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To Sonya, for being there…



Preface

In writing this book, my aim has been to provide a succinct, accessible account of
model averaging that will be useful to applied statisticians and scientists. I have
emphasised the links between methods developed in statistics, econometrics and
machine learning, as well as the interplay between the frequentist and Bayesian
approaches. I have assumed that the reader is familiar with basic statistical theory
and modelling, including probability, likelihood and generalised linear models.

The references should help the reader follow up on topics I have not covered in
detail. The number of papers written on model averaging is far greater than I had
expected when starting this book, and I apologise in advance if I have overlooked
any important articles. I have deliberately chosen small examples to illustrate the
different methods, in order to facilitate the discussion of key concepts. Many
applications of model averaging will be in more complex settings, but translation
of the ideas to those settings will often be clear.

My thoughts on model averaging have benefited greatly from discussions with
Richard Barker, Peter Dillingham, Murray Efford, Chuen Yen Hong, Michel de
Lange, Matt Parry, Daniel Turek and Jimmy Zeng. I am indebted to Deborah Shaw
for her diligent work on formatting the references and to the referees for their
helpful comments on an early draft. I am also very grateful to Eva Hiripi of Springer
for her editorial help. My colleagues at the University of Otago have provided a
most supportive environment within which to work on this book; I am very grateful
for their kindness and generosity of spirit.

I owe so much to my wife Sonya, without whom the past 21 years would have
been very different. The love and support of our children, Anika, Nils, Kiersten
Anna, Thomi, Ana and Daniel, has been priceless, as has that of my sister Anne, her
family, and all of our Swiss whanau, especially Elfriede Hamel.

Dunedin, New Zealand David Fletcher
November 2018
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Chapter 1
Why Model Averaging?

Abstract Model averaging is a means of allowing for model uncertainty in estima-
tion which can provide better estimates and more reliable confidence intervals than
model selection. We illustrate its use via examples involving real data, discuss when
it is likely to be useful, and compare the frequentist and Bayesian approaches to
model averaging.

1.1 Country Fairs and the Size of the Universe

In 1907, Francis Galton, eminent statistician and half-cousin to Charles Darwin,
published a paper in Nature [80], the abstract of which begins with the statement

In these democratic days, any investigation into the trustworthiness and peculiarities of
popular judgements is of interest.1

He was reporting on the fact that many of the visitors to the recent West of England
Fat Stock and Poultry Exhibition had entered a competition to guess the weight of an
ox. The mean of the 787 guesses was found to be exactly the same as the true value
of 1197 lb.2 The guesses were made by a mix of farmers, butchers and the general
public. Galton suggested that the mixture of abilities to make such a guess would be
similar to the mixture of abilities to judge political candidates in an election, a point
that prompted him to give his paper the title Vox Populi. The fact that the mean was
identical to the true figure suggested to him that allowing the whole adult population
to vote in an election might have something going for it.

This is a simple example of model averaging, with each person using a “model”
to come up with an estimate of the weight. Instead of using a simple mean, Galton
could have weighted each guess according to the ability of that person to estimate
such a weight, although quantifying this ability would have been difficult.

1Reprinted from: Galton, F.: Vox Populi. Nature, 75, 450–451, c©1907, with permission from
Springer Nature.
2An interesting discussion of Galton’s analysis, including typographical errors, use of the median
rather than the mean, and the asymmetric form of the distribution of guesses, can be found in [225].

© The Author(s), under exclusive licence to Springer-Verlag GmbH,
DE, part of Springer Nature 2018
D. Fletcher, Model Averaging, SpringerBriefs in Statistics,
https://doi.org/10.1007/978-3-662-58541-2_1
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Over a hundred years later, [215] averaged the results from several cosmolog-
ical models to estimate the curvature and size of the universe. The models were
based on different assumptions about the universe, and were combined using clas-
sical Bayesian model averaging, with the weight for each model being the posterior
probability that it is true (Sect. 2.2.1). Quite a leap from the weight of an ox to the
size of everything.

Model averaging has been used in many other application areas, as illustrated by
the references in Table1.1.

1.2 Benefits of Model Averaging

In much of the theory underlying classical statistical inference, parameter estimation
is based on a single model, with this model often being selected as the best from
a set of candidate models. The process by which we select this best model is often
ignored, leading to point estimates being biased and their precision overestimated
[32, 35, 63, 78, 102, 138, 140]. This has been referred to as a quiet scandal [23],
and there are likely to be many researchers who are still not aware of this issue.

Model averaging is an approach to estimation that makes some allowance for
model uncertainty. In the frequentist framework, it involves calculating a weighted
mean of the estimates obtained from each of the candidate models, with the weights
reflecting a measure of the potential value of that model for estimation. The model
weights might be based on Akaike’s information criterion (AIC), cross validation, or
the mean squared error (MSE) of the estimate of the parameter of interest (Sect. 3.2).
In the Bayesian framework, a model weight is either the posterior probability that the
model is true (Sect. 2.2) or is determined using a prediction-based method, such as
the Watanabe-Akaike Information Criterion (WAIC) or cross validation. Typically
model weights are constrained to lie on the unit simplex, i.e. to be non-negative and
sum to one.

From a frequentist perspective, model averaging can also be viewed as a means
of achieving a balance between the bias and variance of an estimate, much like
model selection. Smaller models will generally provide estimates that have greater
bias, whereas larger models will lead to estimates with higher variance. In addition,
allowance is made for model uncertainty when calculating a confidence interval,
resulting in a wider and more reliable interval than one based on model selection.

Interestingly, some authors in the frequentist domain have focussed solely on
achieving a balance between the bias and variance of a model-averaged estimate,
while others have considered model averaging solely as a means of allowing for
model uncertainty using a model-averaged confidence interval [193].
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Table 1.1 References that have used or promoted model averaging, classified by application area

Area of application References

Econometrics [4, 37, 38, 49, 50, 59, 61, 62, 71, 81, 96, 115, 122, 130, 133,
134, 144, 145, 160, 169, 179, 202, 224, 229, 230, 241, 242]

Pharmacology [8, 19, 26, 69, 114, 141, 162, 184, 218, 234, 252, 254]

Meteorology [41, 95, 123, 124, 154, 178, 198–200, 222, 236]

Hydrology [57, 65, 163, 175, 185, 212, 223, 239, 249, 255]

Public health [2, 92, 120, 121, 143, 220, 237, 245, 260, 261]

Ecology [10, 29, 90, 93, 119, 126, 161, 201, 207, 238]

Environmental risk assessment [46, 149, 158, 159, 172, 173, 195, 232, 233]

Physics [11, 66, 72, 167, 168, 215, 235]

Phylogenetics [20, 82, 129, 176, 177, 186]

Fisheries modelling [6, 25, 103, 118, 152]

Spatial modelling [56, 128, 166, 174]

Political science [14, 74, 156, 157]

Wind-power forecasting [165, 189, 210]

Meta-analysis [96, 170, 206]

Clinical trials [135, 244]

Survival analysis [209, 221]

Extreme-values [188, 219]

Forestry science [171, 214]

Health economics [104, 105]

Geology [36, 256]

Climate change [22, 155]

Bioinformatics [7, 251]

Environmental modelling [30, 87]

Remote sensing [257]

Sensitivity analysis [250]

Pattern recognition [231]

Tourism [226]

Nuclear medicine [213]

Demographic forecasting [194]

Psychology [191]

Soil science [147]

Entertainment [127]

Education research [116]

Chemistry [88]

Engineering [15]

Homeland security [1]
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1.3 Examples

We illustrate the use of model averaging with five simple examples. The primary
purpose of these is to provide simple numerical illustrations of the methods, rather
than detailed insight into their frequentist properties. As our aim is to focus on the
key ideas andmethods, all of the examples involve small sample sizes and amoderate
number of simplemodels.Many of the ideas andmethods will still be of use whenwe
have a large number of more complex models. In order to simplify the discussion in
this Chapter, details of themethods used to obtain themodel weights, posteriormodel
probabilities,model-averaged estimates andmodel-averaged confidence intervals are
deferred until Chaps. 2 and 3.

1.3.1 Sea Lion Bycatch

The accidental capture and drowning of marine mammals in fishing nets is an impor-
tant conservation issue in many parts of the world. In order to monitor the situation,
some regulatory authorities place observers onfishing vessels,who record the amount
of bycatch. The data in Table1.2 show the number of NewZealand sea lions observed
to drown in trawl nets in a fishing area near the Auckland Islands, New Zealand dur-
ing the 1995–1996 fishing season [148]. The data are classified according to whether
the vessel was fishing for scampi, squid or other target species. The total number of
tows is also shown, together with the number that were observed.

Suppose we wish to estimate the total number of sea lions killed that season for
each of the three types of fishery. One approach is to use a Poisson model with an
offset. Thus we assume that

Yi ∼ Poisson (μi ) ,

logμi = log ni + ai ,

where Yi is the number of sea lions killed in the ni tows observed in fishery i , log ni
is an offset, and ai is the effect of target species i (i = 1, 2, 3). A natural estimate of
θi , the total number of sea lions killed by fishery i , is given by

̂θi = Ni γ̂i ,

Table 1.2 Bycatch of New
Zealand sea lions by trawl
nets near the Auckland
Islands, New Zealand in the
1995–1996 fishing season

Species Sea lions Number of tows

Observed Total

Scampi 3 67 1300

Squid 13 555 4461

Other 1 15 156
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Table 1.3 Estimates and 95% confidence intervals for total bycatch (to the nearest integer) of New
Zealand sea lions in each of three fisheries

Species Estimate Lower Upper

Scampi Model 1 35 22 56

Model 2 58 19 181

Model-averaged 39 21 118

Squid Model 1 119 74 192

Model 2 105 61 180

Model-averaged 116 69 190

Other Model 1 4 3 7

Model 2 10 2 74

Model-averaged 5 2 35

where Ni is the total number of tows in fishery i , and γi = μi/ni is the bycatch
rate (sea lions per tow) in fishery i . The following two versions of the model are of
interest here:

Model 1 a1 = a2 = a3
Model 2 a1, a2, a3 ∈ R

The estimate of the bycatch rate from model 1 is 0.027 sea lions per tow, whereas
model 2 leads to estimates of 0.045, 0.023 and 0.067 for scampi, squid and other
species respectively. The AIC model weights (Sect. 3.2.1) are 0.773 and 0.227, for
models 1 and 2 respectively. Loosely speaking, these quantify how much more we
should value the estimate of bycatch rate from model 1 over those from model 2.

Table1.3 shows the estimates of total bycatch, togetherwith 95%Wald confidence
intervals, plus a model-averaged estimate and 95% confidence interval based on the
AIC weights (Sect. 3.4.3). As in any generalised linear model (GLM), it is natural
to calculate estimates and confidence intervals on the linear predictor scale, and
then transform these back to the original scale. Thus we first calculated a model-
averaged estimate and confidence interval for ai , and converted this to a model-
averaged estimate and confidence interval for the total bycatch in fishery i , using the
transformation θi = Nieai .

The model-averaged estimates and intervals provide a compromise between those
obtained from the individual models, with the weighting ensuring that they are closer
to those for model 1. Model selection using AIC would lead to inference based on
model 1 alone. For the fisheries targeting scampi and other species, the confidence
interval obtained from this model is much narrower than that based on model aver-
aging, as use of the best model ignores model uncertainty.

Themodel-averaged confidence interval reflects the fact that for these twofisheries
the estimates and confidence intervals from the two models are quite different. In
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contrast, for the squid fishery, the model-averaged confidence interval is similar to
the two single-model intervals, as the differences between the two models are quite
small.

1.3.2 Ecklonia Density

This example is based on a study of the density of a species of seaweed, Ecklonia
radiata, that was carried out in a fiord on the west coast of Te Wai Pounamu, the
south island of NewZealand. Details regarding the study and the dataset can be found
in [75]. For simplicity we consider a subset of the data, in which we compare the
densities in three zones, classified according to their distance from the mouth of the
fiord (0–7km, 7–10km, and ∼10km correspond to zones 1 to 3 respectively).

Figure1.1 shows probability-density histograms summarising the ecklonia den-
sities (individuals per 25m2 quadrat) observed in the three zones. This subset of the
data involves a total of 102 quadrats (32, 25 and 45 in zones 1 to 3 respectively).

Suppose we wish to estimate the mean density of ecklonia in each of the three
zones. An initial analysis suggested that the counts are overdispersed relative to a
Poisson model, so we consider use of a negative binomial model, given by

Pr
(

Yi j = y
) = Γ (y + k)

Γ (y + 1) Γ (k)

(

k

μi + k

)k (

μi

μi + k

)y

,

where Yi j is the density in quadrat j of zone i , μi is the mean density in zone i ,
and k is the dispersion parameter, which is assumed to be the same in each zone
(i = 1, 2, 3). The following two versions of this model are of interest here:

Model 1 μ1 = μ2 = μ3

Model 2 μ1, μ2, μ3 ∈ R

Model 2 has some lack-of-fit, with a residual deviance of 117.64 on 99 degrees
of freedom. This is likely to be due to us not making use of other predictor variables
that were available in the original data [75]. In addition, there may be zero-inflation
and the value of k might depend on zone. For simplicity of illustration, we do not
consider models that allow for these possibilities.

Use of AIC leads to weights of 0.276 and 0.724 for models 1 and 2 respec-
tively, suggesting that we should give more credence to model 2. Table1.4 shows
the estimates of mean density for each model, together with 95% Wald confidence
intervals, plus a model-averaged estimate and 95% confidence interval based on the
AIC weights. As with the Poisson models for sea lion bycatch (Sect. 1.3.1), it is
natural to obtain estimates and confidence intervals on the log-scale, followed by
a transformation back to the original scale. The results in Table1.4 are therefore
based on back-transformation of the estimates and confidence intervals for logμi

(i = 1, 2, 3).
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Fig. 1.1 Probability-density histograms of ecklonia densities (individuals per 25m2 quadrat) in
each of three zones

As in the sea lion example, the model-averaged estimates and intervals provide
a compromise between the two models. This example also illustrates an interesting
point regarding the choice of weights. For zones 1 and 3 the estimates from the two
models are clearly different, while for zone 2 they are almost identical. It would
therefore be natural to predict that the bias of the estimate for this zone would be
about the same for the twomodels. This in turn suggests givingmore weight tomodel
1, as a smaller model will provide an estimate with a lower variance. This example
illustrates the potential advantage of allowing the choice of model weights to depend
upon the parameter of interest (Sect. 3.2.3).
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Table 1.4 Estimates and 95% confidence intervals for mean ecklonia density (individuals per
quadrat) in each of three zones

Estimate Lower Upper

Zone 1 Model 1 33.5 24.1 46.6

Model 2 16.9 9.5 30.0

Model-averaged 20.4 9.9 42.0

Zone 2 Model 1 33.5 24.1 46.6

Model 2 33.6 17.6 64.0

Model-averaged 33.6 18.5 61.1

Zone 3 Model 1 33.5 24.1 46.6

Model 2 45.3 28.0 73.2

Model-averaged 41.7 25.9 70.7

1.3.3 Water-Uptake in Amphibia

An interesting setting in which to consider use of model averaging is a factorial
experiment, in which the set of models is clearly defined. The example we consider
was described in [151], and used by [77] as the context for a simulation study of
methods for calculating a model-averaged confidence interval. Eight frogs and eight
toads were kept in either moist or dry conditions and half were then injected with a
water-balance hormone. The response variable was the percentage increase in weight
after immersion in water for two hours, with the predictor variables being species
(frog or toad), condition (moist or dry) and hormone (yes or no). For simplicity, we
will assume that a normal linear model is appropriate. The analysis of variance is
shown in Table1.5.

Table 1.5 Analysis of variance for water-uptake experiment involving the factors species (S),
condition (C) and hormone (H)

Source df Mean square F-ratio p

S 1 514.2 15.0 0.005

C 1 469.8 13.7 0.006

H 1 218.3 6.4 0.036

SC 1 39.4 1.1 0.315

SH 1 165.8 4.8 0.059

CH 1 58.1 1.7 0.229

SCH 1 43.9 1.3 0.291

Error 8 34.3

Adapted from: Fletcher, D., Dillingham, P.W.: Model-averaged confidence intervals for factorial
experiments. Comput. Stat. Data. An. 55, 3041–3048, c©2011, with permission from Elsevier
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Table 1.6 A set of candidate models for the water-uptake experiment, together with AIC weights.
Weights larger than 0.1 are shown in bold

Model AIC weight

Null 0.000

S 0.000

C 0.000

H 0.000

S+C 0.006

S+H 0.001

C+H 0.001

S+C+H 0.030

S+C+SC 0.003

S+H+SH 0.001

C+H+CH 0.000

S+C+H+SC 0.019

S+C+H+SH 0.161

S+C+H+CH 0.025

S+C+H+SC+SH 0.131

S+C+H+SC+CH 0.018

S+C+H+SH+CH 0.197

S+C+H+SC+SH+CH 0.184

S+C+H+SC+SH+CH+SCH 0.222

Adapted from: Fletcher, D., Dillingham, P.W.: Model-averaged confidence intervals for factorial
experiments. Comput. Stat. Data. An. 55, 3041–3048, c©2011, with permission from Elsevier

Suppose we wish to summarise the results by calculating an estimate and 95%
confidence interval for each of the eight treatment-combination means. A common
approach is to simply use the full model. As some of the interactions are not statisti-
cally significant, this might be inefficient. A natural alternative is to use the estimates
and confidence intervals obtained from the best model. For example, we might use
the model containing only the main effects, as none of the other terms are statisti-
cally significant at the 5% level. Alternatively, we might select the model that has
the lowest value of AIC, which turns out to be the full model.

In order to avoid selecting a single bestmodel, we canmake use of theAICweights
shown in Table1.6. The top five models (with weights in bold) include the three main
effects plus the species-hormone interaction and have roughly comparable weights,
ranging from 0.131 to 0.222.

We can illustrate the benefits of model averaging by considering a subset of the
simulation results presented in [77]. Table1.7 shows the results for the case of two
replicates, as in the real data. The coverage rate of a 95% confidence interval for
a treatment combination mean has been averaged over all eight combinations, for
both the best model and model averaging. The mean width of each interval is also
shown, relative to that obtained using the full model. The best model was selected
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Table 1.7 Mean coverage rate and relative width of a 95% confidence interval for a treatment
combination mean in the water-uptake experiment

Mean coverage rate Mean relative width

Scenario Best model Model-averaged Best model Model-averaged

Small 0.82 0.95 0.52 0.70

Medium 0.91 0.94 0.81 0.89

Large 0.94 0.94 0.95 0.98

Adapted from: Fletcher, D., Dillingham, P.W.: Model-averaged confidence intervals for factorial
experiments. Comput. Stat. Data. An. 55, 3041–3048, c©2011, with permission from Elsevier

using AIC, and model averaging was performed using the AIC weights in Table1.6.
The results are given for three scenarios, corresponding to the true main effects and
interactions all being small, medium or large relative to the error variance [77].

These results show that model averaging can produce an interval that has good
coverage and is narrower than one based on the full model. For example, when the
true main effects and interactions are small relative to the error variance, the model-
averaged interval has perfect coverage and is 30% narrower on average than the
interval from the full model. Under this scenario model averaging can be thought of
as equivalent to using the full model to analyse an experiment involving 2/0.72 = 4.1
replicates, i.e. the effective replication is just over twice the nominal replication [151].
For the other two scenarios, the model averaged interval provides good coverage and
is again narrower on average than the full-model interval. The interval based on the
best model is the narrowest on average, but at the expense of having poor coverage,
especially when all the main effects and interactions are small.

Asweare considering the special case of normal linearmodels, and the simulations
involved the assumption that the full model is the true model,3 the interval based
on that model must have perfect coverage, at the expense of being wider than the
model-averaged interval. Thus model averaging has provided a good compromise
between coverage and interval-width. This example provides clear evidence against
the argument that model averaging is not relevant to the analysis of a designed
experiment [28, 217].

1.3.4 Toxicity of a Pesticide

As part of a study to assess the resistance of the tobacco budworm to a pesticide, 20
moths of each sex were assigned to one of six doses of the pesticide. The number
of moths that were affected (had uncoordinated movement or were dead) 72 h after
treatment is shown in Table1.8, for each sex and dose [48, 216]. We consider four
binomial models, each of the following form:

3As noted later in this Chapter, we do not regard any model to be a perfect representation of the
true date-generating mechanism, but behaving as if a model were true can be useful for inference.
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Table 1.8 Results from a toxicity experiment involving the tobacco budworm

Sex Dose (µg) Number affected

Male 1 1

2 4

4 9

8 13

16 18

32 20

Female 1 0

2 2

4 6

8 10

16 12

32 16

Reprinted from:Holloway, J.W.:A comparison of the toxicity of the pyrethroid trans-cypermetherin,
with and without the synergist piperonyl butoxide, to adult moths from two strains of Heliothis
Virescens. Final-year dissertation, Department of Pure andApplied Zoology, University of Reading,
c©1989, with permission from the author

Table 1.9 Models used to analyse the results from a toxicity experiment involving the tobacco
budworm

Model Intercepts Slopes

1 a1 = a2 b1 = b2
2 a1, a2 ∈ R b1 = b2
3 a1 = a2 b1, b2 ∈ R

4 a1, a2 ∈ R b1, b2 ∈ R

Yi j ∼ Binomial
(

20, πi j
)

,

log

(

πi j

1 − πi j

)

= ai + bi x j ,

where Yi j is the number of individuals of sex i that were affected at dose d j , and
x j = log2 d j (i = 1, 2; j = 1, . . . , 6). The choice of a log2 scale for dose is natural,
as it increases in powers of 2. The four models correspond to different assumptions
about the intercepts and slopes for males and females, as shown in Table1.9.

The fit of the largest model (model 4) did not indicate any evidence of overdis-
persion, so the choice of a binomial distribution for the response variable appears
to be reasonable. Figure1.2 shows the fitted line for each model, together with the
observed proportions, separately for each sex.

TheAICweights are 0.004, 0.235, 0.553 and 0.209, for models 1 to 4 respectively.
These showevidence in favour ofmodel 3,which allowsdifferent slopes formales and
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Fig. 1.2 Estimated probability of a tobacco budwormbeing affected by a specified dose of pesticide,
for males (solid) and females (dashed), together with the observed proportions for males (black)
and females (white). For model 1, the estimated probability is identical for males and females

females, and moderate support for 2 and 4, both of which allow different intercepts
for the two sexes.

As in many toxicity studies, a natural focus of the analysis will be estimation of
the dose that leads to a specified probability of an individual being affected. If we
denote this probability as π0, an estimate of the dose required for a particular sex is
given by

̂d0 = 2x̂0 ,

where

x̂0 = 1
̂b

{

log

(

π0

1 − π0

)

− â

}

and â,̂b are estimates of the intercept and slope for that sex.
Suppose we are interested in the dose-levels that lead to 50 and 90% of indi-

viduals being affected. Table1.10 shows the estimates and 95% Wald confidence
intervals obtained from each model. These are based on back-transformation of the
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Table 1.10 Estimates and 95% confidence intervals for the dose-level (µg) of trans-cypermethrin
that leads to 50% or 90% of individuals being affected, using each model or model averaging (MA),
separately for each sex

Probability
affected

Model Male Female

Estimate Lower Upper Estimate Lower Upper

0.5 1 6.7 5.4 8.4 6.7 5.4 8.4

2 4.7 3.4 6.4 9.6 7.0 13.1

3 4.8 3.7 6.2 9.8 6.9 14.0

4 4.7 3.6 6.2 9.9 6.9 14.1

MA 4.7 3.6 6.3 9.8 6.9 13.8

0.9 1 30.5 19.7 47.2 30.5 19.7 47.2

2 19.6 12.5 30.9 40.2 24.6 65.6

3 15.6 10.0 24.2 55.1 27.1 112.4

4 15.8 9.8 25.5 53.0 24.7 114.0

MA 16.5 10.2 27.5 50.7 25.6 107.9

corresponding estimate and 95% confidence interval for x0, and make use of an
approximation to the asymptotic standard error of x̂0 [216].

The model-averaged estimates and 95% confidence intervals are also shown in
Table1.10. These provide a compromise between the estimates and intervals for
models 2, 3 and 4, with most weight being given to model 3.

When π0 = 0.5, the differences between the estimates for models 2 to 4 are small
for both sexes, and the primary effect of the weighting is to discount the results from
model 1. This pattern is also evident in the confidence intervals. We would therefore
expect themodel-averaged estimate and confidence interval to be robust to the choice
of weights for models 2 to 4.

When π0 = 0.9, some of the estimates and confidence limits lie outside the range
of dose-levels used in the study, and in practice we might be wary of such extrapola-
tion.We include this case for illustration only, as the estimate and confidence interval
obtained from model 2 are quite different from those for models 3 and 4.

The impact of the difference between the results for the two values of π0 becomes
clearer when we consider different types of model weight in Chaps. 2 and 3.

1.3.5 Assessing the Risk of a Stroke

This example illustrates the advantages of using model averaging to predict the risk
of a stroke [221]. Cox proportional hazard models were used to analyse survival
data for 4502 individuals, with information on 23 putative risk factors. In order to
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Table 1.11 Assigned risk group versus stroke occurrence, for three methods of determining the
groups. The total number of individuals are shown for each risk group, together with the percentage
that were recorded as having experienced a stroke during the follow-up period

Group Model averaging Best PMP model Stepwise selection

% Stroke Total % Stroke Total % Stroke Total

Low 0.9 758 1.1 758 1.4 734

Medium 3.0 794 3.3 826 3.4 829

High 7.9 700 7.6 668 7.0 689

Adapted from: Volinsky, C.T., Madigan, D., Raftery, A.E., Kronmal, R.A.: Bayesian model aver-
aging in proportional hazard models: assessing the risk of a stroke. J. Roy. Stat. Soc. C-App. 46,
433–448 c©1997, with permission from John Wiley & Sons

compare the predictive performance of model selection and model averaging, the
data were randomly split into two halves. The first half was used for model selection
and model averaging, with the latter using weights based on BIC, the Bayesian
information criterion (Sect. 2.2.2). The individuals in the second half of the data
were then classified as being at low, medium or high risk of a stroke. Table1.11
shows the outcomes recorded for these individuals during follow-up, classified by
the predictions based on model averaging, and on two choices for the best model:
that with the highest posterior model probability (PMP; Sect. 2.2.1) and one obtained
using a stepwise backward-elimination process.

Those individuals assigned to the high (low) risk group by model averaging were
more (less) likely to have a stroke than those assigned to this group by the other two
methods. Thus model averaging was found to be preferable to selection of a best
model, in terms of assessing who was at high risk of a stroke.

1.4 When Is Model Averaging Useful?

Model averaging is potentially useful when we are interested in estimation, rather
than on the description and understanding of a system [24, 35, 97]. We therefore
regard the concept of model-consistency, which is concerned with the asymptotic
probability of identifying the true model, as of secondary interest. It is more useful to
assess the accuracy of the model-averaged estimate4 and coverage of the associated
confidence interval. The tension that exists between achieving model-consistency
and optimal estimation has been considered from a theoretical perspective by [246],
who makes the point that when our aim is estimation it is preferable to not even try
to find the true model.

We will usually be interested in estimating a function of the model parameters,
and it is important that interpretation of this function is the same for all the models,

4For simplicity, throughout the book we use the term estimate when referring to either an estimator
(the method of estimation) or an estimate (the realised value of an estimator), as the meaning should
be clear from the context.
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the most obvious example being the expected value of the response variable for
specified values of the predictor variables. Likewise, it will often not be sensible to
model average regression coefficients. For example, suppose we have the following
two models for μ = E

(

Y
∣

∣x1, x2
)

:

Model 1 μ = β0 + β1x1
Model 2 μ = β0 + β1x1 + β2x2.

Unless the twopredictor variables are uncorrelated, the interpretationofβ1 is different
for the two models, so it is not appropriate to model average the estimate of this
parameter, even though we might think of it as a useful summary of the change in μ

that is associated with a unit-change in x1 [12, 17, 31, 32, 54, 64, 89, 140]. A better
alternative is to compare model-averaged estimates of μ for suitably chosen values
of both x1 and x2 [31].

If a regression coefficient has the same interpretation in each model it is best
to average over all the models, rather than exclude those for which the coefficient
is zero [5, 28, 140]. This is related to the use of shrinkage in methods such as
SCAD penalised regression, ridge regression, the lasso and the elastic net [70, 98,
211, 259]. Shrinkage methods involve one or more tuning parameters, typically
estimated using generalised cross validation [240], which determine the amount by
whichmodel parameters are shrunk towards zero. They can be thought of as allowing
for model uncertainty by simultaneously selecting predictor variables and estimat-
ing model parameters. Only recently, however, have confidence intervals based on
shrinkage methods been developed that allow for model uncertainty [68]. As pointed
out by [228], it would be useful to compare the performance of model averaging and
shrinkage methods, for both point and interval estimation.

A useful discussion of the conditions under which we might expect a model-
averaged estimate to perform well is given by [60]. If the different models provide
estimates that are all negatively biased or all positively biased, the model-averaged
estimate will be biased in that direction; it is therefore better for the individual
biases to occur in both directions. However, as in model selection, a small amount
of bias may be worthwhile if it leads to a large-enough reduction in variance. If the
estimates from the different models are strongly positively correlated, the variance
of the model-averaged estimate will be greater than if they were uncorrelated. This is
related to the concept of model-redundancy [28], which we return to in later chapters.

If two models both have non-negligible weight and give quite different estimates
of the parameter(s) of interest, we would expect model averaging to provide a much
better measure of uncertainty than that based on either model alone. This has been
referred to as “staking out the corners in model-space” [63], and is related to the idea
of discrete model averaging [64], in which we use different types of model. A simple
example arises when some models differ solely in the distribution of the response
variable [28, 244] or the choice of link function [53]. Discrete model averaging often
arises in machine learning; in classification, for example, we might use both linear
discriminant analysis and random forests to make predictions (Sect. 3.7.6).

It is important to bear in mind that model weights are estimated from the data
[34]. In principle, model averaging will be more reliable than model selection, but
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if the model weights are estimated poorly we may obtain less reliable estimates [60,
86, 164, 181, 182, 197, 253]. Sometimes the primary benefit of model averaging
is to simply downweight poorer models, as in the toxicity experiment (Sect. 1.3.4),
with the optimal choice of weights for the better models being uncertain [60]. This
uncertainty may not matter, however, if the model-averaged estimate is robust to the
choice of weights for the better models. An example of this arises when we return to
the toxicity experiment in Sect. 3.3.4. There is a need for further work in this area,
in terms of assessing both the degree to which the results are robust to the choice of
weights, and the impact of estimating the weights imprecisely.

It will often be useful to consider the sensitivity of an estimate to the choice of
model, rather than simply average the estimate over a set of models [51, 60, 104].
Likewise, some have argued for the use of continuous model expansion, i.e. use of
a single model that contains all other candidate models as special cases, rather than
model averaging [64, 84, 247].

We will sometimes find it useful to assume the following framework:

1. We have a finite set of M models
2. Model M is the largest model, within which all other models are nested
3. Model M is true

The actual data-generating mechanismwill usually be more complex than anymodel
we can specify, so all of our models will be wrong [28]. However, behaving as if
one of the models is true can be a useful basis for inference, in the same way that
we traditionally assume the truth of a single model [43, 131, 136, 146]. In addition,
of all the models being considered, it is natural to assume that the largest is true, as
it is the most complex. This assumption does not imply we should simply base our
analysis on the largest model. Even if this model is structurally correct, it might not
be the best choice for inference, especially when some of the effect sizes are small
(Sect. 1.3.3). Likewise it is still important to check for any lack-of-fit of the largest
model; many of the techniques discussed in this book will be of little use if there are
strong discrepancies between the data and this model [27, 28, 63, 84, 142].

Although we will often make use of the framework discussed above, there can be
advantages in using a method that does not assume the true model is in the model
set, notable examples being the Bayesian and frequentist versions of stacking, which
use cross validation (Sects. 2.3.2 and 3.2.3).

1.5 Aim of This Book

The aim of this book is to provide a concise overview of model averaging that is
accessible to both applied statisticians and researchers with a good background in
statistics. Although we consider theoretical developments, our discussion of these
will be motivated by a desire to provide researchers with tools and techniques that
are straightforward to implement and widely applicable.
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As discussed in Sect. 1.3, all of the examples are relatively simple, in order to
facilitate discussion of the concepts. As such, they do not illustrate all the issues
involved in other settings, such as high-dimensional models. Likewise, I have not
attempted to use examples from machine learning and econometrics to illustrate
methods used in these areas, as others aremuch better qualified to provide the relevant
context.

The primary focus in this book is the frequentist approach tomodel averaging, as I
believe it is desirable to use a paradigm that is concerned with the repeated-sampling
properties of an estimate [52]. There are also practical challenges involved in classical
Bayesian model averaging, including the specification of priors, for both parameters
and models, and computational issues [13, 43, 44, 47, 67, 71]. Having said that, the
Bayesian approach is conceptually elegant, it has the advantage of providing a visual
summary of the results in the form of the model-averaged posterior distribution,
and the recent development of prediction-based Bayesian model averaging looks
promising (Sect. 2.3.2).

The interplay between frequentist and Bayesian approaches to inference has long
been a fruitful aspect of statistical theory [16, 21, 83, 187], and this is one of the
reasons for including an overview of Bayesian model averaging. We consider this
link when discussing different methods in Chaps. 2 and 3. In addition, the Bayesian
approach to inference can be thought of as a convenient means of producing methods
that may have good frequentist properties [52].

In the frequentist approach to inference it can be a challenge to determine the
properties of an estimate across a broad range of scenarios. Asymptotic theory, while
often providing more general conclusions and insight than a simulation study, may
lack relevance in a realistic setting, where the sample size is finite [107, 227, 228].
Indeed, model averaging is most likely to be useful when the sample size is not large.
Even when finite-sample theory is available, it may only apply to a simple setting,
such as when we wish to average over a set of normal linear models [110–112]. On
the other hand, although simulation studies can provide useful results about sampling
properties in realistic settings, they suffer from the difficulty of generalising beyond
those settings. There will also be some publication bias associated with such studies,
as they are typically carried out in a setting favourable to the method being promoted.

The continual increase in computational power suggests that we should be able
to carry out a simulation study to assess the frequentist properties of any model-
averaging procedure that we plan to use for a particular analysis. This has the advan-
tage that the simulations can be tailored to the context of the analysis. Having said
that, there is scope for broadly-applicable theoretical and simulation-based work on
the properties of different model-averaging procedures [60].

The outline of the book is as follows. In Chap. 2 we provide an overview of
Bayesian model averaging, both in its own right and with a view to providing some
insight into the frequentist approach. In Chap.3 we consider frequentist methods for
calculating a model-averaged estimate and confidence interval. Finally, in Chap. 4
we provide a summary of the key ideas and suggest directions for future research.
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1.6 Related Literature

An alternative approach to allowing for model uncertainty involves assessing the
sampling properties of an estimate obtained after model selection [9, 18, 39, 40,
94, 100, 102, 108, 109, 180, 196, 248]. This leads to the sampling distribution
of an estimate being a mixture distribution, involving the probability that model m
is selected and the conditional distribution of the estimate given that model m is
selected [67, 137].

A theoretical assessment of the coverage of a confidence interval based on a
selected best model has been provided by [106], while [109] proposed an upper
bound for the large-sample minimal coverage of such an interval, with a view to
indicating when there might be severe under-coverage. In more recent work, [113]
have considered the relative contributions of two sources of coverage error for a
confidence interval calculated after model selection: selection of the wrong model,
and use of the data for both model selection and calculation of the interval. For a
simple setting involving two normal linear models, they concluded that selection of
the wrong model had the greater effect on coverage error, and that model averaging
was therefore preferable to selecting amodel using a sample-splitting technique such
as cross validation.5

In machine learning, use of a shrinkage approach to model averaging has been
discussed by [79], who suggested a lasso-type approach to estimating the model
weights. Conversely, [192] considers the use of model averaging when performing
shrinkage. A combination of shrinkage and model averaging has been considered for
logistic regression by [86].

In econometrics there has been a parallel development of methods for combining
forecasts from different models. As in model averaging, a weighted mean of the
individual forecasts is used. In addition, a criterion such as mean squared error is
used to determine an optimal choice of weights, an approach that has also been used
in model averaging (Sect. 3.2.3). Unlike model averaging, however, it is sometimes
assumed that each forecast is unbiased. An interesting feature of using a forecast-
combination is that a model which provides a relatively poor forecast on its own
can improve a forecast-combination [85], analogous to the idea of combining weak
learners in machine learning [190]. Often the parameters and models are allowed to
change over time, and the constraint that the weights be non-negative is sometimes
removed [3, 45, 58, 61, 91, 99, 101, 117, 125, 134, 146, 179, 203, 230].

5Some methods of model averaging, such as stacking (Sects. 2.3.2 and 3.2.3), also make use of
sample-splitting.
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Ensemble forecasting6 is related to model averaging, but typically focuses on
averaging across different initial conditions or parameter values, rather than different
models. It has been used in a range of application areas, including climate change [73,
139, 153, 208], ecology [10], weather prediction [258], and earthquake forecasting
[150].
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Chapter 2
Bayesian Model Averaging

Abstract We provide an overview of Bayesian model averaging (BMA), starting
with a summary of the mathematics associated with classical BMA, including the
calculation of posterior model probabilities and the choice of priors for both the
models and the model parameters. We also consider prediction-based approaches to
BMA and argue that these are preferable to the classical approach. Use of BMA is
illustrated by two examples involving real data. We finish with a discussion of the
advantages and disadvantages of BMA.

2.1 Introduction

In principle, Bayesian model averaging (BMA) is quite natural, as the Bayesian
framework for data analysis can readily incorporate both parameter uncertainty and
model uncertainty [73, 87]. Instead of the posterior distribution for a parameter
being based on a single model, we calculate a weighted combination of the posterior
distributions from the different models.

In the classical version of BMA the weight for a model is the posterior probability
that it is true, as we assume that one of the models is true. Recently, an explicitly
prediction-based version of BMAhas been proposed by [181]. This uses cross valida-
tion to determine a set of optimal weights, and is a Bayesian version of the frequentist
method known as stacking (Sect. 3.2.3).1

Classical BMA is concerned with model-consistency (identification of the true
model), whereas prediction-based BMA has the advantage of being directly con-
cerned with estimation. We initially focus on classical BMA, as it has received the
vast majority of attention in the BMA literature.

1The assumption that one of the models is true is sometimes referred to in the Bayesian literature
as theM-closed framework [13], and it is natural to use classical BMA within this framework. The
M-open framework assumes that the true data-generating mechanism is not in the model set, and
prediction-based BMA is preferable in this framework.
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2.2 Classical BMA

Once the priors are specified for both the models and the parameters in each model,
classical BMA involves a well-defined procedure for obtaining the model-averaged
posterior for any parameter of interest. As with other Bayesian methods, the apparent
simplicity of classical BMA can bely difficulties in its implementation [8, 32]. The
choice of priors can be problematic, as can the computations required to obtain the
model-averaged posterior.

Suppose y = (y1, . . . , yn)� contains the values of the response variable, and we
wish to average over a set of M nested models, with βm being the vector of pm
parameters in model m. As the notation implies, βm will often be a set of regression
coefficients, but it may include other types of parameter, such as the error variance in
a normal linear model.2 Suppose we are interested in estimating a scalar parameter
θ . The model-averaged posterior for θ is given by

p
(
θ
∣∣y

) =
M∑

m=1

p
(
m

∣∣y
)
p

(
θ
∣∣y,m

)
, (2.1)

where p
(
m

∣∣y
)
is the posterior probability that model m is true, and p

(
θ
∣∣y,m

)
is

the posterior for θ when we assume model m is true.3 Thus p
(
θ
∣∣y

)
is a weighted

combination of the posterior distributions obtained from the different models, the
weights being the posterior model probabilities. Using Bayes’ theorem, the posterior
probability for model m is given by

p
(
m

∣∣y
) ∝ p (m) p

(
y
∣∣m

)
, (2.2)

where p (m) and p
(
y
∣∣m

)
are the prior probability, and the marginal (integrated)

likelihood, for model m, with

p
(
y
∣∣m

) =
∫

p
(
y
∣∣βm,m

)
p

(
βm

∣∣m
)
dβm, (2.3)

where p
(
βm

∣∣m
)
is the prior for βm and p

(
y
∣∣βm,m

)
is the likelihood under modelm.

When the support of βm is discrete, the integral in (2.3) is replaced by a summation.
The posterior probability for model m can also be written as

p
(
m

∣∣y
) ∝ p (m) Bm,

2Whether or not we include any scale and shape parameters in our definition of pm will typically
make no difference to the model weights, as long as every model includes these parameters.
3For simplicity, we avoid attaching a subscript to p(·) in order to fully specify the distribution. The
exception to this will be in Sect. 2.5, where we need to make a clear distinction.



2.2 Classical BMA 33

where

Bm = p
(
y
∣∣m

)

p
(
y
∣∣1

)

is the Bayes factor for comparing model m and model 1, the latter being an arbitrary
referencemodel [114, 146]. It is well known that Bayes factors can be sensitive to the
prior distributions for the parameters, even when n is large [8, 97]. An extreme case
arises when one or more of the priors is improper, as this can lead to the marginal
likelihood in (2.3) not being well defined [73, 161].

Two natural summaries of the model-averaged posterior for θ are the mean and
variance, given by

E
(
θ
∣∣y

) =
M∑

m=1

p
(
m

∣∣y
)
E

(
θ
∣∣y,m

)
(2.4)

and

var
(
θ
∣
∣y

) =
M∑

m=1

p
(
m

∣
∣y

) [
var

(
θ
∣
∣y,m

) + {
E

(
θ
∣
∣y,m

) − E
(
θ
∣
∣y

)}2]
, (2.5)

where E
(
θ
∣∣y,m

)
and var

(
θ
∣∣y,m

)
are the posterior mean and variance for θ under

model m. Thus the model-averaged posterior variance is influenced by both the
parameter uncertainty associated with eachmodel and the between-model variability
in the posterior mean.

Wecan alsouse themodel-averagedposterior to calculate a central 100 (1 − 2α)%
credible interval for θ , given by [θL , θU ], where

∫ θL

−∞
p

(
θ
∣
∣y

)
dθ =

∫ ∞

θU

p
(
θ
∣
∣y

)
dθ = α. (2.6)

An alternative choice would be to use the highest posterior density 100 (1 − 2α)%
credible region, i.e. the region of values for θ that contain 100 (1 − 2α)% of the
posterior probability and for which the posterior density is never lower than outside
the region. However, the central credible interval is easier to compute than the highest
posterior density region, and has the advantage that the limits can be interpreted as
quantiles of the posterior. In the examples we therefore use central credible intervals.

A by-product of classical BMA is the ability to calculate a posterior inclusion-
probability (PIP) for each predictor variable, i.e. the sum of the posterior probabilities
for all the models that include that variable [7, 12, 36]. Some authors have suggested
that these provide a useful summary of the relative importance of each predictor
variable. However, as they are influenced by the choice of model set, the importance
of a predictor variable can be exaggerated by including many models containing
that variable [66]. In addition, a more useful summary of relative importance can
be obtained by comparing model-averaged posterior distributions for the expected
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value of the response variable for a suitable set of values of the predictor variables
(Sect. 1.4). An analogous issue arises with the use of summed model weights in
frequentist model averaging (Sect. 3.7).4

2.2.1 Posterior Model Probabilities

When calculating the posteriormodel probabilities, it can be difficult to determine the
marginal likelihood in (2.3). In some settings, such as GLMs with conjugate priors
for the parameters, the marginal likelihood can be expressed analytically [98], but
in general we need to use an approximation. The most well-known approximation,
which does not require specification of the priors for the parameters, is

p
(
y
∣∣m

) ≈ exp (−BICm/2) (2.7)

where
BICm = −2 log p

(
y
∣∣β̂m,m

) + pm log n, (2.8)

and β̂m is the maximum likelihood estimate of βm . The expression in (2.8) is the
Bayesian information criterion for model m [91, 98, 114, 157].5 The first term in
(2.8) is influenced by the fit of the model, while the second can be thought of as a
correction for overfitting which penalises more complex models.

Use of (2.7) in (2.2) leads to the approximation

p
(
m

∣∣y
) ∝ p (m) exp (−BICm/2) , (2.9)

which is sometimes referred to as the generalised BIC weight [114]. When we cal-
culate the expression on the right-hand side of (2.9), BICm is often replaced by

BICm − min
k

BICk,

in order to avoid large arguments in the exponential function [32].6

Care is needed in specifying the value of n in (2.8). For a normal linear model,
it is simply the number of observations. For a binomial model it is the total number

4We consider two contexts in which PIPs might be useful in Sect. 2.6.
5An alternative form is

BICm = log p
(
y
∣
∣β̂m ,m

) − 1

2
pm log n,

which [98] refer to as the Schwarz criterion [157]; multiplication of this by −2 allows BIC to be
expressed on a deviance-scale. The same multiplication is used for DIC, WAIC (Sect. 2.3.1) and
AIC (Sect. 3.2.1).
6Throughout the book, whenever a model weight based on an information criterion takes this form,
it is implicit that calculation of the weight is carried out after this rescaling.
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of Bernoulli trials. When using a log-linear model to analyse a contingency table
it is the sum of the counts rather than the number of cells in the table [98, 145].
In the context of survival analysis, [171] suggested setting n equal to the number
of uncensored observations. For a hierarchical model, the choice of n depends on
the focus of the analysis [37, 98, 138, 139, 188]. For modelling survey data, [117]
proposed a version of BIC that takes into account the design effect.

A higher-order approximation to the posterior model probabilities requires the
priors for the parameters and their observed Fisher information matrix [96, 98, 116,
183]. It is similar in spirit to TIC, Takeuchi’s information criterion, which has been
suggested as an alternative to AIC in the frequentist setting [32] (Sect. 3.2.1).

Other approaches to approximating the posterior model probabilities have been
proposed, involving marginal likelihoods [26, 28, 40, 41, 121, 132, 151] or Markov
chain Monte Carlo (MCMC) methods [5, 9, 19, 23, 24, 29, 34, 37, 50, 71, 74,
75, 79, 82, 121, 142, 147, 179]. One conceptually-appealing method is reversible-
jumpMCMC(RJMCMC), inwhichwe sample the parameter-space andmodel-space
simultaneously [80]. However, RJMCMC can be prone to performance issues and
be challenging to implement [8, 9, 37], to the extent that [83] recommend use of
the approximation in (2.9). Recently, [8] have developed an approach which has the
advantage of using the MCMC output obtained from fitting each model separately,
andwhich exploits the relationships between parameters fromdifferentmodels [151].

2.2.2 Choice of Priors

Priors for models
A natural and common choice for the prior model probabilities is the uniform prior,
in which p (m) = 1/M . The approximation to the posterior model probability in
(2.9) then simplifies to the well-known BIC weight, given by

p
(
m

∣∣y
) ∝ exp (−BICm/2) . (2.10)

However, use of the uniformmodel-prior can have hidden implications. For example,
if some of the possible predictor variables are highly correlated, wemay have model-
redundancy, in that some models will provide very similar estimates of θ . Use of a
uniform prior will then dilute the prior probability allocated to any model which is
not similar to the others [18, 57, 66, 76]. A method for dealing with this problem
was proposed by [170], who suggested specifying prior model probabilities using
the concept of the worth of a model, which is based on quantifying what we would
expect to lose if we removed it from the model set when it is the true model. Another
alternative is use of a Bernoulli prior in which each predictor variable has the same
probability p of being included, independently of the others. The uniform prior is a
special case, with p = 0.5, and therefore corresponds to a prior expectation that half
the predictor variables will be included [37]. In order to have a less informative prior
on model size, we might use a beta-prior for p [37, 105, 158].
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Other approaches to specifying the model-prior involve empirical Bayes [37];
allowance for predictor variables being related, such as when some of the models
include interaction terms [30]; and use of lower weights for models that are similar
to others [66].

In order to allow for the possibility that the choice of model-prior may affect the
form of the model-averaged posterior, [43] proposed use of credal model averaging,
in which more than one model-prior is considered. This effectively allows one to
preform a sensitivity analysis, in order to assess the extent to which the model-
averaged posterior is influenced by the choice of model-prior. Further examples of
the use of credal model averaging can be found in [44–46, 185].

Priors for model parameters
The posterior model probabilities can be sensitive to the choice of prior distribution
for the parameters in amodel, even if this prior would be regarded as non-informative
in the single-model setting [8, 35, 93]. In particular, as mentioned in Sect. 2.2, the use
of improper priors can lead to the Bayes factors, and hence the posterior model prob-
abilities, not being well defined [10, 82, 93, 161]. It is also possible for apparently
sensible priors for the parameters to cause the models to have conflicting implicit
prior distributions for θ [85].

In the normal linear model setting, Zellner’s g-prior has been used extensively, as
it has several desirable properties, including computational convenience [37, 154]. It
involves centring the predictor variables at zero, in order to remove any dependence
between the intercept and the regression coefficients, and then specifying a joint prior
for the intercept and error variance, plus a joint prior for the regression coefficients
given the error variance. For model m, this leads to

p
(
βm0, σ

2
m

∣∣m
) ∝ 1/σ 2

m

and a multivariate normal prior for the regression coefficients, with mean zero and
covariance matrix

gmσ 2
m

(
X�
m Xm

)−1
,

whereβm0,σ 2
m , and Xm are the intercept, error variance and designmatrix formodelm

respectively, and gm is a hyperparameter [37, 187].This prior has a nice interpretation,
as it can be thought of as containing 1/gm as much information as that in the data.
The resulting posterior model probability is given by

p
(
m

∣∣y
) ∝ p (m) exp (−ICm/2) ,

where
ICm = −2 log p

(
y
∣∣β̂m,m

) + pm log gm . (2.11)

ICm can be thought of as a generalised information criterion in which the correction
for overfitting is pm log gm . Setting gm to be arbitrarily large, in order for the prior to
be non-informative, can lead to strongly favouring the null model, an example of the
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Lindley-Jeffreys paradox [37, 91, 98, 113]. Using gm = n gives the unit-information
prior, which contains the same amount of information as a single observation, and
leads to the posterior model probability being the generalised BIC weight in (2.9).
Together with a uniform model-prior, this corresponds to using the BIC weight in
(2.10), which was found perform well in a simulation study reported by [58]. An
empirical Bayes procedure is also possible, in which the choice of gm depends on
the data [37]. As with the parameter p in the Bernoulli model-prior, we might also
want to put a prior on gm , rather than specify its value [105, 109, 111, 162, 186]. A
version of the g-prior for high-dimensional normal linear models was proposed by
[120].

For GLMs, [146] considered several approximations to the Bayes factors, includ-
ing one that leads to the generalised BIC weight in (2.9). Extensions of Zellner’s
g-prior to this setting, including use of a prior on gm , have been suggested by sev-
eral authors; see [154] and the references therein. A calibrated information criterion
(CIC) prior was proposed by [35]. This is based on the Jeffreys prior used in the
single-model setting [91], and for model m it is given by

p
(
βm

∣∣m
) = (2π)−pm/2

∣∣c−1
m J

∣∣1/2 ,

where J is the observed Fisher information matrix for βm and cm is a hyperparam-
eter. In conjunction with a uniform model-prior, this leads to the model-averaged
posterior for θ being approximated by a multivariate normal distribution with mean
β̂m and covariance matrix J−1. In addition, the posterior probability for model m is
approximated by

p
(
m

∣∣y
) ∝ exp (−CICm/2) , (2.12)

where
CICm = −2 log p

(
y
∣∣β̂m,m

) + pm log cm,

which has the same form as (2.11). The right-hand side of (2.12) is known as the
CIC weight; the BIC weight in (2.10) is a special case, corresponding to cm = n.

2.3 Prediction-Based BMA

As mentioned in Sect. 2.1, classical BMA focusses attention on identification of the
true model. Recently, several authors have considered use of prediction-based BMA
[39, 102, 181]. In addition to being a more natural approach to model averaging,
this has the distinct advantages of not requiring a prior for the models, being less
sensitive to the priors for the parameters, and only requiring the usual MCMC output
for each individual model.

There are currently two types of prediction-based BMA. The first involves a
criterion based on a measure of the within-sample prediction error plus a correction
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term which allows for overfitting. The second uses cross validation and is therefore
based on the error associated with prediction of observation i having fitted the model
to all the data except that observation (i = 1, . . . , n). The only difference between
these approaches and classical BMA is that we combine posterior distributions using
model weights that are not posterior model probabilities.

2.3.1 DIC and WAIC

In Bayesian model selection, the deviance information criterion (DIC) has long been
used as an alternative to BIC [159, 160]. For model averaging, [15] suggested use
of DIC weights, with BICm in (2.10) being replaced by

DICm = −2 log p
(
y
∣∣β̂m,m

) + 2pDIC
m , (2.13)

where β̂m is a point estimate of βm and pDIC
m is a correction for overfitting, often

referred to as the effective number of parameters [159]. Common choices are

β̂m = E
(
βm

∣
∣y,m

)
(2.14)

and
pDIC
m = 2var

{
log p

(
y
∣∣βm

)}
. (2.15)

The posterior mean in (2.14) and posterior variance in (2.15) are estimated by the
mean of the posteriorMCMC sample for βm and the variance of the posteriorMCMC
sample for log p

(
y
∣∣βm

)
respectively. An alternative choice for pDIC

m is possible [22,
73, 159], but this has the disadvantage of sometimes being negative.

DIC has much in common with AIC, which is also a prediction-based criterion
(Sect. 3.2.1 and [32]). DIC model weights have been used in a range of applications,
including ecology [60, 62, 115, 127, 167], fisheries [92, 177], medicine [143] and
physics [112].

The other prediction-based measure we consider is the Watanabe-Akaike Infor-
mation Criterion (WAIC) [72, 73, 89, 169, 174].7 This is more Bayesian than DIC
(and BIC), in that it replaces β̂m by the posterior distribution for βm , and can work
well in situations where DIC has problems [22]. The point estimate β̂m in DIC leads
to underestimation of the prediction uncertainty, and hence to the possibility that use
of DIC will lead to overfitting.8 WAIC is also specified in terms of the pointwise
predictive densities p

(
yi

∣∣βm
)
, rather than the joint predictive density p

(
y
∣∣βm

)
, as

the former has a close connection with cross validation [72] (Sect. 2.3.2). If the yi
are independent given the parameters, use of the joint density is equivalent to the
pointwise-approach.

7See [72, 175] for the related Watanabe-Bayes Information Criterion (WBIC).
8See [160] for discussion of a modification to pD that tries to compensate for this problem.



2.3 Prediction-Based BMA 39

The value of WAIC for model m is given by

WAICm = −2
n∑

i=1

log p
(
yi

∣∣y,m
) + 2pW AIC

m , (2.16)

where pW AIC
m is again a correction for overfitting. The posterior predictive density

in (2.16) is given by

p
(
yi

∣∣y,m
) =

∫
p

(
yi

∣∣βm, y,m
)
p

(
βm

∣∣y,m
)
dβm = E

{
p

(
yi

∣∣βm, y,m
)}

,

(2.17)
One choice for the correction term is

pW AIC
m =

n∑

i=1

var
{
log p

(
yi

∣∣βm, y,m
)}

. (2.18)

As with DIC, the posterior mean in (2.17) and the posterior variance in (2.18) can
be estimated by the mean of the posterior MCMC sample for p

(
yi

∣∣βm, y,m
)
and

the variance of the posterior MCMC sample for log p
(
yi

∣∣βm, y,m
)
. As with DIC,

an alternative choice for pW AIC
m is possible [72, 73]; we consider that in (2.18) as it

is closely related to leave-one-out cross validation (Sect. 2.3.2).
WAICweights can be calculated using (2.10), with BICm replaced byWAICm . As

DIC and WAIC are focussed on prediction, we would expect weights based on these
criteria to be preferable to BIC weights, which are more focussed on identification of
a true model [72]. AsWAIC is more Bayesian than DIC,WAIC weights are based on
a more reliable assessment of the prediction-uncertainty associated with each model.
WAIC is also invariant to transformation of the parameters, whereas DIC will not
be if we use (2.13), as the posterior mean is not transformation-invariant [159].9 In
addition, use of a pointwise-approach means that pW AIC

m will be more stable than
pDIC
m [73].
As with BIC, when assessing the fit of a hierarchical model the exact form of DIC

and WAIC will depend upon the focus of the analysis, as this will determine what
we mean by prediction of a new observation [72, 122]; a similar issues arises when
using AIC in the frequentist setting (Sect. 3.6.4).

2.3.2 Bayesian Stacking

Stacking is a cross-validation-based approach to model averaging that has a long
history in the frequentist setting [164] (Sect. 3.2.3). Like the frequentist version,
Bayesian stacking [181] uses a measure of out-of-sample prediction error, which

9This problem disappears if we use the posterior median [159] or posterior mode [22].
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does not require a correction for overfitting. If a logarithmic scoring rule is used to
summarise the prediction performance [78, 137], the model weights are chosen to
be those that maximise the function

n∑

i=1

log
M∑

m=1

wm p
(
yi

∣∣y−i ,m
)
, (2.19)

where wm is the weight associated with model m and y−i is the response vector y
with yi removed.10 In order to maximise (2.19) using weights that lie on the unit sim-
plex, we can use a constrained-optimisation method, such as quadratic programming
[83]. Following [181], we refer to this approach as Bayesian stacking of predictive
distributions (BSP).11 Analogous to the form of the posterior predictive density used
to calculate WAICm in (2.16) (Sect. 2.3.1), we have

p
(
yi

∣∣y−i ,m
) =

∫
p

(
yi

∣∣βm, y−i ,m
)
p

(
βm

∣∣y−i ,m
)
dβm = E

{
p

(
yi

∣∣βm, y−i ,m
)}

,

where the posteriormean on the right-hand side is nowwith respect to p
(
βm

∣∣y−i ,m
)
,

and can be estimated by the mean of the corresponding posterior MCMC sample for
p

(
yi

∣∣βm, y−i ,m
)
.

As computational effort will often be an important consideration in the Bayesian
setting, [181] proposed use of Pareto-smoothed importance sampling [168], which
only requires a single fit to the data for each model. On the other hand, if the sample
size is small estimation of the weights may be unstable [181], an example of which
arises in the toxicity example (Sect. 2.4.2).

Determining posteriormodelweights byminimising anobjective function has also
been suggested by [81, 172]. Likewise, in the context of forecasting in economic
time series, [59, 63] have proposed using an estimate of out-of-sample prediction
error to determinemodel weights. A decision-theoretic approach to BMA, also based
on prediction error, was used by [16] in the context of high-dimensional multivariate
regression models.

When n is large, BSP might be expected to produce weights that are similar to
those based on WAIC, as the latter is asymptotically equivalent to use of Bayesian
leave-one-out cross validation for model selection [174]. A discussion of the relative
merits of DIC, WAIC and Bayesian cross validation can be found in [72].

In related work, interpretation of a model-averaged posterior as a mixture distri-
bution has been advocated by [94]; see also [181].12 As with the approach of [172],
this leads to improper priors for the model parameters being acceptable.

10Using a sample of size n − 1 to estimate the prediction error associated with a model that is fitted
to n observations can lead to overestimation of the prediction uncertainty, and a bias-adjustment
can be made to allow for this [72].
11Alternative versions of prediction-based BMA are discussed in detail by [181].
12Use of BMA for averaging mixture models has been considered by [176].
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Use of BSP can be motivated by the fact that classical BMA has been shown
to have poorer prediction performance than frequentist stacking, particularly when
the true model is not in the model set [33, 53, 178, 181]. Use of classical BMA
leads to an asymptotic weight of one for the model closest to the true data-generating
mechanism (in terms of Kullback-Leibler divergence). In contrast, BSP finds the
optimal combination of predictive distributions that is closest to the data-generating
mechanism (in terms of the scoring rule), and the asymptotic BSP weights can all
be less than one [181]. A similar motivation led to the idea of Bayesian model
combination in the machine-learning literature [100, 124, 126]. If one of the models
is a good approximation to the data-generating mechanism, BSP may not perform
as well as classical BMA when n is small.

2.4 Examples

2.4.1 Ecklonia Density

For the ecklonia example in Sect. 1.3.2, the model weights obtained using BIC, DIC
and WAIC are shown in Table2.1, together with those for AIC (Sect. 1.3.2). The
most striking difference is the greater weight given to model 1 by BIC, compared
to the other methods. This might be expected, as the DIC and WAIC weights are
prediction-based, and are therefore similar to the AIC weights. The estimates of
the effective number of parameters associated with DIC and WAIC are also shown
in Table2.1. These are lower for WAIC, as it uses a better measure of prediction
uncertainty, which requires less of a correction for overfitting [72] (Sect. 2.3.1).

Figure2.1 shows each of the model-averaged posterior distributions for the mean
density of ecklonia in each zone, together with the posterior for each model.13 Note
the bi-modality of the model-averaged posteriors for zone 1, a feature that is not
uncommon in BMA. The posterior means and 95% credible intervals are given in
Table2.2, together with the corresponding model-averaged estimates and 95% con-
fidence intervals based on AIC weights (Table 1.4). The main difference is between
BIC and the other methods; it generally provides a narrower credible interval, as it
gives most weight to model 1. For zone 2, the posterior means from the two models
are similar, which leads to little difference between the model-averaged posterior
means.

13We used a uniform prior between 0 and 103 for 1/k and a N(0, 104) prior for each logμ. For DIC,
we used β̂m = E

(
βm

∣∣y,m
)
, with β1 = (logμ, 1/k)� and β2 = (logμ1, logμ2, logμ3, 1/k)�.
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Table 2.1 Model weights for the ecklonia study, based on AIC, BIC, DIC and WAIC, together
with the effective number of parameters, as estimated using DIC and WAIC, and the true number
of parameters

Model (m) AIC BIC DIC WAIC pm pDIC
m pW AIC

m

1 0.276 0.840 0.367 0.201 2 2.1 1.7

2 0.724 0.160 0.633 0.799 4 4.5 2.7

0 20 40 60 80

0 20 40 60 80 0 20 40 60 80

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

0 20 60 800 20 40 4060 80

BIC

Zone 1 Zone 2 Zone 3

DIC

WAIC

0 20 40 60 80

Fig. 2.1 Model-averaged posterior distributions for mean ecklonia density in each of three zones
(solid), together with the posterior distributions for model 1 (dashed) and model 2 (dotted), for three
types of model weight (BIC, DIC and WAIC). Density is given as individuals per quadrat

2.4.2 Toxicity of a Pesticide

For the pesticide example in Sect. 1.3.4, the quantities of interest were the doses that
lead to 50% or 90% of individuals being affected, separately for each sex. The BSP
weights will depend upon whether we remove a group of moths or an individual
moth, corresponding to assessing the models on slightly different prediction prob-
lems, analogous to the choice of focus in hierarchical models (Sect. 2.3.1). Likewise,
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Table 2.2 Posteriormeans and 95%credible intervals for themean density (individuals per quadrat)
of ecklonia in three zones, for each model and using Bayesian model averaging based on BIC, DIC
or WAIC weights. The corresponding estimates and 95% confidence intervals from frequentist
model averaging using AIC weights are also shown for comparison

Mean Lower Upper

Zone 1 Model 1 34.5 24.6 48.4

Model 2 18.6 10.0 34.1

AIC 20.4 9.9 42.0

BIC 32.0 13.0 47.8

DIC 24.5 10.6 44.7

WAIC 21.8 10.3 42.6

Zone 2 Model 1 34.5 24.6 48.4

Model 2 38.0 19.1 75.0

AIC 33.6 18.5 61.1

BIC 35.1 23.2 53.8

DIC 36.8 20.2 68.4

WAIC 37.3 19.6 71.6

Zone 3 Model 1 34.5 24.6 48.4

Model 2 48.4 29.1 79.8

AIC 41.7 25.9 70.7

BIC 36.7 24.8 60.9

DIC 43.3 26.0 74.9

WAIC 45.6 26.9 77.3

treating the data as binomial or binary will affect the WAIC weights. Interestingly,
the same cannot be said of DIC, with both terms in (2.13) being identical for the two
model-formulations, reflecting another problem associated with this criterion.

We consider both the binomial and binary model-formulations when determining
the weights (the choice of formulation does not affect the posterior distribution for
each parameter). As discussed in Sect. 2.2.1, the derivation of BIC leads to using
n = 240 when calculating the BIC weight, corresponding to the binary-model for-
mulation. For completeness, we also include the binomial-model formulation when
calculating BIC weights. For the binomial model, we have n = 12 and use leave-
one-group-out cross validation for BSP, while for the binary model we have n = 240
and use leave-one-individual-out cross validation for BSP.14

The model weights based on BIC, DIC, WAIC and BSP are shown in Table2.3,
together with the AIC weights (Sect. 1.3.4). In all but one case, model 3 has the most
weight, while model 1 has negligible weight in all cases. The largest differences are
between BSP and the other methods. Using the binomial-model formulation, model

14We used a N(0, 104) prior for each intercept and slope. For DIC, we used β̂m = E
(
βm

∣∣y,m
)
,

with βm being the vector of intercepts and slopes for model m.
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Table 2.3 Model weights for the toxicity experiment obtained using BIC, DIC, WAIC and BSP,
using two model-formulations. Frequentist AIC weights, which do not depend on the model-
formulation, are also shown for comparison

Model AIC Binomial model Binary model

BIC DIC WAIC BSP BIC DIC WAIC BSP

1 0.004 0.005 0.005 0.001 0.000 0.026 0.005 0.004 0.031

2 0.235 0.246 0.217 0.189 0.000 0.277 0.217 0.238 0.488

3 0.553 0.578 0.577 0.587 1.000 0.653 0.577 0.568 0.120

4 0.209 0.171 0.201 0.222 0.000 0.043 0.201 0.190 0.361

Table 2.4 Posterior means and 95% credible intervals for the dose-levels (μg) of trans-
cypermethrin that leads to 50% or 90% of individuals being affected, for each of four models,
separately for each sex

Probability affected Model Male Female

Mean Lower Upper Mean Lower Upper

0.5 1 6.8 5.4 8.4 6.8 5.4 8.4

2 4.8 3.5 6.4 9.7 7.1 13.2

3 4.8 3.7 6.2 10.1 7.1 14.5

4 4.8 3.5 6.2 10.1 7.1 14.6

0.9 1 31.2 20.5 49.6 31.2 20.5 49.6

2 19.8 12.8 31.8 40.9 25.3 69.6

3 15.7 10.2 24.9 59.3 29.7 124.5

4 16.3 10.1 27.3 58.3 27.8 141.7

3 is given all the weight by BSP, but estimation of this weight was unreliable, with
several local optima being encountered en route. For the binary-model case, model
2 has the highest BSP weight, and the weight for model 4 is larger than that for
model 3. In general, we would expect the WAIC weights based on the binary-model
formulation to be more reliable than those from the binomial-model formulation, as
the summations used to calculate WAIC are based on more terms. BIC is the only
method that gives negligible weight to model 4.

Table2.4 shows the posterior mean and 95% credible interval obtained from each
model, for each of the four choices of θ . These are similar to the frequentist estimates
and 95% confidence intervals given in Sect. 1.3.4, the main difference being the
amount of uncertainty associated with the dose that leads to 90% of females being
affected; the upper credible limits for models 3 and 4 are substantially higher than
the corresponding upper confidence limits in Table 1.10.

The model-averaged posterior means and 95% credible intervals are shown in
Table2.5. For simplicity we only consider the binary-model formulation, as the BIC
weights correctly use n = 240 and the BSP weights are estimated more reliably.
For all methods, the results are broadly similar to the model-averaged estimates and
95% confidence intervals based on AIC weights (Table 1.10). The main difference
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Table 2.5 Model-averaged posterior means and 95% credible intervals for the dose-levels (μg) of
trans-cypermethrin that leads to 50% or 90% of individuals being affected, using weights based on
BIC, DIC, WAIC and BSP, separately for each sex, using a binary-model formulation

Probability affected Male Female

Mean Lower Upper Mean Lower Upper

0.5 BIC 4.8 3.6 6.6 9.9 6.7 14.1

DIC 4.8 3.6 6.3 10.0 6.9 14.2

WAIC 4.8 3.6 6.3 10.0 7.0 14.2

BSP 4.8 3.5 6.7 9.8 6.7 13.9

0.9 BIC 17.3 10.4 30.6 53.3 26.8 116.4

DIC 16.8 10.3 28.4 55.1 27.3 121.8

WAIC 16.8 10.4 28.3 54.6 27.2 118.4

BSP 18.4 10.8 32.2 49.0 25.7 111.0

is again for the dose that leads to 90% of females being affected, with the credible
limits being slightly higher than the corresponding confidence limits.

2.5 Discussion

BMA has many appealing aspects, including conceptual simplicity, a natural ability
to allow for uncertainty, and the use of a posterior distribution to represent uncer-
tainty. The latter will often be more informative than a frequentist point estimate and
confidence interval, as shown by the ecklonia example (Fig. 2.1). As in the single-
model setting, BMA is also transformation-invariant, in that the scale on which we
perform BMA does not matter, unlike some procedures in frequentist model averag-
ing (Sects. 3.2 and 3.6).15

As discussed in Chap. 1, model averaging is useful when θ has the same interpre-
tation in all models.Whenwe are interested in estimating a regression coefficient and
the interpretation of this coefficient is the same in all models (Sect. 1.4), the model-
averaged posterior distribution will often contain a spike at zero, and this may be
regarded as an advantage [87] or a disadvantage [57].

There are several issues associated with classical BMA:

1. By definition it allows for the possibility that one of the smaller models is true,
which we regard as less natural than assuming that the largest model is true or
that the true model is not in the set;

2. Model averaging is concerned with estimation rather than identification of a true
model (Sect. 1.4);

15As noted in Sect. 2.3.1. the exception occurs when we use β̂m = E
(
βm

∣∣y,m
)
in (2.13), as the

DIC weight then depends on the parametrisation.
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3. If θ is the expected value of Y for specific values of the predictor variables,
classical BMAmay not have good frequentist properties unless the priors depend
on n [180];

4. The posterior model probabilities can be sensitive to the choice of priors for the
parameters, and the implicit prior for θ can vary between models [32].

By definition, classical BMA will have perfect frequentist properties when we
can assume that the complete model, including the priors for the models and the
parameters, is true [37, 47, 85, 148, 180]. Thus we need to assume that the data are
generated in the following three stages:

1. A model is selected at random from the set of candidate models, using the prior
model probabilities.

2. The parameter values for this model are generated using the relevant prior distri-
butions.

3. The data are generated from the selected model and parameter values.

Much of the literature that discusses optimality-properties of classical BMA,
including prediction-based properties, does so under the implicit assumption that
this complete model is true [148].

Prediction-based BMA provides a promising means of overcoming some of the
difficulties associated with classical BMA, as it is focussed on estimation rather
than identification of the true model, and allows us to avoid assuming that one of
the models is true. It would be interesting to assess the sampling properties of BSP,
compared to frequentist stacking (Sect. 3.2.3). In addition, it would be useful to have
a variation of BSP that is focussed on obtaining an optimal model-averaged posterior
credible interval, using an interval-focussed scoring rule [182]. A discussion of the
relative merits of DIC, WAIC and cross validation in the context of model selection
can be found in [72, 73].

2.6 Related Literature

A review of classical BMA is available in [65]. Much of the literature in this area
has involved discussion of the computational challenges [5, 24, 27, 31, 37, 82, 90].
In the context of high-dimensional linear models, use of non-local priors for the
parameters has been advocated by [152], as these can lead to asymptotically quicker
removal of spurious predictor variables. In related work on high-dimensional normal
linear models, [20] have shown that a model-prior which has a sufficiently large
correction for overfitting can work well at removing such predictors.

Several methods have been proposed for efficiently searching the model-space in
classical BMA, including adaptive sampling, evolutionary Monte Carlo, the leaps-
and-bounds algorithm, MC3, multi-set model selection, Occam’s window, random
searching, and stochastic-search variable selection [14, 38, 61, 75, 86, 103, 110,
118, 119, 133, 145]. In practice, use of RJMCMCwill often lead to considering only



2.6 Related Literature 47

a fraction of the possible models [101, 130]. An iterative procedure was used by [6],
in the context of analysing high-dimensional microarray data, where the number of
potential models can be extremely large. A useful review of methods for variable
selection in the Bayesian setting is provided by [136].

In model selection, the sensitivity of Bayes factors to the prior distributions for
the parameters has led to new types of Bayes factor being proposed, some of which
have links to information criteria [1, 10, 67, 69, 70, 134, 135, 140].

In the normal linear model setting, [7] showed that the median-probability-model,
which contains all predictors with a PIP of at least 0.5, is the optimal choice of a best
model when we use a squared-error loss function. Interestingly, this model may not
be the one with the highest posterior probability [56]. Another setting in which the
PIP might be useful is the analysis of microarray data, when we wish to predict the
diagnostic category of a tissue sample from its expression array phenotype [184],
the aim being to determine a (hopefully small) set of genes that can be used in a
diagnostic test. In this context, there is a natural balance in the model set, and the
PIP for a gene provides an index of its relevance to the test.

Some authors have advocated consideration of the joint PIP for each pair of
predictor variables, the idea being to assess their potential joint impact on the response
variable [48, 54, 55, 77, 88, 104, 106, 166]. Aswith themarginal PIP, such ameasure
will be influenced by the choice of model set, and a more useful summary might be
obtained by comparing model-averaged posterior distributions for the expectation
of the response variable at suitably-chosen values of the two predictor variables of
interest (Sect. 1.4).16

Use of BIC weights to average over frequentist estimates has been considered by
[128, 156]. BIC is also related to the concept of minimum description length (MDL)
in communication theory [32, 83, 150].

An extensive review of objective priors, for both models and parameters, has been
provided by [42], who argue that wemight want the choice of prior for the parameters
in each model to depend on whether our focus is on determining the posterior model
probabilities (as in classical BMA) or on the posterior distribution for θ . In the single-
model setting, work on probability-matching priors has been motivated by a desire
to make Bayesian methods reliable from a frequentist perspective [49], but they have
yet to be applied in BMA.

As in the frequentist setting, several Bayesian approaches to combining forecasts
have been developed, especially for economic time series [3, 17, 51, 141, 163], but
also in other areas [99, 108]. There has also been some comparison of Bayesian and
frequentist approaches to combining forecasts [95, 123]. Excellent reviews of the
use of BMA in economics are also available [129, 161, 162]. The following BMA
packages are available in R [144]:

1. loo provides WAIC and BSP model weights
2. BayesianTools calculates DIC, WAIC and Bayes factors

16This is distinct from inspection of the model-averaged joint posterior distribution of two model
parameters, which can be checked in the usual way for posterior dependence between parameters.



48 2 Bayesian Model Averaging

3. rjmcmc implements the methods developed by [8]
4. glmBfp and hypergsplines are for generalised additive models [153, 155]
5. BDgraph is relevant to graphical models [125]
6. eDMA provides Bayesian dynamic model averaging [149]
7. madr applies BMA to causal inference [21, 173, 189]
8. BMS, BAS and BMA are reviewed by [2]
9. BayesFactor, BayesVarSel and mombf are reviewed by [64]

A review of other BMA software and online resources can be found in [162].
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Chapter 3
Frequentist Model Averaging

Abstract We provide an overview of frequentist model averaging. For point estima-
tion, we consider different methods for selecting the model weights, including those
based on AIC, bagging, weighted AIC, stacking and focussed methods. For interval
estimation, we consider Wald, MATA and percentile-bootstrap intervals. Use of the
methods are illustrated by examples involving real data.

3.1 Introduction

We now consider how frequentist model averaging (FMA) can be used to obtain
point estimates and confidence intervals for θ . As we shall see, there are clear links
between some of the methods and BMA.

3.2 Point Estimation

Suppose we have a set of model weights w = {w1, . . . ,wM } that lie on the unit
simplex. A model-averaged point estimate of θ is given by

̂θ =
M

∑

m=1

wm̂θm, (3.1)

where ̂θm is the estimate obtained from model m. The estimate in (3.1) is the fre-
quentist analogue of the model-averaged posterior mean in (2.4).

In many situations there will be a natural scale on which to use the arithmetic
weighted mean in (3.1), namely that on which the effects of the predictor variables
are assumed to be additive. When averaging over a set of GLMs, for example, it is
natural to do so on the linear predictor scale (Sects. 1.3.1 and 2.3.1). An interesting
example arises when we have a set of Poissonmodels, such as in the sea lion example
introduced in Sect. 1.3.1. If wewant to estimateμ, the expected value ofY for specific
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values of the predictor variables, it is natural to use (3.1) with θ = logμ, and then
obtain a model-averaged estimate of μ as

μ̂ = e
̂θ =

M
∏

m=1

μ̂wm
m ,

where μ̂m = êθm is the estimate of μ obtained from model m. Thus μ̂ is a geometric
weighted mean on the original scale. In what follows, θ is taken to be the parameter
of interest after transformation to the scale on which averaging is most natural.

This example illustrates the fact that a frequentist model-averaged point estimate
is not transformation-invariant, except in the uninteresting case where the trans-
formation is linear. Likewise, in BMA, the model-averaged posterior distribution
does not depend on the parametrisation, but the model-averaged posterior mean does
(Sect. 2.3.1).

As the model weights are estimated from the data, and the estimates of θ from the
different models may be correlated, the sampling distribution of ̂θ will be difficult
to assess analytically [21, 38, 88, 121]. This makes derivation of a reliable model-
averaged confidence interval difficult (Sect. 3.4).

We now consider a range of approaches to selecting the model weights in FMA. It
is important to note that none of these methods is guaranteed to be optimal, in terms
of the frequentist properties of ̂θ [38, 113]. In addition, estimation of the weights
may not be reliable when n is small (Sect. 1.4).

3.2.1 Information-Criterion Methods

A common choice of model weight in FMA is the AIC weight, given by

wm ∝ exp (−AICm/2) , (3.2)

where AICm is Akaike’s information criterion for model m [2, 3, 159], given by

AICm = −2 log L
(

̂βm

∣

∣

∣y,m
)

+ 2pm, (3.3)

where L (βm | y,m) is the likelihood under model m and ̂βm is the maximum likeli-
hood estimate for βm . Note the change in notation from the Bayesian setting, where
p (y | βm,m) was used to denote the likelihood in (2.3). Use of (3.2) is motivated
by analogy with the BIC weight in (2.10) [4, 5, 21].

AIC is an approximately unbiased estimate of the expected relative Kullback-
Leibler divergence between the data-generating mechanism and the fitted model.
Like BIC, it can be thought of as providing a trade-off between model-fit and model-
complexity, corresponding to thefirst and second termson the right-hand side of (3.3).



3.2 Point Estimation 59

Interestingly, derivation of the 2pm correction for overfitting involves the assumption
that model m is true [38, 159].1

AIC is a prediction-based criterion, whereas BIC is more concerned with identi-
fication of the true model [159] (Sect. 1.4). We might therefore expect AIC weights
to perform better than those based on BIC, particularly if θ is the expected value of
Y for specific values of the predictor variables.

Comparison of (2.9) and (3.2) shows that the AIC weight is a special case of
the generalised BIC weight, corresponding to a prior probability for model m of
the form

p (m) ∝ exp

{

pm

(

1

2
log n − 1

)}

. (3.4)

This prior will give more weight to the larger models as n increases, a well-known
feature of AIC [24, 38, 124]. This result has connections with the work of [206], who
suggested that classical BMA will not have good frequentist prediction properties
unless we allow the model-prior to depend on n (Sect. 2.5). In related work, [182]
reported the results of a simulation study which showed that use of the prior in (3.4)
led to better frequentist coverage rates than a uniform model-prior.

For a mixed effects model, it is not always clear what form AIC should take, as
the value of pm is not clear-cut, and the focus of the analysis needs to be defined. We
discuss the mixed-model setting further in Sect. 3.6.

A small-sample modification to AIC, proposed by [177] in the context of normal
linear models2 and autoregressive models, is given by

AICcm = −2 log L
(

̂βm

∣

∣

∣y,m
)

+ 2pm

(

n

n − pm − 1

)

. (3.5)

Replacing AICm by AICcm in (3.2) provides the AICc weight for model m. As with
BIC weights, some care is needed when using AICc weights if the definition of n
is not obvious [24] (Sect. 2.2.1). A useful overview of the differences between AIC
and AICc is provided by [29].

The corrections for overfitting used by AIC, AICc and BIC in (3.3), (3.5) and
(2.8), indicate that BIC will give less weight to larger models than AIC when n ≥ 8,
and that AICc will always do so. For small n, AICc gives less weight to larger models
than BIC, while for large n AICc and AIC are almost identical.

Interestingly, when we have two nested models, and p2 = p1 + 1, the maximum
possible AIC weight for the smaller model is e/(1 + e) ≈ 0.73 [22, 187]. This can
be viewed as an inherent drawback to the use of AIC weights, or as a sign that there

1This can come as a surprise; see [159] for a useful discussion of the assumptions underlying AIC.
2As discussed in Sect. 2.2, when counting the number of parameters in a model we include any
scale parameters, such as the error variance in a normal linear model.
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is a natural limit to the weight that should be given to the smaller model, for the
purpose of estimation (Sect. 1.4).

Use of AICc weights was proposed by [24], who suggested that they should work
well if the likelihood function is close to what it would be for a normal linear model.
As suggested by [38], AICc should be used with care outside the settings for which
it was developed (normal linear models and autoregressive models) [158]. Much of
the discussion in the literature on AICc is concerned with model selection rather than
model averaging [23, 95, 96, 140]. For model-averaged interval estimation, there is
evidence to suggest that AIC weights are preferable to those based on AICc, even in
the normal linear model setting [27, 59, 107]. In the examples, we therefore consider
weights based on AIC rather than AICc.

In the context of GLMs, the following adjustment to AIC has been suggested
when using quasi-likelihood to allow for overdispersion [87, 196]:

QAICm =
−2 log L

(

̂βm

∣

∣

∣y,m
)

̂φM
+ 2pm, (3.6)

where ̂φM is the estimate of overdispersion obtained from model M [9, 61]. An
alternative version of QAIC is given by

QAICm = −2 log L
(

̂βm

∣

∣

∣y,m
)

+ 2pm̂φm, (3.7)

where ̂φm is the estimate of overdispersion obtained from model m [38]. A modifi-
cation of AIC similar to that in (3.7) was proposed by [133], in the related setting
of allowing for a design effect when analysing survey data (see also [92]). Use of
either version of QAIC in (3.2) will lead to weights that are lower for larger models
than the corresponding AIC weights.

In principle, we could replace AIC in (3.2) by one of several alternative criteria,
such as the risk inflation criterion (RIC) or the Kullback information criterion (KIC)
[31, 40, 62, 72]. Some criteria involve data-dependent corrections for overfitting,
such as Takeuchi’s Information Criterion (TIC), which can be thought of as a fre-
quentist version of DIC. Unlike AIC it does not require the assumption that themodel
is true [38, 159, 178], but calculation of the correction for overfitting is not straight-
forward and may be prone to instability if n is small [24, 38]. Other data-dependent
corrections for overfitting have been proposed, with a view to providing a compro-
mise between AIC, BIC and RIC [14, 72, 78]. The network information criterion
(NIC), proposed by [145] for selection of neural networks, is a generalisation of TIC
to situations in which model-fit is not based on maximum likelihood.

One disadvantage of weights based on an information criterion is that model-
redundancy can lead to some of the weights being inappropriately diluted [24],
similar to the issues that can arise for the model-prior in classical BMA (Sect. 2.2.2).
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3.2.2 Bagging

Bagging, also known as bootstrap-aggregating or bootstrap-smoothing, involves
using the bootstrap to mimic the process of model selection [16, 55, 84]. Thus
we generate B bootstrap samples and for each of these we note the estimate of θ

obtained from the best model for that sample. The choice of best model can be based
on any criterion, such as AIC. The original motivation for bagging came from the
potential for instability in model selection when using classification trees in machine
learning, as a small change in the training data can lead to a large change in the
choice of best classifier [16, 17].

If we assume that model M is true, it is natural to generate the bootstrap samples
from this model, as in other bootstrap-based approaches to model averaging [21, 55,
130], but one could use a non-parametric bootstrap [16, 21, 55, 84, 130]. Regardless
of themethod for generating bootstrap samples, themodel-averaged bagging estimate
is given by

1

B

B
∑

b=1

̂θ(b), (3.8)

wherêθ(b) is the estimate from the best model for bootstrap sample b. The expression
in (3.8) can also be written as

M
∑

m=1

wm θ̄ BAG
m , (3.9)

where θ̄ BAG
m is the mean of̂θm from the Bm samples in which model m is selected as

the best and wm = Bm/B is the proportion of times that model m is selected as the
best. Thus (3.8) can be regarded as an estimate of

M
∑

m=1

p (S = m)E
(

̂θm

∣

∣

∣S = m
)

, (3.10)

where S is a random variable denoting the model selected as the best.3 Comparison
of (3.10) with (2.4) shows the connection between bagging and the posterior mean in
BMA [84, 157], with the concept that a model is true being replaced by the concept
that it is selected as the best. Note that even if we use AIC to select the best model
for each bootstrap sample, the estimate in (3.8) will differ from that obtained using
AIC weights; the bycatch example in Sect. 3.3.1 illustrates this point.

One advantage of bagging over an information-criterion-based method arises
when we have some model-redundancy (Sect. 2.2.2). In the extreme case where two
models have almost identical likelihoods, regardless of the data, bagging will select
just one of these as the best for each bootstrap sample. The weights for these two

3See [24] for a discussion of the connection between the model-selection probabilities p (S = m)

(m = 1, . . . , M) and AIC weights.
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models in (3.9) will therefore be such that their total is approximately the same as
the weight we would obtain for just one of them if we recognised the redundancy
and omitted the other model from consideration [21]. This is clearly not true for a
model weight based on an information criterion.

3.2.3 Optimal Weights

As discussed in Sect. 1.2, use of amodel-averaged point estimate can be regarded as a
means of obtaining a good balance between bias and variance, as in model selection.
This perspective has been the focus of recent research into selection of an optimal set
of weights, based on an objective function. The estimation of these optimal weights
involves some form of constrained-optimisation, exactly as in BSP (Sect. 2.3.2).4 We
consider two approaches concerned with prediction of a new value of y: a weighted
version of AIC and frequentist stacking. For both of these, we focus on the GLM
setting, but the ideas should apply inmany other settings.We also consider a focussed
approach, which is concerned directly with the sampling properties of ̂θ .

AIC(w)
Suppose we wish to average over a set of GLMs. As discussed in Sects. 1.3.1, 2.3.1
and 3.2, it is natural to perform such averaging on the linear predictor scale, and
we assume that is the case here. If we assess models purely on a measure of the
within-sample prediction error, such as the deviance, we will give all the weight to
model M [84, 111]. The prediction error will also be underestimated, as the data are
being used to both fit the models and to estimate their prediction error, exactly the
same overfitting problem we encounter when using a single model. To adjust for this
underestimation, we can add a correction for overfitting to the objective function, as
in AIC.

Let ηi be the linear predictor for observation i and

η̂i =
M

∑

m=1

wm η̂mi (3.11)

be the model-averaged estimate of ηi , where η̂mi is the maximum likelihood estimate
of ηi obtained from fitting modelm. A model-weighted version of AIC in this setting
was proposed by [223] and is given by

AIC(w) = −2
n

∑

i=1

log L
(

η̂i

∣

∣

∣yi
)

+ 2p(w), (3.12)

4Throughout the rest of the chapter, it will be implicit that constrained-optimisation is usedwhenever
we determine the weights by minimising an objective function.
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where log L (ηi | yi ) is the contribution from yi to the log-likelihood, which is now
written as a function of ηi . The correction for overfitting involves the weighted
average of the number of parameters in each model, i.e.

p(w) =
M

∑

m=1

wm pm .

Note that the likelihood in (3.12) is not the maximised likelihood under a particular
model, unlike in AIC. The optimal weights are taken to be those that minimise
AIC(w), in the same way that minimisation of AIC is used in model selection.

When we have a scale parameter, as in the normal linear model setting, this needs
to be included in the likelihood term in (3.12). Typically, this parameter is estimated
using the largest model [79], but the choice of estimate is not important for the
selection of weights. Likewise, we could define pm in (3.12) to be the number of
regression coefficients, rather than the total number of parameters, as the choice of
weights will not be affected [223].

This approach can be thought of as equivalent to fitting a generalised linear meta-
model to y, with the predictor variables being η̂1i , . . . , η̂Mi , the regression coefficients
being the model weights, and the model being fitted by minimising AIC(w). As with
standard regression models, it will be good practice to check for collinearity in the
η̂1i , . . . , η̂Mi before minimising (3.12). In particular, if two models give very similar
predictions, we have some model-redundancy, and it may be sensible to exclude one
of them before proceeding [24]. Even if this problem is overlooked, the constraint
that the model weights be non-negative will usually lead to one of the models being
given very little weight.

Use of the alternative correction term p(w) log n in (3.12) gives BIC(w), a model-
weighted version BIC [223]. If there is overdispersion, a quasi-likelihood version
of AIC(w) could be used, based on either (3.6) or (3.7). Simulation results in
[223] showed that AIC(w) and BIC(w) can both outperform AIC and BIC weights
(Sect. 3.2.1). Similar results, using both asymptotic theory and simulation, were pro-
vided by [79] for AIC(w) when averaging over a set of linear models.5

Stacking
Stacking is the model-averaging equivalent of cross validation for model selection
[175]. As it involves estimating the out-of-sample prediction error, there is no cor-
rection for overfitting. For averaging a set of GLMs [11], the stacking weights6 are
those that maximise

n
∑

i=1

log L
(

η̂i
∣

∣yi
)

, (3.13)

5For normal linear models, AIC(w) is equivalent to Mallows model averaging (MMA) [79, 121,
143, 190, 220, 223]. Although MMA was developed without the assumption of normal errors, for
simplicity we use the more general name AIC(w) when referring to MMA.
6As with AIC(w), the choice of estimate of any scale parameter will not affect the weights.
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where we now have

η̂i =
M

∑

m=1

wm η̂m[−i], (3.14)

and η̂m[−i] is the estimate of ηi obtained from fitting model m to all the data except
yi . The special case of high-dimensional linear models was considered by [10]. As
in the Bayesian setting (Sect. 2.3.2), frequentist stacking does not involve assuming
a particular form for the true data-generating mechanism.

As pointed out by [111], stackingwas originally developed by [175] (who referred
to it as a model-mix prescription) in the context of averaging over a set of normal
linear models. It was re-discovered in machine learning, where the term stacking
originated [15, 84, 99, 111, 180, 198] and later in econometrics, where it has been
referred to as jackknife model averaging [83].7

As with AIC(w), selecting weights by maximisation of (3.13) is equivalent to
fitting a generalised linear meta-model to y, this time with predictor variables
η̂1[−i], . . . , η̂M[−i] [45]. The same remarks apply regarding possible collinearity
in these predictors, and the benefit of having a non-negativity constraint on the
weights [45].

When n is large, stacking might be expected to produce weights that are similar
to those based on AIC and AIC(w), by analogy with the result that AIC and leave-
one-out cross validation are asymptotically equivalent [176]. For linear models with
non-constant error variance, stacking has been shown to perform better than weights
based on AIC(w), AIC or BIC [83]. However, a simple modification to the correction
for overfitting in AIC(w) can be used to allow for a non-constant error variance [125],
and simulation results suggest that this leads to the same performance as stacking.8

A number of asymptotic results for stacking have been provided [83, 219], analogous
to those for cross validation [12, 140].

As in model selection, we could use k-fold cross validation (k < n), in which
n/k observations are omitted from the data set each time [159]. A number of authors
have discussed the issues involved in choosing k [84, 159, 222]; for simplicity we
focus on the leave-one-out approach (k = n). A number of other sample-splitting
techniques have been proposed in the context of model averaging, but we do not
consider these in detail [21, 123, 126, 204, 205, 212, 213].

Focussed methods
If θ is the expected value of Y for specific values of the predictor variables, we might
expect a prediction-based method such as AIC(w) or stacking to provide sensible
weights. In general, however, we might prefer a method that is explicitly tailored
to the choice of θ . Focussed methods involve determining the weights in order to
minimise an estimate of the error associated with ̂θ , with different choices of θ

typically leading to different model weights.

7This name is potentially confusing as the original jackknife is somewhat different, involving the
use of pseudo-values to reduce the bias of an estimate obtained from a single model [48, 154, 175].
8Other modifications to AIC(w) in this setting have been proposed [129, 220, 226].
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This approach was considered by [88], who suggested finding the model weights
that minimise an estimate of the MSE of̂θ . In some settings a measure of estimation
error other than MSE might be appropriate, such as classification error rate [36].
In deriving the estimate of the MSE, [88] assumed that the model weights are con-
stant; this is clearly not true, but simplifies the theory.9 They also assumed that the
models are nested, the largest model is true, and the difference between the largest
and smallest model vanishes with n. The last of these assumptions is referred to as
local misspecification, and there has been some discussion of the need for it in the
literature [88, 89, 103, 156].

Recently, [93] has used the results of [197] on maximum likelihood estima-
tion under model-misspecification to develop a focussed method for GLMs that
does not rely on the local-misspecification assumption. Simulation results show that
this alternative can perform better than the local-misspecification method of [88].
A similar approach, that also does not require local-misspecification, has recently
been proposed by [142], in a more general likelihood-model setting.

If we wish to avoid using asymptotic theory, we can calculate a parametric
bootstrap-based estimate of the MSE of ̂θ as follows. Assuming the model weights
are constant, this MSE is given by

MSE
(

̂θ
) =

M
∑

m1=1

M
∑

m2=1

wm1wm2em1m2 , (3.15)

where
em1m2 = E

{(

̂θm1 − θ
) (

̂θm2 − θ
)}

,

and expectation is with respect to model M . The model weights can be obtained
by minimising a bootstrap-based estimate of (3.15) as follows. For j = 1, . . . , B,
we randomly generate data y( j) from the fitted version of model M , and calculate
̂θ

( j)
m by fitting model m to y( j). We then estimate em1m2 by

êm1m2 = 1

B

B
∑

j=1

(

̂θ( j)
m1

− ̂θM
) (

̂θ( j)
m2

− ̂θM
)

.

An added advantage of using a bootstrap-based approach is that we can avoid assum-
ing that ̂θM is unbiased, unlike methods which use asymptotic approximations.
In the examples below, we therefore focus on use of this bootstrap-based approach.

The actual MSE of ̂θ will be higher than that predicted by (3.15), as the model
weights are clearly not fixed. This is not a problem if the method provides a good
indication of the relative size of the true MSE for different choices of the weights.

9This assumption has also been used in interval estimation (Sect. 3.4.1).
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3.3 Examples

3.3.1 Sea Lion Bycatch

For the sea lion bycatch example, the AIC values for models 1 and 2 are 12.95
and 15.41 respectively. Use of (3.2) then leads to AIC weights of 0.773 and 0.227
respectively, as we saw in Sect. 1.3.1.

Suppose we now carry out bagging, using 104 bootstrap samples generated from
model 2, and for each bootstrap sample we select the best model using AIC. The
two types of model-averaged estimate are shown in Table3.1, together with those for
each model. Both of the model-averaged estimates provide a compromise between
the estimates from the two models. As discussed in Sect. 3.2.2, the bagging estimate
is a weighted mean of θ̄ BAG

1 and θ̄ BAG
2 , where θ̄ BAG

m is the mean of the estimates
from the bootstrap samples in which model m is the best. In this case, to the nearest
integer, we have θ̄ BAG

1 = 34, 117 and 4 sea lions for scampi, squid and other species
respectively; the corresponding values for θ̄ BAG

2 are 78, 95 and 17 sea lions. The
weights implicit in the use of bagging are B1/B = 0.642 and B2/B = 0.358.

Compared to the use of AIC weights, bagging gives a higher estimate of total
bycatch for vessels targeting scampi and other species, and a lower estimate for
those targeting squid. These differences arise because the two types of model weight
differ and, for all three fisheries, the mean of the estimates obtained when model 2
was selected as the best differs substantially from that obtained by fitting model 2 to
the original data.

3.3.2 Ecklonia Density

The AIC values for models 1 and 2 are 862.4 and 860.5 respectively, and use of (3.2)
leads to AIC weights of 0.276 and 0.724 respectively, as we saw in Sect. 1.3.2.

If we use AIC(w), η̂1i and η̂2i are uncorrelated, as η̂1i is the same for all i (i =
1, . . . , n). Likewise, for stacking η̂1[−i] and η̂2[−i] are uncorrelated. This lack of
correlation will help avoid any numerical issues in optimising the functions in (3.12)
and (3.13), analogous to estimation of the regression coefficients in a model with
uncorrelated predictors.

Table 3.1 Estimates of total
sea lion bycatch (to the
nearest integer) obtained from
each of two models and by
model averaging using AIC
weights and bagging

Species Model 1 Model 2 Model-averaged

AIC Bagging

Scampi 35 58 39 50

Squid 119 105 116 109

Other 4 10 5 9
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Table 3.2 Model weights using AIC, AIC(w), stacking and bootstrap-based focussed model aver-
aging for the ecklonia density study

Model AIC AIC(w) Stacking Focussed model averaging

Zone 1 Zone 2 Zone 3

1 0.276 0.306 0.201 0.180 0.969 0.168

2 0.724 0.694 0.799 0.820 0.031 0.832

For both AIC(w) and stacking, we used the estimate of k from the largest model
when calculating the likelihood terms in (3.12) and (3.13). For bootstrap-based
focussed model averaging (Sect. 3.2.3), we considered estimation of the true mean
density in each zone, and used 104 bootstrap samples. The full set of weights is
shown in Table3.2.

The AIC, AIC(w) and stacking weights are similar and show a preference for
model 2, as do the focussed weights for zones 1 and 3. For zone 2, however, focussed
model averaging gives almost all the weight to model 1. To see why, consider the
expectation term in (3.15). This can be written as

em1m2 = bm1m2 + cm1m2 ,

where
bm1m2 = bias

(

̂θm1

)

bias
(

̂θm2

)

and
cm1m2 = cov

(

̂θm1 ,
̂θm2

)

.

The bootstrap-based estimates of these two terms are

̂bm1m2 = (

θ̄m1 − ̂θM
) (

θ̄m2 − ̂θM
)

and

ĉm1m2 = 1

B

B
∑

j=1

(

̂θ( j)
m1

− θ̄m1

) (

̂θ( j)
m2

− θ̄m2

)

,

where

θ̄mi = 1

B

B
∑

j=1

̂θ( j)
mi

(i = 1, 2).
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The estimate of the MSE in (3.15) can therefore be written as

M
∑

m1=1

M
∑

m2=1

wm1wm2

{

̂bm1m2 + ĉm1m2

}

. (3.16)

For the bootstrap samples used to determine the focussed weights for zone 2 in
Table3.2, the estimates of the bias and covariance terms are

̂b11 = 0.0003, ̂b12 ≡ ̂b21 = 0.0009, ̂b22 = 0.0027,

ĉ11 = 0.0308, ĉ12 ≡ ĉ21 = 0.0273, ĉ22 = 0.1143.

As we saw in Sect. 1.3.2, the estimates of density in zone 2 are almost identical
for the two models, which leads to the estimates of the bias terms all being small
relative to those for the covariance terms. This means that the choice of weights is
largely determined by the estimates of the covariance terms. The largest term is ĉ22,
reflecting the fact that model 2 contains more parameters. Minimisation of (3.16)
therefore leads to giving most of the weight to model 1. For zones 1 and 3, the bias
terms are more influential, the largest being ̂b11, and most of the weight is given to
model 2.

The model-averaged estimates of mean density are shown in Table3.3, together
with the estimates from the two models, each estimate being obtained by back-
transformation of that for logμi (i = 1, 2, 3). For each zone, the model-averaged
estimates are similar. For zones 1 and 3, this is because the three types of model
weight are roughly the same. For zone 2, the two models give almost identical
estimates, and the choice ofweights therefore has little effect. The impact of choosing
focussed weights is clearer when we consider interval estimation for this example in
Sect. 3.5.2.

3.3.3 Water-Uptake in Amphibia

In Sect. 1.3.3, we considered use of AIC weights for the factorial experiment on
water-uptake in amphibia. For comparison, we now consider the AICc and BIC
weights as well (Table3.4).

Table 3.3 Estimates of mean density of ecklonia (individuals per quadrat) in three zones for each
of four methods of model averaging and for each model

Zone Model 1 Model 2 Model-averaged

AIC AIC(w) Stacking Focussed

1 33.5 16.9 20.4 20.8 19.4 19.1

2 33.5 33.6 33.6 33.6 33.6 33.5

3 33.5 45.3 41.7 41.3 42.6 43.0
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Table 3.4 A set of candidate models for the water-uptake experiment, with model weights calcu-
lated using AIC, AICc and BIC. Weights larger than 0.1 are shown in bold

Model AIC AICc BIC

Null 0.000 0.009 0.001

S 0.000 0.028 0.002

C 0.000 0.021 0.002

H 0.000 0.005 0.000

S+C 0.006 0.185 0.021

S+H 0.001 0.021 0.002

C+H 0.001 0.015 0.002

S+C+H 0.030 0.267 0.066

S+C+SC 0.003 0.031 0.008

S+H+SH 0.001 0.009 0.002

C+H+CH 0.000 0.003 0.001

S+C+H+SC 0.019 0.033 0.029

S+C+H+SH 0.161 0.272 0.241

S+C+H+CH 0.025 0.043 0.038

S+C+H+SC+SH 0.131 0.021 0.134

S+C+H+SC+CH 0.018 0.003 0.018

S+C+H+SH+CH 0.197 0.032 0.201

S+C+H+SC+SH+CH 0.184 0.001 0.128

S+C+H+SC+SH+CH+SCH 0.222 0.000 0.105

Adapted from: Fletcher, D., Dillingham, P.W.: Model-averaged confidence intervals for factorial
experiments. Comput. Stat. Data. An. 55, 3041–3048, c©2011, with permission from Elsevier

Compared to both AIC and BIC weights, those obtained using AICc are concen-
trated on three of the smaller models, only one of which contains an interaction. The
AIC and BIC weights are concentrated on five of the larger models, all of which
contain at least one interaction; as n = 16, BIC gives slightly more weight to the
smallest of these five models (Sect. 3.2.1).

3.3.4 Toxicity of a Pesticide

Whenwe introduced the toxicity example inSect. 1.3.4,we consideredmodelweights
based on AIC.We now compare these with weights obtained using AIC(w), stacking
and bootstrap-based focussed model averaging.

For AIC(w) and stacking, we chose the weights that minimised (3.12) and max-
imised (3.13) respectively. As discussed in Sect. 1.3.4, it is natural to work on the
log2-scale in this example, somodel averaging was carried out on this scale, followed
by back-transformation. For focussed model averaging we again used 104 bootstrap
samples.



70 3 Frequentist Model Averaging

Table 3.5 Model weights for the toxicity experiment obtained using AIC, AIC(w), stacking and
bootstrap-based focussed model averaging

Model AIC AIC(w) Stacking Focussed model averaging

π0 = 0.5 π0 = 0.9

Male Female Male Female

1 0.004 0.077 0.020 0.027 0.038 0.093 0.000

2 0.235 0.075 0.091 0.000 0.962 0.000 0.458

3 0.553 0.849 0.889 0.909 0.000 0.907 0.531

4 0.209 0.000 0.000 0.063 0.000 0.000 0.011

The model weights for each of the five methods are shown in Table3.5. For
AIC(w), the correlations between the η̂mi in (3.11) are all at least 0.95, with that for
models 3 and 4 being almost one. Thusmodels 3 and 4 are virtually indistinguishable,
in terms of estimating the ηi , and model 4 is given zero weight. For stacking, the
correlations between the η̂m[−i] in (3.14) are smaller than those for η̂mi , but still all
at least 0.92, and that for models 3 and 4 is again almost one, leading to zero weight
for model 4. In Sect. 3.7.2 we consider the effect on these weights of removing the
simplex-constraint.

For all the methods models 1 and 4 receive little weight, except for AIC, which
gives some weight to model 4. AIC, AIC(w) and stacking all give most weight to
model 3, with the AIC(w) and stacking weights being very similar. For males the
focussedweights are similar to those based onAIC(w) and stacking,while for females
they differ from those based on the other three methods, especially when π0 = 0.5,
where model 2 is given almost all the weight.

The model-averaged estimates of the required dose-level are shown in Table3.6.
Each of these is obtained by back-transformation of the estimate for x0. As suggested
in Sect. 1.3.4, when π0 = 0.5 the model-averaged estimate appears to be robust to
the choice of weights; differences between the estimates are greater when π0 = 0.9,
especially for females.

Table 3.6 Model-averaged estimates for the dose-levels (μg) of trans-cypermethrin that lead to
50 and 90% of individuals being affected, separately for each sex, obtained using AIC, AIC(w),
stacking and bootstrap-based focussed model averaging

Probability
affected

Sex AIC AIC(w) Stacking Focussed

0.5 Male 4.7 4.9 4.8 4.8

Female 9.8 9.5 9.7 9.5

0.9 Male 16.5 16.7 16.1 16.6

Female 50.7 51.5 52.9 47.7
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3.4 Interval Estimation

Although it is helpful to have a good method for calculating a model-averaged point
estimate, it is often more important to be able to produce a reliable model-averaged
confidence interval. Indeed, one of the main reasons for using model averaging is
to allow for model uncertainty when calculating such an interval. Model selection
typically leads to an interval which has lower coverage, and is less stable, than a
model-averaged interval [55, 131].

As the weights used to calculatêθ in (3.1) are random variables, and the estimates
of θ fromdifferentmodelsmaybe correlated, calculationof a reliablemodel-averaged
confidence interval is challenging [88, 166].

Whenmodel M is assumed to be true, an interval based on this model should have
good coverage properties, at least asymptotically. However, if some of the elements
of βM are small, this interval may be substantially wider than a model-averaged
interval. Conversely, a model-averaged interval is likely to have a coverage rate that
is lower than the nominal level, as it will generally be narrower than an interval from
model M . This trade-off between coverage and interval-width was evident in the
simulation results discussed in Sect. 1.3.3.

We need to make a somewhat arbitrary decision about the reduction in coverage
we are prepared to accept for a specified reduction in interval width. Even if we
quantify this trade-off, it will usually be difficult to assess the properties of a model-
averaged confidence interval analytically, except in special cases [106, 107, 109].
These issues make good interval estimation in FMA problematic, and there is a need
for more research in this area.

We consider three types of model-averaged confidence interval:

1. Wald interval
2. Percentile-bootstrap (PB) interval
3. Model-averaged tail area (MATA) interval

Both the Wald and MATA interval can be used with any of the methods for
determining model weights, such as AIC, AIC(w), stacking, or focussed weights.
Calculation of the PB interval is analogous to the use of bagging for point estimation,
and can be used in conjunction with any method of model selection, such as AIC.

3.4.1 Wald Interval

Suppose wewish to construct a 100 (1 − 2α)%confidence interval for θ . If wemake
the assumption that

T
̂θ = ̂θ − θ

s
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has a N (0, 1) distribution, where s is an estimate of the standard error of ̂θ , we can
use the well-known Wald interval, given by

̂θ ± zs, (3.17)

where z is the 100 (1 − α)th percentile of the N (0, 1) distribution. Use of the Wald
interval has the following drawbacks:

1. The distribution of̂θ may not be normal, even if eacĥθm has a normal distribution,
due to the model weights being random variables;

2. Estimation of the standard error of ̂θ is difficult, again due to randomness in the
model weights and because ̂θm1 and ̂θm2 will often be correlated (m1 �= m2);

3. The uncertainty associated with the estimate of the standard error is not allowed
for, which might be important if n is small;

4. There may be correlation between ̂θ and s, which can lead to skewness in the
distribution of T

̂θ .

In order to derive an expression for the standard error of̂θ , [21] adopted a framework
in which the models are regarded as a random sample from a population of models,
with expectations being taken over this population, as well as conditional upon a
singlemodel.10 In addition, they assumed that the bias associated with amodel has an
expectation of zero over the population of models, which means that̂θ is unbiased.11

For mathematical convenience they also assumed that the weights are fixed, as in
focussed model averaged point estimation (Sect. 3.2.3), and that the estimates from
any two models have a perfect (positive) correlation. This leads to an estimate of the
standard error of ̂θ being given by

s =
M

∑

m=1

wm
{

̂b 2
m + v̂m

}1/2
, (3.18)

wherêbm and v̂m are estimates of

bm = E
(

̂θm

∣

∣

∣m
)

− θ

and

vm = E

[

{

̂θm − E
(

̂θm

∣

∣

∣m
)}2 ∣

∣

∣m

]

.

10An alternative derivation avoids the notion of selecting a random sample from a population of
models [24]. However this involves regarding θ as a weighted mean of least-false values of θ .
11It has been wrongly claimed that ̂θ is often assumed to be unbiased [48]. The only theory that
involves this assumption (asymptotically) is the local misspecification framework (Sect. 3.2.3).
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We can obtain v̂m in the usual way after fitting model m, and use of

̂bm = ̂θm − ̂θ (3.19)

is motivated by the assumption that ̂θ is unbiased.12

Given the assumptions underlying use of the estimate in (3.18), it is natural to
consider alternatives.13 One is motivated by analogy with the square root of the
model-averaged posterior variance in (2.5), and is given by [24, 25]

s =
[

M
∑

m=1

wm
{

̂b 2
m + v̂m

}

]1/2

. (3.20)

The Cauchy-Schwartz inequality implies that this interval is wider than the one based
on (3.18). As both of these intervals are centred at̂θ , the one based on (3.20) will have
a higher coverage rate. Note that the form of s in either (3.18) or (3.20) suggests that̂θ
and s will be correlated. As discussed above, this is one of the potential disadvantages
of the Wald interval.

In order to make some allowance for the uncertainty in s (point 3 above), [24]
proposed the following heuristic alternative to (3.18)

s =
M

∑

m=1

wm

{

̂b2m +
(

tm
z

)

v̂m

}1/2

,

where tm is the 100 (1 − α)th percentile of the t distribution with degrees of freedom
given by the residual degrees of freedom for modelm. A similar adjustment to (3.20)
leads to

s =
[

M
∑

m=1

wm

{

̂b 2
m +

(

tm
z

)

v̂m

}

]1/2

. (3.21)

Both [93] and [142] derive expressions for theMSEof̂θ , in the context of focussed
model averaging (Sect. 3.2.3), based on the assumption that model M is true.14 It
would be interesting to use their results to derive a Wald interval, as they provide
asymptotic approximations to the correlation between the estimates from twomodels,
rather than assume that these estimates are perfectly correlated.

The Wald interval given by (3.17) and (3.18) was criticised by [88], who showed
that it could have poor asymptotic coverage. They proposed an alternative Wald-like
interval that has the same width as a Wald interval from model M , and therefore

12Even if ̂bm is unbiased, ̂b 2
m will be biased as an estimate of b2m , but analytical bias-adjustment

would involve estimation of the correlation between ̂θm1 and ̂θm2 (m1 �= m2), and any decrease in
bias might be offset by an increase in variance.
13There is also a logical problem associated with use of (3.18) [24].
14Both [21] and [24] wanted to avoid assuming that the true model is in the model set.
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provides no obvious advantages over simply using the Wald interval from model M
[33, 37, 38, 105, 128, 192, 193, 209, 216].

In order to avoid the simplifying assumptions used by [21, 27] considered a
bootstrap-based estimate of s, in the context of linear models. They estimated s by
the standard deviation of the non-parametric bootstrap-sampling distribution of ̂θ ,
with the model weights being based on an information criterion. Weights based on
AIC, rather than BIC or AICc, were found to provide a better estimate of s. This
approach is still prone to problems if the sampling distribution of ̂θ is not close to
normal.

3.4.2 Percentile-Bootstrap Interval

If we use bagging (Sect. 3.2.2) to obtain a point estimate, it is also natural to define
a 100 (1 − 2α)% confidence interval as the 100αth and 100 (1 − α)th percentiles of
the bootstrap-sampling distribution of ̂θ(b) in (3.8) [21, 55]. We refer to this as the
percentile-bootstrap (PB) interval. We focus on the case where the bootstrap samples
are generated from model M , but one could use a non-parametric bootstrap.

Other bootstrap-based approaches to calculating a model-averaged confidence
interval have been proposed. A weighted percentile-bootstrap approach was consid-
ered by [21], but the weighting used does not appear to provide any obvious benefit.
Likewise, [55] proposed an estimate of the standard error of the bagging estimate
in (3.8) that can be used in a Wald-based interval.15 As with any Wald-based inter-
val, this is likely to perform poorly if the distribution of the bagging estimate is
non-normal. Interestingly, for the special case of two normal linear models, [108]
showed that this interval is again no better than the Wald interval from model M . In
the examples that follow, the bootstrap-based method we consider is the simple PB
interval.

3.4.3 MATA Interval

Given the difficulties in assessing the sampling distribution of ̂θ , [60] proposed an
interval that is akin to a model-averaged credible interval in BMA. By analogy with
(2.6), the interval is chosen by setting themodel-averaged lower and upper error rates
equal to the required error rates. The lower limit of the 100 (1 − 2α)% confidence
interval is the value of θ0 that satisfies the equation

M
∑

m=1

wmαm (θ0) = α, (3.22)

15This estimate is not simply the standard deviation of the ̂θ(b) in (3.8) [21].
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where αm (θ0) is an estimate of the error rate associated with using θ0 as a lower
100 (1 − 2α)% confidence limit for θ when model m is true. The upper limit is
defined in exactly the same way, with αm (θ0) being an estimate of the upper error
rate. The name for this interval arises from the fact that αm (θ0) is the tail area of an
appropriate sampling distribution [181].16

There are two advantages in using this interval. First, we avoid the need to specify
the sampling distribution for̂θ . Second, the method used to calculate αm (θ0) can be
tailored to the setting, in that we can choose a method that leads to a reliable confi-
dence interval when based on the true model. For example, if we are averaging over a
set of normal linear models, we would expect a t-interval based on the true model to
work well, which suggests calculating αm (θ0) using a t-distribution with degrees of
freedom equal to the residual degrees of freedom for modelm [181]. Likewise, when
n is large and we are averaging over a set of binomial or Poisson models, we can
calculate αm (θ0) using a standard normal distribution. If a profile likelihood interval
in the single model setting is likely to work well, we would calculate αm (θ0) using
a χ2 approximation to the sampling distribution of the likelihood ratio test statistic
under model m [60].

In order to to make clear which method is used to calculate αm (θ0), we adopt
the following notation: MATA-T, MATA-W and MATA-P refer to intervals based
on the t-interval, Wald interval and profile likelihood interval respectively. For some
of the examples in Sect. 3.5, we make use MATA-W intervals; examples of
MATA-P and MATA-T intervals are given in [60, 181] respectively. Note that the
MATA-W interval will generally be asymmetric around ̂θ , unlike the Wald interval
in (3.17).

Although use of (3.22) does not guarantee that the resulting interval achieves the
required error rates, the similarity of (3.22) to the definition of the model-averaged
credible interval in (2.6) suggests it could perform well in many situations. This
analogy was part of the motivation for development of the MATA-P interval [60], a
slightly different justification being used by [181] for the MATA-W and MATA-T
intervals. Neither of these arguments involve a theoretical assessment of the result-
ing error rates, but the simulation studies reported in [60, 107, 109, 181] indicate
the potential for the MATA interval to perform well relative to the Wald interval in
(3.17).

As pointed out by [60], the MATA interval will clearly inherit the strengths and
weaknesses of the interval upon which it is based. For example, we would not con-
sider using aMATA-P interval if a profile likelihood interval based on the true model
is unlikely to work well. This self-evident result is borne out by the conclusions of
[106], who derive expressions for the coverage and width of a MATA-P interval in
a simple normal linear model setting. They find that this interval performs poorly

16It has been wrongly claimed that use of this interval involves assuming that the largest model is
not in the model set [48].
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when a profile likelihood interval is likely to have poor coverage, such as when
we have many parameters to maximise over when calculating the profile
likelihood.17

For the same linear model setting, [107] used analytical expressions to assess
the properties of the MATA-W interval, and found that it can perform well if the
weight given to the larger of the two models is as high as possible amongst the
weighting schemes being considered. If we allow any choice of weights that lie on
the unit simplex, this implies that we should simply use the interval from model M
(Sect. 3.4.1). It also implies that a MATA-W interval based on AIC weights will be
preferable to one based on AICc weights, and to one based on BIC weights (unless
n < 8). Further theoretical and simulation work is needed on the properties ofMATA
intervals for a range of settings.

The MATA interval has the following connection with the PB interval described
in Sect. 3.4.2. The lower limit of the PB interval can be shown to satisfy (3.22) if, in
the notation of Sect. 3.2.2, we set wm = Bm/B and αm (θ0) is the proportion of times
that̂θm < θ0 in the Bm bootstrap samples for which model m is selected as the best.
A similar result applies to the upper limit. This suggests a potential disadvantage of
the PB interval, compared to the MATA interval, in that this version of αm (θ0) will
not be a precise estimate of

p
(

̂θm < θ0

∣

∣

∣S = m
)

when Bm is small, where S is a random variable denoting the model selected as the
best. This disadvantage will be ameliorated somewhat by the fact that the weight for
model m will be small when Bm is small.18

A studentised-bootstrap version of the MATA interval (MATA-SB) was proposed
by [214]. This uses a parametric studentised-bootstrap approach to estimate αm (θ0)

in (3.22), where the bootstrap samples are generated from the fitted version of model
M . As for the otherMATA intervals, wewould expect theMATA-SB interval to work
well in a setting where a parametric studentised-bootstrap interval performs well for
the true model. In particular, it should perform better than the PB interval, which
involves no studentisation, and at least as well asMATA-T if the number of bootstrap
samples is large enough. The MATA-SB interval provides a useful alternative to the
MATA-T, MATA-W and MATA-P intervals when the assumptions underlying these
intervals are not met (Sect. 3.4.3). More work is needed to assess the properties of
the MATA-SB interval in a range of settings.

17Unfortunately, the work of [106] has led to the impression that theMATA interval will not perform
well in general [48].
18A similar issue arises when using a technique such as RJMCMC in the Bayesian setting
(Sect. 2.2.1), where a large number of iterations may be required in order to visit each model often
enough to obtain reliable estimates of both the posterior model probabilities and the posteriors for
those parameters in models with low posterior model probabilities.
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3.5 Examples

3.5.1 Sea Lion Bycatch

Table3.7 shows model-averaged 95% confidence intervals for the total sea lion
bycatch in each fishery, together with a 95% Wald interval for each model. The
MATA-W interval is based on AIC weights, and was first seen in Table 1.3, while
the PB interval is based on using AIC for model selection in each of 104 bootstrap
samples. The single-model intervals and theMATA-W interval are obtained by back-
transformation of the corresponding interval for logμi (i = 1, 2, 3). Although both
types of model-averaged interval use AIC (for model weights or for model selection)
they lead to quite different confidence limits.

3.5.2 Ecklonia Density

Table3.8 shows four MATA-W confidence intervals for the mean density of ecklo-
nia in each zone, together with the Wald intervals from each model. Each inter-
val is obtained by back-transformation of the corresponding interval for logμi

(i = 1, 2, 3). The weights used by each method are in Table3.2 of Sect. 3.3.2.
As with the point estimates (Sect. 3.3.2), the differences between the model-

averaged intervals are relatively small for zones 1 and 3. For zone 2, however, the
interval based on focussed weights is markedly narrower, as it gives almost all the
weight to the smaller model.

Table 3.7 95% confidence
intervals for total sea lion
bycatch (to the nearest
integer) obtained from each
of two models and by model
averaging. The
model-averaged intervals are
the MATA-W interval (based
on AIC weights) and the PB
interval (based on using AIC
for model selection)

Species Lower Upper

Scampi Model 1 22 56

Model 2 19 181

MATA-W 21 118

PB 0 136

Squid Model 1 74 192

Model 2 61 180

MATA-W 69 190

PB 56 168

Other Model 1 3 7

Model 2 2 74

MATA-W 2 35

PB 0 31
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Table 3.8 95% confidence intervals for the mean density of ecklonia (individuals per quadrat) in
three zones, for each model and three versions of the MATA-W interval, using weights determined
by AIC, AIC(w), stacking or bootstrap-based focussed model averaging

Zone Model 1 Model 2 Model-averaged intervals using MATA-W

AIC AIC(w) Stacking Focussed

1 Lower 24.1 9.5 9.9 10.0 9.8 9.8

Upper 46.6 30.0 42.0 42.4 40.8 40.4

2 Lower 24.1 17.6 18.5 18.6 18.2 23.8

Upper 46.6 64.0 61.1 60.8 62.0 47.2

3 Lower 24.1 28.0 25.9 25.7 26.2 26.4

Upper 46.6 73.2 70.7 70.3 71.4 71.7

Table 3.9 Mean coverage rate of a 95%Wald interval for a treatment combination mean, averaged
over the eight combinations

Scenario Best model Model-averaged

AIC AICc BIC AIC AICc BIC

Low 0.82 0.82 0.81 0.95 0.95 0.95

Medium 0.91 0.79 0.89 0.94 0.90 0.93

High 0.94 0.86 0.93 0.94 0.92 0.94

Adapted from: Fletcher, D., Dillingham, P.W.: Model-averaged confidence intervals for factorial
experiments. Comput. Stat. Data. An. 55, 3041–3048, c©2011, with permission from Elsevier

3.5.3 Water-Uptake in Amphibia

Simulation results from [59] are given in Tables3.9 and 3.10, for an experiment
involving two replicates. These show the coverage rates and relative widths of 95%
Wald intervals for a treatment combination mean, averaged over the eight combi-
nations. Each model-averaged Wald interval was calculated as in (3.17), using the
estimate of s in (3.21).

As in Sect. 1.3.3, the results are given for three scenarios, corresponding to the true
main effects and interactions being low,medium or high relative to the error variance.
Of the three criteria used for model averaging, it appears that AIC performs best and
AICc worst. This conclusion was also evident from the full set of simulation results
described in [59].

These simulation results are in accord with theoretical results for the MATA-W
interval given by [107] (Sect. 3.4.3). They found that AIC weights were preferable to
AICc or BIC weights, in terms of coverage and interval-width, in a setting involving
two normal linear models (Sect. 3.4.3).19

19This example also provides evidence that the Wald interval can perform well, despite the issues
raised in Sect. 3.4.1.
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Table 3.10 Mean width of a 95% Wald interval for a treatment combination mean relative to that
for the full model, averaged over the eight combinations

Scenario Best model Model-averaged

AIC AICc BIC AIC AICc BIC

Low 0.52 0.40 0.44 0.70 0.56 0.63

Medium 0.81 0.75 0.78 0.89 0.90 0.88

High 0.95 0.97 0.93 0.98 1.15 0.98

Adapted from: Fletcher, D., Dillingham, P.W.: Model-averaged confidence intervals for factorial
experiments. Comput. Stat. Data. An. 55, 3041–3048, c©2011, with permission from Elsevier

Table 3.11 95%MATA-W confidence intervals for the dose-levels (μg) of trans-cypermethrin that
lead to 50% and 90% of individuals being affected, separately for each sex. The weights used to
calculate each interval were determined by AIC, AIC(w), stacking, or bootstrap-based focussed
model averaging

Probability
affected

Sex AIC AIC(w) Stacking Focussed

0.5 Male Lower 3.6 3.7 3.7 3.7

Upper 6.3 7.1 6.4 6.5

Female Lower 6.9 6.2 6.7 6.6

Upper 13.8 13.9 13.9 13.1

0.9 Male Lower 10.2 10.1 10.1 10.1

Upper 27.5 33.9 27.6 35.0

Female Lower 25.6 24.5 25.9 25.5

Upper 107.9 109.5 110.3 101.7

3.5.4 Toxicity of a Pesticide

Table3.11 shows 95%MATA-W intervals for the required dose-level, separately for
each probability and sex. As with the point estimates in Sect. 3.3.4, these are based on
weights obtained from AIC, AIC(w), stacking, and bootstrap-based focussed model
averaging, and involve back-transformation of the corresponding interval for log2-
dose. As with the model-averaged point estimates for this example, the choice of
weights has little effect on the intervals when π0 = 0.5, as would be expected from
the discussion in Sect. 3.3.4. The clearest differences between the methods are for
the upper limit when π0 = 0.9.
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3.6 Discussion

3.6.1 Choice of Scale

As discussed in Sect. 3.2, an issue that arises with point estimation in FMA is the
choice of scale on which to perform the averaging. This issue does not arise in BMA,
as the model-averaged posterior distribution is transformation-invariant (Sect. 2.5).20

We do not agree with authors who have argued that model-averaged point estima-
tion should always take place on the original scale [26]. For example, when averaging
over a set of GLMs, it is natural to calculate the arithmetic weighted mean in (3.1)
on the linear-predictor scale, as the effects of the predictor variables are assumed be
additive on this scale (Sect. 3.2). A similar argument arises in the context of analysing
an experiment involving several treatments: if we need to transform the response vari-
able in order to better satisfy the assumptions of a normal linear model, calculating
a treatment mean makes most sense on this transformed scale [141].

For interval estimation, the Wald, MATA-W and MATA-T intervals are also not
invariant to transformation, and we therefore need to consider the scale on which
these are calculated. TheMATA-P andPB intervals are both transformation-invariant,
as likelihoods and percentiles are transformation-invariant.

3.6.2 Choice of Model Set

For simplicity, the examples we have considered all involve a relatively small model
set. In some situations, there will bemany possible predictors. A screening procedure
may thenbehelpful, both for computational reasons and in order to reduce uncertainty
in the estimation of the model weights. One approach advocated by [24] is careful
selection of the models, driven by a clear idea as to their scientific merit. This is a
laudable aim, but might be difficult to achieve in some settings, and we may still
wish to have an alternative means of reducing the number of candidate models.

A simple screening procedure that has been developed in the context of high-
dimensional regression models, involves assessing the strength of the relationship
between each individual predictor and the response variable, in order to rank the
predictors. This ranking is used to form M + 1 groups, with the first being the
predictors with the strongest relationships and the last being those with the weakest
relationships. After discarding the last group, model m is chosen to contain all the
predictors in group m [10, 11, 65]. An alternative approach, which avoids using
the original data to both screen the variables and to determine the model weights,
involves sample-splitting during the screening procedure [65, 123]. In a similar vein,
focussed model averaging based on the full set of singleton models (those with only
one predictor) can lead to the same prediction performance as a larger set of nested

20Unless we use DIC weights, which can depend on the paramtetrisation (Sect. 2.5).
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models [32, 88]. This is a topic worthy of further research, as it has the potential to
greatly simplify the choice of model set and to reduce the computational effort.

The weighted-average least squares (WALS) approach to model averaging uses a
quasi-Bayesian approach to combining frequentist point estimates [136]. An inter-
esting feature of this method is the orthogonalisation of predictor variables, which
reduces the number of main effects models from 2k to k, where k is the number
of predictor variables, an approach that has also been advocated by [8] when using
AIC(w) [79] (Sect. 3.2.3). This reduction of the number of models is related to the
use of singleton models discussed above. Extensions of WALS to other settings have
been proposed, including GLMs [46] and linear models with errors that are depen-
dent and/or heteroscedastic [135]. The latter has connections with a generalised least
squares version of AIC(w) [129].

A screening procedure proposed by [212] is based on the values of AICm or
BICm for half the data, the other half being used to determine the model weights.
Fence methods, which are used in model selection, provide an alternative means of
reducing the model set, although they can be computationally intensive [101, 144].
In the context of logistic regression with 15 possible predictor variables, [36] chose
the model set to be those models that were selected at each step of a forward-search
procedure. A bootstrap-based approach to screening predictor variables, rather than
models, was proposed by [13]. This has the advantage of reducing the cost of future
studies if some predictor variables are expensive to measure [20, 49].

3.6.3 Confidence Intervals

When comparing methods for calculating a confidence interval, it is common prac-
tice to first consider the coverage rate and then compare thosemethods which achieve
good coverage by the mean width of the interval [59]. This has the disadvantage that
what we mean by a good coverage rate is somewhat arbitrary. For example, in the
model-averaging context, would we prefer an interval with 94% coverage and mean
width equal to 80% of that for model M or one with 93% coverage and mean width
equal to 60% of that for model M? Focussing primarily on coverage can lead to the
idea that nothing can improve upon the largest model [48]. This can be mislead-
ing, as illustrated by the discussion of the water-uptake experiment in Sects. 1.3.3
and 3.5.3.

An alternative approachwould be to choose the interval that has the smallestwidth,
after the nominal confidence level associated with that interval has been adjusted
to ensure that it actually achieves the required coverage rate [150]. For example,
if simulations suggest that a 95% model-averaged confidence interval has a true
coverage rate of 92%, we could increase the nominal confidence level until the
interval achieves a true coverage rate of 95%. Having calibrated the intervals in this
way, we could choose the one with the smallest mean width. This might be a useful
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basis for comparison, even if we did not expect to make use of such a calibration
when applying the method.21 There is scope for further research in this area.

A variation on the MATA interval has been proposed by [210]. This is slightly
simpler to calculate, but no longer has the appealing property of satisfying (3.22).
Likewise, in the context of using vector autoregression models in macro-economics,
[122] provide heuristic arguments for a model-averaged interval that has endpoints
which are functions of the endpoints of each single-model interval.

In machine learning, calculation of confidence intervals is a more recent innova-
tion [188], as researchers have typically been satisfied with a cross-validation-based
estimate of the prediction error to be expected on new data.

3.6.4 Mixed Models

Twomixed-model versions of AIC have been proposed for model selection. If we are
interested in population-level inference, the random effects can simply be regarded
as a device for modelling the covariance structure. We can then use marginal AIC
(mAIC), based on (3.3) with pm equal to the total number of parameters, including
the variance components [144, 184]. Unlike the behaviour of AIC in fixed effects
models, use of mAIC can lead to overly-simple models being selected if some of
the models have different covariance structures [76, 144]. The calculation of mAIC
can also be based on restricted maximum likelihood (REML) estimates of the vari-
ance components, which are less biased than those based on maximum likelihood
[38, 144].

Ifwe are interested in predictions for a specific level of one ormore randomeffects,
a conditional version of AIC (cAIC) can be used to compare models with different
variance parameters [184]. This criterion is based on a conditional likelihood, as it
involves the distribution of y given the random effects in the study. There have been
several suggestions as to a suitable correction for overfitting in cAIC, reflecting the
fact that a measure of complexity in this setting is not clear-cut [144].

The work of [184] on cAIC was extended by [120], in order to avoid specification
of the form of the covariance matrix for the random effects; see also [161]. Recently,
[211] have proposed a conditional generalised information criterion, derived without
needing to assume that the true model is in the model set. For the generalised linear
mixed model (GLMM) setting, [47, 208] proposed slightly different versions of
cAIC. The former makes use of a conditional profile likelihood [37, 201] and a
correction for overfitting bootstrap-based, akin to that proposed for mAIC by [169].

Use of mAIC or cAIC in (3.2) provide mAIC or cAICweights [33]. An alternative
to cAIC weights are those based on a conditional version of AIC(w) developed for

21Conversely, we could adjust the nominal confidence level for each interval until they all have the
same width, and then choose the one with the highest true coverage rate [150].
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GLMMs by [223], and simulations have shown that the latter can perform better.
Mixed-model versions of stacking would also be possible, with theory for model
selection in the linear mixed model setting [58] suggesting that these will be asymp-
totically equivalent to mAIC (or cAIC) weights.

As in model selection, point estimation will be more sensitive to reliable speci-
fication of the mean structure than the covariance structure, whereas good interval
estimation will typically depend on both. An extra complication arises if some of
the variance parameters are close to zero, as this can lead to the computational and
theoretical issues associated with a parameter being close to a boundary [144].

3.6.5 Missing Data

Two approaches to model averaging in the presence of missing data were considered
by [165]. One involves adjustment of the weights, while the other uses anymethod of
FMA on a single imputed set of data. In a simulation study involving binary logistic
regression, they found that the second approach performs better. Use of multiple,
rather than single, imputation was suggested by [166]. An approach that avoids data
imputation was proposed by [219], and is based on AIC(w) [79] (Sect. 3.2.3). A
modified version of the missing-data indicator approach of [160] was considered by
[42, 43]. In the ecological setting, [148] discuss the issues that arise when using
multiple imputation with model averaging, emphasising the extra problems that can
occur when the data are missing not at random. In the context of analysing time-to-
event data from a cross-over trial, [203] considered the use of model averaging in
conjunction with multiple imputation.

3.6.6 Summing Model Weights

By analogy with the use of a PIP in classical BMA (Sect. 2.2), [24] suggested cal-
culating the sum of the weights across all models that contain a specific predictor
variable, in order to obtain a measure of the relative importance of that variable. As
with the use of a PIP, this is less useful than a comparison of model-averaged esti-
mates of the expected response for suitably-chosen values of the predictor variables
(Sect. 1.4). Care is also needed in interpreting these summed weights, as they can be
sensitive to the choice of model set [146]. Potential problems with summed weights
are discussed by [26, 48, 68, 146, 173]. In particular, [68] provide a clear rebuttal
of the defence of summed weights in [74].



84 3 Frequentist Model Averaging

3.7 Related Literature

3.7.1 Information-Criterion Methods

Two small-sample modifications to AIC other than AICc have been suggested for
normal linear models. These involve slightly different modifications to themaximum
likelihood estimate of the error variance, and use the same correction for overfitting
as inAICc [139] orAIC [38]. They appear not to have been usedmuch in the scientific
literature. An AIC-like weight based on likelihood-based cross validation has been
considered by several authors [48, 85, 185, 199]. However, this approach is less
direct than stacking (Sect. 3.2.3).

In the context ofmodel selection, [52, 54] showed that a range of selection criteria,
including AIC andMallows’ Cp, could be expressed in terms of a covariance penalty,
which has links with the notion of generalised degrees of freedom [85, 170, 207,
213]. These ideaswere transferred to themodel averaging context by [171]. Recently,
[134] have proposed generalised versions of AIC and BIC for use with misspecified
generalised linear models, their primary focus being high-dimensional models.

For model selection in ecology, [19] proposed that information criteria be com-
pared using simulations inwhich the truemodel differed slightly from one simulation
run to another, in a way that reflected how the true data-generating mechanismmight
change if we were to repeat a study. They used simulation to show that a high level of
heterogeneity between replicate datasets may lead to BIC having a better prediction
performance than both AIC and AICc. Their conclusions suggest that in practice it
may be difficult to provide clear recommendations as to which of these criteria is to
be preferred, as the amount of variation between replicate datasets will often be hard
to quantify.

A novel use of cross validation can be found in [222], who suggested using it to
determine the best choice of model-selection procedure (e.g. AIC or BIC) for a given
dataset. It would be interesting to see howwell such a two-stage approach might help
determine the best method for obtaining a model-averaged estimate or confidence
interval.

3.7.2 Constraints on Optimal Weights

Although itmay seemnatural to constrain themodelweights to lie on the unit simplex,
particularly if the estimates from some models are highly correlated (Sect. 3.2.3),
several authors have considered arguments for relaxing this constraint.

In the context of using stacking for high-dimensional linear models and GLMs,
[10, 11] argued that the simplex-constraint can be too restrictive (Sect. 3.6.2), and
proposed instead that the weights should lie in the unit hypercube, i.e. wm ∈ [0, 1]
for all m [32, 65, 123]. This situation arises because the screening procedure they
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Table 3.12 Model weights for the toxicity experiment using AIC(w) and stacking with different
weight-constraints (weights lie on the unit simplex, lie in the unit-hypercube, or sum to one). For
AIC(w), the weights constrained to sum to one are highly unstable and therefore not shown

Model AIC(w) Stacking

Simplex Hypercube Sum to one Simplex Hypercube Sum to one

1 0.077 0.050 – 0.020 0.000 −0.121

2 0.075 0.093 – 0.091 0.101 1.262

3 0.849 0.818 – 0.889 0.861 7.859

4 0.000 0.000 – 0.000 0.000 −7.999

Sum 1.000 0.961 – 1.000 0.963 1.000

use (Sect. 3.6.2) leads to a set of models that have no predictors in common, which
means that the choice wm = 1 (for all m) can be optimal.22

As mentioned in Sect. 1.6, several authors have considered allowing the weights
to be negative, but still sum to one [6, 32, 94, 136, 180]. However, keeping the non-
negativity constraint can help address issues with model-redundancy (Sect. 3.2.3).23

For example, without this constraint two models that give very similar predictions
can have large weights of opposite signs, which seems undesirable. This is akin to
the issue that arises if two predictor variables in a regression model are strongly
positively correlated, where shrinkage methods are sometimes used to constrain the
regression coefficients [84].

The effect of the choice of constraints used in both AIC(w) and stacking is illus-
trated in Table3.12. This shows the weights for each method using three types of
constraint: the usual simplex-constraint, the unit-hypercube constraint, and the sum-
to-one constraint, which allows the weights to be negative.

If we first consider AIC(w), the correlations between the η̂mi in (3.11) are all at
least 0.95, with that for models 3 and 4 being almost one. Thus models 3 and 4 are
virtually indistinguishable, in terms of estimating the ηi . As a result, the weights that
are only constrained to sum to one are highly unstable, with many local optima, and
therefore not shown in the table.

For stacking, the correlations between the η̂m[−i] in (3.14) are smaller than those
for η̂mi , but still all at least 0.92, and the correlation for models 3 and 4 is again
almost one. In this case, however, all the weights are relatively stable. Allowing the
weights to be negative leads to those for models 3 and 4 being of opposite sign.

Theweights involving the simplex andunit-hypercube constraints are very similar,
for both AIC(w) and stacking; see [15] for an argument as to why this will often be
the case for stacking.

22This procedure is similar to use of all possible singleton models in the context of focussed model
averaging (Sect. 3.6.2) [32]. In order for ̂θ to be consistent, however, [32] require the weights to
sum to one, as each ̂θm is consistent [88].
23This constraint can also be useful for generalisation of the conclusions [15].
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3.7.3 AIC(w)

In the context of normal linear models, a minor modification to the correction for
overfitting in AIC(w) was proposed by [220]. The criterion proposed by [200] for
selecting model weights is a model-averaging version of the Prediction Criterion [7]
for model selection, and can have better finite-sample properties than AIC(w). A ver-
sion of AIC(w) that involves a tuning parameter in the correction for overfitting was
put forward by [227]. Use of AIC(w) when averaging over a set of semi-parametric
varying-coefficient models has been considered by [118]; see also [119, 127]. The
application of AIC(w) to forecast-combination has been considered by [80]. The
asymptotic behaviour of AIC(w) under the local-misspecification assumption of [88]
(Sect. 3.2.3) has been considered by [128].

3.7.4 Machine Learning Methods

Stacking is closely related to the concept of a super learner [151, 162, 186]. The
asymptotic behaviour of stacking in the context of linear models, and under the
local-misspecification assumption of [88] (Sect. 3.2.3), has been studied by [128].
Application of stacking to non-parametric models has been discussed by [183]. Use
of stacking for density estimation [174] has close links with BSP (Sect. 2.3.2). Both
bagging and stacking can be used in meta-learning, where a higher level of learning
occurs through experience over several applications of one or more learners [115].

Two other model-averaging techniques commonly used in machine learning are
boosting and random forests. Boosting involves generating a sequence of combined
learners and using a resampling-based approach to repair weaknesses of the current
combination [50, 63, 64, 84, 159, 163]. Random forests involves “growing” many
regression or classification trees to randomised versions of the training data, and
averaging them [18]. Boosting provides a means of bias-reduction, and sometimes
of variance-reduction, while random forests achieves variance-reduction through the
averaging process.

An idea that features in many ensemble learning methods is the desire to ensure
that different models (learners) are based on quite different methods, such as linear
discriminant analysis and random forests in classification [15]. This is related to the
concept of discrete model averaging discussed by [49] (Sect. 1.4).

Ensemble averaging of neural networks has been considered by [147], and use of
the dropout technique with such networks is closely related to model averaging [66].
A Bayesian approach to combining support-vector-machines has been described
by [225]. Excellent introductions to machine learning methods are provided by
[56, 84, 217].
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3.7.5 Focussed Methods

Examples of contexts inwhich the local-misspecification assumption of [88] has been
used are semi-parametricmodels [37], linearmixedmodels [33],multinomialmodels
[191], generalised rank regressionmodels [224] and structural equationmodels [102].
A variation on the work of [88] was considered by [121], the difference being aminor
change in the estimate of the MSE of ̂θ .

In the context of linear models, [121] also considered a class of weights that
includes those based on AIC and BIC. This class is specified by three parameters
that are chosen tominimise an estimate of the averageMSEof a set of estimates. They
considered two types of set. The first were the estimates of the regression coefficients
associated with those predictor variables that were the focus of the analysis. The
second were the estimates of the expected value of the response variable for the
observed values of all the predictor variables. They provided results froma simulation
study which suggested that the optimal choice of weights outperformed those based
on AIC(w), AIC and BIC.

The Focussed Information Criterion (FIC) was proposed by [35] as a focussed
method of model selection. The value of FIC for model m (FICm) is based on an
asymptotic approximation to the MSE of̂θm , and an extension of this idea to model
averaging was suggested by [88], who defined a model weight based on FICm that
takes the same form as the AIC weight in (3.2), together with a tuning parameter
[36, 90, 194, 195, 215, 216, 218]. A similar approach was advocated by [117], in
the context of linear models. As FICm was developed for the purpose of model
selection, FIC weights are not directly concerned with the properties of ̂θ . For
model selection, [104] derived a version of FIC that does not require the local-
misspecification assumption, in the context of comparing a set of parametric models
to a non-parametric alternative.

3.7.6 Miscellanea

Many of the issues that arise in model averaging are applicable to forecast-
combination, including potential problems caused by estimating the weights. For
example, if the MSE of a combined forecast needs to be estimated, the resulting
MSE will be larger than predicted (Sect. 3.2.3). In some cases, this can even lead to
equal weights being preferable to estimated weights [1, 39, 71, 75, 179], a result
that can also occur in model averaging [191]. Model averaging of predictive distri-
butions has been considered in econometrics [28, 73, 77, 110, 189], and has links
with prediction-based BMA (Sect. 2.3.2).

Conditions under which model-averaged estimates based on AIC weights, BIC
weights, AIC(w) or stacking are consistent has been considered by [221] in the
context of linear models.

Model averaging using the leave-one-out bootstrap was proposed by [157]. In the
context of model selection, this version of the bootstrap can be less variable than
leave-one-out cross validation, but usually requires a bias-adjustment that is difficult
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to determine [44, 53]. Interestingly, a number of other resampling approaches to
model selection, includingbootstrap-based estimationof the correction for overfitting
in AIC, have not been transferred to the model averaging setting [30, 34, 54, 97, 98,
112, 172]. Use of the bootstrap to estimate prediction error was first considered in
detail by [51].

The concept of a “model confidence set” was considered by [24]. One definition
they proposed involves ranking the models in terms of their AIC weights and then
determining the smallest set of consecutive models for which the sum of the weights
is greater than or equal to the nominal “confidence level”. In the context of model
selection, [82] defined a such a set to be one that contains the best model with a
specified level of “confidence”.

Amethod for calculating a simultaneous confidence region for two ormore param-
eters after model averaging has been proposed by [100]. This is a Wald region, and
will only perform well in settings where a Wald interval for a single parameter is
reliable (Sect. 3.4).

The difficulty of analytically assessing the finite-sample properties of a model-
averaged estimate has been emphasised by [153], while [113, 114] have considered
similar issues for an estimate based on a best model. Likewise, [57] discuss the issues
involved in constructing a confidence interval with the desired coverage rate when
using a shrinkage method such as the lasso; see also [164] (Sect. 1.4).

An unusual version of model averaging was proposed by [149]. This uses ideas
from social choice theory, combined with resampling, to generate plausible versions
of the true model. It involves summarising the results of a comparison of the different
models across a set of plausible versions of the true model.

For averaging over quantile regression models, [168] proposed a sample-splitting
algorithm, [132] suggested stacking, and [202] used FIC-based model weights. Sev-
eral cross-validation procedures were proposed by [69] for averaging over both lon-
gitudinal and time series models. In the context of averaging threshold models, [81]
proposed using AIC(w) (Sect. 3.2.3), while [70] suggested generalised cross vali-
dation [41]. Methods for determining model weights when averaging instrumental-
variable models have been considered by [138], while [116] discuss a two-stage
approach for performing BMA on such models. In the context of non-parametric
regression, model averaging over the choice of predictor variables, as well as the
choice of kernel, bandwidth-selection method and local-polynomial order has been
considered by [86].

3.7.7 Software

As with BMA, there are several packages available in R that can be used for FMA:

1. MATA gives MATA-W and MATA-T intervals for any type of model weight
2. AICcmodavg, glmulti and MuMIn provides estimates and Wald intervals
3. MAMI implements AIC(w), stacking and lasso averaging [164, 167]
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4. SuperLearner and subsemble provide super learners (Sect. 3.7.4)
5. gbm and randomForest are for boosting and random forests respectively
6. ada,adabag,caretEnsemble,ipred,mboost and party are ensemble-

learning packages
7. MCS can be used for the model confidence set approach of [82]

Specialist software is also available for scientists working on ground-water
modelling [152].
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Chapter 4
Summary and Future Directions

Abstract We provide an overview of the key ideas and results in Bayesian and
frequentist model averaging, and suggest directions for future research.

4.1 Summary of Key Points

Estimation not identification
Model averaging is an estimation tool, and identification of a true model is therefore
not directly relevant. Inmany settings, an assessment of the sensitivity of the estimates
to the choice of model will also be useful.

Parameter of interest
This should have the same interpretation in all models, and averaging of regression
coefficients is therefore unlikely to be relevant.

Model-redundancy
If we use a uniform model-prior in classical BMA, model-redundancy can lead
to dilution of some of the prior model probabilities. This problem does not arise
in prediction-based BMA as it does not require a model-prior. Likewise, in FMA
model-redundancy can cause AIC weights to be diluted. The simplex-constraint
used in AIC(w) and stacking alleviates this problem.

Interval estimation
No interval currently guarantees good coverage unless it is equivalent to the interval
from the largest model. The MATA interval has the advantage that it can be based
on any method for calculating a single-model confidence interval.

Choice of scale
BMA is transformation-invariant whereas FMA is not. However, there is usually a
natural scale on which to perform FMA, such as the linear-predictor scale in a GLM.
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Summing model weights
Summing model weights does not provide a useful measure of the importance of a
predictor; comparison of model-averaged estimates for specific values of the predic-
tors is preferable. A similar comment applies to posterior inclusion-probabilities in
BMA.

Mixed models
Mixed-model versions of AIC(w) and stacking are possible, as are hierarchical-
versions of WAIC and BSP.

Choice of model set
Using a set of singleton models, each involving a single predictor, appears to be a
promising approach when there are many predictors.

Choice of Bayesian method
Use of WAIC or BSP weights is preferable to classical BMA, as the focus is then
on prediction rather than identification of the true model. Use of these weights also
avoids problems with the calculation of posterior model probabilities and the sensi-
tivity of these probabilities to priors on the parameters.

Choice of frequentist method
If computational effort is not an issue, stacking is a good choice. AIC(w) is a good
alternative for large n, but is less robust. Both methods also have a nice interpretation
in terms of a meta-model.

4.2 Future Directions

Confidence intervals
Work is needed on the best approach to calculating a model-averaged confidence
interval. This might involve weights that are optimal with respect to interval coverage
and width, as suggested by [2] in the Bayesian setting. Work is also needed on
assessing when simply using the confidence interval from the largest model is best.

Confidence distributions
A clear advantage of BMA is use of a posterior distribution to summarise the results.
In FMA it would be useful to have a model-averaged version of a confidence distri-
bution, which provides a summary of all possible confidence intervals [1].

Alternative versions of WAIC and BSP
Aweighted version of WAIC, analogous to AIC(w) in FMA, would be useful for the
same reason that AIC(w) weights seem preferable to those based on AIC. Likewise,
for GLMs, a version of BSP that involves weighting the linear predictor for each
model, analogous to stacking in FMA, might be useful.

Comparison with shrinkage
It would be good to have simulation studies that compare model averaging methods,
such as AIC(w) and stacking, with shrinkage methods, such as the lasso.
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