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In memory of those died on December 26, 2004
in the Indian Ocean Tsunami



Preface

Unimaginable catastrophe struck the coasts of Indian Ocean in the morning
of January 26, 2004, wiping out more than 275,000 human life at a stroke
from the face of the earth. It was the killer Tsunami, that originated its
journey at the epicenter of the earthquake (of intensity 9.2) near Banda Aceh
in Indonesia and traveled as long as to Port Elizabeth in South Africa, covering
a distance of more than 8,000 km and bringing unprecedented devastation to
the countries like Indonesia, Thailand, Sri Lanka, India and others.

All of us were shocked saddened and felt helpless, wanted to do some-
thing in accordance to our own ability. I as a scientist working in India and
interested in nonlinear dynamics, soliton and related phenomena, decided to
contribute by organizing a dedicated effort by world experts to study different
aspects of the Tsunami and other oceanic waves with special emphasis on the
nonlinear connection of this problem. Our Centre for Appl. Math. & Comp.
Sc. (CAMCS) of our Institute, specially my colleague Prof Bikas Chakrabarti
enthusiastically supported the idea and came along with the support of a
generous fund.

In contrast to the conventional linear theory of Tsunami, our emphasis on
nonlinearity is in part related to my own conviction for its need, especially
for describing the near-shore evolution of the waves with varying depth. The
other motivation was the realization that, though a large mass of literature
is already devoted to Tsunami and related topics, no consolidated collective
study has been dedicated to nonlinear aspects of Tsunami and other oceanic
waves. This was in spite of the fact that the results obtained through conven-
tional studies are not all convincing and conclusive and in spite of a group of
internationally well known experts, as evident from the present volume, have
long been emphasizing on the importance of nonlinearity in this regard.

Therefore as a first step we organized an international meeting on the
same topic: Tsunami & Nonlinear Waves in Saha Institute of Nuclear Physics,
Calcutta (March 6-10, 2006). That helped us not only to identify and con-
tact the leading experts in this field, but also to spend a highly beneficial
and stimulating week in interacting and exchanging thoughts and experiences
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with some of them. I am also thankful to the Springer-Verlag for offering
to publish this edited volume with interest in their Geo-Science series. This
volume is based not only on selected lectures presented in the conference
(Caputo (France), Dias (France), Fujima (Japan), Lakshmanan (India), Rao
(India), Segur (USA), Shankar (India)), but also on the contributions from
other experts well known in the field: Grimshaw (UK), Kharif (France), Mad-
sen (Denmark), Weiss (USA), Yalciner (Turkey), Zakharov (USA) and their
collaborators, who could not participate in the conference.

This volume has 14 chapters which I have divided loosely into 2 parts:
Propagation and Source & Run up, for convenience, though many chapters
in fact are overlapping. I have also tried to arrange the chapters from more
theoretical to more application oriented, though again not in a strict sense.
The overall emphasis is on theoretical and mathematical aspects of the oceanic
waves, though the authors have given ample introduction to their subjects,
starting the material from the beginning before taking the readers to the
applicable research level with needed scientific rigor.

Hope this volume will be equally interesting and fruitful to the experts
actively working or planning to work in this field, as well as to the common
people who got interested in the subject just after 2004 and even to the
Government bureaucrats, who are forced now to take interest in such events.

Calcutta, December 2006 Angan Kundu



Contents

Part I Propagation

Waves in shallow water, with emphasis on the tsunami of
2004
Harvey Sequr . .. ... 3

Integrable Nonlinear Wave Equations and Possible
Connections to Tsunami Dynamics
M. Lakshmanan. . ... ... ... e e e 31

Solitary waves propagating over variable topography
Roger Grimshaw .. .... ... e 51

Water waves generated by a moving bottom
Denys Dutykh, Frédéric Dias . ........coo .. 65

Tsunami surge in a river: a hydraulic jump in an
inhomogeneous channel
Jean-Guy Caputo, Y. A. Stepanyants ........ ... .. 97

On the modelling of huge water waves called rogue waves
Christian Kharif ... ..o 113

Numerical Verification of the Hasselmann equation
Alexander O. Korotkevich, Andrei N. Pushkarev, Don Resio,
Viadimir E. Zakharov ..... ... ... 135

Part IT Source & Run up

Runup of nonlinear asymmetric waves on a plane beach
Irina Didenkulova, Efim Pelinovsky, Tarmo Soomere, Narcisse Zahibo .. 175



X Contents

Tsunami Runup in Lagrangian Description
Koji Fufima ... ..o

Analytical and numerical models for tsunami run-up
Per A. Madsen, David R. Fuhrman ............ ... i,

Large waves caused by oceanic impacts of meteorites
Robert Weiss, Kai Winnemann . ............c. ..

Retracing the tsunami rays
R. Shankar. ... ...

Modeling and visualization of tsunamis: Mediterranean
examples

Ahmat C. Yalciner, Effim Pelinovsky, A. Zaitsev,, A. Kurkin, C. Ozer,
H. Karakus, G. Ozyurt ........ e

Characterization of Potential Tsunamigenic Earthquake
Source Zones in the Indian Ocean
N. Purnachandra Rao . ..... ... . . . . . . . .



List of Contributors

Jean-Guy Caputo
Laboratoire de Mathématiques,
INSA de Rouen,

B.P. 8, 76131 Mont-Saint-Aignan
cedex, France.

&

Laboratoire de Physique théorique
et modelisation,

Université de Cergy-Pontoise and
C.N.R.S.

caputo@insa-rouen.fr

David R. Fuhrman

Technical University of Denmark,
Mechanical Engineering
Department, Nils Koppels Allé,
Building 403, DK-2800

Kgs. Lyngby, Denmark
drf@mek.dtu.dk

Denys Dutykh

Centre de Mathématiques

et de Leurs Applications, Ecole
Normale Supérieure de Cachan,
61 avenue du Président Wilson,
94235 Cachan cedex, France
dutykh@cmla.ens-cachan.fr

Frédéric Dias
Centre de Mathématiques

et de Leurs Applications, Ecole
Normale Supérieure de Cachan,

61 avenue du Président Wilson,
94235 Cachan cedex, France
dias@cmla.ens-cachan.fr

Irina Didenkulova

Institute of Applied Physics, Nizhny
Novgorod, Russia
dii@hydro.appl.sci-nnov.ru

Koji Fujima

Dept. of Civil and Environmental
Eng., National Defense Academy.
1-10-20 Hashirimizu, Yokosuka,
239-8686 Japan.

fujima@nda.ac. jp

Roger Grimshaw

Loughborough University, Loughbor-
ough, LE11 3TU, UK
R.H.J.Grimshaw@lboro.ac.uk

H. Karakus, C. Ozer & G.
Ozyurt
Department of Civil Engineering,
Middle East Technical University,
Ocean Engineering Research Center,
06531 Ankara, Turkey
khulya@metu.edu.tr,
cozer@metu.edu.tr,
gulizar@metu.edu.tr



XII List of Contributors

Christian Kharif

Institut de Recherche sur les
phénomenes Hors

Equilibre, Marseille, France
kharif@irphe.univ-mrs.fr

Alexander O. Korotkevich
Landau Institute for Theoretical
Physics RAS 2, Kosygin Str.,
Moscow 119334, Russian Federation
kao@landau.ac.ru

A. Kurkin & A. Zaitsev
Department of Applied Mathematics,
Nizhny Novgorod State Technical
University, 24 Minin Street,

603950 Nizhny Novgorod, Russia
kurkin@kis.ru,
aizaytsev@mail.ru

M. Lakshmanan

Centre for Nonlinear Dynamics,
School of Physics,

Bharathidasan University, Tiruchira-
palli - 620 024

lakshman@cnld.bdu.ac.in

Per A. Madsen

Technical University of Denmark,
Mechanical Engineering
Department, Nils Koppels Allé,
Building 403, DK-2800

Kgs. Lyngby, Denmark
prm@mek.dtu.dk

Efim Pelinovsky
Institute of Applied Physics, Nizhny
Novgorod, Russia

Waves and Solitons LLC, 918 W.
Windsong Dr., Phoenix, AZ 85045,
USA

andrei@cox.net

N. Purnachandra Rao
National Geophysical Research
Institute, Hyderabad 500 007, India

raonpc@ngri.res.in

Don Resio

Coastal and Hydraulics Laboratory,
U.S. Army Engineer Research and
Development Center, Halls Ferry
Rd., Vicksburg, MS 39180, USA

Harvey Segur

Department of Applied Mathematics,
University of Colorado, Boulder,
Colorado, USA
Segur@colorado.edu

R. Shankar

The Institute of Mathematical
Sciences,

C.I.T Campus, Chennai 600113,
INDIA

shankar@imsc.res.in

Tarmo Soomere

Institute of Cybernetics, Tallinn,
Estonia

soomere@cs.ioc.ee

Y. A. Stepanyants

Reactor Operations, ANSTO, PMB
1, Menai (Sydney), NSW, 2234,
Australia.
Yury.Stepanyants@ansto.gov.au

Robert Weiss

pelinovsky@hydro.appl.sci-nnov.ruJoint Institute for the Study of the

Andrei N. Pushkarev

Lebedev Physical Institute RAS,53,
Leninsky Prosp.,

GSP-1 Moscow, 119991, Russian
Federation

Atmosphere and Ocean,
University of Washington—-NOAA
Center for Tsunami Research,
7600 Sand Point Way NE, Seattle
WA 98115, USA
weiszr@u.washington.edu



Kai Wiinnemann

Institut fiir Mineralogie, Museum fiir
Naturkunde,

Humboldt-Universitat zu Berlin,
Invalidenstrae 43,

10115 Berlin, Germany
kai.wuennemann@
museum.hu-berlin.de

Ahmet C. Yalciner,

Department of Civil Engineering,
Middle East Technical University,
Ocean Engineering Research Center,
06531 Ankara Turkey,
yalciner@metu.edu.tr

Narcisse Zahibo
University of Antilles and Guyane,
Guadeloupe, France

List of Contributors  XIII

narcisse.zahibo@univ-ag.fr

Vladimir E. Zakharov
Department of Mathematics, Univer-
sity of Arizona, Tucson, AZ 85721,
USA

& Lebedev Physical Institute
RAS,53, Leninsky Prosp.,

GSP-1 Moscow, 119991, Russian
Federation

& Landau Institute for Theoretical
Physics RAS 2,

Kosygin Str., Moscow 119334,
Russian Federation

& Waves and Solitons LLC, 918 W.
Windsong Dr.,

Phoenix, AZ 85045, USA

zakharov@math.arizona.edu



Part I

Propagation



Waves in shallow water, with emphasis on the
tsunami of 2004

Harvey Segur

Department of Applied Mathematics,
University of Colorado, Boulder, Colorado, USA
Segur@colorado.edu

1 Introduction

This conference was organized in response to the 2004 tsunami, which killed
nearly 300,000 people in coastal communities around the Indian Ocean. We
can expect more tsunamis in the future, so now is a good time to think care-
fully about how to prepare for the next tsunami. With that objective, this
paper addresses three broad questions about tsunamis.

1) How do tsunamis work? Is there a simple explanation of the dynamics
of tsunamis? What makes them so much more destructive than other ocean
waves?

2) Our understanding of the theory of nonlinear waves has advanced signifi-
cantly in the last forty years because of the development of “soliton theory”,
which began with the Korteweg-de Vries (KdV) equation, to be discussed be-
low. But Korteweg & de Vries derived their now-famous equation in 1895 to
describe approximately the evolution of long waves of moderate amplitude in
shallow water of uniform depth. What does KdV theory tell us about tsunamis
in general, and about the 2004 tsunami in particular?

3) In response to the tsunami of 2004, India and other affected countries have
begun plans to implement an early warning system for tsunamis in the Indian
Ocean. On logical grounds, it seems that the requirements for such a system
should be:

Reliability — the system must not fail when it is needed;
Accuracy — people will lose confidence in a system that fails to predict an
important tsunami, or that predicts tsunamis that do not materialize;

e Speed — an accurate tsunami-alert issued after the tsunami hits is useless.

What kind of warning system is feasible with today’s technology and meets
these requirements?

The sections that follow address each of these questions in turn. Section
2, on the basic dynamics of tsunamis, is intentionally written in nontechnical
language to make it accesible to as broad an audience as possible. The sections
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that follow it are more technical, but the entire paper has been written to
minimize the technical expertise required by the reader.

2 Basic dynamics of tsunamis and other water waves

Water waves have broad appeal as a scientific topic, because we all have
personal experience with water waves — at the beach or in the kitchen sink. In
this paper, “water waves” refers to the waves that occur on the free surface of
a body of water, under the force of gravity. These include the waves that one
commonly sees at the beach, those in the kitchen sink, and tsunamis. Except
for very short waves (with wavelengths less than a few millimeters), waves on
the ocean’s free surface are due to the restoring force of gravity. Other kinds of
waves in the ocean, including internal waves, inertial waves and sound waves,
are not considered here.

Almost everyone has personal experience with water waves and sound
waves. But even for waves of small amplitude, these two kinds of wave systems
behave differently. Sound waves have an important property: All sound waves
travel with the same speed, independent of the frequency or wavelength of the
wave. We define “the speed of sound” to be this common speed at which all
sound waves travel. If sound waves at different frequencies traveled at different
speeds, then human communication by speech would be difficult or impossible.

Unlike sound waves, water waves with different wavelengths travel with
different speeds. For gravity-induced water waves, longer waves have lower
frequencies, and they travel faster. Figure 1 shows a series of snapshots that
illustrate this effect, but anyone can carry out a similar experiment. Drop
a rock into a quiet pond, and observe the waves patterns created. Longer
waves travel faster, so in each snapshot in Figure 1, the waves with longer
wavelengths are further away from the center of the pattern (i.e., from the
source of the disturbance), while waves with shorter wavelengths are closer to
it. As time goes on, more and more waves propagate away from the center,
but in each snapshot the longest waves in that snapshot are farthest out, and
the shortest waves are closest to the center. This property of water waves is
called “wave dispersion”.

Long water waves travel faster than short waves, but there is an upper
limit. For gravity-induced water waves of small amplitude, the maximum

speed of propagation is
c=1/gh (1)

where g represents the acceleration due to gravity (about 9.8 m/sec? at sea
level), and h is the local water depth, measured from the bottom of the water
(at the floor of the ocean, or the bottom of the water tank) up to the quiescent
free surface. All surface waves with wavelengths much longer than the local
water depth (and with small amplitudes) travel with an approximate speed
of v/gh. Thus these very long waves have a common speed, v/gh, which acts
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Fig. 1. Concentric water waves, propagating outward from a concentrated distur-
bance at the center. The longest waves in each snapshot are the furthest from the
disturbance, showing that long waves travel faster than short waves for gravity-
induced waves on the water’s surface. These photos are a subset of the series shown
in (15) pp. 172,173, originally taken by J.W. Johnson.

like an approximate “sound speed” for the long waves (and only for them).
Because of this special property, we call a water wave a “long wave” if its
wavelength is much longer than the local water depth; equivalently, we call a
body of water “shallow water” if its depth is much less than the wavelength of
the waves in question. Both phrases indicate that the relevant waves all travel
with an approximate speed of v/gh. This criterion is especially pertinent for
tsunamis, which have very long wavelengths.

The information in (1), plus a few measurements, is enough to provide
some understanding of the basic dynamics of the tsunami of 2004. The earth-
quake that generated that tsunami changed the shape of the ocean floor, by
raising the ocean floor to the west of the epicenter, and lowering it to the
east. The scale of this motion is impressive. Measured wave records indicate
that horizontal scale of the piece of seabed raised was about 100 km in the
east-west direction, and maybe 900 km in the north-south direction. The piece
of lowered seabed had similar scales. In each case, the vertical motion was a
few meters. (All of these lengths are crude estimates. The qualitative results
are unchanged if one changes any of these estimates by a factor of 2. The num-
bers quoted here were given by S. Ward, at http://www.es.ucsc.edu/ ward.)
Figure 2 shows the initial shape of the 2004 tsunami, according to a computer
simulation by K. Satake, of Japan. In Figure 2, the region in red is where the
water surface was raised up by the earthquake, while the region in blue is where
it was lowered ! (Go to http://staff.aist.go.jp/kenji.satake/animation.html
to see the entire computer simulation of the tsunami that evolved from
these initial data. A comparable simulation by S. Ward can be found at
http://www.es.ucsc.edu/ ward.)

! Editor’s note: Due to conversion to b/w the color code is not visible. See the
website for colored figure.
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Fig. 2. The shape and intensity of the initial water wave, 10 minutes after the
beginning of the earthquake. These initial conditions generated the tsunami sim-
ulated by K. Satake, at http://staff.aist.go.jp/kenji.satake/animation.html. As the
scale below the figure shows, red indicates a locally elevated water surface, while
blue indicates a depressed water surface. (Figure courtesy of K. Satake.)

We also need an estimate of the average ocean depth. According to
http://www.infoplease.com/ce6/world/A0825114.html, the average depth of
the Indian Ocean is about 3400 m. The average depth in the Bay of Bengal
is slightly less, and the earthquake that generated the 2004 tsunami occurred
near a sharp change in the ocean depth. Let us take the ocean depth west
of the epicenter of the quake (i.e., in the red region in Figure 2, or in the
Bay of Bengal) to be about 3 km, and the ocean depth east of it (in the
blue region of Figure 2, or in the Andaman Sea) to be about 1 km. (See
http://www.ngdc.noaa.gov/mgg/image/2minrelief. html.)
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Now we can compare scales. The ratio of ocean depth to wavelength was

h 3
= =003«x1 2
A 100 < (2)
for the waves traveling west, and even smaller for waves traveling east. So the
Indian Ocean was indeed “shallow water” for the 2004 tsunami. Moreover the

initial height of the of the wave relative to the ocean depth was

a 1

= =33-10*«1
5= 3000 33-107°« 1, (3)

so the tsunami was initially very small, and (1) is applicable. According to (1),
the wave traveling west (i.e., towards India) had a speed of about 620 km /hr,
while the wave traveling east (towards Thailand) moved slower, at about 350
km/hr. (For comparison, recall that the cruising speed of a commercial jet is
about 800 km/hr.)

As we discuss in the next section, an approximate governing equation for
such a wave pattern is the linear, one-dimensional wave equation, with a prop-
agation speed of \/gh. A feature of that equation is that if the initial shape
of the wave is given by an east-west slice through the wave pattern shown
in Figure 2, with no initial vertical velocity (for simplicity), then this initial
shape splits into two — a wave with this spatial pattern and half the amplitude
travels east and an identical half travels west. As long as the water depth re-
mains (approximately) constant, these waves travel with almost no change of
form. Thus, the coastal regions of India and Sri Lanka should have experienced
a positive wave (with water levels higher than normal) followed by a nega-
tive wave (with water levels lower than normal), while the coastal regions of
Thailand should have experienced the opposite: a negative wave, followed by a
positive wave. This is indeed what was reported, and this is what the computer
simulation at http://staff.aist.go.jp/kenji.satake/animation.html shows.

How would an observer experience this wave, as it traveled across the
ocean? Based on the scales quoted above, the positive wave that traveled to
the west (say) is 100 km long, and 1 m. high. That’s a lot of water, and the
wave is traveling at 620 km/hr. (A delicate point: What travels at 620 km/hr
is the rise in water height. The horizontal velocity of the water in the wave is
much smaller.) If you were sitting in a boat in the middle of the Indian Ocean,
what would you experience? The wave is moving towards you at 620 km/hr,
but it’s 100 km long, so it takes almost 10 minutes to move past your boat.
In the course of 10 minutes, therefore, your boat would move up by about
1 m, and then back down by 1 m. Unless you were extremely sensitive, you
probably would not even notice that a wave had gone by. So because of their
very long wavelengths, tsunamis are barely noticeable in the open ocean.

As the wave approaches shore, everything changes. The speed of propaga-
tion is still \/gh , but near shore the water depth (h) decreases, and the wave
must slow down. More precisely, the front of the wave must slow down. The
back of the wave is still 100 km out at sea, so it does not slow down. The
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consequence is that the back of the wave starts to catch up with the front,
and the wave compresses (horizontally) as it moves into shallower water. But
water is nearly incompressible, so if the wave compresses horizontally, then it
must grow vertically to accommodate the extra water that is piling up. And
the volume of water involved is enormous: about 10°> m? of water per meter
of shoreline. The deadly result is that a wave that was barely noticeable in
the open ocean can become very large and destructive near shore.

Summary: A tsunami is a very long ocean wave, usually generated by a
submarine earthquake or landslide. The wave propagates across the ocean
with a speed given approximately by (1). From these two facts, it follows that
the tsunami is barely noticeable in the open ocean, and the same tsunami can
become large and destructive near shore.

3 Theoretical models of long waves in shallow water

The mathematical theory of water waves goes back at least to Stokes
(16), who first wrote down the equations for the motion of an incompressible,
inviscid fluid, subject to a constant gravitational force, where the fluid was
bounded below by a rigid bottom and above by a free surface. (See Figure 3.)

If the motion is irrotational, then the fluid velocity can be written in terms
of a velocity potential,

u=Vo,
and the velocity potential satisfies
V2 =0 for —h(z,y) <z <((z,y,1)
V¢ -V(z+ h(z,y)) =0 on z = —h(z,y) , @)
OC + 020 0pd + 0yC - Oy = 0.9 on z = ((z,y,1) ,
6t¢+ §|V¢|2+9C:0 OHZ:C(%Z/J)

The first equation, the Laplace equation, applies where there is water (i.e.,
between the fixed bottom boundary and the moving free surface). This equa-
tion says that the motion is irrotational and that water is incompressible. The
second equation says that no water can flow through the bottom boundary.
The third and fourth equations both apply on the free surface, at z = {(z, y, t).
The third equation says that the surface at z = {(x, y, t) is a free surface, while
while fourth equation says that the fluid pressure vanishes there.

These equations have been known for more than 150 years, and they are
still too hard to solve in any general sense. The difficulty is not due to the
Laplace equation, which can be solved by a variety of methods. The complica-
tion arises because an essential part of the problem is to locate the boundary
of the domain, at z = ((z,y,t). Until we know where the boundary is, we
cannot solve Laplace equation easily. But the boundary moves with time,
and its (changing) location is determined by solving two coupled, nonlinear,
partial differential equations. So we need the solution of Laplace equation in
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z=¢(x.2) lg

z=-h(xy)

Fig. 3. The equations of water waves apply where there is water, shown in gray.
No water passes through the solid lower boundary at z = —h(z,y). The (moving)
upper surface is at z = ((x,y,t). Here z,y are horizontal coordinates, z is vertical,
V = (04, 0y,0-), and gravity g acts downward. Other possible effects (surface ten-
sion, viscosity, wind, fish, etc.) are ignored in this formulation.

order to provide the information needed for these coupled equations, and we
need information from these two coupled equations in order to solve Laplace
equation. That is the basic difficulty.

Because of this intrinsic difficulty, most advances in the theory of water
waves have come through approximations. In this approach, we abandon hope
for solving the equations in (4) in any general sense, and concentrate instead
on solving the equations approximately in some limiting situation, where the
motion simplifies. The limit relevant to tsunamis is that of long waves of small
or moderate amplitude, propagating in nearly one direction in wave of uniform
(and shallow) depth. In 1895, D. J. Korteweg & G. de Vries derived what we
now call the Kortewg-deVries (or KdV) equation,

O-f + fOcf +02f =0, (5)

to describe wave motion in this limit. This limit has attracted a lot of atten-
tion, so there are several nearby equations, all of which are aimed at approx-
imately the same limiting situation: (i) long waves, (ii) of small or moderate
amplitude, (iii) traveling in one direction or nearly so, (iv) in water of uni-
form, shallow depth, and (v) neglecting dissipation. Alternatives to (5) that
have been studied extensively in recent years are the equation of Kadomtsev
& Petviashvili ( KP, 1970),

Oe{Orf + fOef + 0 f} + 0, f =0, (6)
an equation due to Boussinesq (1871),
Orf = *{OEf +02(f*) + i} (7)

and the equation of Camassa & Holm (1993),

Orm + cOcf + fOem +2mde f + 702 f =0, (8)
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where
m=f— a28§2 I,

and {c¢, a, v} are constants. These four equations share two unrelated proper-
ties: (i) each can be derived as an approximate model of the evolution of long
waves of moderate amplitude, propagating in nearly one direction in shallow
water of uniform depth; and (ii) each has a rich mathematical structure, called
complete integrability, which guarantees a long list of other properties includ-
ing exact N-soliton solutions. (For details see (1), or any decent reference on
soliton theory.)

| A -
\J/_\x! I _,-"/HH\, ,7’ —
h
S S S s

Fig. 4. Relevant length scales, needed to derive either the KdV or KP equation:
h is the time-averaged water height, a is a typical wave amplitude, and A is a typical
wavelength in the direction of propagation of the waves. The KdV equation allows for
no variation normal to the direction of propagation of the waves. The KP equation
requires that the scale of variations in this normal direction (i.e., coming out of the
page in this figure) be much longer than .

The limit in which any of these equations apply can be stated in terms of
length scales, which must be arranged in a certain order. Three of the four
relevant lengths are shown in Figure 4. The derivation of either the KdV or
KP equation from (4) is based on four assumptions:

e Long waves (or shallow water) h <A
e Small amplitude a<<h
e The waves move primarily in one direction

If this is exactly true, it leads to the KdV equation, (4)

If it is approximately true, it can lead to the KP equation, (5)
e All these small effects are comparable in size. For KdV, this means

a=,”;=0<(’;)2> 0

One imposes these assumptions self-consistently on both the velocity poten-
tial, ¢(x,y, z,t), and the location of the free surface, {(z,y,t), in (4). (See
§4.1 of (1), for details.) At leading order (¢ = 0 in a formal expansion), the
waves in question are infinitely long, infinitesimally small, and the motion at
the free surface is exactly one-dimensional. The result (if we also take h =
constant) is the one-dimensional wave equation :

D2¢ = 202¢, with ¢? = gh . (10)
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The general solution of (10) is known. Inserting it back into the expansion for
C(x,y,t;¢e) yields

C(x,y,t;e) = eh[F(x — ctyy,et) + G(x + ctyy, et)] + O(?) (11)

where F' and G are arbitrary functions, determined from given initial data. In
words, (11) says that a signal (F') propagates to the right, and another signal
(G) propagates to the left, both with speed /gh, as predicted by (1). Neither
signal changes shape as it propagates, at this order.

This partial result already provides useful information about the tsunami
of 2004. Let z represent east-west distance from the epicenter of the earth-
quake, with x increasing to the east. Then F' represents the wave that prop-
agated towards Thailand, while G represents the wave that propagated to-
wards India. The initial shape of F' and G were determined by the initial data
from the earthquake, shown approximately in Figure 2. The G-wave, which
propagated towards India, traveled approximately 1500 km cross the Bay of
Bengal in slightly over 2 hours. The west-going G-wave wave had a positive
region (i.e., extra water) in front, with a negative region (a deficit of wa-
ter) behind. As it propagated across the Bay of Bengal, this shape remained
approximately constant according to (11), and as shown in the animation at
http://staff.aist.go.jp/kenji.satake/animation.html. As discussed in Section 2,
the wave changed its shape entirely when it entered the shallow coastal regions
where h changes, and where the assumptions in (9) break down. Even so, the
wave that entered India’s coastal region had a positive wave (i.e., with extra
water) in front, with a negative wave (with a deficit of water) behind. This is
what inundated regions of India experienced. The F-wave, which propagated
towards Thailand, was moving slower, but the distance across the Andaman
Sea was also smaller. It took 1-2 hours to reach land in Thailand. As it trav-
eled, it had a negative wave in front, followed by a positive wave behind. This
is consistent with what inundated regions of Thailand experienced.

Now return to the derivation of (5), the KdV equation, from (4). We may
follow (for example) the F-wave by changing to a coordinate system that
moves with the F-wave, at speed v/gh. Set

€= Vo (a—t/ah) (12)

At leading order, according to (10), F does not change in this coordinate
system, so we may proceed to the next order, O(g?). Now the small effects
that were ignored at leading order (i.e., that the wave amplitude is small but
not infinitesimal, that the wave length is long but not infinitely long, and that
slow transverse variations are allowed) can be observed. Each effect is small,
but over a long distance these small effects can build up, to have a significant
cumulative effect on F. To capture this slow evolution of F', we introduce a

slow time-scale,
€g
=et 13
T=¢ \/h , (13)
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and find that F satisfies approximately the KdV equation,
1
20, F + 3F0:F + 36§F =0, (14)
if the surface waves are strictly one-dimensional, or the KP equation,
1
0¢(20, F + 3FOcF + 3a§F) +0;F =0 (15)

if the surface patterns are weakly two-dimensional. After rescaling the vari-
ables in (14) or (15) to absorb constants, (14) becomes (5), and (15) becomes
(6).

In words, (10) & (11) say that on a short time-scale, the right-going wave
does not change (so 9, F = 0) in the coordinate system given by (12,13). On
a longer time-scale, the KdV equation (14) describes how F' changes slowly,
due to weak nonlinearity (F'0¢F') and weak dispersion (B?F ). Alternatively,
the KP equation (15) allows F' to change because of these two weak effects
and also because of weak two-dimensionality (92 F).

The KdV and KP equations have been derived in many physical con-
texts, and they always have the same physical meaning: on a short time-scale,
the leading-order equation is the one-dimensional, linear wave equation; on a
longer time scale, each of the two free waves that make up the solution of the
1-D wave equation satisfies its own KdV (or KP) equation, so each of the two
waves changes slowly because of the cumulative effect of weak nonlinearity,
weak dispersion and (for KP) weak two-dimensionality.

How does this theory apply to the tsunami of 20047 For the wave that
propagated towards India and Sri Lanka, the two parameters required to be
small are (from (2))

a 1 R\ 2 3\?
= —=3.107¢ = —9.107% .
h = 3000 S 10 (A) <100> 9-10

Both numbers are much smaller than 1, and they are comparable to each
other. In addition, the length scale of the affected seabed in the north-south
direction (900 km) was significantly longer than the wavelength in the east-
west direction (100 km), so the initial wave propagation was approximately
one-dimensional. At leading order, therefore, the 2004 tsunami is a good can-
didate for KAV theory.

But a problem arises at the next order. The KdV equation describes ap-
proximately the dynamics of the propagating wave on a slow time-scale. One
can see from (12,13) that the time required to see KdV dynamics is longer by
a factor of about (i) than a typical time scale for (10). Equivalently, the prop-
agation distance required to see KAV dynamics is approximately (i) longer
than a typical length scale of the problem. The scaling above uses the water
depth, h, as the fundamental length-scale, so the distance required for the
westward propagating wave (which struck India and Sri Lanka) to show KdV
dynamics was about
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h
D~€:3~3000~104km.

But the distance across the Bay of Bengal is nowhere much more than 1500
km, much too short for KdV dynamics to develop. For the eastward propa-
gating wave (which struck Thailand) the wave speed is slower, but the max-
imal distances are also smaller, and the conclusion is the same. For the 2004
tsunami, the propagation distances from the epicenter of the earthquake to
India, Sri Lanka, or Thailand were much too short for KdV dynamics to de-
velop.

This conclusion applies to the 2004 tsunami, and probably to any future
tsunami generated in same geological fault region (near Sumatra, and where
the tectonic plate that contains India is subducting beneath the plate that con-
tains Burma). Even so, during this conference Prof. M. Lakshmanan observed
correctly that the conclusion does not apply to all tsunamis. He pointed out
that the 1960 Chilean earthquake, the largest earthquake ever recorded (mag-
nitude 9.6 on a Richter scale), produced a tsunami that propagated across
the Pacific Ocean. It reached Hawaii after 15 hours, Japan after 22 hours,
and it caused massive destruction in both places. This tsunami propagated
over a long enough distance that KdV dynamics were probably relevant. For
more information about this earthquake and its tsunami, see (13), (14), or
http://neic.usgs.gov/neis/eq depot/world /1960 05 22 tsunami.html.

Why does it matter whether KdV dynamics apply to tsunamis? One ap-
pealing feature of integrable equations, like those in (5)-(8), is that they are
nonlinear partial differential equations that can be solved exactly, as initial-
value problems. (See (1), for details.) For the KdV equation, (14), starting with
arbitrary initial data that are smooth and sufficiently localized in space, the
solution that evolves from these data evolves into a finite number of discrete,
localized, positive waves (called solitons), plus an oscillatory tail. Each soliton
retains its localized identity forever, while the oscillatory tail disperses and
spreads out in space. All solitons travel slightly faster than \/gh, and taller
solitons travel faster than shorter ones. The oscillatory tail travels slightly
slower than v/gh, so after a long time the solution evolves into an ordered set
of solitons, with the tallest in front, followed by an oscillatory tail. The details
of this general picture can be predicted fairly easily from detailed knowledge
of the initial data.

In the early 1970s, Joe Hammack carried out a series of laboratory ex-
periments on the dynamics of long waves in shallow water, and Hammack
& Segur (1974,1978a,b) used his data to test the predictions of KdV theory.
The motivation for their work was closely related to the motivation for this
conference: Can KdV theory be used effectively to predict tsunamis? One of
their conclusions was that KdV dynamics do not occur unless the propagation
distance is long enough, as discussed above. A second major conclusion was
the importance of the wave volume in the initial data, which we discuss next.
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Fig. 5. Schematic diagram of wave maker, used by J.L. Hammack to create waves
in shallow water. See (6) or (7) for more details.

Hammack’s experiments were carried out in a long wave tank. At one end
of the tank was a piston that spanned the width of the tank, as shown in
Figure 5 and as discussed in detail in (6). The piston was programmed to
move up or down in a controlled way, and its vertical motion was intended to
approximate the motion of the ocean floor during a submarine earthquake. If
the piston moved up (or down) quickly enough, then the water surface above
the piston moved up (or down) with it, after which this positive (or negative)
surface wave propagated from one end of the tank to the other. Measuring
probes, positioned at either four or five separate locations along the tank,
measured the shape of the wave as it propagated the length of the tank.

The results of one set of experiments are shown in Figure 6. Each column in
this figure provides information about one of the three experiments in this set.
The top picture in each column shows the time-history of the paddle motion
for that experiment — in the first experiment the paddle was raised smoothly
from one elevation to another. The piston motion was fast enough that the
water above it simply rose along with it, so the shape of the wave observed at
the first measuring station (at x/h = 0 in the first column) is closely related
to the shape of the paddle — approximately a rectangular box. Moving down
the first column, the next picture shows the wave observed at x/h = 20, in
a coordinate system moving with speed \/gh. Equation (10) predicts that
the wave does not change, provided we travel with speed \/gh, and little
or no change is observed over this short distance. Over long distances, KdV
theory predicts that this initially positive wave should evolve into four solitons,
ordered in size, and four solitons are observed at z/h = 400. [Within each wave
record the wave is propagating to the left, so at «/h = 180 or at a/h = 400
the tallest soliton is out in front, as KdV theory predicts.] In this experiment,
the oscillatory tail is very small and barely visible.

Anyone who has experienced a serious earthquake knows that the mono-
tonically rising piston motion shown in the first column is too simple to de-
scribe ground motion during an actual earthquake. So the experiments in the
second and third columns had the same mean piston motion as that in the
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Fig. 6. A set of three experiments, each with net-upward piston motion. The top
figure in each column shows the piston height as a function of time. The four wave
records beneath it show the measured height of the water wave generated by this
piston motion, as it passed four measuring locations along the tank. In the coordi-
nates used here, the wave in each record should be interpreted as a wave moving to
the left. From (7).

first column, but with extra complications. The experiment summarized in
the second column had a somewhat more complicated piston motion, and the
wave observed at z/h = 0 is slightly more complicated than that observed in
the first experiment. At a/h = 20, this slightly more complicated initial wave
had started to change its shape, more than that in the first experiment. By
x/h = 400, however, the leading wave is almost identical to that in the first
experiment.

Looking closely at the regions behind (i.e., to the right of) the lead waves in
these two experiments, one sees more trailing small oscillations in the second
experiment. These extra waves carry the energy from the extra complications
in the piston motion of the second experiment. This effect is even more pro-
nounced in the third experiment.
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The piston motion in the third experiment had the same mean motion
as that in the first experiment, but its overall piston motion was much more
complicated. As a result, the wave measured at x/h = 0 was quite a mess, and
Joe Hammack reported that water was splashing completely out of the tank
at the beginning of this experiment. But the extra complications in the piston
motion can be viewed as higher frequency motion superimposed on the basic
piston motion. The higher frequency piston motion generated higher frequency
water waves, with shorter wavelengths, and these travel slower than +/gh.
Already by x/h = 20 in the third experiment, these additional high-frequency
waves have started to drop behind (i.e., to the right of) the leading wave.
By x/h = 400, the leading wave in each of the three experiments look nearly
identical.

In these three experiments, it is clear that the mean piston motion de-
termined the details of the leading wave. If we view these waves as possible
models of tsunamis, it is clear that the leading wave would cause the most
damage. (9) posed the question: What parameter (or set of parameters) from
the initial wave record (at 2 /h = 0) provides the crucial information about the
leading wave at x/h = 4007 Their analysis identified the wave volume (i.e.,
the area under the curve at 2/h = 0) as an important quantity for predicting
the final state of the wave train, and an estimate of the time scale on which
KdV dynamics become important.

All of the experiments in Figure 6 were initiated by upward (mean) piston
motion, which produced initial wave shapes that were mostly positive, and
led to (positive) solitons. But an earthquake can raise, lower, or leave alone
the elevation of the ocean floor Figure 2 shows that the earthquake that
generated the 2004 tsunami raised the ocean floor west of the epicenter of the
quake and lowered it in the east. Joe Hammack did other experiments to see
what kinds of waves evolved from other kinds of seabed motion. Figure 7 shows
the waves generated by quickly lowering the piston. This experiment can be
viewed as comparable to the first experiment in Figure 6, but turned upside
down, and the wave measured at x/h = 0 here is approximately the shape of
the wave at z/h = 0 in the first column of Figure 6, but turned upside down.
If the wave evolution were linear, then all of the waves measured in Figure 7
should look like the wave measured at the same location in the first column
of Figure 6, but upside down. But the wave evolution in Figure 7 is quite
different from that in Figure 6, showing the importance of nonlinearity in
the waves dynamics. KdV theory predicts that a purely negative initial wave,
like that in Figure 7(a), generates no solitons, so all of the wave energy must
go into the oscillatory tail. Figure 7 shows a typical oscillatory tail. [As in
Figure 6, these wave records were taken in a coordinate system moving with
speed /gh, and the wave in each record is moving to the left.] Figure 7 shows
clearly wave dispersion — the longest waves are in front (i.e., to the left), while
waves with shorter wavelength fall further behind (to the right). Waves of each
wavelength travel with their own group velocity (as shown by the arrows), so
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Fig. 7. An experiment with downward piston motion. The five wave records show
the measured height of the water wave, as it passed five measuring locations along
the tank: (a) z/h = 0; (b) x/h = 50; (c) x/h = 100; (d) =/h = 150; (e) =/h = 200.
From (8).

the entire wave train spreads out in space. Then energy conservation forces
the wave amplitudes to decrease as time goes on.

The largest waves, which would be the most destructive if this were an
actual tsunami, lie at the front (i.e., to the left) of the wave train, so we should
focus our attention on that region of the wavetrain. The first (or leftmost)
wave is negative (i.e., with a lowered water level) because the initial wave
is negative, and this first wave carries the entire wave volume. As the wave
train evolves, the first wave becomes more nearly triangular in shape, and
it keeps the same volume. Immediately behind the first wave, a sequence of
steep oscillatory waves form, and Figure 7 shows that the number of large,
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steep oscillatory waves increases slowly as the wave propagates over longer
and longer distances.

It is important to keep in mind that this wave evolution is well described
by the KdV equation, and it is not necessarily like what occurred the Indian
Ocean in December, 2004. Even so, some qualitative features of these waves
are quite similar to what was reported at various locations in 2004.

Figure 2 shows that the wave that propagated east from the epicenter of
the earthquake in 2004 had the shape of a negative wave followed by a positive
wave. So the leading wave was negative, perhaps like that shown in Figure 7.
Imagine how a small fishing village might have experienced a wave pattern
like this as the wave came ashore. The first thing that would have happened in
this village was that the water level began to drop. Then it continued to drop,
to levels lower than anyone in this village had ever seen. Parts of the coast that
had been underwater as long as anyone could remember were exposed for the
first time, and people rushed to the beach to see this marvel. Then at some
point the water level stopped dropping, and an enormous, very steep wave
rushed in and killed almost all of the people on the beach at that time. At
various locations, people described being inundated by one, or two, or three of
these large, very steep waves after the initial negative wave. Figure 7 suggests
that these apparently conflicting stories might all be correct. At location (c¢) in
Figure 7, there is one large, steep wave following the initial negative wave. At
location (e) there are at least two. The number of very steep waves following
the initial negative wave grows, as the wave propagates over longer and longer
distances.

The waves in Figure 7 might also be relevant for the coastal regions of
India and Sri Lanka. For those places, the first wave that reached shore was
positive, and it flooded entire coastal areas near shore. Then the wave equation
in (10) and the initial data in Figure 2 predict that the positive wave should
have been followed by a large negative wave, which might have evolved in a
way similar to that shown in Figure 7.

The experiments in Figures 6 and 7 demonstrate the importance of the
wave volume in predicting the evolution of long waves in the KdV regime.
They show that the wave volume is especially important in determining the
nature of the leading waves, which are often the largest waves, and the most
damaging. The experiments suggest but do not prove that the wave volume
might also be important in predicting the evolution of tsunamis, even outside
the KdV regime. But one should interpret “wave volume” appropriately. For
initial data like those in Figure 2, relevant for the 2004 tsunami, the water
wave generated by the earthquake was initially positive (i.e., red) to the west
of the epicenter of the quake, and negative (blue) to the east of the epicenter.
In this situation, one should not add the positive volume from the western
portion to the negative volume from the eastern portion and conclude zero
volume overall. Instead, the positive wave to the west and the negative wave to
the east were far enough apart that they never interacted during this tsunami,
so one should consider them as two separate waves, and measure the (positive
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or negative) volume of each. In 2004, the two waves were each destructive,
with no mitigating cancellation.

Finally, let us summarize this section. The Korteweg-de Vries equation,

(5), does not apply to the 2004 tsunami, because the distance across either
the Bay of Bengal (for the westward-propagating wave) or the Andaman Sea
(for the eastward-propagating wave) is not long enough for the small effects
that control KdV dynamics to build up. This conclusion applies as well to
the models in (6), (7) or (8). A realistic description of the evolution the 2004
tsunami as it it propagated across the Indian Ocean is the following.

Tsunamis are caused by submarine earthquakes or landslides, which pro-
vide the initial disturbance in the height of the oceans surface. For short
times after that initial disturbance, the motion of the tsunami is governed
by a linear wave equation, like that in (10). (A more realistic model would
be a linear wave equation with variable water depth, as discussed below in

Section 4.) After the earthquake creates the disturbance, the linear wave

equation splits that disturbance into two sets of waves, propagating in

different directions.

A linear wave-equation model like (10) can break down for two quite dif-

ferent reasons.

— The wave equation applies over short distances, but over long distances
small effects can build up and create cumulative effects. The KAV equa-
tion, (14), describes this kind of cumulative effect.

— The wave equation applies as long as the assumptions in (9) are sat-
isfied. When one or both of these assumptions breaks down, then the
linear wave equation is no longer the correct equation.

For the tsunami of 2004, the propagation distance across the Indian Ocean
was too short for KdV dynamics to become relevant. A linear wave-
equation model described the propagation of the tsunami clear across the
Indian Ocean, until it entered shallower coastal regions. As discussed in
Section 2, as h decreases in coastal regions, wavelengths become shorter,
wave amplitudes become larger, so (9) fails. How the wave changes its
shape in the region near shore is important, but it is not described by
either (10) or (14).
Laboratory experiments in the KdV regime show the importance of the
wave volume in determining how the wave evolves. The wave volume deter-
mines the time-scale over which the linear wave-equation model applies,
and it also determines the shape of the leading wave as it evolves. The
leading waves of a wave train are often the most destructive, so measuring
the wave volume of the initial wave provides crucial information for wave
evolution, in the KdV regime. This argument suggests but does not prove
that the wave volume would also be an important quantity for tsunamis
like that in 2004, which lay outside the KdV regime.
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4 How well can we predict tsunamis?

After the destructive tsunami of 2004, several governments around the In-
dian Ocean began planning an early warning system for tsunamis in the In-
dian Ocean. (See http://ioc3.unesco.org/indotsunami/) The system would be
comparable to the Tsunami Warning System that has operated in the Pa-
cific Ocean for more than forty years. This final section considers some of the
questions that might be important in designing such a system. Where in the
Indian Ocean are tsunamis likely to originate? What information about the
origin of a tsunami is essential for predicting its propagation and evolution?
What kind of theoretical model is effective in predicting the propagation of
a tsunami in the open ocean? As discussed above, tsunamis behave one way
away from shore, and quite differently near shore. What kind of theoretical
model is effective for predicting the dynamics of a tsunami near shore? How
should the information be disseminated?

In designing an early warning system, it is important to realize that the
warnings issued must be reliable and accurate, and also that the warnings
must be issued early enough to be effective. These two objectives (reliable
accuracy vs. speed) can compete with each other. An important part of the
design of a warning system is to decide when to sacrifice speed for the sake of
greater accuracy, or to accept a less accurate prediction that can be obtained
sooner.

Next we consider separately three pieces of this warning system, dealing
with the source of the tsunami, its propagation in the open ocean, and its
propagation near shore.

4.1 The source of the tsunami

Consider first the source of the disturbance that generates a tsunami. As
discussed above, a tsunami is a very long wavelength wave, generated by an
underwater earthquake or landslide. Tsunamis should be distinguished from
other very long waves, including tides, and storm surges that often accompany
hurricanes or tropical cyclones. The storm surge that struck New Orleans (in
the US) in August 2005 demonstrated how destructive a storm surge can
be, but both storm surges and tides can be predicted by other means. We
concentrate here on underwater earthquakes, including the one that generated
the tsunami of 2004.

Almost all large earthquakes occur at the boundary of tectonic plates,
where one plate is sliding over, under, or past another. Seismologists clas-
sify earthquakes into three types of faults, depending on how the rela-
tive motion of adjacent plates affects the shape of the solid earth. (See
http://www.abag.ca.gov /bayarea/eqmaps/fixit /ch2/s1d001.htm for more in-
formation about many of the assertions made in this subsection. And see
articles in a special issue of Science, 308, pp. 1125-1146, 2005 for detailed
information about the earthquake that generated the tsunami of 2004. )
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In a thrust fault, one tectonic plate moves up and over an adjacent plate.
In a normal fault, one plate moves down relative to an adjacent plate.
In a strike-slip fault, two plates slide past each other horizontally, with
neither plate being raised or lowered significantly.

e Reverse normal faults and thrust faults are closely related. We do not
distinguish between them here.

In terms of tsunami generation, a thrust fault raises the floor of the ocean,
which in turn raises the water above it, and creates a positive water wave
(with extra water in the region above the fault). A normal fault lowers the
floor of the ocean, so it creates a negative water wave above it (with a “hole”
in the water surface above the fault). Strike-slip faults do not change the shape
of the ocean floor, and they do not generate tsunamis. Thus, the magnitude
of an earthquake (in terms of a reading on a Richter scale) by itself does
not determine whether that earthquake will generate a significant tsunami —
the kind of fault is also important. The earthquake of December 2004 was a
combination of thrust fault and normal fault, and both parts contributed to
the tsunami.

Knowing that large earthquakes occur at the boundaries of the earth’s tec-
tonic plates simplifies immensely the problem of locating possible sources of
tsunamis, because the approximate shape and location of the earth’s tectonic
plates are known. (For a map, see
http://www.abag.ca.gov /bayarea/eqmaps/fixit/ch2/s1d005.htm.) In fact, the
problem is even simpler, because the history of any particular earthquake
zone shows what kind of faults occur there. For example, the most famous
earthquake fault line in the US is the San Andreas fault line. Its earthquakes
are invariably strike-slip faults, so even if this fault line were under water, it
would not generate tsunamis. In contrast, the earthquake of December 2004
occurred where the tectonic plate that contains India is sliding under the plate
that contains Burma (Myanmar). Earthquakes along this fault line often oc-
cur as thrust faults, as normal faults or as combinations of these, so we can
expect more tsunamis from future earthquakes along this boundary.

Once a submarine earthquake occurs, essential information for a tsunami
warning system includes: When did the earthquake occur? Where did it occur?
What information about the details of the fault are available? (As discussed
in Section 3, the wave volume is an important piece of this detailed informa-
tion.) The earthquake generates a variety of seismic waves that travel through
the solid earth. Among these seismic waves, different kinds of waves travel at
different speeds. By identifying when each kind of seismic wave reached var-
ious measuring stations around the world, seismologists can deduce when an
earthquake occurred, where its epicenter was (on the surface of the earth), and
how deep below the surface was its hypocenter. This information can be ob-
tained and processed within a few minutes of the earthquake, and it provides
accurate information about when and where the earthquake occurred.
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In this discussion, please keep in mind the relevant times for the 2004
tsunami. It reached Bandeh Aceh a few minutes after the earthquake began,
it reached parts of Thailand after about an hour, and it reached most of the
eastern coast of India in about two hours. An effective warning system must
be able to provide sensible warnings faster than these times to be useful.

For tsunami prediction, the most important questions about an earthquake
are: { When? Where? What wave volume?}. The time required to answer these
questions can be reduced by installing measuring devices near known fault
lines in the Indian Ocean. The earthquakes of most interest are strong, and a
very strong earthquake will probably destroy some of these instruments. Even
so, if enough instruments have been installed and if they are spaced appro-
priately, then some will survive, and the remaining instruments can provide
information about the details of the quake sooner than other instruments fur-
ther away. Spending extra money here, to install good instrumentation closer
to the epicenter of the quake, could save many lives.

4.2 Tsunami propagation in the open ocean

As discussed in Section 3, the propagation of a tsunami far from shore is
described approximately by a linear wave equation. If we relax two assump-
tions: (i) that the ocean depth, h(x,y), is constant and (ii) that the surface
motion is one-dimensional (so the fluid motion is two-dimensional), then (10)
is replaced by

( .
Oy (- h) + 20, =0, (16)
=0

where
=g-hiz,y),

x,y are orthogonal horizontal coordinates, u(z,y,t), v(x,y,t) are the compo-
nents of horizontal velocity in the z- and y-directions, g represents gravity,
and ((x,y,t) is the height of the free surface above the still-water level. [If
the surface motion happens to be one-dimensional, then set v = 0 in (16a),
and ignore (16¢).] Equations (16) can be combined into a single, equivalent
equation:

07¢ = 0 (g - M(x,)0:C) + By (g - Mz, )9yC) (17)

This is the two-dimensional, linear wave equation, with a spatially variable
speed of propagation. [It describes fluid motion in three dimensions, but there
is no appreciable vertical motion for these very long waves.] Once h(x,y) is
known, then (17) determines ((x,y,t) in terms of given initial conditions,
¢(x,y,0),0:¢(x,y,0) and boundary conditions. [For an isolated earthquake,
sensible boundary conditions would be v = 0,v = 0, h = 0 far from the loca-
tion of the earthquake.] Equation (17) can be solved numerically by a variety
of means, including Clawpack (http://www.amath.washington.edu/ claw/).
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But independent of any numerical procedure, some conclusions can be drawn
directly from the structure of these equations.

One important conclusion is that (16) conserves the total wave volume of
the initial conditions. This can be seen by integrating (16a) over space, and
using the boundary information that u, v, h all vanish at large distances:

jt//g(x,y,t) ~dzdy =0 . (18)

Thus, the total wave volume is a constant of the motion, so it is important
to obtain a good estimate of it from initial seismic data. [This point deserves
some emphasis. Equation (18) shows that the total wave volume is conserved
by (16). Independently, the measured wave records in Figures 6 and 7 show
that the wave volume determines the shape of the leading part of the wave,
regardless of other details of the initial data, at least for waves that propagate
in the KdV regime. These two facts, taken together, emphasize the importance
of determining the wave volume from the initial seismic readings, even if other
details of the initial shape of the wave are not known as well.]

A second important conclusion is that any solution of (17) propagates with
(variable) local speed

c=1/g-h(z,y) . (19)

Without even solving (15), one can determine the time required for a wave
that starts at the epicenter of the earthquake to reach any particular coastal
region. Simply draw a curve from the given starting point to the identified
coastal region. Let s represent arclength along this curve. Then the total time
for a wave to propagate the length of this chosen curve is

s
T= / ds . (20)
o Vgh(x(s),y(s))
To obtain the shortest time for any wave that started at the epicenter of
the quake to reach the identified coastal region, find the minimum T over
all possible paths. [Because h(z,y) is not constant, the shortest time may
or may not correspond to the shortest distance.] To obtain the shortest time
for a wave, starting anywhere in the earthquake region, to reach this coastal
region, repeat this calculation, starting at all places where the earthquake
created an initial disturbance. For the 2004 tsunami, the earthquake itself
spread northward over about 900 km from its original epicenter, so there were
many starting points for this calculation.

For a tsunami warning system, the time at which waves will first arrive at a
given coastal region is one of the most important pieces of information needed.
These times can be obtained from (20), as described above. But they can also
be obtained by solving either (16) or (17) numerically. It is not necessary to
do both.

A third conclusion that follows from (16) is that waves can diffract around
objects, and do serious damage even to coastlines that face away from the
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epicenter of the earthquake. See http://www.agu.org/eos elec.000929e2.html
for observations of Chris Chapman, a geologist who experienced the diffracted
tsunami on the western coast of Sri Lanka. Again, the time required for a
wave to propagate from the source region of the earthquake to a location (like
the western coast of Sri Lanka) that does not face the source region can be
obtained from (20), using paths that curve around Sri Lanka. Or, one can
obtain the same information by solving (16) or (17) numerically.

Finally, it is important not to ask too much of (16) or (17). Recall the two
assumptions underlying both (16) and (17): (i) long waves — wavelengths are
much longer than the fluid depth; and (ii) small amplitude — wave amplitudes
are much smaller than the fluid depth. But as argued in Section 2, as a long
wave of small amplitude approaches the shoreline, the fluid depth decreases
(to h = 0 at the shoreline), which makes wavelengths shorten, which makes
wave amplitudes grow, which eventually guarantees that the assumptions un-
derlying the model break down. As a result, predictions from (16) or (17) of
wave evolution near shore are almost certainly wrong. We discuss next what
happens near shore, where (16) and (17) fail.

4.3 Tsunami evolution near shore

To see exactly how the assumptions underlying (16) and (17) fail near shore,
we can consider a special case of bottom topography. For simplicity, assume
that there are no variations in y, so v = 0, 9, = 01in (16) and (17). In addition,
assume a simple form for the bottom topography:

h(z) = H(const.) L < x
h(z) = sx 0<z<L,

where s = H/L, as shown in Figure 8. As a result, (17) takes the form

07¢ = (gH )93, for L <, (21)
02C =0y(gs-x-0,¢), for0O<z<L. (22)

Matching conditions at x = L are that both ¢ and 0,( are continuous there.

i = H
x=1I
x=0

Fig. 8. Cartoon of a model ocean, with uniform depth H in the open ocean (z > L),
and a uniformly sloping bottom in the coastal region (0 < z < L).
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The detailed calculation for this model is carried out in the Appendix. [Or
see §2.2 of (10).] One sees from the calculation that as an oscillatory wave
approaches the shoreline, its wavelength necessarily shortens, and its ampli-
tude grows. Both features support the assertions made in Section 2. In fact,
the linear model in (22) becomes quite unphysical near z = 0, because wave
amplitudes becomes infinite there, showing that nonlinear terms necessarily
become important near shore.

Many researchers have used a nonlinear, long wave model ( “the shallow wa-
ter equations”) to describe wave dynamics near shore. (See
(4), (5), and the references cited therein.) Tsunami evolution is vitally impor-
tant near shore, where the waves are dangerous and destructive. And details of
this wave evolution matter — the tsunami of 2004 completely destroyed some
locations, while it spared other locations a few kilometers away. Such large
variations in wave inundation must be due to variations in the bottom topog-
raphy offshore, which steered the tsunami away from one location and towards
another. Thus, several effects that are negligible in the open ocean become
crucial near shore, including details of the bottom topography, nonlinear wave
interactions, wave breaking, energy dissipation, and return flow.

Accurate computations of this flow near shore will necessarily be com-
plicated, and costly in terms of computing time. But time is precious for a
tsunami warning system, which cannot afford to wait for these necessarily de-
tailed calculations of wave dynamics near shore. Here the conflicting objectives
of reliable accuracy and speed clash.

There is a possible way around this clash of objectives. Split the process of
predicting tsunamis into two parts: one part must be done quickly, in response
to a particular earthquake that might (or might not) generate a tsunami; the
other part can be done slowly and carefully, to obtain answers that are very
reliable, but are not carried out in response to a specific tsunami.

a) The tsunami warning system should be designed to predict accurately
when a tsunami will approach a coastal region. It should not be responsible
for predicting how the tsunami behaves in shallow coastal waters. If the sys-
tem is only responsible for predicting when the tsunami will approach a given
coastal region, then the necessary calculations for that prediction are fairly
simple, so they can be carried out quickly and broadcast in time to move
people to safe locations.

b) Separately, much more complicated computer simulations can be carried
out to analyze wave dynamics in each particular coastal region. The appropri-
ate numerical models for these simulations need to include the specific bottom
topography for that region, nonlinear wave interactions, wave breaking, en-
ergy dissipation, and any other effects that might be important to that region.
The incoming waves for these simulations can be parameterized, so the anal-
ysis for each coastal region will demonstrate how that region responds to a
variety of possible incoming tsunamis — coming from different directions, car-
rying different wave volumes, with different combinations of wavelength and
wave amplitude.
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Once the detailed study of a specific coastal region has been completed,
then the information from that study can be used to improve local zoning
laws and building codes. Does the shape of the bottom topography offshore
in this region always funnel tsunamis into specific places and away from other
places? If so, then buildings can be approved in some regions and not in others.
Perhaps mangroves could be planted in the most at-risk places, to absorb some
of the incoming tsunami. Or, the buildings in the at-risk areas could be built
far enough back from the shoreline that they would not be inundated by a
tsunami. Or, if buildings must be built in at-risk areas, then building codes
could require that buildings in these at-risk locations be able to withstand
tsunamis. Many options can be pursued here, depending on details for each
coastal region. The main point is to realize that these studies of local coastal
regions can be carried out carefully and deliberately, independent of specific
tsunami warnings.

Finally, a local analysis like this is especially important for a place like
Bandeh Aceh, which was inundated almost immediately after the earthquake.
Perhaps a tsunami warning system will never be effective for a coastal region
very close to the epicenter of an earthquake, because the time between the
earthquake and the resulting tsunami is too short. But these places can be
identified now, when there is no immediate danger, by comparing a map of
earthquake fault lines with a map of the shoreline. Warning systems might
not help these places, because there is not enough time to generate a reliable
warning, but strict zoning laws and building codes might do wonders.
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Appendix: A linear model for waves on a sloping beach

Equation (21) is a special case of (10), so its general solution is given by (11),

C(z,t) = eh[F(z — t\/gH) + G(z + t\/gH)], L < z ,

where F' and G are arbitrary functions. If x = 0 represents the shoreline in
India, then G represents the (known) incoming tsunami, and F represents
the (unknown) reflected wave. Because G represents the tsunami in the open
ocean, then necessarily G vanishes outside a finite region, and G consists of
only long waves (i.e., long compared to H) inside this finite region.

Equation (22) has constant coefficients in ¢, so we may represent its solu-
tion in terms of a Fourier transform

(o) = / et () (23)

— 0o

Then (22) reduces to an ordinary differential equation in z for ¢(z,w). Change
variables: define
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x—ﬂﬂ¢x,mﬂ&%@%w)RM- (24)
gs
Then the differential equation for ¢(x) is
d>¢  1d¢ .
=0. 25
it yay TS (25)

This is the equation for a Bessel function of order 0, so its general solution is
a linear combination of two Bessel functions,

C(x;a,b) =a-Jo(x)+b-Yo(x) -

Substituting this back into (23) yields the form of the general solution of
(19b):
)= [ @) + bVl (20)

with x given in (21). The coefficients, a(w), b(w), must be found by matching
at x = L.

Fig. 9. Two linearly independent solutions of (22): Jo(x) and Yo (x).

Figure 9 shows a plot of the two Bessel functions in (26). Both oscillate
for large values of x; one can show that as x — oo, the period of oscillation
approaches a constant, for either Bessel function. But x , defined in (24), is
not the physical length. When Figure 9 is replotted in terms of x, we obtain
Figure 10. This plot shows clearly that as each wave (with fixed temporal
frequency, w) approaches shore (at @ = 0), the distance between successive
zeroes decreases. In other words, wavelengths get shorter as a wave approaches
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Fig. 10. The same two solutions of (22), but plotted in terms of horizontal distance,
x, with g,w, s all fixed.

shore. This confirms what was asserted in Section 2, but from a different
argument.

Either Figure 9 or 10 also shows that as x — 0, Jo(x) — 1, while Yj(x)
becomes infinite. Thus, unless the matching condition at x = L miraculously
assures that b(w) = 0 for all w, then (26) virtually guarantees that ((z,t)
blows up as x — 0. This does not imply that the water surface becomes
infinitely high there, but only that the linear model necessarily breaks down
near shore, where nonlinear terms become important.
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Summary. In this article we present a brief overview of the nature of localized
solitary wave structures/solutions underlying integrable nonlinear dispersive wave
equations with specific reference to shallow water wave propagation and explore their
possible connections to tsunami waves. In particular, we will discuss the derivation of
Korteweg-de Vries family of soliton equations in unidirectional wave propagation in
shallow waters and their integrability properties and the nature of soliton collisions.

1 Introduction

The term 'tsunami’ which was perhaps an unknown word even for scientists in coun-
tries such as India, Srilanka, Thailand, etc. till recently has become a house-hold
word since that fateful morning of December 26, 2004. When a powerful earthquake
of magnitude 9.1-9.3 on the Richter scale, epicentered off the coast of Sumatra, In-
donesia, struck at 07:58:53 local time described as the 2004 Indian Ocean earthquake

or Sumatra-Andaman earthquake it triggered a series of devastating tsunamis as
high as 30 meteres that spread throughout the Indian Ocean killing about 2,75,000
people and inundating coastal communities across South and Southeat Asia, includ-
ing parts of Indonesia, Srilanka, India and Thailand and even reaching as far as the
east coast of Africa. The catastrophe is considered to be one of the deadliest diasters
in modern history (see Figs. 1 and 2 for some details ') (1; 2).

Since this earthquake and consequent tsunamis, several other earthquakes of
smaller and larger magnitudes keep occurring off the coast of Indonesia. Even as
late as July 17, 2006 an earthquake of magnitude 7.7 on the Richter scale struck off
the town of Pangadaran at 15.19 local time and set off a tsunami of 2m high which
had killed more than 300 people.

These tsunamis, which can become monstrous tidal waves when they approach
coastline, are essentially triggered due to the sudden vertical rise of the seabed by
several meters (when earthquake occurs) which displaces massive volume of water.

! Fig. 1 http:// www.blogaid.org.uk
Fig. 2a) http:// www.hinduonnet.com/gallery/0071/007108.htm
Fig. 2b) http:// www.bhoomikaindia.org
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Fig. 1. December 2004 Tsunami in Indian Ocean

P

Fig. 2. (a) Thiruvalluvar statue in Kanyakumari (in the southern tip of peninsular
Indla), helght 133ft (b) Tsunami waves rising near the statue on December 26, 2004
(to almost its top)

The tsunamis behave very differently in deep water than in shallow water as pointed
out below. By no means the tsunami of 2004 and later ones are exceptional; More
than two hundred tsunamis have been recorded in scientific literature since ancient
times. The most notable earlier one is the tsunami triggered by the powerful earth-
quake ( 9.3 magnitude) off southern Chile on May 22, 1960 (3); Fifteen hours after
the devastating earthquake, the tsunami hit Hawai (namely 10,000 kms away from
the epicenter of earthquake), killing 61 people. Seven hours later, the Japanese is-
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lands of Honshu and Hokkaido were struck by a wall of water 21-feet high and 197
people drowned.

It is clear from the above events that the tsunami waves are fairly permanent
and powerful waves, having the capacity to travel extraordinary distances without
practically diminishing in size or speed. In this sense they seem to have considerable
resemblance to shallow water nonlinear dispersive waves, particularly solitary waves
and solitons. In particular, the Kortweg-de Vries family of nonlinear dispersive wave
equations admit such solitary waves and solitons and describe unidirectional wave
propagation in shallow waters, and it is appropriate to critically review the derivation
of KAV and related equations. We will also briefly mention the nature of the solitary
wave and soliton solutions and other integrability properties associated with KdV
family of equations, including variable KdV and recently derived Camassa-Holm
equation. Possible two dimensional generalizations will be also briefly touched.

The plan of the article is as follows. In sec.2, we will summarize the characteristic
properties of tsunami waves. In sec.3, we will critically analyse how the Korteweg-de
Vries equation was originally derived to describe the Scott-Russel phenomenon to
describe shallow water wave propagation. In sec.4, we will discuss the properties
of solitary waves and soliton solutions of the KdV equation. We will also briefly
touch upon the complete integrability properties of the KdV equation. In sec.5,
other interesting KdV type dispersive wave equations will be discussed. Finally, we
summarize the discussion in sec.6.

2 Basics of Tsunami Waves

As noted above tsunami (tsu: harbour, nami: wave) waves of the type described ear-
lier are essentially triggered by massive earthquakes which lead to vertical displace-
ment of a large volume of water. Other possible reasons also exist for the formation
and propagation of tsunami waves: underwater nuclear explosion, larger meteorites
falling into the sea, volcano explosions, rockslides, etc. But the most predominanat
cause of tsunamis appear to be large earthquakes as in the case of the Sumatra-
Andaman earthquake of 2004. Then there are three major aspects associated with
the tsunami dynamics:

1. Generation of tsunamis
2. Propagation of tsunamis
3. Tsunami run up and inundation

There exist rather successful models to approach the generation aspects of tsunamis
when they occur due to the earthquakes (4). Using the available seismic data it
is possible to reconstruct the permanent deformation of the sea bottom due to
earthquakes and simple models have been developed (see for example, the article of
F. Dias in this volume). Similarly the tsunami run up and unundation problems are
extremely complex and they require detailed critical study from a practical point of
view in order to save structures and lives when a tsunami strikes.

However, in this article we will be more concerned with the propagation of
tsunami waves and their possible relation to wave propagation associated with non-
linear dispersive waves in shallow waters. In order to appreciate such a possible
connection, we first look at the typical characteristic properties of tsunami waves as
in the case of 2004 Indian Ocean tsunami waves or 1960 Chilean tsunamis.
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Considering the Indian Ocean 2004 tsunami, satellite observations after a couple
of hours after the earthquake establish an amplitude of approximately 60 cms in the
open ocean for the waves. The estimated typical wavelength is about 200 kms (5).
The maximum water depth h is between 1 and 4 kms.

Consequently, one can identify the following small parameters (e and 62) of
roughly equal magnitude:

€= Z ~107 << 1, (1)
5:};w10*2 <<1 (2)

As a consequence, it is possible that a nonlinear shallow water wave theory
where dispersion also plays an important role has some relevance. However, we
also wish to point out here that there are other points of view: Constantin and
Johnson (6) estimate € ~ 0.002 and 6 ~ 0.04 and conclude that for both nonlinearity

and dispersion to become significant the quantity Se 3 Xwavelength estimated as
90,000 kms is too large and shallow water equations with variable depth (without
dispersion) should be used. However, it appears that these estimates can vary over a
rather wide range and with suitable estimates it is possible that the range of 10,000
— 20,000 kms could be also possible ranges and hence taking into account the fact
that both the Indian Ocean 2004 and Chilean 1960 tsunamis have travelled over 10
hours or more before encountering land mass appears to allow for the possibility of
nonlinear dispersive waves as relevant features for the phenomena.

From this point of view in the next section we discuss the shallow water wave
theory to deduce KdV equation.

3 Scott Russel Phenomenon and KdV Equation

It is a folklore that the first scientificaly recorded observation of a solitary wave was
made by the Scottish naval engineer John Scott Russel in the year 1837 (7) when he
identified a large solitary heap of water travelling with undiminished speed or shape
over a distance in the Union Canal connecting the cities of Edinburg and Glasgow in
Scotland. He went on to repeat the phenomenon at the laboratory in a rectangular
channel of water by dropping wieghts at one end. By measuring the velocity and
height of the wave he also established a phenomenological relation connecting these
quantities which has stood the test of time.

In 1895, Kortweg and de Vries (8) considered the wave phenomenon underlying
the observations of Scott Russel, from first principles of fluid dynamics. The basic
features of their analysis can be summarized as follows (9; 10).

Consider the one-dimensional (z-direction) wave motion of an incompressible
and inviscid fluid (water) in a shallow channel of height h, and of sufficient width with
uniform cross-section leading to the formation of a solitary wave propagating under
gravity. Let the length of the wave be [ and the maximum value of its amplitude,
n(z,t), above the horizontal surface be a (see Fig.3). Then we can introduce two
natural small parameters into the problem e and ¢ as defined in Egs. (1) and (2).
Then we can proceed with the analysis as follows.
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y Bed
0 — X

Fig. 3. One-dimensional wave motion in a shallow channel

A. Equation of Motion
The fluid motion can be described by the velocity vector
Vi(z,y,t) = u(z,y, )i+ v(z,y,1)j , 3)

where i and j are the unit vectors along the horizontal and vertical directions,
respectively. As the motion is irrotational, we have

VxV=0. (4)
Consequently, we can introduce the velocity potential ¢(z,y,t) by the relation

V=Vo¢. (5)

(i) Conservation of Density

The system obviously admits the following conservation law for the mass density
p(z, y, t) of the fluid,
dp
dt
where V(z,y,t) is the velocity vector of the fluid. As p is a constant, from (6) we
have

=p+V-(pV)=0, (6)

V.V=0. (7)
Then using (5) in (7), we find that ¢ obeys the Laplace equation

v2¢(xvy7t) =0. (8)
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(ii) Euler’s Equation

As the density of the fluid p = pg =constant, using Newton’s law for the rate of
change of momentum, we can write

dv Vv
&= TVVV
1
=~ " Vp-—gj, 9
oo VP (9)

where p = p(z,y,t) is the pressure at the point (z,y) and g is the acceleration due
to gravity, which is acting vertically downwards (here j is the unit vector along the
vertical direction). Making use of (5) in (9), we obtain (after one integration)

bt (V) + T hgy=0. (10)
po

(iii) Boundary Conditions

The above two equations (8) and (9) or (10) for the velocity potential ¢(x,y,t) of
the fluid have to be supplemented by appropriate boundary conditions, by taking
into account the fact (see Fig.2) that

(a) the horizontal bed at y = 0 is hard and
(b) the upper boundary y = y(x,t) is a free surface .

As a result
(a) the vertical velocity at y = 0 vanishes,

v(z,0,t) =0, (11)
which implies (using (3) and (5))
¢Z’J(x507 t) =0. (12)

(b) As the upper boundary is free, let us specify it by y = h + n(x,t) (see Fig.2).
Then at the point z = z1, y = y1 = y(=,t), we can write

dy: 877+ on . dxq

S T R (13)

Since v1 = @1y, U1 = @1z, the last two parts of (13) can be rewritten as
1y =Nt + NaPia - (14)
(c) Similarly at y = y1, the pressure p1 = 0. Then from (10), it follows that
Uit + ULU1e + V1012 + gNe = 0 . (15)

Thus the motion of the surface of water wave is essentially specified by the
Laplace equation (8) and (10) along with one fixed boundary condition (12) and
two variable nonlinear boundary conditions (14) and (15). One has to then solve
the Laplace equation subject to these boundary conditions.
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(iv) Taylor Expansion of ¢(xz,y,t) iny

Making use of the fact § = h/l < 1, h < I, we assume y(= h + n(z,t)) to be small
to introduce the Taylor expansion

z,y,t Zy bn(x,1t) . (16)

Substituting the above series for ¢ into the Laplace equation (8), solving recursively
for ¢n(z,t)’s and making use of the boundary condition (14), ¢y(z,0,t) = 0, one
can show that

U = P1p = f — ;y%faca: + higher order in ¥ , (17)
1 . .
v1 = ¢1y = —Y1fz + Gyffmx + higher order in y; , (18)

where f = O¢o/0z. We can then substitute these expressions into the nonlinear
boundary conditions (13),(14) and (15) to obtain equations for f and 7.

(v) Introduction of Small Parameters € and §

So far the analysis has not taken into account fully the shallow nature of the channel
(a/h = € < 1) and the solitary nature of the wave (a/l =a/h-h/l = ed < 1, e K 1,
0 < 1), which are essential to realize the Scott Russel phenomenon. For this purpose
we stretch the independent and dependent variables in the defining (13)—(15), (17)
and (18) through appropriate scale changes, but retaining the overall form of the
equations. To realize this we can introduce the natural scale changes

x=lz', np=an (19)

along with

t= 't 20
(20)

where ¢ is a parameter to be determined. Then in order to retain the form of (17),
(18) we require
uy = ecouy , v =edcovy, f=cecof . (21)

We also have
1 =h+n(z,t)=h(1+en (2/,1)) . (22)
Substituting the transformations (19)—(22) into (17), we obtain

’ / 1 ’ /
Uy :f — 262 (1+67’] )2faf’x’
’ 1 ’
= f - 262fac’ac’ ) (23)

where we have omitted terms proportional to 6%¢ as small compared to terms of the
order 2. Similarly from (18), we obtain

1
’Ui = — (1 + 677l) f;/ + 662]8;/1/1/ . (24)
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Now considering the nonlinear boundary condition (14) in the form
V1 =Mt + Nzl , (25)

it can be rewritten, after making use of the transformations (19)—(22) and neglecting
terms involving ed?, as

1
M+ far +en' for +€f mh — 662f;’x’x’ =0. (26)

Similarly considering the other boundary condition (16) and making use of the above
transformations, it can be rewritten, after neglecting terms of the order €262, as

1
fotef for+ 9oml — 6 frrp = 0. (27)
€cj 2

Now choosing the arbitrary parameter co as
e = gh (28)

so that n}, term is of order unity, (27) becomes

1
ft” =+ 7];/ + Ef’fa’c’ - 2(52_}‘;/%%/ =0. (29)

For notational convenience we will hereafter omit the prime symbol in all the vari-
ables, however remembering that all the variables hereafter correspond to rescaled
quantities. Then the evolution equation for the amplitude of the wave and the func-
tion related to the velocity potential reads

1
7]t+fx+€nfx+€f77x_652fxaca: :07 (30)
1
ft+nx+€ffx_262faca:t:0- (31)
Note that the small parameters ¢ and 62 have occurred in a natural way in (30),
(31).
(vi) Perturbation Analysis

Since the parameters € and § are small in (30), (31), we can make a perturbation
expansion of f in these parameters:

f= f(o) + 6f(1) + 52f(2) + higher order terms , (32)

where f, i =0,1,2,... are functions of n and its spatial derivatives. Substituting
this into (30), (31) and regrouping, we obtain

1
mot 1 e [0 nf @) 4821 ]
+ higher order terms in (¢,6°) =0, (33)
1
ne 4 10+ e [0+ 1O L] 487 [ff’” - 2f£82t]

+ higher order terms in (¢,6%) =0 . (34)
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In order that (33) and (34) are self consistent as evolution equations for an
one-dimensional wave propagating to the right, we can choose

fO =n+0/(8%) , (35)

where O(e, §%) stands for terms proportional to ¢ and §%. Then (33), (34) become
1
1

where higher order terms in € and 62 are neglected. Since f) and f® are functions
of n (and its spatial derivatives)

O = (O 5O = 0=~ 40 (€)==, (39)

where in the last relation, (33), (34) have been used for 7: and 7,. Similarly, we can
argue that

P = (O, 1O =P +0(e,8%) = -2, (39)

Substituting (38), (39) into (36), (37) , we obtain

1
1
Ne+ 1z + e[ [ + ] + 6 {fff’ + 277111} =0. (41)
Compeatibility of these two equations require that
1 1
2=, [ = e (42)
Integrating, we find
1 1
w__12 @ _ 4
f G NEE (43)

Substituting f® and f® into (40), (41) , we ultimately obtain the KdV equation

in the form )

3 13
25777796 + 6 Nexzx = 0, (44)

describing the unidirectional propagation of shallow water waves.

77t+77x+

(vii) The Standard (Contemporary) Form of KdV Equation
Finally, changing to a moving frame of reference,
E=x—t, T=t (45)

so that
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(44) can be rewritten as

3 1
enne + 65277555 =0. (47)

e

Then introducing the new variables

3¢ = 6 T, (48)

U= gg2™ 52

(47) can be expressed as

U + 6ute + ugee =0 . (49)
Redefining the variables 7/ as t and £ as x, again for notational convenience, we
finally arrive at the ubiquitous form of the KdV equation as

us + 6uUs + Ugaz =0 . (50)

4 Solitary Wave, Solitons and Complete Integrability of
KdV equation

The Korteweg-de Vries equation (50) admits cnoidal wave solution and in the limit-
ing case solitary wave solution as well. More importantly, the KdV solitary wave is
a soliton : it retains its shape and speed upon collision with another solitary wave
of different amplitude, except for a phase shift (11). In fact for an arbitrary initial
condition, the solution of the Cauchy initial value problem consists of N-number
of solitons of different amplitudes in the background of small amplitude dispersive
waves. All these results ultimately lead to the result that the KdV equation is a
completely integrable, infinite dimensional, nonlinear Hamiltonian system. It pos-
sesses

(i) a Lax pair of linear differential operators and is solvable through the so called
inverse scattering transform (IST) method (12),

(ii) infinite number of conservation laws and associated infinite number of involutive
integrals of motion

(iii) N-soliton solution

(iv)Hirota bilinear form

(v) Hamiltonian structure

and a host of other interesting properties (see for example (9; 10)). We will very
briefly consider some of these properties.

4.1 Korteweg—de Vries Equation and the Solitary Waves and
Cnoidal Waves

Let us look for elementary wave solutions of (50) in the form

u=2f(x —ct) (51)
—2f(6), E=a—ct. (52)

Then the KdV equation reduces to an ordinary differential equation of the form
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—cfe+6(f7) + fee =0 (53)

Integrating twice the above equation, the solution of can be expressed in terms of
Jacobian elliptic function as

f&) = f(x—ct) =az — (az — ozz)sn2 [\/ag — o1 (x —ct) ,m] , (54)

where

2 Q3 — @2

(a1 +az +as) = (55)

(&
47 053—051‘

Here a1, as and ag are related to the three integration constants. Equations (54),
(55) represent in fact the so-called cnoidal wave for obvious reasons.

Special Cases:
(i) m = 0: Harmonic wave

When m =~ 0, (54) leads to elementary progressing harmonic wave solutions. This
can be verified by taking the limit m — 0 in (54), (55).

(ii) m = 1: Solitary wave
When m =1, we have
f = a3 — (a3 — az) tanh® [Vas — a1 (z—ct)] , (56)

that is,
f=az+ (a3 — as) sech® [Vas —on (z—ct)] . (57)

Choosing now a2 = 0, a1 = 0, we have
f= Ojf sech?® [\/as (x — ct)] . (58)

Using (55), (58) can be written as

f:

Z sech? Mc (z — ct)] . (59)

Substituting (59) into (51), the solution can be written as

u(z,t) =2f = © sech? {\/C (@ = Ct)] . (60)
2 2
This is of course the Scott Russel solitary wave (Fig.4),

The characteristic feature of the above solitary wave is that the velocity of the
wave (v = c¢) is directly proportional to the amplitude (¢ = ¢/2): the larger the
wave, the faster it moves. Unlike the progressing wave, it is fully localized, decaying
exponentially fast as ¢ — oo (see Fig.4).
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4.2 Lax pair and linearization

The KdV equation is well known to posses the Lax pair (12)

92
L= = g2 + u(z,t) (61)
and o3 5 5
B= 748x3 +3 (u[):r + amu) (62)
so that the Lax equation
L, =[B, L] (63)

is equivalent to the KdV equation. Or in other words the KdV equation is linearizable
in the sense that it is the compatibility condition corresponding to a linear eigenvalue
problem (the Schrédinger spectral problem) and a linear time evolution equation for
the eigen function

Lp =, (64)

Py = B . (65)

Consequently a nonlinear generalization of the Fourier transform method, namely
the inverse scattering transform (IST) technique can be formulated to solve the
Cauchy initial value problem of the KdV equation. Schematically it is shown in
Fig.5, which is self explanatory. For more details, see for example refs. [9,10]. The
final result is that the general solution of the KdV equation can be written as

u(z,t) = —2dde(x,x +0,t). (66)

where K(z,y,t) is the solution of the Gelfand-Levitan-Marchenko linear integral
equation

K(z,y,t) +F(z +y,t)

+/ Fly+z,t)K(z,2,t)dz2=0, y>=x (67)

2 - 4
=
£t ]
S

0 n . I

-4 -2 0 2 4

T

Fig. 4. Solitary wave solution (60) of the KdV equation.
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and

N
F(z+y,t) Z 2( Sn to—rn (+y) + / R(k,0)e —8ik3¢ RUICEDETA (68)

Here Cy, kn and R(k,0) are the spectral data associated with the Schrodinger
spectral problem (64) for ¢ = 0. Then the discrete states in eq.(68) essentially lead
to the soliton picture: N discrete states correspond to N-soliton solutions.

Direct
scattering Scattering

0 |

Time evolution of
scattering data

Scattering
data S(1)

u(x,1) . at time >0
Inverse SCatterlng

Fig. 5. Schematic diagram of the inverse scattering transform method

For example, the two soliton solution can be written as

(2,8) = -2 (52 o\ K3 cosech?ys + k2 sech?y;

— K , 69
2 ! (k2 cothys — K1 tanh’yl)2 (69)

2k (k2+r1)
is plotted as in Fig.6, it clearly demonstrates the basic soliton property of elastic
collision.

2
where v; = kiz— 43t —8;, §; = ; log (C“_’ ('”7"“))7 1 = 1,2. When the solution (69)

4.3 KAV as a Hamiltonian system

Defining the Hamiltonian density

H= ;ui +u® (70)

so that the Hamiltonian becomes

ﬁ:/<§u§+u3>dx. (71)
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u(z,t)
0.06
0.03

0

Fig. 6. Two soliton interaction of the KdV equation

KdV equation can be written as

& oH
= . 2
YT e su (72)
Thus, KdV equation has a Hamiltonian structure.
Now, defining the Poisson bracket between two functionals U and V' as
U 0 6V
= d .
{o.vy / x&u(m) Oz du(z) (73)

it has been shown (13) that the inverse scattering transform discussed earlier allows
one to identify appropriate set of (infinite number of) action-angle variables. Further
one can show that in terms of these new variables, the Hamiltonian (71) can be
expressed purely in terms of action variables alone. Consequently the corresponding
canonical equations can be trivially integrated. In this sense KdV equation has been
proved to be a complete integrable infinite dimensional Hamiltonian system.

4.4 Bilinearization of KdV

The KdV equation is not only linearizable but also can be bilinearized (14) under

the transformation )

0
u= 28:52 log F . (74)

Eq. (52) can be rewritten in the bilinear form as

Then it is fairly straightforward to obtain the soliton solutions by expanding F
formally as a power series in terms of a small parameter € so that eq. (75) is written
as a system of linear partial differential equations. Restricting to a finite number of
terms in the power series and solving the resultant system of linear partial differential
equation recursively, one can obtain the N-soliton solution explicitly and the soliton
property can be analysed.

Besides the above properties, KAV equation possesses many other characteristic
features of integrable systems: (i) Existence of infinite number of conservation laws
and constants of motion (ii) Backlund transformations (iii) Lie-Backlund symme-
tries, (iv) Painlevé property and so on. Again for details see refs. (9; 10)
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5 KdV related Integrable and Nonintegrable Equations

Depending on the actual physical situation, the derivation of the shallow water wave
equation can be suitably modified to obtain other forms of nonlinear dispersive wave
equations in (141) dimensions as well as in (2+1) dimensions without going into
the actual derivations. Some of the important equations are listed below (11).

e Boussinesq equation

Ut + Uy + g1 — ;hQUta:x =0 (76)
e+ [u(h + 1)l =0 (77)
e Benjamin-Bona-Mahoney (BBM) equation
Ut + Uy + UUy — Uggr = 0 (78)
e (Camassa-Holm equation (15)
Ut + 26Uz + Uy — Uzat = FUpUgs + Ulzes (79)
o Kadomtsev-Petviashville (KP) equation
(ut + 6Uly + Uses)e 4+ 30 Uyy = 0 (80)
0%=-1: KP-1, o?=+1: KP-IIL.

There also exist some interesting nonlinar dispersive wave equations to describe deep
water wave propagation. These include the following.

e Nonlinear Schrodinger (NLS) equation
gt + gaz + |al*q = 0, (81)
e Davey-Stewartson equation

igt + Gue + qyy +2lq|*¢ +qu =10,

82
Uzz — Uyy = 4(“1‘2)11 : (82)

In the derivation of the above equations, generally the bottom of water column or
fluid bed is assumed to be flat. However in realistic situations the water depth varies
as a function of the horizontal coordinates. In this situation, one often encounters
inhomogeneous forms of the above wave equations. Typical example is the variable
coefficient KdV equation (16):

u + f(x, t)uus + g(x, t)uges = 0, (83)

where f and g are functions of x, t. More general forms can also be deduced de-
pending upon the actual situations, see for example ref. (17).

All these equations can be helpful to deal with tsunami wave propagation at
different situations. Which one will suit which situation requires detailed analysis
depending upon the experimental observations. Many of the above equations are
integrable such as the Boussinesq, Camassa-Holm, KP, nonlinear Schrédinger and
Davey-Stewartson equations and certain forms of inhomogeneous KdV equations,
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while BBM equation and general forms of inhomogeneous KdV equations are non-
integrable but may possess solitary wave solutions and are amenable to perturbation
analysis. Integrable equations in the above list admit interesting new types of so-
lutions. For example, the Camassa-Holm equation admits peakon solution (see Fig.
7), while the KP equation and Davey-Stewartson equation can admit lump (alge-
braically decaying) solutions and line soliton solutions. The latter one also admits
dromion (exponentially localized) solutions (see Figs. 8—10). These solutions can
also be used for possible description of tsunami wave propagation in the appropriate
situations.

u/c

0.6]1

s

-—t

20 10 0 10 20

Fig. 7. Solitary wave (including peakon ) solution of Camassa-Holm equation

6 Summary and Conclusions

In this article, we have discussed briefly the possibility of describing tsunami waves of
the type which occurred in the Indian Ocean 2004 earthquake in terms of nonlinear
shallow water wave equation of dispersive type like the Korteweg-de Vries equation.
In particular, we have pointed how the KdV wave equation can be derived to describe
the Scott-Russel phenomenon of unidirectional shallow water wave propagation.
Existence of solitary waves, solitons and complete integrability properties of the KdV
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Fig. 8. Two line soliton solution of KP-II equation

e
LR
LR
e
e,
LR

2
QLR
LK

Fig. 9. Lump soliton solution of KP-I equation

equation was briefly explained. Other related equations which can be of some use in
tsunami dynamics were also briefly touched upon. The generation and propagation
of tsunami waves is an extremely complex process. Yet nonlinear dispersive waves of
shallow water may be of considerable importance in describing the tsunami dynamics
and much work remains to be done in this direction.
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Fig. 10. Dromion solution of Davey-Stewartson equation
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1 Introduction

Solitary water waves are long nonlinear waves that can propagate steadily over long
distances. They were first observed by Russell in 1837 in a now famous report (27)
on his observations of a solitary wave propagating along a Scottish canal, and on his
subsequent experiments. Some forty years later theoretical work by Boussinesq (8)
and Rayleigh (26) established an analytical model. Then in 1895 Korteweg and de
Vries (22) derived the well-known equation which now bears their names. Significant
further developments had to wait until the second half of the twentieth century, when
there were two parallel developments. On the one hand it became realised that the
Korteweg-de Vries equation was a valid model for solitary waves in a wide variety of
physical contexts. On the other hand came the discovery of the soliton by Kruskal
and Zabusky (28), with the subsequent rapid development of the modern theory of
solitons and integrable systems.

In this chapter, we are mainly concerned with the behaviour of solitary waves
as they propagate through a variable medium, with a particular emphasis on water
waves over variable topography. But, first, we consider the well-known situation
when the background medium is uniform. Solitary waves owe their existence to
a balance between nonlinearity and wave dispersion. When both these effects are
weak, the leading order model evolution equation is the Korteweg-de Vries (KdV)
equation,

At 4+ cAs + pAAL + 0Asex =0. (1)

Here A(z,t) is the amplitude of the relevant wave mode, which is assumed to be
propagating in the z-direction, c is the speed of a linear long wave, u,d are the
coefficients of the quadratic nonlinear term, and the third-order linear dispersive
term, respectively, and, like ¢ depend on the particular physical system being con-
sidered. The leading terms here are the first two, which describe a linear long wave
propagating with speed c; relative to these dominant terms, the remaining two terms
describe a balance between weak nonlinear steepening and weak linear dispersion. It
is precisely this balance which describes solitary waves. For water waves propagating
over a constant depth h it is well known that (22)

3c c
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where A is the surface elevation above the undisturhed depth h. The KdV equation
(1) is integrable (see, for instance, (1), (2), (4)) and many fascinating properties
follow.

However, our main concern here is with the one-phase periodic travelling wave
solutions of the KdV equation (1), the so-called cnoidal waves

A = a{b(m) + cn2(’yt9; m)}+d, (3)
where 6 = k(z — Vi), (4)
b(m) = ' ;m - mig(nri) . pa=12méy’k’ (5)
pa [2—m  3E(m)
and V =c+ pd+ 3 { m _mK(m)}' (6)

Here cn(xz;m) is the Jacobian elliptic function of modulus m,0 < m < 1 and
K(m), E(m) are the elliptic integrals of the first and second kind. The amplitude is
a, the mean value of A over one period is d, while the spatial period is 2K (m)/~vk.
But since we can choose the phase 6 so that A is 2w-periodic in 6 we see that
~v = K(m)/n. This periodic travelling wave (3) contains three free parameters; we
take these to be the amplitude a, the mean level d and the modulus m, so that
equations (5, 6) then determine k, V' respectively.

As the modulus m — 1, this becomes a solitary wave, since then b — 0 and
en?(z) — sech?(z); in this limit v — oo,k — 0 with vk = KT held fixed. The
outcome is the well-known solitary wave solution

A = asech®(I'(z — V1)), (7)
where V:c+'u3a =460 (8)

On the other hand, as m — 0,7 — 1/2, and (3) reduces to sinusoidal waves of small
amplitude a ~ m and wavenumber k.

Many studies of weakly nonlinear long waves have used the KdV equation (1) or
similar model equations with constant coefficents. However, particularly in the case
of water waves in the coastal oceans, or for internal solitary waves propagating over
the continental slope and shelf (see, for instance, (5)), (6), (16), (7)), there is a need
to take account of the variation of the background medium in the wave propagation
direction. In that case, the constant-coefficient equation (1) may be replaced by a
variable-coefficient Korteweg-de Vries (vKdV) equation

cQx
2Q

Here A(z,t) is again the amplitude of the wave, but now the speed ¢ and the coeffi-
cients u,d depend on x. The coefficient c is the relevant linear long wave speed, and
Q is the linear magnification factor, defined so that QA? is the wave action flux. The
vKdV equation was derived by Johnson (19) for water waves , where @Q = ¢, and
by Grimshaw (13) for internal waves (for recent reviews, see (5), (6)). The deriva-
tion assumes the usual KdV balance that the amplitude A has the same order as
the dispersion, measured by 92 / 922, and in addition assumes that the waveguide
properties (i.e. the coefficients ¢, @, u, A) vary slowly so that Q. /@ for instance is of
the same order as the dispersion. In section 2 we shall give a brief description of the
derivation of (9) for water waves.
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As the first two terms in (9) are again the dominant terms, it is useful to make
the transformation

1=va, = [T emrou (10)

Substitution into (9) yields, to the same order of approximation as in the derivation
of (9),
e + amne + PBrigee =0 (11)
0
ﬂ =

(% .
3

b
= S (12
Here the coefficients «, 3 are functions of 7 alone. Note that although 7 is a variable
along the spatial path of the wave, we shall subsequently refer to it as the “time”.
Similarly, although ¢ is a temporal variable, in a reference frame moving with speed
¢, we shall subsequently refer to it as a “space” variable. The following sections are
concerned with the derivation and with the solutions of equation (11)

2 Derivation of a variable coefficient Korteweg-de Vries
equation

For simplicity, we shall describe the derivation of the variable coefficient KdV equa-
tion (9) for the main case of interest here, namely water waves propagating over vari-
able topography. We consider a one-dimensional wave field so that the free-surface is
represented by z = ((x,t) for an incompressible, inviscid fluid with constant density
p, occupying the region —h(x) < z < ¢ where the undisturbed depth h(z) varies
with 2. The velocity field is u = (u,w) and can be assumed to be irrotational, so
that u = V¢, where ¢(z, z,t) satisfies Laplace’s equation

At the rigid bottom,
w4+ uhy, =0 at z=—h. (14)
At the free surface, the flow must satisfy two conditions
G+uCe=w at z=¢(, (15)
uf?
o + 9 +9¢=0 at z=¢(. (16)

The first of these is the kinematic condition, and the second is the condition for
constant pressure, where the Bernoulli relation has been used.

In order to obtain the vKdV equation (9) we shall use a multi-scale asymptotic
expansion. This is a versatile approach and can be adapted to many other situations.
Thus we introduce a small parameter, e << 1 measuring linear wave dispersion, and
assume the usual KdV balance where the amplitude scales with 2. We then rescale
the horizontal coordinate and the time, so that

X=e, T=c¢et, (17)

and seek an asymptotic expansion of the form
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C=ECWX, T+ P X, T + - (18)

There is a similar expansion for the other fluid variables. At the same time, we
assume that the depth varies slowly on a spatial scale of €2, so that we may formally
write h = h(x) where x = €2 X.

It is convenient to define the depth-averaged mean flow

¢
U(X,T) = thrc [h W(X,T,2)dz. (19)

Then it is readily shown that conservation of mass implies that

Cr+(Uh+¢)x =0. (20)

At the leading order we get
¢ +hUy =0, (21)
U +g¢d) =0. (22)

The general solution of this system is the sum of a wave propagating in the positive
X-direction with speed ¢, and a wave propagating in the negative X-direction also
with speed ¢, where we recall that ¢ = v/gh, which here depends on the slow variable
X, ¢ = ¢(x). We choose a wave propagating to the right, so that to leading order we
get

(W =" = a0, (23)

X
where T*:/ df, O=T"-T, o=eT". (24)
Here we have anticipated that as the wave propagates to the right with speed c, it
also evolves on the long spatial scale of ¢ 3, and so we have introduced the slow
variable o. Note that the either of the slow variables o or x could be used here, but
we have preferred the former as it has the dimensions of time.
At the next order we obtain the system of equations

D 4@ = @ (25)
UP +g¢ =6, 26)
1 (e
where F® = —Cc(;l) _ C(U(I)C(l))e _ CC C(l) (27)

2 C .1 1 1 1 h (1)
G == G = U = G (28)

Note that here, to leading order, ngl) = C(gl)/c. From (23) the inhomogeneous terms
are function of o, 0, and so, to leading order this system of equations reduces to

—e¢P +hUP = FP (29)
—cUP +9¢7 = G (30)

The homogeneous version of the system (29, 30) has a non-trivial solution, namely
the right-propagating wave C(l), UM given by (23). Hence the inhomogeneous system
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(29, 30) can have a solution only if the inhomogeneous terms on the left-hand side
are orthogonal to the non-trivial solution of the homogeneous adjoint system. This
is readily found to be (¢, h) and so the required compatibility condition is

cF? 4+ hG® =0. (31)
Next we substitute the expressions (23) into (31) and after some simplification get
Co 3 h?
A + 2CA+ 2hAA9+ 662A999 =0. (32)
Using the transformations (17, 24) and replacing €>A with A this becomes

Ca 3c hc?
Avtcde+ A+ 5 Adst 0 Agay =0, (33)

This is just the vKdV equation (9) for the case of water waves. Finally, using the
transformation (10) with @ = ¢ equation (33) becomes

Nr + e + 87 Agee =0 (34)
where here =+cA o = 3 B = R (35)
= © 2hy/c’ © 6c2

The same type of multiscale asymptotic expansion can be used to derive a vKdV
equation in many other physical systems. The key is the existence of a waveguide
supporting a linear wave mode, whose dispersion relation for unidirectional sinu-
soidal waves, propagating along the waveguide (in the z-direction) with frequency
w and wavenumber k, has a long-wave expansion of the form.

w=ck — 6k*> + O(K®). (36)
A typical fluid variable, say u(z,t, z) can then be represented in the form
uw=eA(0,0)p(z) +eu® + - . (37)

Here the scaled variables o, are again defined by (24), and ¢(z,0) is a known
modal function in the z-direction, where z is a coordinate across the waveguide. For
instance, for water waves and when u is the amplitude of the free surface elevation,
¢(2) = z/h (c = +/gh in this case). But in most physical systems, the dependence
on z is not so simple, and is determined by an associated eigenvalue problem, which
also determines the linear long-wave speed c. For instance, this is the situation
for internal waves (5). Note that in a slowly-varying inhomogeneous medium, the
modal function also depends parametrically on o (for water waves, through h(x)).
It is immediately clear that for linearized waves in a homogeneous medium, the
amplitude A will satisfy the linearization of the KdV equation (1). The next task is
to find the magnification factor @ in (9) when the medium is inhomogeneous. This is
most easily accomplished by finding the equation for conservation of wave action flux
QA? in the linear long wave regime, Thus the main task of the multiscale aysmptotic
expansion is the determination of the nonlinear coefficient p. This is accomplished by
constructing the equation for the second-order term in (37). This inevitably, as for
water waves, takes the form of a linear inhomogeneous system, whose homogeneous
part is just the defining equation for the linear long-wave mode being considered.
Hence, the inhomogeneous system requires a compatibility condition, which yields
the required KdV equation (9).
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3 Slowly-varying waves

3.1 Cnoidal waves

Although our main concern will be with the behaviour of solitary waves, it is in-
structive to first review the asymptotic theory for slowly-varying periodic waves,
namely here the cnoidal waves defined by (3). In this case the theory is analogous to
the well-known WKB procedure for linear waves. One can either use a multi-scale
asymptotic expansion, or make use of appropriate conservation laws (see (4) for
instance). Here we shall use the former approach, and so we now suppose that the
coefficients a, 3 in (11) are slowly-varying, and write

a=a(S), B=p0(S), S=vr, Y=vf{, v<<l. (38)

Here the slow temporal variable S is introduced to provide an explicit description
of the separation of scales between the variation of the coefficients and the more
rapidly oscillating waves, while Y is an analogous slow spatial variable. Next we
seek a multi-scale expansion for a modulated periodic wave, namely

77:770(¢aS7Y)+5771(1/J7SaY)+"'7 (39)
where 9 = 11/&0(5'7 Y). (40)
and k =¥y, kV = —-Us. (41)

It is assumed that 7 is periodic in ¢ with a fixed period of 27. Equation (41) defines
the local wavenumber k, the local frequency kV', and the local phase speed V. Cross-
differentiation yields the equation for conservation of waves

ks + (kV)y =0. (42)

We should recall here, that although we have called £ a wavenumber and kV a

frequency, they are not the actual phsyical wavenumber and frequency, because of

the transformation of variables defined in (10). Indeed the physical wavenumber is

k(1—W)/e, the physical frequency is k, and the physical phase speed is ¢/(1—W) =

c(1+ W), since W << 1 due to the scaling used to derive the KdV equation (11)
Substitution of ( 39) into (11) yields, at the leading orders

—Vnoy + anonoy + Bk*Noyyy = 0, (43)
1
Vg + a(om)y + Bk myys = A (44)
where Fi = —1os — anonoy — 36k*nowwy — 38kky nows - (45)

Each of these is essentially an ordinary differential equation with ¢ as the indepen-
dent variable, and with S,Y as parameters. The solution of (43) is the cnoidal wave

(see (3))

o = a{b(m) + cn®(y;m)} + d, (46)
o 1-m E(m) o 2,2
= mK(m) aa = 12mpBy°k~, (47)

and V:ad+oga{2;nmfi]§<($)}. (48)

where b(m)
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As before v = K(m)/x, since 1o is 2m-periodic in the phase . In this solution the
parameters a, m,~y, V., d each depend on the slow variables S,Y and now the task is
to determine how they vary as functions of these slow variables. Note that there are
three independent parameters, and hence three equations are needed. However, one
of these is the conservation of waves equation (42). There are two main methods
used to find the remaining two equations. One is the so-called Whitham averaging
method, where one seeks two appropriate conservation laws for the vKdV equation
(11), inserts the cnoidal wave (3) into these laws, and then averages over the phase
1 (see (3), (4)). Here we shall first describe the second approach which is to continue
the asymptotic expansion to the next order, and then invoke the condition that A; is
a periodic function of . It is implicit in the Whitham averaging procedure that the
higher-order terms in the expansion have this property. Although it can be shown
that the presence of a suitable underlying Lagrangian usually ensures that this is so
(see (4)), we shall nevertheless verify it directly here for the first-order term. This
is given by (44) in which the right-hand side is now a known periodic function of
1, given by (45). A necessary and sufficient condition for 71 to be periodic in % is
that the right-hand side of (44) should be orthogonal to the periodic solutions of
the adjoint to the homogeneous operator on the left-hand side. This adjoint is

~Vig + anomy + Bk nigpe = 0. (49)

It is readily seen that two solutions of (49) are 1,70, both of which are periodic.
A third solution can be found by the variation-of-parameters method, but it is not
periodic. Hence there are two orthogonality conditons, given by

Mos + (aPo)y =0, (50)
Pos + (aQo)y =0, (51)
My = /% dp=d, Py= ! /% 2 dup (52)
0727T0 7o =a, 0747T0 Mo )
B 1 2 3 3,8]€2 27 5
Q=g [ atde="00 [T (59)

As we discuss further below the first of these is the equation for conservation of
“mass”, and the second is an equation for conservation of “momentum”. The final
step is the substitution of (46) into (52, 53), which gives

d2 2
Po= "+ {Ca— b}, (54)
d® 2 2 a® 3
QOI3+da{C4—b}+3{Ca—3bC4—2b}
2,2 2
+3Bk2z @ {mCs — (2m — 1)Ca + (1 — m)b} (55)
C ! /K en’ (u;m) du (56)
4 = 5 ’
K Jo
C ! /K en® (u;m) du (57)
6 — ; ) -
K Jo

Here we recall that K (m) is the first elliptic integral, while b(m) is defined in (47),
and so C4(m), Cs(m) are functions of the modulus m alone, given by
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3m2Cu(m) = (3m> — 5m + 2) + (4m — 2) I’”;EZ; , (58)
15m>Cs(m) = (15m® — 34m> + 27m — 8) + (23m> — 23m + 8) [b;((:?) . (59)

The alternative approach to the derivation of (50, 51) is to make direct use of
the conservations laws for “mass” and “momentum”

«Q
nr +{ 9 n + Bnecte =0, (60)

2

(e + {50+ 480me)e — ) ke = 0. (61)
Each of these is readily established from (11) and indeed (60) is just the vKdV
equation (11) itself. Note that although we shall call these the laws for conserva-
tion of mass and momentum, the integrands do not necessarily correspond to the
corresponding physical entities. Indeed, to leading order, (61) is usually the law for
conservation of wave action flux. The conservation law (60) usually differs slightly
from the actual law for conservation of mass . The issue has been explored by Miles
(23) for water waves, where it can be shown that the difference is smaller than the
error incurred in the derivation of the vKdV equation (33), and is due to reflected
waves. The Whitham averaging procedure now consists of the substitution of (46)
into (60, 61), and then averaging the results over the phase (see (3), (4)). The result
is readily seen to be the derived equations (50, 51).

The equation set (42, 50, 51) are the three desired equations for the three chosen
parameters, (k, d, m) say, and form a nonlinear hyperbolic system, provided that the
underlying periodic wave is stable. They are quite complicated, and in general it is
difficult to find explicit solutions. The issue is present even when the coefficients «, 3
are constant. But in that case, due to the integrability of the KdV equation, it can be
shown that a subtle change of variables leads to a set of three nonlinear hyperbolic
equations in Riemann form, see (3), (4) for instance. The resulting equations are
also integrable, through a generalized hodograph tarnsformation. However, in the
general case when the coefficients o = a(S), 8 = B(S5), no such reduction is available.
Instead the system remains coupled, although it can be cast into a more transparent
form using the same Riemann variables available in the integrable case, see (21).

However, one situation of interest can be solved explicitly. Let us suppose that
the solution set for (k,d,m) depends only on S. Then equations (42, 50) readily
show that k, My = d are respectively constants. The remaining variable m is then
found from the remaining equation (51), whose solution is Py = constant. Then,
using (54, 56) and the relation (47), we find that the amplitude a and m are related
by the expression

’ E(m)

:12 {3m® — 5m +2) + (4m — 2) K(m) ~ 3m*b(m)°} = constant . (62)

Finally, using the relation (47) we can determine the modulus m in terms of
a(S), B(5),

2
F(m) = constant 22 ,  where (63)

F(m) = K(m)z{(ll —2m)E(m)K(m) — ?)E(m)2 -(1- m)K(m)z} . (64)
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This expression for F(m) was obtained by Ostrovsky and Pelinovsky (24), (25)
and Miles (23) for the special case of water waves , where a/3 = 9g°/*/h%* (see
(35)). F(m) is plotted in Figure 1, which shows that it is a monotonically increasing
function of m. It follows that as o/ increases so does m. Two limiting situations are
of interest. First, if the nonlinear coefficient o decreases towards zero, then so does
the modulus m where it can be shown that F(m) ~ m? as m — 0; it follows that
the modulus m ~ «, but remarkably the amplitude a is finite in this limit. On the
other hand, if the dispersive coefficient 3 — 0, then m — 1 and the waves become
more like solitary waves . For water waves, we see that this situation arises as the
waves propagate into shallow water, that is A — 0. In this limit, the expressions (63,
64) show that a ~ K(m) ~ h™*/*. Recalling the transformation (35), this leads to
the well-known result that a solitary wave propagating in shallow water behaves as
h™h see (11), (24), (20).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 1. A plot of F(m) (64) versus m.

3.2 Solitary waves

The results obtained above for a slowly-varying periodic wave cannot immediately
be extrapolated to a slowly-varying solitary wave , as the limits m — 1 and v — 0
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do not commute. In physical terms, the basis for the validity of the slowly-varying
periodic wave is that the local wavelength (i.e. 27/k) should be much less than
the slowly-varying scale (i.e. 1/v). The limit m — 1 in (46, 47, 48) requires that
v — oo,k — 0 with vk = I' held constant, and so the wavelength technically
becomes much larger than the slow scale. A new concept of slowly-varying is needed,
which in physical terms is that the half-width (i.e. width of the solitary wave at the
level of one half of the maximum amplitude) should be much less than 1/v. We
proceed as above and again invoke a multi-scale asymptotic expansion of the same
form (38. 39) and we again obtain the equations (43, 44, 45) (see, for instance, (12)
(14)). Note that k has a different meaning here, but that nevertheless equation (42)
for conservation of waves still holds. but now we do not require that 7 is periodic in
1 with a fixed period. Instead we require that 7 is bounded in the limits ¢ — o0
(more strictly, we require that n grows at infinity as ™ '™ at each order v™*!
for m=0,1,2---). We can suppose without loss of generality that § > 0, since the
alternative case is recovered by replacing n, £ with —n, —¢ respectively. Then, small-
amplitude waves will propagate in the negative £-direction, and we can suppose that
n — 0 as ¢ — oo. However, it will transpire that we cannot impose this boundary
condition as 1) — —oo. Note that it is possible to allow  — DT (S,Y) as ¢ — oo
where D" (S,Y) is known a priori, and satisfies the vKdV equation (11), that is

D& +aD™ DY + 078Dy =0. (65)

However, we shall not consider this extension here, although note that the basic
procedure outlined below can be used also in this more general case.
Now the solution for 7o is taken to be the solitary wave (see(7))

A = asech®(I'Y), (66)
where V = ‘”3“ = 4BK*I2. (67)

Here there is just a single free parameter, one of the set (a(S,Y), V(S,Y), kI'(S,Y)),
which depends on the slow variables. Its behaviour is determined by examining
the next order equation (44), from which we seek a solution 7; which is bounded
as 1 — +oo: as above we can require that m1 — 0 as ¥ — oo. As before, the
adjoint equation to (44) is (49) for which two solutions are 1,70; while both are
bounded, only the second solution satisfies the condtion that 71 — 0 as ¥ — oco.
A third solution can be constructed using the variation-of-parameters method, but
it is unbounded as 1 — +oo. Hence only one othogonality condition can now be
imposed, namely that the right-hand side of (44) is orthogonal to 7o, which leads to
(51) where now

1 oo
Po=y [ dw, (69)
1 e} 3,8]€2 o]
Q= [ mbaw="00 [ b av. (69)
Substituting (66, 67) into (68, 69) yields
2a® 203

Finally, substitution of these expressions into (51) yields
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Pos + (VP())Y =o. (71)

As the solitary wave (66) has just one free parameter (e.g. the amplitude a), this
equation, together with (42) suffices to determine its variation.

We now recall that the vKdV equation (11) possesses two conservation laws,
namely (60, 61) for mass and momentum respectively. But here we see that the
equation (61), which reduces here to (71) for momentum is sufficient to determine
the slowly-varying solitary wave. Hence we now see that the slowly-varying solitary
wave cannot simultaneously conserve its mass. This is apparent when one examines
the solution of (44) for 71, from which it is readily shown that although m1 — 0 as
¥ — 00, m — D1 as 9 — —oo where

—kVDy = Mis + (aPy)y, (72)
S i 2
M :/ o dip = ]f (73)

Here Mg can be interpreted as the mass of the solitary wave. It is readily verified
that the right-hand side of (72) cannot vanish in general, and so the slowly-varying
solitary wave generates a trailing shelf whose amplitude at the rear of the solitary
wave is D;. This non-uniformity has been recognized for some time, see, for instance,
(14) and the references therein. The trailing shelf 7,5 has small amplitude O(v) but a
long length-scale O(1/v), and so carries O(1) mass, but O(v) momentum. It resides
behind the solitary wave, and to leading order has a value independent of S, so that
Nsh = vA1(Y) for ¥ < 0; it is determined by its value at the location ¥ = 0 of
the solitary wave, namely A;(¥ = 0) = Dy (72). It may readily be verified that the
slowly-varying solitary wave and the trailing shelf together satisfy conservation of
mass. The asymptotic expansion may be continued to second order (14). At higher
orders in v the shelf itself will evolve and may generate secondary solitary waves
(10)
The two equations (42, 51) may be uncoupled by defining

= P 2a° [ Ba?
Po= 1 = ark =V ora (74)
so that Pog + V By =0. (75)

Here we have used (67) to show that 150, the momentum per unit distance, is a
function of the amplitude a alone. Since V' = aa/3 (67) we see that equation (74) is
a single equation for the amplitude. It show that the amplitude deforms to conserve
1507 which propagates with the solitary wave speed V.

An important special case arises when there is no Y-dependence. In that case
(42) shows that k, Py are both constants, and so (75) reduces to

2

a® = constantg , or (I'k)® = constant 22 . (76)
In this same special case, (72) reduces to
VkI'D; = 2a, . (77)

The expression (76) shows that the amplitude increases (decreases) in absolute
value as o/ increases (decreases). Note that the polarity of the wave is determined



62 Roger Grimshaw

by the sign of a/B. Then, assuming without loss of generality that 8 > 0 so that
V > 0, we see from (77) that a slowly-varying solitary wave of increasing (decreasing)
amplitude, will generate a trailing shelf of the same (opposite) polarity. A particular
case of interest is when the nonlinear coefficient a passes through zero, while g
stays finite. Suppose this occurs at S = 0, where, without loss of generality, we
may suppose that a passes from positive to negative values as S increases. Initially
the solitary wave is located in S < 0 and has positive polarity. Then, near the
transition point, the amplitude of the wave decreases to zero as a ~ a3, while
I' ~ a*3; the momentum of the solitary wave is of course conserved (at least to
leading order), the mass of the solitary wave increases as 1/o¢1/37 its speed decreases
as o¢4/37 and the amplitude D; of the trailing shelf just behind the solitary wave
grows as 71/a8/3; the total mass of the trailing shelf grows as fl/al/?’, in balance
with that of the solitary wave, while the total mass remains a positive constant.
Thus the solitary wave itself is destroyed as the wave attempts to pass through the
critical point o = 0. The structure of the solution beyond this critical point has been
examined numerically by Grimshaw et al (15), who showed that, in essence, the shelf
passes through the critical point as a negative disturbance, which then being in an
environment with o < 0, can generate a train of solitary waves of negative polarity,
riding on a positive pedestal. Of course, these conclusions may need to be modified
when a cubic nonlinear term in is taken into account near the critical point (see
Grimshaw et al (16)).

For the special case of water waves, o/ = 9g%/4/h%/* (see (35)) and so the ampli-
tude behaves as a ~ h~%/%, while the speed V behaves as h~2, and the wavenumber
I" behaves as h™*/?. Recalling the transformation (10 where Q = ¢ = (gh)*/? for
water waves, we recover the well-known result that the surface elevation amplitude
of a surface solitary wave behaves as h™' (see (11), (20), (24)). At the same time
we see from (77) that the trailing shelf has negative polarity and behaves as —h?* at
the rear of the solitary wave.

4 Soliton fission

In the previous section we have considered the case when the variable coefficients in
(11) vary slowly relative to a solitary wave . Here we consider the opposite case when
the coefficients vary rapidly relative to a solitary wave. This scenario was considered
by Johnson (19) for water waves and by Djordjevic and Redekopp (9) for internal
waves . Let us suppose therefore that

a=ao(Z), B=0(2), T=AZ, A<<1, (78)

where o(Z) — aap, B(Z) = Bap, as Z — Fo0, (79)

Thus, effectively the vKdV equation (11) has constant coefficients in 7 < 0 and

in 7 > 0, while there is a small transition region in which 7 is O(A) where the

coefficients change their values from ap, 8, in 7 < 0 to @, Bq in 7 > 0. In this

transition zone, we may write n = n(Z,§), and it is then readily shown that 7z is

O(A). Hence, to leading order, it follows that 7 is unchanged in the transition zone.
We now suppose that there is a single solitary wave in 7 < 0 (see (7, 8)),

A = asech®(I'(€ = V7)), (80)
where V = O‘:’;“ = 48,17, (81)
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This wave will pass through the transition zone unchanged, but, on arrival into
the region 7 > 0 it is no longer a permissible solution of (11), which now has
constant coefficients o, Bp. Instead, with 7 = 04, the expression (80) forms an
effective initial condition for the new constant-coefficient KdV equation. Using the
inverse scattering transform, the solution in 7 > 0 can now be constructed; indeed
in this case there is an explicit solution (e.g. (2)). The outcome is that the initial
solitary wave fissions into N solitons , and some radiation. The number NV of solitons
produced is determined by the ratio of coefficients R = afy/apfBa. If R > 0 (i.e.
there is no change in polarity for the solitary waves), then N = 1+[(v/8R + 1—1)/2]
([--+] denotes the integral part); as R increases from 0, a new soliton (initially of
zero amplitude) is produced as R successively passes through the values m(m+1)/2)
for m = 1,2,---. But if R < 0 (i.e. there is a change in polarity) no solitons are
produced and the solitary wave decays into radiation.

For instance, for water waves a = 3/(2hc'/?), 8 = h?/(6¢*) (35) where h is the
water depth. It can then be shown that a solitary water wave propagating from a
depth hy to a depth h, will fission into N solitons where N is given as above with
R = (hy/ha)?’*. Here R > 0, and it follows that if hy > hg, so that the solitary
wave moves into shallower water, N > 2 and at least one more soliton is produced;
the initial soliton is said to have fissioned. But if hy < h, so that the solitary wave
moves into deeper water, then N = 1 and no further solitons are produced (19).
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1 Introduction

Waves at the surface of a liquid can be generated by various mechanisms: wind
blowing on the free surface, wavemaker, moving disturbance on the bottom or the
surface, or even inside the liquid, fall of an object into the liquid, liquid inside a
moving container, etc. In this paper, we concentrate on the case where the waves
are created by a given motion of the bottom. One example is the generation of
tsunamis by a sudden seafloor deformation.

There are different natural phenomena that can lead to a tsunami. For example,
one can mention submarine slumps, slides, volcanic explosions, etc. In this article
we use a submarine faulting generation mechanism as tsunami source. The resulting
waves have some well-known features. For example, characteristic wavelengths are
large and wave amplitudes are small compared with water depth.

Two factors are usually necessary for an accurate modelling of tsunamis: in-
formation on the magnitude and distribution of the displacements caused by the
earthquake, and a model of surface gravity waves generation resulting from this
motion of the seafloor. Most studies of tsunami generation assume that the initial
free-surface deformation is equal to the vertical displacement of the ocean bottom.
The details of wave motion are neglected during the time that the source operates.
While this is often justified because the earthquake rupture occurs very rapidly, there
are some specific cases where the time scale of the bottom deformation may become
an important factor. This was emphasized for example by Trifunac and Todorovska
(1), who considered the generation of tsunamis by a slowly spreading uplift of the
seafloor and were able to explain some observations. During the 26 December 2004
Sumatra-Andaman event, there was in the northern extent of the source a relatively
slow faulting motion that led to significant vertical bottom motion but left little
record in the seismic data. It is interesting to point out that it is the inversion of
tide-gauge data from Paradip, the northernmost of the Indian east-coast stations,
that led Neetu et al. (2) to conclude that the source length was greater by roughly
30% than the initial estimate of Lay et al. (3). Incidentally, the generation time is
also longer for landslide tsunamis.

Our study is restricted to the water region where the incompressible Euler equa-
tions for potential flow can be linearized. The wave propagation away from the
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source can be investigated by shallow water models which may or may not take
into account nonlinear effects and frequency dispersion. Such models include the
Korteweg-de Vries equation (4) for unidirectional propagation, nonlinear shallow-
water equations and Boussinesq-type models (5; 6; 7).

Several authors have modeled the incompressible fluid layer as a special case
of an elastic medium (8; 9; 10; 11; 12). In our opinion it may be convenient to
model the liquid by an elastic material from a mathematical point of view, but it
is questionable from a physical point of view. The crust was modeled as an elastic
isotropic half-space. This assumption will also be adopted in the present study.

The problem of tsunami generation has been considered by a number of authors:
see for example (13; 14; 15). The models discussed in these papers lack flexibility
in terms of modelling the source due to the earthquake. The present paper provides
some extensions. A good review on the subject is (16).

Here we essentially follow the framework proposed by Hammack (17) and others
(18). The tsunami generation problem is reduced to a Cauchy-Poisson boundary
value problem in a region of constant depth. The main extensions given in the present
paper consist in three-dimensional modelling and more realistic source models. This
approach was followed recently in (1; 19), where the mathematical model was the
same as in (17) but the source was different.

Most analytical studies of linearized wave motion use integral transform meth-
ods. The complexity of the integral solutions forced many authors (9; 20) to use
asymptotic methods such as the method of stationary phase to estimate the far-field
behaviour of the solutions. In the present study we have also obtained asymptotic
formulas for integral solutions. They are useful from a qualitative point of view,
but in practice it is better to use numerical integration formulas (21) that take into
account the oscillatory nature of the integrals. All the numerical results presented
in this paper were obtained in this manner.

One should use asymptotic solutions with caution since they approximate exact
solutions of the linearized problem. The relative importance of linear and nonlinear
effects can be measured by the Stokes (or Ursell) number (22):

a/h a

U= (khy2 = k2ps’

where k is a wave number, a a typical wave amplitude and h the water depth. For
U > 1, the nonlinear effects control wave propagation and only nonlinear models
are applicable. Ursell (22) proved that near the wave front U behaves like

U~ ts,

Hence, regardless of how small nonlinear effects are initially, they will become im-
portant.

Section 2 provides a description of the tsunami source when the source is an
earthquake. In Section 3, we review the water-wave equations and provide the ana-
lytical solution to the linearized problem in the fluid domain. Section 4 is devoted
to numerical results based on the analytical solution.
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2 Source model

The inversion of seismic wave data allows the reconstruction of permanent defor-
mations of the sea bottom following earthquakes. In spite of the complexity of the
seismic source and of the internal structure of the earth, scientists have been rel-
atively successful in using simple models for the source. One of these models is
Okada’s model (23). Its description follows.

The fracture zones, along which the foci of earthquakes are to be found, have
been described in various papers. For example, it has been suggested that Volterra’s
theory of dislocations might be the proper tool for a quantitative description of
these fracture zones (24). This suggestion was made for the following reason. If
the mechanism involved in earthquakes and the fracture zones is indeed one of
fracture, discontinuities in the displacement components across the fractured surface
will exist. As dislocation theory may be described as that part of the theory of
elasticity dealing with surfaces across which the displacement field is discontinuous,
the suggestion makes sense.

As is often done in mathematical physics, it is necessary for simplicity’s sake
to make some assumptions. Here we neglect the curvature of the earth, its gravity,
temperature, magnetism, non-homogeneity, and consider a semi-infinite medium,
which is homogeneous and isotropic. We further assume that the laws of classical
linear elasticity theory hold.

Several studies showed that the effect of earth curvature is negligible for shallow
events at distances of less than 20° (25; 26; 27). The sensitivity to earth topogra-
phy, homogeneity, isotropy and half-space assumptions was studied and discussed
recently (28). A commercially available code, ABACUS, which is based on a finite
element model (FEM), was used. Six FEMs were constructed to test the sensitivity
of deformation predictions to each assumption. The author came to the conclusion
that the vertical layering of lateral inhomogeneity can sometimes cause considerable
effects on the deformation fields.

The usual boundary conditions for dealing with earth problems require that
the surface of the elastic medium (the earth) shall be free from forces. The result-
ing mixed boundary-value problem was solved a century ago (29). Later, Steketee
proposed an alternative method to solve this problem using Green’s functions (24).

2.1 Volterra’s theory of dislocations

In order to introduce the concept of dislocation and for simplicity’s sake, this section
is devoted to the case of an entire elastic space, as was done in the original paper
by Volterra (29).

Let O be the origin of a Cartesian coordinate system in an infinite elastic
medium, x; the Cartesian coordinates (i = 1,2,3), and e; a unit vector in the posi-
tive z;—direction. A force F = Fe, at O generates a displacement field u? (P,0) at
point P, which is determined by the well-known Somigliana tensor

A+ p

uf (P,0) = Nt o

ik, nn — QT ik ), ith a = 1
] M( kT, Jik), W (1)
In this relation §;; is the Kronecker delta, A and p are Lamé’s constants, and r is the
distance from P to O. The coefficient o can be rewritten as o = 1/2(1 — v), where

v is Poisson’s ratio. Later we will also use Young’s modulus F, which is defined as
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g B2
A

The notation r, ; means dr/dz; and the summation convention applies.
The stresses due to the displacement field (1) are easily computed from Hooke’s
law:

Oij = Aijun,k + (Ui + uji)- (2)
One finds
k o oF 3a:¢:rj:rk 1 6;”33] + 6ijz - 6ij:rk
Uij(P’O)7747r ( o +)\+M r? .

The components of the force per unit area on a surface element are denoted as
follows:

Tik = O'f; l/j,
where the v;’s are the components of the normal to the surface element. A Volterra
dislocation is defined as a surface X' in the elastic medium across which there is a
discontinuity Awu, in the displacement fields of the type

Au; = uj —u; = U; + Qij:cj7 (3)
i = =82 (4)

Equation (3) in which U; and §2;; are constants is the well-known Weingarten rela-
tion which states that the discontinuity Awu,; should be of the type of a rigid body
displacement, thereby maintaining continuity of the components of stress and strain
across .

The displacement field in an infinite elastic medium due to the dislocation is
then determined by Volterra’s formula (29)

un(Q) = ; // AwTF dS. 5)

Once the surface X' is given, the dislocation is essentially determined by the six
constants U; and §2;;. Therefore we also write

w@ =" [[ob Qs+ [[t0hP.Q) ~ wiolip.Q@iuds,  ©)
X X

where (2;; takes only the values (212, {223, {231. Following Volterra (29) and Love
(30) we call each of the six integrals in (6) an elementary dislocation.

It is clear from (5) and (6) that the computation of the displacement field ux(Q)
is performed as follows. A force Fei is applied at @), and the stresses UZ(RQ)
that this force generates are computed at the points P(z;) on Y. In particular the
components of the force on X are computed. After multiplication with prescribed
weights of magnitude Awu; these forces are integrated over X to give the displacement
component in @) due to the dislocation on Y.
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2.2 Dislocations in elastic half-space

When the case of an elastic half-space is considered, equation (5) remains valid, but
we have to replace Ufj in T by another tensor wfj This can be explained by the fact
that the elementary solutions for a half-space are different from Somigliana solution
(1).

The wfj can be obtained from the displacements corresponding to nuclei of strain
in a half-space through relation (2). Steketee showed a method of obtaining the six
wfj fields by using a Green’s function and derived wf,, which is relevant to a vertical
strike-slip fault (see below). Maruyama derived the remaining five functions (31).

It is interesting to mention here that historically these solutions were first derived
in a straightforward manner by Mindlin (32; 33), who gave explicit expressions of the
displacement and stress fields for half-space nuclei of strain consisting of single forces
with and without moment. It is only necessary to write the single force results since
the other forms can be obtained by taking appropriate derivatives. The method
consists in finding the displacement field in Westergaard’s form of the Galerkin
vector (34). This vector is then determined by taking a linear combination of some
biharmonic elementary solutions. The coefficients are chosen to satisfy boundary
and equilibrium conditions. These solutions were also derived by Press in a slightly
different manner (35).

T3 A
x2
v
0]
Free surface
~
1
v «
Us Us
r3 = —d N
U, w

Fig. 1. Coordinate system adopted in this study and geometry of the source model

Here, we take the Cartesian coordinate system shown in Figure 1. The elastic
medium occupies the region zz < 0 and the x1—axis is taken to be parallel to the

strike direction of the fault. In this coordinate system, v (x1, 2, x3; &1, €2, €3) is the
ith component of the displacement at (z1, 22, z3) due to the jth direction point force

of magnitude F' at (£1,&2,&3). It can be expressed as follows (23; 32; 35; 36):
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ul (21,02, 23) = ul, (21,72, —3) — uly (21,22, T3)

+ulp (21, 22, 3) + T3ule (21, 72, 3),

RR,

where
W= gy (0 +a i),
ulp = 4fu (615 * R]izljj 1 o [Rjijg +
4o };(ijﬁ)_ ) R by ;Rjég)Q (1= 68) (1 = 853)) >

1)

In these expressions R1 = x1—&1, R2 = x2—&2, R3 = —x3—E&3 and R? = R%—i—R%—l—Rg.

The first term in equation (7), u{A (21,22, —x3), is the well-known Somigliana
tensor, which represents the displacement field due to a single force placed at
(&1,&2,€3) in an infinite medium (30). The second term also looks like a Somigliana
tensor. This term corresponds to a contribution from an image source of the
given point force placed at (£1,&2,—&3) in the infinite medium. The third term,
uzB(:ch:c%:cs»), and ugc(:ch:c%:cg) in the fourth term are naturally depth depen-
dent. When z3 is set equal to zero in equation (7), the first and the second terms
cancel each other, and the fourth term vanishes. The remaining term, uf pg(x1,22,0),
reduces to the formula for the surface displacement field due to a point force in a

half-space (23):

_ F (1 (@1-&)? 1 (z1—€1)°
A (R + 1R31 + )\iﬂ [R*fs o R(}?*ﬁz)z]) ’

42 (z1 = &1) (w2 — &2) (1%3 - )\iu R(R1€3)2) ’
F 3 1
amp (B1 = €1) (— B T abu R(r-gy) )

47}:H (.’L‘l _51)(:62 _52) (E}S - /\iu R(Rifg)Q) )

F (1 (z2—&)? 1 (w2—£2)
amp (R + R 0N [R—gs - R(?%—fs)?])’

F € 1
am (@2 = €2) (* b= rre) )0

3_ F 13 I 1
ul = g (@1 = &) (=55 + 55 rrmey) )
F 1
Uy = dmp (ZEQ - 52) - 633 + )\i’u R(R—¢3) )

2
3_ F 1 &3 o1
uz = Amp (R+ R3 + A :

In these formulas R? = (1 — 51)2 + (2 — 52)2 + §§

In order to obtain the displacements due to the dislocation we need to calculate
the corresponding {i-derivatives of the point force solution (7) and to insert them
in Volterra’s formula (5)

1 n J k
w= g /Auj {)\@k Ou; + 1 (aul + Ou; )} v dS.
=

9n 9k ¢
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The &r-derivatives are expressed as follows:

J J J
gz; (w1, 22,23) = 6;5: (w1, 22, —x3) — 852: (@1, 22,23) +
oul J
+ ;éf (1,72, 73) + T3 85: (1,2, 23),
with
oul, F Ry, Ridji + Rjdir RiR; Ry,
[ — _ (51 _ V] JY 3 (i)
9, 8mu (( @) gadis =@ R? T s )
auZB . F 7R¢5jk + R;di — Ridij +3RiRij i
0 4mp R3 R5
+1 -« [ SsR+ Ry o indys — 6k0iz(1 — dj3) "
a LR(R+ R3)2™ R(R+ R3)
83k R? + Ry (2R + R3)
103 — Ridiz(1 — 95
+(Ridjs — Rjdis( j3)) R3(R + Ry)? +
Rij1 + Rjdik 2035 R + Ry, (3R + R3)
1—6;3)(1 — g, J T — RiR;
+( diz)( 513)( R(R + R3)? RiR; R3(R + R3)3 )} ’
ouly, F Sinbis — Six6;3 . 3Ru(Ridys — Ry6is)
7 — 1— 261 92— J tk¥] J J
o6 amp 3)<( a)[ R? + R ] *
Ois 3R R; Ridir + R0k + Ridi; 5R:R;R
+0l($3k[R; . RS]} +3a£3|: ik ]J%Sk kOij R7j k})

2.3 Finite rectangular source

Let us now consider a more practical problem. We define the elementary dislocations
Ui, Uz and Us, corresponding to the strike-slip, dip-slip and tensile components of
an arbitrary dislocation. In Figure 1 each vector represents the direction of the
elementary faults. The vector D is the so-called Burger’s vector, which shows how
both sides of the fault are spread out: D = u™ —u™.

A general dislocation can be determined by three angles: the dip angle § of the
fault (0 < 6 < ), the slip or rake angle 6 (0 < 6 < ), and the angle ¢ between the
fault plane and Burger’s vector D. When dealing with a geophysical application,
an additional angle, the azimuth or strike, is introduced in order to provide an
orientation of the fault. The general situation is schematically described in Figure
2.

For a finite rectangular fault with length L and width W occurring at depth
d (Figure 2), the deformation field can be evaluated analytically by a change of
variables and by integrating over the rectangle. This was done by several authors
(23; 36; 37; 38; 39). Here we give the results of their computations. The final results
are represented below in compact form, using Chinnery’s notation || to represent the
substitution

f(fﬂ?)” = f(xap) *f(iﬂ,p*W) *f(.’E*L,]?)‘Ff(IB*L,p*W),

where p = ycosd + dsind. Next we introduce the notation
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Z A

Free surface

Fault plane
L

Fig. 2. Geometry of the source model and orientation of Burger’s vector D

q=ysind —dcosd, G =mncosd -+ gsind, J:nsiné—qcosé
and ~
R4 +@=+@+&, X =+
The quantities Uy, Uz and Us are linked to Burger’s vector through the identities
Ui = |D|cos¢cosf, U= |D|cos¢sinf, Us= |D|sin¢.

For a strike-slip dislocation, one has

_ U &q &n .
up = (R( +arctaan+Ilsm6 ,

Cor R+mn)
U Uq qCcos o .
Us = o <R(R+n) R+77+I2Sln6 ,

Uy Jq gsin § .
= — I 6 .
U8 Top <R(R+77)+R+77+ e

For a dip-slip dislocation, one has
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|

us3 = — % ( dg + sin § arctan 5}2 — I5sin 6 cos 5) H .

U = — (zfl3sin5cosd)H,

Uy = 7U2 (R(]gi 6 + cos d arctan 5}2{ — I sinécos5)

R(R+§)

For a tensile fault dislocation, one has

_Us ¢
" o <R<R+n> fosin 5)H

_Us —dq o &q _ &n | .2
Uy = 9 (R(R+§) sin § {R(R+77) arctaan Iisin” 9 )|,
Us uq &q &n 2
= 1 — arct — I ol -
us o (R(R—l—f) + cos R(R+n) arc aan 5 Sln
The terms I, ..., Is are given by
n=-" é: — tandls,
A+ (R +d)cosd
I
I, = — 1 — 1
2 )"’_M Og(R+77) 35
_ M r g
I3 = Ao LOS(SR—%J log(R—&—n)} + tan 014,

o 1 .

- 1 —sindl

1y [t A cosd (0g(R+ d) —sind 0g(R+77)) ,

w2 (X +qcosd) + X(R+ X)sind

Is = t ;
)\—i—,ucoséarc an E(R+ X)cosd

and if cosd = 0,

L=_ F €a

20+ 1) (R+d)?

H Ul vq
Iy = -+ - —log(R+n)|,
PT 20+ [R+d  (R+d)? B(R+m)
L=-H1 1

A+ uR+d

u &sind
Is = — .

At pR+d

Figures 3, 4, and 5 show the free-surface deformation due to the three elementary
dislocations. The values of the parameters are given in Table 1.

2.4 Curvilinear fault

In the previous subsection analytical formulas for the free-surface deformation in
the special case of a rectangular fault were given. In fact, Volterra’s formula (5)
allows to evaluate the displacement field that accompanies fault events with much
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Table 1. Parameter set used in Figures 3, 4, and 5.

parameter value
Dip angle § 13°
Fault depth d, km 25
Fault length L, km 220
Fault width W, km 90
Ui7 m 15
Young modulus E, GPa 9.5
Poisson’s ratio v 0.23

‘
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-400

Fig. 3. Dimensionless free-surface deformation z/a due to dip-slip faulting: ¢ = 0,
0 = n/2, D = (0,U2,0). Here a is [D| (15 m in the present application). The
horizontal distances x and y are expressed in kilometers.

more general geometry. The shape of the fault and Burger’s vector are suggested by
seismologists and after numerical integration one can obtain the deformation of the
seafloor for more general types of events as well.

Here we will consider the case of a fault whose geometry is described by an
elliptical arc (see Figure 6). The parametric equations of this surface are given by

55(&7]):57 0§§Sa7 y(€777):7]7 - <77§27

2m) = ~(b+d)+ /a2 -

Then the unit normal to this surface can be easily calculated:
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-400

Fig. 4. Dimensionless free-surface deformation z/a due to strike-slip faulting: ¢ = 0,
0 =0,D = (Ui1,0,0). Here a is |D| (15 m in the present application). The horizontal
distances x and y are expressed in kilometers.

. be 0 ay/a? — €2
Vet (2 —a2)e T Vat+ (12— a2)e2 )

We also need to compute the coefficients of the first fundamental form in order to

reduce the surface integral in (5) to a double Riemann integral. These coefficients

are

a4 +§2(b2 _ a2)
a2(a? — €2)

and the surface element dS is

b o SO

Since in the crust the hydrostatic pressure is very large, it is natural to impose
the condition that D - n = 0. The physical meaning of this condition is that both
sides of the fault slide and do not detach. This condition is obviously satisfied if we
take Burger’s vector as

dédn.

_ ay/a? — €2 B b¢
0o (W rer—a) T a2 - a2>> '
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Fig. 5. Dimensionless free-surface deformation z/a due to tensile faulting: ¢ = /2,
D = (0,0,Us). Here a is |D|. The horizontal distances x and y are expressed in
kilometers.
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Fig. 6. Geometry of a fault with elliptical shape.
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It is evident that D = |D|.
The numerical integration was performed using a 9-point two-dimensional Gauss-
type integration formula. The result is presented on Figure 7. The parameter values

are given in Table 2.

Table 2. Parameter set used in Figure 7.

parameter value
Depth event d, km 20
Ellipse semiminor axis a, km 17
Ellipse semimajor axis b, km 6

Fault width ¢, km 15
Young modulus E, GPa 9.5
Poisson’s ratio v 0.23

0.05

2
UL IRIERESSS

/|
il
’}”""!'ff‘o 0

-100  -100
Fig. 7. Free-surface deformation due to curvilinear faulting. The horizontal dis-
tances x and y are expressed in kilometers.

The example considered in this subsection may not be physically relevant. How-
ever it shows how Okada’s solution can be extended. For a more precise modeling of
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the faulting event we need to have more information about the earthquake source
and its related parameters.

After having reviewed the description of the source, we now switch to the de-
formation of the ocean surface following a submarine earthquake. The traditional
approach for hydrodynamic modelers is to use elastic models similar to the model we
just described with the seismic parameters as input in order to evaluate the details
of the seafloor deformation. Then this deformation is translated to the free surface
of the ocean and serves as initial condition of the evolution problem described in
the next section. Drawbacks of this traditional approach have recently been pointed
out by Dutykh et al. (18).

3 Solution in fluid domain

Q

Meyy | ——— | —

Fig. 8. Definition of the fluid domain and coordinate system

The fluid domain is supposed to represent the ocean above the fault area. Let
us consider the fluid domain (2 shown in Figure 8. It is bounded above by the free
surface of the ocean and below by the rigid ocean floor. The domain {2 is unbounded
in the horizontal directions z and y, and can be written as

Q2 =R*x [~h+{(z,y,1),n(x,y,1)] .

Initially the fluid is assumed to be at rest and the sea bottom to be horizontal.
Thus, at time ¢ = 0, the free surface and the sea bottom are defined by z = 0 and
z = —h, respectively. For time ¢t > 0 the bottom boundary moves in a prescribed
manner which is given by

z=—h+ C(:C7y7 t)'

The displacement of the sea bottom is assumed to have all the properties required to
compute its Fourier transform in x,y and its Laplace transform in ¢. The resulting
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deformation of the free surface z = n(z,y,t) must be found. It is also assumed
that the fluid is incompressible and the flow is irrotational. The latter implies the
existence of a velocity potential ¢(z,vy,z,t) which completely describes this flow.
By definition of ¢, the fluid velocity vector can be expressed as q = V¢. Thus, the
continuity equation becomes

V-oa=A4¢=0, (z,y,2) €. (8)

The potential ¢(x,y, z,t) must also satisfy the following kinematic boundary condi-
tions on the free-surface and the solid boundary, respectively:

0¢p On 09 On  O¢In -
0: ~ ot Towor T oyay 2 1@vt) )
00 _0C  060C | 090

0: ~ ot Towor Togay C- hTC@ut) (10)

Assuming that viscous effects as well as capillary effects can be neglected, the dy-
namic condition to be satisfied on the free surface reads

d¢
ot

As described above, the initial conditions are given by

1
+ LIVl +gn =0,  z=mn(zy,1). (11)

n(z,y,0) =0 and ((z,y,0) = 0. (12)

The significance of the various terms in the equations is more transparent when
the equations are written in dimensionless variables. The new independent variables
are

T=kr, J=ky, Z=kz, t=o0t,

where k is a wavenumber and o is a typical frequency. Note that here the same unit
length is used in the horizontal and vertical directions, as opposed to shallow-water
theory.

The new dependent variables are

- n = ¢ ~ K
n=_, ¢=", ¢= &,
a a ao

where a is a characteristic wave amplitude. A dimensionless water depth is also
introduced:

h = kh.

In dimensionless form, and after dropping the tildes, equations (8)—(11) become

A¢:O7 ('/'E7y7z)e'97

¢ _ 9In dp dn B¢ O B

az"at+”“(ax&r+ayay ;. z=ran(z.y,),

o _ o¢ dp ¢ D IC -

az"at+““<axax*‘ayay 2= htrad(zyt),
d¢

o T ém\Wbleran:O, z = kan(z,y,t).
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Finding the solution to this problem is quite a difficult task due to the nonlinear-
ities and the a priori unknown free surface. In this study we linearize the equations
and the boundary conditions by taking the limit as ka — 0. In fact, the linearized
problem can be found by expanding the unknown functions as power series of a
small parameter ¢ := ka. Collecting the lowest order terms in ¢ yields the linear
approximation. For the sake of convenience, we now switch back to the physical
variables. The linearized problem in dimensional variables reads

Ap =0, (z,y,2) € R* x [=h,0], (13)
¢ _ On _
o: — o0 0 (14)
o¢ _ ¢ _
0: ot cT M (15)
¢
= =0. 1
ot +gn=0, z=0 (16)
Combining equations (14) and (16) yields the single free-surface condition
o, 9
o T9g =0 z=0. (17)

This problem will be solved by using the method of integral transforms. We
apply the Fourier transform in (z,y):

~

Sl = fk, 0) = /f(:r,y)efi(“”y) dady,

R2

§) = flay) = (2;)2 / Fk, €)'+ qkdp,
R2

and the Laplace transform in time ¢:

+oo

Llgl = g(s) = /g(t)e*“dt.

0

For the combined Fourier and Laplace transforms, the following notation is intro-
duced:

+oo
FLIF(z,y,t)] = F(k,L,s) Z/efi(km”y) dady / F(z,y,t)e " dt.
R2 0

After applying the transforms, equations (13), (15) and (17) become

d*¢

g2 (K> 4 0*)¢ =0, (18)

do .
dz (k7é77h’7 3) - SC(k:& 5)7 (19)

Lok, £,0,5) + 9% (K, £,0,5) = 0. (20)
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The transformed free-surface elevation can be obtained from (16):
0k, t,s) = —;qb(k:,é,o,s). (21)

A general solution of equation (18) is given by
o(k, L, z,8) = A(k, L, s) cosh(mz) + B(k, ¥, s) sinh(mz), (22)

where m = v/k2 4 £2. The functions A(k, £, s) and B(k, £, s) can be easily found from
the boundary conditions (19) and (20):

_ gSC(k7 67 S)
Ak, £, 5) = — cosh(mh)[s? + gm tanh(mh)]’
Blk,.s) = o

m cosh(mh)[s? + gm tanh(mh)]’

From now on, the notation
w = \/gmtanh(mh) (23)

will be used. The graphs of w(m), w'(m) and w”(m) are shown in Figure 9.

3.5 T T T .

251 .

Fig. 9. Plot of the frequency w(m) = y/gmtanh(mh) and its derivatives dw/dm,
d*w/dm?. The acceleration due to gravity g and the water depth h have been set
equal to 1.

Substituting the expressions for the functions A, B in (22) yields

gsC(k, ¢, s) ?

o(k, L, z,8) =  cosh(mh)(s2 + w?) (cosh(mz) — gsm sinh(mz)) . (24)
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3.1 Free-surface elevation

From (21), the free-surface elevation becomes

s?((k, L)

n(k, 6, 5) = cosh(mh)(s2 + w?)’

Inverting the Laplace and Fourier transforms provides the general integral solu-

tion
ptioo
7,(kz+£y
n(z,y,t) o // / s*C(k. L, S) e*ds dkdl. (25)
7T

cosh(mh) 2771 52 + w?
H—100

One can evaluate the Laplace integral in (25) using the convolution theorem:

L[f1(8) * f2(8)] = fa(s)f2(s).
It yields

z(kz+éy)
n(z,y,t 271' // cosh(mh) —wsinwT)((k, £,t — 7)d7 dkdl.

This general solution contains as a special case the solution for an axisymmetric
problem, which we now describe in detail. Assume that the initial solid boundary
deformation is axisymmetric:

(o) =Cr), 1=+

The Fourier transform F[((z,y)] = CA(k,E) of an axisymmetric function is also ax-
isymmetric with respect to transformation parameters, i.e.

Sk, 0) =8(m),  m= VE> + 2.

In the following calculation, we use the notation ¢ = arctan(¢/k). One has

27 e}
E(ki,é) _ // <(T)67i(kx+[y) drdy _ /d¢/c(r)efir(kcos ¢+Lsin ¢)7“d’l" _
R2 0 0

27 e} e} ™
_ /d¢/rg(r)67irmcos(¢7w)dr _ /rg(r)dr/(efirmcoscb + eir'mcos ¢)d¢
0 0 0 0

Using an integral representation of Bessel functions (40) finally yields
C(k,0) =2 / r¢(r)Jo(mr)dr = C(m).
0

It follows that
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27 “+oo

( t) 1 / dl/} melmr cos(¢p—1p) d / . )C( ¢ ) d
= i —
n(r, (2)? cosh(mh) m — wsinwT)((m, T)dT

¢
/ Jo(mr) dm/(l —wsinwT)((m,t — 7)dT.
0

cosh mh)
0

The last equation gives the general integral solution of the problem in the case of an
axisymmetric seabed deformation. Below we no longer make this assumption since
Okada’s solution does not have this property.

In the present study we consider seabed deformations with the following struc-
ture:

C(z,y,t) = ((x,y)T(1). (26)

Mathematically we separate the time dependence from the spatial coordinates. There
are two main reasons for doing this. First of all we want to be able to invert an-
alytically the Laplace transform. The second reason is more fundamental. In fact,
dynamic source models are not easily available. Okada’s solution, which was de-
scribed in the previous section, provides the static sea-bed deformation (o(z,y) and
we will consider different time dependencies T'(t) to model the time evolution of the
source. Four scenarios will be considered:

1. Instantaneous: T;(t) = H(t), where H(t) denotes the Heaviside step function,
2. Exponential:

0, t <0, .
T.(t) = {176*‘“,1520, with a > 0,

3. Trigonometric: T.(t) = H(t — to) + 4[1 — cos(wt/to)|H (to — t),
4. Linear:

0, <0,
Ti(t) = § t/to, 0 <t <to,
1, t > to.

The typical graphs of T.(t) and T.(t) are shown in Figure 10. Inserting (26) into
(25) yields

“+i00

z(kz+2y) " 2
@yt = //C . / ST() etds dkdl.  (27)
7T

cosh(mh)  2mi $2 4w
H—100

Clearly, n(z,y, t) depends continuously on the source {(z,y). Physically it means
that small variations of ¢ (in a reasonable space of functions such as L?) yield
small variations of n. Mathematically this problem is said to be well-posed, and this
property is essential for modelling the physical processes, since it means that small
modifications of the ground motion (for example, the error in measurements) do not
induce huge modifications of the wave patterns.

Using the special representation (26) of seabed deformation and prescribed time-
dependencies, one can compute analytically the Laplace integral in (27). To perform
this integration, we first have to compute the Laplace transform of T; ¢ c:(t). The

results are
«@

sm= eml= 0
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T

Fig. 10. Typical graphs of T¢(t) and T.(t). Here we have set o = 6.2, {9 = 0.7.

_ 2 1— e st
T = (1 sto i ith v = " T =
LT =(1+e )23(8“72) with 7= , £[T] fos?

Inserting these formulas into the inverse Laplace integral yields

ptioco
: / 6St52T;(s) ds = cos wt
2m 52 + w? ’
H—100
ptioco
1 / e*ts?Te(s) a? Cat w .
. ds = — (e —coswt —  sin u.zt) ,
271 52 + w? a? + w? o
H—1i00
ptioco
1 / e*ts?Tc(s) ds — ~2
2mi s? + w? T 2(92 — w?)
H—1i00
(coswt — cosyt + H(t — to)[cosw(t — to) + cost]),
ptioco
1 / e*s’Ti(s) ,  sinwt — H(t —to)sinw(t — to)
27 §2 + w? o wto ’
H—100

The final integral formulas for the free-surface elevations with different time

dependencies are as follows:
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C 7,(kz+£y
ni(z,y,t) 2 // h n) coswt dkdl,
) cosh(m
( § = // C 1(’””9 e~ — coswt —  sinwt dhedd
Me\: Y ( cosh mh) a? + w? '
z(kz+éy)
ne(@y,¢) 271' // 2(y? —w2 ) cosh(mh)

(coswt — cosvt + H(t — to)[cosw(t — to) + cost]) dkdl,

1(kx+2y) _ _ _
(s, 1) = //C (smwt H(t—to)sinw(t t0)> dkdl.

cosh(mh) wto

3.2 Velocity field

In some applications it is important to know not only the free-surface elevation but
also the velocity field in the fluid domain. One of the goals of this work is to provide
an initial condition for tsunami propagation codes. For the time being, tsunami
modelers take initial seabed deformations and translate them directly to the free
surface in order to obtain the initial condition n(x,y,0). Since a priori there is no
information on the flow velocities, they take a zero velocity field as initial condition
for the velocity: V(x,y, z,0) = 0. The present computations show that it is indeed
a very good approximation if the generation time is short.

In equation (24), we obtained the Fourier transform of the velocity potential

é(x,y,2,1):

2

gsC(k, O)T(s) sm sinh(mZ)) . (28)

o(k,l,z,8) = _cosh(mh)(s2 +w?) (COSh(mz) —
Let us evaluate the velocity field at an arbitrary level z = gh with —1 < g < 0.
In the linear approximation the value = 0 corresponds to the free surface while
B8 = —1 corresponds to the bottom. Next we introduce some notation. The horizontal
velocities are denoted by u. The horizontal gradient (9/0z,d/0y) is denoted by V.
The vertical velocity component is simply w. The Fourier transform parameters are
denoted k = (k, £).
Taking the Fourier and Laplace transforms of

u(x,y,t) = vh(ﬁ(mvyvzvt)‘z:ﬁh
yields
u(k7é7 S) = 77‘¢(k747ﬂh7s)k

. osCkDT(s)
cosh(mh)(s? 4+ w?)

2

<cosh(5mh) - sm sinh(ﬁmh)) k

Inverting the Fourier and Laplace transforms gives the general formula for the hor-
izontal velocities:
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i 47r2 cosh(mh) 2mi 52 + w?
H—100

ptioco
kC (K, £) sinh(mBh)e'*=+e) s3T(s)e" ds dk
47r2 m cosh(mh) 2mi §2 + w? '
H—1i00
After a few computations, one finds the formulas for the time dependencies T3,
T. and T;. For simplicity we only give the velocities along the free surface (8 = 0):

kC (F, £)e" koY) sin ot
i(x,y,t) = dk,
ui(e,y,t 471'2 // cosh(mh) w
_iga kC (k,0)e i(katty) at a .
ue(z,y,t) = A2 // 02 + w?) cosh(mh) (e —coswt+ smwt) dk,
kC k’ e i(kx+Ly)
w(,y,t) 4t07r2 // w? cosh(mh)

(1 —coswt — H(t —to)[1 — cosw(t —to)]) dk.

Next we determine the vertical component of the velocity w(z,y, z,t). It is easy
to obtain the Fourier-Laplace transform w(k, ¢, z, s) by differentiating (28):

d {(k,OT 2 :
w(k,l, z,8) = 8? = cosflngrgh)(iQ Sf)uﬂ) (i] cosh(mz) — msmh(mz)) .

Inverting this transform yields

ptioco
3 st
w(z,y,z,t) =, 2// cosh(mz)C(k, 0 gitkoren) 1 / i T(S)eg ds dk

cosh( mh 271 s2+w
H—100
h(mz)C(k, 0 R (S
g msinh(mz i(kz+0y) sT(s)e™ . ne
471’2/ cosh(mh) © 2mi / s2 pw2 00
R2 p—100

for —h < z < 0. One can easily obtain the expression of the vertical velocity at a
given vertical level by substituting z = $h in the expression for w.

The easiest way to compute the vertical velocity w along the free surface is
to use the boundary condition (14). Indeed, the expression for w can be simply
derived by differentiating the known formula for 7 c ¢, (z,y,t). Note that formally
the derivative gives the distributions §(¢) and (¢ — to) under the integral sign. It is
a consequence of the idealized time behaviour (such as the instantaneous scenario)
and it is a disadvantage of the Laplace transform method. In order to avoid these
distributions we can consider the solutions only for ¢ > 0 and ¢ # to. From a
practical point of view there is no restriction since for any € > 0 we can set t = ¢
or t = to + €. For small values of € this will give a very good approximation of the
solution behaviour at these “critical” instants of time. Under this assumption we
give the distribution-free expressions for the vertical velocity along the free surface:
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C z(kz+éy) )
wi(x,y,t) = = g2 // cosh mh) wsin wt dk,
7,(kz+£y) 2
—at w w .
t— t | dk
we(@,y,¢ 47r2 // o? +w2 ) cosh(mh) (6 T e ooswt—  sinw ) ’
1(kx+2y) ) )
we(z,y,t) = 47r2 // ’y B w2 ) cosh(mh) (w sin wt — ~y sin yt
—|—H(t —to)[wsinw(t — to) + ysinyt]) dk,
C 1(kx+2y)
wi(z,y,t 4t07r2 // cosh mh) [coswt — H(t — to) cosw(t — to)] dk.

3.3 Pressure on the bottom

Since tsunameters have one component that measures the pressure at the bottom
(bottom pressure recorder or simply BPR (41)), it is interesting to provide as well
the expression py(x,y,t) for the pressure at the bottom. The pressure p(zx,y, z,t)
can be obtained from Bernoulli’s equation, which was written explicitly for the free
surface in equation (11), but is valid everywhere in the fluid:

06

6t \V¢| + gz + =0. (29)

After linearization, equation (29) becomes

o¢ p_
at-i—gz—i—p—o. (30)
Along the bottom, it reduces to
09 Do _ _
at+g(*h+g)+ p =0, z = —h. (31)

The time-derivative of the velocity potential is readily available in Fourier space.
Inverting the Fourier and Laplace transforms and evaluating the resulting expression

at z = —h gives for the four time scenarios, respectively,
8¢1 // C z(km+[y)
= t dk,
ot 27r cosh2 mh) cone
a¢e C z(kz+2y) ot w . 054
5 = // a2+w2 (e — coswt — asmwt) dk + (2m)2

i(kz+Ly) 2 3
/ Ck £) tanh(mh)e <ewt+ (w) cos Wi -+ (w) sinwt) dk,
«@ «

m(a? + w?)

1(k:a:+2y)
aaqil = _ // C h mh) [sinwt — H(t —to) sinw(t — to)] dk.
w cos
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The bottom pressure deviation from the hydrostatic pressure is then given by

Plots of the bottom pressure will be given in Section 4.

3.4 Asymptotic analysis of integral solutions

In this subsection, we apply the method of stationary phase in order to estimate
the far-field behaviour of the solutions. There is a lot of literature on this topic (see
for example (42; 43; 44; 45; 46)). This method is a classical method in asymptotic
analysis. To our knowledge, the stationary phase method was first used by Kelvin
(47) in the context of linear water-wave theory.

The motivation to obtain asymptotic formulas for integral solutions was mainly
due to numerical difficulties to calculate the solutions for large values of x and y.
From equation (25), it is clear that the integrand is highly oscillatory. In order to be
able to resolve these oscillations, several discretization points are needed per period.
This becomes extremely expensive as r = \/ 22 + y? — o0o. The numerical method
used in the present study is based on a Filon-type quadrature formula (21) and has
been adapted to double integrals with exp[i(kz + fy)] oscillations. The idea of this
method consists in interpolating only the amplitude of the integrand at discretization
points by some kind of polynomial or spline and then performing exact integration
for the oscillating part of the integrand. This method seems to be quite efficient.

Let us first obtain an asymptotic representation for integral solutions of the
general form

< 1(k:a:+2y)
n(x,y,t) = 42 // T(m,t) dkdl, m = VE2 + 2. (32)

cosh mh)

Comparing with equation (27) shows that T'(m,t) is in fact

1 ptioco 2T( )
S S st
T(m,t) = 9 / &2 w2 ds.

H—1i00

For example, we showed above that for an instantaneous seabed deformation
T(m,t) = coswt, where w? = gmtanhmh. For the time being, we do not spec-
ify the time behaviour T(s).

In equation (32), we switch to polar coordinates m and 1 = arctan(¢/k):

27

1 < 7/mrcos(ga w)T did
t t
wnt) = gy [ [ T tm dudm
0 0

cosh(mh)

met imr cos
:42/ /me (eaw)dw
7I8
0

where (r,¢) are the polar coordinates of (z,y). In the last expression, the phase
function is @ = mr cos(p—1). Stationary phase points satisfy the condition 0®/0y =
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0, which yields two phases: 91 = ¢ and ¥2 = ¢ + w. An approximation to equation
(32) is then obtained by applying the method of stationary phase to the integral
over :

oo

n(r,¢,t) = \/811-37" / \ngg((xh;) (Comy @) 4 Cmaip + m)e 1)) dim,
0

This expression cannot be simplified if we do not make any further hypotheses on

the function T'(m,t).

Since we are looking for the far field solution behaviour, the details of wave for-
mation are not important. Thus we will assume that the initial seabed deformation
is instantaneous: ] )
iwt + efuut

2
Inserting this particular function T'(m,t) in equation (32) yields

T(m,t) = coswt =

1
7](7"7 #> t) = {72 (Il + 12)7

where
o 2
o 0277
0

The stationary phase function in these integrals is
&(m, 1) = mrcos(p — ) + wt, w?(m) = gmtanh mh.

The points of stationary phase are then obtained from the conditions

P oD
o = 0.

om
The first equation gives two points, 11 = ¢ and 12 = ¢ + 7, as before. The second

condition yields
dw

o (33)

Z cos(p —1,2) = F

Since dw/dm decreases from /gh to 0 as m goes from 0 to co (see Figure 9), this
equation has a unique solution for m if |r/t| < /gh. This unique solution will be
denoted by m”™.

For |r| > t\/gh, there is no stationary phase. It means physically that the wave
has not yet reached this region. So we can approximately set I1 ~ 0 and I2 ~ 0. From
the positivity of the function dw/dm one can deduce that i1 = ¢ is a stationary
phase point only for the integral I5. Similarly, 2 = ¢ + 7 is a stationary point only
for the integral I;.

Let us obtain an asymptotic formula for the first integral:
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i(wt—mr) z4
/cosh (\/m C(m,p+ me ) dm
0

o0
— \/27TeiZLr / (m ¢ +m) \/mei(“’tfm” dm
0

r cosh(mh)
~ \/27r oih 2rm* {(m*, ¢ +7) Gilw(m™)t—m*r) —iF
T |w”(m*)|t cosh(m*h)
_2x m* (M, 0 +T) iwim*)t—m*r)
= e .
t V —w’w’ cosh(m*h)

In this estimate we have used equation (33) evaluated at the stationary phase point

(m*7 1/]2):
dw

=1
" dm

(34)

m=m*

Similarly one can obtain an estimate for the integral Ia:

27 m* C(m*,ga) efi(w(m*)tfm*r)

I =~
? t V —w"w’ cosh(m*h)

Asymptotic values have been obtained for the integrals. As is easily observed from
the expressions for I and I, the wave train decays as 1/t, or 1/r, which is equivalent
since r and ¢ are connected by relation (34).

4 Numerical results

A lot of numerical computations based on the analytical formulas obtained in the
previous sections have been performed. Because of the lack of information about the
real dynamical characteristics of tsunami sources, we cannot really conclude which
time dependence gives the best description of tsunami generation. At this stage it
is still very difficult or even impossible.

Numerical experiments showed that the largest wave amplitudes with the time
dependence T¢(t) were obtained for relatively small values of the characteristic time
. The exponential dependence has shown higher amplitudes for relatively longer
characteristic times. The instantaneous scenario T; gives at the free surface the initial
seabed deformation with a slightly lower amplitude (the factor that we obtained was
typically about 0.8 ~ 0.94). The water has a high-pass filter effect on the initial solid
boundary deformation (see Dutykh et al. (18) for more details). The linear time
dependence T;(t) showed a linear growth of wave amplitude from 0 to also ~ 0.9¢o,

where (o = max _|((z,y)].
(z,y)€R?

In this section we provide several plots (Figure 11) of the free-surface deforma-
tion. For illustration purposes, we have chosen the instantaneous seabed deformation
since it is the most widely used.

From Figure 12 it is clear that the velocity field is really negligible in the begin-
ning of wave formation. Numerical computations showed that this situation does not
change if one takes other time-dependences. The values of the parameters used in the
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Free surface at = 0.01s Free surface att=0.6's

Zaxis
Z axis

X axis Y axis X axis Y axis

Free surface att=3's Free surface att=5s

Zaxis
Zaxis

X axis Y axis X axis Y axis

Fig. 11. Free-surface elevation at ¢t = 0.01, 0.6, 3, 5 in dimensionless time. In physical
time it corresponds to one second, one minute, five minutes and eight minutes and
a half after the initial seabed deformation.

u(xy.t)

t=0.01 Xaxis

Fig. 12. Components u, v and w of the velocity field computed along the free surface
at t = 0.01, that is one second after the initial seabed deformation.
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Fig. 13. Bottom pressure at ¢ = 0.01,0.6,3,5 in dimensionless time. In physical
time it corresponds to one second, one minute, five minutes and eight minutes and
a half after the initial seabed deformation.

computations are given in Table 3. We also give plots of the velocity components on
the free surface a few seconds (physical) after the instantaneous deformation (Figure
12). Finally, plots of the bottom dynamic pressure are given in Figure 13.

The main focus of the present paper is the generation of waves by a moving
bottom. The asymptotic behaviour of various sets of initial data propagating in a
fluid of uniform depth has been studied in detail by Hammack and Segur (48; 49).
In particular, they showed that the behaviours for an initial elevation wave and for
an initial depression wave are different.
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Table 3. Physical parameters used in the numerical computations

Parameter Value
Young modulus, E, GPa 9.5
Poisson ratio, v 0.27
Fault depth, d, km 20
Dip angle, 4, ° 13
Strike angle, 6, ° 90
Normal angle, ¢, ° 0
Fault length, L, km 60
Fault width, W, km 40
Burger’s vector length, |D|, m 15
Water depth, A, km 4
Acceleration due to gravity, g, m/s2 9.8
Wave number, k, 1/m 10~*
Angular frequency, w, Hz 1072
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1 Introduction

A tsunami or storm surge propagating in a river is a very energetic phenomenon
and not many human constructions can resist it. However studying its propagation
can help identify dangerous regions where hopefully human habitat will be avoided.
As in a wave guide the tsunami or bore will be influenced by the variable section
(depth or width) of the channel. We will not consider here the case of the ocean
where the bathymetry plays a crucial role in fixing the wave speed but a channel or
river where the depth and width vary slowly compared with the wave length.

For a typical estuary as one moves towards the mouth of the river, the depth
increases and the width increases. When a tidal wave, tsunami or storm surge hits
such an estuary, it can be seen as a hydraulic jump in the water height (and speed)
that will propagate upstream. Far less dangerous but very similar is the well known
bore (mascaret in french), a tidal wave that propagates in a river for considerable
distances. To understand how the wave will evolve in the channel, it is important to
understand what is the dominating parameter in the river profile, the depth or the
width. These simple dependencies will help predict flood occurrence for a tsunami
but also for a storm surge such that happened in New Orleans in 2005.

Consider two examples, the Seine river in France and the Hugli river near Cal-
cutta in India. The Seine is a river in the northwest part of France (2) where a bore
existed up to 1960 and disappeared when the river was dredged. Its tidal features
are given in the table below.

This tide amplitude is one of the largest in the world and even though the bore has
disappeared, this implies that boats should be released of their moorings when the
tide reaches the seaport town of Rouen.

The Hugli river is a branch of the Ganges and flows through the city of Calcutta
in the eastern part of India. Here a bore is present. From the data in (1) we can
build the following table.
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Table 1. Parameters for the Seine river in France

Le Havre Caudebec Rouen
distance z=0 x=80km x = 150km
time t=0 t=2h t =4h
Tide
amplitude 8-10m 1-2m

Table 2. Parameters for the Hugli river in India

Balari Panchpara Calcutta Bansberia
distance x =0 z = 30km x = 50km = = 90km

Tide
amplitude 4.5 4.7m 4.9m 4.4m
Bore
height 1.m 1.2 m 0.4 m

Here the tide amplitude decreases very little as one moves upstream, a bore exists
and can reach 1 m depending on the tide. As we see below the main reason for this
is the shallowness of the river.

This article contains results from (4) and completes the picture by presenting
it in a geophysics context. In particular in section 2, we justify our approach using
an inhomogeneous Koreteweg de Vries equation by connecting it to classical shallow
water models. The conservation laws, realistic types of dissipation and normaliza-
tions are detailed in section 3. Section 4 describes the breaking of Riemann waves
and section 5 the disintegration of a bore into KdV solitons. Detailed numerical
results are presented in section 6.

2 Shallow water models: long wave limit

The first steps in the derivation of shallow water equations are standard and can be
found for example in (5). We reproduce these steps for the sake of completeness.

The equations describing surface (gravity) waves on a fluid are the conservation
of mass and momentum

Vo=0 (1)
pvr + vV = —Vp + pgz, (2)

where the subscripts are partial derivatives and v, p, p, g and z are respectively the
3D velocity field, pressure, density, gravity constant and unit vector along the fluid
depth. Assuming curlv = 0 we introduce the velocity potential ¢ so that v = V. In
the following we drop the 2nd horizontal direction for simplicity. Then the equations
describing the evolution of the potential ¢ of the fluid in the region —h(z) < z < n(x)
where z = n(x) is the free surface are (5)
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Qe + ¢z =0 _h($)<2<77(12)
boho +d: =0 == —h(z)
Mt Gane — ¢ =0 z =1(z)

br + §(¢i+¢§)+gn:0 z = ().

The second and third equation state the continuity of the normal velocity field at
the bottom and at the interface respectively. The last equation is Bernouilli’s law
obtained by integrating the second equation of (1) along z. At this level there are
no approximations on the wave length.

Before going further, let us discuss briefly the influence of the bathymetry. When
h depends on x, the conservation of mass takes the form

R} + 8. (hu) = 0, (7)

where b’ = h(z) + n(z,t) is the absolute altitude of the water surface. Taking the
x derivative of the fourth equation in the system (3) and dropping nonlinear terms
we obtain

Combining the two equations we get the evolution of the surface in the linear limit
et — (ghte)e = 0. (9)

This inhomogeneous wave equation shows the dominant role of the bathymetry in
the propagation of tsunamis which are very long ocean waves. In particular this
equation allows propagation in both directions and therefore reflections of the wave.
This is the main effect that will give the amplitude and direction of the waves as they
hit the coastline (see the contributions of H. Segur and K. Fujima in this volume).
Consider as an example the city of Pondicherry that was hit by the tsunami of
December 2004. In the deep ocean h ~ 3km so the waves travel at around 600
km/hr. When they reach the coastline h goes from that depth to about 100 m
in a 60km interval because of the presence of underwater canyons. This causes a
considerable slowing down and ”pile-up” of the waves which will then increase in
amplitude. A systematic study of how the east coast of India was affected would
provide information as to where to expect coastal damage in future events, tsunamis
or storm surges (see the contribution of K. S. R. Murthy in this volume). In Fig. 1
we present a picture of how the wave piles up as it reaches the shallow regions. The
plot shows the solution of (9) as a function of = for three successive times t = 0,7
and ¢t = 10 respectively in continuous, continuous and dashed lines for a right going
tanh(x — vt 4+ 12) profile with the adapted velocity v = 3.24. The bathymetry profile
h(z) = 0.5ho(tanh(z/wz) — 1 —€) ho = 10,e = 0.1w, = 2 is shown in the bottom
with a reduced scale. Notice how the wave slows down and its amplitude doubles
as its front reaches the cliff. This plot illustrates how the continental shelf affects
a long wave tsunami impinging on it. The calculations were done using the Femlab
(6) finite element software with homogeneous Neuman boundary conditions on both
ends of the domain.

In the rest of the article we will assume that the depth h varies very slowly with
respect to the wave length so that we are in a coastal region or an estuary ie on the
right hand side of Fig. 1. The dispersion relation can be obtained by linearizing the
above system of equations and assuming traveling wave solutions in x of the form
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i 10

10

Fig. 1. Evolution of a right going wave disturbance as it hits an underwater cliff as a
function of z for times ¢ = 0,7 and 10. The cliff profile is shown in the bottom of the
graph. The initial condition is a rightgoing tanh profile with the adapted velocity.

n = Ae'Fe=wt g — B(z)e!** =Y where B(z) should be determined. Doing this
one finds
1
w? = gktanh(kh) ~ k* — 3cgh2kz4, (10)

for small kh and where ¢y = \/gh and B(z) = cosh[k(z + h)].

Using the linear theory one can obtain the long wave Boussinesq model and then
assuming unidirectional propagation, the Korteweg de Vries equation. Following
Whitham (5), we introduce the normalized variables and fields

Co

2 =z/l, Z' = (h+2)/h, t' =cot/l, W' =n/a, ¢' = ; P, (11)
gla
and the important nonlinear and dispersive parameters
a h?
a=, 7ﬂ_l27 (12)

which are assumed small. We assume for simplicity the depth to be constant. Omit-
ting the primes, the system of equations (3) becomes

¢pz=0 Z=0 (14)

nt—o—agbznz—d)ﬁz:() Z=14an (15)
1o 0%

¢t + Hol¢n + ﬁ)+n=0 Z=1+an. (16)

The key point is to solve the Laplace equation using the expansion in g

2 4
O, 2,6) = f(e,) = 7 Baa+ o Bfton (1)
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which takes care of the Z = 0 boundary condition. Plugging (17) into the system
(13) and keeping only terms O(a, 3) we get a variant of the system proposed by
Boussinesq a century ago

1
w0+ ompule — &g, =0 (18)
Ut + AUy — ;ﬂuzzt - 07 (19)

where u = f, is the fluid horizontal velocity at the bottom Z = 0. Variants of
these equations are obtained by evaluating the fluid velocity at different points in
Z between 0 and 7. Taking 8 = 0 in (18) yields the well known nonlinear (non
dispersive) shallow water equations. At this point, waves can still propagate in both
directions, we only assumed that they are long.

The Korteweg de Vries equation describes unidirectional waves of the system
(18). Following Whitham (5) we assume right going waves such that

u=mn ,M+n: =0,
and look for a solution
u=mn+aA+ BB+ 0’ +3°).

We find then the classical Korteweg de Vries equation (KdV)

3
Nt + Nz + 2a77nx+ 6

where the first two terms come from the wave equation (9) and describe right going
waves. The last two terms are nonlinear and dispersive corrections because a and
B were assumed small. The typical values of these parameters in the deep ocean
are o = % = i~ 3x 107" and B = ()% = (;5000m )2 = 9 x 10" so these
corrections are very small. The nonlinearity a becomes significant near the coastline
where h decreases and the wave amplitude a increases. The dispersion term is also
important there because the wavelength is reduced due to the pile-up effect discussed
above and illustrated in Fig. 2. For a tsunami reaching the shore typical values are
a = égz ~03and g = (13000% )2 = 0.09 so that these correction terms are important
for the dynamics.

Another way of obtaining (20) is to introduce new coordinates £ = k(z—at) ,7 =
k3t inspired by the dispersion relation for k << 1 and expand u, 7 in powers of k.
Going back to the dimensional space and time coordinates and dimensional field
variables from (11) the KdV equation becomes

3n coh?
1 z z — U.
e + co(1+ 9 h)77 + 6 3 0 (21)

Despite the long wave and unidirectional approximations, the KdV equation de-
scribes quantitatively long waves propagating in narrow shallow channels. This was
first established by John Scott Russel (7). A systematic comparison with experi-
ments for different initial conditions was done by Joe Hammack and Harvey Segur
in the series of articles (8; 9; 10). In all cases, the data showed remarkable agreement
with the solutions of (21).
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3 The model: inhomogeneous Korteweg-De Vries
equation

For hydrological purposes, ie to determine the amount of water present at a given
position for all times one needs to solve a boundary value problem. This is difficult
for the KAV equation (13; 14). However going back to the derivation of the equation,
one sees that at zero order 7 + conz = 0 so at that order — 0Oz = 7610 ot. We can
then transform the nonlinear and dispersive corrections.

This approach preserves the accuracy of the model and also allows to use the en-
tire powerful kit of exact methods available for the KdV equation, including inverse
scattering transform, Hirota method, Darboux-Matveev and Béacklund transforma-
tions. The equation in signalling coordinates is (15)

on 10n a1 On a2 _
oz o Ot & "ot cg o3 0 (22)

This equation can describe channel inhomogeneities that are long compared
to the typical wave length. If the channel is curved then x is a curvilinear ray
coordinate directed along the channel axis (see Fig. 2) and orthogonal at each point
to the other axes. Such an approach was used in (11) to describe sea waves in a
coastal zone. Another important effect is the change of the depth h(z) or width I(x)
of the channel which we will assume to of rectangular cross-section for simplicity
throughout the paper. This leads not only to an z-dependence of the coefficients of
the Eq. (22) but also to the appearance of an additional term. To derive this term,
we note first that the constructing generalized KdV equation contains additively
the terms describing different effects such as nonlinearity, dispersion, dissipation,
inhomogeneity, etc, because all these effects are assumed small and the same order
of smallness. This assumption allows us to derive the corresponding terms in the
equation separately from the others. To derive the inhomogeneous term we use the
energy flux conservation law in the channel cross-section. Time averaged density of
wave energy integrated over the channel depth can be readily obtained in the linear
approximation £ = pgn2/2 (16; 17), where p is fluid density. Hence, the total energy
flux across the channel cross-section is

Q =co(z)€l(x) = ;pgco(az)l(m)n2(w) = const. (23)

Differentiating this expression with respect to z we get

dq

dx =0 = M+

n

1)z = 0. 24
o (cal): (24)
In addition to inhomogeneities of the channel, an incoming wave will be damped
in a real river, we will discuss this in the next section. Then using relation (24), we
obtain the final inhomogeneous Korteweg de Vries equation

1

Ne +
co(x

) (1= a)ln = B + 5 5 1= —Fn), (25)

where F(n) is the friction term and

h2

— _3 p—
A:col7a_2h’ﬂ_608'

(26)
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Fig. 2. Sketch of a curved channel and its associated curvilinear coordinate system.

The nonlinear and dispersive coefficients a and 3 are the dimensional versions of the
coefficients discussed in the previous sections. We use the same names to indicate
this and will use this form throughout the article. The channel will be considered
of rectangular cross-section, depth h(z) and width [(xz) and we will assume these
parameters to be slowly varying functions of the ray coordinate x. Specifically we
will assume

h=ho(1—kpx), hoe ™" or 1=Io(1—rzx), loe ™7, (27)

where ho, lo are the depth and width at = 0. Equations (25-27) will be the main
model that we will study in the article. We will consider the evolution of initial (z =
0) perturbations as they propagate along the channel. The analysis is impossible in
the general case so we will consider the most typical and important wave processes
separately.

3.1 Conservation laws in the absence of dissipation F = 0

In the absence of dissipation and for a localized solution, (25) has two conserved
quantities, the momentum

A1/2(Z‘)/’I7dt = const, (28)

and the energy
A / n° dt = const. (29)
For a linear wave, assuming a perturbation in the form

x

wwo=af o (e= [ 00| (30)
0

co(x’)
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where f is a dimensionless function describing wave profile and plugging it into (28)
or (29), one gets the general linear Green’s law

A(z) ~ A™V2(2) ~ B4 (@) 17V 2 (2). (31)

For a (nonlinear) KdV soliton of the form

dx’

1
t) = Asech? t—
0

(32)

we should use the energy relation (29) and not the momentum because the pertur-
bation generates a shelf in the wave and this should not be taken into account. One
obtains then the nonlinear Greens law instead of (31)

I(z)h®?(2) A% 2 (z) = const  or  A(x) ~ 1723 (z)h (). (33)

3.2 Different types of dissipations F(n)

Geophysical flows are different from laboratory flows in particular for the friction
mechanisms involved. For example the boundary layer which is the main component
of friction in laboratory experiments plays little role in a tsunami or turbulent bore.
For these the dissipation terms are not well known so authors use very general mod-
els. The main dissipation terms used in geophysical flows are Rayleigh, Chezy and
Reynolds damping. Rayleigh damping is F(n) = ~o(z)n where vo(z) = 460(323)22(96)
and 0.2m%s < v < 30m?s is the turbulent viscosity(11).

Chezy damping is F(n) = vc(x)|n|n where v.(z) =
k ~ 1.51073 is related to friction on the bottom.

Finally Reynolds damping is F(n) = —y2(z) gig,

h;zz) and the the coefficient

where y2(z) = 5
0

4 Normalizations of the model

The first step is to eliminate the independent term by introducing v = s(z)n ; s(x) =

i/ﬁ%; Equation (25) becomes
du Pu

“aa] o = s G =—swr | L) e

where p(z) = gc(ﬁ)(x) The boundary condition is  w(x = 0,t) = UP(t/T)
To eliminate the galilean term and reduce the nonlinearity we introduce the new
fields and coordinates

e L)

v= g5 o=y [e©d i 0= -
0

0

) (35)

, and obtain the final simplified KdV equation
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v ov 1 0% 1

ac o0 " o2(¢) 003 ~ R, (36)
Equation (36) features the Ursell parameter o(¢) = p(Q)UT?/B(¢) which gives the
importance of the dispersion vs nonlinearity. The dissipation term is Rg = p(Q)U/T
and

2
3v kU v 0 v} . (37)

O ={ im0 ¢ om0+ 1ok o8
This normalization is very useful to compare the relative strength of the different
dissipations. First consider the case of variable depth h = ho(1 —kz) = <K i Then
the normalized coefficients of the Rayleigh, Chezy and Reynolds damping terms
are respectively go = 1+ W¢, Ge = (1 4+ W3, §o = (1 + W¢)™Y3, where
W = kT+\/gh3/(2U) and 62 = (1 + W¢)®.
For the variable width case [ = lo(1 — kz) = < 1/k, we get similarly go = 1 —
IWC 5 Ge=1; ga=1-32W( ; % =(1— gW()fl. The dissipative coefficients
are plotted as a function of the reduced space variable W in the left panel of Fig.
3 for variable depth and on the right panel of Fig. 3 for variable width. Notice
how, for linearly decreasing depth, the Reynolds dissipation coefficient decreases as
one moves upstream. On the contrary the Chezy and Rayleigh coefficients increase.
When the width of the channel is decreased, the Chezy coefficient is constant while
the other two types of damping decrease.

Dissipative coefficients
Dissipative coefficients

A0 48 46 44 42 40 02 04 06 0s 1o 08 A6 4 AT A0 02 04 06 0810
WhC W[C

Fig. 3. Evolution of the Rayleigh, Chezy and Reynolds normalized dissipation co-
efficients go, gc and g2 as a function of W( for linearly decreasing depth (left panel)
and linearly decreasing width (right panel).

5 Breaking of Riemann waves:

When the dispersion and dissipation terms are small compared to the nonlinearity
ie for very large amplitude waves like a tsunami, they can be neglected and the
problem reduced to the quasilinear wave equation
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ou 1 Ou
=0 38
ox V(u,z) Ot ' (38)
with V(u,z) = co(*)  Then the solution is given in implicit form

l—a(z)u/s(x)

(i t) = /Vu - (39)

It is well known that the wave breaks at the distance z = X, such that(b)

87’ f V[tp(r) '] =0.

When the channel depth or width decreases, the breaking distance X} is changed

from X7 = Sril;f(c(g,) its unperturbed value and the change can be estimated as shown

in the table below for the typical numbers. ho = 10m, ¢ = 9.8ms 2 — a =
0.15, 3=0.017 &(1) = Asin(wr), A=1, w=0.5s"
X? =131m

Table 3. Breaking distance for inhomogeneous channels

Variable  depth h = ho(1 — kz) width | = lp(1 — k)
X ~ Xp(1— [rXY) =X)(1 - jxXy)
k="510"3 3l m 109 m

As one can see breaking occurs for a much shorter distance upstream when the
depth is decreased. Decreasing the width has a much smaller effect. Dissipation of
Rayleigh and Chezy types will increase X3 (4). On the contrary Reynolds dissipation
leads to Burgers equation where no breaking occurs. This is a turbulent bore where
energy is dissipated at a constant rate(3). One can think that vegetation at the water
front (mangroves..) causes this type of damping and thus limits the destruction
caused by the large release of kinetic energy due to breaking.

6 Bore disintegration into KdV solitons:

In general, dispersion is present so that any initial condition will decompose into
KdV solitons if the inhomogeneous and damping terms are small enough. In the
homogeneous and inviscid case s =1, F =0 (25) becomes

onp 1 . on n B
g T oo 1M g TP =0 (40)

with the initial (boundary) condition n(x = 0,t) = UH(t). Introducing the change
ppU

313
5 T = \/p%U (t,;)we get the

v v v
oc Yor " ors = (41)

of variables v = [ ; E ==

dimensionless form
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From this one of the authors estimated the distance of first soliton emergence from
a step profile as & ~ 45 (12). In the real units the distance of soliton emerging is

3 14 .
= 55\/1)0;]3 = 10h°/2U3/2 As example we take h = 10 and obtain X, = 3160m

for U =1, Xs = 1120m for U = 2 and X5 = 560m for h = 5m, U = 1m.
In the inhomogeneous case, this analysis is not valid, however the scaling is
instructive to understand the role of depth vs width of the channel. The reduced field
b4 ’
and variables are v = [}; § = U3/2\/p(0) fp Ydx'; T = \/UB%(;) (t* c(:l(zz’))7
and the inhomogeneous KdV equation is

3
81}_ 81}_ 8@207 (42)

B(€) p(0)
B(0) p(&)
¢ along the channel. The table below gives the behavior of B(&) as a function of

_ _ 3/2,—5/2
the reduced coordinate along the channel £/¢ with £ = g v :U . It shows that

decreasing the channel depth gives a smaller dispersion than decreasing the channel
width so that the distance of soliton emerging will be smaller for variable depth.

where the generalized Ursell parameter B(§) = depends on the position

Table 4. Generalized Ursell parameter for different channel profiles
Variable depth width
-3
Linear Ba(€) = (1 + jg) Bu(¢)=1-}¢
—9/7 -1
Exponential Bge(§) = (1 + Zg-) Buye(§) = (1 + ;g-)

6.1 Numerical results: variable depth or width, no damping

We have solved the inhomogeneous KdV equation (36)

ve — ao(§)vur + Po(§)vsr =0

using the following finite difference scheme in space and time O(dt?, dz?)

Tl gt o™
J J 2 J+1
vg = O(dx Vr =
3 2d$ + ( ) ) T

- U;'LA 2
odt + O(dt”)

V2 T2 F 207 v, ; : 3
V3 = a3 . The scheme is stable if dx ~ dt°. In the homogeneous

case it conserves the mass and energy Ci = fvdT ,Cy = ffusz. On a practical
side, since it is a 3 step iteration, it has to be initialized with a simple 2 level
scheme O(dt, dz?). The Reynolds dissipation term is treated with the DuFort Frankel
discretisation,
N Vi — U;L+1 — v}kl +vj_q
UTT ~ dt2 9
which us absolutely stable when ap = 5o = 0.
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6.2 Numerical results: geometry

We first consider the role of geometry in the absence of dissipation. The initial
condition is a tanh profile

Up t—to
= 1
n(0,t) 9 ( + tanh T ) , (43)

where we took Uy = 1m, to = 940s, To = 20s. We assumed a linearly decreasing
depth such that x = 1073. Fig. 4 shows the decomposition of the bore (43) into soli-
tons in the reduced frame (left panel) and the laboratory frame (right panel). Notice
the main features of the transformations (35), the amplification of the wave and the
time shift due to the Galilean transformation. In Fig. 5 we compare the solutions

3t i
2 L
> =2
2 L
] L
0 0 AN
325 350 375 400 425 450 475
1 t

Fig. 4. Bore decomposition into solitons for a channel of linearly decreasing depth.
The left panel shows the solution in the reduced coordinates v(&, 7) for £ = 0 (initial
condition) and & = 18, 30. The right panel presents the solution 7(z,t) in the labo-
ratory frame for & = 18, 30 corresponding respectively to = 532m and x = 644m.

obtained for a linearly decreasing depth (continuous line) and width (dashed line) at
the same location x = 1000m. Solitons have appeared for the former while they are
just emerging from the latter as expected from the reduced Ursell parameter B(€)
(Table 6). Once solitons are created,they evolve practically independently of each
other and their amplitude follows the nonlinear Greens law (33) as seen in Fig. 6.

6.3 Numerical results: effect of damping

To illustrate how different dissipations act we present in Fig. 7 n(xz = 2710m,t) for
the three types of damping and a linear decreasing depth x = 10™* for the bore
initial condition (43). One sees that the Chezy dissipation reduces most the wave.
As expected from the results in Fig. 4, the Reynolds dissipation affects it very little
and the wave gets amplified by the inhomogeneity.
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Fig. 5. Bore evolution n(z,t) for x = 1000m for a channel of linearly decreasing
depth (continuous line) and width (dashed line).
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Fig. 6. Evolution of the leading pulse of Fig. 5 as a function of z computed nu-
merically (symbols) for a channel of linearly decreasing depth (dl), exponentially
decreasing depth (de) and exponentially decreasing width (we). The corresponding
Green’s laws (33) are given for each case in solid lines.
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1150 1200 1250

Fig. 7. Solution n(z = 2710m,t) for a channel of linearly decreasing depth and
Rayleigh dissipation (continuous line), Chezy dissipation (long dash) and Reynolds
dissipation (short dash).

6.4 Adiabatic decay of KdV solitons

Solitons once formed, evolve practically independently so it is useful to understand
how dissipation and inhomogeneities affect them. This is true for small perturbations
for which the parameters of the soliton can be assumed to be slowly varying. In that
case and for the Rayleigh damping, the energy balance equation applied to (25)
yields )

1d 2 1<n®>dA

2 dx <n > +2 A dx
where < n? >= I n?(x,t)dt. The solution can be obtained as

= —y(z) <n> > (44)

<n® > Az) = < ng > Aoexp —2/%(35') dz' |,
o

where 7o = n(x = 0), Ao = A(z = 0). Assuming a soliton ansatz yields a general-
ization of Green’s law in the presence of dissipation

=,y () e ‘/ o) )

xo
For example in the case of a channel of linearly decreasing depth, the amplitude is
unchanged if the depth h(z) is

5

2/
h(z) = ho [1 -2 \/:hs (2 — mo):| . (46)

These considerations can be for the other types of damping as well but may have to
be done numerically.
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7 Conclusion

We examined the propagation of a tsunami from the deep sea where nonlinearity
and dispersion are small to the coastline where these parameters become significant.
In particular we showed on the inhomogeneous linear wave equation the importance
of bathymetry in the wave amplification.

We introduced a very simple model which allows in depth analysis of a tsunami
or storm surge propagating in an inhomogeneous channel or river of slowly varying
depth or width. This allows to separate the effects of the different parameters and
showed the dominant role of depth variation as opposed to width variation in the
breaking of Riemann waves and the bore decomposition into solitons.

Since a reliable model for wave dissipation is not known, we considered the main
dissipations used for geophysical flows, the Rayleigh, Chezy and Reynolds dampings
and compared their effects as one moves along the channel. These damping terms
have a different dependence on the channel inhomogeneity and it would be useful
to compare these predictions with the results of a large scale experiment to see
which one dominates. One could then solve the inverse problem and estimate the
parameters.
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Summary. The chapter focuses on the physics and modelling of the extreme water
wave events called rogue waves. A particular attention is paid to their formation in
presence of strong wind. Two mechanisms producing the giant waves are considered:
The dispersive spatio-temporal focusing and the modulational instability. In both
cases an amplification of the height and duration of the rogue wave event is observed
under wind action.

1 Introduction

Extreme wave events such as rogue waves correspond to large-amplitude waves oc-
curring suddenly on the sea surface. As it has been emphasized by (13) these huge
water waves have been part of marine folklore for centuries. Since the seventies of
the last century, oceanographers have started to believe them. In situ observations
provided by oil and shipping industries and capsizing of giant vessels confirm the
existence of such events. Up to now there is no definitive consensus about a unique
definition of rogue wave event. The definition based on height criterion is often used.
When the height of the wave exceeds twice the significant height it is considered as
a rogue wave. Owing to the non-Gaussian and non-stationary character of the water
wave fields on sea surface, it is a very tricky task to compute the probability density
function of rogue waves. So, the approaches presented herein are rather determinis-
tic than statistical. Recently (7) and (11) provided reviews on the physics of these
events when the direct effect of the wind is not considered. Rogue waves can occur
far away from storm areas where wave fields are generated. In that case huge waves
are possible on quasi still water. Hence, our approach to the problem is aimed at
describing the deterministic mechanisms responsible for the occurrence of these huge
waves in presence of strong wind, that is in storm areas.

There are a number of physical mechanisms producing the occurrence of rogue waves.
Extreme wave events can be due to refraction (presence of variable currents or bot-
tom topography), dispersion (frequency modulation), wave instability (Benjamin-
Feir instability), soliton interactions, etc. that may focus the wave energy into a
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small area. All these different mechanisms can work without direct effect of wind on
waves. For more details see the paper (11).

The most popular example of rogue waves is that corresponding to abnormal waves
appearing suddenly off the south-east coast of South Africa when the dominant
wind-generated waves meet a counter-current (Agulhas Current). Theoretical and
numerical studies have been developed to understand this wave-current interaction
((23), (12), (26)). Recently, (29) reported experimental results of limiting rogue
waves on currents.

Refraction of surface waves can be due to underwater topography as well. The re-
sult is spatial variations of the kinematic (frequency and wavenumber) and dynamic
(amplitude or energy) properties of the wave packets. The geometrical focusing of
wave energy can generate huge waves. Note that rogue waves can arise from wave-
current interactions in water of varying depth. It means that refraction effects due
to sea bottom and current both are working.

Rogue wave events due to spatio-temporal focusing phenomenon can be described
as follows. If initially short wave packets are located in front of longer wave packets
having larger group velocities, then during the stage of evolution, longer waves will
overtake short waves. A large-amplitude wave can occur at some fixed time because
of the superposition of all the waves merging at the same location (the focus point).
Afterward, the longer waves will be in front of the short waves, and the amplitude
of the wave train will decrease. This focusing-defocusing cycle was described by (18)
within the framework of the shallow water theory and later by (22) using the Davey-
Stewartson system for three-dimensional water waves propagating in finite depth.
More recently, this technique was also used in the experiments on rogue waves con-
ducted by (8) and (25).

Another mechanism generating extreme wave events is the modulational instability
or the Benjamin-Feir instability. Due to this instability uniform wave trains suffer
modulation-demodulation cycles (the Fermi-Pasta-Ulam recurrence). At the max-
imum of modulation a frequency downshifting is observed and very steep waves
occur.

Soliton interaction as a possible model for extreme waves in shallow water has been
suggested by (19) and (20). They considered the interaction of two long-crested shal-
low water waves within the framework of the two-soliton solution of the Kadomstev-
Petviashvili equation. It was found that extreme surface elevation exceeds several
times the amplitude of the incoming waves over a small area. In deep water (3) and
(4) showed that strong interactions between envelope-solitons may produce rogue
wave event. They performed long time simulations based on fully nonlinear equa-
tions.

The present study focuses on the two main mechanisms producing rogue waves : The
spatio-temporal focusing mechanism and the modulational instability mechanism.
In section 2 is defined the criterion which characterizes a rogue wave event. Section
3 presents the equations of water waves and the sheltering theory. The experimental
study of extreme wave event is presented in section 4 while section 5 is devoted to
the numerical modelling and simulations.
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2 Rogue wave definition

In the first approximation, the sea elevation is considered as a summation of si-
nusoidal waves of different frequencies with random phases and amplitudes. The
random wave field is considered as a stationary random Gaussian process with the
following probability density distribution

= ew(=)) )
= exp(— ,

" \/ 2o P 202

where 7 is the sea surface elevation with zero mean level, < 7 >= 0, and ¢ is the

variance computed from the frequency spectrum, S(w)

ol =<’ >= /Ooo S(w)dw. (2)

The wind wave spectrum is assumed to be narrow, thus the cumulative probability
function of the wave heights will be given by the Rayleigh distribution

H2

P(H) = exp(— .,

)- 3)

The probability that the wave heights will exceed a threshold value, H, is given by
(3).

One specific wave height frequently used in oceanography and ocean engineering is
the significant wave height, Hs. This concept was introduced by (24) who defined
H, as the average of the highest one-third of wave heights. This wave height is close
to the mean wave height estimated by human eye. Using the Rayleigh distribution
(15) showed that H, is given by

H, = (3V2merfc(VIn3 4 2V21In 3)0 ~ 4o, (4)

where erfc(.) is the complementary error function. So H is four times the standard
deviation o. Equation (3) can be rewritten as follows

2H?

PUH) = exp(=

) ()
Mathematically, a wave is considered to be a rogue wave if its height, Hy, satisfies

the condition
Hy > 2H,. (6)

3 Mathematical formulation

3.1 Water wave equations

The fluid is assumed to be inviscid and the motion irrotational, such that the velocity
u may be expressed as the gradient of a potential ¢(x,y,z,t): u = Ve¢. If the
fluid is assumed to be incompressible, such that V.u = 0, the equation that holds
throughout the fluid is the Laplace’s equation
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V3¢ =0 for —h<z<n(z,y,t). (7)

where n(z,y,t) is the surface elevation.

The =z and y coordinates are taken to be horizontal plane, the z axis vertically
upwards. The bottom is located at z = —h(z,y). The bottom condition is

dp0h dpdh D

oror oy oy T o =0 on z=—h(z,y). (8)

The kinematic requirement that a particle on the sea surface, z = n(z,y, t), remains
on it is expressed by

on  0¢0On  0pOn 0

ot ' oxror  Oyoy azzo on z=n(z,y,t). (9)

Since surface tension effects are ignored, the dynamic boundary condition which
corresponds to pressure continuity trough the interface, can be written

0 1
af +,(Ve)* +gn+ ];Z =0 on z=n(z,y,t). (10)
where g is the gravitational acceleration, p, the pressure at the sea surface and p.,
the density of the water. The atmospheric pressure at the sea surface can vary in
space and time. In water of infinite depth, the kinematic boundary equation (8) is
replaced by V¢ — 0 as z — —o0.

The mathematical formulation of the water wave problem has been presented for
general 3D flows. The present study is confined to 2D flows and the corresponding
equations can be derived from the previous system by using 9/dy = 0.

3.2 Wind modelling: The Jeffreys’ sheltering theory

Previous works on rogue wave have not considered the direct effect of wind on their
dynamics. It was assumed that they occur independently of wind action, that is
far away from storm areas where wind wave fields are formed. Herein the Jeffreys’
theory (see (9)) is invoked for the modelling of the pressure, p,. Jeffreys proposed
a plausible mechanism to explain the phase shift of the atmospheric pressure, pq,
needed for an energy transfer from wind to the water waves. He suggested that
the energy transfer was due to the form drag associated with the flow separation
occurring on the leeward side of the crests. The air flow separation would cause a
pressure asymmetry with respect to the wave crest resulting in a wave growth. This
mechanism can be invoked only if the waves are sufficiently steep to produce air
flow separation. (1) have shown that separation occurs over near breaking waves.
For weak or moderate steepness of the waves this phenomenon cannot apply and
the Jeffreys’ sheltering mechanism becomes irrelevant.

Following (9), the pressure at the interface z = n(z,t) is related to the local wave
slope according to the following expression

0
Pa = pas(U )" )7, (1)
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where the constant, s is termed the sheltering coefficient, U is the wind speed, c¢ is
the wave phase velocity and p, is atmospheric density. The sheltering coefficient,
s = 0.5, has been calculated from experimental data. In order to apply the relation
(11) for only very steep waves we introduce a threshold value for the slope (9n/0x)..
When the local slope of the waves becomes larger than this critical value, the pressure
is given by equation (11) otherwise the pressure at the interface is taken equal to a
constant which is chosen equal to zero without loss of generality. This means that
wind forcing is applied locally in time and space. Figure 1 ! shows the pressure
distribution at the interface in the vicinity of the crest, given by equation (11), for
a threshold value close to the slope corresponding to the Stokes’ corner.

interface elevation
pressure distribution

Zp

1 1 1 1 1 1 1 I
18.3 18.4 18.5 18.6 18.7 18.8 18.9 19 19.1 19.2 19.3
X

Fig. 1. Pressure at the interface given in 107'HPa (dotted line) and surface
elevation given in m (solid line) as a function of z .

4 Rogue wave observation in presence of wind

Rogue waves have been generated in the large wind-wave tank of IRPHE which is
40m long, 1m deep and 2.6m wide. The wind tunnel above the water surface is
40m long, 3.2m wide and 1.6m high. Figure 2 gives a schematic view of the facility.
The blower can produce a wind velocity up to 14m/s and a computer-controlled
submerged wave maker located under the upstream beach can generate regular or
random waves in a frequency range from 0.5Hz to 2Hz. Particular care has been
taken to obtain a pure logarithmic mean wind velocity profile with a constant shear
layer over the water surface. Several wave gauges are installed on a trolley to measure
the water surface elevation at different fetches (distance measured from the upstream
beach). For additional details on experiments see the paper by (25)

Rogue waves are generated using the spatio-temporal focusing mechanism based on
the dispersive nature of water waves. Within the framework of a linear approach
the sea surface can be considered as the superposition of linear waves of frequency

! Figures 1, 4, 5 and 6 have been reprinted from (25).
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w(z,t). According to (28), the spatio-temporal evolution of the frequency of these
components is governed by the following hyperbolic equation

ow ow

ot + cg(w) P 0, (12)

where ¢4 is the group velocity. This equation can be solved by using the method of
characteristics. The solution is given by

w(z,t) =wo(r),  vg(T) = ¢o(wo(r)) on t=7+x/vg(r), (13)

where wo corresponds to the temporal frequency distribution of the wave train at
x = 0. The temporal partial derivative of the frequency is

Ow o
e (14)
- v2 dr

One can notice that the case dvg/dr > 0, which corresponds to short waves emit-
ted before longer waves, leads to a singularity. This singularity corresponds to the
focusing of several waves at t = Tt,, and x = Xj,, . For infinite depth, the frequency
to impose to the wave maker located at x = 0 is given by
g Tfth =t
w(0,t) = , 15
0 =5 """ (15)
where Xy, and Tt,, are the coordinates of the point of focus in the (z — t) plane.
Using w = 27 f the coordinates of the focus point reads

Tfth - AT fmaxm_axfmin
gAT 1
Xf =

4 fmax - fmin

where fmax and fmin are the maximal and minimal values of the frequency imposed
to the wave maker during a period of time equal to AT and g is the acceleration
due to gravity.

The wave amplitude, a, satisfies the following equation

3a2 0 2
=0. 16
at + ax (Cga’ ) ( )
This equation corresponds to the conservation of wave energy, and its solution is
found explicitly
ao(7)

1— xd'ug’
v2 dr

where ao(7) is the temporal distribution of the wave amplitude at x = 0. Within the
framework of the linear theory focus points are singular points where the amplitude
becomes infinite and behaves like (Xy, — z)~ /2

The wave train generated at the wave maker is uniform in amplitude and frequency
modulated. The experimental data are: fmax = 1.3H 2, fmin = 0.8 Hz and AT = 10s.
Experiments are performed with and without wind. Figure 3 shows the surface

a(z,t) = (17)
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elevation at a distance of 1m from the upstream beach for two values of the wind
velocity. It can be seen that the initial group of waves is almost uniform in amplitude
and unaffected by wind. From the data we find that T}, = 26s and X, = 17m
while the experimental values are T, = 26s and Xi,, = 20m (see Figure 4
corresponding to U = 0m/s). Experimental data are in close agreement with the
linear theory. The difference observed between the theoretical and experimental
values of the focus point is mainly due to the nonlinearity of the experimental
wave train. Note that the wave train generated at the wave maker is uniform in
amplitude, hence the short waves are steeper than the longer waves, and the result
is a downstream shift of the focusing location. From Figure 4 it can be seen that
dispersion leads short waves to propagate slower than long waves, and as a result,
the waves focus at a given position in the wave tank leading to the occurrence of a
large amplitude wave. Downstream the point of focus, the amplitude of the group
decreases rapidly (defocusing).

The same initial wave train is generated and propagated under the action of wind for
several values of the wind velocity ranging from U = 4m/s to 10m/s respectively.
In presence of wind, the focusing wave train is generated once wind waves have
developed. For each value of the mean wind velocity U the water surface elevation
is measured at 1m fetch and at different fetches between 3m and 35m. The fetch
is measured from the entrance of the wave tank where the air flow meets the water
surface i.e. at the end of the upstream beach. The wave maker is totally submerged,
to avoid any perturbation of the air flow which could be induced by its displacement.
Figure 5 shows the same time series of n(z,t), at several values of the fetch z, and
for a wind speed U = 6m/s. The wave groups mechanically generated by the wave
maker are identical to those used in the experiments without wind (see Figure 3).
Nevertheless, short wind waves can be observed. In any case, some differences appear
in the time-space evolution of the focusing wave train. One can observe that the
group of the rogue wave event is sustained longer.

The amplification factor A(x,U) of the group between fetches  and 1m is defined

as follows
Hpax(z,U)

Hrcf

where U is the mean wind velocity and Hmax(z,U) is the maximal height between
two consecutive crest and through in the transient group. The height, H,., of the
quasi uniform wave train generated at the entrance of the tank is measured at 1m.
The mean height crest to through is Hyef = 6.13cm. Figure 6 shows how evolves in
space the amplification factor for three values of the wind velocity. For U = 0m/s
(without wind) as expected the amplification is maximal at the focus point and the
curve exhibits a symmetry with respect to the straight line of equation z = Xy, .
Focusing and defocusing stages present a symmetrical behaviour. For U = 4m/s
and U = 6m/s this symmetry is broken and the focus point is shifted downstream.
One can notice that the amplification factor increases as the wind velocity increases.
Another important feature is observed: The rogue wave criterion, A > 2, is satisfied
on a longer distance (or period of time) while the wind velocity increases.

The experiments suggest that the physical mechanism which could be responsible
of the persistence of rogue events is the occurrence of air flow separation over steep
waves.

Az, U) = ; (18)
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blower

absorbing beach

Fig. 2. Schematic view of the wind-wave facility
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Fig. 3. Surface elevation (in c¢m) at fetch 1m for wind velocities U = Om/s and
U=6m/s.

5 Numerical modelling

5.1 Focusing due to linear dispersion

Herein we considered a numerical wave tank simulating the experimental water wave
tank briefly described in the previous section. The gravity wave train is generated
by a piston-type wave maker. An absorbing beach located at the end of the wave
tank dissipates the incident wave energy.

The Laplace equation (7) is solved within a domain bounded by the water surface and
solid boundaries of the numerical wave tank. The condition on the solid boundary
writes

Vé-n=v-n, on 0, (19)

where 925 corresponds to solid boundaries, v is the velocity of the solid boundaries,
set equal to zero on the horizontal bottom and downstream wall of the wave tank
and equal to the velocity of the piston at any point of the wave maker, and n is the
unit normal vector to the boundaries.

A Lagrangian description of the water surface is used
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Fig. 4. Surface elevation (in c¢m) at several fetches (in m) for wind velocity U =
Om/s as a function of time

Dn _ 0¢
Dt~ 9z’ (20)
Dz 99
Dt~ 0z’ (21)

where z is the abscissa of the water surface and D/Dt = 8/0t + V¢ - V.

Equation (20) is an alternative form of equation (9). The kinematic boundary con-

dition writes as well
DS

Dt
where S(z, z,t) = n(z,t) — z = 0 is the water surface equation.

=0, (22)

The dynamic boundary condition (10) is rewritten as follows

D¢
Dt

1 2 Pa
= _(V¢)" —gn— 23
o (V)" —gn P’ (23)
where the pressure, pq(z,t), at the water surface is given by equation (11), i.e. the
Jeffreys’ theory presented in subsection 3.2 is used for modelling wind effect on
the extreme waves. Over waves presenting slopes less than a threshold value, the
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Fig. 5. Surface elevation (in cm) at several fetches (in m) for wind velocity U =
6m/s as a function of time

atmospheric pressure is uniform, set equal to zero without loss of generality.

The system of equations to solve is (7), (19), (20), (21), and (23). The method to
integrate numerically this system is a boundary integral equation method (BIEM)
with a mixed Euler-Lagrange (MEL) time marching scheme. The numerical method
is based on the Green’s second identity. For more details see the paper (25).

A focusing wave train is generated by the piston wave maker, leading during the
focusing stage to the generation of a extreme wave followed by a defocusing stage.
The water surface and the solid boundaries (downstream wall, bottom and wave
maker) are discretised by 2000 and 1000 meshes respectively, uniformly distributed.
The time integration is performed using a RK4 scheme, with a constant time step
of 0.01 s. To avoid numerical instability the grid spacing Az and time increment
At have been chosen to the satisfy the following Courant criterion derived from the

linearized surface conditions 8A
(A< (24)
g

The focusing mechanism is investigated with and without wind as well.
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Fig. 6. Experimental amplification factor A(z,U) as a function of the distance (in
m) for several values of the wind velocity

A series of numerical simulations have been run for three values of the wind veloc-
ity: U = 0 m/s, 4 m/s, 6 m/s. Using equation (18), Figure 7 describes the spatial
evolution of the amplification factor computed numerically. It can be observed that
the numerical curves behave similarly to those plotted in Figure 6 and thus em-
phasize the asymmetry found in the experiments. This asymmetry results in an
increase of the life time of the rogue wave event which increases with the wind ve-
locity. The threshold value of the slope beyond which the wind forcing is applied
is (On/0z). = 0.5. This value corresponds to a wave close to the limiting form for
which the Jeffreys’ theory applies. Hence the duration of the wind effect is relatively
short to increase the amplification of the rogue wave event significantly. However a
very weak increase of the amplification factor is observed in presence of wind which
is significantly weaker than in the experiments. The main effect of Jeffreys’ shelter-
ing mechanism is to sustain the coherence of the short group involving the rogue
wave event. Inspection of Figures 6 and 7 shows that the numerical maxima of the
amplification factor are larger than those obtained experimentally. This can be due
to spilling breaking events which where observed in the experiments, resulting in
energy dissipation and in saturation in the growth of amplitude. Notice that the
present model which is based on the assumption of inviscid fluid cannot describe
energy dissipation. In our model, the transfer of energy from the wind to the water
waves depends on the wind velocity and threshold wave slope value. If the latter
value is low the energy transferred becomes high and breaking occurs.
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To summarize, within the framework of the spatio-temporal focusing both experi-
mental and numerical results are in qualitative good agreement even if some quan-
titative difference have been observed for the height of the rogue wave.

3.5

<< 25

1.5F

10 15 20 25 30

Fig. 7. Numerical amplification factor A(z,U) as a function of the distance (in m)
for several values of the wind velocity

5.2 Focusing due to modulational instability

Beside the focusing due to dispersion of a chirped wave group, another mechanism,
the modulational instability or Benjamin-Feir instability (see the paper (2)) of uni-
form wave trains, can generate extreme wave events. This periodic phenomenon is
investigated numerically using a high-order spectral method (HOSM) without ex-
perimental counterpart. The question is to know how evolve extreme wave events
due to modulational instability under strong wind action. How is modified their am-
plification and time duration under wind effect? Are these effects similar or different
from those observed in the case of extreme wave due to dispersive focusing?
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Fig. 8. Time histories of the amplitude of the fundamental, ko = 5 (solid line),
subharmonic, k1 = 4 (dashed line), and superharmonic, k2 = 6 (dotted line), modes
for an evolving perturbed Stokes wave of initial wave steepness ¢ = 0.11 and funda-
mental wave period T, without wind action. The two lowest curves (dashed-dotted
lines) correspond to the modes k3 = 3 and ks = 7.

Introducing the potential velocity at the free surface ¢°(x,t) = ¢(x,n(z,t),t), equa-
tions (9) and (10) write

O == LV Ve 4 WL+ (V)] ~ pa, (25)
?;Z = —V¢* - Vn+ W[+ (Vn)?, (26)

where 06
W=, @yn@yt)0). (27)

Equations (25) and (26) are given in dimensionless form. Reference length, reference

velocity and reference pressure are, 1/ko, \/ g/ko and pwg/ko respectively.
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Fig. 9. Time histories of the amplitude of the fundamental, ko = 5 (solid line),
subharmonic, k1 = 4 (dashed line), and superharmonic, k2 = 6 (dotted line), modes
for an evolving perturbed Stokes wave of initial wave steepness ¢ = 0.11 and fun-
damental wave period T, with wind action (U = 1.75¢). The two lowest curves
(dashed-dotted lines) correspond to the modes k3 = 3 and ks = 7.

The numerical method used to solve the evolution equations is based on a pseudo-
spectral treatment with a fourth-order Runge-Kutta integrator with constant time
step, similar to the method developed by (6). For more details see the paper (21).

It is well known that uniformly-traveling wave train of Stokes’ waves are unstable
to the Benjamin-Feir instability (or modulational instability) which results from
a quartet resonance, that is, a resonance interaction between four components of
the wave field. This instability corresponds to a quartet interaction between the
fundamental component (the carrier) ko = ko(1,0) counted twice and two satellites
ki = ko(1 + p,q) and k2 = ko(1 — p,—q) where p and ¢ are the longitudinal
wavenumber and transversal wavenumber respectively of the modulation. Instability
occurs when the following resonance conditions are fulfiled.
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Fig. 10. Numerical amplification factor as a function of time without wind (solid
line) and with wind (dotted line) for U = 1.75¢

k1 + ko = 2Kko. (28)

w1 + wo = 2wp. (29)

where w; with ¢ = 0, 1,2 are frequencies of the carrier and satellites.
A presentation of the different classes of instability of Stokes waves is given in the
review paper (5).

The procedure used to calculate the linear stability of Stokes waves is similar to the
method described by (10). Let n = 77 +17’ and ¢ = ¢+ ¢’ be the perturbed elevation
and perturbed velocity potential where (7, ¢) and (1, ¢) correspond respectively to
the unperturbed Stokes wave and infinitesimal perturbative motion (" < 7, ¢’ <
¢). Following (14), the Stokes wave of amplitude ap and wavenumber ko is computed
iteratively. Substitute these decomposition in the boundary conditions linearized
about the unperturbed motion and using the following forms for a two-dimensional

flow:

1" = exp(\t+ipz) > a; exp(ijz), (30)

—0o0
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Fig. 11. Surface wave profile at t = 2607": without wind (solid line) and with wind
(dotted line).

¢' = exp(At +ipw) Y by exp(ijz +7;2)), (31)

—0o0

where A, a; and b; are complex numbers and v; =|p+ 7 |.

Equations (30) and (31) correspond to an eigenvalue problem for A with eigenvector
u = (aj,by)":

(A —-AB)u=0, (32)
where A and B are complex matrices depending on the unperturbed wave steepness
of the basic wave, € = aoko, and the arbitrary real number p. The eigenvalue, A,
satisfies

det(AB — A) = 0. (33)
The physical disturbances are obtained from the real part of the complex expressions
n’ and ¢ at t = 0.
(17) and (16) showed that the dominant instability of a uniformly-traveling train of
Stokes’ waves in deep water is the two-dimensional modulational instability (class I)
provided its steepness is less than € = 0.30. For higher values of the wave steepness
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Fig. 12. Surface wave profile at t = 2657": without wind (solid line) and with wind
(dotted line).

three-dimensional instabilities (class IT) become dominant, phase locked to the un-
perturbed wave. Herein we shall focus on the two-dimensional nonlinear evolution
of a Stokes’ wave train suffering modulational instability with and without wind
action.

Numerical simulation without wind action:

The initial condition is a Stokes wave of steepness ¢ = 0.11, disturbed by its most
unstable perturbation which corresponds to p ~ 0.20 = 1/5. The fundamental
wavenumber of the Stokes wave is chosen so that integral numbers of the side-
bands perturbation (satellites) can be fitted into the computational domain. For
p = 1/5 the fundamental wave harmonic of the Stokes wave is ko = 5 and the
dominant sidebands are k1 = 4 and k2 = 6 for subharmonic and superharmonic
part of the perturbation respectively. The wave parameters have been re-scaled in
order to have the wavelength of the perturbation equal to 27w. There exists higher
harmonics present in the interactions which are not presented here. The normalized
amplitude of the perturbation relative to Stokes wave amplitude is initially taken
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Fig. 13. Surface wave profile at t = 2707": without wind (solid line) and with wind
(dotted line).

equal to 1073, The order of nonlinearity is M = 6, the number of mesh points is
N > (M + 1)kmax where kmax is the highest harmonic taken into account in the
simulation. The latter criterion concerning N is introduced to avoid aliasing errors.
To compute the long time evolution of the wave packet the time step At is chosen
equal to 7/100 where T is the fundamental period of the basic wave. This temporal
discretisation satisfies the CFL condition.

For the case without wind, the time histories of the normalized amplitude of the
carrier, lower sideband and upper sideband of the most unstable perturbation are
plotted in Figure 8. Another perturbation which was initially linearly stable becomes
unstable in the vicinity of maximum of modulation resulting in the growth of the
sidebands k3 = 3 and k4 = 7. The nonlinear evolution of the two-dimensional wave
train exhibits the Fermi-Pasta-Ulam recurrence phenomenon. This phenomenon is
characterized by a series of modulation-demodulation cycles in which initially uni-
form wave trains become modulated and then demodulated until they are again
uniform. Herein one cycle is reported. At ¢ =~ 3607 the initial condition is more or
less recovered. At the maximum of modulation t = 2607, one can observe a tempo-
rary frequency (and wavenumber) downshifting since the subharmonic mode k1 = 4
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Fig. 14. Surface wave profile at t = 2757": without wind (solid line) and with wind
(dotted line).

is dominant. At this stage a very steep wave occurs in the group as it can be seen
in Figure 11.

Numerical simulation with wind action:

Figure 9 is similar to Figure 8, except that now water waves evolve under wind
action. Wind forcing is applied over crests of slopes larger than (9n/0x). = 0.405.
This condition is satisfied for 2567 < t < 2707, that is during the maximum of
modulation which corresponds to the formation of the extreme wave event. When
the values of the wind velocity are too high numerical simulations fail during the
formation of the rogue wave event, due to breaking. During breaking wave process
the slope of the surface becomes infinite, leading numerically to a spread of energy
into high wavenumbers. This local steepening is characterized by a numerical blow-
up (for methods dealing with an Eulerian description of the flow). In order to avoid
a breaking wave too early, the wind velocity is fixed U =~ 1.75¢. Owing to the weak
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effect of the wind on the phase velocity of the crests on which it acts, the phase ve-
locity, ¢, is computed without wind. The effect of the wind reduces significantly the
demodulation cycle and thus sustains the rogue wave event. This feature is clearly
shown in Figure 10. The amplification factor is stronger in presence of wind and the
rogue wave criterion given by equation (6), A > 2, is satisfied during a longer period
of time. Figures 11, 12, 13 and 14 display water wave profiles at different instant
of time in the vicinity of the maximum of modulation with and without wind. The
solid lines correspond to waves propagating without wind while the dotted lines rep-
resent the wave profiles under wind action. These figures show that the wind does
not modify the phase velocity of the very steep waves while it increases their height.

To summarize the results of this section, we can claim that extreme wave events gen-
erated by modulational instability in presence of wind behave similarly to those due
to dispersive spatio-temporal focusing discussed in previous section 4 and subsection
5.1.

6 Conclusion

Two main mechanisms yielding to rogue wave events have been investigated ex-
perimentally and numerically. Within the framework of extreme wave events due to
spatio-temporal focusing a good qualitative agreement is found between experiments
and numerical simulations. It is shown that the wind amplifies the height of the steep
waves and increases their duration. A second series of numerical simulations have
been performed within the framework of rogue waves due to modulational instability
. For this case no experiments have been conducted. Nevertheless the simulations
have confirmed the results found for extreme wave events due to the spatio-temporal
focusing phenomenon.
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Summary. The purpose of this article is numerical verification of the thory of
weak turbulence . We performed numerical simulation of an ensemble of nonlinearly
interacting free gravity waves (swell) by two different methods: solution of primordial
dynamical equations describing potential flow of the ideal fluid with a free surface
and, solution of the kinetic Hasselmann equation, describing the wave ensemble
in the framework of the theory of weak turbulence . Comparison of the results
demonstrates pretty good applicability of the weak turbulent approach. In both
cases we observed effects predicted by this theory: frequency downshift, angular
spreading as well as formation of Zakharov-Filonenko spectrum I, ~ w™?. To achieve
quantitative coincidence of the results obtained by different methods one has to
accomplish the Hasselmann kinetic equation by an empirical dissipation term Sgiss
modeling the coherent effects of white-capping. Adding of the standard dissipation
terms used in the industrial wave predicting model (WAM) leads to significant
improvement but not resolve the discrepancy completely, leaving the question about
optimal choice of Sg;ss open.

Numerical modeling of swell evolution in the framework of the dynamical equa-
tions is affected by the side effect of resonances sparsity taking place due to finite
size of the modeling domain. We mostly overcame this effect using fine integration
grid of 512 x 4096 modes. The initial spectrum peak was located at the wave num-
ber £ = 300. Similar conditions can be hardly realized in the laboratory wave tanks.
One of the results of our article consists in the fact that physical processes in finite
size laboratory wave tanks and in the ocean are quite different, and the results of
such laboratory experiments can be applied to modeling of the ocean phenomena
with extra care. We also present the estimate on the minimum size of the laboratory
installation, allowing to model open ocean surface wave dynamics.
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1 Introduction

The theory of weak turbulence is designed for statistical description of weakly-
nonlinear wave ensembles in dispersive media. The main tool of weak turbulence
is kinetic equation for squared wave amplitudes, or a system of such equations.
Since the discovery of the kinetic equation for bosons by Nordheim (1) (see also
paper by Peierls (2)) in the context of solid state physics, this quantum-mechanical
tool was applied to wide variety of classical problems, including wave turbulence
in hydrodynamics, plasmas, liquid helium, nonlinear optics, etc. (see monograph by
Zakharov, Falkovich and L'vov (3)). Such kinetic equations have rich families of exact
solutions describing weak-turbulent Kolmogorov spectra. Also, kinetic equations for
waves have self-similar solutions describing temporal or spatial evolution of weak
—turbulent spectra.

However, the most remarkable example of weak turbulence is wind-driven sea.
The kinetic equation describing statistically the gravity waves on the surface of ideal
liquid was derived by Hasselmann (4). Since this time the Hasselmann equation
is widely used in physical oceanography as foundation for development of wave-
prediction models: WAM, SWAN and WAVEWATCH — it is quite special case be-
tween other applications of the theory of weak turbulence due to the strength of
industrial impact.

In spite of tremendous popularity of the Hasselmann equation, its validity and
applicability for description of real wind-driven sea has never been completely
proven. It was criticized by many respected authors, not only in the context of
oceanography. There are at least two reasons why the weak—turbulent theory could
fail, or at least be incomplete.

The first reason is presence of the coherent structures. The weak-turbulent the-
ory describes only weakly-nonlinear resonant processes. Such processes are spatially
extended, they provide weak phase and amplitude correlation on the distances sig-
nificantly exceeding the wave length. However, nonlinearity also causes another phe-
nomena, much stronger localized in space. Such phenomena — solitons, quasi-solitons
and wave collapses are strongly nonlinear and cannot be described by the kinetic
equations. Meanwhile, they could compete with weakly-nonlinear resonant processes
and make comparable or even dominating contribution in the energy, momentum
and wave-action balance. For gravity waves on the fluid surface the most important
coherent structures are white-cappings (or wave-breakings), responsible for essential
dissipation of wave energy.

The second reason limiting the applicability of the weak-turbulent theory is
finite size of any real physical system. The kinetic equations are derived only for
infinite media, where the wave vector runs continuous D-dimensional Fourier space.
Situation is different for the wave systems with boundaries, e.g. boxes with periodical
or reflective boundary conditions. The Fourier space of such systems is infinite lattice
of discrete eigen-modes. If the spacing of the lattice is not small enough, or the level of
Fourier modes is not big enough, the whole physics of nonlinear interaction becomes
completely different from the continuous case.

For these two reasons verification of the weak turbulent theory is an urgent
problem, important for the whole physics of nonlinear waves. The verification can be
done by direct numerical simulation of the primitive dynamical equations describing
wave turbulence in nonlinear medium.
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So far,the numerical experimentalists tried to check some predictions of the
weak-turbulent theory, such as weak-turbulent Kolmogorov spectra. For the gravity
wave turbulence the most important is Zakharov-Filonenko spectrum F,, ~ w™* (5).
At the moment, this spectrum was observed in numerous numerical experiments (6)-
(19).

The attempts of verification of weak turbulent theory through numerical simula-
tion of primordial dynamical equations has been started with numerical simulation
of 2D optical turbulence (20), which demonstrated, in particular, co—existence of
weak — turbulent and coherent events.

Numerical simulation of 2D turbulence of capillary waves was done in (6), (7),
and (8). The main results of the simulation consisted in observation of classical
regime of weak turbulence with spectrum F, ~ w™%/% and discovery of non-
classical regime of “frozen turbulence”, characterized by absence of energy transfer
from low to high wave-numbers. The classical regime of turbulence was observed on
the grid of 256 x 256 points at relatively high levels of excitation, while the “frozen”
regime was realized at lower levels of excitation, or more coarse grids. The effect
of “frozen” turbulence is explained by sparsity of 3-wave resonance, both exact and
approximate. The classical regime of turbulence becomes possible due to nonlinear
shift of the linear frequencies caused by enhanced level of excitation. Conclusion
has been made that in the reality the turbulence of waves in limited systems is
practically always the mixture of classical and “frozen” regimes.

In fact, the “frozen” turbulence is close to K AM regime, when the dynamics of
turbulence is close to the behavior of integrable system (8).

The first attempt to perform modeling of the system of nonlinear waves (swell on
the surface of deep ocean), solving simultaneously kinetic equation and primordial
dynamic equations, has been done in the article (15). The results of this simulation
again confirmed ubiquity of the weak-turbulent Zakharov-Filonenko asymptotic w ™%
and shown existence of the inverse cascade, but presented essentially different sce-
nario of the spectral peak evolution. Detailed analysis shown, that even on the grids
as fine as 256 x 2048 modes, the energy transport is realized mostly by the network
of few selected modes — “oligarchs” — posed in the optimal resonant condition. This
regime, transitional between weak turbulence and ”frozen” turbulence, should be
typical for wave turbulence in the systems of medium size. It was called ”meso-
scopic turbulence”. Similar type of turbulence was observed in (17), (18).

In this article we present the results of new numerical experiments on modeling
of swell propagation in the framework of both dynamical and kinetic equations,
using fine grid containing, corresponding to 512 x 4096 Fourier modes. We think
that our results can be considered as first in the world literature direct verification
of wave kinetic equation.

One important point should be mentioned. In our experiments we observed not
only weak turbulence, but also additional nonlinear dissipation of the wave energy,
which could be identified as the dissipation due to white-capping. To reach agree-
ment with dynamic experiments, we had to accomplish the kinetic equation by a
phenomenological dissipation term Sg;ss. In this article we examined dissipation
terms used in the industrial wave-prediction models WAM Cycle 3 and WAM cycle
4. Dissipation term used in WAM Cycle 8 works fairly, while Sg4;ss used in WAM
Cycle 4 certainly overestimate nonlinear dissipation. This fact means that for get-
ting better agreement between dynamic and kinetic computations, we need to take
into consideration more sophisticated dissipation term.
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2 Deterministic and statistic models

In the ”dynamical” part of our experiment the fluid was described by two functions of
horizontal variables z,y and time ¢: surface elevation n(z,y,t) and velocity potential
on the surface ¢ (z,y,t). They satisfy the canonical equations (23)

on _6H oy _ OH )
ot ' ot on’

Hamiltonian H is presented by the first three terms in expansion on powers of
nonlinearity Vn

H:H0+H1+H2+...,

to = [ (9" + ko) dody,
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Here k is the linear integral operator k= —V2, defined in Fourier space as

kipe = ;ﬂ/\kwke*i‘“dk, k| = \/1@ + k2. (3)
Using Hamiltonian (2) and equations (1) one can get the dynamical equations (6):
0= k:w (V(V)) — klnky]+
+h(nk[nky]) + 1V2[772k1/1}
LA R [wnk] (4)
b= —gn— 5 |(V¥)* = (k) }
— [l fkes] — [nkﬂ/)]V W+ B [l

Here F~! corresponds to inverse Fourier transform. We introduced artificial dissi-
pative terms Pt [v&k], corresponding to pseudo-viscous high frequency damping.
It is important to stress that we added dissipation terms in both equations. In
fact, equation for 7 is just kinematic boundary condition, and adding a smoothing
term to this equation has no any physical sense. Nevertheless, adding of this term
is necessary for stability of the numerical scheme.
The model (1)-(4) was used in the numerical experiments (6) — (8), (12), (13),

(15), (17), (18).

Introduction of the complex normal variables ax

o Wik . kj
ax = \/%Wk + 1\/2wk i, (5)

where wy, = /gk, transforms equations (1) into

da OH
A (6)

ot dag
To proceed with statistical description of the wave ensemble, first, one should
perform the canonical transformation ax — bk, which excludes the cubical terms in
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the Hamiltonian. The details of this transformation can be found in the paper by
Zakharov (1999) (24). After the transformation the Hamiltonian takes the forms

H:/wkbkbﬂ+i

X 6k+k1 —ko—ks dk1 dkzdkg .

Ticke; koks Dicbic, bies bicy X 1)

where T is a homogeneous function of the third order:
T(ek, eky,eka, eks) = e>T(k, ki, ko, k3). (8)

Connection between ayx and by together with explicit expression for Txk, k,k; can be
found, for example, in (24).
Let us introduce the pair correlation function

< akay >= gNid(k — k'), (9)

where N is the spectral density of the wave function. This definition of the wave
action is common in oceanography.
We also introduce the correlation function for transformed normal variables

< bbby >= gnid(k — k') (10)

Functions nyx and Nk can be expressed through each other in terms of cumbersome
power series (24). On deep water their relative difference is of the order of 1? (u is
the characteristic steepness) and can be neglected (in most cases of swell evolution
(or wave evolution) experimental results shows p ~ 0.1).

Spectrum ny satisfies Hasselmann (kinetic) equation (4)

8nk _
ot

Sni[n] = 27T92/|Tk,k1,k2,k3|2 (T21cq Taey Mg +
FNKNKy Nkg — NkNky Nky — NkNk, nks) X
><5(wk. + Wk, — Wy — wks) X

X0 (k + ki — ko — k3) dkidkodks.

Sni[n] + Saiss + 2yknu,

(11)

Here S4iss is an empiric dissipative term, corresponding to white-capping.
Stationary conservative kinetic equation

Spi =0 (12)

has the rich family of Kolmogorov-type (25) exact solutions. Among them is
Zakharov-Filonenko spectrum (5) for the direct cascade of energy

1

L (13)

Nng ~

and Zakharov-Zaslavsky (26), (27) spectra for the inverse cascade of wave action

1

™~ p23/6° (14)

Nk
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3 Deterministic Numerical Experiment

3.1 Problem Setup

The dynamical equations (4) have been solved in the real-space domain 27 X 27 on
the grid 512 x 4096 with the gravity acceleration set to g = 1. The solution has been
performed by the spectral code, developed in (21) and previously used in (22),(12),
(13),(15). We have to stress that in the current computations the resolution in Y-
direction (long axis) is better than the resolution in X-direction by the factor of
8.

This approach is reasonable if the swell is essentially anisotropic, almost one-
dimensional. This assumption will be validated by the proper choice of the initial
data for computation. As the initial condition, we used the Gaussian-shaped distri-
bution in Fourier space (see Fig. 1):

1|k — ko|?

2' i | ),|k—k0\§2Di,
lax| = 107"2, |k — ko| > 2D;,

A; =0.92 x 107°, D; = 60, ko = (0;300), wo = 1/ gko.

|ax| = Ai exp <—
(15)

The initial phases of all harmonics were random. The average steepness of this initial
condition was p ~ 0.167.

To realize similar experiment in the laboratory wave tank, one has to to generate
the waves with wave-length 300 times less than the length of the tank. The width of
the tank would not be less than 1/8 of its length. The minimal wave length of the
gravitational wave in absence of capillary effects can be estimated as Apmin >~ 3cm.
The leading wavelength should be higher by the order of magnitude \ ~ 30cm.

In such big tank of 200 x 25 meters experimentators can observe the evolution
of the swell until approximately 7007, — still less than in our experiments. In the
tanks of smaller size, the effects of discreetness the Fourier space will be dominating,
and experimentalists will observe either “frozen”, or “mesoscopic” wave turbulence,
qualitatively different from the wave turbulence in the ocean.

To stabilize high-frequency numerical instability, the damping function has been

chosen as
[0,k < ka,
TEZ vk~ ka)® k> ka, (16)
kq = 1024, = 5.65 x 1072,

The simulation was performed until ¢ = 336, which is equivalent to 9267y, where
Ty is the period of the wave, corresponding to the maximum of the initial spectral
distribution.

3.2 Zakharov-Filonenko spectra

Like in the previous papers (10),(12),(13) and (15), we observed fast formation of the
spectral tail, described by Zakharov-Filonenko law for the direct cascade ng ~ k=%
(5) (see Fig.2). In the agreement with (15), the spectral maximum slowly down-shifts
to the large scales region, which corresponds to the inverse cascade (26),(27).

Also, the direct measurement of energy spectrum has been performed during
the final stage of the simulation, when the spectral down shift was slow enough.
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Fig. 1. Initial distribution of |ax|? on k-plane.
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Fig. 2. Angle-averaged spectrum ny =< |ax|*> > in a double logarithmic scale. The
tail of distribution fits to Zakharov-Filonenko spectrum.

This experiment can be interpreted as the ocean buoy record — the time series of
the surface elevations has been recorded at one point of the surface during Thuoy =~
3007y. The Fourier transform of the autocorrelation function
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. Thuoy /2
E(w)= o / <nlt+7m)n(r) > e“tdrdt. (17)
~Thuoy/2

allows to detect the direct cascade spectrum tail proportional to w™* (see Fig.3),
well known from experimental observations (28),(29),(30).
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Fig. 3. Energy spectrum in a double logarithmic scale. The tail of distribution fits
to asymptotics w4

3.3 Is the weak-turbulent scenario realized

Presence of Kolmogorov asymptotics in spectral tails, however, is not enough to val-
idate applicability of the weak-turbulent scenario for description of wave ensemble.
We have also to be sure that statistical properties of this ensemble correspond to
weak-turbulent theory assumptions.

We should stress that in our experiments at thebeginning |ax|? is a smooth
function of k. Only phases of individual waves are random. As shows numerical
simulation, the initial condition (15) (see Fig.1) does not preserve its smoothness —
it becomes rough almost immediately (see Fig.4). The picture of this roughness is
remarkably preserved in many details, even as the spectrum down-shifts as a whole.
This roughness does not contradict the weak-turbulent theory. According to this
theory, the wave ensemble is almost Gaussian, and both real and imaginary parts
of each separate harmonics are not-correlated. However, according to the weak-
turbulent theory, the spectra must become smooth after averaging over long enough
time of more than 1/u? periods. Earlier we observed such restoring of smoothness
in the numerical experiments of the MMT model (see (45),(46), (47) and (48)).
However, in the experiments discussed in the article, the roughness still persists and
the averaging does not suppresses it completely. It can be explained by sparsity of
the resonances.
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Fig. 4. Surface |ak|2 at the moment of time ¢t ~ 677.

Resonant conditions are defined by the system of equations:

Wk + Wiy = Wky + Wiy,

1
k + ki = ko + ks, (18)

These resonant conditions define five-dimensional hyper-surface in six-dimensional
space k,ki,ks. In any finite system, (18) turns into Diophantine equation. Some
solutions of this equation are known (31), (17). In reality, however, the energy trans-
port is realized not by exact, but ”approximate” resonances, posed in a layer near
the resonant surface and defined by

| Wk + Wry — Why — Wiy —ko| T, (19)

where I" is a characteristic inverse time of nonlinear interaction.

In the finite systems k, k1, ko take values on the nodes of the discrete grid. The
weak turbulent approach is valid, if the density of discrete approximate resonances
inside the layer (19) is high enough. In our case the lattice constant is Ak = 1, and
typical relative deviation from the resonance surface

Aw  wy, Wy, 1 _3
~ Ak = ~ ~2x10"". 20
w w w 600 (20)
Inverse time of the interaction I" can be estimated from our numerical experiments:
wave amplitudes change essentially during 30 periods, and one can assume: I'/w ~
1072 > 5:’. It means that the condition for the applicability of weak turbulent
theory is typically satisfied, but the "reserve” for their validity is rather modest.
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As a result, some particular harmonics, posed in certain ”privileged” point of k-
plane could form a ”"network” of almost resonant quadruplets and realize significant
part of energy transport. Amplitudes of these harmonics exceed the average level
essentially. This effect was described in the article (15), where such ”selected few”
harmonics were called ”oligarchs”. If ”oligarchs” realize most part of the energy flux,
the turbulence is ”mesoscopic”, not weak.

3.4 Statistics of the harmonics

According to the weak-turbulent scenario, statistics of the ax(t) in any given k
should be close to Gaussian. It presumes that the PDF' for the squared amplitudes
is

1
Plaw) = e P, (21)

here D =< |ax|> > — mean square amplitude. To check equation (21) we need
to find a way for calculation of D(k). If the ensemble is stationary in time, D(k)
could be found for any given k by averaging in time. In our case, the process is
non-stationary, and we have a problem with determination of D(k).

To resolve this problem, we used low-pass filtering instead of time averaging.
The low-pass filter was chosen in the form

fm) = e VA A = 0.25Nz/2, Na = 4096. (22)

This choice of the low-pass filter preserves the values of total energy, wave action and
the total momentum within three percent accuracy, see Fig.5. Then it is possible
to average the PDF over different areas in k-space. The results for two different
moments of time ¢ ~ 707y and ¢ ~ 9337y are presented in Fig.6 and Fig.7. The
thin line gives PDF after averaging over dissipation region harmonics, while bold
line presents averaging over the non-dissipative area |k| < k¢ = 1024. One can see
that statistics in the last case is quite close to the Gaussian, while in the dissipation
region it deviates from Gaussian. However, deviation from the Guassianity in the
dissipation region doesn’t create any problems, since the ”dissipative” harmonics do
not contain any essential amount of the total energy, wave action and momentum.

One should remember, that the bold lines in the Fig.6 and Fig.7 are the results
of averaging over a million of harmonics. Among them there is a population of
”selected few”, or ”oligarchs”, with the amplitudes exceeding the average value by
the factor of more than ten times. The ”oligarchs” exist because our grid is still not
fine enough.

In our case ”oligarchs” do exist, but their contribution in the total wave action
is not more 4%. Ten leading ”oligarchs” at the end of the experiment are presented
in the Appendix A.

3.5 Two-stage evolution of the swell

Fig. 8-11 demonstrate time evolution of main characteristics of the wave field: wave
action, energy, characteristic slope and mean frequency.

Fig.10 should be specially commented. Here and further we define the charac-
teristic slope as follows

1/2

pn=v2[< (Vn)?>] (23)
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Fig. 5. Low-pass filtered surface |ak|2 at t ~ 677,.

Following this definition for the Stokes wave of small amplitude

n = acos(kz),
w=ak.

According to this definition of steepness for the classical Pierson-Moscowitz spec-
trum p = 0.095. Our initial steepness p =~ 0.167 exceeds this value essentially.

Evolution of the spectrum can be conventionally separated in two phases. On
the first stage we observe fast drop of wave action, slope and especially energy. Then
the drop is stabilized, and we observe slow down-shift of mean frequency together
with angular spreading. Level lines of smoothed spectra in the first and in the last
moments of time are shown in Fig.12-13

Presence of two stages can be explained by study of the PDFs for elevation
of the surface. In the initial moment of time PDF is Gaussian (Fig.14). However,
very soon intensive super-Gaussian tails appear (Fig.15). Then they decrease slowly,
and in the last moment of simulation, when characteristics of the sea are close to
Peirson-Moscowitz, statistic is close to Gaussian again (Fig.16). Moderate tails do
exist and, what is interesting, the PDF is not symmetric — elevations are more
probable troughs. PDF for n, — longitudinal gradients in the first moments of
time is Gaussian (Fig.17). Then in a very short period of time strong non-Gaussian
tails appear and reach their maximum at ¢ ~ 147, (Fig.18). Here Ty = 271'/\/ko —
period of initial leading wave. Since this moment the non-Gaussian tails decrease.
In the last moment of simulation they are essentially reduced(Fig.19).
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Fig. 6. Probability distribution function (PDF) for relative squared amplitudes
|ar[*/ < lax|* >. t ~ 67To.

Fast growing of non-Gaussian tails can be explained by fast formation of coherent
harmonics. Indeed, 147y ~ 27/(wop) is a characteristic time of nonlinear processes
due to quadratic nonlinearity. Note that the fourth harmonic in our system is fast
decaying, Hence we cannot see ”"real” white caps.

Figures 20-22 present PDFs for gradients in the orthogonal direction.
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Fig. 7. Probability distribution function (PDF) for relative squared amplitudes
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Fig. 11. Mean wave frequency as a function of time for the artificial viscosity case.
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Figures 23,24 present snapshots of the surface in the initial and final moments of
simulation. Fig.25 is a snapshot of the surface in the moment of maximal roughness
T = 4.94 ~ 14Ty.
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Fig. 23. Surface elevation at the initial moment of time. ¢t = 0.
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Fig. 24. Surface elevation at the final moment of time. ¢ ~ 933Tp.
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Fig. 25. Surface elevation at the moment of maximum roughness. ¢t ~ 147y. Gra-
dients are more conspicuous.

4 Statistical numerical experiment

4.1 Numerical model for Hasselmann Equation

Numerical integration of kinetic equation for gravity waves on deep water (Has-
selmann equation) was the subject of considerable efforts for last three decades.
The “ultimate goal” of the effort — creation of the operational wave model for wave
forecast based on direct solution of the Hasselmann equation — happened to be an
extremely difficult computational problem due to mathematical complexity of the
Sni term, which requires calculation of a three-dimensional integral at every advance
in time.

Historically, numerical methods of integration of kinetic equation for gravity
waves exist in two “flavors”.

The first one is associated with works of (32), (33), (34), (35), (36) and (37),
and is based on transformation of 6-fold into 3-fold integrals using §-functions. Such
transformation leads to appearance of integrable singularities, which creates addi-
tional difficulties in calculations of the S,,; term.

The second type of models has been developed in works of (38) and (39), (40)
and is currently known as Resio-Tracy model. It uses direct calculation of resonant
quadruplet contribution into S,,; integral, based on the following property: given two
fixed vectors k, k1, another two k2, ks are uniquely defined by the point “moving”
along the resonant curve — locus.

Numerical simulation in the current work was performed with the help of modi-
fied version of the second type algorithm. Calculations were made on the grid 71 x 36
points in the frequency-angle domain [w, 0] with exponential distribution of points
in the frequency domain and uniform distribution of points in the angle direction.

To date, Resio-Tracy model suffered rigorous testing and is currently used with
high degree of trustworthiness: it was tested with respect to motion integrals conser-
vation in the “clean” tests, wave action conservation in wave spectrum down-shift,
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realization of self — similar solution in “pure swell” and “wind forced” regimes (see
(42), (41), (43)).

Description of scaling procedure from dynamical equations to Hasselman kinetic
equation variables is presented in Appedix B.

4.2 Statistical model setup

The numerical model used for solution of the Hasselmann equation has been supplied
with the damping term in three different forms:

1. Pseudo-viscous high frequency damping (16) used in dynamical equations;
2. WAM]1 viscous term:;
3. WAM?2 viscous term:;

Two last viscous terms referred as WAM1 and W AM?2 are the “white-capping”
terms, describing energy dissipation by surface waves due to white-capping, as used
in SWAN and W AM wave forecasting models, see (44):

e :cdswz ((1—6)+ delta]i:) (S)p (24)

pm

where k£ and w are wave number and frequency, tilde denotes mean value; Cys, § and
p are tunable coefficients; S = kv H is the overall steepness; Spu = (3.02 % 1073)1/2
is the value of S for the Pierson-Moscowitz spectrum (note that the characteristic
steepness u = v/295).
Values of tunable coefficients for WAM]1 case (corresponding to WAM cycle 3
dissipation) are:
Cas =236 x107°, 6§ =0, p=4 (25)

and for WAM?2 case (corresponding to WAM cycle 4 dissipation) are:
Cas =410x107°, 6§ =05, p=4 (26)

In all three cases we used as initial data smoothed (filtered) spectra (Fig.5)
obtained in the dynamical run at the time 7% = 3.65min = 24.3 ~ 707p, which can
be considered as a moment of the end of the fist ”fast” stage of spectral evolution.

The natural question stemming in this point, is why calculation of the dynamical
and Hasselmann model cannot be started from the initial conditions (15) simulta-
neously?

There are good reasons for that:

As it was mentioned before, the time evolution of the initial conditions (15) in
presence of the damping term can be separated in two stages: relatively fast total
energy drop in the beginning of the evolution and succeeding relatively slow total
energy decrease as a function of time, see Fig.9. We explain this phenomenon by
existence of the effective channel of the energy dissipation due to strong nonlinear
effects, which can be associated with the white-capping.

We have started with relatively steep waves p =~ 0.167. As we see, at that
steepness white-capping is the leading effect. This fact is confirmed by numerous
field and laboratory experiments. From the mathematical view-point the white-
capping is formation of coherent structures — strongly correlated multiple harmonics.
The spectral peak is posed in our experiments initially at & ~ 300, while the edge
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of the damping area k4 ~ 1024. Hence, only the second and the third harmonic
can be developed, while hire harmonics are suppressed by the strong dissipation.
Anyway, even formation of the second and the third harmonic is enough to create
intensive non-Gaussian tail of the PDF for longitudinal gradients. This process is
very fast. In the moment of time T' = 14T, we see fully developed tails. Relatively
sharp gradients mimic formation of white caps. Certainly, the “pure” Hasselmann
equation is not applicable on this early stage of spectral evolution, when energy
intensively dissipates.

As steepness decreases and spectral maximum of the swell down-shifts, an ef-
ficiency of such mechanism of energy absorption becomes less important when the
steepness value drops down to p ~ 0.1the white-capping becomes a negligibly small
effect. It happens at T ~ 2807,. We decided to start comparison between determin-
istic and statistical modeling in some intermediate moment of time 7" ~ 7075.

5 Comparison of deterministic and statistical
experiments

5.1 Statistical experiment with pseudo-viscous damping term

First simulation has been performed with pseudo-viscous damping term, equivalent
to (16).

Fig.8 — 11 show total wave action, total energy, mean wave slope and mean wave
frequency as the functions of time.

Fig.32 shows the time evolution of angle-averaged wave action spectra as the
functions of frequency for dynamical and Hasselmann equations.

Temporal behavior of angle-averaged spectrum is presented on Fig.32. We see
the down-shift of the spectral maximum both in dynamic and Hasselmann equations.
The correspondence of the spectral maxima is not good at all.

It is obvious that the influence of the artificial viscosity is not strong enough to
reach the correspondence of two models.

5.2 Statistical experiments with W AM1 damping term

Fig.33 — 36 show total wave action, total energy, mean wave slope and mean wave
frequency as the functions of time.

The temporal behavior of total wave action, energy and average wave slope is
much better than in the artificial viscosity term, and for 50 min duration of the
experiment we observe decent correspondence between dynamical and Hasselmann
equations. However for longer time the W AM1 model deviates from the exact cal-
culations significantly.

It is important to note that the curves of temporal behavior of the total wave
action, energy and average wave slope diverge at the end of simulation time with
different derivatives, and the correspondence cannot be expected to be that good
outside of the simulation time interval.

Fig.37 shows the time evolution of the angle-averaged wave action spectra as the
functions of frequency for dynamical and Hasselmann equations. As in the artificial
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viscosity case, we observe distinct down-shift of the spectral maxima. Correspon-
dence of the time evolution of the amplitudes of the spectral maxima is much better
then in artificial viscosity case.

5.3 Statistical experiments with W AM2 damping term

Fig.38 — 41 shows the temporal evolution of the total wave action, total energy,
mean wave slope and mean wave frequency, which are divergent in time.

Fig.42 show time evolution of angle-averaged wave action spectra as the func-
tions of frequency for dynamical and Hasselmann equations. While as in the artificial
viscosity and W AM1 cases we also observe distinct down-shift of the spectral max-
ima, the correspondence of the time evolution of the amplitudes of the spectral
maxima is worse than in WAM1 case.

Despite the fact that historically W AM2 appeared as an improvement of WAM 1
damping term, it does not improve the correspondence of two models, observed in
W AMT1 case, and is presumably too strong for description of the reality.

6 Down-shift and angular spreading

The major process of time-evolution of the swell is frequency down-shift. During
T = 9337y the mean frequency has been decreased from wo = 2 to w1 = .6. On the
last stage of the process, the mean frequency slowly decays as

<w > 00T g l/1B (27)
The Hasselmann equation has self-similar solution, describing the evolution of
the swell n(k,t) ~ t¥11F (tzl/‘n) (see (41), (43)). For this solution

<w>~tTHM (28)

The difference between (27) and (28) can be explained as follows. What we ob-
served, is not a self-similar behavior. Indeed, a self-silmilarity presumes that the
angular structure of the solution is constant in time. Meanwhile, we observed inten-
sive angular spreading of the initially narrow in angle, almost one-dimensional wave
spectrum.

Level lines of the spectra after low-pass filtering, obtained in dynamical equations
simulation, for two moments of time are presented on Fig. 26-27. Level lines of
the spectra in the same moments of time, obtained by solution of the Hasselmann
equation are presented on Fig. 28-29. Omne can see good correspondance between
results of both experiments. Comparison of time-evolution of the mean angular
spreading calculated from action and energy spectra are presented on Fig. 30-31.
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Fig. 26. Level lines of the spectra at ¢ = 677y. Dynamical equations.
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Fig. 27. Level lines of the spectra at ¢t = 6747y. Dynamical equations.
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Fig. 28. Level lines of the spectra at ¢t = 677y. Hasselmann equation.
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Fig. 29. Level lines of the spectra at ¢t = 6747p. Hasselmann equation.
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Fig. 30. Comparison of time-evolution of the mean angular spreading
(/16|n(k)dk) / ([ n(k)dk) calculated through wave action spectra.
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Fig. 31. Comparison of time-evolution of the mean angular spreading
([ |6lwn(k)dk) / ([ wn(k)dk) calculated through wave energy spectra.
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One has to expect that the angular spreading will be arrested at later times, and
the spectra will take a universal self-similar shape.

Time = 3.7 min, or 67.1 Initiol Wave Periods
0.015 Time = 19.3 min, ar 353 2 Initial Wave Periods
Time = 34.9 min, ar 639.3 Initial Wave Periods
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<n>

0.005

Frequency

Fig. 32. Angle-averaged spectrum as a function of time for dynamical and Hassel-
mann equations for artificial viscosity case.
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Fig. 33. Total wave action as a function of time for W AM1 case.

spectral down-shift of the spectral maximum wave-number and Zakharov-Filonenko
spectral tails.

weak, while WAM?2 damping term is obviously too strong. The quality of
W AM?2 damping can be significantly improved via development of new damping
term to reach better correspondence on longer time evolution interval.

spectral modes. This observation modifies earlier definition of the weak turbu-
lence as the wave ensemble with amplitudes slowly varying in time.
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Fig. 34. Total wave energy as a function of time for WAM1 case
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Fig. 35. Average wave slope as a function of time for WAM1 case.

7 Conclusion

1. We started our experiment with characteristic steepness p ~ 0.167. This is three
times less than steepness of the Stokes wave of limiting amplitude, but still it is a
large steepness typical for young waves. For waves of such steepness white-capping
effect could be essential. However, in our experiments we cannot observe such effects
due to the strong pseudo-viscosity. Indeed, third harmonics of our initial leading wave
is situated near the edge of damping area, while fourth and higher harmonics are
far in the damping area. This circumstanse provides an intensive energy dissipation
, which is not described by the Hasselmann equation.

Anyway, on the first stage of the process we observe intensive generation of co-
herent higher harmonics which reveal itself in tails of PDF for longitudinal gradients.
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Fig. 36. Mean wave frequency as a function of time for WAM]1 case.
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Fig. 37. Angle-averaged spectrum as a function of time for dynamical and Hassel-
mann equations a function of time for W AM1 case.

If our damping region would be shifted further to higher wave numbers, we could
observe sharp crests formation.

2. We ended up with steepness 1 ~ 0.09. This is close to mature waves, typically
observed in the ocean and described by Hasselmann equation pretty well. We ob-
served characteristic effects predicted by the weak-turbulent theory — down-shift of
mean frequency formation, Zakharov-Filonenko weak turbulent spectrum w™* and
strong angular spreading. Comparison of time-derivatives of the average quantities
shows that for this steepness wave-breaking (white-capping) become not essential
at p ~ 0.09.

In general, our experiments validate Hasselmann equation. However, it has to
be accomplished by a proper dissipation term.

3. The dissipative term used in the W AM1 model fairly describe damping due
to white capping on the initial stage of evolution. It overestimate damping, however,
for moderate steepness p ~ 0.09
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Fig. 38. Total wave action as a function of time for WAM?2 case.
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Fig. 39. Total wave energy as a function of time for W AM?2 case

The dissipative term, used in the W AM2 model is not good. It overestimates
damping essentially.

4. Presence of abnormally intensive harmonics, so called ”oligarchs” show that,
in spite of using a very fine grid, we did not eliminated effects of discreteness com-
pletely. More accurate verification of the Hasselmann equation should be made on
the grid containing more than 107 modes. This is quite realistic task for modern
supercomputers, and we hope to realize such an experiment.

Another conclusion is more pessimistic. Our results show that it is very difficult
to reproduce real ocean conditions in any laboratory wave tank. Even a tank of size
200 x 200 meters is not large enough to model ocean due to the presence of wave
numbers grid discreteness.
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Fig. 40. Average wave slope as a function of time for WAM?2 case.
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Fig. 41. Mean wave frequency as a function of time for W AM?2 case.
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Appendix A: Forbes list of 15 largest harmonics

Here one can find 15 largest harmonics at the end of calculations in the framework
of dynamical equations. Average square of amplitudes in dissipation-less region was
taken from smoothed spectrum, while all these harmonics exceed level |ay|* = 1.4 x
10-12

K. Ky o> < |ax|® >fiter |ax]?/ < |ax]* >

-59 155 1.563e-12  0.746e-13 2.095e+1
-37 166 1.903e-12  1.201e-13 1.585e+1
-37 185 1.569e-12  2.288e-13 0.686e+1
-36 162 1.477e-12  0.992e-13 1.489e+1
-33 157 1.442e-12  0.713e-13 2.022e+1
-26 164 3.351e-12  0.847e-13 3.956e+1
-17 189 1.463e-12  2.789%-13 0.525e+1
-14 173 1.408e-12  1.459e-13 0.965e+1
-2 176 1.533e-12  1.697e-13 0.903e+1
0 177 2.066e-12  1.741e-13 1.187e+1
10 179 1.427e-12  1.893e-13 0.754e+1
27 163 1.483e-12  0.832e-13 1.782e+1
31 174 1.431e-12  1.342e-13 1.066e+1
37 173 1.578e-12  1.581e-13 0.998e+1
60 133 1.565e-12  0.345e-13 4.536e+1

Appendix B: From Dynamical Equations to
Hasselmann Equation

Standard setup for numerical simulation of the dynamical equations (4), implies
271 x 2w domain in real space and gravity acceleration g = 1. Usage of the domain
size equal 27 is convenient because in this case wave numbers are integers.

In the contrary to dynamical equations, the kinetic equation (11) is formulated
in terms of real physical variables and it is necessary to describe the transformation
from the “dynamical” variables into to the “physical” ones.

Eq.4 are invariant with respect to “stretching” transformation from “dynamical”
to “real” variables:

1
e = anp, k= ak', r=ar, g=vg, (29)
«Q ’ /
t = \/Vt‘7 L, =al,, L,=al, (30)

where prime denotes variables corresponding to dynamical equations.

In current simulation we used the stretching coefficient o = 800.00, which allows
to reformulate the statement of the problem in terms of real physics: we considered
5026 m x 5026 m periodic boundary conditions domain of statistically uniform ocean
with the same resolution in both directions and characteristic wave length of the
initial condition around 22 m. In oceanographic terms, this statement corresponds
to the “duration-limited experiment”.
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Summary. The problem of the long wave runup on a beach is discussed in the
framework of the rigorous solutions of the nonlinear shallow-water theory . The key
and novel moment here is the analysis of the runup of a certain class of asymmetric
waves, the face slope steepness of which exceeds the back slope steepness. Shown
is that the runup height increases when the relative face slope steepness increases
whereas the rundown weakly depends on the steepness. The results partially explain
why the tsunami waves with the steep front (as it was for the 2004 tsunami in the
Indian Ocean) penetrate deeper into inland compared with symmetric waves of the
same height and length.

1 Introduction

The reliable estimate of the extension of the flooding zone is a key problem of the
tsunami prevention and mitigation. Since the characteristic length of a tsunami wave
in the coastal zone is several kilometres, the nonlinear shallow water theory is an
appropriate theoretical model to describe the process of the tsunami runup on the
beach. Carrier and Greenspan (2) first obtained rigorous mathematical results for
the runup problem. They solved the nonlinear shallow-water equations for the case
of 1+1 dimensions and a plane beach of constant slope. They applied the hodograph
(Legendre) transformation to reduce the initial nonlinear hyperbolic equations in the
spatial domain with an unknown boundary (resp. moving shoreline) to the linear
wave equation on a fixed semi-axis.

After this pioneering study, also Spielfogel (16), Pelinovsky and Mazova (14),
Tinti and Tonini (23) have found some particular exact explicit analytical solutions
to this problem for specific beach profiles and/or types of incoming waves. The main
difficulty in this problem is the implicit form of the hodograph transformation. For
that reason the detailed analysis of runup characteristics usually requires numerical
methods. Various shapes of the periodic incident wave trains such as the sine wave
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(6), cnoidal wave (19), and bi-harmonic wave (4) have been analyzed in literature.
The relevant analysis has been also performed for a variety of solitary waves and
single pulses such as soliton (12); (18), sine pulse (10), Lorentz pulse (14), gaussian
pulse ((3)), and N-waves (20). In particular, antisymmetric disturbances such as N-
waves are considered now as the realistic initial conditions of the earthquake-forced
tsunami (21), (23).

It is well known that nonlinear long wave evolution in shallow water even of
constant depth results in the deformation of the wave profile and, finally, to the
wave breaking (see, for instance, (17), (27), (26), (22), (8)). A tsunami wave is not an
exception. It usually propagates over a long distance and, even if originally perfectly
symmetric and linear entity, its shape is eventually modified due to nonlinearity. The
increase of the steepness of the tsunami wave front is predicted theoretically in (11),
(13) and is reproduced in the numerical simulation of the tsunami over long distances
(25). There are a lot of observations of the wave breaking and its transformation
into the undular bore made during the huge tsunami in the Indian Ocean on 26th
December 2004. Analogous processes are commonly observed when tsunami waves
enter an estuary or a river mouth (13), (24), or penetrate into straits or channels
(15), (28), (1).

The main goal of this paper is to demonstrate the significant increase of the runup
height in the particular case when the incoming wave has a steep front compared
with the symmetric waves with the same parameters. This effect will be studied
using the exact solutions of the nonlinear shallow-water equations. We also present
a simple algorithm of calculating the conditions of the wave breaking (so-called
gradient catastrophe) without using the Jacobian of the hodograph transformation
. The paper is organized as follows. The method of solution of the runup problem
in the framework of the nonlinear shallow-water theory based on the hodograph
transformation is described in section 2. Matching of the runup zone with the shelf
of constant depth, and the nonlinear transformation of the shallow-water wave above
even bottom is considered in section 3. The runup of the nonlinear asymmetric waves
is studied in section 4. Main results are summarized in section 5.

2 Mathematical Model and Hodograph Transformation

The classical nonlinear shallow water equations for 2D water waves in the ideal fluid
with linearly slopping bottom (Fig. 1) are:

on 0 _
ou ou on
at-i—uax—&-gax—(). (2)

where 7 is the surface displacement, u is the depth-averaged velocity, g is the gravity
acceleration, and « is the bottom slope. It is convenient to rewrite Egs. (1, 2) through
their Riemann invariants and to apply the hodograph transformation to the resulting
equations (2). Doing so leads to the linear wave equation with respect to the wave
function

’d PP 10

N2 902 o000 0, (3)
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Fig. 1. Definition sketch for the wave runup problem

where the new coordinates A and o have been introduced and all variables can be
expressed through the wave function @(o, ) as follows:

1 (oD,

1= (o —0). (1
109

U= 5y (5)

1 109
7j_ozg (A_080>’ ©)

_ 1 197 2 0'2
x72ag<8)\7U72>' (™)
Since

o =2\/g(—az+1), (8)

and the point ¢ = 0 corresponds to the moving shoreline, it is sufficient to solve
wave equation (3) on the semi-axis (0 < 0 < oo ) with some initial or boundary
conditions offshore. The dynamics of the moving shoreline is an extremely important
feature of the flooding zone when tsunami waves approach to the coast. Its analysis
for a class of asymmetric waves is the main goal of our study.
Similarly, linear equations of the shallow water theory
on 0 ou on

+ x[iamu] =0, ot T9oz =

ot o 0 )

can be also reduced to the linear wave equation (3), solution of which we call the
"linear” wave function @;(o1, A;) below. The difference compared with the above
analysis consists in the use of the linear version of the hodograph transformation

1 <8¢l> 1 8@1 )\l O'l2
) 1=

t; = = — . 10
99 \ N 1 ;@ (10)

"= "oy 0oy’ ag 4dog

As above, Eq. (3) should be solved on a semi-axis. The point o; = 0 now corresponds
to the unperturbed shoreline x =0 .

A long wave of small amplitude propagating in a deep open sea area is usually
almost perfectly linear and can be described by linear theory with very high accu-
racy. For such an incident wave the boundary conditions for the "nonlinear” and
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”linear” wave equations coincide provided they are defined in a deep enough area.
Consequently, the solutions of the nonlinear and linear problems also coincide, and
P(o,\) = &(01, A1) . Moreover, if the ”linear” solution ®;(oy, A;) is known, the solu-
tion of the nonlinear problem (1, 2) can be directly found from expressions (4)-(7).
In fact, it is difficult to do analytically but very easy numerically. In particular, de-
scription of properties of the moving shoreline o(z,t) is straightforward. From (5),
(6) and (10) it follows that

u(A) =X =N, (11)
or, in an equivalent form,

u(A) = u(A + u), (12)
which demonstrates that the speed of the shoreline displacement can be found
through the Riemann transformation of time. As the functional forms of the ”linear”
and "nonlinear” solutions are identical, we may re-write (12) finally:

ut) =U <t+ ;g) : (13)

where U(t) stands for the ”linear” speed of the shoreline.

Thus, if the approaching wave is linear, a rigorous ”two-step” method can be
used to calculate the runup characteristics. Firstly, the wave properties on the un-
perturbed shoreline x = 0 such as the vertical displacement Y (¢) or the velocity of

water tongue propagation
1dY(t)

Ut) = o di (14)
are determined within the linear problem. Its solution can be found using traditional
methods of the mathematical physics. Secondly, the properties of the solution to the
nonlinear problem are found from expressions derived above. For example, the real
"nonlinear” speed of the moving shoreline is found from (13), and finally, the vertical
displacement of the water level and position of the shoreline at some time instant

horizontal distance of the flooding (resp. the width of the flooded area) as

y(t) = ax(t), =)= /u(t)dt. (15)

Using (4), Eq. (15) can be re-written as

Dento=0) =y (t+ “) - 16
vy =nta =0 =y (t+ 1)} (16)
The important conclusion from expressions (13) and (16) is that the maxima of verti-
cal displacements (equivalently, the runup or rundown height) and the velocity of the
shoreline displacement in the linear and nonlinear theories coincide. Consequently,
the linear theory adequately describes the runup height which is an extremely im-
portant characteristic of tsunami action on the shore. In fact, this conclusion was
reached in many papers cited above for various shapes of the incident wave. The
rigorous proof demonstrated here follows the work by Pelinovsky and Mazova (14).
There are no rigorous results in the nonlinear theory in the case of more com-
plicated bottom profiles that cannot be approximated by the idealized beach of
constant slope. Yet the linear theory can be used in some cases when the nearshore
has such a slope alone. If the wave is nonlinear only at the runup stage, the lin-
ear theory frequently can be used to describe wave transformation in the ocean of
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variable depth and the resulting wave can be matched with the nonlinear solutions.
This approach is quite popular, see (7) and references therein. Nonlinear effects in
the transition zone (between the offshore and the runup zone) can be accounted for
as the correction term to the boundary conditions far from the shoreline (9).

Another important outcome from proposed approach is the simple definition of
the conditions of the first breaking of the waves on a beach. It is evident that long
small-amplitude waves will not break at all and result in a slow rise of the water level
resembling surge-like flooding. With increase of the wave amplitude, the breaking
appears seawards from the runup maximum and, depending on the wave amplitude
and the bottom slope, may occur relatively far offshore. The above approach allows
determining the position of the first breaking from the expressions for the dynamics
of the shoreline. The temporal derivative of the velocity of the moving shoreline,
found from (13),

du  dU/dt
dt — 1 _ av/a’ (17)
ag

tends to the infinity (equivalently, wave breaking occurs, (14)) when the denominator
a the right-hand side of Eq. (17) approaches to zero. The condition of the first wave
breaking therefore is
Br— max(dU/dt) _ max(dZY/dtQ) _1 (18)
ag ag

This condition has a simple physical interpretation: the wave breaks if the maximal
acceleration of the shoreline Yo~ ! along the slopping beach exceeds the along-
beach gravity component ( ag). This interpretation is figurative, because formally
Y"” only presents the vertical acceleration of the shoreline in the linear theory and the
“nonlinear” acceleration du/dt actually tends to infinity at the breaking moment.

The above-cited literature contains various examples of studies of long wave
runup on the plane beach using the hodograph transformation . The effectiveness of
this two-step approach can be demonstrated by considering the runup of a sine wave
with frequency w . The well-known bounded solution of the linear wave equation (3)
is expressed in the Bessel functions

n(z,t) = RJo (\/4@;2ax|> cos(wt), (19)

where R is the maximal wave amplitude at the unperturbed shoreline = 0. As men-
tioned above, it is also the maximal runup height in the nonlinear theory. Far from
the shoreline the wave field can be presented asymptotically as the superposition of
two sine waves of equal amplitude propagating in the opposite directions

n(a,t) = Az) [sm (w(t —)+ Z) + sin (w(t ) — D] , (20)

where the instantaneous wave amplitude A(z) is

A(a:)zR( I )1/4, (21)

m2w2 |z

and the propagation time of this wave over some distance in a fluid of variable depth
is
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dx
7(z) = / \/gh(x) . (22)

The maximum change of the amplitude of the approaching wave with the wavelength
Ao (determines from dispersion relation, w = ck) and the initial amplitude Aq at

the fixed point |z| = L is characterized by the amplification factor (equivalent to
the shoaling coefficient in the linear surface wave theory), which can be found from
(21):
2 2 1/4
R _ <7r w L) :27T\/2L. (23)
Ao go )\0

We emphasize that the amplification factor in (23) calculated in the framework of
the linear theory is the same in the nonlinear theory. This feature allows to determine
the extreme runup characteristics in both cases if the initial wave amplitude and
length are known. Using (23), the extreme values for the velocity of the moving
shoreline and the breaking criterion can be calculated as follows:

wR

Uest = , 24

e= (24)
Ww2R

Brsin = goz2 =1 (25)

As a result, it is simple to predict the minimal value (threshold) of the runup height
when the wave breaking appears from any given wave frequency (or period) and the
bottom slope. The second step of solving the nonlinear runup problem consists
in transformation of the ”linear” expressions (36) and (38) for the water level dis-
placement and velocity into ”"nonlinear” expressions for the moving shoreline with
use of (13) and (15). Fig. 9 displays the "nonlinear” and ”linear” time history of
the water level and velocity of the moving shoreline (in dimensionless form) for a
symmetrical sine incident wave (s = so). If the incident wave is strongly asym-
metric wave (s = 10so, Fig. 11), the strong flow moves inland during a short time.
The runup amplitude is higher than the rundown amplitude. Such intense flows can
be distinguished on many images of the catastrophic 2004 tsunami in the Indian
Ocean and eventually occurred in many sections of the affected coastline. In this
case the incident wave is extremely steep and breaks rapidly, and there is almost no
difference in the ”linear” and ”nonlinear” results.

3 Nonlinear Wave Deformation

An adequate theory of runup should take into account the potential asymmetry of
the incoming waves. Such waves appear, for example, when the shelf offshore from
the runup zone has a flat bottom (Fig. 2). In the water of constant depth, the exact
one-wave solution of the nonlinear shallow water equations can be described by the
following partial differential equation, which can be easily derived from (1)-(2):

n oM _y,

or TV Mg, =

(26)

V:\/gh+3;:3\/g(h+v7)*2\/gh, u=2(y/g(h+n) —/gh).
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Fig. 2. Definition sketch of the coastal geometry
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Fig. 4. Temporal evolution of the wave steepness

The solution of Egs. (26) satisfying the initial condition n(z,t) = no(x) is the Rie-
mann wave
n(@,t) = no(x = V). (27)
Its shape varies with distance and its steepness increases due to the difference in
speed of the crest and trough. The instantaneous slope of the water surface at any
point of the incoming wave is )
877 — Mo , (28)
or 1+tVy
where the prime means d/dz , where = ©—V't , and Vp(z) is determined through the
initial wave shape 7o (z) with use of (27). On the face of the incident wave dn/0x < 0,
OVy/0x < 0 and the denominator at the right-hand side of (28) decreases with time;
thus the wave steepness increases and becomes infinite at
t=T= 29
T max(—VY) (29)
As an example, we analyse the nonlinear deformation of the initial sine wave with
an amplitude a and a wave number k propagating in water of constant depth. The
temporal evolution of the wave shape is demonstrated in Fig. 3 for several initial
dimensionless amplitudes a/h (17), (27), (13), (8), (5). The breaking time and the
breaking distance X are

1 2

X = \/ghT = 3601 \/1—(a/h)2‘ry

(30)

The breaking distance decreases when the wave amplitude increases. Large-amplitude
waves break almost after their generation, but waves with small amplitudes may pass
a long distance before breaking.

The following simplified formula for the maximum steepness of the face-slope
(Fig. 4) can be derived from (29):
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S0

s = max(9n/0x) = LT

(31)
where sp = ak is the initial wave steepness. At the breaking time, the steepness
is infinite. For certain applications it is important to know the spectrum of the
shallow-water wave. The spectral presentation of the Riemann wave in terms of sine
harmonics can be presented explicitly (13), (5):

n(t) = 3 An(t)sin(nklz — V/ght]),  An(t) =2a | Jn (Z‘f) RNES)

n=1

where J,, are the Bessel functions. The amplitudes of the higher harmonics increase
with time whereas the amplitude of the basic harmonic corresponding to n = 1
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Fig. 8. Various scenarios of the wave runup on a beach

decreases (Fig. 5). The realistic tsunami wave evolution both in the open sea and in
the coastal zone is extremely complicated due to effects of refraction, diffraction and
resonance. The propagation time, used to characterize the wave properties in the
simple example of nonlinear wave deformation considered above, technically may be
used also in the general case. However, in the general case, the wave steepness is a
more convenient measure of the wave shape than the propagation time. Using (31),
the spectral amplitudes (32) can be expressed as

Anl) = 1 _210/5) o (n[1=7]) (33)

Since the spectral amplitudes with n > 1 increase with the steepness increasing,
we may determine the relation between "local” or ”current” wave characteristics
without considering the wave history.
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Fig. 9. Water level (left) and velocity (right) of the moving shoreline for various
values of the breaking parameter and for a sinusoidal incident wave (s = so). Solid
line corresponds to the "nonlinear” and dashed line to the ”linear” solution.

4 Runup of Nonlinear Deformed Wave on a Plane Beach

The nonlinear long wave propagation in a large ocean of constant depth is thus
always accompanied by a certain deformation of the wave shape. Such wave coming
to the beach of constant slope (Fig. 2) has a front, much steeper, than its back. The
runup of such asymmetric waves on the plane beach can be studied with the use of
the model described in section 2.

The first step the two-step approach consists in solving the linear problem. For
doing this we may use the linear superposition of elementary solutions (19) and
match it with the Riemann wave (32) far from the shoreline. If the far-field wave in
(20) is approximated by a (finite or infinite) superposition of harmonics, the use of
expressions (21)-(23) leads to the following expressions for the incident wave on a
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Fig. 10. Water level (left) and velocity (right) of the moving shoreline for various
values of the breaking parameter and for a sinusoidal incident wave (s = 2s0). Solid
line corresponds to the "nonlinear” and dashed line to the ”linear” solution.

distance L from the shoreline where the beach is matched with a shelf of constant
depth and for the "linear” oscillations of the water level at the unperturbed shoreline:

n(t,x = —L) = iAn(s) sin(nwt), Ap(s) = n(l —26;0/5) In (n [1 _ 20]) , (34)

1/2 oo
mwl ™

Y(t)=n(t,x=0)= nAnssin[nwtf ], 35
O=nr=0= (") Lvan@anfue-n+]] 6

where A,, is the amplitude of the n-th harmonic, w = k+v/gh is the frequency of the
initial sine wave, and 7 is the time of wave propagation from x = —L to x = 0
. It is convenient to normalize water level oscillations at the shoreline against the
runup height for the sine wave (23). The expression for the normalized water level
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Fig. 11. Water level (left) and velocity (right) of the moving shoreline for various
values of the breaking parameter and for a sinusoidal incident wave (s = 10sp). Solid
line corresponds to the "nonlinear” and dashed line to the ”linear” solution.

oscillations at the shoreline is
YY) = i \/nA" sin (nt* + 77) . (36)
= a 4

where t* = w(¢t — 7) . For convenience the asterisk will be omitted in what follows.
The above has shown that the extreme values of Y (¢) correspond to the maximal
runup and rundown heights in the nonlinear theory, the dimensionless values of
which (Fig. 6) are the functions of the wave steepness only. The rundown amplitude
depends from the wave steepness weakly (no more then 30%), and we may use
expression (23) to evaluate its approximate value. In the contrary, the runup height
fast increases when the wave steepness increases. It tends to infinity for a shock wave
that theoretically can be described by the model in question where the waves are
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assumed to be non-breaking. In realistic conditions, of course, the wave breaking will
bound the runup height. The maximum runup height can be roughly approximated
by (in dimension variables)

2Ls
Rumax = 27Ta\/)\050 . (37)

Expression (37) shows that the wave steepness is the most significant parameter of
the runup process. Further, expression (37) confirms that from all the waves of a fixed
height and length from the class of waves in question, the wave with steepest front
penetrates inland to the largest distance, and that all asymmetrical waves with the
front steeper than the back create a larger flooding then a wave with a symmetrical
shape. Many examples of extremely large penetration of tsunami waves to inland
(including observations during the 2004 Indonesian tsunami ) can be interpreted as
the confirmation of the important role of the wave steepness.

Similar analysis can be performed for extreme properties of the shoreline velocity.
The dimensionless expression for the ”linear” velocity (normalized against the runup
velocity for sine wave) is

U(t) = Z n3/? ’i" sin <nt + ?’I) . (38)
n=1

The extreme values of this function correspond to the ”nonlinear” maximal values of
runup and rundown velocity of the moving shoreline. The runup velocities exceed the
rundown velocity (Fig. 7). The runup velocity can be approximated (in dimensional

variables) by
Ls 3/2
max = (2 2 g .
U, (2m) a\/h (Aoso) (39)

The linear theory of long wave runup allows also to estimate the parameters of the
wave breaking that occurs when

Y au
= sin = sin = 17
Br = Brgn max ( g2 > Brgin max ( dt ) (40)

where Brgiy, is the breaking parameter for sine wave (25), and all derivatives in (40)
are calculated using dimensionless expressions (36) and (38). The curve defined by
Eq. (40) on plane (Brsin, s/s0) separates the surging and plunging scenarios of wave
runup (Fig. 8). The breaking scenario is, as expected, more typical for asymmetric
waves with a relatively steep front. If the wave is small (Br << 1), the position of the
shoreline varies almost sinusoidally. An increase of the wave amplitude (equivalently,
an increase of Br) in the nonlinear case is accompanied by forming of a region where
the velocity changes very fast (equivalently, its graphical representation has a very
steep front). The water surface displacement record tends to behave as a parabolic
function; meanwhile the corresponding ”linear” characteristics of the wave are sine
functions. The first breaking appears at the stage of maximal rundown. The runup
of the sine wave is described in (2), (14) and here reproduced for illustration.

The runup of an asymmetric wave is greatly different from the runup of the sine
wave. The relevant results for the case s = 2s¢ are presented in Fig. 10. The temporal
behaviour of both the position of the shoreline and the time record of velocity
are asymmetric even when the wave amplitude is small. The runup amplitude and
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velocity of the shoreline displacement is higher than the rundown amplitude and the
relevant velocity. The breaking point is located closer to the unperturbed shoreline
than in the case of the sine wave runup .

5 Conclusion

The principal result of this study is the strong influence of the wave steepness on the
runup characteristics of the long waves in the framework of the analytical theory of
the nonlinear shallow-water waves. Among waves of a fixed amplitude and frequency
(length), the steepest wave penetrates to inland to the largest distance and with
largest speed. Consequently, the least dangerous is the symmetric sine wave.

This research is supported particularly by grants from INTAS (03-51-4286) and
RFBR (05-05-64265) for ID and EP; University of Antilles and Guyane for EP and
NZ, Marie Curie network SEAMOCS (MRTN-CT-2005-019374) for ID, and ESF
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Tsunami Runup in Lagrangian Description
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1 Lagrangian Point of View

In general analyses of fluid dynamics, we fix attention on a particular point of space.
On the other hand, in the Lagrangian point of view, we fix attention on a particular
fluid particle and follow its motion. Independent variables are the initial position of
the particle, (a, b, ¢), and the time, t. The position of the particle, (z, 9, £), and the
pressure, p, are functions of (a, b, c, t).

The Lagrangian description is not suitable for analyzing violent fluid motion
with large deformation, because (Z,9,Z) becomes a discontinuous function if the
wave breaks. Further, it is not suitable for analyzing viscous fluid motion, because
the viscous terms become complicated in the Lagrangian coordinates. However, it
has been applied to research on long-wave runup in some cases ((1) to (6)). This
is because the Lagrangian coordinates have the following advantages for analyzing
wave runup:

e It is easy to follow up the wave front. If the shoreline is set at a = 0 and wave
breaking is negligible, (0, b, ¢, t) always expresses the position of the wave front.

e Boundary conditions at the bottom and free surface are satisfied at the wave
front automatically.

e A nonlinear effect is included in the analysis to some extent even if the equations
used are linear.

In this paper, a nonlinear shallow-water wave equation is derived in the Lagrangian
description first, and the characteristics of a long wave are discussed using the La-
grangian theories.

2 Derivation of Nonlinear Shallow-water Wave Equation

2.1 Basic Equations

Let us consider a fluid particle with infinitesimal volume dV at time ¢. The position
of the particle in cartesian coordinates is denoted as (&,7, 2), therefore we have
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dV = dzdydZz. The initial position and initial volume of the particle are written as
(a,b,c) and dVp, respectively, therefore dVo = dadbdc and

)) , (1)

™N>

o _ 0,9,
dzdydz = Jdadbdc, J = d(a,b,

C

where J is the Jacobian of the coordinates.

Because the equation of continuity implies dV = dV{ for incompressible fluid,
the following equation is obtained as the continuity equation in the Lagrangian
description:

d(a, b, c)
The equation of motion for inviscid incompressible fluid is given by
:%a ga 20, ﬁtt ﬁa
To Yo Zp Gee |+ o | =0, (3)

Ze Ge %) \2u+g) P \pe

where & and § are horizontal axes and the Z-axis is taken vertically upwards, the
function with subscript of a, b, ¢ and ¢ denotes the derivative with respect to a, b, c
and t, respectively, g is the acceleration due to gravity, and p the density. The above
equation is transformed to

O 10(p,9,2) _
ot2 " pd(a,b,c) 9, )
&y, 10(z,p,2) _
o+ p O(a,b,c) 0, )
0z 10(&,9,p) _
ot? tot p 0(a,b,c) 0 (6)

Equation (3) and Egs.(4)—(6) are equivalent; however the latter are convenient in
the present discussion.

In addition to mass and momentum conservations, irrotation of the fluid element
is assumed in the vertical plane, because the friction force is ignored. Figure 1 is a
sketch of the fluid element in the z — z plane.

T
| —

Fig. 1. Deformation of fluid element

In the figure, a and v are evaluated as
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Z T
tana = , tany =

~ a2

a Zc

and the fluid element is irrotational if tan o = tan . Thus, the condition of irrotation
of the fluid element is obtained by
0T 0 0%z 0%

da dc _ Ba dc’ (7)

in the  — z plane. Similarly, the irrotational condition in the y — z plane yields
0y 0y 0202 (8)
Ob dc  Ob e’

The boundary conditions become simple in the Lagrangian description. The
bottom boundary condition has the physical meaning that a fluid particle at the
bottom surface should move along the bottom. This implies that a particle satisfying
% = —h keeps satisfying 2 = —h, where —h(&, ) is the shape of the bottom'. It is
convenient for tsunami application that h is regarded to vary with time. Thus, the
boundary condition at the bottom is described as

= —h(Z,9,t) on ¢ = —h(a, b, to) . 9)

Note that —h(a, b,to) denotes the initial bottom shape?.

The kinematic condition at the water surface suggests that a particle at the
water surface keeps its position at the water surface. This implies that the water
surface elevation is given by the z-value of the particle which occupied the water
surface at the initial time. Similarly, the dynamic condition simply implies that the
pressure p is zero at the same position. If the initial water surface lies ¢ = 0 and the
water surface elevation is denoted by 7, the kinematic and dynamic conditions at
the water surface are written as follows:

K\Z>
3
o
=
O
O

(10)
p=0on 2=n (1e c=0). (11)

2.2 Long-wave Assumption and Scaling

Tsunamis have a long wavelength in the order of hundreds of kilometers, although
the water depth is only in the order of about one kilometer. Thus, it is realistic that
the horizontal length scale is assumed to be greater than the vertical length scale.
This is called ‘long-wave assumption’.

We introduce the scaling parameters £ and D, which are the horizontal and verti-
cal length scales, respectively. The nondimensional forms of variables are introduced
as follows:

a b c /gD
A= B= = T= t

L’ L’ ¢ D’ L’
X: = —

L’ Y L’ Z= D’ P pgD

L Tt is natural that h is defined as a function of cartesian coordinates.

2 The ‘initial’ position (a,b,c¢) does not have to be the position at ¢ = 0. For
some cases, a static state before generating the wave is convenient for the ‘initial’
condition.
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Nondimensional equations are obtained by substituting the above equations to the
basic equations (2), (4)—(6) and (7)—(8). Taking x = (D/L)?, nondimensional forms
of governing equations are as follows:

o+ otn o) =" "
o oga b ey =0 o
SIARRRS e B0 "

OX X  9Z0Z
A 0c ~ "oAsC
Y oYy 979z
oBac ~ "oBac

Because we can expect k < 1 through long wave assumption, the first term of
Eq.(15) and the right hand side of Eqgs.(16)—(17) are negligible. Thus, the equation
of motion in the z-direction is approximated as

(16)

(17)

d(X,Y,P) 19(2,9,p)

1 T =0 =0 18
Tommo) T 9T, (9
Equation (16) becomes X AXC = 0; however, X 4 = 0 is physically unreasonable,
because this implies that fluid particles which occupied a different point at the initial
time occupy the same X at the next moment. Thus, we have Xe = 0. After similar
discussion in Eq.(17), the conditions of irrotation of a fluid element are written by

0X 0

80_0 or 80—07 (19)
v y

8070 or (9670. (20)

The above equations suggest that the velocity distribution is uniform vertically.

2.3 Equation of Continuity

From Eq.(2) and Egs.(19)-(20), the following relation is obtained:

A oA a iagaéa iagaéa o0
g((x7?z7 Z)) = |Zp U 26| = |To U 2p| = 2cg((x Z)) 1
@0 Ee e Ze 0 0 2 '
9z 1 A(#,9)

“oc s’ s_a(a,b)' (21)

Note that # and ¢ are not a function of ¢, thus also 1/s is not a function of c¢. Thus,
Eq.(21) can be easily integrated as follows:
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5=° + constant .
s
The integral constant of the above equation is determined by the bottom boundary
condition, Eq.(9), and we obtain

¢+ h(a,b,to)
s

= — W 5,t). (22)
From the kinematic boundary condition at the water surface, Eq.(10), the following
equation is obtained as the equation of continuity for shallow-water wave theory:
h a, b, to A
n= ( < )—h(x,yi). (23)
The equation of continuity, Eq.(23), has a clear physical interpretation based on
mass conservation. Because of . = g. = 0, a vertical water pile does not lean,
but keeps vertical. If the above equation is written as (h(Z,9,t) + n)sAadb =
h(a,b,to) AaAb, the right hand side implies the initial volume of the water pile,
and the left hand side the volume of the water pile at the time t.

2.4 Equation of Motion

By a similar procedure to the derivation of Eq.(21), the following equation is ob-
tained from Eq.(18):

000, .5/pg) _[fo T Polou] [ ins
(aégfép)g) = |% 9o Do/pg| = |Tv Jb Pv/pPg| =
” Te Je Pe/pg| |0 0 P
e ( b )= — 1
T ocipg’ T s
From Egs.(21) and (24), we have 2 (2 + pﬁg) = 0. Thus, (2 + fg) is a function
of a, b and t. By considering the dynamic boundary condition at the water surface,
Eq.(11), we obtain

(24)

s, D
Z4+ =, (25)
Py
which suggests that the pressure is hydrostatic.
In addition, through Eqs.(10) and (24), the following relation is obtained:

D c
09 == (26)

Through Eq.(20), (21), (24) and (25), the second term of Eq.(4) is transformed
as follows:

o(p/p,9,%2) _ pe 0(7,
d(a,b,c) p O(a

z) . 0®/p,2) . 0B/p,9)
b)Y ab) T aa,b)
10(p/p,9)

s 0(a,b)

a(ﬁ/pg@)}

d(a,b)
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Finally, the equation of motion in the z-direction is obtained as follows:

O’z gon,9)

o2 T saab) 27)
Similarly, the equation of motion in the y-direction is obtained as follows:
0,50 2) _, 0p/02) _pedl@2) ,  0Ep/p)
d(a,b,c) dab)  p dab) T Ba.b)
_ 99,2  10(2,9/p)
s d(a, ) s a(a b)

o(&,2) | 9(&,p/pg)
8( b) d(a,b)

Oy | go(d,m)
+ )

ot ot = (28)

(x + 2 Ab, 3y + g Ab) C (& 4+ 2aAa + 2pAb, 3§ + JaAa + G, Ab)

D’
D (:t/_} o B’ (2 + &,Aa, 5+ HaAa)
Ab (#,9) 7+ nada+ geAb
A Al B \ g
a AN —2pAb
daAa
n+ b W AD
b
. 1+ nela
YaAa

—zpAb M r,Aa

Fig. 2. Deformation of water pile; quadrilateral ABCD and A’B’C’D’ shows a plane
section of water pile

It is possible that we derive the equations of motion through a simple physical
consideration. The mean water elevation along the side A’B’ in Fig.2 is n+n.Aa/2.
Thus the pressure force acting to the side A’B’ (from outside to inside of quadrilateral
A'B’C’D’) is estimated as pg(n + noAa/2)\/22 + #2 Aa; and the #- and g-direction
component of pressure force is pg(n + n.Aa/2)gaAa and pg(n + naAa/2)i.Aa,
respectively. The pressure force acting on the other sides can be estimated similarly.

As result, the total force in the Z- and g-direction is obtained as — ?)EZ g; AaAb and
__0(z,m)

0(a.b) AaAb, respectively. Because the area of quadrilateral A’B’C’D’ is sAaAb,
we obtain the same equations of motion.
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2.5 Separation of Variables

The nonlinear shallow water wave equations are derived in the last section as follows:

9z gong) _
o2 T s aab) O (29)
0%y g o(&,m) _
o s d(a,b) 0, (30)
n= h(aé)’ tO) - h(‘iv :l%t) ’ (31)
o(%,9)
s = aa.b) (32)

For the linearization of equations, the following separation of variables is conve-
nient:

T

+x, (33)

¢ —q
y=b+y. (34)
Note that x and y denote the displacement of a fluid particle from its initial position.
By substituting the above equations to the nonlinear shallow-water wave equations,
the following equations are obtained:

Pr g fon  0my\ _

oz s {aa + d(a,b) [ 0, (35)

Py g fon oz _

o {ab oy f = (36)
n*h(aysb’to)+h(a+x7b+y,t):0, (37)

s— 14 Oz | Oy n o(z,y) (38)

da  0b  I(a,b)

The above equations of motion are equivalent to those derived by Goto and Shuto
(1980); however, the equation of continuity is slightly different. Some nonlinear terms
are ignored in their theory, because they assumed that the displacement of the water
particle was small.

If we assume that the displacement of the fluid particle is small, the higher order
terms with respect to z, y and n are ignored and the linearized shallow-water wave
equations are obtained as follows:

8z on
g2 T95, =0 (39)
Py | on _
g2 T9gp =0 (40)
n—hiabto) (1= 2% =) fhiata,b+5,6) =0, (41)
b 8& ab b b

The above set of linear equations is the same as that derived by Shuto (1968).
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3 One-dimensional Propagation

3.1 Horizontal Bottom Case

For one-dimensional problems, the governing equations (35), (37) and (38) are writ-
ten as follows:

&%z gon _

ot2 " sda 0, (42)

n- h(a;to) +h(a+w,t) =0, (43)
ox

s=1+ Py (44)

At first, let us consider the case of a horizontal bottom. Because h = constant,
we can obtain 7, = 7h8a/82 and sq = Zqea from Eqs.(43) and (44), respectively.
Substituting these relation to Eq.(42), we obtain the governing equation of z as
folllows:

— (45)

Tt —
s3

Similarly, the linear set of governing equations is written as follows:

0z on
= 4
o 90 =0 (1)
ox
n — h(a,to) 1_8a + h(a+x,t) =0. (47)
The linear governing equation of = yields
Ttt — ghZTaa = 0. (48)

The exact solution of Eq.(48) is obviously
T = Aeik(aicgt} , o= \/gh,

where A and k are coefficients. The wave profile is obtained by substituting the
above solution into Eq.(47). The following set of equations is the progressive wave
solution of the linear theory, where o = kco:

n= I; cos(ka — ot), (49)
T=a— 2Iljh sin(ka — ot) . (50)

Figure 3 shows the wave profile estimated by Eqs.(49) and (50) for wave height
H = 6 m, water depth A = 20 m, wavelength L(= 27 /k) = 600 m, and ¢ = 0.
The dotted line shown in the figure is the profile of Airy’s theory with the form of
cos(kz — ot). The Lagrangian theory clearly has a sharp crest, namely, a nonlinear
effect is included in the Lagrangian analysis to some extent even if the equations
used are linear. This is easily explained by transformation of Eq.(49) to cartesian
coordinates as follows:
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Fig. 3. Wave profile of progressive wave on a horizontal bottom obtained by La-
grangian linear theory (H = 6 m, h = 20 m, L = 600 m); —— : Lagrangian linear
theory, - - - : Airy’s theory

n= ZI coslki + f sin(ka — ot) — ot]

h
H . H .
9 {cos(k:x — ot) cos {2}1 sin(ka — Ut):|

~sin(ké — ot)sin { oy sin(ka - at)} }

R

H . H . 5,
9 {cos(k:rfot) = gp, S0 (k:rfat)}

_H . H cos2(k& —ot) — 1
=, {cos(k:x ot) + oh 9 } .

The linear solution of the Lagrangian equation essentially includes the half-wavelength
component like Stokes wave. This is the reason why a nonlinear effect is partly in-
cluded in the Lagrangian linear solution. However, the averaged water level does
not become zero®. This inconvenience is eliminated by using a nonlinear equation.
If Eq.(50) is substituted into the nonlinear continuity equation, Eq.(43), the wave
profile is estimated as follows:

n= i —h

1— M cos(ka — ot)

H H :
~h {1 + oh cos(ka — ot) + {2}1 cos(ka — ot)} } —h

H R H o, . H? 5
9 {cos(k:x—at) = gp, 5D (k:c—at)} + 4p, €O (kz — ot)

1

2

H .
{cos(k:a: —ot) + oh

H .

cos 2(kz — Ut)} .
Thus, the nonlinear continuity equation sets the averaged water level to zero. Note
that the above equation does not suggest the existence of a sinusoidal stationary

3 The averaged elevation of a particle at the water surface is zero; although the
spatial average of the water level is not zero.
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Fig. 4. Profile of sinusoidal wave propagating on a horizontal bottom evaluated by
linear theory (H =4 m, h =20 m, L =600 m); ¢t =0, 5, 10, 15, 20 and 25 s
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Fig. 5. Profile of sinusoidal wave propagating on a horizontal bottom evaluated by
nonlinear theory (H =4 m, h = 20 m, L = 600 m); ¢t = 0, 5, 10, 15, 20 and 25 s

wave solution for a nonlinear shallow water wave on a horizontal bottom. It only
provides the momentary wave profile when z is described as Eq.(50).

Through an analogy to the linear equation (48), the wave celerity of the nonlinear
equation, Eq.(45), is estimated as follows:

gh 7.\3/2
=~ = h(l
c \/53 \/g(+h)

~ 31

~ \/gh(1 + on)
The above relation is the same as that of a nonlinear shallow-water wave in cartesian
coordinates. Because the phase speed of the crest is faster than that of other parts,
the wave-crest moves forward from the center.

Figures 4 and 5 show comparisons of wave propagation of sinusoidal waves on

a horizontal bottom estimated by linear and nonlinear theories. In both cases, the
solutions were obtained numerically, and Eq.(50) is used as the initial condition.
The linear solution clearly gives the progressive wave without transformation as
described by the theoretical solution. However, in the nonlinear solution, the wave-
crest propagates faster than other parts, and the wave-trough slower. Therefore, the
wave crest moves forward and the wave trough relatively backward, and the water
surface gradient of the fore-face becomes steep. In addition, the elevation of both the
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Fig. 6. Profile of standing wave on a sloping beach (H =20 m, o = 1/20, T' = 300
s); t = 300, 350, 400, and 450 s; : nonlinear, - - -: linear

wave crest and wave trough becomes high in comparison to that of Fig.4, because
the averaged elevation of the water surface becomes zero by the nonlinear term.

3.2 Uniform Sloping Bottom Case

In the case of a uniform sloping beach, h = a2, where « is the bottom slope. Thus,
Eq.(43) is reduced to n — aa/s + a(a + ) = 0 and then 1, = a(1/s — as./s> — s).
Thus, the nonlinear governing equation of x is obtained as

1 Sa
:Ett+ag(82—a83—1)=0. (51)
The linearized equation is
et — ag(2Ta + a%aa) = 0. (52)

The solution of the above linear equation is given by

€Tr = H\/g Z1 (20\/(1 )6i0t7
[ aa ag

where Z; is the Bessel function of the first order. To obtain the progressive wave
solution, we should adopt the combination of solution as Ji(:)cos(-) — Ni(-)sin(+)
that diverges at a = 0. The standing wave solution is obtained by Ji(+) cos(-). Shuto
(1967) had discussed these solutions in detail.

The solution of 7 is obtained by substituting x into the linear continuity equation,
Eq.(47). The combination of z and 7 of the standing wave solution is written as

follows:
a
n=—HJp (20\/ag) cos(ot), (53)

i=a+ f\/aga Ji (20\/551) cos(at) . (54)

Figure 6 shows a comparison of the linear theoretical solution and nonlinear
numerical solution. To evaluate the numerical solution, Eq.(54) is used as the initial
condition. The initial time of simulation is ¢ = 0, and the wave profile at t = T to
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Fig. 7. Initial wave profile (Case d of reference (7))

3T'/2 is drawn in the figure where T'(= 27/0) = 300 s. Regarding the runup and
drawdown heights, the linear and nonlinear solutions provide similar results. How-
ever, the runup process is slightly different. The wave front reaches the drawdown
point at ¢ = 300 s, and the wave front velocity is accelerated after ¢ = 300 s. In the
linear solution, the wave front velocity becomes the maximum when the wave front
crosses £ = 0. In the nonlinear solution, the wave front velocity accelerates rapidly
just after ¢ = 300 s, and the maximum runup velocity appeares slightly before & = 0.
Thus, the wave front evaluated by the nonlinear theory goes forward in comparison
to that evaluated by linear theory at ¢t = 350 s.

Carrier, Wu and Yeh (2003) obtained solutions for the 1-D nonlinear shallow
water wave equations on a uniform sloping beach, as an initial value problem. They
used the distorted coordinates to transform the equations, although their basic equa-
tions are the nonlinear shallow water wave theory in the cartesian coordinates. It
may be interesting to compare the Lagrangian solution with their solution. Figure
7 shows the initial wave profile of the test, Case d of Carrier et al. ((7)). The bot-
tom slope « is 1/10. To evaluate the Lagrangian numerical solution, z = x¢+ = 0
at t = 0 is used as the initial condition, and the initial bottom shape is assumed
h = ai — no(= aa — no), where ng is the initial wave profile drawn in Fig.7. The
bottom is deformed linearly into h = aZ from ¢t = 0tot = 1s. At t = 1 s, the
bottom becomes a uniform slope. In the exact meaning, the wave condition used in
the present simulation is not the same as that used by Carrier et al. However, the
water surface elevation at ¢ = 1 s is almost equivalent to 7.

Figure 8 shows the trajectory of shoreline, where zy = x(0,t), and Fig.9 the wave
profiles. It is difficult for the Lagrangian nonlinear simulation to provide a stable
solution in this case, because the wave condition might be close to the limitation of
wave breaking and thus the nonlinear term 1/s often causes instability. Thus, it is
possible that the numerical error is not negligible in the Lagrangian nonlinear simu-
lation. However, the nonlinear simulation result agrees well with the result of Carrier
et al. Regarding the runup and drawdown heights, the linear theory also reproduces
the result of Carrier et al. satisfactorily. However, we can find a difference between
the linear and nonlinear results in the runup process. The wave front reproduced by
the nonlinear theory is accelerated rapidly after departing the drawdown point in
comparison to that reproduced by the linear theory. This characteristic was already
found in the standing wave analysis drawn in Fig.6.
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Fig. 9. Wave profiles at t = 160, 175 and 220 s; o: Carrier et al., ——: nonlinear, -
- -: linear

4 Two-dimenaional Propagation

Let us consider a two-dimensional linear theory for the case of a uniform plane
beach, h = az. In this case, the linear continuity equation, Eq.(41) is transformed
as:

n+ af(ax)e + (ay)s] = 0.
By substituting Eqgs.(39) and (40) into the above equation, the following governing
equation is obtained:

et — ag [(ana)a + (anp)s] = 0. (85)

If we suppose the solution with the form of n = f(a)ei(kbf"t), we obtain
fla) = e ML, (2|k|a), (56)
o=240n, on=+aglkl2n+1) (n=0,1,2,---), (57)

where L, denotes the Laguerre function, and Eq.(57) provides the dispersion re-
lation. The above linear solution of an edge wave on a uniform sloping beach in
Lagrangian coordinates was derived by Shuto(1968).
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The combination of 1, z and y is as follows:

H

n= e KL, (2]k|a)e’ o) (58)
= I 9 Je ML, afka)] €140, (59)
= OEH e alkfa)e 0. (60
At the shore (a = 0),
n(=—az) = I;I cos(kb — ot), (61)
J=0b— ‘(]2];[;[ sin(kb — ot) . (62)

The above relation provides the profile of shoreline along the coast, and it is similar to
the progressive wave profile on a horizontal bottom described by Eqs.(49) and (50).
Thus, the shoreline profile of this solution has similar characteristics to the profile
drawn in Fig.3. Namely, the Lagrangian solution shows a sharp crest in comparison
to the solution in the cartesian coordinates. In addition, the averaged elevation of
the shoreline is not zero in the Lagrangian linear theory. Yeh (1992) demonstrated
that the averaged elevation of shoreline becomes zero by the higher order solution.

Because the fundamental solution has the same form as that in the cartesian
coordinates, the solution for the arbitrary initial value problem is obtained by the
procedure proposed by Fujima et al. (2000). The initial condition is n = no(a, b) and
n: = 0 at t = 0, where 79 is the given function. The solution is expressed as

n= / > Apge” ML, (2]kla)e™ (7" + €77 dk, (63)

- g 0 —|k|a ikb, —ion ion
x:/ S GAu ) [ L@k e ek, (64)

—° n=0
y = / ) i 98 A e Ly (2fk|a)e™ (77 + 7Y d, (65)
— n=0 o
= |k| / “IHe L, (2]k|a)ex (a)da (66)
where ¢, is the Fourier transform of 79 in the b-direction. Namely,
no(a,b) :/ cr(a)e™dk . (67)

Of course the nonlinearity is ignored in this theory, however, linear analysis may
reproduce the runup and drawdown heights accurately as discussed in the previous
section. This theory is convenient for easily reproducing the edge wave behavior over
a long time at a long distance.

Three test cases are conducted; in all cases, the bottom slope « is 1/100 and the
initial profile is given by the following equation:
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Table 1. Conditions of source of Cases 1, 2 and 3

H(m) W(km) L(km) £,(km) £ (km)

Casel 5 60 100 70 -50
Case 2 5 60 100 0 -50
Case3 5 100 60 -25 -30

| Case 2 Case 1

A

b
Case 3 ¢ "’ ‘\\\\\:\\\‘
I
shoreline

(a) (b)

Fig. 10. Sketch of source area; (a) location of source area of Cases 1, 2 and 3, (b)
bird’s-eye view of initial profile ng

H sin? A; sin® By (0< A1 <m,0< By <)

Mo = , (68)
0 (elsewhere)
A1=7T(a—éa)/W, B1=7T(b—£b)/L. (69)

The parameters are listed in Table 1. The source area (area where 7o has a non-zero
value) is drawn in Fig.10. The source area of Case 1 locates off the shoreline (a = 0),
and the source area of Case 2 touches the shoreline. In Case 3, the source area is
put across the shoreline, and the left quarter of the area is meaningless physically.
However, the initial water elevation of the shoreline is not zero, namely, the shoreline
is curved landward at ¢ = 0.

Figure 11 shows the elevation of wave front in Cases 1, 2 and 3, where ny =
1(0,b,t). In Fig.11, the top two figures show the results of Case 1, the middle figures
the results of Case 2, and the bottom figures Case 3; the left side figures show the
water elevation at b = 0, and the right side the elevation at b = 400 km. The source
of Case 1 generates the highest tsunami height at b = 0. However, at b = 400 km,
the sources of Case 2 and 3 generate a higher tsunami than the Case 1 source. This
is caused by the generation of edge wave in Cases 2 and 3. In addition, the tsunami
duration becomes long in Cases 2 and 3. For a community distant from a tsunami
source, an earthquake near the shoreline is troublesome if an edge wave is generated.
It will possibly provide a high tsunami height and long tsunami duration.

5 Summary

Characteristics of one- and two-dimensional propagation and runup of a long wave
were discussed through the Lagrangian method. The Lagrangian method is not a
tool for wide use. However, it has some advantages for analyzing long-wave motion.
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Fig. 11. Elevation of wave front at b = 0 and 400 km in Cases 1, 2 and 3

On the one-dimensional propagation on a horizontal bottom, the Lagrangian lin-
ear theory has a solution of the same form as a solution in the cartesian coordinates.
However, the Lagrangian solution shows a sharp crest because it partly includes a
nonlinear effect. In the nonlinear theory, the phase speed of the wave crest is faster
than that of the other parts. Thus, the wave crest moves forward and the water
surface gradient of the fore-face of the cest becomes steep.

On the one-dimensional runup on a uniform slope, linear and nonlinear theories
give similar results for the runup and drawdown heights. A small difference is found
in the runup process; in the nonlinear theory, the wave front is accelerated rapidly
after departing the drawdown point.

On the two-dimensional propagation on a uniform plane beach, the shoreline
profile evaluated by the Lagrangian linear theory has the same tendency as the wave
profile of a progressive wave on a horizontal bottom. The procedure to evaluate the
wave propagation from an arbitrary initial profile proposed by Fujima et al. (2000)
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is adaptable to the Lagrangian theory, which enables estimation of the tsunami
behavior over a long time and at a long distance from the source without large
numerical simulation.
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Summary. The classical analytical solution for the run-up of periodic long waves
on an infinitely long slope is presented and discussed. This leads to simple expres-
sions for the maximum run-up and the associated flow velocity in terms of the surf
similarity parameter and the amplitude to depth ratio determined at some offshore
location. We use these expressions to analyze the impact of tsunamis on beaches and
relate the discussion to the recent Indian Ocean tsunami from December 26, 2004. An
important conclusion is that the impact is very sensitive to the beach slope. Next, we
present a numerical model based on a highly accurate Boussinesq-type formulation.
This model incorporates nonlinear and dispersive effects, and is extended to include
a moving shoreline. As a first step, the model is verified against the non-dispersive
analytical run-up solution, demonstrating good quantitative accuracy. The model
is then used to study an idealized three-dimensional nearshore-generated tsunami
propagating over a hypothetical sound.

1 Introduction

This work is split into three parts: In the first part (§2), we present an analytical
model for the run-up of tsunamis on beaches. The theoretical description is based on
a solution to the linear and nonlinear shallow-water equations and follows previous
work by Green (8), Lamb (19) and Carrier & Greenspan (2). The main result is a
quantification of the maximum run-up and the associated flow velocity for periodic
long waves on a plane beach. These results are given in terms of the surf similarity
parameter and the amplitude to depth ratio determined at some offshore location.
We use these expressions to discuss the impact of tsunamis on various beaches and
relate the discussion to the recent Indian Ocean tsunami from December 26, 2004.

In the second part of this work (§3), we present a numerical model based on a
highly accurate Boussinesq-type formulation. This formulation, which was originally
derived by Madsen et al. (24; 25) for slowly varying bathymetries, has recently been
extended by Madsen et al. (26) to allow rapidly varying bathymetries. We also intro-
duce a moving boundary into the model, which allows for the simulation of run-up
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on beaches. Although the formulation accurately describes dispersive nonlinear wave
motion, we concentrate on the run-up of long waves and compare the computations
with the analytical expressions presented in §2.

In the third part of this work (§4), we use the numerical model to study an
idealized three-dimensional tsunami, which is generated near the shore by a periodic
point source, which then propagates over a hypothetical sound. This is a first and
rather crude approximation to a three-dimensional submerged or subarial landslide,
as previously studied e.g. by Lynett & Liu (22). The simulation includes dispersive
effects, and we observe the formation of shore-trapped, edge wave modes. A linear
refraction model is also presented and a comparison made with the numerical results.

2 An analytical model for tsunami run-up

2.1 Governing equations and basic assumptions

Tsunamis usually have relatively long wave periods, and it is often a good approx-
imation to assume hydrostatic pressure and a uniform vertical distribution of the
velocity field. This means that under most circumstances tsunamis can be approxi-
mated by the nonlinear shallow-water equations,

o B 3
o oo WBED)+ o (V(ntm) =0 ey
oU U . oU  dng
ot TV e TV, 900 =0, (2)
ov. v oV oy
at-l-Uam-‘rVay-‘rgay—Q (3)

where 7 is the surface elevation, h the still water depth, g the acceleration of grav-
ity, and (U,V) the velocity components in the (horizontal) z- and y-directions, re-
spectively. One exception is the generation of tsunamis from subarial/submerged
landslides where dispersive effects are important. Such events have been studied
previously e.g. by (10; 9; 11; 35; 21; 22).

Typically, nonlinearity plays an important role, especially when the tsunami
approaches coastal areas and starts to run up the beach. In this connection, wave
breaking may occur, which effectively turns the tsunami into a moving bore. The
details of such a bore are very similar to tidal bores, except that tidal bores cannot
occur on beaches, but only in confined funnel-shaped bays. The propagation and
run-up of bores has been treated analytically by e.g. Keller et al. (16), Ho & Meyer
(13) and Shen & Meyer (31; 32), numerically by e.g. Hibberd & Peregrine (12) and
Watson et al. (34), and experimentally by e.g. Yeh et al. (36).

In this section, we shall focus on analytical run-up expressions, which can be
obtained by introducing the following additional assumptions: 1) The effects of wave
breaking and bottom dissipation are neglected; 2) Full reflection from the shoreline
is assumed; 3) Periodic wave motion is assumed i.e. the transient nature of the
tsunami is ignored; and 4) The beach slope s is assumed to be constant. We will
present and discuss the solutions previously derived by Green (8), Lamb (19), and
Carrier & Greenspan (2).
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We shall deal with one-dimensional motion only i.e. all waves are assumed per-
pendicular to the shoreline. Initially, we shall also assume that the linearized shallow-
water equations are an adequate description of our problem. Hence, equations (1)-(3)
are simplified to

on 0
hU) = 4
2 () =0, ()
ou on
ot T99z = 0. (5)
By eliminating U we then obtain the linear shallow-water wave equation
0*n 0 on
a2~ Joz (hazr) =0 (6)

2.2 The linear far-field solution

A first description of waves approaching a sloping beach can be obtained by using
the classical WKBJ expansion, assuming a mild beach slope. Green (8) derived this
solution in his work on the motion of waves in a variable canal of small depth and
width, see also Lamb (19), §185. We consider a slowly varying bathymetry h(dz),
where § is an ordering parameter, with the z-axis starting at the shoreline and
pointing towards the sea. A linear wave propagating towards the shore can now be
described by

n(z,t) = A(dx) cos <wt + / k(&x)dm) , (7)

where w is the cyclic frequency, k(dz) is the wave number, and A(dz) the wave
amplitude, both slowly varying in space. We insert (7) into the wave equation (6)
and collect terms in powers of §. The zeroth-order problem now yields the dispersion

relation w
k= : (8)
Vgh

while the first-order problem yields the linear shoaling equation

1dh  1dk  2dA _

hdm+kdm Adﬂc_o' )

We differentiate (8) with respect to = to obtain

1dk 1 dh
kdrx  2hdx’

Inserting this result into (9) then yields

1dA 1 dh
Adz ~  4hdz’

This is the classical shoaling law by Green (8), which can also be expressed as
h —1/4
A =ao (") (10)
ho

where aop denotes the incoming wave amplitude at depth ho.
Utilizing that the beach slope s is constant i.e. h(xz) = sz, we obtain
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k:\/;}sx = /kdm:2w\/;S. (11)

Hence, according to (11), (10) and (7) the incoming wave can be expressed by

n(z,t) = ao (25;)1/4 cos (wt+2w\/gxs). (12)

Notice that this expression is strictly not valid at the shoreline, as the amplitude
goes to infinity for z — 0. Nevertheless, we assume that the incoming wave is fully
reflected from the shoreline and add an equivalent outgoing wave, to obtain the
standing wave solution

sz M4 T
n(z,t) = 2ao0 ( ) cos (Zw\/ + cp) coswt for x> 0. (13)
ho gs

Here ¢ denotes an unknown phase shift, which will be determined in the following.

2.3 The linear near-field solution

Lamb (19), §186, presented a linear long wave solution, which is also valid in the
vicinity of the shoreline. Again a constant slope is assumed, i.e. h(z) = sz, but the
previous assumption of a mildly sloping beach is relaxed, and we look for solutions
of the form

n(z,t) = A(z) coswt, U(z,t) = B(z)sinwt. (14)
By inserting (14) into (6) and (5) we obtain
d’A  dA W g dA
wdx2+dx+gsA_0’ and B__wd:c' (15)

Next, we introduce the coordinate transformation

X
=2 1
- w\/gs, (16)

inspired by (12), by which (15) simplifies to

2
dAJrldAJrA:O, and B 2w dA

1
do?  odo (17)

Cosdo
This is the Bessel equation of the first kind, and the solution to this equation can
be expressed by
2wR
A(o) = RJo(s), and B(o)= "V Ji(0), (18)
os

where J,, is the nth-order Bessel function of the first kind and R is an unknown am-
plitude. Consequently, the surface elevation and the particle velocity are determined
by

n(z,t) = RJo(o) coswt, (19)
Uz, t) = 2;’fJ1(o) sinwt. (20)
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Approaching the shoreline, i.e. for 0 — 0, we have that Jo(o0) — 1 and Ji(o) —
o/2ie.

n— R coswt for o — 0, U— szinwt for ¢ — 0. (21)
s

Hence, R defines the surface elevation at the shoreline, which in this linear approach
is identical to a vertical measure of the run-up.

2.4 The nonlinear near-field solution

Carrier & Greenspan (2) derived an analytical solution to the nonlinear shallow-
water equations by using a number of elegant coordinate transformations. A sum-
mary of their method can be found in e.g. Mei et al. (28). First, they transform the
independent coordinates from (z, t) to the Riemann invariants («, ) defined by

a=U+2A—mt, B=U—2A—mt, (22)

where A = \/g(h + n) and m = gs. Second, they introduce (p, \) as new independent
variables defined by

p=a— =44, A=a+ B=20U —mt). (23)

Third, they introduce the dependent variable ¥ (p, A) defined by

o -U o Uz p?
= — =4 — — . 24
op m P 1)) (:r 2m  16m (24)
This simplifies the nonlinear shallow-water equations to the following linear equation
o [ o *y
_ —0 25
o (050) =05 =0, (25)

which provides analytical solutions for various initial or boundary conditions on .
In this notation the moving shoreline is defined as p = 0. A solution to (25),
which is finite for p = 0 reads

8gR . w
WlpN) == Th(yp)sin(vA),  v= 0 (26)
where Jy is the zeroth-order Bessel function of the first kind and R is an unknown
amplitude. The remaining problem is to determine n, U, z, and ¢ in terms of ¥, p,
and A. From (24) and (23) we obtain

9
UGN = =", (27)
1oy U pP
2N = gon T om T 16m’ (28)
2 2
_ P __(loy U
”(p”\)_s(16m ”) - S<4a/\+2m)’ (29)

H(p, \) = ; (Uf ;) , (30)
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which define the nonlinear solution as a set of parametric curves in terms of p and
A

While 9 is a single-valued function of p and A, this is not necessarily the case in
terms of x and t. Carrier & Greenspan (2) showed that the Jacobian

_ O(z,t)

(p,A)’

vanishes for increasing values of R, and they established the breaking criterion

2
R < Ruax = f; , (31)

beyond which the nonlinear solution is no longer valid. For R — Rmax the free
surface elevation during draw-down will become vertical.
Far away from the shoreline, where wave conditions can be linearized, we obtain

w X
=, 4g(h+n) — 2w\/gs =0,

YA = 2L:n2(U —mt) — —wt,

which indicates that p represents the spatial coordinate, while A represents the
temporal coordinate. Furthermore, (29) linearizes to

10vY\ x
n— —s <4 (9/\) = RJo <2w\/gs) coswt,

which is in agreement with (19).
The nonlinear solutions at the shoreline can be obtained by inserting (26) in
(27), (28), and (29), and taking the limit for p — 0. This leads to

lim U(p,\) = _wh sin(yA),

p—0 S

lim z(p, A) = _R (cos(’yx\) 1
s

p—0 2 Rmax

sin” ('y)\)) .

SiHQ(M)) :

: _ 1 R
lim n(p,\) = R <COS(7A) T o R

As R < Rmax, the maximum run-up and drawn-down elevation will be identical to R,
which is formally in agreement with the linear result given in (21). Furthermore, the
maximum velocity will be identical to wR/s, also in agreement with (21). However,
in contrast to the linear result, which has a fixed shoreline at x = 0, the nonlinear
solution has a moving shoreline, where z varies between —R/s and R/s. Because of
this, the spatial and temporal variations of n and U will actually deviate significantly
from the linear solution close to the shoreline.

2.5 Matching of near-field and far-field solutions

In order to determine the run-up elevation and shoreline velocity of a given incoming
tsunami, it is necessary to match the near-field and far-field solutions. Far away from
the shore, the asymptotic value of Jo(o) becomes
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Jo(o) — \/i070‘5 cos (0' - Z) for o — oo.

Hence, the far field expansion of the near-field solution (19) becomes

—0.25
n(z,t) — \/Rw (;s) cos <2w\/;S - Z) coswt for o — oo. (32)
™

Keller (17) and Mei et al. (28) matched this result to linear deep-water theory, by
which they found that

1/2
R _ (27r> and 5= _T

Goo s 4’

where ao is the wave amplitude in deep water. However, tsunamis typically propa-
gate as shallow-water waves in practically any depth, hence we prefer to match (32)
to the linear shallow-water far-field solution (13), by which we obtain

h0w2

0.25 .
952 > and 0=— . (33)

R
=2
ao \/ﬂ- < 4
This defines the run-up for given shallow-water far-field conditions ho, ao, and w
and for a given bed slope s.

2.6 Run-up in terms of the surf similarity parameter

Waves on beaches and their type of breaking depend on the beach slope, the wave
period, and a representative wave height (either offshore or nearshore). Iribarren
& Nogales (15), Galvin (7) and Battjes (1) characterized the beach processes in
terms of the non-dimensional surf similarity parameter (also known as the Iribarren

number) defined by
s

VHoo/Loo'
where Ho is the deep-water wave height and Lo is the linear deep-water wave

length. In terms of this parameter, Galvin (7) classified breaker types on plane
impermeable beaches by

§oo = (34)

€ < 0.5 — spilling,
0.5 < £oo < 3.3 = plunging,
3.3 <& —> surging.

Because of their relatively short wave periods (and wave lengths) wind waves will
typically have rather small £, on most beaches (leading to spilling- or plunging-type
breaking), while tsunamis will have rather large values (leading to surging and full
reflection). Not surprisingly, the surf similarity parameter also plays an important
role for the run-up of breaking and non-breaking wind waves on beaches and steep
structures. Hughes (14) concluded that practically all present day empirical run-up
expressions are given in terms of ¢ defined by
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s
£= oL (35)
where Hy is the local wave height at or near the toe of the slope, at depth ho.

While the surf similarity parameter undoubtedly has been a successful tool in
the classification of breaking and run-up of wind waves, we have so far not seen it
used to characterize the impact of tsunamis on beaches. One reason could be that
a tsunami is not really a periodic phenomena, but rather a transient phenomena of
limited duration. Therefore, it is often approximated by the progression of either a
Gaussian hump or a solitary wave, both of which do not really support the concept
of a surf similarity parameter. On the other hand, if we accept the assumption of
the tsunami being a quasi-periodic phenomena (a case which is certainly supported
by some observations, see e.g. Figure 2, to be discussed later in more detail), we
obtain the run-up solution (33). This solution can very easily be expressed in terms
of the surf similarity parameter. To do so we first utilize that (35) leads to

e-r (%), (36)

ap \ w?

by which we can express (33) as

—1/4
R oo <“°> e (37)

ao ho

The associated maximum flow velocity of the tsunami is determined by U,, = wR/s,

which leads to
Vgao & \ao

Finally, Carrier & Greenspan’s breaking criterion from (35) can be expressed as

R Rmax 15
ao S aop o 7'1'£ ’ (39)
Figure la shows the relative run-up determined by (37) up to the point of break-
ing and by (39) beyond the point of breaking. We notice that, the smaller the
ao/ho, the larger the amplification R/ao can become before breaking takes over. As
tsunamis typically initiate as very small waves on large water depths, the ratio ao/ho
can easily be as small as say 0.001 or less. The largest run-up will typically occur if £
falls in the interval 3.5 < & < 6, where the transition from non-breaking to breaking
waves occurs. Figure 1b shows the associated maximum flow velocity determined
by (38). Again we notice, that the smaller the ao/ho ratio, the larger the maximum
velocity Un /+/gao. In the following we shall utilize Figure 1 and equations (37), (38)
and (39) to discuss the impact of tsunamis on various beach slopes.

2.7 Discussion of the impact of tsunamis

The impact of waves on shorelines turns out to be a critical balance between the
steepness of the beach and the wave length (or wave period). Wind waves are gen-
erally quite short and they will experience substantial wave breaking on mild as
well as on steep beaches, which dissipates most of their energy before they reach the
shoreline. Tides, on the other hand, are extremely long, and from their point of view
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Fig. 1. Plot of the non-dimensional (a) run-up and (b) maximum horizontal velocity
as a function of ¢ for various ao/ho.

even the mildest beach acts like a vertical wall. Hence, although tides may result in
significant run-up elevations, the associated beach velocities are almost nil. As an
example, let us consider a tidal wave with period 7" = 12 hr and wave amplitude
ao = 5 m in depth ho = 100 m, i.e. ag/ho = 0.05. On a mild slope s = 1/120 this
leads to & = 142, and (37), (38) and (39) yield R = 4.2 m and U,, = 0.07 m/s,
i.e. an extremely small flow velocity. An exception is the formation of tidal bores,
which occur if extreme tides are further amplified by special bathymetric condi-
tions such as rapidly decreasing cross sections and water depths. As an example,
the Huangzhou bore south of Shanghai in China, can move with a speed of up to 40
km/hr, with a steep front where the surface level jumps 3-5 m within 5 min, and
with the maximum fluid velocities exceeding 56 m/s (see e.g. Madsen et al. (27)).
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Fig. 2. Sound-meter registration of the Indian Ocean tsunami on December 26, 2004
at a location approximately one mile off Phuket, Thailand. Source: Thomas Siffer on
the yacht Mercator (www.thomassiffer.be). See also the website of the Royal Dutch
Meteorological Institute (www.knmi.nl).

However, such extreme tidal events cannot happen at random on beaches, but will
occur only in funnel-shaped bays and attached rivers.

It is the combination of huge run-up elevations and extreme run-up velocities
which makes the tsunami such a devastating event. The maximum impact will occur
whenever the breaking criterion (39) is close to being satisfied, i.e. for ¢ in the range
of 3 to 7. For typical tsunami periods of 2 min < 7' < 30 min, it turns out that the
beach slope is a very critical parameter in the determination of the tsunami impact.
As one example, let us consider a wave with period 7" = 13 min, and with amplitude
ao = 0.75 m in ho = 2000 m, i.e. ap/ho = 0.000375. On a steep slope of s = 1/15
this leads to & = 53, and (37), (38) and (39) yield R = 3.5 m and U,, = 0.42 m/s,
i.e. quite a moderate impact on the shoreline. In contrast, on a slope of s = 1/120
the same tsunami leads to £ = 6.6, and (37), (38) and (39) yield R = 9.9 m and
Un = 9.5 m/s. In this case the impact would be devastating! As another example
let us consider again a period of T" = 13 min, but this time with a wave amplitude
of ap = 3.3 m in ho = 12 m, i.e. ap/ho = 0.275. On a steep slope of s = 1/15 this
leads to & = 25, and (37), (38) and (39) yield R = 4.3 m and U, = 0.5 m/s. In
contrast, on a slope of s = 1/110 the same tsunami leads to £ = 3.4, while (37), (38)
and (39) yield R = 11.6 m and U,, = 10.3 m/s. Again, a devastating impact!

In fact these two examples are both inspired by observations from the recent
Indian Ocean tsunami from December 26, 2004. On this occasion Thomas Siffer
from Belgium had anchored his yacht Mercator about a mile off the coast of Phuket,
Thailand. During the passage of the tsunami, Mercator’s fish-finder (sound-meter)
made the recording shown in Figure 2, where the vertical axis shows the depth in
meters, while the horizontal axis shows the time in hours. Note that the average
depth at the location is 12 m, and that the initial disturbance is a wave trough of
-2.7 m followed by a wave crest of +3.9 m, i.e. a wave height of 6.6 m. The second
trough is only -0.5 m followed by a crest of +1.7 m, while the third trough is -0.6
m followed by a crest of +4.9 m. Although the crest and trough heights vary over
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Fig. 3. A map of a selected region of Thailand affected by the Indian Ocean tsunami
on December 26, 2004. The arrow shows the incoming tsunami direction.

time, the time span between successive crests or troughs is approximately 13-14
min during the registration. (This measurement also corresponds reasonably with
findings of Liu et al. (20), who report an approximate 10 min duration between
two successive peaks in the same event observed in Sri Lanka). Hence, although the
event is basically a transient phenomena, based on Figure 2, we may approximate
it by a regular wave event with a period of 13-14 min and with an average wave
amplitude of ap = 3.3 m in the depth of hp = 12 m.

It is a fact that some beaches in Thailand were severely damaged while other
nearby beaches were almost untouched. Obviously, local refraction and diffraction
effects played an important role, but the most important factor was undoubtedly
the local beach slope. The following observations from Thailand were made by Rex
Towers from BBC Guernsey (see the map in Figure 3):

Just two miles round the headland north of Kalim is Kamala Bay. There
is awful devastation there. With hardly any rise in the seabed approaching
the land there was nothing to cushion the wall of water coming onto the
land. The coastline is flat too, going inland for nearly a mile, so the water
went that far in places. Just a mile round the headland from Kamala is
Surin beach, and what a difference here. It’s like nothing ever happened,
and very little did. The steep incline of the beach took the force out of the
wall of water and only a few feet came up under the treeline, moving beach
chairs and restaurant furniture about.

These observations agree remarkably well with the simple calculations made above
on the basis of (37), (38) and (39).
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3 Extension of a high-order Boussinesqg-type model

In this section we will now present numerical simulations of wave run-up based on
a recently extended highly accurate Boussinesq-type approach. The corresponding
system of partial differential equations, and a brief discussion of their numerical solu-
tion, is presented in §3.1. A description of the newly incorporated moving boundary
algorithm is provided in §3.2, and a comparison between numerical results involving
tsunami run-up and the theory presented in §2 is made in §3.3.

3.1 The Boussinesq formulation

The Boussinesg-type formulation used herein was originally derived by Madsen et
al. (24; 25) for slowly varying bathymetries, and has recently been extended to
allow rapidly varying bathymetries by Madsen et al. (26). A brief summary of this
extended method follows. This method utilizes the following exact expressions for
the kinematic and dynamic free surface conditions

n

o =@+ V-V -0y, (40)

7. T ~2

oU U-U o
5t ——gVn—V< g 2(1+V77~Vn)>7 (41)

where U = (U,V) = @ + wVyn. Here @t = (@,0) and @ are the horizontal and
vertical velocities directly on the free surface z =1, g = 9.81 m/ s? is gravitational
acceleration, V = (9/0z,0/0y) is the horizontal gradient operator, and ¢ is time.
By assuming that the expansion level Z (but not the depth h) varies slowly in
space, Madsen et al. (26) derived the following expressions for the vertical velocity
distributions, which are given in terms of pseudo-velocity variables 1*,1" located at

z

u(z,y, z,t) = (Jo1 + V2J11)0" + (Jo2 + VZJ12)0", (42)
w(z,y,2,t) = (Jor + VEJ11)w" — (Joa + VEJ12)0", (43)
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and ¢ = (z — 2). These were combined with the following representation of the

kinematic bottom condition
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where ¢, = —(h + 2), B12 = 0.95583, B1a = 0.51637, B13 = 0.72885, and (15 =
0.28478. Note that if the O(VZ) terms are neglected and Z = —h/2 in the above,
this system simplifies to the original formulation of Madsen et al. (24; 25). Madsen
et al. (26) also included O((V2)?) terms in their extended derivation, however, as
they are not used in the present work they are left out for brevity.

Analysis and applications of the current method have shown that it retains highly
accurate linear and nonlinear properties for (wave number times depth) kh < 25,
provides accurate shoaling for kh < 30, and gives accurate velocity kinematics for
kh < 12. Hence, over a large range of water depths this system may be considered as
a highly accurate approximation of the exact Laplace problem governing nonlinear
water waves. As such, depth limitations conventionally associated with Boussinesq-
type approaches are effectively eliminated by the present method for most practical
applications. For various deep-water applications see e.g. (4; 5; 6).

When a single horizontal dimension is considered, the system of partial differen-
tial equations outlined above is solved using a finite difference scheme, in a similar
manner as done previously by Madsen et al. (24). In two horizontal dimensions nu-
merical solutions are considerably more complex, and the finite difference solution
strategies developed by Fuhrman & Bingham (3) are utilized. In both cases the
classical fourth-order, four-stage, explicit Runge-Kutta method is adapted for time
stepping. High-order Savitzky-Golay (29) smoothing is also applied to remove high
wave number disturbances that can arise from the discretization of the nonlinear
and variable depth terms.

3.2 The moving boundary algorithm

The moving boundary algorithm, necessary e.g. for computing wave run-up, em-
ployed within the current high-order Boussinesq model is the so-called “extrapo-
lating boundary” method, which was first introduced by Sielecki & Wurtele (33),
and later modified and utilized by Kowalik & Bang (18) within models based on
nonlinear shallow-water equations. More recently, Lynett et al. (23) have also used
this technique within a Boussinesq-type model, see also (21; 22).
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Fig. 4. Examples of the extrapolating boundary technique during (@) run-up and (b)
draw-down. The sloping sea bottom is shown as the bold line, with wet free surface
points indicated by the full lines. The linearly extrapolated (dry) free surface values
are shown as dashed lines.

We will here only describe the algorithm in a single horizontal dimension, as the
developed method in two horizontal dimensions is not utilized in the present work.
The implemented algorithm employed herein is essentially the same as described
previously by Lynett et al. (23). It begins by first determining the grid-point loca-
tion of the current wet-dry boundary. This is done by finding the last grid point
where the total water depth d = h 4+ 7 exceeds some threshold §, which is assumed
small. Computed values at the dry points (i.e. those where d < ) are then replaced
with those from a linear extrapolation based on the last two wet points. Computed
examples of a free surface after being modified by the moving boundary algorithm
are shown in Figure 4 as demonstrations during both run-up and draw-down phases.
The algorithm is applied within the present model after each time-stepping stage
evaluation, for both time stepping variables 7 and U. Testing has indicated that the
results are not very sensitive to the chosen value of §, and throughout the present
work we use d = ao/100, where ao is the incident wave amplitude.

The adapted technique is attractive, as it allows the moving wet-dry boundary
to exist at any location, i.e. it need not be located precisely at any single grid point,
as previously noted by (23). Moreover, it does not require any special treatment
of derivatives calculated in the vicinity of the moving boundary, and is therefore
particularly attractive within the present model, which involves a number of high-
derivative terms. We have found this technique simple to implement, as once the
extrapolation described above is performed, the rest of the code may be run as usual
without further modification.

3.3 Numerical simulation of tsunami run-up

We will now use the developed numerical model to simulate nonlinear wave run-up
on a sloping beach. The model domain is constructed by connecting a flat region of
depth ho to a sloping region with constant slope s, which is then smoothed to create
a gentle transition. This is illustrated in the sample bathymetry provided in Figure
5. The origin (z,z) = 0 is defined as the crossing of the sloping region and the still
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Fig. 5. Model bathymetry used for the run-up simulation with 7" = 280.1 s, ap = 0.5
m, s = 1/50, and ho = 100 m (§ = 7, ao/ho = 0.005), with incoming waves traveling
from left to right. The bold line indicates the sea bottom —h(x), the dashed line
indicates the variation of %, and the thin full line indicates the still water level
z = 0. The vertical dash-dotted lines separate (1) the wave generating region, (2)
the relaxation zone used to absorb the wave field reflected off the beach, and (3) the
purely numerical region.

water level, with incoming waves at depth ho (and having wave length Lo, which
should not be confused with the deep-water wave length Lo, = ¢g1%/2/m) traveling
in the +z-direction. The flat region (prior to smoothing) has total length 1.5Lg. The
left-most Lo/4 consists of a relaxation zone used for the analytical wave generation.
This is followed by an additional relaxation zone of equivalent length, where the
analytical wave signal is gradually relaxed to the computed solution, which absorbs
the wave field reflected off the slope. This leaves roughly a full wave length for the
generated wave to propagate before encountering the toe of the slope. The expansion
level Z (see again §3.1) is set according to

5(z) = max (- h(;) 7 —h(:c)) . (49)

This makes it the optimal (in terms of accurate velocity kinematics, see (25)) 2 =
—h/2 when the sea bottom is below the still water level (i.e. for < 0), while it
follows the bottom for > 0. Hence, the expansion point is never allowed to be
below the sea bottom. These various features are also illustrated in Figure 5.

For validation of the numerical model we will consider incoming periodic waves
(based on linear wave theory) with ao/ho = 0.005, with constant hp = 100 m and
slope s = 1/50. All cases considered are discretized such that R/s/Axz = 7, where R
is determined from (33), which gives a constant discretization of the run-up region.
The time step is varied based on the Courant number constraint Or = co At/Az = 2,
where co = Lo/T is the incident wave celerity. Simulations are run for a sufficient
length of time to essentially reach a repeating periodic state. We also note that in
all cases dispersive terms incorporated in the Boussinesqg-type formulation remain
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Fig. 6. Computed (thin grey lines) and analytical (bold dashed lines, from the
theory of Carrier & Greenspan (2)) (a) free surface and (b) velocity envelopes for
the run-up case with 7' = 280.1 s, ap = 0.5 m, s = 1/50, and ho = 100 m (§ = 7,
ao/ho = 0.005).

small, hence it is reasonable to compare against the theory outlined in §2, which is
again based on shallow-water equations.

Note, however, that there are differences between our numerical setup, which is
based on a flat bottom connected to a sloping region, and the analytical solution
described previously in §2, which assumes an infinitely sloping plane beach. We find
that reasonable agreement can be obtained when the ratio of the slope length ho/s
and the incident wave length Lo satisfy

ho 1

>

sLo ~ 4’ (50)

i.e. the sloped region should cover at least one quarter of an incident wave length.
From the definition of £ in (36), after invoking the shallow-water expression w =
cko = 2m+/gho/Lo, we obtain
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Fig. 7. Maximum dimensionless (a) run-up and (b) horizontal velocity from ao/ho =
0.005. The circles indicate computed values, whereas the solid lines are from the
theory presented in §2.
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ho 1 1 h()

sLo  2yn &V ao (51)

Equating (50) and (51) then leads to the following practical limit for the surf simi-
larity parameter £ for a given ratio ao/ho

e< ? \/ho, (52)

<
\/7T ao

and we restrict our comparison to within this range. For the present case with
ao/ho = 0.005 this gives roughly £ < 16. There is also a lower limit of £ that can be
considered within the present model, since reducing & can result in nearly-breaking
events during the draw-down phase, which can in turn cause a computational break-
down. Due to these constraints, we have managed to compute cases within the range
7T<¢<L 15

The computed envelopes for the free surface and horizontal velocity (here simply
taken as 4*, since the vertical distribution of the velocity field is nearly uniform)
near the moving wet-dry boundary are provided in Figure 6 for the numerical case
nearest breaking (with £ = 7), which is the most difficult of those simulated. Also
shown for comparison are the theoretical envelopes based on the solution of Carrier
& Greenspan (2). As can be seen, an excellent match is observed for the surface
elevation, as well as for the corresponding velocity kinematics.

The maximum computed run-up and horizontal velocities for each of the cases
considered are additionally shown in Figure 7, which are compared with curves based
on the theory presented in §2. Again, a generally excellent match is observed over
the full range of £. Actually, the case depicted in Figure 6 is the most inaccurate
of those considered, as the run-up is overestimated. This is more exaggerated on
Figure 7a than on Figure 6a due the vertical scaling. As can be seen from Figure
7, we have managed to compute values reasonably near, but not quite up to, the
empirical breaking limit (39).

This comparison validates the developed numerical model for wave run-up in a
single horizontal dimension for both surface elevation as well as velocity kinematics
over a range of the surf similarity parameter. The model therefore seems a useful
tool for engineering applications involving wave run-up, e.g. for the investigation of
tsunami impact on various beaches.

4 Three-dimensional simulation of a hypothetical sound

In this section we will finally use the Boussinesq-type model described previously
to investigate some three-dimensional effects relevant to tsunamis generated from
nearshore landslides. In this connection we use will use an idealized bathymetry for
a hypothetical sound given by

ha = hs (cos(ksz) —1)°, (53)

h(ZC, y) = h’S +
where hs = 50 m is the depth of the shallow shelfs at both ends of the sound,
hq = 500 m is the largest depth occurring midway across the sound, ks = 27 /Ls,
with Ly = 20 km the total length across the sound. This bathymetry is plotted in
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Fig. 8. Plot of (a) the bathymetry used for the hypothetical sound and (b) the
bottom slope —dh/dzx.

Figure 8. There the bottom slope is also shown, which is seen to vary within +10%.
Note that in this example the bathymetry has no variation in the y-direction.

As an idealized approximation to a tsunami generated near the shore, e.g. from
a submerged or subarial landslide, we consider waves generated from a point source
with period 7' = 60 s. Thus, via the linear dispersion relation the dimensionless depth
in the present problem will be within the range 0.239 < kh < 0.825, i.e. shallow to
intermediate depths. Hence, a model that includes dispersive effects is necessary to
accurately simulate this case.

For simplicity, and for later comparison against a linear refraction solution, the
linearized form of the Boussinesq-type model is used. The results may therefore be
scaled according to the wave height, though the linear assumption of a small ampli-
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tude obviously applies. Additionally, no run-up feature is utilized in the simulation,
and the computational domain is instead surrounded by fully-reflecting numerical
walls. Due to symmetry, only the lower half (in plan) is modeled, and results will
simply be mirrored across the y-axis for presentation purposes. We use a 301 x 376
computational domain, with Az = Ay = 66.67 m, and At =7/40 = 1.5 s.

For the point source generation, the free surface n at the four grid points nearest
the origin (a 2 X 2 square) are specified to vary sinusoidally according to

17 = Qsource COS(Wt), (54)

where asource = 5 m. We have found that this results in periodic ring waves with
amplitude @ = 1 m at a radius of approximately one wave length from the origin.
The model is simulated to a time ¢ = 16T, which is sufficiently long for the generated
waves to have traveled across the sound, and to have reflected off the far wall. We
note that the numerical wave tank is sufficiently wide that reflections off the side-
walls do not significantly affect the model results in the interior domain. The final

Fig. 9. Free surface computed by the high-order Boussinesq model for the case of
the hypothetical sound, at t = 167".

computed free surface is shown in Figure 9. We note that a reasonably similar pattern
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can be seen in Figure 2 of Lynett & Liu (22), there created from a simulation of a
landslide generated tsunami.

For validation purposes, we will compare the Boussinesq results with those com-
puted from a linear refraction model, which describes the evolution of individual
wave orthogonals, as described in Appendix 5. In this setup the initial orthogonal
positions (., yo) are specified along a circle of radius r according to

Zo(t = 0) = rcosa, Yo(t =0) = rsina, (55)

with initial refraction angles a ranging from —50° to 50° in increments of 2°. We use
r = 1316.44 m (matching the wave length at depth hs), with each orthogonal initially
having unit amplitude a = 1 m. Hence, this setup consists of 51 wave orthogonals
propagating outwardly normal from the origin along a circle of radius r, approximat-
ing the periodic ring waves generated by the point source in the Boussinesq-type
model. We use a temporal discretization At = T/10 = 6 s, which is sufficient to
obtain converged results, and the wave orthogonal evolution is simulated to a time
t = 157. This is roughly equivalent to the 167" simulated in the Boussinesq-type
model, since the initial wave orthogonals in the refraction model are again located
one wave length from the point source.

The computed evolution of the wave orthogonals is shown in Figure 10. The
physical region considered within the Boussinesq model is also enclosed by the bold
rectangular region for comparison. As the simple refraction model does not take into
account reflection s off the exterior walls, the results will inevitably differ somewhat
where these are important e.g. near the back wall. These differences are kept minor
for most of the domain, however, as will be seen.

A comparison of the computed surface elevation envelopes taken from both the
Boussinesq solution and the refraction solution along the centerline y = 0 is provided
in Figure 11, where an excellent match is observed. Similarly, computed envelopes
along various lines of constant x are also shown in Figure 12, generally resulting in
a similarly good agreement. Note that along the far wall (i.e. along x = L), Figure
12d, the refraction solution has simply been doubled to approximately account for
the reflection, which indeed results in a reasonable match with the envelope com-
puted by the Boussinesq model. Thus, despite their obvious differences in complexity,
the two models validate each other in this idealized case, providing confidence in
both.

We will now return our attention to the free surface shown in Figure 9, where
a number of interesting features are observed. The most impressive feature is the
clear development of trapped edge waves that do not escape to the other side of
the sound. Rather, these initially outgoing waves simultaneously turn around and
steepen, ultimately resulting in a region of enhanced impact on the nearshore wall,
some distance (in this case approximately 13 km) away from the generating point
source. This is more clearly illustrated in the envelope plot along the back wall
(i.e. along = = 0) provided in Figure 13. This qualitatively indicates that there are
locations on the same shore of a landslide-generated tsunami, but away from the
source, that are potentially at risk. For a more in depth discussion of edge waves see
e.g. Schaffer & Jonsson (30).

By comparing Figures 9 and 10 we can see that the steepened trapped waves
correspond to areas where the wave orthogonals are close together, indicating a fo-
cusing of their energy. Indeed, part of the refraction solution near the location of
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Fig. 10. Plot of the linear refraction solution. The solid lines indicate the path
traveled by individual wave orthogonals, while the dashed lines indicate every 10th
wave front. The physical region considered within the high-order Boussinesq model
is outlined by the bold rectangular region.

the wall results in a family of crossing orthogonals, i.e. a caustic. At these loca-
tions the wave heights predicted by the linear refraction model are in fact infinite,
indicating that the theory has locally broken down. Obviously, diffraction effects
within the more-realistic Boussinesq-type model inhibit such an occurrence, result-
ing in steep (but finite-amplitude) waves. We finally note that nonlinear simulations
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Fig. 11. Computed free surface envelopes from the Boussinesq results (thin grey
lines) and the refraction solution (bold lines) along the centerline y = 0 at ¢ ~ 107"

have additionally been performed with the Boussinesq-type model, which result in
qualitatively similar behavior.

5 Conclusions

In this work we present analytical and numerical models for the determination of
the run-up of tsunamis and long waves on beaches. The analytical model is based
on non-dispersive theory, while the numerical model is based on dispersive theory
and a high-order Boussinesq-type formulation.

The first part of this work is based on the linear and nonlinear shallow-water
equations, which are solved to obtain an analytical solution for the run-up of peri-
odic long waves on an infinitely long slope. The theoretical formulation is based on
classical earlier work by Green (8), Lamb (19) and Carrier & Greenspan (2), and
leads to simple expressions for the maximum run-up and its associated flow velocity
as a function of the surf similarity parameter and the amplitude to depth ratio at
an offshore location. We use these expressions to analyze and discuss the impact of
tsunamis on beaches, and conclude that it is the combination of huge run-up ele-
vations and extreme run-up velocities, which makes the tsunami such a devastating
event compared to other types of wave events such as tides and wind-waves. On
the other hand, the impact of a given tsunami depends very much on the beach
slope, and for a typical period of say 13 min (which was observed in connection
with the Indian Ocean tsunami on December 26, 2004 off the coastline of Phuket,
Thailand), the impact on flat beaches with slopes of the order 1/100 is huge com-
pared to the impact on steep beaches with slopes of the order 1/15. Qualitatively,
this analysis explains the observations from Thailand, where the flat Kamala beach
was completely destroyed, while the neighboring steep Surin beach was left almost
untouched.

In the second part of this work, we extend a recently developed high-order
Boussinesg-type model to include moving shorelines. This allows for the assess-
ment of a wide class of tsunami events and their associated run-up onto the shore.



232 Per A. Madsen and David R. Fuhrman

0.4 T T T
03F o ,,,,,, ..... .
02_
0.1}

A
i\

T
B i

i

74

n (m)
=)

il
e
‘«u‘,nm,.."".'W'fﬂ@‘tf:fgwmumnm».u.u'ew»'&

il i
”,,,,m".t'"“ H il ‘"’"W"WW 1
L -
o

i X

m",""“"‘;"w S

n (m)
(=}

................

e "'“ﬁ‘ i e
OO e
dmll ) )y

"‘ 0 i*ﬁ
! ! ! ”‘m’ ’ ’0‘" QIR
i W“ | :“!“‘:"“.:M il ‘ R

4
_01_

(b) =25 -20 -15 -10 =5 0 5 10 15 20 25

T T
G AANE
g SRl

7

n (m)
(=]

’ oo
Atk
" ‘““!““‘M“t“ “ ’ “. ‘8\‘\%’:" “"A‘!Q‘L‘”A’A’ﬂ-“!"“' -
) i

: i i
il " ’ W‘ ’ ”"’ =
i e
Wi I “‘:,‘0‘ ‘ f ' .
- M‘M I SRS

fl RS | | m’;
(c) 2

,,,,,, T S
03 : i """"" = "V"” R :
-mfro:o."?ii&'fﬁ‘f‘"m""‘ i “’%""” ;@K@;@;mmmmﬁ; ]

A’l’l il

Womr VA A AR
il I‘I:;‘WMM , M

W ‘ ' [ A\ 4

T ' IR

s 0‘02 i
iy i Thes e

n (m)
(=}

I i
i
Lo M‘%ﬁ ‘3’2 g

!

02 “3:‘:11‘1’2‘101‘ T ’w” YA art '” 7 T LA

03k ,,,,,, .... “A&"ﬁ,}g’/"&"\’é\’é’/‘“ oo ,,,,, Lo
-5 5

Vi
ot

- -

0
(d) y (km)
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lines are as in Figure 11, with the additional dashed bold lines in (d) representing
the refraction solution multiplied by 2, to account for the reflection off the vertical
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Fig. 13. Computed free surface envelope from the Boussinesq model along x = 0
at t ~ 167

The model is successfully validated against the previously derived analytical expres-
sions for the surface elevation, as well as the run-up velocities in a single horizontal
dimension, over a range of the surf similarity parameter.

Finally, in the third part of this work, the Boussinesq-type model is utilized to
simulate an idealized periodic point-source representation of a nearshore landslide-
induced tsunami on a hypothetical sound. Due to the combined larger depths and
shorter period involved, dispersive effects are important in this case. Comparisons
against a linear refraction solution demonstrate the accuracy of the simulation. Ad-
ditionally, the emergence of shore-trapped edge waves is demonstrated, which lead
to significantly enhanced wave impacts on the generating shoreline, some distance
away from the generating source.
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Appendix: The linear refraction model

This Appendix provides details of the developed linear refraction model for monochro-
matic waves utilized within §4. In this model the evolution of individual wave orthog-
onal positions (Zo, yo) is described by the system of ordinary differential equations

diUo = CCOS «x dyo
dt ’ dt

= csinq, (56)
where « is the refraction angle measured positively from the z-axis to the orthogonal
and ¢ = w/k is the local wave celerity, which is determined from the linear dispersion
relation

w? = gk tanh kh. (57)

Equations (56) are integrated numerically using the (first-order accurate) forward
Euler method, for simplicity. We assume that the bathymetry has no y-variation
(i.e. that it has straight and parallel depth contours), hence the refraction angle
along individual orthogonals is determined from Snel’s law

S constant. (58)
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Wave fronts are created by connecting orthogonal locations at equivalent times.
Changes in the wave height H (= 2a) are computed via conservation of energy flux
E; along individual orthogonals, defined by

E; =bEc,, E= 116 pgH?, cg=c (1 + Smilgkh)> : (59)
Here b is the local mean front distance between adjacent orthogonals (estimated as
half the distance between left- and right-neighboring orthogonals), E is the energy
density per unit front width, and ¢4 is the local group velocity. Wave height values
along a particular z- or y-line are subsequently obtained by linear interpolation
along individual orthogonals.

We finally note that in some instances, namely where an orthogonal becomes
nearly parallel to a depth contour, the resulting refraction angle o from a solution
of (58) can become complex, typically having Re{a} = 90°, but with small imaginary
part. When this occurs the absolute value of the imaginary part is simply added (or
subtracted, depending on the sign) to the real part according to

a — Re{a} + sign{Re{a}}|Im{a}|. (60)

This forces a to again become real, while making its absolute value greater than
90°, thus initiating the turn of the orthogonal back towards shallower depths.



Large waves caused by oceanic impacts of
meteorites

Robert Weiss' and Kai Wiinnemann?
1 Joint Institute for the Study of the Atmosphere and Ocean, University of
Washington-NOAA Center for Tsunami Research, 7600 Sand Point Way NE;
Seattle WA 98115, U.S.A. weiszr@u.washington.edu

Institut flir Mineralogie, Museum fiir Naturkunde, Humboldt-Universitét zu
Berlin, Invalidenstrae 43, 10115 Berlin, Germany
kai.wuennemann@museum.hu-berlin.de

1 Introduction

Impact craters can be observed on all terrestrial planets and their larger satellites.
Basically every body in the solar system with a solid crust, no matter how small
it is, exhibits evidence of impacts in the past. For example, the Moon provides an
excellent data base of impact craters. However, the major fraction of impact events
occurred between 4.6 and 3.9 Billion years ago. The impact frequency at that time
was ~ 100 times larger than it has been ever since. Figure 1 shows the craters
Ptolomaeus, Alphonsus, Arzahchel and Albetegnius. The image depicts that impact
craters vary form large basins of several 100 kilometres in diameter (the largest
impact basin is Valhalla with 4000 km in diameter on the Jovian satellite Callisto)
to structures that are only several 10’s of meters in diameter.

On Earth impact craters are much less common. A total of about 170 impact
craters have been confirmed (e.g. (1; 3)). In principle the impact record of the Earth
should not differ significantly from that of the Moon since the flux rate of colliding
bodies is the same for both. Due to the dynamic nature of the Earths crust (plate
tectonics, volcanism, long-term erosional processes) the traces of impact events are
much harder to identify and often completely erased from the surface. Among the
known crater structures on Earth there exist only 27 which show clear evidence of
an impact into a marine environment (marine impacts; (2)). Due to the fact that
two thirds of the Earth surface is covered by water the number of marine impact
structures should be much larger. Glikson (4) estimated a total of 8,104 marine
impact craters larger than 20 km in diameter that should have formed during the
Earth history. The imbalance between the continental and marine impact craters
can be ascribed to: (i) the coarse resolution of the investigated marine basins, (ii)
plate—tectonic destruction of oceanic crust (oceanic crust is generally much younger
than continental one and is therefore much shorter exposed to the meteorite flux),
and (iii) small meteorites do not necessarily produce impact craters in the oceanic
crust.
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Fig. 1. Picture of the craters (1) Ptolemaeus, (2) Alphonsus, (3) Arzachel and (4)
Albategnius. (Courtesy NASA /JPL-Caltech)

2 Meteorite impact processes

2.1 Shock waves

The kinetic energy of the projectile is transmitted to the target as an abrupt impulse
causing large stress waves at the contact between projectile and target. In this
section, we concentrate on the characteristics of the generated stress waves, how
they propagate through the target, and how they may change their properties while
they travel. But before these aspects are considered it is worthwhile to provide
an outline of the fundamentals of stress waves. Firstly, a basic knowledge of the
mechanics and thermodynamics of large stress waves is crucial for the understanding
of impact cratering and it offers a convenient way to introduce the main equations
and theoretical concepts of crater mechanics as well. A more extensive presentation
of the stress waves are given in Zel’dovich and Raizer in (26) and Melosh in (7).
Both books are the basis of the following considerations.

In general, there are three different types of stress waves: elastic, plastic, and
shock waves. A distinction between these waves can be drawn by the amplitude
(stress or for simplicity the hydrostatic pressure) and the propagation velocity. A
relatively weak pressure impulse results in the more familiar elastic wave type that
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travels through a solid. The elastic stress in a solid is limited by the yield strength
Y. Figure 2 shows the course of Y (expressed as the shear stress 7) as a function of
hydrostatic pressure P, often called the yield envelope (Coulomb Failure Law). The
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Fig. 2. Shear stress as a function of the mean pressure to show the failure of rocks
when the pressure exceeds a certain shear stress. The trajectory is linearly increasing
and intersects the failure envelope at the Hugoniot elastic limit (HEL). Adopted from

(7).

specified trajectory of an elastic stress increases linearly with mean pressure, which
means that the ratio between shear stress and the mean pressure is constant. It rises
slightly less steeply than the illustrated failure envelope for a typical rock. Because
of the reversible character of elastic waves, the solid, through which the wave travels,
remains intact and the rock properties after the shock has passed correspond to the
initial conditions before the waves arrival.

Once the elastic trajectory crosses the yield envelope (the corresponding lon-
gitudinal stress is called the Hugoniot Elastic limit, HEL) where the shear stress
is Y/2), shear stress can no longer be accumulated. The pressure impulse of the
stress wave that is strong enough to exceed the yield envelope results in irreversible
changes in the rocks (plastic deformation). All further strain from this point on is
purely compressive since the maximum shear stress is limited by the yield strength.
The mean pressure P can be expressed by the longitudinal o, and perpendicular op
stresses (if we assume that two components of the stress tensor o;; are equivalent),

p__0L + 20p
3
Respectively, the shear stress 7 is given by
oL —op
T2

With the help of these expressions, the Hugoniot Elastic Limit (HEL) can be ex-

pressed by
oL = —0 = — v Y (1)
L HEL 1_ 9y
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with v as the Poison ratio. The distinction between elastic and plastic waves is also
illustrated in Fig. 3a, here the particle velocity is plotted versus propagation speed
U of stress waves. For elastic waves the propagation speed is constant and both the
shear modulus and the bulk modulus contribute to the longitudinal velocity

UZCL—\/(KOJF;’l“)

po

If the stress becomes larger than the Hugoniot Elastic Limit o g g1, which correspond
to certain particle velocity u,, the propagation speed goes down to nearly the bulk
propagation speed
Ko
po
So far the bulk modulus Ky was assumed to be a constant material property.
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Fig. 3. (a) The propagation speed of stress waves as a function of the particle
velocity. (b) Hugoniot curve in the P — V and U, — u, plane. S, L, V mark the
phases solid, liquid and vapor. Modified after (26; 7).

Although K is a function of the pressure and increases under compression. Ky needs
to be replaced by K = f(P) in the equation for the bulk propagation speed cp. At
the onset of elastic-plastic transition, close to the HEL, the plastic wave travels
significantly slower than the elastic wave (Fig. 3a) . However, in the high—pressure
regime (large longitudinal stress —or, or high particle velocities u,) K > (Ko+4/3u)
and thus U > Cp > Cp (with U = /K(P)/po) and the plastic wave begins to
overtake the elastic wave front. Such a wave is considered as a shock wave because
it travels faster than the speed of sound (Fig. 3a).

Shock waves propagate not only faster than elastic waves they also show a dif-
ferent characteristics than elastic and plastic waves. The wave front (Fig. 4a) corre-
sponds to an abrupt pressure rise. The best mathematical approximation for such a
sudden rise is a discontinuous jump.

The fundamental equations describing the conditions before and after the shock
front were derived in 1887 by P.H. Hugoniot and are based on the conservation of
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mass energy and momentum (see e.g. (26)). Figure 4c shows the setup with po, Po,
To, Eo, and uo as the density, pressure, specific internal energy, and particle velocity
in the uncompressed area, while ps, Ps, Ts, E, and u, denotes the same parameters
behind the shock front in the compressed regime. The parameters p, P, E, T, and
u describe the state of the material after the passage of the shock wave. Assuming
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Fig. 4. (a)Showing a cross-sectional intersect of the temperature, (b) of the pressure.
(c) Parameters describing the pre-shock, shock and release conditions.

that Vi is the compressed and Vp the uncompressed specific volume (p = 1/Vs,
po = 1/Vo) and that the shock front travels at a velocity U, the Hugoniot equations
are:

p (U —up) = poU
P, — Py = poupU (2)

1
Bs—Eo =, (P + Po) (Vo= Vi)

The shock wave compression is an isentropic process where the state of the material
changes almost instantaneously. The reverse process, the release from high pressure,
happens under thermodynamic equilibrium conditions. The release (Fig. 4b) is much
smoother and corresponds to an adiabatic decompression path. Shock compression
is a thermodynamic irreversible process during which more internal energy is trans-
ferred to the material than it is released by decompression. The remaining residual
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energy is turned into heat (post-shock temperature) as illustrated in Fig. 4a and
a residual particle velocity. The induced velocity field behind the shock wave plays
an important role in crater excavation and will be addressed in the section 2.2 on
impact cratering.

Post-shock conditions of a solid material are basically a function of the shock
intensity (pressure amplitude). In other words, the stronger the shock wave the more
the material changes its thermodynamic (or mechanical) state after release. Different
shock states are illustrated by grey dots in Fig. 3b where specific volume is plotted
versus peak shock pressure. The curve connecting these states is called the Hugoniot
curve and is not to be mistaken with the thermodynamic path the material goes
through to reach a certain shock state (grey dot). For instance if a material has an
initial specific volume Vj then it is compressed along the so called Rayleigh line.
After release from shock state along adiabatic decompression paths it may cross
phase boundaries on the thermodynamic phase diagram and end up in a molten or
vaporized state (see Fig. 3b). By the usage of the Hugoniot equations (Egs. 2) the
P — V diagram can be turned into a up, — U diagram (Fig. 3b). Obviously there
exists a linear relation between particle velocity and propagation speed for shock
waves which represents a simple form of an equation of state already. This will be
discussed in more detail in section 3.2.

Finally, shock waves can cause a solid state phase transition, known as shock
wave modifications (see kink in the Hugoniot curve in Fig. 3a). In some minerals, for
example Quartz, this process is well investigated and the presences of high pressure
phases like Coesite or Stishovite unequivocally identify shock wave events, which can
be only induced by meteorite impact events. Specific shock wave features (e.g. planar
deformation features, shatter cones, Stishovite, Coesite, diaplectic glasses) can be
assigned to certain pressure ranges (43; 46; 47; 48) and therefore it is possible to
reconstruct the shock wave decay in a natural impact crater by the mineralogical
analysis of samples from different distances to the point of impact.

2.2 Impact cratering

The physical processes during the formation of a crater are summarized in the
term Impact cratering. According to Gault et al. in (5), impact cratering can be
subdivided into three different stages, which are characterized by suite of spatio—
temporal processes. However, the transition between subsequent stages is not sharp;
it is more a continuous change from one stage to another, which may not occur
everywhere at the same time. In other words it is possible that across the forming
crater structure at different locations, a later stage has already begun while at
another location the earlier stage has not yet been completed (e.g. (6; 7)). The three
stages of impact cratering are: (i) Contact— and Compression stage, (ii) Excavation
stage, and (iii) Modification stage.

The processes described within the concept of impact cratering (according to
Gault et al. (5)) focus on the interaction between the solid target (continental, or
oceanic crust) and the impacting body. However, technically the impact on Earth
begins when the impacting body enters the atmosphere. While traveling through
the atmosphere, the body continuously looses energy. Similar is the process in the
case of an oceanic impact, where the projectile is not only decelerated by a gas
layer but also by the water column. In both cases the kinetic energy loss can be
estimated by computing the drag a body experiences at supersonic speed while
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moving through a comparatively low density medium (atmosphere or water; see e.g.
(32; 49)). Depending on the structural and chemical composition, and the mechanical
properties (strength) of the impactor, it might explode, burn out, or be decelerated
to the gravity controlled “fall velocity”, in which case no hypervelocity impact crater
would be formed. The distinction between hypervelocity impact craters and ordinary
low velocity (<speed of sound) impact craters is very important and will be clarified
in the following section

Contact— and Compression Stage

The contact— and compression stage begins when the impactor touches the surface
of the target. The velocity of the projectile at the time of impact may vary between
the escape velocity and 70 km/s (for comets). The average impact velocity on Earth
is 18 km/s (e.g. (29)). Due to the high velocities, shock waves are generated at
the interface between the impacting body and target; although there occur two
shock fronts: One shock travels upwards into the projectile and another one travels
downwards into the target. In the region between the shock fronts (the shock plateau)
the material is compressed to high pressures at constant amplitude. Other properties,
such as densities in the target and projectile or the specific internal energy and
the propagation velocity of the shock front depend on the material properties of
the projectile and the target. The conditions during shock wave compression can
be determined by using the Hugoniot equations (e.g. (26; 7)) for each material,
separately.

The snapshot series in Fig. 5a-f illustrates the contact and compression stage
by means of a 1 km seized projectile that has an impact velocity of 10 km/s. Fig.
5b shows the two shocks, one is traveling upwards in the projectile and a second
is traveling downward in the target. Depending on the composition of projectile
and target, and the impact velocity, the pressure amplitude, the induced particle
velocities and the propagation speed can be estimated by the usage of the Hugoniot
equations (e.g. (26; 7)). Assuming that the pressure is equal in both shocks (for
projectile and target) and that the projectile is moving downward with the impact
velocity v;, there can be given a linear relation between the particle velocity in the
target and the projectile

U = U — Up (3)
where u: and u, are the particle velocities in the target and projectile. If the projec-
tile and target consist of the same material. u; and u, are equal and correspond to
1/2v;. With the help of this linear relation of the particle velocities, the propagation
speed of shocks (see 3a) U can be calculated

U=Cg+ Su (4)

where Cp is approximately the bulk speed of sound and S a material parameter (e.g.
S = 1.6 for water or S = 1.24 for granite; for more parameters see (7)). Finally with
the Hugoniot equation (e.g. (26; 7)) the peak shock pressure can be determined from
the initial density po, the particle velocity v and the propagation speed of shock U.
In a similar manner the same computations can be done if projectile and target
material are not the same (see Ahrens et al. in (25)). Note that these calculations
are only valid for a planar wave, which work in the case of a spherical impactor only
for the very first moment of impact. However, these equations give good results in
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order to estimate the initial peak shock pressure in a moderate pressure range (the
linear relation in Eq. 4 holds only in a certain pressure range, see e.g. (44).

The pressures that occur during a meteorite impact reach several hundreds of
GPa, which easily exceeds the Yield strength Y of any solid. As shown in section
2.1, such pressure impulses result in plastic deformations that include the target
and the projectile. Owing to the plastic deformation, the crater initially begins to
grow, and the base of the projectile fits more and more the shape of the growing
crater cavity (Fig. 5b-f). The shock wave that travels in the projectile is reflected
at the free surface at the back of the projectile (Fig. 5¢). During the reflection the
pressure impulse changes its sign, which means that the wave is now characterized
by decompression rather than by compression. The reflected wave propagates as a
rarefaction wave toward the target. The adiabatic decompression can propagate
faster in compressed material than the shock wave itself. The material may be
vaporized, molten, or shattered, after the passage of the shock during rarefaction
(Fig. 5d-e). Figure 5f depicts the final phase of the contact and compression stage.
The projectile is now completely unloaded from pressure, and in most cases it is
also completely vaporized (e.g. (7)). This snapshot (Fig. 5f) can also be seen as
an early stage of subsequent excavation stage. This fact underlines that there is no
sharp boundary between two subsequent stages in space and time in the concept
of impact cratering according to Gault et al. The duration of this stage is between
~ 2.5-107% and ~ 2.5- 107" (7). This interval corresponds to a diameter of the
projectile of between 10 m for the lower boundary and 1 km for the upper boundary
value (7).

FEzxcavation stage

The excavation stage is characterized by two processes: (i) the propagation and
weakening of the shock wave, and (ii) the excavation of the crater cavity. During the
contact and compression stage the shock wave is traveling downwards into the target
and decays only due to the spherical spreading of the wave (the same energy has to
be distributed over an increasing area), which yields to an amplitude attenuation
proportional to 1/r. The important difference of the propagating shock wave during
the excavation stage compared to the contact and compression stage is that it now
interferes with rarefaction wave coming down from the back side of the projectile
and the free surface of the target. The rarefaction wave attaches to the shock wave,
which leads to a much more rapid decay of the shock wave (> 1 /7"2 depending on
the impact velocity (25)). The propagation process does no longer directly interact
with the crater formation. The combination of the shock wave with an anchored
rarefaction wave is called a detached shock wave (7).

An important aspect, which distinguishes hypervelocity impacts (v > Cp) from
the low velocity strike of a projectile, is that the passage of a shock wave leaves
a residual velocity component in the target material (see section 2.1 about shock-
waves). The value of the velocity component typically corresponds to one-fifth of the
peak particle velocity during shock wave compression (44), and it therefore is large
enough to induce a material flow (excavation flow) directed outwards, away from
the point of impact. Due to interferences with free-surface, an upwards component
is added to the velocity field, which causes the ejection of material out of the crater
(excavation flow). The geometry of the excavation flow is illustrated in Fig. 6a. The
lateral and vertical growth of the initially spherical, later approximately parabolic
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cavity can be described by scaling laws in case of a vertical impact (38):

x AN

T~ (1) 6
The parameter x can be replaced by either the crater depth d or the diameter of the
crater D. The exponent « is ~ 0.36 for d or ~ 2.0 for D. Parameter r is the radius
or the projectile. The term in brackets can be interpreted as a scaled time t which
allows to compare similar stages of crater formation independently to the size and
velocity of the projectile.

Eventually, the growth of the crater is stopped by the strength properties of the
surrounding target material (dry friction or any cohesive resistance) and primarily
(for most natural craters on planetary surfaces) by gravity. The diameter D; of
final crater is called the transient crater (42) and can by estimated by the following
equation (38):

1/3
D, = 1.161 ( Pr ) (2T)0478U0444g70422 6)
p(t)
Equation 6 is based on experimental observations and numerical modeling (28).
Because of the fact that the excavation flow does not cease in all directions at the
same time and does not grow laterally and vertically at the same rate the maximum
extent of the crater cavity is best described by a paraboloid. However this may hold
only as an idealized description since this situation never really exist during crater
formation in reality. In fact crater modification launches already in vertical direc-
tion while the crater diameter is still growing. However small bowl-shaped craters
(simple craters; see next paragraph) come quite close to the theoretical construct of
a transient crater.

Modification Stage

The transient cavity is not the final form of the crater. As already mentioned, the
target strength and gravity work against the excavation flow, until the growth of the
crater eventually ceases. Both parameters have an essential influence on the modi-
fication of the transient cavity and the balance of the two forces is crucial for the
subsequent modification processes. As already stated in section 1, the crater mor-
phology is a function of the crater size. Simple bowled-shaped craters occur up to a
certain transition diameter Dirans (45). Above the threshold value Dirans, morphol-
ogy becomes more complex and can be subdivided in to the different categories of
central peak, peak-ring craters and multi-ring basins. Assuming that the controlling
properties (strength) on surfaces of different planetary bodies do not significantly
differ, it can be concluded that the transition diameter Di,qns between simple and
complex craters is only a function of gravity (45), which means that D¢yqns varies for
different planetary bodies. For example, on the Moon, Dirans is 15km and on Earth
2 — 4km. The variation on Earth can be explained by varying strength properties of
the Earth’s crust (sedimentary targets bear less resistance against deformation than
crystalline targets do).

In order to quantify the dependence of crater morphology on gravity and crater
diameter it is convenient to introduce non-dimensional parameters. Like in Hydrody-
namics, the ratio between internal force and gravitational influence can be expressed
by the Froude number, which represents a parameterization of gravity (29):
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v}

F=
gdt

(7
Analogous to Eq. 7, the strength of the target can be expressed by the Cauchy
number which is given by the ratio of stresses to strength (29):

2
PU;
C = 8
The ratio of these two important numbers poses a good parameter to quantify the
balance between gravity and strength (50):

Y

- pgds ©

where d; can be calculated by d;/r = 1.2 (gr/fu?)io'22 (e.g. (29)). To determine the
value Sirqns for the transition between simple and complex craters, Melosh in (51)
assumed the growth of a parabolic cavity, which results in an upward—directed force
Fa = (1/8)mpgD}d; (buoyancy). The force Fa acts on the area A = (1/2)7D7. The
strength is Y = F4 /A, which eventually gives:

Strans = Y =0.25 (10)
pgds

If the ratio S (= f(Y, g,dt) is greater than Sirans (= 0.25) then the strength of the
target is predominant; a simple crater is generated. The material lining the transient
cavity slides downwards to the deepest point of the cavity (Fig. 6C-E) and gathers
together to a so called breccia lens consisting of heavily fractured rocks and little
melt. An elevated crater rim with an overturned stratigraphy marks the rim of the
crater. Vertically and laterally the evidence of the passage of a shock wave extends
beyond the boundaries of the crater cavity. A large zone of fractures and faults
surrounds the visible crater structure (Fig. 6E).

If S < Sirans then the gravity dominates and a complex crater will be formed.
This means that the transient cavity is big and the gravity induces lithostatic pres-
sure that is high enough to exceed the strength properties of the surrounding rocks
and collapse occurs. First the crater floor starts to rise (Fig. 6C). Simultaneously
the rim slumps into the cavity and an upwards rising central peak emerges. For very
large impact craters the central peak overshoots a certain limit, becomes unstable
and collapses again, resulting in the formation of a peak-ring or multi-ring basins
in the case of an oscillating behavior. The entire process appears to be quite similar
to the collapse of a cavity in water and in fact, rocks seem to behave on the given
scale much more like a viscous fluid than a brittle solid, which appears to support
the simplifications made in section 2.1 on physics of shock waves.. A more detailed
description of crater collapse is given in Melosh in (7) and Wiinnemann and Ivanov
in (50).

3 Numerical modelling of impact processes

Most of our present knowledge about impact cratering is based on (i) field studies of
natural impact structures and remote sensing of planetary surfaces, (ii) large-scale
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explosion tests and laboratory impact experiments, and (iii) numerical computer
simulations. Due to the large increase in the capability of modern computers the
latter has gained importance in the last decades in particular with respect to shock
wave propagation (e.g. (19)), ejection of material (15; 16)) and crater formation,
and late stage modification (e.g. (17; 18)).

3.1 Equation of motion

The numerical simulation of impact processes is a classical fluid dynamic problem,
which is usually solved by assuming that the matter (fluid, vapor, or solid state
body) is a continuous media which can be plastically deformed. The dynamics can
then be described by a set of differential equations (equations of motion, EM) based
on the principles of mass, energy and momentum conservation. Most fluid dynamic
problems deal with subsonic, incompressible flows (flow speed v < speed of sound
¢), like classical convection problems where the mass transport is driven for instance
by a temperature or density contrast. This limitation allows some simplification of
the equations of motion, e.g. the Boussinesq approximation for an incompressible,
constant density problem (20). The extremely high velocities of meteorite impacts
induce shock waves which propagate by nature much faster than the speed of sound
(v > ¢, see previous section on shock waves) and thus have to be described as
compressible supersonic flow. The derivation of the full set of conservation equations
of a super- or hypervelocity (v > ¢) flow is beyond the scope of this chapter and we
refer to (20) or (21), where the so called Navier-Stokes equations for a compressible
media are described in detail. This set of equations relates bulk density p, velocity v;,
specific internal energy F, the stress tensor o;;, which is composed of the hydrostatic
part, the pressure P, and the deviatoric part I1;; (0:; = —Pd;;11;;), and gravity g;.
Generally one has to distinguish between fundamentally different descriptions of the
kinematic deformation/transport of a continuous media: the Eulerian (spatial) and
Lagrangean (material) notation. The Cartesian form of the Navier-Stokes equations
for both kinematic approaches is given by:

Lagrangean Eulerian
. Dp Ov; __ Ip 1] ) —
Mass: Dt TPow;, = ot T og, (PVi) =0
Momentum: Dvi _ . 4 199 i g, 0vi gy 1995
. pt — 9i p Ox; ot Jox; 9i p Ox;

. DE __ . p Ov; l77.... . OFE LOE __ .. p O0v; I
Energy: [/ =givi + oz, T pAlijéij 5y +vig, = givi+ oy T o Aijéi
(11)

We adopt the Einstein convention which implies the summation of repeated indices.
The differences between the two sets of equations are inherent in the definition of
the total time (or substantial) derivative D/Dt:

D _0 . 0
o t Zc’)xi

Dt 0
A less mathematical and more descriptive distinction is given by the assumption
that in the Eulerian kinematic approach the independent space variables are asso-
ciated with a coordinate system fixed in time and space, through which the fluid or

(12)
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matter is transported. In the Lagrangean formulation the coordinate system is con-
nected with the matter and transport as warranted by the movement/deformation
of the grid itself. This will become more apparent when describing the numerical
implementation of these equations into a hydrodynamic computer model later in
the text. For the full description of compressible plastic flow two more expressions
are required.

3.2 Equation of state

The thermodynamic equation of state (EOS) relates pressure P to material density
p and internal energy E (E = e — 1/2v;v;) or temperature 7'. Since most numerical
models typically yield density p and internal energy E as a result of one computation
cycle it is more convenient to express the pressure as function of these two quantities.
The temperature T is then only indirectly related to the specific internal energy E.

P = f(p, E) (13)

The equation of state poses a central role in the description of the thermodynamic
behaviour of matter and is of particular importance for the treatment of shock
wave compression. For simple materials (e.g. metals) equation of states can be de-
rived from solid-state physics with a reasonable degree of accuracy. However, most
materials of geological interests show a more complicated behaviour which can be
described only by semi-analytic EOS which relate empirical data with meaning-
ful physical assumptions (e.g. Thomas-Fermi asymptotic limit). For a large range
of possible shock (pressure and temperature) states, phase transitions (solid state,
melting, vaporization, dissociation, ionisation) must be defined by the EOS provid-
ing reasonable assumptions of material properties (speed of sound, heat capacity,
heat conductivity, etc.) under the given conditions. Therefore more advanced EOS
often require a long list of material parameters and do not allow a simple analytic
solution for a particular state.

It is not the objective of this chapter to discuss this topic in detail and we
refer to more appropriate technical literature (e.g. (26)). We want to mention here
only a few commonly used EOS that the reader may come across in the context of
shock wave compression and meteorite impact processes. The perfect gas equation is
probably (do you have to say probably, how about it sounds too unsure) the simplest
approach to describe the thermodynamic behaviour of an ideal gas: P = (v — 1)pE,
where v is the ratio of specific heat. Despite its simplicity it provides reasonable
good results for shock wave compression for instance in the atmosphere during the
passage of a meteorite before it impacts the Earth surface. More complex equation
of state, suitable for describing the thermodynamics of solid-state materials, are the
Murnaghan and the Mie-Griineisen EOS (e.g. (7)) which have been successfully
used, e.g. for the description of the thermal state of the Earth interior and plastic
waves at moderate pressure levels. For the treatment of shock waves, where a wide
range of pressures and density is met, the Tillotson EOS (e.g. (23)) was especially
designed. It duplicates the linear shock-particle velocity relation at low pressures
and approaches the Thomas-Fermi limit for infinite pressure. Since this EOS is an
important analytic expression for shock thermodynamics we provide here the full
set of equations. For the compressed regime (p > po, the density at zero pressure)
and cold expanded state (F < F;y, the energy of incipient vaporization) P is given
by:
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P. = (a + b
(E/(Eon?) +1)
The form used in the expanded state (po < p), when the energy exceeds the energy
of complete vaporization (E > Ee,) is:

>pE+Au+B;ﬁ (14)

bpE

Fe=apbt ((E/(Em?) L)

+ Auefﬁ(popfl)Q) e—(po/p=1)° (15)
For the partially vaporized region (po < p and Ej, > E > E.,), a hybrid formulation
is a common approximation (7; 25):

(E - Eiv)Pe + (Ec'u - E)Pc

P= (Ecv - Ew)

(16)
In these equations n = ’:J ,u=mn—1and A, B,a,b,«, 3, Eg are material parameters
(see Tab.1). The Tillotson EOS generally provides good results for metals and for
some relatively simple rock types where solid state phase modifications are negligi-
ble. A much more sophisticated description of the thermodynamic state is given by
the Analytic EOS (ANEOS). This EOS is basically a package of analytical models
describing the thermodynamic state over restricted phase space areas. In order to
achieve a continuous transition at phase boundaries complex mathematical tech-
niques are required which are described in more detail in (24). In summary, EOS
are essential for the treatment of shock waves and for the models presented in this
chapter we refer to the Tillotson EOS and ANEOS.

Table 1. Tillotson equation of state parameters (7)

PO A B Eo Eiy Ecy
Material kg/m?) a b (GPa) (GPa) (MJ/kg) a B (MJ/kg) (MJ/kg)
Iron 7800 0,5 1,5 128 105 95 55 24 8,67
Aluminum 2700 0,5 1,63 75,2 65 5 55 3,0 13,9
Granite 2680 0,5 1,3 18 18 16 55 3,5 18
Gabbroic
Anorthosite
(1pp) 2040 0,5 1,5 71 75 478 5 5 4,72 18,2
(hpp) 3970 0,5 1,3 240 130 1800 55 3,19 16,8
Andesite 2700 0,5 1,3 18 18 16 55 3,5 18
Wet Tuff 1970 0,5 1,3 10 6 11 55 3,2 16
Dry Tuff 1700 0,5 1,3 4,5 3 6 55 3.2 18
Limestone 2700 0,5 0,6 40 67 10 55 2,5 14
Halite 2160 0,5 0,6 25 30 5 55 2 15
Alluvium 2600 0,5 0,8 30 10 6 55 3,5 18
Water (0°C) 998 0,7 0,15 2,18 13,25 7 105 0,419 2,68
Ice (hpp,—10°C) 1293 0,3 0,1 10,7 65 10 105 0,773 3,04

3.3 Constitutive equations

During shock wave compression material can be treated as fluid-like, since the hy-
drodynamic pressures exceed by far the material strength. After decompression the
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material returns to a brittle or ductile properties. Whilst the contact and compres-
sion stage and the excavation stage are mainly controlled by hydrodynamic material
flow, the late stage modification like crater collapse is dominated by the balance be-
tween gravity driven stresses and the shear strength of the material. Similar to the
concept of an EOS constitutive equations (CE) are used to relate shear stresses o,
to strain €, temperature 7', strain rate ¢, and damage D:

aij = f(eij, éi5, T, D) (17)

For the purely elastic regime this general expression can be replaced by Hook’s law,
wherein strain is a linear function of stress: o = Fe, where F is the Young’s modulus
(Fig. 7a). If the stresses are in excess of a certain yield point (strength), the material
starts to behave plastically and offers no further resistance to stress. This idealized
material behaviour represents reasonably well the response of many metals to large
stresses. Rocks exhibit a much more complicated rheology when entering the plastic
regime of deformation. It is therefore necessary to distinguish brittle from ductile
failure. Strength may be different when subject to compression, tension, or shear
(e.g- (9)). In the following we focus on shear strength Y of rocks as a function
of pressure P, temperature T, strain rate ¢, and the previous deformation history
D (damage), since it has turned out to be of most importance to crater collapse
(modification stage). The influence of confining pressure is illustrated in Fig. 7b.
The solid line describes the yield strength Y as a function of confining pressure P
from purely brittle behaviour to ductile flow regime. The course of the yield strength
may be described by (10):

uP

Y(p) =Yo+ P
1+ YmM*Yc

(18)

where Y is the cohesion at zero pressure, p the internal friction coefficient of intact
material, and Y;, the yield strength at infinite pressure (Von Mises plastic limit).
The black dots mark experimental values for intact Berea sandstone (8). If the same
material has experienced already some sort of deformation history it might have
been fractured (damaged) due to shearing or tensile failure in the brittle regime. In
this case the material loses its cohesive strength at zero pressure and the increase
of shear strength with confining pressure becomes linear (Mohr-Coulomb strength
model; (11)). This material model represents a simplified description of the response
of rocks to elasto-plastic deformation. The influence of temperature, the dynamic
computation of shear- and tensile fracturing, and strain-rate are described in more
detail for example at (12; 14; 13). Generally the strength models have become quite
sophisticated; however many processes like shear localization (faulting), shear bulking
(dilatency) are not reproduced by these models and further development are required
to match the observed crater morphology.

3.4 Implementation of a hydrocode

A number of models have been proposed to compute the high velocity strike of an
asteroid on both solid (e.g. (27; 28; 30; 17)) and oceanic targets (e.g. (32; 31)). All
hydrocodes that have been developed in the past (e.g. CTH, (33), and SOVA, (34))
are based on the solution of the EM, EOS, and CE using different numerical solution



Oceanic Impacts 253

a) T T T T b) T -
[Elastic Plastic regime 1 .
125 [reEme I E Brittle O Ductile
E Ductile failure ERES
1] E / ] &
& P>10MPa § =
S wf 1 2.}
; E - Bite failure 1 3
g r i ¢ g
F e T Pu R | g 5 -
s f P-75MPa | 2 i
Iz ] @
sF B 25 ‘d tion angle
i 3 Cohesion— &
0 O Sy O B B : L L L L
0 1 2 3 4 5 6 7 8 9 10 50 100 150 200 250 300
Strain (%) Pressure P, MPa.

Fig. 7. a) Sketch of a stress-strain curve as measured in triaxial tests at different
confining pressures. b) Shear strength as a function of confining pressure for Berea
sandstone (intact, black dots, solid line), (damaged, open symbols, dashed line). The
original measured values are from (8).
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Fig. 8. Comparison between the different kinematic models (Eulerean, a; La-
grangean, b; and Eulerian with interface tracking, ¢) by means of a cylinder im-
pacting on the surface of a half-space. Projectile and target consist of the same
material
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techniques (finite difference, FD; finite volume, FV; smooth particles, SPH; etc)
and kinematic approaches (Eulerian/Lagrangean). A general overview of hydrocode
modeling is given in (35) or (36), respectively. All codes have in common that the
computational domain is discretized into a grid of cells with a specified size (dz,
dy) to replace the spatial derivatives in the differential equations by simple (finite)
difference equations. Analogously, time is discretized by the timestep dt which defines
the length of each integration cycle. During each cycle the flow and the position
of the grid due to external and internal forces is computed for each cell of the
grid. The two different formulations of the EM, the Eulerian and the Lagrangean
description, result in differences in the numerical approaches. As mentioned already
above, the difference lies in the way in which mass, energy and momentum are
transported through the grid. In the Lagrangean kinematic model (see Fig. 8b),
matter is associated with a computational cell. Material motions are calculated by
the deformation of the cell, yielding a distortion of the entire grid. Mass within
a cell is invariant; changes in density are exclusively due to changes in a cell’s
volume. If the deformations become too large the finite difference approximation may
become inaccurate and in extreme cases it may even happen that a cell folds over
itself resulting in the computation of a negative volume. In contrast, the dynamic
motions of mass, momentum and energy are realized in the Eulerian approach by
computing the transport between adjacent cells in a grid that remains fixed in
space (Fig. 8a). Impact processes cause large deformations and even fluid and gas
flow due to phase transformation may have to be taken into account. Therefore,
the Eulerian description appears to be the most approach for impact calculations.
However, the transport of mass across cell boundaries gives rise to artificial mixing of
different kinds of matter along material boundaries, referred to as artificial numerical
diffusion. For example, even the simplest assumption of a model set-up implies a
boundary between a half-space consisting of water or solid rock and void (empty
space or vacuum) above. The material transport from a full cell to an adjacent empty
cell yields mixing of vacuum and matter. The sharp boundary at the free surface
becomes more diffuse, the more time steps have been integrated. This artificial
numerical diffusion process is illustrated in Fig. 8a. To avoid material mixing and
to preserve sharp material boundaries one has to introduce a procedure to track the
boundaries between different kinds of matter in cells containing a mixture. This is a
rather complicated procedure and a description in-depth is beyond the scope of this
paragraph. We refer to (21) for further details. Figure 8 shows a simple numerical
simulation of a block impacting on a target using the three different solution schemes:
Eulerian, Lagrangean, and the Eulerian schema including a surface tracking routine.
For simplicity there is only one boundary at the free surface involved; in a more
realistic example different kinds of matter (water, rock or different rock types) have
to be taken into account and for each of those the boundary tracking routine has to
be applied.

3.5 Limitations and numerical stability

Generally numerical models can be used to simulate shock waves and deformation
processes on any scale (micro-scale: intergranular deformations and thermodynamic
phase transformations; meso-scale: shearing and compaction of grains and rock frag-
ments; macro-scale: crater formation and deformation of entire rock units). The im-
portant flow variations, which may be thermodynamically or mechanically driven,
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must be resolved by a sufficient number of computational cells in the underlying grid.
For this reason it is impossible to run simulations that can resolve both micro-scale
processes and large scale deformations like crater formation, in one model at the
same time. As this chapter is about ocean impacts, associated with the generation
of large water wave and crater formation the objective of the computational grid is
to resolve the projectile, the water layer, and the ocean bottom and crust under-
neath properly. This means, if the proportion between two of these units becomes
extreme (e.g. if the water depth H is much smaller than the projectile diameter d)
the smaller object cannot be resolved by a sufficient number of cells. In this case the
simplified approach namely that the smallest units do not significantly affect the
overall processes, and therefore can be neglected, is the usual procedure of solution.
The model requirements have to be balanced with the available hardware configura-
tion, which also depends on the dimensionality of the problem under investigation.
Whether two, or three-dimensional modeling is essential depends on whether oblig-
uity of the impact is important, and whether the target consists of planer layers
(water, ocean-bottom sediments, crust). If a cylindrical axial symmetric condition is
applied, then two-dimensional modeling of vertical impacts is often sufficient. This
approach is widely used due to the very high costs in terms of computer memory
and run-time of 3D computations. The total computer storage requirements are
proportional to the number of grid cells. If the resolution in each dimension is N,
the total storage is N*, where k represents the dimensionality of the problem. The
computation time depends on N* times the number of integration cycles n, which
is given by the total model time 7 divided by the time-step dt. According to the
Courant-Friedrich- Lewy-condition numerical stability is warranted if dt < dx/c (35),
where dz is the size of the spatial increment and c is the speed of sound. In the next
section we want to discuss by means of examples of impact simulation in marine
environment the capabilities of numerical modeling. The hydrocode we have used for
this computations is the well know iISALE (impact Simplified Arbitrary Lagragean
Eulerian) code (e.g. (54; 53)) which has been used in several other studies of crater
formation before.

4 Simulation of deep— and shallow—water impacts

The simulation of oceanic impacts with varying impact velocities, projectile diame-
ters, and water depths provides an insight into how many waves are generated and
their characteristics. In this section we only focus on the different categories of waves
generated. Principally there are two different categories of waves caused by oceanic
impacts: (i) the rim wave, and (ii) the collapse wave. The rim wave has its origin in
the excavation stage when water and crust is ejected. The ejected material forms a
rim, which collapses under gravity and generates the rim wave. During the collapse
of the crater rim, the water begins the fill the excavated cavity. The water masses
meet at the impact center and generated a central high. This central high collapses
and eventually results in the generation of the collapse wave.

In general, impacts into oceanic environments can be categorized into three
different types: impacts in deep, intermediate—deep, and shallow water. Figure 9
contains snapshots of an impact in deep water (Fig. 9a-f) and in shallow water (Fig.
9g-1). Both impacts are based on the same projectile diameter (500m) and impact
velocity (10km/s). The water depth for the impact in deep water is 4500m (Fig.
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9a). Figure 9b shows that at the same time the ejecta is still moving, the water
starts to fill the cavity. The generation of the central high is depicted by Fig. 9c.
The collapse of it results in the generation of the collapse wave (Fig. 9d). The water
forms a second central high that results in the generation of a second collapse wave
(Fig. 9e, f). The first collapse wave experiences severe wave breaking close to the
impact center.

The water depth for the impact in shallow water is 1km. The oceanic crust is
covered by a thin layer (100m thick) of sediment (Fig. 9g). Figure 9h illustrates that
the water column and the crust generated two different crater rims. The crater rim
of the water collapses and generates the rim wave (Fig. 91,j). The water surges into
the cavity and generates a central high as in the case of an impact into deep water.
However in case of the impact into deep water, the oceanic crust did not generate a
significant crater, whereas the impact cratering processes resulted in the generation
of a crater structure in case of the impact in shallow water. Comparing Fig. 9¢c with
Fig. 9g reveals that the volume of water in the central is much less in case of the
impact into shallow water. The diameter of the central high at the bottom is less
than or very close to the diameter of the generated crater structure. This means that
the collapse of this central high, especially the generation and the early propagation
of the collapse wave, is affected by the crater structure. Figures 9j-1 demonstrate
that the collapse of the central high results in the generation of a huge bore and
early wave breaking results in severe weakening of the wave in its early stage.

The characteristics of the wave generated during oceanic impact are tremen-
dously different from those wave generated by earthquakes, these waves are com-
monly very long waves of more than 100 km length. For instance the first collapse of
the impact in deep water as presented here has a length of about 18km in a water
depth of 4500m. This means that this wave must not be considered as a tsunami
wave, since the water depth to wave length ratio violates the definition of a long
wave. Furthermore, it is assumed that because of the long—wave characteristic, the
horizontal component of the particle velocity in the water due to the wave passage
does not vary with depth. The grid showed to be regular in Fig. (9a,g) indicates by
its deformation that this horizontal velocity component does vary with depth for
collapse wave generated during the impact in deep water. On the opposite, this grid
shows only minor horizontal deformations for the rim wave in case of the impact in
shallow water. (Fig. 9a) shows that the length of the rim wave is about 15km. The
water depth to wave length ratio would indicate a long wave. Another interesting
point is the symmetry between wave crest and trough. While earthquake-generated
wave are in general symmetrical, Fig.9k shows that the wave crest is short compared
to the wave trough.

5 Synopsis

Impacts have been important for the evolution of our solar system, and therefore
for the Earth, as well. They even had influence on the evolution of the life as the
rise of the mammals and the extinction of the dinosaurs is linked to the Chicxulub
impact event, 65 Ma ago. The way this impact had influence on the extinction of
the dinosaurs and other species is vividly discussed. Considering the Earth, impacts
in water are much more likely than impacts on continents, owing to the distribution
of water and land masses.
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In the previous sections, the physical concepts of impact cratering, such as the
generation and propagation of the shock waves induced during the contact between
the projectile and target were inroduced and discussed. Furthermore, the three stages
of impact cratering according to Gault et al. in (5) showed what processes take
place in the continuum from the contact between the target and projectile to the
final crater. These concepts of impact cratering were then discussed in relation to
the numerical modeling of the crater formation; however, it is clear that numerical
models need more specific requirements than simplified theoretical considerations.

By the modeling of impacts into an oceanic environment, it could be shown
what waves are generated, and that considerable difference exist between impacts
into deep water and into shallow water. The generated wave differs from those
generated, for instance, by earthquakes. The propagation over the open ocean and
their run-up with regard to the hydrodynamic stability and the simulation of impacts
in extremely shallow water are challenges for future research on meteorite impacts
in oceanic environments.
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1 Introduction

The propagation of the tsunami waves can be modelled with varying degrees of
accuracy. The more accurate methods, which involve the numerical solution of the
shallow water equations, are costly in terms of simulation times. With present day
technology, the simulations are too slow for many of the requirements of a tsunami
early warning system. The ray diagram technique is one where accuracy is sacrificed
for computational speed. Also referred to as refraction diagrams, they were first used
to analyse tsunami propagation by Kenji Satake (1; 2).

The ray diagram technique models the propagation of the “leading edge” of the
tsunami waves. It can therefore be used to compute the travel times of the waves
from the source to any desired location. It does not compute the amplitudes of the
waves. Thus not only accuracy but also all amplitude information is sacrificed in
this approach. However, this sacrifice results not only in increased computational
speed but also, as described in section 4, in an easy solution of the inverse problem.
Again, while the source region can be mapped out using this technique, there is no
information about the initial amplitudes.

In section 2, we will review the derivation of the ray equations from the linearised
shallow water equations using the eikonal approximation.Section 3 discusses the
smoothening of the bathymetry which is required to apply the ray equations to
tsunami waves. The method of backward ray tracing, which provides the solution to
the inverse problem to determine source region is described in section 4. Section 5
reports on some work (3) which uses the above techniques to delineate the northern
extent of the 2004 Indian Ocean tsunami source region.

2 The ray equations

2.1 The approximations

The tsunami waves are described by the non-linear shallow water equations on a
spinning sphere. Thus, in general, the non-linearities, the curvature of the earth and
the Coriolis force have to be incorporated in the equations. However, we will argue
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below, if we are using the model in a limited region and for short periods of time,
neglecting these features is a reasonably good approximation.

We first address the nonlinear and dispersive terms in the equation. The dis-
persive terms are suppressed by a factor of (k:h)2 and the nonlinear terms by a/\,
where k is the wave vector, A the wavelength, a the amplitude and h the depth. For
a tsunami with a period of 20 min, amplitude 1 m and propagating at a depth of
3500 m, we have (kh)?> ~ 1072 and a/X =~ 5 x 107", Thus these are indeed small.
The nonlinear and dispersive effects could build up over time, but given the magni-
tude of the suppression factors, it is reasonable to assume that for the first few hours
of propagation, the linear theory is a good approximation. The linear approximation
of course will not be valid very near the shore.

To get a rough idea of the error involved in neglecting the curvature of the earth,
we note that the approximation involved in measuring distances is,

do® + cos?0 dp® — do* + dg¢> (1)

Where 6 and ¢ are the latitudes and longitudes respectively. If, as in the work (3)
reported in section 5, we are restricting our modelling to the Bay of Bengal, then
the range of latitudes we are interested in is 0 — 20°. Since cos(20°) = 0.94, we can
see that the error involved will not exceed a few percent.

The Coriolis force will modify the wave equation (6) derived in section 2.2 and
introduce a dispersion. For a flat ocean bed, the modified dispersion relation is,

w=\/c2k? + 22 (2)

where w is the frequency of the wave, k its wave vector, ¢ = v/gh, g the accelaration
due to gravity, h the depth and 2 = sinf 27/24 hr~' is the component of the earths
angular velocity normal to the surface. The wave speed ¢ = dw/dk is now frequency

dependent and is given by
- 22
E=cy/1— 2 (3)

Even for tsunami waves with time periods of 90 min, the factor 22 /w? = 4.5x 107,
So the Coriolis force can indeed be neglected to a very good approximation.

2.2 The wave equation and rays

The linearised shallow water equations that model the tsunami propagation are

Oy =gV (1)
0= V) (5)

where, as mentioned earlier, we have neglected the curvature of the earth and the
Coriolis force. v is the depth averaged velocity field, ¢ the height of the water above
its static equilibrium level, h the depth of the water and g the acceleration due to
gravity. The velocity field can be eliminated from the above equations to obtain a
wave equation for the amplitude (,

(g; - v.c2v) C(x,t) =0 (6)
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where c(x) = 1/gh(x). Since c(x) is time independent, the solutions are linear
combinations of waves with specific frequencies of the general form

¢(x,t) = Ai(x,w)cos(wt) + Az (x,w)sin(wt) (7)
where Ai(x,w) and A2(x,w) satisfy the so called Helmholtz equation,
(@ + V. (x)V) A1z (x,0) = 0 (8)
Equation (7) can be written as,
Cx,t) = A(x)eos(L(x) — wt) (9)

We will refer to A(x) as the amplitude and S(x,t) = (L(x) — wt) as the phase of
the wave. The set of points with the same phase are called wavefronts. A wave-
front is thus mathematically defined by S(x,t)=constant. Rays are normals to the
wavefronts. They define how the wavefront propagates in time. They can be mathe-
matically defined in terms of the phase function as follows. Consider the wavefront
of zero phase,

S(x,t) =0 = L(x)=wt (10)

Consider two wavefronts, one at time ¢ and the other at time ¢ + At. Let xgr(t) be
a point on the wavefront at time t, i.e.

L(xgr(t)) = wt (11)
The normal to the wavefront at xr(t), k(xgr(t)) is given by,
k(xr(t)) = VLX) lx=xr 1) (12)

We define xr(t + At) to be the point where the line starting from xr(t) in the
direction of this normal intersects the wavefront at ¢ + At. We then have,

w(t+ At) = L(xgr(t+ At))
= Lixa(t) + Al k(xa(1))) (13)

Equations (11), (12) and (13) imply,

Al w .

B ) "
Thus we have,

O xn(t) = en(xn(t)k(xa(1)) (15)

Given the phase function S(x,t), we can determine k(x) and hence the RHS of
equation (15). It can then be integrated to get the ray trajectory.

xr(t) can be be visualised as the trajectory of a corpuscule travelling with speed
cr(xr(t)) along the ray. We will next show that, in the geometrical optics limit
(GOL), cr(x(t)) = c(xa(t)).
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2.3 The geometric optics limit

We substitute the form of {(x,t) in equation (9) into the wave equation (6),
(8? — V.C2V) A(x)cos(L(x) —wt) =0 (16)
It is convenient to use the complex notation. Defining o = InA, we have
(07 = V.’ V) elo ittt — g (17)
The real and imaginary parts of equation (17) can then be written as,

W= PVLVL+EVaVa+V.?Va =0 (18)
2°Va.VL+V.E’VL =0 (19)

Upto now we have made no approximations. The GOL is the limit where the
derivatives of ¢ and « can be neglected. Physically it is the limit when c¢ varies very
slowly in comparison to the wavelength. In this limit we have,

w2
VLVL=", (20)

This is the basic equation of geometrical optics. Comparing with equations (12) and
(14) we have,
cr(xr(t)) = c(xr(t)) (21)

Note that the GOL approximation is exact when c is constant.

2.4 The ray equation on the plane

In the GOL, in principle we could solve equation (20), obtain k(x) and then integrate
equation (15) to get the rays. However, it is possible to derive a second order ODE
for the rays which does not involve k(x). This equation is easier to solve than (20).
To obtain this ray equation, we use equation (20) to write equation (15) as,

= V L(xr) (22)

Differentiating the above equation with respect to ¢ and doing some algebra we can

obtain the ray equation,
d 1 dXR

dt ¢ dt
This can be cast in the first order form suitable for numerical solution in the standard
way,

=—-Vinc (23)

dxr o

g —CPrR (24)
dpr _

P Vin c (25)

From these equations we can get the relation,

d [ - 1
_ = 2
o (-5 ) =0 (26)
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Assuming the physical initial condition pr(0) = 1/c, we have

1
Pr(t) = (27)
Equation (27) can be used to reduce the system of 4 equations (24,25) to three. We
put
pr(t) = Or(t) (28)
where
R (t) = (cosx, siny) (29)
The ray equations (24,25) can then be written as,

drr
g = € cosx (30)
dyr .
= 1
&t ¢ siny (31)
dx . Oc dc
at = sinx O + cosx ay (32)

These are to be solved with the initial conditions that x(0) is a point on the initial
wavefront and 9r(0) is the normal to the wavefront at that point.

The important feature of the ray equations derived above is that they are inde-
pendent of the frequency (w) of the wave and only depend on the bathymetry. Thus
when applied to tsunamis, which are typically wave packets containing a range of
frequencies, we do not have to compute a different ray diagram for each frequency.
This is basically a consequence of the fact that for a flat bathymetry, the wave
solutions of the shallow water equations are dispersionless.

3 Smoothening the bathymetry

The ray equations (30-32) were derived in the limit of the wavelength being much
smaller than the length scale at which the bathymetry varies. This is not true for
tsunamis, where we are interested in wavelengths ~ 100 km. Nevertheless, as we will
argue in this section, the ray equations can be applied to describe the propagation
of the tsunami waves if the bathymetry is smoothened.

Consider an undersea feature of linear extent L in an otherwise flat ocean bed.
If a wave of wavelength \ passes above this feature, then the wavefront will distort
significantly if A << L but will hardly be affected if A >> L. The ray equations
will describe the behaviour of the A << L waves. An ad. hoc. way to describe
the behaviour of the A >> L waves using ray equations is to use an “effective”
bathymetry which is obtained by smoothening out the real bathymetry to the extent
of the wavelength of interest.

There are many ways of smoothening the bathymetry. In our work, presented in
section 5, we choose to smoothen the wave speeds, c(x) = 1/gh(x). We do this by
replacing the speed at any point by the average of the speeds of all the points in a
box of length ~ A around it. i.e. If the bathymetry is given on a grid whose points
are labelled by (n,m), we compute the corresponding speeds, cnm = v/ghnm and
define the smoothened bathymetry to be
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n+N m+N

i = 2N+1 PO DNE (33)

i=n—N j=m—N

Where N is chosen such that the physical length of the box of side 2N + 1 grid
points is ~ A. Care has to taken for the near shore points to ensure that all the land
points in the box are removed.
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Fig. 1. The residual gauge record. The tsunami arrival time (UTC) is in the bottom
right corner.

4 Backward ray tracing

The solutions to the ray equations tell us the time a disturbance will take to travel
from one location to another. The equations are reversible which implies that the
time taken for a disturbance to travel from point A to B will be the same as the time
taken for it to travel from B to A. This fact is exploited by the so called backward ray
tracing method to put constraints on the location of the initial tsunami wavefronts.
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Typically, we will know the travel times of the tsunami from the source to some
specific locations (tidal gauge stations presently and bottom pressure recorder loca-
tions also in the future). The ray equations can be integrated starting from these
locations, in all possible directions, for the known travel time. We will call the set of
the end points of the rays thus obtained as the backward wave front . It is clear that
the initial wavefront has to include at least one point from each backward wave-
front. Also, it cannot include any of the points on any of the rays which are not on
the backward wavefront. Thus the envelope of all the backward wavefronts defines
a curve which bounds the source region. Given the travel time data from enough
stations one can more or less completely specify the source region.
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Fig. 2. The backward wavefronts from Chennai, Vishakapatnam and Paradip . The
star is the epicenter of the earthquake. The arrow marked A indicates the northern
extent as estimated in Lay et. al. The arrow marked B indicates the extent from our
analysis.
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5 The source region of the 2004 Indian Ocean Tsunami

The earthquake that caused the 2004 Indian Ocean tsunami was analysed by Lay
et. al. (4). They concluded that the rupture propagated norhtward along the fault in
three stages. The first segment, which they call the Sumatra segment extends from
the epicenter to about 420 km north of it. The second Nicober segment extends
about 375 km further and the third Andaman segment for another 570 km upto
about 14° N. They also mapped out region of the initial tsunami wavefront using
the backward ray tracing method. They estimated that the source region extended
to about 600 km north of the epicenter, upto 9° N. This is the point marked B in
figure 2. Thus their analysis indicated that the tsunami waves were only excited in
the Sumatra segment and a part of the Nicobar segment.

The northern extent of the source region in this analysis was determined by the
travel times to the tidal gauge stations at Port Blair , Chennai and Vishakapatnam
. However, the arrival time of 45 min they used for Port Blair turned out to be
incorrect. A careful analysis by Singh et. al. (5), including the comparison of the
tides recorded at the tide gauge there with tidal models showed that at the time of
the tsunami the tide gauge clock was ahead by 46 min '. The ambiguity in the Port
Blair arrival time was further compounded by a data gap of 24 min, 35 — 59 min
after the earthquake. We therefore did the backward ray tracing analysis without
the Port Blair data but included instead the tidal gauge data from Paradip , which
may not have been available to Lay et. al. (4). Our finding was that the source
actually extended for about 200 km further north than estimated them, upto about
11° N.

5.1 Retracing the 2004 Indian Ocean tsunami rays

The tide gauge data along the east coast of India that are maintained by the
Survey of India showed that the taunami travel times were 156 min to Chennai
(80.30° E, 13.08° N), 161 min to Vishakapatnam (83.28° E, 17.68° N) and 151 min
to Paradip (86.70° E, 20.26° N). The residual tide gauge data (with tides sub-
tracted) from these three stations are shown in figure 1. This data shows that the
tsunami arrived almost simulataneously at these three stations. In fact it reached
Paradip a few minutes before the other two stations south of it indicating that the
initial wavefront must have extended further north than what was estimated by Lay
et. al. (4). To confirm this, we did a forward ray tracing from the point marked B
in figure 2 and indeed found that the wave front was well short of Paradip after
151 min of propagation. This confirms that the travel time of 45 min to Port Blair
is inconsistent with the travel times to the other three stations.

The backward wave fronts from these three locations were computed and the
result is shown in figure 2 It can be seen that the backward wave front of Paradip lies
in the disallowed regions of the backward wavefronts of Chennai and Vishakapatnam
except at the point marked B which is about 11° N. Thus the initial tsunami
wavefront must have extended to at least about 200 km north of the point marked
A at about 9° N, which was the estimate of Lay et. al. (4). The 30% increase in the

! This analysis was independently done by the group at the National Institute for
Oceanography, Goa, with concurring results.
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Fig. 3. The backward wavefronts from Port Blair , assuming a travel time of 30 min.

length of the initial tsunami wavefront implies that the full Nicobar segment as well
as a part of the Andaman segment of the earthquake did excite tsumani waves.

5.2 Port Blair arrival time

To determine the tsunami arrival time at Port Blair, we did backward ray tracing
from there. We varied the travel time until the backward wavefront became consis-
tent with those of Paradip, Chennai and Vishakapatnam. This gave us a travel time
of 30 min. The backward wavefront from Port Blair with a travel time of 30 min
is shown in figure 3. This estimate is in agreement with the estimate of 31 min
obtained in the analysis of Singh et. al. (5) who used different methods.
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5.3 Conclusion

Backward ray tracing using the arrival times recorded by the Survey of India tidal
gauges in Chennai, Vishakapatnam and Paradip shows that the northern extent of
the initial wavefront of the 2004 Indian Ocean tsunami extended to about 11° N.
This is about 30% longer than the estimate of Lay et. al. and implies that the entire
Nicobar segment and a part of the Andaman segment of the earthquake excited
tsunami waves. The requirement that the backward wavefront from Port Blair be
consistent with the backward wavefront from the other three abovementioned sta-
tions yields a travel time of 30 min to Port Blair, consistent with the estimate of
Singh et. al. (5).
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Summary. There are numerous earthquakes and tsunamis that occurred in East-
ern Mediterranean and are documented in historical records. Hellenic Arc is one
of the important tsunami source regions in Eastern Mediterranean. In order to as-
sess and visualize the tsunami propagation in the Eastern Mediterranean from the
sources along Hellenic Arc, a new tsunami simulation/visualization software NAMI
DANCE is used. In this study, five different tsunami cases related to selected rup-
ture characteristics are used in modeling application. The results and comparisons
are presented with discussions.

1 Introduction

The Mediterranean sea is one of the biggest marginal seas on the planet and located
in between latitudes 30°N and 47°N, and longitudes -5°E and 43°W. It is bordered
on the North and West by Europe, on the South by Africa, on the East by Asia.
Sicily divides the sea into eastern and western basins. Numerous earthquakes and
associated tsunamis in history in the Mediterranean sea seem as the precursor of
the future similar events.

The fault zones around eastern Mediterranean basin are Hellenic Arc, North
Anatolian Fault Zone (NAF), East Anatolian Fault Zone (EAF), Cyprus Arc, and
Dead Sea Fault. At the centre of the Aegean Sea there is a series of volcanic sys-
tems almost parallel to the trench and forming the internal arc (Milos, Antimilos,
Antiparos, Santorini, Christiana, Colombus, Kos, Yali, Nisiros and others).
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Hellenic arc is one of the important tsunami prone areas for the far field propaga-
tion of tsunamis. In this study the estimated zones of tsunami sources in relation to
the recent seismic data in the Eastern Mediterranean together with the simulations
of different tsunami scenarios are presented.The numerical modeling is applied to
five different tsunami cases and their propagation, arrival time and possible effected
areas are indicated and discussed.

2 General characteristics and tsunamis in the Eastern
Mediterranean

The Mediterranean Sea is 3900 km long and its maximum width is 1600 km and
greatest depth is 4400 m (Fig. 1). 