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Preface

Novel treatments of cancers have emerged over the past decade. Along with this
growing trend, innovative phase I trial designs for determining a maximum toler-
ated dose (MTD) or recommended phase 2 dose (RP2D) have also been devised. In
contrast to the emergence of such statistical dose-finding approaches, most phase I
trials have a classic dose escalation design such as the 3 + 3 scheme in practice
because of its ease of use. Because the utility of the innovative dose-finding designs
has been examined in a large number of studies, we need to get away from the
comfort zone of application of the classic dose escalation designs to increase the
success rate of anticancer drug development. The aim of this book is to contribute
to the modernization of dose-finding methods in phase I trials by describing
statistical methodologies of recent innovative dose-finding methods as well as their
user-friendly software implementations.

This book deals with advanced methods for phase I dose-finding clinical trials
with multiple drugs and/or outcomes in oncology. In addition to the methodological
aspects of the dose-finding methods, the text also provides software implementa-
tions and practical considerations for applying these complex methods to real
cancer clinical trials. Thus, in this book, we aim to provide researchers working in
biostatistics and other statistical sciences a good summary of recent developments
in complex dose-finding methods as well as to offer practitioners in biostatistics and
clinical investigators advanced information for designing, conducting, monitoring,
and analyzing complex dose-finding trials. The topics in the book are mainly related
to cancer clinical trials, but many are potentially applicable or extendable to trials
dealing with other diseases.

The book mainly focuses on model-based dose-finding methods for two kinds of
phase I trials. One is clinical trials of a combination of two agents. When devel-
oping dose-finding methods for two-agent combination trials, we need reasonable
models that can adequately capture joint toxicity probabilities for two agents, taking
into consideration possible interactions of the two agents on toxicity probability
(e.g., synergistic or antagonistic effects). The other is clinical trials evaluating both
efficacy and toxicity outcomes in single- and two-agent combination trials. These
methods are often applied to the phase I trials of molecularly targeted agents
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(MTAs) because the toxicity and efficacy for an MTA do not monotonically
increase with the dose, but the efficacy often increases initially with the dose and
then plateaus. Successful software implementations for several dose-finding
methods we introduced in this book are shown and their practical operating char-
acteristics are discussed. Recent topics on dose-finding methods for MTAs are also
elaborated.

Chapter 1 provides key points of phase I cancer trials. We also overview the
3 + 3 design as a rule-based dose-finding method and then a continual reassessment
method (CRM) as a model-based dose-finding method for monotherapy (i.e., the
use of a single agent). Chapter 2 is devoted to the dose-finding methods for
two-agent combination trials. In two-agent combination phase I trials, we need to
capture the dose–toxicity relationship for combination of two agents and to identify
MTD combinations of the two agents. We compared several rival methods and
summarized the operating characteristics of each method. Chapter 3 introduces
dose-finding designs that determine the optimal dose based on the joint assessment
of toxicity and efficacy of an agent. Various types of incorporation of toxicity and
efficacy outcomes into dose-finding methods have been developed. We discuss four
Bayesian designs in this chapter. Chapter 4 describes dose-finding methods for
MTAs to determine the optimal dose in singe-agent trials. Finally, we introduce
some recent advanced topics on dose-finding designs including seamless phase I/II
trials, designs that account for late-onset toxicity and efficacy outcomes, dose
finding based on relative dose intensity, cancer immunotherapy, and dose indi-
vidualization for precision medicine in Chap. 5.

Finally, we are grateful for a Grant-in-Aid for Scientific Research
(Nos. 16H06299, 15K15948, 15K00058, and 17K00045) from the Ministry of
Education, Culture, Sports, Science and Technology of Japan for supporting this
book project. The views expressed here are the result of an independent study and
do not represent the viewpoints or findings of the Pharmaceuticals and Medical
Devices Agency.

Tokyo, Japan Akihiro Hirakawa
November 2017 Hiroyuki Sato

Takashi Daimon
Shigeyuki Matsui

viii Preface



Contents

1 Dose Finding in Phase I Cancer Trials . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Cytotoxic Agents and MTAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Classification of Phase I Cancer Trials . . . . . . . . . . . . . . . . . . . . 2
1.3 Rule-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 3þ 3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Other Relevant Methods . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Model-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.1 Bayesian CRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Other Relevant Designs . . . . . . . . . . . . . . . . . . . . . . . . . 6

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Dose Finding for a Combination of Two Agents . . . . . . . . . . . . . . . . 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Two-Agent Combination Trials . . . . . . . . . . . . . . . . . . . . 9
2.1.2 An Overview of Model-Based Dose-Finding Methods . . . 10
2.1.3 Methodological Characteristics . . . . . . . . . . . . . . . . . . . . 11

2.2 The Bayesian Approach Based on Copula Regression . . . . . . . . . 13
2.2.1 Copula-Type Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 The Dose-Finding Algorithm . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Hierarchical Bayesian Design . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Hierarchical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 The Dose-Finding Algorithm . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 An Approach Using a Shrinkage Logistic Model . . . . . . . . . . . . 20
2.4.1 The Shrinkage Logistic Model . . . . . . . . . . . . . . . . . . . . 20
2.4.2 The Dose-Finding Algorithm . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 An Approach Using a Logistic Model . . . . . . . . . . . . . . . . . . . . 22
2.5.1 The Logistic Model Involving Standardized Doses . . . . . 22

ix



2.5.2 The Dose-Finding Algorithm . . . . . . . . . . . . . . . . . . . . . 23
2.5.3 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 The Design Based on Order-Restricted Inference . . . . . . . . . . . . 25
2.6.1 Order-Restricted Inference . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.2 The Dose-Finding Algorithm . . . . . . . . . . . . . . . . . . . . . 26

2.7 The Partial-Ordering Continual Reassessment Method . . . . . . . . 27
2.7.1 The Model for Possible Orderings of Toxicity

Probability for a Dose Combination . . . . . . . . . . . . . . . . 27
2.7.2 The Dose-Finding Algorithm . . . . . . . . . . . . . . . . . . . . . 28
2.7.3 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.9 Effects of Design Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9.1 Size of Patient Cohorts . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.9.2 The Choice of a Dose–Toxicity Model . . . . . . . . . . . . . . 35
2.9.3 The Start-Up Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.9.4 Restrictions on Skipping Dose Levels . . . . . . . . . . . . . . . 37

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Dose Finding for Joint Assessment of Both Efficacy
and Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 The Bivariate Continual Reassessment Method . . . . . . . . . . . . . . 43

3.2.1 Modeling Toxicity and Efficacy Outcomes . . . . . . . . . . . 43
3.2.2 The Dose-Finding Algorithm . . . . . . . . . . . . . . . . . . . . . 44
3.2.3 Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.4 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Dose Finding Based on Efficacy–Toxicity Trade-Offs . . . . . . . . . 46
3.3.1 Modeling Toxicity and Efficacy Outcomes . . . . . . . . . . . 46
3.3.2 The Dose-Finding Algorithm . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Constructing a Trade-Off Contour . . . . . . . . . . . . . . . . . . 48
3.3.4 Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.5 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 A Bayesian Approach to Modeling Binary Toxicity
and Continuous Efficacy Outcomes . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 Modeling Toxicity and Efficacy Outcomes . . . . . . . . . . . 51
3.4.2 The Dose-Finding Algorithm . . . . . . . . . . . . . . . . . . . . . 52
3.4.3 Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 The BMA Bivariate CRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.1 Modeling Toxicity and Efficacy Outcomes . . . . . . . . . . . 54
3.5.2 BMA Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.3 The Dose-Finding Algorithm . . . . . . . . . . . . . . . . . . . . . 56
3.5.4 Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.5 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . 57

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x Contents



4 Dose Finding for Molecularly Targeted Agents (MTAs) . . . . . . . . . . 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 The Model-Selecting Dose-Finding Method . . . . . . . . . . . . . . . . 60

4.2.1 Modeling Toxicity and Efficacy Outcomes . . . . . . . . . . . 61
4.2.2 The Dose-Finding Algorithm . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.4 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 The Dose-Finding Method Using the Change Point Model . . . . . 65
4.3.1 Modeling Toxicity and Efficacy Outcomes . . . . . . . . . . . 65
4.3.2 The Dose-Finding Algorithm . . . . . . . . . . . . . . . . . . . . . 68
4.3.3 Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.4 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 The Dose-Finding Method with Late-Onset Efficacy . . . . . . . . . . 73
4.4.1 Modeling Toxicity and Efficacy Outcomes . . . . . . . . . . . 73
4.4.2 Plateau Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.3 The Dose-Finding Algorithm . . . . . . . . . . . . . . . . . . . . . 76
4.4.4 Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.5 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . 78

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Advanced Topics on Dose-Finding Designs . . . . . . . . . . . . . . . . . . . . 81
5.1 Leveraging Phase I/II Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Late-Onset Toxicity and Efficacy Outcomes . . . . . . . . . . . . . . . . 82
5.3 Accounting for Relative Dose Intensity for MTAs . . . . . . . . . . . 85
5.4 Cancer Immunotherapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5 Dose Individualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Contents xi



Acronyms

BMA Bayesian model averaging
CRM Continual reassessment method
MTA Molecularly targeted agent
MTD Maximum tolerated dose
RP2D Recommended phase 2 dose

xiii



Chapter 1
Dose Finding in Phase I Cancer Trials

Abstract The objective of phase I cancer trials is to determine the optimal dose of
an agent or a combination of agents that can serve as a recommended phase 2 dose
(RP2D). The conventionally defined RP2D of a cytotoxic agent corresponds to the
maximum tolerated dose (MTD), defined as the highest dosewith acceptable toxicity.
MTDis generally calculated fromdose-limiting toxicity data obtainedduring thefirst,
and rarely, the second cycle of treatment. The dose-finding methods for determining
the MTD are roughly categorized into two groups: (1) those based on prespecified
dose escalation or de-escalation rules; and (2) those based on a statistical dose–
response model. In contrast to cytotoxic agents, the RP2D of molecularly targeted
agents (MTAs)maynot be necessarily identical to theirMTDowing to themechanism
of action. Therefore, the reasonable dose-finding methods for determining the RP2D
of cytotoxic agents and of MTAs are considered different. This introductory chapter
provides key points on phase I cancer trials and an overview the rule-and model-
based dose-finding methods for monotherapy (i.e., the use of a single agent) that are
the prototype of all the innovative dose-finding methods developed recently.

Keywords Dose finding · Maximum tolerated dose · Phase I · Recommended
phase 2 dose

1.1 Cytotoxic Agents and MTAs

Cytotoxic agents are those aimed at directly killing cancer cells. Nonetheless, they
also kill other cells likewise, such as normal cells, as a systemic action, and therefore
theymay have serious adverse effects. Thus, it is thought that the efficacy and toxicity
of cytotoxic agents stem from the same biological mechanism, closely linked to each
other. In addition, for cytotoxic agents, it is natural to consider an assumption of
monotonicity, where higher doses may yield greater efficacy but lesser safety. In
general, the fatal nature of the disease may allow for the use of an MTD, in hopes
of killing all cancer cells. This approach is behind the strategy of traditional early-
phase clinical trials for cytotoxic agents. The aim is to determine the MTD based

© The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2018
A. Hirakawa et al., Modern Dose-Finding Designs for Cancer Phase I Trials:
Drug Combinations and Molecularly Targeted Agents, JSS Research Series
in Statistics, https://doi.org/10.1007/978-4-431-55573-5_1
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2 1 Dose Finding in Phase I Cancer Trials

on toxicity data in a phase I trial, followed by evaluation of efficacy at MTD in a
subsequent phase II trial.

MTAs differ from standard chemotherapy in severalways.MTAs block the growth
and spread of a tumor by interfering with specific molecules (“molecular targets”)
that are involved in the growth, progression, and spread of the tumor, whereasmost of
cytotoxic agents act on all rapidly dividing normal and cancerous cells.MTAs are also
deliberately chosen or designed to interact with their target, whereas many cytotoxic
agents have been identified because they kill cells. MTAs are often cytostatic (that
is, they block tumor cell proliferation); therefore, the dose–efficacy curves of MTAs
do not always monotonically increase with the dose escalation. Jain et al. (2010)
concluded that targeted agents may have different dose–response relationships as
compared with cytotoxic chemotherapies. Le Tourneau et al. (2010) suggested that
some MTAs do not necessarily need to be administered at their MTD to obtain
maximal efficacy. In the determination of an optimal dose for MTAs, dose-finding
methods that take into account the bivariate-correlating outcomes of both efficacy
and toxicity are required.

1.2 Classification of Phase I Cancer Trials

The objective of phase I cancer trials is to determine the optimal dose of an agent
or a combination of agents that can serve as the RP2D. The secondary objectives
are to evaluate the toxicity including dose-limiting toxicity, pharmacokinetics, and
the antitumor effect in the schedule under evaluation. The conventionally defined
RP2D of a cytotoxic agent corresponds to the MTD, defined as the highest dose
with acceptable toxicity. MTD is generally determined from dose-limiting toxicity
data obtained during the first, and rarely, the second cycle of treatment. In two-agent
combinationphase I trials, investigators need to capture the dose–toxicity relationship
for combination of two agents and identify MTD combinations of the two agents.
The dose-finding methods for determining the MTD (or MTD combination) are
roughly categorized into two groups: (1) those based on prespecified dose escalation
or de-escalation rules; and (2) those based on a statistical dose–response model.

In contrast to cytotoxic agents, the RP2D of MTAs may not necessarily be identi-
cal to theirMTD owing to themechanism of action. Therefore, dose-findingmethods
that take account the efficacy outcome in addition to the toxicity outcome are war-
ranted for the clinical development of MTAs. The dose–efficacy model for MTAs is
necessary to capture the specific relation between efficacy and a dose level. The effi-
cacy may increase initially with the dose level but then reaches a plateau; however,
this may not always be the case. Several powerful methods were developed recently.
Thus, the reasonable dose-finding methods for determining the RP2D of cytotoxic
agents and MTAs are considered to be different.

Before introducing the statistical methodologies for recent innovative dose-
findingmethods for a combination therapy of two agents andMTAs,wefirst overview
the rule- and model-based dose-finding methods for monotherapy (i.e., the use of
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a single agent) that are the prototype of all the innovative dose-finding methods
developed recently. Eisenhauer et al. (2015) described the basics of dose-finding
designs including the 3 + 3 designs as well as information on the process, pitfalls,
and logistics of phase I trials. Cheung (2011) focused on the theory and application
of the continual reassessment method (CRM). Statistical properties and operating
characteristics of rule- and model-based dose-finding methods have been examined
in several studies (e.g., O’Quigley and Chevret 1991, Chevret 1993, Lin and Shih
2001, Iasonos et al. 2008).

1.3 Rule-Based Methods

1.3.1 3+ 3 Design

The most well-known and widely used rule-based method is the 3+3 design (Carter
1973; Storer 1989). This design enrolls a group of three patients and treats them
with the starting (usually, the lowest) dose level. Based on the observed prespecified
toxicity (usually, dose-limiting toxicity), we determine the dose level allocated to the
next cohort of patients and the MTD as follows:

Step 1: Treat three patients at the starting dose level and observe the toxicities.

(a) If none of the three patients develops toxicity, then allocate the next
higher dose to the next cohort of patients, and repeat Step 1.

(b) If one out of three patients experiences toxicity, then go to Step 2.
(c) If at least two out of three patients experience toxicity, then go to

Step 3.

Step 2: Treat three more patients at the same dose level and observe the toxicities.

(a) If one out of the six patients experiences toxicity, then allocate the next
higher dose to the next cohort of patients and go to Step 1.

(b) If at least two out of the six patients experience toxicity, then go to
Step 3.

Step 3: Stop dose escalation, and the next lower dose level is generally selected as
the MTD.

Figure1.1 shows an example of dose assignment for the 3 + 3 design.

1.3.2 Other Relevant Methods

Accelerated-titration designs proposed by Simon et al. (1997) are also a widely
used rule-based method. The main features of this design are (i) to include a rapid
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Fig. 1.1 Dose assignment
for the 3 + 3 design

initial escalation stage, called an accelerated stage, where one patient per dose level
is treated, (ii) to account for moderate toxicity in addition to the dose-limiting tox-
icity, (iii) to have options to use intrapatient dose modification, and (iv) to analyze
trial results by means of the model that incorporates parameters for intra- and inter-
patient variation in toxicity and cumulative toxicity. They compared the operating
characteristics of the 3 + 3 design with those of the three different designs with an
accelerated phase. In addition, the best-of-5 design (Storer 2001) and the rolling six
design (Skolnik et al. 2008) may be useful in practice.

1.4 Model-Based Methods

1.4.1 Bayesian CRM

The most well-known model-based method is the CRM developed by the O’Quigley
et al. (1990). The CRM is the well-established prototype of the various recent model-
based methods. The CRM involves a dose–toxicity model and estimates the model
parameters based on the Bayesian theorem. For patient i , if a predefined toxicity is
observed, primarily the dose-limiting toxicity, we denote Yi = 1; otherwise, Yi = 0.
We let Pr{Yi = 1} be the probability that Yi = 1, often modeling this probability
using a one-parameter logistic regression model with a fixed intercept β0:

Pr{Yi = 1} = ψ(xi | β1) = exp(β0 + β1xi )

1 + exp(β0 + β1xi )
, (1.1)

where xi is the dose level of an agent for patient i , and β1 is the regression coeffi-
cient. O’Quigley et al. (1990) also introduced alternate models, including power and
hyperbolic tangent models. It should be noted that the numerical dose label xi s in
the CRM is not necessarily the actual dose administered, but rather is defined on a
conceptual scale that represents an ordering of the risks of toxicity based on initial
guesses about toxicity probabilities, for example, skeleton.

In the original CRM, the first patient is allocated to the dose level initially believed
to have toxicity closest to the target toxicity probability φ. After obtaining the data
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on the toxicity outcomes from the first j patients, Dj = {y1, · · · , y j }, the CRM
updates the posterior estimates of toxicity probabilities for the dose levels through
the estimation of the posterior probability distribution p j+1(β1|Dj ) to determine the
dose level allocated to the ( j + 1)th patient as follows:

p j+1(β1|Dj ) = L j (β1|Dj )p(β1)∫ ∞
−∞ L j (β1|Dj )p(β1)dβ1

, (1.2)

where L j (β1|Dj ) is the likelihood function of Eq. (1.1) for j patients; that is,

L j (β1|Dj ) =
j∏

i=1

{ψ(xi | β1)
yi }{1 − ψ(xi | β1)

(1−yi )}, (1.3)

and p(β1) is the prior probability distribution for β1. In this simple one-parameter
setting, the posterior estimate of β1 may be most easily computed by a stan-
dard numerical quadrature method (e.g., trapezoidal rule), but computer-intensive
simulation-based methods, such as the Markov chain Monte Carlo method, have
been widely applied. Using the posterior mean of β1, the posterior estimates of toxi-
city probabilities for the dose levels were obtained. The dose level (at which posterior
toxicity probability is the closest to the target value φ) was then determined, and the
( j + 1)th patient was allocated to that dose level. Thus, dose allocation based on the
posterior toxicity probability was performed until the maximum sample size Nmax

was reached. Eventually, the dose level with a posterior toxicity probability closest
to the target value φ at the end of the trial was selected as MTD. Figure1.2 shows
the trace plot of dose assignment for the Bayesian CRM.

Practical performance of the CRM can be improved by introducing a safety stop-
ping rule, by limiting each dose escalation to one level, and by treating patients in
cohorts (Goodman et al. 1995).When treating in cohorts of three using the same dose
level within the cohort, the first three patients are allocated to the lowest dose level
in practice owing to ethical considerations. Cheung (2011) provided comprehensive
reviews and extensive discussions of the CRM.

Fig. 1.2 Dose assignment
for the Bayesian CRM



6 1 Dose Finding in Phase I Cancer Trials

1.4.2 Other Relevant Designs

Babb et al. (1998) developed a dose-finding method that includes the escalation
with overdose control on the basis of the Bayesian CRM. In this design, the expected
proportion of patients treated at doses higher than theMTD is equal to a fixed level,α.
Ji et al. (2007) proposed a simple dose-finding method that uses a beta/binomial
model and a dose assignment rule based on posterior toxicity probabilities. Ji et al.
(2010) devised the modified toxicity probability interval method by introducing the
unit of probabilitymass that, given an interval and a probability distribution, is defined
as the ratio of the probability mass of the interval to the length of the interval. Liu
and Yuan (2015) additionally proposed an optimal Bayesian interval design that
determines the dose escalation or de-escalation for the next cohorts of patients on
the basis of the observed toxicity rate while minimizing the decision error of dose
assignment.
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Chapter 2
Dose Finding for a Combination
of Two Agents

Abstract Two-agent combination trials—involving a dose combination of two
alreadymarketed drugs or a single new investigational drug to be used in combination
with an approved drug—have rapidly increased in number. The concurrent develop-
ment of two new agents intended for use in combination to treat a disease has attracted
significant attention. Many authors have attempted to capture a dose–toxicity rela-
tionship for combination of two agents and to identify MTD combinations for two
agents. This chapter reviews the dose-finding methods for two-agent combination
trials along with the comparative analysis of these methods.

Keywords Combination of two agents · Comparative study · MTD combination
Synergistic effect

2.1 Introduction

2.1.1 Two-Agent Combination Trials

The testing of drug combinations based on a strong biological rationale is increas-
ingly seen in phase I trials. Effective treatment of cancer frequently requires the use of
combinations of drugs because even if a cancer seems sensitive to one drug initially,
cellular heterogeneity can lead to the emergence of drug-resistant disease (Marusyk
et al. 2012). A combination of drugs can target cancer cells that have differing drug
sensitivity levels, achieve a higher intensity of dose if the drugs have nonoverlapping
toxicities, and can reduce the risk of drug resistance (Dancey and Chen 2006). Drug
combinations have been repeatedly shown to improve survival among patients with
either early-stage or advanced-stage cancer. Recently, cancer immunotherapies, such
as monoclonal antibodies blocking the inhibitory programed cell death 1 pathway
(PD-1–PD-L1), have made a great impact on cancer treatments. Despite the remark-
able clinical efficacy of these agents against various malignant tumors, it was found
that they are not sufficiently active for many patients. For example, to address this

© The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2018
A. Hirakawa et al., Modern Dose-Finding Designs for Cancer Phase I Trials:
Drug Combinations and Molecularly Targeted Agents, JSS Research Series
in Statistics, https://doi.org/10.1007/978-4-431-55573-5_2
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issue, the combined inhibition of PD-1 and CTLA-4 in melanoma and non small
cell lung cancer has highlighted the potential to further enhance the clinical benefits
of monotherapies by combining agents with synergistic mechanisms of action (Kim
and Alrwas 2014).

In the two-agent combination trials, estimation of theMTDcombinations becomes
more complex than for single-agent trials. When combining two agents, we need to
consider a surface of probability of dose combinations where the dose of one or both
agents can be altered. That is, multiple potential MTD combinations can be defined
on the dose surface. The dose levels of two agents form various curves on the dose
surface, called the MTD contour. We, therefore, need to precisely capture the dose–
toxicity relationship for the combinations and to identify the MTD combination.
Ideally, one or more MTD combinations should be identified while minimizing the
total number of enrolled patients in phase I trials. Many authors have developed
combination dose-finding methods, an overview of which is provided by Harrington
et al. (2013). These methods can be generally classified as rule- or algorithm-based
designs.

2.1.2 An Overview of Model-Based Dose-Finding Methods

In this chapter, we focus on model-based dose-finding methods for combinations,
in which the primary aim is to find only one MTD combination. Conaway et al.
(2004) estimated the MTD combination by determining the complete and partial
orders of the toxicity probabilities by defining nodal and non-nodal parameters. A
nodal parameter is one whose ordering is known with respect to all other parameters.
Although the method of Conaway et al. (2004) does not rely on a parametric dose–
toxicity model, it is not an algorithmic- or rule-based design; therefore, we chose
to discuss it in the set of model-based approaches. This method was implemented
in a phase I trial investigating induction therapy with bortezomib and vorinostat in
patients with surgically resectable non small cell lung cancer (Jones et al. 2012).
Yin and Yuan (2009a, b) developed Bayesian adaptive designs based on latent 2 ×
2 tables and a copula-type model for two agents. Braun and Wang (2010) proposed
a hierarchical Bayesian model for the probability of toxicity of two agents. Wages
et al. (2011a, b) developed both Bayesian and likelihood-based designs that laid
out possible complete orderings associated with the partial order and applied model
selection techniques and the CRM to estimate theMTD combination. Hirakawa et al.
(2013) proposed a dose-finding method based on the shrunken predictive probability
of toxicity for combinations. Riviere et al. (2014) devised a Bayesian dose-finding
design based on the logistic model, whereas Mander and Sweeting (2015) published
a curve-free method that relies on the mathematical product of independent beta
probabilities.

These methods can be roughly categorized into two groups: (1) those using a
flexible model, with or without an interaction term, to jointly model the toxicity
probability at each dose pair of the two agents; and (2) those that involve a more
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underparametrized approach, relying upon single-parameter “CRM-type” models
and/or order-restricted inference (Barlow et al. 1972). For those in group (1), we
focus on the method based on a copula-type (Yin and Yuan 2009b) model, termed
the YYC method. We also introduce the method involving a hierarchical Bayesian
model (Braun and Wang 2010), termed the BW method. Besides, we describe the
methods using a shrinkage logistic model (Hirakawa et al. 2013), termed the HHM
method, and the ordinary logistic model (Riviere et al. 2014), termed the RYDZ
method. For the methods in group (2), we chose likelihood-based CRM for par-
tial ordering (POCRM) (Wages et al. 2011b), termed the WCO method, as well as
the order-restricted inference method of Conaway et al. (2004), termed the CDP
method.

2.1.3 Methodological Characteristics

Here, we overview the six above-mentioned dose-finding methods. The method-
ological characteristics of each design are summarized in Table2.1. The YYC, BW,
and RYDZ methods have been developed based on Bayesian inference, whereas
the HHM and WCO methods have been developed based on likelihood inference.
The principle of CDP is the estimation procedure of Hwang and Peddada (1994).
The YYC, HHM, and RYDZ methods model the interactive effect of two agents on
the toxicity probability, but the BW method does not. The WCO method is based
on the CRM and uses a class of underparametrized working models based on a
set of possible orderings for the true toxicity probabilities. In terms of the restric-
tion on skipping dose levels, the BW method allows for simultaneous escalation
or de-escalation of both agents, whereas methods YYC, CDP, HHM, and RYDZ
do not. Notably, the RYDZ method enables simultaneous escalation of both agents
in the start-up dose escalation rule that is generally incorporated to gather enough
information for Bayesian estimation at an early stage of trials. On the other hand,
the WCO method allows for a flexible movement of dose levels throughout the
trial and does not restrict movement to “neighbors” in the two-agent combination
matrix.

In the following section, we introduce both the statistical model for capturing
the dose–toxicity relationship and the dose-finding algorithm for exploring theMTD
combinations because almost all the dose-findingmethods for two-agent combination
trials have often been developed by improving or devising these components of the
method. The other detailed design characteristics are not shown in this book. We
considered a two-agent combination trial using agents A j ( j = 1, . . . , J ) and Bk

(k = 1, . . . , K ), respectively, throughout. We denote the probability of toxicity as π ,
and the targeting toxicity probability specified by physicians as φ. The other symbols
are independently defined by the dose-finding methods we compared.
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2.2 The Bayesian Approach Based on Copula Regression

2.2.1 Copula-Type Models

Let p j and qk be the prespecified toxicity probability corresponding to A j and Bk ,
respectively, and subsequently pα

j and q
β

k will be the true probabilities of toxicity for
agents A and B, respectively, where α > 0 and β > 0 are unknown parameters. Let
the true probability of toxicity at combination (A j , Bk) be denoted as π jk . Yin and
Yuan (2009b) proposed to use a copula-type regression model in the form of

π jk = 1 −
{
(1 − pα

j )
−γ + (1 − qβ

k )−γ − 1
}−1/γ

, (2.1)

where γ > 0 characterizes the interaction of two agents. They also introduced the
use of the Gumbel–Hougaard copula model. The joint probability is modeled by

π jk = 1 − exp
(
−

[{−log(1 − pα
j )

}1/γ + {−log(1 − qβ

k )
}1/γ ]γ )

. (2.2)

It should be noted that Gasparini et al. (2010) objected to the use of copulas for
modeling the joint probability of toxicity because the above model has limitations in
the modeling of drug–drug interactions. Further discussions are given in Gasparini
et al. (2010).

For the method based on the copula model, using the data obtained at that time
point, the posterior distribution is obtained by

f (α, β, γ |Data) ∝ L(α, β, γ |Data) f (α) f (β) f (γ ), (2.3)

where L(α, β, γ |Data) is the likelihood function of the model and f (α), f (β), and
f (γ ) are prior distributions, respectively. The Gibbs sampling algorithm is used to
sample from the posterior distributions of the unknownparameters.Whenperforming
this procedure, we need to elicit the prior toxicity probabilities p j and qk from
investigators. In two-agent combination phase I trials, the highest dose level of each
agent may often be the MTD that has been identified in each monotherapy phase
I trial; therefore, it is reasonable to set the prior toxicity probability of pJ (or qK )
equal to target φ (i.e., 0.30). The remaining toxicity probabilities (p1, . . . , pJ−1

and q1, . . . , pK−1) could be based on the investigator elicitations, but it recommends
selecting an even distribution from0 toφ.We also need to specify hyperparametersα,
β, and γ . Although we cannot change them in the software released by Yin and Yuan
(2009b), those authors have examined the sensitivity of operating characteristics for
α and β and reported that this method is robust at different hyperparameter values.
The Gamma(2, 2) priors for α and β as well as the Gamma(0.1, 0.1) prior for γ are
further recommended for the Clayton-type copula.
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2.2.2 The Dose-Finding Algorithm

Suppose ce and cd are the fixed probability cutoffs for dose escalation and
de-escalation, respectively. Dose escalation or de-escalation are restricted to one
dose level of change only, while not allowing translation along the diagonal direc-
tion (corresponding to simultaneous escalation or de-escalation of both agents). As
Yin and Yuan (2009b) pointed out in their paper, their dose-finding algorithmmay be
difficult to implement early in the trial owing to limited available data. Therefore, the
following start-up rule is enforced to collect a certain amount of data for stabilizing
parameter estimation before beginning the model-based dose finding.

1. Treat patients along the vertical dose escalation in the order {(A1, B1), . . . ,

(A1, BK )} until the first toxicity is observed.
2. Treat patients along the horizontal dose escalation in the order {(A2, B1), . . . ,

(AJ , B1)} until the first toxicity is observed.

After the start-up rule for stabilizing parameter estimation, the dose-finding algorithm
functions as follows:

1. If, at the current dose combination ( j , k), Pr(π jk < φ) > ce, then the dose is
escalated to an adjacent dose combination with the probability of toxicity higher
than the current value and closest to φ. If the current dose combination is (AJ ,
BK ), then the doses remain at the same levels.

2. If, at the current dose combination ( j , k), Pr(π jk > φ) > cd , then the dose is
de-escalated to an adjacent dose combinationwith the probability of toxicity lower
than the current value and closest to φ. In the case the current dose combination
is (A1, B1), the trial is terminated.

3. Otherwise, the next cohort of patients continues to be treated with the current
dose combination (doses staying at the same levels).

4. Once the maximum sample size Nmax is achieved, the dose combination that
has the probability of toxicity that is the closest to φ is selected as the MTD
combination.

2.2.3 Software Implementation

In this section, we use the software released by Yin and Yuan (2009b) to implement
their method. Readers can download the .exe file from

http://odin.mdacc.tmc.edu/~yyuan/index_code.html.

In this program, we input the following configurations: the number of dose levels
for two agents, their true joint toxicity probabilities for dose combinations, the target
toxicity probability, prior estimates of toxicity probabilities for dose levels for each
agent, the total number of cohorts, the cohort size, and the number of simulated trials.

For example, we obtain the following simulation results when two dose levels for
each agent are tested:

http://odin.mdacc.tmc.edu/~yyuan/index_code.html
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--------------------------------------------------

CPU time (hour)= 0.00208444 # of trials = 10

The number of cohorts = 10; cohort size = 3

Escalate if Pr(toxicity<0.3) > 0.8

De-escalate if Pr(toxicity<0.3) < 0.45

True toxicity probabilities:

0.15 0.20 0.40

0.10 0.15 0.35

0.05 0.10 0.30

Selection probabilities (%):

10.0 20.0 20.0

0.0 20.0 10.0

0.0 0.0 20.0

Number of patients treated at each dose:

2.4 3.3 1.8

3.3 1.2 2.4

6.9 4.2 4.5

Number of toxicities observed at each dose:

0.2 0.7 0.9

0.5 0.5 0.9

0.3 0.4 1.3

Total number of observed toxicities: 5.7

Percentage of inconclusive trials: 0.0%

--------------------------------------------------

At the default settings, ce and cd are set to 0.8 and 0.45, respectively. By means
of the C++ program (copula.cpp), we can change the values for ce and cd . We can
next select a copula model (i.e., Clayton or Gumbel copula model) and the prior
distributions for their model parameters.

2.3 Hierarchical Bayesian Design

2.3.1 Hierarchical Models

Braun andWang (2010) developed a novel hierarchical Bayesian design for combina-
tion trials. Let a j and bk be the dose levels corresponding to A j and Bk , respectively,
whose values are not the actual clinical values of the doses, but are the “effective”
dose values that will lend stability to their dose–toxicity model. It is assumed that
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each π jk has a beta distribution with parameters α jk and β jk . Notably, α jk(β jk) can
be interpreted as the prior number of patients assigned to combination ( j , k) expected
to manifest (or not manifest) toxicity. Braun and Wang (2010) proposed model α jk

and β jk using the parametric functions of a j and bk ,

log
{
α jk(θ)

} = θ0 + θ1a j + θ2bk and log
{
β jk(λ)

} = λ0 − λ1a j − λ2bk, (2.4)

respectively, where θ = {θ0, θ1, θ2} obeys a multivariate normal distribution with
mean μ = {μ0, μ1, μ2}, λ = {λ0, λ1, λ2} follows a multivariate normal distribution
with mean ω = {ω0, ω1, ω2}, and both θ and λ have variance σ 2 I3, in which I3 is a 3
× 3 identity matrix. The samples from the posterior distribution for (θ , λ) are easily
obtained by Markov chain Monte Carlo methods. These samples lead to posterior
distributions for each element of θ and λ, which in turn lead to a posterior distribution
for each π jk . The corresponding posterior means π̄ jk are calculated.

TheBWmethod necessitates careful elicitation of priors and effective dose values.
Development of priors begins with the specification of p j1 and q1k , which are a priori
values for E(π j1) and E(π1k). Braun and Wang (2010) set the lowest dose of each
agent to zero, i.e., a1 = b1 = 0. Consequently, log(α11) = θ0 and log(β11) = λ0,
and therefore θ0 and λ0 describe the expected number of toxicities for combination
(A1, B1), and the remaining parameters in θ and λ will describe how the expected
toxicities for other combinations are related to (A1, B1). They also used the fact that

Sp11
S(1 − p11)

= α11

β11
= exp{θ0}

exp{φ0} = exp{μ0}
exp{ω0} . (2.5)

Then, the prior values for μ0 and ω0 are obtained via

μ0 = log(Sp11) and ω0 = log(S [1 − p11]), (2.6)

where S = 1,000 was chosen as a scaling factor to keep both hyperparameters
sufficiently above 0. Furthermore, they select μ1 = μ2 = ω1 = ω2 = 2

√
σ 2 so

that 97.5% of the prior distributions for θ1, θ2, λ1, and λ2 will lie above 0, depending
upon the value of σ 2. Those authors point out that a value in the interval [5, 10] is
often sufficient in their settings for adequate operating characteristics, but each trial
setting will require fine-tuning of σ 2. They next define elicited odds ratios that can
be approximated by

ξ̃ j · ≈ exp{(μ1 + ω1)a j } and ξ̃·k ≈ exp{(μ2 + ω2)bk}, (2.7)

in which effective doses are obtained by solving for a j and bk . All doses are rescaled
to be proportional to log-odds ratios relative to combination (A1, B1). The derivation
of priors and effective dose values in the BW method is somewhat complex, and it
is recommended to read the original paper about the BW method for further detail.
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Weneed to elicit the toxicity probability parameters p j1 andq1k from investigators.
As we described in the previous section, the values of pJ1 and q1K are generally set
to 0.3, and the toxicity probabilities of all dose combinations are set arithmetically.
We assessed operating characteristics of the BW method for three values of σ 2, i.e.,
σ 2 = {3, 5, 10}. The best overall performance was obtained with σ 2 = 3, while the
BW method for σ 2 = 5 (or 10) performed worse in our simulations. This finding
indicates that we need to fine-tune the value of σ 2 in practice, as Braun and Wang
(2010) suggested.

2.3.2 The Dose-Finding Algorithm

The BW method accrues all patients in a single stage, rather than in two stages. The
dose-finding algorithm is similar to that of the YYC method after the YYC start-up
rule.

1. The first subject is assigned to combination (A1, B1).
2. Compute a 95% confidence interval for the overall toxicity rate among all

combinations using the cumulative number of observed toxicities for subjects
1, 2, . . . , (i − 1). If the lower bound of the confidence interval is greater than the
target toxicity rate, φ, terminate the trial.

3. Otherwise, use the outcomes and assignments of subjects 1, 2, . . . , (i − 1) to
determine the posterior distribution of each π jk , with posterior means π̄ jk .

4. Extract the set of dose combinations, that is,

S = {( j, k) | ji−1 − 1 ≤ j ≤ ji−1 + 1, ki−1 − 1 ≤ k ≤ ki−1 + 1} ,

that contains combinations that are within one dose level of the corresponding
doses in the combination assigned to the most recently enrolled patient (1, 2, · · · ,
(i − 1)), and subsequently allocate the dose combination ( j∗, k∗) in S as the one
with the smallest |π̄ jk − φ| to the next patient i .

5. Repeat these steps until maximum sample size Nmax is reached. Upon completion
of enrollment and follow-up of Nmax patients, identify the MTD combination
based on steps 3 and 4.

2.3.3 Software Implementation

To employ the BW method, readers can use the R code released at

http://www-personal.umich.edu/~tombraun/BraunWang/.

Brawn and Wang (2010) provided the following five pieces of code.

get.mtc.r R code that will identify the optimal combination for the next patient to
be enrolled based on the data collected on enrolled patients

http://www-personal.umich.edu/~tombraun/BraunWang/
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run.onesim.r R code that will run one simulated trial
jags model.txt text file containing hierarchical model description in WinBUGS

syntax
Actual Trial.r R code to find a dose combination to assign to the fourth subject in

a hypothetical trial
Simulation Study.r Sample R code to run a simulation study composed of 1,000

simulations

The simulation study of the BW method can be easily executed by means of the
run.onesim.r and jagsmodel.txt. We specify prior toxicity probabilities for each com-
bination, true toxicity probabilities, the target rate of toxicity, maximum sample size,
the prior variance parameter, starting doses, and the number of simulations. It should
be noted that based on the results of our simulation studies, we recommend that the
variance parameter σ 2 be set to 3 to stabilize the implementation of the R package
rjags.

For example, the following simulation results are obtained if we execute the pieces
of code below:

--------------------------------------------------

#Prior toxicity probabilities for each combination

p.prior <-

matrix(c(0.15,0.20,0.25,0.30,0.30,0.35,0.40,0.45),

nrow=2, ncol=4, byrow=TRUE)

#True toxicity probabilities

p.true <-

matrix(c(0.05,0.10,0.20,0.30,0.10,0.20,0.30,0.40),

nrow=2, ncol=4, byrow=TRUE)

#Targeted rate of DLTs

p.star <- 0.3

#Maximum sample size

m <- 30

#Prior variance parameter

s2 <- 3

#Starting doses

j.start <- 1

k.start <- 1

Run simulations

mysims <- NULL

Nsim <- 10

for (i in 1:Nsim)

{

set.seed(i)

temp <-

run.onesim(m, p.true, p.prior, p.star, s2, j.start, k.start,

dir) mysims <- rbind(mysims, temp)
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}

#Tabulate number of times each combo chosen as MTC

ndose.a <- ncol(p.prior)

ndose.b <- nrow(p.prior)

a <- mysims[,1]

b <- mysims[,2]

mtc.table <- table(c(b, paste(rep(0:ndose.b, ndose.a+1))),

c(a, rep(0:ndose.a, rep(ndose.b+1,ndose.a+1))))-1

rm(a,b)

colnames(mtc.table) <- paste(rep("A",ndose.a+1), 0:ndose.a,

sep="")

rownames(mtc.table) <- paste(rep("B",ndose.b+1), 0:ndose.b,

sep="")

> mtc.table

A0 A1 A2 A3 A4

B0 0 0 0 0 0

B1 0 1 2 3 1

B2 0 1 0 2 0

#Tabulate average number of patients assigned to each combo

a <- mysims[,m:(2*m-1)+4]

b <- t(matrix(as.numeric(paste(rep(1:ndose.a,ndose.b),

rep(1:ndose.b, rep(ndose.a,ndose.b)), sep="")),

nrow=ndose.a*ndose.b, ncol=nrow(a)))

a <- cbind(a,b)

b <- t(apply(a, 1, table)-1)

nsubj.table <-

matrix(apply(b, 2, mean), ncol=ndose.a, nrow=ndose.b, byrow=F)

rm(a,b)

colnames(nsubj.table) <- paste(rep("A",ndose.a), 1:ndose.a,

sep="")

rownames(nsubj.table) <- paste(rep("B",ndose.b), 1:ndose.b,

sep="")

> nsubj.table

A1 A2 A3 A4

B1 4.0 5.4 6.3 2.9

B2 2.9 4.4 2.4 1.7

--------------------------------------------------
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2.4 An Approach Using a Shrinkage Logistic Model

2.4.1 The Shrinkage Logistic Model

Hirakawa et al. (2013) developed a dose-finding method based on the shrinkage
logistic model. They first model the joint toxicity probability πi for patient i using
an ordinary logistic regression model with fixed intercept β0 as follows:

πi = exp(β0 + β1xi1 + β2xi2 + β3xi3)

1 + exp(β0 + β1xi1 + β2xi2 + β3xi3)
, (2.8)

where xi1 and xi2 are the actual (or standardized) dose levels of agents A and B,
respectively, and xi3 represents a variable of their interaction such that xi3 = xi1×xi2
for patient i .

Using themaximum likelihood estimates for parameters β̂ j ( j = 1, 2, 3), Hirakawa
et al. (2013) proposed the shrunken predictive probability:

π̃i = exp(β0 + (1 − δ1)β̂1xi1 + (1 − δ2)β̂2xi2 + (1 − δ3)β̂3xi3)

1 + exp(β0 + (1 − δ1)β̂1xi1 + (1 − δ2)β̂2xi2 + (1 − δ3)β̂3xi3)
, (2.9)

where shrinkage multiplier 1 − δ j ( j = 1, 2, and 3) is a number between 0 and 1.
Hirakawa et al. (2013) also developed the method for estimation of the shrinkage
multipliers.

2.4.2 The Dose-Finding Algorithm

Hirakawa et al. (2013) invoke the following start-up rule-based dose allocation algo-
rithm with the cohort size of three until the maximum likelihood estimate for each
parameter is obtained.

1. The matrix of combinations is zoned according to its diagonals from the upper
left entry to the lower right entry, as described in the WCO method.

2. The first cohort is allocated to the zone that includes the lowest dose combina-
tions (A1, B1). If a prespecified stopping rule is fulfilled, then we terminate the
trial for safety. Otherwise, we will escalate to the next zone. If more than one
dose combination is contained within a particular zone, we can sample without
replacement from the dose combinations available, allocating the sampled dose
combination to the next cohort. This sampling and allocation step is continued
until all available dose combinations in that zone are tested.

3. During the above-mentioned step, the existence of maximum likelihood esti-
mates for the regression coefficients is verified for every cohort of three patients,
although we do not show this procedure in detail in this book. If we obtain the
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maximum likelihood estimates, then the shrunken predictive probability of tox-
icity for each dose combination is calculated, and subsequently the following
dose-finding algorithm is applied.

After obtaining the maximum likelihood estimates for the regression parameters, we
calculate the shrunken predictive probability of toxicity for the current dose com-
bination dc and then start the following dose-finding algorithm. We adopt the same
restriction on the skipping dose level proposed in the YYC method. Let c1 and c2 be
the allowable bands from target toxicity limit φ as MTD combinations.

1. If, at the current dose combination dc, φ − c1 ≤ p̃(dc) ≤ φ + c2, then the next
cohort of patients continues to be allocated to the current dose combination.

2. Otherwise, the next cohort of patients is allocated to the dose combination with
the shrunken predictive probability closest to φ among the adjacent or current
dose combinations.

3. Once themaximum sample size Nmax is reached, the dose combination that should
be assigned to the next cohort is selected as the MTD combination. In addition, if
we encounter the situation where dc = d1 and p̃(dc) > φ + c2, then we terminate
the trial for safety.

2.4.3 Software Implementation

The estimation of shrinkage multipliers is carried out using the SAS/IML software
(SAS Institute Inc., Cart, NC). Given the data on dose levels of agents A and B, fixed
intercept (β0), a maximum likelihood estimate for each coefficient (β̂1, β̂2, and β̂3),
and first-order linear approximation of πi obtained by means of Eqs. (7) and (8) in
Hirakawa et al. (2013), we estimate the shrinkage parameters (δ1, δ2, and δ3,) using
the following functionmodule and theNLPNRRsubroutine for theNewton–Raphson
ridge method in SAS/IML.

--------------------------------------------------

/************************************************/

d: shrinkage multipliers

dA: dose level of agent A

dB: dose level of agent B

Int: Fixed intercept

b1, b2, b3: Maximum likelihood estimate for each coefficient

pt: first-order linear approximation of true toxicity

probability obtained using Equations (7) and (8)

in ref. (Hirakawa et al., 20113)

/************************************************/

start l(d) global(dA,dB,Int, b1,b2,b3,pt);
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ptilde=exp(Int+(1-d[1])#b1#dA+(1-d[2])#b2#dB

+(1-d[3])#b3#dA#dB)/(1+exp(Int+(1-d[1])#b1#dA

+(1-d[2])#b2#dB+(1-d[3])#b3#dA#dB));

logl=sum(pt#log(ptilde)+(1-pt)#log(1-ptilde));

return(logl);

finish l;

x0={0 0 0};

con={0 0 0,1 1 1};

optn={1 0};

call nlpnrr(rc,xr,"l",x0,optn,con);

if rc>0 then d=xr[,1]||xr[,2]||xr[,3];

else d=0||0||0;

--------------------------------------------------

2.5 An Approach Using a Logistic Model

2.5.1 The Logistic Model Involving Standardized Doses

Riviere et al. (2014) modeled the true probability of toxicity at combination (A j , Bk)

π jk via an ordinary four-parameter logistic model as follows:

logit(π jk) = β0 + β1u j + β2vk + β3u j vk, (2.10)

where u j and vk are the standardized doses for the j th level of agent A and the
kth level of agent B; β0, β1, β2, and β3 are unknown parameters that represent the
intercept, the toxicity effects of agents A and B, and the interaction between the two
agents, respectively. The standardized dose of two agents is defined as

u j = log

(
p j

1 − p j

)
, vk = log

(
qk

1 − qk

)
, (2.11)

where p j and qk are the prior probabilities of toxicity for agents A and B, respec-
tively. Riviere et al. (2014) assumed a normal prior with mean 0 and variance 10 for
the parameters of intercept (β0) and interaction term (β3), and presumed an expo-
nential prior with a mean of 1 for β1 and β2. Thus, the joint posterior distribution of
parameters β0, β1, β2, and β3 is given by

f (β0, β1, β2, β3 | Data) ∝ L(β0, β1, β2, β3 | Data) f (β0) f (β1) f (β2) f (β3),

(2.12)
where L(·) is the likelihood function of model parameters. The posterior samples for
each parameter are obtained by the Gibbs sampler.
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2.5.2 The Dose-Finding Algorithm

Riviere et al. (2014) applied the dose-finding algorithm proposed by Yin and Yuan
(2009a). That is, they restricted dose escalation and de-escalation to one level at a
time (i.e., we do not allow a dose to escalate or de-escalate along the diagonal). On
the other hand, Sweeting and Mander (2012) showed that the diagonal escalation
strategy may be more effective in reaching the target toxicity level with a limited
sample size and can provide a higher percentage of correct selection of an MTD
combination. They, therefore, adopted this strategy in their start-up rule of the RYDZ
method. Notably, they also proposed a different criterion for the selection of anMTD
combination at the end of the trial. Once trial reaches the maximum sample size, the
RYDZ method selects the dose combination with the highest posterior probability,

Pr(π jk ∈ [φ − δ, φ + δ]), (2.13)

which has been used to treat at least one cohort of patients, as theMTD combination.
Riviere et al. (2014) used δ of 0.1 in their simulation studies.

2.5.3 Software Implementation

We can avail ourselves of the RYDZ method using the R package dfcomb. Given
the number and prior toxicity probabilities of agents A and B; values of φ, φ − δ,
and φ + δ; the number of cohorts and cohort sizes; the probability threshold for dose
escalation; dose de-escalation; and early trial termination with the minimum number
of patients for early trial termination, the function CombIncrease_sim provides the
operating characteristics of the RYDZ method as follows:

--------------------------------------------------

p_tox_sc1 = matrix(c(

0.10,0.20,0.30,

0.20,0.30,0.40,

0.30,0.40,0.50),nrow=3,ncol=3)

prior_a1 = c(0.1, 0.2, 0.3)

prior_a2 = c(0.1, 0.2, 0.3)

ndose_a1 = 3

ndose_a2 = 3

CombIncrease_sim(ndose_a1=ndose_a1, ndose_a2=ndose_a2,

p_tox=p_tox_sc1, target=0.30, target_min=0.20, target_max=0.40,

prior_tox_a1=prior_a1, prior_tox_a2=prior_a2, n_cohort=10,

cohort=3, tite=FALSE, nsim=1000, c_e=0.85, c_d=0.45, c_stop=1,

n_min=30, seed = 14061991)

True toxicities:
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Agent 1

Agent 2 1 2 3

3 0.3 0.4 0.5

2 0.2 0.3 0.4

1 0.1 0.2 0.3

Percentage of Selection:

Agent 1

Agent 2 1 2 3

3 10.0 12.3 3.4

2 12.9 27.8 11.0

1 1.5 11.3 9.8

Number of patients:

Agent 1

Agent 2 1 2 3

3 1.99 2.38 2.14

2 3.31 7.25 2.11

1 5.81 2.92 2.10

Number of toxicities:

Agent 1

Agent 2 1 2 3

3 0.60 0.94 1.06

2 0.65 2.15 0.87

1 0.57 0.61 0.62

Percentage of inconclusive trials: 0

The minimum number of cohorts to stop the trial is: 10

Number of simulations: 1000

Cohort size: 3

Number of cohorts planned: 10

Total patients accrued: 30

Toxicity target: 0.3

Targeted toxicity interval: [ 0.2 , 0.4 ]

Prior toxicity probabilities for agent 1:

[1] 0.1 0.2 0.3

Prior toxicity probabilities for agent 2:

[1] 0.1 0.2 0.3

Escalation threshold: 0.85

Deescalation threshold: 0.45

Stopping threshold: 1

Toxicity is not a time-to-event but binary

--------------------------------------------------
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2.6 The Design Based on Order-Restricted Inference

2.6.1 Order-Restricted Inference

The method proposed by Conaway et al. (2004) is based on the estimation procedure
of Hwang and Peddada (1994). Parameter estimation subject to order restrictions is
discussed by Hwang and Peddada (1994) and Dunbar et al. (2001). The method
of Hwang and Peddada (1994) uses different estimation procedures for “nodal”
and “non-nodal” parameters. A nodal parameter is one whose ordering is known
with respect to all the other parameters. For example, in a J × K matrix of drug
combinations, the probability of toxicity, π11, at combination (A1, B1) is a nodal
parameter because it is known that π11 ≤ π j+1,k and π11 ≤ π j,k+1 for j, k ≥ 1.
For nodal parameters, estimation proceeds by establishing a simple order that is
consistent with the partial order. This is done by guessing the unknown inequalities
and by obtaining isotonic regression estimates of nodal parameters π jk based on
the Pool Adjacent Violators Algorithm (PAVA). To estimate the non-nodal parame-
ters, Hwang and Peddada (1994) eliminate the smallest number of parameters that
make a non-nodal parameter into a nodal parameter. For instance, in a J × K
matrix of drug combinations, π12 is a non-nodal parameter because it is unknown
whether π12 < π21 or vice versa. Estimates of the non-nodal parameters can be
obtained in a version of PAVA for simple orders that fixes the nodal parameters at
their previously estimated values. Hwang and Peddada (1994) demonstrated that the
resulting estimates satisfy the partial order. Conaway et al. (2004) computed esti-
mates of the parameters for all possible guesses and averaged them to eliminate
the dependence of the estimates on a single guess in the ordering among non-nodal
parameters.

The approach of Conaway et al.(2004) is a two-stage design. The initial stage is
intended to quickly escalate through treatment combinations that are nontoxic (in
single-patient cohorts until the first toxicity is observed), and the second stage imple-
ments the Hwang and Peddada (1994) approach. Throughout the second stage, the
toxic response data for the i th treatment combination is of the form Y = {Y jk; j =
1, . . . , J ; k = 1, . . . , K } with Y jk equal to the number of observed toxicities among
patients treated with combination (A j , Bk). SupposeA denotes the set of treatments
that have been administered thus far in the trial such that A = {( j, k) : n jk > 0},
where n jk represents the number of patients treated with each combination. With
the Beta(α jk, β jk) prior for π jk , the toxicity probabilities are updated only for
( j, k) ∈ A.

π̂ jk = Y jk + α jk

n jk + α jk + β jk
(2.14)

The estimation procedure of Dunbar et al. (2001) is applied to the updated posterior
means π̂ jk for ( j, k) ∈ A.

If appropriate prior information is available to investigators, it is described via
a prior distribution of the form π jk ∼ Beta(α jk, β jk). The investigators specify the
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expected value of π jk and upper limit u jk such that they are 95% certain that the
toxicity probability will not exceed u jk . The equations

E[π jk] = α jk

α jk + β jk
and Pr[π jk ≤ u jk] = 0.95 (2.15)

are solved to obtain prior specifications for α jk and β jk . Another prior specification
for the CDP method is to choose a subset of possible dose–toxicity orders based on
ordering the combinations by rows, columns, and diagonals of the drug combina-
tion matrix. Following the guidance of Wages and Conaway (2013), we choose a
subset of approximately 6–9 orderings. This approach provides an appropriate bal-
ance between choosing enough orderings so that we include adequate information to
account for the uncertainty associated with partially ordered dose–toxicity curves,
without increasing the dimensionality of the problem so much so that we dimin-
ish performance. We arrange orderings according to movements across rows, up
columns, and along diagonals. Because in a large matrix, there could be many ways
to arrange combinations along a diagonal, we restrict movements to only moving
across rows, up columns, and up or down any diagonal.

2.6.2 The Dose-Finding Algorithm

Stage 1: The first patient is entered at the starting treatment, usually combination
(A1, B1). The most appropriate treatment to which to escalate could possibly consist
of more than one treatment combination. For example, in a matrix of combinations,
the possible escalation treatment for (1, 1) is (1, 2) or (2, 1). Therefore, if no toxicity
is observed with (1, 1), then the next patient is treated with a combination chosen
from the “possible escalation treatments.” If no toxicity is observed in this patient, the
next patient is assigned to a combination randomly chosen from the set of possible
escalation treatments that have not yet been administered in the trial. Once a toxicity
is observed, Stage 2 begins.
Stage 2: For all ( j, k) ∈ A, we compute the loss, L(π̂ jk, φ), associated with each
combination. As in Conaway et al. (2004), we implement a symmetric loss function
so that L(π̂ jk, φ) = |π̂ jk − φ|.
1. Suppose lmin = min

( j,k)∈A
L jk(π̂ jk, φ), and let C be the set of combinations with

losses equal to the minimum observed loss, C = {( j, k) : L jk(π̂ jk, φ) = lmin}.
2. If there is a single combination, c ∈ C, then the suggested combination is c, with

an estimated toxicity probability of π̂c

3. If C contains more than one combination, then we randomly choose among them
according to the following rules:

a. If π̂c > φ ∀ c ∈ C, then we randomly choose from the set C of candidate
combinations.
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b. If π̂c ≤ φ for at least one c ∈ C, we choose randomly among the combina-
tions in C that are expected to have the “highest” toxicity probability.

4. If the suggested combination has an estimated toxicity probability that is less
than the target, a combination is chosen at random from the “possible escalation
treatments” that have not yet been tested in the trial.

The averaged Hwang and Peddada (1994) estimates for each possible ordering pro-
duce estimates π̂ jk and the next patient is enrolled into the treatment with estimated
toxicity probability closest to the target rate such that |π̂ jk − φ| is minimized. Sub-
sequent to a toxic or nontoxic response being observed for that patient, the toxicity
probabilities are re-estimated and the trial proceeds.

2.7 The Partial-Ordering Continual Reassessment Method

2.7.1 The Model for Possible Orderings of Toxicity
Probability for a Dose Combination

The CRM for partial orders is based on utilizing a class of workingmodels that corre-
spond to possible orderings of the toxicity probabilities for the combinations. Specif-
ically, suppose there are M possible orderings being considered that are indexed by
m. For a particular ordering, we model the true probability of toxicity, π jk , corre-
sponding to combination A j and Bk , via a power model

π jk ≈ Fm(d jk, βm) = [
p jk(m)

]βm ; m = 1, . . . , M, (2.16)

where p jk(m) represent the skeletonof themodel at orderingm.We let the plausibility
of each ordering under consideration be described by a set of prior probabilities
τ = {τ(1), . . . , τ (M)}, where τ(m) ≥ 0 and

∑
τ(m) = 1;m = 1, . . . , M . From

accumulated data Ωi from i patients, the maximum likelihood estimate β̂m of the
parameter βm can be calculated for each of the m orderings, along with the value of
the log-likelihood, Lm(β̂m | Ωi ), at β̂m . Wages et al. (2011b) proposed an escalation
method that first chooses the ordering that maximizes the updated probability

ω(m) = exp{Lm(β̂m | Ωi )}τ(m)

M∑
m=1

exp{Lm(β̂m | Ωi )}τ(m)

(2.17)

before inclusion of each patient. If we denote this ordering as m∗, they use estimate
β̂m∗ to evaluate the toxicity probabilities for each combination at orderingm∗ so that
π̂ jk ≈ Fm∗(d jk, β̂m∗).
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A prior specification for the WCOmethod is to choose a subset of possible dose–
toxicity orders. We rely on the guidance of Wages and Conaway (2013) and choose
approximately 6–9 orderings based on ordering the combinations by rows, columns,
and diagonals of the drug combination matrix. Another specification that needs to
be made prior to beginning the study is a set of skeleton values p jk(m). We can rely
on the algorithm of Lee and Cheung (2009) to generate reasonable skeleton values
using function getprior in R package dfcrm. We simply need to specify skeleton
values at each combination that is adequately spaced (O’Quigley and Zohar 2010)
and to adjust them to correspond to each possible ordering, in order for the WCO
method to show good performance in terms of identifying an MTD combination.
The location of these skeleton values can be adjusted to correspond to each possible
ordering using the getwm function inR package pocrm (Wages and Varhegyi 2013).

2.7.2 The Dose-Finding Algorithm

Within the framework of sequential likelihood estimation, an initial escalation
scheme is needed, given that the likelihood fails to have a solution in the interior
of the parameter space unless some heterogeneity (i.e., at least one toxic and one
nontoxic) in the responses has been observed.

Stage 1: At the first stage, the WCO method makes use of “zoning” the matrix of
combinations according to its diagonals. The trial begins in zone Z1 = {(A1, B1)},
and the first cohort of patients is to be enrolled in this “lowest” combination. After
the first detection of a toxicity in one of the patients, the first stage is closed, and
the second (model-based) stage is opened. As long as no toxicities occur, cohorts
of patients are examined at each dose within the currently occupied zone, before
escalating to the next highest zone. If (A1, B1)was tried and deemed “safe,” then the
trial will escalate to zone Z2 = {(A1, B2), (A2, B1)}. If more than one dose is present
within a zone, we can sample without replacement from the doses available within
the zone. Therefore, the next cohort is enrolled into a dose that is chosen randomly
from (A1, B2) and (A2, B1). The trial is not allowed to advance to zone Z3 at the
first stage until a cohort of patients has been observed at all combinations in Z2. This
procedure continues until a toxicity is observed or all available zones are exhausted.

Stage 2: Subsequent to a toxicity being observed, the second stage of the trial begins.

1. Based on accumulated dataΩi from i patients, the estimated toxicity probabilities
π̂ jk are obtained for all combinations being tested, by the procedure described
above.

2. The next entering patient is then allocated to the dose combination with the
estimated toxicity probability closest to the target toxicity rate so that |π̂ jk − φ|
is minimized.
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3. There is no skipping the restriction imposed on escalation to allow for adequate
exploration of the drug combination space.

4. For trials subject to partial ordering, there may be more than one combination
with toxicity probability closest to the target. If there is a “tie” between two or
more combinations, the patient will be randomized to one of the combinations
with the toxicity probability closest to the target. The trial stops once enough
information accumulates about the MTD combination.

2.7.3 Software Implementation

Readers can apply theWCOmethod using R package pocrm. Given the true toxicity
probabilities of agentsA andB, the possible orderings, skeleton values, initial guesses
of toxicity probabilities for each ordering based on function getprior in R package
dfcrm, prior probability for each possible ordering, the size of patient cohorts, the
number of patients for the stopping rule, maximum sample size, target toxicity rate,
the number of simulations, and an acceptable toxicity range, function pocrm.sim
provide the operating characteristics of the WCO method as follows:

--------------------------------------------------

#True toxicity rates .

r<-c(0.05,0.10,0.15,0.20,0.15,0.20,0.30,0.35,0.20

,0.30,0.60,0.70,0.60,0.65,0.70,0.80)

#Specify the possible orderings.

orders<-matrix(nrow=3,ncol=16)

orders[1,]<-c(1,2,5,3,6,9,4,7,10,13,8,11,14,12,15,16)

orders[2,]<-c(1,5,2,3,6,9,13,10,7,4,8,11,14,15,12,16)

orders[3,]<-c(1,5,2,9,6,3,13,10,7,4,14,11,8,15,12,16)

#Specify the skeleton values.

skeleton<-c(0.20,0.22,0.24,0.26,0.28,0.30,0.32,

0.34,0.36,0.38,0.40,0.42,0.44,0.46,0.48,0.50)

#Initial guesses of toxicity probabilities for each ordering.

alpha<-getwm(orders,skeleton)

#We consider all orders to be equally likely prior to the study.

prior.o<-rep(1/3,3)

#Initial escalation at Stage 1 proceeds according to the zones.

#Single patient cohorts are used.

x0<-c(rep(1,1),rep(2,1),rep(5,1),rep(3,1),rep(6,1),

rep(9,1),rep(4,1),rep(7,1),rep(10,1),rep(13,1),

rep(8,1),rep(11,1),rep(14,1),rep(12,1),rep(15,1),rep(16,1))

#Number of patients used to define stopping rule

stop<-31

#Maximum sample size.
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n<-30

#The target toxicity rate

theta<-0.30

#Number of simulations

nsim<-100

#Definition of acceptable toxicity rates

tox.range<-0.05

fit<-pocrm.sim(r,alpha,prior.o,x0,stop,n,theta,nsim,tox.range)

fit

$true.prob

[1] 0.05 0.10 0.15 0.20 0.15 0.20 0.30 0.35 0.20

0.30 0.60 0.70 0.60 0.65 0.70 0.80

$MTD.selection

[1] 0.00 0.00 0.07 0.20 0.01 0.08 0.19 0.03 0.10

0.19 0.04 0.00 0.08 0.01 0.00 0.00

$patient.allocation

[1] 0.07 0.06 0.07 0.11 0.05 0.09 0.12 0.04 0.09

0.10 0.04 0.01 0.09 0.02 0.01 0.02

$percent.toxicity

[1] 0.3016667

$mean.n

[1] 30

$acceptable

[1] 0.41

--------------------------------------------------

2.8 Operating Characteristics

Little is known about the relative performance of competing model-based dose-
finding methods for combination phase I trials. Some authors have compared
their method with existing model-based methods (Wages et al. 2011a, b; Hirakawa
et al. 2013). Wages et al. (2011b) reported that their method is competitive in com-
parisonwith the previously proposedmethod ofWages et al. (2011a), which has been
demonstrated to have performance comparable to that of the methods of Conaway
et al. (2004) and Yin and Yuan (2009a, b). Hirakawa et al. (2013) reported that their
method is competitive relative to the methods of Yin and Yuan (2009a) and Wages
et al. (2011b).

Riviere et al. (2014) compared two algorithm-based and four model-based dose-
finding methods by means of three evaluation indices under 10 scenarios of a 3 × 5
dose combination matrix. Specifically, the two up-and-down designs using isotonic
regression and the T -statistic proposed by Ivanova andWang (2004) and Ivanova and
Kim (2009), respectively, were selected as the algorithm-based methods; the loga-
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rithm, Clayton, and Gumbel model-based methods proposed by Wang and Ivanova
(2005) and Yin and Yuan (2009a, b), respectively, as well as the partial-ordering
CRMproposed byWages and Conaway (2011a) were selected as model-basedmeth-
ods. Among their conclusions was that the model-based methods performed bet-
ter than the algorithm-based ones, as demonstrated in single-agent studies (Iasonos
et al. 2008).

These comparisons have been made at limited and ideal settings with respect to
the type of combination matrix, the position, and number of trueMTD combinations,
using few evaluation indices, and often for large sample sizes (i.e., ∼60). Nonethe-
less, in practice, we often encounter complex and various settings of phase I trials.
Specifically, (1) the dose combination matrices are not only of the square type (i.e.,
3× 3 and 4× 4) but also of the rectangle type (2× 4 and 3× 5); (2) the underlying
position and number of true MTD combinations possibly vary; and (3) the sample
size is as small as 30 in practice. Furthermore, the operating characteristics of the
dose-finding methods developed based on different principles should be compared
via many evaluation indices. Hirakawa et al. (2015) and Hirakawa and Sato (2016)
examined performance of six methods based on six evaluation indices under 16 tox-
icity scenarios shown in Table2.2. The target toxicity probability that is clinically
allowed, φ, is set to 0.3. For each simulated trial, no stopping rule was specified
to exhaust prespecified maximum sample size Nmax = 30. Each simulation study
consisted of 1,000 trials. The other configurations of the methods are elaborated by
Hirakawa et al. (2015) and Hirakawa and Sato (2016). The aim of simulation studies
was to evaluate (1) how well each method identifies MTD combinations at and near
the target rate, (2) how well each method allocates patients to combinations at and
around the true MTD combination, and (3) how feasible it is to implement each
method given its respective prior specifications and software capabilities.

Across the 16 scenarios, the YYC, CDP, BW, WCO, HHM, and RYDZ methods
yielded average 34, 47, 40, 46, 42, and 48% recommendation rates for true MTD
combinations, respectively. The YYC, CDP, BW, WCO, HHM, and RYDZ meth-
ods showed average 41, 30, 33, 32, 25, and 31% recommendation rates for overly
toxic dose combinations, respectively. The average number of patients allocated to
true MTD combinations of the YYC, CDP, BW, WCO, HHM, and RYDZ methods
averages 6, 11, 9, 10, 8, and 9, respectively. The overall percentages of observed
toxicities of methods YYC, CDP, BW, WCO, HHM, and RYDZ were averaged 23,
32, 30, 28, 20, and 27%, respectively. The average number of patients allocated
to a dose combination above the true MTD combinations of the YYC, CDP, BW,
WCO, HHM, and RYDZ methods averages 8, 12, 11, 9, 5, and 8, respectively. In
considering a benchmark for this summary measure, Cheung (2011) analyzed the
ideal situation in which all patients are treated with the true MTD combination. In
this case, we would expect a φ = 30% observed toxicity rate. Therefore, a design
that results in roughly φ% toxicities on average per trial can be regarded as safe. The
CDP, BW, andWCOmethods yield the best performance with respect to an observed
toxicity rate closest to the target toxicity rate. Cheung (2011) also consider that the
recommendation rates for true MTD combinations are the most immediate index for
accuracy, which can be used to compare different methods, while the entire distri-
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bution of selected dose combinations does provide more detailed information than
what the recommendation rates for true MTD combinations alone suggest. Cheung
(2011) proposed the accuracy index, after n patients, defined as

Mn = 1 − J × K ×

J∑
j=1

K∑
k=1

|π jk − φ| × ρ jk

J∑
j=1

K∑
k=1

|π jk − φ|
, (2.18)

where π jk is the true toxicity probability of dose combination (A j , Bk), and ρ jk is
the probability of selecting dose combination (A j , Bk). A large index indicates high
accuracy, and the maximum value of the index is 1. Based on the accuracy index, the
CDP and RYDZ methods showed the maximum value, 0.59, and the WCO method
showed the second largest value: 0.57.

2.9 Effects of Design Properties

Manymodel-basedmethods include four design properties: patient cohort size, dose–
toxicity model, choice of the start-up rule, and whether or not to include a restric-
tion on dose-level skipping. In the studies by Riviere et al. (2014) and Hirakawa
et al. (2015), these design properties were kept as close as possible to those in pub-
lished works, to be true to the original design intended by the authors because their
goals were to compare the dose-finding designs implied by these published meth-
ods. Nevertheless, the rationale for choosing each design property, particularly the
patient cohort size, dose–toxicity model, start-up rule, and whether or not to include
a restriction on dose-level skipping, was not substantially investigated in these stud-
ies. When statisticians develop a new dose-finding method or modify an existing
method, they are especially interested in the true effects of these properties. Thus, a
fair comparison of these properties is necessary. Moreover, when planning phase I
trials, investigators may need to change the four design properties of themodel-based
method for practical or ethical reasons. In such cases, understanding the true effects
of these properties on the operating characteristics would be beneficial.

Hirakawa et al. (2016) analyzed the well-known four design properties and eval-
uated the impact of each independent effect on the operating characteristics of the
dose-finding method at these properties. With respect to the properties of the design
properties in the dose-finding methods for two-agent combination trials, Sweeting
and Mander (2012) evaluated various dose escalation strategies in the six- and three-
parameter dose–toxicity models for two-agent combination trials using a cohort size
of two patients. Hirakawa et al. (2016) performed comprehensive simulation studies
to primarily examine the effects of the four design properties on the identification of
the true MTD combinations and exposure to unacceptable toxic dose combinations
at the complex and various settings of two-agent combination trials.
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In this section, we touch on the patient cohort size, the choice of a start-up rule, and
whether or not to include a restriction on dose level skipping, along with the insights
obtained from the results of the simulation studies (for examining the effects of these
design properties) conducted by Hirakawa et al. (2016).

2.9.1 Size of Patient Cohorts

Dose-finding designs allocate a cohort of patients to each dose combination. The size
of patient cohorts typically described in the statistical literature is conventionally in
the range of 1–3 and may be related to the probability of identifying the true MTD
combination. This is because the total number of doses that can be tested during
the trial depends on the number of patients and the size of the cohort. Notably, we
supposed that the total sample size is fixed, and only the distribution into cohorts
is the design element. For example, for a total sample size of 30, a cohort size of
1, 2, or 3 results in the use of up to 30, 15, or 10 doses, respectively. In this example,
the cohort size of 3 enables toxicity data to be collected from more patients for a
given dose combination. On the other hand, the opportunity to explore more dose
combinations is lost. Selecting an appropriate cohort size is therefore an important
consideration for investigators when designing a phase I trial.

According to the results of the simulation studies conducted by Hirakawa et al.
(2016), we observed that the selection rates for true MTD combinations decreased,
and those for unacceptable toxicity dose combinations increased on average with the
increasing patient cohort sizes. To have the best chance to identify the true MTD
combination and to avoid unacceptable toxicity of dose combinations, a cohort size
of 1 may be favorable and unrelated to any of the other design properties. We expect
that at a cohort size of 1, the selection rates for true MTD combinations are up to
5% higher than in studies that involve a cohort size of 2 or 3. Nonetheless, the use of
a cohort size of 1 may be controversial in some trials, owing to concerns about the
determination of dose escalation or de-escalation based on toxicity data from only
one patient, especially at an early stage of a trial. Therefore, the development of a
dose-finding method with variable patient cohort sizes during the trial is necessary,
as stated by Kakurai et al. (2015). In addition, the smaller cohort size operationally
requires more time to complete the trials. Depending on the circumstances of trial
operation, one may prefer a cohort size of 2 (or 3) in practice.

2.9.2 The Choice of a Dose–Toxicity Model

To accommodate synergistic toxicity effects in two-agent combinations, several use-
ful models have been proposed. For example, Thall et al. (2003) published a six-
parameter model for determining the toxicity probabilities of dose combinations and
a toxicity equivalence contour for two-agent combinations.Wang and Ivanova (2004)
proposed a logistic-type logarithm model. Yin and Yuan (2009a) introduced the use
of the Clayton and Gumbel copula-type model. Hirakawa et al. (2013) developed
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a shrinkage logistic model with an interaction term of two agents. When select-
ing a dose–toxicity model, one should pay attention to the number of parameters
included in the model because this characteristic affects the results at limited sample
sizes. In the present study, we focused on well-known three-parameter models for
the following reasons: First, over the last decade, many authors tended to propose a
three-parametermodel rather than a one- or six-parametermodel. To this end, authors
of recent comparative studies on the rival dose-finding methods chose the methods
based on the three-parameter models as competitors (Riviere et al. 2014; Hirakawa
et al. 2015). Second, in addition to the specification of the four design properties
chosen in this study, the specifications of the partial orderings are required for the
one-parameter model (Wages et al. 2011a, b). With respect to the partial orderings, a
key assumption for dose-finding methods for single-agent trials is the monotonicity
of the dose–toxicity curve. In this case, the curve is said to follow a “complete order”
because the ordering of probabilities of toxicity for any pair of doses is known, and
administration of greater doses of the agent can be expected to yield toxicity in an
increasing proportion of patients. In studies testing combinations, the probabilities
of toxicity often follow a partial order, in that there are pairs of combinations for
which the ordering of the toxicity probabilities is not known. Such an assumption
would make the comparison between the one-parameter and three-parameter mod-
els unsubstantial. Specifically, although we can compare the performance between
the composite of one-parameter models and partial orderings and three-parameter
models, we cannot fairly compare the independent (or crude) effects between the
one-parameter and three-parameter models. Third, a fair comparison between the
operating characteristics of the three-parameter and six-parameter models is also dif-
ficult because the six-parameter model described by Thall et al. (2003) also requires
the inherent specifications of prior distributions for the model parameters. In the
study by Hirakawa et al. (2016), the following logistic-type logarithm model intro-
duced by Wang and Ivanova (2005) and modified by Gasparini (2013)—in addition
to the Clayton and Gumbel Archimedean copula models proposed by Yin and Yuan
(2009a)—were compared.

Logarithm model π jk = 1 − (1 − p j )
α(1 − qk)

β−αβγ log(1−p j ), (2.19)

where π jk is the joint toxicity probability when combining agent A j ( j = 1, . . . , J )
and Bk (k = 1, . . . , K ); p j and qk are the prespecified toxicity probabilities corre-
sponding to agents A j and Bk , respectively.

Simulation studies revealed that the results generated by the dose–toxicity model
are independent of whether the dose combination matrix is square or rectangular
and of the position of MTD combinations in the dose combination matrix. All three
dose–toxicity models evaluated were similar on average. Although we thoroughly
examined the operating characteristics of the three dose–toxicity models, there may
be frequently encountered situations that we did not consider. For instance, our sim-
ulations implied that the two agents are already approved because the prior toxicity
probabilities for the highest dose level of both agents were commonly set to 0.30.
The highest dose level for each agent is assumed to be the MTD that has been deter-



2.9 Effects of Design Properties 37

mined in a single-agent trial. Thus, we assumed that the lowest and highest doses are
both fixed in our simulation studies. In practice, however, phase I trials can involve
combinations of new and approved agents or two new agents. Further simulation
studies are necessary to optimize the dose-finding design for such trials. In addition
to the specifications of prior toxicity probability, the operating characteristics of the
dose–toxicity models vary depending on the prior distributions of model parameters
in the dose combination matrix. Therefore, the reasonable choice of a dose–toxicity
model may be the most difficult issue in planning dose-finding trials.

2.9.3 The Start-Up Rule

The start-up dose allocation rule is a rule-based algorithm that is applied until a
certain amount of data is obtained. This rule is generally introduced to stabilize
the Bayesian estimation of parameters in a chosen dose–toxicitymodel. For example,
the start-up rule is often applied until toxicity is first observed. Here, we introduced
the two popular start-up rules: those proposed byYin andYuan (2009a) and byWages
et al. (2011b). The start-up rule proposed by Yin and Yuan (2009a) involves treat-
ing patients along the vertical dose escalation in the order (A1, B1), (A1, B2), · · ·
until the first dose-limiting toxicity (toxicity) is observed. Patients are then treated
along the horizontal dose escalation in the order (A2, B1), (A3, B1), · · · until the first
toxicity is observed. We refer to this as the vertical and horizontal (VH) rule. A
model-based dose-finding method is then designed. The rule of Wages et al. (2011b)
begins with dividing the dose combination matrix into several groups along the diag-
onals of the combination matrix. For example, in a 4 × 4 dose combination matrix,
seven groups are generated. The trial begins at the lowest combination (A1, B1) (the
first group) and, in the absence of toxicity, escalates to the second group, (A1, B2)

and (A2, B1). At this step, if the second cohort is allocated to (A1, B2), we then
automatically allocate the third cohort to (A2, B1) and vice versa. That is, we sample
without replacement from the dose combinations available until all the available dose
combinations in that group are tested as long as no toxicity occurs. We refer to this
principle as the diagonal rule.

In simulation studies, the VH and diagonal start-up rules may result in similar
average selection rates for true MTD combinations and unacceptable toxicity dose
combinations, irrespective of the dose combination matrix and MTD combination
position. In addition, the VH rule is operationally easier to apply than the diagonal
rule because it does not include a random sampling procedure.

2.9.4 Restrictions on Skipping Dose Levels

Any restrictions imposed on the skipping of dose levels during model-based dose
findingmay be a controversial issue inmany phase I trials because of safety concerns.
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The original CRM proposed by O’Quigley et al. (1990) allows us to skip dose levels
during dose escalation or de-escalation in single-agent phase I trials. Partial-ordering
CRM for identifyingMTD combinations in two-agent combination phase I trials also
imposes no restriction on dose-level skipping. Nevertheless, several authors argued
that moving from a given dose, (A j , Bk), to dose (A j+1, Bk+1) (i.e., increasing the
doses of both agents) may expose patients to a higher risk of toxicity (Yin and Yuan,
2009a; Wages et al. 2011b). Therefore, it has been proposed that dose escalation or
de-escalation should be restricted such that doses change only by one level at a time,
and that the doses of both drugs are never simultaneously increased or simultaneously
decreased (Restriction 1). The allowed dose combinations ofRestriction 1 are defined
as the following set:

S1 = {( j−1, k), ( j+1, k), ( j, k), ( j, k+1), ( j, k−1), ( j+1, k−1), ( j−1, k+1)}.
(2.20)

Although Braun and Wang (2010) also limit dose adjustment to one level of
change only, they allow simultaneous escalation or de-escalation of both agents
(Restriction 2). Restriction 2 is defined by the following set:

S2 = {( j − 1, k), ( j + 1, k), ( j, k), ( j, k + 1), ( j, k − 1), ( j + 1, k − 1), (2.21)

( j − 1, k + 1), ( j − 1, k − 1), ( j + 1, k + 1)}

Investigators should decide which type of restriction to use based on historical
toxicity data of combinations of the two agents. Ultimately, for two drugs that are
already approved, there will be more toxicity data available, and dose skipping can
likely be less restricted.

In simulation studies, restricting dose-level skipping may improve the selection
rates of trueMTD combinations by up to 10% and could reduce the selection rates of
dose combinations with unacceptable toxicity by up to 4% in our simulation studies.
Nonetheless, the effect of restriction on skipping a dose level varied depending on the
patient cohort size. We recommend including a restriction on skipping dose levels
when the cohort size is greater than or equal to 2. The choice of Restriction 1 or
Restriction 2 makes no difference and, therefore, the choice can be conveniently
made in many cases. To alleviate concerns regarding simultaneous escalation of the
two agents during the trial, Restriction 1 may be appealing in practice.
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Chapter 3
Dose Finding for Joint Assessment of Both
Efficacy and Toxicity

Abstract Traditionally, phase I trials are designed to determine the MTD of a new
agent based solely on toxicity, regardless of the efficacy. The determination of an
optimal dose based on the joint assessment of toxicity and efficacy of the drug in
phase I dose-finding trials may be reasonable in some cases. The various types of
incorporation of toxicity and efficacy outcomes into dose-finding methods have been
developed. Among them, in this chapter, we overview four methods: (i) the bivariate
continual reassessment method, (ii) Bayesian method based on the efficacy–toxicity
trade-off, (iii) Bayesianmethod for evaluating binary toxicity and continuous efficacy
outcomes, and (iv) the method based on the Bayesian Model Averaging (BMA).

Keywords Bivariate · Correlation · Efficacy and toxicity · Joint assessment

3.1 Introduction

For cytotoxic agents, increased exposure to a drug augments tumor cell killing in
preclinical models. This dose–response relationship in preclinical models is extrap-
olated to humans, as a consequence of which “the more the better” approach (i.e.,
the more toxic the treatment, the stronger effect we anticipate seeing) has become
one of the most popular in oncology (Postel-Vinay et al. 2009; Sleijfer and Wiemer
2008). Thus, safety is first examined in a phase I trial, in which dose-finding meth-
ods are aimed at estimating the MTD of a new drug, fulfilling ethical constraints by
minimizing the number of patients treated at too toxic levels. Then, efficacy of the
MTD is typically examined in a subsequent phase II trial.

Nonetheless, some cancer therapies, such as cancer vaccines, are generally much
safer than cytotoxic agents, and the dose that yields a sufficient biological activity
is unlikely to confer significant toxicity. Hence, for these therapies, ethical concerns
have been extended to the additional constraint that the proportion of patients who
receive an ineffective dose can be minimized. In addition, due to statistical and
resource insufficiency of the traditional two-phase approach (i.e., the safety and
efficacy of a new agent is studied sequentially in phases I and II, respectively), various
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dose-finding methods taking into account toxicity and efficacy simultaneously have
been developed for clinical trials.

Gooley et al. (1994) were perhaps the first to consider two dose–outcome curves
using a simulation as a design tool. They discussed the design and analysis of a
proposed phase I/II clinical trial for a bone marrow transplant. That design sought
a dose that balanced the risks of two immunological complications. Thall and Rus-
sell (1998) proposed a phase I/II design to find a dose that would satisfy both
safety and efficacy requirements based on a trinary outcome. They used a propor-
tional odds model (McCullagh 1989) to model the dose–outcome relationship. Thall
and Cook (2004) developed a Bayesian phase I/II trial design based on trade-offs
between efficacy and toxicity probabilities. They proposed to use the Gumbel model
(Murtaugh and Fisher 1990) to capture the relation between the bivariate binary toxi-
city and efficacy outcomes. They employed the quadraticmodel for the dose–efficacy
relationship to consider a nonmonotonic pattern.

As an extension of the CRM, Braun (2002) proposed the bivariate CRM that
accounts for both toxicity and efficacy outcomes. Their work was motivated by
research into allogeneic stem cell transplantation for older and advanced leukemia
patients. Asakawa et al. (2014) devised a way to incorporate the BMA into the
bivariate CRM to accommodate the misspecification of the true dose–toxicity and
dose–efficacy relationships of the drug.

The abovemethods havebeendeveloped for binary toxicity and efficacyoutcomes,
but we often encounter a situation where the efficacy is measured as a continuous
variable such as pharmacodynamic markers in practice. Bekele and Shen (2005)
utilized bivariate probit models, in which a patient’s toxicity and efficacy outcomes
correlate with each other to develop the dose-finding method to explain binary toxi-
city and continuous efficacy outcomes. A continuous latent variable was introduced
for the joint modeling of the continuous efficacy and the binary toxicity outcomes
in a bivariate model, at each given dose level. Similarly, Hirakawa (2012) proposed
a dose-finding method for analysis of correlating bivariate binary toxicity and con-
tinuous efficacy outcomes by means of the factorization models in single-agent and
two-agent combination trials.

In this chapter, we overview the four methods: (i) the bivariate CRM (Brawn,
2002), (ii) Bayesian method based on the efficacy–toxicity trade-off (Thall and Cook
2004), (iii) Bayesian method for evaluating binary toxicity and continuous efficacy
outcomes (Hirakawa 2012), and (iv) the CRM-based method derived from BMA
(Asakawa et al. 2014).

Hereafter, we mainly introduce both the statistical model for capturing the dose–
efficacy and dose–toxicity relationships along with the dose-finding algorithm for
exploring the optimal dose because almost all the dose-finding methods have often
been developed by improving or devising these components. The notations of each
method are independently defined because the models and dose-finding algorithm
of each method are greatly different.
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3.2 The Bivariate Continual Reassessment Method

Braun (2002) attempted to find a regimen that is optimal, in the sense that acute
graft-versus-host disease and disease progression rates are both kept near desired
thresholds.

3.2.1 Modeling Toxicity and Efficacy Outcomes

For each subject i (i = 1, · · · , N ), let Yi and Zi be the indicators of toxicity and
progression (that is no efficacy). Yi (or Zi )= 1 indicates that toxicity (or progression)
is observed, and Yi (or Zi ) = 0 indicates otherwise.

The respective probabilities of toxicity and progression, πY (dl) and πZ (dl), are
associated with each dose dl (l = 1, · · · , L) via the equations

πY (dl) = exp (−3 + β1dl)

1 + exp (−3 + β1dl)
, (3.1)

πZ (dl) = exp (3 − β2dl)

1 + exp (3 − β2dl)
. (3.2)

Braun (2002) assumed that each pair (Yi , Zi ) has a bivariate distribution;

f (y, z | d) = Cπ
y
Y (1 − πY )(1−y) π z

Z (1 − πZ )(1−z) ψ yz (1 − ψ)(1−yz) (3.3)

where ψ denotes the association between Y and Z , and C is a normalizing constant.
Thus, the parameter vector is given by θ = (β1, β2, ψ) in this dose-finding method.

After we observe the results for a cohort of n subjects, Dn , the likelihood is given
by

L (θ |Dn) =
n∏

i=1

f (yi , zi ) . (3.4)

Braun (2002) presumed a noninformative prior for θ, p (θ), specifically,

p (θ) = 6ψ (1 − ψ) exp {− (β1 + β2)} , β1 > 0, β2 > 0, 0 < ψ < 1 (3.5)

which applies an exponential distribution with a mean of 1 to each regression param-
eter β1, β2, and a beta distribution with the mean 0.5 to association parameter ψ .
Note that β1, β2, and ψ are assumed to be marginally independent.

The posteriors of θ are expressed as

p(θ |Dn) ∝ L(θ |Dn)p(θ). (3.6)

Braun (2002) estimated the posteriormean of θ by the integral approximationmethod
proposed by Tierney and Kadane (1986).
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3.2.2 The Dose-Finding Algorithm

Definition of the Optimal Dose:

Braun (2002) defined the optimal dose as the dose that minimized the Euclidean
distance ul of the posterior probabilities

(
π̂Y (dl) , π̂Z (dl)

)
to the target rates of

toxicity and progression
(
π∗
Y , π∗

Z

)
at the end of the study:

ul =
√(

π̂Y (dl) − π∗
Y

)2 + (
π̂Z (dl) − π∗

Z

)2
. (3.7)

Acceptable Dose Criteria:

To control the risk of treating subjects at a dose with either unacceptably high toxicity
or unacceptably low efficacy, Braun (2002) placed a limit on the dose escalation/de-
escalation based on the lower bound of a one-sided 95% confidence interval for the
overall rate of toxicity LBY and for the overall rate of disease progression LBZ . LBY

and LBZ are estimated from the total toxic events eY and total progression events eZ
among n subjects. The specific dose escalation/de-escalation rules will be described
later.

Dose-Finding Algori thm:

In their dose-findingmethod, a first cohortwith c subjects is treated at the starting dose
that the investigator considers the optimal dose. After n subjects have been enrolled,
using the posterior mean of θ, we calculate the posterior probabilities of toxicity and
progression outcomes for each dose, π̂Y (dl) and π̂Z (dl). The dose allocated to the
next cohort of patients is determined as follows:

1. If LBY ≤ π∗
Y and LBZ ≤ π∗

Z , the dose corresponding to the smallest value of ul
is selected, and a new cohort of c subjects enters on that dose.

2. If LBY > π∗
Y and LBZ ≤ π∗

Z , then patients of the next cohort will be treated
at the dose that minimized ul only if that dose is lower than the current dose.
Otherwise, the dose will be decreased to the next lowest dose from the current
dose.

3. If LBY ≤ π∗
Y and LBZ > π∗

Z , then patients of the next cohort will be treated at
the dose that minimized ul only if it is higher than the current dose. Otherwise,
the dose will be escalated to the next highest dose.

This procedure is repeated until the maximum number of patients N have been
enrolled, and then we determine the optimal dose. If both confidence intervals LBY

and LBZ lie above the target rates or their dose-finding method recommends increas-
ing above dose dL or decreasing below dose d1, then the study will be terminated
early.
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3.2.3 Operating Characteristics

Braun (2002) compared the performance of the bivariateCRMwith that of the designs
proposed by Gooley et al. (1994) in simulation studies under three scenarios. Gooley
et al. (1994) proposed three rule-based dose-finding designs, denoted as designs A–
C, based on the number of patients without efficacy (rejection after a transplant) or
with toxicity. The dose-finding algorithms of the three designs are quite similar. The
major differences among the three designs are the criteria for increasing or decreasing
the dose level. For further details, see the original paper. According to the simulation
results published by Gooley et al. (1994), the operating characteristics of design A
were deemed inferior to those of designs B and C. Therefore, we focused on designs
B and C, and compared the operating characteristics among the bivariate CRM and
designs B and C.

Braun (2002) assumed 18 dose levels and 60 patients in total. The first cohort of
patients was allocated to dose level 14. The outcomes of each subject were simulated
to be negatively associated with ψ = 1/2. Each simulation consisted of 1,000 trials.

In the two scenarios, which include more than two true optimal doses, the means
of the recommended rates for the true optimal dose of the bivariate CRM, design
B, and design C were 67.0%, 61.6%, and 77.1%, and the mean termination rates of
the study on the bivariate CRM, design B, and design C were 23.9%, 24.7%, and
13.7%, respectively. In the scenarios in which no optimal dose exists, the bivariate
CRM, design B, and design C revealed termination rates of the trial, 92.3%, 85.3%,
and 76.7%, and average numbers of subjects per trial of the bivariate CRM, design
B, and design C were 19.6, 25.6, and 27.9, respectively.

Judging by these simulation results, the average performance of the bivariate
CRM was slightly higher than that of design B but lower than that of design C by
approximately 10% of the recommended rates for a true optimal dose. On the other
hand, the bivariate CRM terminated the study earlier than design B and design C
when no optimal dose exists. Thus, the bivariate CRM can be considered a more
conservative method than design C.

3.2.4 Software Implementation

A software package for implementing the bivariate CRM can be downloaded
fromhttps://biostatistics.mdanderson.org/softwaredownload/SingleSoftware.aspx?-
Software_Id=15.

When applying the bivariate CRM, we input (i) monitoring outcomes (Toxic-
ity/Efficacy/Toxicity and Efficacy), (ii) a definition of a true optimal dose (the target
rates of toxicity; the target rates of efficacy; the closest dose to the target/the dose
above the target/the dose below the target), (iii) the value of the intercept parameter
in the toxicity–efficacy model [−3 in Eq. (3.1) and 3 in Eq. (3.2)], (iv) the number
of dose levels, (v) initial dose level, (vi) maximum dose-level increment, (vii) the

https://biostatistics.mdanderson.org/softwaredownload/SingleSoftware.aspx?
Software_Id=15
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range of toxicity and efficacy probability (minimum and maximum probabilities of
toxicity and efficacy), (viii) cohort size, and (ix) minimum and maximum sample
sizes. Note that it is necessary to use the reciprocal of disease progression rates in
Eq. (3.2) when we input (iii), the value of the intercept parameter, into the efficacy
model (i.e., input the value of −3 instead of 3).

After we run simulations, the main program window can show the summary data
for the different scenarios and design variants simulated.

3.3 Dose Finding Based on Efficacy–Toxicity Trade-Offs

Thall and Cook (2004) developed a Bayesian phase I/II trial design based on the
efficacy–toxicity trade-offs that a physician would consider desirable. The models
for bivariate binary and trinary outcomes are considered in this dose-finding method.
Here, we introduce only the model for bivariate binary outcomes.

3.3.1 Modeling Toxicity and Efficacy Outcomes

Let YEi and YT i be the indicators of efficacy and toxicity for the i th patient
(i = 1, · · · , N ). YEi (or YT i ) = 1 indicates that efficacy (or toxicity) is observed,
and YEi (or YT i ) = 0 indicates otherwise. Given the actual L doses d1, · · · , dL , stan-
dardized dose d ′

l = log (dl) − L−1 ∑L
m=1 dm , (l = 1, · · · , L) is used for the models

underlying the dose-finding method.
Thall and Cook (2004) formulated the marginal probability of toxicity πT

(
d ′
l

)

and efficacy πE
(
d ′
l

)
as follows:

πT
(
d ′
l

) = exp
(
αT + βT d ′

l

)

1 + exp
(
αT + βT d ′

l

) , (3.8)

πE
(
d ′
l

) =
exp

(
αE + βE,1d ′

l + βE,2d ′
l
2
)

1 + exp
(
αE + βE,1d ′

l + βE,2d ′
l
2
) . (3.9)

The joint probability function for YEi and YT i is modeled by the Gumbel model:

πa,b (xi , θ) = Pr (YEi = a,YT i = b|xi , θ)
= (πE )a (1 − πE )1−a (πT )b (1 − πT )1−b

+ (−1)a+b πE (1 − πE ) πT (1 − πT )

(
eψ − 1

eψ + 1

)
(3.10)

for a, b ∈ {0, 1}, where xi and ψ denote the actual dose administered to patient i
and the association parameter, respectively. Thus, the parameter vector is given by
θ = (

αT , βT , αE , βE,1, βE,2, ψ
)
in this dose-finding method.
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If we denote the data for the first n patients in the trial as Dn , then the likelihood
is given by

Ln (θ |Dn) =
n∏

i=1

1∏

a=0

1∏

b=0

{
πa,b (xi , θ)

}I {Y i=(a,b)}
. (3.11)

Thall and Cook (2004) assumed that each component of θ has a normal distri-
bution, i.e., αT ∼ N

(
μ̃αT , σ̃αT

)
, βT ∼ N

(
μ̃βT , σ̃βT

)
, αE ∼ N

(
μ̃αE , σ̃αE

)
, βE,1 ∼

N
(
μ̃βE,1 , σ̃βE,1

)
, βE,2 ∼ N

(
μ̃βE,2 , σ̃βE,2

)
, ψ ∼ N

(
μ̃ψ , σ̃ψ

)
, respectively. Suppose

ξ = (
μ̃αT , σ̃αT , · · · , μ̃ψ , σ̃ψ

)
denotes the vector of hyperparameters with all prior

covariance sets equal to 0, and let φ (θ |ξ) denote the normal prior of θ.
The posteriors of θ are given by

φ(θ |ξ , Dn) ∝ Ln (θ |Dn) φ(θ |ξ). (3.12)

By the method of Monahan and Genz (1997), Thall and Cook (2004) numerically
integrated Ln (Dn| θ) φ(θ |ξ) with respect to θ for computing the posteriors.

To establish the value of hyperparameters, for each dose d ′
l , Thall and Cook

(2004) considered the prior mean of πE
(
d ′
l

)
, denoted as mE,l(ξ) and mT,l(ξ), and

the prior standard deviations of πE
(
d ′
l

)
and πT

(
d ′
l

)
, denoted as sE,l(ξ) and sT,l(ξ).

Additionally, Thall and Cook (2004) proposed to specify the values of the target
means m∗

E,l and m∗
T,l based on the physician’s opinion, and the values of the target

standard deviations s∗
E,l and s∗

T,l in the range 0.29–0.50. Then, by the Nelder–Mead
algorithm (Nelder and Mead 1965), we numerically solved for the value of ξ that
best fits the target means and variances by minimizing the objective function

h(ξ) =
∑

y=E,T

∑

1≤l≤L

[{
my,l(ξ) − m∗

y,l

}2 + {
sy,l(ξ) − s∗

y,l

}2] + c
∑

1≤l≤k≤L

(σ̃l − σ̃k)
2
.

(3.13)
The second term in h(ξ) is included so that the solution will distribute the prior
variance more evenly among the components of θ, with c being a small positive
constant.

3.3.2 The Dose-Finding Algorithm

The Definition of the Optimal Dose:

Thall and Cook (2004) considered the situation where the dose-findingmethod based
on the Euclidean distance from the point of interest to the most desirable point,
(πE , πT ) = (1, 0) may not reflect clinical desirable outcomes in practice because
this method puts equal weight on efficacy and toxicity. Instead of using the Euclidean
distance, Thall and Cook (2004) developed a new indicator, which is designated as
“desirability,” to identify the optimal dose based on the efficacy–toxicity trade-offs
that a physician would consider desirable.

At first, to calculate the desirability, we have to establish the target efficacy–
toxicity trade-off contour, C , such that all the points on C are equally desirable.
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The way to construct C is introduced in the next subsection. Once the trade-off
contour C is established, for each given dose level, we obtain an intersection point
Z = (

πEz
(
d ′
l

)
, πT z

(
d ′
l

))
of the trade-off contour and a straight line that cuts across

the points of the posterior efficacy and toxicity probabilities
(
π̂E

(
d ′
l

)
, π̂T

(
d ′
l

))
and

the ideal efficacy and toxicity probability pair (1, 0). Thus, the desirability value for
d ′
l , δ

(
d ′
l

)
, is defined as follows:

δ
(
d ′) =

√(
πEz

(
d ′
l

) − 1
)2 + (

πT z
(
d ′
l

) − 0
)2

√(
π̂E

(
d ′
l

) − 1
)2 + (

π̂T
(
d ′
l

) − 0
)2 − 1 (3.14)

If
(
π̂E

(
d ′
l

)
, π̂T

(
d ′
l

))
is on the trade-off contour, then the desirability value is 0. The

larger positive desirability value indicates a more desirable dose level.

Acceptable Dose Criteria:

Thall and Cook (2004) defined the minimum efficacy and maximum toxicity criteria
as follows:

Pr
{
πE

(
d ′, θ

)
> π E |Dn

}
> pE , (3.15)

Pr
{
πT

(
d ′, θ

)
< πT |Dn

}
> pT , (3.16)

where π E and πT are fixed lower and upper limits specified by the physician, and
pE and pT are fixed probability cutoffs. The probability cutoffs pE and pT may be
determined, from preliminary computer simulation results, to obtain a design with
desirable operating characteristics. If d ′ satisfies both Eqs. (3.15) and (3.16), or if d ′
is the lowest untried dose above the starting dose and satisfies Eq. (3.16), then d ′ is
an acceptable dose.

The Dose-Finding Algorithm:

We treat the first cohort at the starting dose specified by the physician.During the trial,
after the most recent cohort’s data have been incorporated into Dn , the desirability
for each d ′

l , δ
(
d ′
l

)
, is calculated, and the dose—that maximizes δ

(
d ′
l

)
among the

doses with acceptable efficacy and toxicity—is to be administered to the next cohort
of patients. This procedure is repeated until the maximum number of patients N
is reached. At this point, there is at least one acceptable dose, then dose d ′ among
acceptable doses maximizing δ

(
d ′
l

)
is selected as the optimal dose. If there are no

acceptable doses, then the trial is terminated early and no dose is selected.

3.3.3 Constructing a Trade-Off Contour

To constructC , three target values,
{
π∗
1 , π∗

2 , π∗
3

}
, that the physician considers equally

desirable, are elicited. First,we elicit a desirable trade-off target,π∗
1 = (

π∗
1,E , π∗

1,T

) =
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Fig. 3.1 The efficacy–toxicity trade-off contour is represented by the dotted curve. This contour is
generated from the three equally desirable elicited target points

(
π∗
E1, 0

)
,

(
1, π∗

T 2

)
,

(
π∗
E3, π∗

T 3

)
,

which are represented by filled circles. Z represented by a filled square is the intersection point
of the trade-off contour and a straight line that cuts across the points of the posterior efficacy and
toxicity probabilities

(
π̂E

(
d ′
l

)
, π̂T

(
d ′
l

))
(represented by a filled triangle), and the ideal efficacy

and toxicity probability pair (1, 0). “A” is Euclidean distance from the point of
(
π̂E

(
d ′
l

)
, π̂T

(
d ′
l

))

to optimal point (1, 0), and “B” is Euclidean distance from the intersection point z to optimal point
(1, 0). The desirability value is defined as B/A − 1

(
π∗
1,E , 0

)
, in the case where toxicity has probability 0. Next, we elicit π∗

2 having the
same desirability as π∗

1 by asking the physician what the maximum value of πT may
be if in the bivariate binary outcome case πE = 1. Given these two equally desirable
extremes, we elicit a third pair, π∗

3 , that is equally desirable but is intermediate
between π∗

1 and π∗
2 . We plot each target as it is elicited and draw the target efficacy–

toxicity trade-off contour, C , determined by
{
π∗
1 , π∗

2 , π∗
3

}
(Fig. 3.1).

Thall andCook (2004) used the convenient formπT = f (πE ) = a+b/πE+c/π2
E

in their work, fitted to the three elicited target pairs subject to the constraint that f
be nondecreasing for πE such that {πE , f (πE )} ∈ C .

3.3.4 Operating Characteristics

Thall and Cook (2004) illustrated their dose-finding method’s behavior in a simula-
tion study under six scenarios. The number of dose levels was four, and themaximum
sample size was set to 36. The starting dose was dose level 1, and the number of
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patients allocated to each dose level was set to 3. In each scenario, the efficacy and
toxicity occurred independently (i.e., φ = 0).

In addition, we set π E = 0.20, πT = 0.40, and pE = pT = 0.10. The means
and standard deviations of the prior parameters were

(
μ̃αT , s̃αT

) = (−0.619, 0.941),(
μ̃βT , s̃βT

) = (0.587, 1.659),
(
μ̃αE , s̃αE

) = (−1.496, 1.113),
(
μ̃βE,1 , s̃βE,1

) =
(1.180, 0.869),

(
μ̃βE,2 , s̃βE,2

) = (0.149, 1.192) and
(
μ̃ψ , s̃ψ

) = (0, 1.00), respec-
tively. To construct C , the three target values

(
π∗
E1, 0

)
,

(
1, π∗

T 2

)
,

(
π∗
E3, π∗

T 3

) =
(0.15, 0) , (1, 0.60) , (0.25, 0.30) were selected.

As a result, in five scenarios, which include a true optimal dose, the mean of
the recommended rates for the true optimal dose was 82.6%. In the scenario where
no dose was acceptable, the trial was correctly stopped early with no dose selected
94.5% of the time. Thus, Thall and Cook (2004) demonstrated that their dose-finding
method may be able to make a correct decision, namely, select the optimal dose or
stop early when no doses are acceptable.

3.3.5 Software Implementation

Readers can use publicly released software EffTox (version 4.0.12), which
can be downloaded from https://biostatistics.mdanderson.org/softwaredownload/-
SingleSoftware.aspx?Software_Id=2.

To run EffTox, the essential inputs—(i) prior efficacy and toxicity probabilities
for doses, (ii) effective sample size, (iii) equally desirable target efficacy–toxicity
probability pairs, (iv) true efficacy and toxicity probabilities for each dose level, and
(v) the conditional probability of efficacy given no toxicity outcome—are required
but are not limited to these values.

Depending on prior efficacy and toxicity probabilities and effective sample size,
the hyperparameters of the prior distribution with respect to the model parameters
were automatically calculated. The prespecified efficacy–toxicity trade-off contour
is also automatically constructed based on three determined efficacy and toxicity
probability pairs that are considered by the physician to be equally desirable targets,
that is,

{
π∗
1 , π∗

2 , π∗
3

}
.

3.4 A Bayesian Approach to Modeling Binary Toxicity
and Continuous Efficacy Outcomes

Hirakawa (2012) developed a dose-findingmethod for evaluating continuous efficacy
and binary toxicity outcomes in monotherapy and combination therapy. Here, we
introduce only the model for monotherapy.

https://biostatistics.mdanderson.org/softwaredownload/
SingleSoftware.aspx?Software_Id=2
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3.4.1 Modeling Toxicity and Efficacy Outcomes

Let YT i and Y ∗
Ei be a binary toxicity outcome and a raw continuous efficacy outcome

for the i th of N patients. YT i = 1 indicates that toxicity is observed, and YT i = 0
indicates otherwise. A lower value of continuous efficacy outcome Y ∗

Ei is regarded
as superior to higher values.

Hirakawa (2012) assumed the probability of the toxicity outcome as follows:

logit (πT (dl)) = log

(
πT (dl)

1 − πT (dl)

)
= α0 + α1dl , (3.17)

where πT (dl) is the probability of toxicity for dose dl , l = 1, · · · , L , and (α0, α1) are
unknownparameters. Then, the distribution ofYT i matches theBernoulli distribution,
such that,

f
(
yT i |dl,i

) = exp
[
yT iψi − log {1 + exp (ψi )}

]
, (3.18)

where ψi equals logit (πT i ), and dl,i denotes the actual dose for patient i .
For the continuous efficacy outcome, Hirakawa (2012) used the model previously

described by O’Connell et al. (1993). A raw continuous efficacy outcome Y ∗
Ei is

transformed by YEi = h
(
Y ∗
Ei

)
, then the distribution of YEi is normal with the mean

μEi and variance σ 2
i ,

f
(
yEi |dl,i

) = 1√
2πσ 2

i

exp

{
− (yEi − μEi )

2

2σ 2
i

}
, (3.19)

where

μEi = β2 + β1 − β2

1 + (
dl,i/β3

)β4
. (3.20)

In this equation, (β1, β2, β3, β4) are unknown parameters. Furthermore, as discussed
by Harvey (1976), Hirakawa (2012) assumed variance σ 2

i to be the multiplicative
heteroscedasticity as follows:

σ 2
i = σ 2dλ

l,i , (3.21)

where σ 2 and λ are unknown parameters. The value of λ determines the degree of
heteroscedasticity, particularly, homoscedasticity is held as the dose level increases
when λ = 0.

Considering the correlation between binary toxicity and continuous efficacy out-
comes, Hirakawa (2012) analyzed a model based on the factorization of the joint
distribution of (YT i ,YEi ), whichwas previously introduced byOlkin andTate (1961):

f (yT i , yEi ) = f (yT i ) f (yEi |yT i ) . (3.22)

The conditional distribution of yEi given yT i is normal,
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f (yEi |yT i ) = 1√
2πσ 2

i

exp

[
−{yEi − μEi − τ (yT i − πT i )}2

2σ 2
i

]
, (3.23)

where τ is the parameter for the regression of yEi on yT i . Large absolute values of
τ indicate a strong correlation between the two outcomes. When τ = 0, the two
outcomes are independent given the dose level in the model. In this dose-finding
method, parameter vector θ = {

α0, α1, β1, β2, β3, β4, τ, σ
2, λ

}

Given the current data Dn , the log-likelihood function is given by

L(θ |Dn) = log
n∏

i=1

f
(
ybi , yci |dl,i

) = log
n∏

i=1

f
(
yci |ybi , dl,i

)
f
(
ybi |dl,i

)
. (3.24)

Hirakawa (2012) employed a Bayesian procedure to update the estimates of
parameter vectors θ. In their work, the prior joint distributions for the parameter
vectors of θ, f (θ), are an independent uniform distribution for each parameter.

In accordance with the Bayes theorem, the joint posterior distribution is

f (θ |Dn) ∝ f (θ)L (θ |Dn) . (3.25)

Hirakawa (2012) estimated the posterior means of θ by the random-walk Metropolis
algorithm to generate a sequence of draws from the joint posterior distribution of
parameters using the PROCMCMC in the SAS software, version 9.2 (SAS Institute
Inc., Cary, NC, USA).

3.4.2 The Dose-Finding Algorithm

The Definition of the Optimal Dose:

Hirakawa (2012) defined the optimal dose as a dose level that has the minimum
weighted Mahalanobis distance between the point of efficacy and toxicity outcomes
and the optimal point (ymin, 0) among the dose levels whose efficacy and toxicity
are acceptable. Specifically, to determine the optimal dose, Hirakawa (2012) used
the posterior mean of the weighted Mahalanobis distance given by averaging the
posterior samples. The kth posterior samples of the weighted Mahalanobis distance
(k = 1, · · · , K ) of the outcome

(
μE (dl)

(k) , πT (dl)
(k)

)
to the optimal point (ymin, 0)

are given by

m(k)
l =

√√√√c21A
2 + c22B

2 − 2ρ (dl)
(k) c1c2AB

1 − {
ρ (dl)

(k)
}2 , (3.26)

where
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A = ymin − μE (dl)
(k)

√
τ 2(k)ρ (dl)

(k)
{
1 − ρ (dl)

(k)
} + σ 2(k)dλ

l (k)
, (3.27)

B = 0 − πT (dl)
(k)

√
p (dl)

(k)
{
1 − p (dl)

(k)
} , (3.28)

and ρ (dl) is the correlation between efficacy and toxicity, c1 and c2 are the pre-
specified weight parameters for adjusting the trade-off between efficacy and toxicity,
respectively. The posterior mean of the weighted Mahalanobis distance is calculated
based on the posterior samples, that is,

m̄l = 1

K

K∑

k=1

m(k)
l . (3.29)

When employing the Markov chain Monte Carlo method in the simulation studies,
Hirakawa (2012) used a burn-in of 5,000 iterations with a chain of length 5,000,
retaining every fifth sample. Therefore, the value of K is set to 1,000 throughout.

Acceptable Dose Criteria:

Hirakawa (2012) defined the acceptable dose levels as T (dl) = {dl |I [μE (dl) < μ0

and πT (dl) < π0] = 1}, where I [·] is an indicator function,μE (dl) and πT (dl) are
the posterior mean of the continuous efficacy and the posterior probability of a tox-
icity outcome for dose level dl (l = 1, · · · , L), respectively. μ0 and π0 are critical
values for the posterior estimates of μE (dl) and πT (dl), respectively.

The Dose-Finding Algorithm:

In this algorithm, c patients are allocated to a single dose level at a time, starting
from the lowest dose level. If T (dl) �= 0, then the dose with the minimum value of
m̄l among T (dl) is allocated to the next patient until reaching the maximum number
of patients N . At the end of the trial, we choose a dose level that has the minimum
weightedMahalanobis distance among T (dl) as an optimal dose. The trial is stopped
early when T (dl) = 0 for all dose levels and/or any of the following criteria is met:

Pr
{
π̂T (d1) > π0|Data

}
> δ1, (3.30)

Pr
{
μ̂E (dL) > μ0|Data

}
> δ2, (3.31)

where δ1 and δ2 are the prespecified threshold probabilities.

3.4.3 Operating Characteristics

Hirakawa (2012) compared the operating characteristics of the proposed method
with those of the method published by Bekele and Shen (2005), through simulation
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studies under six scenarios. In this study, four dose levels were considered, and the
maximum sample size N was set to 36. The starting dose was the lowest dose, and
the number of patients allocated to the single dose c was set to 3. Hirakawa (2012)
introduced a correlation between toxicity and efficacy into the simulations via a
copula function. Here, we introduce the case of correlation coefficient r = 0.2, each
simulation consisted of 1,000 trials.

The toxicity probability that is clinically allowed, π0, was set to 0.3. The efficacy
threshold that is clinically allowed, μ0, was set to 1.1. In addition, the weight param-
eters c1 and c2 were both set to 1.0, and the probabilities δ1 and δ2 were both set
to 0.7. Hirakawa (2012) used α0 ∼ Uni f orm (−10, 0), α1 ∼ Uni f orm (0, 5),
β1 ∼ Uni f orm (0, 10), β2 ∼ Uni f orm (−10, 0), β3 ∼ Uni f orm (0, 10),
β4 ∼ Uni f orm (0, 10), τ ∼ Uni f orm (−10, 10), σ 2 ∼ Uni f orm (0, 10), and
λ ∼ Uni f orm (−10, 10) for all the scenarios.

Under the four scenarios that include a true optimal dose, the mean of the rec-
ommended rates for the true optimal dose of Hirakawa’s method and of Bekele and
Shen’s method were 85.3% and 82.0%, respectively. Under scenarios in which all
four doses were unacceptable or had no efficacy, both methods did not select any of
the four doses in more than 90% of the cases, but the average number of patients in
the Hirakawa’s method was 6.8, which was approximately a half of that of Bekele
and Shen’s method (13.9 patients).

3.5 The BMA Bivariate CRM

Asakawa et al. (2014) proposed to incorporate BMA into the bivariate CRM to
mitigate the risk of the misspecification of the true dose–efficacy and dose–toxicity
relationships of a drug.

3.5.1 Modeling Toxicity and Efficacy Outcomes

Suppose YEi and YT i are binary efficacy and toxicity outcomes for patient i
(i = 1, · · · , N ). YEi (or YT i ) = 1 indicates that efficacy (or toxicity) is observed,
and YEi (or YT i ) = 0 indicates otherwise.

Asakawaet al. (2014) presumedapowermodel for dose–efficacy anddose–toxicity
relationships, which consist of the skeletons for efficacy and toxicity probability and
unknown model parameters. To address misspecification of the true dose–efficacy
and/or toxicity relationships, Asakawa et al. (2014) proposed to apply BMA, which
estimates the posterior probability for toxicity and efficacy by averaging posterior
probabilities. Thus, K working models, denoted as WMk (πEk (dl) , πT k (dl)) ,

(k = 1, · · · , K ), are prespecified for dose dl (l = 1, · · · , L). Working model WMk

is given by
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πEk (dl) = pexp(βEk )

Ekl , (3.32)

πT k (dl) = pexp(βT k )

T kl , (3.33)

where pEkl and pTkl are the kth skeletons for efficacy and toxicity probabilities at
dose dl , and βEk and βT k are unknown model parameters for the kth working model,
respectively.

Suppose that nl patients have been treated at dose dl and zEl (or zT l) defined as the
number of patients whose response is YE = 1 (or YT = 1) at dose dl , respectively.
In addition, zl is defined as the number of patients whose response is YE = 1 and
YT = 1 at dose dl . For the observed data D, the likelihood function for WMk is
expressed as

L(βEk, βT k, ψk,WMk |D) ∝
L∏

l=1

π
zEl
Ekl (1 − πEkl)

(nl−zEl ) π
zT l
T kl

(1 − πT kl)
(nl−zT l ) ψ

zl
k (1 − ψk)

(nl−zl ) , (3.34)

where ψk is the association parameter.
The estimates of the parameter are updated by means of the Bayesian theorem.

Asakawa et al. (2014) assumed the normal prior distribution N
(
0, 42

)
for gradient

parameters βEk and βT k and presumed beta distribution Beta (2, 2) for association
parameter ψk to have a prior mean value of 0.5 with sufficiently vague information.

Given the prior distribution, the joint posterior distribution is expressed as

f (βEk, βT k, ψk |D) ∝ L(βEk, βT k, ψk,WMk |D) f (βEk) f (βT k) f (ψk) . (3.35)

Asakawa et al. (2014) estimated the posterior distribution of model parameters using
a random-walk Metropolis algorithm to generate the sample for generating recursive
draws from a particular Markov chain, whose stationary distribution is the same as
the posterior joint distribution of parameters using PROC MCMC in SAS, version
9.2 (SAS Institute Inc., Cary, NC).

3.5.2 BMA Estimates

Let Pr (WMk) be the prior probability that represents the prior relative certainty (or
importance) for the kth working model with the restriction

∑
k Pr (WMk) = 1. In

their work, each working model has equal prior probability. These probabilities for
each working model are adaptively updated as posterior probabilities. The posterior
model probability (PMP) is given by
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PMP (WMk) = Pr(WMk |D) = L(βEk, βT k, ψk,WMk |D)Pr(WMk)∑K
m=1 L(βEm, βTm, ψm,WMm |D)Pr(WMm)

.

(3.36)

With PMP(WMk) as a weight for the kth working model, the BMA estimates
for efficacy and toxicity probabilities at the lth dose level are obtained simply as
a weighted average of the posterior means of the efficacy and toxicity probability,
π̂Ek (dl) and π̂Tk (dl), across K working models:

π̄E (dl) =
K∑

k=1

π̂Ek (dl)PMP (WMk) , (3.37)

π̄T (dl) =
K∑

k=1

π̂Tk (dl)PMP (WMk) . (3.38)

3.5.3 The Dose-Finding Algorithm

The Definition of the Optimal Dose:

Asakawa et al. (2014) defined an optimal dose as a dose level that minimizes
the weighted Euclidean distance from the target efficacy and toxicity probabilities,
(φE , φT ), via BMA estimates of efficacy and toxicity probabilities, such that

EDl =
√
w(φE − π̄El)

2 + (1 − w) (φT − π̄T l)
2. (3.39)

Asakawa et al. (2014) assumed φE = 1 and φT = 0 and w = 0.5, respectively.

Acceptable Dose Criteria:

To ensure at least minimal efficacy and maximal allowable toxicity with high prob-
ability, Asakawa et al. (2014) defined the minimum requirement criteria as follows:

K∑

k=1

Pr
(
π̂Ekl ≥ cE

)
PMP(WMk) ≥ 0.9, (3.40)

K∑

k=1

Pr
(
π̂T kl ≤ cT

)
PMP(WMk) ≥ 0.9, (3.41)

where cE and cT are the critical values. Asakawa et al. (2014) set cE and cT to 0.2
and 0.3, respectively.

The Dose-Finding Algorithm:

In this dose-finding method, patients are allocated to a specific dose level in a cohort
that consists of three patients. Among dose levels satisfying the above criteria, the
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dose level that minimizes EDl is assigned to the next cohort of patients. It should
be noted that the skipping a dose level during the escalation or de-escalation is not
allowed. The trial is terminated when no dose levels satisfy these criteria. When the
planned maximum number of patients is reached, then the optimal dose is deter-
mined by the BMA estimates of efficacy and toxicity probability based on all the
accumulated outcomes.

3.5.4 Operating Characteristics

Asakawa et al. (2014) compared the operating characteristics of the proposedmethod
with those of the ordinal bivariate CRMbymeans of each workingmodel under eight
scenarios. Asakawa et al. (2014) assumed five dose levels, and the maximum number
of patients was set to 45. The patients were allocated to a specific dose level in a
cohort that consists of three patients. The true correlation coefficient between these
outcomes was assumed to be 0.5 on the scale of bivariate normal outcomes. Next,
1,000 simulationswere conducted for each scenario. cE and cT were set to 0.2 and 0.3,
φE = 1 and φT = 0, andw = 0.5, respectively. The prior distributions of parameters
βEk and βT k were N

(
0, 42

)
, and the beta distribution Beta (2, 2) was assumed to

be the prior distribution of association parameter ψk . In that simulation study, four
sets of working models for efficacy and toxicity probabilities were considered.

In six scenarios, which include a true optimal dose, themeans of the recommended
rates for the true optimal dose of the proposed and bivariate CRM involving the
best-fitting working model were 61.9% and 75.3%, respectively. The probability of
correct optimal-dose selection with the proposed method was the second best among
the candidate designs in most of the cases. The differences in the correct optimal
dose selection probabilities between the best-fitting workingmodel and the proposed
method were 7.4–39.1%. Under the scenarios where no dose was acceptable, the
proposed method was correctly stopped early with no dose selected more than 90%
of the time.

According to the simulations, if true dose–efficacy and dose–toxicity relationships
for an investigational drug can be speculated based on prior information, then the
ordinal bivariate CRM involving the working model corresponding to true dose–
efficacy/toxicity relationships should be used. Nonetheless, in the cases without
prior information about dose–efficacy and dose–toxicity relationships, the proposed
method may be a useful alternative.

3.5.5 Software Implementation

Readers can use the BMA-based bivariate CRM method in SAS version 9.2. The
SAS code to run this method (BMA-bCRM.sas) and estimate model parameters
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(MCMC.sas) are available on the website http://www.rs.kagu.tus.ac.jp/hamada/lab.
html.

To executeBMA-bCRM.sas, it is necessary to useMCMC.sas inBMA-bCRM.sas.
Given the skeletons for efficacy probability and toxicity probability of each working
model, a prior probability of each working model, and the minimum efficacy or max-
imum allowable toxicity criteria, BMA-bCRM.sas applies the BMA-based bivariate
CRM to the input SAS dataset and outputs the dose level assigned to the next cohort
of patients. The input SAS dataset must contain each patient’s data on outcomes:
an indicator of the toxicity outcome, indicator of the efficacy outcome, and the dose
level used for the treatment.
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Chapter 4
Dose Finding for Molecularly Targeted
Agents (MTAs)

Abstract In the last 20years, breakthroughs in the understanding of cancer cell
biology resulted in the development of MTAs that are targeted to the unique genetics
of each tumor and each patient. MTAsmodulate specific aberrant pathways in cancer
cells while sparing normal tissues, so that some MTAs do not necessarily need to
be administered at their MTD to have maximal efficacy. Therefore, dose-finding
methods that take into account the bivariate-correlating outcomes of both efficacy
and toxicity are required for the clinical development of MTAs. In addition, the
dose–efficacy model for MTAs is necessary to capture the specific relation between
efficacy and the dose level. The efficacy may increase initially with the dose level but
then reaches a plateau; however, this situation may not always be the case. Several
powerful methods taking into account such a dose–efficacy relationship inherent in
MTAs were devised recently. In this chapter, we overview the existing dose-finding
methods intended to determine the optimal dose in singe-agent trials of MTAs.

Keywords Bivariate efficacy and toxicity · MTA · Optimal dose · Plateau

4.1 Introduction

MTAs modulate specific aberrant pathways in cancer cells while sparing normal
tissues, and thereforemostMTAs are expected to bemore selective and less toxic than
conventional cytotoxic drugs. Thus, themaximum therapeutic effectmay be achieved
at doses that are well below the MTD. This supposition comes from the results
on clinical responses at different dose levels in clinical trials evaluating MTAs (Le
Tourneau et al. 2015). In addition, the toxic effects ofMTAsmaymanifest themselves
through different mechanisms of action relative to the therapeutic effect, in which
case, the toxic effects may not be predictive of the therapeutic effect (Fox et al.
2002). Therefore, dose-finding methods that evaluate efficacy and toxicity outcomes
simultaneously are required for the clinical development of MTAs. In addition, the
dose–efficacymodel forMTAs should be able to capture the specific relation between
efficacy and the dose level. In the dose–efficacy relationships ofMTAs in most cases,
the efficacy may increase initially with the dose level but then reaches a plateau;
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however, this situationmay not always be the case. Several dose-findingmethods that
take into account toxicity and efficacy simultaneously for determining the optimal
dose in singe-agent trials were introduced in the previous chapter. Nevertheless, the
efficacy model in these methods does not necessarily consider the dose–efficacy
relationship inherent in MTAs.

To accommodate the dose–efficacy relationship of MTAs, Cai et al. (2014) pro-
posed a logistic model with quadratic terms to capture the dose–efficacy relationship
in the trials of combinations of biological agents. They regarded the shape of the
dose–toxicity surface as initially monotonic with the dose escalation but changing
to flat once it passes the threshold, and therefore, they selected a logistic model that
reflects the fact that the dose–toxicity surface of combinations of biological agents
may plateau. Riviere et al. (2015) incorporated a plateau parameter into a propor-
tional hazards model for time to efficacy in a trial of a combination of a cytotoxic
agent and an MTA. This approach also implies that after a certain dose level, the
efficacy curve will plateau, even if toxicity is increasing. Wages and Tait (2015)
proposed a power model for the binary efficacy outcome taking into account the
notion that efficacy may decrease or reach a plateau after a certain dose level in a
dose-finding trial of a singleMTA. Sato et al. (2016) proposed a change point logistic
model where the parameters change in the vicinity of the change point of the dose
level. The change point is defined as the dose level at which the dose–efficacy pattern
changes. Consequently, their method can capture various dose–efficacy patterns with
an increase in the dose level. Riviere et al. (2016) selected the weighted likelihood
approach to accommodate the possibility that efficacy has a late onset in the sense
that efficacy takes a relatively long time to be assessed compared to toxicity (with
respect to the accrual rate), such that when the next new patient arrives, patients who
have enrolled into the trial have not completed their efficacy assessment yet. Those
authors assumed that toxicity monotonically increases with the dose and modeled it
via a logistic model.

In this chapter, we focus on three dose-finding methods, that is, those developed
by Wages and Tait (2015), Sato et al. (2016), and Riviere et al. (2016). As described
in the previous chapter, we first introduce the statistical models for capturing the
dose–efficacy and dose–toxicity relationships as well as the dose-finding algorithm
for analyzing the optimal dose. We also discuss the operating characteristics of each
method. The symbols are independently defined by the dose-finding methods we
introduce here because the models and dose-finding algorithm of each method are
quite different.

4.2 The Model-Selecting Dose-Finding Method

Wages and Tait (2015) made use of some class of working models corresponding to
unimodal or plateau dose–efficacy relationships forMTAs and continuously selected
the model based on the posterior model probability through the trial.
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4.2.1 Modeling Toxicity and Efficacy Outcomes

Let Yi and Zi denote binary toxicity and efficacy outcomes for the i th entering
patient(i = 1, . . . , N ), respectively. Yi (or Zi ) = 1 indicates that toxicity (or efficacy)
is observed, and Yi (or Zi ) = 0 indicates otherwise. The dose for the i th entering
patient, Xi , can be thought of as random, taking values xi ∈ {d1, . . . , dL}.

Wages and Tait (2015) formulated the toxicity probability as

πT (dl) = qexp(β)

l , (4.1)

where ql are skeletons representing discrete dose levels dl . Wages and Tait (2015)
assumed that toxicity monotonically increases with the dose; therefore, 0 < q1 <

· · · < qL < 1. On the other hand, some class of workingmodels for the efficacy prob-
ability is used to allow formore flexibility inmodeling the dose–efficacy relationship.
In this method, K = 2 × L − 1 working models are prespecified; there are L uni-
modal skeletons and L − 1 plateau skeletons, which correspond to the dose–efficacy
relationships where efficacy is increasing at low dose levels and either decreasing or
plateauing at higher dose levels. For a particular skeleton, k, k = 1, . . . , K , the true
efficacy probability at dl is modeled by

πEk (dl) = pexp(θk )kl , (4.2)

where pkl is the skeleton of model k.
Wages and Tait (2015) estimated parameters β and θk based on the Bayesian

framework. For the current data on n patients, Dn , to estimate parameters β and θ ,
the likelihood is given by

L (β|Dn) =
n∏

i=1

{πT }yi {1 − πT }(1−yi ) and (4.3)

Lk (θk |Dn) =
n∏

i=1

{πEk}zi {1 − πEk}(1−zi ) , respectively. (4.4)

Wages and Tait (2015) utilized normal priors with mean 0 and variance 1.34 for β

and θk as well as g (β) and h (θk), respectively.
For L (β|Dn) and Lk (θk |Dn), the posterior distributions of β and θk are given by

g (β|Dn) ∝ g (β)L (β|Dn) and (4.5)

h (θk |Dn) ∝ h (θk)Lk (θk |Dn) , respectively. (4.6)

Wages and Tait (2015) proposed to select the model based on the posterior model
probability. Suppose Pr (Modelk) is a prior model probability for each possible
skeleton. Based on the set Dn and the likelihood, posterior model probabilities
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PMP (Modelk) are as follows:

PMP (Modelk)=Pr (Modelk |Dn)= Pr (Modelk)
∫ Lk (θk |Dn) h (θk) dθk∑K

m=1 Pr (Modelm)
∫ Lm (θm |Dn) h (θm) dθm

.

(4.7)
Each time a new patient is to be enrolled, Wages and Tait (2015) chose a single
skeleton, k∗, with the largest posterior probability such that

k∗ = arg maxkPMP (Modelk) . (4.8)

4.2.2 The Dose-Finding Algorithm

The Definition of the Optimal Dose:

Wages and Tait (2015) regarded an optimal dose as a dose level that has themaximum
efficacy probability among the dose levels whose toxicity is acceptable.

Acceptable Dose Criteria:

Wages and Tait (2015) defined the acceptable set as follows:

T (dl) = {
dl : π̂T (dl) ≤ φT

}
(4.9)

where πT (dl) is the toxicity probability estimates for each dose, and φT is the critical
value. It should be noted that Wages and Tait (2015) substituted the toxicity skeleton
ql for πT (dl) to calculate T (dl) at the beginning of the trial.

The Dose-Finding Algorithm:

To accurately assign patients to the most efficacious dose with acceptable toxicity,
early in the trial, Wages and Tait (2015) introduced an adaptive randomization phase.
In this phase, the next cohort of patients is randomized to dose dl with probability
Rl , which is calculated from the estimated efficacy probabilities, π̂E (dl), for doses
in T (dl), that is,

Rl = π̂E (dl)∑
dl∈T (dl )

π̂E (dl)
. (4.10)

It should be noted that the first patient or cohort of patients is allocated to dose
x1 = dl with probability Rl based on the efficacy skeleton p∗

kl instead of π̂E (dl).
This adaptive randomization phase is continued until a subset of nR patients has been
enrolled to allow information on untried doses to accumulate.

After the adaptive randomization phase, Wages and Tait (2015) initiated the max-
imization phase. The next cohort of patients is assigned to the dose level with the
highest estimated efficacy probabilities, π̂E (dl) among the doses contained in T (dl).
If we continue this way, then the optimal dose is the recommended dose after the
inclusion of the maximum sample size of N patients.
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In their dose-finding method, there are two stopping rules. Let π−
T (d1) and φT be

a lower bound of the 95% confidence interval for the probability of toxicity at d1 and
the maximum acceptable toxicity rate, respectively. In terms of safety, at any point
in the trial, if π−

T (d1) > φT , then we stop the trial for safety, and no treatment is
identified as the optimal dose. In addition to the safety stopping rule, Wages and Tait
(2015) set a futility stopping rule in the maximization phase. Suppose π+

E (xn) and
φE are an upper bound of the 95% confidence interval for the probability of efficacy
at the current dose xn and the futility threshold, respectively. If π+

E (xn) < φE , then
we stop the trial for futility, and no treatment is identified as the optimal dose.

4.2.3 Operating Characteristics

Wages and Tait (2015) compared the performance of the proposed method with that
of the Hoering et al. method (2013) for identifying the optimal dose in simulations
under 12 scenarios. The number of dose levels was six. The maximum sample size
was set to 64, and the size of the adaptive randomization phase was set equal to
one quarter of the total sample size. The first cohort of patients is allocated to dose
x1 with probability Rl calculated from the efficacy skeletons p∗

kl for each dose. In
the proposed dose-finding method, toxicity and efficacy probabilities are estimated
independently, but to provide a justifiable comparison to Hoering’s method, Wages
and Tait (2015) generated correlating binary outcomes using function ranBin2 in R
package binarySimCLF, that is, the log odds ratio specification used to generate the
data was set toψ = 4.6 to match that used by Hoering et al. (2013). Each simulation
analyzed 1,000 trials.

To define the acceptable set, the maximum acceptable toxicity rate was specified
to be φT = 0.33, and the minimum efficacy threshold to be φE = 0.05. The toxicity
probabilities were modeled via the power model with skeleton values, which is
robust and effective at carrying out the CRM designs. For efficacy, probabilities
were modeled via the class of power models using 11 skeletons that correspond
to the possible dose–efficacy relationship; six sets of values used for the unimodal
relations, and five sets of values for plateau relations.

In all the scenarios, themean of the recommended rates for true optimal dose of the
proposed and Hoering’s method were 73.9% and 57.7%, respectively. Under the sce-
narios that include one true optimal dose andwhere the dose–efficacy curves increase
until the middle dose and remain constant after that dose—that is, the dose–efficacy
curve nonmonotonically increases with the dose—the recommendation rates of the
true optimal dose of the proposed method were higher than those of the Hoering’s
method by approximately 20–40%. In addition, the proposed method outperformed
Hoering’s method under the scenarios that include one true optimal dose and where
the efficacy monotonically increases with the dose, by selection rates of approxi-
mately 10–40%.
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Basedon the results of simulation studies, regardless ofwhether the dose–response
relationship of an investigational MTA is monotonic/nonmonotonic, the proposed
method may show superior performance relative to Hoering’s method.

4.2.4 Software Implementation

Readers can employ the dose-finding method proposed by Wages and Tait (2015)
using the R code released at

http://faculty.virginia.edu/model-based_dose-finding/Wages%20and%20Tait%
202015.R.

Wages and Tait (2015) provided two function pieces of code: bpocrm and
bpocrm.sim. If we input the total number of doses, a set of toxicity skeleton val-
ues, the number of possible efficacy orderings, the possible efficacy orderings of
the doses, the toxicity upper limit, efficacy lower limit, cohort size, the number of
cohorts, starting dose, size of the adaptive randomization phase, the number of sim-
ulated trials, true toxicity probabilities, and true efficacy probabilities, then function
bpocrm.sim outputs the operating characteristics of the method proposed by Wages
and Tait (2015) as follows:

--------------------------------------------------------------------
#####Specify the total number of doses
d<-5

###Specify a set of toxicity skeleton values
p.skel<-c(0.01,0.08,0.15,0.22,0.29)

#####Specify the number of possible efficacy orderings
g<-9 #efficacy

###Specify the possible efficacy orderings of the doses
q.skel<-matrix(nrow=g,ncol=d)
q.skel[1,]<-c(0.60,0.70,0.60,0.50,0.40)
q.skel[2,]<-c(0.70,0.60,0.50,0.40,0.30)
q.skel[3,]<-c(0.50,0.60,0.70,0.60,0.50)
q.skel[4,]<-c(0.40,0.50,0.60,0.70,0.60)
q.skel[5,]<-c(0.30,0.40,0.50,0.60,0.70)
q.skel[6,]<-c(0.70,0.70,0.70,0.70,0.70)
q.skel[7,]<-c(0.60,0.70,0.70,0.70,0.70)
q.skel[8,]<-c(0.50,0.60,0.70,0.70,0.70)
q.skel[9,]<-c(0.40,0.50,0.60,0.70,0.70)

tul<-0.33 ##toxicity upper limit
ell<-0.20 ##efficacy lower limit
cohortsize=1 ##cohort size for each inclusion
ncohort=48 ##number of cohorts
start.comb=1 ##starting dose
n.adaptive randomization=24 ##size of adaptive randomization phase
ntrial=1000 ##number of simulated trials

http://faculty.virginia.edu/model-based_dose-finding/Wages%20and%20Tait%202015.R
http://faculty.virginia.edu/model-based_dose-finding/Wages%20and%20Tait%202015.R
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p0<-c(0.02,0.05,0.07,0.09,0.11)
q0<-c(0.68,0.56,0.49,0.40,0.33)
set.seed(580) ##random seed

##simulate many trials
bpocrm.sim(p0,q0,p.skel,q.skel,tul,ell,cohortsize,ncohort,ntrial,
start.comb)
True tox probability: 0.02 0.05 0.07 0.09 0.11
True eff probability: 0.68 0.56 0.49 0.4 0.33
selection percentage: 69.7 21.0 8.4 0.7 0.2
number of toxicities: 0.4 0.5 0.5 0.4 0.3
number of responses: 15.4 5.9 3.5 1.8 1.0
number of patients treated: 22.6 10.5 7.0 4.6 3.2
percentage of stop (safety): 0
percentage of stop (futility): 0
--------------------------------------------------------------------

4.3 The Dose-Finding Method Using the Change Point
Model

Sato et al. (2016) developed an adaptive dose-finding method involving a change
point logistic model to allow for more flexibility in modeling various dose–efficacy
patterns (including the nonmonotonic pattern) for MTAs.

4.3.1 Modeling Toxicity and Efficacy Outcomes

Let YEi and YT i be binary efficacy and toxicity outcomes for the i th entering patient
(i = 1, . . . , N ), respectively. YEi (or YT i ) = 1 indicates that efficacy (or toxicity)
is observed, and YEi (or YT i ) = 0 indicates otherwise.

To consider the correlation between the toxicity and efficacy outcomes, Sato et al.
(2016) selected the model proposed by Islam et al. (2012). The joint probabilities
for YT i and YEi are given in Table4.1.

The bivariate joint probability function for YEi and YT i is expressed as

Table 4.1 The joint
probabilities for YEi and YT i

YT i
0 1

YEi 0 π00 π01 1 − πE

1 π10 π11 πE

1 − πT πT 1



66 4 Dose Finding for Molecularly Targeted Agents (MTAs)

Pr (yEi , yT i ) = π
(1−yEi )(1−yT i )
00 π

(1−yEi )yT i
01 π

yEi (1−yT i )
10 π

yEi yT i
11 =

1∏

j=0

1∏

k=0

π
yi jk
jk , (4.11)

where

yi00 = (1 − yEi ) (1 − yT i ) , j = 0, k = 0,

yi01 = (1 − yEi ) yT i , j = 0, k = 1,

yi10 = yEi (1 − yT i ) , j = 1, k = 0, and

yi11 = yEi yT i , j = 1, k = 1.

To model the probability of efficacy and toxicity outcomes, Eq. (4.11) is factorized
into the conditional probability of toxicity given an efficacy outcome Pr(YT i =
k|YEi = j; k, j = 0, 1) and the marginal probability of efficacy Pr (YEi = j;
j = 0, 1) as follows:

Pr (yEi , yT i ) =
1∏

j=0

1∏

k=0

π
yi jk
jk =

1∏

j=0

1∏

k=0

{Pr (YT i = k|YEi = j)Pr (YEi = j)}yi jk .

(4.12)
Sato et al. (2016) modeled the conditional probability functions of toxicity given
each efficacy outcome using an ordinary logistic model, that is,

Pr (YT i = 1|YEi = 0) = πT |YE=0 (xi ; θ0) = exp (α0 + β0xi )

1 + exp (α0 + β0xi )
and(4.13)

Pr (YT i = 1|YEi = 1) = πT |YE=1 (xi ; θ1) = exp (α1 + β1xi )

1 + exp (α1 + β1xi )
, (4.14)

where xi = {d1, . . . , dL} is the actual dose of the agent administered to the i th
patient, θ0 = {α0, β0} and θ1 = {α1, β1} are unknown parameters for the model
of Eqs. (4.13) and (4.14), respectively. Given actual dose dl (l = 1, . . . , L), the
standardized dose is defined as d ′

l = log (dl) − L−1 ∑L
m=1 log (dm). It should be

noted that these conditional models are equal (i.e., θ0 = θ1) at the independence of
efficacy and toxicity (Islam et al. 2012).

Next, Sato et al. (2016) proposed the change point logistic model for marginal
probability of efficacy as follows:

Pr(YEi = 1) = πE (xi ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

πE (xi ; θE) = exp(αE + βE xi )

1 + exp(αE + βE xi )
, xi ≤ d∗

πE (xi ; θ
′
E) = exp(α′

E + β ′
E xi )

1 + exp(α′
E + β ′

E xi )
, xi > d∗

(4.15)
where d∗ is the change point of a dose between d ′

1, . . . , d
′
L−1 and θE = {αE , βE } and

θ
′
E = {α′

E , β ′
E } are unknown parameters.
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For the current data on n patients, Dn , Sato et al. (2016) calculated the probabilities
under the assumptions of d∗ = d ′

1, . . . , d
′
L−1, respectively, that is,

Ln,l
(
θl |Dn, d

∗ = d ′
l

) =
n∏

i=1

1∏

j=0

1∏

k=0

{Pr (YT i = k|YEi = j) Pr (YEi = j)}yi jk

=
n∏

i=1

{
πT |YE=0 (xi ; θ0l)

}yi01 {
1 − πT |YE=0 (xi ; θ0l)

}yi00

{πT |YE=1 (xi ; θ1l)}yi11{1 − πT |YE=1 (xi ; θ1l)}yi10
×

∏

i∈Ω

{πE (xi ; θEl)}(yi11+yi10) {1 − πE (xi ; θEl)}(yi00+yi01)

×
∏

i /∈Ω

{
πE

(
xi ; θ

′
El

)}(yi11+yi10) {
1 − πE

(
xi ; θ

′
El

)}(yi00+yi01)
,

(4.16)

where θl = {
θ0l , θ1l , θEl , θ

′
El

}
and Ω = {i |xi ≤ d∗, i = 1, . . . , n} is the set of

patients who received a dose lower than the assumed change point of d∗. In the
Bayesian inference for θl , Sato et al. (2016) assumed that the prior distribution for
each parameter f (θl) is an independent normal distribution although other distribu-
tions can be used. The method for the specification of hyperparameters for a prior
normal distribution will be described later.

For each Ln,l (l = 1, . . . , L − 1), the posterior distribution of θl is given by

f
(
θl |Dn, d

∗ = d ′
l

) ∝ f (θl)Ln,l
(
θl |Dn, d

∗ = d ′
l

)
. (4.17)

After calculating the posterior distributions of θl (for example, by Markov chain
Monte Carlo methods), we can obtain the posterior mean θ̂l for each θl . The method
for the specification of hyperparameters for a prior normal distribution is described
in the next section.

Sato et al. (2016) devised a method for estimating change point (d∗) according to
the method of Rukhin (1995). Given the posterior mean θ̂l , we determine estimated
change point d̃∗ that provides the maximum value among log Ln,l

(
θ̂l |Dn, d∗ = d ′

l

)
,

that is,
d̃∗ = arg maxd ′

1≤d∗≤d ′
L−1

{
log Ln,l

(
θ̂l |Dn, d

∗ = d ′
l

)}
. (4.18)

Sato et al. (2016) proposed to estimate the value of themeanparameter via the prior
probabilities of efficacy and toxicity outcomes for each dose that are often elicited
from investigators. Let pl be the prior probabilities of efficacy corresponding to dose
d ′
l . Given prior expected change point d

#, the doses are categorized into two groups:
{d ′

l |d ′
l ≤ d#, l = 1, . . . , L} and {d ′

l |d ′
l > d#, l = 1, . . . , L}. For the former and latter

group, Sato et al. (2016) assumed pl = exp
(
ηE + ξEd ′

l

)
/
{
1 + exp

(
ηE + ξEd ′

l

)}

and pl = exp
(
η′
E + ξ ′

Ed
′
l

)
/
{
1 + exp

(
η′
E + ξ ′

Ed
′
l

)}
respectively, and then esti-

mated θE = {ηE , ξE } and θ
′
E = {

η′
E , ξ ′

E

}
by the least-squares method. Thus,
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the least-squares estimates of θE and θ
′
E serve as the hyperparameter of prior nor-

mal distribution
(
i.e., αE ∼ Normal

(
η̂E , σ 2

)
, βE ∼ Normal

(
ξ̂E , σ 2

)
, α′

E ∼
Normal

(
η̂′
E , σ 2

)
, and β ′

E ∼ Normal
(
ξ̂ ′
E , σ 2

))
.

To determine the mean parameter for each of the prior normal distributions for
θ0 and θ1, Sato et al. (2016) first supposed that ql are the prior probabilities of
toxicity corresponding to dose d ′

l . Sato et al. (2016) then introduced the conditional
probabilities of toxicity given each efficacy outcome, qT |YE=0, l and qT |YE=1, l , that
can be written as pl , ql , and the prior correlation coefficient ψl , which is provided
by Islam et al. (2012). For bivariate Bernoulli variables, the correlation coefficient is
expressed as

ψl =
Pr

(
YE = 1, YT = 1, d ′

l

)
Pr

(
YE = 0, YT = 0, d ′

l

)
− Pr

(
YE = 1, YT = 0, d ′

l

)
Pr

(
YE = 0, YT = 1, d ′

l

)

√
pl

(
1 − pl

)
ql

(
1 − ql

) ,

(4.19)
where

Pr
(
YE = 1, YT = 1, d ′

l

) = ql − qT |YE=0, l (1 − pl) = qT |YE=1, l pl ,

Pr
(
YE = 0, YT = 0, d ′

l

) = (
1 − qT |YE=0, l

)
(1 − pl) = 1 − ql − (

1 − qT |YE=1, l
)
pl ,

Pr
(
YE = 1, YT = 0, d ′

l

) = 1 − ql − (
1 − qT |YE=0, l

)
(1 − pl) = (

1 − qT |YE=1, l
)
pl , and

Pr
(
YE = 0, YT = 1, d ′

l

) = qT |YE=0, l (1 − pl) = ql − qT |YE=1, l pl .

According to these equations, qT |YE=0, l and qT |YE=1, l can be expressed as

qT |YE=0, l = ψl
√
pl (1 − pl) ql (1 − ql) − ql (1 − pl)

pl − 1
, (4.20)

qT |YE=1, l = ψl
√
pl (1 − pl) ql (1 − ql) + plql

pl
. (4.21)

Thus, if we assume that qT |YE=0, l = exp
(
η0 + ξ0d ′

l

)
/
{
1 + exp

(
η0 + ξ0d ′

l

)}
and

qT |YE=1, l = exp
(
η1 + ξ1d ′

l

)
/

{
1 + exp

(
η1 + ξ1d ′

l

)}
, θ0 = {η0, ξ0} and θ1 =

{η1, ξ1} are estimated by the least-squares method (i.e., α0 ∼ Normal
(
η̂0, σ 2

)
,

β0 ∼ Normal
(
ξ̂0, σ 2

)
, α1 ∼ Normal

(
η̂1, σ 2

)
, and β1 ∼ Normal

(
ξ̂1, σ 2

)
).

In addition, the standard deviation (σ ) is set to a common value for all the prior
normal distributions in this study; however, it should be fine-tuned in a simulation
study before the trial is conducted.

4.3.2 The Dose-Finding Algorithm

The Definition of the Optimal Dose:

Sato et al. (2016) defined an optimal dose as a dose level that has the minimum
weighted Mahalanobis distance proposed by Hirakawa (2012). Sato et al. (2016)
obtained the kth posterior samples of the weightedMahalanobis distance of outcome
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(
π

(k)
E

(
d ′
l

)
, π

(k)
T

(
d ′
l

))
to optimal point (1, 0):

m(k)
(
d ′
l

) =
√√√√w2

EuE
(
d ′
l

)2 − 2ρ
(
d ′
l

)
wEwT uE

(
d ′
l

)
uT

(
d ′
l

) + w2
T uT

(
d ′
l

)2
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and wE and wT are the prespecified weight parameters for adjusting the trade-off
between efficacy and toxicity, respectively. Suppose ρ

(
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)
denotes the correlation

coefficient (Islam et al. 2012):
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The posterior mean of the weightedMahalanobis distance is expressed as the average
of the posterior samples, that is,

m̄
(
d ′
l

) = 1

K

K∑

k=1

m(k)
(
d ′
l

)
. (4.26)
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In the simulation studies, Sato et al. (2016) ran 500 burn-in iterations and then
recorded every 10th subsequent sample out of 10,000 Gibbs samples to reduce the
autocorrelation in the Markov chain; accordingly, the value of K was set to 1,000
throughout.

Acceptable Dose Criteria:

To avoid allocating patients to ineffective or severely toxic doses, Sato et al.
(2016) determined the set of acceptable doses (T ) based on the posterior prob-
abilities of efficacy and toxicity outcomes for each dose d ′

l , π̂E
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)
and π̂T
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, as follows (Thall and

Cook 2004):
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(4.27)
where cE and cT are critical values for the posterior probabilities of efficacy and
toxicity outcomes, and δE and δT are fixed probability cutoffs, respectively. That is,
Sato et al. (2016) extracted the doses that are expected to be effective and not very
toxic at a certain level.

The Dose-Finding Algorithm:

To stabilize the parameter estimates for θl and d∗ at an early stage of the trial, Sato
et al. (2016) incorporated a run-in period wherein the first cohort of patients is treated
with the lowest dose, and the dose is escalated unless two or more of three patients
in that cohort experience toxicity, although other dose escalation rules, such as the
well-known 3 + 3 rule, can be applied. In this study, the cohort consisted of three
patients.

Upon completion of the run-in period, the trial design switches to themodel-based
dose-finding stage. Using the estimated change point of d̃∗ and the corresponding
posterior means of θ̂l , Sato et al. (2016) calculated the posterior probabilities of
efficacy and toxicity outcomes for each dose d ′

l . The dose with the minimum value
of m̄

(
d ′
l

)
among T

(
d ′
l

)
is administered to the next cohort of patients. Sato et al.

(2016) applied this algorithm until the maximum sample size was reached and then
selected the dose administered to the next cohort of patients as the optimal dose. If
there is no acceptable dose at an interim time point, then the trial is terminated at
this time point, and no dose is selected as the optimal dose.

4.3.3 Operating Characteristics

Sato et al. (2016) compared the operating characteristics of the proposedmethodwith
the method proposed by Thall and Cook (2004) via simulations under 12 scenarios.
In this simulation study, six actual doses were considered, and the maximum sample
size was set to 36. The starting dose was set to the lowest dose, and the number
of patients allocated to each dose level was set to 3. Sato et al. (2016) introduced
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a correlation between toxicity and efficacy into simulations by conditional proba-
bilities Pr
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Each simulation consisted of 1,000 trials.
The critical values for the posterior probabilities of efficacy and toxicity cE and

cT were set to 0.20 and 0.40, respectively, and fixed probability cutoffs δE and
δT were both set to 0.10. To determine the mean of the prior normal distribution
in the proposed method, Sato et al. (2016) specified the prior efficacy and toxi-
city probabilities as (p1, p2, p3, p4, p5, p6) = (0.05, 0.20, 0.35, 0.50, 0.55, 0.60)
and (q1, q2, q3, q4, q5, q6) = (0.05, 0.10, 0.15, 0.20, 0.25, 0.30), respectively. The
expected change point was set to d# = d ′

4, the correlation coefficient of ψl = ψ =
0.20, and the standard deviation of σ = 3.0. The weight parameters wE and wT for
the weighted Mahalanobis distance were set to 1.0.

Throughout the 11 scenarios, which include a true optimal dose, the means of the
recommended rates for the true optimal dose of the proposed method and of Thall
and Cook’s method were 44.1% and 26.8%, respectively. In the scenarios where the
dose–efficacy curve nonmonotonically increases with the dose, the recommendation
rates for the optimal dose and the average number of patients allocated to the optimal
dose in the proposed method were up to 40% higher as compared with Thall and
Cook’s method. This index of the proposed method was not worse than that of Thall
and Cook’s method under the scenarios where the dose–efficacy curve monotoni-
cally increases with the dose level. Under the scenarios where the optimal dose was
located at the lowest (or highest) dose level, the two methods were comparable. In
the case where all dose levels had unacceptable toxicity, the two methods yielded an
approximately 100% termination rate of the trial.

The simulation studies indicated that the operating characteristics in the proposed
method were more favorable than those of the Thall and Cook method, especially
when the optimal dose levels were in the lower ormiddle range, and the dose–efficacy
curves nonmonotonically increased with the dose escalation. Thus, the proposed
method may be useful for determining the optimal dose in the cases where the
MTAs under study have a nonmonotonic dose–efficacy relationship according to
prior information, such as preclinical data.
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4.3.4 Software Implementation

The estimation of model parameters under the assumptions of change point d∗ =
d ′
1, . . . , d

′
L−1 is carried out bymeans of PROCMCMCinSAS, version 9.3 (SAS Insti-

tute Inc., Cary, NC). Given the prior distribution for each parameter and the assumed
change point d∗ = d ′

l , the following programs apply the random-walk Metropolis
algorithm for input SAS dataset “assign” and output posterior mean θ̂l at the assumed
change point. Dataset “assign” contains a dose for patient i , yi00, yi01, yi10, and yi11.

--------------------------------------------------
/************************************************/
D: actual dose
X: standardized dose calculated based on actual dose
Y00: no efficacy and no toxicity outcome
Y01: no efficacy and toxicity outcome
Y10: efficacy and no toxicity outcome
Y11: efficacy and toxicity outcome
CHANGEPOINT: assumptive change-point
/************************************************/

PROC MCMC DATA=assign NTU=&NTU. NBI=&NBI. NMC=&NMC.
NTHIN=&NTHIN. PROPCOV=QUANEW SEED=&SEED.
OUTPOST=OUT;

ODS OUTPUT POSTSUMMARIES=OUT_SUMMARIES;

***** Parameter definition *****;
PARMS ALPHACT0;
PARMS ALPHACT1;
ARRAY ALPHAE[2];
PARMS (ALPHAE1 ALPHAE2);

PARMS BETACT0;
PARMS BETACT1;
ARRAY BETAE[2];
PARMS (BETAE1 BETAE2);
********************************;

***** Prior distribution *****************;
PRIOR ALPHACT1 ˜ NORMAL(-0.951,SD=3);
PRIOR ALPHACT0 ˜ NORMAL(-2.191,SD=3);
PRIOR ALPHAE1 ˜ NORMAL(-0.599,SD=3);
PRIOR ALPHAE2 ˜ NORMAL(-0.375,SD=3);

PRIOR BETACT1 ˜ NORMAL(0.353, SD=3);
PRIOR BETACT0 ˜ NORMAL(0.936, SD=3);
PRIOR BETAE1 ˜ NORMAL(2.114, SD=3);
PRIOR BETAE2 ˜ NORMAL(1.123, SD=3);
******************************************;

***** Conditional toxicity probability *****;
PCT0=LOGISTIC(ALPHACT0+BETACT0*X);
PCT1=LOGISTIC(ALPHACT1+BETACT1*X);
*********************************************;
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***** Change-point Model **************;
J = 1 + (D > &CHANGEPOINT.);
PE=LOGISTIC(ALPHAE[J] + BETAE[J]*X);
***************************************;

LLIKE=Y01*LOG(PCT0)+Y00*LOG(1-PCT0)
+Y11*LOG(PCT1)+Y10*LOG(1-PCT1)
+(Y11+Y10)*LOG(PE)+(Y00+Y01)*LOG(1-PE);

MODEL DGENERAL(LLIKE);

RUN;
--------------------------------------------------

4.4 The Dose-Finding Method with Late-Onset Efficacy

Riviere et al. (2016) proposed a dose-findingmethod forMTAswith efficacy delayed
so often that the efficacy practically takes more follow-up time to assess as compared
with toxicity. Riviere et al. (2016) employed a logisticmodelwith a plateau parameter
to consider the plateau dose–efficacy relationship for MTAs.

4.4.1 Modeling Toxicity and Efficacy Outcomes

Let us assume that Yi is the binary toxicity outcome for patient i (i = 1, . . . , N ).
Yi = 1 indicates that toxicity is observed, andYi = 0 indicates otherwise. To consider
late-onset efficacy, let T be a fixed time window required to evaluate efficacy, and
tEi denotes time to efficacy of the i th patient. Suppose CEi is the follow-up time
for patient i prior to the entry of the next patient. The efficacy indicator of patient
i prior to the entry of the next patient is denoted by zi = I [tEi < CEi ], where I [·]
represents the indicator function.

Riviere et al. (2016) modeled the toxicity probability of dose dl (l = 1, . . . , L),
designated as πT (dl) = πT l , via a logistic model:

logit (πT l) = β0 + β1ul, (4.30)

where β0, β1(> 0) are unknown parameters, and ul is the effective dose associated
with dose dl , which typically differs from the actual dose. Tomake ul identifiable, we
require the prior estimates of β̃0, β̃1, and π̃T l . Then, effective dose ul is determined
by back-solving the dose–toxicity model as follows,

ul =
{
log

(
π̃T l

1 − π̃T l

)
− β̃0

}
/β̃1.
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Next, letπE (dl) = πEl be the efficacy probability for dose dl . Riviere et al. (2016)
employed a logistic model with plateau parameter τ to capture the increasing-then-
plateauing feature of the dose–efficacy relationship:

logit (πEl) = γ0 + γ1 (vl I [dl < τ ] + vτ I [dl ≥ τ ]) (4.31)

where γ0 and γ1 are unknown parameters, and vl is the effective dose associated with
dose dl . Plateau parameter τ is an integer between 1 and L that indicates at which
dose level the dose–efficacy curve reaches the plateau. Like effective dose ul , vl is
determined by back-solving the dose–efficacy model as follows:

vl =
{
log

(
π̃El

1 − π̃El

)
− γ̃0

}
/γ̃1,

where π̃El, γ̃0, γ̃1 and τ̃ are prior estimates of parameters.
After the first n patients are enrolled into the trial, the likelihood of toxicity data

Dtox is

L (β0, β1|Dtox ) =
n∏

i=1

π
yi
T xi

(
1 − πT xi

)1−yi
, (4.32)

where xi denotes the effective dose corresponding to the actual dose administered to
the i th patient.

If we assume that f (β0, β1) represents the prior distribution of β0 and β1, the
posterior is then given by

f (β0, β1|Dtox)L (β0, β1|Dtox ) f (β0, β1) . (4.33)

Riviere et al. (2016) assumed that prior distributions are independent and take a
vague normal prior N (0, 100) for the intercept β0, and we assigned slope β1 to an
exponential distribution with a rate parameter of 1, i.e., β1 ≈ Exp (1). After we
specify the prior distributions, the posterior distribution is sampled using the Gibbs
sampler.

For efficacy, Riviere et al. (2016) followed the approach of Cheung and Chappell
(2000) by weighting the observed data likelihood with the follow-up time. Given
efficacy data Def f , the weighted likelihood function of the efficacy data is expressed
as

L (
γ0, γ1, τ |Def f

) =
n∏

i=1

(
wiπExi

)zi (1 − wiπExi

)1−zi (4.34)

where wi is the weight function.
Riviere et al. (2016) selected the form of adaptive weights proposed by Cheung

and Thall (2002), formulated as
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wi =
{
1 if tEi ≤ CEi
#{ j : tE j≤CEi and CEj=T}+CEi/T

#{ j : tE j≤T and CEj=T}+1
otherwise

(4.35)

where #
{
j : tE j ≤ T and CEj = T

}
is the number of patients who experienced

efficacy (i.e., tE j ≤ T ) and completed the follow-up (i.e., CEj = T ) before the
entry of the next patient; and CEi/T is the proportion of the time that patient i was
followed compared to the full follow-up time T before the entry of the next patient.

If we assume that f (γ0, γ1, τ ) represents the prior distribution of γ0, γ1, and τ ,
then the posterior is given by

f
(
γ0, γ1, τ |Def f

) ∝ L (
γ0, γ1, τ |Def f

)
f (γ0, γ1, τ ) . (4.36)

Riviere et al. (2016) assumed that prior distributions are independent and took vague
normal prior N (0, 100) for the intercept γ0 and an exponential distributionwith a rate
parameter of 1 for γ1, i.e., γ1 ≈ Exp (1). To the plateau parameter, τ , Riviere et al.
(2016) assigned a discrete prior distribution Pr (τ = l) = pl and

∑L
m=1 pm = 1 and

∀m, pm ≥ 0. When no information is available on the plateau location, the uniform
prior is recommended with p1 = · · · = pL = 1/L . After we specified the prior
distributions, the posterior distribution is sampled by the Gibbs sampler.

4.4.2 Plateau Estimation

With the Gibbs sampler, the posterior probability of the lth dose being the plateau
point, ql = Pr

(
τ = dl |Def f

)
, is given by

ql = pl
∫ ∫ L (

γ0, γ1|dl, Def f
)
f (γ0, γ1) dγ1dγ0

∑L
m=1 pm

∫ ∫ L (
γ0, γ1|dm, Def f

)
f (γ0, γ1) dγ1dγ0

. (4.37)

Riviere et al. (2016) proposed two approaches to plateau estimation:

MTA-RA (Adaptive Randomization):

Let us assume that R is the set of doses whose posterior probabilities of being the
plateau point were close to the largest one with a difference less than a positive
threshold s1, i.e.,

R =
{
k :

∣∣∣∣max
1≤l≤L

(ql) − qk

∣∣∣∣ ≤ s1, 1 ≤ k ≤ L

}
, (4.38)

where s1 is the cutoff value. Riviere et al. (2016) found that what generallyworkswell
in their simulation study is s1 = 0.20

(
1 − n

N

)
, where n is the current sample size. The

plateau estimate, τ̂ , is sampled from R with renormalized probability ql/
∑

k∈R qk .
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MTA-PM (Posterior Efficacy Probabilities):

Given the plateau location at each possible dose level and estimated posterior efficacy
probabilities, we then perform BMA on the estimated posterior efficacy probabilities

π̄El =
L∑

k=1

π̂E (dl , γ0, γ1|τ = k) qk (4.39)

where π̂E (dl , γ0, γ1|τ = k) is the posterior mean of the efficacy probability under
the assumption that τ = k. After that, the plateau is determined at dose

τ̂ = max
{
k : 1 ≤ k ≤ L , π̄Ek − π̄E(k−1) ≥ s2

}
(4.40)

where s2 is a cutoff value. The value of s2, which is a constant, should be calibrated
in a simulation to ensure good operating characteristics of the design.

4.4.3 The Dose-Finding Algorithm

Definition of the Optimal Dose:

Riviere et al. (2016) defined the optimal dose as the dose level that has the maximum
efficacy probability among the admissible dose levels.

Acceptable Dose Criteria:

Riviere et al. (2016) regarded the dose that satisfies the following safety and efficacy
requirements as admissible:

Pr (πT l > θ) < LT (4.41)

Pr (πEl > ξ) ≥ LE I [nk > max (c, 3)] (4.42)

where θ and ξ are the prespecified toxicity upper bound and efficacy lower bound,
LT and LE are the respective probability thresholds for toxicity and efficacy, and
nk denotes the number of patients treated with dose dl , respectively. Here, the set
of admissible doses that met the two above-mentioned criteria is designated as A (dl).

The Dose-Finding Algorithm:

At the beginning of the trial, the following start-up phase is implemented to gather
enough information for estimating model parameters. The first cohort of patients is
at the lowest dose level 1, and the dose is escalated to the next dose level unless more
than one out of three patients in that cohort experiences toxicity.

Once a toxicity is observed or the highest dose level is reached, the start-up phase
ends, and the trial design switches to the model-based dose-finding phase, where
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patients are treated at a cohort size of c. The next incoming cohort of patients is
basically assigned to the dose level with the highest efficacy in the set of admissible
doses A (dl):

dnext = min
(
arg maxl∈A(dl )

(
π̂El

))
(4.43)

If dnext is the dose that has never been administered up to that time point, increasing
the dose by only one level, Riviere et al. (2016) continued the above dose assignment
processes until the maximum sample size was reached, and selected the optimal dose
as the lowest dose level that is admissible and has the highest estimate of efficacy
among all the doses tested during the trial. At any time during the model-based dose-
finding phase, if all doses were not admissible, those authors terminated the trial to
protect patients from overly toxic or futile doses.

4.4.4 Operating Characteristics

Riviere et al. (2016) compared the proposedMTA-RAandMTA-PMdesignswith the
method proposed byHunsberger et al. (2005) (abbreviated as theHRDKmethod) and
themethod proposed byThall andCook (2004) (abbreviated as the TCmethod) under
10 scenarios. Because the HRDK and TC designs assume that the efficacy endpoint
is binary, it is quickly ascertainable when these two designs are implemented. Riviere
et al. (2016) assumed six dose levels, and the maximum sample size was N = 60.
The trial started at the lowest dose d1, and the cohort size was c = 3 patients. They
considered toxicity and efficacy independent. Each simulation was conducted 2,000
times.

Riviere et al. (2016) set the prespecified toxicity upper bound as θ = 0.35,
the toxicity threshold as LT = 0.90, the efficacy lower bound as ξ = 0.20, and
the efficacy threshold as LE = 0.40. To identify effective doses uk and vk used in the
toxicity and efficacy models, Riviere et al. (2016) took the initial guesses of toxicity
and efficacy probabilities as (0.02, 0.06, 0.12, 0.20, 0.30, 0.40) and (0.12, 0.20, 0.30,
0.40, 0.50, 0.59), respectively. The patient accrual followed a Poisson process at the
rate of 0.28 patients per week. The evaluation of efficacy required 7weeks. Riviere
et al. (2016) assumed that the time to efficacy followed an exponential distribution
whose parameter was chosen based on the efficacy rate of each dose under each
scenario. It should be noted that when implementing the HRDK and TC method,
Riviere et al. (2016) waited for the efficacy response of the treated patients to become
completely observable before enrolling a new cohort of patients.

In the scenarios that include a true optimal dose, the means of the recommended
rates for the true optimal dose ofMTA-RA,MTA-PM, HRDK, and TCmethods were
52.2%, 52.7%, 28.0%, and 34.7%, respectively. Although the TC method performed
the best under the scenario where the plateau was reached at the lowest dose level
(the differences in the probabilities of correct optimal dose selection between their
proposed method and TC method were approximately 10%), their proposed method
outperformed the HRDK design and performed as well as or better than TC in terms
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of the selection of the optimal dose under most scenarios. In the scenario in which
none of the doses was admissible and the trial had to be terminated, their proposed
method terminated the trial early approximately 90% of the time.

In this simulation study, their method was based on partial information, while
all patients’ outcomes were fully determined in the other methods. Considering
these simulation results, their proposed methods may outperform other dose-finding
methods even in the case where efficacy takes a relatively long time to assess as
compared to toxicity.

4.4.5 Software Implementation

Readers can employ the dose-finding method proposed by Riviere et al. (2016) using
the R package dfmta.

Given the number of dose levels, the true toxicity probabilities, the true efficacy
probabilities, toxicity upper bound, efficacy lower bound, initial guesses of toxicity
probabilities, initial guesses of efficacy probabilities, the rate for the Poisson process
used to simulate patient arrival, the total number of patients, cohort size for the start-
up phase, cohort size for the model phase, the type of outcome for efficacy (time
to event or binary), the method for plateau determination, s1 (or s2), the number of
simulations, an toxicity threshold, and an efficacy threshold, function mtaBin_sim
provides the operating characteristics of themethod proposed by Riviere et al. (2016)
as follows:

--------------------------------------------------------------------
p_tox_sc1 = c(0.005, 0.01, 0.02, 0.05, 0.10, 0.15)
p_eff_sc1_g1 = c(0.01, 0.10, 0.30, 0.50, 0.80, 0.80)
p_tox_sc2 = c(0.01, 0.05, 0.10, 0.25, 0.50, 0.70)
p_eff_sc2_g2 = matrix(c(0.40, 0.01, 0.40, 0.02, 0.40, 0.05, 0.40,
0.10, 0.40, 0.35, 0.40, 0.55), nrow=2)
prior_tox = c(0.02, 0.06, 0.12, 0.20, 0.30, 0.40)
prior_eff = c(0.12, 0.20, 0.30, 0.40, 0.50, 0.59)
prior_eff2 = rbind(prior_eff, prior_eff)
s_1=function(n_cur){0.2}
n=60

sim = mtaBin_sim(ndose=6, p_tox= p_tox_sc1, p_eff= p_eff_sc1_g1,
tox_max=0.35, eff_min=0.20, prior_tox=prior_tox, prior_eff= prior_eff,
poisson_rate=0.28, n=60, cohort_start=3, cohort=3, tite=FALSE,
method="MTA-RA", s_1= function(n_cur){0.2*(1-n_cur/n)}, nsim=1,
c_tox=0.90, c_eff=0.40)
|----|----|----|----|----|----|----|----|----|----|
**************************************************|
> sim
Call:
mtaBin_sim(ngroups = 1, ndose = 6, p_tox = p_tox_sc1,
p_eff = p_eff_sc1_g1, tox_max = 0.35, eff_min = 0.2,
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prior_tox = prior_tox, prior_eff = prior_eff, n = n,
cohort_start = 3, cohort = 3, tite = FALSE, method = "MTA-RA",
s_1 = function(n_cur) {0.2 * (1 - n_cur/n)}, nsim = 1)
doses
1 2 3 4 5 6
True toxicities 0.00 0.01 0.02 0.05 0.1 0.15
True efficacies for group 1 0.01 0.10 0.30 0.50 0.8 0.80
Prior toxicities 0.02 0.06 0.12 0.20 0.3 0.40
Prior efficacies for group 1 0.12 0.20 0.30 0.40 0.5 0.59
Percentage of Selection for group 1 0.00 0.00 0.00 0.00 0.0 100.00
Number of patients for group 1 3.00 3.00 3.00 6.00 6.0 39.00
Number of toxicities for group 1 0.00 0.00 0.00 0.00 0.0 10.00
Number of efficacies for group 1 0.00 1.00 1.00 2.00 5.0 33.00

Percentage of inconclusive trials for group 1: 0
Allocation method: MTA-RA
Number of simulations: 1
Total patients accrued: 60
Toxicity upper bound: 0.35
Efficacy lower bound: 0.2
Patient arrival for group 1 is modeled as a Poisson process with rate:
1 that is in mean 1 patients during a full follow-up time
Toxicity threshold: 0.9
Efficacy threshold: 0.4
Cohort size start-up phase: 3
Cohort size model phase: 3
Efficiency is not a time-to-event but binary
--------------------------------------------------------------------
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Chapter 5
Advanced Topics on Dose-Finding Designs

Abstract Recently, many types of dose-finding methods were proposed to address
the issues that we often encounter in practice. For instance, a seamless phase I/II
trial that combines phase I and phase II trials has some advantages: the data on both
toxicity and efficacy can be used more efficiently for identifying an RP2D, and the
duration of drug development can be reduced. For someMTAs, toxicity and efficacy
outcomes sometimes require a longer follow-up period for their final assessments in
practice. Moreover, there are patients who experience chronic low-grade toxicities
from MTAs during the evaluation period of phase I trials. Such events eventually
warrant a dose reduction or treatment interruption owing to intolerance. The relative
dose intensity, which is generally defined as the ratio of the effectively delivered dose
to the theoretically administered cumulative dose, draws the attention as a potential
new endpoint of phase I trials. Cancer immunotherapy and dose individualization
for phase I trials that analyze the mutations in several genes are also discussed.

Keywords Dose individualization · Immunotherapy · Phase I/II
Relative dose intensity

5.1 Leveraging Phase I/II Trials

The standard approach to early exploratory clinical trials for developing new drugs
in oncology is to conduct phase I and phase II trials separately, where an MTD is
determined in phase I trials, and the efficacy at the MTD is assessed in phase II trials.
This approach has also been applied to the development of drug combinations. An
alternative approach is to combine these trials, so that the data on both toxicity and
efficacy can be usedmore efficiently for identifying an optimal dose, and the duration
of drug development can be reduced. For example, Hoering et al. (2011) proposed a
two-step dose-finding trial for assessing both toxicity and efficacy of a target agent.
A traditional dose-finding design is employed at the first step. At this step, only
toxicity is assessed, and the MTD is determined. For the second step, Hoering et al.
(2011) proposed a modified phase II selection design for two or three dose levels at

© The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2018
A. Hirakawa et al., Modern Dose-Finding Designs for Cancer Phase I Trials:
Drug Combinations and Molecularly Targeted Agents, JSS Research Series
in Statistics, https://doi.org/10.1007/978-4-431-55573-5_5
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and below the MTD to determine efficacy and to evaluate the efficacy and toxicity
of each dose level.

In two-agent combination trials, it may also be reasonable to determine the RP2D
on the basis of efficacy and toxicity outcomes by conducting a seamless phase I/II
trial. Such trials generally involve determination of a singleMTD combination based
solely on toxicity data as a phase I part, followed by evaluation of efficacy data (such
as response rates) at the MTD of the combination as a phase II part. Some dose-
finding methods have been developed for determining an optimal-dose combination
of two agents more efficiently based on toxicity and efficacy data in phase I/II trials
(Table5.1).

Huang et al. (2007) proposed to select a set of dose combinations with admissible
toxicity using the 3+ 3 design as the phase I part and to determine an optimal-
dose combination based on efficacy data among the selected dose combinations via
adaptive randomization as the phase II part.Yuan andYin (2011a) proposed to employ
a Bayesian copula-type model to select admissible toxicity dose combinations in the
phase I part. In these methods, the evaluation of efficacy in the phase II part is
restricted to a few selected dose combinations from the phase I part, but they do
not necessarily include the true optimal-dose combination because of being based
only on toxicity profiles from small numbers of patients in the phase I part. Wages
and Conaway (2014) proposed adaptive randomization based on efficacy data among
admissible toxicity dose combinations for patient allocation in the phase I part and
then to determine an optimal-dose combination judging by the maximum estimated
efficacy probability in the phase II part. Shimamura et al. (in press) proposed a
zone-finding stage that determines the most admissible toxicity zone in the dose
combination matrix and subsequently to select the dose combination allocated to the
next patient from that zone in phase I.

5.2 Late-Onset Toxicity and Efficacy Outcomes

In practice, toxicity and efficacy outcomes sometimes require a longer follow-up
period for their final assessments. According to Muler et al. (2004), it took 9weeks
to conduct follow-up for final evaluation of toxicities in the phase I trials of com-
bined cisplatin and gemcitabine in patients with pancreatic cancer. Such late-onset
outcomes cause logistical issues for implementation of the dose-finding method
because it is undesirable to delay a new patient’s treatment until the final evalua-
tions of toxicity and/or efficacy outcomes of the previously enrolled patients in the
trial are obtained. The issue of late-onset toxicity should be adequately addressed in
the emerging era of MTAs. A review paper that examined the time-to-toxicity onset
of MTAs revealed that 57% of grade 3 and 4 toxicities have a late onset (Postel-
Vinay et al. 2011). To address the issue of late-onset toxicity, Cheung and Chappell
(2000) proposed the time-to-event CRM that assigns weights to the responses of
patients whose final response status has not been determined in single-agent trials.
Mauguen et al. (2011) extended this weighting approach to the escalation with
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overdose control design. Yuan and Yin (2011b) regarded late-onset toxicities as
missing data and proposed an expectation maximization algorithm to account for the
unobserved toxicity outcomes in single-agent trials. Liu and Ning (2013) proposed
a Bayesian dose-finding design for two-agent combination trials with late-onset tox-
icities. More recently, some Bayesian phase I/II designs that can address late-onset
efficacy and/or toxicity outcomes have been devised (Riviere et al. 2016; Lin and
Johnson 2016).

5.3 Accounting for Relative Dose Intensity for MTAs

The conventionally defined RP2D of a cytotoxic agent corresponds to the MTD,
which is determined from toxicity data obtained during the first, and rarely, the sec-
ond cycle of treatment. Toxicity data from later cycles are not used to determine the
RP2D; furthermore, treatment changes (e.g., dose reduction or treatment interrup-
tion) are recorded but not used to determine the RP2D. Although such a conventional
approach has been successful for evaluating cytotoxic agents, it may not be optimal to
determine the RP2D of MTAs (Le Tourneau et al. 2010). In this regard, Le Tourneau
et al. (2011) recommended that a treatment delay and/or reduction of relative dose
intensity be included in the definition of dose limiting toxicity. Relative dose intensity
is generally defined as the ratio of the effectively delivered dose to the theoretically
administered cumulative dose.Moreover, there are patientswho develop chronic low-
grade toxicities fromMTAs during the evaluation period of phase I trials. Such events
eventually warrant a dose reduction or treatment interruption owing to intolerance.
The conventional method for determining RP2D relies on the traditional definition
of the MTD during cycle 1, wherein low-grade toxicities are not considered and
excluded from MTD determination. These toxicities eventually become intolerable
and aremajor factors leading to a dose reduction or interruption after the cycle 1 eval-
uation period, resulting in insufficient drug exposure. Development of amethodology
to predict an appropriate RP2D, instead of basing it on a simple MTD determination,
has been advocated. A recent workshop examined Food and Drug Administration
(FDA)-approved agents for oncological indications requiring dose reductions and
interruptions in initial registration trials for small-molecule kinase inhibitors (Jänne
et al. 2016). Among 31 approved inhibitors, at least eight necessitated postmarketing
requirements or commitments. There is a significant gap in the development of these
agents because of a failure to predict an appropriate administration dose, potentially
leading to late-onset and/or cumulative toxicity (Nie et al. 2016). Consequently, there
is a need to assess the frequency of cases requiring a dose reduction after cycle 1 and
to evaluate the duration and degree of dose lowering (i.e., relative dose intensity).
Apart from the MTD, a study on toxicity information in phase I trials revealed that
moderate and severe toxicities occur regularly after cycle 1, and attention to RP2D
determination may be warranted (Postel-Vinay et al. 2014; Hirakawa et al. 2017). It
has been suggested that RP2D assessment should incorporate all available informa-
tion from any cycle, including lower grade toxicities leading to decreased relative
dose intensity.
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5.4 Cancer Immunotherapy

The effect of cancer immunotherapies is not directly based on the tumor but rather
on the immune system. The mechanism of action of immunotherapy is character-
ized by a cellular immune response followed by potential changes in the tumor
burden or patient survival (Hoos 2012). To adequately evaluate the optimal dose of
immunotherapies in phase I trials, a new dose-finding method that accounts for these
mechanisms is required. To this end, as in the dose-finding methods for MTAs, this
new method would benefit from new trial designs that allow for incorporation of
low-grade toxicities, late-onset toxicities, and addition of an efficacy endpoint.

Chiou and Burotto (2015) discussed the pseudo-progression of immunotherapy.
Delayed clinical responses have also been observed in studies of immunotherapeu-
tic agents, namely, an increase in the total tumor burden is later followed by tumor
regression. These findings of pseudo-progression would have been classified prema-
turely as progressive disease according to historicWHOor RECIST criteria and have
prompted the development of immunotherapy-related response criteria (Wolchok
et al. 2009). Therefore, when an efficacy endpoint is evaluated in the dose-finding
trials for immunotherapy, we may need to consider pseudo-progression when deter-
mining the optimal dose. In this regard, Postel-Vinay et al. (2016) reviewed the phase
I designs for immunostimulatory monoclonal antibodies targeting immune check-
point molecules, including pharmacokinetic and pharmacodynamic evaluations.

5.5 Dose Individualization

An emerging approach among treatments targeted to the needs of individual patients
on the basis of genetic, biomarker, phenotypic, or other clinical (or clinicopathologi-
cal) characteristics is given a great deal of attention (Collins and Varmus 2015). This
growing trend is also recognized in early-phase dose-finding trials that determine the
RP2D that often corresponds to the MTD defined as the highest clinically safe dose.
Several recent dose-finding trials have enrolled two or three heterogeneous groups
of patients categorized based on clinical or genomic characteristics (e.g., Innocenti
et al. 2014). Such trials were aimed at determining the individualized RP2D for each
patient group. To accommodate this growing trend, several dose-finding methods
have been developed to identify each RP2D in two or three groups of patients (e.g.,
O’Quigley et al. 1999; Ivanova and Wang 2006). Nevertheless, a common limitation
of these methods is that they can accommodate only a couple of patients’ character-
istics in the dose–toxicity and/or dose–efficacy models because of the difficulty with
estimating model parameters at a limited sample size of early-phase trials; therefore,
these methods do not include an interaction term of the dose and patient covariate in
their models.

In recent years, phase I/II trials analyzing the mutations in multiple genes (e.g.,
mutant orwild type) simultaneously are increasing in number (Amatu et al. 2016). For
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instance, we have 32 (=25) patterns of gene mutations when a trial tests five genes;
therefore, the parameter estimation for dose–toxicity and/or dose–efficacy models
including interaction terms of the dose and gene mutation at a limited sample size
can be challenging due to the large number of parameters requiring estimation. Ide-
ally, for each gene mutation pattern, the individualized optimal dose that is defined
as the most efficacious dose among the doses with acceptable toxicity should be
determined if the toxicity (and/or efficacy) outcome and a gene mutation interact.
Recently, Guo and Yuan (2016) struggled with this issue and developed a new dose-
findingmethod for identifying an individualized optimal dose for each genemutation
pattern. They proposed the canonical partial least-square method, which is widely
used in high-dimensional data analyses, to extract a small number of components
from the covariate matrix consisting of the dose, covariates (i.e., genomic markers),
and dose-by-covariate interactions. Nonetheless, their method cannot identify the
gene(s) influencing toxicity and/or efficacy responses because of its methodological
nature: the toxicity and efficacy outcomes are modeled based on a latent variable
approach involving the canonical partial least-square components. A dose-finding
method that determines the individualized optimal dose for each pattern of multiple
patient covariates of interest and then identifies the covariates associated with tox-
icity and/or efficacy outcomes is needed in practice. This is because the associated
covariates are useful for enriching the study population that can be expected to offer
a reasonable benefit/risk balance for an investigational drug in subsequent trials.

To accommodate this growing trend, we need to develop a new method for dose
individualization and simultaneous covariate selection in early-phase trials evaluat-
ing multiple patient covariates of interest. We possibly can create such methods by
means of the Bayesian least absolute shrinkage and a selection operator (lasso) (Park
and Casella 2008). The Bayesian lasso enables simultaneous parameter estimation
and covariate selection in the data with a large number of covariates by shrinking
the coefficients of covariates toward zero. For both binary efficacy and toxicity out-
comes, the method assumes the logistic model including the dose, binary patient
covariates, and interaction of the dose and patient covariates. The logistic model for
the efficacy outcome also includes a quadratic term of the dose to enable capturing
the nonmonotonic dose–efficacy relationship. The dose assignment during the trial
is performed via the posterior distribution of parameters obtained from the Bayesian
Lasso. Upon completion of patient enrollment, the proposed method determines the
individualized optimal dose according to the patterns of patient covariates and selects
the covariates associated with efficacy and toxicity outcomes.
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