is so simple) and explored the dimensionality structure of the PCA solution
which gives us a good hint of the number of factors. This is feasible since EFA and
PCA often lead to similar results, despite the differences in model formulation and
computation.

Other indices from the EFA world (see Sect. 2.2.4) that can be used for PCA
are parallel analysis (since it is simply a more sophisticated version of a scree
plot with randomly (re-)sampled data) and very simple structure (VSS). They
are implemented in the psych package (Revelle, 2017) which also provides the
principal function for fitting PCA. If VSS is used for PCA, the user needs to
set the argument fm="pc" in the corresponding vss call. As in EFA, we should
look at these criteria in combination instead of relying on a single rule of thumb.
Parametric EFA criteria such as the TLI and RMSEA cannot be applied to since
they are directly based on ML or LS estimation outcomes (which are not used in
PCA).

Finally, in EFA, we typically apply a rotation for better interpretability (see
Sect. 2.2.2). Note that in EFA the rotation does not change the solution. In PCA,
care is advised when applying rotation techniques since it changes the solution.
For instance, rotation redistributes the component variances across the new, rotated
components (in fact, we should not call them principal components anymore). Pros
and cons of PCA rotations are discussed in detail in Joliffe (2002, Chapter 11). The
principal function in the psych package has options for orthogonal and non-
orthogonal component rotations. We will show how to rotate a PCA solution in the
next section by means of a fully worked out real-life data example. We will also
illustrate several practical issues related to dimensionality assessment, component
interpretation, and visualization.

6.1.3 PCA Application and Practical Issues

To illustrate PCA on a real-life dataset, we use data from Treiblmaier (2006, see also
Treiblmaier et al. 2011). The dataset contains items that measure various advantages
and disadvantages online users perceive when providing personal information on the
Internet. We consider six items relating to advantages of personal communication
(variable names starting with apc) and four items related to disadvantages of
personal communication (those starting with dpc in the variable names). Each item
was measured using a slide bar (from 1 to 100). The correlation structure of these
variables is shown in Fig. 2.6 (see Sect. 2.3).

Note that PCA does not assume that the indicators are (multivariate) normally
distributed (Joliffe, 2002, p. 19) since, as pointed out above, it is a purely descriptive
technique with no statistical model formulation underneath. This said, it certainly
does not hurt if the data are somewhat multivariate normal which guarantees that

188 6 Principal Component Analysis and Extensions

the relationship between all observed variables is linear. This is the only assumption
we really have in PCA which stems from the fact that PCA can be fitted on
the basis of a correlation matrix (and Pearson correlations are of course blind to
nonlinear relationships). Linearity among the variables can be explored using the
scatterplotMatrix function from the car (Fox and Weisberg, 2011). Standard
transformations such as the logarithm can be applied, if it helps in terms of making
the data “more linear” or “more normal.” Details on transformations can be found
in Fox and Weisberg (2011).

Let us continue with the privacy example. Since all the items are on the same
1–100 scale, we could fit either a PCA without standardization or a PCA with
standardization, as discussed above. Here we use the standardized version and
produce a scree plot, as introduced in Sect. 2.2.4, to get a first picture of the
explained variance structure:

data("Privacy")
pcaPriv <- prcomp(Privacy, scale = TRUE)
screeplot(pcaPriv, type = "lines", main = "Privacy Scree Plot")
abline(h = 1, col = "gray", lty = 2)

The scree plot in Fig. 6.1 does not really show a clear elbow. The eigenvalues
drop below 1 after three components. With three components we explain 59% of the
variance in the original data. Let us proceed with p = 3 and explore the loadings:

round(pcaPriv$rotation[,1:3], 3)
PC1 PC2 PC3
apc1 -0.442 0.079 -0.408
apc2 -0.426 0.103 -0.414
apc3 -0.388 0.191 -0.276
apc4 -0.305 0.155 0.362
apc5 -0.338 0.226 0.492
apc6 -0.362 0.148 0.430
dpc1 0.228 0.425 -0.001
dpc2 0.164 0.500 -0.102
dpc3 0.153 0.493 -0.129
dpc4 0.179 0.420 0.029

The second component is the easiest one to interpret since all the disadvantage
items load highly on it. We could label it as “disadvantages of personal communica-
tion.” The advantage items load highly on component 1 (again, we use the absolute
loading values to judge this). The third component discriminates between the first
three apc items and the remaining three apc items. Still, these two components are
tricky to interpret. In such cases a rotation can help, as implemented in the psych
package. However, we need to keep in mind that it changes the solution, as discussed
in the last paragraph of the previous section.

6.1 Principal Component Analysis 189

l

l

l

l

l l
l

l

l

l

Privacy Scree Plot

Va
ria

nc
es

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 2 3 4 5 6 7 8 9 10

Fig. 6.1 Scree plot for Privacy dataset. The number of components is on the x-axis and eigenvalue
on the y-axis

Let us first re-fit the unrotated solution using the principal function from
psych in order to make sure that we are getting the same results.

library("psych")
pcaPriv1 <- principal(cor(Privacy), 3, rotate = "none")
pcaPriv1$loadings
##
Loadings:
PC1 PC2 PC3
apc1 0.772 0.101 0.450
apc2 0.745 0.132 0.456
apc3 0.679 0.245 0.304
apc4 0.533 0.198 -0.398
apc5 0.591 0.290 -0.542
apc6 0.634 0.190 -0.474
dpc1 -0.399 0.545
dpc2 -0.287 0.642 0.112
dpc3 -0.268 0.633 0.143
dpc4 -0.314 0.539
##

(continued)

190 6 Principal Component Analysis and Extensions

PC1 PC2 PC3
SS loadings 3.059 1.647 1.214
Proportion Var 0.306 0.165 0.121
Cumulative Var 0.306 0.471 0.592

Note that the loadings are not the same as in the prcomp output. The reason for
this is that principal standardizes the loadings differently, their sum-of-squares
(SS) equal to the square of the corresponding eigenvalue (i.e., the component vari-
ance; see pcaPriv1$values), whereas prcomp and princomp standardize
them to SS equal to 1. However, these are just two different ways of standardizing;
the loadings structure is the same, and it does not change anything in the results.

Let us proceed with an orthogonally rotated solution (varimax):

pcaPriv2 <- principal(cor(Privacy), 3, rotate = "varimax")
pcaPriv2$loadings
##
Loadings:
RC1 RC3 RC2
apc1 0.874 0.152 -0.149
apc2 0.865 0.141 -0.109
apc3 0.742 0.250
apc4 0.163 0.673
apc5 0.130 0.843
apc6 0.183 0.786 -0.104
dpc1 -0.166 0.651
dpc2 0.710
dpc3 0.697
dpc4 -0.129 0.611
##
RC1 RC3 RC2
SS loadings 2.187 1.897 1.836
Proportion Var 0.219 0.190 0.184
Cumulative Var 0.219 0.408 0.592

Note that the components are labelled with RC (rotated components). We obtain
a much clearer loadings picture: the first three apc items load highly on RC1 (we
could label it as “individualized communication”), the remaining apc items load
highly on RC3 (“providing correct data”), and the four dpc items determine RC2
(“disadvantages of personal communication”). We see that a rotation makes the
interpretation easier, but the price we pay is that important properties of PCA are
getting lost. For instance, we see that the proportions of explained variance got
redistributed across the components (second part of the output).

If desired, we can also perform a non-orthogonal promax rotation which, in this
example, gives an even clearer loadings structure:

6.1 Principal Component Analysis 191

pcaPriv3 <- principal(cor(Privacy), 3, rotate = "promax")
pcaPriv3$loadings
##
Loadings:
RC1 RC3 RC2
apc1 0.905
apc2 0.900
apc3 0.749 0.106 0.101
apc4 0.683
apc5 0.875
apc6 0.797
dpc1 -0.126 0.639
dpc2 0.720
dpc3 0.101 0.711
dpc4 -0.104 0.604
##
RC1 RC3 RC2
SS loadings 2.234 1.889 1.815
Proportion Var 0.223 0.189 0.181
Cumulative Var 0.223 0.412 0.594
round(pcaPriv3$Phi, 3)
RC1 RC3 RC2
RC1 1.000 0.406 -0.201
RC3 0.406 1.000 -0.127
RC2 -0.201 -0.127 1.000

The last line shows the correlations among the rotated components. Not too
surprisingly, the correlation between the two components involving the apc items
(i.e., RC1 and RC3) is fairly high.

A final remark is related to the visualization of PCA results. A standard plotting
strategy is the PCA biplot, which maps both the component scores and the loadings
(as vectors) into the component space. Using the prcomp fit, a biplot can be
produced as follows (see Fig. 6.2):

biplot(pcaPriv, col = c("gray", "black"), cex = c(0.6, 0.9))
abline(h = 0, v = 0, lty = 2)

Since biplots are a general concept that can be applied beyond PCA, this book
dedicates an entire chapter to this topic (see Chap. 10). For the particular case
of PCA biplots, corresponding details regarding interpretation and various scaling
options will be given in Sect. 10.3.

192 6 Principal Component Analysis and Extensions

6.2 Some PCA Variants

Multiple regression models do not like highly correlated predictors (multicollinear-
ity): parameter estimates become sensitive to small changes in the data. Assuming
it makes sense conceptually, an elegant option to deal with this phenomenon is
to run a PCA on the predictors, which gives p independent PCs that replace the
original predictors. After regressing the response on the PCs, the parameter vector is
transformed back to the scale of the original predictors. This simple strategy is called
principal component regression. An extension of this method is called partial least
squares regression which includes the response variable in the dimension reduction
strategy as well. Both approaches are implemented in the pls package (Mevik et al.,
2016), and for a simple description including R code, see James et al. (2013).

PCA, as introduced so far, is designed for metric indicators and not able to
handle categorical input variables or mixed scale levels. Categorical PCA, also
called Princals, will be introduced in Sect. 8.2 within a wider context of Gifi models.

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10

−0
.2

0
−0

.1
5

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

PC1

P
C

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

32
33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54
55

56

57
58

59

60

61

6263

64

65

66

67

68

69

70

71

72

73

74

75

76

77
7879

80 81

82

83

84

85

86

87

88

89

90
91

92

93 94

95

96

97

98

99

100

101

102

103

104105

106

107
108

109
110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130
131

132

133
134

135

136137
138139

140

141

142

143

144

145

146

147

148

149
150151

152

153

154
155

156

157

158

159

160

161

162163

164

165

166

167
168

169
170

171

172
173
174

175

176

177178

179

180

181

182

183

184

185

186
187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217
218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235
236

237

238

239

240

241

242
243

244

245

246

247

248

249

250

251

252

253 254

255

256

257

258

259

260

261

262
263264

265 266

267

268

269

270

271 272

273

274

275

276

277

278

279

280

281

282

283
284

285

286

287

288

289

290
291

292

293

294

295296 297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313
314315

316

317

318

319
320

321

322

323

324

325

326

327

328

329

330

331

332

333

334
335

336
337

338

339

340

341
342

343

344
345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373374

375

376

377

378

379

380
381

382

383

384

385

386

387

388

389
390

391

392

393

394

395

396

397

398

399

400

401

402

403
404

405

−20 −15 −10 −5 0 5 10

−2
0

−1
5

−1
0

−5
0

5
10

apc1apc2

apc3
apc4

apc5

apc6

dpc1

dpc2dpc3

dpc4

Fig. 6.2 Biplot for unrotated PCA on Privacy data (first two dimensions/components are plotted)

These models also aim to linearize relationships among the indicators which is a
very attractive feature since, as we have discussed, PCA assumes linear relationships
among the indicators.

Note that in Gifi slang, Princals is also called nonlinear PCA. This is due to
the fact that it generally performs nonlinear transformations of the indicators. It

6.2 Some PCA Variants 193

does not mean that Eq. (6.3) is extended to something nonlinear. If we are looking
for a PCA version that generalizes principal components from straight lines to
curves, the pcaMethods package (Stacklies et al., 2007) offers several possibilities.
Along these lines we should also mention kernel PCA, implemented in the kernlab
package (Karatzoglou et al., 2004).

If our input data contain outliers, a robust version of PCA can be considered. It
is straightforward to compute. We can use the princomp function with a robust
covariance matrix, computed via cov.rob from MASS (Venables and Ripley,
2002). If we want to have the data standardized (i.e., using a robust correlation
matrix), we can simply set cor=TRUE. Let us illustrate this strategy using the
Privacy data once more (output not shown here).

set.seed(123)
pcarob <- princomp(covmat = MASS::cov.rob(Privacy), cor = TRUE)

Since this dataset did not have any strong outliers, the results are approximately
the same as for the regular PCA fit.

Another useful variant of PCA is called sparse PCA (Zou et al., 2006). We have
seen in the examples so far that the loadings are in general non-zero, which often
makes components difficult to interpret. For a fixed p, sparse PCA shrinks small
loadings to 0 using the lasso principle. A simple way of fitting a sparse PCA is
to use spca function from the elasticnet package (Zou and Hastie, 2012) and
set sparse="varnum". This way, through the para argument, we can tell the
algorithm how many non-zero loadings we want to have on each component. Below
we say that we want to have three non-zero loadings on PC1 and PC3 and four
non-zero loadings on PC2. Alternatively, one could also specify a vector of penalty
parameters (see help file).

library("elasticnet")
spcaPriv <- spca(scale(Privacy), K = 3, sparse = "varnum",

para = c(3, 4, 3))
spcaPriv
##
3 sparse PCs
Pct. of exp. var. : 22.0 17.4 15.6
Num. of non-zero loadings : 3 4 3
Sparse loadings
PC1 PC2 PC3
apc1 -0.618 0.000 0.000
apc2 -0.603 0.000 0.000
apc3 -0.505 0.000 0.000
apc4 0.000 0.000 0.494

(continued)

194 6 Principal Component Analysis and Extensions

apc5 0.000 0.000 0.647
apc6 0.000 0.000 0.581
dpc1 0.000 0.486 0.000
dpc2 0.000 0.534 0.000
dpc3 0.000 0.520 0.000
dpc4 0.000 0.456 0.000

Compared to the standard PCA fit from above, sparse PCA leads to a more
restricted solution. In total, we explain 55.01% of the variance. This is only slightly
less than the 59% from the standard PCA fit above, but the solution is much easier to
interpret. A variant of sparse PCA is nonnegative sparse PCA, as implemented in the
nsprcomp package (Sigg and Buhmann, 2008), with the option to avoid negative
loadings.

Another version of PCA will be presented in Sect. 13.4.4. It operates on
functional data and is correspondingly called functional PCA.

6.3 Three-Way Principal Component Analysis

In this section we introduce a structural extension of PCA in terms of three-way
input data. In order to facilitate elaborations on this extension, let us first consider a
data array taxonomy involving ways and modes (see Carroll and Arabie, 1980).

The most common way to indicate a data array X is a matrix of size2 I × J . X is
a two-way two-mode data structure. The way indicates the shape of X. Since X has
rows and columns, it has two ways. The term mode refers to the content of each way.
For many psychological data, the rows in a data matrix X represent persons, and the
columns are the variables. Thus, there is a different entity (or content) for each way
which makes the data two-mode. If we construct a covariance (or correlation) matrix
Σ , it has two ways but only one mode (usually variables).

We can extend the above terminology to three-way data for which we use the
notation X. In such cases, X is a three-way array (or tensor) of dimension I ×
J × K . In psychological applications, typical modes in X are persons (first mode),
variables (second mode), and time points, occasions, or within-subject conditions
(third mode).

Below focus on the two most popular, classical methods for three-way (three-
mode) data: the Parafac method and the Tucker method. Other multiway methods
are presented in great detail in Kroonenberg (2008). For the particular case of

2In this section we follow a notation for indices of the data and components as well as the number
of them which is different from that used before but which is standard in the literature of three-way
analysis (see Kiers, 2000).

6.3 Three-Way Principal Component Analysis 195

longitudinal three-way data (i.e., time as the third mode), elaborations can be found
in Timmerman (2001).

6.3.1 Parafac

Parafac (parallel factor model) was proposed by Harshman (1970). Note that at
the same time Carroll and Chang (1970) developed their Candecomp (canonical
decomposition) method, which is equivalent to Parafac. Let P be the number
of components to be extracted. Parafac decomposes the three-way array X with
elements xijk (i = 1, . . . , I ; j = 1, . . . , J ; k = 1, . . . , K) into the following three
components3:

x̂ijk =
P∑

p=1

aipbjpckp, (6.5)

resulting in three component matrices: A (of dimension I×P) represents the subject
score matrix, B (J ×P) is the variable components matrix (loadings), and C (K×P)
is the occasion component matrix. The elements aip, bjp, and ckp can be interpreted
in terms of relative importance of component p for the i-th individual, the j -th
variable, and the k-th occasion. Thus, Parafac finds components that are common
to all three modes. Note that Eq. (6.5) is formulated in terms of the fitted values
x̂ijk for given dimensionality P . If the model fits our data well, x̂ijk is close to the
observed xijk .

Let us apply the Parafac model on a longitudinal three-way dataset from Sidanius
et al. (2010) on social dominance orientation (SDO), introduced in Sect. 2.4.5. Four
SDO items were presented to 612 participants at five points in time (1996–2000).
Since the dataset is stored in wide format, the first step is to convert it into a three-
way array structure such that we can fit a Parafac:

data("SDOwave")
SDOar <- array(unlist(SDOwave), dim = c(612, 4, 5))
dnames <- dimnames(SDOar) <- list(1:612, paste0("SDO", 1:4),

1996:2000)
dim(SDOar)
[1] 612 4 5

3We omit the matrix formulation for all three-way PCA models since it requires some 3D matrix
operations that are beyond scope of this book (see, e.g., Kroonenberg, 2008, for corresponding
expressions).

196 6 Principal Component Analysis and Extensions

This gives the persons × item × time points three-way three-mode array
structure.

Data preprocessing in terms of standardization is slightly more complex than in
ordinary PCA (see Kroonenberg, 2008, Chapter 6 for details). In the SDO dataset,
all variables are measured on the same units (7-point response scale). Thus, there is
no need for full standardization. In order to facilitate the interpretation, we center
the data for each variable at each occasion (i.e., we center across the first mode). As
a consequence, the mean of the variables is located at the origin of the three-way
PCA space.

library("multiway")
SDOarc <- ncenter(SDOar, mode = 1)
dimnames(SDOarc) <- dnames

Now we are ready to fit the Parafac model. R offers several packages to fit three-
way PCA models. A comprehensive implementation is ThreeWay by Giordani et al.
(2014) which uses a prompt input. Another package for three-way computations is
PTAk (Leibovici, 2010). For our purposes, however, the most attractive package is
multiway (Helwig, 2017). Let us fit a Parafac with P = 2 dimensions using this
package:

set.seed(111)
sdopara <- parafac(SDOarc, nfac = 2)
str(sdopara[1:4])
List of 4
$ A : num [1:612, 1:2] -0.729 -0.784 0.2 0.65 -0.222 ...
$ B : num [1:4, 1:2] 0.531 0.176 -1.495 -1.206 1.713 ...
$ C : num [1:5, 1:2] 0.661 0.654 0.747 0.733 0.636 ...
$ SSE: num 10373

The function returns the three component matrices from Eq. (6.5). In Parafac,
these matrices are generally not orthogonal which implies that the components are
linearly related. Let us have a look at the variable components matrix B, containing
the variable loadings:

dimnames(sdopara$B) <- list(dnames[[2]], paste0("Comp.", 1:2))
round(sdopara$B, 3) ## loadings
Comp.1 Comp.2
SDO1 0.531 1.713
SDO2 0.176 0.963

(continued)

6.3 Three-Way Principal Component Analysis 197

SDO3 -1.495 0.213
SDO4 -1.206 0.304

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−4 −3 −2 −1 0 1 2

−1
0

1
2

3
4

SDO Parafac Biplot

Dimension 1

D
im

en
si

on
 2 SDO1

SDO2

SDO3SDO4

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

Parafac Occasion Components

Time

C
om

po
ne

nt
 S

co
re

s

1996 1997 1998 1999 2000

Component 1
Component 2

Fig. 6.3 Left panel: Parafac biplot (subject components and loadings; Parafac components are not
orthogonal). Right panel: Component trajectories across occasions

We see that the last two items (SDO3 and SDO4) load highly on the first
component. This items are related to social equality aspects; thus, we can label
the first component “equality” (as in standard PCA, the sign only matters in terms
of interpretation direction). The first two items (SDO1 and SDO2) are related to
group hierarchies and load highly on the second component. This component can
be labeled “group hierarchy.”

The left panel of Fig. 6.3 shows the Parafac biplot4 based on the matrices A
(subject scores) and B (loadings). Since the components are not orthogonal, a
more informative representation of this Parafac fit is displayed in the right panel.
It shows the occasion component scores from matrix C, showing the overall SDO
development trajectories of the two SDO subdimensions over 5 successive years.
We see that “equality” (component 1) increases from 1997 to 1998 and decreases
in the following years, whereas “group hierarchy” (component 2) is almost constant
over time.

The multiway package also reports an overall R2 value of 0.489 which tells us
how much variance is accounted for by the two dimensions/components. The error
sum-of-squares (SSE) can be computed from the structural image X̂, scaled by the
dimension product:

4Biplots are introduced in more detail in Chap. 10.

198 6 Principal Component Analysis and Extensions

Xhat <- fitted(sdopara) ## structural image
SSE <- sum((SDOar - Xhat)^2)/prod(dim(SDOar))
round(SSE, 3)
[1] 5.522

For dimensionality assessment one can fit multiple Parafac models, produce a
scree plot with the number of dimensions on the x-axis and the SSEs on the y-axis,
and obtain a decision using the elbow criterion. As p increases, the SSE decreases.
Note that the three-mode scree plot shows a point for each model, whereas the
PCA scree plot gives points for each component separately. Additional tools for
goodness-of-fit assessment can be found in Kroonenberg (2008, Chapter 8).

As a final remark, a few words regarding the uniqueness of Parafac. In Parafac,
no rotations are possible without worsening the fit. It is especially this aspect which
has given rise to its popularity in various fields. The model is properly identified,
while Tucker methods, introduced below, are not.

6.3.2 Tucker

The Tucker method (Tucker, 1966) abandons the idea of only one set of components
for all modes. This makes Tucker more flexible than Parafac, but, at the same time,
it can be more difficult to interpret. In this section we focus on the so-called Tucker3
model for three-way three-mode data (see Kroonenberg, 2008, for other Tucker
model versions). It can be formulated as follows:

x̂ijk =
P∑

p=1

Q∑

q=1

R∑

r=1

aipbjqckrgpqr . (6.6)

Compared to Eq. (6.5), there are two obvious differences. First, each mode gets
its own specification regarding the number of components to be extracted (in the
current example, P for the persons, Q for the variables, and R for the occasions).
The resulting subject component scores matrix A is of dimension I ×P , the variable
component matrix B is J × Q, and the occasion component matrix C is K × R.
Note that the number of components need to follow the minimum-product rule: the
product of the number of components of two modes must always be equal or larger
than the third mode component (i.e., PQ ≥ R, PR ≥ Q, and QR ≥ P). As
opposed to Parafac, the basic algorithm for the Tucker model produces orthogonal
components. These components can be rotated, if desired.

Second, there is an additional term gpqr which forms the so-called core array
G of dimension P × Q × R. We will illustrate the role of this matrix after fitting
the Tucker3 model on the SDO data, using the multiway package. In the present

6.3 Three-Way Principal Component Analysis 199

example, we use P = 3 dimensions for the persons, Q = 2 for the items, and
R = 2 for the occasions.

set.seed(111)
ndims <- c(3, 2, 2) ## set P, Q, R
sdotuck <- tucker(SDOar, nfac = ndims)

Let us have a closer look at the four matrices given in Eq. (6.6) and fitted in
the tucker call. The person component matrix A can be interpreted in terms of P

prototype individuals. Each person in the sample is represented according to a linear
combination of these prototype individuals.

As in Parafac, the variable component matrix B contains the loadings:

dimnames(sdotuck$B) <- list(dnames[[2]], paste0("Comp.", 1:2))
round(sdotuck$B, 3)
Comp.1 Comp.2
SDO1 -0.465 -0.721
SDO2 -0.352 -0.380
SDO3 -0.612 0.467
SDO4 -0.533 0.343

Compared to the Parafac fit above, the separation of the items into two compo-
nents is less clear. In the right panel of Fig. 6.4, loadings and subject scores are
represented jointly by means of a biplot. The occasion component scores C, as
visualized in the right panel of Fig. 6.4, are represented as prototype trajectories
or latent curves. Note that in the Parafac model, we had only one interpretation of
the components. In the Tucker3 model, the occasion components have a different
meaning than the variable components and the person components. Here, they
simply represent two prototype trajectories: one where SDO stays constant over
time and another one where SDO generally increases (apart from 1999 to 2000).

The core array plays a similar role as the singular value matrix D in standard
PCA, but it is structurally more complicated (it is a non-diagonal three-way array).
From Eq. (6.6) we see that each gpqr plays the role of a weight in the multiplicative
three-way component expression aipbjqckr . Thus, G contains information about the
relative importance of component combinations with respect to all modes, or, said
differently, it indicates the strength of the links between the components.

round(sdotuck$G, 2)
, , 1

(continued)

200 6 Principal Component Analysis and Extensions

##
[,1] [,2]
[1,] -254.07 0.04
[2,] 0.00 50.27
[3,] 0.04 0.54
##
, , 2
##
[,1] [,2]
[1,] -0.29 0.79
[2,] 0.75 -1.41
[3,] -39.62 -0.26

l
l l

l

l l

l

l

ll

ll

ll

l

l

l

l

l

l

l

l

l

l

l l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l
l

l

l
l

l

l

l

l

l

l
l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

ll

l

l
l

l
l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

ll

l l

l

l

l

l

l

l

l

l
l

l

l
ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l l

l

l

l

l ll

l

l

l

l

l l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

−0.2 −0.1 0.0 0.1

−0
.1

5
−0

.0
5

0.
05

0.
10

0.
15

SDO Tucker Biplot

Dimension 1

D
im

en
si

on
 2

SDO1

SDO2

SDO3
SDO4

−0
.5

0.
0

0.
5

1.
0

Tucker Occasion Components

Time

C
om

po
ne

nt
 S

co
re

s

1996 1997 1998 1999 2000

Component 1
Component 2

Fig. 6.4 Left panel: Tucker3 biplot (subject components and loadings). Right panel: Tucker3
occasion components

For instance, g3,1,1 is very close to 0 (i.e., 0.04, to be precise). It means that
this component combination barely contributes toward the structural image X̂. This
is not the case for g3,1,2 = −39.62, which is considerably large. This particular
component combination (i.e., third-person component, first variable component,
first occasion component “constant”) contributes highly to the solution. In general,
the squared core element divided by the total SS is the proportion of the total sum
of squares accounted for by the combination of components.

In terms of dimensionality assessment, the same strategies can be applied as
outlined above. One can fit a series of Tucker3 models with systematically varying
numbers of P , Q, and R (the minimum-product rule needs to be fulfilled) and
produce a scree plot based on the SSE. Rotation strategies can be applied to the
Tucker3 model since, as opposed to Parafac, the solution is not unique and a rotated
solution can be found without changing the fit.

6.4 Independent Component Analysis 201

To conclude, in this section, we applied three-way PCA strategies to study
longitudinal developments (third mode). As mentioned at the beginning, the models
presented here can handle other kinds of three-way data structures such as three-
way profile data or three-way rating scale data. Again, details can be found in
Kroonenberg (2008). In this book we will consider three-way data once more in
Sect. 9.5.2, when introducing individual differences scaling (INDSCAL) within the
context of multidimensional scaling.

6.4 Independent Component Analysis

6.4.1 ICA Formulation

Independent component analysis (ICA; Hyvärinen et al., 2001; Stone, 2004) is often
regarded as an extension of PCA, even though it is formally more similar to EFA.
It is especially attractive to apply on certain kinds of temporal, spatial, and spatio-
temporal signals. In psychology, we encounter such data in experiments involving
electroencephalography (EEG) measurements or functional magnetic resonance
imaging (fMRI) scans. The aim of ICA is to separate (unmix) the data, resulting
in a set of independent components (ICs). So far, in this chapter, we loosely used
the term “independent” when talking about component properties in standard PCA.
Actually, we should have used the term “uncorrelated” since independence is a
stronger statistical requirement than uncorrelatedness (elaborations on indepen-
dence vs. uncorrelatedness can be found in Stone, 2004, Chapter 5). ICA gives truly
independent components.

The fundamental ICA equation is the following. Let x = (x1(t), x2(t), . . . , xn(t))
′

be a set of observed input signals. For instance, this could be a set of EEG
signals from n electrodes or a set of fMRI signals from n voxels. ICA claims
that this set of input signals is a mix of a set of independent source signals
s = (s1(t), s2(t), . . . , sn(t))

′:
⎛

⎜
⎜
⎜
⎝

x1(t)

x2(t)
...

xn(t)

⎞

⎟
⎟
⎟
⎠

= A

⎛

⎜
⎜
⎜
⎝

s1(t)

s2(t)
...

sn(t)

⎞

⎟
⎟
⎟
⎠

. (6.7)

In compact matrix form, we can write

x = As, (6.8)

which looks similar to the basic EFA expression in Eq. (2.3). A is the so-called
mixing matrix and plays a similar role as the loadings matrix Λ in EFA. However,
EFA and ICA are estimated in a different way. As we have briefly outlined in

202 6 Principal Component Analysis and Extensions

Sect. 2.2.1, some EFA estimation routines assume multivariate normality. ICA
assumes that the data are non-normal and is therefore sometimes referred to as
non-Gaussian factor analysis. This makes it well-suited for signal analysis since
the distribution of a signal is typically “peakier” than a normal distribution would
allow for.

An alternative representation of Eq. (6.8) is s = Wx, where the source signal is
expressed by means of a mixing matrix W, which mixes the input signal. Regardless
which representation we use, ICA is a dimension reduction technique: we aim for a
small number p of ICs (i.e., source signals), which approximate our observed input
data in a satisfactory way.

Having spatiotemporal data as in EEG or fMRI, ICA can be used in two
complementary ways: temporal ICA (tICA) which extracts temporally independent
components and spatial ICA (sICA) which extracts spatially independent compo-
nents. For instance, if we apply a tICA on EEG or fMRI signals, the ICs are temporal
trajectories which are independent from each other. Of course, we can also plot
an activity map for each component, but these activity maps are not independent
from each other. Conversely, if we apply a sICA, we get a time trajectory for
each component, but they are not independent from each other. In this case, the
activation maps are independent from each other. In theory, we can apply both sICA
and tICA on EEG/fMRI data. In practice, in EEG applications, tICA may be more
informative, whereas in fMRI sICA is more frequently applied, as demonstrated in
Sect. 14.4. Additional details on tICA vs. sICA can be found in Stone (2004, Section
7.7).

In R, ICA can be fitted using the ica package (Helwig, 2015b) or the fastICA
package (Marchini et al., 2013). For EEG applications, the eegkit package (Helwig,
2015a) provides an ICA implementation as well as several other useful functions for
this type of data, as shown in the next section.

6.4.2 Example: ICA on EEG Data

In this section we present an ICA application using an EEG dataset from an exper-
iment on memory storage capacity.5 To estimate individual differences in visual
working memory storage capacity, a variant of the bilateral color identification
task (see Vogel and Machizawa, 2004) was used. Participants were instructed to
maintain eye gaze at a central fixation cross, while attending to a cued hemifield.
Subsequently, a memory display was presented consisting of one or three colored
circles within each hemifield. Participants had to encode the colors in the cued
hemifield, store them in memory during a retention period, and subsequently report
the identity of a target item. There were four conditions in the experiment, resulting
from crossing the set size (number of colored circles presented) with the hemifield
(ipsilateral vs. contralateral): set size 1/ipsilateral activity, set size 1/contralateral
activity, set size 3/ipsilateral activity, and set size 3/contralateral activity.

5Thanks for Hrag Pailian for sharing this dataset.

6.4 Independent Component Analysis 203

We start our analysis with some EEG data manipulation and visualization using
the eegkit package. First we import the data, create a vector with the electrode
names as used in the experiment, and produce a 2D and a 3D plot showing the
electrode positions (see Fig. 6.5):

library("eegkit")
data("storcap")
elecvec <- c("FP1","FP2", "F3", "F4", "FC5", "FC6", "T7", "T8",
"FC1", "FC2", "C3", "C4", "P7", "P8", "P3", "P4", "CP5",
"CP6", "CP1", "CP2", "PO7", "PO8", "PO3", "PO4", "O1", "O2")

eegcap(elecvec, type = "2d", col.point = "gray",
col.label = "black", cex.label = 0.8, cex.point = 4)

data(eeghead)
shade3d(eeghead)
eeghead$material$color <- rep(1,length(eeghead$material$color))
wire3d(eeghead)
eegcap(elecvec, col.point = "coral4", cex.point = 0.3,

col.label = "coral4", head = FALSE, add = TRUE)

FP1 FP2

F3 F4

FC5 FC6

T7 T8

FC1 FC2

C3 C4

P7 P8P3 P4

CP5 CP6CP1 CP2

PO7 PO8PO3 PO4

O1 O2

Fig. 6.5 Electrode arrangement in 2D and 3D

Note that in the storcap data object, the voltage of left-right hemisphere
electrodes is averaged. For instance, channel PO3_4 is the average of PO3 and PO4.
Let us plot a single-channel voltage trajectory (we use PO3_4) for each of the four
conditions. The following code chunk computes the average voltage (and standard
deviation) across participants for each time point and within each condition.

204 6 Principal Component Analysis and Extensions

library("plyr")
PO34 <- subset(storcap, channel == "PO3_4") ## select PO3/4
PO34agg <- ddply(PO34, .(time, cond), summarize,

mean = mean(voltage), sd = sd(voltage))

Figure 6.6 is produced using the eegtime function:

library("colorspace")
ylims <- range(PO34agg$mean)
cols <- rainbow_hcl(4, 80)
eegtime(PO34agg$time[PO34agg$cond == "SS1_Ips"], xlab = "Time",
voltage = PO34agg$mean[PO34agg$cond == "SS1_Ips"],
main = "Electrode PO3/4", vcol = cols[1], ylim = ylims)

eegtime(PO34agg$time[PO34agg$cond == "SS1_Contra"],
voltage = PO34agg$mean[PO34agg$cond == "SS1_Contra"],
add = TRUE, vcol = cols[2])

eegtime(PO34agg$time[PO34agg$cond == "SS3_Ips"],
voltage = PO34agg$mean[PO34agg$cond == "SS3_Ips"],
add = TRUE, vcol = cols[3])

eegtime(PO34agg$time[PO34agg$cond == "SS3_Contra"],
voltage = PO34agg$mean[PO34agg$cond == "SS3_Contra"],
add = TRUE, vcol = cols[4])

abline(v = c(300, 1200), lty = 2, col = "gray")
legend("bottomright", c("Set Size 1 (Ipsilateral)",
"Set Size 1 (Contralateral)", "Set Size 3 (Ipsilateral)",
"Set Size 3 (Contralateral)"), lty = 1,col = cols, bty = "n")

As the experimental design controls for task-general processing across each
hemifield, calculating the difference in neural activity between the “attended-to”
(contralateral activity) and “not-attended-to” (ipsilateral activity) sides provides a
way to isolate storage-related activity. This difference, called the contralateral delay
activity (CDA; see Arend and Zimmer, 2011, for details), becomes increasingly
more negative as a function of the number of items that are stored. The following
code chunk takes the voltage difference between the contralateral and the ipsilateral
activity and organizes the results in a new data frame including the new condi-
tion labels.

6.4 Independent Component Analysis 205

Electrode PO3/4

Time

Vo
lta

ge
 (μ

V
)

0 500 1000 1500

+2
0

−2
−4

−6
−8

Set Size 1 (Ipsilateral)
Set Size 1 (Contralateral)
Set Size 3 (Ipsilateral)
Set Size 3 (Contralateral)

Fig. 6.6 Single channel (PO3/4) voltage trajectory plot for 4 conditions. The vertical lines
separate the experimental periods: 0–300 ms memory display, 300–1200 ms consolidation period,
>1200 ms test period

storcap1 <- storcap
SS1_CDA <- storcap1[storcap1$cond == "SS1_Contra",]$voltage -
storcap1[storcap1$cond == "SS1_Ips",]$voltage

SS3_CDA <- storcap1[storcap1$cond == "SS3_Contra",]$voltage -
storcap1[storcap1$cond == "SS3_Ips",]$voltage

n <- length(c(SS1_CDA, SS3_CDA))/2
storcap1 <- storcap1[1:(2*n),]
storcap1$voltage <- c(SS1_CDA, SS3_CDA)
storcap1$cond <- factor(rep(c("SS1_CDA", "SS3_CDA"), each = n))

Instead of plotting the activity in the temporal domain, let us plot the activation
in the spatial domain for a fixed time point (we pick 700 ms). We first need to
compute the voltage means within each condition and channel. Due to the fact that
in the original data the voltage was already averaged for left-right electrodes, we
subsequently need to produce a copy for each electrode mean in order to get the
spatial coordinates right. This leads to a symmetric activation picture.

206 6 Principal Component Analysis and Extensions

storcap700 <- subset(storcap1, time == 700)
CDA700agg <- ddply(storcap700, .(channel, cond), summarize,

mean = mean(voltage))
CDA700agg1 <- CDA700agg2 <- CDA700agg
even <- seq(2, nrow(CDA700agg), 2) ## even row selector
odd <- seq(1, nrow(CDA700agg), 2) ## odd row selector
CDA700agg1[even,] <- CDA700agg1[odd,]
CDA700agg2[odd,] <- CDA700agg2[even,]
data(eegcoord) ## coordinate template from eegkit
coords <- eegcoord[elecvec, 1:3] ## 3D coordinates

The eegspace function allows us to produce 2D as well as 3D spatial activation
plots. Figure 6.7 shows an example of a 3D plot for each CDA condition.

eegspace(coords, CDA700agg1[,3], main = "Set Size 1 CDA",
vlim = range(CDA700agg[,3]), colorlab = "")

eegspace(coords, CDA700agg2[,3], main = "Set Size 3 CDA",
vlim = range(CDA700agg[,3]), colorlab = "")

So far we only did descriptive analyses. Let us now fit two tICAs: one for the set
size 1 CDA condition and one for the set size 3 CDA condition. For each condition
we compute the average voltage for each time point within each channel, organized
as matrix of dimension 13 × 750 (i.e., electrodes in the rows and time points in
the columns). This matrix acts as input to the eegica call. For both tICA fits, we
extract four ICs:

CDA1 <- subset(storcap1, cond == "SS1_CDA")
CDA1agg <- daply(CDA1, .(channel, time),

function(x) mean(x$voltage))
tempICA1 <- eegica(CDA1agg, nc = 4, type = "time")
CDA3 <- subset(storcap1, cond == "SS3_CDA")
CDA3agg <- daply(CDA3, .(channel, time),

function(x) mean(x$voltage))
tempICA3 <- eegica(CDA3agg, nc = 4, type = "time")

Let us check how much variance accounted for (VAF) we get for both conditions:

round(tempICA1$vafs, 3)
[1] 0.423 0.410 0.088 0.045
round(tempICA3$vafs, 3)
[1] 0.885 0.066 0.020 0.016

6.4 Independent Component Analysis 207

Set Size 1 CDA Set Size 3 CDA

0.4 0.4

0.1 0.1

-0.1 -0.1

-0.4 -0.4

-0.7 -0.7

Fig. 6.7 3D spatial EEG activations plots for two different CDA conditions

The ICA for the first condition leads to two dominating components, whereas in
the second solution, the first IC explains most of the variance. Let us plot the relevant
ICs in the temporal as well as in the spatial domain, for both conditions separately.
Again, since for the left-right electrodes the voltage was averaged, we need to apply
the same “copy trick” as above in order to get the proper coordinates in the spatial
plot. Since we performed a tICA, in the time domain, we use the corresponding
column of the mixing matrix (A in Eq. (6.8); tempICA1$M and tempICA3$M in
the code below), whereas in the spatial domain, we use the source signal estimates
(s in Eq. (6.8); tempICA1$S in the code below).

tvec <- unique(storcap1$time)
mixmat1 <- tempICA1$M[rep(1:nrow(tempICA1$M), each = 2),]
mixmat3 <- tempICA3$M[rep(1:nrow(tempICA3$M), each = 2),]
vlims <- range(c(mixmat1[,1], mixmat1[,2], mixmat3[,1]))
eegtime(tvec, tempICA1$S[, 1],

main = "Component 1 (Set Size 1 CDA)", vcol = 1)
eegspace(coords[, 1:2], mixmat1[, 1], vlim = vlims)
eegtime(tvec, tempICA1$S[, 2],

main = "Component 2 (Set Size 1 CDA)", vcol = 1)
eegspace(coords[, 1:2], mixmat1[, 2], vlim = vlims)
eegtime(tvec, tempICA3$S[, 1],

main = "Component 1 (Set Size 3 CDA)", vcol = 1)
eegspace(coords[, 1:2], mixmat3[, 1], vlim = vlims)

Figure 6.8 shows the resulting plots. Note that since we fitted a tICA, we obtained
temporally independent components within each condition. For the set size 1/CDA
condition, we get two important ICs (memory and filtering) which imply that the
visual system may not be taxed enough such that there is some information transfer
where the ipsilateral hemifield also starts to represent the colored item (two sources:

208 6 Principal Component Analysis and Extensions

Component 1 (Set Size 1 CDA)

Time After Stimulus (ms)

Vo
lta

ge
 (μ

V
)

0 500 1000 1500

+2
+1

0
−1

l l

l l

l l

l l

l l

l l

l l
l l

l ll l

l l
l l
l l

−1
−0

.6
0.

1
0.

4

Vo
lta

ge
 (μ

V
)

Component 2 (Set Size 1 CDA)

Time After Stimulus (ms)

Vo
lta

ge
 (μ

V
)

0 500 1000 1500

+3
+1

0
−1

l l

l l

l l

l l

l l

l l

l l
l l

l ll l

l l
l l
l l

−1
−0

.6
0.

1
0.

4

Vo
lta

ge
 (μ

V
)

Component 1 (Set Size 3 CDA)

Time After Stimulus (ms)

Vo
lta

ge
 (μ

V
)

0 500 1000 1500

+1
.5

0
−1

−2

l l

l l

l l

l l

l l

l l

l l
l l

l ll l

l l
l l
l l

−1
−0

.6
0.

1
0.

4

Vo
lta

ge
 (μ

V
)

Fig. 6.8 First 2 ICs for set size 1 CDA condition, first IC for set size 3 condition (temporal and
spatial domain)

contralateral and ipsilateral). For the set size 3/CDA condition, there is a single
memory component only.

This analysis concludes the section on ICA. Another ICA application using fMRI
data is presented in Sect. 14.4.

References

Arend, A. M., & Zimmer, H. D. (2011). What does ipsilateral delay activity reflect? Inferences
from slow potentials in a lateralized visual working memory task. Journal of Cognitive
Neuroscience, 23, 4048–4056.

Carroll, J. D., & Arabie, P. (1980). Multidimensional scaling. Annual Review of Psychology, 31,
607–649.

References 209

Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling
via an N-way generalization of Eckart-Young decomposition. Psychometrika, 35, 283–319.

Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank.
Psychometrika, 1, 211–218.

Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd ed.). Thousand Oaks:
Sage.

Giordani, P., Kiers, H., & Del Ferraro, M. (2014). Three-way component analysis using the R
package ThreeWay. Journal of Statistical Software, 57(1), 1–23. https://www.jstatsoft.org/
index.php/jss/article/view/v057i07

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an
“explanatory” multi-modal factor analysis (Technical report 16, UCLA Working Papers in
Phonetics).

Helwig, N. E. (2015a). eegkit: Toolkit for electroencephalography data. R package version 1.0-2.
https://CRAN.R-project.org/package=eegkit

Helwig, N. E. (2015b). ica: Independent component analysis. R package version 1.0-1. https://
CRAN.R-project.org/package=ica

Helwig, N. E. (2017). multiway: Component models for multi-way data. R package version 1.0-3.
https://CRAN.R-project.org/package=multiway

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24, 417–441.

Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. New York: Wiley.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning

with applications in R. New York: Springer.
Joliffe, I. T. (2002). Principal component analysis (2nd ed.). New York: Springer.
Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab: An S4 package for kernel

methods in R. Journal of Statistical Software, 11(9), 1–20. http://www.jstatsoft.org/v11/i09/
Kiers, H. A. L. (2000). Towards a standardized notation and terminology in multiway analysis.

Journal of Chemometrics, 14, 105–122.
Kroonenberg, P. M. (2008). Applied multiway data analysis. Hoboken: Wiley.
Leibovici, D. (2010). Spatio-temporal multiway data decomposition using principal tensor analysis

on k-modes: The R package PTAk. Journal of Statistical Software, 34(1), 1–34. https://www.
jstatsoft.org/index.php/jss/article/view/v034i10

Marchini, J. L., Heaton, C., & Ripley, B. D. (2013). fastICA: FastICA algorithms to perform ICA
and projection pursuit. R package version 1.2-0. https://CRAN.R-project.org/package=fastICA

Mevik, B. H., Wehrens, R., & Liland, K. H. (2016). pls: Partial least squares and principal
component regression. R package version 2.6-0. https://CRAN.R-project.org/package=pls

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical
Magazine, 2, 559–572.

Revelle, W. (2017). psych: Procedures for psychological, psychometric, and personality research.
R package version 1.7.8. http://CRAN.R-project.org/package=psych

Sharma, S. (1996). Applied multivariate techniques. New York: Wiley.
Sidanius, J., Levin, S., van Laar, C., & Sears, D. O. (2010). The diversity challenge: Social identity

and intergroup relations on the college campus. New York: The Russell Sage Foundation.
Sigg, C. D., & Buhmann, J. M. (2008). Expectation-maximization for sparse and non-negative

PCA. In Proceedings of the 25th International Conference on Machine Learning.
Stacklies, W., Redestig, H., Scholz, M., Walther, D., & Selbig, J. (2007). pcaMethods: A

bioconductor package providing PCA methods for incomplete data. Bioinformatics, 23, 1164–
1167.

Stone, J. V. (2004). Independent component analysis: A tutorial introduction. Cambridge: The MIT
Press.

Timmerman, M. E. (2001). Component analysis of multisubject multivariate longitudinal data.
PhD thesis, University of Groningen, Groningen.

Treiblmaier, H. (2006). Datenqualität und individualisierte Kommunikation [Data Quality and
Individualized Communication]. Wiesbaden: DUV Gabler Edition Wissenschaft.

https://www.jstatsoft.org/index.php/jss/article/view/v057i07
https://www.jstatsoft.org/index.php/jss/article/view/v057i07
https://CRAN.R-project.org/package=eegkit
https://CRAN.R-project.org/package=ica
https://CRAN.R-project.org/package=ica
https://CRAN.R-project.org/package=multiway
http://www.jstatsoft.org/v11/i09/
https://www.jstatsoft.org/index.php/jss/article/view/v034i10
https://www.jstatsoft.org/index.php/jss/article/view/v034i10
https://CRAN.R-project.org/package=fastICA
https://CRAN.R-project.org/package=pls
http://CRAN.R-project.org/package=psych

210 6 Principal Component Analysis and Extensions

Treiblmaier, H., Bentler, P. M., & Mair, P. (2011). Formative constructs implemented via common
factors. Structural Equation Modeling: A Multidisciplinary Journal, 18, 1–17.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31,
279–311.

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York:
Springer.

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual
working memory capacity. Nature, 428, 748–751.

Willerman, L., Schultz, R., Rutledge, J. N., & Bigler, E. (1991). In vivo brain size and intelligence.
Intelligence, 15, 223–228.

Zou, H., & Hastie, T. (2012). elasticnet: Elastic-net for sparse estimation and sparse PCA. R
package version 1.1. https://CRAN.R-project.org/package=elasticnet

Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of
Computational and Graphical Statistics, 15, 262–286.

https://CRAN.R-project.org/package=elasticnet

Chapter 7
Correspondence Analysis

7.1 Simple Correspondence Analysis

7.1.1 Profiles, Masses, Inertia

The starting point for simple correspondence analysis (CA) is a two-dimensional
contingency table F with i = 1, . . . , I rows and j = i, . . . , J columns. Let
oij denote the observed cell frequencies, oi· the row margins, and o·j the column
margins. N stands for the total number of observations in the table.

To illustrate various types of information contained in such contingency tables,
let us create a simple toy example. Three music aficionados named Horst, Helga, and
Klaus support their four favorite bands by going to as many concerts as they can.
The corresponding frequency table with bands in the rows and fans in the columns
is of dimension 4 × 3, and the cells contain the number of concert attendances
(N = 130).

superfan <- as.table(matrix(c(9, 12, 8, 1, 13, 1, 6, 20, 15, 4,
23, 18), ncol = 3))

attr(superfan, "dimnames") <- list(Band = c("Slayer",
"Iron Maiden", "Metallica", "Judas Priest"), Fan = c("Horst",
"Helga", "Klaus"))
superfan
Fan
Band Horst Helga Klaus
Slayer 9 13 15
Iron Maiden 12 1 4
Metallica 8 6 23
Judas Priest 1 20 18

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_7

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_7&domain=pdf
https://doi.org/10.1007/978-3-319-93177-7_7

212 7 Correspondence Analysis

For such data structures, one of the first things students learn in undergraduate
classes is to apply Pearson’s χ2-test in order to test for independence of the two
variables involved. The well-known test statistic is

X2 =
I∑

i=1

J∑

j=1

(oij − eij)
2

eij

. (7.1)

The expected frequencies (under H0 of independence) are eij = oi·o·j /N . This test
on independence is important within a CA context because what CA eventually does
is to show in a detailed way how the data deviate from independence. In our data
example, we get

fit_chisq <- chisq.test(superfan)
fit_chisq
##
Pearson's Chi-squared test
##
data: superfan
X-squared = 39.523, df = 6, p-value = 5.653e-07

We get a X2 value of 39.523 and reject the null hypothesis of independence. The
X2 value will also become important later on since one of the main outputs in CA,
called inertia, decomposes this value.

Based on the observed and expected frequencies, we can compute standardized
residuals (also called Pearson residuals) as follows:

sij = oij − eij√
eij

. (7.2)

Let us organize these residuals in an I × J matrix S, since they will also play an
important role later on. We can simply extract them from the χ2-test output object:

S <- fit_chisq$residuals
round(S, 3)
Fan
Band Horst Helga Klaus
Slayer 0.158 0.479 -0.503
Iron Maiden 4.078 -1.850 -1.373
Metallica -0.184 -1.596 1.433
Judas Priest -2.667 2.309 0.000

7.1 Simple Correspondence Analysis 213

−2.7

−2.0

 0.0

 2.0

 4.0

Pearson
residuals:

p−value =
5.6528e−07

Fan

B
an

d
Ju

da
s

P
rie

st
M

et
al

lic
a

Iro
n

M
ai

de
n

S
la

ye
r

Horst Helga Klaus

Fig. 7.1 Mosaic plot for superfan data with residual shading showing which cells are responsible
for independence violation

We can display the residual information (as deviation from independence) using
a shaded mosaic plot (see Fig. 7.1), as implemented in the vcd package (Zeileis
et al., 2007). We see, for instance, that the cell related to Horst and Iron Maiden
shows the largest deviation from independence.

library("vcd")
mosaic(superfan, shade = TRUE)

This concludes the χ2-test part of our analysis. In the remainder of this section,
we derive various other measures relevant to CA. To do so, we need a slight
modification of the input table F in terms of the relative frequency table P = F/N ,
with elements pij .

P <- prop.table(superfan)
round(P, 3) ## table with relative frequencies
Fan
Band Horst Helga Klaus
Slayer 0.069 0.100 0.115

(continued)

214 7 Correspondence Analysis

Iron Maiden 0.092 0.008 0.031
Metallica 0.062 0.046 0.177
Judas Priest 0.008 0.154 0.138

In CA slang the margins of this table are called row masses and column masses.
Let us use ri to denote a single-row mass element in vector r and cj for a column
mass element in vector c.

r_mass <- margin.table(P, 1)
round(r_mass, 3) ## row masses
Band
Slayer Iron Maiden Metallica Judas Priest
0.285 0.131 0.285 0.300
c_mass <- margin.table(P, 2)
round(c_mass, 3) ## column masses
Fan
Horst Helga Klaus
0.231 0.308 0.462

In a next step, we compute the conditional relative frequencies for the rows and
the columns. CA calls it row profiles and column profiles.

r_profile <- prop.table(P, 1)
round(r_profile, 3) ## conditional relative frequencies rows
Fan
Band Horst Helga Klaus
Slayer 0.243 0.351 0.405
Iron Maiden 0.706 0.059 0.235
Metallica 0.216 0.162 0.622
Judas Priest 0.026 0.513 0.462

Let aij denote the j -th element of the i-th row profile ai . Let A be the
corresponding matrix of row profiles.

Analogously, we can compute the column profiles where bij denotes the i-th
element of the j -th column profile bj , again collected in a matrix B.

c_profile <- prop.table(P, 2)
round(c_profile, 3) ## conditional relative frequencies columns
Fan

(continued)

7.1 Simple Correspondence Analysis 215

Band Horst Helga Klaus
Slayer 0.300 0.325 0.250
Iron Maiden 0.400 0.025 0.067
Metallica 0.267 0.150 0.383
Judas Priest 0.033 0.500 0.300

Other measures we can compute are the average row profile (also called row
centroid) and the average column profile (also called column centroid). The average
row profile is c = A′r, that is, the row profiles weighted with the row masses.
We intentionally use c to emphasize that the average row profile corresponds to the
column masses. Similarly, the average column profile is r = Bc, which correspond
to the row masses. Let us compute these average row/column profiles and check
whether they actually correspond to the respective masses.

ar_profile <- t(r_profile) %*% r_mass ## average row profile
round(as.vector(ar_profile), 3)
[1] 0.231 0.308 0.462
round(as.vector(c_mass), 3) ## column masses
[1] 0.231 0.308 0.462
ac_profile <- c_profile %*% c_mass ## average column profile
round(as.vector(ac_profile), 3)
[1] 0.285 0.131 0.285 0.300
round(as.vector(r_mass), 3) ## row masses
[1] 0.285 0.131 0.285 0.300

They match. Let us proceed with the some plotting options involving row profiles
and average row profiles. Since we have three fans only, their row profiles can be
plotted in a 3D space (see Fig. 7.2) using the plot3D package (Soetaert, 2016). Each
fan gets its own axis. Due to the nature of how the row profiles were computed, the
band points lie on a plane spanned by the column (i.e., fan) vertices. To be more
precise, they lie on a triangle in a 3D space. Such a structure is known as simplex.

As an alternative we can produce a ternary plot. It is a 2D plot where the axes are
determined by the simplex. Note that a ternary plot is a generally applicable concept
to situations where we have three (exclusive) variables which sum to a constant.
Such data are called compositional data (see van den Boogaart and Tolosana-
Delgado, 2013).

The ternary plot in Fig. 7.3, created using the ggtern package (Hamilton, 2015),
gives us the full row profile information. The red dot represents the band centroid
(i.e., average row profile) with the corresponding projections on the three fan axes.
We can do the same projections for the single bands which result in the band profiles.
We see that Slayer’s profile is very close to the centroid. From the projections we
can say that Iron Maiden scores high on Horst’s axis, but low on Helga’s and Klaus’
axes (it is their least favorite band).

216 7 Correspondence Analysis

Fig. 7.2 3D scatterplot of
row profiles. The band points
lie on the fan simplex

Horst

Helga

K
laus

Row Profiles

Judas Priest

Slayer
Metallica

Iron Maiden

We are now interested in quantifying the distances between two bands or between
a band and the average row profile, as shown in the ternary plot. We could think of
using a simple Euclidean distance. In contingency tables this is not such a good idea
since, in the case of the row scores, those columns with high relative frequencies
(i.e., those fans who attended many concerts) would dominate the distance. In
order to avoid this distortion, we can use the χ2-distance. It weights each term in
the Euclidean distance by the expected profile element, that is, the element in the
average row profile.

The following two equations compute these distances. The first one is the
distance between a band and the average band profile:

dic =

√
√
√
√
√

J∑

j=1

(aij − cj)2

cj

. (7.3)

The second one computes the distance between two bands i and i′. In this case
Eq. (7.3) changes to

dii′ =

√
√
√
√
√

J∑

j=1

(aij − ai′j)2

cj

. (7.4)

As an example, let us compute the distance between Slayer and Iron Maiden, as well
as the distance between Slayer and Judas Priest. In addition, we also compute the
distance between Slayer and Iron Maiden from the average row profile (centroid).

7.1 Simple Correspondence Analysis 217

l

l

l

l

Slayer

Iron Maiden

Metallica

Judas Priest

llll

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

HelgaHo
rs

t

Klaus

Helga

Horst Klaus

Ternary Plot

Fig. 7.3 Ternary plot of row (band) profiles. The red dot shows the average row (band) profile
with the corresponding projections

sqrt(sum((r_profile["Slayer",] - r_profile["Iron Maiden",])^2/
ar_profile))

[1] 1.126186
sqrt(sum((r_profile["Slayer",] - r_profile["Judas Priest",])^2/

ar_profile))
[1] 0.5447462
sqrt(sum((r_profile["Slayer",] - ar_profile)^2/ar_profile))
[1] 0.1170305
sqrt(sum((r_profile["Iron Maiden",]- ar_profile)^2/ar_profile))
[1] 1.135944

We see that Slayer is closer to Judas Priest than to Iron Maiden. Also, we see that
Slayer is closer to the band centroid than Iron Maiden. We can perform the same
computations on the columns involving column profiles and the average column
profile.

218 7 Correspondence Analysis

Using the row masses and the row profile distances to the centroid, we can
construct a measure called inertia. The row inertias are

φi = rid
2
ic. (7.5)

The total inertia is simply the sum of the row inertias:

φ =
I∑

i=1

φi. (7.6)

It can be shown that φ = X2/N . This implies that Eq. (7.5) decomposes the χ2-
statistic given in Eq. (7.1) in an additive way. In our example the total inertia is
39.523/130 = 0.304. It describes total amount of dispersion of the profiles around
the centroid. If we were to use the distances based on the column profiles and the
column masses, Eq. (7.5) changes to φj = cj d

2
jc and Eq. (7.6) to φ = ∑J

j=1 φj . At
this point we have all the ingredients together to compute and interpret a CA.

7.1.2 Simple CA Computation and Interpretation

The good news is that in order to fit a CA, we do not have to perform all the tedious
computations from above. As so often in multivariate methods, a singular value
decomposition (SVD; see Sect. 6.1.1) does all the magic. In the case of simple CA,
we perform an SVD on the standardized residual matrix S given in Eq. (7.2).

S = UDV′. (7.7)

Let p be the number of dimensions. The p × p diagonal matrix D contains the
singular values σs (s = 1, . . . , p) with λs = σ 2

s as the corresponding eigenvalue
(within a CA context often called principal inertia). On the basis of the eigenvalues,
we can judge the importance of each dimension. This is due to the fact that an
eigenvalue λs reflects the dispersion of profiles around the centroid on dimension s

which is the contribution to the total inertia associated with that dimension. In order
to obtain a measure for “explained variance”1 for each dimension, we can compute
λs/

∑p

l=1 λl . As in PCA, we can produce a scree plot with λs on the y-axis, and
based on the elbow criterion, we pick a reasonable number of dimensions. Note that
in simple CA, the maximum number of dimensions we can fit is min(I − 1, J − 1).
In our simple example, we can maximally reduce to two dimensions since we have
only three fans.

1We have to be careful with the term “variance” within a CA context since we are dealing with
categorical data.

7.1 Simple Correspondence Analysis 219

The matrix U in Eq. (7.7), containing the left singular vectors, is of dimension
I ×p. These left singular vectors contain the row category scores, subject to further
standardization. The matrix V contains the right singular vectors (i.e., column
category scores) and is of dimension J ×p. There are various ways of standardizing
the scores for subsequent plotting:

• Row principal coordinates: U(p) = R− 1
2 UD.

• Row standard coordinates: U(s) = R− 1
2 U.

• Column principal coordinates: V(p) = C− 1
2 VD.

• Column standard coordinates: V(s) = C− 1
2 V.

Here, the row masses r are stored in an I × I diagonal matrix R. Analogously, C is
the diagonal matrix containing the column masses c on the diagonal.

Mapping the principal coordinates U(p) and V(p) into the same plot gives us a
symmetric map. This is the most popular CA plot. Another version is to use one
set of standard coordinates and one set of principal coordinates. This leads to an
asymmetric map. Asymmetric maps are biplots and will be discussed in more detail
in Sect. 10.5.

Let us compute and interpret a simple CA on the superfan data. There are
several packages available in R for fitting a CA. In this section we use the anacor
package (De Leeuw and Mair, 2009) which provides some useful features such
as the computation of confidence ellipsoids. In the section on multiple CA, we
switch to the ca package (Nenadic and Greenacre, 2007) since anacor cannot handle
multiple CA.

library("anacor")
ca_fans <- anacor(superfan, ellipse = TRUE)
ca_fans
##
CA fit:
##
Total chi-square value: 39.523
Sum of eigenvalues (total inertia): 0.304
Eigenvalues (principal inertias):
0.256 0.049
##
Benzecri RMSE rows: 1.098991e-17
Benzecri RMSE columns: 1.603251e-18
##
Chi-square decomposition:
Chisq Proportion Cumulative Proportion
Dimension 1 33.216 0.84 0.84
Dimension 2 6.307 0.16 1.00
##
z-test on singular values:
Singular Value Standard Error p-value

(continued)

220 7 Correspondence Analysis

Dimension 1 0.505 0.073 0.000
Dimension 2 0.220 0.082 0.004

We see that the first dimension explains 84% of the dispersion in the row/column
profiles; the second dimension takes care of the remaining 16%. The package also
prints out an explicit test on whether a dimension is needed (if significant, the
dimension is needed). However, one should not base the dimensionality assessment
solely on these p-values.

We can produce the symmetric map as follows:

plot(ca_fans, main = "Symmetric CA Map")

It plots the principal row and column coordinates in the same space (see Fig. 7.4),
including confidence ellipsoids. Interpreting the dimensions in a CA map is not
as crucial as in factor analysis or PCA. In practice, we sometimes have this
interpretation opportunity when ordinal variables are involved.

Let us focus on the row coordinates interpretation (i.e., the bands). The row
coordinates reflect the patterns we have seen in the ternary plot in Fig. 7.3. Slayer
is close to the origin since their row profile is close to the average row profile. The
most interesting points in CA are always the ones at the extremities of the space
(i.e., they span the space). In this application Iron Maiden is the most extreme band
since their row profile deviates heavily from the average one. In fact, it is the band
with the least concert attendance, as we see from the original table. The distances
among the bands in the plot can be interpreted as χ2-distances (cf. Eq. (7.4)). In
terms of column coordinates (i.e., fans), we see that Horst lies pretty far away from
the other two fans. His column profile deviates clearly from the average column
profile. Again, the distances among the fans in the plot are χ2-distances.

Now, what about Horst and Iron Maiden? Or, in other words, what about
interpreting row-column distances? By going back to the table, we see that Horst’s
favorite band is Iron Maiden. However, we have to be careful with drawing such
conclusions from a symmetric map since CA defines no distances between row and
column categories. In fact, the row and column profiles are computed separately.
Therefore, we need to keep in mind that we are basically merging two separate
plots (principal row coordinates and principal column coordinates) into one single
space. As Greenacre (2007, p. 72) puts it: “Distances can be interpreted whenever
the points concerned are located in the same space.” He calls it the “golden rule for
interpreting CA maps”. As we will see in Sect. 10.5, asymmetric maps use a joint
space, and row-column interpretations can be achieved.

From a practical point of view, the following aspect is important. Gabriel (2002)
elaborates on the distortion induced by using symmetric maps as if they were
asymmetric maps. Greenacre (2007, pp. 267–268) discusses in great detail the

7.1 Simple Correspondence Analysis 221

ll

l

l

l

−1.5 −1.0 −0.5 0.0 0.5

−1
.0

−0
.5

0.
0

0.
5

Symmetric CA Map

Dimension 1

D
im

en
si

on
 2

l

l

l

Slayer
Iron Maiden

Metallica

Judas PriestHorst

Helga

Klaus

l

l

l

l
l

l

l

Fig. 7.4 Symmetric CA map for superfan data including confidence ellipsoids

practical implication of this distortion and concludes that in cases where the square
roots of the principal inertias (i.e., the singular values as shown in the output above)
are not heavily different, row-column relationships in a symmetric map can be
interpreted with reasonable assurance. Thus, even though technically not entirely
correct, under some circumstances, row-column distances can be interpreted in
symmetric maps. Other options for interpretation are given in Bartholomew et al.
(2008, Chapter 4).

Another useful tool within this context is to go back to the residual matrix and
the mosaic plot when interpreting a CA solution. Below (see Sect. 7.3), we present
an approach called configural frequency analysis which performs explicit tests on
these residuals. This is helpful for interpretation because what CA maps show us
are basically deviations from independence. If we feed a perfectly independent table
into a CA function, all the row and column points would lie at the origin.2 Therefore,
the interesting points in a CA map, subject to interpretation, are far away from the
origin. The boring ones are those close to the origin.

2The reader can try this out by saying anacor(fit_chisq$expected).

222 7 Correspondence Analysis

7.1.3 Example: Harvard Psychology Faculty

When applying for a job at a large department, it is always good to know what
research topics are covered by the faculty members. Also, it does not hurt to know
which faculty members are working in similar areas. We could now spend several
days reading through the professors’ impressive CV’s, or we can run a CA on their
research statements (text data), typically available on the department’s website. This
gives us a first quick glimpse on what is going on at the institution.

In the case of the Harvard Psychology faculty, every faculty member provides a
short research statement on the department website.3 With some R skills, it is fairly
easy to set up a scraping job in R and load these statements into the workspace.
After performing some basic text preprocessing steps (e.g., eliminating punctuation,
removing stopwords such as conjunctions, articles, etc.) using the tm package
(Feinerer et al., 2008), we can organize the texts as document-term matrix (DTM).
A DTM is simply a contingency table with, in our example, faculty members in the
rows and research topics (keywords) in the columns.4 A cell entry denotes how often
a particular researcher mentioned a particular keyword in his/her research statement.

A two-dimensional, simple CA on the DTM based on the Harvard Psychology
faculty statements can be fitted as follows. We use once more principal coordinates
scaling for both rows and columns.

library("MPsychoR")
data("HarvardPsych")
dim(HarvardPsych) ## researchers in rows, words in columns
[1] 29 43
fit_HP <- anacor(HarvardPsych)

With two dimensions, we explain 24.93% of the inertia. This is not a lot, but it
is sufficient to get a rough overview of what is going on in terms of research at the
department.

The symmetric map of the 2D solution, which includes the row scores (last name
researcher) and the column scores (research topic), is given in Fig. 7.5. Since the
points are cluttered to the right of the origin, the plot in the bottom panel zooms
into the respective area. As explained above, researcher-to-researcher distances are
directly interpretable, as well as the word-to-word distances. Note that the singular
values for the first two dimensions are 0.77 and 0.651. They do not differ heavily
from each other. Thus, based on what we have said in the previous section, we can
interpret the researcher-to-word associations with reasonable assurance.

3See http://psychology.fas.harvard.edu/faculty
4Only the most frequent keywords are considered for this analysis.

http://psychology.fas.harvard.edu/faculty

7.2 Multiple Correspondence Analysis 223

We will further investigate the output of this example in Sect. 7.3 where we
perform a configural frequency analysis on this table.

7.2 Multiple Correspondence Analysis

Multiple CA extends simple CA in terms of higher-dimensional input tables. In
this section we give a brief outline of the French approach to multiple CA which
solves the problem analytically. We will discuss multiple CA in more detail in
Chap. 8 where the problem is solved numerically (Dutch approach) within the larger
framework of Gifi methods. This variant offers a large amount of flexibility.

In the French world, there are two basic approaches to handle higher-dimensional
frequency tables: one is through an eigenvalue decomposition on the standardized
residuals of the Burt matrix, and the other one is based on an SVD on the indicator
matrix. In this section we illustrate the Burt matrix approach for which the starting
point is the data matrix H with n observations and m categorical variables. In order
to convert the raw data into an indicator matrix G, we expand each observation into a
vector which is of the same length as the number of categories of the corresponding
variable. In this vector, the category answered by the participant gets a value of 1; the
remaining ones become 0. For instance, if on a 5-point Likert scale a person scores,
the indicator vector becomes 0, 0, 1, 0, 0. We do this for each variable. Based on the
resulting indicator matrix, the Burt matrix B can be constructed as follows:

B = G′G. (7.8)

B is symmetric and contains all possible two-way cross classifications of the m

variables involved. B can be treated as a standard contingency table, and we can
compute the residual matrix S following the steps presented in the section above.
Finally, we decompose S by either an eigenvalue decomposition or an SVD. Since
S is symmetric, both approaches lead to the same results.

To illustrate, we use a subset of the youth depression dataset from Vaughn-
Coaxum et al. (2016) introduced in Sect. 2.1. The children depression inventory
(CDI) items considered here are item 15 (“I am bad all the time”) and item 21 (“I
never have fun at school”), each of them scored on three categories. In addition
we use the variable race (four response categories). Thus, in total, we have ten
categories, and B will be of dimension 10 × 10.

library("MPsychoR")
data("YouthDep")
cdisub <- YouthDep[, c("CDI15r", "CDI21r", "race")]

224 7 Correspondence Analysis

ll

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l l

l

−4 −3 −2 −1 0 1

−3
−2

−1
0

1
2

3

Harvard Psychology Faculty

Dimension 1

D
im

en
si

on
 2

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l l

l

l

l

l

l l

l

Alvarez

Banaji

Buckholtz

Buckner

Caramazza Carey

Cikara
Cushman

Gershman

Gilbert

Greene

Hooley

Konkle
Krasnow

Langer
Mair

McNally

Mitchell
Nakayama

Nock

Pinker

Schacter Sidanius

Snedeker

Somerville

Spelke WarnekenWeisz

Xu

american
association

awards

behavior

behavioral

brain

career

children

cognition
cognitive

contributions
department

development

disorder

experimental

functional

health

human
information

laboratory

language

memory

mental
methodsnational

nature

neuroscience

people
phd

processes

psychological

psychology
questions received

representation science
sciences

selfcontrol

social
society

structure studies

visual

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

Harvard Psychology Faculty (Zoom)

Dimension 1

D
im

en
si

on
 2

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Banaji
Carey

Cikara

Cushman

Gershman

Gilbert

Krasnow

Langer

Mair

McNally

Mitchell

Nock

Pinker

Schacter
Sidanius

Somerville

Warneken Weiszamerican

association

awards

behavioral

career
cognition

cognitive

contributions

department

development

experimental

functional

health

mental

methods

national

neuroscience

people

phd

psychological

psychology

received

science

sciences
social

society
studies

Fig. 7.5 Symmetric CA map for faculty members at the Harvard Department of Psychology. It
gives the last name of the faculty member (rows) and the research topics (columns). Top panel: full
CA map. Bottom panel: zoomed in around origin

7.3 Configural Frequency Analysis 225

The anacor package provides the following utility function to create a Burt
matrix (output not shown here):

B <- burtTable(cdisub)
dim(B)
[1] 10 10

Let us fit a multiple CA based on this Burt matrix in order to obtain the category
scores. To fit a multiple CA, we can use the ca package (Nenadic and Greenacre,
2007) for corresponding computations. The Burt matrix is created internally. We
also produce the symmetric map right away, for which the same issues regarding
category distance interpretations among different variables apply as in simple CA.

library("ca")
fit_mca <- mjca(cdisub, lambda = "Burt")
plot(fit_mca, xlim = c(-0.5, 0.5))

By considering two dimensions, we explain 42.64% of the inertia. The resulting
symmetric map is given in Fig. 7.6. Pairs of category scores across the two CDI
items inhabit similar areas of the CA map. Regarding the race variable, we see a
separation along dimension 1 between Latinos and Black kids on the one hand and
Asian and White kids on the other hand. The order of the response categories of the
CDI items along the first dimension is retained. Asian/White kids tend to score 0 on
these items, whereas Latino/Black kids tend to score 1. As in simple CA, we have
to be careful with making such inter-variable interpretations based on this plot.

There are additional multiple CA variants such as joint correspondence analysis
which fit into this analytical framework. Details can be found in Greenacre (2007)
and Husson et al. (2017).

7.3 Configural Frequency Analysis

In this section we present a method called configural frequency analysis (KFA;
Lienert, 1968; von Eye, 2002; von Eye et al., 2010)5 which, within a CA context,
can be used to give us a more detailed insight into row-column associations.

5Note that in order to avoid confusion with confirmatory factor analysis (CFA), we use the
acronym KFA introduced by its inventor Gustav Lienert who called his baby by the catchy name
of Konfigurationsfrequenzanalyse.

226 7 Correspondence Analysis

Dimension 1 (25.5%)

D
im

en
si

on
 2

 (1
7.

1%
)

−1.0 −0.5 0.0 0.5 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

CDI15r:0

CDI15r:1

CDI15r:2

CDI21r:0

CDI21r:1

CDI21r:2

race:Asian/Pacific−Islander

race:Black/African−American

race:Latino.Hispanic
race:White or Caucasian

Fig. 7.6 Symmetric multiple CA map on youth depression dataset

KFA is a general method for contingency tables and aims to find so-called types
and antitypes. The idea is very simple: we fit a base model on the frequency table
such as an independence model. This base model gives us expected frequencies;
that is, how would the frequencies look like if the variables were independent?
Subsequently, we compare the observed frequencies with the expected frequencies
by means of residual tests. Cells that have significantly more observations than
expected are identified as types. Conversely, cells that have significantly less
observations than expected are declared as antitypes. In R, KFA can be performed
using the cfa package (Mair and Funke, 2017).

7.3.1 Two-Dimensional Tables

We reconsider the example presented in Sect. 7.1.3. Figure 7.5 showed the symmet-
ric CA map involving the faculty members at the Harvard Psychology Department
and the research topics. We can use KFA to further investigate the associations
between a researcher and a research topic. For two-dimensional tables, the base
model is easy to specify. It is simply the table of expected frequencies as used in a

7.3 Configural Frequency Analysis 227

χ2-test. Let F be an I ×J frequency table with N observations in total. Let r denote
the vector with the row margins and c the column margins. The expected frequency
table under independence is simply (rc′)/N .

The cfa package requires the data to be restructured. As first argument, the cfa
function takes all possible configurations (i.e., combinations of row and column
categories). As second argument, it needs the corresponding vector of counts. We
also tell the function to use a binomial test for residual testing (which is followed by
Bonferroni multiple testing correction; other options are available as well).

library("cfa")
data("HarvardPsych")
configs <- expand.grid(dimnames(HarvardPsych))
counts <- as.vector(HarvardPsych)
fit.cfa <- cfa(configs, counts,binom.test = TRUE, sorton = "n")
types <- fit.cfa$table[fit.cfa$table$sig.bin == TRUE, 1:3]
head(types, 10)
label n expected
1 Schacter memory 15 1.7685590
2 Xu visual 10 1.1280932
3 Banaji social 10 2.3158661
4 Buckholtz brain 10 1.2576419
5 Snedeker language 9 0.7423581
6 Caramazza structure 8 0.4366812
7 Buckholtz selfcontrol 8 0.4716157
8 Buckner memory 8 1.0611354
9 Xu human 8 1.4439592
10 Snedeker children 8 1.0480349

The last line prints the top 10 types out of a total 95 types, as identified by the
binomial test. We see that the strongest type is Dan Schacter who’s researching
(biological aspects) on human memory. The observed word count clearly exceeds
the count as expected under independence. Note that there are no antitypes in this
application since the frequency table is very sparse (i.e., lots of 0 entries). The results
from KFA can be used in combination with the symmetric CA map in Fig. 7.5 for
researcher-topic interpretation.

In KFA there is a variety of exact and asymptotic tests that can be applied to
detect types and antitypes. As shown in simulation studies, tests that perform well
under many conditions and under any sampling scheme are Pearson’s χ2-test, z-test,
and the binomial test (see von Eye, 2002, for details).

228 7 Correspondence Analysis

7.3.2 Higher-Dimensional Tables

Having higher-dimensional tables, dependency structures become more complex,
and simple χ2-tests do not work anymore. In this case we need to use log-
linear models (see, e.g., Wickens, 1989, for an excellent introduction). The model
formulation is very similar to a higher-order ANOVA model, with the exception that
on the left-hand side of the equation, we have the logarithm of the cell frequencies.
For a cross classification of variables A (i = 1, . . . , I categories), B (j = 1, . . . , J),
and C (k = 1, . . . , K), the saturated model specification looks as follows:

log eijk = λ + λA
i + λB

j + λC
k + λAB

ij + λAC
ik + λBC

jk + λABC
ijk , (7.9)

where eijk is the expected frequency in cell (ijk). We have parameters for the
intercept, the main effects, the two-way interactions, and the three-way interaction.
Note that in log-linear models, the parameter interpretation and the concept of
interactions are slightly more complicated as in ANOVA (Mair and von Eye, 2007).

Within the context of KFA, we need to define a log-linear base model. The model
in Eq. (7.9) is saturated, that is, it fits the data perfectly. Consequently, using a
saturated model in KFA would not detect any types or antitypes. The most popular
base model strategy in KFA is to use an independence model which only includes
the main effects:

log eijk = λ + λA
i + λB

j + λC
k . (7.10)

This is a so-called first-order KFA. However, we could also define a second-order
KFA model by including all two-way interactions; this depends on the hypotheses
we want to explore. In any case, we get a table with expected frequencies, and based
on the resulting residuals, we can explore possible types and antitypes.

We use the youth depression dataset from Sect. 7.2 where we performed a
multiple CA. The corresponding table is now subject to a KFA fit, and we detect
types and antitypes by first using a χ2-test and second a z-test which is less
conservative:

countdf <- as.data.frame(table(cdisub))
fit.cdi <- cfa(countdf[,1:3], countdf[,4])
fit.cdi$table[fit.cdi$table$sig.chisq == TRUE, 1:3] #chi2-test
label n expected
1 0 0 White or Caucasian 516 371.813459
2 2 2 Latino.Hispanic 15 3.667286

The χ2-test finds two types (i.e., oijk are significantly larger than eijk) which
suggest that White kids tend to score 0 on both items and Latino kids tend to score
2 on both items.

References 229

Using the z-test, in addition to the two types from above, we obtain other types
and antitypes:

fit.cdi$table[fit.cdi$table$sig.z == TRUE, 1:3] ## z-test
label n expected
1 0 0 White or Caucasian 516 371.813459
2 2 2 Latino.Hispanic 15 3.667286
3 1 1 Black/African-American 67 37.388755
4 2 0 White or Caucasian 29 66.612357
5 1 0 White or Caucasian 87 141.582918
6 1 1 Latino.Hispanic 93 59.888182
7 2 1 Latino.Hispanic 50 28.176372
8 0 1 Latino.Hispanic 107 157.273437

For instance, Black kids who score 1 on both items are identified as types. This
test also finds some antitypes where oijk is significantly smaller than eijk . For
instance, Latino kids rarely score 0 on the first item and 1 on the second item (last
line). The type/antitype patterns obtained using KFA are in line with what we have
seen in the symmetric multiple CA map in Fig. 7.6 and give some additional insight
into category associations across variables.

The examples considered here show some very basic applications of KFA within
the context of CA. KFA is of course more generally applicable whenever someone
has categorical data and is interested in finding cells that deviate from an underlying
base model. Further details including more advanced models such as longitudinal
KFA, moderator/mediator KFA, and functional (stepwise) KFA can be found in the
textbooks by von Eye (2002) and von Eye et al. (2010).

References

Bartholomew, D. J., Steele, F., Moustaki, I., & Galbraith, J. I. (2008). Analysis of multivariate
social science data (2nd ed.). Boca Raton: CRC Press.

De Leeuw, J., & Mair, P. (2009). Simple and canonical correspondence analysis using the R
package anacor. Journal of Statistical Software, 31(5), 1–18. http://www.jstatsoft.org/v31/i05/

Feinerer, I., Hornik, K., & Meyer, D. (2008). Text mining infrastructure in R. Journal of Statistical
Software, 25, 1–54. http://www.jstatsoft.org/v25/i05/

Gabriel, R. (2002). Goodness of fit of biplots and correspondence analysis. Biometrika, 89, 423–
436.

Greenacre, M. (2007). Correspondence analysis in practice (2nd ed.). Boca Raton: Chapman &
Hall/CRC.

Hamilton, N. (2015). ggtern: An extension to ggplot2 for the creation of ternary diagrams. R
package version 1.0.6.1. http://CRAN.R-project.org/package=ggtern

Husson, F., Lê, S., & Pageès, J. (2017). Exploratory multivariate analysis by example using R (2nd
ed.). Boca Raton: CRC Press.

Lienert, G. (1968). Die Konfigurationsfrequenzanalyse als Klassifikationsmethode in the klin-
ischen Psychologie [Configural frequency analysis as classification method in clinical psy-

http://www.jstatsoft.org/v31/i05/
http://www.jstatsoft.org/v25/i05/
http://CRAN.R-project.org/package=ggtern

230 7 Correspondence Analysis

chology]. Paper presented at the 26. Kongress der Deutschen Gesellschaft für Psychologie in
Tübingen.

Mair, P., & Funke, S. (2017). cfa: Configural frequency analysis (CFA). R package version 0.10-0.
http://CRAN.R-project.org/package=cfa

Mair, P., & von Eye, A. (2007) Application scenarios for nonstandard log-linear models.
Psychological Methods, 12, 139–156.

Nenadic, O., & Greenacre, M. (2007). Correspondence analysis in R, with two- and three-
dimensional graphics: The ca package. Journal of Statistical Software, 20(3), 1–13. http://www.
jstatsoft.org/v20/i03/

Soetaert, K. (2016). plot3D: Plotting multi-dimensional data. R package version 1.1. https://
CRAN.R-project.org/package=plot3D

van den Boogaart, K. G., & Tolosana-Delgado, R. (2013). Analyzing compositional data with R.
New York: Springer.

Vaughn-Coaxum, R., Mair, P., & Weisz, J. R. (2016). Racial/ethnic differences in youth depression
indicators: An item response theory analysis of symptoms reported by White, Black, Asian,
and Latino youths. Clinical Psychological Science, 4, 239–253.

von Eye, A. (2002). Configural frequency analysis: Methods, models, and applications. Mahwah:
Lawrence Erlbaum.

von Eye, A., Mair, P., & Mun, E. Y. (2010). Advances in configural frequency analysis. New York:
Guilford Press.

Wickens, T. D. (1989). Multiway contingency tables analysis for the social sciences. Hillsdale:
Erlbaum.

Zeileis, A., Meyer, D., & Hornik, K. (2007). Residual-based shadings for visualizing (conditional)
independence. Journal of Computational and Graphical Statistics, 16, 507–525.

http://CRAN.R-project.org/package=cfa
http://www.jstatsoft.org/v20/i03/
http://www.jstatsoft.org/v20/i03/
https://CRAN.R-project.org/package=plot3D
https://CRAN.R-project.org/package=plot3D

Chapter 8
Gifi Methods

8.1 Setting the Stage

8.1.1 Optimal Scaling: Measurement Levels as Functions

Are Likert items ordinal or metric? Questions like this are typically answered ad hoc
by considering the classical measurement (or scale) level terminology introduced by
Stevens (1946), nominal, ordinal, and metric, with the latter sometimes subdivided
into interval and ratio scales. With respect to Likert items, researchers often pick
“metric” as an answer, since it is certainly convenient to have metric variables for
data analysis. In this section we take a radically different view on scale levels,
compared to Stevens’ taxonomy. For the moment we answer the question raised
above with “it depends.”

This seemingly coward answer brings us right into the world of optimal scaling
(OS). In OS, scale levels are not ad hoc characteristics of the variables. Rather,
they depend on the interaction between the data and the model to be used for
the analysis. OS is defined as a data analysis technique which assigns numerical
values to observation categories in a way which maximizes the relation between
the observations and the data analysis model while respecting the measurement
character of the data (Young, 1981).

OS involves the following three stages: First, we treat each variable as categor-
ical. Second, we specify some basic measurement characteristics for each variable
(i.e., measurement levels as functions). Third, we let an algorithm do the rest (i.e.,
compute a score or quantification for each category).

In the OS world, measurement levels are defined as functions, sometimes also
called analysis levels (see Linting et al., 2007). Let x be a variable in a dataset. Let
us assume it is a 5-point Likert item with response categories ranging from 1 to 5.
Measurement levels as functions imply that we compute a new variable of the form
x∗ = f (x) with new category scores.

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_8

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_8&domain=pdf
https://doi.org/10.1007/978-3-319-93177-7_8

232 8 Gifi Methods

Measurement Level Transformations

Nominal Transformation

1 2 3 4 5

Ordinal Transformation

1 2 3 4 5

Metric Transformation

1 2 3 4 5

Fig. 8.1 Optimal scaling transformations for nominal, ordinal, and metric (i.e., linear) transforma-
tion functions. For each measurement level, the top line shows the original 1–5 scale and the bottom
line the category quantifications (category scores), according to the measurement characteristic
imposed on the data

For the moment, let us consider three simple transformation functions: nominal,
ordinal, and metric. Figure 8.1 shows the transformations that are induced by these
functions. The nominal transformation is the most general one, with f (x) being
completely unrestricted. The ordinal analysis level puts an ordinal restriction on
the transformation function: The order of the transformed scores needs to obey
the order of the original category scores. The metric transformation uses a linear
transformation of the form x∗ = a + bx: In addition to the ordinal restriction, the
distances between the transformed scores have to be equal.

The last transformation opens up many doors. Think of it as a linear regression.
How can we extend a linear regression? We can define a polynomial regression

8.1 Setting the Stage 233

function (e.g., quadratic or cubic) or, even more flexible, (monotone) spline
regression. Simply speaking, splines are piecewise polynomials which connect at
pre-specified x-values (called knots). They are often used in nonlinear regression
techniques such as generalized additive models (GAM; see Wood 2017 for details).
As we will see below, in Gifi it is useful to restrict this function to be monotone
increasing (i.e., a monotone spline).

Figure 8.2 shows these transformations based on an input variable with 13 cate-
gories. The original scores are given on the x-axis and the OS-based quantifications
on the y-axis. In the nominal case, anything can happen to the quantifications. In the
ordinal case, we fit a monotone step function. In the linear case, we fit a line which
keeps the category distances constant. In the monotone spline transformation, we fit
a flexible, monotonically increasing function.

The bottom line is that in the OS world, we are not limited to Stevens’
holy scale level trinity. Measurement levels are not necessarily an ad hoc thing,
determined prior to an analysis. As Jacoby (1999) points out, measurement levels
are determined by the researcher within the context of a model. Or, as Linting et al.
(2007) put it, trying out measurement levels is part of the data-analytic task, in
addition to common sense choices. For instance, we would not do anything else
than a nominal transformation on hair color. For 5-point Likert items, we may
consider trying out an ordinal and a linear transformation. If the transformation
functions look similar, we have evidence to consider a Likert item as metric within
the context of a particular method. Apart from rating scales, linear transformations
can be applied on clearly metric variables. Spline transformations are attractive for
variables with many categories.

At this point, all that is left to show is how to determine these optimally scaled
category quantifications based on an input analysis level. We need a model to
achieve that. The most flexible OS modeling framework is called Gifi, formally
introduced in the next section. However, this OS idea is not limited to Gifi. In fact,
other techniques such as multidimensional scaling (MDS; see Chap. 9) use OS as
well when transforming the input dissimilarities. Further elaborations on OS and
corresponding transformation functions can be found in Jacoby (1991).

8.1.2 Gifi Theory

Gifi is a pen name for a group of Dutch researchers, named after Francis Galton’s
manservant Albert Gifi. They developed an über-framework for nonlinear multivari-
ate data analysis, starting in the 1970s, which culminated in the magnum opus, the
Gifi (1990) book. They called the framework “nonlinear” since the transformation
functions (cf. Fig. 8.2) are generally nonlinear (apart from the linear transformation,
of course). The methodology behind Gifi is pretty challenging, with a healthy
amount of matrix algebra under the hood. Details can be found in Gifi (1990), De
Leeuw and Mair (2009a), Michailidis and De Leeuw (1998), and Mori et al. (2016).

234 8 Gifi Methods

−0
.3

−0
.1

0.
0

0.
1

Nominal Transformation

Observed

Tr
an

sf
or

m
ed

0 2 4 6 8 10 12

−0
.3

−0
.1

0.
0

0.
1

Ordinal Transformation

Observed

Tr
an

sf
or

m
ed

0 2 4 6 8 10 12

−0
.1

5
−0

.0
5

0.
05

Linear Transformation

Observed

Tr
an

sf
or

m
ed

0 2 4 6 8 10 12

−0
.2

5
−0

.1
5

−0
.0

5
0.

05
Monotone Spline Transformation

Observed

Tr
an

sf
or

m
ed

0 2 4 6 8 10 12

Fig. 8.2 Optimal scaling transformations for nominal, ordinal, linear, and monotone spline
transformation functions. The original scores of the 13-point variable are on the x-axes and the
transformed scores on the y-axes

First of all, Gifi models involve dimension reduction, just as principal component
analysis (PCA) and correspondence analysis (CA). Let p be the number of
dimensions which needs to be fixed a priori. Let H be an n × m data matrix. Corre-
spondingly, hj represents the column vector for variable j with kj as the number of
categories. For each variable we define an indicator matrix Gj of dimension n× kj ,
consisting of 0s and 1s in the case of categorical data. These indicator matrices can
be then collected in an indicator supermatrix G = (G1| . . . |Gm).

Each variable is associated with a matrix Yj of dimension kj × p containing the
category quantifications. The final component we need is the matrix X. It contains
the so-called object scores and is of dimension n × p. At the end of the day, each
person gets a score in the p-dimensional space, and each category of variable j gets
an optimally scaled category quantification in p dimensions. Since we scale both the

8.2 Princals 235

objects and the variables, these methods are sometimes referred to as dual scaling
methods. Putting all these ingredients together, Gifi establishes the following loss
function:

σ(X, Y1, . . . , Ym) =
m∑

j=1

tr(X − Gj Yj)
′(X − Gj Yj). (8.1)

The right-hand side of the equation represents a sum-of-squares (SS) expression that
needs to be minimized. This can be achieved by an alternating least squares (ALS)
algorithm. This loss formulation is very general, and, depending on the particular
Gifi model we fit, it simplifies correspondingly, or, for some versions, it can even
get more complicated (see De Leeuw and Mair, 2009a).

Classical multivariate models that fit into this framework are PCA (Princals),
multiple CA (Homals), multiple regression (Morals), conjoint analysis (Addals),
canonical correlation analysis (Canals), multiblock canonical correlation (Overals),
and discriminant analysis (Criminals). The difference between the Gifi versions
and the classical formulations is that Gifi integrates OS by means of nonlinear
transformation functions.

An R implementation of the Gifi framework is provided by the Gifi package
(Mair and De Leeuw, 2017). This package replaces the homals package (De Leeuw
and Mair, 2009a). Compared to homals, the new package incarnation implements
some of the Gifi variants mentioned above in a much more user-friendly way and is,
at the same time, also more flexible since it uses a slightly different loss formulation
(see De Leeuw et al., 2017).

From a practitioner’s point of view, what is the value of Gifi? Gifi allows us to
incorporate input variables of potentially mixed scale levels via the specification of
analysis levels. Some of them, using Stevens’ classical distinction once more, can
be metric, some of them nominal, and some of them ordinal. Since it performs OS,
we can treat variables by means of different transformation functions. We do not
have to speculate anymore whether Likert items are metric or not; Gifi transforms
them in an optimal way. We can try out different analysis levels on our data and see
whether the results differ substantially. In the following sections, we focus on the
two most popular Gifi methods: Princals and Homals.

8.2 Princals

Princals is Gifi’s version of PCA, sometimes also referred to as categorical PCA or
nonlinear PCA. For each of the input variables, we need to specify an analysis level.
In the Gifi package, the transformation function of each variable is defined through
splines for which the knots are specified via the knotsGifi function, prior to
the model fit. In the following subsections, we will elaborate on this specification
step-by-step.

236 8 Gifi Methods

8.2.1 Mimicking PCA with Princals

The first Princals version we fit is an emulation of a standard PCA (see Chap. 6).
Even though this Princals version is not that intriguing from a practical point of view,
it makes it easy to describe some of the main Gifi features. To illustrate, we use two
subscales from the ASTI dataset (Koller et al., 2017) already used in the chapter
on item response theory (IRT; see Sect. 4.3.2). The ASTI is a self-report scale
measuring the complex target construct of wisdom, involving five subdimensions.
Here we focus on the seven items belonging to the “self-transcendence” (ST)
subscale and the six items belonging to “presence in the here-and-now and growth”
(PG). Some items are scored on three categories; some others have four categories.
First, let us fit a standard PCA on these data. This implies that we treat the items on
a metric scale level.

library("MPsychoR")
data("ASTI")
st <- ASTI[,c(2,4,7,13,16,24,25)]
pg <- ASTI[,c(11,14,15,17,18,23)]
stpg <- data.frame(st = st, pg = pg)
pcafit <- prcomp(stpg, scale = TRUE)

Second, we show how to mimic this fit with Princals. Taking variables at a metric
analysis level means that we perform a linear transformation. This function merely
standardizes the variables; it does not change any of the interval scale properties
(i.e., distances between two adjacent categories are constant within each variable).

In the code chunk below, the first line sets up the knot structure of the underlying
spline. As mentioned above, a spline is a piecewise polynomial, specified through
the polynomial degree and the knots. The simplest form of a spline is a line. There is
one knot at the minimum and one knot at the maximum value of the variable under
consideration. There are no knots in between the two (i.e., 0 interior knots). Thus,
setting up the interior knots of a linear transformation is a trivial task: It is a list of
zeros. Such knots can be produced using the Gifi utility function knotsGifi and
setting type="E". These knots act as input to the subsequent Princals call. The
polynomial degree of a line is 1 and is specified through the degrees argument.
We fix the number of dimensions to p = 2 (default).

library("Gifi")
knotslin <- knotsGifi(stpg, type = "E")
prlin <- princals(stpg, knots = knotslin, degrees = 1)
prlin
Call:

(continued)

8.2 Princals 237

princals(data = stpg, knots = knotslin, degrees = 1)
##
Loss value: 0.847
Number of iterations: 25
##
Eigenvalues: 2.608 1.371

The output shows the loss value (cf. Eq. (8.1)), the number of iterations the ALS
algorithm needed to converge, and the two eigenvalues, one for each dimension.

By means of the eigenvalues, let us check whether PCA and linear Princals lead
to the same results:

(pcafit$sdev^2)[1:2]
[1] 2.607748 1.371302
prlin$evals[1:2]
[1] 2.607748 1.371302

They are the same. We can also look at the loadings (only the loadings of the first
three items are shown here):

head(round(pcafit$rotation[,1:2], 3), 3)
PC1 PC2
st.ASTI2 -0.406 0.437
st.ASTI4 -0.309 0.124
st.ASTI7 -0.405 0.479
head(round(prlin$loadings, 3), 3)
D1 D2
st.ASTI2 -0.656 -0.514
st.ASTI4 -0.498 -0.152
st.ASTI7 -0.654 -0.561

The differences in the loadings are due to different standardizations. The
prcomp function standardizes the loadings to SS = 1, whereas in princals
they are standardized in a way that the SS correspond to the eigenvalues:

apply(pcafit$rotation[,1:2], 2, function(pc) sum(pc^2))
PC1 PC2
1 1
apply(prlin$loadings, 2, function(pc) sum(pc^2))

(continued)

238 8 Gifi Methods

D1 D2
2.607748 1.371212

The next line standardizes the Princals loadings to SS = 1 such that they
(closely) match the PCA loadings (apart from the sign switch on PC2, which does
not matter).

prloads1 <- apply(prlin$loadings, 2, function(pc){
pc/sqrt(sum(pc^2))

})
head(round(prloads1, 3), 3)
D1 D2
st.ASTI2 -0.406 -0.439
st.ASTI4 -0.309 -0.130
st.ASTI7 -0.405 -0.480

The bottom line is that by using a linear Princals, we obtain the same solution as
in standard PCA.

8.2.2 Princals on Ordinal Data

Let us now do something that goes beyond standard PCA and is of high practical
relevance: PCA on ordinal input data (i.e., ordinal Princals). This implies that
we use a monotone step function as transformation function. This is the default
transformation setup in princals. We do not have to worry about any spline
settings here; the defaults are just fine. All we have to say is:

prord <- princals(stpg)
prord
Call:
princals(data = stpg)
##
Loss value: 0.841
Number of iterations: 36
##
Eigenvalues: 2.635 1.492

By comparing this loss value to the one obtained from the linear Princals fit
above, we see that there is not much of an improvement by fitting a ordinal version.

8.2 Princals 239

Note that the ordinal version is statistically more complex than the linear version
since we use a more flexible transformation function (linear vs. monotone step
function). At this point we have good evidence that it is fine to treat these data
on a metric scale level. This does not mean that the variables per se are metric in the
sense of Stevens. It just means that, within the context of this particular method, it
is fine to assume metric analysis levels.

Despite negligible differences between the linear and the ordinal fit, let us
proceed with the ordinal solution1 in order to illustrate some additional concepts
and outputs. Figure 8.3 can be produced as follows:

plot(prord, plot.type = "transplot",
var.subset = c(1:2, 8:9), lwd = 2)

It shows the transformation plots of four selected items. We see that ordinality of
the original scale (x-axis) is maintained in the transformations (y-axis).

Next, we inspect some of the objects from the princals call in more detail,
especially in relation to Eq. (8.1). The matrix X is of dimension n×2 since we fitted
a p = 2 dimensional solution. Each person gets a score on both dimensions. Object
scores are the Princals equivalent to PC scores in PCA (only the first three persons
are shown here):

head(round(prord$objectscores, 3), 3)
D1 D2
1 -0.954 -1.041
2 -0.574 0.524
3 0.814 1.044

Furthermore, each category gets a quantification in the 2D space which can be
extracted using prord$quantifications. Note that these quantifications on
the second dimension are linearly dependent on the ones of the first dimension.
This is a technical feature of Princals, often referred to as rank-1 restriction (see
De Leeuw and Mair, 2009a). That is, from a transformation perspective, only the
transformations on the first dimension matter. This is something very convenient
because we can use the first dimension category quantifications which replace our
original data values. This “new” data matrix is called score matrix. It is of the
same dimension as our original data matrix. Let us print the original scores and
the transformed scores for the first six observations (five items):

1We could argue that with ordinal Princals we did the “right thing”, since it is certainly safer to
treat the data as ordinal.

240 8 Gifi Methods

−0
.0

4
0.

00
0.

04
st.ASTI2

Observed

Tr
an

sf
or

m
ed

0 1 2 3

−0
.0

4
0.

00
0.

02
0.

04

st.ASTI4

Observed

Tr
an

sf
or

m
ed

0 1 2 3

−0
.0

6
−0

.0
2

0.
00

0.
02

pg.ASTI11

Observed

Tr
an

sf
or

m
ed

0 1 2

−0
.0

2
0.

02
0.

04
0.

06

pg.ASTI14

Observed

Tr
an

sf
or

m
ed

0 1 2 3

Fig. 8.3 Princals transformation plots: ordinal transformations shown for two items of the ST
subscale and for two items of the PG subscale

head(stpg[,1:5])
st.ASTI2 st.ASTI4 st.ASTI7 st.ASTI13 st.ASTI16
1 2 3 2 2 3
2 2 2 2 2 2
3 1 1 0 2 1
4 2 3 2 2 3
5 3 3 3 2 3
6 1 3 3 1 2
head(round(prord$scoremat[,1:5], 3))
st.ASTI2 st.ASTI4 st.ASTI7 st.ASTI13 st.ASTI16
1 -0.005 -0.027 -0.011 -0.006 -0.027
2 -0.005 -0.002 -0.011 -0.006 -0.006
3 0.015 0.014 0.028 -0.006 0.012

(continued)

8.2 Princals 241

4 -0.005 -0.027 -0.011 -0.006 -0.027
5 -0.029 -0.027 -0.030 -0.006 -0.027
6 0.015 -0.027 -0.030 0.000 -0.006

We see that the original category scores have been replaced by new category
quantifications. This new score matrix has several desirable features and can replace
our original data matrix for subsequent analyses. More details on this topic will
follow in Sect. 8.4.

Finally, we can extract the loadings via prord$loadings. Princals loadings
can be interpreted in the same way as in PCA. Figure 8.4 shows the corresponding
loadings plot. We see that, apart from items 24 and 25, the second dimension
separates the ST items from the PG items.

plot(prord, main = "ASTI Loadings Plot")

Another plotting option is a biplot where we plot object scores and loadings in
the same space. This will be illustrated within a larger biplot context in Chap. 10.

As in PCA, the number of dimensions can be explored using a scree plot (“elbow
criterion”; plot not shown here):

plot(prord, plot.type = "screeplot")

Ordinal Princals is probably the most relevant Gifi method in practice, and we
have used it already in the IRT chapter for dimensionality assessment of ordinal
input variables (see Sect. 4.1.2).

8.2.3 Princals on Mixed Input Data

In this section we show another Princals flavor based on mixed scale input data. We
use once more the same set of ASTI items and treat them as ordinal. In addition,
for illustration purposes we create sum scores for the remaining three scales in the
dataset: self-knowledge (SI), peace of mind (PM), and non-attachment (NA).

242 8 Gifi Methods

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

ASTI Loadings Plot

Component 1

C
om

po
ne

nt
 2

st.ASTI2

st.ASTI4

st.ASTI7

st.ASTI13
st.ASTI16

st.ASTI24

st.ASTI25 pg.ASTI11

pg.ASTI14

pg.ASTI15

pg.ASTI17

pg.ASTI18pg.ASTI23

Fig. 8.4 Princals loadings plot: shows the loadings based on 2D ordinal Princals fit

si <- rowSums(ASTI[,c(10, 19, 20, 21)])
pm <- rowSums(ASTI[,c(1, 5, 9, 22)])
na <- rowSums(ASTI[,c(3, 6, 8, 12)])
asti2 <- data.frame(stpg, si, pm, na)

We apply linear transformations on the sum score variables. That is, we treat
them as metric. We set up the knots for the two sets of transformations separately:
The type="D" setting places knots at the data points, as needed for the ordinal
transformation of the 13 items; type="E" implies a linear transformation of the
three sum scores. Subsequently, we collect all of them in a list object.

knotsord <- knotsGifi(asti2[,1:13], type = "D")
knotslin <- knotsGifi(asti2[,14:16], type = "E")
knotslist <- c(knotsord, knotslin)

8.2 Princals 243

−1.0 −0.5 0.0

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Loadings Plot

Component 1

C
om

po
ne

nt
 2

st.ASTI2

st.ASTI4

st.ASTI7

st.ASTI13st.ASTI16

st.ASTI24

st.ASTI25

pg.ASTI11

pg.ASTI14

pg.ASTI15

pg.ASTI17

pg.ASTI18

pg.ASTI23

si

pm

na

Fig. 8.5 Princals loadings plot for the first two dimensions: ordinal transformation on the items
(gray) and linear transformation on the sum scores for SI, PM, and NA (red)

This time, for illustration purposes, we fit a 3D Princals. The argument setting
degrees=1 is internally used for the linear transformations only; the ordinal
transformations are not affected by this specification.

prordlin <- princals(asti2, knots = knotslist, degrees = 1,
ndim = 3)

colvec <- c(rep("gray", 13), rep("coral", 3))
plot(prordlin, col.loadings = colvec, plot.dim = c(1, 2))

Figure 8.5 shows the loadings plot for the first two dimensions. The item loadings
and the sum score loadings are colored differently. The sum scores for PM and SI
are highly related to each other. The short NA loadings vector suggests that NA has
smaller loadings on the first two dimensions than PM and SI. Some of the PG items
(i.e., 11, 14, and 17) appear to be strongly related to the three sum score variables.
However, for a closer examination, we would have to consider a 3D loadings plot.

Let us summarize what we have achieved so far. We have shown that in case of
purely linear transformations, Princals leads to the same results as standard PCA.
We have also demonstrated how to fit a Princals on ordinal data. This strategy is

244 8 Gifi Methods

very attractive for Likert items. Subsequently, we created some metric variables and
showed how fit a Princals involving ordinal and linear transformations. In case of
variables with many categories (e.g., 10 or so), a monotone spline transformation
can be considered since an ordinal transformation might be too fine-grained and
a linear transformation might be too strict. Such an example is shown in the next
section where we also elaborate on nominal input variables, something we have not
touched so far.

8.3 Homals

Homals is mathematically more general than Princals, and, in its basic form, it is
designed for nominal input data. In the first part of this section, we use Homals as
a tool for multiple correspondence analysis (CA) computation. Subsequently, we
focus on how to incorporate mixed scale levels into Homals and how to combine it
with Princals.

8.3.1 Multiple Correspondence Analysis Using Homals

In Sect. 7.2 we introduced the French approach to multiple CA which uses a singular
value decomposition (SVD) on either the Burt matrix or the indicator matrix. The
Dutch approach (i.e., Homals) solves the multiple CA problem numerically, which
offers a great amount of flexibility.

Let us start with fitting a Homals solution using the Wilson-Patterson conser-
vatism data. Part of this dataset was already analyzed in the IRT chapter, where we
fitted a nominal response model (see Sect. 4.3.4). In total, the dataset contains 46
items, each of them with response categories 1 = “approve,” 0 = “disapprove,” and
2 = “don’t know.” Let us pick six items of this scale (gay marriage, sexual freedom,
gay adoption, gender quotas, affirmative action, and legalized marijuana) plus the
country variable (Hungary, the USA, and India).

library("MPsychoR")
library("Gifi")
data("WilPat")
WP6 <- WilPat[,c(32, 38, 41, 44, 45, 46, 47)]

Let us fit a 2D Homals solution which defines unrestricted, nominal transforma-
tion functions for all variables.

8.3 Homals 245

homwp <- homals(WP6)
homwp
Call:
homals(data = WP6)
##
Loss value: 0.663
Number of iterations: 22
##
Eigenvalues: 2.901 1.818

−0.04 −0.02 0.00 0.02 0.04 0.06

−0
.0

2
0.

00
0.

02
0.

04
0.

06

Wilson−Patterson Joint Plot

Dimension 1

D
im

en
si

on
 2

l

l

l

GayMarriage.0

GayMarriage.1

GayMarriage.2

l

l

l

SexualFreedom.0

SexualFreedom.1

SexualFreedom.2

l

l

l

GayAdoption.0

GayAdoption.1

GayAdoption.2

l

l

l

GenderQuotas.0

GenderQuotas.1

GenderQuotas.2

l

l

l

AffirmativeAction.0

AffirmativeAction.1

AffirmativeAction.2

l

l

l

LegalizedMarijuana.0

LegalizedMarijuana.1

LegalizedMarijuana.2

l

l
l

Country.Hungary

Country.IndiaCountry.US

Fig. 8.6 Symmetric map (joint plot) for six selected items from the Wilson-Patterson scale and
the respondents’ country

In the Princals applications presented above, we were mostly interested in
plotting the loadings. In Homals the most important plot is based on category
quantifications, that is, a symmetric CA map which Gifi calls joint plot (see Fig. 8.6
which can be produced using plot(homwp)). In this plot we are interested in
interpreting associations among the single item categories, associations among

246 8 Gifi Methods

countries, and how the countries are associated with the item categories.2 Dimension
1 discriminates between 0 and 1 responses, whereas the second dimension is mostly
determined by the “don’t know” answers. Participants from India tend to disapprove
on all items, US participants tend to approve, and Hungarian participants tend to
respond “don’t know.”

8.3.2 Homals on Mixed Input Data

One of the main features of Gifi is the possibility to define different transformation
functions for various input variables. In addition to the six items and country
from above, in this section we include four more variables: First, we consider a
self-reported liberal-conservative item (re-categorized into four categories), which
we will take as ordinal. Second, we include a self-reported political left-right
identification item on a 10-point scale. We use a spline transformation since there
are many categories, but we do not quite want to do a linear transformation (i.e., not
considering it entirely as metric). We will set two interior knots at the quantiles and
use a polynomial degree of 2. Finally, we have gender (nominal) and age (linear).
Note that even though Gifi can handle missing values, we only use the full responses
here since there are no data from the USA pertaining to the left-right variable.
This leaves us with two countries only (Hungary and India). Let us set up the knot
specifications step-by-step.

WPmixed <- WilPat[,c(32, 38, 41, 44, 45, 46, 47:51)]
WPmixed$LibCons <- cut(WPmixed$LibCons, breaks = c(0,2,4,6,9), labels = 1:4)
WPmixed <- na.omit(WPmixed)
itknots <- knotsGifi(WPmixed[,1:6], "D") ## item knots (data)
cknots <- knotsGifi(WPmixed[,7], "D") ## country knots (data)
lcknots <- knotsGifi(WPmixed[,8], "D") ## lib-cons knots (data)
lrknots <- knotsGifi(WPmixed[,9], "Q", n = 2) ## left-right (terciles)
genknots <- knotsGifi(WPmixed[,10], "D") ## gender knots (data)
ageknots <- knotsGifi(WPmixed[,11], "E") ## age knots (empty)
knotlist <- c(itknots, cknots, lcknots, lrknots, genknots, ageknots)

Now we define the vector for the ordinal restrictions, as well as the one for the
spline degrees.

ordvec <- c(rep(FALSE, 6), FALSE, TRUE, TRUE, FALSE, TRUE)
degvec <- c(rep(-1, 7), 1, 2, -1, 1)

2Note that in Homals the same issues apply as in single and multiple CA when it comes to
interpreting distances between categories of different items (see Sect. 7.1.2 for details).

8.3 Homals 247

The first vector specifies which variables should be ordinally restricted. For all
the nominal variables, the element is set to FALSE. The degrees for the nominal
variables are set to −1, as required by the homals function. For the left-right
variable, we define a polynomial degree of 2. At this point we are all set to fit the
model:

hommix <- homals(WPmixed, knots = knotlist, ordinal = ordvec,
degrees = degvec)

plot(hommix, "transplot", var.subset = 6:11)

Figure 8.7 shows the transformation plots. We see that some variables are
transformed on two dimensions. The black lines reflect the transformations on the
first dimension and the red lines the transformations on the second dimension. If
we look at the liberal-conservative rating (ordinal) and left-right rating (spline), we
see that our transformation restriction only holds for the first dimension. For the
variables with two categories only (country and gender), and the ones with a linear
restriction (age), we only get transformed scores on the first dimension. We will
continue with this example in the next section, where we discuss in more detail the
issue of transformations on both dimensions which seems awkward for non-nominal
variables.

8.3.3 Combined Homals-Princals Strategies

What we have seen so far is that Princals is great for ordinal, linear, and other
metric transformations. Homals is useful for nominal transformations since we are
interested in the category quantifications. If we incorporate non-nominal analysis
levels in Homals, the transformations can get a bit weird on the second dimension,
as we have seen above. In this section we aim for a more sophisticated version of
these two models in order to get the best of both worlds.

We have seen that Princals is a restricted version of Homals. For instance, if
we fit a nominal Princals, the category quantifications on the second dimension are
linearly related to the ones from dimension 1. Let us illustrate this property by fitting
this model using the same six items as in Sect. 8.3.1 and plotting the loadings and
category quantifications right away.

prinwp1 <- princals(WP6, ordinal = FALSE)

The top panel of Fig. 8.8 shows the Princals loadings and the bottom panel
the Princals category quantifications. Due to the fact that the second dimension is

248 8 Gifi Methods

−0
.0

6
0.

00
0.

04
0.

08
LegalizedMarijuana

Observed

Tr
an

sf
or

m
ed

0 1 2

−0
.0

6
−0

.0
2

0.
02

Country

Observed

Tr
an

sf
or

m
ed

Hungary India

−0
.0

5
0.

05

LibCons

Observed

Tr
an

sf
or

m
ed

1 2 3 4

−0
.2

5
−0

.1
0

0.
05

LeftRight

Observed

Tr
an

sf
or

m
ed

1 2 3 4 5 6 7 8 9 10

−0
.0

4
0.

00
0.

04

Gender

Observed

Tr
an

sf
or

m
ed

Female Male

0.
0

0.
1

0.
2

0.
3

Age

Observed

Tr
an

sf
or

m
ed

18 26 34 42 50 61 69 100

Fig. 8.7 Transformation plots for six variables of the Wilson-Patterson data. The black lines show
the transformation on the first dimension and the red lines the transformations on the second
dimension

linearly dependent on the first dimension, for each variable the quantifications have
to be on a straight line. In Fig. 8.6 we did not have this restriction. The direction
of this line is determined by the direction of the loadings vector. We should not
be mistaken and interpret the loadings plot of a nominal Princals solution in a
directional way (e.g., “higher” or “larger”), since we operate on a nominal level. It is
easier to think of it as a straight line where the quantifications are located on (bottom
panel of Fig. 8.8). Still, the loadings plot is informative for nominal transformations
as well. For variables whose categories are quantified similarly (e.g., gay marriage,
gay adoption, sexual freedom), the loading vectors point to the same direction.
Thus, we get some insight which items are similarly scored. If we look at gender
quotas and affirmative actions, the lines in the joint plot are very close to each other,
whereas in the loadings plot, the arrows point into the opposite direction. This is

8.3 Homals 249

due to the fact that in the bottom-left quadrant of the plot, the quantification for 2
in affirmative action is close to 0 in gender quota, and gender quota 2 is close to
affirmative action 0.

Using the princals function call, we can relax this linear restriction using the
concept of copies (see De Leeuw et al., 2017). For each variable we produce as
many copies,3 as there are number of dimensions (in our case two).

prinwp2 <- princals(WP6, ordinal = FALSE, copies = 2)
prinwp2
Call:
princals(data = WP6, ordinal = FALSE, copies = 2)
##
Loss value: 0.663
Number of iterations: 22
##
Eigenvalues: 2.901 1.818

The loss value and the eigenvalues are exactly the same as in the Homals call in
Sect. 8.3.1; to put it simple, we mimicked Homals with a Princals call.

The copy concept is very appealing for mixed scale levels. For nominal trans-
formations we are mostly interested in unrestricted category quantifications (some-
times also called multiple nominal), whereas for metric transformations (e.g., linear
or monotone spline), we want to obtain loadings based on a restricted solution.
For ordinal transformations both an unrestricted and a restricted solution can be
considered. It depends on whether we want to put more emphasis on the category
quantifications or the loadings.

Let us fit such a model via Princals using the same data setup as in Sect. 8.3.2.
As we will see, this gives a more intuitive output by avoiding the seemingly
awkward second-dimension transformations for the non-nominal variables. We
use exactly the same knot specifications, ordinal restrictions, and degrees as in
Sect. 8.3.2. The only new thing here is that we need to specify a copies vector for
the nominal variables (i.e., six items, country, and gender).

copvec <- c(rep(2, 7), 1, 1, 2, 1)
prinmix <- princals(WPmixed, knots = knotlist,ordinal = ordvec,

degrees = degvec, copies = copvec)

Figure 8.9 shows the transformation plots for one of the items (legalized
marijuana) and the remaining variables. For the legalized marijuana item, we

3A “copy” is literally a copy of a variable, achieved by adding it to the input matrix, as the function
does internally.

250 8 Gifi Methods

−1.0 −0.5 0.0 0.5

−0
.5

0.
0

0.
5

Nominal Princals Loadings

Component 1

C
om

po
ne

nt
 2

GayMarriage
SexualFreedom

GayAdoption

GenderQuotas

AffirmativeAction

LegalizedMarijuana

Country

−0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

−0
.0

2
0.

00
0.

02
0.

04
0.

06

Nominal Princals Joint Plot

Dimension 1

D
im

en
si

on
 2

l

l

lGayMarriage.0

GayMarriage.1

GayMarriage.2

l

l

lSexualFreedom.0

SexualFreedom.1

SexualFreedom.2l

l

l
GayAdoption.0

GayAdoption.1

GayAdoption.2

l

l

l

GenderQuotas.0

GenderQuotas.1

GenderQuotas.2l

l

l

AffirmativeAction.0

AffirmativeAction.1

AffirmativeAction.2

l

l

l

LegalizedMarijuana.0

LegalizedMarijuana.1

LegalizedMarijuana.2
l

l

l

Country.Hungary

Country.India

Country.US

Fig. 8.8 Top panel: nominal Princals loadings plot. Bottom panel: joint plot with restricted
category quantifications

8.3 Homals 251

−0
.0

4
0.

00
0.

04
LegalizedMarijuana

original

tra
ns

fo
rm

ed

0 1 2

−0
.0

4
0.

00
0.

04

Country

original

tra
ns

fo
rm

ed

Hungary India

−0
.0

6
−0

.0
2

0.
02

LibCons

original

tra
ns

fo
rm

ed

1 2 3 4

0.
00

0.
05

0.
10

0.
15

0.
20

LeftRight

original

tra
ns

fo
rm

ed

1 2 3 4 5 6 7 8 9 10

−0
.0

4
0.

00
0.

04

Gender

original

tra
ns

fo
rm

ed

Female Male

0.
0

0.
1

0.
2

0.
3

Age

original

tra
ns

fo
rm

ed

18 26 34 42 50 61 69 100

Fig. 8.9 Transformation plots for six variables of the Wilson-Patterson data. The black lines show
the transformation on the first dimension and the red lines the transformations on the second
dimension

get a transformation on each dimension. The original categories of the liberal-
conservative item were merged into 1 vs. higher by the ordinal transformation.
For the left-right item, we see the spline pattern (categories 1–7 get the same
transformed scores). Age is taken as metric and, therefore, linearly transformed.

Figure 8.10 shows the joint plot with category quantifications for the vari-
ables transformed using a linear function, spline, and step function. For the
liberal-conservative variable, in addition to the loading, we also plot the category
quantifications (gray labels) which are on a straight line since we did not make a
copy. All nominal quantifications were unrestricted and therefore free to vary in the
2D space.

252 8 Gifi Methods

−0.06 −0.04 −0.02 0.00 0.02 0.04

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

0.
06

Princals Joint Plot

Dimension 2

D
im

en
si

on
 2

LibCons

LeftRight

Age

l

l

l

GayMarriage.0

GayMarriage.1

GayMarriage.2

l

l

l

SexualFreedom.0

SexualFreedom.1

SexualFreedom.2

l

l

l

GayAdoption.0

GayAdoption.1

GayAdoption.2

l

l

l

GenderQuotas.0
GenderQuotas.1

GenderQuotas.2

l l

l

AffirmativeAction.0AffirmativeAction.1

AffirmativeAction.2

l

l

l

LegalizedMarijuana.0

LegalizedMarijuana.1

LegalizedMarijuana.2

l

l

Country.India

Country.Hungary

l

l

Gender.Female

Gender.Male

l

lll

LibCons.1

LibCons.2
LibCons.3

LibCons.4

Fig. 8.10 Joint plot for combined Homals-Princals. For the nominal transformed variables, the
category quantifications are plotted. For the linear and spline transformed variables (age, left-right),
the loadings are plotted. For the ordinal transformed variable (liberal-conservative), we plot both
(quantifications in gray). The loadings are divided by 10 for better mapping into the category
quantification space

This analysis concludes Homals and Princals. Other interesting features of these
methods are that they can handle missing data and that they allow one to specify
variables as passive. In the examples considered so far, all variables were defined as
active. That is, the solution was based on the full set of input variables. In case of
external validations (e.g., treatment vs. control group), corresponding variables can
be set to passive through the active=FALSE argument. Passive variables are not
part of the optimization. After loadings, category quantifications and object scores
are obtained; passive variables are scaled accordingly and can be added to the plot.

8.4 Lineals for CFA/SEM Preprocessing

An important “side effect” of the methods presented so far is that they implicitly
aim to linearize the relationships between the variables involved. In a simple two-
variable setting, this means that these approaches stretch and squeeze the categories

8.4 Lineals for CFA/SEM Preprocessing 253

in a way such that the relationship between these variables becomes as linear as
possible. For instance, as discussed in De Leeuw and Mair (2009b), in simple CA
we always achieve perfect linearizability. In general multivariate settings such as in
Princals or Homals, we do not achieve perfect linearization in general.

Why is linearization important? Multivariate methods such as exploratory/con-
firmatory factor analysis (EFA/CFA; see Chap. 2) and structural equation models
(SEM; see Sect. 3.3) are based on an input correlation (or covariance) matrix.
Correlation coefficients are only able to capture linear relationships among the
variables (see Sect. 2.1); they are blind to nonlinear dependency patterns. When
applying CFA or SEM, we often assume that linearity holds without further
examination.4

Gifi models can be used to preprocess the data in terms of OS of the categories in
order to make the relationships as linear as possible. The original values in the data
matrix (first dimension) are then replaced by the score matrix containing optimally
scaled category quantifications. Based on this data matrix, we compute a correlation
matrix which acts as input to a CFA/SEM fit. Having Likert-type input data, this
approach avoids the computation of polychoric correlation matrices.

In Sect. 8.2.2 we fitted an ordinal Princals model. The score matrix (first
dimension) and the corresponding correlation matrix can be extracted as follows:

newdat <- prord$scoremat
newR <- prord$rhat

The object newdat replaces the initial input data, whereas newR is simply the
Pearson correlation matrix based on the score matrix. Princals targets linearization
implicitly.

A simple approach that targets linearization in a more explicit way is called
Lineals (De Leeuw, 1988; Mair and De Leeuw, 2010). Note that in Lineals, we
fit a single dimension solution only, as opposed to Princals/Homals. The idea of
Lineals is based on the following two ingredients: Pearson’s correlation coefficient
and Pearson’s correlation ratio.

The Pearson correlation matrix R of dimension m × m with elements rij is
computed on the basis of the input data matrix H. R captures the linear dependencies
in the data. For Pearson’s correlation ratio, we need to follow components. Let
B be the Burt matrix as introduced in Sect. 7.2. Note that the Burt matrix can be
obtained from the indicator matrix G via B = G′G and consists of the submatrices
Bij = G′

iGi . Let Di be the diagonal matrix with the univariate margins on the
diagonal, that is, Di = Bii . Finally, yi are the optimally scaled category scores of
variable i (score matrix Y) which replace the original scores in hi . We can compute
the squared Pearson’s correlation ratio using

η2
ij = y′

iCij D−1
i Cij yi . (8.2)

4Of course, the multivariate normality assumption implies linearity.

254 8 Gifi Methods

This squared correlation portion accounts for the nonlinear part of the data. Thus,
perfect bilinearizability is achieved if r2

ij − η2
ij = 0. The optimization problem we

have to tackle is the following:

φ(Y) =
m∑

i=1

m∑

j=1

(
r2
ij − η2

ij

)2 → min! (8.3)

In plain English this means that we transform the data in a way such that the squared
difference between the linear portion and the nonlinear portion becomes minimal.
The smaller the target value, the closer we are to perfect linearization.

Let us look at a simple example for Lineals CFA preprocessing using a dataset
from Haegeli et al. (2012), who were interested in various risk-taking behaviors of
out-of-bounds skiers. The skiers where exposed to the “Brief Sensation Seeking
Scale” (BSSS-8; Hoyle et al., 2002). It is a short 8-item scale with 5-point
response categories. The scale has four subscales (with two items each): experience
seeking (ES), boredom susceptibility (BS), thrill and adventure seeking (TAS), and
disinhibition (DIS). The Lineals fit using the aspect package (Mair and De Leeuw,
2010) can be achieved as follows:

library("MPsychoR")
library("aspect")
data("BSSS")
linbs <- lineals(BSSS)
linbs
##
Call:
lineals(data = BSSS)
##
Value target function: 0.102
##
Correlation matrix of the transformed data:
Explore Restless Frightning Party Trip Friends Bungee Illegal
Explore 1.000 0.354 0.282 0.184 0.271 0.232 0.105 0.269
Restless 0.354 1.000 0.334 0.158 0.180 0.246 0.172 0.195
Frightning 0.282 0.334 1.000 0.470 0.310 0.455 0.438 0.505
Party 0.184 0.158 0.470 1.000 0.326 0.508 0.349 0.532
Trip 0.271 0.180 0.310 0.326 1.000 0.542 0.266 0.353
Friends 0.232 0.246 0.455 0.508 0.542 1.000 0.400 0.507
Bungee 0.105 0.172 0.438 0.349 0.266 0.400 1.000 0.455
Illegal 0.269 0.195 0.505 0.532 0.353 0.507 0.455 1.000

The output shows the value of the loss function from Eq. (8.3) and the new,
induced correlation matrix based on the score matrix Y.

Now we fit a second-order CFA (see Sect. 2.4.2) using lavaan (Rosseel, 2012).
This model involves a general risk factor associated with each of the four subfactors.
We use an asymptotical distribution-free estimator which lavaan calls weighted
least squares (WLS). For this type of estimator, we need to provide the full dataset,
as opposed to other estimation methods which only need the correlation/covariance

References 255

matrix. The crucial point is the following: instead of the original data matrix, we
throw the optimally scaled data matrix into the CFA call, as determined by Lineals.

library("lavaan")
BSSSnew <- linbs$scoremat
BSSS.model <- 'ES =~ Explore + Trip

BS =~ Restless + Friends
TAS =~ Frightning + Bungee
DIS =~ Party + Illegal
Risk =~ ES + BS + TAS + DIS'

cfabs <- cfa(BSSS.model, data = BSSSnew,
estimator = "WLS")

The fit of this model is not terribly great (RMSEA = 0.098), but this example
should be sufficient to give the reader an idea of how Lineals preprocessing works
for CFA/SEM models.

Mair and De Leeuw (2010) provide a large set of other OS transformations of
correlation matrices (called correlational aspects) with respect to a particular target
to be optimized. All of them are implemented in the aspect package.

References

De Leeuw, J. (1988). Multivariate analysis with linearizable regressions. Psychometrika, 53, 437–
454.

De Leeuw, J., & Mair, P. (2009a). Gifi methods for optimal scaling in R: The package homals.
Journal of Statistical Software, 31(1), 1–21. https://www.jstatsoft.org/index.php/jss/article/
view/v031i04

De Leeuw, J., & Mair, P. (2009b). Simple and canonical correspondence analysis using the R
package anacor. Journal of Statistical Software, 31(5), 1–18. http://www.jstatsoft.org/v31/i05/

De Leeuw, J., Mair, P., & Groenen, P. J. F. (2017). Multivariate analysis with optimal scaling.
http://gifi.stat.ucla.edu/gifi/_book/

Gifi, A. (1990). Nonlinear multivariate analysis. Chichester: Wiley.
Haegeli, P., Gunn, M., & Haider, W. (2012). Identifying a high-risk cohort in a complex

and dynamic risk environment: Out-of-bounds skiing—An example from avalanche safety.
Prevention Science, 13, 562–573.

Hoyle, R. H., Stephenson, M. T., Palmgreen, P., Pugzles Lorch, E., & Donohew, R. L. (2002).
Reliability and validity of a brief measure of sensation seeking. Personality and Individual
Differences, 32, 401–414.

Jacoby, W. G. (1991). Data theory and dimensional analysis. Thousand Oaks: Sage.
Jacoby, W. G. (1999). Levels of measurement and political research: An optimistic view. American

Journal of Political Science, 43, 271–301.
Koller, I., Levenson, M. R., & Glück, J. (2017). What do you think you are measuring? A mixed-

methods procedure for assessing the content validity of test items and theory-based scaling.
Frontiers in Psychology, 8(126), 1–20.

Linting, M., Meulman, J. J., Groenen, P. J. F., & van der Kooij, A. J. (2007). Nonlinear principal
components analysis: Introduction and application. Psychological Methods, 12, 336–358.

https://www.jstatsoft.org/index.php/jss/article/view/v031i04
https://www.jstatsoft.org/index.php/jss/article/view/v031i04
http://www.jstatsoft.org/v31/i05/
http://gifi.stat.ucla.edu/gifi/_book/

256 8 Gifi Methods

Mair, P., & De Leeuw, J. (2010). A general framework for multivariate analysis with optimal
scaling: The R package aspect. Journal of Statistical Software, 32(1), 1–23. https://www.
jstatsoft.org/index.php/jss/article/view/v032i09

Mair, P., & De Leeuw, J. (2017). Gifi: Multivariate analysis with optimal scaling. R package
version 0.3-2. https://R-Forge.R-project.org/projects/psychor/

Michailidis, G., & De Leeuw, J. (1998). The Gifi system of descriptive multivariate analysis.
Statistical Science, 13, 307–336.

Mori, Y., Kuroda, M., & Makino, N. (2016). Nonlinear principal component analysis and its
applications. New York: Springer.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical
Software, 48(2), 1–36. http://www.jstatsoft.org/v48/i02/

Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680.
Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.). Boca Raton:

CRC Press.
Young, F. W. (1981). Quantitative analysis of qualitative data. Psychometrika, 46, 357–388.

https://www.jstatsoft.org/index.php/jss/article/view/v032i09
https://www.jstatsoft.org/index.php/jss/article/view/v032i09
https://R-Forge.R-project.org/projects/psychor/
http://www.jstatsoft.org/v48/i02/

Chapter 9
Multidimensional Scaling

9.1 Proximities

Multidimensional scaling (MDS) is a technique that represents proximities among
objects as distances among points in a low-dimensional space (with given dimen-
sionality). It allows researchers to explore or test similarity structures among objects
in a multivariate dataset (Mair et al., 2016). Let us disentangle this definition step-
by-step.

“Proximities” is an umbrella term for similarities and dissimilarities and has a
long tradition in psychological research. It simply refers to the closeness of objects
in a certain domain, that is, how similar/dissimilar objects are to each other. There
are two basic strategies to obtain proximities:

• Directly observed proximities: They are directly collected within an experimental
setting. For instance, pairs of stimuli are presented to a participant, and he/she has
to rate the perceived similarity using a slide bar.

• Derived proximities: They are derived from a persons × variables data matrix
(e.g., by computing a correlation matrix).

A classical example of directly observed proximities, often used in textbooks on
MDS, are Ekman’s color data. In this psychophysical experiment, participants had
to rate the similarities between pairs of 14 colors (Ekman, 1954). Here, the colors
are the objects, and a simple proximity matrix Δ can be derived by averaging the
ratings across all participants. Δ is symmetric and of dimension n × n, where n

denotes the number of objects. This dataset is included in the smacof package (De
Leeuw and Mair, 2009) which will be used throughout this chapter.

All the examples presented below are based on derived proximities, which we
will now discuss in detail. First of all, we need to decide in which direction of the
data matrix we want to scale. Objects can be persons (compute proximities between
pairs of persons) or variables (compute proximities between variables). The latter is
certainly the more common case.

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_9

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_9&domain=pdf
https://doi.org/10.1007/978-3-319-93177-7_9

258 9 Multidimensional Scaling

Next, the MDS definition above includes the terms “proximities” and “distances.”
Distances are a special kind of dissimilarities which fulfill the following three
properties: they are nonnegative real values, they are symmetric (i.e., the distance
from x to y is the same as the distance from y to x), and they satisfy the triangle
inequality (i.e., the “direct” distance from x to z is not greater than the distance from
x to z via y). Corresponding technical details can be found in Gower and Legendre
(1986).

In MDS we cannot generally assume that the input data fulfill these proper-
ties; therefore we use the term dissimilarities. These dissimilarities are always
represented as distances after fitting an MDS. More precisely, they are Euclidean
distances (i.e., distances that correspond to our natural notion of the distance
between two points in geometric space “as the crow flies”).

Since we derive the proximities from our persons × variables data structure,
various proximity measures can be considered (see Cox and Cox, 2001, for a
detailed overview). The most popular proximity measure is the Pearson correlation
coefficient r(x, y), which is a similarity measure, of course (i.e., the higher the corre-
lation, the more similar two objects are to each other). However, the smacof package
requires input dissimilarities rather than similarities. Thus, we need to convert the
correlation into a dissimilarity measure. There are several ways of achieving this
such as d(x, y) = 1 − r(x, y) or d(x, y) = √

1 − r(x, y). The latter transformation
is typically preferred since the resulting dissimilarities are Euclidean (see Gower and
Legendre, 1986, p. 10). If we want to disregard negative correlations, these formulas
change to d(x, y) = 1 − |r(x, y)| and d(x, y) = √

1 − |r(x, y)|, respectively.
Instead of computing correlations and subsequently converting them into dissim-

ilarities, another popular strategy to compute derived proximities is to use one of the
following distance measures:

• Euclidean distance (metric data).
• Jaccard distance (binary data).
• Gower coefficient (mixed scale levels).

In R, such dissimilarity computations can be carried out using the dist function;
more exotic measures can be found in the proxy (Meyer and Buchta, 2015) package.
Borg et al. (2018) elaborate on how various types of input dissimilarities affect the
MDS solution.

In the following sections, we introduce MDS formally and elaborate on different
types of MDS. In terms of additional literature, the MDS bible is Borg and Groenen
(2005). A less comprehensive, more applied MDS book is Borg et al. (2018). Yet
another good book on MDS is Cox and Cox (2001).

9.2 Exploratory MDS

Using MDS as an exploratory technique has a long tradition in the psychometric
literature. It goes back to an article by Torgerson (1952). The author introduced
classical scaling which solves the MDS problem analytically. Other important early

9.2 Exploratory MDS 259

MDS contributions were the articles by Shepard (1962a,b) and Kruskal (1964a,b).
An optimization breakthrough was achieved by De Leeuw (1977) who proposed a
numerical approach (majorization) to solve the MDS problem. This idea led to the
SMACOF (Scaling by MAjorizing a COmplicated Function) framework. Because
of its flexibility, SMACOF is nowadays considered as the state-of-the-art approach
for fitting MDS models.

9.2.1 SMACOF Theory

The input dissimilarities (either directly observed or derived) based on n objects
and denoted by δij are collected in a symmetric dissimilarity matrix Δ of dimension
n×n. The problem we solve is to locate i, j = 1, . . . , n points in a low-dimensional
space (p as the number of dimensions) such that the Euclidean distances between
these points are as close as possible to the given input dissimilarities δij . We aim to
find an n × p matrix X containing the configuration, that is, the coordinates in the
MDS space. The fitted Euclidean distances are

dij (X) =
√
√
√
√

p∑

s=1

(xis − xjs)2 (9.1)

We typically aim for a low p (i.e., p = 2 or p = 3) such that we can produce a
configuration plot.

There is one important twist in modern MDS techniques pertaining to possible
transformations of the input dissimilarities. Instead of using the raw δij ’s, optimal
scaling (OS) transformations are applied, as introduced in Sect. 8.1.1 within the
context of Gifi methods. In MDS, the most popular transformations are the
following (all of them are monotone):

• Ratio MDS: d̂ij = bδij .
• Interval MDS: d̂ij = a + bδij .
• Ordinal MDS: d̂ij = f (δij) where f is a monotone step function.

The corresponding d̂ij are referred to as disparities or, simply, d-hats. Ratio MDS
fits a slope parameter b only, interval MDS fits both intercept a and slope b, and
ordinal MDS fits a monotone step function.

In ordinal MDS, where we define the dissimilarity scale level as ordinal, tied
dissimilarities require special treatment. The two common approaches are:

• Primary approach (“break ties”): if δij and δi′j ′ are equal, the disparities d̂ij and
d̂i′j ′ are not necessarily equal.

• Secondary approach (“keep ties tied”): if δij and δi′j ′ are equal, d̂ij and d̂i′j ′ will
be equal as well.

260 9 Multidimensional Scaling

Note that ordinal MDS is sometimes also called nonmetric MDS, whereas inter-
val/ratio MDS go under the umbrella term metric MDS.

How do we pick the right transformation function? If there is metric information
in the δij ’s, interval MDS can be used. Interval MDS is nowadays typically preferred
over ratio MDS since it provides a better fit. If the δij ’s are ordinal or we are not
sure and want to “play it safe,” an ordinal MDS can be used. Alternatively, we can
also decide on a data-driven base using Shepard plots. This idea will be presented
in Sect. 9.2.3.

At this point we have all the ingredients together in order to establish the MDS
target function which is called stress:

σ(X) =
∑

i<j

(d̂ij − dij (X))2. (9.2)

This expression is the raw stress, and its computation is based on all lower triangular
elements of Δ. MDS programs typically print out a standardized version of it,
called stress-1, such that the resulting stress value does not depend on the absolute
magnitudes of the input dissimilarities. In either case, the lower the stress value
σ(X), the better the fit. The lower bound for the stress-1 is 0, in case of a perfect
fit.1

9.2.2 Exploratory MDS Example: PTSD Symptoms

The smacof package offers implementations for a large variety of MDS models.
The function to fit a basic exploratory MDS is called mds(). In SMACOF slang
this option is called symmetric SMACOF since we operate on a symmetric input
dissimilarity matrix. Each of the δij ’s has to be nonnegative; missing values are
allowed.

The dataset we use to illustrate an exploratory MDS fit is from the clinical
psychology area. McNally et al. (2015) collected data on PTSD (post-traumatic
stress disorder) symptoms reported by survivors of the Wenchuan earthquake in
China using the PTSD checklist-civilian (PCL-C; Weathers et al., 1993). In total,
there are 17 PTSD symptom items scaled on a 5-point rating scale (1 . . . “not at all”;
5 . . . “extremely”). We are interested in representing associations among the PTSD
symptoms. First, we compute derived dissimilarities using the Euclidean distance,
resulting in a 17×17 symmetric dissimilarity matrix. For the moment, let us consider
an ordinal scale level for the input dissimilarities and fit a two-dimensional, ordinal
MDS:

1The upper stress value is not trivial to determine (see De Leeuw and Stoop, 1984), but it cannot
become larger than 1.

9.2 Exploratory MDS 261

library("MPsychoR")
library("smacof")
data(Wenchuan)
Wdelta <- dist(t(Wenchuan)) ## Euclidean distances
fit.wenchuan1 <- mds(Wdelta, type = "ordinal") ## MDS fit
fit.wenchuan1
##
Call:
mds(delta = Wdelta, type = "ordinal")
##
Model: Symmetric SMACOF
Number of objects: 17
Stress-1 value: 0.133
Number of iterations: 35

The MDS fit results in a stress value2 of 0.133. Whether the stress value in
this example suggests a good model fit is not trivial to answer. It requires detailed
examination, as elaborated in the next section. For the moment we are happy with
it. Now we can produce the configuration plot:

plot(fit.wenchuan1, main = "Wenchuan MDS")

Figure 9.1 shows how the PTSD symptoms are related to each other. For instance,
we see that “avoiding thinking about or talking about a stressful experience from the
past or avoiding having feelings related to it” (avoidth) and “avoiding activities
or situations because they reminded you of a stressful experience from the past”
(avoidact) are virtually on the same spot. We also see that “feeling very upset
when something reminded you of a stressful experience from the past?” (upset)
and “feeling emotionally numb or being unable to have loving feelings for those
close to you” (numb) are the farthest points on the first dimension, whereas “trouble
remembering important parts of a stressful experience from the past” (amnesia)
and “feeling irritable or having angry outbursts” (anger) are the extreme points in
the second dimension. These pairs of symptoms are pretty much unrelated to each
other.

Can we interpret the dimensions as, for instance, in exploratory factor analysis
(EFA) or principal component analysis (PCA)? As Borg et al. (2018) point out,
there is no natural law that guarantees that the dimensions are always interpretable.
In this application we cannot establish a meaningful clinical interpretation of the
dimensions. Note that an MDS configuration can be rotated arbitrarily, if it helps for
interpretation.

2From now on, whenever we say “stress,” we are referring to “stress-1.”

262 9 Multidimensional Scaling

−0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Wenchuan MDS

Dimension 1

D
im

en
si

on
 2

intrusion

dreams

flashupset physior

avoidthavoidact

amnesia

lossint
distant

numb

future

sleep

anger

concen

hyper

startle

Fig. 9.1 Wenchuan MDS: configuration plot for the 2D, ordinal MDS solution

Another possibility to interpret a configuration plot is through regional interpre-
tation where we divide the configuration space into regions (or facets) of points. For
this example we will consider such an interpretation after a thorough goodness-of-fit
examination.

9.2.3 Goodness of Fit in MDS

Goodness-of-fit examination in MDS is discussed in detail in Mair et al. (2016).
Here we focus on the most important tools. A common mistake is to interpret
stress too mechanically by relying on Kruskal’s rules of thumb (see Kruskal, 1964a,
p. 3): 0.20 . . . “poor,” 0.10 . . . “fair,” 0.05 . . . “good,” 0.025 . . . “excellent,” and 0
. . . “perfect.” This is problematic due to the fact that the magnitude of the stress
depends on the number of objects n (the larger n, the larger the stress). In modern
MDS applications, n can be fairly large. Instead of using these rules of thumb, we
can consider simulation approaches. An old approach (Spence and Ogilvie, 1973) is

9.2 Exploratory MDS 263

to simulate random dissimilarities for a fixed n and p and fit the corresponding MDS
model on these matrices. This leads to random stress norms. Here is an example
using the ordinal Wenchuan fit from above.

set.seed(123)
rsvec <- randomstress(n = attr(Wdelta, "Size"), ndim = 2,

nrep = 500, type = "ordinal")
mean(rsvec)
[1] 0.2770934
mean(rsvec) - 2*sd(rsvec)
[1] 0.2548536

The randomstress call gives 500 random stress values. These stress norms
represent a “bad fit” benchmark. Our solution should be clearly below the average
random stress. Often, in the literature, an observed stress values is considered
“significant” if it is smaller than the lower 2 × sd random stress boundary, which is
clearly the case in our example (the stress was 0.133).

Note that this random stress criterion is not very sharp; as Cliff (1973) puts it, it
tests the “nullest of all null hypotheses.” A sharper approach is to use a permutation
test as described in Mair et al. (2016). For derived dissimilarities, it resamples the
original data, and for each resulting dissimilarity matrix, an MDS fit is carried out.
This gives a stress distribution under the H0: “stress/configuration is obtained from
a random permutation of dissimilarities.”

set.seed(123)
permmds <- permtest(fit.wenchuan1, data = Wenchuan,

method.dat = "euclidean", nrep = 500,
verbose = FALSE)

permmds
##
SMACOF Permutation Test
Number of objects: 17
Number of replications (permutations): 500
##
Observed stress value: 0.133
p-value: 0

Since p < 0.05, we reject the H0 and conclude that stress/configuration is
obtained from something other than a random permutation of dissimilarities.

However, goodness of fit in MDS should not solely be judged using random
stress norms and permutation tests. As in PCA, we can produce a scree plot with the
stress-1 values on the y-axis (see Fig. 9.2) and apply the elbow criterion, if possible.
The larger the p, the smaller the stress. Using the Wenchuan dataset from above,
we fit an ordinal MDS with varying dimensions (from p = 1 to the maximum of
p = n − 1).

264 9 Multidimensional Scaling

n <- attr(Wdelta, "Size")
svec <- NULL
for (i in 1:(n-1)) {
svec[i] <- mds(Wdelta, ndim = i, type = "ordinal")$stress

}

5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

MDS Scree Plot

Number of Dimensions

S
tr

es
s

Fig. 9.2 MDS scree plot for Wenchuan data

Compared to PCA and EFA, in MDS we aim for a p = 2 or 3 since the main
output is the configuration plot. In PCA/FA a high-dimensional solution is not at all
problematic, as long as we can name the components/factors. Based solely on the
scree plot, we would probably pick a 3D solution, but the stress of the 2D solution
is not too bad either, as judged by the random stress norms, the permutation test
results, and Kruskal’s stress benchmarks (considered here since n = 17 is fairly
small).

The stress target function is known to be bumpy. Thus, it can easily happen that
we end up in a local minimum (i.e., we do not obtain the best possible solution).
Where the algorithm ends up in the end depends on where it starts. By default, the
functions in the smacof package use a classical scaling solution (Torgerson, 1952)
as starting configuration. This is not necessarily always the best choice. The local

9.2 Exploratory MDS 265

minimum problem including a systematic starting solution search is described in
detail Borg and Mair (2017). Here we use a simple ad hoc strategy by trying out
different random starts and check whether the best random start solution leads to a
lower stress value than the default setup. Below we examine 100 random starts and
extract the stress values.

set.seed(123)
fit.wenchuan <- NULL ## 100 random starts
for(i in 1:100) {
fit.wenchuan[[i]] <- mds(Wdelta, type = "ordinal",

init = "random")
}
extract the best solution
ind <- which.min(sapply(fit.wenchuan,

function(x) x$stress))
fit.wenchuan2 <- fit.wenchuan[[ind]]
fit.wenchuan2$stress ## lowest stress (random start)
[1] 0.1327943
fit.wenchuan1$stress ## stress (classical scaling start)
[1] 0.1328058

We see that a particular random start provided a slightly better stress than our
original solution. Since the stress difference is so minimal, we could pick either
solution. Let us proceed with the best random start solution.

In the previous section, we addressed briefly the option for a data-driven
choice of the transformation function. A plot that gives us insight into these OS
transformations is the Shepard diagram (De Leeuw and Mair, 2015). In our example
the symptoms were scored on 5-point rating scales. We can assume that there is
some metric information in it and, therefore, fit an interval MDS. Naturally, the
stress value of the interval MDS will be worse than the ordinal stress. However,
if there are only slight differences, we may prefer the interval solution. The
corresponding linear transformation is much simpler to interpret, most likely more
robust across multiple samples (i.e., replicable), and, from a statistical point of view,
more parsimonious than the ordinal step function.

fit.wenchuan3 <- mds(Wdelta, type = "interval")
fit.wenchuan3
##
Call:
mds(delta = Wdelta, type = "interval")
##
Model: Symmetric SMACOF
Number of objects: 17

(continued)

266 9 Multidimensional Scaling

Stress-1 value: 0.184
Number of iterations: 9

The resulting interval stress is clearly larger than the ordinal stress of 0.133. The
Shepard plots for both MDS models fitted so far can be produced as follows:

plot(fit.wenchuan2, plot.type = "Shepard",
main = "Shepard Diagram (Ordinal MDS)")

plot(fit.wenchuan3, plot.type = "Shepard",
main = "Shepard Diagram (Interval MDS)")

Figure 9.3 gives us a detailed insight into the dissimilarity transformations. We
see that, especially for smaller dissimilarities, the step function approximates the
points much better than the interval fit. This explains the differences in the stress
values.

Equation (9.2) shows that stress is an aggregate index of individual components.
The contribution of each object to the total stress can be computed easily. The

0.
0

0.
5

1.
0

1.
5

2.
0

Shepard Diagram (Ordinal MDS)

Dissimilarities

C
on

fig
ur

at
io

n
D

is
ta

nc
es

15 20 25 30 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

Shepard Diagram (Interval MDS)

Dissimilarities

C
on

fig
ur

at
io

n
D

is
ta

nc
es

Fig. 9.3 Shepard plots with black dots showing the disparities. Left panel: ordinal MDS. Right
panel: interval MDS

9.2 Exploratory MDS 267

2
4

6
8

10
12

Wenchuan Stress−per−Point
S

tr
es

s
P

ro
po

rt
io

n
(%

)

Objects

lossint

future dreams

flash sleep

avoidth
avoidact anger physior

numb

upset startle

amnesia
intrusion

hyper

concen

distant

Fig. 9.4 Stress-per-point plot for Wenchuan MDS

resulting values, typically reported as percentages, are called stress-per-point (SPP).
Figure 9.4 shows a graphical illustration.

plot(fit.wenchuan2, plot.type = "stressplot",
main = "Wenchuan Stress-per-Point")

We can think of points with high SPP contribution in a similar way as influential
outliers in regression. In our example, we see that “loss of interest in activities that
you used to enjoy” (lossint) provides a fairly high stress contribution of 12.11%.
From a statistical point of view, this indicates that this symptom has a “special”
relationship to the remaining symptoms in the solution. A nice way to incorporate
the SPP information into a configuration plot are bubble plots (see plot.smacof
function; large bubbles indicate points with high SPP values).

At this point we have two options: either we keep the point in the model and
proceed with additional goodness-of-fit examination or we eliminate the point from
the analysis. Let us keep this point for the moment and decide later whether it should
be kicked out.

A useful option to examine the stability of an MDS solution is to use a
bootstrap strategy, as proposed in Jacoby and Armstrong (2014). Simply speaking,

268 9 Multidimensional Scaling

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

MDS Bootstrap Plot

Dimension 1

D
im

en
si

on
 2

intrusion

dreams
flash

upset

physior

avoidthavoidact

amnesia

lossint

distant numb

future

sleep

anger

concen

hyper

startle

Fig. 9.5 Bootstrapped Wenchoun MDS with 95% confidence ellipses

it resamples the rows in the original persons × variable matrix and fits an MDS
solution for each of the subsamples. Based on these bootstrapped MDS solutions,
confidence ellipses can be plotted around the original points. The following chunk
performs the bootstrap (100 samples) and plots the configuration including the 95%
confidence ellipses.

library("colorspace")
set.seed(123)
bootWen <- bootmds(fit.wenchuan2, data = Wenchuan,

method.dat = "euclidean", nrep = 100)
cols <- rainbow_hcl(17, l = 60)
plot(bootWen, col = cols)

Figure 9.5 shows the variations of each object across multiple samples. This gives
us an idea of how stable the MDS configuration is across multiple samples. Another
option for stability assessment is to apply a jackknife, as implemented in smacof’s
jackknife function.

This concludes our prototype goodness-of-fit evaluation of an MDS solution. It is
imperative to look at all these results in combination instead of doing a “mechanical”

9.3 Confirmatory MDS 269

evaluation of the stress value. What are the options in case of a misfit? Basically,
we have two options: either we keep the dimensionality and remove one (or more)
objects with the highest SPP values or we increase the number of dimensions and
examine the goodness of fit again. It can happen that in some applications, more
than three dimensions are required. For such solutions we can produce configuration
plots for pairs of dimensions (e.g., D1 vs. D2, D1 vs. D3, D2 vs. D3, etc.). Note that
if, for interpretation purposes, the solution needs to be rotated, none of the goodness-
of-fit statistics changes.

What is left to do in our Wenchuan example is the clinical interpretation of the
configuration. The interpretability of a solution is in general an important criterion
when it comes to goodness-of-fit assessment. The final configuration plot is given
in Fig. 9.6. None of the two dimensions can be meaningfully interpreted. Rather,
we can establish three regions of symptoms which correspond exactly to the three
symptom clusters conceptualized in the DSM-IV (American Psychiatric Associa-
tion, 1994): intrusive recollection (B-cluster), avoidance/numbing (C-cluster), and
arousal (D-cluster). In addition, we can interpret the position of each point to all
the other points since all distances are Euclidean (e.g., the symptoms avoidth
and avoidact are highly similar since they are very close to each other in the
configuration plot). There is no need here to exclude symptoms with high SPP since
the obtained stress value is fairly low and the interpretation is quite clear.

Note that in this example we assigned the symptoms to regions based on the
information from the DSM-IV. From a more data-driven point of view, we can also
compute a cluster analysis on the fitted MDS configuration distances (e.g., by using
hierarchical clustering; see Mair et al. (2014) for an example) and incorporate the
cluster membership information into the configuration plot by coloring the objects
accordingly.

9.3 Confirmatory MDS

The MDS fit in the example above was carried out in an exploratory manner in
the sense that there were no restrictions on the configuration X when optimizing
the stress in Eq. (9.2). In some applications we have a priori information about the
configuration. This could be, for instance, an underlying psychological theory that
tells us in which region of the MDS space certain groups of objects are supposed to
be located. If this information is directly incorporated into the stress equation, we
call this an MDS with external constraints on the configuration.3

Another example of a priori information includes circular theories about the
configuration. In such cases we can force the points to be located on a circle (or,
more generally, on a sphere for p > 2). This is an example of an MDS with

3Note that in the example above we had such an information about symptom regions by means of
the DSM-IV clusters, but this was not anyhow incorporated into the model fit.

270 9 Multidimensional Scaling

−0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Wenchuan Configuration

Dimension 1

D
im

en
si

on
 2

intrusive recollection
avoidance/numbing
arousal

intrusion

dreams
flash

upset

physior

avoidth

amnesia

lossint

distant
numb

future

sleep

anger

concen

hyper

startle

avoidact

Fig. 9.6 Final configuration plot for Wenchuan MDS. Regions represent the three DSM-IV
clusters: intrusive recollection, avoidance/numbing, and arousal

internal constraints on the configuration. Both MDS variants belong to the family of
confirmatory MDS models and will be illustrated in the following two subsections.
For either scenario it can be of interest to compare the stress value of the restricted
solution with the stress from an unrestricted solution.

9.3.1 MDS with External Constraints

Borg and Lingoes (1980), De Leeuw and Heiser (1980), and Heiser and Meulman
(1983) proposed restricted MDS models with external constraints on the configu-
ration. The simplest form of a constraint is to formulate a linear restriction on the
n × p configuration matrix X:

X = ZC. (9.3)

9.3 Confirmatory MDS 271

Z is a known predictor matrix of dimension n × q which imposes a dimensionality
system on X. The predictors can be, for instance, numerical in terms of external
covariates, or one can specify an ANOVA-like indicator matrix. C is a q × p matrix
with weights to be estimated. Equation (9.3) can be incorporated into the stress
function (see Eq. (9.2)) and solved in an ordinal, interval, and ratio MDS manner.

There is one more technical aspect we can take into account for this type of MDS
models. Let us consider a simple example where our predictor is categorical (let us
say, four groups) and the matrix Z is established accordingly. In a configuration
plot, we would have four different points only: one for the group 1 objects, one for
the group 2 objects, etc. This can be interesting for some special applications, but
in general this is not desirable. Rather, we want the objects belonging to a group to
inhabit a certain MDS region, but they should not be exactly on the same spot. In
order to fit such regionally constrained restrictions, we can incorporate the idea of
OS into Eq. (9.3). Instead of using the observed restriction matrix Z, we perform an
additional OS step on the predictors. Equation (9.3) becomes

X = ẐC, (9.4)

with Ẑ = f (Z), where f (·) can be a ratio, interval, or ordinal transformation.
To illustrate a regionally constrained MDS with OS on the external variables,

we use an example from work psychology. Bilsky and Jehn (2002) and Borg et al.
(2011) use data based on the organizational culture profile (OCP; O’Reilly et al.,
1991). The OCP is an instrument that contains a set of value statements that can be
used to idiographically assess both the extent to which certain values characterize
a target organization and an individual’s preference for that particular configuration
of values. The OCP requires individuals to sort 54 items into nine ordered
categories. Most of the 54 items can be classified into four classes derived from
Schwartz’ theory of values (Schwartz, 1992): conservation, openness to change,
self-transcendence, and self-enhancement. Twelve items remain unclassified. The
data are included in the smacof package by means of a 54 × 54 correlation matrix
and an additional column with the items’ codings.

We convert the similarities into dissimilarities and fit an unrestricted, ordinal 2D
MDS solution first. The resulting configuration plot is given in Fig. 9.7.

library("MPsychoR")
library("smacof")
ocpD <- sim2diss(OCP[,1:54])
fit.ocp1 <- mds(ocpD, type = "ordinal")

272 9 Multidimensional Scaling

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5
OCP Configuration (Unrestricted)

Dimension 1

D
im

en
si

on
 2

i1
i2

i3

i4

i5

i6
i7 i8

i9

i10

i11

i12

i13i14

i15

i16

i17

i18

i19

i20
i21

i22

i23

i24

i25

i26

i27 i28
i29

i30

i31

i32

i33

i34

i35

i36

i37

i38

i39

i40

i41

i42

i43

i44

i45

i46

i47
i48

i49
i50

i51

i52 i53

i54

Classes

Openness to change
Conservation
Self−transcendence
Self−enhancement
Unclassified

Fig. 9.7 OCP configuration: unrestricted MDS solution, objects colored according to OCP classes

The stress value for this unrestricted solution is 0.233. Not surprisingly, the
unclassified items are scattered all over. For the classified items, we see that each
group inhabits a certain region of the MDS space—with a few exceptions: in the
“openness to change” class, items 10 and 46 are far off from the other items
belonging to this group; in the “self-enhancement” class, MDS moved items 35
and 36 away from their friends.

In the next step, we fit a regionally constrained MDS solution by forcing the
items belonging to the same class to inhabit the same region in the MDS space. The
first six rows of Z are the following:

Z <- OCP[,56:57]
head(Z)
z1 z2
1 NA NA
2 NA NA
3 2 1
4 2 1
5 1 1
6 1 2

9.3 Confirmatory MDS 273

−0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5

OCP Configurations (Regional Restrictions)

Dimension 1

D
im

en
si

on
 2

i1
i2

i3

i4

i5

i6

8i7i

i9

i10

i11

i12

i13i14

i15

i16

i17

91i81ii20

i21

i22

i23

i24

i25

i26

i27 i28
i29

i30

i31

i32

i33

i34

63i 53i

i37

i38

i39

i40
i41

i42

i43

i44 i45i46

i47

i48

i49

i50 i51

i52

i53

i54

Facets

Openness to change
Conservation
Self−transcendence
Self−enhancement
Unclassified

Fig. 9.8 OCP configuration: regionally restricted MDS (with OS on the external variables),
objects colored according to OCP facets

We see, for example, that the first two items have no regional constraints, whereas
items 3 and 4 belong to the same class. In addition to Z, we define the following
setup for the smacofConstraint call. We use the final configuration of the first
model as starting solution.4 Through the constraint argument, we force the
matrix C to be diagonal, and through constraint.type, we tell the function
to perform a monotone transformation of the predictors in Z using the primary
approach to ties (default).

fit.ocp2 <- smacofConstraint(ocpD, type = "ordinal",
constraint = "diagonal", init = fit.ocp1$conf,
external = Z,
constraint.type = "ordinal")

This call leads to a stress-1 value of 0.318 which is considerably larger than the
unrestricted stress value. The configuration plot is given in Fig. 9.8. The “openness

4Fitting an exploratory MDS first and then using the resulting configurations as starting values are
in general a good strategy, unless we have a starting solution that is based on a theory.

274 9 Multidimensional Scaling

to change” region is quite problematic in the sense that the region seems to be
collapsed (degenerated). In addition, several points of the “conservation” class lie
on the vertical border of the region. The unclassified items are nicely scattered in
the space since we did not assign any restriction to them.

For this example we conclude that the regionally constrained MDS is too
restrictive. Based on the exploratory MDS configuration, we could eliminate items
that were far off from the remaining items in a class (e.g., i46, i10, i35, i36)
and subsequently refit the restricted MDS without these items.

9.3.2 MDS with Internal Constraints: Spherical SMACOF

An alternative way to impose constraints on MDS configurations is through
geometric restrictions. The most popular version involves spherical restrictions (Cox
and Cox, 1991). That is, in a 2D space, we force the configurations to be on a
circle, whereas in the 3D space, they lie on a sphere. In the SMACOF dictionary,
this technique can be found under spherical SMACOF, other sources sometimes
call it weakly constrained MDS. Examples of circular theories in psychology are
Schwartz’ circumplex theory of basic values (Schwartz, 1992) and color circles
(Ekman, 1954). The concept of internally restricted MDS can be carried further
to more complicated geometric shapes such as brain surfaces. Elad et al. (2005)
present a large variety of MDS projections on non-sphere-like objects.

In this section we outline two algorithms for imposing spherical restrictions
on MDS configuration. Technical details can be found in De Leeuw and Mair
(2009). The first approach is called primal method. This algorithm incorporates the
constraints directly into the stress loss function. Using this method, the objects are
always mapped perfectly on a circle. The algorithm is considerably slow for large
data settings, especially when it comes to ordinal versions of spherical MDS.

The second approach is called dual method which uses two auxiliary matrices P1
and P2: P1 contains the dissimilarities and P2 the restrictions. Correspondingly, the
stress consists of two parts:

σ(X; P1, P2) = σ(X; P1) + λσ(X; P2). (9.5)

The first term reflects the ordinary (unrestricted) MDS fit. The second term is
responsible for the restrictions and includes the penalty term λ. The larger the λ,
the harder we force the points to be perfectly on a circle, with the cost that the fit
gets worse. For a low λ, the configuration might slightly deviate from the circle, but
it gives us a better fit. Therefore, it might be the case that we have to play around
with the penalty parameter in order to have satisfactory circle fit/goodness-of-fit
trade-off.

As in MDS with external constraints, a good strategy in practice is to fit both
an unrestricted solution and a restricted version and then compare the stress values.
In this section we use the OCP data once more. In Fig. 9.7 we had an unrestricted,

9.3 Confirmatory MDS 275

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5
Configuration Plot

Dimension 1

D
im

en
si

on
 2

i1
i2

i3

i4

i5i6i7 i8

i9i10 i11

i12

i13i14

i15

i16

i17

i18

i19

i20

i21

i22

i23

i24

i25

i26

i27
i28i29

i30

i31

i32

i33

i34

i35i36i37

i38

i39

i40

i41

i42

i43

i44

i45

i46

i47

i48

i49i50

i51

i52

i53

i54

Facets

Openness to change
Conservation
Self−transcendence
Self−enhancement
Unclassified

Fig. 9.9 OCP configurations: circular restriction

ordinal 2D solution. This plot suggests that many items are aligned approximately
on a circle. Some points deviate from this circular structure and are shifted toward
the center. Using a spherical MDS, we can force all the points to be on a circle. The
distances between the objects can be interpreted by means of the distances on the
circumference (i.e., geodesic distances).

Let us fit an ordinal, spherical 2D MDS on the OCP data. Remember that the
stress of the ordinal, unrestricted MDS solution was 0.233. We use the dual method
and increase the penalty term such that the points are exactly on a circle.

fit.ocp3 <- smacofSphere(ocpD, penalty = 1000, type = "ordinal")

The resulting stress value is 0.262 which is barely worse than the unrestricted
stress. The corresponding configuration plot is given in Fig. 9.9. Items deviating
from the circular structure (e.g., i35 and i36) deserve closer attention. Of course,
we could simply eliminate them and refit the model, but we could also aim to
reformulate these items in a subsequent study. Note that goodness-of-fit assessment
for both externally and internally constrained MDS models can be carried out in the
same way as described in Sect. 9.2.3.

276 9 Multidimensional Scaling

9.4 Unfolding

9.4.1 Data Structure for Unfolding

The first versions of unfolding models (i.e., unidimensional unfolding) can be traced
back to Coombs (1950). In its basic form, unfolding is a model of preferential
choice: n judges rank m stimuli according to their preference. As a simple toy
example, let us consider five bands, ranked by three fans:

Iron Maiden Metallica Slayer Judas Priest Megadeth

Horst 1 3 2 4 5

Klaus 1 2 3 4 5

Helga 1 5 4 2 3

A unidimensional unfolding fit leads to the configuration given in Fig. 9.10. First
of all we see that both rows and columns of the data matrix are being scaled:
individuals are represented by ideal points, objects by object points. This makes
unfolding a dual scaling method. As we will see, in unfolding distances among row
and column objects are defined, as opposed to correspondence analysis (CA; see
Sect. 7.1.2 for a discussion regarding the interpretation). This property is valuable
when it comes to interpretation.

M
et

al
lic

a

S
la

ye
r

Ir
on

 M
ai

de
n

Ju
da

s
P

rie
st

M
eg

ad
et

h

K
la

us

H
or

st

H
el

ga

Fig. 9.10 Unidimensional unfolding for band rankings: bands and fans are located in a unidimen-
sional space

In our example we see that Iron Maiden is everyone’s favorite band. Thus, Iron
Maiden is scaled as close as possible to all three raters. Horst and Klaus have a very
similar taste, both like Slayer and Metallica. Klaus likes Metallica a bit more than
Horst and, consequently, he is closer to them than Horst. Apart from Iron Maiden,
Helga’s taste is fairly different from the other two guys: she likes Judas Priest and
Megadeth better than Metallica and Slayer. Thus, she is placed closer to these two
bands.

9.4 Unfolding 277

Let us look at the data from a dissimilarity angle. For instance, we can say that
Horst is closer to Slayer than to Metallica. Or Helga is closer to Megadeth than to
Metallica. The fact that we are dealing with dissimilarities implies that unfolding is
a variant of MDS and can be incorporated into the SMACOF framework.

This perspective suggests that unfolding is not only applicable to rankings but
can also be applied to other dissimilarity settings such as ratings. We considered
this distinction already in Sect. 5.2 within the context of preference modeling. Let
us look at another toy example, this time with ratings:

I1 I2 I3 I4 I5

Horst 1 5 3 1 1

Klaus 1 2 3 3 3

Helga 4 1 4 5 5

We have five items (5-point rating scale; with 1 . . . “fully agree” and 5 . . . “fully
disagree”). For Horst this implies that he is close to item 1 and far away from item
2. Note that in order to apply unfolding, the data have to be dissimilarities, which
is the case in our toy example. If the category labels would be 5 . . . “fully agree”
and 1 . . . “fully disagree,” the scores have to be reversed; otherwise they represent
similarities. The unidimensional unfolding solution for the toy example is given in
Fig. 9.11.

I4I5I1I2I3

H
or

st

K
la

us

H
el

ga

Fig. 9.11 Unidimensional unfolding for ratings: persons and items are located in a unidimensional
space

The natural extension of unidimensional unfolding is multidimensional unfold-
ing (Coombs, 1964; Mair et al., 2015) since in many practical applications we
certainly need more than one dimension.

9.4.2 Rectangular SMACOF: Theory

In SMACOF slang, unfolding is called rectangular SMACOF. Our observed
(rectangular) dissimilarity matrix Δ is of dimension n × m with elements δij

(i = 1, . . . , n and j = 1, . . . , m). The stress (cf. Eq. (9.2)) can be written as

278 9 Multidimensional Scaling

σ(X1, X2) =
n∑

i=1

m∑

j=1

(d̂ij − dij (X1, X2))
2. (9.6)

The fitted Euclidean distances (p-dimensional space) become

dij (X1, X2) =
√
√
√
√

p∑

s=1

(x1is − x2js)2. (9.7)

Obviously, two configuration matrices are involved: the n×p matrix X1 containing
the row configuration and the m×p matrix X2 with the column configuration. Both
can be represented in the same MDS space. In terms of dissimilarity transformations
d̂ij = f (δij), the same transformation functions (i.e., ratio, linear, ordinal) can be
applied as in ordinary MDS. Ordinal unfolding is technically more complicated
because a penalization terms needs to be included (Busing et al., 2005) in order to
avoid a degenerate solution. In any case, the stress value can again be normalized to
stress-1.

9.4.3 Unfolding Example: Personal Values

The following example uses a dataset analyzed in Borg et al. (2017). Their research
question was whether the value circle exists within persons and not only across
persons. The instrument they used to measure the values was the Schwartz Value
Survey (SVS; Schwartz et al., 2000). In total, the dataset has 327 persons and 10
variables representing value scores (dissimilarities): power, achievement, hedonism,
stimulation, self-direction, universalism, benevolence, tradition, conformity, and
security. Using smacof, the unfolding model can be fitted as follows:

library("MPsychoR")
library("smacof")
fitSchwartz <- unfolding(indvalues, type = "interval")

We get a stress-1 value of 0.171. Goodness-of-fit evaluation of unfolding models
can be performed in the same way as in ordinary MDS, as described in Mair et al.
(2016).

Let us represent the solution by means of a joint configuration plot which plots
the row and column scores into the same space. The distances between each pair of
points can be interpreted. Note that in this application, we are not really interested
in interpreting associations among individuals. Rather, we focus on the value scores
and see whether they are approximately arranged on a circle. The resulting plot is
given in Fig. 9.12, which also includes a least-squares-based circle fit on top of the
column configuration.

9.4 Unfolding 279

plot(fitSchwartz, label.conf.rows = list(label = FALSE))
circ <- fitCircle(fitSchwartz$conf.col[,1],

fitSchwartz$conf.col[,2])
draw.circle(circ$cx, circ$cy, circ$radius, border = "gray",

lty = 2)

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Joint Configuration Plot

Dimension 1

D
im

en
si

on
 2

power

achievement
hedonism

stimulation

self−direction

universalism

benevolence

tradition

conformity
security

Fig. 9.12 Unfolding on individual values. On top of the column configuration a circle is drawn
that shows the approximate circular alignment of the values

Borg et al. (2017) came to the conclusion that the value circle also exists within
persons.

An interesting variant of this example would be to fit a spherically restricted
unfolding model (circular unfolding) which forces the column configuration to be
on a circle, similar to MDS with internal constraints. Subsequently, the stress values
for both models can be compared. Using the unfolding function, this can be
achieved by setting circle="column".

Another unfolding extension is row-conditional unfolding. It abandons the
assumption of homogeneous or consistent response scores across all individuals. For

280 9 Multidimensional Scaling

instance, it is known from the literature that there are cultural scoring differences,
especially when it comes to extreme responses (see, e.g., Hui and Triandis, 1989). In
such cases, row-conditional unfolding can be applied. In the unfolding function,
this can be achieved by setting conditionality="row".

As mentioned above, different transformation functions can be considered in
unfolding as well. In the corresponding function in smacof, the type argument
allows for different specifications. For instance, using type="ordinal", ordinal
unfolding can be performed.

9.5 MDS Extensions and Related Models

In this section we discuss some other extensions and variants of MDS, such
as Procrustes and models for individual differences scaling. Other approaches,
worthwhile mentioning here since they are implemented in smacof, are the fol-
lowing: First, unidimensional scaling is an MDS where we project the objects on
a single dimension. This approach is relevant for applications where we have a
single underlying trait (e.g., easiness-difficulty continuum, time, etc.). A standard
majorization solution suffers from the fact that we always end up in a local
minimum. The smacof package offers a combinatorial solution to this problem
which works reasonably fast for a small number of objects (Mair and De Leeuw,
2015).

Second, asymmetric MDS can be applied to scenarios where the dissimilarity
between two objects is not symmetric (i.e., the directed dissimilarity from object 1
to object 2 is not the same as the one from object 2 to object 1). In this case one can
apply the drift vector model, which produces a configuration plot that displays the
symmetric part and the skew-symmetric part of the data as a field of arrows attached
to these points. In smacof this can be achieved using the driftVector function;
details can be found in Borg and Groenen (2005).

9.5.1 Procrustes

Sometimes it is of interest to compare two (or more) MDS configurations. For
instance, we could fit one MDS model for the females in a dataset and a second
one for the males and compare the configurations. Even though the solutions may
actually be very similar, the configuration plots can look quite differently (e.g.,
because of different spatial orientations). Procrustes, named after “Procrustes the
stretcher” in Greek mythology, deals with this problem and matches configurations.
Note that Procrustes does not change the fit of an MDS model: it only performs
rotations, dilations, and translations of the configuration.

Conceptually, it works as follows. One configuration X is considered to be the
target configuration. It does not matter which one of the two we pick as target.

9.5 MDS Extensions and Related Models 281

The second configuration Y is the testee configuration subject to three possible
transformations: rotation with rotation matrix T, dilation with dilation factor s,
and translation with translation vector t. The resulting Procrustes configuration Ŷ
can be plotted into the same MDS space as X, subject to visual inspection of
configuration differences. In case of more than two MDS solutions (e.g., from
different experimental conditions), each of them can be Procrustes transformed with
respect to a target configuration.

As a general descriptive measure that quantifies the configurational similarity
between the two configurations X and Y, we can compute a congruence coefficient
based on the configuration distances:

c(X, Y) =
∑

i<j dij (X)dij (Y)
√∑

i<j d2
ij (X)

√∑
i<j d2

ij (Y)
. (9.8)

The congruence coefficient becomes 1 if the configurations perfectly match and 0 if
they are maximally dissimilar.

Note that correlating distances does not properly assess the similarity of config-
urations (see Borg and Groenen, 2005, p. 440). In addition, it is important to point
out that the congruence coefficient as well as Procrustes can be applied to any point
configuration in an Euclidean space and is therefore not limited to MDS.

To illustrate Procrustes, we use data derived from an fMRI experiment on
goal-directed visual processing (Vaziri-Pashkam and Xu, 2017).5 In this dataset
the following eight objects were presented to participants: body (BD), cat (CT),
chair (CH), car (CR), elephant (EL), face (FA), house (HO), and scissors (SC).
The experiment involved three experimental conditions (color on objects and
background, color on dots, color on objects), three brain regions of interest, and
two tasks (color and shape).

Below we focus on the V1 (primary visual cortex) activation in the “color on
objects and background” condition. We have two dissimilarity matrices6: one for
the color task and one for the shape task. First, we fit an interval MDS on each
of the two dissimilarity matrices separately. The left panel of Fig. 9.13 plots both
configurations in the same space. They look seemingly different.

library("MPsychoR")
data("Pashkam")
fitcolor <- mds(Pashkam$color, type = "interval") ## color task
fitshape <- mds(Pashkam$shape, type = "interval") ## shape task

5In the fMRI area, MDS applications fall under the umbrella term representational similarity
analysis (see Sect. 14.5).
6Details on how the dissimilarity matrices were assessed can be found in Vaziri-Pashkam and Xu
(2017).

282 9 Multidimensional Scaling

Now we apply Procrustes with the color configuration as target X and the shape
configuration as testee Y, which will be transformed accordingly.

fitproc <- Procrustes(X = fitcolor$conf, Y = fitshape$conf)
fitproc
##
Call: Procrustes(X = fitcolor$conf, Y = fitshape$conf)
##
Congruence coefficient: 0.99
##
Rotation matrix:
D1 D2
D1 0.880 0.475
D2 0.475 -0.880
##
Translation vector: 0 0
Dilation factor: 0.978

−1.0 −0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Separate MDS Configurations

Dimension 1

D
im

en
si

on
 2

BD

CR

CT

CH

EL

FA

HO

SC

BD

CR

CT

CH

EL

FA

HO

SC

Color Task
Shape Task

−1.0 −0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Procrustes Configuration

Dimension 1

D
im

en
si

on
 2

BD

CR

CT

CH

EL

FA

HO

SC

BD

CR

CT

CH

EL

FA

HO

SC

Color Task
Shape Task

Fig. 9.13 V1 activation in the “color on objects and background” condition on eight objects. Left
panel: Configurations based two separate MDS fits. Right panel: Procrustes transformed solution

The function returns the rotation matrix T and the dilation factor s. In MDS
applications the translation vector t contains 0s due to normalized elements in the
configuration matrix. We get a congruence coefficient of 0.99 which suggests that
both configurations are highly similar. This is shown in the right panel of Fig. 9.13
where we see that all pairs of objects are located close to each other.

9.5 MDS Extensions and Related Models 283

9.5.2 Individual Differences Scaling

Another important MDS extension involves multiple n × n input dissimilarity
matrices Δ1,Δ2, . . . ,ΔK . This set of matrices can be, for instance, based on
dissimilarity ratings of K individuals. By considering the models we have seen
so far, we can think of two approaches. First, a simple approach would be to
fit K individual MDS models and apply Procrustes transformations to make the
K configurations comparable. Second, another approach would involve averaging
the dissimilarities across the K matrices and fitting an MDS on the resulting
dissimilarity matrix. By doing this we obviously lose individual configuration
information, and we assign the same weight to each individual.

A different MDS approach for such scenarios are models for individual differ-
ences scaling, sometimes also called three-way MDS. Note that they extend MDS
in the same way as three-way PCA extends PCA (see Sect. 6.3). Three-way MDS
models allow for large systematic differences among the Δk’s. They involve K

individual configurations Xk , and the joint configuration space X, called group
stimulus space. The most prominent three-way MDS model is called INDSCAL
model (Carroll and Chang, 1970). INDSCAL assigns a different weight to each
individual. Formally, it uses a weighted Euclidean distance on the individual
configurations:

dij (Xk) =
√
√
√
√

p∑

s=1

csk(xis − xjs)2, (9.9)

where the weights csk can be interpreted as salience of dimension s for individual k

(Borg et al., 2018). This equation implies that the individual spaces can be generated
from a single group stimulus space by appropriate weighting of the dimensions. The
basic stress equation extends to

σ(X) =
K∑

k=1

∑

i<j

(d̂ij,k − dij (Xk))
2. (9.10)

We can plot the group stimulus space X as well as the individual spaces Xk , in case
we are interested in individual configurations. We can perform three-way MDS in
an ordinal, ratio, and interval manner.

INDSCAL assumes common dimensions for each individual. This is a conve-
nient property when it comes to interpretation. It implies that the dimensions are
fixed and the group stimulus space should not be subject to rotations. Abandoning
the assumption of common dimensions leads to another prominent model, called
IDIOSCAL model (Carroll and Wish, 1974). For additional variants of three-way
MDS models, see De Leeuw and Mair (2009).

The dataset we use for illustrating INDSCAL is from the cognitive neuroscience
area and based on fMRI scans. Tamir et al. (2016) scanned 20 participants while

284 9 Multidimensional Scaling

performing a task designed to elicit their thoughts about 60 mental states. On each
trial, participants saw the name of a mental state (e.g., “awe”) and decided which of
two scenarios would better evoke that mental state in another person (e.g., “seeing
the Pyramids” or “watching a meteor shower”). Based on these measures, they
derived a 60 × 60 correlation matrix for each state, subsequently converted into
a dissimilarity matrix. In total, we have 20 such dissimilarity matrices, one for each
participant.7

−1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5

Neural Activity Space

Dimension 1

D
im

en
si

on
 2

affection

agitation

alarm

anticipation

attention

awareness

awe

belief

cognition

consciousness

craziness
curiosity

decision

desire disarray

disgust

distrust

dominance

drunkenness

contemplation

earnestness

ecstasy

embarrassment

exaltation

exhaustion

fatigue

friendliness

imagination

insanity

inspiration

intrigue

judgment

laziness

lethargy

lust

nervousness

objectivity

opinion

patience

peacefulness

pensiveness

pity

planning

playfulness

reason

relaxationsatisfaction

self−consciousness

self−pity

seriousness

skepticism

sleepiness

stupor

subordination

thought

trance

transcendence

uneasiness

weariness

worry

low

high
Social

Fig. 9.14 Group stimulus space for neural activity data. Color gradient reflects magnitude on
external social dimension

Let us fit an interval INDSCAL using smacof on a subset of these data (ten
individuals only) since it takes a while to estimate the model on the full dataset.

7How these matrices are derived from the brain scans is described in detail in Sects. 14.2.4 and 14.5.

References 285

data("NeuralActivity")
fitNeuro <- indscal(NeuralActivity[1:10], type = "interval",

itmax = 5000)

The stress is 0.387. A thorough INDSCAL goodness-of-fit analysis would
involve the usual steps as for any other MDS model.

The configuration plot (group stimulus space) is given in Fig. 9.14. As an addi-
tional plotting flavor, we incorporate external information (social dimension scores)
in the configuration plot and color the points according to their scores on this scale.
We see that states where interaction with other people is required (e.g., affection,
friendliness, playfulness, dominance, lust) score highly on the social dimension.
A more sophisticated way to include external variable information into an MDS
solution is presented in Sect. 10.4, when we introduce MDS biplots. In case it is
of interest, the individual configurations can be extracted using fitNeuro$conf
and subject to plotting. This allows researchers to explore individual configuration
differences. No need for Procrustes here, since this is done internally.

References

American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders
(DSM-IV) (4th ed.). Washington, DC: American Psychiatric Association.

Bilsky, W., & Jehn, K. A. (2002). Organisationskultur und individuelle Werte: Belege für eine
gemeinsame Struktur [Organizational culture and individual values: Evidence for a common
structure]. In M. Myrtek (Ed.), Die Person im biologischen und sozialen Kontext [The person
in biological and social context] (pp. 211–228). Göttingen: Hogrefe.

Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling: Theory and applications
(2nd ed.). New York: Springer.

Borg, I., & Lingoes, J. C. (1980). A model and algorithm for multidimensional scaling with
external constraints on the distances. Psychometrika, 45, 25–38.

Borg, I., & Mair, P. (2017). The choice of initial configurations in multidimensional scaling: Local
minima, fit, and interpretability. Austrian Journal of Statistics, 46, 19–32.

Borg, I., Groenen, P. J. F., Jehn, K. A., Bilsky, W., & Schwartz, S. H. (2011). Embedding
the organizational culture profile into Schwartz’s theory of universals in values. Journal of
Personnel Psychology, 10, 1–12.

Borg, I., Bardi, A., & Schwartz, S. H. (2017). Does the value circle exist within persons or only
across persons? Journal of Personality, 85, 151–162.

Borg, I., Groenen, P. J. F., & Mair, P. (2018). Applied multidimensional scaling and unfolding (2nd
ed.). New York: Springer.

Busing, F. M. T. A., Groenen, P. J. F., & Heiser, W. J. (2005). Avoiding degeneracy in
multidimensional unfolding by penalizing on the coefficient of variation. Psychometrika, 70,
71–98.

Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling
via an N-way generalization of Eckart-Young decomposition. Psychometrika, 35, 283–319.

Carroll, J. D., & Wish, M. (1974). Models and methods for three-way multidimensional scaling. In
D. H. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.), Contemporary developments in
mathematical psychology (Vol. II, pp. 57–105). San Francisco: Freeman.

286 9 Multidimensional Scaling

Cliff, N. (1973). Scaling. Annual Review of Psychology, 24, 473–506.
Coombs, C. H. (1950). Psychological scaling without a unit of measurement. Psychological

Review, 57, 145–158.
Coombs, C. H. (1964). A theory of data. New York: Wiley.
Cox, T. F., & Cox, M. A. A. (1991). Multidimensional scaling on a sphere. Communications in

Statistics: Theory and Methods, 20, 2943–2953.
Cox, T. F., & Cox, M. A. A. (2001). Multidimensional scaling (2nd ed.). Boca Raton: Chapman &

Hall/CRC.
De Leeuw, J. (1977). Applications of convex analysis to multidimensional scaling. In J. Barra, F.

Brodeau, G. Romier, & B. van Cutsem (Eds.), Recent developments in statistics (pp. 133–145).
Amsterdam: North Holland Publishing Company.

De Leeuw, J., & Heiser, W. J. (1980). Multidimensional scaling with restrictions on the configura-
tion. In P. R. Krishnaiah (Ed.), Multivariate analysis (Vol. V, pp. 501–522). Amsterdam: North
Holland Publishing Company.

De Leeuw, J., & Mair, P. (2009). Multidimensional scaling using majorization: SMACOF in R.
Journal of Statistical Software, 31(3), 1–30. http://www.jstatsoft.org/v31/i03/

De Leeuw, J., & Mair, P. (2015). Shepard diagram. In Wiley statsRef: Statistics reference online.
New York: Wiley. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118445112

De Leeuw, J., & Stoop, I. (1984). Upper bounds for Kruskal’s stress. Psychometrika, 49, 391–402.
Ekman, G. (1954). Dimensions of color vision. Journal of Psychology, 38, 467–474.
Elad, A., Keller, Y., & Kimmel, R. (2005). Texture mapping via spherical multidimensional scaling.

In R. Kimmel, N. Sochen, & J. Weickert (Eds.), Scale space and PDE methods in computer
vision (Lecture notes in computer science, Vol. 3459, pp. 443–455). Berlin: Springer.

Gower, J. C., & Legendre, P. (1986). Metric and Euclidean properties of dissimilarity coefficients.
Journal of Classification, 3, 5–48.

Heiser, W. J., & Meulman, J. (1983). Constrained multidimensional scaling, including confirma-
tion. Applied Psychological Measurement, 7, 381–404.

Hui, C. H., & Triandis, C. H. (1989). Effects of culture and response format on extreme response
style. Journal of Cross-Cultural Psychology, 20, 296–309.

Jacoby, W. G., & Armstrong, D. A. (2014). Bootstrap confidence regions for multidimensional
scaling solutions. American Journal of Political Science, 58, 264–278.

Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika, 29, 1–27.

Kruskal J. B. (1964b). Nonmetric multidimensional scaling: A numerical method. Psychometrika,
29, 115–129.

Mair, P., & De Leeuw, J. (2015). Unidimensional scaling. In Wiley statsRef: Statistics reference
online. New York: Wiley.

Mair, P., Rusch, T., & Hornik, K. (2014). The grand old party – A party of values? SpringerPlus 3.
http://www.springerplus.com/content/3/1/697

Mair, P., De Leeuw, J., & Wurzer, M. (2015). Multidimensional unfolding. In Wiley statsRef:
Statistics reference online. New York: Wiley.

Mair, P., Borg, I., & Rusch, T. (2016). Goodness-of-fit assessment in multidimensional scaling and
unfolding. Multivariate Behavioral Research, 51, 772–789.

McNally, R. J., Robinaugh, D. J., Wu, G. W. Y., Wang, L., Deserno, M. K., & Borsboom, D. (2015).
Mental disorders as causal systems: A network approach to posttraumatic stress disorder.
Clinical Psychological Science, 3, 836–849.

Meyer, D., & Buchta, C. (2015). proxy: Distance and similarity measures. R package version
0.4–15. http://CRAN.R-project.org/package=proxy

O’Reilly, C. A., Chatman, J. A., & Caldwell, D. F. (1991). People and organizational culture:
A profile comparison approach to assessing person-organization fit. Academy of Management
Journal, 34, 487–516.

Schwartz, S. H. (1992). Universals in the content and structure of values: Theoretical advances and
empirical tests in 20 countries. Advances in Experimental Social Psychology, 25, 1–62.

http://www.jstatsoft.org/v31/i03/
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118445112
http://www.springerplus.com/content/3/1/697
http://CRAN.R-project.org/package=proxy

References 287

Schwartz, S. H., Sagiv, L., & Boehnke, K. (2000). Worries and values. Journal of Personality, 68,
309–346.

Shepard, R. N. (1962a). The analysis of proximities: Multidimensional scaling with an unknown
distance function I. Psychometrika, 27, 125–140.

Shepard, R. N. (1962b). The analysis of proximities: Multidimensional scaling with an unknown
distance function II. Psychometrika, 27, 219–246.

Spence, I., & Ogilvie, J. C. (1973). A table of expected stress values for random rankings in
nonmetric multidimensional scaling. Multivariate Behavioral Research, 8, 511–517.

Tamir, D. I., Thornton, M. A., Contreras, J. M., & Mitchell, J. P. (2016). Neural evidence that
three dimensions organize mental state representation: Rationality, social impact, and valence.
Proceedings of the National Academy of Sciences of the United States of America, 113, 194–
199.

Torgerson, W. S. (1952). Multidimensional scaling: I. Theory and method. Psychometrika, 17,
401–419.

Vaziri-Pashkam, M., & Xu, Y. (2017). Goal-directed visual processing differentially impacts
human ventral and dorsal visual representations. The Journal of Neuroscience, 37, 8767–8782.

Weathers, F. W., Litz, B. T., Herman, D. S., Huska, J. A., & Keane, T. M. (1993). The PTSD
checklist (PCL): Reliability, validity, and diagnostic utility. Paper presented at the meeting of
the International Society for Traumatic Stress Studies, San Antonio.

Chapter 10
Biplots

10.1 Variable Space and Subject Space Representation

Biplots were introduced Gabriel (1971) and are a powerful tool for visualizing
complex, multivariate data settings. As an example we can think of modern
psychological experiments where it is often of interest to display associations
between neural and behavioral data.

An easy way to approach biplots is through the distinction between variable
space and subject space representation (Reyment and Jöreskog, 1996; Borg and
Staufenbiel, 2007). Simply speaking, we look at the person × variable matrix from
two directions: column-wise and row-wise.

Let us start with the variable space. Everyone who has ever seen a scatterplot
knows what a variable space representation is. To illustrate, we use the brain size/IQ
data by Willerman et al. (1991), already considered in Sect. 6.1.2. In this study the
authors collected a sample of 40 psychology students. The students took subtests of
the Wechsler Adult Intelligence Scale-Revised (WAIS-R) which resulted in a full
scale IQ (FSIQ), a verbal IQ (VIQ), and a performance IQ (PIQ). In addition to
gender, body height, and body weight, the dataset includes an MRI pixel count
variable which measures the brain size. For the moment, we focus on the two
variables VIQ and PIQ only. A scatterplot of these two variables is given in the left
panel of Fig. 10.1. The axes are determined by the two variables. Each participant
gets a point in this 2D space corresponding to his/her IQ values.

For a simple subject space representation, the axes are determined by individuals
(e.g., the first two participants). We would get a point for each variable, assuming
that they are on the same scale. This Cartesian representation is not of any practical
relevance since we typically have a large amount of subjects and the dimensionality
of the space would be considerably high. However, we can apply the following trick:
we get rid of the axes and represent each variable as vector. Such representations
are often used in more technical books on regression and multivariate statistics (see,
e.g., Wickens, 1995). We make use of the geometric idea that each variable can be

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_10

289

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_10&domain=pdf
https://doi.org/10.1007/978-3-319-93177-7_10

290 10 Biplots

80 100 120 140

80
10

0
12

0
14

0

IQ Variable Space

VIQ

P
IQ

IQ subject space

VIQ

PIQ

Fig. 10.1 Left panel: Variable space representation of verbal and performance IQ. Right panel:
verbal IQ and performance IQ in subject space

represented as a vector: x of length ‖x‖ (Euclidean norm1) and y of length ‖y‖. This
representation, as given in the right panel of Fig. 10.1, contains three points only:
one point at the origin (variables should be centered), one point for x (determined
by its length; VIQ in our example), and one point for y (determined by its length
and the angle with respect to x; PIQ in our example).

The steps to create such a plot are the following:

1. center the variables (let x and y denote the centered vectors);
2. compute the vector norms of the centered variables, i.e., ‖x‖, ‖y‖;
3. compute the angle θ between the vectors2: θ = cos−1 〈x,y〉

‖x‖‖y‖ ;
4. plot the vectors in a 2D space.

As mentioned, we drop the usual Cartesian coordinate system for the moment since
we do not have any dimensional reference system. We draw one vector horizontally
and represent the other vector in relation to it.

The vectors in the subject space contain important information. The length of
the vectors reflect the dispersion of each variable (precisely: σ(x)

√
n − 1 with n

as the number of observations). The angle θ between the vectors translates into a
correlation:

r(x, y) = cos (θ). (10.1)

1‖x‖ =
√∑

i x2
i

2The inner product is 〈x, y〉 = ∑
i xiyi .

10.2 Regression Biplots 291

In our example, the length of the VIQ vector is 147.48, the length of the PIQ
vector is 140.33, and the angle is 38.91◦. Note that instead of just centering, we
can also standardize, which changes the length of the vectors (they have the same
length) but not the angle. It will be important for later applications that these vectors
actually define new axes. That is, we can think of a line that extends a vector in both
directions.

A key feature of the subject space representation is that we can add additional
variables to this plot. The feasibility of the interpretation in terms of lengths and
angles depends on the number of dimensions of the subject space: by projecting
many variables into a 2D subject space, we might lose substantial structural
information.

The geometric idea behind biplots is to merge variable space and subject space.
That is, we represent the rows (e.g., persons) of a matrix and its columns (variables)
in a single plot. This representation occurs within the context of a particular
statistical model such as regression, principal component analysis (PCA; see
Chap. 6), multidimensional scaling (MDS; see Chap. 9), correspondence analysis
(CA; see Chap. 7), etc., as shown in the following sections. Note that in each
section, we focus on two-dimensional biplots only; higher-dimensional biplots can
be produced in an analogous section.

10.2 Regression Biplots

The starting point of a regression biplot is the predictor matrix X of dimension
n × 2. As mentioned above, we limit our explanations to two predictors only so that
we can plot in a 2D space. The two variables x1 and x2 in X are standardized (i.e.,
we subtract the mean and divide by the sd). The second ingredient we need is a
bunch response variables yk (k = 1, . . . , K); all of them standardized as well. This
leads to the following multivariate set of regression equations (cf. Sect. 3.1), here
expressed in terms of the fitted values:

ŷ1 = β̂11x1 + β̂12x2 (10.2)

ŷ2 = β̂21x1 + β̂22x2

...

ŷK = β̂K1x1 + β̂K2x2

Since all variables are standardized, there are no intercepts, and we get standardized
slope estimates.

In a regression biplot, we aim to project the K response variables into the 2D
scatterplot based on x1 on the x-axis and x2 on the y-axis. For the K responses,
we need to find a subject space representation and map them as vectors on top of

292 10 Biplots

the scatterplot. The β-parameter estimates are crucial: they are the bridge between
the subject space and variable space since they reflect the coordinates of each yk

variable in the scatterplot. Thus, the necessary steps to produce a regression biplot
are the following:

1. Standardize all variables involved in the analysis.
2. Produce the scatterplot based on X.
3. Regress each response yk on X.
4. The standardized regression coefficients give the coordinates of the correspond-

ing response vector.
5. Plot these vectors on top of the predictor scatterplot.

Obviously we plot multiple yk variables in a 2D variable space, spanned by the
variables in X. This involves some loss of information. The R2 resulting from the
individual regressions can be used as a goodness-of-fit measure for each single yk

projection.
For illustration, we continue with the Willerman et al. (1991) data from above.

We are interested in mapping two IQ variables (VIQ as y1 and PIQ as y2) and body
weight (y3) into the scatterplot defined by body height (x1) and brain size (x2). First,
we standardize all variables and compute the regressions which give us the set of
standardized β-coefficients. We also extract the R2 values right away since we need
them later.

library("MPsychoR")
data("BrainIQ")
BrainIQ <- na.omit(BrainIQ[,-1]) ## we omit NAs and gender
rownames(BrainIQ) <- 1:nrow(BrainIQ) ## relabel persons
BrainIQ1 <- as.data.frame(scale(BrainIQ)) ## standardize
regfit <- lm(cbind(VIQ, PIQ, Weight) ~

-1 + Height + MRI_Count, data = BrainIQ1)
colnames(regfit$coef) <- c("VIQ", "PIQ", "Weight")
round(regfit$coef, 3) ## vector coordinates
VIQ PIQ Weight
Height -0.452 -0.482 0.608
MRI_Count 0.566 0.662 0.156
R2vec <- sapply(summary(regfit), `[[`, "r.squared")

The regression biplot, as shown in Fig. 10.2, can be obtained by producing the
scatterplot based on the standardized predictors in X (variable space) and by drawing
arrows from the origin to the respective variable coordinate determined by the
regression coefficients (subject space). For all biplots it is important to set the aspect
ratio to 1 by means of asp=1, such that distances between points are represented
accurately on screen.

10.2 Regression Biplots 293

−2 −1 0 1 2

−
1

0
1

2

Regression Biplot

Body Height (standardized)

B
ra

in
 S

iz
e

(s
ta

nd
ar

di
ze

d)

VIQ

PIQ

Weight

Fig. 10.2 Regression biplot for brain size—IQ data: VIQ, PIQ, and weight are regressed on brain
size and body height

The information contained in this simple plot is already quite comprehensive.
Let us start with the vectors. Each of them starts at the origin, and their direction is
determined by the regression coefficients. Let us have a closer look at the body
weight vector. It shows us that body height has a high impact on body weight,
whereas brain size has a low impact on body weight. For both IQ variables, brain
size has a positive impact, whereas body height is weakly related to them (in
negative direction). Vectors that point in a similar direction correspond to variables
that have similar response profiles (i.e., they are correlated with each other). Let us
check this by computing the correlation matrix:

round(cor(BrainIQ[, 2:4]), 3)
VIQ PIQ Weight
VIQ 1.000 0.776 -0.076
PIQ 0.776 1.000 0.003
Weight -0.076 0.003 1.000

294 10 Biplots

We see that VIQ and PIQ are highly correlated with each other; correspondingly
their vectors point in a similar direction. Their correlation with weight is close to 0.
Thus, both IQ vectors are almost perpendicular to the weight vector.

The vector length ‖yk‖ of each response corresponds to the sum of the squared
standardized regression coefficients. As extreme cases, we could have a variable
which is weakly related to both predictors. The vector will be short. We could have
another variable which is super strongly related with both predictors. Consequently,
the vector will be long.

What we have seen in Fig. 10.2 is the vector version of a biplot in the tradition of
Gabriel (1971) and Greenacre (2010). There is an alternative version based on biplot
axes, which is advocated in Gower and Hand (1996) and Gower et al. (2011). We
mentioned above that the vectors actually create new axes, extending the vectors in
both directions. Using this concept we can project each single point in the scatterplot
on these new axes. This gives us the possibility of a multivariate interpretation of
each participant.

In Fig. 10.3, we show again the biplot, this time with the VIQ axis only, which
extends the VIQ vector in Fig. 10.2 in both directions. The individuals are labeled
with the corresponding row index in the data matrix, and each individual’s point
is subject to an orthogonal projection on the VIQ axis. The calibrate package
(Graffelman, 2013) can be used to produce (i.e., calibrate) such biplot axes and,
optionally, show the projection lines.

library("calibrate")
plot(BrainIQ1$Height, BrainIQ1$MRI_Count, pch = 20, cex = 0.8,

xlab = "Height", ylab = "MRI", col = "darkblue", asp = 1,
main = "Orthogonal Projections")

text(BrainIQ1$Height, BrainIQ1$MRI_Count, labels = 1:nrow(BrainIQ1),
cex = 0.7, pos = 3, col = "darkblue")

abline(h = 0, v = 0, lty = 2, col = "darkgray")
calibrate.Z <- calibrate(regfit$coef[,1], BrainIQ1$VIQ, seq(-2,2, by = 0.5),

cbind(BrainIQ1$Height, BrainIQ1$MRI_Count), dp = TRUE, axiscol = "brown",
axislab = "VIQ", labpos = 3, verb = FALSE)

The projections correspond to the fitted values in the VIQ regression above.
Note that these projections are on the standardized VIQ scale. We can scale the
fitted values back to the original scale by “destandardizing,” i.e., multiplying by the
standard deviation (sd) and adding the mean:

VIQcal <- calibrate.Z$yt*sd(BrainIQ$VIQ) + mean(BrainIQ$VIQ)

Let us pick the two most extreme observations. Participant #20 is quite tall and
has an average brain size, and, according to Fig. 10.3, he/she should have the lowest
VIQ. Participant #11 is of average height and has the biggest brain, and the plot
says that he/she should have the highest VIQ. Let us check this by looking at the
original data:

10.2 Regression Biplots 295

summary(BrainIQ[, 2]) ## basic location measures
Min. 1st Qu. Median Mean 3rd Qu. Max.
71.00 90.25 113.00 112.13 129.00 150.00
BrainIQ[c(20, 11), -c(1, 4)] ## biplot projections
VIQ PIQ Height MRI_Count
20 107 84 76.5 905940
11 150 128 70.0 1079549

−2 −1 0 1 2

−
1

0
1

2

Orthogonal Projections

Height

M
R

I

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

30

31

32

33

34 35

36

37
38

−1.5

−1

−0.5

0

0.5

1

1.5

2
VIQ

Fig. 10.3 Orthogonal projections on FSIQ axis

From this output we see that participant #11 has in fact the highest VIQ. The
VIQ of participant #20 is between the first and second quartile, certainly not the
lowest. Therefore, our fitted values are not entirely consistent with the observed
values. Why is that? We have to keep in mind that we are losing information. This
plot reflects the result of the regression model: if body height and brain size would
perfectly explain the VIQ, there would be no discrepancies. Thus, the feasibility of
the biplot interpretation depends on the goodness of fit of the regression model. The
overall goodness of fit is given by the corresponding R2. Let us print the R2 values
for all three responses considered in Fig. 10.2.

296 10 Biplots

round(R2vec, 3)
Response VIQ Response PIQ Response Weight
0.224 0.295 0.505

We see that the R2 value for the VIQ regression is moderately low; our
projections are only as good as the model. We could play the same projection game
for the two remaining axes. For the weight axis, we would get a better fit since the
R2 value is larger, whereas for the PIQ axis, we would get a similar fit as for VIQ.
In case of a perfect fit (i.e., R2 = 1), there would be no such discrepancies.

How relevant are regression biplots in practice? In the first place, they are
illustrative to show the biplot concept. Each biplot variant we present in the
subsequent sections is based on the same principle. However, as presented here they
are only of limited practical relevance since we considered two variables only. This
said, we sometimes have a situation where we regress multiple responses on the
same set of two or three predictors. In the case of three predictors, we end up with
3D scatterplots. Corresponding 3D illustrations are given in Greenacre (2010) and
Gower et al. (2011).

For the next sections, it is important to keep in mind that the target variable space
does not have to be a scatterplot based on observed variables defining the axes. It
can be basically any variable space representation such as principal component (PC)
scores in PCA, row or column points in CA, or an MDS configuration.

10.3 Principal Component Analysis Biplots

Based on what we have learned in the chapter on PCA (see Sect. 6.1), establishing
a biplot is embarrassingly simple: the PCA output already provides us with all the
necessary ingredients to produce a biplot (i.e., PC scores and loadings). In fact, the
original, classical biplot by Gabriel (1971) was proposed within a PCA context and
is nowadays considered as a standard graphical representation of PCA results.

One thing we can play around with in PCA biplots is the scaling factor α. This
gives us the opportunity to produce biplots with different scaling properties. The
trick is to rewrite the PCA singular value decomposition (SVD)3 X = UΛV′ with X
as the n × m data matrix (either standardized or not), U as n × m matrix containing
the left singular vectors, V as m × m matrix containing the right singular vectors,
and Λ as m × m diagonal matrix with the singular values λ

1/2
1 , λ

1/2
2 , . . . , λ

1/2
m in its

main diagonal (the λ’s are the eigenvalues):

X = UΛ1−αΛαV′. (10.3)

3Note that we use Λ instead of D as in Sect. 6.1.1, in order to be consistent with the settings in R’s
biplot function.

10.3 Principal Component Analysis Biplots 297

Using this expression, the diagonal elements of Λα are λ
α/2
1 , λ

α/2
2 , . . . , λ

α/2
m . Note

that we will only produce biplots in p = 2 dimensions. Thus, the dimensions
of the SVD matrices reduce according to m = 2 (i.e., we obtain a lower-rank
approximation of X). In Eq. (10.3), the subjects (U matrix) are scaled according
to G = UΛ1−α , and the variables (V matrix) are scaled according to H = ΛαV′.

Let us have a closer look at the α parameter, which can take any value between
0 and 1. The choice of α affects the interpretation of the biplot. Two appealing α-
choices are the following:

• Row metric preserving (α = 0): the plot approximates the Euclidean distances
among the persons in X.

• Column metric preserving (α = 1): the plot approximates the covariance
structure of the variables in X; the distances between the persons are determined
by the Mahalanobis distance.4

Eventually, the choice of α depends on what we want to emphasize in the biplot:
row metric preserving focuses on the persons and column metric preserving on the
variables. The default choice in R’s biplot function is α = 1 (i.e., column metric
preserving).

Let us put this principle into practice. First of all, PCA biplots are also a good
opportunity to display the effect of standardized vs. unstandardized input variables
in X, as already discussed in Sect. 6.1.2. Using the brain size/IQ data from above
once more, we see that the variable values are of different magnitudes, apart from
the three IQ variables which are obviously on the same IQ scale.

library("MPsychoR")
data("BrainIQ")
BrainIQ1 <- na.omit(BrainIQ[,-1])
head(BrainIQ1, 3)
FSIQ VIQ PIQ Weight Height MRI_Count
1 133 132 124 118 64.5 816932
3 139 123 150 143 73.3 1038437
4 133 129 128 172 68.8 965353

The MRI count values are in the 1M magnitude, the IQ values are around 100,
and weight and height are again on different scale magnitudes. By performing a
PCA on these variables without standardizing, we can expect that the first PC will
be totally dominated by the MRI count, something that is not very informative. Let
us fit a PCA on the raw data and one on the standardized data:

4For our purposes it is sufficient to know that the Mahalanobis distance is similar to the Euclidean
distance, but it incorporates weights in terms of the variance-covariance matrix (see, e.g., Joliffe,
2002, for details).

298 10 Biplots

pca_biq1 <- prcomp(BrainIQ1)
pca_biq2 <- prcomp(BrainIQ1, scale = TRUE)

Using the biplot function, Fig. 10.4 can be produced. The unstandardized
version is shown in the left panel and the standardized version in right panel. In
both cases we keep the α = 1 default. We see that the unstandardized solution is not
desirable. The standardized solution gives a much more meaningful biplot since all
variables are treated equally in terms of magnitude.

Let us consider a second example and then provide a full interpretation of what
is actually shown in the biplot. This dataset, from the clinical area,5 contains 30

−4 −2 0 2 4

−
4

−
2

0
2

4

Biplot (Unstandardized)

PC1

P
C

2

1

3
4

5

6

7

8
9

10

11

12 13

14

15

16

17

18

19

20

22

23

24

25

26

27

28

29

30

31
32

33 34 35

36

37

38

39
40

−1e+05 −5e+04 0e+00 5e+04 1e+05

−
1e

+
05

−
5e

+
04

0e
+

00
5e

+
04

1e
+

05

FSIQVIQPIQWeightHeightMRI_Count

−2 −1 0 1 2

−
2

−
1

0
1

2

Biplot (Standardized)

PC1

P
C

2

1

3

4

5

6

7

8

9

10

11

12

13
14

15
16

17

18

19

20

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

−1.0 −0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5

FSIQVIQ
PIQ

Weight
Height

MRI_Count

Fig. 10.4 Left panel: PCA biplot on raw brain size IQ data. Right panel: PCA biplot on
standardized brain size IQ data

participants, of which 17 are of high-risk psychosis and 13 are healthy controls. We
have three metric variables pertaining to behavioral measures: affective empathy
(AE), positive social experience (PSE), and perspective taking (PT). Two additional
measures come from fMRI scans (right-hand fRH and left/right foot fLRF). The
variable scores are on the same scale: they are mean centered, but there are
slight differences in the sd’s. Let us fit once more two PCAs (unstandardized and
standardized). Note that in the standardized version, we lose the sample variance
information.

5Thanks to Christine Hooker for sharing this dataset.

10.3 Principal Component Analysis Biplots 299

data("yaass")
pca_yaass1 <- prcomp(yaass[,1:5])
pca_yaass2 <- prcomp(yaass[,1:5], scale = TRUE)

Out of these two fits, we produce four biplots using the biplot function once
more (see Fig. 10.5): for each PCA version, we scale one biplot with α = 0
(argument scale=0) and the other one with α = 1 (argument scale=1).

First of all, the axes are determined by the first two PCs. The gray points are
the PC scores of the participants, and the variables are represented by arrows.
Participants that are close to each other have similar response profiles in X. Both
left panels are row metric preserving (α = 0), meaning that they approximate the
Euclidean distances among the participants. Both right panels are column metric
preserving (α = 1): they approximate the covariance (top right) and correlation
(bottom right) structure, in addition to the Mahalanobis distances between persons.
The arrows of variables covarying/correlating highly with each other should point
into the same direction. For instance, for the bottom right panel, we can confirm this
by looking at the correlation matrix:

round(cor(yaass[,1:5]), 2)
PSE AE PT fRH fLRF
PSE 1.00 0.88 0.64 0.43 0.45
AE 0.88 1.00 0.92 0.41 0.30
PT 0.64 0.92 1.00 0.20 0.07
fRH 0.43 0.41 0.20 1.00 0.47
fLRF 0.45 0.30 0.07 0.47 1.00

Another striking difference between the unstandardized and the standardized
version is the vector length. Let us compute the sd’s on the original data:

round(apply(yaass[,1:5], 2, sd), 3)
PSE AE PT fRH fLRF
0.701 0.758 0.710 0.437 0.421

The vector lengths in the column metric preserving, unstandardized plot (top
right panel) reflect the sd’s in a relative manner.

In the standardized version, the sd information is getting lost since all variables
are scaled to sd = 1. For instance, in the bottom right panel, the variable vectors
lengths are less than one. We could draw a unit circle; vectors close to this circle
imply that these variables fit better. In this example we do not really have a short
arrow since each variable loads highly on either PC1 or PC2. A two-dimensional

300 10 Biplots

−10 −5 0 5 10

−
10

−
5

0
5

10
Biplot (Unstandardized, α=0)

PC1

P
C

2

S1

S2

S3
S4S5 S6

S7

S8

S9S10

S11

S12

S13

S14
S15

S16

S17 S18S19

S20

S21

S22

S23

S24

S25

S26

S27
S28 S29

S30

−0.10 −0.05 0.00 0.05 0.10

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

PSE

AE

PT

fRH
fLRF

−1 0 1 2

−
1

0
1

2

Biplot (Unstandardized, α=1)

PC1
P

C
2

S1

S2

S3

S4
S5 S6

S7

S8

S9
S10

S11

S12

S13

S14
S15

S16

S17
S18

S19

S20

S21

S22

S23

S24

S25

S26

S27

S28
S29
S30

−0.4 0.0 0.2 0.4 0.6 0.8

−
0.

4
0.

0
0.

2
0.

4
0.

6
0.

8

PSE

AE

PT

fRH
fLRF

−15 −10 −5 0 5 10 15

−
15

−
10

−
5

0
5

10
15

Biplot (Standardized, α=0)

PC1

P
C

2

S1

S2

S3
S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14
S15

S16

S17

S18
S19

S20
S21

S22

S23

S24

S25

S26

S27

S28
S29

S30

−0.10 0.00 0.05 0.10

−
0.

10
0.

00
0.

05
0.

10

PSE

AE

PT

fRH

fLRF

−2.0 −1.0 0.0 0.5 1.0 1.5

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

1.
5

Biplot (Standardized, α=1)

PC1

P
C

2

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18
S19

S20

S21

S22

S23

S24

S25

S26

S27

S28

S29

S30

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

PSE

AE

PT

fRH
fLRF

Fig. 10.5 Top panel: PCA biplot on raw data with different scale parameters (left one is row metric
preserving and the right one column metric preserving). Bottom panel: PCA biplot on standardized
data, again row vs. column metric preserving

solution is certainly sufficient here. However, we could have an additional variable
which requires a third dimension (i.e., small loadings on PC1 and PC2, high loading
on PC3). Thus, its vector in the 2D space would be pretty short. Note that the biplot
panels include two more axes to the right and at the top. These are the units on the
vectors, since each vector defines a new biplot axes.

Let us now illustrate that the principle of constructing a regression biplot holds
for the PCA biplot as well. We also show how to create a biplot axis. PC1 and
PC2 are our “predictors.” We regress the five standardized variables onto the PC
scatterplot.

10.3 Principal Component Analysis Biplots 301

X <- pca_yaass2$x[, 1:2] ## extract PC scores
Y <- scale(yaass[,1:5]) ## standardize variables
fitlms <- lm(Y ~ -1 + X) ## fit regressions

The regression coefficients should be the same as the loadings. Let us check:

round(coef(fitlms), 3)
PSE AE PT fRH fLRF
XPC1 0.527 0.555 0.463 0.339 0.294
XPC2 -0.027 -0.244 -0.480 0.525 0.658
round(t(pca_yaass2$rotation[,1:2]), 3)
PSE AE PT fRH fLRF
PC1 0.527 0.555 0.463 0.339 0.294
PC2 -0.027 -0.244 -0.480 0.525 0.658

We see that the regression biplot principle holds. This is not surprising since PCA
consists of a set of linear combinations (see Eq. (6.3) in Sect. 6.1.2) solved by SVD.
In order to produce the biplot axes, we establish the PC scatterplot by the hand and
let the calibrate package do the rest. We draw an axis for affective empathy (AE)
only. The projections are given in Fig. 10.6.

plot(X[,1], X[,2], pch = 20, xlab = "PC1", ylab = "PC2",
col = "darkblue", asp = 1, main = "Biplot Axis",
xlim = c(-3.2, 3.2))

text(X[,1], X[,2], labels = rownames(X), cex = 0.7,
pos = 3, col = "darkblue")

abline(h = 0, v = 0, lty = 2, col = "gray")
calAE <- calibrate(fitlms$coef[,"AE"], Y[,"AE"],
tm = seq(-2, 2, by = 0.5), Fr = X, dp = TRUE,
axiscol = "brown", axislab = "AE", labpos = 3, verb = FALSE)

We extract the R2 values and explore to which degree we can trust the projections
on the AE axis.

R2vec <- sapply(summary(fitlms), "[[", "r.squared")
round(R2vec[2], 3)
Response AE
0.999

302 10 Biplots

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Biplot Axis

PC1

P
C

2

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21

S22

S23

S24

S25

S26

S27

S28

S29

S30

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

AE

Fig. 10.6 Projections on affective empathy (AE) biplot axis

We see that the R2 for AE is basically 1; therefore our projections have a super
high accuracy. This implies that by means of these two PCs, variation in AE is fully
explained.

Another package for PCA biplots is bpca (Faria et al., 2017) which offers some
additional plotting options. We create once more a row metric preserving biplot on
the unstandardized data and color the person points according to the group variable.
The bpca function has the method argument options “gh" which corresponds to
column metric preserving (α = 1) and “jk" which means row metric preserving
(α = 0), plus some additional symmetric ones not discussed here.

Note that in biplots, it is not uncommon that the vector coordinates are much
larger or smaller than the PC score coordinates. In such cases we can multiply the
vector coordinates by a scaling factor in order to get a better picture. This is feasible
since only the relative length of the variable vectors is important. In the biplot given
in Fig. 10.7, we use a scaling factor (var.factor argument) of 3.

10.3 Principal Component Analysis Biplots 303

−2 −1 0 1 2

−
2

−
1

0
1

2

YAASS Biplot

PC1 (74.14%)

P
C

2
(1

5.
25

%
)

S1

S2

S3

S4
S5 S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17
S18

S19

S20

S22

S23

S24

S25

S26

S27

S28
S29

S30

PSE

AE

PT

fRH

fLRF

high risk psychosis
healthy controls

Fig. 10.7 PCA biplot (row metric preserving, data unstandardized) for behavioral and neural
measures in YAASS dataset

library("bpca")
resbi <- bpca(yaass[, 1:5], scale = FALSE, method = c("gh"))
colvec <- c("cadetblue", "chartreuse4")[unclass(yaass$Group)]
plot(resbi, main = "YAASS Biplot", obj.color = colvec, var.factor = 3,

obj.cex = 0.8, asp = 1, xlim = c(-2, 2), ylim = c(-2, 2))
legend("topleft", legend = c("high risk psychosis", "healthy controls"),

pch = 20, col = unique(colvec))

To conclude the interpretation of this example: with two PCs, we explain 89.4%
of the variance in the data. The first dimension reflects the behavioral measures and
the second dimension the neural measures. The length of the vectors is proportional
to their standard deviations.

The final PCA biplot version presented here is based on Princals. In Princals, as
introduced in Sect. 8.2, biplots can be produced in the same way. We do not have to
worry about any standardization issues since the Gifi framework performs optimal
scaling anyway and the scores are normalized. Let us illustrate a Princals biplot
using six items from a dataset on customer satisfaction (Kenett and Salini, 2012):

304 10 Biplots

equipment, sales, technical support, training, purchasing support, and pricing. All
these items are scored on a 5-point rating scale indicating the customer satisfaction
level (from 1 . . . “very low” to 5 . . . “very high”). Let us fit an ordinal Princals using
the Gifi package (Mair and De Leeuw, 2017):

library("Gifi")
ABC6 <- ABC[,6:11]
fitabc <- princals(ABC6)

−4 −2 0 2 4

−
4

−
2

0
2

4

Princals Biplot

Component 1

C
om

po
ne

nt
 2

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

1819

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41

42 43

44

45

46

47

48

49
50

51

52

53

54

55

56

57

58

59

60

61
62

63

64

6566

67

68

69

70

71

72

7374

75

7677

78

79

80

81

82

83

84

85

86

87
88

89

90

91

92

93
94

95

96

97

98

99

100

101

102

103

104

105

106

107
108

109

110

111

112

113

114
115

116

117

118119

120

121

122

123
124125

126

127

128

129

130

131

132

133

134

135

136
137

138

139140141
142 143

144

145

146

147
148

149150

151
152

153

154

155

156
157

158

159

160

161

162

163

164165

166

167

168

169

170

171

172173

174175

176

177 178

179

180 181182

183
184

185
186 187

188

189
190

191

192

193

194

195 196

197

198

199

200

201

202

203

204

205

206

207

208

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

equipment

sales

training

purchase
technical

pricing

Fig. 10.8 Princals biplot for six items of ABC dataset: object scores (gray) and loadings (black
arrows)

In the following plot function, we make use of the expand argument in order to
shorten the vectors for better representation (Fig. 10.8).

10.4 Multidimensional Scaling Biplots 305

plot(fitabc, plot.type = "biplot", main = "Princals Biplot",
expand = 0.7, cex.scores = 0.6, col.scores = "gray")

abline(h = 0, v = 0, lty = 2, col = "gray")

The interpretation can be achieved in an analogous manner as in an ordinary PCA
biplot, as presented above.

10.4 Multidimensional Scaling Biplots

In the regression biplot, we regressed responses on the predictor scatterplot, in PCA
biplots the original variables on the PC scores scatterplot. We can do things in a
similar way in MDS. The idea is to consider the configuration plot as “scatterplot”
(variable space). The coordinates are given in the configuration matrix X. We can
now regress (external) variables on X as in Eq. (10.2). The smacof package (De
Leeuw and Mair, 2009) provides the convenience function biplotmdswhich does
the regression fit. The user only needs to provide the external variables.

To illustrate a MDS biplot, we use the mental states dataset from Tamir et al.
(2016). Each individual is represented by a 60 × 60 dissimilarity matrix (60 mental
states as objects), derived from fMRI scans. In Sect. 9.5.2 we fitted an INDSCAL
solution on these data. This time we keep the MDS computation simpler and fit a
single MDS on the averaged dissimilarities across individuals. The following code
chunk does the data preparation and fits a 2D interval MDS using smacof.

library("MPsychoR")
library("smacof")
data("NeuralActivity")
delta <- Reduce("+", NeuralActivity)/length(NeuralActivity)
fit_neural <- mds(delta, type = "interval")
fit_neural
##
Call:
mds(delta = delta, type = "interval")
##
Model: Symmetric SMACOF
Number of objects: 60
Stress-1 value: 0.281
Number of iterations: 68

The external scales we use to produce a biplot are based on questionnaire data
and contain proportions, telling us to which degree people associate each of the 60
mental states with 16 theoretical dimensions the authors extracted from the literature

306 10 Biplots

(see Tamir et al., 2016, for details). We are now going to map these external variables
on the MDS configuration. By default, the biplotmds function standardizes these
variables and, therefore, returns the standardized regression coefficients (as well as
the R2 vector).

data("NeuralScales")
mdsbi <- biplotmds(fit_neural, NeuralScales)

The plot(mdsbi) call gives the MDS biplot in Fig. 10.9. The direction and
length of the vectors is determined by the underlying regression parameters, just as
in the regression biplot.

We can also do the projections using the calibrate package. Let us focus on the
theoretical dimension “emotion,” since this is the regression with the highest R2

value (0.438).

X <- fit_neural$conf
Y <- scale(NeuralScales, scale = TRUE)
plot(X, pch = 20, cex = 0.6, xlab = "Dimension 1", ylab = "Dimension 2",

col = "darkblue", asp = 1, main = "Biplot MDS Emotion Axis")
text(X, labels = rownames(X), cex = 0.7, pos = 3, col = "darkblue")
abline(h = 0, v = 0, lty = 2, col = "gray")
calEm <- calibrate(mdsbi$coef[,"Emotion"], Y[,"Emotion"],

tm = seq(-2, 1.5, by = 0.5), Fr = X, dp = TRUE,
axiscol = "brown", axislab = "Emotion", labpos = 3, verb = FALSE)

The corresponding biplot axis with projections is given in Fig. 10.10. States
like laziness, agitation, disgust, and awe are the most important mental states
determining the emotion dimension. Cognition is the least important state. In the
same way, we can calibrate axes for other external variables of interest.

10.5 Correspondence Analysis Biplots

CA biplots are asymmetric maps. In Sect. 7.1.2 we mentioned we can standardize
the scores in terms of principal coordinates (sometimes also referred to as Benzecri
coordinates) or standard coordinates and showed how to compute them. In that
section, we only used principal coordinates and produced a symmetric map. We
have discussed in detail that we have to be careful with the interpretation of row-
column associations since corresponding distances are not defined by the CA model.
In order to properly interpret row-column distances, they need to be plotted in the
same space, something we do not achieve using symmetric maps.

Asymmetric maps provide a way to plot row and column categories into the
same space. For such an asymmetric map, we keep one dimension of the table in

10.5 Correspondence Analysis Biplots 307

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Neural Activity MDS Biplot

Dimension 1

D
im

en
si

on
 2 affection

agitation

alarm

anticipation

attention

awareness

awe

belief

cognitionconsciousness

craziness

curiosity

decision

desire

disarray

disgust

distrust
dominance

drunkenness

contemplation

earnestness

ecstasy

embarrassment

exaltationexhaustion

fatigue

friendliness

imagination

insanity

inspiration

intrigue

judgment

laziness

lethargylust

nervousness objectivity

opinion

patience

peacefulness

pensiveness

pity

planning

playfulness

reason

relaxation

satisfaction

self−consciousness

self−pity

seriousness

skepticism

sleepiness

stupor

subordination

thought

trance

transcendence
uneasiness

weariness

worry

Agency

Experience

High.Arousal

Low.Arousal

Body

Mind

Emotion

Reason

Positive

Negative

Shared

Unique

Social

Non.Social

Warmth

Competence

Fig. 10.9 MDS biplot for neural activity MDS fit (MDS configuration in gray). The length of each
external variable vector is proportional to the R2 value of the underlying regressions

standard coordinates and the other one in principal coordinates. Let us illustrate
this concept using the superfan data from Sect. 7.1.1. We keep the rows (bands)
in principal coordinates and the columns (fans) in standard coordinates, using the
anacor package (De Leeuw and Mair, 2009).

library("anacor")
superfan <- as.table(matrix(c(9, 12, 8, 1, 13, 1, 6, 20, 15, 4, 23, 18),

ncol = 3))
attr(superfan, "dimnames") <- list(c("Slayer", "Iron Maiden", "Metallica",

"Judas Priest"), c("Horst", "Helga", "Klaus"))
fit_fans <- anacor(superfan, scaling = c("Benzecri", "standard"))
plot(fit_fans, main = "Asymmetric Superfan CA Map")

Figure 10.11 nicely reproduces the ternary plot from Fig. 7.3, since the maximum
number of dimensions in this setup is two. We plot the vertices of the fan simplex
which define the most extreme band profiles possible. The distances between the
fans are not reflected in this plot; we lose this information in an asymmetric map.
However, the distance between, for instance, Iron Maiden and Horst is now defined
and can be interpreted from the plot. The distances among the bands are defined

308 10 Biplots

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Biplot MDS Emotion Axis

Dimension 1

D
im

en
si

on
 2 affection

agitation

alarm

anticipation

attention

awareness

awe

belief

cognition
consciousness

craziness

curiosity

decision

desire

disarray

disgust

distrust

dominance

drunkenness

contemplation

earnestness

ecstasy

embarrassment

exaltationexhaustion

fatigue

friendliness

imagination

insanity

inspiration

intrigue

judgment

laziness

lethargylust

nervousness
objectivity

opinion

patience

peacefulness

pensiveness

pity

planning

playfulness

reason

relaxation

satisfaction

self−consciousness

self−pity

seriousness

skepticism

sleepiness

stupor

subordination

thought

trance

transcendence
uneasiness

weariness

worry

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Emotion

Fig. 10.10 MDS biplot axis for “emotion” with corresponding MDS object projections

as well and can be interpreted as in a symmetric map. In order to make this plot
more coherent with the biplots presented so far, we could also draw arrows from the
origin to the fan coordinates using the arrows argument in plot.anacor.

When should we use asymmetric maps? As Greenacre (2007) points out,
asymmetric maps can be used if the table is to be interpreted in an asymmetric
way. For instance, if the rows represent observational units (such as persons,
groups, etc.) and the columns represent variables. In such scenarios we are probably
most interested in interpreting distances among the rows and the distances among
observational units and variables. Thus, we can use standard coordinates for the
columns and principal coordinates for the rows.

Let us illustrate this strategy using a simple dataset from Srole et al. (1962), as
presented in Weller and Romney (1990). The data consist of a cross-classification
of social economic status (SES; six levels) and mental health (four categories).

10.5 Correspondence Analysis Biplots 309

−2 −1 0 1

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Asymmetric Superfan CA Map

Dimension 1

D
im

en
si

on
 2

Slayer
Iron Maiden

Metallica

Judas Priest

Horst

Helga

Klaus

Fig. 10.11 Asymmetric CA map: bands in principal coordinates, fans in standard coordinates

Srole <- as.table(matrix(c(64, 94, 58, 46,
57, 94, 54, 40,
57, 105, 65, 60,
72, 141, 77, 94,
36, 97, 54, 78,
21, 71, 54, 71), nrow = 4))

attr(Srole, "dimnames") <- list(mhealth = c("well", "mild",
"moderate", "impaired"), ses = LETTERS[1:6])

Srole
ses
mhealth A B C D E F
well 64 57 57 72 36 21
mild 94 94 105 141 97 71
moderate 58 54 65 77 54 54
impaired 46 40 60 94 78 71

We are interested in how the SES categories are associated among themselves
and in relation to the mental health categories. Thus, we keep the columns (SES)
in principal coordinates, since they represent observational units, and put the rows
in standard coordinates. The CA biplot based on the code chunk below is given in
Fig. 10.12.

310 10 Biplots

fit_ses <- anacor(Srole, scaling = c("standard", "Benzecri"))
plot(fit_ses, arrows = c(T, F), main = "Asymmetric CA Map")

−2 −1 0 1 2

−
2

−
1

0
1

Asymmetric CA Map

Dimension 1

D
im

en
si

on
 2

well

mild

moderate

impaired

AB C
D E

F

Fig. 10.12 Asymmetric CA map: SES in principal coordinates, mental health in standard coordi-
nates

The mental health categories define the simplex (i.e., a tetrahedron plotted in 2D).
However, we see a picture that occurs frequently in asymmetric CA maps. The set in
principal coordinates are plotted as a tight cluster, whereas the standard coordinate
categories are spread out. A strategy to fix this is called contribution biplot, where
the vector coordinates are multiplied by the square roots of the corresponding
masses. Such plots are implemented in the ca package (Nenadic and Greenacre,
2007).

Asymmetric CA maps are mostly used for simple CA. It is possible, however, to
produce CA biplots for multiple CA as well, as described in Greenacre (2010), but
they are less popular. The same applies to Homals biplots where we typically use
symmetric maps, which Gifi calls joint plot (see Sect. 8.3.1).

This concludes the biplot chapter. Other types of biplots, not covered here, can
be found in Greenacre (2010) and Gower et al. (2011).

References 311

References

Borg, I., & Staufenbiel, T. (2007). Theorien und Methoden der Skalierung [Theory and methods of
scaling]. Bern: Verlag Hans Huber.

De Leeuw, J., & Mair, P. (2009). Multidimensional scaling using majorization: SMACOF in R.
Journal of Statistical Software, 31(3), 1–30. http://www.jstatsoft.org/v31/i03/

Faria, J. C., Demétrio, C. G. B., & Allaman, I. B. (2017). bpca: Biplot of multivariate data based on
principal components analysis. R package version 1.2.2. http://CRAN.R-project.org/package=
bpca

Gabriel, K. R. (1971). The biplot graphical display of matrices with application to principal
component analysis. Biometrika, 58, 453–457.

Gower, J. C., & Hand, D. J. (1996). Biplots. Boca Raton: Chapman & Hall/CRC.
Gower, J., Lubbe, S., & le Roux, N. (2011). Understanding biplots. Chichester: Wiley.
Graffelman, J. (2013). calibrate: Calibration of scatterplot and biplot axes. R package version

1.7.2. http://CRAN.R-project.org/package=calibrate
Greenacre, M. (2007). Correspondence analysis in practice (2nd ed.). Boca Raton: Chapman &

Hall/CRC.
Greenacre, M. (2010). Biplots in practice. Bilbao: Fundación BBVA.
Joliffe, I. T. (2002). Principal component analysis (2nd ed.). New York: Springer.
Kenett, R. S., & Salini, S. (2012). Modern analysis of customer surveys with applications in R.

New York: Wiley.
Mair, P., & De Leeuw, J. (2017). Gifi: Multivariate analysis with optimal scaling. R package

version 0.3-2. https://R-Forge.R-project.org/projects/psychor/
Nenadic, O., & Greenacre, M. (2007). Correspondence analysis in R, with two- and three-

dimensional graphics: The ca package. Journal of Statistical Software, 20(3), 1–13. http://www.
jstatsoft.org/v20/i03/

Reyment, R. A., & Jöreskog, K. G. (1996). Applied factor analysis in the natural sciences.
Cambridge: Cambridge University Press.

Srole, L., Langner, T. S., Michael, S. T., Opler, M. K., & Rennie, T. A. C. (1962). Mental health in
the metropolis: The midtown Manhattan study. New York: McGraw-Hill.

Tamir, D. I., Thornton, M. A., Contreras, J. M., & Mitchell, J. P. (2016). Neural evidence that
three dimensions organize mental state representation: Rationality, social impact, and valence.
Proceedings of the National Academy of Sciences of the United States of America, 113, 194–
199.

Weller, S. C., & Romney, A. K. (1990). Metric scaling: Correspondence analysis. Thousand Oaks:
Sage.

Wickens, T. D. (1995). The geometry of multivariate statistics. New York: Psychology Press.
Willerman, L., Schultz, R., Rutledge, J. N., & Bigler, E. (1991). In vivo brain size and intelligence.

Intelligence, 15, 223–228.

http://www.jstatsoft.org/v31/i03/
http://CRAN.R-project.org/package=bpca
http://CRAN.R-project.org/package=bpca
http://CRAN.R-project.org/package=calibrate
https://R-Forge.R-project.org/projects/psychor/
http://www.jstatsoft.org/v20/i03/
http://www.jstatsoft.org/v20/i03/

Chapter 11
Networks

11.1 Network Basics: Relational Data Structures

Networks have a long tradition in the area of sociology where researchers have
been interested in analyzing relationships between members of social systems (e.g.,
friendship networks). Such classical social networks are based on relational input
data, where actors such as persons interact with each other in some way.

As a toy example, let us consider our friends Horst, Helga, and Klaus, this time
joined by Gertrud. In networks, each of the four actors will be represented by a node
(or vertex). In this example, interactions occur when the actors trade albums. Let us
assume that Helga and Horst traded some albums. In a network they are therefore
connected by an edge (or arc). Helga gave Horst three albums, whereas Horst gave
Helga two albums. We have one Helga → Horst edge and one Horst → Helga edge.
The first edge gets an edge weight of 3, and the second edge gets a weight of 2.

The entire set of album trades can be represented by an edge list. Using the
igraph package (Csárdi and Nepusz, 2006; Kolaczyk and Csárdi, 2014), we create
the corresponding edge list (as igraph object) and assign the edge weights as
follows:

library("igraph")
album_df <- matrix(c("Helga", "Gertrud", "Horst", "Klaus",
"Horst", "Helga", "Gertrud", "Horst", "Klaus", "Horst",
"Horst", "Helga", "Helga", "Klaus", "Klaus", "Klaus",
"Gertrud", "Gertrud"), ncol = 2)

album_el <- graph.edgelist(album_df, directed = TRUE)
E(album_el)$weight = c(2, 3, 3, 4, 5, 1, 7, 7, 2)

A second, equivalent way of representing network data is through an adjacency
matrix, where the rows reflect “from” and the columns reflect “to.”

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_11

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_11&domain=pdf
https://doi.org/10.1007/978-3-319-93177-7_11

314 11 Networks

album_ad <- get.adjacency(album_el, sparse = FALSE,
attr = "weight")

album_ad
Helga Horst Gertrud Klaus
Helga 0 2 0 1
Horst 3 0 7 5
Gertrud 0 3 0 7
Klaus 4 0 2 0

The corresponding network graph can be produced as follows:

plot(album_el, vertex.size = 0, edge.arrow.size = 0.5,
vertex.label.dist = 0.8, vertex.color = "black",
vertex.label.color = "black", vertex.label.cex = 1.5)

The graph in Fig. 11.1 represents a directed and weighted network since the
edges have a “from-to” relation, and their values represent the connection strength.
We could easily turn it into an unweighted network by replacing each of the
edge values larger than 0 by 1 (i.e., trade vs. no trade). We could also change it
into an undirected network where we abandon the “from-to” relation by taking
the sum of corresponding elements in the upper and lower triangular part of the
adjacency matrix, which would then become symmetric. As we see, there are
four basic network types based on the combination of directed/undirected and
weighted/unweighted edges.

11.2 Correlation Networks

In psychology we rarely collect data in a relational form. Similar to derived
proximities in multidimensional scaling (MDS; see Sect. 9.1), we can compute the
correlation matrix R out of a standard n × m person-variable data matrix. Such
correlation networks are popular in the clinical area where they are used to detect
associations among symptoms (see, e.g., Borsboom and Cramer, 2013).

In this section we illustrate correlation networks using a dataset from McNally
et al. (2017). This dataset on comorbid obsessive compulsive disorder (OCD) and
depression contains 16 depression items (QIDS; 5-point scale) and 10 OCD items
(Y-BOCS; 4-point scale). There are n = 408 patients in the sample. As a first step,
let us compute R using Pearson correlations:

11.2 Correlation Networks 315

Fig. 11.1 Directed, weighted
network plot for tool dataset
on album trades

Helga

Horst

Gertrud

Klaus

library("MPsychoR")
data(Rogers)
cormat <- cor(Rogers)

One issue that arises from using correlation matrices within a network context
is that they typically lead to a fully connected graph, since empirical correlations
are in general different from 0. Simple approaches to deal with this issue are
blanking out low correlations by choosing a correlation threshold (e.g., using effect
size standards), or keeping significant correlations only (after a proper p-value
correction due to the multiple testing problem). For the network plot in Fig. 11.2,
produced using the qgraph package (Epskamp et al., 2012), we set the lower
absolute correlation threshold to 0.2 (i.e., small-medium effect size). The thicker
an edge, the higher the correlation. Edges with negative correlations are colored
differently.

library("qgraph")
cornet <- qgraph(cormat, layout = "spring", minimum = 0.2,
graph = "cor", groups = list(Depression = 1:16, OCD = 17:26),
color = c("white", "gray"), labels = colnames(Rogers),
title = "Depression/OCD Correlation Network")

From Fig. 11.2 we see that there are two densely connected groups of items:
all OCD items and a bunch depression items except those in the periphery related
to sleep and appetite. Based on such a correlation network, we have the option
to compute various typical network measures to characterize each symptom’s
role in the network. One such network characteristic is called centrality. The

316 11 Networks

onset

middle

late

hypersom

sad

decappetite

incappetite

weightloss

weightgain

concen guilt

suicide

anhedonia

fatigue

retard

agitation

obtime

obinterfer

obdistress

obresist

obcontrol

comptime

compinterf

compdis

compresis

compcont

Depression
OCD
Depression
OCD

Depression/OCD Correlation Network

Fig. 11.2 Correlation network for depression and OCD items. Green lines reflect positive
correlations and red lines negative correlations

qgraph package provides the following options, implemented in the centrality
function:

• Degree centrality (strength): number of edges connected with a node.
• Closeness centrality: how close one node is to all the other nodes based on the

shortest paths.
• Betweenness centrality: Interactions between nodes depend on the other nodes

who lie on the path between them (i.e., they “control” the interactions).

A corresponding plot can be produced as follows:

centralityPlot(cornet)

11.2 Correlation Networks 317

Figure 11.3 shows the z-standardized centrality values. Betweenness centrality
is an interesting property to look at in this example. Items that score high on this

Betweenness Closeness Strength

0 1 2 −1 0 1 −2 −1 0 1

agitation

anhedonia

compcont

compdis

compinterf

compresis

comptime

concen

decappetite

fatigue

guilt

hypersom

incappetite

late

middle

obcontrol

obdistress

obinterfer

obresist

obtime

onset

retard

sad

suicide

weightgain

weightloss

Fig. 11.3 Centrality measures (z-standardized) of depression and OCD symptoms

measure are potentially connector items between OCD and depression. Details on
other network measures can be found in Wasserman and Faust (1994) and Kolaczyk
and Csárdi (2014).

Let us extend this simple correlation network as follows. First, instead of
using simple Pearson correlations, we use partial correlations. A partial correlation
involving two nodes controls for the influence of all the remaining nodes in the
network. Thus, the inferred edges are more reflective of direct influence among
nodes. Second, instead of using a somewhat arbitrary correlation threshold or a
Bonferroni corrected significance level, a graphical lasso (Friedman et al., 2008)
can be considered.

318 11 Networks

The lasso principle (see James et al., 2013, for a gentle introduction) is highly
attractive within the context of correlation networks since such networks typically
have many edges. The idea of the graphical lasso is to shrink low correlations (i.e.,
edge weights) to 0 such that they disappear from the graph. Let S be the sample
variance-covariance matrix and λ the penalization parameter. The graphical lasso
target function to be maximized is

σ(K) = log(det K) − tr(SK) − λ
∑

i,j

|kij |. (11.1)

K is a precision matrix (i.e., the inverse of the model variance-covariance matrix)
with elements kij to be estimated. From these elements we can compute the
regularized partial correlations:

ρ
(partial)
ij = − kij√

kii

√
kjj

. (11.2)

The qgraph package provides an easy-to-use, high-level implementation for reg-
ularized partial correlations which builds on the glasso package (Friedman et al.,
2014). Internally it establishes a grid of penalization parameters λ (the higher
λ, the higher the number of 0 edge weights) and picks the best λ according
to an extended BIC criterion (see EBICglasso function). The graphical lasso
computation including the plot in Fig. 11.4 can be produced as follows:

qgraph(cormat, layout = "spring", sampleSize = nrow(Rogers),
graph = "glasso",
groups = list(Depression = 1:16, OCD = 17:26),
color = c("white", "gray"), labels = colnames(Rogers),
title = "Depression/OCD Graphical Lasso")

Note that, unlike in MDS, the distance between nodes in network plots such as
in Figs. 11.2 and 11.4 has no meaning. The nodes are positioned such that the graph
is produced in an aesthetically pleasing way.1 Therefore, scaling approaches such
as MDS are highly illustrative within the context of correlation networks since they
position the nodes according to their similarity (i.e., high edge values in network
slang). The next section shows how to integrate scaling and dimension reduction
into networks. The resulting node positions can be subject to further interpretation.

1This is of course a bit of an oversimplification; more details on graph layouts such as Fruchterman-
Reingold and Kamada-Kawai can be found in Kolaczyk and Csárdi (2014).

11.3 Latent Network Models 319

11.3 Latent Network Models

Before we start elaborating on latent network models, it is important to point out
that here the term “latent” is not used in a strict psychometric sense as in factor
analysis, where an underlying latent variable causes the indicators (e.g., a general
depression factor causes the symptoms). Within the network context, “latent” simply
implies that we perform a dimension reduction in the sense of a principal component
analysis (PCA; see Chap. 6). Based on the node positions in a low-dimensional
space, we might be able to interpret the corresponding dimensions.

In the following subsections, we present two approaches, both belonging to the
general class of exponential random graph models (ERGMs). ERGMs are designed
in analogy to generalized linear models (GLMs) and are typically estimated using
Markov Chain Monte Carlo (MCMC; see Hoff et al., 2002; Kolaczyk and Csárdi,

onset

middle

late

hypersom

sad

decappetite

incappetite

weightloss

weightgain

concen

guilt

suicide

anhedonia

fatigue

retard

agitation

obtime

obinterfer

obdistress

obresist

obcontrol

comptime

compinterf

compdis

compresis

compcont

Depression
OCD
Depression
OCD

Depression/OCD Graphical Lasso

Fig. 11.4 Partial correlation graphical lasso network for depression and OCD items. Green lines
reflect positive partial correlations and red lines negative partial correlations

2014). The first type of latent networks we are going to present are eigenmodels.
Subsequently, they will be extended in terms of incorporating node clustering.

320 11 Networks

11.3.1 Eigenmodels

Eigenmodels were proposed by Hoff (2008). The input data consist of an n × n

adjacency matrix Y with elements Yij (i, j = 1, . . . , n). Yij is defined as a
function of variables ui and uj and, optionally, a regression model with pair-specific
predictor vector xij . The number of dimensions p needs to be fixed a priori. The
general eigenmodel expression is as follows:

Yij = f (β ′xij + uiΛuj). (11.3)

By using MCMC, we estimate the matrix Λ̂ of dimension p × p which gives the
relative importance of each dimension and the matrix Û of dimension n × p. In this
matrix, each node i gets a row vector ûi = (ûi1, . . . , ûip) containing the unobserved
node characteristics. Nodes with similar characteristics will get similar û-vectors.
The regression parameter estimates are collected in the β-vector.

There is one more tweak to be applied on this solution. The vectors ûi are not
orthogonal, a property which is important for interpretation and plotting. Applying
an eigenvalue decomposition on the fitted matrix ÛΛ̂Û′ does the trick. The resulting
eigenvectors reflect the coordinates in the p-dimensional space and can be subject
to plotting.

Let us apply this concept to the OCD/depression data using the eigenmodel
package (Hoff, 2012). As input adjacencies we use the correlation matrix. There
is no need here to blank out low correlations. We fit a p = 2 dimensional model and
use 1000 MCMC iterations with a burn-in of 200 steps.2

library("eigenmodel")
diag(cormat) <- NA ## NA diagonals required
fitEM <- eigenmodel_mcmc(cormat, R = 2, S = 1000,

burn = 200, seed = 123)

Let us look at the posterior means of the eigenvalues first.

evals <- colMeans(fitEM$L_postsamp)
evals
[1] 0.2590746 0.6107728

2For running time purposes we keep the burn-in and the number of iterations low. In practice they
should be higher.

11.3 Latent Network Models 321

Unlike in PCA, the eigenvalues are not of decreasing order since they were
estimated using MCMC. We see that the second eigenvalue dominates the solution.
Thus, the second latent variable (or dimension) is relatively more important than the
first one. Now we apply the additional eigenvalue decomposition on ÛΛ̂Û′ and plot
the solution. For plotting, we set a correlation threshold of 0.2 in order to blank out
weak connections.

evecs <- eigen(fitEM$ULU_postmean)$vec[, 1:2]
cols <- c("coral", "cadetblue")
plot(evecs, type = "n", xlab = "Dimension 1",
ylab = "Dimension 2", xlim = c(-0.30, 0),
main = "Depression/OCD Eigenmodel Network")

corthresh <- 0.2 ## correlation threshold
addlines(evecs, abs(cormat) > corthresh, col = "gray")
ind <- c(rep(1, 16), rep(2, 10))
text(evecs, labels = rownames(cormat), col = cols[ind],
cex = 0.8)

legend("topright", legend = c("Depression", "OCD"),
col = cols, pch = 19)

Figure 11.5 gives the resulting plot. We see the clear separation between OCD
and depression itemsets along dimension 2. This confirms what the eigenvalue
above told us: the second dimension is the more important one. Dimension 1 mostly
discriminates between the “core” depression items and the “periphery” depression
items, as already identified in the correlation networks above.

One variation of the eigenmodel fitted above is the inclusion of predictors as
formalized in Eq. (11.3). To explore the predictor effects visually, we can fit an
eigenmodel with predictors and one without predictors and plot the two networks.
The dimensionality of an eigenmodel (with or without predictors) can also be varied,
and goodness of fit can be judged using cross-validation. Corresponding examples
are given in Kolaczyk and Csárdi (2014) and Hoff (2008).

11.3.2 Latent Class Network Models

So far we have assumed that we know which items are associated with depression
scale and which ones are OCD items. Let us pretend for a moment that we
do not know this, and let a network algorithm try to detect corresponding node
clusters. Latent class network models integrate the idea of parametric clustering
(see Chap. 12) into network analysis.

Formally, this model represents an extension of the eigenmodel approach from
above since, in addition to scaling, it also estimates the class membership of each
node in a probabilistic way. A thorough description of the algorithm can be found

322 11 Networks

−0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.00

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Depression/OCD Eigenmodel Network

Dimension 1

D
im

en
si

on
 2

onset

middle

late

hypersom

sad

decappetite

incappetite

weightloss

weightgain

concen

guilt

suicideanhedonia

fatigue
retard

agitation

obtime

obinterfer

obdistress

obresist

obcontrol

comptime

compinterf

compdis
compresiscompcont

Depression
OCD

Fig. 11.5 Eigenmodel network plot for depression and OCD items

in Hoff et al. (2002), and the relation to the eigenmodel is explained in Hoff (2008).
Latent class network models can be fitted using the latentnet package (Krivitsky
and Handcock, 2008) and belong to the ERGM model class as well.

Note that the package does not support fully connected graphs, as implied by a
correlation matrix. We fit a very simple model based on a dichotomized correlation
matrix. By using a correlation threshold of 0.2, absolute correlations below 0.2 are
set to 0, whereas the remaining ones are set to 1.

thresh <- 0.2
cormat01 <- ifelse(abs(cormat) > thresh, 1, 0)

In the next data preparation step, we need to convert this adjacency matrix into a
network object (undirected graph), using the network package (Butts, 2008).

11.3 Latent Network Models 323

library("network")
cornet <- network(cormat01, matrix.type = "adjacency",

directed = FALSE)

This object acts as input to the ergmm() function. Let us fix the number of
dimensions to p = 2 (argument d) and vary the number of classes G from 1 to 3.
We keep the MCMC settings at the function’s default values. For each model we
extract the BIC for goodness-of-fit assessment. Note that, similar to a GLM, latent
class networks allow for different distributional family specifications. Since in our
example we operate on a binary input matrix, we use the Bernoulli family (default).

library("latentnet")
set.seed(111)
fitLN1 <- ergmm(cornet ~ euclidean(d = 2, G = 1))
summary(fitLN1)bicZ
[1] 247.6176
fitLN2 <- ergmm(cornet ~ euclidean(d = 2, G = 2))
summary(fitLN2)bicZ
[1] 237.839
fitLN3 <- ergmm(cornet ~ euclidean(d = 2, G = 3))
summary(fitLN3)bicZ
[1] 237.5217

According to the BIC, the two- and three-cluster solutions fit equally well. Let us
focus on the two-cluster solution first. The corresponding network plot involving
the posterior means as node coordinates is given in Fig. 11.6, produced using
plot(fitLN2). We see that dimension 2 discriminates between the set of OCD
items and the set of depression items. The circles give the soft cluster boundary.3

These circles should not be interpreted in a deterministic way since, as in parametric
clustering in general, the latent class network algorithm estimates probabilistic class
memberships. Let us extract the posterior probabilities of three selected symptoms:

clusmemb2 <- fitLN2mklmbc$Z.pZK
dimnames(clusmemb2) <- list(colnames(cormat01),

paste("Cluster", 1:2))
clusmemb2[c("comptime", "suicide", "weightgain"),]
Cluster 1 Cluster 2

(continued)

3To be more precise, their radius is equal to the square root of the posterior intra-cluster variance
estimates.

324 11 Networks

comptime 0.9620 0.0380
suicide 0.0255 0.9745
weightgain 0.0015 0.9985

−10 −5 0 5

−
5

0
5

Latent Class Network (2 Classes)
cornet ~ euclidean(d = 2, G = 2)

Dimension 1

D
im

en
si

on
 2

onsetmiddle

late

hypersom

sad

decappetite

incappetite

weightloss

weightgain

concen

guilt

suicide

anhedonia

fatigue

retard

agitation

obtime

obinterfer
obdistress

obresistobcontrol

comptimecompinterf
compdis

compresis

compcont
+ ++

Fig. 11.6 Latent class network solution in two dimensions and with two clusters. Cluster 1 (red)
can be labeled as “OCD” and cluster 2 (blue) as “depression”

We see that comptime has a high probability to belong to cluster 1, whereas
suicide and weightgain have high probabilities to belong to cluster 2. From
the posterior probabilities of the remaining items and in conjunction with Fig. 11.6,
we can conclude that cluster 1 is a tight OCD cluster, and cluster 2 a wider
depression cluster. Therefore, the algorithm successfully associated the symptoms
with the respective disorder (except for obdistress).

Now let us examine the three-cluster solution in more detail, as shown in
Fig. 11.7 and produced using plot(fitLN3). We see that the depression cluster
from the two-cluster solution is split up into two overlapping clusters: a wide,
general depression cluster (golden) and a depression subcluster (red), closer to

11.3 Latent Network Models 325

−5 0 5 10

−
5

0
5

Latent Class Network
cornet ~ euclidean(d = 2, G = 3)

Dimension 1

D
im

en
si

on
 2

onset middle

late

hypersom

sad

decappetite

incappetite

weightloss

weightgain

concen

guilt

suicide

anhedonia

fatigue

retard

agitation

obtime

obinterfer
obdistress

obresist obcontrol

comptime
compinterf

compdis

compresis

compcont + ++
+

Fig. 11.7 Latent class network solution in two dimensions and with three clusters. Cluster 1 (red)
is a subcluster of a general depression cluster (cluster 3; golden) and cluster 2 (blue) is the OCD
cluster

the OCD cluster (blue). As in Fig. 11.6, this plot also includes information on the
posterior class memberships by means of a pie chart representation of the nodes. For
instance, obdistress has approximately equal probabilities to belong to cluster
1, 2, or 3.

As an alternative representation, we can also plot the posterior densities of the
clusters as given in Fig. 11.8. This plot gives additional information on the cluster
separation by means of plotting the cluster densities in separate panels.

plot(fitLN3, main = "Latent Class Network",
cluster.col = c("coral", "cadetblue", "darkgoldenrod"),
what = "density")

As mentioned above, the latentnet package allows for Gaussian and other dis-
tribution networks where are not required to operate on the binary input adjacency
matrix but rather on the edge weights reflected in the correlations. Other options are
described in Krivitsky and Handcock (2008).

326 11 Networks

Posterior density of fitLN3

−10 −5 0 5 10 15 20−10 −5 0 5 10 15 20

−10 −5 0 5 10 15 20 −10 −5 0 5 10 15 20

−
15

−
10

−
5

0
5

10
15

−
15

−
10

−
5

0
5

10
15

−
15

−
10

−
5

0
5

10
15

−
15

−
10

−
5

0
5

10
15

Class 1

Class 2 Class 3

Fig. 11.8 Posterior densities. Top left panel: joint density. Top right panel: OCD density. Bottom
panels: densities for depression subclusters

11.4 Bayesian Networks

11.4.1 Directed Acyclic Graphs

Correlation networks do not allow for any directed interpretation. In this section
we introduce a network approach that is not based on input correlations: Bayesian
networks (BNs). The graph theory foundation of BNs are directed acyclic graphs
(DAGs). What makes these structures so important is that they allow us to convert
causal assumptions into conditional independence statements which, in turn, can be
subject to statistical hypothesis testing.

11.4 Bayesian Networks 327

Fig. 11.9 Left panel:
directed, acyclic graph. Right
panel: directed cyclic graph

A

B

C A

B

C

DAGs are graph structures that contain no cycles. An example of a DAG and
a cyclic graph involving three nodes A, B, and C is given in Fig. 11.9. This idea
can be integrated in much more complex network structures involving many nodes.
BNs are DAGs. That is, for a fitted BN, we will not be able to find a cycle in our
network, no matter how hard we try. How such DAG structures can be translated
into conditional dependence statements is elaborated in Scutari and Denis (2015).
More technical details on DAGs can be found in Pearl (2009) and Højsgaard et al.
(2012).

11.4.2 Bayesian Networks Taxonomy

When fitting a BN, we can distinguish between two basic paradigms. First, driven
by hypotheses, the user can set up one or more DAG structures, reflecting various
sets of hypotheses, and perform statistical tests on the structure. Such significance
tests can involve testing the presence/absence of specific edges, testing particular
conditional independence assumptions, and comparing various fitted networks using
BIC, for instance. Second, we can fit BNs in a data-driven way and let the algorithm
come up with a network structure, potentially subject to further refinements.
Such networks are called learning networks. In this chapter we focus on learning
networks.

An additional distinction can be made based on the scale level of the input data:

• Multinomial BNs: input data are categorical and the joint distribution will be
multinomial.

• Gaussian BNs: input data are metric and normally distributed; the joint distribu-
tion will be multivariate normal.

• Hybrid BNs: input variables are of mixed scale levels.

For hypothesis-driven networks, in the multinomial case, we can perform χ2-tests
for conditional independence hypotheses involving the corresponding probability
subtables. In the Gaussian case, conditional independence hypotheses can be
examined through tests on partial correlation coefficients.

The field of BNs is comprehensive and things can get fairly technical. There
are many algorithms that can be used to fit a network. Some of them are faster
than others; some of them are more favorable under certain circumstances than

328 11 Networks

others. However, regardless of which algorithm we use, the work flow is inherently
Bayesian: at the end we get a posterior distribution involving the graph structure and
the parameters, given the data. An excellent, easy-to-read treatment of BNs is the
textbook by Scutari and Denis (2015). A comprehensive BN implementation in R
is provided by the bnlearn package (Scutari, 2010) which we will use below.

11.4.3 Bayesian Network Depression/OCD Data

In this section we show a Bayesian learning network application using the depres-
sion/OCD dataset from above. It replicates some of the analyses presented in
McNally et al. (2017). We fit a Gaussian BN since the variables, even though on
4 and 5-point scales, are not heavily skewed. We use a simple algorithm called hill-
climbing to learn the structure of the network and its parameters. This algorithm
starts with a representation without any edge and, subsequently, adds, deletes, and
reverses one edge at a time until a target score (which judges the goodness of fit)
cannot be improved any further. We use the BIC as target score. It is good practice
to perform multiple restarts of the algorithm and do several perturbations on every
random restart (i.e., adding/removing/deleting edges). In our application we perform
10 random restarts with 100 perturbations in order to avoid nasty local minima.

In BNs we use the persons × variables matrix as input; no correlation compu-
tation is involved. Note that bnlearn fits a multinomial network if the variables
are declared as factors and a Gaussian network otherwise. Since we want to fit
a Gaussian network, we declare the variables as numeric. The following code
performs this data preparation step and fits the Bayesian learning network:

library("bnlearn")
Rogers2 <- as.data.frame(apply(Rogers, 2, as.numeric))
set.seed(123)
fitBN <- hc(Rogers2, restart = 10, perturb = 100)

After the fit, we can compute a measure for the strength of the connections. We
use the BIC as criterion for edge strength. The smaller the BIC value, the stronger
the connection. Let us print out the five strongest edges.

estrength <- arc.strength(fitBN, Rogers2, "bic-g")
head(estrength[order(estrength[,3]),], 5)
from to strength
34 obresist compresis -102.56289
35 obinterfer obdistress -59.36705

(continued)

11.4 Bayesian Networks 329

31 incappetite weightgain -50.46129
61 compcont compinterf -46.23236
39 obinterfer compinterf -40.49906

The resulting, funky network plot is given in Fig. 11.10 and can be produced as
follows:

strength.plot(fitBN, estrength,
main = "Bayesian Network Depression/OCD",
shape = "ellipse")

One problem with this network, even though we did random restarts and
perturbations, is that the graph structure is not very stable since, having 26 nodes, a
sample size of 408 is not very large.4 A trick to stabilize the network is to perform
model averaging based on bootstrap samples of the data. In bnlearn this can be
achieved through the following function call where we use 500 bootstrap samples.
We print out the results for the first few edges.

set.seed(123)
bootnet <- boot.strength(Rogers2, R = 500, algorithm = "hc")
head(bootnet)
from to strength direction
1 onset middle 0.872 0.5596330
2 onset late 0.972 0.3724280
3 onset hypersom 0.032 0.0937500
4 onset sad 0.092 0.3913043
5 onset decappetite 0.074 0.8108108
6 onset incappetite 0.066 0.3636364

The strength value in the first line says that 87.2% of the fitted networks include
the connection from onset to middle. The probability that the corresponding edge
goes in that direction is 0.56. This probability is helpful when it comes to directional
interpretation, which we will discuss at the end of this section.

Based on these networks, we can now compute an average network for which
we need to set a threshold for including edges. Below we set a threshold for the
strength of 0.85 which means that only edges should only be retained if they appear

4The reader is encouraged to refit the model multiple times (of course, without setting a random
number seed), and it will be obvious that the graph changes from fit to fit.

330 11 Networks

in at least 85% of the networks. This is an ad hoc value according to Sachs et al.
(2005). The averaged network can be computed as follows:

avgnet <- averaged.network(bootnet, threshold = 0.85)

Note that a more sophisticated version in terms of a statistically motivated
threshold selection is presented in Scutari and Nagarajan (2013) and implemented
in averaged.network as default setting.

Bayesian Network Depression/OCD

onset

middle

late

hypersom

sad

decappetite

incappetite

weightloss

weightgain

concen

guilt

suicide

anhedonia

fatigue

retard

agitation

obtime

obinterfer

obdistress

obresist

obcontrol

comptime

compinterf

compdis

compresis

compcont

Fig. 11.10 Bayesian network for depression/OCD data

11.4 Bayesian Networks 331

For the averaged network fitted above, we can compute the edge strengths using
the BIC once more. The larger the edge BIC, the more damaging it would be to
model fit if we were to remove the edge from the network.

estrength <- arc.strength(avgnet, Rogers2, "bic-g")
strength.plot(avgnet, estrength, shape = "ellipse")

The resulting network plot is given in Fig. 11.11. We see two isolated “depression
islands” (late/onset/middle) and items related to appetite/weight with no influence
on the other items. This is consistent with the findings in the correlation and latent
networks where these items were placed in the periphery of the depression cluster.

onset

middle

late

hypersom

sad

decappetite

incappetite

weightloss

weightgain

concen

guilt

suicide

anhedonia

fatigue

retard

agitation

obtime

obinterfer

obdistress

obresist

obcontrol

comptime

compinterf

compdis

compresis

compcont

Fig. 11.11 Averaged Bayesian network for depression/OCD data. The thickness of an edge
reflects the magnitude of its BIC value

The remaining depression and the OCD items are separated, with “sad” being an
important connector between the two.

332 11 Networks

The final question is: Can we really interpret the node connections in a strict
causal way? The diplomatic answer is that we get hints for causal relationships.
Scutari and Denis (2015, Section 4.7) provide a good discussion on this topic and
suggest that the term “direction” should be used instead of causality. For causal
interpretations, additional assumptions are needed which are difficult to verify in
practical applications. Pearl (2009) elaborates on these assumptions in a detailed
(and technical) way; more narrative explanations can be found in McNally et al.
(2017).

From a statistical point of view, the probabilities of the edge directions from
the bootstrap networks give us some support. Let us take a subset the strongest
connections:

subedge <- head(bootnet[bootnet$strength > 0.95,])
subedge
from to strength direction
2 onset late 0.972 0.3724280
27 middle late 0.982 0.3635438
51 late onset 0.972 0.6275720
52 late middle 0.982 0.6364562
88 hypersom fatigue 1.000 0.6390000
110 sad guilt 0.972 0.9074074

In the first row, we see that the onset → late probability is 0.372. Since it is
smaller than 0.5, the edge in Fig. 11.11 goes the other way. However, we have a
high probability for the sad → guilt edge (0.907).

Instead of using the BIC for edge thickness as in Fig. 11.11, the following code
chunk weights the edges by their direction probability and produces Fig. 11.12.

boottab <- bootnet[bootnet$strength > 0.85 &
bootnet$direction > 0.5,]

astr <- boottab
astr$strength <- astr$direction
strength.plot(avgnet, astr, shape = "ellipse")

This representation gives good “hints” in terms of a directional interpretation
of the symptom nodes (e.g., sad → suicide and sad → guilt). This concludes the
section on BNs; further details can be found in Scutari and Denis (2015).

References 333

onset

middle

late

hypersom

sad

decappetite

incappetite

weightloss

weightgain

concen

guilt

suicide

anhedonia

fatigue

retard

agitation

obtime

obinterfer

obdistress

obresist

obcontrol

comptime

compinterf

compdis

compresis

compcont

Fig. 11.12 Averaged Bayesian network for depression/OCD data. The thickness of an edge
reflects the direction probability

References

Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the
structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121.

Butts, C. (2008). network: A package for managing relational data in R. Journal of Statistical
Software, 24(2), 1–36. http://www.jstatsoft.org/v24/i02/paper

Csárdi, G., & Nepusz, T. (2006). The igraph software package for complex network research.
InterJournal Complex Systems, 1695. http://igraph.org/

Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012).
qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical
Software, 48(4), 1–18. http://www.jstatsoft.org/v48/i04/

Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9, 432–441.

Friedman, J., Hastie, T., & Tibshirani, R. (2014). glasso: Graphical lasso estimation of Gaussian
graphical models. R package version 1.8. https://CRAN.R-project.org/package=glasso

Hoff, P. D. (2008). Modeling homophily and stochastic equivalence in symmetric relational data. In
J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.) Advances in neural information processing
systems 20 (pp. 657–664). Cambridge: MIT Press.

http://www.jstatsoft.org/v24/i02/paper
http://igraph.org/
http://www.jstatsoft.org/v48/i04/
https://CRAN.R-project.org/package=glasso

334 11 Networks

Hoff, P. (2012). eigenmodel: Semiparametric factor and regression models for symmetric rela-
tional data. R package version 1.01. https://CRAN.R-project.org/package=eigenmodel

Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network
analysis. Journal of the American Statistical Association, 97, 1090–1098.

Højsgaard, S., Edwards, D., & Lauritzen, S. (2012). Graphical models with R. New York: Springer.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning

with applications in R. New York: Springer.
Kolaczyk, E. D., & Csárdi, G. (2014). Statistical analysis of network data with R. New York:

Springer.
Krivitsky, P. N., & Handcock, M. S. (2008). Fitting position latent cluster models for social

networks with latentnet. Journal of Statistical Software, 24(5), 1–23. https://www.jstatsoft.
org/article/view/v024i05

McNally, R. J., Mair, P., Mugno, B. L., & Riemann, B. C. (2017). Comorbid obsessive-compulsive
disorder and depression: A Bayesian network approach. Psychological Medicine, 47, 1204–
1214.

Pearl, J. (2009). Causality. New York: Cambridge University Press.
Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., & Nolan, G. P. (2005). Causal protein-

signaling networks derived from multiparameter single-cell data. Science, 308, 523–529.
Scutari, M. (2010). Learning Bayesian networks with the bnlearn R package. Journal of Statistical

Software, 35, 1–22. http://www.jstatsoft.org/v35/i03/
Scutari, M., & Denis, J. B. (2015). Bayesian networks with examples in R. Boca Raton: CRC Press.
Scutari, M., & Nagarajan, R. (2013). On identifying significant edges in graphical models of

molecular networks. Artificial Intelligence in Medicine, 57, 207–217.
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cam-

bridge: Cambridge University Press.

https://CRAN.R-project.org/package=eigenmodel
https://www.jstatsoft.org/article/view/v024i05
https://www.jstatsoft.org/article/view/v024i05
http://www.jstatsoft.org/v35/i03/

Chapter 12
Parametric Cluster Analysis and Mixture
Regression

12.1 Model-Based Clustering Approaches: Mixture Models

The aim of clustering is to find homogeneous groups of persons based on several
variables under consideration. Basic clustering strategies involve techniques like
hierarchical clustering and K-means clustering. R is of course well equipped with
corresponding functions (see, e.g., hclust and K-means functions, as well as
some extensions in the cluster package Maechler et al., 2017). A nice feature of
hierarchical techniques is that we get a good insight into the cluster amalgamation
structure, typically represented as dendrogram. Apart from the standard silhouette
information (see silhouette function), the NbClust package (Charrad et al.,
2014) offers various tools to support the user with selecting the number of clusters.

In this chapter we do not cover hierarchical techniques or K-means clustering,
since these approaches are already explained in detail in other books such as Everitt
and Hothorn (2011) and Everitt (2011). Rather, we focus on parametric clustering
approaches based on mixture distributions. Properties of this clustering concept are
the following:

• We can account for various scale properties of the variables under consideration
by specifying according distributions.

• We estimate parameters, subject to further statistical inference.
• Goodness-of-fit measures such as the BIC are computed, which give statistical

arguments for choosing the number of clusters.
• The assignment of each person to a cluster is done in a probabilistic (i.e., soft)

manner, as opposed to a deterministic (i.e., hard) assignment as in hierarchical
or K-means clustering.

• The parametric clustering concept can be embedded into regression modeling
frameworks.

In the remainder of this chapter, we will explore these properties in detail by means
of several examples. But first, let us have a look at the theory.

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_12

335

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_12&domain=pdf
https://doi.org/10.1007/978-3-319-93177-7_12

336 12 Parametric Cluster Analysis and Mixture Regression

The underlying principle of model-based clustering approaches are mixture
distributions. An example of a simple mixture of normal distributions is given in
Fig. 12.1, where we try to describe the distribution of variable X by a mixture of
K = 3 normal distributions. Each mixture component (also called cluster or latent
class) j (j = 1, . . . , K) is distributed with density fj (xi;μj , σ

2
j). The mixture

normal density value of an individual observation xi (i = 1, . . . , n) is given by

f (xi;μ, σ 2) =
K∑

j=1

πjfj (xi;μj , σ
2
j). (12.1)

The πj ’s are the so-called mixture weights with
∑K

j=1 πj = 1.
With respect to the densities fj (·), we are not limited to normal distributions. We

can use other distributions fj (xi; θ j), where θ j acts as a general placeholder for the
corresponding distributional parameter vector in component j . For instance, having
several count variables as inputs, we could define a mixture of Poisson distributions.
For such general settings, Eq. (12.1) can be written as

f (xi; θ) =
K∑

j=1

πjfj (xi; θ j). (12.2)

This is all the math we need for this chapter since all methods presented below
are based on this simple principle. Mixture models are typically estimated by
means of the EM algorithm (expectation-maximization), but for some of the
more complicated ones, we need Markov chain Monte Carlo (MCMC). Additional
technical details on mixture models can be found in McLachlan and Peel (2000).

12.1.1 Normal Mixture Models

Let us focus on normal mixtures first. In psychometrics, this approach is often called
latent profile analysis. We illustrate this concept using a simple dataset from Mair
et al. (2015) who explored what drives developers to contribute to R (see Sect. 4.2.2
for an earlier analysis of these data). We consider three metric variables (factor
scores) from the work design questionnaire (WDQ): task, social, and knowledge
characteristics.

library("MPsychoR")
library("mclust")
data("Rmotivation2")
Rwd <- Rmotivation2[, c(4:6)] ## work design variables

12.1 Model-Based Clustering Approaches: Mixture Models 337

Normal Mixtures

x

D
en

si
ty

0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

Fig. 12.1 Mixture of three univariate normal distributions

Since we have three input variables, instead of fitting a unidimensional normal
mixture as in Eq. (12.1), we are going fit a mixture model based on three-
dimensional normal distributions.

Before we start the actual clustering process, there are a few things that need
to be pointed out. First, the data itself do not have to be normally distributed
since the distribution is approximated by mixtures anyway (cf. Fig. 12.1). Thus,
we do not have to worry about individual normality violations; we just need to
make sure that our data fit conceptually into a normal distribution framework (e.g.,
having categorical data or skewed counts, this would not be the case). Second, we
need to fix the number of clusters K before fitting the model. In practice, a BIC
selection strategy is applied by fitting several candidate models with varying K and,
subsequently, pick the solution with the best BIC.1 The mclust package (Fraley and
Raftery, 2002), which we are going to use to fit the normal mixture model, provides
the following utility function to pursue this strategy. In this example we specify a
range for K from 2 to 10 clusters (see G argument):

1Note that in mclust a maximum-BIC strategy is used; that is, the higher the BIC, the better the fit.

338 12 Parametric Cluster Analysis and Mixture Regression

set.seed(123)
clustbic <- mclustBIC(Rwd, G = 2:10)
clustbic

From the output (not shown here), we see that for each K , the algorithm fits
a variety of normal mixture models. They are mostly based on particular shape
restrictions in the variance-covariance (VC) matrix (see ?mclustModelNames
for details). Let us refit the model that has been identified as the best one and then
have a look at the output parameters:

clusfit <- Mclust(Rwd, x = clustbic)
summary(clusfit, parameters = TRUE)
--
Gaussian finite mixture model fitted by EM algorithm
--
##
Mclust VVI (diagonal, varying volume and shape)
model with 5 components:
##
log.likelihood n df BIC ICL
-2453.813 764 34 -5133.337 -5436.177
##
Clustering table:
1 2 3 4 5
175 241 232 56 60
##
Mixing probabilities:
1 2 3 4 5
0.21506086 0.36475594 0.28597464 0.06099677 0.07321179
##
Means:
[,1] [,2] [,3] [,4] [,5]
wtask -0.3383670 -0.05376995 0.1284806 1.2132427 -0.5847775
wsocial -0.9491831 0.35219937 0.2831322 0.6514594 -0.3949974
wknowledge -0.1682797 -0.51916620 0.6747767 0.1525975 -0.5591489

The BIC search suggests a five-cluster solution based on a VVI model (diagonal,
varying volume, and shape), meaning that the VC matrix is diagonal (uncorrelated
variables within each cluster) and that the shape and volume of the 3D normal
components are unrestricted.

Let us explore this output in more detail. In terms of cluster assignments, we
have already mentioned that model-based clustering approaches give probabilistic
cluster membership for each individual. We can extract these posterior probabilities
as follows (only first six persons are shown here):

12.1 Model-Based Clustering Approaches: Mixture Models 339

head(round(clusfit$z, 3)) ## soft
[,1] [,2] [,3] [,4] [,5]
1 0.000 0.056 0.909 0 0.035
4 0.000 0.713 0.287 0 0.000
5 0.000 0.297 0.703 0 0.000
6 0.967 0.001 0.032 0 0.000
8 0.000 0.987 0.013 0 0.000
9 0.000 0.997 0.003 0 0.000
cluster <- as.factor(clusfit$classification) ## hard

Based on the maximum posterior probability, each person can be assigned to
a cluster in a deterministic way. For instance, the first person is in cluster 3, the
second person in cluster 2, the third person in cluster 3, etc. The clustering table
in the summary output above results from these hard assignments and tells us how
many persons there are in each cluster. The mixing probabilities are the weights of
the density mixtures (i.e., πj in Eq. (12.1)).

In the summary output, we also get the mean vectors μj for each component.
On the basis of these means, we can describe the clusters. Cluster 1 is dominated
by persons with high knowledge characteristics, cluster 2 consists of persons with
very low knowledge characteristics, and cluster 3 has persons with high task and
social characteristics, whereas in cluster 4 we find people that score low on these
two variables.

Typically, a parametric cluster analysis is based on several input variables which
make it difficult to plot the mixture densities. The trick is to apply dimensionality
reduction on the variables by means of a principal component analysis (PCA;
see Chap. 6) and plot the clusters in a 2D space. The following call performs the
dimensionality reduction:

clustred <- MclustDR(clusfit)

Based on this object, the plots in Fig. 12.2 can be produced as follows:

plot(clustred, what = "boundaries", ngrid = 200)
plot(clustred, what = "density", dimens = 1)

The top panel shows a 2D representation of the cluster boundaries; the persons
are colored according to their hard cluster membership. We see that the clusters
are clearly separated. The bottom panel shows a 1D representation along the first
dimension, similar to what we had in Fig. 12.1. Additional options can be found in
?plot.MclustDR.

340 12 Parametric Cluster Analysis and Mixture Regression

For further cluster inspection, we can consider external variables that were not
part of the clustering process. Here we use the number of packages (npkgs;
metric) and whether a developer has been active on R-help or similar lists (lists;
categorical) and produce the following plots:

library("lattice")
densityplot(~npkgs|cluster, data = Rmotivation2, col = "gray",

index.cond = list(c(3, 4, 1, 2)))
histogram(~lists|cluster, data = Rmotivation2, col = "gray",

index.cond = list(c(3, 4, 1, 2)))

The cluster-specific density plots for the number of packages are given in the
top panel of Fig. 12.3. Cluster 4 differs clearly from the remaining three clusters,
containing mostly users who developed a low number of packages. The bottom
panel shows the cluster-specific bar charts for list participation. Again, cluster 4 is
distinct form the remaining three clusters since it is the only cluster that contains
more respondents who do not participate in lists.

At this point we have fully interpreted the four-cluster solution of our work
design data. Note that the aspect of cluster interpretability is highly important in
mixture models (and cluster analysis in general). Sometimes a solution suggested
by the BIC does not provide good interpretability. In such cases we can pick a
solution with slightly higher or lower K (which does not lead to a drastically
worse BIC), if this helps with interpretability. On a related note, regardless which
clustering method we use, it can happen that all clusters but one (“junk cluster”)
can be meaningfully interpreted. Such a solution is not problematic since the junk
cluster contains a heterogeneous set of persons, which simply did not fit into any of
the remaining clusters.

12.1.2 Latent Class Analysis

Latent class analysis (LCA) was developed in the area of psychometrics (Lazarsfeld
and Henry, 1968) and is designed for categorical input data. From a modern
perspective, LCA is nothing else than a mixture distribution model where the
underlying densities are specified using a binomial distribution for dichotomous
items, or a multinomial distribution for polytomous items.

In order to show a simple application of LCA, we use a dataset from Haegeli et al.
(2012) who studied high-risk cohorts in a complex and dynamic risk environment.
There are four input variables related to preparedness before going backcountry
skiing. The variables under consideration have three to five ordinal response
categories. We use the poLCA package (Linzer and Lewis, 2011) to compute
the LCA. As above, we fit a sequence of LCA solutions with varying K (here

12.1 Model-Based Clustering Approaches: Mixture Models 341

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−2
−1

0
1

Dir1

D
ir2

l

l

l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l
l

l

ll

l

l

l

l

l
l

l

l

l

l

0.
0

0.
5

1.
0

1.
5

2.
0

D
en

si
ty

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Dir1

1

2

3

4

5

Fig. 12.2 Top panel: 2D cluster boundaries. Bottom panel: 1D densities of mixture components

342 12 Parametric Cluster Analysis and Mixture Regression

npkgs

D
en

si
ty

0.0

0.2

0.4

0.6

0 10 20 30

3 4

1

0 10 20 30

0.0

0.2

0.4

0.6

2

lists

P
er

ce
nt

 o
f T

ot
al

0

20

40

60

no yes

3 4

1
no yes

0

20

40

60

2

Fig. 12.3 Cluster evaluation using external variables. Top panel: number of packages (metric).
Bottom panel: participation in lists (categorical)

12.1 Model-Based Clustering Approaches: Mixture Models 343

from 1 to 4). We refit each model three times in order to avoid ending up in a
local maximum, since the EM algorithm is sensitive to starting values. The poLCA
function returns the model with the best fit for a given K .

library("MPsychoR")
library("poLCA")
data("AvalanchePrep")
formula <- cbind(info, discuss, gear, decision) ~ 1
set.seed(1)
fitlca1 <- poLCA(formula, data = AvalanchePrep, nclass = 1,

nrep = 3)
fitlca2 <- poLCA(formula, data = AvalanchePrep, nclass = 2,

nrep = 3)
fitlca3 <- poLCA(formula, data = AvalanchePrep, nclass = 3,

nrep = 3, maxiter = 2000)
fitlca4 <- poLCA(formula, data = AvalanchePrep, nclass = 4,

nrep = 3, maxiter = 5000)

We extract the BICs (here the usual minimum BIC rule applies) in order to
determine the number of clusters K:

c(fitlca1$bic, fitlca2$bic, fitlca3$bic, fitlca4$bic)
[1] 7249.481 6698.558 6563.062 6629.098

The BIC suggests that the three-cluster solution fits the data best.

fitlca3
Conditional item response (column) probabilities,
by outcome variable, for each class (row)
##
$info
1 2 3 4
class 1: 0.9682 0.0218 0.0053 0.0047
class 2: 0.8290 0.0562 0.0635 0.0513
class 3: 0.8436 0.0195 0.0000 0.1369
##
$discuss
1 2 3 4
class 1: 0.5738 0.4195 0.0067 0.000
class 2: 0.0000 0.6822 0.2867 0.031
class 3: 0.0000 0.0000 0.0000 1.000
##
$gear
1 2 3 4 5
class 1: 0.8147 0.0738 0.0630 0.0358 0.0126
class 2: 0.0142 0.0725 0.2515 0.4996 0.1622
class 3: 0.0000 0.0000 0.0000 0.0000 1.0000

(continued)

344 12 Parametric Cluster Analysis and Mixture Regression

##
$decision
1 2 3
class 1: 0.9739 0.0038 0.0223
class 2: 0.8790 0.0303 0.0908
class 3: 0.0034 0.0000 0.9966
##
Estimated class population shares
0.8218 0.1405 0.0377
##
Predicted class memberships (by modal posterior prob.)
0.8354 0.1269 0.0376

For each category we get a class-specific endorsement probability. For instance,
for the “check avalanche danger information” item (info), the probability for
scoring 1 (“check conditions on internet prior to leaving home”) is high in all
three clusters. For the decision-making item, the first two clusters contain people
who score 1 (“dedicated leader or everybody contributes”), whereas cluster 3
members mostly score 3 (“everybody makes their own choices or solo traveler”).
Based on these probabilities, clusters can be interpreted. The authors of this study
named cluster 1 “good habits,” cluster 2 “poor habits,” and cluster 3 “deficient
habits.” A plot of these probabilities is given in Fig. 12.4, by simply saying
plot(fitlca3). The hard cluster memberships, potentially subject to further
external evaluation, can be extracted a follows:

clusmemb <- as.factor(fitlca3$predclass)

This latent class idea (or, more general, mixture distribution idea) has been
integrated into other psychometric techniques. For instance, the psychomix package
(Frick et al., 2012) allows for fitting Rasch models (see Sect. 4.2.1) and Bradley-
Terry models (see Sect. 5.1.1) in a mixture fashion.

12.1.3 Parametric Clustering with Mixed Scale Levels

To illustrate a mixed scale level clustering, we use the ZAREKI-R data (Koller and
Alexandrowicz, 2010) introduced in Sect. 4.1.2. This dataset uses eight addition
and eight subtraction items for the assessment of dyscalculia in children. Below
we select four addition/subtraction items (dichotomous), and the time it took the
children to complete the test (metric). For the binary items, we use mixtures of
binomial distributions and for “time” a normal mixture. To fit the model, we use
the flexmix package (Grün and Leisch, 2008) which, as the name already suggests,
provides a flexible infrastructure for fitting all sorts of mixture models. The core

12.1 Model-Based Clustering Approaches: Mixture Models 345

Class 1: population share = 0.822

info discuss gear decision1

2
3

4
5

Manifest variables

O
ut

co
m

es

P
r(

ou
tc

om
e)

Class 2: population share = 0.14

info discuss gear decision1

2
3

4
5

Manifest variables

O
ut

co
m

es

P
r(

ou
tc

om
e)

Class 3: population share = 0.038

info discuss gear decision
1

2
3

4
5

Manifest variables

O
ut

co
m

es

P
r(

ou
tc

om
e)

Fig. 12.4 Class-specific item category probabilities resulting from a 3-cluster LCA solution

function of the package is flexmix. As above, we vary the number of clusters
K , and for each K we compute several replications. The following function call
performs the model search.

library("flexmix")
data("zareki")
set.seed(123)
zarflex <- stepFlexmix(~ 1, data = zareki, k = 1:4, nrep = 3,

model = list(FLXMRmultinom(addit7 ~ .),
FLXMRmultinom(addit8 ~ .),
FLXMRmultinom(subtr3 ~ .),
FLXMRmultinom(subtr7 ~ .),
FLXMRglm(time ~ ., family = "gaussian")))

Note that if we had a count variable in our dataset, a Poisson distribution can be
used, specified through family="poisson". In case of a right-skewed metric
variable with a lower bound of 0 (e.g., reaction time often behaves this way), the
gamma distribution can be used (family="gamma"). For polytomous items we
can use the same FLXMRmultinom call as above.

346 12 Parametric Cluster Analysis and Mixture Regression

Continuing with this example, let us pull out the best model according to the BIC
criterion:

zarflex2 <- getModel(zarflex, "BIC")
cluster <- zarflex2@cluster
table(cluster)
cluster
1 2
147 194

A two-cluster solution fits the data well. With parameters(zarflex2), we
can extract the distribution parameters. Since the parameters of the four categorical
items are on a logit scale, we can apply the usual exponential transformation (as,
e.g., in logistic regression) in order to get an odds ratio interpretation.

catpars <- sapply(parameters(zarflex2)[1:4], exp)
colnames(catpars) <- c("addit7", "subtr3", "addit8", "subtr7")
catpars ## categorical variables
addit7 subtr3 addit8 subtr7
Comp.1.coef 11.052397 4.4732715 4.2684181 3.5306428
Comp.2.coef 3.858138 0.6085434 0.3224599 0.4472089
parameters(zarflex2)[[5]] ## time variable
Comp.1 Comp.2
coef.(Intercept) 22.979615 30.302752
sigma 3.119102 6.084501

We see that members of cluster 1 have higher odds to solve any item than cluster
2 members. The last part shows the parameters for the time variable. The intercepts
correspond to the cluster-specific means and suggest that children in cluster 2 need
more time for test completion, compared to those in cluster 1.

Based on the hard cluster assignments in zarflex2@cluster, we can
produce mosaic plots using the vcd package (Meyer et al., 2006) for each categorical
input variable (see Fig. 12.5). We see that these plots confirm what we have seen
from the odds: cluster 1 contains predominantly children who solved the items
correctly.

12.1.4 Concomitant Variables

The weights πj in a mixture model indicate an a priori probability for an individual
to be in component j . So far, these weights were updated during the clustering
process and were not influenced by any specific variable. Mixture models give

12.1 Model-Based Clustering Approaches: Mixture Models 347

us the possibility to specify covariates (e.g., sociodemographic variables) that
influence these weights. In cluster analysis slang, such a covariate w is called
concomitant variable. Concomitant variables affect the weights and, therefore, the
cluster assignments. In Eq. (12.2) we can replace πj by πj (w, α), where α is the
parameter vector associated with the concomitant variable.

addit7

cl
us

te
r

2
1

0 1
addit8

cl
us

te
r

2
1

0 1

subtr3

cl
us

te
r

2
1

0 1
subtr7

cl
us

te
r

2
1

0 1

Fig. 12.5 Mosaic plots for cluster evaluation: four items cross-classified with hard cluster
membership

To illustrate this concept, we refit the two-cluster model from above using class
(2nd, 3rd, 4th grade) as concomitant variable. In order to support the algorithm
with reasonable starting values, we can use the posterior probabilities from above
as starting solution.

348 12 Parametric Cluster Analysis and Mixture Regression

zarflexc <- flexmix(~ 1, data = zareki,
cluster = posterior(zarflex2),
concomitant = FLXPmultinom(~ class),
model = list(FLXMRmultinom(addit7 ~ .),

FLXMRmultinom(subtr3 ~ .),
FLXMRmultinom(addit8 ~ .),
FLXMRmultinom(subtr7 ~ .),
FLXMRglm(time ~ ., family = "gaussian")))

zarflexc@prior ## weights with concomitant
[1] 0.5861112 0.4138888
zarflex2@prior ## weights without concomitant
[1] 0.433666 0.566334

We see that the mixture weights have changed. The parameter vector α on an
odds scale is:

exp(zarflexc@concomitant@coef)
1 2
(Intercept) 1 11.00637734
classthird 1 0.01691578
classfourth 1 0.01176601

The concomitant parameters for cluster 1 are fixed to 1, and 2nd grade is used as
reference category. The output suggests that for 2nd graders, the odds for ending up
in cluster 2 is 11 times higher than ending up in cluster 1. For 3rd and 4th graders,
these odds are low; most likely these kids fall into the first cluster. In order to explore
this output in more detail, let us extract the cluster assignments and cross-classify
them with grade. For comparison, we also present the same table from the fit above
without a concomitant variable:

clusterc <- zarflexc@cluster
table(zareki$class, clusterc) ## with concomitant variable
clusterc
1 2
second 8 114
third 88 11
fourth 108 12
table(zareki$class, cluster) ## without concomitant variable
cluster
1 2
second 13 109
third 58 41
fourth 76 44

12.2 Mixture Regression Models 349

The concomitant variable solution provides a clearer separation of the school
classes across the clusters: the second cluster mostly consists of 2nd-grade pupils,
whereas cluster 1 contains largely 3rd- and 4th-grade pupils. Without class as
concomitant variable, the 3rd and 4th graders are distributed more evenly across
the two clusters. After including the class variable into our model, there are still
some “special” kids who do not belong to the same cluster than their peers. For
instance, there are 8 second graders who perform like third (or even fourth) graders,
and there are 11 third and 12 fourth graders who perform weaker than their peers.

Note that the concomitant variable also changes the distributional parameters, as
can be explored via parameters(zarflexc). Still, the general picture holds: in
the first cluster there are students with a high probability to solve the items correctly
and having a low average test taking time.

12.2 Mixture Regression Models

12.2.1 Mixture Regression Theory

The flexmix package is even more flexible than what we have shown so far. It is
possible to incorporate the mixture distribution concept into a regression framework.
This approach is sometimes referred to as mixture regression or latent class
regression. The basic idea is to perform regression fit and clustering simultaneously.
That is, for a given K , we estimate K regression models. Let us have a closer formal
look at how this idea fits into the mixture density framework.

Let yi be the score on the response variable of individual i, and xi the
corresponding predictor vector (including a value of 1 for the intercept). For the
associated random variable Yi , in an ordinary linear regression, we assume that
Yi ∼ N(x′

iβ, σ 2). Thus, the distribution of Yi can be expressed as a normal density
given the predictors, that is, f (yi |xi;β, σ 2). Let us integrate this idea into Eq. (12.1)
by considering j = 1, . . . , K components:

f (yi |xi;β, σ 2) =
K∑

j=1

πjfj (yi |xi;βj , σ
2
j) (12.3)

For each component j , we estimate a set of regression parameters βj and the
corresponding residual variance σ 2

j . Again, πj are the mixture weights.
As Eq. (12.1) was generalized to Eq. (12.2), we can do the same thing for

Eq. (12.3):

f (yi |xi; θ) =
K∑

j=1

πjfj (yi |xi; θ j), (12.4)

350 12 Parametric Cluster Analysis and Mixture Regression

where θ j is a general placeholder for a variety of regression parameters. This
formulation allows us to extend the normal mixture regression from Eq. (12.3)
to generalized linear model (GLM) settings, linear mixed-effects models (LME),
generalized additive models (GAM), etc. Below we show some examples.

12.2.2 Mixture Regression Applications

In this section we present three applications of increasing complexity. Let us start
with a toy example based on simulated data in order to show a simple linear mixture
regression fit.

set.seed(123)
X <- rnorm(100)
Y1 <- 2*X + rnorm(100, sd = 0.5)
Y2 <- (-2)*X + rnorm(100, sd = 0.5)
toydat <- data.frame(X = c(X, X), Y = c(Y1, Y2))
lm(Y ~ X, data = toydat)
##
Call:
lm(formula = Y ~ X, data = toydat)
##
Coefficients:
(Intercept) X
0.007454 -0.046723

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

−2 −1 0 1 2

−4
−2

0
2

4

Scatterplot

X

Y

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

−2 −1 0 1 2

−4
−2

0
2

4

Mixture Regression Fit

X

Y

Fig. 12.6 Left panel: scatterplot with simple linear regression fit. Right panel: mixture regression
fit including the two fitted regression lines and the hard cluster memberships

12.2 Mixture Regression Models 351

The scatterplot in the left panel of Fig. 12.6 takes the form of an “X.” A simple
linear regression cannot capture this pattern; it simply fits a horizontal line. Let us
fit a two-component mixture regression model using flexmix on these data and see
what happens.

library("flexmix")
toymix <- flexmix(Y ~ X, k = 2, data = toydat)
parameters(toymix)
Comp.1 Comp.2
coef.(Intercept) -0.08339254 0.06157986
coef.X 1.96650205 -2.06844244
sigma 0.50933200 0.47158323

We get two sets of regression parameters, one for each component: intercept,
slope, and residual standard deviation. The right panel in Fig. 12.6 confirms that the
mixture regression nicely captures the scatterplot structure. Again, the assignment of
each individual to a cluster is carried out in a probabilistic way, which subsequently
can be turned into a hard membership (see toymix@cluster). Similar toy
examples involving quadratic regression and Poisson regression for counts are given
in Grün and Leisch (2008).

Now let us use a real-life dataset which leads to a mixture mixed-effects model
since the design involves repeated measurements. The data are taken from Winter
and Grawunder (2012) who investigated properties of formal and informal speech
registers in Korean. Six persons (three males, three females) were part of a linguistic
experiment. For each person we have 14 measurements in total (except for one
person where one response is missing). The response variable is the pitch frequency
in Hz. Below we use attitude (polite vs. informal) as fixed effect and take into
account the repeated measurement nature of the experiment through a subject
random effect. We fit a K = 2 cluster solution.2 Note that for illustration purposes,
we do not include gender in the model.

library("MPsychoR")
data("KoreanSpeech")
set.seed(123)
koreamix <- flexmix(frequency ~ attitude|subject, k = 2,

data = na.omit(KoreanSpeech))
table(koreamix@cluster)
##

(continued)

2In practice, the user should again try out different numbers of clusters and pick the one with the
lowest BIC.

352 12 Parametric Cluster Analysis and Mixture Regression

1 2
41 42
parameters(koreamix)
Comp.1 Comp.2
coef.(Intercept) 144.49048 260.68571
coef.attitudepol -11.51048 -27.40000
sigma 38.48414 31.72443

The two clusters are of approximately the same size. Note that the cluster size is
determined by the total number of observations and not by the number of persons
(since we have a repeated measurement design). Each cluster gets an individual
set of mixed-effects regression parameters: intercept, slope, and residual variance.
We see that in the second cluster the average pitch frequency (informal attitude is
used as reference category) is clearly higher than in the first cluster. The slopes are
negative meaning that the average pitch decreases when the participants switch from
informal to polite (in cluster 2 somewhat more than in cluster 1). Let us evaluate this
solution by cross-classifying with gender:

table(Cluster = clusters(koreamix),
Gender = na.omit(KoreanSpeech)$gender)

Gender
Cluster F M
1 0 41
2 42 0

We see that the algorithm is pretty smart and the obtained clusters separate per-
fectly between males and females: cluster 1 consists of all the male measurements
and cluster 2 of all the female ones.

Internally, the packages uses the FLXMRlmm driver which allows us to incor-
porate a single random effect only. If multiple random effects are needed, the
FLXMRlmer driver can be used which uses an lme4 style specification. For GLMs,
the FLXMRglm driver does the job. The corresponding help files give details on how
to specify these models.

The final example, where we fit a GAM mixture, is fairly advanced. GAMs are a
nonlinear regression framework which typically uses splines or smoothers in order
to achieve a nonlinear fit. This model class is described in detail in Wood (2017). We
use a simple dataset from the gamair package from the same author which includes
2D spatial voxel coordinates (predictors in our model) and a brain activity measure
(median of three replicate “fundamental power quotient” (FPQ) values at the voxel)
as response. Let us exclude some outliers and plot the activation map (see Fig. 12.7):

12.2 Mixture Regression Models 353

Fig. 12.7 Brain activation
levelplot. Levels are colored
according to the brain
activation as reflected by the
FPQ (log-scale)

Y

X

50

60

70

80

10 20 30 40 50

−5

−4

−3

−2

−1

0

1

2

3

library("gamair")
library("lattice")
data("brain")
brain <- brain[brain$medFPQ > 5e-3,] ## exclude outliers
trellis.par.set(regions = list(col = colorRampPalette(
c('cadetblue4', 'white', 'coral4'))))

levelplot(log(medFPQ) ~ Y*X, data = brain)

Let us fit a mixture GAM using K = 3 components. The flexmix package offers
the FLXMRmgcv driver in order to interact with the mgcv package for fitting GAMs.
We use mgcv’s default smoother with a fairly low basis dimension k. Details on this
smoother can be found in Wood (2017, Chapters 5 and 7).

set.seed(123)
fitgammix <- flexmix(log(medFPQ) ~ s(Y, X, k = 30),

model = FLXMRmgcv(), k = 3, data = brain,
control = list(tolerance = 10^-3))

table(clusters(fitgammix))
##
1 2 3
450 870 244

354 12 Parametric Cluster Analysis and Mixture Regression

50 60 70 80

−4
−2

0
2

Fit for X Coordinates

X

M
ed

ia
n

FP
Q

 [l
og

]

Cluster 1
Cluster 2
Cluster 3

10 20 30 40 50

−4
−2

0
2

Fit for Y Coordinates

Y

M
ed

ia
n

FP
Q

 [l
og

]

Cluster 1
Cluster 2
Cluster 3

Fig. 12.8 Scatterplots with fitted nonlinear regression functions (K = 3). Left panel: voxel x-
coordinates. Right panel: voxel y-coordinates

The last line extracts the hard voxel cluster memberships. Figure 12.8 shows
the fitted mixture GAM functions. We see that for each predictor we fit a smooth
nonlinear function into the scatterplot.

This concludes the section on mixture regression models. Note that the flexmix
package can also handle multiple input regression models and allows users to
include concomitant variables. Examples and further details can be found in Leisch
(2004) and Grün and Leisch (2008).

12.3 Dirichlet-Based Clustering

In all approaches presented so far, we had to fix the number of clusters K

a priori. Recent developments, within a Bayesian estimation framework, make
it possible to infer the number of clusters directly from the data. This idea is
called Dirichlet process mixture (DPM) model, sometimes also coined as Chinese
restaurant process. The math behind these models can get pretty technical and is
omitted here; a good introduction to this topic at a moderate technical level is given
in Gershman and Blei (2012). An R package that implements this approach for MRI
image segmentation is dpmixsim (da Silva, 2012).

In this section we present two Dirichlet-based approaches. In the first part we
continue the mixture regression example from above and let the algorithm determine
the number of clusters. In the second part we present an approach designed to cluster
text data.

12.3 Dirichlet-Based Clustering 355

12.3.1 Dirichlet Process Regression

Even though technically different, the conceptual idea of a Dirichlet process
regression is exactly the same as in the mixture regression approach presented in
Sect. 12.2. The difference, from a practicioner’s point of view, is that we do not
have to specify the number of clusters a priori. Formal details on these models can
be found in Shotwell (2013) and are implemented in the profdpm package.

We use once more the Korean speech data with the same mixed-effects model
specification as above. Note that technically we are not really fitting a mixed-effects
model here. Rather, we specify a group argument reflecting which observations
are grouped according to our repeated measurement design. This way the function
makes sure that multiple observations from a single person end up in the same
cluster.

library("profdpm")
koreamix2 <- profLinear(frequency ~ attitude, group = subject,

data = na.omit(KoreanSpeech))
koreamix2$m ## intercept and slope parameters
[[1]]
[1] 260.67200 -27.38498
##
[[2]]
[1] 161.787867 -8.079553
##
[[3]]
[1] 109.85354 -15.36563

The algorithm finds three clusters with corresponding intercept (first element)
and slope parameters (second element). Let us evaluate the solution once more with
gender, before interpreting the parameters:

table(Cluster = koreamix2$clust,
Gender = na.omit(KoreanSpeech)$gender)

Gender
Cluster F M
1 42 0
2 0 27
3 0 14

All the females end up in the first cluster, whereas for the males we get a
more fine-grained separation across two clusters. By considering the corresponding
intercept and slope parameters for these two clusters, we see that cluster 2 consists
of males with a higher average pitch frequency for which the pitch decreases only

356 12 Parametric Cluster Analysis and Mixture Regression

slightly when switching from informal to polite. Cluster 3 consists of a single male
only, since we had 14 measurements per person. His pitch frequency is lower than
the one of the cluster 2 members and decreases more drastically when switching
from informal to polite.

The profdpm package also includes the profBinary function which allows
for a Dirichlet process extension of LCA (binary input variables only, no covariates
allowed). The number of clusters is determined by the algorithm. Another package,
more specifically designed for longitudinal designs and thus actually fitting Dirichlet
process mixed-effects models, is growcurves (Savitsky and Paddock, 2014) with the
dpgrow function at its core.

12.3.2 Clustering Texts: Topic Models

Analyzing text data is of increasing interest in psychology. The field concerned with
text analysis is often called natural language processing (NLP). The R environment
offers numerous packages for NLP.3 Introductory R books on this topic are Kwartler
(2017) and Silge and Robinson (2017).

In Sect. 7.1.3 we presented an application of text data by fitting a correspondence
analysis on a document-term matrix (DTM) in order to explore word associations.
In this section we present topic models which aim to find topics, that is, probabilistic
collections or clusters of words that co-occur in a meaningful way. At the same time,
we cluster the rows of the DTM (e.g., a statement by a single individual) in a model-
based way by assigning them to topics in a probabilistic way. The particular topic
model approach we focus on in this section is called latent Dirichlet allocations,
which is a special flavor of Dirichlet-based clustering. However, as opposed to the
approach in the previous subsection, the number of clusters (i.e., topics) K needs to
be fixed a priori.

Before showing how to fit topic models, we demonstrate how to get a raw text file
in shape for NLP analysis in R. The data we use are taken from Mair et al. (2014),
who scraped self-reported statements of Republican voters from the Republican
website. The voters had to complete the sentence “I am a Republican because . . . ”
(254 voters in total). First, we import the raw statements into R and make the voters
a bit more sparkling by adding some fake names using the randomNames package
(Betebenner, 2017).

3For an overview see the corresponding task view on CRAN (URL: https://cran.r-project.org/web/
views/NaturalLanguageProcessing.html).

https://cran.r-project.org/web/views/NaturalLanguageProcessing.html
https://cran.r-project.org/web/views/NaturalLanguageProcessing.html

12.3 Dirichlet-Based Clustering 357

library("MPsychoR")
library("randomNames")
gopraw <- readLines(paste0(path.package("MPsychoR"),

"/GOPstatements.txt"))
set.seed(123)
rnames <- randomNames(length(gopraw), which.names = "first",
ethnicity = 5, sample.with.replacement = FALSE)

names(gopraw) <- rnames

Second, we convert these statements into a corpus and perform some basic
cleanup using the tm package (Feinerer et al., 2008): convert all words to lowercase,
remove stopwords (including some user defined ones), remove numbers and punc-
tuation, and strip white space. These steps reflect a standard text data preparation
pipeline. Sometimes stemming or lemmatization, which reduces inflectional forms
of a word to a common base form, is performed at this stage as well.

library("tm")
library("tidyr")
myStopwords <- c("beleive", "shld", "-", "wenot", "etc", "im",
"conservatismthe", "fatherthe", "conservativebelieve",
"governmentprolife2nd", "amendmentand", "valuessmall", "ive",
"familyrepublican", "government", "1st", "dont", "get",
"given", "people", "better", "system", "always", "enough",
"yet", "hand")

gopcorp <- Corpus(VectorSource(gopraw)) %>%
tm_map(content_transformer(tolower)) %>%
tm_map(removePunctuation) %>%
tm_map(removeWords, c(stopwords("english"), myStopwords)) %>%
tm_map(removeNumbers) %>%
tm_map(stripWhitespace)

In order to get a first overview of the words used by the voters, we produce a
word cloud using the wordcloud package (Fellows, 2014, see Fig. 12.9).

library("wordcloud")
set.seed(1)
wordcloud(gopcorp, colors = brewer.pal(8, "Dark2"),

min.freq = 3, random.order = FALSE)

358 12 Parametric Cluster Analysis and Mixture Regression

The next step is to create the DTM:

DTmat <- DocumentTermMatrix(gopcorp)
dim(DTmat)
[1] 254 725

A DTM is simply a frequency table with the voters (“documents”) in the rows and
the words (“terms”) in the columns. It reflects how often each word was mentioned
in a voter’s statement. In most applications, this table is sparse (i.e., it contains many
0’s).

We may not want to use all of the 725 words for clustering, but only select the
most important ones. This can be achieved by computing the term frequency-inverse
document frequency (tf-idf) which gives us an importance measure for each word.
Using functions from slam (Hornik et al., 2016), it can be computed as follows (see
Grün and Hornik, 2011):

Fig. 12.9 Word cloud of
Republican voters completing
the sentence “I am a
Republican because”

believe
government

fre
ed

om republican

re
sp

on
si

bi
lit

y values

country

pe
rs

on
al

strong

party

life

limited
conservative

individual

liberty

america
right

free

small

want

family

taxes

nation
god

american

principles

work

defense

great

constitution

fiscal

less

na
tio

na
l

fo
un

di
ng

military

will

hard

market

be
st

republicans

low americans

kn
ow

future

strength

gop

can

way

love

opportunity

fa
th

er
s

responsible

represents

founded

dream

happiness

reagan

prosperity

live

make

big

traditional

greatest
stand

lower

pr
ob

le
m economic pursuit

christian id
ea

ls

ability

core

in
di

vi
du

al
s

beliefs

represent

po
w

er

citizen

problems

good

run

capitalism

care

moral

ro
na

ld ci
tiz

en
s

just

ne
ed

actions

growth
choices

br
in

g

sanctity

m
or

al
s

equal ev
er

yo
ne

freedoms

support

help

earth

pr
ol

ife

past

must

world

real

supports

common

sense

fiscally

things

govt

states

smaller

years

inspired

true

children

stands

fo
re

fa
th

er
s

back

comes

one

change

hope

enterprise

social

th
in

k

peace
first

never

constitutional

platform

hold

successful

man

solution

honest

ever

markets

still

library("slam")
tfidf <- tapply(DTmat$v/row_sums(DTmat)[DTmat$i], DTmat$j,
mean) * log2(nDocs(DTmat)/col_sums(DTmat > 0))

DTmat2 <- DTmat[, tfidf >= median(tfidf)]

12.3 Dirichlet-Based Clustering 359

We keep 50% of the most important words for subsequent analysis, organized
as a new DTM. As a final data preparation step, we eliminate voters who did not
mention any of the words encoded in the reduced DTM.

ind <- which(rowSums(as.matrix(DTmat2)) > 0)
DTmat2 <- DTmat2[ind,]
dim(DTmat2)
[1] 195 385

This leaves us with 195 voters and 385 terms. As mentioned above, the number
of topics needs to be specified a priori. One option to determine a reasonable K

is through cross-validation (see Ellis, 2017, for an example). Another option is to
use the ldatuning package (Murzintcev, 2016) which computes various metrics for
different K-values. We vary K from 2 to 30, compute four metrics, and plot their
trajectories along K (see Fig. 12.10).

library("ldatuning")
Ktopics <- FindTopicsNumber(DTmat2, topics = 2:30,

metrics = c("Arun2010", "CaoJuan2009", "Griffiths2004",
"Deveaud2014"))

FindTopicsNumber_plot(Ktopics)

Unfortunately, we do not get a strikingly clear picture; a K in the range from 6
to 11 seems to be reasonable. Let us use K = 6 since the metrics in the lower panel
intersect at this value. However, the user easily consider a slightly larger (or lower)
K , depending on the interpretability of the solution.

To fit the topic model, we use the LDA function implemented in the topicmodels
package (Grün and Hornik, 2011)4 and use MCMC (Gibbs sampler) to estimate the
model.

library("topicmodels")
K <- 6
goplda <- LDA(DTmat2, k = K, method = "Gibbs",
control = list(seed = 123, iter = 50000, burnin = 1000))

The words as well as the voters are assigned to the topics in a probabilistic way.

4Other packages for topic modeling in R are mallet (Mimno, 2013) and lda (Chang, 2015).

360 12 Parametric Cluster Analysis and Mixture Regression

l

l

l

l

l

l
l

l
l

l
l

l
l l l l

l l l l l l l l
l l l l l

m
in

im
iz

e
m

ax
im

iz
e

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 302 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 302 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 302 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

number of topics

metrics:
l Arun2010

CaoJuan2009

Griffiths2004

Deveaud2014

Fig. 12.10 Four metrics for selecting the number of topics K in the GOP document-term matrix.
Top panel: Arun and Cao-Juan metrics should be minimized. Bottom panel: Griffiths and Deveaud
metrics should be maximized

postprob <- posterior(goplda)
pterms <- as.data.frame(t(postprob$terms))
round(head(pterms, 10), 4)
1 2 3 4 5 6
creativity 0.0009 0.0008 0.0009 0.0009 0.0079 0.0008
power 0.0099 0.0008 0.0182 0.0009 0.0007 0.0088
believed 0.0009 0.0008 0.0009 0.0182 0.0007 0.0008
everything 0.0009 0.0008 0.0095 0.0009 0.0079 0.0008
started 0.0009 0.0088 0.0009 0.0009 0.0079 0.0008
blackamerican 0.0009 0.0008 0.0009 0.0009 0.0079 0.0008

(continued)

12.3 Dirichlet-Based Clustering 361

emancipation 0.0009 0.0088 0.0009 0.0009 0.0007 0.0008
proclamation 0.0009 0.0008 0.0009 0.0009 0.0007 0.0088
firmly 0.0009 0.0008 0.0009 0.0009 0.0151 0.0008
minimally 0.0099 0.0008 0.0009 0.0009 0.0007 0.0008

This printout shows the posterior probabilities for ten words related each of the
six topics. The probabilities represent weights, that is, how important a term is
in a particular topic. We use the terms and the weights to produce separate word
clouds for each topic (see Ellis, 2017). The six topic clouds are given in Fig. 12.11.
Topic 1 is the patriotism cluster containing words such as love (in the sense of
loving the country), protect, and power. Topic 2 seems to be the economy cluster
(capitalism, fiscal conservatism). Note that “power” appears in this cluster as well.
This is an important feature of topic models since words are assigned to topics in
a probabilistic way; therefore, they can appear in multiple clusters with varying
importance. In topics 3 and 5, the word “responsibility” is of key importance.

A printout of the top five terms in each topic can be obtained as follows:

terms(goplda, 5)
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
[1,] "love" "capitalism" "moral" "run" "live"
[2,] "morals" "fiscally" "think" "platform" "responsible"
[3,] "care" "true" "equal" "believed" "problems"
[4,] "mine" "children" "power" "local" "actions"
[5,] "godgiven" "suffer" "responsible" "beautiful" "successful"
Topic 6
[1,] "solution"
[2,] "honest"
[3,] "preserving"
[4,] "giving"
[5,] "peace"

For a fancy visualization of the topics, the LDAvis package (Sievert and Shirley,
2015) can be used which also performs multidimensional scaling on the topics (see
Gandrud, 2017).

The hard assignments of voters to topics can be extracted as follows (only the
first six voters are shown here):

topics(goplda)[1:6]

Jonica Nolan Elizabeth Brianna Zachary Hannah
3 3 2 1 5 5

362 12 Parametric Cluster Analysis and Mixture Regression

Voters who used similar words in their statements end up in the same cluster.

love
morals

caremine
godgiven

co
nt

ro
l protect

human

heart

po
w

er

minimally

culture

entitlement

pay pl
at

fo
rm

s

going

effective

granddaughter

fight

patriotism

lofty

helpless

br
ai

n

europe

conservation
decisions

patriotic

came

considered

ethics

enslaved

programs

di
st

in
ct

io
n

liabilityimportant

m
ed

iu
m

matter

standards

guardians

ha
nd

ou
ts

grow

near

example
throughout called

supplant

enemy

put

attacked

renewed

GOP Topic 1

capitalism
fiscally

true

children

suffer

take

born

woman

constraints

value

ch
oo

se

started

emancipation

tumor
fortitude struggling

solve

integrity
views

supports pu
rs

ui
ng

stick

gracie
restoring

away
watch

led
come

noble

reverence

idea

destiny
intent

actionphrase

figure

appreciate

destinies

fighters

conclusions

curing

recent

rights

relate

fearing

gun

civilization

build

legacy

te
ac

he
r

preservation
GOP Topic 2

moral
think

equal

power

re
sp

on
si

bl
e

path

communities

everything

nations
tired

godly
deserve

picked

supports

buckley

jack

fight

pride

assault
deciding

mirrors

christiansda
ily

godless
extend

resist

ruined

opportunities

peace

innovators

earn

option

intelligent

arguments

charge

fear

disasters

smarter

firm

questionsequality

jobs

toting

western

unique

bigger

instead

ideology

movement

man

GOP Topic 3

run
platform

believed
local

beautiful

school

man align

president

cornerstones

fabric
welfare

resolve

democrats

tell

depends

agrees

william

come

founders

spend

simple

media

mindset

refuse

sw
ay

ed

nobility

ruled

envisioned

fairness
long
every

victims

earnthinking
partys

equality
aged efficiency

traits

meansprivilege

quality

others

truth

cases

am
er

ic
as

thrive

hype

tradition

GOP Topic 4

live
responsible

problems

actions

successful

firmly found

solutions

thinks

creativity

everything

started
blackamerican

governmentare

economy

marketdriven

destroying

entitlement

within

benefits

smallaccountable

chicago

wont

supports
fuel
person

follow
care

spending

kemp

kn
ow

le
dg

e

leader

constant

fueled

mandates

secure
handle

so
ci

al
is

t

public

educational
inventors

living

respectable
indispensable

believer

ethics

chains

left

unfettered
equitable

GOP Topic 5

solution
honest

preserving
giving

peace

financial
families

days ever

po
w

er

proclamation

na
tio

ns

progress

virtue

welfare

vi
ew

s

champions

challenges

spending

slave
name

washington

irresponsible

id
ea

l

earned

established
tenants

dare

determined

establish
maintain rationality

virtues

demand public

constitutionally

compromising

women

merits

hispanic

operates

ask

deeds
antiabortion

gu
n

equitable

equal
taking

encourages

learn

GOP Topic 6

Fig. 12.11 GOP voter topics: for each topic a word cloud is plotted. The posterior probabilities
are used as weights for the word size

Note that the LDA function call from above assumes that the topics are
uncorrelated. For correlated topic models, LDA can be replaced by CTM (see Grün
and Hornik, 2011, for details). At the time this book was written, R had no
implementation of a hierarchical Dirichlet process for topic modeling where the
number of topics does not have to be specified in advance.

References 363

References

Betebenner, D. W. (2017). randomNames: Function for generating random names and a dataset.
R package version 0.4-0. https://cran.r-project.org/package=randomNames

Chang, J. (2015). lda: Collapsed Gibbs sampling methods for topic models. R package version
1.4.2. https://CRAN.R-project.org/package=lda

Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: An R package for
determining the relevant number of clusters in a dataset. Journal of Statistical Software, 61(6),
1–36. http://www.jstatsoft.org/v61/i06/

da Silva, A. F. (2012). dpmixsim: Dirichlet process mixture model simulation for clustering and
image segmentation. R package version 0.0-8. https://CRAN.R-project.org/package=dpmixsim

Ellis, P. (2017). Cross-validation of topic modelling. R-bloggers. http://www.r-bloggers.com/
cross-validation-of-topic-modelling/

Everitt, B. S. (2011). Cluster analysis (5th ed.). New York: Wiley.
Everitt, B., & Hothorn, T. (2011). An introduction to applied multivariate analysis with R. New

York: Springer.
Feinerer, I., Hornik, K., & Meyer, D. (2008). Text mining infrastructure in R. Journal of Statistical

Software, 25(5), 1–54. http://www.jstatsoft.org/v25/i05/
Fellows, I. (2014). wordcloud: Word clouds. R package version 2.5. https://CRAN.R-project.org/

package=wordcloud
Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant analysis and density

estimation. Journal of the American Statistical Association, 97, 611–631.
Frick, H., Strobl, C., Leisch, F., & Zeileis, A. (2012). Flexible Rasch mixture models with package

psychomix. Journal of Statistical Software, 48(7), 1–25. http://www.jstatsoft.org/v48/i07/
Gandrud, C. (2017). A link between topicmodels LDA and LDAvis. R-bloggers. https://www.r-

bloggers.com/a-link-between-topicmodels-lda-and-ldavis/
Gershman, S. J., & Blei, D. M. (2012). A tutorial on Bayesian nonparametric models. Journal of

Mathematical Psychology, 56, 1–12.
Grün, B., & Hornik, K. (2011). topicmodels: An R package for fitting topic models. Journal of

Statistical Software, 40(13), 1–30. https://doi.org/10.18637/jss.v040.i13
Grün, B., & Leisch, F. (2008). FlexMix version 2: Finite mixtures with concomitant variables

and varying and constant parameters. Journal of Statistical Software, 28(4), 1–35. http://www.
jstatsoft.org/v28/i04/

Haegeli, P., Gunn, M., & Haider, W. (2012). Identifying a high-risk cohort in a complex
and dynamic risk environment: Out-of-bounds skiing—An example from avalanche safety.
Prevention Science, 13, 562–573.

Hornik, K., Meyer, D., & Buchta, C. (2016). slam: Sparse lightweight arrays and matrices. R
package version 0.1-40. https://CRAN.R-project.org/package=slam

Koller, I., & Alexandrowicz, R. W. (2010). Eine psychometrische Analyse der ZAREKI-R
mittels Rasch-Modellen [A psychometric analysis of the ZAREKI-R using Rasch models].
Diagnostica, 56, 57–67.

Kwartler, T. (2017). Text mining in practice with R. New York: Wiley.
Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston: Houghton Mifflin.
Leisch, F. (2004). FlexMix: A general framework for finite mixture models and latent class

regression in R. Journal of Statistical Software, 11(8), 1–18. https://www.jstatsoft.org/v011/
i08

Linzer, D. A., & Lewis, J. B. (2011). poLCA: An R package for polytomous variable latent class
analysis. Journal of Statistical Software, 42(10), 1–29. http://www.jstatsoft.org/v42/i10/

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2017). cluster: Cluster analysis
basics and extensions. R package version 2.0.6.

Mair, P., Rusch, T., & Hornik, K. (2014). The grand old party: A party of values? SpringerPlus,
3(697), 1–10.

https://cran.r-project.org/package=randomNames
https://CRAN.R-project.org/package=lda
http://www.jstatsoft.org/v61/i06/
https://CRAN.R-project.org/package=dpmixsim
http://www.r-bloggers.com/cross-validation-of-topic-modelling/
http://www.r-bloggers.com/cross-validation-of-topic-modelling/
http://www.jstatsoft.org/v25/i05/
https://CRAN.R-project.org/package=wordcloud
https://CRAN.R-project.org/package=wordcloud
http://www.jstatsoft.org/v48/i07/
https://www.r-bloggers.com/a-link-between-topicmodels-lda-and-ldavis/
https://www.r-bloggers.com/a-link-between-topicmodels-lda-and-ldavis/
https://doi.org/10.18637/jss.v040.i13
http://www.jstatsoft.org/v28/i04/
http://www.jstatsoft.org/v28/i04/
https://CRAN.R-project.org/package=slam
https://www.jstatsoft.org/v011/i08
https://www.jstatsoft.org/v011/i08
http://www.jstatsoft.org/v42/i10/

364 12 Parametric Cluster Analysis and Mixture Regression

Mair, P., Hofmann, E., Gruber, K., Zeileis, A., & Hornik, K. (2015). Motivation, values, and
work design as drivers of participation in the R open source project for statistical computing.
Proceedings of the National Academy of Sciences of the United States of America, 112, 14788–
14792.

McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley.
Meyer, D., Zeileis, A., & Hornik, K. (2006). The strucplot framework: Visualizing multi-way

contingency tables with vcd. Journal of Statistical Software, 17(3), 1–48. http://www.jstatsoft.
org/v17/i03/

Mimno, D. (2013). mallet: A wrapper around the Java machine learning tool MALLET. R package
version 1.0. https://CRAN.R-project.org/package=mallet

Murzintcev, N. (2016). ldatuning: Tuning of the latent Dirichlet allocation models parameters. R
package version 0.2.0. https://CRAN.R-project.org/package=ldatuning

Savitsky, T. D., & Paddock, S. M. (2014). Bayesian semi- and non-parametric models for
longitudinal data with multiple membership effects in R. Journal of Statistical Software, 57(3),
1–35. http://www.jstatsoft.org/v57/i03/

Shotwell, M. S. (2013). profdpm: An R package for MAP estimation in a class of conjugate
product partition models. Journal of Statistical Software, 53(8), 1–18. http://www.jstatsoft.org/
v53/i08/

Sievert, C., & Shirley, K. (2015). LDAvis: Interactive visualization of topic models. R package
version 0.3.2. https://CRAN.R-project.org/package=LDAvis

Silge, J., & Robinson, D. (2017). Text mining with R: A tidy approach. Sebastopol: O’Reilly Media.
Winter, B., & Grawunder, S. (2012). The phonetic profile of Korean formality. Journal of

Phonetics, 40, 808–815.
Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.). Boca Raton:

CRC Press.

http://www.jstatsoft.org/v17/i03/
http://www.jstatsoft.org/v17/i03/
https://CRAN.R-project.org/package=mallet
https://CRAN.R-project.org/package=ldatuning
http://www.jstatsoft.org/v57/i03/
http://www.jstatsoft.org/v53/i08/
http://www.jstatsoft.org/v53/i08/
https://CRAN.R-project.org/package=LDAvis

Chapter 13
Modeling Trajectories and Time Series

13.1 Introductory Remarks

Whenever “time” enters an analysis, statistical modeling becomes more challenging
since we lose a crucial assumption that many statistical tests and models require to
be fulfilled: independence of observations. In modern psychological experiments,
participants are often exposed to the same variable or stimulus at multiple points
in time. Such designs are often called repeated measures designs or within-subjects
designs (e.g., multiple runs in an fMRI experiment, multiple eye-tracking tasks, pre-
and posttreatment clinical assessments). The state-of-the-art analysis framework
for such settings are mixed-effects models (aka hierarchical models aka multilevel
models). Excellent R books on this topic with special focus on psychological
applications are Long (2011) and Mirman (2014), the latter focusing on modeling
nonlinear time trajectories (sometimes called growth curve models).

Typically, such designs involve a few repeated measurements only. In this chapter
we deal with more “heavy duty” longitudinal data settings, that is, a sequence
of measurements over time with many measurement points. This type of data is
often called time series. In the following three sections, we are interested in (a)
finding clusters in such trajectories (hidden Markov models), (b) exploring time
series patterns and predicting future observations (time series analysis), and (c)
modeling multiple trajectories (functional data analysis).

13.2 Hidden Markov Models

Mixture models for parametric clustering, as introduced in Sect. 12.1, assume that
the observations are independent from each other. In longitudinal data settings,
this assumption is typically violated due to temporal dependencies in a single
participant’s measurements over time. Thus, we need a dependent version of a

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_13

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_13&domain=pdf
https://doi.org/10.1007/978-3-319-93177-7_13

366 13 Modeling Trajectories and Time Series

mixture model. Hidden Markov models (HMMs; sometimes also called latent
Markov models) fall into this model class and integrate two statistical concepts:
Markov chains and mixture distributions (latent classes). An excellent tutorial article
on HMMs and their use in psychological research is Visser (2011).

13.2.1 Markov Chains

The first important ingredient in HMMs are Markov chains. They allow us to
describe the behavior of a random variable over time in a probabilistic manner.
Markov chains involve states (e.g., if we model the weather, states could be “sunny,”
“cloudy,” and “rainy”) and aim to model transition probabilities between the states
assuming the following critical property (called the Markov assumption): the current
state at time t depends only upon the previous state t −1 and not on other past states.
Formally, P(St |S1, S2, . . . , St−1) = P(St |St−1). Within the context of Markov
chains, these conditional probabilities are called transition probabilities and can
be expressed as

aij = P(St+1 = j |P(St = i)). (13.1)

That is, given that someone is in state i at time t , what is the probability for switching
to state j at t + 1.

Let us illustrate this concept by means of a simple toy example. We aim to model
what a student goes through during statistics lecture. The four states we consider
are “bored,” “horrified,” “sleeping,” and “somewhat awake.”1 For these four states,
we can compute 16 transition probabilities. They can be calculated empirically if,
for instance, every 5 min during a 90 min class each student has to report the state
he/she is in. We can organize these probabilities as a 4 × 4 matrix A with elements
aij . Let us create such a transition matrix in R using the markovchain package
(Spedicato, 2017):

library("markovchain")
mcStats <- new("markovchain",

state = c("bored", "horrified", "sleeping", "somewhat awake"),
transitionMatrix = matrix(c(0.60, 0.05, 0.25, 0.10,

0.15, 0.30, 0.10, 0.45,
0.10, 0.10, 0.50, 0.30,
0.30, 0.10, 0.50, 0.10),
byrow = TRUE, nrow = 4),

(continued)

1We omit any positive feelings here since this is simply not realistic.

13.2 Hidden Markov Models 367

name = "StatsClass")
print(mcStats)
bored horrified sleeping somewhat awake
bored 0.60 0.05 0.25 0.10
horrified 0.15 0.30 0.10 0.45
sleeping 0.10 0.10 0.50 0.30
somewhat awake 0.30 0.10 0.50 0.10

The rows of this matrix represent “from” (i.e., the state at time t), whereas the
columns represent “to” (i.e., the state at time t+1). For instance, if a student is bored
at time t , the probability of remaining bored at time t + 1 is 0.60, the probability of
switching to horrified is 0.05, etc. Within each row the probabilities sum up to 1, as
we can easily check:

A <- mcStats@transitionMatrix
rowSums(A)
bored horrified sleeping somewhat awake
1 1 1 1

Within each column they are not required to sum up to 1.
Note that the transition matrix A does not depend on t (stationarity assumption).

In other words, it does not matter at which time point t we want to study a transition,
these probabilities are constant over time. We can visualize this matrix using the
qgraph package (Epskamp et al., 2012), resulting in Fig. 13.1.

library("qgraph")
qgraph(A, edge.labels = TRUE, edge.color = "black")

What can we do with this matrix? First, we can make predictions beyond a simple
“from t to t + 1” transition as encoded in A. For a given state vector π , we can
compute state predictions for 10 min later (i.e., t + 2), 15 min later (i.e., t + 3), etc.
Let us assume that the student is “horrified” which defines the following initial state
vector:

pi <- c(0, 1, 0, 0)

After 10 and 15 min, respectively, the state probability predictions for this
students are:

368 13 Modeling Trajectories and Time Series

0.05

0.1

0.1

0.1

0.1

0.1

0.1

0.15

0.25

0.3

0.3

0.3

0.45

0.5

0.5

0.6

brd
hrr

slp

sma

Fig. 13.1 Transition probabilities of states (bored, sleeping, horrified, somewhat awake) students
go through during a statistics class

pi * mcStats^2 ## 10 minutes later
bored horrified sleeping somewhat awake
[1,] 0.28 0.1525 0.3425 0.225
pi * mcStats^3 ## 15 minutes later
bored horrified sleeping somewhat awake
[1,] 0.292625 0.1165 0.369 0.221875

Given a student is horrified, the probability that the student will sleep in 10 or
15 min is considerably high. In the 10 min forecast, this is due to the fact that there
is a high probability of switching from horrified to somewhat awake within the first
5 min and a high probability of switching from somewhat awake to sleeping within
the next 5 min segment.

It might be of interest in which state a student ends up in the long run,
independently from his/her initial state. The resulting probability vector p is called
the stationary distribution and can be computed as follows:

p <- steadyStates(mcStats) ## limiting distribution
p

(continued)

13.2 Hidden Markov Models 369

bored horrified sleeping somewhat awake
[1,] 0.2962246 0.106486 0.3833495 0.21394

This stationary distribution fulfills the equation p = pA, which we can check as
follows:

p %*% A
bored horrified sleeping somewhat awake
[1,] 0.2962246 0.106486 0.3833495 0.21394

This results in p again. The not-so-surprising message in this example is that
students most likely end up sleeping in the long run, independent from their initial
states.

This is all we need to know about Markov chains in order explain HMMs.
Examples of Markov chains applications in psychology can be found in Wickens
(1982), Bornstein and Daw (2012), and Griffiths et al. (2007).

13.2.2 Simple Hidden Markov Modeling Strategies

In Markov chains the states are known, whereas in HMMs the states are “hidden”
(i.e., unknown, latent) and need to be found through parametric clustering. There-
fore, HMMs integrate the concepts of transition probabilities (from Markov chains)
and mixture distributions (see Sect. 12.1) and are sometimes referred to as dependent
mixture models (Visser and Speekenbrink, 2010). By fixing number of states K a
priori, HMMs can be fitted using the EM (expectation-maximization) algorithm.
The main output components are:

• the parameters of the mixture distribution,
• the transition probabilities among the K states.

In terms of distributional families for the mixture specification, standard generalized
linear model (GLM) distributions such as normal, gamma, binomial, Poisson, etc.
can be used.

Let us start with a real-life HMM application. We use data collected within the
context of the implicit association test (IAT; Greenwald and Banaji, 1995; Green-
wald et al., 1998). The IAT measures differential association of two target concepts
with an attribute. Here we use the “face IAT”. During the experiment participants
saw images of people with long and wide faces, as well as positively and negatively
valenced words. In the first critical block (“congruent block”), participants were
asked to press a response key if they saw a long-faced person/positive word and a

370 13 Modeling Trajectories and Time Series

different response key if they saw a wide-faced person/negative word. In the second
critical block (“incongruent block”), the pairing was reversed. IAT theory states that
participants are expected to be able to respond fast in the congruent condition and
slow in the incongruent condition. The response variable used here is the response
time latency in ms.

The dataset below includes responses of four participants. Each participant was
exposed to 80 trials: 40 congruent block trials, followed by 40 incongruent block
trials. For such settings, where each individual produces his/her own trajectory, an
HMM is typically fitted for each person individually.

The goal of the first analysis is to find latency clusters, ignoring the condition.
In a perfect world, we can expect to get two states corresponding to the blocks: the
participant remains in the first state for the first 40 trials and then switches to the
second state for the remaining 40 trials. Let us consider the first participant and fit
an HMM using the depmixS4 package (Visser and Speekenbrink, 2010). Note that

0 20 40 60 80

6.
5

7.
0

7.
5

IAT Latency (Person 1)

Trial

La
te

nc
y

(lo
g)

Fig. 13.2 IAT latency trajectory for first participant. The vertical, dashed line denotes the
condition switch (congruent to incongruent block)

here we take the log of the latency response in order to achieve a “healthier”-looking
distribution with respect to normality, since we are going to fit a Gaussian HMM.
The first person’s trajectory, extracted below, is plotted in Fig. 13.2.

13.2 Hidden Markov Models 371

library("MPsychoR")
library("depmixS4")
data("iatfaces")
p1dat <- subset(iatfaces, id == 1)

In the following code chunk we fit a sequence of HMMs with varying numbers
of states K (from 1 to 4). For each model, the first line defines the depmix object,
and the second line fits the actual HMM.

set.seed(123)
p1obj1 <- depmix(log(latency) ~ 1, data = p1dat, nstates = 1)
p1fit1 <- fit(p1obj1)
p1obj2 <- depmix(log(latency) ~ 1, data = p1dat, nstates = 2)
p1fit2 <- fit(p1obj2)
p1obj3 <- depmix(log(latency) ~ 1, data = p1dat, nstates = 3)
p1fit3 <- fit(p1obj3)
p1obj4 <- depmix(log(latency) ~ 1, data = p1dat, nstates = 4)
p1fit4 <- fit(p1obj4)

In terms of goodness-of-fit assessment, the models can be compared via the usual
BIC strategy:

c(BIC(p1fit1), BIC(p1fit2), BIC(p1fit3), BIC(p1fit4))
[1] 60.28411 27.59495 43.90186 76.55090

The two-state solution provides clearly the best fit. We get the following results:

summary(p1fit2)
Initial state probabilties model
pr1 pr2
1 0
##
Transition matrix
toS1 toS2
fromS1 0.975 0.025
fromS2 0.000 1.000
##
Response parameters
Resp 1 : gaussian
Re1.(Intercept) Re1.sd

(continued)

372 13 Modeling Trajectories and Time Series

St1 6.465 0.174
St2 6.926 0.293

The transition matrix reflects the dynamics between the two states. The transition
probabilities can be interpreted in the same way as in Markov chains. For the two-
state example, A has the following structure:

A =
∣
∣
∣
∣
a11 a12

a21 a22

∣
∣
∣
∣ . (13.2)

If the participant is in state 1, he/she tends to stay there (a11 = 0.975). There is a
low probability for switching to state 2 (a12 = 0.025). Once switched to state 2,
he/she remains there (a22 = 1), and there is virtually no chance to go back to state
1 (a21 = 0).

The HMM fits a state posterior probability for each measurement point. For each
of the 80 measurements, we get a probability to be in state 1 and state 2, respectively.
Let us print out the observations around the condition switch at time point 41:

round(posterior(p1fit2)[35:45,], 3)
state S1 S2
35 1 0.978 0.022
36 1 0.998 0.002
37 1 0.995 0.005
38 1 0.994 0.006
39 1 0.997 0.003
40 1 0.989 0.011
41 2 0.212 0.788
42 2 0.000 1.000
43 2 0.000 1.000
44 2 0.000 1.000
45 2 0.000 1.000

The first column shows the hard state assignment, the remaining two columns the
posterior probabilities for being in state 1 and 2. We see that the probability pattern
changes at the 41st measurement point.

The bottom part of the summary(p1fit2) output above shows the parameters
of the underlying normal distributions. These parameters result from the simple
regression equation Yt = μi + εt (with i = 1, 2), since we fixed the number of
latent states to K = 2. We get two means on the log-latency scale (intercept) and,
since we assume that εt = N(0, σ 2

i), two standard deviations. Thus, we estimate one
set of parameters for each state. In the first state the average latency is much lower
(i.e., fast-responding state) than in the second state (i.e., slow-responding state).

13.2 Hidden Markov Models 373

In this example we can externally evaluate the hard state assignments by cross-
classification with the experimental condition variable.

table(state = p1fit2@posterior$state, block = p1dat$block)
block
state congruent incongruent
1 40 0
2 0 40

For this participant the states correspond perfectly to the experimental blocks.
In order to explore whether this interpretation applies to the remaining three
individuals as well, we can fit corresponding two-state models on the remaining
data:

set.seed(123)
p2dat <- subset(iatfaces, id == 2)
p2obj <- depmix(log(latency) ~ 1, data = p2dat, nstates = 2)
p2fit <- fit(p2obj)
p3dat <- subset(iatfaces, id == 3)
p3obj <- depmix(log(latency) ~ 1, data = p3dat, nstates = 2)
p3fit <- fit(p3obj)
p4dat <- subset(iatfaces, id == 4)
p4obj <- depmix(log(latency) ~ 1, data = p4dat, nstates = 2)
p4fit <- fit(p4obj)

Again, these solutions are evaluated through cross-classification with the block
variable:

table(state = p2fit@posterior$state, block = p2dat$block)
block
state congruent incongruent
1 8 14
2 32 26
table(state = p3fit@posterior$state, block = p3dat$block)
block
state congruent incongruent
1 1 40
2 39 0
table(state = p4fit@posterior$state, block = p4dat$block)
block
state congruent incongruent
1 24 0
2 16 40

374 13 Modeling Trajectories and Time Series

Person 3 behaves very similar to person 1. The other two individuals show a
somewhat different state pattern, not in line with the experimental condition. For
these participants a different choice of K can lead to a better fit, and the states need
to be interpreted differently.

13.2.3 Hidden Markov Models with Covariates

The depmixS4 package is highly flexible and provides several options to extend
the basic HMMs from above. One of these options is to include covariates on
the prior state probabilities (concomitant variables; see Sect. 12.1.4) through a
formula specification in the prior argument. Another option is to fix and constrain
parameters. The package also allows the user to fit HMMs on multiple response
variables simultaneously (multivariate HMM). Various examples can be found in
Visser and Speekenbrink (2010).

In this section we focus on a different extension in terms of specifying covariate
effects on the response as well as on the transition probabilities. Let us start with the
first scenario by considering the trajectory produced by the first person once more.
We illustrate how to include the block variable directly in the HMM specification.
Note that so far, block was not included in any model fitting process; we merely
used it for external evaluation of the HMM solution. Specifying a one-state HMM
with block zt as effect on log-latency implies fitting a simple regression of the form
Yt = μ + β1zt + εt .

p1obj2 <- depmix(log(latency) ~ block, data = p1dat, ns = 1)
p1fit2a <- fit(p1obj2, verbose = FALSE)
converged at iteration 2 with logLik: 0.6253951
summary(p1fit2a, which = "response")
Response parameters
Resp 1 : gaussian
Re1.(Intercept) Re1.blockincongruent Re1.sd
St1 6.466 0.464 0.24
lm(log(latency) ~ block, data = p1dat)
##
Call:
lm(formula = log(latency) ~ block, data = p1dat)
##
Coefficients:
(Intercept) blockincongruent
6.4658 0.4641

The HMM and the lm output match. The sd parameter in the HMM output
corresponds to the residual sd in the lm fit.

13.2 Hidden Markov Models 375

Let us move on with a two-state model, where two regression models for latency
on block i are fitted (i = 1, 2): Yt = μi + β1izt + εt . Note that clustering and the
regression fit happen simultaneously; thus, we cannot achieve identical results with
simple lm calls anymore.

set.seed(123)
p1obj3 <- depmix(log(latency) ~ block, data = p1dat, ns = 2)
p1fit2b <- fit(p1obj3, verbose = FALSE)

summary(p1fit2b)
Initial state probabilties model
pr1 pr2
1 0
##
Transition matrix
toS1 toS2
fromS1 0.605 0.395
fromS2 0.593 0.407
##
Response parameters
Resp 1 : gaussian
Re1.(Intercept) Re1.blockincongruent Re1.sd
St1 6.407 0.333 0.120
St2 6.573 0.603 0.238

The transition probabilities change drastically compared to the two-state model
with no covariate as fitted in Sect. 13.2.2. This is due to the fact that the states are
fully determined by the condition switch. The transition probabilities are close to
a coin toss, since we account for the block effect in the regression specification.
Of course, the states have to be interpreted differently compared to the HMM with
no covariates. The BIC (one-state covariate model vs. two-state covariate model)
suggests that we should go with the one-state model:

c(BIC(p1fit2a), BIC(p1fit2b))
[1] 11.89529 16.60824

Again, for the remaining persons, the results (i.e., number of states needed, block
effect, transition probabilities, state interpretation) may look quite differently.

Another way of studying the condition effect is to hypothesize that block has
a direct influence on the transition probabilities. That is, we model the transition
probabilities as a function of the block condition zt . This time we do not include any
direct effect on the latency response. Models with covariates on the transitions are a
bit tricker to interpret. Here we illustrate it by using a two-state model for which the
depmixS4 package, internally, establishes the following set of logit equations (see

376 13 Modeling Trajectories and Time Series

Visser, 2011):

logit(1 − a11) = η
(1)
0 + η

(1)
1 zt ,

logit(a22) = η
(2)
0 + η

(2)
1 zt .

(13.3)

A baseline category multinomial logit model is used to quantify effects of zt on the
transition probabilities. Note that 1 − a11 = a12 (i.e., switching from state 1 to state
2) and 1−a22 = a21 (i.e., switching from state 2 to state 1). The model can be fitted
as follows:

set.seed(123)
p1obj4 <- depmix(log(latency) ~ 1, data = p1dat, nstates = 2,

transition = ~ block)
p1fit2c <- fit(p1obj4,emcontrol = em.control(maxit = 5000))

Let us focus on the transition output for which we get one set of parameters for
the congruent condition, and one set of parameters for the incongruent condition:

summary(p1fit2c, which = "transition")
Transition model for state (component) 1
Model of type multinomial (mlogit), formula: ~block
Coefficients:
St1 St2
(Intercept) 0 -1.381049
blockincongruent 0 8.614802
Probalities at zero values of the covariates.
0.7991594 0.2008406
##
Transition model for state (component) 2
Model of type multinomial (mlogit), formula: ~block
Coefficients:
St1 St2
(Intercept) 0 -9.185617
blockincongruent 0 20.639862
Probalities at zero values of the covariates.
0.9998975 0.0001024926

The output reports the η-parameters from Eq. (13.3) on a logit scale. Where it
says “probabilities at zero values of the covariates,” the η-parameters are converted
into probabilities given the covariate value is 0 (here, congruent block due to dummy
coding). The following code chunks illustrate how to achieve this transformation,
resulting in two transition matrices. Let us extract the η-parameters and organize
them as matrices:

13.2 Hidden Markov Models 377

eta1 <- matrix(getpars(p1fit2c)[3:6], 2, byrow = TRUE)
eta1
[,1] [,2]
[1,] 0 -1.381049
[2,] 0 8.614802
eta2 <- matrix(getpars(p1fit2c)[7:10], 2, byrow = TRUE)
eta2
[,1] [,2]
[1,] 0 -9.185617
[2,] 0 20.639862

Let us have a closer look at state 1, congruent block condition (baseline category
due to dummy coding). We carry out an exponential transformation of η1, as usual
in logistic/multinomial regression models, in order to eventually get a probability
interpretation.

exps1b1 <- exp(eta1[1,])
a11c <- 1/sum(exps1b1)
a11c
[1] 0.7991594

This value denotes the probability a11. That is, how likely person 1 stays
in state 1 when block=congruent. This probability, including 1 − a11, was
already shown in the summary output above. What happens to this probability
when block=incongruent? Let us perform the same transformations for this
condition:

exps1b2 <- exp(eta1[2,])
a11ic <- 1/sum(exps1b2)
a11ic
[1] 0.0001813678

We see that a11 becomes almost 0; that is, the person is likely to switch the state.
Note that this value was not shown in the summary output above.

Now we look at state 2 and perform the same computations. First we look at a22
when block=congruent:

378 13 Modeling Trajectories and Time Series

exps2b1 <- exp(eta2[1,])
a22c <- 1-1/sum(exps2b1)
a22c
[1] 0.0001024926

This value and 1 − a22 match the probabilities in the summary output. Finally,
we compute a22 for block=incongruent:

exps2b2 <- exp(eta2[2,])
a22ic <- 1-1/sum(exps2b2)
a22ic
[1] 1

The person stays in state 2. We can organize these probabilities as 2×2 transition
matrices, one matrix for each condition:

Acong <- round(matrix(c(a11c, 1-a11c, 1-a22c, a22c), 2,
byrow = TRUE), 5)

Aicong <- round(matrix(c(a11ic, 1-a11ic, 1-a22ic, a22ic), 2,
byrow = TRUE), 5)

dimnames(Acong) <- dimnames(Aicong) <- list(
c("fromS1", "fromS2"), c("toS1", "toS2"))

Acong ## congruent condition
toS1 toS2
fromS1 0.79916 0.20084
fromS2 0.99990 0.00010
Aicong ## incongruent condition
toS1 toS2
fromS1 0.00018 0.99982
fromS2 0.00000 1.00000

These results show again that the first person’s state switching behavior is almost
fully determined by the block condition. We can interpret state 1 as the “congruent
state” and state 2 as the “incongruent state.”

We can perform the same computations for the remaining persons. For some of
them, the results look quite different, suggesting that here may be variables other
than the block condition influencing the state transition behavior.

This concludes the section in HMM. Other options for applying HMMs on time
series data are described in Zucchini et al. (2016). A useful HMM extension are state
space models. In state space models, the latent variables (states) are continuous,
whereas in HMMs they are discrete (i.e., clusters). Details on how to fit such models
in R are given in Petris and Petrone (2011).

13.3 Time Series Analysis 379

13.3 Time Series Analysis

In time series data, we observe a random variable Yt over time (t = 1, . . . , T).
The trajectories in the previous section on HMMs are examples of time series data.
Similar to HMMs, in time series analysis, we typically model a single time trajectory
only. Our aim is (a) to describe trajectory patterns (e.g., trend, cycles, seasonality)
and (b) to predict (forecast) future values. Time series data can be collected either at
regular intervals (seasonal data; e.g., months or quarters within a year, hours within
a day, etc.) or without such intervals (nonseasonal data; e.g., only one observation
per year). These intervals can be equally spaced or irregularly spaced.

In this section we focus on regularly spaced seasonal series. However, most of
the methodology presented below can be applied to nonseasonal data as well. Time
series analysis is widely used in economics and finance, but there has been an
increasing interest in psychological applications in recent years (see Jebb et al.,
2015). An easy-to-access text on time series analysis using R is Hyndman and
Athanasopoulos (2014); more in-depth treatments are given in Cryer and Chan
(2008) and Cowpertwait and Metcalfe (2009).

13.3.1 Linear Models and Structural Change Detection

Before focusing on specific time series techniques, we apply simple linear modeling
techniques to time series data. Once more we use a dataset related to the implicit
association test (IAT). The particular IAT form considered here is the “age IAT”,
where participants tend to have an implicit preference for young over old people.
As response variable, Cohen’s d (here we call it d-measure) is used, computed on
the basis of the IAT D-measure which divides the difference between congruent and
incongruent block means by the pooled standard deviation (Greenwald et al., 2003).
The data were collected through the ProjectImplicit2 (Nosek et al., 2002), consisting
of monthly d-measures from January 2007 until December 2015. This constitutes a
seasonal time series (monthly observations within a year).

Let us import the data vector into R. When working with time series data, the first
thing we should do is to convert the data into a "ts" object and plot the trajectory
in order to get a first impression. Figure 13.3 suggests that there is a decrease in the
d-measure starting at around 2011.

2See https://implicit.harvard.edu/; data are publicly available on https://osf.io/y9hiq/.

https://implicit.harvard.edu/
https://osf.io/y9hiq/

380 13 Modeling Trajectories and Time Series

library("MPsychoR")
data("ageiat")
yts <- ts(ageiat, start = c(2007, 1), frequency = 12)
plot(yts, ylab = "d-measure", main = "Age IAT Time Series")

The most naive modeling strategy is to fit a simple linear regression model with
time as predictor and d as response. Below we use the tslm function from the

Age IAT Time Series

Time

d−
m

ea
su

re

2008 2010 2012 2014 2016

1.
00

1.
05

1.
10

1.
15

1.
20

Fig. 13.3 Age IAT time series (monthly observations from 01/2007 to 12/2016)

forecast package (Hyndman and Khandakar, 2008) which is doing the same thing as
lm but is designed for time series objects. For better interpretability of the intercept,
we subtract the starting year 2007 from the data. This way the intercept reflects the
fitted d-measure at the point where the series starts.

library("forecast")
tr <- time(yts) - 2007
fitlm <- tslm(yts ~ tr)
fitlm
##
Call:
tslm(formula = yts ~ tr)
##
Coefficients:
(Intercept) tr
1.17423 -0.01211

13.3 Time Series Analysis 381

There are at least two problems with such a linear model approach. First, a line
is often too simple to capture fluctuating and nonlinear patterns. Second, time series
data often violate a crucial regression assumption: uncorrelated residuals. Residual
correlation in time series is expressed via the autocorrelation function (ACF), which
systematically correlates observations (or, within a regression context, residuals)
at time t with observations (residuals) from the past t − l, where l is the lag.
The following call produces the correlogram (i.e., plotting the autocorrelation for
different lags):

Acf(residuals(fitlm), main = "ACF of Residuals")

From Fig. 13.4 we see that there is a substantial autocorrelation up to a lag of
6 months. We can also run an explicit test for autocorrelation: the Durbin-Watson
test. By default, the function from the lmtest package (Zeileis and Hothorn, 2002)

Fig. 13.4 Residual ACF
(maximum lag: 24 months).
The dashed blue lines show
the significance bounds

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Lag

AC
F

ACF of Residuals

6 12 18 24

employs a one-sided test (H0: no autocorrelation). The closer the DW -value to 2,
the better (in the sense of no autocorrelation).

382 13 Modeling Trajectories and Time Series

library("lmtest")
dwtest(ageiat ~ tr)
##
Durbin-Watson test
##
data: ageiat ~ tr
DW = 1.4811, p-value = 0.002393

We see that fitting a linear regression is not such a good idea since the residuals
are clearly correlated. In addition, a linear trend is too simple to capture the
nonlinear trend pattern shown in Fig. 13.3.

A more sophisticated regression modeling option is to fit a structural change
model which detects time points where the regression line breaks. If the algorithm
finds such breakpoints, separate regression parameters are fitted for each segment.
The breakpoints function from the strucchange package (Zeileis et al., 2002)
does the job:

Structural Change Regression

Time

d−
m

ea
su

re

2008 2010 2012 2014 2016

1.
00

1.
05

1.
10

1.
15

1.
20

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Lag

AC
F

ACF Residuals

6 12 18 24

Fig. 13.5 Left panel: regression lines based on structural change detection including CI for the
structural break. Right panel: autocorrelation function of the structural change model

library("strucchange")
bp <- breakpoints(yts ~ tr)
bp
##
Optimal 2-segment partition:
##

(continued)

13.3 Time Series Analysis 383

Call:
breakpoints.formula(formula = yts ~ tr)
##
Breakpoints at observation number:
42
##
Corresponding to breakdates:
2010(6)
round(coef(bp), 3)
(Intercept) tr
2007(1) - 2010(6) 1.146 -0.002
2010(7) - 2015(12) 1.273 -0.027

The procedure finds a single breakpoint in June/July 2010. The resulting
regression lines are plotted in the left panel of Fig. 13.5. From the right panel,
we see that this model reduced the residual autocorrelation drastically, but there
is still a significant lag-2 autocorrelation, as suggested by the Box-Pierce test (H0:
independent observations at fixed lag):

Box.test(residuals(bp), lag = 2)
##
Box-Pierce test
##
data: residuals(bp)
X-squared = 9.565, df = 2, p-value = 0.008375

To conclude, using a simple linear regression model on time series data is, in most
applications, too restrictive. Structural change regression is an attractive alternative
if the trajectory can be approximated by piecewise linear regression fits. Still, the
residual independence assumption needs to be fulfilled.

In the next section, we present a regression modeling framework, specifically
developed for time series data, which does not suffer from the same limitations as
linear model approaches.

13.3.2 ARIMA Models

ARIMA stands for autoregressive integrated moving average and is a general
modeling framework for time series data. Before actually fitting the ARIMA model,
it is suggested to perform several exploratory steps since, as we will see, the
determination of the ARIMA parameters can be quite challenging. A typical time
series analysis work flow is the following:

384 13 Modeling Trajectories and Time Series

1. additive vs. multiplicative representation;
2. time series decomposition;
3. differencing time series (stationarity);
4. explore autocorrelation (correlogram);
5. fit multiple ARIMA (or other) models and perform model selection;
6. make predictions.

Let us start with step 1: additive vs. multiplicative series. A seasonal time series yt

can be decomposed into a trend component Tt , a seasonal component St , and an
irregular component Et (random, white noise)3:

• Additive: yt = Tt + St + Et .
• Multiplicative: yt = Tt × St × Et

A multiplicative formulation is needed if seasonal (and random) fluctuations
increase over time (economic time series often show this behavior). In this case,
applying a log transformation log(Yt) makes the model additive again. As a simple
diagnostic tool, we plot both the untransformed series (often called level series) and
the log-transformed series (log(yts)) and examine whether they look strikingly
different. In this example (plot not shown here), there are no obvious differences
between the two series.

Now let us decompose the time series into the three components (step 2): trend,
seasonality, and noise.

tsdec <- decompose(yts)
plot(tsdec)

Figure 13.6 shows the resulting decomposition.4 We see a nonlinear trend in the
d-measures, starting to decrease at around 2011. The seasonal component is very
small (see y-axis scaling), fluctuating within an interval of [−0.02, 0.02]. If we had
a strong seasonal component, the time series can be seasonally adjusted:

sadj <- yts - tsdec$seasonal

At this point we have a good exploratory picture of our time series. The remaining
steps are related to various properties of the series, relevant for the ARIMA
specification later on.

3The SMA function in TTR (Ulrich, 2017) can be used for decomposition nonseasonal data.
4Instead of decompose the stl function can be used which provides additional decomposition
options.

13.3 Time Series Analysis 385

1.
00

1.
05

1.
10

1.
15

1.
20

ob
se

rv
ed

1.
04

1.
08

1.
12

1.
16

tre
nd

−0
.0

1
0.

00
0.

01

se
as

on
al

−0
.0

5
0.

00
0.

05

2008 2010 2012 2014 2016

ra
nd

om

Time

Decomposition of additive time series

Fig. 13.6 Classical decomposition of the IAT time series: trend, seasonality, noise

Step 3 tackles an important concept in time series data: stationarity. A stationary
time series is one whose properties do not depend on the time at which the series
is observed (Hyndman and Athanasopoulos, 2014, p. 214). Thus, time series with
trend and/or seasonality patterns are non-stationary. A stationary time series looks
like the white noise series in the bottom panel of Fig. 13.6. If a series in non-
stationary, differencing (with parameter d) does the trick to make it stationary. First,
we compute differences of successive observations (d = 1; y′

t = yt − yt−1).
Second, we can compute differences based on the first-order differences (d = 2;
y′′
t = y′

t − y′
t−1). If necessary, higher-order differences can be obtained in the same

way. We difference until we reach stationarity. For illustration, let us compute the
first-order and second-order differences.

386 13 Modeling Trajectories and Time Series

First Difference Time Series

Time

di
ffe

re
nc

e
d−

m
ea

su
re

2008 2010 2012 2014 2016

−0
.1

5
−0

.1
0

−0
.0

5
0.

00
0.

05
0.

10
Second Difference Time Series

Time

di
ffe

re
nc

e
d−

m
ea

su
re

2008 2010 2012 2014 2016

−0
.2

−0
.1

0.
0

0.
1

0.
2

Fig. 13.7 Left panel: first-order differenced series. Right panel: second-order differenced series

yts1 <- diff(yts, difference = 1)
yts2 <- diff(yts, difference = 2)
plot(yts1, ylab = "difference d-measure",

main = "First Difference Time Series")

Figure 13.7 shows the resulting time series. The left panel looks already pretty
stationary; no obvious trend/seasonality pattern is visible. Thus, there is no need
to consider second-order differenced series (right panel). An explicit test for
assessing stationarity is the augmented Dickey-Fuller test (H0: non-stationary), as
implemented in the tseries package (Trapletti and Hornik, 2017):

library("tseries")
adf.test(yts)
##
Augmented Dickey-Fuller Test
##
data: yts
Dickey-Fuller = -2.2221, Lag order = 4, p-value = 0.4845
alternative hypothesis: stationary
adf.test(yts1)
##
Augmented Dickey-Fuller Test
##
data: yts1
Dickey-Fuller = -9.6341, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary

13.3 Time Series Analysis 387

The first test result tells us that our original time series is non-stationary. We
achieved stationarity through first-order differencing, as suggested by the second
test result. Thus, we proceed with the first-order differenced version.

In step 4 we explore the autocorrelation structure using the ACF. In Sect. 13.3.1
we computed the ACF for the residuals of a regression model. Here we apply it on

−0
.3

−0
.1

0.
0

0.
1

0.
2

0.
3

Lag

AC
F

Differenced IAT ACF

6 12 18 24

−0
.4

−0
.2

0.
0

0.
2

Lag

Pa
rti

al
 A

C
F

Differenced IAT Partial ACF

6 12 18 24

Fig. 13.8 Left panel: autocorrelation function of the first-order differenced time series (correlo-
gram). Right panel: partial autocorrelation function of the first-order differenced time series (partial
correlogram)

the differenced observations. In addition, we compute the partial autocorrelation
function (PACF) which, similar to the ACF, correlates the time series with its own
lagged values but controls for the values at all shorter lags.

Acf(yts1, main = "Differenced IAT ACF")
Pacf(yts1, main = "Differenced IAT Partial ACF")

The plots in Fig. 13.8 are important. Let us focus on the left-hand side first. We
see that the ACF drops quickly (i.e., below significance after lag 2). Such a pattern
constitutes a moving average (MA) model of order q = 2 (short, an MA(2) model).
The general expression for an MA(q) model is the following5:

yt = c + εt + θ1εt−1 + · · · + θqεt−q . (13.4)

5For simplicity in notation, let us ignore for the moment that we differenced the time series and
write yt instead of y′

t .

388 13 Modeling Trajectories and Time Series

The ε-terms denote the (lagged) errors and the θ -parameters reflect the influence of
the lagged errors on yt (c is a constant). For our MA(2) example, the expression
simplifies accordingly (we need terms up to q = 2).

The right panel in Fig. 13.8 shows that it takes a while until the partial ACF drops
below significance. From lag six onward, the PACF drops quickly. Such a pattern
implies an autoregressive (AR) model of order p = 5 (short, an AR(5) model). The
general AR(p) model formulation is

yt = c + φ1yt−1 + · · · + φpyt−p + εt , (13.5)

where the φ-parameters denote the influence of the lagged observations on yt . In our
particular application, the model expression simplifies accordingly (we need terms
up to p = 5).

AR(p) and MA(q) models can be combined into a model class which is called
ARMA(p, q) (autoregressive moving average). This results in

yt = c + φ1yt−1 + · · · + φpyt−p + θ1εt−1 + · · · + θqεt−q + εt . (13.6)

If the time series needed to be differenced, as in our example, the ARMA model
needs to be extended by including differencing parameter d (we say the series is
integrated of order d). This results in an ARIMA(p,d,q) model:

y′
t = c + φ1y

′
t−1 + · · · + φpy′

t−p + θ1εt−1 + · · · + θqεt−q + εt . (13.7)

Note that ARIMA models can be again extended by, for instance, including a
seasonal component or adding linear drift parameters.

At this point it is wrong to conclude that, in our application, the model of choice
is an ARIMA(5,1,2) model. This is due to the fact that in the ACF initial coefficients
depend on the MA part, whereas a later decay is dictated by the AR part. Conversely,
in the PACF initial values depend on the AR order, followed by the decay due to the
MA part. Based on these considerations, we can specify the following candidate
models:

• ARIMA(0,1,2): MA(2) model (left panel Fig. 13.8) with first-order differencing
(ignore the AR part).

• ARIMA(5,1,0): AR(5) model (right panel Fig. 13.8) with first-order differencing
(ignore the MA part).

• ARIMA(p, 1, q): Combine the AR and MA models with smaller values p and
q as in the individual AR and MA models above (e.g., something like an
ARIMA(2,1,1)).

With three parameters the most parsimonious model of these three candidates is
ARIMA(0,1,2), which can be fitted as follows:

13.3 Time Series Analysis 389

iatima <- Arima(yts, order = c(0, 1, 2))
iatima
Series: yts
ARIMA(0,1,2)
##
Coefficients:
ma1 ma2
-0.7819 -0.0457
s.e. 0.1359 0.1320
##
sigma^2 estimated as 0.001406: log likelihood=199.95
AIC=-393.89 AICc=-393.66 BIC=-385.87

In terms of finding the best model (step 5), we could proceed with fitting an
ARIMA(5,1,0) or other ARIMA(p, 1, q) specifications and pick the model with
the lowest AIC/BIC. However, the forecast package offers a magic function called
auto.arima (see Hyndman and Khandakar, 2008, for details) which attempts
to find a good candidate model by internally setting up a model sequence (i.e.,
(p, d, q) parameter combinations and some additional parameter flavors such as
seasonal parameters and drift terms) and returns the best model based on the lowest
AIC/BIC.

iatauto <- auto.arima(yts)
iatauto
Series: yts
ARIMA(0,1,1) with drift
##
Coefficients:
ma1 drift
-0.8614 -0.0011
s.e. 0.0426 0.0005
##
sigma^2 estimated as 0.001363: log likelihood=201.51
AIC=-397.02 AICc=-396.78 BIC=-389

This search procedure suggests to use a model with a single MA parameter only,
differenced once, with a linear drift term. Technically, this means that we fit a linear
regression with ARIMA errors and with the drift parameter as slope. Since the slope
is negative, it suggests a decay of the d-measure across time. Let us compare the
ARIMA(0,1,2) from above with the ARIMA(0,1,1) with drift, both of them having
two parameters:

390 13 Modeling Trajectories and Time Series

BIC(iatima, iatauto)[,2]
[1] -385.8745 -388.9987
AIC(iatima, iatauto)[,2]
[1] -393.8930 -397.0171

The AIC/BIC values for the auto.arima model are smaller. Thus, the
procedure outsmarts us with our proudly established ARIMA(0,1,2) model. Let us
continue with the auto.arima model.

First, we can do some residual checks. Figure 13.9 shows some residual diag-
nostic plots obtained by saying tsdiag(iatauto). As in standard regression
analysis, the standardized residuals should fluctuate randomly around 0, which is
the case in our example (top panel). Also, the ACF looks pretty healthy (even
through there is a slight autocorrelation at lag-2).6 We can also plot the fitted values
of ARIMA model (plot now shown here).

plot(iatauto$x, ylab = "D-measure", main = "IAT Time Series")
lines(fitted(iatauto), col = "salmon", lwd = 2)

If an R2 is needed, we can use the squared correlation between the fitted values
and the original observations:

cor(fitted(iatauto), yts)^2
[1] 0.4788475

Once we have found a model that fits, in time series analysis, we are typi-
cally interested in forecasting. This brings us to the final step 6. Based on the
ARIMA(0,1,1) model with drift, we are now going to make a forecast until the
year 2020.

plot(forecast(iatauto, h = 48), ylab = "d-measure",
main = "Age IAT Forecasts")

Figure 13.10 shows the corresponding IAT forecast including the 80% and 95%
prediction intervals. We see that implicit age associations will continue to decrease

6Note that the first value in the correlogram is the lag-0 correlation which is of course 1 and can
be ignored.

13.3 Time Series Analysis 391

Standardized Residuals

Time
2008 2010 2012 2014 2016

−2
−1

0
1

2

0.0 0.5 1.0 1.5

−0
.2

0.
2

0.
6

1.
0

Lag

AC
F

ACF of Residuals

l

l l l l l l l l l

2 4 6 8 10

0.
0

0.
4

0.
8

p values for Ljung−Box statistic

lag

p
va

lu
e

Fig. 13.9 Residual diagnostics for ARIMA(0,1,1) model with drift. Top panel: standardized
residuals against time. Center panel: ACF with significant bounds (a value of 1 on x-axis
reflects a lag of 12 months). Lower panel: p-values resulting from Ljung-Box testing (H0: no
autocorrelation)

(i.e., the preference for young over is expected to decrease). However, we have to
keep in mind that there could be “shocks” (e.g., a presidential election which causes
changes in people’s implicit associations).

Let us conclude this section with some final remarks. It is certainly tempting to
just say auto.arima on our original data. The danger is, at least for people new
to time series modeling, that the model is pretty much a black box. It is suggested to
explore the time series in detail using the steps presented in this section. This gives
us a good insight into various aspects of the time series. Note that the parameters
in ARIMA models are typically not subject to substantive interpretation. ARIMA
models are also robust against violations of normal error terms.

For some time series (especially those with irregular shocks), ARIMA models
sometimes predict a horizontal line. There is nothing wrong with this; it simply tells
us that the best guess for future developments is a horizontal line. If the aim of a
time series analysis is forecasting only, the user can consider exponential smoothing
techniques such as Holt-Winters (see HoltWinters function), or exponential
smoothing state space models (see ets function in forecast). Examples can be
found in Hyndman and Athanasopoulos (2014, Chapter 7). Within such a prediction

392 13 Modeling Trajectories and Time Series

Age IAT Forecasts
d−

m
ea

su
re

2008 2010 2012 2014 2016 2018 2020

0.
90

1.
00

1.
10

1.
20

Fig. 13.10 IAT d-measure predictions based on the ARIMA(0,1,1) model with drift until the year
2020

context, it can be helpful to fit several candidate models on the time series without
considering the last few observations. We then forecast the left-out observations and
check how close these predictions match the observed (left-out) values.

13.3.3 Time Series with Covariates: Intervention Analysis

In Sect. 13.3.1 we have illustrated a procedure that automatically finds points where
the series breaks. In this section we are interested whether a specific event, occurred
at a known point in time, has an influence on the time series. We focus on a method
called intervention analysis, introduced by Box and Tiao (1975), and consider the
simplest functional form of such an intervention: a step function consisting of 0’s
(before event) and 1’s (from event until the end of the series).

Let us illustrate this strategy using our age IAT series. On March 23, 2010,
the Affordable Care Act (ACA; also known as Obamacare) was passed. We are
interested in whether this event had an impact on our time series. We could
hypothesize that it might have increased empathy toward the needs of elderly
individuals. We start with specifying the ACA intervention vector with a jump at
the 40th observation (April, 2010).

aca <- c(rep(0, 39), rep(1, 69))

The vector needs to be of the same length as the time series. Note that this is the
simplest intervention function which requires the time series to react immediately.
More complex and at the same time more realistic interventions (in terms of lagged
influences) can be found in Cryer and Chan (2008, Chapter 11).

13.3 Time Series Analysis 393

Age IAT Time Series

Time

d−
m

ea
su

re

2008 2010 2012 2014 2016

1.
00

1.
05

1.
10

1.
15

1.
20

Obamacare passed

Fig. 13.11 Predictions based on pre-Obamacare time series (incl. 80% prediction interval)

First, we fit a pre-event ARIMA model (we use the ARIMA(0,1,1) drift
specification from above) and predict the remaining values up to December 2015.
Figure 13.11 shows that the predictions deviate clearly from the actually observed
post-Obamacare time series, especially from 2012 onward.

preaca <- window(yts, end = c(2010, 3)) ## pre-event series
tspre <- Arima(preaca, order = c(0,1,1), include.drift = TRUE)
preds <- forecast(tspre, h = 69) ## post-event predictions

Now let us include the ACA vector as covariate in our ARIMA model. This can
be achieved via the xreg argument. Such models are sometimes also referred to as
ARIMAX models. The coeftest function from the lmtest package can be used
for significance testing. We are mostly interested in the ACA effect.

tsreg <- Arima(yts, order = c(0, 1, 1), include.drift = TRUE,
xreg = aca)

print(coeftest(tsreg), 3, signif.legend = FALSE)
##
z test of coefficients:
##
Estimate Std. Error z value Pr(>|z|)
ma1 -0.904720 0.040880 -22.13 <2e-16 ***
drift -0.001540 0.000426 -3.62 0.0003 ***
aca 0.044923 0.017808 2.52 0.0116 *

394 13 Modeling Trajectories and Time Series

We see that the introduction of Obamacare had a significant influence on our time
series; implicit associations changed after this intervention in favor of older people.
However, we should not overemphasize this result since there could be of course
other sociopolitical events at around that time that contributed to the change in the
time series. In addition, as mentioned above, we used a simple step intervention
function.

The xreg argument can also handle multiple covariates. In this case they need
to be provided as data frame. In general, such covariates do not have to be discrete;
they can also be metric, which would constitute a second time series. In relation
to such setups, the concept of Granger causality can be used if we want to study
causal influence of one time series on a second one. The lmtest package offers a
corresponding function called grangertest.

This concludes the section on time series analysis. As mentioned at the beginning
of this section, we focused on univariate time series modeling (i.e., modeling
a single series) only. For modeling multiple series jointly, vector autoregressive
models (VAR) can be used, as implemented in the vars package (Pfaff, 2008). For
settings where each individual produces a series and we are not interesting in making
predictions, functional data analysis is an attractive modeling framework, as shown
in the next section.

13.4 Functional Data Analysis

The main aspect of functional data analysis (FDA) is that a single measurement on
an individual is a function, rather than a single value (i.e., scalar) as usual. In many
applications, this function is measured in the time domain, and we will limit our
explanations in this section to this type of data. However, other domains such as
spatial data or spatiotemporal combinations can be subject to FDA as well. Many
classical statistical techniques, such as ANOVA, regression, and PCA, have been
extended in terms of corresponding functional variants.

In this section we avoid giving much technical details because the math required
to formulate various models is beyond the scope of this book. An excellent,
nontechnical introduction to FDA with focus on psychological applications is given
in Levitin et al. (2007). More in-depth explanations and case studies can be found
in the books by Ramsay and Silverman (2002, 2005), Ramsay et al. (2009), and
Kokoszka and Reimherr (2017). In this chapter we will mostly use the fda.usc
package (Febrero-Bande and de la Fuente, 2012) which builds on the fda package
(Ramsay et al., 2009) but is easier to use and offers a wider range of functional
analysis techniques.

The example we use throughout this section is taken from Vines et al. (2006),
also analyzed in Levitin et al. (2007). The authors were interested in how physical
gestures of professional musicians contribute to the perception of emotion in a
musical performance. Twenty-nine participants were exposed to the performance
by either just listening (auditory condition), just seeing (visual condition), or both

13.4 Functional Data Analysis 395

(auditory-visual condition). During the performance the participants had to move a
slider to indicate the experienced tension they felt. They listened to the piece for
80 s, and every 10 ms the tension score (0–127) was recorded which leaves us with
800 tension measurement points per person. Let us import the raw data into R and
convert them into an fdata object, in order to proceed with computations using the
fda.usc package. Note that the original tension scores (0–127) were z-standardized.

library("MPsychoR")
library("fda.usc")
data("tension")
tension1 <- as.matrix(tension[,1:800]) ## tension time series
cond <- tension$cond ## condition
ftension <- fdata(tension1,
argvals = seq(1, 80, length.out = 800),
names = list(main = "Music tension", xlab = "Time (sec)",

ylab = "Tension"))

Unlike in our example, in other applications it is sometimes necessary to align the
curves in the time domain (e.g., if the starting point is located arbitrarily in time).
This process is called registration. Details can be found in Ramsay et al. (2009,
Chapter 8); the register.fd function in fda provides corresponding options.

13.4.1 Smoothing Curves and Derivatives

Having functional data, the first data preparation step is typically to smooth the raw
input trajectories. This process reduces noise and gives us a mathematical descrip-
tion of each trajectory. There are several options for smoothing the input curves
such as various spline-based approaches and nonparametric kernel smoothing (see
Ramsay and Silverman, 2005, for details). Here we focus on the latter approach.

Let y = (y1, . . . , ym)′ be the observed data vector (j = 1, . . . , m measurement
points) of a single individual. In FDA we assume that there is an “true” underlying
trajectory x(tj), where tj denotes the j -th time point. This trajectory is related to yj

in the following way:

yj = x(tj) + εj . (13.8)

This implies that yj is measured with error.7 In order to determine x(tj), kernel
smoothing uses

7Note the similarity of this equation to the classical true score model in the first chapter.

396 13 Modeling Trajectories and Time Series

x̂(t) =
m∑

j=1

Sj (t)yj (13.9)

as its basic expression. Here, Sj (t) is a suitably defined weight function, the most
popular being the so-called Nadaraya-Watson kernel estimator (see Ramsay and
Silverman, 2005, Chapter 4, for the kernel expression). This estimator involves a
smoothing parameter (or bandwidth) h which steers the degree of smoothness. The
optimal h can be found through cross-validation (CV). The larger h, the smoother
the curves.

At the end of this procedure, we get a smooth function x̂(t) which replaces
the raw input vector y in all subsequent FDA computations. This smoothing is
performed on all individual trajectories (h constant across individuals). Let us
perform such a nonparametric kernel smoothing using our music tension dataset
(CV to find h is carried out internally) and plot the original trajectories as well as
the smoothed ones.

ftensionNP <- min.np(ftension)
plot(ftension, main = "Original Data")
plot(ftensionNP$fdata.est, main = "Smooth Data")

The bottom panel of Fig. 13.12 shows the smoothed versions of the input data.
Using such a nonparametric kernel strategy with h determined through CV often
leads to good results, but not always. The user is encouraged to try out different
smoothing specifications and produce similar plots as Fig. 13.12. At the end of the
day, the curves should look reasonably smooth (i.e., we reduced the noise), but, at
the same time, they should capture important peaks and valleys of the raw input
signal (i.e., not over-smoothing). In our example we proceed with the smoothed
curves from the min.np call.

At this point we can compute the first-order derivative, often interpreted as
velocity.

ftension1 <- ftensionNP$fdata.est
deriv1 <- fdata.deriv(ftension1)

Figure 13.13 presents a single tension trajectory (person 7) and its derivative.
The person experiences a tension peak at around 30 s. The velocity reflects the rate
of change in tension, that is, how rapidly it rises and how rapidly it drops. In some
applications the second-order derivative (acceleration) can be of interest as well.

13.4 Functional Data Analysis 397

13.4.2 FDA Descriptives and Bootstrap

After smoothing the curves, we can compute basic functional location and disper-
sion measures. It is important to point out that each of these measures is a function
itself. Let us split the music tension data according to the conditions and compute
functional means and functional medians.

0 20 40 60 80

−4
−2

0
2

4
6

Original Data

Time (sec)

Te
ns

io
n

0 20 40 60 80

−4
−2

0
2

4
6

Smooth Data

Time (sec)

Te
ns

io
n

Fig. 13.12 Nonparametric kernel smoothing on music tension data. Top panel: observed trajecto-
ries. Bottom panel: smooth trajectories

fsplit <- split.fdata(ftension1, cond)
Amean <- func.mean(fsplit$Auditory)
Vmean <- func.mean(fsplit$Visual)

(continued)

398 13 Modeling Trajectories and Time Series

AVmean <- func.mean(fsplit$AuditoryVisual)
Amedian <- func.med.FM(fsplit$Auditory)
Vmedian <- func.med.FM(fsplit$Visual)
AVmedian <- func.med.FM(fsplit$AuditoryVisual)

The top panel of Fig. 13.14 shows the smoothed curves for the means and the
bottom panel the curves for the median. Corresponding functions for other location
measures (e.g., trimmed mean) or dispersion measures are implemented in fda.usc
as well.

If we want to explore to which degree a location function changes across multiple
samples, we can apply a simple bootstrap strategy. Let us perform a functional mean
bootstrap (200 bootstrap samples) for the auditory-visual condition (see Fig. 13.15).

set.seed(123)
AVboot <- fdata.bootstrap(fsplit$AuditoryVisual, draw = TRUE)

0 20 40 60 80

0
1

2
3

4

Smooth Tension (Person 7)

Time (sec)

Fu
nc

tio
na

l T
en

si
on

 V
al

ue
s

0 20 40 60 80

−2
−1

0
1

2

Time (sec)

Ve
lo

ci
ty

 T
en

si
on

 V
al

ue
s

Fig. 13.13 Top panel: smooth trajectory person 7. Bottom panel: first order derivative (velocity)
person 7

13.4 Functional Data Analysis 399

Similar bootstrap strategies can be applied to other descriptive measures. In case
it is of interest, the same descriptive measures can be computed on the derivatives
of the smooth trajectories.

13.4.3 Functional ANOVA and Regression Modeling

Functional regression refers to data settings where at least one of the variables
involved (i.e., response and/or predictors) is of a functional form. In our example,
the response is functional and we have one categorical predictor (scalar). For such
settings there are various options for computing a functional one-way ANOVA. A
simple implementation is the anova.onefactor function in fda.usc, which tells
us whether there is an overall difference in the functional trajectories across the
three conditions. We keep the number of bootstrap samples fairly low because the
computation is quite time-consuming.

0 20 40 60 80

−2
−1

0
1

2

Mean Tension Trajectories

Time (sec)

Te
ns

io
n

Auditory
Visual
Auditory & Visual

0 20 40 60 80

−2
−1

0
1

2

Median Tension Trajectories

Time (sec)

Te
ns

io
n

Auditory
Visual
Auditory & Visual

Fig. 13.14 Top panel: means tension trajectories for each condition. Right panel: median tension
trajectories for each condition

400 13 Modeling Trajectories and Time Series

set.seed(123)
tension1way <- anova.onefactor(ftension1, cond, nboot = 50)
tension1way$pvalue
[1] 0

The result suggests that there is an overall significant difference among the three
smoothed mean curves.

Another option is to use the idea of random projections (Cuesta-Albertos and
Febrero-Bande, 2010), which transform the functional data into univariate data,
solve the ANOVA problem for this simple situation, and obtain conclusions for the
functional data by collecting the information from several projections. The authors
suggest that the number of projections to be used should be min(30, n). Since in our
data n = 800, we are good with 30 projections. This approach allows us to include
special contrasts. Below we use a simple dummy coding with the auditory condition
as baseline.

0 20 40 60 80

−3
−2

−1
0

1
2

3

Time (sec)

Te
ns

io
n

original curves
mean
bootstrap curves IN

Bootstrap Mean (Auditory−Visual)

Fig. 13.15 Bootstrap of functional means for auditory-visual condition

13.4 Functional Data Analysis 401

fdat <- as.data.frame(ftension1$data)
gdat <- as.data.frame(cond)
ctrAudio <- contr.treatment(3)
set.seed(222)
fitrpm <- anova.RPm(fdat, ~ cond, gdat, RP = 30,

contrast = list(cond = ctrAudio))
summary.anova(fitrpm)
- SUMMARY anova.RPm -
##
p-value for Bonferroni method
cond C1.cond C2.cond
RP30 0.00125 3e-05 0.26624
##
p-value for False Discovery Rate method
cond C1.cond C2.cond
RP30 0.00124 3e-05 0.16946

It presents two different types of p-value corrections (Bonferroni, false discovery
rate) which, in our application, lead to consistent decisions. The first p-value
(cond) reflects overall group differences in the sense of an F -test: it suggests
that there is a significant overall difference in the means. The second p-value
(C1.cond) tests visual vs. auditory (significant difference), whereas the third p-
value tests visual vs. auditory-visual (not significant).

So far we have tested for differences at a global level, that is, across all 800
measurements. In FDA we are often interested in how predictors behave along
the time continuum. The refund package (Goldsmith et al., 2016) is designed for
advanced regression modeling on functional data. First, we need to convert the data
into an fd object and then set up the design matrix. We use the same dummy coding

0 20 40 60 80

−2
−1

0
1

Intercept

C
oe

ffi
ci

en
t f

un
ct

io
n

0 20 40 60 80

−2
−1

0
1

Auditory vs. Visual

C
oe

ffi
ci

en
t f

un
ct

io
n

0 20 40 60 80

−2
−1

0
1

Auditory vs. Visual−Auditory

C
oe

ffi
ci

en
t f

un
ct

io
n

Fig. 13.16 Smoothed functional parameter estimates for functional regression including 95% CI:
intercept, auditory vs. visual contrast, auditory vs. visual-auditory contrast

402 13 Modeling Trajectories and Time Series

strategy as above. The next line in the chunk below fits the functional regression
model. Note that instead of obtaining a single value for each regression parameter
as in ordinary regression, in functional regression each regression parameter is
a function along time, potentially subject to further smoothing. Here, mostly for
running time purposes, we set the smoothing parameter to a single value of λ = 100
which works well in our example. A good, albeit time-consuming option is to let
the algorithm pick the optimal λ by means of CV (default in the function below).
Let us fit the functional regression model:

library("refund")
ftension2 <- fdata2fd(ftension1)
X <- model.matrix(~ cond) ## auditory as baseline
tenreg <- fosr(fdobj = ftension2, X = X, lambda = 100)

By saying plot(tenreg), the plot in Fig. 13.16 is produced. We see that
in certain segments along the time continuum (i.e., within first 20 and 40–60 s,
approximately) the effect of auditory vs. visual differs significantly from 0. There is
no significant difference at any point in time between auditory and visual-auditory
condition.

Other functions implemented in refund for regression with functional responses
are pffr for additive functional regression and fosr2s which fits a separate
linear model at each point along the continuum and smooths the coefficients in
a second step. For hierarchical data settings (e.g., within-subject designs), the
bayes_fosr function replaces fosr. The random effect (let us call it id) can
be added using re(id) in the formula specification. If the response is a scalar and
the predictors are functional, refund offers pfr (penalized functional regression),
lpeer (longitudinal model with structures penalties), fpcr (principal component
regression), and fgam (functional generalized additive models). Details can be
found in Greven and Scheipl (2017), Scheipl et al. (2015), and McLean et al. (2014).

The fda.usc package provides fregre.lm (regression with functional and non-
functional covariates), fregre.glm (functional GLM), fregre.pc (principal
component regression), and more (see Febrero-Bande and de la Fuente, 2012).
Extensive treatments of functional ANOVA and regression can be found in Zhang
(2014) and Kokoszka and Reimherr (2017).

13.4.4 Functional Principal Component Analysis

Principal component analysis (PCA) was introduced in Sect. 6.1 and aims to reduce
the complexity of the data by computing principal components. In functional PCA
(fPCA), the resulting functional principal components (fPCs) are again functions.

13.4 Functional Data Analysis 403

Using the fda.usc package, the fdata2pc can be used to compute an fPCA. Let
us fit a 2D-fPCA on the music tension data:

fpca <- fdata2pc(ftension1, ncomp = 2)
summary(fpca, biplot = FALSE)
##
- SUMMARY: fdata2pc object -
##
-With 2 components are explained 53.32 %
of the variability of explicative variables.
##
-Variability for each component (%):
PC1 PC2
34.14 19.19

This output shows the amount of explained variance if we extract two com-
ponents. A scree plot with the standard deviations of all the fPCs extracted (see
fpc1$d object) can be used for dimensionality assessment.

Figure 13.17 shows the functional loadings for each component in the left
panel.8 Using this representation, the components are tricky to interpret. Below
we show a different representation that eases their interpretation. Plotting the PC
scores in the 2D-component space (right panel) gives us a nice picture: we see
a clear separation between participants in the visual condition and participants in
the auditory/auditory-visual conditions. The scores for auditory vs. auditory-visual
are poorly separated in two dimensions. These findings substantiate the functional
ANOVA and regression results from above.

In terms of interpreting the fPCs, Ramsay and Silverman (2005) suggest plotting
the functional mean trajectory and then adding and subtracting a suitable multiple
of each PC curve. The necessary computations are the following:

fmean <- func.mean(ftension1)
pc1plus <- fmean$data[1,] + 3*fpca$rotation$data[1,]
pc1minus <- fmean$data[1,] - 3*fpca$rotation$data[1,]
pc2plus <- fmean$data[1,] + 3*fpca$rotation$data[2,]
pc2minus <- fmean$data[1,] - 3*fpca$rotation$data[2,]

The first line computes the functional mean trajectory. The subsequent two lines
add/subtract the first fPC from the functional mean. The last two lines do the same
thing for the second fPC. Note that the multiple of 3 is pretty much arbitrary; it
merely amplifies the distance of the fPC trajectories from the mean such that we get

8A simplified version of this plot can be produced via summary(fpca).

404 13 Modeling Trajectories and Time Series

0 20 40 60 80

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Functional PCA Loadings

Time

Lo
ad

in
gs

PC1
PC2

−5 0 5 10

−4
−2

0
2

4
6

8

Functional PC Scores

PC1

P
C

2 1

2
3

4

56
78

9
10

11

12

13

1415

16

17

18

19

20

2122

23

24

25

2627

28
29

Auditory
Visual
Auditory & Visual

Fig. 13.17 Left panel: functional loadings for each PC. Right panel: PC scores colored according
to the experimental condition

a clearer picture for interpretation. The following code chunk produces the plots in
Fig. 13.18.

plot(fmean, lwd = 2, main = "Mean (PC1)", ylim = c(-2, 2))
lines(ftension1$argvals, pc1plus, col = "salmon")
lines(ftension1$argvals, pc1minus, col = "cadetblue")
legend("bottomright", legend = c("mean + PC1", "mean - PC1"),

lty = 1, col = c("salmon", "cadetblue"))
plot(fmean, lwd = 2, main = "Mean (PC2)", ylim = c(-2, 2))
lines(ftension1$argvals, pc2plus, col = "salmon")
lines(ftension1$argvals, pc2minus, col = "cadetblue")
legend("bottomright", legend = c("mean + PC2", "mean - PC2"),

lty = 1, col = c("salmon", "cadetblue"))

The first component, accounting for 34.14% of the variance, can be interpreted
as follows. Participants who score low on this component (blue line) have a strong
initial increase in tension and are highly affected by the peak at around 30 s, and
then their tension drops drastically. Participants who score high on this component
(red line) have a considerably slow tension increase, are less affected by the tension
peak, and remain pretty much constant for the rest of the time (especially in the
40–60 s area). Thus, the first fPC can be interpreted as “compression/expansion.”

The second component, accounting for 19.19% of the variance, discriminates
between tension values at the beginning of the piece (approx. 10–30 s) and at the end
(approx. 60–80 s). Participants scoring high on this dimension (red line) experience
high tension at the beginning and considerably low tension at the end. For those
who score low (blue line), these tension experiences are reversed. We could label
this fPC as “edge effects.”

References 405

0 20 40 60 80

−2
−1

0
1

2
Mean (PC1)

Time (sec)

Te
ns

io
n

mean + PC1
mean − PC1

0 20 40 60 80

−2
−1

0
1

2

Mean (PC2)

Time (sec)

Te
ns

io
n

mean + PC2
mean − PC2

Fig. 13.18 Left panel: functional mean trajectory ± first functional PC. Right panel: functional
mean trajectory ± second functional PC

Further details on the fPCA fit on these data including additional interpretation
flavors can be found in Levitin et al. (2007), who fitted a 3D-fPCA solution. Another
reference for an fPCA application in psychology is Burns et al. (2013). The next
chapter is dedicated to a special type of functional data in psychology: functional
magnetic resonance imaging data.

References

Bornstein, A. M., & Daw, N. D. (2012). Dissociating hippocampal and striatal contributions to
sequential prediction learning. European Journal of Neuroscience, 35, 1011–1023.

Box, G. E. P., & Tiao, G. (1975). Intervention analysis with applications to economic and
environmental problems. Journal of the American Statistical Association, 70, 70–79.

Burns, D. M., Houpt, J. W., Townsend, J. T., & Endres, M. J. (2013). Functional principal
components analysis of workload capacity functions. Behavior Research Methods, 45(4),
1–18.

Cowpertwait, P. S. P., & Metcalfe, A. V. (2009). Introductory time series with R. New York:
Springer.

Cryer, J. D., & Chan, K. S. (2008). Time series analysis with applications in R (2nd ed.). New
York: Springer.

Cuesta-Albertos, J. A., & Febrero-Bande, M. (2010). A simple multiway anova for functional data.
Test, 19, 537–557.

Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012).
qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical
Software, 48(4), 1–18. http://www.jstatsoft.org/v48/i04/

Febrero-Bande, M., & de la Fuente, M. (2012). Statistical computing in functional data analysis:
The R package fda.usc. Journal of Statistical Software, 51(4), 1–28. https://www.jstatsoft.org/
v051/i04

http://www.jstatsoft.org/v48/i04/
https://www.jstatsoft.org/v051/i04
https://www.jstatsoft.org/v051/i04

406 13 Modeling Trajectories and Time Series

Goldsmith, J., Scheipl, F., Huang, L., Wrobel, J., Gellar, J., Harezlak, J., McLean, M. W., Swihart,
B., Xiao, L., Crainiceanu, C., & Reiss, P. T. (2016). refund: Regression with functional data.
R package version 0.1-16. https://CRAN.R-project.org/package=refund

Greenwald, A. G., & Banaji, M. R. (1995). Implicit social cognition: Attitudes, self-esteem, and
stereotypes. Psychological Review, 102, 4–27.

Greenwald, A. G., McGhee, D. E., & Schwartz, J. K. L. (1998). Measuring individual differences in
implicit cognition: The implicit association test. Journal of Personality and Social Psychology,
74, 1464–1480.

Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding and using the implicit
association test: I. An improved scoring algorithm. Journal of Personality and Social Psychol-
ogy, 85, 197–216.

Greven, S., & Scheipl, F. (2017). A general framework for functional regression modelling.
Statistical Modelling, 17, 1–35.

Griffiths, T. L., Steyvers, M., & Firl, A. (2007). Google and the mind: Predicting fluency with
PageRank. Psychological Science, 18, 1069–1076.

Hyndman, R. J., & Athanasopoulos, G. (2014). Forecasting: Principles and practice. Melbourne:
OTexts. http://www.otexts.org

Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast
package for R. Journal of Statistical Software, 26(3), 1–22. http://www.jstatsoft.org/article/
view/v027i03

Jebb, A. T., Tay, L., Wang, W., & Huang, Q. (2015). Time series analysis for psychological
research: Examining and forecasting change. Frontiers in Psychology, 6(727), 1–24. http://
journal.frontiersin.org/article/10.3389/fpsyg.2015.00727

Kokoszka, P., & Reimherr, M. (2017). Introduction to functional data analysis. Boca Raton: CRC
Press.

Levitin, D. J., Nuzzo, R. L., Wines, B. W., & Ramsay, J. O. (2007). Introduction to functional data
analysis. Canadian Psychology, 48, 135–155.

Long, J. D. (2011). Longitudinal data analysis for the behavioral sciences using R. Thousand
Oaks: SAGE Publishing.

McLean, M. W., Hooker, G., Staicu, A. M., Scheipl, F., & Ruppert, D. (2014). Functional
generalized additive models. Journal of Computational and Graphical Statistics, 23, 249–269.

Mirman, D. (2014). Growth curve analysis and visualization using R. Boca Raton: Chapman &
Hall/CRC.

Nosek, B. A., Banaji, M. R., & Greenwald, A. G. (2002). Harvesting implicit group attitudes and
beliefs from a demonstration web site. Group Dynamics: Theory, Research, and Practice, 6,
101–115.

Petris, G., & Petrone, S. (2011). State space models in R. Journal of Statistical Software, 41(4),
1–25. https://www.jstatsoft.org/v041/i04

Pfaff, B. (2008). VAR, SVAR and SVEC models: Implementation within R package vars. Journal
of Statistical Software, 27(4), 1–32. https://www.jstatsoft.org/article/view/v027i04

Ramsay, J. O., & Silverman, B. W. (2002). Applied functional data analysis: Methods and case
studies. New York: Springer.

Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis (2nd ed.). New York: Springer.
Ramsay, J. O., Hooker, G., & Graves, S. (2009). Functional data analysis with R and MATLAB.

New York: Springer.
Scheipl, F., Staicu, A. M., & Greven, S. (2015). Functional additive mixed models. Journal of

Computational and Graphical Statistics, 24, 477–501.
Spedicato, G. A. (2017). markovchain: Easy handling of discrete time Markov chains. R package

version 0.6.8.1.
Trapletti, A., & Hornik, K. (2017). tseries: Time series analysis and computational finance. R

package version 0.10–42. https://CRAN.R-project.org/package=tseries
Ulrich, J. (2017). TTR: Technical trading rules. R package version 0.23–2. https://CRAN.R-

project.org/package=TTR

https://CRAN.R-project.org/package=refund
http://www.otexts.org
http://www.jstatsoft.org/article/view/v027i03
http://www.jstatsoft.org/article/view/v027i03
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00727
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00727
https://www.jstatsoft.org/v041/i04
https://www.jstatsoft.org/article/view/v027i04
https://CRAN.R-project.org/package=tseries
https://CRAN.R-project.org/package=TTR
https://CRAN.R-project.org/package=TTR

References 407

Vines, B. W., Krumhansl, C. L., Wanderley, M. M., & Levitin, D. J. (2006). Cross-modal
interactions in the perception of musical performance. Cognition, 101, 80–113.

Visser, I. (2011). Seven things to remember about hidden Markov models: A tutorial on Markovian
models for time series. Journal of Mathematical Psychology, 55, 403–415.

Visser, I., & Speekenbrink, M. (2010). depmixS4: An R package for hidden Markov models.
Journal of Statistical Software, 36(7), 1–21. http://www.jstatsoft.org/v36/i07/

Wickens, T. D. (1982). Models for behavior: Stochastic processes in psychology. San Francisco:
W.H. Freeman and Co.

Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression relationships. R News, 2(3),
7–10. https://CRAN.R-project.org/doc/Rnews/

Zeileis, A., Leisch, F., Hornik, K., & Kleiber, C. (2002). strucchange: An R package for testing
for structural change in linear regression models. Journal of Statistical Software, 7(2), 1–38.
http://www.jstatsoft.org/v07/i02/

Zhang, J. T. (2014). Analysis of variance for functional data. Boca Raton: CRC Press.
Zucchini, W., MacDonald, I. L., & Langrock, R. (2016). Hidden Markov models for time series:

An introduction using R (2nd ed.). Boca Raton: Chapman & Hall/CRC.

http://www.jstatsoft.org/v36/i07/
https://CRAN.R-project.org/doc/Rnews/
http://www.jstatsoft.org/v07/i02/

Chapter 14
Analysis of fMRI Data

14.1 fMRI Data Manipulation in R

14.1.1 fMRI Data Structures

In fMRI, the brain of a participant is scanned over time. During the experiment, the
participant in the scanner is exposed to experimental stimuli. The resulting data
are 4D: The first two dimensions x and y span a 2D voxel grid, and the third
dimension reflects the brain slices in z direction. A static 3D brain image is fully
characterized by these three dimensions (spatial domain). The “functional” part
(fourth dimension) in the fMRI acronym relates to the change of brain activation
over time (temporal domain). The time between successive brain scans is called
repetition time, commonly abbreviated as TR (“time of repetition”).

There are several different formats to store raw fMRI data such as DICOM,
Analyze, NIfTI, or MINC. In this chapter we work with Analyze and NIfTI data.
Analyze data consist of a pair of files: a .img file containing the 4D brain data and
a .hdr file with meta information. NIfTI data come as a single file with the ending
.nii, containing all the necessary information.

In order to get an initial idea of such a data structure, let us import a scan (based
on a single run of a participant) from the mental states study by Tamir et al. (2016a).
The experiment itself will be described in more detail in Sect. 14.2.4. The authors
made the fMRI data publicly available through a Dataverse repository (Tamir et al.,
2016b), stored as NIfTI files. In order to reproduce the R code in this chapter, the
following files need to be downloaded from this repository1:

• s01_r01_FUNC.nii;
• wFUN1.nii; wFUN2.nii; . . . wFUN16.nii;

1See http://dx.doi.org/10.7910/DVN/ELLLZM

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7_14

409

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93177-7_14&domain=pdf
http://dx.doi.org/10.7910/DVN/ELLLZM
https://doi.org/10.1007/978-3-319-93177-7_14

410 14 Analysis of fMRI Data

• globalmask.img; globalmask.hdr;
• con_s01_0002.img; con_s01_0002.img; . . . con_s20_0002.img;
• con_s01_0002.hdr; con_s01_0002.hdr; . . . con_s20_0002.hdr.

Let us import the first run (each participant was exposed to multiple runs) of the
first participant using the fmri package (Polzehl and Tabelow, 2007; Tabelow and
Polzehl, 2011), show a basic summary output, and extract the 4D array.

library("fmri")
scanS1R1 <- read.NIFTI("s01_r01_FUNC.nii")
summary(scanS1R1)
Object of class fmridata
Data Dimension: 86 86 43 162
Data Range : 0 ... 2870
Voxel Size : 2.511628 2.511628 2.75
File(s) : s01_r01_FUNC.nii
imageS1R1 <- fmri::extract.data(scanS1R1)

In this example the 2D voxel grid is of dimension 86 × 86 (x and y coordinates).
The third dimension represents 43 axial slices (z coordinates). Thus, the brain is
represented by 86 × 86 × 43 = 318,028 voxels. The fourth dimension represents
the scans over time t (here, 162 scans). In total, we have 86 × 86 × 43 × 162 =
51,520,536 measurements for one run on a single participant. A single voxel value
(e.g., x = 50, y = 50, z = 10, t = 100) can be extracted as follows:

imageS1R1[50, 50, 10, 100]
[1] 598

This value reflects the observed BOLD (blood oxygen level-dependent) response
which corresponds to the concentration of deoxyhemoglobin. An increased neuronal
activity in a particular voxel is due to an increased cerebral blood flow in this
brain area (i.e., an increase in the ratio of oxygenated hemoglobin relative to
deoxygenated hemoglobin).

During a single run, an individual is typically exposed to several stimuli. The
points in time at which the stimuli are presented are the onsets. Each stimulus is
presented for a particular duration. Depending on the nature of stimuli presentation,
we can distinguish between the following experimental designs:

• In an event-related design, each functional run is broken down into a sequence
of stimuli presentations from multiple conditions.

• In a block design, we have a continuous presentation of many stimuli from a
single condition.

14.1 fMRI Data Manipulation in R 411

Regardless which design is used in the experiment, statistical analyses can be per-
formed at various aggregation levels: sometimes we fit models for each participant
separately; sometimes we fit models across all participants. We can be interested in
either single voxel activations or the activation of a region of interest (ROI).

There is no single “can-do-everything” fMRI package in R. However, the R
package ecosystem provides tons of useful functions; we just need to put the
pieces of the puzzle together such that R becomes a powerful engine for fMRI
data analysis. Two major fMRI packages are fmri and AnalyzeFMRI (Bordier
et al., 2011). Roughly speaking, the fmri package is strong for univariate analyses,
whereas AnalyzeFMRI focuses on multivariate methods. A quick-start guide for
fMRI data analysis in R by means of these two packages is given in Eloyan
et al. (2014). Another interesting recent development is the neuropointilist package
(Madhyastha, 2017) which allows researchers to efficiently fit voxel-wise models
in R.

14.1.2 fMRI Preprocessing

In the code chunk above, we imported a raw fMRI scan. Such raw scans are pretty
much useless. Participants may move their head slightly during the experiment,
which changes the voxel alignment. In addition, brains differ in size across
individuals. Thus, we need to apply some data preprocessing steps before computing
statistical models. The standard fMRI preprocessing pipeline is the following:

• Slice-timing correction: It takes time to scan the brain in slices. Slice-timing
correction replaces the observed BOLD response with the BOLD response we
would expect if all slices were scanned at the same time.

• Head motion corrections: Small head movements can already heavily bias the
fMRI data. Methods like rigid body registration correct for such movements.

• Normalization: There are differences in size and shape of human brains. Normal-
ization methods warp individual brains to a common template (e.g., the Montreal
Neurological Institute (MNI) template is widely used).

• Spatial smoothing: The BOLD value of each voxel is replaced by a weighted
average of the BOLD responses of neighboring voxels. This helps overcome
imperfect functional alignment between subjects and reduces noise in the image.

Unfortunately, at the time this book was written, R is poorly equipped with
preprocessing tools such that other tools such as the SPM suite of MATLAB
functions (The FIL Methods Group, 2016) or FSL (Smith et al., 2004) need to be
used. What we can show in R, however, is spatial smoothing.

Let us import a preprocessed version of the file above, available in the same
Dataverse repository. All the preprocessing steps listed above were performed,
except for smoothing. We also import a binary 3D mask in Analyze format that
separates background voxels (value of 0) from non-background voxels (value of 1),
since we have a 3D rectangular voxel grid in which the brain is embedded.

412 14 Analysis of fMRI Data

mask <- read.ANALYZE("globalmask.img")
mask <- extract.data(mask)[,,,1]
imageS1R1r <- read.NIFTI("wFUN1.nii")
imageS1R1 <- fmri::extract.data(imageS1R1r)

dim(imageS1R1)
[1] 79 97 80 162

Note that compared to the raw scan above, the spatial brain dimensions have
changed. This is due to the normalization template the authors used (to be precise,
they used the MNI ICBM 152 template, 2 mm voxels).

When it comes to smoothing, we can smooth across all four dimensions. To keep
it simple, let us smooth across the spatial dimensions at time t = 1 only.

imageS1R1T1 <- imageS1R1[,,,1]

A standard smoothing choice are Gaussian spatial smoothing kernels fx , fy , and
fz. In x-direction we specify

fx(x − xi) = exp

(

− (x − xi)
2

2σ 2
x

)

. (14.1)

The standard deviation σx steers the degree of smoothing: the larger σx , the more
we smooth. In fMRI, the kernel width is often expressed by the full width at half
maximum (FWHM):

FWHM = σx

√
8 ln 2. (14.2)

A standard choice for the FWHM is between 1 and 3 voxel widths. In the scan we
imported, the voxel size is 2 mm. A reasonable choice for the FWHM is 2×2.5 = 5.

The AnalyzeFMRI package has a function that performs Gaussian smoothing.
Instead of the FWHM as input argument, the smoothing degree needs to be provided
as variance-covariance matrix (with σ 2

x , σ 2
y , and σ 2

z on its diagonal). By using
the conversion formula in Eq. (14.2), σ -values of 2 correspond approximately to
an FWHM of 5 (we use the same values for each dimension). The function also
takes a mask argument in order to avoid smoothing outside the actual brain region.
For illustration, we present a non-smoothed version (all σ ’s are 0) and a smoothed
version with all σ ’s equal to 2.

14.1 fMRI Data Manipulation in R 413

library("AnalyzeFMRI")
sigma <- 2
unsmooth <- GaussSmoothArray(imageS1R1T1, sigma = diag(0, 3),

mask = mask)
smooth <- GaussSmoothArray(imageS1R1T1,

sigma = diag(sigma^2, 3), mask = mask)

For each of the two smoothers, a single brain slice (slice number 50) is plotted in
Fig. 14.1 using the ggBrain package (Fisher, 2016).

Smoothed Unsmoothed

Value

290

600

910

1200

1500

1800

2200

2500

Fig. 14.1 Left panel: smoothed BOLD with σx = σy = σz = 2 (corresponds approximately to
FWHM = 5). Right panel: unsmoothed BOLD image

library("ggBrain")
plotsmooth <- ggBrain(brains = list(unsmooth, smooth),
mask = mask, mar = c(3,3), mar_ind = c(50,50),
brain_ind = c(1,2), col_ind = c("Unsmoothed", "Smoothed"),
type = 'signed')

plotsmooth

This figure shows nicely what smoothing is doing to the activation patterns. It
removes noise and provides smooth activation areas reflecting functional similarities
(i.e., spatial correlations) of adjacent voxel regions.

414 14 Analysis of fMRI Data

14.1.3 Registration and Regions of Interest

As illustrated above, the ggBrain package produces plots for single slices at a fixed
point in time. If we want to plot 3D or even 4D brain images, the brainR package
(Muschelli et al., 2014) does the job. Let us import the MNI 152 (2 mm) voxel
template used in our data example, included in the brainR package. Since it is

Fig. 14.2 3D brain image:
activation patterns on top of
MNI brain template

in compressed format, we use the import function from the RNiftyReg package
(Clayden, 2016b).

library("RNiftyReg")
template <- readNifti(system.file("MNI152_T1_2mm_brain.nii.gz",

package = "brainR"))
dim(template)
[1] 91 109 91

Now we re-import our preprocessed scan using the same function and extract the
scan at t = 10.

imageS1R1a <- readNifti("wFUN1.nii")[,,,10]
dim(imageS1R1a)
[1] 79 97 80

We see that the spatial dimensions of these two scans do not match, that is,
they are in different voxel spaces. In order to visualize the brain template and the

14.1 fMRI Data Manipulation in R 415

activation pattern in the same plot, we need to bring them into the same space. This
process is called image registration. We pick the scanned image as target space and
“downscale” the MNI brain template accordingly.

template1 <- niftyreg(source = template, target = imageS1R1a,
scope = "affine")$image

template1[is.na(template1)] <- 0
dim(template1)
[1] 79 97 80

0 50 100 150

40
50

60
70

80

Voxel Time Series

Time

B
O

LD
 In

te
ns

ity

Fig. 14.3 Activation of a single voxel over time (unsmoothed)

After registration, the dimensions match (the missing values were replaced by 0’s
according to the mask), and we are ready to plot. The resulting 3D plot produced
using the brainR package is given in Fig. 14.2.

library("brainR")
contour3d(template1, level = 3500, alpha = 0.1, draw = TRUE)
contour3d(imageS1R1a, level = c(1000, 2000), add = TRUE,
alpha = c(0.8, 0.9), color = c("yellow", "red"), mask = mask)

416 14 Analysis of fMRI Data

So far we have plotted in the spatial domain. Another way to look at fMRI data is
to plot a single voxel trajectory over time (i.e., temporal domain). Figure 14.3 shows
such an activation (or intensity) BOLD trajectory for voxel (50, 50, 10).

Let us have a closer look at various data structures we can consider for fMRI
data. There are two basic representations of fMRI data in R. The first representation
is a 4D structure, as used so far. The second representation is based on flattening (or
vectorizing) each 3D voxel representation at time t in order to represent it as a 2D
time × voxel matrix. Below we show how to convert back and forth between these
two representations. Let T be the number of time points and N be the number of
non-background voxels. The corresponding matrix is of dimension T × N .

dim(imageS1R1) ## 4D represenation
[1] 79 97 80 162
nt <- dim(imageS1R1)[4] ## number of scans
imFlat <- fourDto2D(imageS1R1, nt) ## flatten 4D input data
dim(imFlat) ## all voxels
[1] 162 613040
maskind <- which(mask > 0)
imFlatm <- imFlat[, maskind]
dim(imFlatm) ## non-background voxels
[1] 162 170686

In order to reconstruct the original 4D structure (i.e., without the mask), the
following code chunk does the 2D-4D conversion:

im4D <- twoDto4D(imFlat, dim = dim(imageS1R1))
dim(im4D)
[1] 79 97 80 162

Note that so far we have considered a single run on a single participant only.
We will show below, when we get to the corresponding statistical methods, how to
organize data from multiple runs and multiple participants. However, the basic 4D-
2D conversion principle remains the same: it is just a matter of stacking the 4D or
2D structures along multiple runs/participants.

Instead of looking at single voxels, researchers often aggregate voxels to clusters
called regions of interest (ROI). This process is called parcellation. Several ROI
atlases have been proposed in the literature, and the most relevant ones are included
in the brainGraph package (Watson, 2016). For illustration, we pick the AAL90
(automates anatomical labeling) according to Tzourio-Mazoyer et al. (2002), which
divides each cerebral hemisphere into 45 anatomical ROIs.

14.1 fMRI Data Manipulation in R 417

library("brainGraph")
head(aal90)
name x.mni y.mni z.mni lobe hemi index
1: PreCG.L -38.65 -5.68 50.94 Frontal L 1
2: PreCG.R 41.37 -8.21 52.09 Frontal R 2
3: SFGdor.L -18.45 34.81 42.20 Frontal L 3
4: SFGdor.R 21.90 31.12 43.82 Frontal R 4
5: ORBsup.L -16.56 47.32 -13.31 Frontal L 5
6: ORBsup.R 18.49 48.10 -14.02 Frontal R 6

There are three columns containing the corresponding MNI coordinates of each
ROI. Let us extract these coordinates and the name of the particular ROI:

ROI <- factor(aal90$name)
mnixyz <- as.data.frame(aal90[,2:4, with = FALSE])

In the following little analysis, our goal is to use the imported brain scan from
above, determine the MNI coordinates of the voxels, assign each voxel to an ROI,
and average the BOLD values within the ROI. The temporal dimension is irrelevant
here. In the brain scan, the spatial representation of the voxels is a 3D array. Thus,
the voxels are in a matrix coordinate space.

dims <- dim(imageS1R1)[1:3] ## spatial dimensions
Cmat <- cbind(expand.grid(z = 1:dims[1], y = 1:dims[2],

x = 1:dims[3])[,3:1], 1)

The matrix C is of dimension 613,040 × 4 and represents an index matrix, which
reflects the position of each voxel in the matrix space. Even though the temporal
dimension is irrelevant, we need a fourth column consisting of 1’s in order to match
the dimensionality of the input data.

The second component required to convert the matrix coordinates into the MNI
coordinates is a transformation matrix T. The information to construct this matrix
(i.e., row affine transformations) can be extracted from the NIfTI file:

Tmat <- rbind(imageS1R1r$header$srowx, imageS1R1r$header$srowy,
imageS1R1r$header$srowz, c(0, 0, 0, 1))

Tmat
[,1] [,2] [,3] [,4]

(continued)

418 14 Analysis of fMRI Data

[1,] -2 0 0 78
[2,] 0 2 0 -117
[3,] 0 0 2 -72
[4,] 0 0 0 1

We add the vector (0, 0, 0, 1) at the bottom in order to account for the fourth
dimension. Now we apply the transformation M = TC′ which changes the matrix
coordinates in C to MNI coordinates given in M. Then we transpose the matrix and
delete the fourth column.

mni <- Tmat %*% t(Cmat)
mni <- (t(mni))[,-4]

After eliminating the last column, it gives a matrix of dimension 613,040 × 3
including all voxels. Now we select the non-background voxels using the mask
(Boolean version):

maskTF <- as.logical(mask) ## convert into boolean mask
mni <- mni[maskTF,] ## apply mask

This results in a matrix of dimension 170,686 × 3. Note that the conversion in
the other direction, that is, from MNI space to coordinate space, can be achieved
through C = (T−1M)′.

At this point we have both the atlas and the voxels in MNI coordinates. Now we
need to assign each voxel to an ROI. To illustrate this process, we apply a k-nearest
neighbor (kNN) classification2 as implemented in the class package (Venables and
Ripley, 2002).

library("class")
fitknn <- class::knn(mnixyz, mni, ROI, k = 3)
length(fitknn)
[1] 170686

2This is certainly not the best way of doing it since ROIs can have irregular (non-spherical) shapes.
A better alternative is to import the parcellation boundaries of the ROIs into R, if available, and
assign the voxels accordingly.

14.2 Linear Modeling of fMRI Data 419

In the resulting output vector, each voxel is assigned to an ROI. Let us flatten
the 4D array (after smoothing across all four dimensions) and compute the average
activation within each ROI.

imageS1R1 <- GaussSmoothArray(imageS1R1,
sigma = diag(sigma^2, 3), mask = mask)

imgMat <- fourDto2D(imageS1R1, dim(imageS1R1)[4])
imgMat <- imgMat[,maskTF] ## apply mask
ROIMat <- t(apply(imgMat, 1,

function(vox) tapply(vox, fitknn, mean)))
dim(ROIMat)
[1] 162 90

We see that we have massively reduced the complexity of the data. Instead of
the initial 170,686 voxels, we now have 90 ROIs only. Whether to proceed with
statistical analysis on a voxel level or an ROI level depends on the research questions
involved in the fMRI experiment.

14.2 Linear Modeling of fMRI Data

In order to avoid confusion right from the beginning, in the fMRI community, the
(general) linear model is abbreviated as “GLM.” In statistics (and throughout this
book) the acronym is used for generalized linear models. Thus, we will not adopt
the GLM acronym for the analyses below since what we are going to fit is a basic
linear model (i.e., a multiple regression) with some optional time series flavors. In
the first part of this section, we focus on the analysis of a single subject. We will
establish a design matrix and, subsequently, fit a linear model where the observed
BOLD signal of a particular voxel i is regressed on the design matrix. Later on, we
present how to perform analyses at a group level.

14.2.1 The Correlational Approach

One way of setting up the linear model is to first predict as accurately as possible
what the BOLD response should look like in voxels affected by the stimulus. In
order to take this route, we need to introduce a few things. The ability to measure the
BOLD signal at time t allows us to assess an important quantity called hemodynamic
response function (HRF) h(t). The HRF is the BOLD signal in response to a
stimulus with stimulus function s(t). One way to assess s(t) is to assume that the
neural activation turns on instantly when the stimulus is presented, remains constant

420 14 Analysis of fMRI Data

throughout the duration of the stimulus, and drops instantly when the stimulus ends.
This is the so-called boxcar model.

This expected or predicted BOLD signal depends on the stimulus function s(t)

and the HRF. The HRF is unknown. A common strategy, as used in the fmri
package, is to compute the HRF by taking the difference of two gamma functions
with some default parameterization (see Tabelow and Polzehl, 2011, for details).
Subsequently, using a little mathematical trick called convolution, we can combine
the stimulus function and the HRF in order to get the expected BOLD values x(t):

x(t) =
∫ ∞

0
h(u)s(t − u)du (14.3)

In order to compute x(t) in R, we need the following information about the stimuli:
the onset times, the duration of each stimulus, and the repetition time (TR). For
the example used in this section, this information is provided in the MPsychoR
package. Let us illustrate this computation for the first run of the first participant. In
the experiment by Tamir et al. (2016a), each participant was exposed to 60 stimuli
(mental states) in a single run, using an event-related design. Thus, we get a vector
of length 60 containing onset times in sec and a vector of the same length for the
durations. Note that we use the reaction times as a proxy for the duration. We add
1 sec since the stimulus was presented for 1 sec before the actual testing scenario
appeared on the screen.

library("MPsychoR")
data("NeuralScanner")
onsetsS1R1 <- NeuralScanner$TRIAL_START[NeuralScanner[,2] == 1]
durationS1R1 <- NeuralScanner$RT[NeuralScanner[,2] == 1] + 1
nt <- 162

A single run had 162 scans over time, with a TR of 2.5 s. Based on this
information, the following function from the fmri package creates the expected
BOLD response according to Eq. (14.3):

library("fmri")
xt <- fmri.stimulus(scans = nt, onsets = onsetsS1R1,

dur = durationS1R1, TR = 2.5, times = TRUE)

The corresponding time series is plotted in Fig. 14.4. This expected BOLD
response does not necessarily look like a nice textbook BOLD response. The reason
for this is that there are 60 conceptually different stimuli in this run, each of them
representing a potentially different mental state. In addition, the stimulus duration
depends on the reaction time, which makes them unequally spaced. More details
will be given in Sect. 14.2.4 when we consider multiple runs.

14.2 Linear Modeling of fMRI Data 421

14.2.2 Design Matrix

The next step is to establish a design matrix X. Design matrices in fMRI consist of
two types of regressors. First, we have regressors reflecting meaningful contrasts
related to experimental conditions. They involve the expected BOLD x(t) and
the associated regression parameters, subject to interpretation. Second, we have

0 50 100 150

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

Expected BOLD Time Series

Time

E
xp

ec
te

d
B

O
LD

 R
es

po
ns

e

Fig. 14.4 Expected BOLD response over time (60 different stimuli, event-related design)

nuisance regressors of various kinds, not subject to interpretation. Typically, we
include some drift terms which take into account general activation shifts during a
run. Another option is to include head motion regressors as well, which we will do
later on. For the moment let us keep it as simple as possible and create the following
design matrix which includes a single x(t) vector in the first column and three
drift nuisance regressors (intercept, linear trend, polynomial trend) in the remaining
columns:

X <- fmri.design(xt, order = 2)
head(X)
[,1] [,2] [,3] [,4]
[1,] -0.18509908 1 -0.01464243 -0.064495515
[2,] 0.02944904 1 0.02882160 0.010732222
[3,] 0.11138879 1 0.05300512 0.039899573
[4,] -0.09862145 1 0.03474075 -0.032611612
[5,] -0.01960191 1 0.05849969 -0.004010516

(continued)

422 14 Analysis of fMRI Data

[6,] 0.15387387 1 0.09599203 0.057787021
dim(X)
[1] 162 4

This matrix is of dimension 162 × 4. The first column contains x(t). The
associated regression parameter will be of main interest, as we will elaborate on
further below. The intercept incorporates the baseline activation. As a consequence,
the slope for x(t) will be different from 0 in task-related voxels only. In addition, a
linear trend is included which captures the amount of linear signal drift that occurs

Simple fMRI Design Matrix

Contrasts

E(BOLD) Intercept Linear Quadratic

−2

−1

0

1

2

Fig. 14.5 Visual representation of a simple fMRI design matrix

at each TR. Here we also consider a quadratic drift term (fourth column), in case we
do not believe in a simple linear drift.

Design matrices in fMRI can be very large. Therefore, they are often represented
by means of an image plot as given in Fig. 14.5, which can be produced as follows:

library("fields")
col5 <- colorRampPalette(c('cadetblue4', 'white', 'coral4'))
collev <- 21
maxval <- max(abs(X))
colbreak <- seq(-maxval, maxval, length.out = collev + 1)
op <- par(mar = c(5,5,5,7))
image(t(X), axes = FALSE, main = "Simple fMRI Design Matrix",

(continued)

14.2 Linear Modeling of fMRI Data 423

xlab = "Contrasts", col = col5(n = collev), breaks = colbreak)
axis(1, at = c(0, 0.33, 0.66, 1),

labels = c("E(BOLD)", "Intercept", "Linear", "Quadratic"))
box()
image.plot(t(X), legend.only = TRUE , col = col5(n = collev),

breaks = colbreak)
par(op)

Since this run involves 60 different conditions, the first design vector does not
really provide us with any helpful, substantive interpretation. Again, for illustration,
we kept it as simple as possible here; a theoretically more meaningful design matrix
involving multiple runs will be shown in Sect. 14.2.4.

14.2.3 Fitting the Linear Model

Now we are ready to fit the regression model. We work with our observed,
preprocessed activation responses, using the flattened 2D T × N representation of
the input data. Note that for each single voxel i, we have 162 measurements over
time (indexed by t). This constitutes a time series for each voxel where the observed
voxel response Yti is regressed on the design matrix:

Yti = Xβi + εit . (14.4)

Technically, we could use the design matrix from above and perform an lm call
for each voxel individually. This may oversimplify our setting since, as usual in
time series, we cannot assume independence over time.3 One strategy is to fit an
autoregressive model of the form εit = εit−1ρi + uit (i.e., an AR(1) model) with
ρi as the corresponding autocorrelation coefficient (see Sect. 13.3.2). The fmri.lm
function in the fmri package provides an implementation including other time series
flavors such as bias correction and smoothing of the autocorrelation coefficients.
Details can be found in Tabelow and Polzehl (2011). Let us fit the linear model
based on a single preprocessed scan:

imageS1R1 <- read.NIFTI("wFUN1.nii")
dim(extract.data(imageS1R1))
[1] 79 97 80 162
spmS1R1 <- fmri.lm(imageS1R1, X)

3If we are not interested in inference on single subjects, autocorrelation is often ignored, and a
simple lm call does the job.

424 14 Analysis of fMRI Data

Note that this function call fits the time series model for each voxel separately.
Thus, we fit 79 × 97 × 80 = 613,040 regression models, and each of them has four
parameters as encoded in the design matrix. Let us extract the regression parameters,
here organized as 4D structure:

dim(spmS1R1$beta)
[1] 79 97 80 4

The resulting parameter structure is called a statistical parametric map (SPM),
or a subject specific contrast image, or, simply, a β-map. As mentioned above,
we are interested in the slope of the x(t) effect. The structure in spm$beta
returns all the regression parameters. The parameters of interest are the ones in
spmS1R1$beta[„,1]: for each voxel we get a single meaningful β-parameter.
This parameter denotes the correlation between the observed BOLD responses and
the expected BOLD responses. Voxels with large parameter values (this can be
tested, of course, as shown in the next section) are then identified as task related.

Note that we did not smooth the input data before fitting the model. As Tabelow
and Polzehl (2011) suggest, we can apply a smoother on the SPM after fitting the
model. This post-processing step typically reduces the variance of the estimated
parameters and, in addition, the number of independent tests. The fmri package
implements structural adaptive smoothing:

spmsmoothS1R1 <- fmri.smooth(spmS1R1)

If there is a need for a simpler, but faster, linear model approach, one can use the
lm4d function from the vows package (Reiss et al., 2016). This implementation
does not take into account autocorrelation. Smoothing can be achieved using
semipar4d according to the methodology described in Reiss et al. (2014).

14.2.4 Example: Neural Representation of Mental States

Let us now extend the regression example from above to a more realistic scenario
involving multiple runs per participant and a more informative design matrix within
the context of this particular experiment. In the study by Tamir et al. (2016a),
the authors were interested in neural activation patterns of 60 mental states. As
mentioned, they chose an event-related design where, within each run, a participant
was exposed to 60 stimuli. Each stimulus represented a different mental state. The
mental states were presented in random order within each run. That is, in the second
run, the participant was exposed to the same 60 conditions (under varying scenarios,

14.2 Linear Modeling of fMRI Data 425

however) but in a different order. The onset times varied as well and, as outlined
above, the stimulus duration was determined by the reaction time. Each participant
had to perform 16 runs. Thus, each participant was exposed to 16×60 = 960 stimuli
in total.

Let us now establish a design matrix involving theoretically meaningful regres-
sors as well as some additional nuisance regressors. First, we reload the scanner
information file which contains all necessary information about the experimental
design and the scanning times and compute some basic quantities necessary for
further analyses.

library("MPsychoR")
data("NeuralScanner")
nruns <- max(NeuralScanner[,2]) ## number of runs (16)
ncond <- max(NeuralScanner[,3]) ## number of conditions (60)
nmeas <- nrow(NeuralScanner) ## number of measurents (960)
nt <- 162 ## number of scans per run
durRun <- 400 ## 1 run is 400sec

In the scanner file, after each run (400 s) the starting time of the new run is set to
0. Consequently, the onset times are relative to the starting time. Since we want to
incorporate multiple runs, we compute the cumulative onset times.

add <- rep(seq(0, 6000, by = durRun), each = ncond)
TrStart <- NeuralScanner$TRIAL_START + add

We reorganize the onset times of each individual stimulus across the runs.

onsetsMat <- do.call(rbind, split(TrStart,
NeuralScanner$STATE_INDEX))

This leads to a matrix with 60 rows and 16 columns. For instance, element (2, 3)

represents the onset of stimulus 2 on the third run.
We can restructure the stimulus duration in the same fashion.

durationMat <- do.call(rbind, split(NeuralScanner$RT + 1,
NeuralScanner$STATE_INDEX))

426 14 Analysis of fMRI Data

Now we compute the expected BOLD response for each condition separately:

library("fmri")
Xcond <- matrix(0, nt*nruns, ncond)
for (i in 1:ncond) {
Xcond[,i] <- fmri.stimulus(scans = nt*nruns,

onsets = onsetsMat[i,],
dur = durationMat[i,], TR = 2.5, times = TRUE)

}

This leads to a matrix of dimension 2592 × 60. The number of rows results from
the fact that we have 162 number of scans per run and 16 runs. This concludes the
“meaningful regressors” part of the design matrix, containing the expected BOLD
responses for each condition across all trials.

Let us work on the nuisance part, starting with the linear and quadratic trend
parameterization.

ind <- rep(1, nt) ## interept
lin <- (1:nt)/nt ## linear trend
quad <- (0.5 - lin)^2 ## quadratic trend
Xtrend1 <- cbind(ind, lin, quad)

Note that this matrix contains the trend specification (intercept, linear, quadratic)
for a single run. We can use the same values for the remaining runs. All we need
to do is to “blow up” this matrix into a block-diagonal structure. What this means
exactly will be obvious from the design matrix plot below. This matrix expansion
can be achieved through the Kronecker product:

blow <- diag(1, nruns)
Xtrend <- blow %x% Xtrend1 ## expand to 16 runs

This matrix is of dimension 2592 × 48. The number of columns results from the
fact that we have three trend vectors for each of the 16 runs.

Finally, we include some head motion nuisance parameters. They are provided
in the MPsychoR package but can also be downloaded from the author’s Dataverse
repository (see Tamir et al., 2016b, 16 txt-files starting with rp). Here, they are
organized as a list of length 16. Let us incorporate them into the design matrix by a
similar block-diagonal strategy as above. We need to take into account that they are
different across the runs.

14.2 Linear Modeling of fMRI Data 427

library("magic")
data("NeuralHM")
Xhm <- NeuralHM[[1]]
for (i in 2:length(NeuralHM)) {
Xhm <- adiag(Xhm, NeuralHM[[i]])

}

The resulting matrix is of dimension 2592 × 96, since we have six head motion
parameters for each of the 16 runs. All that is left to do is to combine these three
matrices into the full design matrix.

X <- cbind(Xcond, Xtrend, Xhm)

The final design matrix is of dimension 2592 × 204 and is plotted in Fig. 14.6.
The block structures for the nuisance parameters become obvious using this
visualization.

For illustration, in order to save running time (and memory), we will fit the
regression model on 3 runs instead of the full 16 runs. We subset the design matrix
accordingly.4

nruns <- 3
X3 <- X[1:(nt*nruns),]
X3 <- X3[, colSums(X3) != 0]

The reduced design matrix is of dimension 486 × 87. Let us re-import the global
3D mask which applies to all runs.

mask <- read.ANALYZE("globalmask.img")
mask <- extract.data(mask)[,,,1]

Next we import the scans. Note that these scans are preprocessed according to
the pipeline described in Sect. 14.1.2, but without smoothing. Therefore, let us apply
Gaussian kernel smoothing:

4The reader can change nruns argument for fitting a different number of runs.

428 14 Analysis of fMRI Data

scanfiles <- paste0("wFUN", 1:nruns, ".nii")
imageS1 <- array(0, dim = c(dim(mask), nt*nruns))
sigma <- 2
for (i in 1:nruns) {
scanRi <- read.NIFTI(scanfiles[i])
scanRi <- extract.data(scanRi)
scanRi <- GaussSmoothArray(scanRi, sigma = diag(sigma^2,3),

mask = mask)
start4d <- (i-1)*nt + 1
end4d <- i*nt
imageS1[,,,start4d:end4d] <- scanRi

}

If we want to use the fmri.lm function, the data need to be provided as an
object of class "fmridata", whereas our imageS1 is in array format. One easy
option to do this conversion is to first store the image on the hard drive.

Design Matrix

Conditions Trend Head Motion

−1.0

−0.5

0.0

0.5

1.0

Fig. 14.6 Visual representation of a complex fMRI design matrix with conditional, trend, and
head motion components

14.2 Linear Modeling of fMRI Data 429

f.write.nifti(imageS1, "imageS1", nii = TRUE)

Second, we re-import the data and the new object is of class "fmridata".

imageS1 <- read.NIFTI("imageS1")

As a final data preparation step, we assign the mask (Boolean version) to this
object:

maskTF <- twoDto4D(as.logical(mask), dim = dim(mask))
imageS1$mask <- maskTF

Finally, we are ready to fit the regression model using fmri.lm. For running
time and memory purposes, we avoid computing the autocorrelation.

spm3 <- fmri.lm(imageS1, X3, actype = "noac")

The contrast map is of the following structure:

str(spm3$beta)
num [1:79, 1:97, 1:80, 1:87] 0 0 0 0 0 0 0 0 0 0 ...

The first three dimensions are the voxel grid. Note that for each voxel a regression
model was estimated (N = 79×97×80 = 613,040 models). The fourth dimension
relates to the 87 parameters in the regression model. For instance, the regression
parameter for voxel (1, 1, 1) can be extracted by spm3$beta[1, 1, 1,],
which results in a vector of length 87. We can flatten the 4D SPM structure to a
2D SPM as follows:

spm3_2D <- t(fourDto2D(spm3$beta, dim(spm3$beta)[4]))[,1:60]
dim(spm3_2D)
[1] 613040 60

430 14 Analysis of fMRI Data

In the first line, we transpose the SPM such that we have the contrasts in the
columns and select the first 60 columns right away since they contain the meaningful
parameters (stimulus contrasts). The remaining 27 parameters are nuisance (trend,
head motion) and are of no further interest.

This concludes our basic linear modeling strategy. Note that we ran the analysis
for a single participant only. We need to apply the same modeling strategy to each
of the 20 individuals which leads to 20 different SPMs of dimension N × 60.

14.2.5 Group Analysis

At this point we assume that a linear model was fitted for each of the n = 20
individuals. In this section we perform between-subject tests, that is, one-sample
t-tests for each voxel separately (H0: βi = 0) based on the parameters of the
20 subjects. The corresponding SPMs can be downloaded from the Dataverse
repository (Tamir et al., 2016b). The authors provide SPMs for each of the 60
stimulus separately, one for each participant. The files are in Analyze format
(img/hdr) and start with con. Let us import the one for the first stimulus/condition
(mental state “affection”) for all n participants, apply a smoother, vectorize the voxel
parameters, and restructure it as a matrix of dimension n × N .

mask <- read.ANALYZE("globalmask.img")
mask <- extract.data(mask)[,,,1]
imgdim <- dim(mask)
n <- 20
sigma <- 2
files <- paste0("con_s", sprintf("%02d", 1:20), "_0002")
spmC1 <- numeric()
for (i in 1:n) {
spmi <- read.ANALYZE(files[i])
spmi <- extract.data(spmi)[,,,1]
spmiSmooth <- GaussSmoothArray(spmi, sigma = diag(sigma^2,3),

mask = mask)
spmiSmooth <- spmiSmooth[mask != 0]
spmC1 <- rbind(spmC1, spmiSmooth)

}

By considering group-level data, we have a hierarchical structure: voxels within
subjects. Thus, a mixed-effects model would be an appealing modeling approach.
However, the data are too large for explicit hierarchical modeling using standard
R mixed-effects packages. An efficient implementation of a Bayesian hierarchical
model is provided by the cudaBayesreg package (da Silva, 2011), which requires a
specific GPU (graphics processing unit) setup, however.

14.3 Multiple Comparisons in fMRI 431

A simpler approach to tackle this problem, commonly used in fMRI, is referred
to as summary statistics. After fitting the linear model for each participant, a one-
sample t-test is applied on each voxel individually.

library("genefilter")
fitT <- colttests(spmC1, gl(1, nrow(spmC1)))

Instead of the basic t.test function, we use a fast t-test implementation from
the genefilter package (Gentleman et al., 2016) available from the Bioconductor
repository. We get 170,686 t-values and the same amount of uncorrected p-values,
one for each voxel. The following call examines how many p-values are significant
(i.e., responsive to the stimulus):

sum(fitT$p.value <= 0.05)
[1] 49048

As we will explain in the next section, there is a problem with such an uncor-
rected significance evaluation since we have a massive multiple testing problem.

14.3 Multiple Comparisons in fMRI

In order to illustrate the multiple testing problem in fMRI, let us consider a simple
example from Ashby (2011). Let us assume that the data consist of 100,000 voxels,
and for each voxel i, we computed a t-value ti using the strategies presented
above. Each of these test statistics was constructed under the H0 that the voxel was
not responsive to the stimulus. We perform statistical inference simultaneously on
N = 100,000 voxels. Fixing the Type I error rate to α = 0.05 and assuming that
none of the voxels is responsive, we can expect that 5000 tests would nevertheless
reject H0 (false positives) simply due to chance. Let us assume that 6000 ti’s were
significant. We know that only 1000 out of these 6000 are actually significant due to
activation; the remaining 5000 ones are significant due to chance. However, we do
not know which ones are significant due to activation and chance, respectively. This
is obviously a problem. The good news is that such (huge) multiple testing problems
are nothing new and entire books have been written on this topic (see, e.g., Bretz
et al., 2011). The multcomp package (Hothorn et al., 2008) provides corresponding
implementations.

Let us formalize this multiple testing problem using a much simpler setup and
briefly elaborate on some classical statistical approaches, before showing more
specific techniques used in fMRI. If we test at an α = 0.05 level, we know that the

432 14 Analysis of fMRI Data

probability for falsely rejecting H0 is 0.05 (Type I error). Therefore, the probability
for not making a Type I error is 0.95. In the case of three simultaneous t-tests, the
probability of no Type I error at all is 0.95 × 0.95 × 0.95 = 0.857. The probability
of making at least one Type I error is correspondingly 1 − 0.857 = 0.143. Thus,
across this group of tests, the probability of making a Type I error has increased
from 5% to 14.3%. We have the problem of multiple testing and this error rate is
called family-wise error (FWE):

FWE = 1 − (1 − α)N, (14.5)

with N equal to the number of comparisons. In the case of N = 100,000, as above,
the FWE is virtually 1.

Early approaches such as Sidák and Bonferroni corrected α-level as follows:
α∗ = 1 − (1 − α)1/N (Sidák) and α∗ = α/N (Bonferroni). For illustration, let us
compute a simple Bonferroni correction using the t-test output from the previous
section.

nvox <- length(fitT$statistic)
alphanew <- 0.05/nvox
sum(fitT$p.value <= alphanew)
[1] 5

This result suggests that only 5 voxels are activated. Such simple approaches are
typically not used in fMRI, for the following reasons. First, the number of tests is
huge. Thus, there is a good chance that we miss many true positives. Bonferroni,
Sidák, and friends are too conservative. Second, these approaches assume that the
tests are independent from each other. This is not met in fMRI since the activation
of a particular voxel i influences the activation in its neighborhood. Therefore, we
need something more sophisticated. State-of-the-art multiple testing approaches in
fMRI are the following:

1. controlling for the false discovery rate (FDR);
2. Gaussian random field (GRF) theory;
3. permutation tests.

For permutation tests, in addition to voxel-based thresholding, we also show cluster-
based thresholding. Another option, not shown in this chapter, is to use Monte Carlo
approaches. An excellent overview of these techniques is given in Nichols (2012).

14.3 Multiple Comparisons in fMRI 433

14.3.1 Controlling for the FDR

Let us start with the FDR approach developed by Benjamini and Hochberg (1995)
and described in Genovese et al. (2002) within an fMRI context. Instead of
controlling for the FWE, approaches based on the FDR aim to directly limit the
proportion of significant results that are false positive. We can compute the FDR for
a limit q (e.g., q = 0.05), which denotes the proportion of the voxels for which H0
is incorrectly rejected. Whereas FWE approaches control for the probability of at
least one Type I error, by using the FDR, we have a less rigorous control of the Type
I error (but we have a higher power).

An easy way to apply the FDR procedure in R is to use the p.adjust function
with the vector of p-values from the t-tests as input.

pFDR <- p.adjust(fitT$p.value, method = "fdr")
sum(pFDR <= 0.05)
[1] 22506

We see that, compared to Bonferroni, the number of significant voxels increased
drastically.

14.3.2 Gaussian Random Fields

The second approach uses GRFs. The theory behind this method is quite compli-
cated and beyond the scope of this book. Interested readers can check out Adler
(1981) and Worsley et al. (1996) for more technical details. As Ashby (2011)
elaborates, the basic idea is that BOLD responses collected on any trial of an fMRI
experiment can be described as a random field over a lattice of points. A random
field is an ordered collection of random variables; a GRF assumes that these random
variables have a joint multinormal distribution. GRFs are, to some extent, able to
model spatial correlations among voxels. They can be constructed as follows:

1. Create an empty voxel map of the same voxel dimensions as the one from the
actual data.

2. Draw independent samples from an N(0, 1) distribution and insert these values
into the voxel map.

3. Spatially smooth these voxel values in the same way as elaborated in Sect. 14.1.2
on preprocessing.

In the last step, the kernel width is again determined by the FWHM, one for
each dimension. The total amount of smoothing can be expressed by the so-called
resel (resolution elements), which is a virtual voxel with dimensions equal to

434 14 Analysis of fMRI Data

FWHMx × FWHMy × FWHMz. Note that when preprocessing fMRI data, we
smoothed over correlated data. Here, we smooth over independent data. Thus, using
the GRF for multiple comparisons underestimates the correlation and is known to
be conservative. However, the GRF approach gives us a threshold T above which a
voxel can be considered as activated.

The following function from the AnalyzeFMRI package calculates the thresh-
old. We use the same σ as in the preprocessing part.

sigma <- 2
covmat <- diag(sigma^2,3)
trf <- Threshold.RF(p.val = 0.05, sigma = covmat,

num.vox = nvox, type = "t", df = nvox-1)
trf
[1] 4.75902
sum(fitT$statistic >= trf)
[1] 3195

This is the number of activated voxels. It is clearly smaller than one obtained
using FDR which reflects the conservative nature of this procedure.

14.3.3 Permutation Tests

Finally, we can also define a permutation setup to deal with the multiple testing
problem. Permutation tests are a general nonparametric testing framework where
the sampling distribution under the null is created by shuffling the observed
data accordingly. On each permutation sample, the corresponding test statistic is
computed. These test statistics form a null distribution, the observed value of the
test statistic is then mapped onto this distribution, and a corresponding test decision
can be achieved.

In fMRI, permutation tests are often used to account for the multiple comparisons
problem. The standard reference for permutation tests in fMRI is Nichols and
Holmes (2001). The advantage of this technique is that it is very flexible and requires
only minimal assumptions (i.e., exchangeability). Note that using permutation
tests on the basic fMRI time series data would violate exchangeability due to
autocorrelation. However, applying permutation tests on a group-level parametric
map is feasible. The disadvantage is that it can be very time-consuming; using the
genefilter for t-test computations is a life-saver here in terms of running time.

We use a one-sample t-test strategy in order to search over the whole brain for
significant changes. Nichols and Holmes (2001) use the sign test principle to obtain
the null distribution. They consider subject labels of “+1” and “−1” indicating an
unflipped or flipped sign of the data. Under the null hypothesis, the distribution is

14.3 Multiple Comparisons in fMRI 435

symmetric around 0. Thus, for a particular participant, the sign of the observed data
can be flipped without changing its distribution. Exchangeability across subjects
holds since we can safely assume that they are independent from each other.

In our example, with n = 20, we could perform 220 different permutations in
total. This would take a long time to compute and it is actually not necessary. Let us
generate 1000 random sign permutations for the participants. For each of the 1000
permutation matrices, we compute t-tests for each voxel and pull out the maximum
t-statistic, since we are interested in searching over the whole brain for significant
changes. At the end of this procedure, which takes about a minute to run, we have
1000 max-t values which form the permutation distribution.

set.seed(123)
nperm <- 1000
maxtvec <- numeric(nperm)
for (i in 1:nperm) {

print(i)
signperm <- sample(c(-1, 1), n, replace = TRUE)
permmat <- spmC1*signperm
maxtvec[i] <- max(colttests(permmat,

gl(1, nrow(permmat)))$statistic)
}

The permutation distribution is given in Fig. 14.7. Based on this distribution, we
can easily obtain the critical t-value (one-sided testing, therefore 95% quantile on
the sampling distribution) and count how many voxels are above this threshold (i.e.,
the ones that show a significant activation).

tcrit <- quantile(maxtvec, probs = 0.95)
tcrit
95%
6.052349
sum(fitT$statistic >= tcrit)
[1] 410

So far we performed voxel-wise tests only. Let us extend the voxel-wise
permutation framework to cluster-wise testing (cluster-based thresholding). The
idea is the following. We choose a p-value threshold of 0.001 (default in the
literature; see, e.g., Woo et al., 2014) and assign a value of 1 to the voxels which
are below this threshold and 0 otherwise. We also restructure the outcomes as a 3D
array right away.

436 14 Analysis of fMRI Data

pthresh <- 0.001
p01obs <- array(ifelse(fitT$p.value <= pthresh, 1, 0), imgdim)

The next step is find voxel clusters based on this binary matrix. We need an
algorithm which works in the 3D space and leads to contiguous clusters (i.e., a
point is closer to one or more other points in its cluster than to any other point not in
that cluster). The mmand package (Clayden, 2016a) implements a corresponding
function based on a kernel. Here we use a width of 5 voxels in each direction. In
general it applies that the larger the kernel width the larger the clusters will be.5

library("mmand")
kwidth <- 5
kernel <- shapeKernel(kwidth, dim = 3)
compsobs <- components(p01obs, kernel)

Next we extract the size of each cluster:

clustsize <- table(c(compsobs), useNA = "no")

We get 506 clusters of different sizes. Now we need to find a null distribution.
We apply exactly the same permutation principle as above, extract the p-values from
the t-tests, dichotomize them using the 0.001 threshold, perform the clustering, and
extract the maximum cluster size S for each permutation. The resulting permutation
distribution is given in the bottom panel of Fig. 14.7.

set.seed(111)
nperm <- 1000
maxS <- numeric(nperm)
for (i in 1:nperm) {
print(i)
signperm <- sample(c(-1, 1), n, replace = TRUE)
permmat <- spmC1*signperm
pvec <- colttests(permmat, gl(1, nrow(permmat)))$p.value
p01perm <- array(ifelse(pvec <= pthresh, 1, 0), imgdim)

(continued)

5A width of 5 led to a reasonable number of clusters in our example. Typically we would use a
width of 1 such that we get completely contiguous clusters.

14.4 Independent Component Analysis in fMRI 437

comps <- components(p01perm, kernel)
maxS[i] <- suppressWarnings(max(table(c(comps), useNA = "no")))

}

All that is left to do is to compare the observed cluster sizes with the critical value
of the permutation distribution, which gives us the activated clusters.

Scrit <- quantile(maxS, probs = 0.95)
Scrit
95%
11
sum(clustsize >= Scrit)
[1] 66

A recent discussion on cluster-based thresholding with respect to inflated false-
positive rates can be found in Eklund et al. (2016).

Additional options for applying permutation tests in fMRI include scenarios
where groups are involved. A simple example with a treatment and control group is
presented in Eloyan et al. (2014). In this case the one-sample t-test approach from
above generalizes to a two-sample t-test. For more than two groups, more general
ANOVA/regression specifications can be considered. The function permF.mp in
the vows package can be used for these purposes. For other permutation (and
bootstrap) strategies that can be used for fMRI data settings, see the MTP function
in multtest (Pollard et al., 2005).

14.4 Independent Component Analysis in fMRI

Using linear model approaches as above, we conduct our analyses on a univariate
voxel level. A multivariate method that can be applied for complexity reduction
is principal component analysis (PCA; see Chap. 6). However, PCA is not widely
applied in fMRI except to eliminate noise in the data (see Ashby, 2011, Chapter 10).
A more attractive method for complexity reduction in fMRI data is independent
component analysis (ICA), introduced in Sect. 6.4. Having spatiotemporal data as
in fMRI, ICA can be carried out in two directions:

• spatial ICA: assumes that the spatial brain networks are independent.
• temporal ICA: assumes that the time courses are independent.

In spatial ICA, components are spatial maps, and the weights contain temporal
information. In temporal ICA, components are temporal waveforms, and a weight
is estimated for every voxel (Ashby, 2011). The AnalyzeFMRI package provides

438 14 Analysis of fMRI Data

Max−T Permutation Distribution

max−T values

D
en

si
ty

Max−S Permutation Distribution

max−S values

D
en

si
ty

2 3 4 5 6 7 8 9

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

Fig. 14.7 Top panel: sampling distribution of the max-T statistics (voxel-wise). Bottom panel:
sampling distribution of the max-S statistics (cluster-wise). The dotted lines represent the critical
values

the function f.icast.fmri which can do both spatial and temporal ICA (see
Bordier et al., 2011, for details). Spatial ICA is more common in fMRI.

The core ICA function in AnalyzeFMRI is f.icast.fmri. It imports the
data from a local file, either in NIfTI or in Analyze format, rather than having it
as a preexisting R object. Let us start with fitting a spatial ICA on a single subject,
involving three runs. The data were prepared in Sect. 14.2.4 (imageS1 object). The
following line stores the data object in NIfTI format on the hard drive:

14.4 Independent Component Analysis in fMRI 439

library("AnalyzeFMRI")
f.write.nifti(imageS1, "imageS1", nii = TRUE)

The code chunk below performs the spatial ICA. By default, the algorithm
estimates the number of components m automatically (see Bordier et al., 2011, for
a corresponding algorithm description). Alternatively, they can also be fixed using
the n.comp argument.

f.icast.fmri("imageS1.nii", "globalmask.img", is.spatial = TRUE)

The results are written into two different output files. The first one is
"imageS1-ICAs-time-series.dat" which contains the time series for

each component. Let us import this file into R.

tsICAs <- as.matrix(read.table("imageS1-ICAs-time-series.dat",
header = TRUE, row.names = 1))

str(tsICAs)
num [1:486, 1:33] -0.6 -1.004 -1.316 -0.675 -0.771 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:486] "1" "2" "3" "4" ...
..$: chr [1:33] "V1" "V2" "V3" "V4" ...

We see that 33 independent components (ICs) have been extracted. The rows
reflect the number of scans across the three runs (i.e., 162 × 3 = 486).

The second file ("imageS1_ICAs.nii") contains the new images according
to the ICs, which can be used for plotting by calling f.plot.volume.gui. In
the first graphical user interface (GUI), prompt the new image file and the time series
file need to be selected. The anatomical scan is optional.

Here, we plot some results directly from the command line without using the
GUI. For illustration we select the first IC and the 40th slice and then plot the
activation pattern as well as the time series containing the weights (see Fig. 14.8).

library("ggplot2")
library("cowplot")
imgICAS1 <- read.NIFTI("imageS1_ICAs.nii")
imgICAS1 <- extract.data(imgICAS1)[,,,1]
tsdf <- data.frame(time = 1:486, IC1 = tsICAs[,1])
bp <- ggBrain(brains = imgICAS1, mask = mask, mar = 3,

(continued)

440 14 Analysis of fMRI Data

mar_ind = 40, type = 'signed') + theme_gray()
tsp <- ggplot(tsdf,

aes(time, IC1)) + geom_line() + theme_gray()
plot_grid(bp, tsp, labels=c("Activation", "Time Series"),

ncol = 1, nrow = 2)

-40

-20

0

20

40

-20 0 20

Value
-2.1

-1.6

-1.1

-0.61

-0.12

0.36

0.85

1.3

Activation

-2

-1

0

1

2

0 100 200 300 400 500
time

IC
1

Time Series

Fig. 14.8 Top panel: activation pattern of the first IC. Bottom panel: time series of the first IC

Another version of ICA, occasionally used in fMRI, is called group ICA, which
represents a multi-subject version of ICA (see Calhoun et al., 2009, for an overview).
From a data preparation point of view, the trick is to stack the single subject input
data on top of each other and carry out the ICA as elaborated above. R code for
group ICA can be found in Eloyan et al. (2014).

14.5 Representational Similarity Analysis

Representational similarity analysis (RSA Kriegeskorte et al., 2008) is an umbrella
term for fMRI approaches that aim to represent voxel/ROI similarities in multivari-
ate way. Here we focus on a variant which makes use of what we have learned in
Chap. 9 on multidimensional scaling (MDS).

14.5 Representational Similarity Analysis 441

The starting point for our RSA is the SPM output from the general linear
model fit as described in Sect. 14.2.4. Continuing with the dataset used so far
in this chapter, we have a 2D-SPM (spm3_2D object created in Sect. 14.2.4) of
dimension 613,040 × 60 for each participant. Let K denote the number of columns
(i.e., stimuli/conditions) and N the number of voxels. The first step in RSA is
to calculate a representational dissimilarity matrix Δ for the conditions. Let us
compute the correlations across the 60 mental states and, subsequently, convert them
into dissimilarities. The correlation matrix contains Pearson correlations for each
pair of conditions. These correlations are based on voxel activity patterns. That is,
if there is a high correlation between two stimuli, this suggests that similar voxels
have been activated with similar intensities.

library("smacof")
R <- cor(spm3_2D)
RDM <- sim2diss(R)

This results a 60 × 60 dissimilarity matrix for a single participant i, here stored
as object of class "dist". We need to compute a Δi for each of the 20 participants
(i = 1, . . . , 20). These matrices are already prepared in the MPsychoR package,
stored as a list object.

library("MPsychoR")
data("NeuralActivity")

Note that these Δi are based on the β-maps resulting from a linear model fit on
the full 16 runs. Remember that the spm3_2D object above was based on three
runs only and, therefore, it does not exactly match the first matrix in the list. Let us
continue with the full list.

The next step is to choose a data-analytic method that allows us to represent
these dissimilarities. We could now fit the INDSCAL model, as we did in Sect. 9.5.2,
based on all 20 matrices. We would get group stimulus space which shows the group
configuration of the conditions. Here we keep it simple and compute the element-
wise means across 20 dissimilarity matrices.

Delta <- Reduce("+", NeuralActivity)/n

This leads to a new dissimilarity matrix Δ of dimension 60×60, subject to MDS
using the smacof package (De Leeuw and Mair, 2009). We use an interval MDS
and project into three dimensions.

442 14 Analysis of fMRI Data

RSAfit <- mds(Delta, ndim = 3, type = "interval")
RSAfit
##
Call:
mds(delta = Delta, ndim = 3, type = "interval")
##
Model: Symmetric SMACOF
Number of objects: 60
Stress-1 value: 0.21
Number of iterations: 206

Figure 14.9 represents the 3D configuration plot. We color the labels according
to the SPP (stress-per-point; see Sect. 9.2.3). Remember that a point with high

Fig. 14.9 RSA
representation of 60
conditions based on a 3D
MDS fit. The labels are
colored according to the
stress-per-point (SPP)

D1

−0.5

0.0

0.5

1.0 D2−0.5
0.0

0.5

D
3

−0.5

0.0

0.5

3D RSA Representation

laziness

awe
drunkenness

anticipation

worry

uneasiness
embarrassment

self−pity

affection

disgust

friendliness

relaxation

playfulness

self−consciousness

pity
craziness

agitation

exhaustion
ecstasy

nervousness

seriousness

satisfaction

alarm

lust

distrust

desire

sleepiness

fatigue

skepticism

dominance

exaltation

subordination

decision
inspiration

peacefulness

curiosity

insanitypatienceearnestness

disarray

weariness

planning

belief

imagination

attention

opinion

intrigue

judgment

lethargyawareness

trance

objectivity transcendence

stupor

contemplation

pensiveness

consciousness

reason

thought

cognition

0.5

1.0

1.5

2.0

2.5

3.0

SPP

SPP suggests that this point does not fit well into the configuration with given
dimensionality.

This analysis is a simple form of RSA on neural activity patterns. Additional
details on RSA involving other scaling techniques and various model evaluation
approaches are presented in Kriegeskorte et al. (2008).

14.6 Functional Connectivity Analysis

Functional connectivity analysis refers to methods involving the statistical analysis
of anatomically distinct time series (Friston, 1994). At this point of the chapter, we
have to abandon our example dataset since the following methods are difficult to
apply on event-related designs.

14.6 Functional Connectivity Analysis 443

The example dataset we use is from the brainwaver package (Achard, 2012) and
comes from a simple resting-state experiment performed on a single subject (Achard
et al., 2006). Regional parcellation was achieved through the AAL90 atlas.

library("brainGraph")
library("brainwaver")
data(brain)
colnames(brain) <- aal90$name
dim(brain)
[1] 2048 90

In this dataset we have 2048 measurements (time series) on 90 ROIs (45 for each
hemisphere), collected while the participant was lying quietly at rest. Using these
data we elaborate on two approaches for connectivity analysis.

14.6.1 Seed-Based Correlational Analysis

The first modeling option we present is a very simple one, called seed-based
correlational analysis (SCA). We start with picking a seed ROI (or voxel) of
interest. For this particular ROI (or voxel), we extract the time series. Here we use
the left precentral gyrus as seed time series.

PreCG.L <- brain[,1] ## seed time series

The idea of SCA is to correlate the seed time series with the time series of the
remaining ROIs:

library("psych")
ROIs <- brain[,-1] ## remaining ROI time series
corvec <- cor(PreCG.L, ROIs) ## correlation
zvec <- fisherz(corvec) ## z-transformation

The last line using a function from the psych package (Revelle, 2017) transforms
the correlations into z-scores according to Fisher’s classical formula, often applied
in SCA:

z = 0.5
log(1 + r)

log(1 + r)
. (14.6)

444 14 Analysis of fMRI Data

Based on the AAL90 spatial coordinates and the z-transformed correlation vector,
Fig. 14.10 can be produced as follows:

SCAdf <- data.frame(x = aal90$x, y = aal90$y, names = aal90$name,
z = c(NA, zvec))

sca <- ggplot(SCAdf, aes(x = x, y = y, label = names, color = z)) +
scale_color_gradient(low = "white", high = "cadetblue", na.value = "black")

sca + geom_text(size = 3) + ggtitle("Seed-Based Correlations") +
theme(axis.title.x = element_blank(), axis.text.x = element_blank(),

axis.ticks.x = element_blank(), axis.title.y = element_blank(),
axis.text.y = element_blank(), axis.ticks.y = element_blank())

The color shading is based on the z-transformed correlations and indicates how
high each ROI is correlated with the left precentral gyrus seed. Note that we could
have also used partial correlations and produce the plot in an analogous manner.

PreCG.L
PreCG.R

SFGdor.L
SFGdor.R

ORBsup.L ORBsup.R

MFG.L MFG.R

ORBmid.L ORBmid.R

IFGoperc.L IFGoperc.R

IFGtriang.L IFGtriang.RORBinf.L ORBinf.R

ROL.L ROL.R

SMA.L
SMA.R

OLF.L OLF.R

SFGmed.L SFGmed.R
ORBsupmed.LORBsupmed.R

REC.L REC.R

INS.L INS.R

ACG.L ACG.R

DCG.L

DCG.R

PCG.L PCG.R

HIP.L HIP.R
PHG.L PHG.R

AMYG.L AMYG.R

CAL.L
CAL.R

CUN.L CUN.R

LING.L LING.R

SOG.L
SOG.RMOG.L MOG.RIOG.L

IOG.R

FFG.L FFG.R

PoCG.L
PoCG.R

SPG.L SPG.R

IPL.L IPL.R

SMG.L SMG.R

ANG.L ANG.R
PCUN.L PCUN.R

PCL.L

PCL.R

CAU.L CAU.R

PUT.L PUT.R
PAL.L PAL.R

THA.L THA.RHES.L HES.R
STG.L STG.R

TPOsup.L TPOsup.R

MTG.L
MTG.R

TPOmid.L TPOmid.R

ITG.L
ITG.R 0.2

0.3
0.4
0.5
0.6
0.7

z

Seed−Based Correlations

Fig. 14.10 Seed correlation plot (z-transformed correlation values) with left precentral gyrus
(PreCG.L) as seed time series. The ROIs are plotted according to the AAL90 coordinates

14.6 Functional Connectivity Analysis 445

14.6.2 Wavelet Correlational Analysis

Now let us do something more sophisticated and compute the correlation matrix
based on a discrete wavelet transform. Wavelets are widely used in signal analysis
for information extraction. In fMRI they are typically applied on the activation time
series in order to estimate frequency-dependent correlation matrices to characterize
functional connectivity among ROIs. Extensive treatments of wavelets in fMRI can
be found in Bullmore et al. (2004) and Lazar (2008).

Let us compute the wavelet correlation matrices using the brainwaver package.
We choose a decomposition depth of six, resulting in the following six frequency
intervals: 0.23–0.45 Hz, 0.11–0.23 Hz, 0.06–0.11 Hz, 0.03–0.06 Hz, 0.01–0.03 Hz,
and 0.007–0.01 Hz.

wavecor <- const.cor.list(as.matrix(brain), n.levels = 6)

The matrices in this object ($d1 through $d6) can be understood as representing
the interregional functional connectivity that is subtended by time series compo-
nents in the frequency bands.

Let us consider the correlation matrix of the fourth interval (0.03–0.06 Hz; see
Fig. 14.11, left panel). As Achard et al. (2006) point out, in this particular experi-
ment the brain functional connectivity was most salient in this frequency band.

Fig. 14.11 Left panel: wavelet correlation matrix (0.03–0.06 Hz) for 90 ROIs. Right panel:
significant correlations (black) for correlation threshold R = 0.4

446 14 Analysis of fMRI Data

We can now set a correlation threshold (we use a value of 0.4 since the mean
wavelet correlation coefficient was maximal for this value), compute p-values, and
determine via the FDR (q = 0.05) which cells are significant.

R <- 0.4
pvalues <- p.value.compute(wavecor[[4]],
proc.length = nrow(brain), sup = R, num.levels = 4)

FDRthresh <- compute.FDR(pvalues, q = 0.05)
p01vec <- ifelse(pvalues <= FDRthresh, 1, 0)
p01 <- diag(0, ncol(brain))
p01[lower.tri(p01)] <- p01vec
p01 <- p01 + t(p01)
diag(p01) <- 1

The right panel in Fig. 14.11 shows which ROI correlations are significantly
larger than the threshold.

The binary significance correlation matrix can be subject for further scaling and
representations. For instance, we could run an MDS either on the binarized matrix
or also directly on the wavelet correlation matrix (after proper conversion into a
dissimilarity matrix). We can also apply simple network approaches from Chap. 11.
Here we compute an eigenmodel network, using the eigenmodel package (Hoff,
2012), as described in Sect. 11.3.1.

library("eigenmodel")
diag(p01) <- NA
colnames(p01) <- rownames(p01) <- colnames(brain)
brainNet <- eigenmodel_mcmc(p01, R = 2, S = 1000, burn = 200,

seed = 123)
evecs <- eigen(brainNet$ULU_postmean)$vec[, 1:2]

The resulting eigenvectors are subject to plotting. Figure 14.12 shows the ROI
network plot.

Further options to perform analyses using wavelet correlations including other
ways of representing the results can be found in Achard et al. (2006). In addition,
the brainGraph package offers a wide range of functionalities for computing and
plotting brain networks.

14.7 Conclusion and Outlook

There are several other options to analyze fMRI data in R. Some of them will be
pointed out here. Dynamic causal modeling is a technique that allows the user to test
specific assumptions about functional connectivity. The FIAR package (Roelstraete
and Rosseel, 2011) provides a corresponding implementation.

14.7 Conclusion and Outlook 447

−0.2 −0.1 0.0 0.1 0.2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Brain Network

Dimension 1

D
im

en
si

on
 2

PreCG.L

PreCG.R

SFGdor.L

SFGdor.R

ORBsup.L

ORBsup.R

MFG.L

MFG.R

ORBmid.L

ORBmid.R

IFGoperc.L

IFGoperc.R

IFGtriang.L

IFGtriang.R

ORBinf.L

ORBinf.R

ROL.L

ROL.R

SMA.L

SMA.R

OLF.L

OLF.R

SFGmed.L

SFGmed.R

ORBsupmed.L

ORBsupmed.R
REC.L

REC.R

INS.L

INS.R

ACG.L

ACG.R

DCG.L

DCG.R

PCG.L

PCG.R

HIP.L

HIP.R

PHG.L
PHG.R

AMYG.L

AMYG.R

CAL.L

CAL.R

CUN.L

CUN.R

LING.L

LING.R

SOG.L

SOG.R
MOG.L

MOG.R

IOG.L

IOG.R

FFG.L

FFG.R

PoCG.L

PoCG.R

SPG.L

SPG.R

IPL.L

IPL.R

SMG.L

SMG.R

ANG.LANG.R

PCUN.L

PCUN.R

PCL.L

PCL.R

CAU.L

CAU.R

PUT.L

PUT.R

PAL.L
PAL.R

THA.L

THA.R

HES.L

HES.R

STG.L

STG.R

TPOsup.L
TPOsup.R

MTG.L

MTG.R

TPOmid.L

TPOmid.R

ITG.L

ITG.R

Fig. 14.12 Eigenmodel network for binary ROI correlation matrix

Another functional connectivity method is Granger causality, which is, however,
subject to some controversy in fMRI (see Wen et al., 2013). Given two activation
time series (e.g., related to two ROIs), the idea is to detect whether a particular
activation in one time series such as a spike leads to a similar, potentially lagged
pattern in the second ROI time series. Again, the FIAR package can be used to
compute the Granger causality.

A further fMRI modeling approach is called encoding. Encoding models predict
activity in single voxels that is evoked by different sensory, cognitive, or task
conditions (Naselaris et al., 2011). An interesting application can be found in Huth
et al. (2016).

The use of support vector machines (SVMs) within the context of multivoxel
pattern analysis (MVPA) is described in De Martino et al. (2008). In R, the
kernlab package (Karatzoglou et al., 2004) can be used for fitting SVMs. Other
MVPA approaches including tools for running ROI and searchlight analysis are
implemented in rMVPA (Buchsbaum, 2016).

448 14 Analysis of fMRI Data

References

Achard, S. (2012). brainwaver: Basic wavelet analysis of multivariate time series with a
visualisation and parametrisation using graph theory. R package version 1.6. https://CRAN.
R-project.org/package=brainwaver

Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-
frequency, small-world human brain functional network with highly connected association
cortical hubs. The Journal of Neuroscience, 26, 63–72.

Adler, R. J. (1981). The geometry of random fields. New York: Wiley.
Ashby, F. G. (2011). Statistical analysis of fMRI data. Cambridge: The MIT Press.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57,
289–300.

Bordier, C., Dojat, M., & de Micheaux, P. L. (2011). Temporal and spatial independent component
analysis for fMRI data sets embedded in the AnalyzeFMRI R package. Journal of Statistical
Software, 44(9), 1–24. http://www.jstatsoft.org/v44/i09/

Bretz, F., Hothorn, T., & Westfall, P. (2011). Multiple comparisons using R. Boca Raton: Chapman
& Hall/CRC.

Buchsbaum, B. R. (2016). rMVPA: Multivoxel pattern analysis in R. R package version 0.1.1.
Bullmore, E., Fadili, J., Maxim, V., Xendur, L., Whitcher, B., Suckling, J., Brammer, M., &

Breakspear, M. (2004) Wavelets and functional magnetic resonance imaging of the human
brain. NeuroImage, 23, 234–249.

Calhoun, V. D., Liu, J., & Adali, T. (2009). A review of group ICA for fMRI data and ICA for joint
inference of imaging, genetic, and ERP data. NeuroImage, 45, 163–172.

Clayden, J. (2016a). mmand: Mathematical morphology in any number of dimensions. R package
version 1.4.1. https://CRAN.R-project.org/package=mmand

Clayden, J. (2016b). RNiftyReg: Image registration using the NiftyReg library. R package version
2.4.0. https://CRAN.R-project.org/package=RNiftyReg

da Silva, A. F. (2011). cudaBayesreg: Parallel implementation of a Bayesian multilevel model
for fMRI data analysis. Journal of Statistical Software, 44(1), 1–24. https://www.jstatsoft.org/
index.php/jss/article/view/v044i04

De Leeuw, J., & Mair, P. (2009). Multidimensional scaling using majorization: SMACOF in R.
Journal of Statistical Software, 31(3), 1–30. http://www.jstatsoft.org/v31/i03/

De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., & Formisano, E. (2008). Com-
bining multivariate voxel selection and support vector machines for mapping and classification
of fMRI spatial patterns. NeuroImage, 43, 44–58.

Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial
extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of
the United States of America, 113, 7900–7905.

Eloyan, A., Li, S., Muschelli, J., Pekar, J. J., Mostofsky, S. H., & Caffo, B. S. (2014). Analytic
programming with fMRI data: A quick-start guide for statisticians using R. PLoS ONE, 9(2),
e89470.

Fisher, A. (2016). ggBrain: ggplot brain images. R package version 0.1.
Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human

Brain Mapping 2, 56–78.
Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional

neuroimaging using the false discovery rate. NeuroImage, 15, 870–878.
Gentleman, R., Carey, V., Huber, W., & Hahne, F. (2016). genefilter: Methods for filtering genes

from high-throughput experiments. R package version 1.54.2.
Hoff, P. (2012). eigenmodel: Semiparametric factor and regression models for symmetric rela-

tional data. R package version 1.01. https://CRAN.R-project.org/package=eigenmodel
Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models.

Biometrical Journal, 50, 346–363.

https://CRAN.R-project.org/package=brainwaver
https://CRAN.R-project.org/package=brainwaver
http://www.jstatsoft.org/v44/i09/
https://CRAN.R-project.org/package=mmand
https://CRAN.R-project.org/package=RNiftyReg
https://www.jstatsoft.org/index.php/jss/article/view/v044i04
https://www.jstatsoft.org/index.php/jss/article/view/v044i04
http://www.jstatsoft.org/v31/i03/
https://CRAN.R-project.org/package=eigenmodel

References 449

Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L. (2016). Natural
speech reveals the semantic maps that tile human cerebral cortex. Nature, 532, 453–458.

Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab: An S4 package for kernel
methods in R. Journal of Statistical Software, 11(9), 1–20. http://www.jstatsoft.org/v11/i09/

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis—
Connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2(4),
1–28.

Lazar, N. A. (2008). The statistical analysis of functional MRI data. New York: Springer.
Madhyastha, T. (2017). neuropointilist: Flexible parallel modeling of neuroimaging data, point by

point. R package version 0.0.0.9000. https://github.com/IBIC/neuropointillist
Muschelli, J., Sweeney, E., & Crainiceanu, C. (2014). brainR: Interactive 3 and 4D images of high

resolution neuroimage data. The R Journal, 6(1), 41–48.
Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011). Encoding and decoding in fMRI.

NeuroImage, 56, 400–410.
Nichols, T. E. (2012). Multiple testing corrections, nonparametric methods, and random field

theory. NeuroImage, 15, 811–815.
Nichols, T. E., & Holmes, A. P. (2001). Nonparametric permutation tests for functional neuroimag-

ing: A primer with examples. Human Brain Mapping, 15, 1–25.
Pollard, K. S., Dudoit, S., & van der Laan, M. J. (2005). Multiple testing procedures: R multtest

package and applications to genomics. In R. Gentleman, V. Carey, W. Huber, R. Irizarry, & S.
Dudoit (Eds.) Bioinformatics and computational biology solutions using R and bioconductor
(pp. 251–272). New York: Springer.

Polzehl, J., & Tabelow, K. (2007). fmri: A package for analyzing fmri data. R News, 7(2), 13–17.
Reiss, P. T., Huang, L., Chen, Y. H., Huo, L., Tarpey, T., & Mennes, M. (2014). Massively parallel

nonparametric regression, with an application to developmental brain mapping. Journal of
Computational and Graphical Statistics, 23, 232–248.

Reiss, P. T., Chen, Y. H., Huang, L., Huo, L., Tan, R., & Jiao, R. (2016). vows: Voxelwise
Semiparametrics. R package version 0.5. https://CRAN.R-project.org/package=vows

Revelle, W. (2017). psych: Procedures for psychological, psychometric, and personality research.
R package version 1.7.8. http://CRAN.R-project.org/package=psych

Roelstraete, B., & Rosseel, Y. (2011). FIAR: An R package for analyzing functional integration in
the brain. Journal of Statistical Software, 44(1), 1–32. https://www.jstatsoft.org/index.php/jss/
article/view/v044i13

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-
Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders,
J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances
in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23,
208–219.

Tabelow, K., & Polzehl, J. (2011). Statistical parametric maps for functional MRI experiments in
R: The package fmri. Journal of Statistical Software, 44(11), 1–21. http://www.jstatsoft.org/
v44/i11/

Tamir, D. I., Thornton, M. A., Contreras, J. M., & Mitchell, J. P. (2016a). Neural evidence that
three dimensions organize mental state representation: Rationality, social impact, and valence.
Proceedings of the National Academy of Sciences of the United States of America, 113, 194–
199.

Tamir, D. I., Thornton, M. A., Contreras, J. M., & Mitchell JP (2016b). Neural evidence that
three dimensions organize mental state representation: rationality, social impact, and valence.
Harvard Dataverse, V3. https://doi.org/10.7910/DVN/ELLLZM

The FIL Methods Group. (2016). SPM12 manual. Functional Imaging Laboratory, Wellcome Trust
Centre for Neuroimaging, Institute of Neurology, University College London, London. http://
www.fil.ion.ucl.ac.uk/spm/

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,
Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using

http://www.jstatsoft.org/v11/i09/
https://github.com/IBIC/neuropointillist
https://CRAN.R-project.org/package=vows
http://CRAN.R-project.org/package=psych
https://www.jstatsoft.org/index.php/jss/article/view/v044i13
https://www.jstatsoft.org/index.php/jss/article/view/v044i13
http://www.jstatsoft.org/v44/i11/
http://www.jstatsoft.org/v44/i11/
https://doi.org/10.7910/DVN/ELLLZM
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/

450 14 Analysis of fMRI Data

a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15,
273–289.

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York:
Springer.

Watson, C. G. (2016). brainGraph: Graph theory analysis of brain MRI data. R package version
0.62.0. https://CRAN.R-project.org/package=brainGraph

Wen, X., Rangarajan, G., & Ding, M. (2013). Is granger causality a viable technique for analyzing
fMRI data? PLoS ONE, 8(7), 1–11.

Woo, C. W., Krishnan, A., & Wager, T. D. (2014). Cluster-extent based thresholding in fMRI
analyses: Pitfalls and recommendations. NeuroImage, 91, 412–419.

Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A
unified statistical approach for determining significant signals in images of cerebral activation.
Human Brain Mapping, 4, 58–73.

https://CRAN.R-project.org/package=brainGraph

Index

β-map, see statistical parametric map
2-PL, see two-parameter logistic model
3-PL, see three-parameter logistic model
χ2-test, 212

analysis of variance, 105
functional, 399
multivariate, 63

ARIMA, 383–392
drift, 389

asymmetric map, 219, 220, 306
autocorrelation function, 381

partial, 387
average causal mediation effect, 71
average direct effect, 71

Bayesian factor analysis
confirmatory, 57–59
exploratory, 35–39

Bayesian item response theory, 152–156
Bayesian networks, 326–332
bifactor model, 148
biplot

contribution, 310
correspondence analysis, 219, 306–310
Homals, 310
multidimensional scaling, 285, 305–306
Parafac, 197
Princals, 241, 303
principal component analysis, 191,

296–305
regression, 291–296
Tucker, 199

vector version, 294
biplot axes, 294
BOLD response, 410

expected, 420
Box-Pierce test, 383
boxcar model, 420
Bradley-Terry model, 162–163

bootstrap, 167
cross-validation, 166
lasso, 164–167
log-linear, 168
mixture, 344
object parameters, 162
recursive paritioning trees, 163–164

Candecomp, 195
category scores, 219
classical scaling, 258
communalities, 24
comparative fit index, 44, 123
compositional data, 215
concomitant variables, 346–349

hidden Markov model, 374
configural frequency analysis, 221, 225–229

binomial test, 227
first order, 228

configuration, 259
confirmatory factor analysis

covariates, 47–48
higher-order, 45–47
longitudinal, 52–55
multigroup, 48–52
multigroup-longitudinal, 55
multilevel, 55–57

© Springer International Publishing AG, part of Springer Nature 2018
P. Mair, Modern Psychometrics with R, Use R!,
https://doi.org/10.1007/978-3-319-93177-7

451

https://doi.org/10.1007/978-3-319-93177-7

452 Index

panel models, 55
congruence coefficient, 281
conjoint analysis, 175
connectivity analysis, 442–446
contingency table, 211

centroids, 215
inertia, 218
masses, 214
profiles, 214
residuals, 212

correlation coefficient, 17–22
continuity correction, 21
partial, 317
Pearson, 17, 253
polychoric, 20
polyserial, 21
regularized partial, 318
Spearman, 17
tetrachoric, 20

correlation ratio, 253
correlational aspects, 255
correlogram, 381
correspondence analysis

joint, 225
multiple, 223–225, 244–246
simple, 211–223

d-hats, see disparities
datasets

R motivation, 4, 22, 25, 41, 336
R work design, 106, 137, 153
adult self-transcendence, 117, 143, 236,

241
backcountry skiing, 340
brain activity, 352
brain size IQ, 184, 289, 297
children depression, 19, 30, 132, 223
children empathy, 112
customer satisfaction, 303
depression/OCD, 314, 328
drug consumption, 82
dyscalculia children, 96
EEG memory storage, 202
family IQ, 55
Germany’s next topmodel, 163
goal-directed visual processing, 281
Harvard faculty, 222, 226
health risk behaviors, 155
implicit association test age, 379
implicit association test face, 369
Internet privacy, 35, 187
Korean speech, 351, 355
mathematics exam, 134

mental health SES, 308
mental states, 283, 305, 409, 424
music tension, 394
organization culture profile, 271
personal values, 278
prejudice, 49, 58, 63, 76
psychosis risk, 298
response to challenge, 10
sensation seeking, 254
social dominance orientation, 52, 145, 195
verbal memory test, 109
Wenchuan, 260
Wilson-Patterson conservatism, 121, 244
work intensification, 67

dependability coefficient, 13
design

block, 410
event-related, 410
repeated measures, 365
within-subjects, 365

Dickey-Fuller test, 386
differential item functioning, 131–136

lasso, 136
logistic regression, 131–134
trees, 134–136

directed acyclic graphs, 326–327
discrete choice experiments, 175
disparities, 259
dissimilarities, 257
distance

χ2, 216
Euclidean, 216, 258, 297
geodesic, 275
Jaccard, 258
Mahalanobis, 297
weighted Euclidean, 283

document-term matrix, 358
drift vector model, 280
dual method, 274
dual scaling, 235, 276
Durbin-Watson test, 381

effect size
Cohen’s d, 379
correlation, 315
mediation, 72

eigenvalue decomposition, 30, 182–183, 223
eigenvalues, 22, 30, 182, 218, 237
eigenvectors, 182
elasticnet, 193
essential τ -equivalence, 6
Euclidean norm, 181, 290

Index 453

factor analysis
communality problem, 24
confirmatory, 39–59, 76, 253
exploratory, 23–39, 96, 253
fundamental equation, 24, 40
indicators, 23
non-Gaussian, 202
number of factors, 30–34

factor scores, 29, 45
factor splitting, 37
fMRI

data structure, 409
design matrix, 421–423
encoding, 447
multivoxel pattern analysis, 447
parcellation, 416
preprocessing steps, 411
resolution elements, 433
spatial smoothing, 411
summary statistics, 431

frequency table, see contingency table
full width at half maximum, 412
functional analysis of variance, 399
functional ANOVA

random projections, 400
functional data analysis, 394–405
functional mean, 397
functional median, 397
functional principal component analysis,

402–405
functional regression, 401

generalizability coefficient, 13
generalizability theory, 7–14

D-study, 11
facets, 7
G-study, 10

Gower coefficient, 258
graded response model, 119–121, 132

category boundary location, 119
multidimensional, 143
operation characteristic curves, 120

Granger causality, 394, 447
growth curve models, 365

hemodynamic response function, 419
Heywood cases, 47, 87
hidden Markov models, 365–378

covariates, 374–378
hierarchical clustering, 335
highest posterior density interval, 59
Holt-Winters filtering, 391

Homals, 122, 244–247
joint plot, 245
mixed, 246–247

image registration, 415
independent component analysis, 201–208

fMRI, 437–440
fundamental equation, 201
group, 440
spatial, 202, 438
temporal, 202

individual differences scaling, 283
group stimulus space, 283
IDIOSCAL, 283
INDSCAL, 283, 441

inertia, 212, 218
principal, 218

intervention analysis, 392–394
intraclass correlation coefficient, 8
item characteristic curves, 104
item characteristic surfaces, 139
item factor analysis, 23, 97, 138
item information, 123
item parameter

category boundary, 119
category parameter, 111
difficulty, 99
discrimination, 106
easiness, 99
item-category discrimination, 121
item-category parameter, 117
location, 99
multidimensional discrimination, 139
multidimensional location, 139
pseudo-guessing, 109
threshold, 114

itemfit
infit, 113
outfit, 112
Yen’s Q1 statistic, 107

K-means clustering, 335
k-nearest neighbor, 418

lasso, 136, 193
graphical, 317

latent class analysis, 340–344
latent Dirichlet allocations, 356
latent growth models, 82–91

covariates, 88
growth factors, 82

454 Index

item response theory, 151
multivariate, 90

latent profile analysis, 336
likelihood-ratio test, 97, 131, 140, 147

Andersen, 100, 113
Martin-Löf, 103

Lineals, 252–255
log-linear models, 228

preference, 168–175
longitudinal item response theory

dynamic, 155–156
latent growth, 151–152
linear logistic models, 145–148
LLRA, 147
LLTM, 145
two-tier approach, 148–151

Markov assumption, 366
Markov Chain Monte Carlo, 36, 57, 58, 152,

319, 336
Markov chains, 366–369
matrix

adjacency, 313, 320
Burt, 223, 253
diagonal, 181, 218, 253, 296
document-term, 222
identity, 24
kronecker product, 426
lower-rank approximation, 297
positive definite, 22
row affine transformations, 417
square, 182
symmetric, 223
trace, 5
transition, 366

MCMC, see Markov Chain Monte Carlo
mean structures, 48
measurement error, 1
measurement invariance, 49, 52, 100
measurement levels, 231
measurement model, 40, 76
mediator, 66
mediator models, 70–72

bootstrap, 71
causal steps approach, 70
conditional direct effect, 73
direct effect, 71
indirect effect, 70
total effect, 71

MIMIC model, 47
minimum average partial, 33
minimum-product rule, 198
mixture distribution, 335

binomial, 340
multinomial, 340
normal, 336

mixture model
dependent, 369
Dirichlet process, 354
hidden Markov, 366
mixed scale levels, 344–346
normal, 336–340
posterior probabilities, 338

moderator, 66
centering, 67

moderator models, 67–70
mosaic plot, 213
multidimensional item response theory

confirmatory, 143–145
exploratory, 138–143
exploratory multigroup, 143

multidimensional scaling, 257–285
bootstrap, 267
confirmatory, 269–275
dimensional interpretation, 261
exploratory, 258–269
external constraints, 270–274
goodness-of-fit, 262–269
internal constraints, 274–275
interval, 259, 441
ordinal, 259
ratio, 259
regional interpretation, 262
three-way, 283
weakly constrained, 274

multiple testing
Bonferroni, 227, 401, 432
cluster-based thresholding, 435
false discovery rate, 143, 401, 433
fMRI, 431–437
Gaussian random field, 433–434
permutation test, 434–437
Sidák, 432

Nadaraya-Watson kernel, 396
network

Bayesian, 326–332
bootstrap, 329
centrality, 315
eigenmodel, 320–321, 446
latent, 319
latent class, 321–325
learning, 327
model averaging, 329
social, 313

nominal response model, 121–123

Index 455

item-category discrimination, 121
non-nested model test, 80

one-parameter logistic model, 105
optimal scaling, 231–233

category scores, 231
external constraints, 271

package
AnalyzeFMRI, 411, 412, 434
BTLLasso, 165
BayesFM, 35
BradleyTerry2, 162
CMC, 7
CTT, 7
FIAR, 446
Gifi, 96, 304
MASS, 193
MCMCpack, 152
PTAk, 196
QuantPsyc, 68
RNiftyReg, 414
RaschSampler, 103
Rchoice, 176
ThreeWay, 196
anacor, 219
aspect, 82, 254
blavaan, 57, 82
bnlearn, 328, 329
bpca, 302
brainGraph, 416, 446
brainR, 414
brainwaver, 443, 445
calibrate, 294, 306
car, 64
ca, 219
cfa, 227
class, 418
cocron, 7
conjoint, 176
corrplot, 36
cudaBayesreg, 430
depmixS4, 370, 374
difR, 131
dpmixsim, 354
eRm, 99, 112, 117, 146
eegkit, 203
eigenmodel, 320, 446
fastICA, 202
fda.usc, 395, 398, 402, 403
fda, 395
flexmix, 344, 349

fmri, 410, 411, 420, 423
forecast, 380, 389
gamair, 352
ggBrain, 413
ggtern, 215
growcurves, 356
gtheory, 9
ica, 202
igraph, 313
kernlab, 193, 447
latentnet, 322
lavaan, 41, 65, 72, 74, 76, 83, 144, 254
ldatuning, 359
lme4, 9
lmtest, 381, 394
lordif, 131
ltm, 98, 106, 110, 118, 120, 137, 153
markovchain, 366
mclust, 337
mediation, 71, 74
mgcv, 353
mice, 113
mirt, 97, 122, 138, 144
mmand, 436
multcomp, 431
multiway, 196, 198
nFactors, 34
neuropointilist, 411
nonnest2, 80
pcaMethods, 193
plot3D, 215
plspm, 82
poLCA, 340
prefmod, 168, 172, 173
profdpm, 355
proxy, 258
psychometric, 7
psychomix, 344
psychotools, 134
psychotree, 134, 163
psych, 5, 20, 96, 443
qgraph, 315, 367
rMVPA, 447
randomNames, 356
refund, 401, 402
runjags, 57
semPlot, 41, 65, 72, 74
semTools, 49, 53
simDesign, 127
simsem, 82
sirt, 98
slam, 358
smacof, 257, 260, 271, 278, 280, 284, 305,

441

456 Index

strucchange, 382
tm, 222, 357
topicmodels, 359
tseries, 386
vars, 394
vcd, 213, 346
vows, 424
wordcloud, 357

paired comparisons, 161
Parafac, 195–198
parallel analysis, 31
partial credit model

generalized, 118, 132
partial least squares, 82
pattern model

paired comparisons, 172
rankings, 173
ratings, 169
worth parameters, 171, 173

person parameter, 99
multidimensional, 139

Pillai’s trace, 64
posterior predictive p-value, 59
potential scale reduction factor, 59
preferential choice, 276
primal method, 274
Princals, 96, 122, 192

biplot, 303
eigenvalues, 237
linear, 236–238
loadings, 237, 241
mixed, 241–244
object scores, 239
ordinal, 238–241
rank-1 restriction, 239
score matrix, 239

principal component analysis
categorical, 192, 235
functional, 194, 402–405
kernel, 193
nonlinear, 235
sparse, 193
three-way, 194–201

principal coordinates, 219, 306
Procrustes, 280–282
proximities, 257

Rasch model, 98–105
assumptions, 99
mixed-effects, 105
mixture, 344
sufficiency, 105

rating scale model, 111–115

generalized, 115
threshold parameters, 114

regions of interest, 416
regression model

AR, 388, 423
ARIMA, 383–392
ARMA, 388
baseline category logit, 376
Dirichlet process, 355–356
fMRI, 423–424
logistic, 131
MA, 387
mixed-effects, 63, 90, 365, 430
mixture, 349–354
mixture GAM, 352
mixture mixed-effects, 351
multivariate, 63, 291
polynomial, 233
proportional odds, 131
spline, 233
structural change, 382

regularization, see lasso
reliability, 3–7

Cronbach’s α, 4
greatest lower bound, 6
McDonald’s ω, 6
split-half, 4

repetition time, 409
representational similarity analysis, 440–442
residuals

standardized, 212
root mean squared error, 128
root mean squared error of approximation, 33,

44, 123
root mean squared residual, 33
rotated components, 190
rotation

equimax, 26
non-orthogonal, 27
oblimin, 27
oblique, 27
orthogonal, 26, 27
promax, 27, 190
quartimax, 26
varimax, 26, 190

sample size determination
item response theory, 126–130

scree plot, 30, 139, 188, 241
eigenvalue criterion, 30
elbow criterion, 30

seed-based correlational analysis, 443–444
SEM, see structural equation model

Index 457

Shepard diagram, 265
sign test, 434
similarities, 257
simple slope analysis, 69
simplex, 215
singular value decomposition, 180–183, 218,

223, 296
singular values, 180, 218
singular vectors, 180, 219
SMACOF, 259–260

constraint, 273
rectangular, 277
spherical, 274
symmetric, 260

smoothing
Gaussian kernel, 412, 427
generalized additive model, 352
nonparametric kernel, 396
spatial, 411
structural adaptive, 424

splines, 233, 352, 395
interior knots, 236
knots, 235

standard coordinates, 219, 306
standard error of measurement, 2, 4

absolute, 12
relative, 13

standardization
principal component analysis, 184
three-way, 196

standardized root mean square residual, 44
state space model, 378

exponential smoothing, 391
stationarity

Markov chain, 367
stationary distribution, 368
statistical parametric map, 424
stress, 260, 274

norms, 263
permutation test, 263
rules of thumb, 262
stress-1, 260
stress-per-point, 267

structural equation model, 76–82
Bayesian, 82
Lineals, 253
multigroup, 79–81
multilevel, 82
sample size, 82
structural causal model, 82

structural image, 197
structural model, 76
subject space, 289–291

subject specific contrast image, see statistical
parametric map

symmetric map, 219
golden rule interpretation, 220

tensor, 194
term frequency-inverse document frequency,

358
ternary plot, 215
test information, 123
text data, 222, 356

lemmatization, 357
preprocessing, 222, 357
stemming, 357

three-parameter logistic model, 109–110
ties, 259
time series

additive vs. multiplicative, 384
decomposition, 384
differencing, 385
fMRI, 423
stationarity, 385

time series analysis, 379–394
covariates, 392–394

time series data, 365
topic models, 356–362
transition probabilities, 366
trees

decision, 134
model-based partitioning, 134

true score model, 1–2
Tucker, 198–201

Tucker3, 198
Tucker-Lewis index, 33, 123
two-parameter logistic model, 105–109

Bayesian, 152–154
multidimensional, 139

underlying variable approach, 23
unfolding, 175, 276–280

circular, 279
ideal points, 276
joint configuration plot, 278
multidimensional, 277
object points, 276
ranking, 276
rating, 277
row-conditional, 279
unidimensional, 276

unidimensional scaling, 280

458 Index

variable space, 289–291
vector

eigen, 182
inner product, 181, 290
length, 181, 290
orthogonal, 180
orthonormal, 181
singular, 180, 219, 296

vector autoregressive models, 394
very simple structure, 32
Vuong test, 80

Wald test, 101, 143
wavelet correlational analysis, 445–446

	Preface
	Contents
	1 Classical Test Theory
	1.1 Classical True Score Model
	1.2 Reliability
	1.2.1 Cronbach's
	1.2.2 Other Reliability Coefficients

	1.3 Generalizability Theory
	1.3.1 Reliability and Generalizability
	1.3.2 Multiple Sources of Error

	References

	2 Factor Analysis
	2.1 Correlation Coefficients
	2.2 Exploratory Factor Analysis
	2.2.1 EFA Model Formulation and Computation
	2.2.2 Factor Rotation and Interpretation
	2.2.3 Factor Scores
	2.2.4 Determining the Number of Factors

	2.3 Bayesian Exploratory Factor Analysis
	2.4 Confirmatory Factor Analysis
	2.4.1 CFA Model Formulation and Computation
	2.4.2 Higher-Order CFA Models
	2.4.3 CFA with Covariates: MIMIC
	2.4.4 Multigroup CFA
	2.4.5 Longitudinal CFA
	2.4.6 Multilevel CFA

	2.5 Bayesian Confirmatory Factor Analysis
	References

	3 Path Analysis and Structural Equation Models
	3.1 Multivariate Regression as Path Model
	3.2 Moderator and Mediator Models
	3.2.1 Moderator Models
	3.2.2 Mediator Models
	3.2.3 Combined Moderator-Mediator Models

	3.3 Structural Equation Models
	3.3.1 SEM Model Formulation and Computation
	3.3.2 Multigroup SEM
	3.3.3 Remarks on SEM Extensions

	3.4 Latent Growth Models
	3.4.1 Simple Latent Growth Modeling
	3.4.2 Extended Latent Growth Modeling

	References

	4 Item Response Theory
	4.1 Introductory Remarks and Dimensionality Assessment
	4.1.1 Classification of IRT Models
	4.1.2 Assessing Dimensionality

	4.2 Unidimensional Dichotomous IRT Models
	4.2.1 The Rasch Model
	4.2.2 Two-Parameter Logistic Model
	4.2.3 Three-Parameter Logistic Model

	4.3 Unidimensional Polytomous IRT Models
	4.3.1 Rating Scale Model
	4.3.2 Partial Credit Model and Generalizations
	4.3.3 Graded Response Model
	4.3.4 Nominal Response Model

	4.4 Item and Test Information
	4.5 IRT Sample Size Determination
	4.6 Differential Item Functioning
	4.6.1 Logistic Regression DIF Detection
	4.6.2 Tree-Based DIF Detection

	4.7 Multidimensional IRT Models
	4.7.1 IRT and Factor Analysis
	4.7.2 Exploratory Multidimensional IRT
	4.7.3 Confirmatory Multidimensional IRT

	4.8 Longitudinal IRT Models
	4.8.1 Linear Logistic Models for Measuring Change
	4.8.2 Two-Tier Approach to Longitudinal IRT
	4.8.3 Latent Growth IRT Models

	4.9 Bayesian IRT
	4.9.1 Bayesian 2-PL Estimation
	4.9.2 Dynamic 2-PL Model

	References

	5 Preference Modeling
	5.1 Models for Paired Comparisons
	5.1.1 Bradley-Terry Model
	5.1.2 Bradley-Terry Trees
	5.1.3 Bradley-Terry Lasso

	5.2 Log-Linear Models for Preference
	5.2.1 Pattern Model for Ratings
	5.2.2 Pattern Model for Paired Comparisons
	5.2.3 Pattern Model for Rankings

	5.3 Other Methods for Preference Data
	References

	6 Principal Component Analysis and Extensions
	6.1 Principal Component Analysis
	6.1.1 Singular Value and Eigenvalue Decomposition
	6.1.2 PCA Computation
	6.1.3 PCA Application and Practical Issues

	6.2 Some PCA Variants
	6.3 Three-Way Principal Component Analysis
	6.3.1 Parafac
	6.3.2 Tucker

	6.4 Independent Component Analysis
	6.4.1 ICA Formulation
	6.4.2 Example: ICA on EEG Data

	References

	7 Correspondence Analysis
	7.1 Simple Correspondence Analysis
	7.1.1 Profiles, Masses, Inertia
	7.1.2 Simple CA Computation and Interpretation
	7.1.3 Example: Harvard Psychology Faculty

	7.2 Multiple Correspondence Analysis
	7.3 Configural Frequency Analysis
	7.3.1 Two-Dimensional Tables
	7.3.2 Higher-Dimensional Tables

	References

	8 Gifi Methods
	8.1 Setting the Stage
	8.1.1 Optimal Scaling: Measurement Levels as Functions
	8.1.2 Gifi Theory

	8.2 Princals
	8.2.1 Mimicking PCA with Princals
	8.2.2 Princals on Ordinal Data
	8.2.3 Princals on Mixed Input Data

	8.3 Homals
	8.3.1 Multiple Correspondence Analysis Using Homals
	8.3.2 Homals on Mixed Input Data
	8.3.3 Combined Homals-Princals Strategies

	8.4 Lineals for CFA/SEM Preprocessing
	References

	9 Multidimensional Scaling
	9.1 Proximities
	9.2 Exploratory MDS
	9.2.1 SMACOF Theory
	9.2.2 Exploratory MDS Example: PTSD Symptoms
	9.2.3 Goodness of Fit in MDS

	9.3 Confirmatory MDS
	9.3.1 MDS with External Constraints
	9.3.2 MDS with Internal Constraints: Spherical SMACOF

	9.4 Unfolding
	9.4.1 Data Structure for Unfolding
	9.4.2 Rectangular SMACOF: Theory
	9.4.3 Unfolding Example: Personal Values

	9.5 MDS Extensions and Related Models
	9.5.1 Procrustes
	9.5.2 Individual Differences Scaling

	References

	10 Biplots
	10.1 Variable Space and Subject Space Representation
	10.2 Regression Biplots
	10.3 Principal Component Analysis Biplots
	10.4 Multidimensional Scaling Biplots
	10.5 Correspondence Analysis Biplots
	References

	11 Networks
	11.1 Network Basics: Relational Data Structures
	11.2 Correlation Networks
	11.3 Latent Network Models
	11.3.1 Eigenmodels
	11.3.2 Latent Class Network Models

	11.4 Bayesian Networks
	11.4.1 Directed Acyclic Graphs
	11.4.2 Bayesian Networks Taxonomy
	11.4.3 Bayesian Network Depression/OCD Data

	References

	12 Parametric Cluster Analysis and Mixture Regression
	12.1 Model-Based Clustering Approaches: Mixture Models
	12.1.1 Normal Mixture Models
	12.1.2 Latent Class Analysis
	12.1.3 Parametric Clustering with Mixed Scale Levels
	12.1.4 Concomitant Variables

	12.2 Mixture Regression Models
	12.2.1 Mixture Regression Theory
	12.2.2 Mixture Regression Applications

	12.3 Dirichlet-Based Clustering
	12.3.1 Dirichlet Process Regression
	12.3.2 Clustering Texts: Topic Models

	References

	13 Modeling Trajectories and Time Series
	13.1 Introductory Remarks
	13.2 Hidden Markov Models
	13.2.1 Markov Chains
	13.2.2 Simple Hidden Markov Modeling Strategies
	13.2.3 Hidden Markov Models with Covariates

	13.3 Time Series Analysis
	13.3.1 Linear Models and Structural Change Detection
	13.3.2 ARIMA Models
	13.3.3 Time Series with Covariates: Intervention Analysis

	13.4 Functional Data Analysis
	13.4.1 Smoothing Curves and Derivatives
	13.4.2 FDA Descriptives and Bootstrap
	13.4.3 Functional ANOVA and Regression Modeling
	13.4.4 Functional Principal Component Analysis

	References

	14 Analysis of fMRI Data
	14.1 fMRI Data Manipulation in R
	14.1.1 fMRI Data Structures
	14.1.2 fMRI Preprocessing
	14.1.3 Registration and Regions of Interest

	14.2 Linear Modeling of fMRI Data
	14.2.1 The Correlational Approach
	14.2.2 Design Matrix
	14.2.3 Fitting the Linear Model
	14.2.4 Example: Neural Representation of Mental States
	14.2.5 Group Analysis

	14.3 Multiple Comparisons in fMRI
	14.3.1 Controlling for the FDR
	14.3.2 Gaussian Random Fields
	14.3.3 Permutation Tests

	14.4 Independent Component Analysis in fMRI
	14.5 Representational Similarity Analysis
	14.6 Functional Connectivity Analysis
	14.6.1 Seed-Based Correlational Analysis
	14.6.2 Wavelet Correlational Analysis

	14.7 Conclusion and Outlook
	References

	Index

