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Eruption column from Guagua Pichincha Volcano as seen
from Quito, the capital city of Ecuador, on 7 October 1999.
The column, which rose to a height of ~ |2 km (-~ 7.5 miles),
exhibits many of the features described by Pliny the Younger
in his eyewitness account of the 79 CE (Common Era;
substitute for AD, Anno Domini) eruption of Vesuvius
(Preface), including a narrow ‘trunk’, spreading ‘branches’,
white areas caused by condensation of water vapor as a result
of rapid expansion of humid air, and dark areas laden with
tephra. Such columns are characteristic of plinian eruptions,
so called in recognition of Pliny the Younger’'s early
contribution to descriptive volcanology. Photograph by
Daniel Andrade YVarela, Departamento de Geofisica de la
Escuela Politécnica Nacional, Quito, Ecuador.
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USGS scientist Jack Kleinman, typically attired in shorts and a smile, sets up EDM
reflectors on Novarupta lava dome in the Valley of Ten Thousand Smokes, Alaska, with
Baked Mountain in the distance. The rhyolite dome was emplaced during the waning
phase of the largest volcanic eruption of the 20th century, which produced about 20 km*
of air-fall tephra and 11-15 km* of ash-flow tuff within about 60 hours in June 1912. Jack
helped to establish a geodetic network near Novarupta in 1989 and served as crew chief
for follow-up surveys in 1990 and 1993. His energy and zest for life inspired all those who
knew him. Jack died in a kayaking accident on the White Salmon River, Washington, in
1994. Photograph by John Eichelberger, University of Alaska Fairbanks.



What separates the gifted from those who do is the doing of it. I've come across a lot of people who can write
better than I can and do everything I do better than I can. The difference is I can keep my bottom to the chair.

Jim Lehrer, anchor, PBS’ The NewsHour with Jim Lehrer
and author of 15 novels, 2 memoirs, and 3 plays.
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Volcanoes and eruptions are dramatic surface man-
ifestations of dynamic processes within the Earth,
mostly but not exclusively localized along the
boundaries of Earth’s relentlessly shifting tectonic
plates. Anyone who has witnessed volcanic activity
has to be impressed by the variety and complexity of
visible eruptive phenomena. Equally complex,
however, if not even more so, are the geophysical,
geochemical, and hydrothermal processes that occur
underground — commonly undetectable by the
human senses — before, during, and after eruptions.
Experience at volcanoes worldwide has shown that,
at volcanoes with adequate instrumental monitor-
ing, nearly all eruptions are preceded and accom-
panied by measurable changes in the physical and
(or) chemical state of the volcanic system. While
geochemical methodologies of volcano monitoring
have shown increasing sophistication and promise
in recent decades, seismic and geodetic (ground-
deformation) techniques remain the most widely
used tools in volcanic surveillance. These two geo-
physical workhorses have proven to be robust and,
generally, the most diagnostic and reliable tech-
niques for volcanologists.

In the early 20th century, systematic measure-
ments of ground deformation were initiated at a
few active volcanoes in Japan and the USA. Since
then, as this book illustrates, volcano geodesy — a
specialized field of the still-young science of volca-
nology — has come a long way, not only in terms of
greatly increased diversity and precision of measure-
ments, but also in the number of volcanic systems
being monitored worldwide. Having had some
hands-on experience myself with ‘classical’ tech-
niques of geodetic monitoring (e.g., tilt measure-
ments, leveling, and laser electronic distance meas-
urements), while a staff member at the USGS
Hawaiian Volcano Observatory in the mid-1970s,
I am overwhelmed by the tremendous advances in
instrumentation, new techniques, data-acquisition

Foreword

telemetry and processing, and volcano-deformation
source models over the past three decades. There has
been a virtual explosion of volcano-geodesy studies
and in the modeling and interpretation of ground-
deformation data. Nonetheless, other than selective,
brief summaries in journal articles and general
works on volcano-monitoring and hazards mitiga-
tion (e.g., UNESCO, 1972; Agnew, 1986; Scarpa
and Tilling, 1996), a modern, comprehensive treat-
ment of volcano geodesy and its applications was
non-existent, until now.

In the mid-1990s, when Daniel Dzurisin (DZ to
friends and colleagues) was serving as the Scientist-
in-Charge of the USGS Cascades Volcano Observa-
tory (CVO), I first learned of his dream to write a
book on volcano geodesy. DZ asked me whether he
should undertake this book project in addition to his
CVO managerial duties and research commitments.
As his immediate supervisor at the time, my answer
to him was a no-brainer: Absolutely! With the
advent of ‘space geodesy’ (e.g., GPS and InSAR),
such a book would be timely and fill a long-existing
need. Most importantly, however, DZ, with his
expertise and experience in both classical and emer-
ging geodetic techniques, was clearly the right guy
for the job. With the passing years, his dream gra-
dually assumed tangible form, with decisions on
content and format, identification of possible colla-
borators, obtaining a suitable and interested pub-
lisher, and the actual writing and technical reviews of
each individual chapter. DZ was able to assemble a
stellar team of knowledgeable experts to author
several of the chapters (6, 8, 9, and 10) covering
related topics beyond his own areas of specializa-
tion. With the reawakening of Mount St. Helens
Volcano in October 2004 and its ongoing eruption,
the book required some last-minute additions and
updating. The rest, as they say, is history. However,
completion of the book took somewhat longer than
DZ and I had anticipated; Praxis and its editors and



xiv Foreword

production staff have been patient and cooperative
throughout a sporadic and lengthy process.

In the Preface, DZ states that the book’s intended
audience is primarily undergraduate and graduate
students interested in volcanology. Doubtless this
book will admirably fulfill the academic needs of
professors and students in the geosciences, but
Volcano Deformation has much more to offer.
Not only is it a content-rich, clearly written and
profusely illustrated textbook, but it also provides
useful contextual information for the general volca-
nologist, like myself, who is not involved full time
with geodetic studies. Moreover, because volcano
geodesy is a multidisciplinary pursuit, this book
should be valuable to volcano-deformation specia-
lists wanting to know more about technique(s) apart
from those they themselves employ. This volume is
not a how-to compendium for making and inter-
preting ground-deformation measurements, but it
contains pertinent references to classical surveying
manuals and other works containing the theoretical
basis, instrumentation and specifications, equations,
and data-processing procedures related to measure-
ment of the Earth. The book is organized and
written in an easily approachable manner, even
for the non-specialist reader, in that any discussion
heavily laden with technical detail or mathematics
can be skimmed, or even skipped, with minimal loss
of the chapter’s principal theme and message.

For me, the major strength of the book is its focus
on how volcano geodesy complements other
volcano-monitoring approaches and tools. As
emphasized throughout, optimum monitoring of a
restless or an erupting volcano is achieved by a
combination of techniques, rather than by uncritical
reliance on any single one. An even greater strength
of Volcano Deformation is its extensive treatment
(Chapter 7) of the key lessons volcanologists have
learned at well-monitored deforming volcanoes.
These lessons amply demonstrate that geodetic

and other volcano-monitoring data not only con-
tribute to advancing our scientific understanding of
how volcanoes work, but that they also can benefit
society in reducing the risks from hazardous erup-
tions. The results of volcano geodesy provide basic
research data on our dynamic planet and, at the
same time, have practical, at times life-saving, appli-
cations. Yet, as the book cautions, despite the
impressive strides made in volcano geodesy and
other monitoring techniques in recent decades, vol-
canologists still lack the capability to reliably fore-
cast the outcome of sustained or escalating volcanic
unrest. Lamentably, at present we cannot provide
definitive answers to vital questions invariably asked
of us by emergency management officials and popu-
lations at potential risk: Will the volcanic unrest
culminate in eruption? If so, how large will the
eruption be? Will the eruption be explosive or
non-explosive? How long will it last? Chapter 11
addresses how we might better answer these and
related questions in the 21st century.

Finally, the readers of this book cannot help but
notice a sense of adventure and excitement — above
and beyond scientific curiosity — that pervades the
pages of the book, especially the chapters solely
authored or co-authored by DZ. For me at least,
this excitement is palpable. Clearly, the author has
been fascinated by how and why volcanoes deform
throughout his career, and in this book DZ and his
co-authors convey that fascination and wonderment
to the readers. Volcano Deformation is hardly a dry,
information-packed scientific treatise; instead, it
provides vibrant testimony that doing good, impor-
tant science can also be a lot of fun. It is sure to
inspire some readers to become volcanologists, if not
volcano geodesists, and to pick up where this book
leaves off.

Robert 1. Tilling
Menlo Park, California
October 2005



He [Pliny the Elder] was at Misenum in his
capacity as commander of the fleet on the 24th
of August, when between 2 and 3 in the afternoon
my mother drew his attention to a cloud of
unusual size and appearance. He had had a
sunbath, then a cold bath, and was reclining
after dinner with his books. He called for his
shoes and climbed up to where he could get the
best view of the phenomenon. The cloud was
rising from a mountain — at such a distance we
couldn’t tell which, but afterwards learned that it
was Vesuvius. I can best describe its shape by
likening it to a pine tree. It rose into the sky on a
very long ‘trunk’ from which spread some
‘branches’. I imagine it had been raised by a
sudden blast, which then weakened, leaving the
cloud unsupported so that its own weight caused it
to spread sideways. Some of the cloud was white,
in other parts there were dark patches of dirt and
ash. The sight of it made the scientist in my uncle
determined to see it from closer at hand.

From Pliny the Younger’s eyewitness account
of the 79 CE (Common Era; substitute for AD,
Anno Domini) eruption of Vesuvius, translated
from his Letter 6.16 to the historian Tacitus by
Prof. Cynthia Damon (2000), Amherst College,

Massachusetts.

Almost two millennia after Pliny the Younger’s
insightful description of the Vesuvius eruption
that resulted in the death of his uncle and entombed
the residents of Pompeii and Herculaneum, modern
volcanology is still in its infancy. Like a child with
boundless enthusiasm and seemingly endless oppor-
tunities, volcano science has yet to develop fully an
identity of its own. Instead, it freely draws upon
such diverse disciplines as geology, seismology,
hydrology, geochemistry, and geophysics. Fewer
than half of the scientists who study volcanoes
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would call themselves volcanologists, and therein
lies a great strength. Volcanology is inherently a
multidisciplinary pursuit with ample room for spe-
cialists and generalists alike — physicists, chemists,
biologists, hydrologists, limnologists, dendrochro-
nologists, ecologists, remote-sensing specialists, and
many others. Scientists who study volcanoes often
find themselves looking beyond their own expertise
for answers, surrounded by others doing the same.
For novices and experts alike, volcanoes are hum-
bling but very exciting subjects to explore.

In spite of the best efforts of countless volcano
watchers dating back at least to Pliny the Younger,
no unifying theory yet exists to explain the diversity
and complexity of magmatic and volcanic systems.
This may be due in part to the tremendous breadth
of volcanic phenomena (e.g., bubbling mudpots and
lava lakes; steaming hot springs and jetting lava
fountains; lavas that flow freely, others seemingly
too stiff to move, and others still that explode into
towering ash columns and swift pyroclastic flows;
geysers that entertain onlookers by erupting on
schedule and rare, caldera-forming -cataclysms
that threaten entire civilizations). To make
matters worse, all of this diversity is served up
with a heavy dose of complexity. Earth’s deep inter-
ior is not only hidden from direct view, but it is also
heterogeneous in virtually every way imaginable.
Before it explodes or oozes onto the surface,
magma forms deep within the Earth, rises
through extreme conditions of pressure and tem-
perature, interacts physically and chemically with
diverse crustal rocks, cools, partially crystallizes and
degases, sometimes mixes with other magmas of
similar complexity, responds to regional tectonic
influences, and interacts to varying degrees with
groundwater. Each of these processes leaves an
imprint on the eruptive or intrusive end products,
so the complete sequence of events can be exceed-
ingly difficult to decipher.
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All of this says nothing about the additional com-
plexity that arises when magma finally reaches the
surface, where it interacts with the atmosphere,
hydrosphere, and biosphere. During the past two
centuries, more people have died as a result of
tsunamis, lahars (volcanic mudflows), and post-
eruption starvation and disease associated with
eruptions than as a direct result of eruptive pro-
cesses. On the island of Hawai'i, many residents’
complaints of unusual respiratory problems have
been attributed to ‘vog’ (volcanic fog) or ‘laze’
(lava haze), a product of previously undocumented
interactions between seawater and basaltic lava
flows as they pour into the Pacific Ocean from a
long-lived eruption of Kilauea Volcano (Monas-
tersky, 1995).! Atmospheric scientists still debate
the relative contributions of anthropogenic and vol-
canic sources of several gases that play an important
role in sustaining life on Earth. Because they reflect
our planet’s inherent complexity from mantle to
stratosphere, volcanoes present an immense chal-
lenge to those who strive to understand them.

Responding to crises that threaten the lives and
livelihoods of thousands of people, volcano scien-
tists at the beginning of the 21st century still rely to a
great extent on collective experience and intuition to
anticipate the outcome of volcanic unrest. In the
words of two scientists who played key roles in
the mitigation effort surrounding the historic 1991
eruption of Mount Pinatubo, Philippines, ‘Success-
ful mitigation of volcanic risks requires correct fore-
casts, effective warnings, and a willingness of public
officials and citizens to take necessary precautions.
Volcanologists should be prepared for obstacles and
delays at each step and should be aware that, even
when progress is being made toward such forecasts,

warnings, and precautionary actions, the margin of

safety can be alarmingly narrow.’ (Newhall and
Punongbayan, 1996, p. 807). Happily, this situation
is improving rapidly. The past 25 years have
witnessed several important advances in our under-
standing of volcanic processes, products, and

! For the most part, spellings of Hawaiian words throughout this
book are in accordance with guidelines established by Heliker et
al. (2003) in their Preface to USGS Professional Paper 1676, The
Pu'u ‘0‘6 — Kupaianaha eruption of Kilauea Volcano, Hawai'i: The first
20 years. The modern spellings were adopted ‘. . . both to satisfy
the new standards of the [US] Board on Geographic Names and
to honor the Hawaiian language after more than a century of
neglect’ (Heliker et al., 2003, p. iii). Exceptions here include
formal names (e.g., Hawaiian Volcano Observatory), publication
citations, and reproduced figures, where the original spellings
have been retained.

attendant hazards. Progress has been spurred
both by technological improvements and by inexor-
able encroachment of cities onto the flanks of dan-
gerous volcanoes. Tragically, a major impetus for
this change was the highest death toll from a single
eruption since the beginning of the 20th century. In
1985, more than 23,000 people died as a result of
lahars triggered by an eruption of Nevado del Ruiz
Volcano in Colombia — the deadliest eruption since
1902, when pyroclastic flows from Mont Pelée
claimed nearly 30,000 lives in the town of St.
Pierre on the island of Martinique, West Indies
(Fisher et al., 1980; Fisher and Heiken, 1982).

In response, volcanologists focused their efforts
on eruption prediction and volcano-hazards mitiga-
tion, with encouraging results. Volcano seismology
has evolved from a descriptive science based on
cataloging events toward a deterministic theory of
the mechanisms of several distinctive types of earth-
quakes that commonly occur beneath volcanoes.
Volcano geochemistry has taken its place with
seismology and geodesy as a mainstay of modern
volcanology, in part by providing some of the ear-
liest and most definitive indicators that fresh magma
was involved in several recent episodes of volcanic
unrest that culminated in eruptions. Remote-sensing
techniques have been applied to volcanoes with
increasing frequency and success, promising a
future of global volcano surveillance by spaceborne
sensors.

The global telecommunications revolution,
especially the Internet and World Wide Web, has
profoundly changed the way in which scientists
monitor volcanoes and share information. Although
the presence of trained scientists at volcano crises
will continue to be essential for effective hazards
mitigation, in most places it is now possible to
establish a virtual volcano observatory to share
information globally in near-real time. Scientists
monitoring a remote volcano can draw upon the
expertise of colleagues around the world, even as
hazardous events are unfolding. At the same time,
advances in volcano geodesy have brought powerful
new tools to bear on problems of volcano monitor-
ing and hazards assessment. At the start of a new
millennium, volcanology seems to be passing from
infancy to adolescence, anxious to establish a unique
identity among its more mature siblings in the Earth
sciences.

This book focuses on one aspect of volcanology’s
recent advances that I have been fortunate to experi-
ence firsthand — a revolution in volcano geodesy.
During my career, not one but two breakthrough
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techniques for measuring surface deformation from
space have burst on the scene: the Global Position-
ing System (GPS) and interferometric synthetic-
aperture radar (InSAR). Earth scientists have
coined the phrase ‘space geodesy’ and put the
concept to good use studying geodynamic processes,
including volcanism. Other technological advances
have made it possible to measure crustal strain in situ
with amazing precision over a very wide range in
frequency, blurring the distinction between seismol-
ogy and geodesy. Although traditional techniques
are still the best choice for many tasks, a growing
collection of new tools has greatly extended the
reach and capability of classical geodesy.

In one sense, volcano geodesy is a very specialized
field with relatively few practitioners. On the other
hand, the subject is sufficiently intuitive to have
widespread appeal among many non-specialists
who are fascinated by volcanoes and curious
about how they work. This book is by no means
a comprehensive treatment of modern geodetic tech-
niques applied to volcanoes, nor is it a historical
account of the development of volcano geodesy. For
a more systematic treatment of geodetic principles
and practices, the reader might want to consult a
reference book on geodesy or surveying such as
Bomford (1980), Davis et al. (1981), or Krumm et
al. (2002). For an overview of geodetic techniques
applied to volcanoes, the article on ground deforma-
tion methods and results by Van der Laat (1996) is a
good choice. Readers interested in a more general
treatment of volcanology or volcano hazards might
want to consult excellent texts on those subjects by
Williams and McBirney (1979), Latter (1989),
Francis (1993), Scarpa and Tilling (1996), Fisher
et al. (1997), or Decker and Decker (1998).

This is neither a how-to book nor a reference
manual. Instead, it describes some widely used tech-
niques for measuring ground movements at volca-
noes and attempts to place volcano geodesy in the
broader context of volcano monitoring and hazards
assessment. It tries to make the point that useful
geodetic information is where you find it, and some-
times an old-fashioned tape measure or leveling rod
is a better tool than a state-of-the-art GPS receiver
or remote-sensing satellite. Most of all, I have tried
to convey a sense of the excitement that comes from
knowing that the ground beneath your feet is
moving, for reasons you can only guess — slowly
at first, but inexorably, in response to forces that
defy comprehension. This is the essence of volcano
geodesy — the thrill of exploring unstable ground —
that I have tried to capture on these pages.

Many of the examples cited in the book are from
my personal experience, because these are the ones I
know best. At the same time, 1 have tried to
acknowledge others’ work wherever possible, as a
guide to readers in search of other perspectives or
more detailed information. Toward that end, I have
included an extensive list of References in the hope
that some readers will use the book as an entrée to
the volcanological research literature. Also included
1s a Glossary of technical terms that should be
helpful for non-specialists seeking to get beyond
jargon to an understanding of volcanic processes
and phenomena. The book’s intended audience is
primarily undergraduate and graduate students
interested in volcanology, but hopefully it will
also be of interest to anyone else who wonders, as
I do, how and why volcanoes deform.
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Symbols

Common symbols used in the text are listed alphabetically, first in the Latin, then in the Greek alphabets. In a
few cases, the same symbol is used differently in different chapters. All symbols are defined on first use in each
chapter, and the meaning should be clear from context. Units are shown in square brackets, mostly in the
International System of Units (SI). See also Abbreviations and Acronymes.

a = semi-major axis (ellipsoid) [m],
radius [m],
or acceleration [ms ]

A =area [m 2]

b =semi-minor axis (ellipsoid) [m] or
perpendicular component of the
baseline between two image-acqui-
sition points for SAR images
(Chapter 5)

B =Skempton’s coefficient [dimension-
less] or radar-pulse frequency
bandwidth (Chapter 5) [s ']

¢ =speed of light in a vacuum
[299,792,458 ms ']

d =distance or depth [m]

f=cellipsoid flattening (Chapter 2)
[dimensionless], frequency [s~'], or
focal length (Chapter 6) [m]

g =local gravitational acceleration at
Earth’s surface [ms ]

G, pt = shear modulus (one of two Lamé
constants; also called rigidity,
modulus of rigidity, or torsional
modulus) [Pascals, kgm ™ 572]. In
Chapter 2, G = universal gravitation
constant
[6.6742+0.0010x 10" m* kg ™' s 77
and p =shear modulus. Elsewhere,
G = shear modulus.

h = height [m], ellipsoidal height
(Chapter 2) [m], or thickness [m]

h, = altitude of ambiguity (Chapter 5) [m]
H = orthometric height (Chapter 2) [m]
or altitude (Chapter 5) [m]

K

K =bulk modulus (Chapters 8 and 9)
[Pascals, kgm ™' s
magma = effective bulk modulus of magma
(Chapter 8) [Pascals, kgm ' s 7]

K, = undrained bulk modulus (Chapter 9)
[Pascals, kgm ™' s72]

K, =bulk modulus of solid grains in
porous medium (Chapter 9)
[Pascals, kg m s

L =length [m]

m =mass [kg]

M = earthquake magnitude, assumed to
be local magnitude, M/, unless
specified otherwise [dimensionless]

M g =mass of the Earth [kg]

M =local earthquake magnitude
[dimensionless]

M, = earthquake body magnitude
[dimensionless]

M = earthquake surface-wave magnitude
[dimensionless]

M., = earthquake moment magnitude
[dimensionless]
M, = Mach number [dimensionless]
(Chapter 3)
M, = seismic moment [joules, kg m?s ]
Mg)g) = geodetic moment [joules, kg m? s

N = Newton, Standard International (SI)
unit of force: IN=1kgms™>
(Chapter 2)

N =ellipsoid—geoid separation (Chapter
2) [m] or initial ambiguity at first
observation, cycle ambiguity, phase



xxx Symbols

ambiguity, or integer ambiguity
(Chapter 4) [dimensionless]
p, P =pressure [Pascals, kgmfl s’z]
P, =pore-fluid pressure (Chapter 10)
 [Pascals, kgm ' s7?]
R, r =pseudorange (Chapter 4), slant
range (Chapter 5), or radial distance
(m]

R = gas constant (Chapter 9)
[8.314472 Jmol ™! °K ™! (joules per
mole per degree Kelvin)]

Ry = mean radius of the Earth (Chapter 2)
[6.371 x10° m]

S =scale (Chapter 6) [dimensionless]

S = lithostatic load or vertical stress
(Chapter 10) [Pascals, kgm ! s77]
t = time [s]
T =period [s], torque (Chapter 3)
[kg m? s3], or absolute temperature
(Chapter 10) [degrees Kelvin]
u, v, w = displacements along the x-, y-, and z-
axes, respectively (Chapter 8) [m]
v =velocity [m s'l]
V = volume [m3]
AVurrace = integral of surficial vertical dis-
placement (Chapter 8) [m’]
AV chamber = sOUrce-chamber volume change
(cavity volume change) (Chapter 8)
[m?]
AVinagma = volume of intruded magma (Chapter
8) [m’]

AV ompression = et volume change of stored magma
due to pressure change in chamber
(A Vcompression =A Vmagma
_AVchamber) (Chapter 8) [m%]

V', = seismic compressional velocity

[ms™']
V, = seismic shear-wave velocity [ms ']
W = weight [kgm s ™|
W,, W, = width of the radar antenna footprint
in the azimuth and range directions,
respectively (Chapter 5) [m]
a =radius (Chapter 8) [m]

B., B, = angular beam width in azimuth and
range directions, respectively
(Chapter 5) [degrees or radians]

~ = gravitation constant (Chapter 8)
[6.674240.0010x 10" "'"N'm? kg 2 or

m? kg™ 577

A = change or difference (e.g.,
Ag =change in local gravitational
acceleration, Ah = height difference
between bench marks

€;; = strain component [dimensionless]

¢, = radial strain (Chapter 8) [dimen-

sionless]

egp = tangential strain (Chapter 8)
[dimensionless]

gy = volumetric strain (Chapter 8)
[dimensionless]

£=strain rate (Chapter 10) [s ']

O = bearing (degrees) (Chapter 2)

A =wavelength [m], one of two Lamé
constants [Pascals, kgm ™' s72, or
coefficient of friction (Chapter 10)
[dimensionless]

1, G = shear modulus (one of two Lamé
constants; also called rigidity,
modulus of rigidity, or torsional
modulus) [Pascals, kgm ™' s7%]. In
Chapter 2, G = universal gravitation
constant
[6.6742+0.0010x 10" Nm? kg >
orm’ kg™! s_z] and p =shear
modulus. Elsewhere, G = shear
modulus.

v = Poisson’s ratio [dimensionless]

7 = pi [dimensionless]

p = density [kgm ]

p. =density of Earth’s crust (Chapter 8)
[kgm™]

o =standard deviation

7 = tilt (Chapter 2) [microradians] or
radar pulse duration (Chapter 5) [s]

0;; = stress component [Pascals,

kgm~'s7?

o) = maximum principal stress [Pascals,
kgm™'s7?]

oy = least principal stress [Pascals,
kgm™! s72)

¢ = longitude [degrees]
w =tilt (Chapter 8) [microradians]



a

A/D
ADGGS

AKDA
ALOS
ANSS

AS
ASAR

ASI

AKST

Abbreviations and acronyms

annum or year (e.g., mma ',

millimeters per year)

analog-to-digital (e.g., A/D converter)
State of Alaska Division of Geological

and Geophysical Surveys

Alaska Deformation Array
(continuous GPS network)
Advanced Land Observing Satellite
(Japan)

Advanced National Seismic System
(USGS)

anti-spoofing (GPS)

Advanced Synthetic-aperture Radar
(Envisat, European Space Agency)
Agenzia Spaziale Italiana (Italian
Space Agency)

Alaskan Standard Time.

AKST =GMT -9 hours

Auto GIPSY Automated online GPS data-

AVO
BARD

processing service provided by the Jet
Propulsion Laboratory: http://
mithouse jpl.nasa.gov/ag/

Alaska Volcano Observatory (USA)
Bay Area Regional Deformation
Network (continuous GPS network)

BARGEN Basin and Range Geodetic Network

BCE
BM
BS
°C

C&GS
CAVW

C/A-code

CCD

(continuous GPS network)

Before the Common Era (substitute
for BC. Before Christ)

bench mark

backsight (leveling or triangulation)
degree(s) Celsius or degree(s)
Centigrade

US Coast and Geodetic Survey
Catalog of Active Volcanoes of the
World

coarse/acquisition code (binary
sequence used to modulate GPS
carrier signals)

charge coupled device

CDMA
CE

CGPS

cm
CNES
COSPEC
CORS
CP-FTIR
CRT
CSA
CvVO

CWAAS

DARA

dB
DC
DEM
DLP
DLR

DRAO

DT

Code Division Multiple Access
Common Era (substitute for AD,
Anno Domini)

continuous GPS

centimeter(s)

Centre National d’Etudes Spatiales
(France)

Correlation spectrometer (trade name)
used to measure SO, concentration
Continuously Operating Reference
Station (GPS)

closed-path Fourier transform infrared
(spectrometer)

cathode ray tube

Canadian Space Agency

David A. Johnston Cascades Volcano
Observatory

Canadian Wide Area Augmentation
System for GPS, analogous to WAAS
(USA), EGNOS (Europe), MSAS
(Japan), GAGAN (India), and SNAS
(China)

day (e.g., mm d™', millimeters per day)
Deutsche Agentur fiir
Raumfahrtangelegenheiten (former
German Space Agency, reorganized as
DLR in 1997)

decibel(s)

direct current

digital elevation model

deep long-period (earthquake)
Deutsches Zentrum fiir Luft- und
Raumfahrt (German Aerospace
Center, established 1997)

continuous GPS station located at the
Dominion Radio Astrophysical
Observatory south of Pentictin, B.C.,
Canada; part of the Western Canada
Deformation Array

differential transformer
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DTED
DTM
EBRY

EDM

EGNOS

digital terrain elevation data

digital terrain model

Eastern Basin-Range (Wasatch Front)
and Yellowstone Hotspot
(Yellowstone-Snake River Plain)
Network (continuous GPS network)
electro-optical distance meter,
electronic distance meter, or electronic
distance measurement

European Geostationary Navigation
Overlay Service for GPS (Europe), a
regional augmentation service
analogous to WAAS (USA), CWAAS
(Canada), MSAS (Japan), GAGAN
(India), and SNAS (China)

EEPROM Electrically Erasable Programmable

EPROM

ERS

ESA
ETS
FAA

FBN
FDMA
FFT
FLIR
FM
FOC

FS
FTIR
FTP

GAGAN

Galileo

Read Only Memory (computing)
Erasable Programmable Read Only
Memory (computing)

European Remote-Sensing Satellite
(ERS-1 and ERS-2)

European Space Agency

episodic tremor and slip

Federal Aviation Administration
(USA)

Federal Base Network

Frequency Division Multiple Access
Fast Fourier Transform

forward looking infrared radiometer
frequency modulated

full operational capability (GPS and
GLONASS)

foresight (leveling or triangulation)
Fourier transform infrared
spectrometer

File Transfer Protocol

gram(s) or gravitational acceleration at
Earth’s surface (g ~9.81 ms™?)

GPS and Geo Augmented Navigation
system for GPS (India), analogous to
WAAS (USA), CWAAS (Canada),
EGNOS (Europe), MSAS (Japan), and
SNAS (China)

Global Navigation Satellite System
being developed by the European
Space Agency (ESA)

GEONET GPS Earth Observation Network

GHz
GIS

(continuous GPS network, Japan)
gigaHertz (frequency unit, 10° Hertz)
geographic information system

GLONASS Global Navigation Satellite System

(Russia)

GLORIA

GMT

GNSS

GPS

GPa

GRS 80
GST

GVN
HF

hPa
HST
HVO
Hz
IAU

TIAVCEI

IERS

IGS

Geologic Long-Range Inclined Asdic
(side-scanning sonar system)
Greenwich Mean (or Meridian) Time,
defined as the mean solar time at the
Royal Greenwich Observatory in
Greenwich near London, England,
which by convention is at 0 degrees
geographic longitude

Global Navigation Satellite System
(see Glossary)

Global Positioning System, specifically
the US NAVSTAR GPS Global
Navigation Satellite System
gigaPascal(s)

Geodetic Reference System 1980
Galileo System Time, a timescale
generated by atomic clocks for the
European Space Agency’s Galileo
global navigation system. GST is
steered toward International Atomic
Time (TAI), and is specified to be
within 50 nanoseconds of TAI for
95% of the time over any yearly time
interval

Global Volcanism Network
high-frequency (earthquake) or
hydrogen flouride

hectopascal (1 hPa =1 millibar
(mbar) =9.86923 x 107 atmospheres)
Hawaiian Standard Time, also known
as Hawaiian/Aleutian Standard Time.
HST =GMT — 10 hours

Hawaiian Volcano Observatory (USA)
Hertz, frequency unit equal to one
cycle per second (s™h

International Astronomical Union
International Association of
Volcanology and Chemistry of the
Earth’s Interior

The IERS was established as the
International Earth Rotation Service
in 1987 by the International
Astronomical Union (IAU) and the
International Union of Geodesy and
Geophysics (IUGG). In 2003 it was
renamed to International Earth
Rotation and Reference Systems
Service. One of its primary objectives
is to provide the International
Terrestrial Reference System (ITRS)
and its realization, the International
Terrestrial Reference Frame (ITRF).
International GPS Service
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InNSAR  Interferometric synthetic-aperture

radar

10C initial operational capability (GPS and
GLONASS)

ITRF International Terrestrial Reference
Frame (currently ITRF2000, updated
regularly)

IUGG International Union of Geodesy and
Geophysics

IUSS Integrated Undersea Surveillance

System (US Navy)

JAMSTEC Japan Marine Science and
Technology Center

JAXA Japan Aerospace Exploration Agency
(formerly NASDA, National Space
Development Agency of Japan)

JERS Japanese Earth Resources Satellite

JPL Jet Propulsion Laboratory

JRO Johnston Ridge Observatory (US
Forest Service visitor center near
Mount St. Helens)

JROI1 Continuous GPS station at the
Johnston Ridge Observatory near
Mount St. Helens

°K degree(s) Kelvin

ka thousands of years before present
kbar kilobar(s)

kg kilogram(s)

km kilometer(s)

KPa kilopascal(s)

L1, L2 Primary carrier frequencies for
NAVSTAR and GLONASS satellite
signals. See Chapter 4 and Table 4.1
for details

L3 Military signal broadcast
discontinuously at 1381.05 MHz by
NAVSTAR satellites. Also, a
particular linear combination of the L1
and L2 carrier frequencies. See
Chapter 4 for details

L5 A third civilian carrier frequency to be
broadcast in addition to L1 and L2 by
Block IIF NAVSTAR satellites
starting in 2006 and by Block III
satellites starting in 2012. See Chapter
4 for details.

LAN local area network

LBT long-base tiltmeter

Lidar light detection and ranging
LF low-frequency (earthquake)
LP long-period (earthquake)

LVO Long Valley Observatory (USA)
m meter(s)

M,

M-code

Ma
Mbyte
mg
mGal

MHz
MITI

mm
MPa

ms
nGal

prad

MSAS

magnitude (earthquake) on the Richter
scale, assumed to be local magnitude,
M, unless specified otherwise

local magnitude (earthquake) as
originally defined by C.F. Richter and
B. Gutenberg in 1935; the scale is
based on the maximum amplitude of a
seismogram recorded on a standard
Wood—Anderson torsion seismograph
body magnitude (earthquake), based
on the amplitude of P body-waves; this
scale is most appropriate for deep-
focus earthquakes

surface-wave magnitude (earthquake),
based on the amplitude of Rayleigh
surface waves measured at a period
near 20s; appropriate for distant
earthquakes

moment magnitude (earthquake),
based on the moment of the
earthquake, which is equal to the
rigidity of the Earth times the average
amount of slip on the fault times the
area of the fault that slipped

Mach number of the gas in a
separated gas-liquid flow through a
nozzle under choked conditions
(Section 3.1.4)

Military code modulation structure,
analogous to C/A-code and P-code,
implemented on Block IIR-M and
subsequent NAVSTAR satellite series
starting in September 2005

millions of years before the present
megabyte (106 bytes)

milligram(s)

milliGal (gravitational acceleration
unit, 10~ Gal)

megaHertz (frequency unit, 10° Hertz)
Ministry of International Trade and
Industry (Japan)

millimeter(s)

megaPascal (pressure unit,

1 MPa = 10°® Pascals = 10 bar)
millisecond(s)

microGal(s) (gravitational acceleration
unit, 10~% Gal)

microradian(s) (angular tilt unit, 107°
radian)

MTSAT Satellite-based Augmentation
System for GPS (Japan), MTSAT
being Multi-functional Transport
Satellite, analogous to WAAS (USA),
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EGNOS (Europe), CWAAS (Canada),
GAGAN (India), and SNAS (China)

N newton (force unit, equivalent to
kgms?)

NAD 27 North American Datum 1927

NAD 83 North American Datum 1983

NASA National Aeronautics and Space
Administration

NASDA National Space Development Agency
of Japan (reorganized as JAXA in
2003)

NAVD 88 North American Vertical Datum of
1988

NAVSTAR Navigation Satellite Time and
Ranging (US GPS satellite)

NBAR  Northern Basin and Range
(continuous GPS network)
NDIR Non-dispersive infrared

NEXRAD Next Generation Weather Radar
(National Weather Service, National
Oceanic and Atmospheric
Administration, USA)

nGal nanoGal(s) (gravitational acceleration
unit, 10~ Gal)
NGS National Geodetic Survey (USA)

NGVD 29 National Geodetic Vertical Datum of

1929 (USA)

nm nanometer = 10~ m

NOAA  National Oceanic and Atmospheric
Administration (USA)

ns nanosecond(s) = 107%s

NSF National Science Foundation (USA)

nT nanoTesla(s) (magnetic field unit,
equivalent to 1 gamma or 10> gauss)

OFDA  Office of Foreign Disaster Assistance
(US State Department)

OPUS On-line Positioning User Service, a
GPS data-processing service provided
by the National Geodetic Survey:
htip:|/www.ngs.noaa.gov/OPUS/

OTF on-the-fly (GPS)

P-code Precise code (binary sequence used to

modulate GPS carrier signals)

PALSAR Phased Array L-band Synthetic-
aperture Radar (aboard the Japanese
ALOS)

PANGA Pacific Northwest Geodetic Array
(continuous GPS network)

PBO Plate Boundary Observatory
(EarthScope component)

PDT Pacific Daylight Time.

PDT =GMT — 7 hours

ppb part(s) per billion

ppm
PRI

PRF

PRN
PROM

psi
PST

radar
RAR
RINEX

ROM
RTK

S-code
SA
SAFOD
SAR
SBAS
SCIGN

Scintrex

SEAN
SI

SLAR
SLC
SLR

SNAS

SOPAC

SOSUS
SP

part(s) per million

pulse repetition interval (radar)=1/
PRF

pulse-repetition frequency (radar)=1/
PRI

pseudorandom noise

Programmable Read Only Memory
(computing)

pounds per square inch

Pacific Standard Time.

PST = GMT — 8 hours

radio detection and ranging
real-aperture radar

receiver independent exchange format
(GPS)

Read Only Memory (computing)

real time kinematic (GPS)

second(s)

Standard code (Russian GLONASS,
analogous to C/A-code for American
GPS)

selective availability (GPS)

San Andreas Fault Observatory at
Depth (EarthScope component)
synthetic-aperture radar

Satellite Based Augmentation System
(regional civilian GNSS augmentation
system; see Glossary)

Southern California Integrated GPS
Network (continuous GPS network)
Scientific Instruments, Research and
Exploration. LaCoste & Romberg-
Scintrex, Inc. produces over 90% of
the world’s gravimeters

Scientific Event Alert Network
Systéme International (International
System of Units)

side-looking airborne radar
single-look complex (a type of SAR
image, distinct from a multi-look
image)

side-looking radar, or single-lens reflex
(camera)

Satellite Navigation Augmentation
System for GPS (China), analogous to
WAAS (USA), CWAAS (Canada),
EGNOS (Europe), MSAS (Japan), and
GAGAN (India)

Scripps Orbit and Permanent Array
Center

Sound Surveillance System (US Navy)
self-potential, streaming potential, or
spontaneous potential
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SPOT ‘Systéeme Pour I'Observation de la
Terre’ satellite (France)
SRTM Shuttle Radar Topography Mission

STS Space Transportation System or
Shuttle Transport System (Space
Shuttle missions are numbered
sequentially starting with STS-1 in
April 1981)

Sv satellite vehicle or space vehicle (GPS)

SVN Satellite Vehicle Number or Space
Vehicle Number (GPS)

t metric ton(s) or tonnes, unit of mass
equivalent to 1,000kg

TAI Temps Atomique International

(International Atomic Time), based on
a continuous counting of the SI second
by a large number of atomic clocks.
TAI is currently (1 January 2006)
ahead of UTC by 33s
(TAT - UTC = +335)

TIN triangulated irregular network (GIS)

TOMS total ozone mapping spectrometer
TopSAR topographic synthetic-aperture radar
UAFGI  University of Alaska Fairbanks

Geophysical Institute

UNAVCO University NAVSTAR Consortium
formed in 1984 under auspices of the
Cooperative Institute for Research in
Environmental Sciences (CIRES) at
the University of Colorado and funded
by the National Science Foundation
(NSF). UNAVCO, Inc. was created as
an independent, non-profit,
membership-governed corporation in
April 2001

USAID  United States Agency for International
Development (US State Department)

USArray United States Seismic Array
(EarthScope component)

USGS United States Geological Survey

USNO
UTC

US Naval Observatory

Coordinated Universal Time, the

modern implementation of Greenwich

Mean Time (GMT)

UTC (Russia) Coordinated Universal Time,
Russia

UTC (SU) Coordinated Universal Time, Soviet
Union

UTC (USNO) Coordinated Universal Time, US

Naval Observatory

UTM Universal Transverse Mercator

VDAP Volcano Disaster Assistance Program
(USA)

VEI Volcanic Explosivity Index

VHP Volcano Hazards Program (USGS)

VLP very long period (earthquake)

VT volcano—tectonic (earthquake)

W-key Secret encryption used to form the Y-
code from the unclassified P-code
(GPS)

Wide-Area Augmentation System for
GPS (USA), analogous to CWAAS
(Canada), EGNOS (Europe), MSAS
(Japan), GAGAN (India), and SNAS
(China)

Western Canada Deformation Array
(continuous GPS network)

World Geodetic System 1984

World Organization of Volcano
Observatories

weight percent (i.e., percent by weight,
as in magma containing 2 wt% H,O)
Binary code modulation scheme for
GPS signals formed by encrypting the
P-code using a secret W-key. Y-code is
the basis for the anti-spoofing (AS)
feature of GPS.

Yellowstone Volcano Observatory
(USA)

WAAS

WCDA

WGS 84
wWOVO

wt%

Y-code

YVO



CHAPTER 1

The modern volcanologist’s tool kit

It’s an exciting time to be a volcanologist, particu-
larly if your specialty is volcano geodesy. Volcan-
ology is in the midst of a revolution, and geodesy is
helping to lead the way. Faster than ever before, new
technologies and techniques are changing our
understanding of how volcanoes work by revealing
how they behave — before, during, and after eruption
— in unprecedented detail. Capabilities that would
have seemed far-fetched just a few decades ago —
such as watching volcanoes deform from space,
tracking the rise of a magma-filled dike in real
time, or predicting eruptions accurately and early
enough for people to move out of harm’s way with-
out unduly disrupting their everyday lives — are fast
becoming realities. I wrote this book because 1
wanted to share my excitement over these advances,
not only with serious students of volcanology but
also with anyone who has admired the beauty of a
snow-capped volcano or marveled at the raw power
of a volcanic eruption.

This first chapter provides an overview of the rest
of the book and a scientific rationale for studying
volcanoes, both to better understand how they work
and to mitigate volcano hazards. There are ample
opportunities for basic curiosity-driven research in
volcanology, and I believe strongly that the pursuit
of knowledge for its own sake would be justified even
if there were no obvious short-term payoffs. Of
course, such is not the case in volcanology. Volcanic
disasters claim lives and property somewhere in the
world every year, and progressively more people put
themselves at risk as cities increasingly encroach on
dangerous volcanoes. The results of basic volcano
research, however esoteric they might seem to a non-
specialist, provide insights into volcanic processes
that eventually lead to more effective mitigation of
volcano hazards.

In this chapter, I first describe some remarkable

Daniel Dzurisin

examples of extreme volcano deformation, hoping
to whet the reader’s appetite for what is to come.
Next I discuss some of the challenges faced by
scientists and other groups during volcano crises,
the terrible cost of failure in one particularly tragic
case, and a generalized model for effective volcano
crisis response. Then I move on to a survey of
volcano-monitoring techniques from such diverse
fields as seismology, geochemistry, and hydrology,
before ending with a brief overview of volcano
geodesy. Treating the other techniques first helps
to put geodesy’s contribution in context (i.e., to
show where and how geodesy fits into the modern
volcanologist’s tool kit).

Chapters 2-6 deal with various techniques and
instruments for studying volcano deformation, in-
cluding classical surveying techniques (Chapter 2),
continuous sensors such as tiltmeters and strain-
meters (Chapter 3), the Global Positioning System
(GPS) (Chapter 4), interferometric synthetic-
aperture radar (Chapter 5), and photogrammetry
(Chapter 6). Chapter 7 discusses four examples of
well-studied volcanoes (Mount St. Helens, Kilauea,
Yellowstone Caldera, and Long Valley Caldera) to
illustrate the importance of a comprehensive mon-
itoring strategy that includes a healthy dose of
geodesy. Chapter 8 addresses numerical modeling
of deformation sources and serves as a blueprint
for the design and analysis of geodetic networks
and sensor arrays at volcanoes. Chapter 9 deals
with borehole observations of strain and fluid press-
ure, which can be extremely sensitive indicators of
volcanic conditions and volcano—tectonic interac-
tions. Hydrothermal systems and volcano geochem-
istry — topics that are sometimes overlooked by
geodesists, but which in some cases are inextricably
linked to volcanic unrest —are covered in Chapter 10.
A recurring theme throughout the book is the
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multidisciplinary nature of modern volcanology, as
evidenced by the emerging links among geodesy,
seismology, geochemistry, hydrology, and the study
of hydrothermal systems. The final chapter poses
some challenges and opportunities for volcanology
in the early part of the 21st century, which promises
to build on the excitement of recent decades.

I  VOLCANOES IN MOTION - WHEN
DEFORMATION GETS EXTREME

For me, the idea that volcanoes stretch, bulge,
shrink, sink, or rise wholesale out of the sea is
emotionally stirring and intellectually captivating.
Knowing that the ground we live on is constantly
being shoved around by subterranean processes,
including the buoyant ascent of molten rock from
deep within our planet’s interior, is wondrous
beyond words. The next four sections attempt to
capture a sense of the visceral excitement that fast-
moving volcanoes elicit in those who study them.
From bradyseisms' at a Roman marketplace to the
famous bulge at Mount St. Helens — such are the
‘true legends’ of volcano geodesy.

' The term bradyseism refers to slow uplift or subsidence of the
ground surface in response to inflation or deflation of a magma
reservoir, or to pressurization or depressurization of a
hydrothermal system. The best known example is the
remarkable motion of the Phlegraean Fields Caldera near
Naples, Italy, which has persisted since Roman time.

Figure 1.1. Remains of the Roman
market Serapeo near the center of
the Phlegraean Fields Caldera, Italy.
Here, marine mollusk borings
(visible on the lower third of large
columns in the lower left of the
photograph) record more than two
millennia of relatively steady
subsidence punctuated by episodic
uplift. Modern-day sea level is
indicated by the Tyrrhenian
(Mediterranean) Sea, which is
visible behind trees in the
background. Dramatic uplift
associated with eruptions in | 198
and 1538, and with an episode of
caldera unrest from 1982 to 1984,
raised the formerly submerged
columns several meters above sea
level. Photograph by Michael P.
Poland, June 2000.

LLL.I The ups and downs of a Roman market -
Phlegraean Fields Caldera, italy

Consider the case of the coastal town of Pozzuoli,
Italy, which sits near the center of a partly sub-
merged caldera called Campi Flegrei (Phlegraean
Fields). Serapeo, an ancient Pozzuoli marketplace
constructed by Roman artisans in the first century
BCE,? has two generations of floors and columns:
the second was built after the first sank below sea
level (Figure 1.1). Borings in the columns by Litho-
domus lithophagus, a marine mollusk that burrows
into rock for shelter, indicate as much as 11 m of
subsidence by about 1000 CE? (Parascandola, 1947).
The area then rose about 2m from 1000 to 1198,
when an eruption occurred at nearby Solfatara
Crater (Parascandola, 1947; Caputo, 1979). Uplift
continued unabated after the eruption and acceler-
ated in about 1500 CE. By 1503, the amount of uplift
was so great that a portion of newly emerged
shoreline was deeded to the local university! Net
uplift during the period 1000-1538 CE was about
12m.

The uplift rate accelerated dramatically during
several years before an eruption that began on 29
September 1538. The most rapid uplift occurred on
26-27 September, when the ground level at Pozzuoli
rose at least 4-5m in 48 hours, causing the shoreline

2 Before the Common Era (substitute for BC, Before Christ).
3 Common Era (substitute for AD, Anno Domini).
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to recede 400 m. On 28 September, hot and cold
water poured from fissures in the uplifted block,
and on the morning of 29 September the uplifted
ground subsided by as much as 4 m. Land near what
was soon to become the eruptive vent stopped sub-
siding about noon on 29 September and began to rise
again, so that “... by eight o’clock it was as high as
Monte Ruosi—i.e., it was as high as that hill where the
little tower stands’ (del Nero, ca. 1538; English trans-
lation in Horner (1846, p. 19)). For a fascinating
eyewitness account of the eruption and related phe-
nomena, see Newhall and Dzurisin (1988, p.97).

.L2 Remarkable uplifts in the Galapagos
Islands = Fernandina and Alcedo
Volcanoes

There are other notable examples of volcanoes
deforming at a breakneck pace, including two from
the Galapagos Islands, Ecuador. In 1927, three fish-
ing boats anchored for the night at Punta Espinoza
near the northeast point of Fernandina, a frequently
active shield volcano that forms one of the islands.
During the night, the crews were awakened by vio-
lent bubbling of the water. Two of the boats put to
sea immediately, but the third was unable to leave
because, by the time the crew recognized the danger,
the seafloor had risen and their keel was grounded!
In the morning, their boat was stranded by an uplift
of ‘several feet’” (Cullen er al. 1987), presumably
caused by a shallow magmatic intrusion. The rusted

remains of the hapless sailors’ boat can still be seen
on the beach (Figure 1.2).

At nearby Alcedo Volcano, a 6-km length of
shoreline including Urvina Bay was uplifted by as
much as 4.6m, probably in early 1954 (Couffer,
1956). More than 1km? of coral reef became ex-
posed above sea level. The uplift was so rapid that
fish were stranded in pools before they could escape
to the sea.

I..3 Rabaul Caldera, Papua New Guinea, 1994

Another striking, more recent example of a volcano
rising noticeably out the sea occurred in September
1994 at Rabaul Caldera, Papua New Guinea, prior
to simultaneous eruptions from two vents on oppo-
site sides of the caldera rim. The following composite
account is excerpted from Lauer (1995, pp.7-14),
with my explanatory notes in [brackets). ‘ There was a
massive jerking of the house as if it had been slammed
by a truck. I leaped up, wide awake. It was the biggest
guria [earthquake ] we’d had for months and months.
Nick (husband) promptly went back to sleep. I looked
at the clock — 2.50 a.m. [ Sunday, 18 September 1994 ]
... The gurias continued all day Sunday ... Around
Sp.m. ... thegroundwas in almost constant motion . . .
The seismographs [at Rabaul Volcano Observatory,
RVO] were a mass of almost unreadable black scrib-
ble and the recording pens were having difficulty hold-
ing up with the constant movement . .. About 7.45 p.m.
I got into my car to drive around to a friend’s house for
a game of cards. The whole car rocked. I noticed a

Figure 1.2. Remains of a fishing
boat grounded in 1927 at Punta
Espinoza near the northeast point
of Fernandina, Galapagos Islands,
when a magmatic intrusion caused
the seafloor to rise ‘several feet’
overnight. Wooden parts of the
boat have rotted away, leaving just
the rusted motor shown here. The
lower flanks of Volcano Darwin are
visible in the distance beneath the
clouds. (inset) Closer view of the
ill-fated boat motor at higher tide,
with Volcano Ecuador on the
skyline in the distance. Photographs
by Michael P. Poland, January 2001.
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number of people walking and carrying bed-rolls and
bags. Interesting — they obviously knew something I
didn’t ... Next thing there was a loud thump-thumping
noise. It was 5.50 a.m. [ the following morning, 19 Sep-
tember] and a helicopter was landing next to the
bedroom ... They were going to check around the
harbour. Even from where we were standing the uplift
was visible . . ." Incredibly, a tide gauge on the eastern
side of Vulcan had been lifted nearly out of the water
overnight, indicating uplift of the seafloor by about
5.5m (Blong and McKee, 1995; McKee et al., 1995)
(Figures 1.3 and 1.4).

‘... After the helicopter took off I went to ring a
couple of friends who were still in their homes to warn
them. Seconds later Lynden [ daughter | came running
in, yelling that there was black smoke coming out of
Tavurvur ... It had been just 27 hours since the first
guria to the eruption of Tavurvur. Not long after [71
minutes ] there followed a mighty BOOM! Vulcan, on
the opposite side of the harbour to Tavurvur, had
decided to join the eruption. Explosion followed ex-
plosion. Rocks and ash were hurled with amazing force
skywards. Day seemed to become night as the heavy
black cloud oozed its way across town. The eeriness
was broken by fork lightning and claps of thunder.

A massive eruption column quickly rose into
the stratosphere (Figure 1.5). During the peak of
the eruption, the column towered 20-30 km above
the residents of Rabaul town and nearby com-
munities, who self-evacuated in the face of obvious
danger. About 90,000 people were displaced, but
fewer than 10 died as a result of the eruption or
its immediate effects (Blong and McKee, 1995). The
number would surely have been much higher had it
not been for the vigilance of RVO and for the
Rabaul Disaster Plan, completed in 1983, which
spelled out four alert stages, established evacuation
routes, and called for practice evacuations — the last
of which was held in April 1994, just five months
before the eruption.

.14 The bulge at Mount St. Helens, 1980

Among the better known examples of runaway
volcano deformation is the famous bulge on the
north flank of Mount St. Helens, which developed
during the two months preceding the catastrophic
debris avalanche and eruption of 18 May 1980
(Figure 1.6). Electronic distance meter (EDM) and
theodolite measurements tracked the surface of the

Figure 1.3. Vulcan, a ring-fracture vent at Rabaul Caldera, Papua New Guinea, as it appeared from a helicopter at approximately 6:05 a.m.
on 19 September 1994. The brown color at the base of the cone is uplifted seafloor that emerged overnight following 27 hours of intense seis-
micity and ground deformation, including 5-10 meters of uplift in the vicinity of Vulcan. The circle marks a tide gauge that was lifted out of
the water overnight (Figure 1.4). Tavurvur, on the opposite side of the caldera, began erupting about 10 minutes after this photograph was
taken, and Vulcan joined in 7| minutes later. Photo was taken from an Islands helicopter and published by Sue Lauer (1995, p. I3).
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Figure 1.4. Tide gauge on the eastern side of Vulcan, a vent
located along the western ring fracture of Rabaul Caldera, Papua
New Guinea. The gauge was lifted nearly out of the water during
the night preceding the start of simultaneous eruptions at Vulcan
and Tavurvur, which can be seen venting in the background.
Before the 1994 eruptions, mean sea level was approximately at
the third step of the ladder, as marked by the top of the light-
colored accumulation of mussel shells. USGS photograph by Elliot
T. Endo, November 1999.

bulge marching steadily and nearly horizontally
northward at rates of 1.5-2.5mday”' from 23
April through the early morning of 18 May
(Chapter 7). By 12 May, the high point of the
bulge stood 150 m above pre-existing topography,
and by 18 May the net volume increase was a
staggering 0.11km> (Moore and Albee, 1981).
Working on the volcano during the build-up to
the 18 May eruption was an exhilarating experience.
Titanic forces were at work, preparing to dis-
assemble the volcano, while we struggled to under-
stand what was happening beneath our feet. Such
are the memories that inspired this book.

If these stories don’t quicken your pulse, there’s
no reason to read further. Honestly, it doesn’t get
any better than this.

1.2 VOLCANOLOGY IN
THE INFORMATION AGE

I.2.1 Volcano hazards mitigation -
a complicated business

Faced with the daunting task of trying to unravel the
tremendous variety and complexity of volcanic pro-
cesses, especially during a rapidly evolving volcano
crisis with lives and property at risk, today’s vol-
canologist can ill afford to rely on any one specialty
to furnish the necessary tools and information. In-
stead, diverse techniques from geology, hydrology,
seismology, geodesy, geochemistry, and related fields
must be brought to bear and, if necessary, tailored to
the situation at hand.

Experience worldwide has shown that no single
technique can provide unambiguous information
about the cause and likely outcome of volcanic
unrest. For example, earthquakes near a volcano
might indicate fracturing of brittle rock around a
pressurizing magma body, intrusion of magma or
other fluid into brittle host rock, or release of
tectonic strain not directly related to magmatic
processes. Even the occurrence of long-period
(LP) earthquakes that are commonly associated
with magmatic or hydrothermal processes is inher-
ently ambiguous. Such earthquakes are generally
thought to indicate the presence of a two-phase
fluid in a resonating crack (Chouet, 1988, 1996a,
2003). However, this fluid could be gas exsolved
from fresh magma that is rising and decompressing,
hypersaline brine derived from stagnant magma that
is cooling and crystallizing, or gas-charged magma
itself. Without complementary data from other
monitoring techniques to help resolve this ambigu-
ity, the precise significance of LP earthquakes for
volcano hazards is difficult to discern, especially
during a crisis. Furthermore, some models for LP
earthquakes require a relatively narrow range of
conditions for resonance to occur, suggesting that
some (most?) fluid transport occurs without gener-
ating LP earthquakes. Even when they do occur,
swarms of shallow LP earthquakes could be caused
by pressurization of a magma body as a result of
intrusion, boiling within a hydrothermal system in
response to magmatic or tectonic changes, or migra-
tion of fluids released from a stagnant, cooling
magma body. The hazards implications vary widely
and can be explored further only by combining
seismic information with that from other disciplines.

By itself, any single volcano-monitoring tech-
nique provides information that is ambiguous or
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subject to alternative explanations. For example, an
increase in the flux of sulfur dioxide gas might
indicate the recent arrival at shallow depth of
fresh, gas-charged magma, but the absence of
such an increase does not preciude the same inter-
pretation. This is because SO; is very soluble in
water and can be effectively ‘scrubbed’ by ground-
water (Doukas and Gerlach, 1995). Carbon dioxide
is less soluble in water than SO,, so an increase in
CO, followed by an increase in SO, might be attrib-
uted to newly emplaced magma that released both
CO, and SO; and eventually dried out a conduit to
the surface, allowing SO, to escape. For confirma-
tion, though, the volcanologist is likely to reach for
additional tools from seismology and geodesy.

No amount of monitoring is likely to provide
definitive information about the explosivity of
newly emplaced magma, and thus about the extent
or degree of hazards posed by an impending erup-
tion. For this, the volcanologist relies on the tools of
field geology and stratigraphy, under the assump-
tion that the volcano will likely behave in a manner
similar to the ways it has behaved in the past. Past
performances are chronicled in the stratigraphic

Figure 1.5. Eruption plume from
Vulcan, Rabaul Caldera, Papua New
Guinea on 20 September 1994, as
witnessed by astronauts aboard
Space Shuttle Discovery. In this
photograph, the plume is seen
spreading in the stratosphere
approximately 20 km above Earth’s
surface. The cloud-covered island in
the foreground is New Ireland.
National Aeronautics and Space
Administration, STS064- | 16-064.

record of past eruptive products, but the record is
always incomplete and impossible to read unequi-
vocally. In some cases, past eruptive behavior can be
highly variable and therefore is a poor guide to the
next event. Moreover, there is always the possibility
of an unusual or unprecedented event, such as the
catastrophic landslide and lateral blast at Mount St.
Helens in 1980. In hindsight, similar events had
occurred before but the evidence lay buried until
the landslide and subsequent erosion cut deeply
into the volcano’s north flank (Hausback and Swan-
son, 1990). Only by combining information from a
variety of sources can scientists hope to decipher the
cause of volcanic unrest, and thus provide useful
information to public officials charged with the dif-
ficult task of reducing risk while minimizing social
and economic disruption.

1.2.2 Lessons from Armero,Colombia

It should come as no surprise that efficient informa-
tion flow is essential for effective hazards assessment
and risk mitigation during a volcano crisis. That fact
was made terribly clear on the night of 13 November
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1985, when huge lahars triggered by a small eruption
of ice-clad Nevado del Ruiz Volcano in Colombia
killed more than 23,000 people, most of them asleep,
and virtually erased the hapless town of Armero
from the map (Figure 1.7).

The first warnings had come almost a year earlier.
Climbers on the 5,200-m peak noticed increased
fumarolic activity and felt earthquakes starting in
November 1984 and, on 22 December, three widely
felt earthquakes were accompanied by small explo-
sions from Arenas Crater near the volcano’s summit.
Felt earthquakes and abnormal fumarolic activity
persisted into 1985. Seismometers installed at the
volcano in July confirmed a high level of earthquake
activity that intensified in early September before a
strong phreatic eruption on 11 September. A pre-
liminary volcano hazards map published in October
warned that a magmatic eruption would almost
surely trigger damaging lahars. The final version
of the map, issued publicly on 8 November 1985,
placed the town of Armero squarely in a zone of high
lahar hazard. Five days later, and more than 8 hours
after the beginning of the paroxysmal eruption,
Armero and most of its residents disappeared

Figure 1.6. West-southwest
looking view of Mount St. Helens
on 25 April 1980 (Krimmel and
Post, 1981). The now famous bulge
is a prominent feature below and
to the right of the summit. Fresh
snow covers higher portions of the
volcano; lower slopes are covered
with ash from a series of phreatic
eruptions that began on 27 March.
Catastrophic failure of the volcano’s
north flank on 18 May 1980
produced the largest debris
avalanche in recorded history.
USGS photo 80S2-122 by Austin
Post.

under a river of mud (Herd and Comité de Estudios
Vulcanologicos, 1986).

In hindsight, this terrible tragedy could have been
avoided. The volcano provided ample warning, an
accurate hazards zonation map was available, the
volcano was being continuously monitored, an evac-
uation order was issued hours before the lahar
reached Armero, and the safety of higher ground
was within walking distance for most residents.
What went so terribly wrong? In spite of hard
work by many and heroic efforts by some, essential
information about how to mitigate the impending
disaster was not available where and when it was
critically needed. The advance warning was not
understood by many of those at risk, and they
received no short-term instructions to move to
higher ground as the giant lahar bore down on
them. In the words of one scientist who experienced
the Armero tragedy firsthand: ‘... the catastrophe
was not caused by technological ineffectiveness or
defectiveness, nor by an overwhelming eruption or
an improbable run of bad luck, but rather by cumu-
lative human error’ (Voight, 1996, p.719). Shortly
after the disaster, the US Geological Survey (USGS)
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and the Office of Foreign Disaster Assistance of the
US Agency for International Development (USAID
OFDA ) established the Volcano Disaster Assistance
Program (VDAP) to mitigate losses from future
eruptions worldwide by applying the lessons learned
so tragically at Armero.

1.2.3 Communication - a key to effective
hazards mitigation

Experience during various types of natural disasters,
including wildfires, floods, storms, large earth-
quakes, and eruptions, has shown that communica-
tion is improved when a single crisis management
center forms the hub for information retrieval and
dissemination by a trained crisis response team.
Ideally, the team includes scientists, land managers,
representatives of involved government agencies,
affected members of the private sector, civic officials,
and emergency service providers such as fire, law
enforcement, and medical personnel. During quiet
times, the crisis management center usually exists in
concept only and information flow among these
groups includes consideration of long-term issues
such as land use policies, emergency response
plans, and public education concerning natural haz-
ards. During a crisis, representatives of each group
gather at the crisis management center to facilitate
intensive exchange of information and ideas. The
focus of discussions necessarily becomes more im-
mediate and the information flow more structured.
In particular, the crisis management center is re-

Figure 1.7. Remains of the city of
Armero, Colombia, following the
13 November 1985, eruption at
Nevado del Ruiz Volcano. In large
parts of the town, a boulder-laden
lahar sheared off the upper part of
all structures at foundation level,
even though some had steel-
reinforced connections between
concrete walls and foundations
(Voight, 1996). More than 23,000
people perished as a result of the
eruption. USGS photograph by
Richard J. Janda, November 1988.

sponsible for issuing all official information about
the emergency and measures being taken to mitigate
its effects.

This generalized model has been applied success-
fully to volcano crises, both conceptually and in
practice (Peterson, 1996; Figure 1.8). A team of
volcanologists, preferably encompassing broad ex-
pertise and with prior experience during volcano
emergencies, assembles to monitor the unrest, assess
the hazards, and communicate with other groups
involved in the response. To save time and avoid
confusion, most groups appoint representatives who
meet regularly at the crisis management center to
exchange information and take necessary action.
Appointing a spokesperson and staging the scientific
response from a separate location has the added
advantage of shielding the team from the inevitable
hubbub and stress that accompany a crisis. Close
coordination among scientists and the other groups
is essential to avoid confusion or the appearance of
mixed messages to the news media and public. This
does not mean that honest differences of opinion
among scientists are stifled; rather, that a serious
attempt is made to reach consensus within the scien-
tific team and any remaining differences are pre-
sented in a balanced way, within the context of
the consensus view, at the crisis management center.

Information that flows to the scientific team from
many sources forms the basis for analysis and inter-
pretation of current activity and its possible out-
comes. Information sources typically include mon-
itoring instruments located on or near the volcano,
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Figure 1.8. Idealized flow of volcano hazards information during periods of relative quiescence: (a) modified slightly from Peterson (1996)
and during a volcano crisis (b). During quiescence, emphasis is on multichannel two-way communication, public education, and long-term
preparedness. During a crisis, information flow necessarily becomes more structured and emphasis shifts toward short-term preparedness
and hazards mitigation. The science team, usually through a designated spokesperson, acts as a conduit of interpreted information from the
volcano to the crisis management center and, to a lesser extent, directly to the news media and general public.

field observers, remote-sensing instruments (e.g.,
infrared sensors for monitoring thermal areas or
multispectral instruments capable of tracking ash
clouds), pilot reports and sources of weather infor-
mation pertinent to volcanic ash dispersal, and con-
tributions from scientific colleagues elsewhere.

To be useful during a crisis, information about
volcanic unrest must be both accurate and timely.
All types of information, whether quantitative or
qualitative in nature, have associated uncertainties
that must be factored into the crisis team’s analysis
of the situation. Scientists are accustomed to such
uncertainties and, in some cases, have developed
formal methods for dealing with them. On the
other hand, most scientists are unaccustomed to
working under the severe time constraints and
high-stress conditions that typically prevail during
a volcano crisis. In a rapidly evolving situation with
lives or livelthoods at stake, scientists often are
forced to make interpretations or recommendations

in the absence of complete supporting information.
Such occurrences underscore the importance of
timeliness in the acquisition and initial analysis of
monitoring information with a minimum of scien-
tific equivocation. Effective communication of the
consensus view and associated uncertainties in lan-
guage understandable to nonscientists at the crisis
management center is a challenging task that usually
falls to the science team leader.

Generally, adequate information now is much
more valuable than better information /later.
‘Now’ in this context might mean that information
is delayed a few minutes or hours, but seldom more
than a few days. Most valuable of all is information
available in ‘real time’ (i.e., information acquired by
automated sensors and telemetered to the science
center for rapid analysis). Modern sensors, telemetry
systems, and computer based analysis systems
make it possible to monitor key parameters either
continuously (e.g., earthquake activity using
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seismometers) or discretely every few seconds or
minutes (e.g., ground deformation using tiltmeters
or GPS stations). Additional examples of real time
geodetic monitoring are discussed in following chap-
ters.

Information that is both accurate and timely is
necessary but not sufficient for successful hazards
mitigation during a crisis. Another essential ingre-
dient is effective communication of scientific con-
cepts, interpretations, and associated uncertainties
from scientists to those directly responsible for
reducing risk (e.g., public officials, land-use man-
agers, emergency service providers). Recent history
includes a few widely publicized examples of scien-
tists’ failure to reach consensus and provide useful
guidance to those at risk, but also some striking
successes in this regard (Peterson and Tilling,
1993). Among the latter can be counted the 1980—
1986 eruptions at Mount St. Helens, Washington;
the 1986 eruption of Oshima volcano, Japan; the
1991 eruption at Mount Pinatubo in the Philippines;
and several recent eruptions in the Aleutian volcanic
arc where serious threats to aircraft from far-
traveled volcanic ash clouds were averted.

Clearly, a balance must be maintained between
the public’s need to know and scientists’ responsi-
bility to deliver a clear and consistent message.
Within the crisis management center, full disclosure
and discussion of differing viewpoints is both appro-
priate and constructive. This process can foster
mutual understanding, respect, and trust among
scientists, public officials, and emergency service
providers that will be critically important if the
situation worsens. When a wider audience is in-
volved, discussion is understandably more circum-
spect but still honest and forthcoming. In my ex-
perience, citizens who are well informed about
volcanic activity that could affect their livelihood
and about the uncertainty inherent in any forecast
are more likely to deal with the situation construc-
tively than are those with less access to information.
That said, the need to keep multiple audiences in-
formed during a rapidly evolving crisis could se-<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>