

Lecture Notes
in Business Information Processing 94

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Stefan Biffl
Dietmar Winkler
Johannes Bergsmann (Eds.)

Software Quality

Process Automation
in Software Development

4th International Conference, SWQD 2012
Vienna, Austria, January 17-19, 2012
Proceedings

13

Volume Editors

Stefan Biffl
Vienna University of Technology
Institute of Software Technology and Interactive Systems
Favoritenstrasse 9/188
1040 Vienna, Austria
E-mail: stefan.biffl@tuwien.ac.at

Dietmar Winkler
Vienna University of Technology
Institute of Software Technology and Interactive Systems
Favoritenstrasse 9/188
1040 Vienna, Austria,
E-mail: dietmar.winkler@tuwien.ac.at

Johannes Bergsmann
Software Quality Lab GmbH
Gewerbepark Urfahr 30, BG4
4041 Linz, Austria
E-mail: johannes.bergsmann@software-quality-lab.at

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-642-27212-7 e-ISBN 978-3-642-27213-4
DOI 10.1007/978-3-642-27213-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011943099

ACM Computing Classification (1998): D.2, K.6

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Message from the General Chair

The Software Quality Days (SWQD) conference and tools fair started in 2009
and has grown into one of the biggest conferences on software quality in Europe
within a strong community. The program of the SWQD conference is designed
to encompass a stimulating mixture of practical presentations and new research
topics in scientific presentations as well as tutorials and an exhibition area for
tool vendors and other organizations in the area of software quality.

This professional symposium and conference offers a range of comprehensive
and valuable opportunities for advanced professional training, new ideas, and
networking with a series of keynote speeches, professional lectures, exhibits, and
tutorials.

The SWQD conference is suitable for anyone with an interest in software
quality, such as test managers, software testers, software process and quality
managers, product managers, project managers, software architects, software
designers, user interface designers, software developers, IT managers, develop-
ment managers, application managers, and others with similar roles.

January 2012 Johannes Bergsmann

Message from the Scientific Program Chair

The 4th Software Quality Days (SWQD) conference and tools fair brought
together researchers and practitioners from business, industry, and academia
working on quality assurance and quality management for software engineering
and information technology. The SWQD conference is one of the largest software
quality conferences in Europe.

Over the past few years a growing number of scientific contributions have
been submitted to the SWQD symposium. This was the first year with a dedi-
cated scientific track published in scientific proceedings. In total we received from
researchers across Europe 18 high-quality submissions, which were peer-reviewed
by three or more reviewers. Out of these submissions, the editors selected seven
contributions as full papers, with an acceptance rate of 39%. Authors of the best
papers will be invited to submit extended versions of their papers to a special
section in the Software Quality journal. Further, six short papers, which repre-
sent promising research directions, were accepted to spark discussions between
researchers and practitioners at the conference.

Main topics from academia and industry were focused on systems and
software quality management methods, improvements of software development
methods and processes, the latest trends in software quality, and testing and
software quality assurance.

This book is structured according to the sessions of the scientific track follow-
ing the guiding conference topic “Process Automation in Software Development”:

• Software Product Quality
• Software Engineering Processes
• Software Process Improvement
• Component-Based Architectures
• Risk Management
• Quality Assurance and Collaboration

January 2012 Stefan Biffl

Organization

SWQD 2012 was organized by Software Quality Lab GmbH and the Vienna
University of Technology, Institute of Software Technology and Interactive
Systems.

Organizing Committee

General Chair

Johannes Bergsmann Software Quality Labs GmbH

Scientific Chair

Stefan Biffl Vienna University of Technology

Proceedings Chair

Dietmar Winkler Vienna University of Technology

Organizing and Publicity Chair

Petra Bergsmann Software Quality Labs GmbH

Program Committee

SWQD 2012 established an international committee of well-known experts in soft-
ware quality and process improvement to peer-review the scientific submissions.

Muhammad Ali Babar IT University of Copenhagen, Denmark
Maria Teresa Baldassarre University of Bari, Italy
Antonia Bertolino ISTI CNR, Italy
Miklos Biro Dennis Gabor College Budapest, Hungary
Ruth Breu University of Innsbruck, Austria
Michel Chaudron Leiden University, The Netherlands
Deepak Dhungana Siemens Corporate Technology Research,

Austria
Schahram Dustdar TU Vienna, Austria
Frank Elberzhager Fraunhofer IESE, Kaiserslautern, Germany
Gordon Fraser University of Saarland, Germany
Christian Frühwirth Aalto University, Finland
Marcela Genero University of Castilla-La Mancha, Spain
Tony Gorschek Blekinge Institute of Technology, Sweden
Volker Gruhn University of Duisburg-Essen, Germany

X Organization

Paul Grünbacher Johannes Kepler University (JKU) Linz,
Austria

Geir Kjetil Hanssen SINTEF, Norway
Jens Heidrich Fraunhofer IESE, Kaiserslautern, Germany
Frank Houdek Daimler Research, Germany
Slinger Jansen Utrecht University, The Netherlands
Petri Kettunen Helsinki University, Finland
Filippo Lanubile University of Bari, Italy
Jürgen Münch University of Helsinki, Finland
Oscar Pastor Universidad Politecnica de Valencia, Spain
Mauro Pezzè University of Milan Bicocca/Lugano,

Italy/Switzerland
Dietmar Pfahl Lund University, Sweden
Klaus Schmid University of Hildesheim, Germany
Rini van Solingen TU Delft, The Netherlands
Rick Rabiser Johannes Kepler University (JKU) Linz,

Austria
Rudolf Ramler SCCH Hagenberg, Austria
Andreas Rausch TU Clausthal, Germany
Günther Ruhe University of Calgary, Canada
Barbara Russo Free University of Bolzano, Italy
Inge van de Weerd Utrecht University, The Netherlands
Dietmar Winkler TU Vienna, Austria
Franz Wotawa TU Graz, Austria

Sub-Reviewers

Peiman Dabidian
Ramin Etemaadi
Michael Felderer
David Garcia
Javier Gonzalez-Huerta
Tobias Griebe

Jaap Kabbedijk
Ravi Khadka
Sarah Löw
Tomas Martinez
Thomas Richter

Table of Contents

Keynotes

Quality Assurance in Model-Based Software Development: Challenges
and Opportunities . 1

Michel R.V. Chaudron

Quality Driven Software Architecture . 10
Peter Hruschka

Software Product Quality

On the Benefit of Automated Static Analysis for Small and
Medium-Sized Software Enterprises . 14

Mario Gleirscher, Dmitriy Golubitskiy, Maximilian Irlbeck, and
Stefan Wagner

Software Engineering Processes

BIM: A Methodology to Transform Business Processes into Software
Systems . 39

Francisco J. Duarte, Ricardo J. Machado, and João M. Fernandes

Mapping RUP Roles to Small Software Development Teams
(Short Paper) . 59

Pedro Borges, Paula Monteiro, and Ricardo J. Machado

Scaling Software Development Methods from Co-located to
Distributed (Short Paper) . 71

Harald Klein, Eric Knauss, and Andreas Rausch

Software Process Improvement

Improving Open Source Software Process Quality Based on Defect
Data Mining . 84

Wikan Sunindyo, Thomas Moser, Dietmar Winkler, and
Deepak Dhungana

The Many Forms of Process Improvement – Results of an International
Survey . 103

Tom McBride and Marion Lepmets

XII Table of Contents

Component-Based Architectures

Towards Efficient Component Performance Analysis in Component
Based Architectures . 121

Nabila Salmi and Malika Ioualalen

Risk Management

A Case Study on Software Risk Analysis in Medical Device
Development . 143

Christin Lindholm, Jesper Pedersen Notander, and Martin Höst

Integrating Manual and Automatic Risk Assessment for Risk-Based
Testing . 159

Michael Felderer, Christian Haisjackl, Ruth Breu, and
Johannes Motz

Quality Assurance and Collaboration

Inspection and Test Process Integration Based on Explicit Test
Prioritization Strategies (Short Paper) . 181

Frank Elberzhager, Alla Rosbach, Jürgen Münch, and
Robert Eschbach

Towards a Security and Dependability Pattern Development Technique
for Resource Constrained Embedded Systems (Short Paper) 193

Nicolas Desnos, Brahim Hamid, Christian Percebois, and
Damien Gouteux

Modeling Ad-Hoc Collaboration for Automated Process Support
(Short Paper) . 205

Komlan Akpédjé Kedji, Bernard Coulette, Redouane Lbath, and
Mahmoud Nassar

Quality Needs Structure: Industrial Experiences in Systematically
Defining Software Security Requirements (Short Paper) 217

Christian Frühwirth and Richard Mordinyi

Author Index . 231

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 1–9, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Quality Assurance in Model-Based Software Development
- Challenges and Opportunities -

Michel R.V. Chaudron

Leiden University
Leiden Institute of Advanced Computer Science, The Netherlands

chaudron@liacs.nl

Abstract. Modeling is a common practice in modern day software engineering.
Since the mid 1990’s the Unified Modeling Language (UML) has become the
de facto standard for modeling software systems. The UML is used in all phases
of software development – ranging from the requirements phase to the
maintenance phase. However, the manner in which the UML is used differs
widely from project to project and from developer to developer. This illustrates
an apparent lack of quality awareness in the use of UML. In this paper I will
discuss the challenges and opportunities there are for using quality assurance
for software modeling for improving the quality and productivity of software
development.

1 The State of the Practice and the Need for Quality Assurance
in Model Based Software Development

Over the past 15 years I have visited many software development projects that use
some form of modeling. I have collected both quantitative as well as qualitative data
about the way in which those projects performed software modeling and about the
impact of their modeling practice on overall project productivity and quality. Some of
the key findings from these studies are the following (these are elaborated in [1]):

─ There is a large variation in styles of software modeling between different
developers and across different projects – also within individual organizations.

─ In virtually all projects that we visited:

- the UML models contained a large amount of incompleteness and
inconsistency

- no processes or techniques were applied for quality assurance of UML
models

This state of the practice suggests that there are significant opportunities for achieving
improvements for quality assurance for the modeling activities in software projects.

In the remainder of this paper, I will discuss:

─ Economics of modeling: Does modeling actually help in creating better
software? How much modeling is enough?

2 M.R.V. Chaudron

─ What are practical ways of starting with quality assurance in model-based
software development?

─ Promises from the state of the art in software model quality assurance
techniques and challenges for the future

2 Does Investing in Modeling and Quality of Modeling Make
Business Sense?

In his seminal book Software Engineering Economics Barry Boehm reports on the
relation between the stage of a project (starting, middle, finishing) and the cost of
repairing defects. The relation is such that the cost of repairing increases
exponentially with the progress of a project. More precisely this principle is nowadays
formulated as that the cost of repairing a defect grows exponentially with the life-time
of a defect.

Fig. 1. Relation between stage of a project and cost of repair

When we look at the activities of a software development project that have the
largest impact on the final quality on the system, then these are the requirements and
architecting/design activities. Hence, from first principles it makes economic sense to
ensure quality of the early products of software projects.

Next, one can ask: does it help to model our design in a systematic manner using
UML? I will draw from some empirical studies to suggest that using models indeed
makes business sense:

In a controlled experiment subjects were shown UML models that either
lacked some information or contained some inconsistencies versus models that were
complete. It was found that for the incomplete models, subjects had much
larger variation in the interpretation of the meaning of the model [2]. Clearly,
this variation in interpretation increases the chances of miscommunication and
misinterpretation.

Subsequently we tried to find evidence in actual industrial software development
projects. To this end, we studied the defects that we found in the project repository of
a medium size industrial project [3]. We counted the number of defects per class (in
the implementation), and subsequently we looked at the manner in which each of
these classes was modeled in the UML design. This showed that classes for which
more detail was present in the UML model (to be precise in the sequence diagrams)
contained fewer defects than classes for which less detail was present in the UML

stage of a project

cost of repair

 Qu

model. At the same time, th
returns in model quality (Se
longer correlates with a sig
class. This study shows that
is used as blueprint for impl

Fig. 2. Relation bet

Complementary to the s
there are also more subjec
interviews – in which desig
modeling aids in achieving
that modeling helps as an a
positive effect on productiv

Additional evidence tha
from an interesting corner
community: a recent study
prefer to have more docume

3 Practical Lightw
for Model Based

In this section I will disc
assurance of UML models.

3.1 Quality of UML M

The basis for any quality
several quality models ex
composition which has in
software. This same appro
UML models. Rather than m
measured from the UML m
over fairly straightforwardl
need to be adapted. Further

uality Assurance in Model-Based Software Development

his study also showed that there is an effect of diminish
ee Fig 2): at some point, adding more detail to a model

gnificant decrease in the expected number of defects in t
t the quality of sequence diagrams is important when UM
lementation.

tween Detail in Sequence Diagram and Defect Density

upport for modeling implied by these quantitative stud
ctive pieces of evidence – obtained through surveys
gners and programmers state that they feel that the use

g a common understanding of a design within an team
aid in communication. These benefits ultimately lead t

vity and quality [4].
at supports the importance of good documentation com
r: the documentation-averse agile software developm
amongst agile development teams showed that they wo
entation than they normally produce [5].

weight Methods for Starting Quality Assuran
d Software Development

cuss some lightweight, easy to use methods for qua

odels

assessment is a quality model. In the area of softw
xist. All of them define quality through a hierarch
n the leave-nodes some measurable characteristic of
oach can be applied for establishing a quality model
measuring properties in the source code, properties must

models. Some types of measurements (a.k.a. metrics) ca
ly from code to models. However, some other metrics m
rmore, UML models also offer an opportunity for defin

3

hing
l no
that
ML

dies,
and
e of
and
to a

mes
ment
ould

nce

ality

are,
hical

the
for

t be
arry
may
ning

4 M.R.V. Chaudron

new metrics that cannot be determined from the source code. Consider for example a
measure for the complexity or criticality of a use case by counting the number of
sequence diagrams that support a use case.

Quality models for software used to take a “one-size-fits-all” approach. In a recent
paper, we propose that the quality model for UML models should be tailored to the
purpose of the task that the software-model has to support [6]. In particular, a team
should determine how the models are aimed to be used or more pragmatically for
which tasks they are actually most used. Figure 3 shows an example of a quality
model for UML that considers maintenance and development as key activities.

Fig. 3. Example Quality Model for Software Models

3.2 Assessing Correspondence between Source Code and UML Model

A key factor for harvesting the benefits of modeling are to ensure that the
implementation actually conforms (to a large degree) to the UML design. The degree
in which an implementation follows a design depends amongst other on the degree of
detail and completeness in which the design was modeled. In practice we see that
UML designs most often contain between 20% and 50% of the classes of the ultimate
implementation. When asked how designer chose what to include in their models,
designers state that they focus on complex and critical parts [7].

In line with the earlier finding that there are diminishing returns for raising the
quality level of a model after some point, we should expect that there implementation
may deviate somewhat from the model. This may be because the model describes the
system only at a high level of abstraction and hence omits some details, or because
designers in the implementation phase decide on alternative implementations (which
may or may not be improvements over the design). For monitoring the compliance of
the implementation to the design, we need a method that does not aim to find a perfect

 Quality Assurance in Model-Based Software Development 5

match between implementation and design, but is robust against differences and tries
to provide insight in the severity of potential deviations.

Figure 4 shows a graph generated by Van Opzeeland [8] who provides one
possible approach for a robust comparison between UML model and implementation.

Fig. 4. Graph showing correspondence between Design and Implementation

The method works as follows: first a mapping is created between classes in the
implementation to classes in the UML model (for non-OO languages, this would also
work for functions/procedures or components). This step is greatly facilitated if the
same naming conventions are used in design and implementation. Subsequently, a set
of metrics (e.g. coupling, size (number of methods, number of attributes), depth-of-
inheritance) is computed for implementation classes and corresponding UML-classes.
Then, for each class one point in draws in the graph where the x-coordinate is the
metric for that class in the design and the y-coordinate is the metrics for the
corresponding class in the implementation. The resulting graph shows a line x=y
when there is a perfect mapping between design and implementation. In practice we
see a pattern that shows a linear relationship within some bandwidth. This pattern
enables the easy visual identification of outliers which form the largest deviation
between design and implementation and thus are the most important candidates for
scrutiny.

3.3 Low Hanging Fruit for Quality Assurance for Model Based Software
Development

It has become common for a set of quality assurance methods to be part of the normal
operating procedure of many software projects: version control, coding and layout
conventions. However, while the tooling infrastructure for such techniques is already
in place, these common techniques are not also applied to the modeling activities
and/or artifacts. Hence, some low-hanging fruit for a project that used models in their
software development are to use the following:

6 M.R.V. Chaudron

- Use coding, naming and layout conventions for models: If you are going to
use naming conventions in the coding activities anyway, why not already start
using these conventions in the modeling and design activities? Using such
conventions will help achieve:

- more uniform look and feel of the models, which increases
understandability and identification of anomalies in the design.

- easier traceability between code and design. This encourages closer
following of the design principles in the implementation. Also it
simplifies assessing the correspondence/differences between the design
and implementation (as described in section 3.2).

A good starting point for defining such conventions is the set of guidelines on
‘UML Style’ by Fowler [9]. An additional consideration for modeling
conventions is to standardize on which design patterns to use and how to
represent these in the UML model.

On the topic of traceability: different tools provide different support for
traceability between use cases and sequence diagrams. In practice, if a tool does
not support such traceability, then it is quite easy to arrange this by systematic
organization of diagrams in directories: e.g. sequence diagrams can be stored in
subdirectories of the associated use cases. If the traceability between classes
(via sequence diagrams) to use cases can be established, this can have
advantages for monitoring compliance of the implementation to the
requirements, and thus can help in acceptance testing.

- Use Version Control for models: there is admittedly a challenge for version
control systems (VCS) to cater for model-based development, as most VCS’s are
code-oriented. However, even a crude approach where subsequent versions of a
model are checked in as a whole already add value to a project (e.g. for tracing
progress, but also as a means of disseminating design knowledge). Challenges for
VCS’s are to better cater for models as being the unit of version control which
have different properties than source code. Some ways in which models differ
from source code are, amongst others: layout/formatting:

- the orientation of class-boxes and lines may have a meaning and thus
needs to be stored as part of the model;

- modularity: there are no established way of modularizing large models
while maintaining all relations between different parts;

- variability: if a system-design comes with variants (through variability
points), e.g. as part of a product family, dedicated approaches are
needed for storing all related information of variants and possible
compatible versions of different model of features.

- differencing and merging: while the diff program works well for source
code, specialized algorithms need to be developed for supporting the
analyses of differences between different versions of a model;

- traceability: ideally versions of models are linked to corresponding, but
potentially varying parts of the implementation source code.

 Quality Assurance in Model-Based Software Development 7

However, for most practical purposes pragmatic solutions exist.

- Use Reviews and Inspections: For source code, reviews and inspections have
been shown to be very cost effective: they require low effort and deliver high
returns. Also, this practice is quite scalable in effort: A quick and dirty way of
doing reviews is to just ask a colleague to read the design and report issues. A
more advanced implementation of the inspection practice uses an established set
of guidelines or a checklist to go over a design systematically. The mere fact that
you plan for a review and inspection is a good way of ensuring that it takes place,
rather than getting skipped under the inevitable schedule-pressure of a project.

Fig. 5. Screenshot of the MetricView tool

- Use Software Metrics for Design: Software metrics are widely used for source
code. The premise of software metrics is that quantitative measurements about
the software are an indicator of quality properties. For source code, many metrics
are around. An often used metrics in quality assurance is cyclomatic complexity,
for which high values are an indicator of poor modularization, low
understandability and high defect-proneness. Analogously, metrics can be applied
in the (UML) design stage. For example, a high value for a coupling metrics
(which counts the degree of interdependencies of a class/component with other
classes), may be an indicator for an unbalanced design, too much logic lumped
together, which typically leads to high maintenance effort. Some UML modeling
tools provide basic support for computing design metrics. However, there are
very affordable tools around such as SDMetrics1 which are dedicated and thus
specialized in computing metrics for UML models. Such dedicated metric tools

1 www.sdmetrics.com

8 M.R.V. Chaudron

provide a much richer set of metrics and can be easily tuned to project
preferences. In our own research we have developed a tool called MetricView
[10] that visualizes design metrics by projecting then on top of the UML
diagrams (see Figure 5). This provides intuitive feedback on the design.

UML metrics can be integrated (via a version management system) in a software
development dashboard (like Sonar) that also manages code metrics. The
aforementioned correspondence checking method shows how using the
combination of source code metric and UML model metrics can be beneficial.

4 What Does the Future Have in Store for Quality Assurance in
Model Based Software Development

A first challenge is in the area of model-based testing: economically it makes sense to
reuse a model that has been used to design a system also in the testing phase, e.g. for
generating tests from. However, current model-based testing approaches require a
high level of detail and completeness of the model as prerequisite before test can be
generated. A challenge for the modeling and testing researchers is to turn into use for
the testing activities the models that were produced in the design phase that are
typically not complete nor highly detailed.

Another approach through with the modeling effort from the design stage can be
capitalized is through the analysis of the extra-functional properties of a system.
Promising progress is made in approaches where a regular UML model is decorated
by annotations that provide information about the load profile and resource claims of
the operations of a system. Subsequently, based on this enriched model, performance
of the system can be analyzed. The research in this direction is aiming to enable the
concurrent analysis of multiple extra-functional properties (including performance,
safety, reliability, cost, security) based on a single core model which is decorated with
different adornments.

A third challenge is to rank the severity of defects based on understanding the
design of a system. Also, here UML models which include a traceability linking
between classes via sequence diagrams to use cases may provide to be a richer source
of information about a system’s operating context and thus for inferring information
about severity of defects in the design.

5 Conclusion

Modeling is a common practice in software development and will become more
common with the adoption of model-driven technology. The industrial practice of
quality assurance for software modeling in general and UML in particular is far
behind what is practically possible. Currently practical methods, tools and guidelines
are available for quality assurance of UML models. These methods promise to
improve the quality and productivity of projects at low cost.

 Quality Assurance in Model-Based Software Development 9

References

1. Lange, C.F.J., Chaudron, M.R.V., Muskens, J.: In Practice: UML Software Architecture
and Design Descriptions. IEEE Software 23(2), 40–46 (2006)

2. Lange, C.F.J., Chaudron, M.R.V.: Effects of defects in UML models: an experimental
investigation. In: Proc. of the 28th Int. Conference on Software Engineering (ICSE 2006),
Shanghai, pp. 401–411. ACM (2006)

3. Nugroho, A., Flaton, B., Chaudron, M.R.V.: Empirical Analysis of the Relation between
Level of Detail in UML Models and Defect Density. In: Busch, C., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 600–614. Springer,
Heidelberg (2008)

4. Nugroho, A., Chaudron, M.R.V.: A survey into the rigour of UML use and its perceived
impact on quality and productivity. In: Empirical Software Engineering and Measurement
(ESEM 2008), pp. 90–99. ACM (2008)

5. Stettina, C.J., Heijstek, W.: Necessary and Neglected? An Empirical Study of Internal
Documentation in Agile Software Development Team. In: 29th ACM International
Conference on Design of Communication. ACM (2011)

6. Lange, C.F.J., Chaudron, M.R.V.: Managing Model Quality in UML-based Software
Development. In: Workshop on Softwre Technology and Engineering Practice, pp. 7–16.
IEEE Computer Society, Washington (2005)

7. Nugroho, A., Chaudron, M.R.V.: A survey of the practice of design-code correspondence
amongst professional software engineers. In: Empirical Software Engineering &
Measurement, pp. 467–469. IEEE (2007)

8. van Opzeeland, D.J.A., Lange, C.F.J., Chaudron, M.R.V.: Quantitative Techniques for the
Assessment of Correspondence between UML Designs and Implementations. In: Proc. 9th
QAOOSE Workshop, ECOOP 2005 (2005)

9. Ambler, S.W.: The Elements of UML2.0 Style. Cambridge University Press (2005)
10. Lange, C.F.J., Chaudron, M.R.V., Wijns, M.A.J.: Supporting Task-Oriented Modeling

using Interactive UML Views. Journal of Visual Languages and Computing 4, 399–419
(2007)

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 10–13, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Quality Driven Software Architecture

Peter Hruschka

Atlantic Systems Guild, Langenbruchweg 71
52080 Aachen, Germany

peter@systemsguild.com

Abstract. This short paper introduces “quality driven software architecture”
(QDSA) as a method to ensure qualities such as maintainability, modularity,
scalability, or extensibility in software architectures and emphasizes the need
for a person in charge (i.e. the software architect) to actively manage and
control such qualities.

Keywords: Software Architecture, Quality Goals, Architecture Development
Process, Evaluating Software Architecture.

1 Introduction

Users normally expect a certain qualities from their software systems, even if they do
not explicitly ask for it. They often take issues like maintainability, modularity,
scalability, extensibility, etc. for granted.

There are various ways to come up with key design decisions for a software
architecture. A popular approach is work “domain driven” (as e.g. elaborated in [1] or
[2]), to start with fundamental architectural patterns (e.g. [3]) or answer six key
questions to create a first sketch of the architecture [4]. While all these approaches
have their merits, they often ignore quality requirements too long in the process.

Therefore, we suggest that software architects should start from explicitly
negotiated quality goals (or architecture goals). Those are often a subset of non-
functional requirements. Despite all the attention that requirements engineering got in
industry over the last 15 years the non-functional requirements still tend to be
ignored, considered obvious or treated as orphans. And parts of them, the so-called
internal qualities (like extensibility, scalability, modifiability, reusability, …) are
sometimes in conflict with the project goals and constraints (like time to market,
costs, …). Therefore, QDSA makes it the software architect the advocate for such
longer term architectural goals. Thus, he or she is an excellent sparring partner for the
project manager who is striving to achieve the project goals. Project goals are to
determine whether the project was successful, while architecture goals are to
determine whether the solutions has been structured in a way to achieve those longer
term goals. Successful product development should ensure that both sets of goals are
met and – if there is a conflict between them – that this conflict is openly discussed
and resolved early on.

 Quality Driven Software Architecture 11

2 Quality Tree as a Starting Point

Clements et. al. [5] describe an excellent process (ATAM – Architecture Tradeoff
Analysis Method) to determine how well a software architecture meets given quality
goals. The key is to structure the quality goals in form of a quality tree. Concrete
scenarios form the leaves of the tree, prioritized from two different points of view, the
business value and the architectural challenge (cf. example in Figure 1). Those with
high marks in both areas are used by experts to discuss design decisions and suggest
measures for the “weak spots”.

Fig. 1. Example for a Quality Tree with Scenarios

3 Changing ATAM to a Constructive Process

In the QDSA-approach of ARC42 [6], we suggest to use the ATAM techniques as
part of the architect’s normal, iterative architecture tasks (cf. figure 2).

The task “clarify requirements & constraints” – among other things – is to create
the quality tree. This encourages the software architect to gain an excellent
understanding of the requirements, especially the non-functional ones, which are
often neglected in requirements documents. Since these quality requirements are the
essential design drivers a solid understanding prior to making key architecture

12 P. Hruschka

decisions is very helpful. In the two key tasks in the middle of figure 2 the software
architect uses this detailed knowledge about the design drivers to come up with an
adequately balanced design, always aware of the potential tradeoffs he or she has to
make.

Fig. 2. The Iterative Architecture Development Cycle of ARC42

The three feedback tasks at the bottom of figure 2, especially the task “evaluate
architecture” constantly check alignment with the defined goals. While ATAM is
more of a one-shot task, these task becomes part of everyday work. Normally an hour
every two weeks for evaluating is enough to stay on track.

4 Summary and the Way Ahead

The next steps in the development of QDSA are to support software architects further
by suggesting best practices, i.e. constructive strategies and policies for selected
quality goals to be applied under given constraints in the tasks “design structures” an
“design technical concepts”. Then the task “evaluate architecture” should become a
formal routine quality check, since it should not come up with any surprises.

Acknowledgments. Thanks to Gernot Starke for jointly developing the QDSA
approach and the ARC42 portal for architects.

 Quality Driven Software Architecture 13

References

1. Evans, E.: Domain Driven Design. Addison Wesley (2003)
2. Nilsson, J.: Applying Domain Driven Design & Patterns. Addison Wesley (2006)
3. Buschmann, F., Henney, K., Schmidt, D.: Pattern Oriented Software Architecture. A Pattern

Language for Distributed Computing, vol. 4 (2007)
4. Starke, G., Hruschka, P.: Software-Architektur kompakt, 2nd edn. Springer, Heidelberg

(2011) (in German)
5. Clements, P., et al.: Evaluating Software Architectures. Addison Wesley (2001)
6. The ARC42 Portal for Software Architects, http://www.arc42.com

On the Benefit of Automated Static Analysis for

Small and Medium-Sized Software Enterprises

Mario Gleirscher1, Dmitriy Golubitskiy1,
Maximilian Irlbeck1, and Stefan Wagner2

1 Institut für Informatik, Technische Universität München, Germany
{gleirsch,golubits,irlbeck}@in.tum.de

2 Software Engineering Group, Institute of Software Technology,
University of Stuttgart, Germany

stefan.wagner@informatik.uni-stuttgart.de

Abstract. Today’s small and medium-sized enterprises (SMEs) in the
software industry are faced with major challenges. While having to work
efficiently using limited resources they have to perform quality assur-
ance on their code to avoid the risk of further effort for bug fixes or
compensations. Automated static analysis can reduce this risk because
it promises little effort for running an analysis. We report on our expe-
rience in analysing five projects from and with SMEs by three different
static analysis techniques: code clone detection, bug pattern detection
and architecture conformance analysis. We found that the effort that
was needed to introduce those techniques was small (mostly below one
person-hour), that we can detect diverse defects in production code and
that the participating companies perceived the usefulness of the pre-
sented techniques as well as our analysis results high enough to include
the techniques in their quality assurance.

Keywords: software quality, small and medium-sized software enter-
prises, static analysis, code clone detection, bug pattern detection, ar-
chitecture conformance analysis.

1 Introduction

Small and medium-sized enterprises (SMEs) play a decisive role in global soft-
ware industry. In many countries, like the US, Brazil or China, these companies
represent up to 85% of all software organisations [24] and carry out the majority
of software development [22]. Nevertheless, SMEs are confronted with special
circumstances like limited resources, lack of expertise or financial insecurity.

Problem. While there are many articles focusing on process improvement in
SMEs [14,22,28], we found no study that looks at specific quality assurance (QA)
techniques and their application in this context. Contrary to this observation,
the properties of automated static analysis techniques seem to be suitable for
SMEs. The benefits of such techniques lie in their low-cost application and their
potential to detect critical quality defects [33,2]. Such defects are risky for the

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 14–38, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the Benefit of Automated Static Analysis for SMEs 15

further development and increase costs. These arguments are promising for small
software enterprises and their need for efficient quality assurance.

Research Objective. Our goal is to answer the question whether SMEs can benefit
from automated static analysis techniques. Is it possible to introduce a set of
such techniques in their existing projects with low effort? What kind of defects
can be found using these techniques? Finally, is the perceived usefulness for the
enterprises high enough to justify the needed effort? We think that these aspects
are useful for future decisions in SMEs on using static analysis techniques in
their projects.

Contribution. In this article, we describe our experience in analysing five projects
of five SMEs using three different static analysis techniques: code clone detection,
bug pattern detection and architecture conformance analysis. We evaluate the
effort that is needed to introduce these techniques, the pitfalls we came across
and how the participating enterprises evaluated the presented techniques as well
as the defects we discovered in their projects.

2 Approach

We describe our experiences with transferring static analysis technology to small
and medium-sized enterprises. This section illustrates the research context, i.e.,
the participating enterprises, our guiding research questions, the regarded static
analysis techniques, the procedure we used to get answers to the research ques-
tions and finally the study objects we employed to gather the experiences.

2.1 Research Context

Fundamental for our research was the collaboration with five SMEs, all resident
in the Munich area and selected through personal contacts and a series of in-
formation events and workshops. Details regarding the selection process can be
found in Sec. 2.5. Following the definition of the European Commission [5], one of
the participating enterprises is micro-, two are small and two are medium-sized
considering their staff head count and annual turnover. The presented research is
based on the experience with these enterprises gathered in a project from March
2010 to April 2011.

2.2 Research Questions

Our overall research objective is to analyse the transfer of new and innovative
quality assurance techniques to small enterprises. We structure this objective
into two major research questions.

RQ 1. What problems occur while introducing and applying static analysis tech-
niques at SMEs?

SMEs exhibit special characteristics, such as generalist employees instead of
specialists for quality assurance. Hence, smooth introduction and application

16 M. Gleirscher et al.

are necessary so that the enterprises can adopt and make use of static analysis.
We further break this down into two sub-questions:

RQ 1.1. What technical problems occur? Static analysis is tightly coupled to
tools that perform and report the analysis. Hence, the ease to introduce and
apply static analysis also depends on how many and which technical problems
the software engineers need to solve.
RQ 1.2. How much effort is necessary?
If the effort necessary to bring the analyses up and running is too large, it can be
a killer criterion for an SME, which cannot afford to reserve extra capacities for
that. Therefore, we analyse the effort spent in the introduction and application.

RQ 2. How useful are static analysis techniques for SMEs?

Beyond how easy or problematic it is to introduce and apply static analysis in
SMEs, we are interested in whether we can produce useful results for them. Even
a small effort should not be spent if there is no return on investment. We again
break this question down into two sub-questions:

RQ 2.1. Which defects can be found?
We establish a measure of usefulness by analysing the types and numbers of
defects found by using the static analysis tools at the SME. If critical defects can
be found, the application of the techniques is considered useful. We neither focus
on specification defects and whether they can be found at all, nor do we perform
cause and effects analyses for defects except for some criticality assessments.
RQ 2.2. How do the companies perceive the usefulness?
We add the subjective perception of our project partners. How do they interpret
the results of the static analysis tools? Do they believe they can work with those
tools and are they going to apply them continuously in their future projects?
This way, we augment the information we gained from defect analysis.

2.3 Static Analysis Techniques

Static analysis is known as the checking of software against certain properties
without executing it. It includes manual techniques, such as reviews and inspec-
tions, as well as automated techniques. As manual analyses are time-consuming
and prone to missing problems in the huge amount of code to analyse, automa-
tion has high potential. For example, to detect simple and reoccurring problems
in source code, such as using “==” instead of “equals” to compare strings in
Java, should not be the task of human reviewers. They should concentrate on
the more subtle and domain-related problems. From the interviews with our
partners and the experiences at our research groups, we chose three important
techniques, which we introduce in detail in the following. Technically, we em-
ploy the open-source tool ConQAT1 for code clone detection and architecture
conformance analysis as well as for results processing of bug pattern detection.

1 http://www.conqat.org

http://www.conqat.org

On the Benefit of Automated Static Analysis for SMEs 17

Code Clone Detection. Modern programming languages, particularly object-
oriented ones, offer various abstraction mechanisms to facilitate reuse of code
fragments, but copy-paste is still a widely employed reuse strategy. This often
leads to numerous duplicated code fragments—so called clones—in software sys-
tems. As stated in the surveys of Koschke [16] and Roy and Cordy [26], cloning
is problematic for software quality for several reasons:

– Cloning unnecessarily increases program size and thus efforts for size-related
activities like inspections and testing.

– Changes, including bug fixes, to one clone instance often need to be made
to the other instances as well, again increasing efforts.

– Inconsistently performed changes to duplicated source code fragments can
introduce bugs.

Code clone detection is an automated static analysis technique that focuses on
finding duplicated code fragments. One of the most important metrics offered
by this technique is unit coverage, which is the probability that an arbitrarily
chosen source statement (i.e. a unit) is part of a clone. Another metric called
blow-up denotes the ratio of the unit count of the current software w.r.t. the
unit count of a hypothetical software without clones [13]. Moreover, two terms
are important for clone detection: A clone class defines a set of similar code
fragments and a clone instance is a representative of a clone class [12].

We differentiate between conventional clone detection and gapped clone detec-
tion. During conventional clone detection, clones are considered to be syntacti-
cally similar copies; only variable, type, or function identifiers could be changed
[16]. In contrast, gapped clone detection reveals clones with further modifica-
tions; statements could be changed, added, or removed [16]. While clones are an
indicator of bad design, the difference between the two approaches is that only
the results of gapped clone detection can reveal defects that lead to failures,
which arise through unconscious, inconsistent changes in instances of a clone
class.

Clone detection is supported by a number of free and commercial tools.
The most popular of them are CCFinder2, ConQAT, CloneDR3, and Axivion
Bauhaus Suite4. The former two are free, while the latter two are commercial.

Bug Pattern Detection. By this term we refer to a technique for automated
detection of a variety of defects. Bug patterns have been thoroughly investigated,
e.g. in [33], and compared with other frequently used software quality assurance
techniques such as code reviews or testing [31]. Bug patterns represent a scalable
approach to efficiently reveal defects or possible causes thereof. Following Wagner
et al. [30] they can be cost-efficient after detecting only three field defects. Their
detectors, aka rules, aim at structural patterns recognisable from source code,
executables and meta-data such as source code comments and debug symbols to

2 http://www.ccfinder.net
3 http://www.semanticdesigns.com/Products/Clone
4 http://www.axivion.com

http://www.ccfinder.net
http://www.semanticdesigns.com/Products/Clone
http://www.axivion.com

18 M. Gleirscher et al.

gain as much knowledge as possible from a static perspective. This knowledge
encompasses obvious bugs, rather complex heuristics for latent defects, e.g. code
clones (focused in Sec. 2.3), and less critical issues of coding style.

Because of the large bandwidth of defects, bug patterns are categorised along
a variety of tool-specific, non-standard criteria. A reason for that is that gener-
ally applicable defect classifications are rare, vague or difficult to use in practice
[29]. The tools used for this report classify their rules according to the conse-
quences of findings such as security vulnerability, performance loss or functional
incorrectness. By the term finding we denote that a rule was applied at a specific
location. Often, findings are themselves categorised by their severity and their
confidence levels.

Many of the rules are realised by means of individual lexers and parsers, by
using compiler infrastructures, or by more reusable means such as pattern or
rule languages and machine-learning. Rules for latent defects and coding style
often stem from abstract source code metrics as, e.g., realised in Ferzund, Ahsan,
and Wotawa [7]. Among the wide variety of tools [32] available for bug pattern
detection, free and more popular ones are, e.g., splint5 for C, cppcheck6 for C++,
FindBugs7 for Java as well as FxCop8 for C#.
Architecture Conformance. The phenomenon of architectural erosion is a widely
documented problem [6,8,25]. Architectural knowledge erodes or even gets lost
during the lifetime of a system. Accordingly, the documented and implemented
architectures are drifting apart from each other. This effect leads to a downward
spiralling maintainability of the system. In some cases the effort needed to re-
implement the whole system becomes lower than to maintain it. To counteract
this situation different approaches are used to compare the system’s implemen-
tation with its intended architecture.

Passos et al. [23] identify three static concepts existing for architecture confor-
mance analysis: Reflexion Models (RM), Source Code Query Languages (SCQL)
and Dependency Structure Matrices (DSM).

Reflexion Models as defined by Koshke and Simon [17] compare two models
of a system to each other and check their conformance. The first model usually
represents the intended architecture, the second one the implementation of the
system [15]. The intended architecture consists of components and allowed rela-
tionships between components, expressed as rules. Each component itself can con-
tain sub-components. The system’s code is mapped to these components and then
analysed for conformance to the given rules. This technique is used by the commer-
cial tools SonarJ9 and Structure10110 as well as the open-source tools ConQAT
and dependometer11.
5 http://splint.org
6 http://cppcheck.sourceforge.net
7 http://findbugs.sourceforge.net
8 http://msdn.microsoft.com/en-us/library/
bb429476%28v=vs.80%29.aspx

9 http://www.hello2morrow.com/products/sonarj
10 http://www.headwaysoftware.com
11 http://source.valtech.com/display/dpm/Dependometer

http://splint.org
http://cppcheck.sourceforge.net
http://findbugs.sourceforge.net
http://msdn.microsoft.com/en-us/library/bb429476%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/bb429476%28v=vs.80%29.aspx
http://www.hello2morrow.com/products/sonarj
http://www.headwaysoftware.com
http://source.valtech.com/display/dpm/Dependometer

On the Benefit of Automated Static Analysis for SMEs 19

Table 1. Study objects

SO Platform Sources Size [kLoC] Business Domain

1 C#.NET closed, commercial ≈ 100 Corporate controlling
2 C#.NET closed, commercial ≈ 200 Embedded device maintenance
3 Java open, non-profit ≈ 200 Health information management
4 Java closed, commercial ≈ 100 Communal controlling
5 Java closed, commercial ≈ 560 Document processing

There are tools using SCQL like Semmle.QL [3] or DSM like Lattix [27],
for the sake of brevity not further explained here. Both of these concepts rely
strongly on the realisation of the system and cannot provide an architecture
specification that is independent of the system’s implementation [4].

2.4 Study Subjects and Objects

Study Subjects. For our investigation, we collaborate with five SMEs. These
companies cover various business and technology domains, e.g. corporate and
communal controlling, form letter processing as well as diagnosis and mainte-
nance of embedded systems. Four of them are involved in commercial software
development, one in software quality assurance and consulting. The latter could
not provide an own software project.

Study Objects (SO). Following the suggestion of the partner without a software
project, we instead chose the humanitarian open-source system OpenMRS12,
a development of the equally named multi-institution, non-profit collaborative.
Hence, our study objects are the five software systems briefly described in Tab. 1.
These software systems encompass between 100 and 600 kLoC. The develop-
ments of SOs 1 to 4 are conducted or audited by the study subjects and started
at most seven years ago. The project teams contain less than ten persons. Except
for OpenMRS, they are located in the Munich area. The development of SOs 1
and 2 has already been finished before our project started.

2.5 Procedure

This section explains milestones of our investigation (Step 1–4). It explains the
starting of our research (Step 1), addresses our research questions, i.e. which data
have to be collected and how to achieve that (Step 2) as well as how and under
which conditions our analyses have to be carried out (Step 3–4). Steps 2 and 3
take place in terms of a single, collaborative two-week sprint per participating
enterprise.

Step 1: Workshops and Interviews. We conduct a series of workshops and
interviews to first convince industrial partners to participate in our project and
then to understand their context and their needs. First, in an information event,
12 http://www.openmrs.org

http://www.openmrs.org

20 M. Gleirscher et al.

we explain the general theme of transferring QA techniques and propose first
directions. With the companies that agreed to join the project, we conduct a
kick-off meeting and a workshop to create a common understanding, discuss
organisational issues and plan the complete schedule. In addition, the partners
present a software system that we can analyse as well as their needs concerning
software quality. To intensify our knowledge of these systems and problems, for
each partner we perform a semi-structured interview with two interviewers and
a varying number of interviewees. Both interviewers take notes and consolidate
them. We then compare all interview results to find commonalities and differ-
ences. Finally, we have one or two consolidation workshops to discuss our results
and plan further steps.

Step 2: Raw Data Collection. The source code of at least three versions of
the study objects, e.g., major releases chosen by the companies, is retrieved for
the application of the chosen techniques for RQ 1 to analyse effects over time.
For bug pattern detection and architecture conformance analyses, we retrieve or
build executables packed with debug symbols for each of these configurations.
For architecture conformance we also need an appropriate architecture documen-
tation. To accomplish this step, all partners have to provide project data as far
as available, i.e. source code, build environment and/or debug builds, as well as
documentation of source code, architecture and project management activities.

Step 3: Measurement and Analysis. We apply each technique to the gath-
ered raw data via corresponding tool runs and inspect the results, i.e. findings
and statistics. To provide answers for RQ 1 we consider problems arising and ef-
forts spent. The tool runs enable us to derive answers for RQ 2.1. To accomplish
this step, the partners have to provide support for technical questions by a re-
sponsible contact or by personal attendance at the sprint meetings. One person
per technique carries out this step for all SOs. The following explains how this
is accomplished:

Code Clone Detection. We use the clone detection feature [11] of ConQAT 2.7
for all SOs. In case of conventional clone detection the configuration consists of
two parameters: the minimal clone length and the source code path. In case of
gapped clone detection such gap-specific parameters as maximal allowed number
of gaps per clone and maximal relative size of a gap are additionally required.
Based on the experience of our group and initial experimentation, we set the
minimal clone length to 10 lines of code, the maximal allowed number of gaps
per clone to 1 and the maximal relative size of a gap in our analysis to 30%.
After providing the needed parameters we run the analysis.

To inspect the analysis metrics and particular clones we use ConQAT. It
provides a list of clones, lists of instances of a clone, a view to compare files
containing clone instances and a list of discrepancies for gapped clone analysis.
This data is used to recommend corrective actions. Also in a series of runs of
clone detection over different versions of respective systems we monitor how
several parameters (cf. Sec. 2.3) evolve in subsequent versions.

On the Benefit of Automated Static Analysis for SMEs 21

Bug Pattern Detection. For Java-based systems we use FindBugs 1.3.9 and
PMD13 4.2.5. In C#.NET contexts we use Gendarme14 2.6.0 and FxCop 10.0.
Aside from applying all rules, we choose two additional tool settings which we
consider as being relevant for the SOs to gain two focused quality perspectives:

1) Selected categories addressing correctness, performance, and security
2) Selected rules for unused or poorly partitioned code and bad referencing

The tool settings are determined during preliminary analysis test runs. Cate-
gories and rules which are considered as not important – based on discussion
with the partners as well as requirements non-critical to the SOs’ application
domains – are ignored during rule selection.

To simplify the issue of defect classification (cf. Sec. 2.3) for our investigation
we only distinguish between rules for bugs (obvious defects), smells (simple to
very complex heuristics for latent defects) and pedantry (less critical issues with
focal point on coding style).

For additional and language independent metrics (e.g., lines of code without
comments; code-comment ratio; number of classes, methods and statements;
depth of inheritance and nested blocks; comment quality) as well as for result
preparation and visualisation we apply ConQAT.

Next, we analyse the finding reports resulting from the tool runs. This step
involves the filtering of findings as well as the inspection of source code to confirm
the severity and confidence of the findings and to determine corrective actions.
To get feedback and to confirm our conclusions from the findings we discuss
them with our partners during a workshop.

Architecture Conformance Analysis. We use ConQAT for this technique. The
procedure for each system consists of four steps:

1) Configuration of the tool with path to source code and corresponding exe-
cutables of the system

2) Creation of the architecture reflexion model (cf. Sec. 2.3) based on the ar-
chitectural information given by the enterprises

3) Run of the architecture conformance analysis
4) Defect analysis: Identification, discussion and classification of architectural

violations

A detailed description of this ConQAT feature can be found in [4]. In summary,
we use a reflexion model where dependency and hierarchy relations between
components can be expressed. As a next step, we map modelled components
to code parts (e.g. packages, namespaces, classes). We exclude code parts from
the analysis that do not belong to the system (e.g. external libraries). Then,
ConQAT analyses the conformance of the system to the reflexion model. Every
existing dependency that is not allowed by the architectural rules represents a
defect. Defects are visualised by the tool on the level of components and on the

13 http://pmd.sourceforge.net
14 http://www.mono-project.com/Gendarme

http://pmd.sourceforge.net
http://www.mono-project.com/Gendarme

22 M. Gleirscher et al.

level of classes and can therefore be analysed on both high and low level. To
eliminate tolerated architecture violations and to validate the created reflexion
model, we discuss every found defect with the enterprise. As a last step we
classify all defects together with the responsible enterprise. This allows us to
group similar defects and to provide a general understanding.

Step 4: Questionnaire. First, we evaluate the experience of the participat-
ing enterprises regarding software quality as well as static analysis techniques.
Second, we want to understand the perceived usefulness of static analysis tech-
niques for SMEs: Do they plan to use the presented techniques in their future
projects? Thus, we perform a survey on our study subjects using a questionnaire
containing nine questions (Q1-9), which can be found in Appendix A. This way
we contribute to RQ 2.2. The executive managers of each enterprise in their
role as a representative for their company then fill out this questionnaire and
we evaluate the answers. To avoid the risk of biased or too narrowly formulated
answers we use both, open and closed questions.

3 Results

We held the information event of Step 1 of our procedure (cf. Sec. 2.5) in July
2009 and invited more than thirty SMEs of which finally 12 participated. From
these companies, five committed to take part in the project. The other companies
were not able to provide the necessary commitment because of schedule or bud-
get constraints. As the first discussions were generally about improving quality
assurance, it was not caused by the choice of techniques. We conducted the kick-
off meeting in March 2010, the interviews between March and July and, finally,
two consolidation workshops in July 2010. We did not particularly analyse their
outcome for this paper. But based on these interviews and the experience of our
research group, we selected the three static analysis techniques and interpreted
our further results.

In the following we portrait for each technique how we contribute to the posed
research questions.

3.1 Code Clone Detection

RQ 1.1 – Technical Problems. Code clone detection turned out to be the
most straightforward and least complicated of the three techniques. It has, how-
ever, some technical limitations that could hinder its application in certain soft-
ware projects.

A major issue was the analysis of projects containing both, markup and proce-
dural code like JSP or ASP.NET. Since ConQAT supports either a programming
language or a markup language during a single analysis, it is required to aggre-
gate the results for both languages. To avoid this complication and to concentrate
on the code implementing the application logic we took into consideration only
the code written in the programming language and ignored the markup code.

On the Benefit of Automated Static Analysis for SMEs 23

Table 2. Efforts spent (RQ 1.2) per study object for applying each of the techniques

Phase Work step
(C)lone
(D)etection

Bug Pattern
Detection

Architecture
Conformance

Introduction
(configur-
ation) and
calibration

Analysis tools ≤ 0.5h ≤ 1h ≤ 0.5h
Aggregation
via ConQAT

n/a ≤ 0.5d ≤ 0.5h

Recalibration,
x-times

n/a ≤ x ∗ 0.5h n/a

Application
(analysis)

Run analysis ≤ 5min 1min ≤ . ≤ 1h ≤ 10sec
Inspection
of results

≤ 1h, more for
gapped CD

5min ≤ . ≤ 0.5h 5min ≤ . ≤ 0.5h

Nevertheless, it is still possible to combine the results of clone detection of the
code written in both languages to get more precise results.

Another technical obstacle was filtering out generated code from the analysed
code basis. In one SO large parts of the code were generated by a parser gen-
erator, viz. ANTLR. We excluded this code from our analysis using ConQAT’s
feature to ignore code files specified by regular expressions.

RQ 1.2 – Spent Effort. The effort required to introduce clone detection is
small compared to the other two techniques under study. The ease of introduction
of clone detection is achieved due to the minimalist configuration of the analysis
which in the simplest case includes the path to the source code and the minimal
length of a clone.

For all SOs it took less than an hour to configure clone detection, to get the
first results and to investigate the longest and the most frequent clones. Running
the analysis process itself took less then five minutes.

In case of gapped clone detection it could take a considerable amount of time
to analyse if a discrepancy is intended or if it is a defect. To speed up the
process ConQAT supports that the intended discrepancies can be fingerprinted
and excluded from further analysis runs. An overview of the efforts can be found
in Tab. 2.

RQ 2.1 – Found Defects. The results of conventional clone detection can
be interpreted as an indicator of bad design or of bad software maintainability,
but they do not point at actual defects. Nevertheless, these results give first
hints, which code parts must be improved. The following three design flaws
were detected in all analysed systems to a certain extent: cloning of exception
handling code, cloning of logging code and cloning of interface implementation
by different classes.

Tab. 3 shows the clone detection results for three versions of each SO, sorted
by time. In the analysed systems unit coverage as defined in Sec. 2.3 varied
between 14 and 79%. Koschke [16] reports on several case studies with unit
coverage values between 7 and 23% and one case study with a value of 59%,
which he defines as extreme. Therefor, the SOs 1, 3 and 5 contain normal clone

24 M. Gleirscher et al.

Table 3. Results of code clone detection

SO Version
Analysed

Units
[kUnits]

Cloned
Units

[kUnits]

Blow-up
[%]

Unit
Coverage

[%]

Longest
Clone

[Units]

Most Clone
Instances

I 15,9 3,5 119.5 22.2 112 39
1 II 25,3 5,8 118.9 23.0 117 39

III 32,3 7,8 119.2 24.0 117 39

I 35,4 14,3 143.1 40.5 63 64
2 II 41,6 18,9 150.2 45.4 132 47

III 39,9 14,6 137.4 36.7 89 44

I 51,7 9,4 114.5 18.2 79 21
3 II 56,8 8,6 111.2 15.1 52 20

III 61,6 8,4 110.0 13.7 52 19

I 8,9 6,0 238.8 68.0 217 22
4 II 22,4 17,3 309.6 77.6 438 61

III 38,3 30,4 336.0 79.4 957 183

I 196,3 48,7 122.3 24.8 141 72
5 II 211,3 53,4 122.7 25.3 158 72

III 208,6 53,2 122.8 25.5 156 72

Table 4. Results of gapped code clone detection

SO Version
Analysed

Units
[kUnits]

Cloned
Units

[kUnits]

Blow-up
[%]

Unit
Coverage

[%]

Longest
Clone

[Units]

Most Clone
Instances

I 13,3 3,0 119.9 22.3 34 39
1 II 21,0 4,5 117.9 21.5 37 52

III 27,1 6,0 117.4 22.1 52 52

I 24,3 4,6 116.3 19.0 156 37
2 II 34,7 8,7 123.2 25.0 156 37

III 37,1 9,4 123.7 25.3 156 37

I 46,7 12,0 124.4 18.2 73 123
3 II 46,1 10,0 120.0 15.1 55 67

III 49,1 10,0 118.6 20.5 55 64

I 7,8 4,5 192.1 58.6 42 34
4 II 18,8 11,0 206.2 59.8 51 70

III 32,2 19,2 211.1 59.5 80 183

I 142,3 29,4 117.4 20.7 66 68
5 II 154,0 32,8 118.0 21.3 85 78

III 151,9 32,7 118.2 21.5 85 70

rates according to Koschke. The clone rate in SO 2 is higher than the rates
reported by Koschke and for SO 4 it is extreme. Regarding maintenance the
calculated blow-up for each system is an interesting value. For example version
III of SO 4 is more than three times bigger as its hypothetically equivalent system
containing no clones. SO 4 shows that cloning can be an increasing factor over

On the Benefit of Automated Static Analysis for SMEs 25

time, while SO 3 reveals that it is possible to reduce the amount of clones existing
in the system code.

Cloning is considered harmful because it increases the chance of unconscious,
inconsistent changes, which can lead to faults in a system [12]. These changes can
be detected when applying gapped clone detection. We found a number of such
changes in the cloned code fragments, but we could not classify them as defects,
because we lacked the knowledge needed about the software systems. Also the
project partners could not directly classify these discrepancies as defects, which
confirms that gapped clone detection is a more resource demanding type of anal-
ysis. Nevertheless, in some clone instances we identified additional instructions
or deviating conditional statements compared to other instances of the same
clone class. Gapped clone detection does not go beyond method boundaries,
since experiments showed that inconsistent clones that cross method boundaries
in many cases did not capture semantically meaningful concepts [12]. This ex-
plains why metrics such as cloned units or clone coverage may differ from values
observed with conventional clone detection. Tab. 4 shows the results of gapped
clone detection.

RQ 2.2 – Perceived Usefulness. Following the feedback obtained from the
questionnaire, two enterprises had limited experience with clone detection, the
others did not know about it at all (Q2). Three enterprises estimated the rele-
vance of clone detection to their projects as very high, the others estimated it
as medium relevant (Q3). Concerning Q3, one stated that “clones are necessary
within short periods of development.” Finally, all enterprises evaluated the im-
portance of using clone detection in their projects as medium to high and plan
to introduce this technique in the future (Q5). For details see Tab. 7 and 8 in
Appendix A.

3.2 Bug Pattern Detection

RQ 1.1 – Technical Problems. Following Sec. 2.3, we confirm that bug pat-
terns are a powerful technique to gather a vast variety of information about
potentially defective code. However, most of its effectiveness and efficiency is
achieved through carefully done, project-specific fine-tuning of the many
setscrews available.

First, the impact of findings on quality factors of interest and their conse-
quences for the project (e.g. corrective actions, avoidance or tolerance) were
difficult to determine by the tool-provided rule categories, the severity and con-
fidence information. Based on our experience we identified the following study
object characteristics this impact depends on:

– Required usage-level qualities, e.g., security, safety, performance, usability
– Required internal qualities, e.g., code maintainability, reusability
– Technologies, i.e., language, framework, platform, architectural style
– Criticality of the context the findings belong to, e.g., platform or driver code

26 M. Gleirscher et al.

Second, some rules exhibited many false positives, either because their technical
way of detection is fuzzy or because a definitely precise finding is considered
not relevant in a project-specific context. The latter case requires an in-depth
understanding of each of the rules, the impacts of findings and, subsequently, a
proper redlining of rules as pedantry or, actually, irrelevant. We neither measured
the rates of false positives nor investigated costs and benefits thereof as our focus
lay on the identification of the most important findings only.

Third, due to restricted selection and filtering mechanisms in the tools as well
as a bounded view of the SOs’ life-cycles, we were hindered to apply and calibrate
appropriate rule selectors and findings filters. We saw that the usefulness of
results is crucially influenced by the conversion of project-specific information on
rule impacts into queries for rule selection and findings filtering. The tools greatly
differ in their abilities to achieve this task via their graphical or command-line
interfaces.

We addressed the first two issues by group discussion also with our partners
and improved rule selection and findings filtering to principally avoid the findings
reports to get overloaded or prone to false positives of the second kind. Also, the
third issue could only be largely compensated by manual efforts. As most finding
reports were quite homogeneously encoded and technically well accessible, we
utilised ConQAT to gain statistical information for higher-level quality metrics
as listed in Step 3 of Sec. 2.5.

RQ 1.2 – Spent Effort. We achieved the initial setup of a single bug pattern
tool in less than an hour. This step required knowledge about the internal struc-
ture of the SO such as, e.g., its directory structure and third party code. We
used the ConQAT framework to flexibly run the tools in a specific setting (Java
only) and for further processing of the finding reports. Having good knowledge
of this framework, we completed the analysis setup for an SO (selection of rules,
adjustment of bug pattern parameters, framework setup, etc.) in about half a
day.

The runs took between a minute and an hour depending on code size, rules
selection and other parameters. Hence, bug pattern detection should at least be
selectively included into automated build tasks. Part of the rules are compu-
tationally complex and some tools frequently required more than a gigabyte of
memory. The manual effort after the runs can be split into review and recali-
bration. The review of a report took us a few minutes up to half an hour. Due
to the short period of the life-cycle of the SOs we had insight into, we could not
estimate the recalibration effort for the rule selector and the findings filter. An
overview of the efforts can be found in Tab. 2.

RQ 2.1 – Found Defects. We conducted bug pattern analysis in three selective
tool settings according to Step 3 in Sec. 2.5, but only for one version of each SO.
For all SOs the filtered finding reports confirmed the defects focused or expected
by these settings. Without going into the quantities and details of single findings,
we summarise language-specific results:

On the Benefit of Automated Static Analysis for SMEs 27

Table 5. Overview of bug pattern results. Legend: Cells contain the number of findings
or a maximum value, “n” . . . not applicable, “.” . . . not noticeable, “x” . . . noticeable,
but PMD did not offer an appropriate way to exactly count the many findings.

Tool
(Lang.)

Rule
(recommendations in parentheses)

Study Objects Most affected
Qualities1 2 3 4 5

FxCop
(C#)

Empty / general exception handlers 47 106 n n n Maintainability
Nested use of generic types 44 . n n n Maintainability

Gend-
arme
(C#)

Deep namespaces 35 . n n n Maintainability
Visible constants 18 338 n n n Security
Extensively large classes . 3 n n n Maintainability
Extensively long methods . 17 n n n Maintainability
Suspicious type conversion . 3 n n n Correctness

Gend.,
PMD

Constructor calls overwritable
method

8 . x x x Security, stabil-
ity

Find-
Bugs
(Java)

Unused local variables n n 142 . . Maintainability
Inefficient string manipulation n n 46 . . Performance
Corrupted serialisable n n 55 . . Correctness
Return values not validated n n 30 . . Correctness, sec.
Access of a null pointer n n . . 1 Sec., stability
Integer shift beyond 32 bits n n . . 4 Correctness

PMD
(Java)

Empty method in abstract class n n x . x Maintainability
Max. cyclomatic complexity (≤ 10) n n 78 156 216 Maintainability
Extensive length / size / parameter
count, too many methods / fields

n n . x x Maintainability

ConQAT Max. nested block depth (≤ 5) 13 11 19 17 14 Maintainability

C# Upon the rules with highest numbers of findings, FxCop and Gendarme
reported empty exception handlers, visible constants, and poorly structured
code. There was only one consensually critical kind of findings related to
correctness in SO 2, viz. unacceptable loss of precision through wrong cast
during an integer division used for accounting calculations.

Java Upon the rules with highest numbers of findings, FindBugs and PMD
reported unused local variables, missing validation of return values, wrong
use of serialisable, and extensive cyclomatic complexity, class/method size,
nested block depth, parameter list. There have only been two consensually
critical findings, both in SO 5, related to correctness, viz. foreseeable access
of a null pointer and an integer shift beyond 32 bits in a basic date/time
component.

Independent of the programming language and concerning security and stability
we frequently detected the pattern constructor calls an overwritable method in
4 of 5 SOs and found a number of defects related to error prone handling of
pointers. Concerning maintainability the SOs exhibited missing or unspecific
handling of exceptions, manifold violation of code complexity metrics and various
forms of unused code. Details are shown in Tab. 5.

28 M. Gleirscher et al.

RQ 2.2 – Perceived Usefulness. According to the questionnaire, all of the
partners considered our bug pattern findings to be medium to highly relevant for
their projects (Q3). The sample findings we presented during our final workshop
were perceived as being non-critical for the success of the SOs but would have
been treated if they had been found by such tools during the development of these
software systems. The low number of consensually critical findings correlated
well with the fact that the technique was known to all partners and that most of
them have good knowledge thereof and regularly used such tools in their projects,
i.e. at least monthly, at milestone or release dates (Q1-2). However, three of them
could gain additional education in this technique (Q4). Nevertheless, all of the
enterprises decided to use bug patterns as an important QA instrument in their
future projects (Q5). For details see Tab. 7 and 8 in Appendix A.

3.3 Architecture Conformance Analysis

RQ 1.1 – Technical Problems. We observe two kinds of general problems that
prevent or complicate each architectural analysis: The absence of an architecture
documentation and the usage of dynamic patterns.

For two of the systems there was no documented architecture available. In
one case the information was missing because the project was taken over from
a different organisation that was not documenting the architecture at all. They
reasoned that any later documentation of the system architecture would be too
expensive for their enterprise. In another case the organisation was aware that
their system was severely lacking any architectural documentation. Nevertheless
they feared that the time involved and the sheer volume of code to be covered
exceeds the benefits. The organisation additionally argued that they are afraid
of having to update the documentation within several months as soon as the
next release is coming out.

In SO 2 a dynamic architectural pattern is applied, where nearly no static de-
pendencies could be found between defined components. All components belong-
ing to the system are connected at run-time. Thus, our static analysis approach
could not be applied.

Architecture conformance analysis needs two ingredients apart from the ar-
chitecture documentation: The source code and the executables of a system.
This could be a problem because the source has to be compilable to analyse
it. Another technical problem occurred when using ConQAT. Dependencies to
components solely existing as executables were not recognised by the tool. For
that reason all rules belonging to compiled components could not be analysed.

Beside these problems we could apply our static analysis approach to two
systems without any technical problems. An overview of all SOs with respect to
their architectural properties can be found in Tab. 6.

RQ 1.2 – Spent Effort. For each system the initial configuration of ConQAT
and the creation of the reflexion model in ConQAT could be done in less than one
hour. Tab. 6 shows the number of modelled components and the rules that were
needed to describe their allowed connections. The analysis process itself finished

On the Benefit of Automated Static Analysis for SMEs 29

Table 6. Architectural characteristics of the study objects

SO Architecture Version
Violating Compo-
nent Relationships

Violating Class
Relationships

12 Components
20 Rules

I 1 5
1 II 3 9

III 2 8

2 dynamic n/a n/a n/a

3 undocumented n/a n/a n/a

14 Components
9 Rules

I 0 0
4 II 1 1

III 2 4

5 undocumented n/a n/a n/a

in less than ten seconds. The time needed for the interpretation of the analysis
results is of course dependent on the amount of defects found. For each defect we
were able to find the causal code parts within one minute. We expect that the
effort needed for bigger systems will only increase linearly but staying small in
comparison to the benefit that can be achieved using architecture conformance
analysis as illustrated in Sec. 2.3. An overview of the efforts can be found in
Tab. 2.

RQ 2.1 – Found Defects. As shown in Tab. 6 we observed several discrepan-
cies in the analysed SOs over nearly all version. Only one version did not contain
architectural violations. Overall, we found three types of defects in the analysed
systems. Each defect represents a code location showing a discrepancy to the doc-
umented architecture. The two analysable SOs had architectural defects which
could be avoided if this technique had been applied. In the following we explain
the types of defects we classified together with the responsible enterprises. The
companies rated all findings as critical.

– Circumvention of abstraction layers: Abstraction layers (e.g. presentation
layer) provide a common way to structure a system into logical parts. The
defined layers are hierarchically dependent on each other, reducing the com-
plexity in each layer and allowing to benefit from structural properties like
exchangeability or flexible deployment of each layer. These benefits vanish
when the layer concept is harmed by dependencies between layers that are
not connected to each other. In our case e.g. the usage of the data layer from
the presentation layer was a typical defect we found in the analysed systems.

– Circular dependencies: We found undocumented circular dependencies be-
tween two components. We consider these dependencies – whether or not
documented – as defects themselves, because they affect the general prin-
ciple of component design. Two components that are dependent on each
other can only be used together and can thus be considered as one compo-
nent, which contradicts the goal of a well designed architecture. The reuse
of these components is strongly restricted. They are harder to understand
and to maintain.

30 M. Gleirscher et al.

– Undocumented use of common functionality: Every system has a set of com-
mon functionality (e.g. date manipulation) which is often grouped into com-
ponents and used across the whole system. Consequently, it is important to
know where this functionality is actually used inside a system. Our observa-
tion showed that there were such dependencies that were not covered by the
architecture.

RQ 2.2 – Perceived Usefulness. Following the feedback gained from the
questionnaire, we observed that 4 of the 5 participating enterprises did not know
about the possibility of automated architecture conformance analysis (Q1). Only
one of them already checked the architecture of their systems, however in a
manual way and less frequently. Confronted with the results of the analysis all
enterprises rated the relevance of the presented technique medium to highly
relevant (Q3). One of them stated that as a new project member it is easier
to become acquainted with a software system if its architecture conforms to
its documented specification. All enterprises agreed on the usefulness of this
technique and plan its future application in their projects (Q5). Details of the
questionnaire can be found in Tab. 7 and 8 in Appendix A.

4 Discussion

General Observations. First, we observed that code clone detection and archi-
tecture conformance analysis have been quite new to our partners as opposed to
bug pattern detection which was well known. This may result from the fact that
style checking and simple bug pattern detection are standard features of modern
development environments. However, we consider it as important to know that
code clone detection can indicate critical and complex relationships residing in
the code at minimum effort. We made our partners aware of the usefulness of
architecture conformance analysis, both in the case of an available architecture
specification and to reconstruct such a documentation.

Second, we conclude that all of the three techniques can be introduced and
applied with resources affordable for small enterprises. We assume, that except
for calibration phases at project initiation or after substantial product changes
the effort of readjusting the settings for the techniques stays very low. This effort
is compensated by the time earned through narrowing results to successively
more relevant findings. Moreover, our partners perceived all of the discussed
techniques as useful for their future projects.

Third, we perceive our analyses of the study objects as successful. We found
large clone classes, a significant number of pattern-based bugs aside from smells
and pedantry as well as unacceptable architecture violations.

Usage Guidelines. During the repetitive conduct of Steps 2 and 3 of the proce-
dure in Sec. 2.5 we gained a lot of experience in applying the chosen techniques.
For their introduction and application to a new software project we consider the
following generic procedure as very helpful:

On the Benefit of Automated Static Analysis for SMEs 31

1) Establish a project-specific configuration. This includes the choice, particu-
larly for bug patterns, of appropriate rules aiming on relevant quality factors
or just the strengthening of design or coding guidelines.

2) Define events for measurement, findings filtering and documentation. Filter-
ing requires in-depth knowledge of the system and its critical components.
For bug pattern detection this influences severity and confidence levels, and
for architecture conformance analysis this influences the definition of allowed,
tolerated, and forbidden dependencies.

3) Decide whether to treat or tolerate findings. This involves (i) the inspection
of results and defective code, (ii) the issue of change requests for defect
removal and, (iii) to assess efficiency, the documentation of efforts spent.

4) Determine whether and how defects can be avoided regarding lessons learned
from defect treatment.

5) Strengthen quality gates by improved criteria, which follow patterns such
as, e.g., “Clone coverage in critical code package A below X% prior to any
bundled feature introduction.”, “No critical security errors with confidence
> Y % according to tool Z for any release.”, or “No architecture violations
originating from change sets of new features.”

6) For project control in the context of continuous integration, derive statistics
and trends from findings reports by a quality control dashboard such as
ConQAT.

5 Threats to Validity

In the following, we discuss threats to the validity of our results. We structure
them in internal and external validity threats.

5.1 Internal Validity

First, a potential threat to the internal validity is that most of the project
participants had little experience with the specific tools we were applying. This
could give us additional technical problems, which would not have occurred with
experts. Furthermore, the efforts are probably higher. We mitigated this risk by
discussions with experts and we assume that the introduction in other companies
would also not necessarily be performed by experts.

Second, we did not record exact details about the efforts we spent. We rather
made order of magnitude estimations only. In our context we consider this threat
as small as we do not require precise analyses of these efforts including time
measurement.

Third, we did not completely check whether all defects we found have caused
real problems such as, e.g., critical system failures during operation or significant
budget overruns. Hence, there may be false positives. We reduced this risk by
detailed inspections of the defects we listed.

Fourth, the questionnaire results could be wrong, because a participant either
knowingly or unknowingly gave incorrect answers. We mitigated this threat by
asking participants to be careful in filling it out and at the same time assured
anonymity to them.

32 M. Gleirscher et al.

5.2 External Validity

As this is an experience report on a technology transfer project, the results are
inherently difficult to generalise. We had five projects of SMEs all located in
Germany. We also restricted our analysis to systems realised in Java and C#
and only applied specific analysis tools for it. Hence, the problems, defects, and
perceptions may be particular to this context.

Nevertheless, we think that most of our experiences are valid for other con-
texts as well. The companies, we have collaborated with, range in their size from
only several to a hundred employees. The domains they build software for dif-
fer quite strongly. Finally, the tools are all prominent examples and had been
used in industrial projects before. Only the restriction to two programming lan-
guages has a strong effect as for other languages there may exist rather different
tools and defects. For instance, with bug pattern detection, Ahsan, Ferzund and
Wotawa [1] report that characteristics of bug patterns may be language specific.

6 Related Work

In this research we concentrate on applying automated static analysis techniques
to enable SMEs mitigate the risk of defect-related costs. Different from our
approach, the research community devotes its attention primarily to software
process improvement in SMEs. There are a number of papers covering this topic.

Kautz [14] developed and used metrics to evaluate how new practices and tools
for configuration and change management were affecting the software process at
three SMEs. This work considers that the key to successful software measurement
is to make metrics meaningful and to tailor them to a particular organisation.
We confirm that observation in the context of software measurement.

Von Wangenheim et al. [28] investigated the assessment of software processes
in SMEs to improve these processes. They developed MARES, a set of guide-
lines for conducting an ISO/IEC 15504-conforming software process assessment,
focused on small companies. We perceive the usage guidelines we reported as a
potential bridge between automated static analysis and more general guidelines
for software process improvement.

Hofer [10] states that only 10% of the analysed SMEs in Austrian software
industry believe to suffer from a lack of methods. He concludes that appropriate
tool support as well as the knowledge of methods is available. On the contrary, we
argue that SMEs may not be aware of many effective methods and can therefore
not estimate their lack concerning these techniques.

Returning to automated static analysis techniques, to the best of our knowl-
edge, multiple techniques have never been applied in a study in an SME context.
However, there are several publications in which such techniques were investi-
gated separately and in other contexts:

Lague et al. [18] report on application of function clone detection to a large
telecommunication software system. As opposed to that, we do not limit clone
detection to the comparison of functions but compare arbitrary code fragments
with each other. In this work we also did not analyse large systems. Nevertheless,

On the Benefit of Automated Static Analysis for SMEs 33

we came to the similar conclusion that clone detection has potential to improve
software quality.

Lanubile and Mallardo [19] performed research on finding clones in web ap-
plications developed using markup and programming languages. As mentioned
earlier, our approach is technically limited in analysing such software systems. In-
troducing a semi-automatic approach presented by Lanubile and Mallardo could
remove this limitation.

Ayewah et al. [2] evaluate the accuracy and value of FindBugs findings and dis-
cuss but not solve the problem of properly filtering false positives. They use the
term trivial bugs for what we call smells and pedantry. We confirm their conclu-
sions on the usefulness of findings and believe that an application of bug pattern
detection has to undergo calibration guided by the staff of a software project.
Moreover, by answering RQ2, we contribute to Foster’s, Hicks’ and Pugh’s [9]
question “Are the defects reported by [static analysis] tools important?”.

Ferzund, Ahsan and Wotawa [7] report on the effectiveness of rules for smell
detection. The rules they developed are based on machine learning and source
file statistics provided by static code metrics. They used training information
from two software projects including bug databases. We did not address the
estimation of rule effectiveness but focused on their selection and application.

Wagner et al. [30] similarly applied FindBugs and PMD to two industrial
projects. They could not find defects reported from the field that are covered
by bug pattern detection. However, our results show that this technique indeed
captures critical defects that may eventually occur in the field.

Rosik et al. [25] conducted an industrial case study on architecture confor-
mance with three participating software engineers. They conclude that this tech-
nique should be integrated into the software engineering process and applied
continuously. We think that the procedure we presented is able to satisfy their
needs, because it explicitly focuses on continuous integration.

Mattsson et al. [21] illustrate their experience in an industrial project and the
huge effort that is needed to keep the architectural model in conformance with
the implementation. However, they tried to reach this goal in a manual way. Our
results show that automation can dramatically reduce efforts.

Feilkas, Ratiu and Juergens [6] analysed three .NET platform projects of Mu-
nich Re very similar to our procedure, but they analysed the effects of the loss
of architectural knowledge. Compared to our results they report a much higher
effort of about five days to apply the technique, mainly because of time consum-
ing discussions. We think that the lower effort we are reporting is mainly caused
by the fact that we were collaborating with small enterprises and experienced a
lower communication overhead.

7 Conclusions and Future Work

In general, it is most effective to combine different QA techniques to find most
of the defects [20]. This, however, comes at the efforts and costs of performing
many different techniques. Particularly, SMEs have difficulties in assigning large

34 M. Gleirscher et al.

efforts to diverse QA provisions and to training specialists for them. Automated
static analysis techniques promise to be an efficient contribution to software QA,
because they only require little effort for their application.

We reported our experience in applying three static analysis techniques to
small enterprises: code clone detection, bug pattern detection and architecture
conformance analysis. Consequently, we assessed potential barriers for introduc-
ing these techniques as well as the observations we could make in a one-year
project with five German SMEs.

We found several technical problems, such as multi-language projects with
single language clone analysis or false positives, but we believe that these are
no major road blocks for the adoption of static analysis. Overall, the effort for
introducing the analyses was small. Most techniques were set up with an effort
of less than one person-hour. We found various defects, such as high levels of
cloning, null pointer access, erroneous calculations or circumvention of archi-
tecture layers. In the end, our partners found all of the presented techniques
relevant for inclusion into their quality assurance processes.

In our opinion static analysis tools can efficiently improve quality assurance
in SMEs, if they are continuously used throughout the development process
and are technically well integrated into the tool landscape. But as our research
was not focused on long term observations we can not address this issue. Conse-
quently it is an interesting area of future work to investigate the long term effects
of static analyses in SMEs’ software projects and their continuous integration
into their development processes. Questions arising from the application of these
techniques such as their long term efficiency, their inclusion into an overall QA
strategy, their acceptance by developers, their application to non-code develop-
ment artefacts or their effects on the daily work could then be investigated.

We will continue to work in this area to better understand the needs of SMEs
and investigate our current findings.

Acknowledgements. We would like to thank Christian Pfaller, Bernhard
Schätz and Elmar Jürgens for their technical and organisational support through-
out the project. We thank all involved companies for their reproachless collabo-
ration and assistance.

References

1. Ahsan, S.N., Ferzund, J., Wotawa, F.: Are there language specific bug patterns?
Results obtained from a case study using Mozilla. In: Proc. Fourth International
Conference on Software Engineering Advances (ICSEA 2009), pp. 210–215. IEEE
Computer Society (2009)

2. Ayewah, N., Pugh, W., Morgenthaler, J.D., Penix, J., Zhou, Y.: Evaluating static
analysis defect warnings on production software. In: Proc. 7th Workshop on Pro-
gram Analysis for Software Tools and Engineering (PASTE 2007), pp. 1–8. ACM
Press (2007)

3. de Moor, O., Verbaere, M., Hajiyev, E., Avgustinov, P., Ekman, T., Ongkingco, N.,
Sereni, D., Tibble, J.: QL for source code analysis. In: Proc. Seventh IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation (SCAM
2007), pp. 3–16. IEEE Computer Society (2007)

On the Benefit of Automated Static Analysis for SMEs 35

4. Deissenboeck, F., Heinemann, L., Hummel, B., Juergens, E.: Flexible architecture
conformance assessment with ConQAT. In: Proc. 32nd ACM/IEEE International
Conference on Software Engineering, vol. 2, pp. 247–250. ACM Press (2010)

5. European Commission. Commission recommendation of May 6 2003 concerning
the definition of micro, small and medium-sized enterprises. Official Journal of the
European Union L 124, 36–41 (May 2003)

6. Feilkas, M., Ratiu, D., Juergens, E.: The loss of architectural knowledge during
system evolution: An industrial case study. In: Proc. IEEE 17th International Con-
ference on Program Comprehension (ICPC 2009), pp. 188–197. IEEE Computer
Society (2009)

7. Ferzund, J., Ahsan, S.N., Wotawa, F.: Analysing Bug Prediction Capabilities of
Static Code Metrics in Open Source Software. In: Dumke, R.R., Braungarten, R.,
Büren, G., Abran, A., Cuadrado-Gallego, J.J. (eds.) IWSM 2008. LNCS, vol. 5338,
pp. 331–343. Springer, Heidelberg (2008)

8. Fiutem, R., Antoniol, G.: Identifying design-code inconsistencies in object-oriented
software: A case study. In: Proc. International Conference on Software Maintenance
(ICSM 1998). IEEE Computer Society (1998)

9. Foster, J., Hicks, M., Pugh, W.: Improving software quality with static analysis. In:
Proc. 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE 2007), pp. 83–84. ACM Press (2007)

10. Hofer, C.: Software development in Austria: Results of an empirical study
among small and very small enterprises. In: Proc. 28th Euromicro Conference,
pp. 361–366. IEEE Computer Society (2002)

11. Juergens, E., Deissenboeck, F., Hummel, B.: CloneDetective – A workbench for
clone detection research. In: Proc. 31th International Conference on Software En-
gineering (ICSE 2009), pp. 603–606. IEEE Computer Society (2009)

12. Juergens, E., Deissenboeck, F., Hummel, B., Wagner, S.: Do code clones matter?
In: Proc. 31th International Conference on Software Engineering (ICSE 2009),
pp. 485–495. IEEE Computer Society (2009)

13. Juergens, E., Göde, N.: Achieving accurate clone detection results. In: Proceed-
ings 4th International Workshop on Software Clones, pp. 1–8. ACM Press (2010)

14. Kautz, K.: Making sense of measurement for small organizations. IEEE Soft-
ware 16, 14–20 (1999)

15. Knodel, J., Popescu, D.: A comparison of static architecture compliance checking
approaches. In: Proc. IEEE/IFIP Working Conference on Software Architecture
(WICSA 2007), p. 12. IEEE Computer Society (2007)

16. Koschke, R.: Survey of research on software clones. In: Duplication, Redundancy,
and Similarity in Software, Schloss Dagstuhl, Germany (2007)

17. Koschke, R., Simon, D.: Hierarchical reflexion models. In: Proc. 10th Working
Conference on Reverse Engineering (WCRE 2003), p. 368. IEEE Computer Society
(2003)

18. Lague, B., Proulx, D., Mayrand, J., Merlo, E.M., Hudepohl, J.: Assessing
the benefits of incorporating function clone detection in a development pro-
cess. In: Proc. International Conference on Software Maintenance (ICSM 1997),
pp. 314–321. IEEE Computer Society (1997)

19. Lanubile, F., Mallardo, T.: Finding function clones in web applications. In:
Proc. 7th European Conference on Software Maintenance and Reengineering
(CSMR 2003), pp. 379–388. IEEE Computer Society (2003)

20. Littlewood, B., Popov, P.T., Strigini, L., Shryane, N.: Modeling the effects of com-
bining diverse software fault detection techniques. IEEE Transactions on Software
Engineering 26, 1157–1167 (2000)

36 M. Gleirscher et al.

21. Mattsson, A., Lundell, B., Lings, B., Fitzgerald, B.: Experiences from representing
software architecture in a large industrial project using model driven development.
In: Proc. Second Workshop on SHAring and Reusing architectural Knowledge Ar-
chitecture, Rationale, and Design Intent (SHARK-ADI 2007). IEEE Computer
Society (2007)

22. Mishra, A., Mishra, D.: Software quality assurance models in small and medium
organisations: A comparison. International Journal of Information Technology and
Management 5(1), 4–20 (2006)

23. Passos, L., Terra, R., Valente, M.T., Diniz, R., das Chagas Mendonca, N.: Static
architecture-conformance checking: An illustrative overview. IEEE Software 27,
82–89 (2010)

24. Richardson, I., Von Wangenheim, C.: Guest editors’ introduction: Why are small
software organizations different? IEEE Software 24(1), 18–22 (2007)

25. Rosik, J., Le Gear, A., Buckley, J., Babar, M.: An industrial case study of ar-
chitecture conformance. In: Proc. 2nd ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM 2008), pp. 80–89. ACM
Press (2008)

26. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Technical
report, Queen’s University at Kingston (2007)

27. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. In: Proc. 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications (OOP-
SLA 2005), pp. 167–176. ACM Press (2005)

28. von Wangenheim, C.G., Anacleto, A., Salviano, C.F.: Helping small companies
assess software processes. IEEE Software 23, 91–98 (2006)

29. Wagner, S.: Defect classification and defect types revisited. In: Proc. 2008 Work-
shop on Defects in Large Software Systems (DEFECTS 2008), pp. 39–40. ACM
Press (2008)

30. Wagner, S., Deissenboeck, F., Aichner, M., Wimmer, J., Schwalb, M.: An evalu-
ation of two bug pattern tools for java. In: Proc. First International Conference
on Software Testing, Verification, and Validation (ICST 2008), pp. 248–257. IEEE
Computer Society (2008)

31. Wagner, S., Jürjens, J., Koller, C., Trischberger, P.: Comparing Bug Finding Tools
with Reviews and Tests. In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS,
vol. 3502, pp. 40–55. Springer, Heidelberg (2005)

32. Wikipedia. List of tools for static code analysis — wikipedia, the free encyclopedia
(2011) (accessed May 6, 2011)

33. Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J.P., Vouk, M.A.:
On the value of static analysis for fault detection in software. IEEE Transactions
on Software Engineering 32, 240–253 (2006)

On the Benefit of Automated Static Analysis for SMEs 37

A Results of the Questionnaire

Table 7. Summary of closed answers of the questionnaire for RQ 2.2 (five results,
contents and answers have been translated from German to English). Legend: ++ ..
very high, + .. high, o .. medium, – .. low, - - .. very low

Question Closed Answers (without comments)

Q1) Which of these static
analysis techniques have you
already been using in your
projects?

d
a
il
y

w
ee

kl
y

m
o
n
th

ly

le
ss

fr
eq

.

n
ev

er

Architecture conformance 0 0 0 1 4
Bug pattern detection 2 2 1 0 0
Clone detection 0 0 0 2 3

Q2) What is your estimate of
the experience of your com-
pany in these techniques?

++ + o – - - none
Architecture conformance 1 2 1 1 0 0
Bug pattern detection 1 3 1 0 0 0
Clone detection 0 0 1 0 1 3

Q3) How do you perceive the
relevance of our analysis re-
sults for your study object?

high o low none
Architecture conformance 3 2 0 0
Bug pattern detection 2 3 0 0
Clone detection 3 2 0 0

Q4) How much education
could you gain from the topics
of our research project?

much o little none
Architecture conformance 2 2 1 0 0 0
Bug pattern detection 2 0 1 1 1 0
Clone detection 2 2 1 0 0 0

Q5) Which of the following
analysis techniques do you
plan to apply at which level
of priority?

++ + o – - - none *)
Architecture conformance 1 3 0 1 0 0 5
Bug pattern detection 4 1 0 0 0 0 5
Clone detection 0 2 3 0 0 0 5
*) application of the technique is planned

38 M. Gleirscher et al.

Table 8. Summary of open answers and comments of the questionnaire for RQ 2.2
(five results, contents and answers have been translated from German to English)

Open Answers and Comments

Q1) Architecture conformance analysis has not been used because . . .

– “projects have been developed cleanly or without [need of] architecture.”
– “manual inspection was carried through.”
– “the prerequisites . . . would have needed to be established for our projects. Manual

inspection (code reviews) already takes place irregularly.”
– “it was not known to us.”

Clone detection has not been used because . . .

– “[clones were] not known to us as a problem.”
– “we did not recognise its necessity.”

Q3) The results have been relevant because . . .

– “manual [code] analysis is significantly more cost-intensive, . . . clone detection is
only feasible with tool support.”

– “we learned about concepts, experiences and tools . . . it is easier to become ac-
quainted with [a project if its architecture conforms to its documented specifica-
tion].”

– “Clones are necessary within short periods of development.”

Q5) “The results of this research project shall be included into our internal develop-
ment process.”
Q6) Your estimate of the current status of your organisation w.r.t. software quality:
Strengths: “Seamless process for requirements QA . . . regarded design guidelines for
all languages used . . . flexible adaptation of guidelines to customer needs . . . performed
QA provisions (from unit testing to selective pair programming) seem to work . . . so
far we only experienced high customer satisfaction . . .mature in testing techniques
and management.”
Weaknesses: “No consequent QA provisions . . . no systematic QA . . . automation and
tool usage either project specific or even left out . . . still learning to apply the tools.”
Q7) Where do you expect the highest potential of your organisation to improve its
software quality?

– “Consequent QA provisions,”
– “integrated tools and more automation . . . QA dashboard for project managers,”
– “better knowledge transfer between teams and projects,”
– “improved quality control . . . backflow of QA results into development process.”

Q8) Your estimate of the usefulness of static analysis for your software projects:
Positive: “Important”, “high”, “trend analyses are important”, “very important, be-
cause of early and efficient defect detection . . . help identify structural deficits . . . ease
[code] maintenance . . . quality improvement starting with first build . . . for internal
projects better control and indication of deficits.”
Negative: “Often not feasible in projects externally conducted at the customers’.”

BIM: A Methodology to Transform Business
Processes into Software Systems

Francisco J. Duarte1, Ricardo J. Machado1, and João M. Fernandes2

1 Departamento de Sistemas de Informação, Universidade do Minho, Portugal
2 Departamento de Informática, Universidade do Minho, Portugal

Abstract. This manuscript proposes a guiding methodology to obtain
a software system that supports the execution of the business processes
existing within an organization. The methodology promotes the usage of
business process reference models and intends to reduce the implementa-
tion time of the software systems. The methodology assumes four distinct
phases and several abstraction levels and is applicable both when devel-
oping systems from scratch or in re-engineering contexts. The method-
ology embodies a special phase to handle the diversity of the business
processes of an organization. By tailoring process reference models and
by considering the characteristics of a specific organization, a proper set
of business processes is derived for that organization. Then, we can ob-
tain a suitable information system and implement its automatable parts
in a software solution that can run on top of open source software frame-
works. We also present four new supporting concepts to the methodology,
and a summarized execution of it.

Keywords: BPM, BIM, business implementation methodology, soft-
ware, software development process, OSS, COTS, EPF.

1 Introduction

For business companies, representing the real world business processes in soft-
ware systems is an important issue during their development and utilization.
Currently, the major software houses provide solid solutions to support in soft-
ware systems the execution of business processes, usually with Commercial Off-
The-Shelf (COTS) systems, like Enterprise Resource Planning (ERP), Customer
Relationship Management (CRM), and Supply Chain Management (SCM). The
technologies used inside those COTS systems are hidden from the users, and, in
the best cases, standard interface technologies (e.g., web services) are available to
interact with them. In addition, when the set of business processes implemented
inside the COTS system is not sufficient to support the operation of a company,
a significant effort to extend the implemented processes is required, either in
new projects or in re-engineering contexts. The customization of a given COTS
system requires a deep knowledge on the specific options it offers. Additionally,
proficiency in very specific programming languages (e.g., ABAP in SAP R/3)
or in the COTS specific business model and interfaces is usually demanded in

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 39–58, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

40 F.J. Duarte, R.J. Machado, and J.M. Fernandes

order to support the scripting inside the COTS system or to execute a proper
external use of interfaces.

To deploy COTS systems, some methodologies are proposed by software ven-
dors or are developed by consulting companies that implement those systems.
These methodologies focus on tailoring the COTS system to a specific client,
and in most cases assuming that the current business operations of the client
should not be deeply challenged. Thus, during a COTS implementation project,
the client organization cannot be sure that the most appropriate set of business
processes is implemented in the software solution, neither that the COTS imple-
mented business processes follow world-class reference business process models.
Additionally, there is no guarantee that the effort needed to upgrade a subset of
the implemented business processes is manageable for the organization.

Typically, the supporting tools for a COTS system load, unload, extend, or
customize business processes, but only focusing on implementation issues, rather
than having a business-oriented perspective. Some platforms, like ARIS [1], pro-
vide a basis for editing the software system that implements business processes,
usually following proprietary process reference models. Generically, business pro-
cess implementation methodologies present the following problems:

1. Methodologies are not holistic, because that they do not always start with
a process reference model and they do not always end up in implemented
software;

2. Methodologies are not directed neither to use mixed vendor software com-
ponents nor to use Open-source Software (OSS);

3. The time to implement a software system based on non-executable business
process descriptions is long;

4. There is a lack of automation for model transformation activities;
5. It is hard to pick a preferred process reference model and use it inside an

established methodology;
6. Many methodologies are proprietary and induce activities caused by the

available COTS software characteristics;
7. A clear focus on the quality of the business processes content is missing.

Instead, a focus on the target COTS software is observed.

According to [2], the objectives of modeling a software process are to facilitate
human understanding and communication, to support process improvement and
management, to provide automated guidance in performing the development
process, and to automate execution support. Proposals exist, like [3], to increase
the automation degree in model transformations from UML into BPEL, to mech-
anize BPM models [4], or to use XML to allow automation of dynamic business
processes [5], but a holistic approach to transform business requirements into
running software is still missing. In [6], Enterprise Service Buses (ESB) are con-
sidered as a state of the art solution for a capable and manageable integration
infrastructure for web services and Service-oriented Architectures (SOA). ESBs
implement a message backbone an based on open-standards designed to enable
the implementation, deployment, and management of SOA-based solutions. We
propose a methodology called Business Implementation Methodology (BIM) to

A Methodology to Transform Business Processes into Software Systems 41

better handle the above enumerated problems, to handle properties for processes
suggested in [2], and to use state of the art software frameworks. BIM starts with
generic business process reference models and ends up with running software.
BIM is not attached to any proprietary software platform neither to specific no-
tations for business processes or other process artifacts. Nevertheless, for the sake
of reducing the project time, BIM encourages the usage of executable business
process languages and techniques to increase the degree of automation in model
transformations (e.g. 4SRS [7]). BIM also provides activities to choose and use
reference models and customize them to a specific organization. BIM incorpo-
rates the idea that the quality of a business software is better if, at the proper
time, quality business processes are designed and presented to the software de-
velopment team. BIM also promotes the usage of OSS and software provided by
different vendors.

The following are the main objectives of BIM:

– To provide a holistic approach to guide software implementations for process
oriented organizations, following state of the art process reference models;

– To cope with different and mixed software technologies to support the oper-
ation of real world business processes.

In the next section, we describe related work on how to use generic process
reference models inside business process organizations and we make some con-
siderations regarding established COTS implementation processes. In Section 3,
some concepts to support BIM are introduced. In Section 4, the proposed busi-
ness implementation methodology is described in detail, namely its phases and
transitions, its process, and the notations it supports. In Section 5, we present a
running example to show the use of BIM, as well as some potential implementa-
tions of the proposed concepts. Finally, in Section 6, conclusions are presented
and the future work is proposed.

2 Related Work

The goal of a methodology is to encourage an approach to solve a particular
problem with a set of methods and techniques previously chosen [8]. A method-
ology can be presented as a series of phases, with associated techniques and
notations [9].

The concept of process reference models arose from the idea of best practices
shared among organizations. Reference models represent the business operations
and internal structure of an organization. Reference models can be thought of
as templates from which process models may be developed [10]. Consequently,
if standard processes are to be used, standard roles to intervene with those
processes can also be depicted in advance. Currently, generic business process
reference models are available for organizations, like the Supply-Chain Oper-
ations Reference-model (SCOR) [11], the Information Technology Infrastruc-
ture Library (ITIL) [12], or the Enhanced Telecommunications Operations Map

42 F.J. Duarte, R.J. Machado, and J.M. Fernandes

(eTOM) [13]. Business process reference models are standards accepted by orga-
nizations on how business processes can be properly designed and managed. Ref-
erence models are usually accompanied with recommendations, training events,
books, and certifications, all providing a set of tools for implementation teams.
This approach relies heavily on the human skills of the implementing team and it
is not immune to project environmental conditions, like a low budget for training.
After the adoption of a new set of business processes comes the need to implement
most of them, quickly and with quality, in some software system. Some method-
ologies exist to help on the development of software systems for supporting busi-
ness activities. Generic software development processes can include disciplines,
like the Business Modeling discipline in the Rational Unified Process (RUP)
[14], to help software developers understand and define the business context of
their client in a set of process deliverables. In some of those models, notation
is defined applying extensions to the Unified Modeling Language (UML) [15] to
design business processes. The Business Modeling discipline provides key inputs
to requirements and software design activities, namely a basis to decide which
business processes will be implemented in software, or some business properties
that will influence decisions related with non-functional requirements. COTS
software vendors also propose methodologies, like Oracle PeopleSoft Enterprise
- Rapid Start [16], Microsoft Business Solutions - Navision Rapid Implementa-
tion [17], or SAP AcceleratedSAP [18], that focus on the proper implementation
of their own COTS technology, assuming that they will satisfy the clients’ needs.
Just considering the names of the presented methodologies, one can realize the
importance of the time needed to implement a COTS system. For that reason,
automation efforts, like deriving executable business processes [19], are crucial
to help achieving a reduced implementation time. A complementing approach
is to use iterations to provide the most needed parts of the solution as soon as
possible, complemented with later additions. Also, efforts from non-profit consor-
tia, like OASIS Business Centric Methodology [20], are focusing on the proper
implementation of business processes with web services to provide ubiquitous
connections among information systems and the people who use them. Consid-
ering the above mentioned reasons, it is advisable that a methodology to develop
software systems supporting some set of business processes includes:

– a way to deal with standard process reference models;
– the integration of tailored business processes, as demanded by the client

organization;
– the promotion of automation for its techniques;
– the capacity to obtain a quality software solution in a fast way.

As processes are becoming more and more automated, the management of pro-
cesses will become automated as well [10]. In the near future, organizations must
reach an internal level of maturity to allow focusing on building and improving
excellent business processes, rather than focusing on the daily running problems
of their processes and respective software implementations.

A Methodology to Transform Business Processes into Software Systems 43

3 Proposed New Concepts

BIM introduces four new concepts to support the use of process reference mod-
els during software development projects. The first concept, called Instanta-
neously Available Organization (IAvO), proposes the creation of templates for
detailed business processes and roles, that afterward can be used by business
entrepreneurs. This proposal extends the concept of process reference model.
The second concept, designated Organizational Aspect (OA), is related with
orthogonal characteristics that an organization can exhibit. For instance, an or-
ganization may want to implement some quality standard that is cross-cutting to
all business processes. The third one, Process Framework (PF), is the main de-
liverable of BIM. During the BIM life-cycle, the PF is expected to pass through a
series of states. The fourth concept, Orchestrated Business Object (OBO), is the
software implementation of a business entity and its associated functionalities
and data, compliant with business process reference models.

3.1 Instantaneously Available Organizations

Everyday, new organizations are created. Everyday, entrepreneurs think they
have discovered a killer product or service that will bring a huge advantage
over their competitors, either because the forthcoming product is an absolute
premier, or because it incorporates new features that will overwhelm the com-
petition. This business creation willing can be truncated with organizational
problems. For the entrepreneurs, the internal configuration of their own orga-
nizations as well as the interfaces with suppliers and customers, can present
difficult obstacles, either because they are not properly defined or, even worst,
because entrepreneurs do not have any idea of what business content is neces-
sary to be embodied into their own organizations. The set of common practices
shared among organizations, operating inside the same business contexts, is not
negligible. Furthermore, an organization from a vertical market can, and should,
perform benchmarking activities to the processes of other organizations, either
inside the same vertical market or not, and thus embodies processes from other
organizations placed in a different vertical market. For that, it seems plausible
that business practices materialized in business processes may be shared among
organizations. For those reasons, we propose the concept of IAvO. The main goal
behind using the IAvO concept is to have out-of-the-box organizations that en-
trepreneurs can pick and materialize on a concrete organization. This approach
can also be used when a given organization wants to redesign itself. This con-
cept assumes that entrepreneurs and organizations reach a high maturity level
such that they are “humble” enough to use standard best practices instead of
only imposing their ideas for the design of the processes. Apart from the process
definitions, standard roles to run the processes can also be designed. Standard
roles can help entrepreneurs seeing the amount and qualifications of the human
capital to be hired. Despite the business competition environment, from an infor-
mation systems perspective, business processes can be shared with competition.

44 F.J. Duarte, R.J. Machado, and J.M. Fernandes

Selection Definition Concretization Implementation

Fig. 1. BIM Delivery Process

This can happen because the main differentiation among competitors is based
on products or core business specific activities (like a shop-floor layout), and
mainly because the most decisive factor for the success of an organization is
their own human capital. Inside BIM, IAvOs are considered in the first phase,
where a selection of standard processes is made for later implementation. The
IAvO concept differs from reference models because it is much more concrete.
IAvOs share the same notations with reference models.

3.2 Organizational Aspects

An OA is a cross-cutting organizational concern. The concept of OA is inspired
on the concept of Aspect, as introduced in Aspect-Oriented Programming (AOP)
[21]. During the first BIM phase, we propose that the business analyst picks
standard process reference models and, using one or more OAs, he/she creates
an adequate process reference model for the organization under consideration.
The process reference model incorporates a set of activities semantically com-
pliant with some organizational standard. If some cross-cutting concern within
the organization exists, then an OA can model it. With the OA concept, process
reference models compliant with organizational standards, like European Foun-
dation for Quality Management (EFQM) Excellence Model [22], can be designed
or imported from the market. The OA extension mechanism, similar to that of
the advices in AOP, can be a basis to use world-class added value processes
without ignoring compliance with external business drivers. At the end, the sur-
viving processes include all the desired characteristics of the chosen orthogonal
quality standards. Of course, conflicts may arise, such as when creating a lean
production process while maintaining traceability data, but they will be more
easily tracked and explicitly solved.

Process reference models with OAs can also provide gains to organizations,
when:

1. a new organization is to be created from scratch (e.g., a new subsidiary)
assuring the correct transposition from mother organization of:
(a) the local processes that may be compliant with central processes;
(b) the standards requested locally and immediately fulfilled (e.g., social

responsibility);
2. country-specific customization of processes (e.g., human resources) can be

obtained from an IAvO;
3. for an existing organization, during a Business Process Re-engineering, cur-

rent processes can be compared with IAvO processes that are compliant with
some standard.

A Methodology to Transform Business Processes into Software Systems 45

This last possibility provides an accurate visualization of the as-is and to-be
states of the organization, and ensures that the organization can achieve the
standard certification because a quantitative measure of the work is available.

3.3 Process Framework

A crucial concept in BIM is the PF, which is a set of process models and tools
that allow the development project stakeholders to manage business processes
at different states. A PF contains:

– a set of business process reference models;
– a set of allowed activities that can be performed on included process reference

models;
– a set of actors that can perform activities;
– a defined state;
– a business ontology.

The PF is the main artifact being manipulated during the BIM process life cycle.
To help handling the PF, visualization tools are desirable. These tools depict the
PF at its different states and interpret the chosen business process description
language.

3.4 Orchestrated Business Objects

OBOs are pieces of software that implement business entities inside some spe-
cific business ontology. They expose functionality and data to the software-
implemented PF in order to allow the orchestration of business processes. Each
OBO is a black-box and it should be interchangeable with other OBOs imple-
menting the same business entity. It is highly beneficial to have a set of OBOs
already available prior to the last BIM phase in order to reduce the project time
and to reuse code. The concept of creating a project for developing software
based on previously developed components is similar to the one proposed by the
Software Factories [23] approach. The OBO concept addresses the need to have
different pieces of software orchestrated to implement a specific business process,
with the capacity to be interchangeable and without causing any disruption in
the software system behavior.

4 A Business Implementation Methodology

The opportunity to generate, in an automatized way, a running software sys-
tem improves the quality of the resulting product. This eliminates errors during
manual model transformations and allows the developers to focus on the defini-
tions of adequate content of business processes and software environment instead
of focusing on the correctness of the models transformations. Automation also
induces a reduction in the development time.

46 F.J. Duarte, R.J. Machado, and J.M. Fernandes

The primary goal of BIM is to guide the development of business software,
ensuring the adequate support for the set of the running business processes inside
an organization.

We describe BIM using to the Eclipse Process Framework (EPF) [24]. BIM is
composed of four discrete time consecutive phases (Figure 1). During the first
phase, a Selection of process reference models, OAs, and IAvOs is made, followed
by a Definition of the chosen business processes to a particular project. Next, the
Concretization of the business processes into an information system occurs. At
this phase, yet there is no software implementation, and the organization may
have alternative business processes defined for the same area. In the last BIM
phase, one or more software Implementations are made for a subset of business
processes concretized in the information system. The need to have different soft-
ware implementations comes, for instance, if the organization is relying on an
ERP which has annual upgrades. During those upgrade periods, the organization
can benefit from having an alternative software system to overcome the inactivity
of the ERP. Each BIM phase ends with a quality assessment (QA) milestone, in
order to evaluate the maturity of the deliverables. The QA produces a statement
expressing if the project is ready to move into the next phase (or to terminate,
in the last QA). Each BIM phase follows the pattern implemented for the Selec-
tion phase activities (Figure 2). As a result, each BIM phase is composed of one
or more iterations followed by a QA. While the expected quality and maturity
levels of the artifacts, deliverables, and outcomes are not reached, or when some
project change or constraint occur, iterations can be run incrementally inside
the same BIM phase.

Selection Iteration [1..n] QA1

Fig. 2. BIM Selection Phase

During the development process, a set of state transitions must be carried on
the PF, as shown in Figure 3. Starting with generic process reference models and
IAvOs, an Instantiated PF is obtained. The business processes can be described,
desirably in Business Process Execution Language (BPEL) [25], but also with
Business Process Modeling Notation (BPMN) [26], UML, Event-driven Process
Chains (EPC) [27], or Colored Petri Nets (CPN) [28]. The preference for BPEL
comes from the easiness to execute it. The Instantiated PF has to consider the
mission, vision, and strategic objectives, as well as other business constraints,
of the organization. At this PF state, the description of the process-oriented
organization is achieved, being the basis to derive the information system model.
Afterward, when the PF is concretized into the information system, the PF is in
the Runnable state because its processes, most likely not all, may be implemented
in software. The bidirectional state transitions between the Runnable and the
Software-implemented states are justified by the “loading” of the software system

A Methodology to Transform Business Processes into Software Systems 47

with a subset of the information system processes and by the “unloading” of some
of those processes, becoming processes in a “vegetative” Runnable state. An ideal
software implementation for the PF relies only in parametrization. There is also
the possibility that some Generic PF can directly be moved into the Runnable
PF state. This situation occurs when the organization does not want to make
any customization of a generic process reference model or when the organization
wants to fully adopt some IAvO. Desirably, the Runnable and the Software-
implemented states represent the same amount of business content.

Generic

Runnable

Instantiated

Software-Implemented

Fig. 3. PF States

BIM, generically summarized in Table 1, supports, during the first three
phases, business process description languages. Because a software implemen-
tation is in its scope, during the last BIM phase there is a need for a compu-
tational model. In the Selection and Definition phases, activities are occurring
in the domain of requirements. During the Concretization phase an information
system for the organization is designed, with manual and software-implemented
business processes. PF states are directly related with the BIM phases.

Table 1. BIM Summary

BIM Phase Metamodel Domain PF State
1. Selection BPEL, BPMN,

EPC, CPN, ...
Business

Requirements
Generic

2. Definition BPEL, BPMN,
EPC, CPN, ...

Business
Requirements

Instantiated

3. Concretization BPEL, BPMN,
EPC, CPN, ...

Information
System

Runnable

4. Implementation Computational
Model

Execution Software-
implemented

4.1 Activities of the BIM Phases

Inside each BIM phase, process-related functions are performed by process roles.
For the Selection phase, we present the activities in Figure 4. The role Business
Analyst chooses from the market an adequate process reference model (e.g.,
SCOR). It is advisable that he/she considers if there is available an IAvO that
addresses the business processes covered by the project. The Business Analyst
and the Client are responsible for defining which OAs are to be included in the
PF.

48 F.J. Duarte, R.J. Machado, and J.M. Fernandes

Analyze Process RMs Analyze IAvOs

Select Generic Process Framework

Analyze OAs

Fig. 4. Activities in BIM Selection Phase

The most important deliverable generated during the Selection phase is a ma-
ture and world-class generic process reference model chosen and ready to be used
in the next phase. Besides the intrinsic business quality of the process reference
model, its form of representation must also be chosen. Using standard process
notation languages, mixed with informal graphical notation, or even using some
text descriptions, can be accepted if they bring clarity to the description of the
Generic process reference model that was chosen. The Generic reference model
selected in the Selection phase is used to reach an Instantiated PF during the
Definition phase. The Instantiated PF includes the client’s view and future strat-
egy. Business-Driven Development [29] can be used to create a proper alignment
of the vision of the organization with IT tools. One key aspect of the Definition
phase (see Picture 5) is the explicit utilization of an immaterial role represented
by the Generic PF.

We propose that, even when the Client or the Business Process Architect do
not explicitly consider world-class business processes, and for the sake of the
organization, one must consider the demands of the Generic PF role in order
to derive a proper Instantiated PF. The Client is not always able to decide the
best solution for his/her own organization. This situation can be triggered by
the ignorance of best-practices outside his/her own business environment or by
the human representatives of the Client that do not always put the best interests
of the organization on top of their own ones.

A Methodology to Transform Business Processes into Software Systems 49

Define Business Needs

Define the Instantiated PF

Fig. 5. Activities in BIM Definition Phase

After a BIM project, the complete information system, consisting both of
software-implemented and manual processes, needs a regular audit activity. The
PF in the Runnable state is vulnerable to end users that do not want to use
the business processes of the organization, normally expressing it by creating
personal worksheets and databases. Thus, we propose an audit to be carried
on periodically (e.g. yearly), in order to check the compliance of the current
Software-implemented PF with respect to the one designed during the BIM
project. This check can only be applied if the business environment during BIM
project time still applies, otherwise a new run of BIM is needed. This activity
prevents changes in the Software-implemented PF without proper validations.
During the audit, it is recommended to check if the manual processes are still
executed the way they were planned.

Undesired changes in business process should not be confused with the ability
to cope with continuous improvement activities. Whilst the former may turn the
results of activities against their own host organization (e.g., the optimization
of a production process that conducts to an increased product stock without
a proper planning of the available space), the latter are mandatory in any or-
ganization that seeks business excellence. The goal of the third BIM phase,
Concretization (see Figure 6), is the design of the Runnable PF, based on the
Instantiated PF obtained in the Definition phase. The Business Process Archi-
tect role must include into the Runnable PF alternative designs for the same
business processes, as well as the decisions about which business processes will
have a software implementation.

50 F.J. Duarte, R.J. Machado, and J.M. Fernandes

s

Fig. 6. Activities in BIM Concretization Phase

Finally, during the Implementation phase (Figure 7), the Runnable PF is
implemented in software. Two distinct approaches can be taken to solve the
problem of generating a software solution. The first is to generate code starting
with previous defined models. The second is to use already developed code,
customized to cope with the requirements. With the latter approach, mixed
vendor pre-developed software can be used, if compliant with the requirements
of the Runnable PF. In this scenario, the client would not be tied to a particular
COTS software vendor, neither he would have to rely on web services for which
a proper service level agreement is unfeasible. We believe that having mixed
vendor software to support business operations inside an organization brings
benefits for the quality of the implemented solution, because the client can have
the ability to load and unload software implementations for a part or for a
complete business process. During the BIM Implementation phase, the designer
of the behavior of the Software-implemented PF is the Business Process Architect
and not the Software Engineer. The latter role is only concerned with providing
a running software infrastructure for business processes to run. The existence
of pre-developed software (OBOs) indicates that additional (outside the BIM
project) software development activities may be needed and accomplished under
the responsibility of the Software Engineer.

The Software-implemented PF is customizable and is the cornerstone to
compare the complete OBO functionality with the Runnable PF requirements.
Conflicts between the Software-implemented PF and the Runnable PF can be
detected, when the latter requires more functionalities than the ones available in

A Methodology to Transform Business Processes into Software Systems 51

PF

PF

Fig. 7. Activities in BIM Implementation Phase

the OBOs. This type of conflicts may demand the acquisition or the development
of more OBOs, or extension of the existing ones.

4.2 Supporting Technology

In this section, we present a possible implementation for the Software-implemented
PF, based on free software. It uses the Apache ServiceMix 4 (SMX) [30], a well-
known ESB. Within an organization, a significant number of applications and
platforms usually exist. This diversity requires different data formats and com-
munication protocols to be integrated. In recent years, several technologies, such
as Enterprise Application Integration (EAI), Business-to-Business (B2B), Ser-
vice Oriented Architecture (SOA), and Web Services, were proposed to solve
these problems. These technologies address some of the integration problems,
but they are proprietary, expensive, and time-consuming to implement [31]. The
ESB approach provides distributed messaging, routing, business process orches-
tration, transactions, reliability and security. SMX is a standard-based ESB since
its design is compliant with the Java Business Integration (JBI) specification [32]
and it is based on OSGi service platform [33] architecture. Since SMX is widely
accepted, open source, and based on open standards, it can provide a quality,
flexible, and low cost solution to implement the PF. In SMX, software compo-
nents are added as OSGi bundles, like the Apache Orchestration Director Engine
(ODE) [34]. ODE is a BPEL executing engine.

SMX, ODE, and BPEL, overcome the need for model transformations in the
PF, since the same BPEL model can be used in all of the BIM phases. There-
fore, BPEL can be used to describe the Generic, the Instantiated, the Runnable,
and the Software-implemented PFs. During the BIM life-cycle desirably only the
business semantics needs to be changed, maintaining the same language syntax.

52 F.J. Duarte, R.J. Machado, and J.M. Fernandes

Thus, one can describe, or pick from the repository of the Runnable PF, a busi-
ness process in BPEL and drop it on the ODE within SMX, allowing the PF to
change from the Runnable state to the Software-implemented state. In this sce-
nario, OBOs are OSGi bundles and OBOs orchestrations are the configurations
deployed into the ODE. These two implementations define a Domain Specific
Language (DSL) [35] in the domain of the adopted process reference model. It
means that the less abstract parts of the processes of the Generic PF must also
exist in the SMX as bundles (Section 5 presents an example). During a BIM
project it is assumed that all the needed OBOs (derived from the DSL of the
Generic PF) are implemented as bundles in the SMX. If this is not the case,
then one must acquire the needed OBOs or initiate a project to create them.

5 A Summarized Execution of the BIM

To demonstrate BIM, we use BPEL and SCOR. SCOR is configurable and con-
tains descriptions and relationships among processes, as well as standard metrics
to evaluate process performance. SCOR also embodies management practices
and methods to reach some of its deliverables (e.g., Business Scope Diagrams)
[11]. The three most abstract levels of business processes in SCOR are:

– Level 1: Top Level (Process Types). There are only five process types (Plan,
Source, Make, Deliver, Return);

– Level 2: Configuration Level (Process Categories). Organizations implement
their strategy by choosing different configurations to their process, like “Make-
To-Order” or “Make-To-Stock”;

– Level 3: Process Element Level (Decompose Processes). Organizations fine-
tune their strategy by creating process element definitions, state their inputs,
outputs, metrics, and pointing best practices.

In SCOR, the levels below the third one are left to organizations to implement
their own specific practices so that they can cope with changing business con-
ditions and achieve competitive advantages. In these lower levels, organizations
are invited to use classic hierarchical process decomposition:

– Level 4 contains “Tasks” to implement “Process Elements”;
– Level 5 contains “Activities” to implement ”Tasks”;
– Level 6 is where detailed actions are used to implement “Activities”.

As an example, we use level 3 “D1.10 Pack Product” Process Element. It is
part of the Configuration Level “Deliver Stocked Product” (level 2), and of the
Top Level “Deliver” (level 1). The Tasks shown in Figure 8 represent a chosen
configuration for the Process Element “D1.10 Pack Product”. Each Task, like
“D1.10.1 Sort Product”, can be refined with another BPEL diagram.

In our example, the level 3 of SCOR will define the DSL used in all BIM
phases. This means that the OBOs are all SCOR level 3 Process Elements and
that they must exist inside the SMX as bundles. The internal architecture of
each OBO is left open. BPEL is built with a Web Services mindset, which could

A Methodology to Transform Business Processes into Software Systems 53

prevent the mapping of manual processes during all the BIM phases. To overcome
this limitation, all the process components, either with a manual or software
existence, are mapped in the BPEL description. When a manual action is to
be executed, its trigger comes from the software system and the result of its
execution must also be informed to the software system.

Fig. 8. SCOR Process Element D1.10 described in BPEL

A set of configurations of SCOR Process Elements can materialize an IAvO.
After defining the Configuration Level for Top Level processes and define the
appropriate Process Elements, a Business Architect can also define all Tasks,
Activities, and detailed actions, thus creating an IAvO.

The degree of variability inside the IAvO is an option of its creator. It can be
tracked by alternative definitions contained inside the same level of SCOR for the
same process component, i.e. an IAvO can allow its users to employ “Make-To-
Stock” or “Make- To-Order” strategies. If the IAvO creator wants to completely
define the organization, he/she can create all the six levels of details. Depending
on the business context of a process component, namely the number of goods
or the time to handle them in packaging, a proper set of business roles can be
drawn and incorporated into the IAvO. For instance, the IAvO’s business process
described in Figure 8 implies that four business roles may exist: Product Sorter,

54 F.J. Duarte, R.J. Machado, and J.M. Fernandes

Product Inspector, Product Labeler, and Product Deliverer. The IAvO creator
can define if the business roles are to be performed by the same individual or
by a set of persons. Afterward, the IAvO user can decide if the IAvO will be
implemented exactly as it is defined (e.g., when a multinational organization is
creating twin companies) or if some deviation is possible (e.g., when he/she is
an independent entrepreneur).

To show an OA, in our SCOR-based IAvO, we consider the implementation
of an Excellence Model in our organization, like the EFQM model [22]. In the
EFQM model, an important part of the business activities is their reviewing.
Inside an organization, one must know how well the business activities were per-
formed, what are the causes for not achieving expected results, and how our
business activities can be improved based on some measure or benchmarking.
Such business concerns may be expressed at different levels of the SCOR model:
if we are “lazy”, we may review our processes at Process Type level; if we are
“micro-managers”, we may review all our level 6 detailed actions. We suggest
to implement OAs at SCOR level 3, because it is the first level where concrete
activities are performed. Additionally, this level is sufficient abstract and man-
ageable to cope with changes in its Tasks, Activities, and detailed actions. For
that to occur, one can decide to perform a review, every time the business pro-
cess is executed. This additional Activity, the OA, can also be implemented as a
bundle. The interception of the end of the Process Element D1.10 Pack Product
can be done, inside the SMX, by a route in Apache Camel [36], a Spring based
integration framework that implements Enterprise Integration Patterns [37].

Following, we present a summarized execution of the BIM for a goods man-
ufacturer. In the Selection phase, the execution of the activities (see Figure 4)
resulted in the the selection of the SCOR, an OA to allow reviewing all the pro-
cess elements, and no IAvO considered. With these results, we selected as our
Generic PF the SCOR. At this stage, a representation in BPEL of the reference
model (SCOR in the case) must be available. The QA 1 is performed (see Figure
2) and the result is that the SCOR, due to its characteristics and nature, is
approved as an adequate reference model.

For the Definition phase (see Figure 5), the execution of activities resulted in
the identification of Quality as a major business need. The SCOR was extended
by defining Tasks, Activities, and detailed actions. One extension example is
showed in Figure 8 where, and resulting from the execution of D1, was included
a Task “D1.10.2 Inspect Product” to guarantee high quality levels in product
deliveries. The Generic PF role was instantiated with SCOR, meaning that the
Instantiated PF explicitly considered it. After this second BIM phase, it is re-
quired to have the new Instantiated PF represented in BPEL. The Instantiated
PF is evaluated in the QA 2.

In the Concretization phase (see Figure 6), activities execution resulted in
the identification of a need for an alternative “D1.10 Pack Product” Process
Element to allow the movement of products to shipping areas when no labels
are present. Both alternative Process Elements “D1.10 Pack Product” will have
software implementations. Due to the alternative “D1.10 Pack Product”, the

A Methodology to Transform Business Processes into Software Systems 55

Tasks “D1.10.3 Label Product” and “D1.10.4 Deliver Product to Shipping Area”
(in Figure 8) will exchange their positions for the alternative design (not showed).
Then QA 3 is performed.

For the BIM Implementation phase (see Figure 7), activities resulted in the
customization of ODE by deploying the BPEL process definitions made for the
Runnable PF. The needed “D1.10 Pack Product” OBOs are loaded into SMX.
BIM ends with the the execution of QA4 to prove that there is an Software-
implemented PF in the SMX running according the organization requirements.

To properly execute BIM some preconditions are needed. The most important
is that the client organization is willing to improve its business processes by
considering external inputs, namely in the form of process reference models. It
is also critical to have human resources able to understand and use effectively
process reference models, and to have skilled IT staff able to use different software
frameworks. During the project phase, the project team members must have the
necessary empowerment and management support to transform the business
processes.

From the few executions of BIM, the main feedback from business process
experts is that the usage of reference models is time consuming at the beginning
due to the used notations and to the capacity needed to understand a reference
model. Software experts point out that having requirements expressed by cus-
tomized reference models in a clear form and early in the project increases the
quality of the resulting software and shortens the time needed to implement it,
mainly by avoiding cycles during the specification and validation of requirements.

6 Conclusions and Future Work

This manuscript presents BIM, a high-level methodology to properly implement
in software a desired set of business processes. At present, BIM is designed to
act as a guide using a phased development process. Also, the explicit inclusion
of new concepts, like IAvO, OA, PF, and OBO, can spot the importance of the
underlying activities and trigger their discussion. IAvOs allow entrepreneurs,
namely the inexperienced ones, to start a business with a higher probability of
success, and/or to reduce the time needed to set up the internal structure of an
organization, by defining a core set of business processes and business roles. OAs
can help on configuring business architectures to cope with cross-cutting business
concerns, like quality standards, without significant effort. PFs can be the basis
to smoothly transpose requirements and definitions from the business into the
software execution domain. OBOs constitute an important concept, namely by
allowing the client organization to use a mixed vendor software solutions to
support its business processes. BIM can also help on considering process reference
models during business process implementation projects, by embodying best-
practices and thus improving business operations.

BIM is not attached to any software implementation. BIM allows the usage
of different vendor software, including OSS, according to the best interest of the
client and not necessarily the best interest of the software vendor. BIM promotes

56 F.J. Duarte, R.J. Machado, and J.M. Fernandes

the usage of COTS and OSS by using already developed software frameworks,
like Apache ServiceMix, namely during the Implementation phase.

Organizations must be immune to egocentric employees with “fantastic” ideas.
Sometimes, proposals coming from world class processes are offered but not
considered due to the pride of those employees. This behavior can be a serious
obstacle to improve the internal structure and the results of the organization.
BIM explicitly considers business process reference models to wide the mindset of
organizations, but also considers that detailed refinements of business processes
are the way for organizations to express their excellence.

BIM is a wide-scope methodology, since it deals with business definitions and
also with software implementations. For that, BIM is currently proposed in a
high-level of abstraction, so that it can consider several concepts of the domains
it covers and it can remain independent of technologies, notations, and methods.
BIM brings four main advantages over current methodologies:

– it has a holistic scope, since it starts from generic process reference models
and ends in implemented software systems;

– it avoids model transformations by using the same model for business pro-
cesses during all the life-cycle;

– it promotes that a software system can include components from distinct
software vendors, by using the best OBOs from each vendor to compose a
valuable solution for the client organization;

– it can significantly reduce the time to implement a solution, since the very
same model to describe and execute business processes is used along the
complete life-cycle of BIM.

BIM is adaptable to different process reference models and software solutions, it
addresses both the business and the software domains with a traceable artifact,
the PF, and it proposes automation.

In the future, several issues will be tackled to improve BIM: (1) develop tools
to support it; (2) extend the guidance to properly tailor the methodology to a
specific project taking into consideration the possible methods and techniques
that can be used during a BIM project, the skills of the development team, the
business context of the organization, the business requirements for the process
framework, or the available implementation time; (3) to test BIM in demanding
business projects; (4) to develop IAvOs, using some business process description
language.

References

1. Scheer, A.: ARIS-Business Process Modeling. Springer-Verlag New York, Inc., Se-
caucus (2000)

2. Curtis, B., Kellner, M., Over, J.: Process modeling. Communications of the
ACM 35(9), 75–90 (1992)

3. Gardner, T.: Uml modelling of automated business processes with a mapping to
bpel4ws. In: Proceedings of the First European Workshop on Object Orientation
and Web Services at ECOOP 2003, Citeseer (2003)

A Methodology to Transform Business Processes into Software Systems 57

4. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business
process management: A vision towards using semantic web services for business
process management. In: IEEE International Conference on e-Business Engineer-
ing, ICEBE 2005, pp. 535–540. IEEE (2005)

5. Chen, S., Chung, J., Cohen, M., Fu, S., Gottemukkala, V.: Dynamic business pro-
cess automation system using xml documents, uS Patent 6,507,856, January14
(2003)

6. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented comput-
ing: State of the art and research challenges. Computer 40(11), 38–45 (2007)

7. Machado, R., Fernandes, J., Monteiro, P., Rodrigues, H.: Transformation of UML
Models for Service-Oriented Software Architectures. In: The 12th IEEE Interna-
tional Conference on the Engineering of Computer-Based Systems (ECBS 2005),
Greenbelt, Maryland, USA, pp. 173–182 (2005)

8. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering
(1991)

9. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-oriented
modeling and design. Prentice-Hall, Inc., Upper Saddle River (1991)

10. Snabe, J., Rosenberg, A., Møller, C., Scavillo, M.: Business Process Management:
The SAP Roadmap. Galileo Press, SAP Press (2008)

11. Supply-Chain Council, Supply Chain Operations Reference Model (SCOR), Ver-
sion 9.0 (2008)

12. OGC, Best management practice: Itil v3 and iso/iec 20000 (2008)
13. Kelly, M.: The telemanagement forum’s enhanced telecom operations map

(eTOM). Journal of Network and Systems Management 11(1), 109–119 (2003)
14. Kruchten, P.: The rational unified process: an introduction. Addison-Wesley Long-

man Publishing Co., Inc., Boston (2000)
15. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language reference

manual. Addison-Wesley Longman Ltd., Essex (1998)
16. Oracle PeopleSoft, Peoplesoft enterprise - rapidstart for healthcare (2007),

http://www.oracle.com/industries/healthcare/
oracle-healthcare-enterprise-rapid-start-ds.pdf

17. Microsoft Navision, Automotive manufacturer deploys integrated erp solution and
boosts customer service in just 15 days (May 2005)

18. Daneva, M.: Six Degrees of Success or Failure in ERP Requirements Engineering:
Experiences with the ASAP Process. In: International Workshop on COTS and
Product Software: Why Requirements are so Important, vol. 11 (2003)

19. Weber, I., Haller, J., Mulle, J.: Automated derivation of executable business pro-
cesses from choreographies in virtual organisations. International Journal of Busi-
ness Process Integration and Management 3(2), 85–95 (2008)

20. OASIS, Business-Centric Methodology (BCM), OASIS Std., Rev. 1.0 (May 2006),
http://www.oasis-open.org/committees/download.php/17942/
BCM.OASIS.Specification.2006-05-01.zip

21. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Longtier, J., Irwin,
J.: Aspect-Oriented Programming. In: Aksit, M., Auletta, V. (eds.) ECOOP 1997.
LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

22. EFQM, EFQM Excellence Model - Large Companies, Operational and Business
Units version. European Foundation for Quality Management (2001),
http://www.efqm.org

23. Greenfield, J., Short, K.: Software Factories: Assembling Applications with Pat-
terns, Models, Frameworks, and Tools. Wiley (2004)

http://www.oracle.com/industries/healthcare/oracle-healthcare-enterprise-rapid-start-ds.pdf
http://www.oracle.com/industries/healthcare/oracle-healthcare-enterprise-rapid-start-ds.pdf
http://www.oasis-open.org/committees/download.php/17942/BCM.OASIS.Specification.2006-05-01.zip
http://www.oasis-open.org/committees/download.php/17942/BCM.OASIS.Specification.2006-05-01.zip
http://www.efqm.org

58 F.J. Duarte, R.J. Machado, and J.M. Fernandes

24. Eclipse EPF project. Eclipse process framework (epf). Eclipse Process Framework
(EPF) project (January 2011),
http://www.eclipse.org/epf/general/description.php

25. OASIS, Web Services Business Process Execution Language v2.0, OASIS Std., Rev.
2.0 (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

26. White, S.: Introduction to BPMN, IBM Cooperation, pp. 2008–2029 (2004)
27. Scheer, A., Thomas, O., Adam, O.: Process Modeling Using Event-driven Pro-

cess Chains. In: Process-aware Information Systems: Bridging People and Software
through Process Technology, pp. 119–145. Wiley, Hoboken (2005)

28. van der Aalst, W.: Challenges in business process management: Verification of
business processes using Petri nets. Bulletin of the EATCS 80, 174–199 (2003)

29. Mitra, T.: Business-driven development, IBM Developer Works (2005),
http://www.ibm.com/developerworks/webservices/library/ws-bdd

30. A. S. Foundation. Apache servicemix 4.3. Apache Software Foundation (March
2011), http://servicemix.apache.org

31. A. S. Community, Apache servicemix 3.x users’ guide, web page (February 2008),
http://servicemix.apache.org/users-guide.html

32. Ten-Hove, R., Walker, P.: Java Business Integration (JBI) 1.0-JSR 208 Final Re-
lease, Sun Microsystems, Inc. Std. (2005),
http://jcp.org/en/jsr/detail?id=208.

33. T. O. Alliance, OSGi Service Platform Core Specification 4.2, The OSGi Alliance
Std. 4, Rev. 4.2 (June 2009), www.osgi.org

34. Apache Software Foundation, Apache ODE User Guide, Apache Software Founda-
tion (2009), http://ode.apache.org/user-guide.html

35. van Deursen, A., Visser, J.: Domain-specific languages: An annotated bibliography.
ACM Sigplan Notices 35(6), 26–36 (2000)

36. Apache Software Foundation, Apache Camel Manual, 2nd edn, Apache Software
Foundation (2009),
http://camel.apache.org/manual/camel-manual-2.0-SNAPSHOT.pdf

37. Fowler, M.: Patterns of enterprise application architecture. Addison-Wesley Pro-
fessional (2003)

http://www.eclipse.org/epf/general/description.php
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.ibm.com/developerworks/webservices/library/ws-bdd
http://servicemix.apache.org
http://servicemix.apache.org/users-guide.html
http://jcp.org/en/jsr/detail?id=208.
www.osgi.org
http://ode.apache.org/user-guide.html
http://camel.apache.org/manual/camel-manual-2.0-SNAPSHOT.pdf

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 59–70, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Mapping RUP Roles to Small Software Development
Teams

Pedro Borges1, Paula Monteiro2, and Ricardo J. Machado2

1 CIICESI, Escola Superior de Tecnologia e Gestão de Felgueiras do Instituto
Politécnico do Porto, Portugal

pmb@estgf.ipp.pt
2 Dept. Sistemas de Informação, Universidade do Minho, Guimarães, Portugal

{pmonteiro,rmac}@dsi.uminho.pt

Abstract. In the last decades the complexity of software development projects
had a significant increase. This complexity emerges from the higher degree of
sophistication in the contexts they aim to serve and from the evolution of the
functionalities implemented by the applications However, many software
corporations have a reduced dimension (micro, small or medium) which
imposes a considerable constraint to the number of individuals that might be
involved in each project. This limitation has obvious consequences to the
individual’s efficiency and effectiveness. In this paper we describe a Rational
Unified Process (RUP) tailoring to simplify the number of RUP roles. With this
tailoring we obtain one set of RUP roles that, without neglecting any critical
role of the software development process, may easily be adopted by a small or
medium software development team. In this paper, we present and justify a
complete set of mapping rules between RUP roles and one possible
configuration for small software development teams.

Keywords: RUP, small software teams, SME, RUP tailoring.

1 Introduction

Now more than ever, the software development industry is being put to the test, as a
joint result of several stress factors. First, we have been witnessing a significant
increase in the complexity inherent to software development projects, due not only to
a higher degree of sophistication in the contexts they aim to serve, but also to the
natural evolution of the out-of-the-box features offered by the myriad of available
technologies and software systems. On the other hand, the ever growing importance
of reducing time-to-market decreases the error margins, boosting the pressure applied
on the teams to deliver better software in less time.

In order to react to this scenery and tip the playing field on their behalf, eastern
corporations have responded by establishing partnerships with software factories
based on developing countries and, in some cases, by creating their own off-shore
software development centers. However, though these might be good solutions for
large scale corporations and projects, they are inappropriate for some SMEs (Small

60 P. Borges, P. Monteiro, and R.J. Machado

and Medium Enterprises) [1], given the usually short-term nature of their projects and
the considerably time-consuming specification requirements.

Since, SMEs urge for methodologies with the potential to help them cope with the
challenges faced, arouse from the low level of process standardization, RUP (Rational
Unified Process) [2] presents itself as a useful reference, given the wide set of roles
proposed to structure software development teams. However, there’s a lack of RUP
configurations suited for micro (employing less than 10 people) and small companies
(employing less than 50 people) [1]. This paper aims to help small scale organizations
by providing them a RUP configuration that, without neglecting any critical function
of the software development process, may easily be adopted during a project’s
execution period. In order to do so, the roles proposed by RUP will be thoroughly
reviewed in order to select a much smaller subset of key participants that will inherit
the duties of the suppressed roles [3].

The following sections are organized as: section 2 provides an overview of RUP
tailoring approaches. Section 3 presents a RUP tailoring to SMEs, Section 4 presents
a role mapping to the model presented and Section 5 presents a brief discussion about
the roles accumulation. Section 6 presents the conclusions and future work.

2 Related Work

The Rational Unified Process (RUP) [2] is a well known software process
development framework which extends the Unified Process [4] which in turn resulted
from the integration and evolution of older processes such as Rational Approach [5]
and Objectory Process [6].

RUP is presented as a disciplined approach for assigning tasks and responsibilities
within an organization, with the aim of ensuring the production of high quality
software that meets the needs of their users and in strict compliance with a predictable
timetable and budget. This framework defines a set of activities, roles and artifacts,
which need to be selected according to the software project. Each project is performed
by a group of employees having one or more roles assigned. Each role participates in
one or more activities and, as result, of their engagement in each activity one or more
artifact is produced. Currently, this framework comprises more than eighty artifacts,
one hundred and fifty activities and about forty roles.

Although RUP is widely used its structure lacks flexibility, and small enterprises
that adopt it have to face a very long development cycle, and an "overload" of
documentation when using it mechanically [7, 8]. To overcome the excess of
documentation and the high cost of a long development cycle while, at same time,
maintaining quality (or at least not reducing it too much), the software process must
be tailored (by adding, merging and/or deleting activities, roles and artifacts).

Another set of research efforts [9-11] arose from the conclusions of a study
presented in [12]. They consider that leaving the responsibility of tailoring RUP to
each project context will cost too much time and resources; leading them to give to
the teams, before the project start, an adapted version of RUP.

The work presented in [13] conveys a very pragmatic view about how RUP can be
configured to "speed up" its adoption (of course without missing any procedural
component considered essential) and thus prove the possibility of its successful

 Mapping RUP Roles to Small Software Development Teams 61

adoption in SME contexts. In this way, the path followed was to perform a significant
simplification of the list of artifacts to produce, followed a cost/benefit analysis of
each of the artifacts provided by the methodology.

Following a completely different approach, [14] presents one RUP configuration
primarily oriented to organizations that develop software in a process-oriented way,
which may be appropriate for small. The authors present a set of business modeling
artifacts whose production is considered essential. In [15] the authors continue this
guideline, by analyzing further the business modeling artifacts, and presenting a way
to set up a methodology that can incorporate procedural improvements to, thereby,
enable organizations that adopt RUP to get a better ranking on the CMM scale.

According to [16], RUP is much too complex and sophisticated to be capable of
being implemented as a successful practice. It is alleged that RUP does not frame in
the best way the existing roles and that does not adequately involve the users during
the transition phase.

The authors of [17, 18] present extensions to RUP in order to make it compliant
with CMM, in particular with maturity levels 2 and 3. These works start to analyze
the gaps between RUP and CMM and then they propose some activities and artifacts
that will complement RUP.

Agile Methods (AM) are attempting to offer once again an answer to the impatient
business community asking for lighter weight and at same time faster software
development processes [19]. Some agile practices are used to change the team roles,
like for instance, cross-functional and self organizing teams [19, 20].

Some studies discuss the integration of RUP and Agile Methods [21, 22]. They
explain how RUP and Agile Methods can be used in conjunction. According to the
author it is relatively easy to the RUP users to adopt AM practices by tailoring RUP.

RUP, CMMI and Agile Methods can also be used together [23]. The authors
describe the components of requirements engineering process, and present the process
compliance with CMMI. They also give some orientations to the usage of agile
practices in the requirements engineering process.

There are several other research efforts that propose the simplification of RUP, by
adopting tailoring techniques. However, none of them consider the organizational
context existent in SMEs, namely from the roles point of view. This paper addresses
this perspective.

3 Tailoring RUP for Constructing the Base Model

Next, we will describe the Base Model which corresponds to a RUP role
simplification tailored to medium-sized companies, which essentially seek a software
process that helps to design and implement solutions with high levels of quality
(perceived by the customer) and to deal with the complexity inherent in projects of
medium/high scale.

To achieve the proposed goals, we conducted a detailed analysis of the RUP roles
in order to identify the roles considered to be essential, by satisfying at least one of
three conditions. These conditions are defined in [3].

System Analyst (C1, C2): Scope management is vital to the success of any project,
otherwise different opinions between customers and suppliers are almost inevitable

62 P. Borges, P. Monteiro, and R.J. Machado

during the project execution. Therefore, the participation of system analysts is
paramount since the beginning, to identify and document with the utmost rigor the
requirements (functional or nonfunctional), in order to allow the supplier to correctly
estimate the effort involved in performing the project.

Is extremely important that the person who performs this role has appropriate
training, focusing mainly on two aspects: first, beyond basic knowledge in
management, it is desirable to understand in detail the client's business domain and to
perceive the real motivations and relevance of the requirements presented by the
client; second, in order to develop his activities as appropriate and in accordance with
the best practices, it is desirable that the person has been trained and presents some
practice of requirements engineering techniques and methods (Software Requirements
in SWEBOK [24]).

User-Interface Designer (C2): The scope of this role intervention in a project varies
according to the nature of the artifacts to be developed. Despite not being able to
consider this role as a critical one, it is a fact that its best performance largely depends
on a strong background in specific areas of knowledge (such as the software
ergonomics). This domain cannot be considered widespread by the software
engineering professionals.

Database Designer (C2): Like the previous role, database designer is also considered
essential to the process, mainly due to the specificity of its knowledge. Although
database design techniques are mandatory in any computer science degree, usually the
depth of the acquired skills is insufficient. It is desirable that the performer of this role
has (at least) the following competencies: configuration and optimization of database
engines; advanced knowledge on setting up indexes, views, and constraints; advanced
knowledge on the implementation of triggers and stored procedures; and advanced
knowledge on standardization of data models.

Implementer (C1): Regardless of how good the architecture and design of a software
solution is, it will not be successful without the involvement of the implementer
(usually called programmers) of the sub-systems and components that support the
desired functionalities.

Integrator (C1, C2): In SMEs, it is usual to find several Implementers involved in
project, each one engaged with a specific set of tasks. To ensure that the work runs in
a smoothly and efficiently way, it is essential to have someone responsible for
maintaining the implementers aware of the project context, for identifying the tasks to
be undertaken and for appointing the person responsible for each one. This person
must also decide how the individual tasks will be integrated and incorporated in the
final outcome of the project. An example is the definition of the interfaces between
the various sub-systems. Besides these technical tasks, the integrator is also
responsible for the initial definition of the critical dates of the project and for
developing a plan for the integration of the sub-systems, to allow the project manager
to inform the client when each feature is expected to be available.

This role requires the capability to monitor the activities of each implementer to
ensure to adopt measures to minimize the impact in case of failure. Appropriate
training should include knowledge of human resource management, allowing the
encouragement and empowerment of their work. It is desirable that the person has
been trained and presents some practice in the SWEBOK knowledge areas of
software engineering management and software engineering process.

 Mapping RUP Roles to Small Software Development Teams 63

Software Architect (C1, C2): The performer of this role is responsible for setting the
technologic foundation on which the project implementation should be based. When
this context is imposed by the client, the software architect is responsible for
estimating the technical risks involved and how they might be mitigated. Other
responsibilities are: the definition of the skeleton of the system to be created; the
characterization of the components (defining the functions and boundaries of each
one); the advising on the frameworks that should be adopted. This role requires basic
training in software architecture and design (SWEBOK knowledge area of software
design) and also the capability of monitoring of the market trends to be aware of the
most appropriate tools and frameworks for achieving the goals of a given project.

Process Engineer (C1, C2, C3): It is considered essential the existence of a person
mainly concerned with the management of the development process, its adaptation to
the organizational context and monitoring its implementation, in order to identify and
implement possible process improvements. This role requires a detailed knowledge of
the adopted development process (in this case RUP).

Project Manager (C1, C2): This is an important role because it has the responsibility
to assume a global overview of the project through a detailed interaction with the
internal and external participants. The project manager must create the conditions for
the project to achieve success, by ensuring the timeliness and the fulfillment of all the
undertaken commitments. To perform this role with quality it is important to have
training in several areas such as: basic knowledge in management; knowledge about
the client’s business domain; project management methodologies (like PMBOK);
negotiation skills.

Project Reviewer (C3): This role cannot be considered critical to the project success
and it does not require any specific skills besides the ones required for any of the
other roles. However, it is important that the responsible for this role presents a good
knowledge about the business domain. Due to certain responsibilities related to the
verification and approval of several artifacts produced by other participants, and
concerned about conflict of interests, the person that performs this role should not
accumulate with another role within the project.

Test Manager (C1, C3): It is essential the existence of a role whose major
responsibility is to ensure the product quality by devising a plan for internal quality
audits and coordinating its implementation. This is another role that should not be
cumulated with other roles in particular with those roles related to the design and
construction phase.

System Tester (C1, C3): The implementation of the audit plan is performed by the
system testers which may be entrusted with very different tasks, like the artifacts
documental review and testing behavior. This is an essential role to the process.

Course Developer (C2): The main concern of this role is the preparation and
coordination of training. The person with this role needs competencies in the area of
didactics and pedagogy as main skills to execute it.

System Administrator (C1, C2): In software development projects it is extremely
important to have a person focused on ensuring the satisfaction of the infrastructure
needs inherent to the process, particularly regarding: the personal computers of each
element of the project team, according to the specific needs of each one; servers that

64 P. Borges, P. Monteir

support the activities of th
quality assessment; servers
person must have trainin
knowledge area of softwar
optimization of engine data

4 Mapping RUP R

Rather than the 39 original
previous section, it is feas

ro, and R.J. Machado

he team; servers that support the testing procedures
s that support the service provision to the outside. T
ng in the following skills: practice in the SWEB
re configuration; system administration; configuration
abases; negotiation and contracting of IT services.

Roles into Base Model Roles

roles proposed by RUP, as we can see by the stated in
ible to reduce to 13 the number of the essential roles

Fig. 1. Mappings of Base Model

and
This
OK
and

the
s to

 Mapping RUP Roles to Small Software Development Teams 65

implement a software process (that we call the Base Model) in the context of small
development teams. However, the fact that any of the remaining 26 roles have not
been regarded as essential to the process does not mean that we may discard their
responsibilities or that they are not considered important for the effective and efficient
implementation of the process. Instead, we propose a mapping of the remaining roles
into each role previously considered essential, according to a set of guidelines defined
in [3]. In figure 1, we present the Base Model roles and the mappings between RUP
roles and roles considered essential in the Base Model. Next, we will present the
proposed mappings and the respective justification.

Business Reviewer, Requirements Reviewer and Management Reviewer maps into
Project Reviewer: The project reviewer is characterized by RUP as someone
responsible for evaluating the project artifacts on specific key moments with power
and legitimacy to, if necessary, suspend its execution. Therefore, this role can only be
performed by someone with a high level of responsibility and authority within the
organization, possibly even at the highest level, since it is not unusual that managers
of SMEs be personally involved in supervising and monitoring projects. Thus, project
reviewers have the appropriate profile and therefore are able to evaluate the business
artifacts (commercial proposals, business models, etc.) produced during the project
(usually performed by the business reviewer).

The requirements reviewer has the responsibility to formally review the
requirements identified and incorporate them into the use case model by the
requirements specifier. Therefore, it is essential that this person is knowledgeable of
the business domain and it should also be familiar with the modeling techniques used
in the description of requirements. This role can be merged with the project reviewer.

The management reviewer and the project reviewer are separated by a slight
difference, since both are defined as responsible for the review and evaluation of the
artifacts produced at certain key moments. Thus, and assuming what was previously
mentioned that the project reviewer must be someone with some knowledge in the
business domain, the separation of these roles is not justified.

Business-Process Analyst, Requirements Specifier, Change Control Manager,
Deployment Manager, Test Analyst and Review Coordinator maps into Project
Manager: Since the project manager should be the person with greater proximity to
the customer, he may assume the responsibility to define the business architecture and
to describe their needs (in the form of business use cases), replacing the business-
process analyst. This would ensure that the project manager knows in detail the scope
of the project, which allows him to deal appropriately with the requests for changes
and carry out an effective monitoring of its implementation.

The project manager is also responsible for ensuring compliance with the scope
and minimizing the contract extensions that do not provide value to the organization.
However, the effectiveness of his intervention may suffer if he does not have a
thorough understanding of the settled goals between the parties. For these reasons,
becoming responsible for the activities of the requirements specifier increases his
control over the project, by taking responsibility for listing and characterizing the
requirements, properly managing the customer expectations and ensuring they are
implemented by the project team.

66 P. Borges, P. Monteiro, and R.J. Machado

In small-scale projects, it is normal that the change control manager
responsibilities are assumed by the project manager or the software architect.
However, despite being essential that the software architect possesses a deep and
updated knowledge about the project, it is considered more important that the project
manager ensures an effective control over it; otherwise unrealistic expectations would
be created upon the client. The project manager can also assume such responsibilities.

The deployment manager plans and coordinates the transition to the user’s
community of the products resulting from the development efforts. The success of this
type of activity largely depends on the dialogue with the client and on the planning
and communication skills of the person involved. The person performing this role
must work closely with the project manager, enough reason to merge these two roles.

The reason to map the test analyst into the project manager arises from the fact
that the testing efforts must to be aligned with the project context and the needs of end
users. The project manager is the person with more knowledge about the scope of the
project and about how the artifacts will be used. In dialogue with the integrator and
test designer, the project manager defines the scenarios that must be tested. In
addition, he can also be responsible for: monitoring the progress of the testing
process; analyzing the results produced by the test designer and ensuring that they are
reported to the respective integrators and that they are timely corrected; evaluating
the effectiveness of the testing process through the perceived quality reported by the
end users; facilitating the communication between test designer’s and integrator’s.

Besides all the previous roles, the project manager is also considered to be the best
role to coordinate and control the activities inherent to role review coordinator.

Business Designer, Use Case Specifier, Use Case Engineer maps into System
Analyst: The business designer is responsible for detailing the specification of the
business solution, producing artifacts that characterize the business entities involved,
their expectations and interactions. However, despite being focused on business, the
activity of this role is closer to the system analyst responsible for the identification
and documentation of the project requirements. Since, the system analyst must also
know the business domain, we recommend merging it with the business designer.

The use case specifier role interacts closely with the end users and works together
with the system analyst in the description of the use cases that embody the identified
requirements. Since this role is not defined as having their own specific tasks but only
acts as an assistant, he should be merged with the system analyst.

The use case engineer is responsible for ensuring that one or more embodiments of
the use cases represent, in a coherent and comprehensive way, the project’s
requirements. Therefore, and given the tasks performed by the system analyst during
requirements elicitation, we considered that the merge with the use case engineer
activities is a natural extension of his work.

Architecture Reviewer and Tool Specialist maps into Process: The process engineer
role supports the project methodology and is responsible for monitoring its
implementation and making the necessary adjustments to optimize its effectiveness.

The architecture reviewer is explicitly a technical role, since he formally reviews
the architecture designed by the software architect, in order to validate the design
choices. It is important that the architecture reviewer has the necessary legitimacy to
point out mistakes or omissions. Apart from the obvious technical skills, it is

 Mapping RUP Roles to Small Software Development Teams 67

important to have good communication skills, enabling to manage any conflicts with
the required sensitivity and delicacy. The process engineer is the person in best
suitable for accumulating the architecture reviewer responsibilities. By the nature of
his function, he has the necessary legitimacy to evaluate the performance of everyone
involved in the software development, on which he should have extensive experience.

In what concerns the tool specialist (which includes the identification of
stakeholders needs regarding the tools to assist/facilitate their work and the selecting
the most appropriate applications to meet their needs) we have decided to map his
responsibilities into the process engineer role.

Capsule Designer, Code Reviewer. Designer and Integration Tester maps into
Integrator: The capsule designer has a profile similar to the designer but more
focused on the accomplishment of the components performance requirements. Thus,
given the similarity of both profiles, the integrator role assumes those responsibilities.

When coordinating the software development efforts of a team, the integrator
needs a good level of technical expertise, which means that he should also be
confident in assuming the responsibilities of the code reviewer, by reviewing and
auditing the code source produced by the implementers. This means, the integrator
must also verify if each component has been implemented in accordance with his
instructions and detect potential problems.

The designer must translate the architecture conceived by the software architect
into a coherent solution of components/modules/sub-systems to be implemented,
detailing responsibilities, operations and relations between them. Taking into account
that the integrator is responsible to ensure a successful integration of several existing
components, it makes sense that both roles are performed by the same person,
maximizing the efforts involved in the design stage.

Considering that the primary responsibility of the integration tester is to perform
the integration tests, which are essential to verifying that the various components that
make up the solution are working well together, this role can be considered as a
natural extension of the activities conducted by the integrator.

Component Engineer maps into Implementer: The component engineer is focused
on the design of the internal structure of each sub-system, particularly regarding with
operations, methods, attributes, relationships and requirements of each design class.
This role is strictly related with the implementer’s duties.

Design Reviewer maps into Software Architect: The RUP methodology strongly
suggests the existence of roles especially devoted to review artifacts written by third
parties. Therefore, in order to maintain the independence, we suggest that the role of
the design reviewer is accumulated by the software architect.

Configuration Manager maps into System Administrator: We suggest merging the
responsibilities of the configuration manager and the system administrator. If the
system administrator is already responsible for managing and providing the
infrastructure used by the project team, it makes sense to also perform the
configuration management.

Test Designer maps into Test Manager: From the activities carried out by the test
analyst emanates a set of test scenarios that constitute a starting point for the work to
be performed by the test designer, which is responsible for coordinating the planning,

68 P. Borges, P. Monteir

design and implementation
consequence of the respon
described as the main role r
the test manager must assum

Graphic Artist maps into U
artist benefits from a refin
image manipulation appl
characteristics are also pres
the responsible for meeting

Technical Writer maps int
in smaller organizations, th
technical writer. However
content support (user manu
those involved in the techn
course developer can be re
(the training material he pr
merging of these two roles.

Table 1. Ro

5 Accumulation o

After we have justified, in
the eventual restrictions to
member. This recommenda
resources to perform a proj

ro, and R.J. Machado

n of the necessary tests. However, these activities ar
nsibilities that the literature attributes to the test manag
responsible for the success of the testing effort. Therefo
me the test designer role.

User-Interface Designer: The performance of the grap
ed aesthetic sensibility and some experience in the use
lications. However, since it is common that th
sented in the user-interface designer, this role can also
the project needs of image and graphic communication

to Course Developer: Given the restrictions usually fou
e implementer role could assume the responsibilities of
, the RUP methodology suggests that the production
uals, etc.) could be performed by different persons fr
nical execution of the project. Since the activities of

egarded as complementary to those of the technical wr
oduces is also directed to end users) we recommended

oles Accumulation Restrictions (Inside Project)

f Roles

general, the Base Model role set it is relevant to anal
o the accumulation of several roles by the same te
ation may result in the mobilization of a higher number
ject. However, it is also a fact that it could contribute t

re a
ger,

fore,

phic
e of
hese
o be
s.

und
f the
n of
rom
the

riter
the

lyze
eam
r of
to a

 Mapping RUP Roles to Small Software Development Teams 69

better performance of each role, while avoiding ethical incompatibilities. In table 1,
we present the identified restrictions of roles accumulation inside the same project.

The symbol “x” indicates an absolute restriction, which means that this
accumulation must be avoided. For instance, the integrator should not accumulate
with the test manager role because there are some ethical issues involved, since the
test manager evaluates the artifacts produced under the integrator’s supervision. The
symbol “?” indicates a conditional restriction; i.e., an accumulation of roles that might
be possible if some regards are considered. As an example, the integrator presents one
conditional restriction to accumulate the system tester role, because this accumulation
will only be possible in the cases where the system tester tasks are not performed
within the same software development line under coordination as integrator. The
detailed explanation of these restrictions will be presented in a future work.

6 Conclusions

The Rational Unified Process is a comprehensive software development process, which
aims to help organizations to efficiently use resources at their disposal to ensure the
effective implementation of the goals they want to achieve. However, the lack of an
appropriate RUP configuration for SMEs (small and medium sized companies) that
develop software has justified our effort to propose a reduced set of roles involved in the
implementation of the RUP methodology. As a result, we have suggested the Base
Model, which is a tailoring approach of RUP composed by 13 roles. The other 26 RUP
roles not considered in the Base Model have been mapped into the Base Model roles
according a set of presented guidelines. In this study we do not discuss how one person
can handle all the activities of each performed role, in a reasonable time. However this
is a relevant issue and it will be analyzed in a future work.

As future work, we will develop a Reduced Model that will simplify further the set
of RUP roles to be adopted in small settings. This simplification will be performed by
considering part of the Base Model roles as non essential and the other part as
essential. The roles considered as non essential are mapped into the essential roles.
We will assess the Reduced Model with a case study of a CMMI level 3 certified
team [25, 26].

References

1. European Commission. Small and Medium-sized Enterprises Definition, vol. 2011 (2005)
2. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley (2003)
3. Borges, P., Monteiro, P., Machado, R.J.: Tailoring RUP to Small Software Development

Teams. In: 37th Euromicro Conference, SEAA 2011 (2011)
4. Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process.

Addison-Wesley (1999)
5. Booch, G., Maksimchuk, R., Engle, M., Young, B., Conallen, J., Houston, K.: Object-

oriented analysis and design with applications, 3rd edn. Addison-Wesley (2007)
6. Jacobsen, I.: Object Oriented Software Engineering: A Use Case Driven Approach.

Addison-Wesley (1992)

70 P. Borges, P. Monteiro, and R.J. Machado

7. de Barros Paes, C.E., Hirata, C.M.: RUP Extension for the Development of Secure
Systems. In: ITNG 2007, pp. 643–652 (2007)

8. Jieshan, L., Mingzhi, M.: A Case Study on Tailoring Software Process for Characteristics
Based on RUP. In: CiSE, pp. 1–5 (2009)

9. Hanssen, G.K., Westerheim, H., Bjørnson, F.O.: Tailoring RUP to a Defined Project Type:
A Case Study. In: Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2005. LNCS, vol. 3547,
pp. 314–327. Springer, Heidelberg (2005)

10. Westerheim, H., Hanssen, G.K.: The introduction and use of a tailored unified process - a
case study. In: 31st EUROMICRO Conference, SEAA 2005, pp. 196–203 (2005)

11. Hanssen, G.K., Bjørnson, F.O., Westerheim, H.: Tailoring and Introduction of the Rational
Unified Process. In: Abrahamsson, P., Baddoo, N., Margaria, T., Messnarz, R. (eds.)
EuroSPI 2007. LNCS, vol. 4764, pp. 7–18. Springer, Heidelberg (2007)

12. Hanssen, G.K., Westerheim, H., Bjørnson, F.O.: Using Rational Unified Process in an
SME – A Case Study. In: Richardson, I., Abrahamsson, P., Messnarz, R. (eds.) EuroSPI
2005. LNCS, vol. 3792, pp. 142–150. Springer, Heidelberg (2005)

13. Hirsch, M.: Making RUP agile. OOPSLA 2002 Practitioners Reports (2002)
14. Fernandes, J.M., Duarte, F.J.: A reference framework for process-oriented software

development organizations. Software and Systems Modeling 4, 94–105 (2005)
15. Duarte, F.J., Fernandes, J.M., Machado, R.J.: Business Modeling in Process-Oriented

Organizations for RUP-based Software Development. In: Reference Modeling for
Business Systems Analysis, pp. 98–117. Idea Group Publishing (2006)

16. Hesse, W.: Dinosaur meets Archaeopteryx? or: Is there an alternative for Rational’s
Unified Process? Software and Systems Modeling 2, 240–247 (2003)

17. Manzoni, L.V., Price, R.T.: Identifying extensions required by RUP to comply with CMM
levels 2 and 3. IEEE Transactions on Software Engineering 29, 181–192 (2003)

18. Chang, G.: Modifying RUP to comply with CMM levels 2 and 3. In: ICISE 2010, pp. 1–5
(2010)

19. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development
Methods: Review and Analysis. Technical Research Centre of Finland, Espoo, Finland
(2002)

20. Ana Sofia, C.M., Felipe, S.F.S., Arnaldo, D.B.: Mapping CMMI Project Management
Process Areas to SCRUM Practices. In: Proceedings of the 31st IEEE Software
Engineering Workshop, pp. 13–22. IEEE Computer Society (2007)

21. Ambler, S.W.: Agile Modeling and the Rational Unified Process (RUP), vol. 2011 (2001)
22. Ambler, S.: Agile Modeling: Effective Practices for Extreme Programming and the

Unified Process. John Wiley & Sons, Inc., New York (2002)
23. Cintra, C.C., Price, R.T.: Experimenting a Requirements Engineering Process Based on

Rational Unified Process (RUP) Reaching Capability Maturity Model Integration (CMMI)
Maturity Level 3 and Considering the Use of Agile Methods Practices. In: Alencar,
F.M.R., Sanchez, J., Werneck, V. (eds.) Workshop em Engenharia de Requisitos, Rio de
Janeiro, pp. 153–159 (2006)

24. Abran, A., Bourque, P., Dupuis, R., Moore, J., Tripp, L.: Guide to the Software
Engineering Body of Knowledge - SWEBOK. IEEE Press (2004)

25. Monteiro, P., Machado, R.J., Kazman, R.: Inception of Software Validation and
Verification Practices within CMMI Level 2. In: Fourth International Conference on
Software Engineering Advances, ICSEA 2009, pp. 536–541 (2009)

26. Monteiro, P., Machado, R.J., Kazman, R., Henriques, C.: Dependency analysis between
CMMI process areas. In: Ali Babar, M., Vierimaa, M., Oivo, M. (eds.) PROFES 2010.
LNCS, vol. 6156, pp. 263–275. Springer, Heidelberg (2010)

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 71–83, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Scaling Software Development Methods from Co-located
to Distributed

Harald Klein1, Eric Knauss2, and Andreas Rausch3

1 Siemens AG, Bunsenstrasse 43, 91058 Erlangen, Germany
h.klein@siemens.com

2 Software Engineering Group, Leibniz Universität Hannover, Welfengarten 1,
Hannover, Germany

eric.knauss@inf.uni-hannover.de
3 Institute of Software Systems Engineering, University of Technology Clausthal,

Julius-Albert-Str. 4, Clausthal-Zellerfeld, Germany
andreas.rausch@tu-clausthal.de

Abstract. Software projects nowadays are typically sourced from more than
one location. This dispersed situation requires a higher degree of regulation
mechanisms than provided in agile development methods. Workarounds for
scaling agile practices to the distributed development scenario exist, which are
mostly not of any value for decision makers, since they still merely provide an
ad-hoc way of setting up distributed software development projects. Especially
smaller distributed software projects are in demand for methodical support for
this task. We propose a systematic approach – called “Collaborative Pattern
Approach” – for deriving a distributed development process from an existing
co-located process. Our approach focuses on a) defining cross-location
collaboration and b) assessing the quality of the derived distributed
development process. We demonstrate our approach in an example case.

Keywords: Collaboration, Software Development Methods, Distributed
Software Development, Distributed eXtreme Programming, Collaboration
Patterns.

1 Introduction

Today, many engineering products include some software that significantly
contributes to the products’ functionality [15]. In order to stay globally competitive
and to meet requirements from customers, software has to be highly sophisticated,
which demands high competencies and special resources. Many organizations gather
these competencies and resources from all over the world by linking specialized
departments or employing subcontractors. Thus, we observe that organizations create
more and more value in a dispersed development setting [19], [20].

In dispersed teams it is even more important to have supportive processes defined
than in organizations that work in one location. It is crucial for project managers to
clearly define artifacts to be developed and to assign unique responsibilities.

72 H. Klein, E. Knauss, and A. Rausch

Furthermore, the work order of artifacts is also a major issue since personal ad hoc
team meetings for coordination are not possible due to the intermediate distance. But
it is very challenging to define a collaborative process from scratch that incorporates
all desires from every organization that takes part in a collaborative and distributed
project. There are approaches that take existing software development methods and
apply them to distributed software development. For example, the successful
application of eXtreme Programming (XP) in distributed software development has
been reported in [10], [18]. However a systematic approach how one can derive a
distributed development method from existing co-located development methods is
still missing.

For this reason this paper shows a structured pattern-based approach that allows for
defining a collaborative process in distributed development environments. Such
collaborative processes are depending on the distributed development scenario. In
previous work, it was shown how this approach supports process definition, when
entire process activities are delegated to peers. In this work we investigate the impact
of the approach on the most difficult scenario: Collaborative execution of a single
process activity (i.e. implementation) by dispersed peers [2], [6]. This approach is
applied in an agile development environment. Furthermore we illustrate the benefits
or drawbacks of our approach using a realistic example with a focus on the following
research questions:

• How is a collaborative process in an agile project setup defined?
• What are assets and drawbacks in terms of performance of such a

collaborative process?

A major agile method we used is XP that demands for a high level of communication
and interaction [6], [14]. We used the collaboration pattern approach [12] to design
synchronization points between dispersed developers, to decide which communication
infrastructure should be used and to control the performance of the developers. The
goal is to incorporate some of the advantages of XP in our distributed development
process:

• High developer commitment because of shared responsibility.
• Low Risk of Failure and low amount of rework because of good customer

interaction.

Our findings suggest that this could be achieved. However, a balanced costs-benefit-
ratio of a development method can make the difference between success and failure.
Therefore, we discuss how to assess the value of a derived distributed development
process.

2 Related Work

As our example case addresses a distributed XP project, related work from an agile
context is focused in the same way like from distributed development to illustrate the
difficulties. Generally, Bird et al. show in [4] that it is possible to achieve comparable
software quality in distributed development as in co-located software development.

 Scaling Software Development Methods from Co-located to Distributed 73

As basis for this work we used Cockburn [6] describing that typical reason for
distributed software development are based on either economical, organizational, or
strategically considerations.

Intentionally, agile distributed development comes up with discrepancies, which
has been investigated by Ramesh et al. [18]. They state that development processes
have to be continuously improved; additionally, project managers have to improve
communication, facilitate knowledge sharing, and build trust in the distributed team,
as a fundamental principle for collaboration in general and valuable for especially
setting up this work. The agile development principles which our example case is
based upon are described by Beck in [3].

The applicability of four XP practices (Planning Game, Pair Programming,
Continuous Integration, and Onsite-Customer) in distributed environments is
illustrated by Kircher et al. [10]. They describe consequences for these practices when
used in a distributed environment and give anecdotal evidence of the approach.
However, no author focuses on processes that support collaboration by keeping each
organization’s development approach.

The collaborative approach in this work is based on process patterns, which are
used to connect different organization’s processes. This complements with the work
of Braithwaite and Joyce [6] who also identified basically patterns of behavior for
collaboration in distributed XP. Those are Balanced Sites, Distributed Standup,
Multiple Communication Modes, and One Team, One Codebase. However, they give
no information about benefit and costs of these patterns.

Our approach takes also business process model characteristics into account
inspired by R. Prikladnicki et al. who address business strategies and models
regarding distributed software development on (project) management level [17]. By
means of a case study they focus on the difference and challenges of shared services,
onshore/offshore outsourcing, and offshore insourcing. Furthermore, Meyer B. [15]
defines a development model which divides the entire software system in sub-projects
representing components of the system. This generates another process with little
overlaps, which requires an intensive amount of coordination and communication.

Communication is also one of the essentials in distributed development. Wolf et al.
were able to give objective evidence of the importance of good communication [23].
Based on analysis of social networks they are able to predict failures in the integration
builds of a large highly distributed software project. Additionally, Herbsleb and
Mockus have investigated speed and communication in globally distributed software
development [6] using data from a change management system and a survey
performed in two organizations. A key finding is that distributed work items take up
to 2.5 times longer than similar co-located work items. However, they do neither
describe the development method defined nor how the distributed development
method has been applied.

We considered also practical experience and illustration of how to connect
different development processes in a distributed environment from Avritzer [1] and
Wichmann [22]. However, Wichmann does not consider and describe any team
structure or role model in his approach.

74 H. Klein, E. Knauss, and A. Rausch

3 Context: Co-located Agile Development

Our example case investigates distributed agile software development [3] in a
students' project. The project was held as a joint course by the Technische Universität
Clausthal (TUC) and the Leibniz Universität Hannover (LUH). A similar, non-
distributed course was held at LUH many times before. One of the main goals in the
non-distributed agile course was to teach XP in a realistic environment. Our students
should learn how the agile practices affect software development. Therefore, we tried
hard to implement all twelve practices proposed by Beck [3]. An essential part of the
course is a one week block encompassing most of the software development
activities. Thus, we can implement practices like Onsite-Customer, 40h-week, and
Pair-Programming. For teaching purposes, we have very short iterations. In our
experience, two day iterations work best [21].

Fig. 1 describes the development process in our co-located XP classes. A major
concept is story cards. These handwritten slips of paper contain a short description of
how a future user will use the system that is still under development. Often, narratives
(i.e. usage stories) are used. Onsite Customers write these stories together with the
agile team. New story cards can always be created and added to the Product Plan. The
Product Plan contains all story cards the team and customer are aware of. In our
experience, most stories are created at the end or beginning of an iteration.

Each iteration starts with a Planning Game. If the customer has new stories, these
are written first. After that, each story card is estimated by the developers. Then, the
customer prioritizes the story cards by sorting them. The most important story card
lies on top of the stack. Based on experience from past iterations customer and team
select as many story cards from this stack as one iteration allows to implement. This
is the iteration plan.

After the Planning Game, which is conducted in conjunction with the customer the
story cards from the iteration plan are implemented via Pair Programming. Any pair
of two developers takes the topmost story card (“Select Story Card”) and implements
it by applying the test-first practice. The developers start with writing an automatic
unit test (“write unit test”), then add just enough code to make the test run (“write
code”), before writing the next test. This is depicted in the activity “Pair
Programming: Implementation and Integration”. As illustrated with turning arrows
improvement loops are included.

When the developer pair thinks that a story card is implemented, they go to the
onsite customer and present their results. If these results are acceptable for the
customer (“acceptance test”), the developer pair integrates them into the system and
the story card is finished (“integrate story”). The pair takes the next story from the
iteration plan and starts again. This iterative process loop ends if all story cards of
iteration plan are processed and/or acceptance from the customer is gained.

Prior to participation of the joint course TUC followed a traditional waterfall
development process which is depicted in Fig. 2. This process was not able any more
to address the up-to-date development issues e.g. fast changing requirements, early
releases for customers etc. Therefore, an agile approach like at LUH was intended to

 Scaling Software Development Methods from Co-located to Distributed 75

use for development projects. However, this approach did not consider an explicit
design, which has been seen as very valuable at TUC especially for distributed
development projects. This made TUC to consider an integration of the old waterfall
design into a new development approach.

Fig. 1. Co-located Agile Development Process

4 The Collaborative Process Approach

The concept of collaborative processes is based on the fact that any organizations
willing to collaborate need to think about how to define a collaborative process. Our
concept adequately addresses this issue by using mediator patterns, which is a kind of
interface, to connect two or more existing processes to a new collaborative process
without changing the original ones. The mediator pattern concept is discussed in
detail in [11], [12], [13] using different scenarios each incorporating an appropriate

76 H. Klein, E. Knauss, and A. Rausch

mediator pattern. A scenario is an environment that applies and illustrates the use of a
mediator through example processes. Our approach provides five collaborative
scenarios which allow for describing any collaboration process. Each scenario comes
with an appropriate mediator pattern that makes critical collaborative aspect explicit,
e.g. interface descriptions or task allocations. Thereby, two different levels of patterns
are distinguished:

• Collaborating organizations have semantically different processes defined. In
this case our approach provides various mediator patterns to connect these
processes by explicitly including activities that address e.g. interface issues.
These patterns are: Horizontal Integration, Additive Vertical Integration,
Alternative Vertical Integration, and Joint Integration.

• Collaborating organizations have equivalent semantically processes defined. In
this case the approach provides three role patterns (“AND”, “OR”, “XOR”) to
explicit allocated task responsibilities.

We will use the scenario Additive Vertical Integration to illustrate how a mediator
pattern operates [12]. Generally, this scenario allows for parallelization of
activities/sub-processes and connecting entire action chains. The appropriate mediator
for this scenario is illustrated in Fig. 2. <Action X> is the connector from the Master’s
development process, which is followed by Decomposition. This Decomposition is a
newly defined action that is necessary to allocate features to either <Sub-workflow A>
or <Sub-workflow B>. After decomposition there exist two artifacts 2 and 5, which
are created and defined in a type that they are an usable input for <Sub-workflow A>
and <Sub-workflow B>.

Fig. 2. Mediator Pattern for Additive Vertical Integration (left) and initial Waterfall process

 Scaling Software Development Methods from Co-located to Distributed 77

The output artifacts 3 and 6 of these sub-workflows are of the same type as the
inputs. After implementation an Integration of (in this case) products from <Sub-
workflow A> or <Sub-workflow B> is essential to combine several features or sub-
features that have been developed in different domains to one system or sub-system.
As illustrated, the Integration is also newly defined and included as connection point.
After Integration is done the process flows back to the Master, which is symbolized
with <Action Y>.

5 Example: Deriving a Distributed Agile Development Process

For illustration, we show how we applied our approach to a student’s project (11
participants at LUH and 4 participants at TUC). We formed two teams: a local team
with 7 students from LUH that followed the original co-located process and a
distributed team with 4 students from each site (two programmer-pairs per site) that
followed the derived process for distributed XP. There was no barrier due to
languages, time zones and resulting communication problems, because LUH and
TUC are both German universities. The project conducts 14 development runs with
duration of 4 hours each. We had 5 days including two development runs each and 4
days with one development run. The whole development project was based on XP.
Although the project lasted a little over two weeks (14 working days) only, all XP
practices were applied, e.g. Planning Game, Refactoring, Pair Programming, Onsite
Customer, Continuous Integration etc.

Besides the XP practices discussed in Kircher et al. [10] special attention needs to
be paid on the design activity which has been done implicitly in the co-located agile
scenario (Fig. 1). This implicit approach is acceptable since communication paths are
very short and decisions can be taken in an informal way without having anybody of
the agile team ignored. In a distributed development environment design discussions
are even more important due to the distributed project character - even a simple
design [3] needs to be known at all sites. This was the main intention of TUC to keep
explicit design activities even though an agile approach is followed. As seen in
section 3 programmer pairs continuously take story cards to implement. Design
discussions and definitions have to be now explicitly defined and conducted in
parallel to the implementation of story cards. This is necessary because various
features of story cards might affect the system design. The design adoptions in a
distributed project environment need to follow a traceable approach in order to get
commitment from the entire team.

5.1 Applied Mediator Pattern in Example: Additive Vertical Integration

In order to address the need to have development activities explicitly parallelized the
Additive Vertical Integration scenario is predestinated to be applied. Fig. 3 illustrates
the collaborative scenario. Following the mediator pattern for Additive Vertical
Integration (Fig. 2) we have to identify <Action X> first, that is the starting point for
integration.

78 H. Klein, E. Knauss, and A. Rausch

Having chosen the action “Select Story” a newly defined action “Decomposition”
has to be added right after a story card is selected. In this action the agile teams decide
on the dedicated developer pairs that start discussions about design. A pair itself is not
distributed over two locations, since this would make the XP practices even harder to
fulfill by having too much communication effort. For this reason a XOR role model
definition is applied in the “Pair Programming” activity, which minimizes
communication overhead.

Fig. 3. Distributed Collaborative Process

Going further in Fig. 3 the fork node starts parallelizing the process. The left path
covers the design work, which typically leads to a design sketch on a whiteboard and
documents the most important design decisions for the current iteration. The design
sketch will be removed, if it is no longer useful. The right path leads directly to
activity Pair Programming: Implementation and Integration. As depicted in Fig. 3, a

 Scaling Software Development Methods from Co-located to Distributed 79

useful design sketch is input for this activity, which describes the implementation
process itself. After implementation the story card’s code is integrated into the
existing software product. Following the scenario in Fig. 3 the Join Node terminates
the parallelism. At this point another overall integration needs to take place which
also includes the integration of various design approaches created on the whiteboard.
This is represented by an additional Integration action at the end.

5.2 Assessment of the Derived Process

Now that we have derived a process for distributed development, we need to assess,
whether it works as intended. In comparable co-located projects we observed some
advantages of our co-located XP process that we wanted to include in our distributed
development process:

• High developer commitment because of shared responsibility.
• Low Risk of Failure and low amount of rework because of good customer

interaction. Developers

We need to investigate, to what extend the advantages from co-located development
could be retained. In this example, we focus on the Risk of Failure, the amount of
rework, and the truck factor.

5.2.1 Question 1: Commitment of Developers

Question 1: Does the derived distributed process explicitly allocate responsibilities in
a way that leads to comparable commitment of developers as in the co-located case?

Metrics: We measure the additional time, students invest into the course (M1:
overtime [h]) as an indicator they are highly motivated by the project. For the same
reason, we count, how often students are late (M2: occurrences of being late).

Hypothesis 1: There is no difference in metrics M1-2 between co-located and
distributed teams.

Measurement: During the project, tutors and observers logged all peculiarities,
especially if (M1) students stayed for longer discussions or did some work (e.g.
reading tutorials) at home and (M2) if a student was late during the block course.

Findings: Students from the global team were very interested into process issues. At
three occasions they stayed more than half an hour longer, discussing about XP
concepts and general software design. Such occasions were not observed with
students from the local team, but we found slightly more volunteers from the local
team, when we searched for volunteers to create a market-ready version of the
software after class. Therefore, we rate M1 to be indifferent or even in favor of the
global team. On the first few days, distributed stand-up meetings were delayed,
because some developers were late (5-15 minutes). Punctuality improved during the
distributed project. In the co-located project, some of the developers were regularly

80 H. Klein, E. Knauss, and A. Rausch

late, so the co-local team performed worse with respect to M2. Similar projects in past
terms show that the distributed project is more typical than the co-local, here.

5.2.2 Question 2: Risk of Failure

Question 2: Does the continuous integration and the handover of new functionality to
the rest of the team work as good in reducing the risk of failure as in the co-located
process?

Metrics: New functionality should be added at a stable pace. This reduces the risk of
not finishing in time with the most important requirements implemented. A stable
pace is only possible, if new functionality can be integrated without major problems
and reuses functionalities of existing increments. Therefore, we measure the variation
of the implementation progress (M3: variation of velocity).

Hypothesis 2: There is no difference in the variation of the implementation progress
(M3).

Findings: Fig. 4 shows the implementation progress of the distributed team in
comparison to two co-local XP projects. The Velocity shows how much of the
estimated effort was implemented each development run. The Burndown shows, how
much of the initial amount of estimated work was left each day. This amount is
reduced by the estimated effort of a story card, whenever it is integrated after
acceptance. The Burndown should fall continuously, whereas the Velocity should
ideally be constant.

If a project goes well, the velocity is constant or even growing (b in Fig. 4). If
problems occur, the velocity drops (c in Fig. 4). Compared with these two co-local
projects, our distributed project seems to be fine (a in Fig. 4). Remark: For b) and c)
only limited data has been available which makes statistical comparisons difficult.
Nevertheless, the major trend of burndown and velocity is made clear.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

Burndown Velocity

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Fig. 4. Velocity and Burndown in a) the distributed XP project (x-axis: development runs (4h
length), y-axis: estimated effort), b) a good co-local XP project, and c) a bad co-local XP
project (x-axis: 8h day)

5.2.3 Question 3: Amount of Rework

Question 3: Does the distributed process support the development of a shared
understanding of the design?

a) b) c)

 Scaling Software Development Methods from Co-located to Distributed 81

Metrics: The amount or rework was measured in two ways. Firstly, the number of
story cards with bugs (“bug cards”) in relation to all story cards (M4). Secondly, the
time spent on these bugs (M5).

Hypothesis 3: Basili and Boehm stated in [5] that the typical amount of rework is
about 40-50% of the overall project effort. Our projects should be better.

Findings: Number of Bug Cards show a relative high value for M4 of about 37% of
bugs. However, none of these bugs took long time (M5): the amount of rework is
determined at about 15%. Again, these values are comparable to our co-located
projects.

We investigated the communication effort of the project in detail in [16], which is
about twice as high (or worse, if preparation and setup time is considered) as in local
projects. As discussed in [2], strategic considerations can make this additional effort
acceptable. In our case, we stay more agile, are able to react faster, and can still
distribute the development between two sites.

6 Conclusion

More and more software is developed in distributed teams. Especially for small
projects, the ability to systematically derive a process for distributed development
from a well understood co-local development process is crucial. In this paper we
present such an approach that allows deriving a distributed development process. We
have introduced the collaborative scenario Additive Vertical Integration which
incorporates important aspects for distributed agile development. Together with the
corresponding mediator methodology this pattern helps process engineers to setup
their collaborative and distributed scenario. Our approach is complemented by
empirical techniques to derive the benefits and drawbacks associated with the original
co-local process. This is a prerequisite for assessing, whether these properties are
represented in the derived distributed approach. We give an example on how our
approach (usage of Additive Vertical Integration) can be applied to a students' XP
project. Since this paper provides only one quantified example (data point)
concerning the effects of the use of the Additive Vertical Integration we cannot drive
the conclusion that each and every software development project using Additive
Vertical Integration is successful in the same way we are.

In our example, we focus on the properties developer commitment, risk of failure,
amount of rework, and communication effort. Basically, we were able to derive a
process that performs as good as the original co-located process at the cost of twice as
high communication costs. The reasons for that are manifold; however, the use of an
explicit design activity might essentially contribute to projects success since design
activities are typically the foundation of any software product. The results provided
give process managers one example of the potential successfulness of our
collaborative scenario supporting the understanding of dependencies. Others may find
our metrics and data points useful, when evaluating distributed projects.

82 H. Klein, E. Knauss, and A. Rausch

Basically, we have shown that it is possible to derive a good distributed process
with our approach. The communication intensive XP is a hard benchmark. Based on
this success, we plan to apply our approach in industry strength projects. Currently,
project managers are limited to ad-hoc adjustments for making a process fit for
distributed development. It will be interesting to see whether our approach leads to
better results.

References

[1] Avritzer, Hasling, Paulish: Process Investigation for Global Studio Project Version 3.0.
In: Second IEEE International Conference on Global Software Engineering. IEEE
Computer Society (2007) ISBN 0- 7695-2920-8

[2] Bartelt, C., et al.: Orchestration of Global Software Engineering Projects (Position Paper).
In: Proceedings of the 3rd International Workshop on Tool Support Development and
Management in Distributed Software Projects, collocated with the 4th ICGSE 2009,
Limerick, Ireland, July 13-16 (2009)

[3] Beck, K.: Extreme Programming Explained. Addison-Wesley (2000)
[4] Bird, C., et al.: Does Distributed Development Affect Software Quality? An Empirical

Case Study of Windows Vista. In: 31st International Conference on Software
Engineering, Vancouver, Canada (2009)

[5] Boehm, B., Basili, V.R.: Industrial Metrics Top 10 List. IEEE Software, 84–85
(September 1987)

[6] Braithwaite, K., Joyce, T.: XP Expanded: Distributed Extreme Programming.
In: Baumeister, H., Marchesi, M., Holcombe, M. (eds.) XP 2005. LNCS, vol. 3556,
pp. 180–188. Springer, Heidelberg (2005)

[7] Bryant, S.: Double trouble: Mixing quantitative and qualitative methods in the study of
extreme programmers. In: IEEE Symposium on Visual Languages and Human-Centric
Computing Rome, Italy, September 26-29 (2004)

[8] Cockburn, A.: Agile Software Development. Addison-Wesley (2002) ISBN
978020169969

[9] Herbsleb, J.D., Mockus, A.: An Empirical Study of Speed and Communication in
Globally Distributed Software Development. IEEE Transactions on Software
Engineering 29(6), 481–494 (2003)

[10] Kircher, M., Jain, P., Corsaro, A., Levine, D.: Distributed eXtreme Programming. In:
Second International Conference on eXtreme Programming and Agile Processes in
Software Engineering, pp. 66–71 (2001)

[11] Klein, H., Rausch, A., Fischer, E.: Towards Process-Based Collaboration in Global
Software Engineering. In: 2009 35th Euromicro Conference on Software Engineering and
Advanced Applications, SEAA 2009, pp. 263–266 (2009)

[12] Klein, H., Rausch, A., Fischer, E.: Collaboration in Global Software Engineering Based
on Process Description Integration. In: Luo, Y. (ed.) CDVE 2009. LNCS, vol. 5738,
pp. 1–8. Springer, Heidelberg (2009)

[13] Klein, H., Rausch, A., Künzle, M., Fischer, E.: Application of Collaborative Scenarios in
a Process-Based Industrial Environment. In: 36th EUROMICRO Conference on Software
Engineering and Advanced Applications, Lille, France, September 01-03, pp. 327–330
(2010) ISBN 978-0-7695-4170-9

 Scaling Software Development Methods from Co-located to Distributed 83

[14] Layman, L., et al.: Essential communication practices for Extreme Programming in
Global Software Development Teams. Information and Software Technology, Special
Issue Section: Distributed Software Development 48(9), 781–794 (2006)

[15] Meyer B.: Object-oriented software construction. Prentice Hall PTR (1997) ISBN 978-0-
136-29155-8

[16] Meyer, S., Knauss, E., Schneider, K.: Distributing a Lean Organization: Maintaining
Communication While Staying Agile. In: Abrahamsson, P., Oza, N. (eds.) LESS 2010.
LNBIP, vol. 65, pp. 99–103. Springer, Heidelberg (2010)

[17] Prikladnicki, et al.: Distributed Software Development: Practices and Challenges in
Different Business Strategies of Offshoring and Onshoring. In: Second IEEE
International Conference on Global Software Engineering, pp. 262–271. IEEE Computer
Society (2007) ISBN 0-7695-2920-8

[18] Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can distributed software development be agile?
Communications of the ACM (2006)

[19] Sangwan, Mullick, Paulish, Kazmeier: Global Software Development Handbook.
Auerbach Publications, Taylor & Frances Group (2007) ISBN 0-8493-9384-1

[20] Schrage, M.: Shared Minds – The New Technologies of Collaboration. Random House,
New York (1990) ISBN 0-394-56587-8

[21] Stapel, K., Lübke, D., Knauss, E.: Best Practices in eXtreme Programming Course
Design. In: Proceedings of the 30th International Conference on Software Engineering
(ICSE 2008), pp. 769–776. ACM Press (2008)

[22] Klaus-Peter, W.: Offshore Zusammenarbeit erfolgreich etabliert: Ein Praxisbericht über
ein Migrationsprojekt im Maschinenbau, SIGS DATACOM Gmbh, ObjektSpektrum
Nr.3, pp. 50–55 (Mai/Juni 2008)

[23] Wolf, T., et al.: Predicting Build Failures using Social Network Analysis on Developer
Communication. In: 31st International Conference on Software Engineering (ICSE 2009),
Vancouver, Canada (2009)

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 84–102, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Improving Open Source Software Process Quality
Based on Defect Data Mining

Wikan Sunindyo1, Thomas Moser1, Dietmar Winkler1, and Deepak Dhungana2

1 Christian Doppler Laboratory for Software Engineering Integration
for Flexible Automation Systems

Vienna University of Technology, Institute of Software Technology and Interactive Systems
Favoritenstrasse 9-11/188 Vienna, Austria

{Wikan.Sunindyo,Thomas.Moser,Dietmar.Winkler}@tuwien.ac.at
2 Siemens AG Österreich

Vienna, Austria
deepak.dhungana@siemens.com

Abstract. Open Source Software (OSS) project managers often need to observe
project key indicators, e.g., how much efforts are needed to finish certain tasks,
to assess and improve project and product quality, e.g., by analyzing defect data
from OSS project developer activities. Previous work was based on analyzing
defect data of OSS projects by using correlation analysis approach for defect
prediction on a combination of product and process metrics. However, this cor-
relation analysis is focusing on the relationship between two variables without
exploring the characterization of that relationship. We propose an observation
framework that explores the relationship of OSS defect metrics by using data
mining approach (heuristics mining algorithm). Major results show that our
framework can support OSS project managers in observing project key indica-
tors, e.g., by checking conformance between the designed and actual process
models.

Keywords: Open Source Software, Process Quality, Data Mining.

1 Introduction

The Open Source Software (OSS) development project uses different data manage-
ment techniques for managing heterogeneous data from different data sources, e.g.,
Source Code Management (SCM), developer’s mailing list, and bug repository, which
produces a new insight on the software development [3]. A set of different data man-
agement approaches, such as data warehousing [4] or data mining techniques [5],
have successfully been applied to observe the processes of OSS projects and to im-
prove the quality of products and processes of these OSS projects [4]. Data warehous-
ing and data mining techniques enable the observation of OSS projects processes
based on measuring differences of expected requirements and the actual implementa-
tion. Measurement results can be used for improving the techniques itself and under-
lying methods for developing OSS.

 Improving OSS Process Quality Based on Defect Data Mining 85

OSS project managers need to collect, integrate and analyze heterogeneous data ori-
ginating from different tools used in the OSS project, such as source code manage-
ment, developer’s mailing list, and bug reporting tools to observe the processes and
determine the status of OSS projects [3]. Typically, project management in OSS
projects is based on dynamically changing conventions between developers or contri-
butors - usually it is performed either by senior contributors or the project initiator -
while project management in conventional software project is determined prior to the
actual project life time.

Observations of OSS processes are needed as an initial way to improve the quality
of OSS processes and products. By observing the OSS processes, we can measure the
current state of certain processes, for example the times taken to report and resolve
some issues, and then find out how to reduce idle or non-productive time windows or
to address bottlenecks. In OSS projects, project managers can not directly inspect the
software development, since developers usually work geographically distributed
including interactions through communication tools, such as SVN, mailing list, or
Bugzilla [4]. Another aspect of OSS project observation focuses on the structure and
culture of OSS models. The structure of OSS projects typically is more democratic
compared to conventional software development projects and consists of more flexible
work structures as well as global or multi-cultural communities [12]. A promising
approach of project managers to observe OSS engineering processes is by analyzing
data generated during the development phases, e.g., bug data, developers’ communica-
tion data, and source code management data. However, the analysis process itself is not
straightforward. Some preparatory steps are required to get the data ready for analysis,
for example data collection, data integration, and data validation. Since the data typi-
cally originates from more than one and often heterogeneous tool, project managers
need to identify the relationships between heterogeneous data sources to get meaning-
ful patterns out of the collected data for further decisions regarding the OSS project.

Status determination with respect to the project timeline and prediction of project
survivability (based on “health indicators” [18]) of OSS projects is a key activity of
project managers [17, 18]. By knowing the status of OSS projects early in the devel-
opment project and phases, the project managers and other stakeholders, e.g., project
hosts and project contributors, can decide whether the project is healthy, sustainable
and worth-supported. Among key indicators to determine the OSS project health sta-
tus is a proportional number of code contributions per developer email and the num-
ber of bug status report per developer email. In “unhealthy” OSS projects, the ratio
between code contributions per developer email and bug status report per developer
email is imbalanced [17].

Major challenges in observing OSS processes are (1) no formal definition of engi-
neering process design in OSS projects [8], (2) different developers work in distributed
systems make it difficult to observe their work in one location, (3) heterogeneous tools
and data formats in OSS projects, e.g., source code management, developers mailing
list, and bug reporting systems, which hinder project managers to identify the right data
to support their observation goals, e.g., to monitor the status of OSS projects [4].

86 W. Sunindyo et al.

Bugs resolution process is one of project observation sources. Bugzilla1 – a web-
based general purpose bug tracking and testing tool – is widely used in the OSS com-
munity. Bugzilla is used by the Mozilla project and licensed under the Mozilla Public
License. Currently Bugzilla is used for tracking bugs in many OSS projects such as in
Red Hat2. However, the use of advanced approaches, such as data mining approaches,
to analyze bug report data, has not yet been intensively researched and therefore re-
quires further investigations regarding its usefulness for OSS projects observation and
quality improvement.

In this paper we propose a framework for effective engineering process observation
in OSS projects. We use bug history data from Red Hat Enterprise Linux3 (RHEL)
projects as a use case for our observation framework application and use the Heuristics
Mining algorithm [19] of the Process Mining tool ProM4. Major result is that the
framework can support engineering process observation more effectively than manual
approach. The analysis results on conformance checking of process models from
RHEL bug history data can be used to improve the process quality, e.g., by observing
that more bugs remain closed and not reopened within different RHEL versions.

The remainder of this paper is structured as follows: Section 2 discusses related
work on the OSS projects domain and on data mining approaches. Section 3 motivates
the research issues. Section 4 describes the solution approach of observation frame-
work to OSS projects. Section 5 presents the results of the initial evaluation. Section 6
discusses the research results, while finally section 7 concludes the paper and presents
further work.

2 Related Work

This section summarizes related work on some important approaches to improve the
OSS process quality, especially by using process and product data from OSS artifacts.
We also include some works on analyzing and mining those data to support OSS
project quality improvement.

2.1 Observation and Improvement in OSS Projects

Some researches have been done to observe engineering processes in OSS project con-
text in order to improve the quality of the projects. Sharma et al. [12] focused on creat-
ing a framework to generalize the characteristics of OSS in hybrid communities. Hybr-
id communities are communities of software developers who are using OSS approach-
es to develop software in proprietary software development projects. These developers
are usually employees of a company rather than being voluntarily involved in the
projects. Sharma et al. state that OSS development models are considered to be suc-
cessful if they meet the original developers’ or candidate users’ software requirements

1 http://www.bugzilla.org/
2 http://www.redhat.com
3 http://www.redhat.com/rhel/
4 http://www.processmining.org/

 Improving OSS Process Quality Based on Defect Data Mining 87

regarding software quality, e.g., product features that should be available in final OSS
products. In general, the models used for proprietary software can be based on the
models of OSS projects, for example regarding the structure, culture or process to de-
velop software, even though some of these OSS projects do not finish successfully.
The OSS approaches in developing software, especially development iterations based
on feedback from the developers can improve the product in order to contain fewer
bugs. The framework for creating and maintaining hybrid-open source communities
typically consists of structures, processes, and cultures. This means that an attempt to
improve the quality of OSS projects can be adapted to other proprietary software
projects as well.

Rigat [10] analyzed defect data in proprietary software development processes by
using data mining approaches. He proposed to analyze the software project data to
identify the underlying software development processes, e.g., why some process steps
are skipped in most of the cases of handling defects. In his approach, Rigat collected
development data from proprietary software projects and analyzed it by using the
Heuristic Mining algorithm. The results show that there was a positive tendency of
skipping the “analysis” task while the project reaches the testing phase. The reason
was the developers seem not to be really considering the analysis phase in the soft-
ware development (because it seems too trivial and can be changed later) and rather
go directly on to the next process steps. This approach is appropriate for conventional
software development projects, where the project data can be easily obtained from the
project developers, but is not easily transferable to the OSS projects domain where the
data typically is both geographically distributed and often only available in heteroge-
neous data formats or contents. Another difference between OSS and closed software
development projects is that in the closed software development projects typically
exists more structured project management allowing for easier project monitoring,
while in OSS development projects the developers act voluntarily and the project
managers need more effort to measure the activities of these OSS developers.

Mockus et al. performed an analysis on two OSS projects, namely the Apache Web
Server and the Mozilla browser [7, 8]. Their goal was to quantify the aspects of de-
veloper participation, core team size, code ownership, productivity, defect density,
and problem resolution for OSS projects. They collected and analyzed the data from
different sources, for example developers’ mailing lists, concurrent version systems
(CVS) and problem reporting databases (BUGDB). However, they focused on the use
of non-integrated historical artifacts originating from different data sources to meas-
ure the quality of software. Their findings show that the Apache and Mozilla OSS
development projects have core developers who control the code base. This core is no
larger than 10 to 15 people, and is responsible for approximately 80% or more of
newly implemented features. In this paper, we integrate both historical and current
artifacts originating from different heterogeneous project data sources to get more
information (e.g., current project status, times needed for bug fixing, etc.) for decision
making.

Biffl et al. [3] proposed a project monitoring cockpit for project managers to ana-
lyze the key indicators of the OSS projects, and to investigate whether these OSS
projects are healthy and sustainable or “sick” and need more treatment and support

88 W. Sunindyo et al.

from the developers. This project monitoring cockpit used data from different data
sources, e.g., source code versions, mailing list entries, and bug reports. From this
project monitoring cockpit, we can expect an improvement of the OSS project indica-
tors based on the observation results, e.g., by resolving more bugs in the same time
window. However, this improvement effect cannot be derived so far without going
deeper to the details of bug states themselves. Hence, research works on OSS engi-
neering process observation are still very challenging to reveal the health status of
OSS project immediately and support information for OSS project manager’s deci-
sion.

The works to formulate the process model of software development, for example
proposed by Mi and Scacchi [6] by using a meta-model for formulating knowledge-
based models of software development. This meta-model contains a minimal set of
entities necessary to describe a process, which consists of hierarchy of processes,
which are composed of tasks (sets of related actions) and atomic actions.

The hierarchy may be divided into some lower parts, e.g., sub-processes, subtasks,
and so forth, to achieve an arbitrary degree of decomposition. Each activity is defined
in terms of process entities, namely agents that participate in the process activity,
tools used by those agents in the performance of the activity, and resource that are the
product of and are consumed by performance of the activity.

This meta-model can be a general model for other software development process,
including the OSS development process. However, some adjustments need to be done
to adapt the different process data in the OSS project, e.g., the development process
data in the bug reporting systems.

2.2 Bug Reporting System

A bug reporting system is a very useful system that makes process observation and
improvement easier. It is a software application that is designed to help quality assur-
ance personnel and developers keeping track of reported software bugs in their work. It
may be regarded as a type of issue tracking system.

Bugzilla is a “defect tracking system” or “bug-tracking system” from Mozilla.org.
Defect tracking systems allow individual developers or groups of developers to effec-
tively keep track of open issues in their product. By using Bugzilla, developers can
track bugs and code changes, communicate with teammates, submit and review
patches, and manage quality assurance (QA) steps [13].

Figure 1 shows the Bugzilla Life Cycle as the way the Bugzilla users check in and
change the status of bugs in the Bugzilla database for software projects in general. We
consider this life cycle as an expected process model of software process development,
especially for OSS projects, because this life cycle can show us the process steps of
changing bug status which are done by OSS developers. These actions to change the
bug status we consider as engineering processes like in traditional waterfall model.

At first, a bug is introduced by developers or users as an unconfirmed bug (1). Af-
ter the bug is confirmed, its status is changed into new (2). A new bug can be assigned
(3) to other developers or resolved (4) directly. A resolved bug should be verified (5)
before it is closed (7), but sometimes a closed bug is reopened (6), when new issues is

 Improving OSS Process Quality Based on Defect Data Mining 89

revealed. Other paths could be taken, for example from a closed (7) bug to uncon-
firmed (1) bug, or assigned (3) a bug after reopened (6). A verified (5) or resolved (4)
bug can be unconfirmed (1) again. These states are set by the Bugzilla developer to
guide the software developers to name their bug states. However, the software devel-
opers can create their own state names based on agreement between them.

Ahmed and Gokhale [1] proposed a life cycle and resolution analysis on the bug
history data for Linux kernel. In their work, they used the states from Bugzilla life
cycle to examine some insights on the Linux kernel, i.e., why and how the bugs origi-
nate, contribution of the different modules to the bugs, their distribution across severi-
ties, the different ways in which the bug may be resolved, and the impact of bug
severity on the resolution time.

Fig. 1. Bugzilla Life Cycle5

To discover the insights, they made some statistical data analysis on cross-kernel
analysis, module-level analysis, bug resolution method, and bug resolution time vs.
severity. The insights actually are very useful to evaluate the status of OSS project
development and can be applied to other OSS projects, not only limited to operating
system application.

5 http://www.bugzilla.org/docs/3.0/html/lifecycle.html

90 W. Sunindyo et al.

2.3 Data Mining

Data mining can be defined as the exploration and analysis, by automated and semi-
automated means, of large quantities of data in order to discover meaningful patterns
or rules [2]. In the context of marketing, the goal of data mining is to allow companies
for improving their marketing, sales, and customer support operations through better
understanding of their customers. The tasks well-suited for data mining are including
classification, estimation, prediction, affinity grouping, clustering and description [2].

Data mining tasks can be classified into two tasks: namely hypothesis testing and
knowledge discovery. Hypothesis testing is a top-down approach; a database record-
ing past behavior is used to verify or disprove preconceived notions, ideas, and
hunches concerning relationships in the data. Knowledge discovery is a bottom-up
approach; no prior assumptions are made and the data is allowed to speak for itself.
There are two kinds of knowledge discovery approaches, namely directed knowledge
discovery and undirected knowledge discovery. Directed knowledge discovery at-
tempts to explain or categorize some particular data field such as income or response.
Undirected knowledge discovery attempts to identify patterns or similarities among
groups of records without the use of a particular target field or collection of prede-
fined classes [2].

In this paper, we use a hypothesis testing approach to verify the designed process
model with the actual data from the bug history data of OSS projects. The results of
this hypothesis testing are used to observe improvement of project quality, e.g., more
bugs are closed and not reopened within one OSS project.

The data mining approach, which is applied to the process data, is called process
mining. Process mining is defined as a method for distilling a structured process de-
scription from a set of real executions [15]. Similar to data mining, process mining
can be used to discover meaningful patterns and rules in the process data represented
as activities that stored in an event log. The goal of process mining is to extract in-
formation about processes from transaction logs [14]. Process mining assumes that it
is possible to record events such that (1) each event refers to an activity (i.e., a well-
defined step in the process), (2) each event refers to a case (i.e., a process instance),
(3) each event can have a performer or an originator (a person or a machine that ex-
ecute or initiate the activity), (4) events have timestamps and are totally ordered [16].

In [19], van der Aalst et. al. explain three different perspectives of process mining:
namely the process perspective, the organizational perspective, and the case perspec-
tive. The process perspective focuses on the control-flow, i.e., the ordering of activi-
ties. The goal of this perspective is to find a good characterization of all possible paths,
expressed in models such as Petri Nets [9]. The organizational perspective focuses on
the originator field, i.e., which actors are involved in performing the activities and how
they are related. The goal is to structure the organization by classifying people of sys-
tems in terms of roles and organizational units or to show relations between individual
actors (i.e., by building a social network [11]. The case perspective focuses on proper-
ties of cases. Cases here can be defined as an instantiation of processes that are charac-
terized by their path in the process or based on their originators. Cases can also be
characterized by the values of the corresponding data elements.

Heuristics mining is an experience-based process mining technique that can help in
problem solving, learning and discovery. Right now, the heuristic mining algorithm is

 Improving OSS Process Quality Based on Defect Data Mining 91

implemented as HeuristicsMiner plug-in in the process mining (ProM) tool [19]. Heu-
risticsMiner is a practical applicable mining algorithm that can deal with noisy data. It
can be used to express the main behavior (i.e., not all details and exceptions) regis-
tered in an event log. The HeuristicsMiner algorithm consists of the following three
steps: (1) construct the dependency graph; (2) for each activity, construct the input-
and output expression; and (3) search for long distance dependency relations [19]. In
this paper, we use HeuristicsMiner algorithm to analyze the bug history data from
different OSS project versions to compare the frequency of using bug states in those
OSS project versions.

3 Research Issues

The OSS project managers need to be able to know the status of OSS project develop-
ments [17], so they can make further decisions on the projects, e.g., to assign some
experts to handle difficult tasks, to add some new features to address some bug issues.
One way to support this requirement is by giving ability to the OSS project managers
to observe the engineering processes of OSS projects.

However, observing engineering process of OSS projects is a difficult task, because
(1) there is no formal engineering process design in OSS project [8], (2) the developers
work in distributed systems [8], (3) different tools are used in developing the software,
e.g., source code management, developers mailing list, bug reporting systems [4].
From these challenges, we derive two research issues to provide a foundation for OSS
engineering process observation.

RI-1: How can the project managers observe the engineering processes
effectively? An effective engineering process observation involves appropriate data
source selection and the using of automated data collection to make the observation
faster and produce more analysis results.

One possible source to get engineering processes from OSS projects is a bug report-
ing system. The advantage of bug reporting systems to other sources is that in the bug
reporting system, we can find a bug life cycle that we can consider as an engineering
process model. To be able to observe the engineering processes in OSS projects effec-
tively, the project managers should check the conformance of designed process model
with the process model from actual data. We propose a framework for collecting and
analyzing data from bug reporting systems for an effective engineering process obser-
vation.

Data collection and integration is one of most difficult parts in the engineering
process observation framework, because we have to deal with a large number of histor-
ical data that is stored in the bug reporting systems. A manual data collection and inte-
gration is error-prone and takes a lot of time [4]. Hence, we propose an automated
approach to collect and integrate bug historical data from the bug reporting systems.

RI-2: How to validate the designed process model with the actual engineering
process data? To evaluate actual engineering process data we collected from bug re-
porting system, we propose to make a conformance checking analysis between the
actual data and the designed engineering process model. The results of analysis can
show similarities or deviations between the process model derived from actual data and

92 W. Sunindyo et al.

the designed process model, hence support the justification of the project managers on
OSS projects status. We defined two research hypothesis based on the actual data to be
validated by the experiments.

RH1. The RHEL developers are following the naming and the ordering of the bug
states from Bugzilla Lifecycle. Different RHEL versions will have different number of
states used for addressing bug. In this study we use 3 different versions of RHEL
namely RHEL 4, RHEL 5 and RHEL 6. A process model from a version of RHEL will
have the same number of bug states to the other versions and to the designed process
model from Bugzilla life cycle. IF φ is the designed process model, and ψ is a certain
RHEL version (from version 4 to 6), and P is a function to get the number of bug states
from designed process model or from certain RHEL version process model, THEN we
can formulate following null hypothesis.

H01: {∃ψ ∈ (V4,V5,V6) | P(ψ) = P(φ)} (eq. 1)

For every RHEL version, the number of states used for addressing the bugs is the same
as the number of states used in the Bugzilla life cycle. This hypothesis is created to
check whether the RHEL developers are using the Bugzilla life cycle as their designed
process model to develop RHEL products and address the bugs inside the products.

RH2. The RHEL developers are using all bug states for each bug history in the same
number of frequency. For different bug states in one RHEL version, the number of
frequency should be the same. IF si is a bug state and si+1 is another bug state after si,
and N is a function to get the frequency of bug states using in one RHEL version,
THEN we can propose following null hypothesis.

H02: {∀si,si+1 | N(si) = N(si+1)} (eq. 2)

Following the designed process model, the number of frequency between the bug
states used in one RHEL version could be similar or vary. In this hypothesis, we want
to check whether the frequencies are all the same, and what bug states are used more
often than the others. The result of this hypothesis will be useful to endorse the using
of similar bug states with then designed process model rather than create new bug
states.

4 Solution Approach

In this section we address the research issues in section 3 and identify the validity
threats of our current study.

4.1 Effective Engineering Process Observation

To observe the engineering processes in OSS projects effectively, we propose an ob-
servation framework which consists of some steps and tools to support engineering
process data collection and analysis for OSS project managers.

Figure 2 shows the framework for observing bug history data. This framework in-
volves 4 different levels namely data source, data collection, data integration and vali-
dation, data analysis and presentation.

 Improving OSS Process Quality Based on Defect Data Mining 93

Fig. 2. Framework for Bug History Observation

(1) In the data source level, we have bug database which contains all bugs informa-
tion that are used in software development. However, in this case, we don’t need
all of those data and focus on bug history data, which can be extracted from the
bug data.

(2) In data collection level we extract and collect bug history data from filtered bugs.
Filtering on the bug database for example focusing on project, version, status
(open or closed bugs), times duration of bugs, priority, severity, or bug reporter.
We collect the bug history data from the bug database by using a bug history col-
lector.

(3) Data integration and validation. A bug history is a set of state transitions of one
bug id. We collect bug history data from some bug ids, integrate and validate them
in the bug event data log by using data integrator and validator.

(4) Data analysis and presentation. The even data log from previous level is analyzed
by using Process Mining tool. The analysis results are presented to the project
managers.

In this paper, we use Bugzilla on RHEL6 as case of our bug database on OSS projects.
RHEL is a Linux distribution produced by Red Hat Company and is targeted toward the
commercial market, including mainframes. RHEL is a popular, quite stable and mature
OSS development project that is well-supported by the company and community.

Currently, in the Red Hat Bugzilla browser, there are in total 21.640 bugs reported
for RHEL version 4 (2.300 open bugs and 19.340 closed bugs), 41.187 bugs reported
for RHEL version 5 (6.441 open bugs and 34.746 closed bugs) and 23.768 bug re-
ported for RHEL version 6 (7.465 open bugs and 16.303 closed bugs).

6 https://bugzilla.redhat.com

94 W. Sunindyo et al.

We focus on the use of closed bugs data from RHEL 4, RHEL 5, and RHEL 6. The
usage of closed bugs only allows for an easier analysis of the process model based on
the historical data, especially on the status changes of each bug.

The selection of using closed bugs data in our research is based on the assumption
that closed bug data contains all necessary steps which are required from introducing
bugs till closing the bugs in a complete cycle. Open bugs may contain a lot of introduc-
tionary bug states and unnecessary intermediate states that may hinder an effective and
efficient generation of valid process models. We also have conducted preliminary ex-
periments on previous versions of RHEL (version 2.1 and 3), but the resulting data
contains more unnecessary or duplicate bug states which were getting reduced in the
next versions. The usage of data from version 4, 5 and 6 is representative enough to
show the trend of states reducing between versions.

To collect and integrate bug history data from the bug database automatically, we
made a bug history data collector tool written in Java. This tool collects bug informa-
tion from Red Hat Bug Repository, like bug id, bug severity, priority, operating sys-
tem, bug status, resolution, and short description of the bug.

The access to the bug data can be done by using a web service interface that is pro-
vided by Bugzilla, namely XML RPC7. XML-RPC is a remote procedure call (RPC)
protocol which uses XML to encode its calls and HTTP as a transport mechanism.

XML-RPC works by sending a HTTP request to a server implementing the proto-
col. The client in that case is typically software wanting to call a single method of a
remote system. Multiple input parameters can be passed to the remote method, one
return value is returned. The parameter types allow nesting of parameters into maps
and lists, thus larger structures can be transported. Therefore XML-RPC can be used to
transport objects or structures both as input and output parameters.

By using the XML-RPC interface which is provided by Bugzilla, we also imple-
mented the bug history collector to collect the history of status changing of the bugs,
especially for closed bugs. We collect the history of the bugs in order to learn the
processes performed to change the state of a bug from one state to another state. We
focus only on closed bugs to identify the complete life cycle of bug. There always
exists the possibility to reopen a prior closed bug. In this case, we just consider the
latest state of the bug.

4.2 Evaluation of Engineering Process Model

For analyzing the bug history data, we used a process analysis tool called ProM8. This
tool has capabilities to discover process model, make conformance checking between
expected process model and the process model generated from actual data, and make
performance analysis on process model for process improvement. There are a lot of
plug-ins and algorithms to discover the process model from actual data. One of them is
heuristics mining.

The heuristics mining is a process mining algorithm in ProM which is based on the
frequency of the patterns. The most important characteristic of the heuristics mining is

7 https://bugzilla.redhat.com/xmlrpc.cgi
8 http://www.processmining.org

 Improving OSS Process Quality Based on Defect Data Mining 95

the robustness for noise and exceptions. We use the heuristics mining to analyze event
log from bug history data to find out the process model from actual data, rather than
designed process model.

We identified and addressed threats to internal and external validity of our evalua-
tion results as follows.

Threats to internal validity - Numbers of states. As we have conducted previous expe-
riments using fewer data, there is a tendency of increasing of the numbers of states as
new data is added. So we put more focus on the frequency of states taken during de-
velopment, rather than only the number of states in the process model, since the num-
ber of states can be unnecessary increasing, while the top states remain stable.

Threat to external validity. In this study we focus on three versions of RHEL projects
with similar size and characteristics. The selection of these homogeneous OSS projects
may raise concerns whether the resulting process models are also valid for other
project contexts. While we assume our approach to hold for projects similar to our
study objects (i.e., under Red Hat or similar managements with active and large devel-
oper community), further research work is necessary to investigate projects with
strongly differing characteristics.

5 Results

In this section, we report the results of our study in section 4. The results show the
application of our observation framework, the using of our automated data collection
and integration tool, and the analysis results of our evaluation on the engineering
process models.

5.1 Engineering Process Observation Framework

To observe software engineering processes from the bug database effectively, we ap-
plied the observation framework from figure 2. In the application, we take Bugzilla
report of RHEL projects as data sources, Bug History Data Collector as an automated
data collector, integrator and validator, and Process Mining (ProM) tool for data analy-
sis and presentation. By following this framework, the observation works can be done
effectively. The project managers can make conformance checking of process models
from actual bug history data to the designed process model from Bugzilla life cycle.

We have implemented and used a Java-based Bug History Data Collector tool to
collect, integrate, and validate bug history data from Bugzilla database. This tool can
select bug ids based on the OSS projects and versions. As results, we have collected
1500 data sets from 3 RHEL versions (4, 5 and 6). These data will be analyzed for
process model conformance checking with the Bugzilla life cycle.

5.2 Evaluation Results

The evaluation is done by analyzing the bug history data sets from three different
RHEL versions (4, 5 and 6) by using Heuristics Mining algorithm from Process

96 W. Sunindyo et al.

Mining (ProM) tool. We analyzed the number of states in the process models generat-
ed by ProM and counted the frequency of each state for each RHEL version. We
compare the results with the designed process model from Bugzilla life cycle. We
evaluate the actual data by addressing two hypotheses we have defined in the third
research issue in section 3.

Table 1. Name of States used in different RHEL versions and Bugzilla Life Cycles

States Bugzilla LC RHEL 4 RHEL 5 RHEL 6
UNCONFIRMED
NEW
ASSIGNED
RESOLVED
VERIFIED
REOPENED
CLOSED
NEEDINFO
MODIFIED
ON_QA
RELEASE_PENDING
QA_READY
NEEDINFO_REPORTER
INVESTIGATE
NEEDINFO_PM
PROD_READY
FAILS_QA
PASSES_QA
NEEDINFO_ENG
ASSIGN_TO_PM
ON_DEV
SPEC
POST

States 7 21 15 13

The RHEL developers are following the naming and the ordering of the bug states
from Bugzilla life cycle. Table 1 shows the comparison of bug states used in the Bug-
zilla life cycle, RHEL 4, RHEL 5, and RHEL 6. From Table 1 we can see different
bug state names are used during addressing bug in different RHEL versions.

This result shows us that the developers don’t really follow the process model in
the Bugzilla Life Cycle. The Bugzilla Life Cycle is build to give a guidance for the
developers in handling the bug issues in the project. However, in the implementation,
the developers have capability to introduce and modify new bug states as long as this
is mutually agreed among the developers.

The using of too many different states in the Bugzilla sometimes is confusing and
makes a lot of confusion among the developers. Some intervention should be taken to

 Improving OSS Process Quality Based on Defect Data Mining 97

make common understanding about the meaning of the states and when it should be
used to prevent ambiguity and duplication of similar states. From this result, we can
see how the using of bug states evolves in different RHEL versions that bring more
common understanding between the developers about the using of states in handling
the bug issues.

From table 1, we can see that there are differences between the names and orders
of bug states from RHEL different versions and those from Bugzilla Life Cycle. The
names and orders of bug states in the Bugzilla Life Cycle are focusing on main states
of the bugs and minimal requirements of the bugs with assumption that the bug in-
formation and the bug states are self-explained. However, in the reality, not all bug
information and bug states are understandable by other developers. Thus, some states
are created to ask for further explanation, e.g., needinfo, needinfo_reporter, needin-
fo_PM, and needinfo_eng. Thus four new states represent a need for further informa-
tion from other parties, e.g., reporter, project manager, or engineer.

Other new states also related with QA (quality assurance), e.g., on_QA, QA_ready,
fails_QA, and passes_QA, which mean that the quality assurance become a part of
improvement in dealing with the bug. On_QA means that the bugs resolving is still on
quality assurance. QA_ready means the bugs are ready to enter the quality assurance
phase. Fails_QA means that the bugs are failed in quality assurance testing.
Passes_QA means that the bugs have passed the quality assurance testing. However,
these QA-related states are introduced in RHEL version 4 and not continued in ver-
sion 5 and 6, means that the QA-related states are not really useful in dealing with the
bugs.

Other new states are including modified, investigate, release_pending, prod_ready,
on_dev, spec, and post. These states are more specific to some conditions, e.g., mod-
ified means that the bugs are still modified, investigate means that the developers
need more investigation on the bugs, release_pending asks for pending of the product
release, prod_ready means that the product is ready, on_dev means that the product is
on development, spec asks for specification, and post means that the product has been
posted.

From this result, we can see that by analyzing the different states using bug histori-
cal data, we can learn how the developers using the bug states to communicate the
idea how to deal with the bugs. The change of using bug state names in different ver-
sions also show the importance of the bug state names in handling the bugs, some
names are remain, but some others are not used anymore.

The RHEL developers are using all bugs states for each bug history in the same
number of frequency. Table 2 shows the frequencies of the using of each bug state in
the bug history. From Table 2, we can see that the frequencies for different bugs in
one RHEL version are not similar. The usage of some states is more frequent then of
other states.

By seeing this result, we can learn how the developers deal with the bug issues by
using Bugzilla. The developers seem to uses some state rather than the other states.
The “closed” state is on the top of each version means that (1) whatever state as start-
ing state, all states tend to go to closed states, (2) there are some possibility to reopen

98 W. Sunindyo et al.

the closed bug and close it again (especially in RHEL version 4). From this result, we
can see the priority of the developers, in managing bug states and suggest for im-
provement, e.g., reducing the number of bug states to make the development/bug han-
dling more efficient.

6 Discussion

In this section, we discuss our results based on the research issues.

6.1 Engineering Process Observation Framework

The effective engineering process observation can be done if we follow some direc-
tions, rather than we do it randomly. So as first step, we build an observation frame-
work which consists of necessary steps and tools as directions to do engineering
process observation, based on our experience on data collection and analysis.

We followed the observation framework we defined earlier to improve the engi-
neering process in OSS projects. The benefit of this framework is an effective and
systematic approach to collect and analyze data from the bug database to support the
project managers’ decision making to improve the process quality in OSS projects. The
cost of this approach is on preparing the framework and building the automated tools
to be used in applying the framework.

Data collection and integration for engineering process analysis can be done auto-
matically by using our bug history data collector tool. This tool is specially built for
collecting, integrating and validating bug history data from Bugzilla database. The
benefit of this tool is that we can reduce errors, risks and efforts on manual data collec-
tion and integration. The cost is on the efforts to prepare the tool, but once we have the
tool, we can collect and integrate other data faster and easier.

6.2 Evaluation Results

The evaluation of actual engineering process model is done by checking its confor-
mance to the designed process model. The actual engineering process model can be
generated by using Heuristic Mining algorithm, e.g., process model which is generated
from RHEL 6 bug history data shown in Figure 3. This process model can be con-
formed to the designed process model (Bugzilla Life Cycle) shown in Figure 1 to see
the similarities and differences of both process models.

From the process model generation on 3 RHEL versions, we answer the two re-
search hypotheses as follows.

The RHEL developers are following the naming and the ordering of the bug states
from Bugzilla life cycle. As shown in table 1, we can see the differences of number of
states used in the designed process model (Bugzilla life cycle) and states used in the
generated process models from RHEL 4, RHEL and RHEL 6.Therefore {∃ψ ∈
(V4,V5,V6) | P(ψ) ≠ P(φ)} thus we can reject our null hypothesis H01.

 Improving OSS Process Quality Based on Defect Data Mining 99

Fig. 3. Process Model from RHEL version 6

An interpretation of these results can be the fact that the number of bug states
available and used in the different RHEL versions decreases with the version number,
meaning that states which were not used at all or only very infrequently are removed
for the next RHEL version.

The using of extra bug states of the RHEL versions comparing to the original Bug-
zilla Life Cycle represents the needs of developers to enhance their understanding on
handling the bug issues. The decreasing of the bug states used between different
RHEL versions means the developers have come to some convergences of under-
standing, such that they don’t use some bug states, due to better way to explain and
deal with the bugs, e.g., some bug states which means need for more information
from different parties, means that the explanation about the bugs is getting better than
previous version. The better explanation of the bug to other developers can increase
faster bug handling, thus increasing the productivity and process quality.

The RHEL developers are using all bug states for each bug history in the same
number of frequency. As shown in table 2, each bug state is used in different fre-
quency by the developers. Some bug states are used more often than the others.
Therefore {∀si,si+1 | N(si) ≠ N(si+1)} thus we can reject our null hypothesis H02.

100 W. Sunindyo et al.

An interpretation of these results can be the fact the typically OSS projects do not
follow a strict waterfall-like software engineering process, but rather a sometimes
mixed dynamic software engineering process.

Table 2. Frequency of States for Different Versions of RHEL

States

Version 4 Version 5 Version 6
Occ.
(abs)

Occ.
(rel)

Occ.
(abs)

Occ.
(rel)

Occ.
(abs)

Occ.
(rel)

CLOSED 557 41.0 % 578 30.3 % 546 33.6 %
ASSIGNED 282 20.8 % 407 21.3 % 255 15.7 %
NEEDINFO 150 11.1 % 204 10.7 % 6 0.37 %
MODIFIED 126 9.3 % 345 18.1 % 306 18.9 %
REOPENED 52 3.8 % 8 0.4 % 1 0.1 %
RESOLVED 47 3.5 %
ON_QA 29 2.1 % 67 3.5 % 259 16.0 %
RELEASE_PENDING 25 1.8 % 61 3.2 %
QA_READY 25 1.8 %
NEW 16 1.2 % 44 2.3 % 7 0.4 %
NEEDINFO_REPORTER 11 0.8 % 14 0.7 % 2 0.1 %
INVESTIGATE 10 0.7 % 2 0.1 % 2 0.1 %
VERIFIED 9 0.7 % 122 6.4 % 199 12.3 %
NEEDINFO_PM 3 0.2 %
PROD_READY 3 0.2 %
FAILS_QA 3 0.2 % 10 0.5 %
PASSES_QA 2 0.1 %
NEEDINFO_ENG 2 0.1 % 1 0.1 %
ASSIGN_TO_PM 2 0.1 % 2 0.1 % 1 0.1 %
ON_DEV 2 0.1 % 8 0.5 %
SPEC 1 0.1 %
POST 43 2.3 % 31 1.9 %

Some bug states are more frequent than the others, for example closed, assigned,
modified, verified, and On_QA.

Closed state is on the top of all versions justifies this state as the goal of other
states. All other states are tending to finish in the closed state, even though there are
some options to reopen the closed bugs.

Assigned state represents the beginning of the bug state which should be assigned
among the developers. When the bug issue is introduced for the first time, there is an
opportunity whether to offer the bug handling to a specific person or to ask other de-
velopers publicly to voluntarily taking the chance for handling the bug issue. At some
points, the bug reporter should ensure that each bug issue has been assigned to anoth-
er developer such that the bug issue can be solved immediately.

Modified state represents the condition where the bug has been modified. The re-
sult shows that the numbers of modified bugs are increasing across different versions,

 Improving OSS Process Quality Based on Defect Data Mining 101

means that more bugs are identified as modified rather than other states that are less
frequent and not used in later version (e.g., resolved, QA_ready).

Verified state becomes more common across different versions. More bug issues
are needed to be verified during their handling, and in other side, the resolved state
becomes extinct in later version.

On_QA state is also increasing across different versions, while other states related
to QA (QA_ready, Fails_QA, Passess_QA) become extinct, means the QA-related
states converge to On_QA state.

Other states are used not so frequently. From this result, we can see how the devel-
opers focus on some important states rather than the others. The understanding of the
developers in dealing with the bug states is also increasing the bug resolving period,
hence improving the process quality.

7 Conclusion and Further Work

Observations of OSS processes are needed as an initial way to improve the quality of
OSS processes and products. OSS project managers need to collect, integrate and ana-
lyze heterogeneous data originating from different tools used in the OSS project, such
as source code management, developer’s mailing list, and bug reporting tools to ob-
serve the processes and determine the status of OSS projects.

Bugs are an important source for project observation. However, the use of advanced
approaches, such as data mining approaches, to analyze bug report data, has not yet
been intensively researched and therefore requires further investigations regarding its
usefulness for OSS projects observation and quality improvement.

In this paper, we have explained the contribution of an observation framework in
improving the process quality in OSS projects, e.g., by observing the end states of bugs
are not reopened frequently. We used bug history data from RHEL projects as a use
case for our observation framework application and use the Heuristics Mining algo-
rithm of the Process Mining tool ProM. The analysis results on conformance checking
of process models from RHEL bug history data can be used to improve the process
quality.

Future work will include the integration of additional project data sources, for ex-
ample from source code management and communication artifacts, in order to perform
new types of communication metrics, as well as other process metrics in observing
engineering process in OSS projects.

Acknowledgements. This work has been supported by the Christian Doppler
Forschungsgesellschaft and the BMWFJ, Austria.

References

1. Ahmed, M.F., Gokhale, S.: Linux Bugs: Life Cycle and Resolution Analysis. In: The
Eighth International Conference on Quality Software (QSIC 2008), pp. 396–401 (2008)

2. Berry, M.J.A., Linoff, G.: Data Mining Techniques For Marketing, Sales, and Customer
Support. John Wiley & Sons, Inc., Toronto (1997)

102 W. Sunindyo et al.

3. Biffl, S., Sunindyo, W., Moser, T.: A Project Monitoring Cockpit Based On Integrating
Data Sources in Open Source Software Development. In: Twenty-Second International
Conference on Software Engineering and Knowledge Engineering (SEKE 2010), San
Fransisco Bay, USA, pp. 620–627 (2010)

4. Biffl, S., Sunindyo, W.D., Moser, T.: Semantic Integration of Heterogeneous Data Sources
for Monitoring Frequent-Release Software Projects. In: International Conference on Com-
plex, Intelligent and Software Intensive Systems, pp. 360–367. IEEE Computer Society
(2010)

5. Gegick, M., Rotella, P., Tao, X.: Identifying security bug reports via text mining: An in-
dustrial case study. In: 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010), pp. 11–20 (2010)

6. Mi, P., Scacchi, W.: A meta-model for formulating knowledge-based models of software
development. Decis. Support Syst. 17, 313–330 (1996)

7. Mockus, A., Fielding, R.T., Herbsleb, J.: A case study of open source software develop-
ment: the Apache server. In: 22nd International Conference on Software Engineering,
pp. 263–272. ACM, Limerick (2000)

8. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software de-
velopment: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol. 11, 309–346 (2002)

9. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models. LNCS,
vol. 1491. Springer, Heidelberg (1998)

10. Rigat, J.: Data Mining Analysis of Defect Data in Software Development Process. In: De-
partment of Technology Management Division of Information Systems, p. 65. Eindhoven
University of Technology, Eindhoven (2009)

11. Scott, J.: Social Network Analysis. Sage, Newbury Park (1992)
12. Sharma, S., Sugumaran, V., Rajagopalan, B.: A framework for creating hybrid-open

source software communities. Information Systems Journal 12, 7–25 (2002)
13. The Bugzilla Team: The Bugzilla Guide - 3.0.11 Release (2009)
14. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters,

A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge
Engineering 47, 237–267 (2003)

15. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering
Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineer-
ing 16, 1128–1142 (2004)

16. van Dongen, B.F., van der Aalst, W.M.P.: A Meta Model for Process Mining Data. In:
CAiSE 2005 Workshops, pp. 309–320 (2005)

17. Wahyudin, D., Mustofa, K., Schatten, A., Biffl, S., Tjoa, A.M.: Monitoring “Health” Sta-
tus of Open Source Web Engineering Projects. International Journal of Web Information
Systems 1(2), 116–139 (2007)

18. Wahyudin, D., Schatten, A., Mustofa, K., Biffl, S., Tjoa, A.M.: Introducing “Health” Pers-
pective in Open Source Web-Engineering Software Projects, Based on Project Data Analy-
sis. In: IIWAS International Conference on Information Integration, Web-Applications and
Services, Yogyakarta Indonesia (2006)

19. Weijters, A.J.M.M., van der Aalst, W.M.P., de Medeiros, A.K.A.: Process Mining with the
HeuristicsMiner Algorithm. BETA Working Paper Series. Eindhoven University of Tech-
nology, Eindhoven (2006)

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 103–120, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The Many Forms of Process Improvement – Results
of an International Survey

Tom McBride1 and Marion Lepmets2

1 Faculty of Engineering and IT, University of Technology, Sydney, Australia
Tom.McBride@uts.edu.au

2 Public Research Centre Henri Tudor, 29 J. F. Kennedy ave., Luxembourg
Marion.Lepmets@tudor.lu

Abstract. When discussing process improvement, different authors assign
different goals of improvement and describe different methods of improvement.
Several process improvement methods and theories of organizational
performance are examined to reveal how each might give rise to different
concepts and concerns of process improvement. There is little empirical
information available to support or refute such expectations about
improvements made to software development processes, whether through
formal process improvement initiatives or through responses to changes in the
development environment. In the absence of such information those involved in
process improvement, from standards development through to consultants and
those who implement process improvement projects, risk making poor
decisions about what changes should be made to the processes. A project to
develop and run an international survey was conducted by a number of
researchers from different parts of the world to understand various forms of
process improvements, their goals and motivations. The result of the study
indicates that the motivations for process improvement are not matched by the
improvement goals that are themselves not achieved by the implemented
improvements. The study also contradicted commonly cited beliefs that process
improvement changes are seldom reviewed, are seldom permanent and can
make the situation worse.

Keywords: Process improvement, motivation, software development, service
management.

1 Introduction

Organizations have been changing and improving their processes for many years in
response to competition, a change in regulations or any number of other reasons.
Although there are several methods and approaches to process improvement, we
know little about what actual changes may have been made or what effect they had on
process performance and the organization as a whole. Did the change achieve the
improvement? There is still very little empirical data to demonstrate a relationship
between process improvement initiatives and improved process performance. Process
changes arising from any specific process improvement method may be implemented

104 T. McBride and M. Lepmets

properly but evidence that such improvements make effective changes in process
performance is difficult to find. There have been some studies of the overall effect
and return on investment of the CMM™ and CMMI ™ [1-4] but few studies get
down to the level of considering specific process changes and their effects. In the
absence of such information, organizations risk investing in process improvement
initiatives or process changes that are ineffective at best. We also wanted to
discover/find out the organizational level at which process improvements are initiated
and the level on which the improvements are finally implemented.

To overcome this lack of empirical information and to provide some much needed
basis for reasoning about process improvements a project was initiated to gather data
internationally. The overall question to be investigated was:

How do organizations improve their processes?

In order to attract a wide range of responses the survey deliberately did not restrict
itself to improvements or changes arising from a formal process improvement
initiative, i.e. improvements that follow process model or standard based process
assessment.

This paper proceeds by describing different aspects of process improvement that
might inform any discussion on links between process changes and the effects of
those changes, and the description of the research method. The overall research
question is decomposed into four specific questions; data is presented, analyzed and
discussed. The limitations of this study are described before a discussion of the
overall findings, followed by a summary and description of possible future work.

2 Improvement

For the most part, improvements in software quality have been achieved through the
improved professional discipline [5] adoption of different methods of specifying
requirements [6], different methods of project estimation and planning [7], better tools
and languages among a number of other innovations. The general aims of process
improvement are to change the attributes of an organization's products or services by
changing the processes used to develop, deliver or operate them [8-11] or to change
the system of processes to become faster, more flexible [12, 13]. Process
improvement has various concepts, goals, methods and measurement scales. Although
a process improvement expert might assume that the concepts and concerns of
software process improvement are as clear to their audience as they are to them this is
seldom true, leading to confusion about the applicability of the findings or advice to
any given situation.

Perceptions of process affect significantly the nature of improvement. A process
can be considered as the entire value chain, spanning many activities and several parts
of the organization [14] for which interfaces and smooth functioning between
different parts of the organization tend to be the focus of improvement initiatives.
When a smaller part of the overall value chain is considered as the process, in which
people collaborate to carry out a single transformation of inputs to outcomes [15],

 The Many Forms of Process Improvement – Results of an International Survey 105

process improvement will tend to favour the goals of that process in isolation.
Improvements to the larger overall process can consider improvements in relation to
organizational strategic goals regardless of where those improvements might be made
within the process. Improvements that are made without reference to organization’s
strategic goals are unlikely to contribute to the organization as much as they could.
On the other hand, there is little information available about mapping organization's
strategic goals to software development processes, either fine grained or coarse
grained.

The motivation for process improvement differs between developers, project
managers and senior managers [16]. The differences reflect the expected concerns of
different organizational levels [14, 17] and can be expected to affect not only goals
and support for different process improvement initiatives but also perceptions of their
success. Developers favour bottom up initiatives, initiatives that affect resources
(presumably favourably) and initiatives that involve top down commitment. Project
managers, on the other hand, are motivated by initiatives that affect visible project
success and resources while senior managers are motivated by initiatives that affect
visible business success and the ability to meet organization’s business performance
targets. So what will be seen by one group as a worthwhile process improvement will
not necessarily be seen as worthwhile by other groups.

Process improvement methods also vary from the very informal to the very formal.
Agile software development practitioners seem to favour nothing more formal than a
retrospective [18] or simply a general intention to learn and adapt [19]. At the other
end of the scale are the formal process improvement methods of SPICE [20] or
CMMI [11] that trace their origins to Total Quality Management. While the agile
developers seem to assume that the developers themselves are best placed to know
what should be improved in the specific circumstances [21], SPICE and CMMI seem
to be more concerned with both the project managers’ and senior managers’
perception of improvement. One is practice based, the other process based but both
seek to respond to perceived opportunities to improve the way work is done.

Obviously a process improvement should make the situation better in some way
but just what "better" might be also varies. While individual improvements might
favour, for example, improved social relations within a development team different
scales of improvement require that each improvement contribute to specific
dimensions of process performance. The most familiar scale of process performance
is that of capability and maturity [22] in which process improvements are expected to
move the process from chaotic performance, through managed, defined, quantitatively
managed to optimizing. The first three of these capability levels are aimed at getting
the process under control and able to repeat its performance reliably [5]. However,
there is no assumed or embedded process goal other than the declared purpose of the
process. For example, the improvements in process performance are not specifically
linked or aligned to the improvement in the productivity of the process. The overall
effect of improving processes on this scale is to improve project performance and
quality [2, 4]. In an effort to find explanations why some manufacturers seem to
improve all manufacturing capabilities instead of the expected trade-off between
capabilities, Ferdows and De Meyer [23] found that the successful manufacturers
improved quality, dependability, speed and cost efficiency in that sequence. Although

106 T. McBride and M. Lepmets

Flynn and Flynn [24] are critical of the lack of empirical evidence for the sand cone
model, they reach a very similar conclusion about the sequence of cumulative
capabilities. The sand cone model proposes that organizational capabilities build on
lower level capabilities and that improvement at one level requires an even larger
improvement in the level below it. In this model, quality is the lowest level capability
so organizations are well advised to develop that capability first. Ferdows and de
Meyer's proposed "sand cone" model is similar to the SPICE and CMMI capability
scale in that each level builds on the level below it. Quality is pursued at the lowest
level within the specific fine grained processes. At the next two levels the goal of both
SPICE and CMMI is to improve dependability and repeatability, to institute
consistent performance across the enterprise. However, neither SPICE nor CMMI
have direct goals of software development speed or time to market, nor cost
effectiveness through the entire value chain ; they are rather the expected side effects
of reducing the sources of error and deviation. Software development is not
manufacturing so some caution is needed when drawing lessons from one to apply to
the other. However, the general theory of cumulative capabilities does offer some
interesting direction to process improvement. Instead of constantly trying to improve
software development processes through eliminating software defects, an organization
might consider improvements intended to support customer's different needs
(flexibility) or improvements that reduce the overall time to develop the software
(speed).

Service industries too have offered a theory to explain better performance among
service providers. The theory of swift, even flow [25] has been used to explain why
some organizations outperform others in their sector. This theory proposes that
“productivity of any process rises with the speed by which materials flow through the
process and falls with increases in the variability associated either with demand on the
process or with the steps in the process itself." [26]. Based on this theory, process
improvements should aim to reduce the variability of demand on the process by
reducing batch size and increase the speed through the process by reducing delays,
work in progress, queues and so on. This supports the general move in software
development toward more iterative and agile development methods and away from
"big bang" plan-based projects.

Empowering practitioners is a key motivator in process change that reduces
resistance towards improvement. At the same time, process change initiated by those
who perform the process is not widespread in practice [16]. A way to reduce
resistance to change is to demonstrate quickly that the improvement will achieve the
desired results. Thus, it can be assumed that the management turns their attention
towards areas in which improvements become visible quickly [27]. It remains
unknown when and how the management becomes aware of the necessity for process
improvement and how they decide to support process improvement while not being
sure of its effectiveness [28].

According to these different views of process and process improvements,
improvements initiated by developers should favour informal improvements,
contained within the process and implemented through the practices of that process.
Improvements initiated by project managers or senior managers should favour their
management concerns about visible success or ability to meet targets. Improvements
that affect the allocation or distribution of resources should be of interest to all of

 The Many Forms of Process Improvement – Results of an International Survey 107

them. Given the different interests of management and process performers there
appears to be no reason why informal process improvement practices of the agile
community that largely affect the work of developers cannot be used concurrently
with the more formal process improvement methods of SPICE or CMMI that largely
affect management of work through the processes. Using one process improvement
method does not preclude simultaneously using another.

3 Research Method

The main purpose of this research was to establish the current state of process
improvements in software engineering or service management. Based on the
questions to be investigated and a wish to reach as many potential respondents as
possible, a survey was considered the most appropriate means to gather data. In an
effort to overcome regional biases, participants in this research were sought through
professional networks, process improvement user groups and international standards
groups. Although this gave a better international distribution, the sampling method
used was non-probabilistic which challenges the external validity of the results. In all,
13 researchers from Australia, Canada, Estonia, Finland, France, Germany, Hong
Kong, Ireland, Japan, South Africa and South Korea participated. This project used a
web-based collaboration tool to distribute draft documents and to discuss topics of
interest.

A survey proposal was developed and distributed to the research collaborators for
discussion to allow consensus to be reached about the scope of the survey and the
research questions to be addressed by the survey. Categories and potential responses
to many of the questions were discussed and decided among the participating
researchers based on their knowledge and experience of software development,
service management and process improvement. The questionnaire was developed to
be a survey, rather than an interview which allowed for the widest dissemination and
for consistent administration at different locations.

4 Research Questions

Process improvement is often considered to be disruptive, expensive and not always
successful which would discourage organizations from conducting it. Yet many
organizations do attempt to improve their software development or business processes
thus there must be some motivation for doing so. To understand the motivation in
industry, our first research question was

• What motivates process improvement?

There are many ways to identify potential process improvements, from formal
assessments and audits, regulatory and business environment changes, and the ever
present project failure. Almost any method of identifying improvements will reveal
multiple competing potential improvements from which an organization must select a
manageable number to implement. While a rational organization might thoroughly
review the return on investment, other organizations might simply pick the most

108 T. McBride and M. Lepmets

obvious or even the most politically sensitive improvement. Process improvement
methods generally have something to say about selecting improvements to implement
but there is little empirical information about just what organizations do to justify
their selection of process improvements, hence our second research question was;

• What data is sought to justify the improvement?

Process improvements usually have a goal ranging from the very general goals of
improving product quality [29], to meeting the requirements of quality standards [8],
or other process models [9, 11], to pursuing an organization strategic objective to very
specific problems. To better understand how the motivation, justification and the
goals of improvements are aligned, our next research question was;

• What is the improvement intended to achieve?

There may be a world of difference between an organization's declared process
improvement goals and what changes were actually made to processes, either in
pursuit of those goals or independent of those goals or as a side effect of process
improvements. A perpetually changing environment is likely to have some effect on
processes through possibly small and subtle changes. Certainly regulatory changes
can sometime trigger changes to processes but these might not be seen as process
improvements. The researchers were aware that not all process changes arose from
any form of process improvement initiative and wanted some indication of the types
of changes that had been made. Hence our fourth question was;

• What specific changes are made to the processes or other organizational
area?

Most of the data sought required categorical data so were constructed as a question
with the most commonly expected answers listed as possible responses, and the usual
"other" response that allowed elaboration by the respondent. There were some
questions concerning improvement and the organization that suited Likert scale
responses that were grouped into the one section.

The participating researchers were only too aware of the limitations of
questionnaires for exploratory research, as opposed to confirmatory research, but
elected to use a questionnaire to get some basic data on process improvement in order
to guide future, more directed research should this be indicated by the results.

The concept of "process" can mean the entirety of software development activities,
from business case development to software delivery, implementation and support or
can mean a small unit of collaborative work. For this survey, a process was defined as
the latter, a small unit of collaborative work since that is the usage of the term within
the ISO standards, SPICE and CMMI communities participating in this survey.
However, there were no specific instructions in the survey about the scope or meaning
of "process" so it is possible that some respondents assumed a different meaning.

Promotion in the different world regions was left to individual researchers in that
region. This allowed researchers to tailor or translate the survey to better suit that
region while avoiding duplicated responses. As well, this avoided multiple requests to
fill out the same survey that may have resulted if promotion was through an

 The Many Forms of Process Improvement – Results of an International Survey 109

international interest groups or international distribution lists. There was no formal
monitoring or directive concerning the survey's distribution or recruitment of
respondents but it seems that most of the participating researchers sent the survey to
their colleagues or industry contacts. This form of non-probability sampling known as
"snowball" technique limits external validity. The survey was open for a period of
four months, from September to December 2009, with most responses coming in the
first month, very few in the last month.

5 Survey Results and Data Analysis

Within the survey very few responses were mandatory, leading to some differences in
the number of responses to each question. The exception to this was the mandatory
consent to participate in the research was requested of the participants. The data was
analyzed with descriptive statistics where the data presented are the actual counts, not
percentages. The data analysis results are presented in the sequence of each survey
question.

5.1 Demographic Information

Information was sought on the type of organization making the improvement, the size
of the organization, the respondent's role in the organization and the country or region
in which the improvement was implemented (Table 6).

After a period of four months, the total number of completed responses was 80.
The responses indicate that most of the organizations were "full service" (58%). Some
20% developed (and transitioned) but did not operate the service once deployed while
about 17% of respondent organizations were part of a team or alliance rather than
having full control over the development or operation (Table 1).

Table 1. Organization type

 Count %
Full service 46 58
Develop and transition 13 16
Develop only 3 4
Alliance partner 5 6
Subcontractor 9 11
Other 4 5
Total 80

The demographics of organization size (Table 2) indicate that it is the larger
organizations that have responded to this survey. It could also indicate that changes to
the way work is performed is not considered as process improvement unless there is
some formal recognition of "process improvement" such as through a formal process
improvement initiative.

110 T. McBride and M. Lepmets

Table 2. Organization size

 Count %
Micro enterprise (Less than 10 employees) 8 10
Very small enterprise (less than 25 employees) 2 3
Small company (Less than 100 employees) 11 14
Large company (100+ employees) 32 40
Multinational company 27 34
 Total 80

Survey respondents (Table 3) were mostly quality managers or their equivalent or
senior managers. From this we expected that a large proportion of implemented
improvements would concern process management.

Table 3. Respondent's role

 Count %
Senior manager 20 25
Project manager 5 6
Development manager 5 6
Process manager 7 9
Quality manager, SEPG manager etc. 25 31
Technical lead 13 16
Other 5 6
Total 80

5.2 Motivation

Process improvement is usually disruptive and many organizations would prefer to
continue working as they have done in the past. To decide to change the way work is
done usually requires a strong reason.

The survey sought to answer the question of what motivates process improvement.
Formal process improvement is a multi-disciplinary undertaking and progress is
possible as long as the correct issues are addressed [30]. We sought to find out these
issues that motivate organizations to undertake process improvement.

It is interesting that over a quarter of the respondents (Fig. 1) identify a strategic
motivation. In general, motivation can be strategic or tactical. Strategic change stems
from a higher level in the organization, tends to be larger in scope, and does not
necessarily have a cost/benefit justification. An example of this might be a senior
management level decision to change the business model of the organization; the
change is seen as necessary for the organizations success or survival. Tactical change
stems from a lower level of the organization and tends to be smaller in scope. Tactical
changes may be justified as supporting a strategic plan, but usually have a cost/benefit
business case to support their proposal.

 The Many Forms of Process Improvement – Results of an International Survey 111

Fig. 1. Motivation for initiating process improvements - 153 Responses (Multiple responses
allowed)

Since the survey allowed multiple responses it is difficult to tease out the
separation of strategic and tactical, but it should be noted that 38 respondents gave "a
way of achieving one or more organizational strategic goals" as one of their
motivations. While this represents 26% of the motivations cited, it represents nearly
55% of the survey respondents which may indicate that high level management
support is either provided or sought. It may also indicate that process improvement
has now been accepted, like quality assurance, as an essential activity.

5.3 Improvement Initiation

Within a general programme of process improvement, the question of “what initiated
a specific improvement” is interesting. The main agent that initiated an improvement
appears to have been the process improvement or process management team (Fig. 2).
This would indicate that identifying the need for a process improvement is more
likely by someone familiar with processes and process improvement.

The large number of responses from people who consider themselves to be part of
a process improvement team may reflect the survey distribution, which was through
the process improvement professional community, but could also indicate that people
with some knowledge of process improvement are more likely to know that the
current situation is not inevitable or that organizations with a process improvement
team are already convinced of the need for process improvement. Another possible
explanation is that extra capacity is needed in order to bring about change [17] with
the process improvement team providing that extra capacity.

0 10 20 30 40

Competitive response

Client pressure

Industry trends

Strategic goal
Central office demand

Takeover or Merger

Condition of a contract bid

Part of larger PI programme

Side effect of process automation
General discontent

Response to a specific problem
M

ot
iv

at
io

n

112 T. McBride and M. Lepmets

Fig. 2. Process improvement initiator -80 Responses (Single response allowed)

5.4 Improvement Goals

While there may be many justifications for a process improvement, there is usually
one main goal for the actual change. The responses in our study (Fig. 3) indicate that
organizations are more concerned about product quality than production costs or
competitiveness.

Fig. 3. Main process improvement goal - 71 Responses (Single response allowed)

These responses (Fig. 3) also indicate that many organizations have not yet
grappled with aligning processes with organizational strategy or that it is not regarded
as the most important problem. This is surprising given the general acknowledgement
of the importance of aligning processes to organizational goals. Organizations widely
regarded as very successful over the long term are usually very good at changing their
processes to align with and support their ever changing business processes and
strategic goals [30-32]. Again this presents an opportunity for the process

0 10 20 30 40

Other
Auditor

Consultant
Internal process improvement …

Scheduled internal review
Project post mortem

Regular audit
Event triggered review.

Someone noticed something
Management directive

In
it

ia
to

r

0 5 10 15 20 25 30

Other

Improve productivity

Respond to customer requirement

Political gains

Increase market share

Alignment with organisational goals

M
ai

n
pr

oc
es

s
im

pr
ov

em
en

t
go

al

 The Many Forms of Process Improvement – Results of an International Survey 113

improvement community to develop case studies showing how such alignment might
be achieved and the gains to be made from doing so. There was no correlation
between the role of the respondent and the improvement goal, nor between the
improvement initiator and the goal of the improvement. This could indicate that
respondents were unaware of the actual goal of the improvement or that there is little
understanding of process improvement other than changes to work practices.

5.5 Implementing the Improvement

Processes are most often described in terms of work instructions with less attention
being paid to other elements of the process. Processes for highly repetitive work may
have been such that all the peripheral elements of the process are designed in.
However the highly variable processes require those performing the process to make
many more decisions about what to do in the specific situation.

Any examination of processes will reveal templates, checklists, the required skills
and experience or other social factors that are essential elements of the process.
Similarly a process change will seldom be singular, with changes in one place
requiring matching changes in another part of the process. The survey sought to
establish what specific changes were made to the processes.

Table 4. Changes made to improve processes

What specific changes were made to the process?
363 Responses (Multiple responses allowed)
Changed work instructions 43

Changed presentation of work instructions 36

Changed order of the work activities 25

Changed process input work product 25

Changed work product review criteria 28

Added templates or changed existing templates 51

Changed information used by the process 28

Introduced new or changed techniques 42

Trained people in work techniques 9
Introduced new or changed tools 36
Trained people about the processes 6
Automated the process 17
Provided training to improve inter-personal skills 9
Other 7

Clearly it is pointless to concentrate on changing the work instruction if the most
effect can be gained by training people in how to perform those work instructions.

No one change dominates (Table 4.) but the responses show a tendency to add or
change process support elements. An example of a process support element are the
templates that are added or changed to help know what is expected or how it is to be

114 T. McBride and M. Lepmets

presented. Some of these changes will usually be made in combination. The two most
popular changes, changed work instructions and changed work techniques, will
usually require matching changes in other elements of the process. One of the
researchers observed that the process description may be read infrequently but
templates are used every time the process is performed, so are more important
improvement elements.

5.6 Improvement and the Organization

Information was sought on a number of questions about how process improvement is
perceived within the organization. Responses (Table 5.) were on a Likert scale from
Strongly agree to Strongly disagree.

Commonly cited beliefs are that process improvement changes are seldom
reviewed, are seldom permanent and can make the situation worse. The responses in
this survey contradict these assertions, indicating quite emphatically that process
improvements are reviewed, do become permanent and seldom make the situation
worse.

Table 5. Improvement and the organization

 % Responses

Question S
tr

on
gl

y
ag

re
e

A
gr

ee

N
eu

tr
al

D
is

ag
re

e

S
tr

on
gl

y

di
sa

gr
ee

N
/A

This improvement had active senior
management support

41 39 10 0 4 6

The people who perform the process
supported the change

25 51 20 0 3 1

The process improvement team
supported the change

50 36 5 3 1 5

This organisation is concerned about
process improvement

31 49 10 3 4 4

The improvement was formally reviewed
after implementation

16 31 23 15 6 9

The improvement achieved all of its
intended goals

18 41 24 9 5 4

The improvement made the overall
situation worse

5 4 4 28 55 5

The improvement has become
permanent.

30 45 11 6 3 5

5.7 Regional Differences and Process Improvement

Among the researchers there was considerable interest in the possibility of regional
differences in approaches to or choices of process improvements. Respondents were
asked to nominate the country or region in which the process improvement was

 The Many Forms of Process Improvement – Results of an International Survey 115

implemented rather than their organisation's country (Table 6.) The intention was to
explore whether or not process improvement differed in different parts of the world.
The distribution of responses does not match the distribution of software development
and service design and delivery worldwide, so the findings of this survey must be
treated as indicative only.

Cluster analysis using StatistiXL did not reveal any relationships between any of
the variables. Since it was widely expected among the participating researchers that
there would be some regional differences, this absence of relationship was
unexpected. While it is possible that the survey was insufficiently sensitive to
questions of regional differences it is also possible that process improvement, in
software development at least, is determined more by the dominant process
improvement methods than by regional differences. Process improvement did not
develop separately in different regions and then combine globally but rather
developed from the same source of quality management [5, 22, 33]. Thus it is not
surprising that any regional differences are undetectable.

Table 6. Region where the process improvement was implemented

Country/Region Count Country/Region Count
Asia/Asia Pacific 2 International 2

Australia 21 Japan 7

Canada 5 Kingdom of Saudi Arabia 1

Estonia 3 South Africa 8

Europe 2 South Korea 11

Finland 7 Sweden 1

Germany 3 UK 2

Holland 1 USA 4

Hong Kong 1 Vietnam 1

Indonesia 1

6 Limitations of the Study

Face and construct validity were addressed through the extensive review of both the
survey proposal and the survey questionnaires. Review and comments by non-native
English speakers were particularly valued because they exposed linguistic
assumptions.

External validity of the data remains weak. Although the survey was conducted
internationally, the number of responses from any one country or region is small.
Some countries that are reputed to have significant process improvement programs,
like India, are not represented at all.

The respondents in this survey represented mostly large or multinational
organizations which is not representative of the general population when some 80%
of organizations in the world being classified as small or very small enterprises, even
among software developers and service providers.

116 T. McBride and M. Lepmets

The non-probability sampling method used for data gathering sets yet another
limitation as the results of the study are not generalizable to organizations other than
the ones that responded to the survey.

Since the time when the survey was conceived the authors have learned more about
processes and their improvement, particularly the less formal improvement methods
and different models of improved processes or services. The survey has provided data
with which more recent concerns can be examined but it is post hoc analysis, limited
in its validity. Nevertheless we believe that there is some value in the analysis.

7 Discussion

The motivation for improvement came from the strategic level, in most of the cases,
while improvements that were implemented targeted specific process support
elements on operational level instead. These findings confirm those of Sterman [27]
who claimed 13 years ago that the side effects of process improvement are not
analyzed before improvements are started. We can see that it is still the case today as
organizational motivations for process improvement are different from the effects of
those improvements. Although the majority of respondents in the study claimed that
they started process improvement as a response to achieve a strategic goal and to
increase the quality of the product or service, instead the improvements were made in
process support elements on operational level. The aim of an organization improving
its processes is to keep commitment and morale high so that the improvements would
continue [27], and one of the most powerful motivators for all practitioners is the
evidence that process improvements are successful [16]. The improvements in
everyday tools like process support elements are visible faster, leading to possible
growth of employee motivation to implement further process changes. At the same
time it is worrisome that the improvements are not reaching their original goals on the
expected strategic level. This might lead to management questioning the justification
for future rigorous process improvement programmes that only improve process
support elements.

As a result of the study, we can see that the processes with low technical and
organizational complexity may improve rapidly as a result of process improvement
because they are not strongly coupled with other organizational processes. Sterman
[27] argues that the more complex processes of new product development, customer
needs assessment and reorientation of strategy involve high technical and
organizational complexity and improving these processes affects the whole
organizational environment.

Although the survey results indicate that the improvements have made the overall
situation of the organization better, the improvements have not resulted in the
expected scope and level of change in the organization. It is difficult to justify the
continual effort for improvement to the management until the impact of process
improvement is felt at the strategic level. The difference between the expected
changes and the implemented improvements might also increase resistance to the
organizational change from the employees [34].

 The Many Forms of Process Improvement – Results of an International Survey 117

Process improvement was viewed by the survey respondents as a formal initiative
and not as a personal improvement or a team’s way of carrying out work. Since there
seem to be more changes made to processes than come from formal initiatives just
through perpetual changes in the working environment, this indicates that there is a
level of change that is so familiar it is ignored. People learn by doing [35] and in that
learning they change the process at a level that apparently escapes attention. Yet it is
the informal, intrinsically motivated improvements that Deming believed were the
more important driver of process and product improvement [36]. While process
improvement remains the concern only of a few in the organization, it is only their
knowledge, skills and experience that are utilized whereas if process improvement is
seen to be everyone's concern and involve everyone, as Deming believed it should be,
then significantly more knowledge, skill, and experience are brought to bear on the
problem.

8 What Have We Learned

The survey that underpins most of this paper was conducted in 2009 and early 2010.
Since that time the authors have had many opportunities to learn more about process
improvement in general, and software or service management process improvement in
particular. So what have we learned?

While process improvement may seem a singular concept with wide consensus
about its purpose, there are signs that this is not true, that the debate about agile
software development versus plan-based software development has its parallel in
process improvement. Software development can be perceived as an act of production
or an act of design [37] or at the extreme could be regarded as an act of sensemaking
[38]. Each different perception will generate a different goal for process
improvement. Improving production processes is different from improving design
processes which is different from improving sensemaking processes. The goals of
each type of process are different as will be the goals of improving them.

With this recent understanding investigations into process improvement would be
careful to distinguish the different types of software development and the different
goals of process improvement in order to guide the research and elicit more
appropriate and more useful information.

Psychological and organizational studies concerning empowerment of employees
at workplace have given some insights about how organizations could build the
motivation and commitment in process improvement. We have discovered that
employees want to align their processes to organization’s strategic goals but they do
not know how to do it. Employees’ motivation to work towards organization’s goals
is high after process assessment but falls drastically once the improvements have been
implemented [34]. This supports the findings of the study presented in this paper that
the original goals for improvements are not always satisfied by the final implemented
improvements.

118 T. McBride and M. Lepmets

9 Summary and Future Works

Process improvement in software development is one form of organizational change
in one particular domain that might be compared with general organizational change
and change in other domains. However, the concern of this survey and of this paper
was to determine what actual changes were made to the processes. Comparing
software process improvement and business process improvement could be a fruitful
subject for further research. Understanding the complex effects process improvement
has in an organizational environment could be useful for the organizations undergoing
improvements.

The responses concerning motivations for process improvement were not matched
by the responses concerning improvement goals in our study. This survey did not set
out to investigate such a possibility and it may have been an effect of the
questionnaire construction or of the question wording but could also indicate a very
real mismatch. If there is evidence of such a mismatch it would indicate that little is
known about how to align processes and process improvement to the organization’s
strategic goals. This seems to be sufficiently important to warrant further work.

The performance scales of both Schmenner and Ferdows and De Mayer offer
interesting alternatives to the frequently assumed improvement goal of productivity
and may provide some direction for improved improvement methods. Certainly the
theory of swift even flow is a counter argument to the tendency to increasing weight
and rigour in processes, since the need for speed will usually require less of both.

Acknowledgements. This research project was supported by EDS, an HP company
and by the National Research Fund, Luxembourg and cofounded under the Marie
Curie Actions of the European Commission (FP7-COFUND).

References

1. Clark, B.K.: The Effects of Software Process Maturity on Software Development Effort.
Faculty of the Graduate School, University of Southern California, San Diego, p. 140
(1997)

2. Goldenson, D.R., Gibson, D.L.: Demonstrating the Impact and Benefits of CMMI: An
Update and Preliminary Results. Software Engineering Institute (2003)

3. Goldenson, D.R., Herbsleb, J.D.: After the Appraisal: A Systematic Survey of Process
Improvement, its Benefits, and Factors that Influence Success. Software Engineering
Institute (1995)

4. Herbsleb, J.D., Goldenson, D.R.: A systematic survey of CMM experience and results. In:
Proceedings of the 18th International Conference on Software Engineering 1996,
pp. 323–330 (1996)

5. Humphrey, W.S.: A Discipline for Software Engineering. Addison-Wesley (1994)
6. Gilb, T.: Principles of Software Engineering Management. Addison-Wesley (1988)
7. Boehm, B., Clark, B., Horowitz, E., Madachy, R., Selby, R., Westland, C.: An Overview

of the Cocomo 2.0 Software Cost Model. In: Software Technology Conference, p. 21
(1995)

 The Many Forms of Process Improvement – Results of an International Survey 119

8. ISO/IEC 9001: Quality Management Systems - Requirements. 9001 (2008)
9. ISO/IEC 15504-2: Software Engineering - Process Assessment - Part 2: Performing An

Assessment. 15504, vol. 2 (2003)
10. Schroeder, R.G., Linderman, K., Liedtke, C., Choo, A.S.: Six Sigma: Definition and

underlying theory. Journal of Operations Management 26, 536–554 (2008)
11. SEI: CMMI® for Development, Version 1.3. Software Engineering Institute (2010)
12. Middleton, P.: Lean Software Development: Two Case Studies. Software Quality

Journal 9, 241 (2006)
13. Womack, J.P., Jones, D.T., Roos, D.: The Machine that Changed the World. Rawson

Associates, New York (1990)
14. Rummler, G.A., Ramias, A.J., Rummler, R.A.: White Space Revisited: Creating Value

Through Process. Jossey-Bass, San Francisco (2010)
15. ISO/IEC 12207: Information technology – Software life cycle processes. 12207 (2008)
16. Baddoo, N., Hall, T.: Motivators of Software Process Improvement: an analysis of

practitioners’ views. The Journal of Systems and Software 62, 85–96 (2002)
17. Hoverstadt, P.: The Fractal Organization: Creating sustainable organizations with the

Viable System Model. Wiley (2008)
18. Cockburn, A.: Agile Software Development: The Cooperative Game, 2nd edn. Addison-

Wesley Professional (2006)
19. Cohn, M.: Succeeding with Agile: Software Development using Scrum. Addison-Wesley

(2010)
20. ISO/IEC 15504-1: Information Technology - Process Assessment - Part 1: Concepts and

Vocabulary. 15504, vol. 1 (2004)
21. Salo, O., Abrahamsson, P.: Integrating Agile Software Development and Software Process

Improvement: A Longitudinal Study. ISESE, Noosa Heads (2005)
22. Paulk, M.C., Curtis, B., Chrissis, M.B., Webber, C.V.: Capability Maturity Model for

Software. Software Engineering Institute (1991)
23. Ferdows, K., De Meyer, A.: Lasting improvements in manufacturing performance: In

search of a new theory. Journal of Operations Management 9, 168–184 (1990)
24. Flynn, B.B., Flynn, E.J.: An exploratory study of the nature of cumulative capabilities.

Journal of Operations Management 22, 439–457 (2004)
25. Schmenner, R.W.: Service Businesses and Productivity. Decision Sciences 35, 333–347

(2004)
26. Schmenner, R.W.: Looking ahead by looking back: Swift Even Flow in the history of

manufacturing. Production and Operations Management 10, 87–96 (2001)
27. Sterman, J., Kofman, F., Repenning, N.: Unanticipated Side Effects of Successful Quality

Programs: Exploring a Paradox of Organizational Improvement. Management Science 43
(1997)

28. Lepasaar, M., Varkoi, T., Jaakkola, H.: Models and Success Factors of Process Change. In:
Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2001. LNCS, vol. 2188, pp. 68–77.
Springer, Heidelberg (2001)

29. Deming, W.E.: Out of the Crisis. The MIT Press (1986)
30. Gray, E.M., Smith, W.L.: On the limitations of software process assessment and the

recognition of a required re-orientation for global process improvement. Software Quality
Journal 7, 21–34 (1998)

31. Davenport, T.H.: Process Innovation: Reengineering Work Through Information
Technology. Harvard Business School Press (1993)

120 T. McBride and M. Lepmets

32. Brown, S.L., Eisenhardt, K.M.: The Art of Continuous Change: Linking Complexity
Theory and Time-paced Evolution in Relentlessly Shifting Organizations. Administration
Science Quarterly 42, 1–34 (1997)

33. Curtis, B., Kellner, M.I., Over, J.: Process Modeling. Association for Computing
Machinery. Communications of the ACM 35, 75–90 (1992)

34. Lepmets, M., Ras, E.: Motivation and Empowerment in Process Improvement. In:
O‘Connor, R.V., Pries-Heje, J., Messnarz, R. (eds.) EuroSPI 2011. CCIS, vol. 172,
pp. 109–120. Springer, Heidelberg (2011)

35. Brown, J.S., Duguid, P.: Creativity Versus Structure: A Useful Tension. MIT Sloan
Management Review 42, 93–94 (2001)

36. Hillmer, S., Karney, D.: In support of the assumptions at the foundation of Deming’s
management theory. Journal of Quality Management 6, 371–400 (2001)

37. McBride, T., Henderson-Sellers, B., Zowghi, D.: Software development as a design or a
production project; An empirical study of project monitoring and control. Journal of
Enterprise Information Management 20, 70 (2007)

38. Weick, K.: Managing the Unexpected: Complexity as Distributed Sensemaking. In:
McDaniel, R., Driebe, D. (eds.) Uncertainty and Surprise in Complex Systems, vol. 4,
pp. 51–65. Springer, Heidelberg (2005)

Towards Efficient Component Performance

Analysis in Component Based Architectures

Nabila Salmi1,2 and Malika Ioualalen1

1 LSI-USTHB - Université des Sciences et Technologie
BP 32, El-Alia, Bab-Ezzouar, 16111 Alger, Algérie

{salmi,ioualalen}@lsi-usthb.dz
2 LISTIC - Université de Savoie - BP 80449, 74944

Annecy le Vieux Cedex, France

Abstract. The desire to bring better quality and higher efficiency in
software design has led to the development of Component Based Sys-
tems. This kind of development has several benefits, however, at the
performance level, no guarantees ensure software correctness and good
performance properties. To help application designers to meet desired
performance of their applications, this paper proposes a modular analy-
sis process that allows to assess independently and efficiently component
performances and its impact on a component based architecture. This
process is achieved through a modelling phase, based on Stochastic Well-
formed Nets (SWN), a high level model of Stochastic Petri nets, and a
compositional structured performance evaluation method. It starts from
the system definition given in a suitable Architecture Description Lan-
guage, the targeted component implementation and an ”abstract view”
of other components, then provides efficiently system performance in-
dexes. The process is illustrated through an application example.

Keywords: Performances, Component-Based Systems, SWN, Compo-
sition, structured method, modular analysis.

Introduction

Software products include more and more various components developed by
third parties and being assembled together to reach a common goal. Such sys-
tems are known as Component Based Systems (CBS). The main objective of
this approach is to produce high quality applications with reduced cost, thanks
to components reuse, and to make easier maintaining and upgrade. To allow
for CBS definition, several component models have been introduced, for both
academic and industrial purposes. We quote EJB, CCM, COM+/.net, Fractal,
JMX, PECOS, Koala,IEC61499,... [26,18,19,20,16,17,2]. For the most of these
models, an Architecture Description Language (ADL) [15] allows to describe an
assembly of components. From this description, a set of accompanying tools gen-
erate the application code and perform some formal verifications such as type
compatibilities.

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 121–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 N. Salmi and M. Ioualalen

The component based approach is very promising. However, it is difficult
to provide software performance guarantees and ensure that the resulting de-
signed system meets the performance expected by users, as the system is built
from independently developed components. Usually, application designers rely
on careful planning and continuous testing to reach the functional requirements
of the end product. Some of the extra functional requirements, such as perfor-
mance, are often checked during integration or testing at final phase. So, we
need methodologies and tools that allow qualitative and quantitative analysis of
CBS, to support designers in their activities.

To achieve this goal, several work was proposed mainly for qualitative analysis.
[1]uses model checking of Labeled Transition Systems (LTS) to prove temporal
logic properties of a Fractal CBS. [9] and [23], are respectively based on hierar-
chical coloured Petri nets (HCPN) and generalized stochastic nets (GSPN). In
contrast, performance analysis is usually carried out with measures on existing
systems using performance testing [28], or even by benchmarking during system
operation. These technics are very costly, as error correction need redevelopment
leading to time consumption and investment loss. We can however note proposals
for predictive performance modelling [5,10]. This approach, followed by [29,11],
translates architecture designs, mostly given in the UML language into adequate
performance models such as Layered Queuing Networks (LQN) [22]. A survey on
performance analysis of CBS summarizes most proposals in [14]. Even though,
efficient methods are needed for analysis of important architectures, which may
lead to state space explosion.

In this context, we proposed in [25,24] an efficient general modelling and
”a priori” analysis method of CBS for performance prediction. This method is
based on the Stochastic Well-formed Nets (SWN) [4], a special class of Stochastic
coloured Petri Nets, widely used for performance analysis of complex symmet-
rical systems. It builds automatically a global SWN model for the CBS, seen
as a composition of SWN models associated to components and their intercon-
nections. Then, it applies a structured analysis method for the computation of
performance indexes of the whole system. The main benefits of our previous
method is the reduction of analysis complexity in terms of time computation
and memory costs.

In this paper, we propose a component performance analysis process, which
is a specialization and extension of our previous work defined for performance
analysis of a CBS. The added-value of this process is to allow to concentrate on
a given component of a component based system, compute its performances and
estimate its impact on the whole architecture. As a long-term objective, this will
help application designers to make cost-effective decisions in order to meet the
desired Quality of Service (QoS) of their applications. The key in this process
is to consider the component under study detailed in the scope of a component
based architecture, while remaining component interactions are non detailed,
then, assess performances of the whole system.

For this purpose, the process starts from the architecture description of the
CBS, provided in an ADL, and models the targetted detailed component while

Efficient Component Performance Analysis 123

adopting abstracted models for other components. Components are modelled
with Stochastic Well-formed Net (SWN) [4], a special class of Stochastic coloured
Petri Nets, widely used for performance analysis of symmetrical systems. The
CBS global model is then derived on the basis of these models. Finally, our
structured compositional method is applied to compute performance indices of
the whole architecture.

The structure of the paper is as follows. We present in section 1 the main
features of a CBS. We also describe a CBS application as an example used along
the paper. We follow in section 2 by giving an overview of our previous work. We
explain in section 3 our modular analysis process of a CBS, whose application
to the example is illustrated in section 3.4. We conclude and give future works
in section 4.

1 Component Based Systems

1.1 Concepts

A software component is defined as a unit of composition, provided with contrac-
tually specified interfaces and explicit context dependencies [27]. An interface is
an access point to the component, which defines provided or required services. In
addition, types, constraints and semantics are defined by the component model
in order to describe the expected behaviour at runtime.

Interfaces of a component allow to connect it to other components. Con-
sequently, we build a Component-based System by connecting the interfaces
of components. These connections are done depending on interactions between
components. Generally, two main styles of interactions are defined in compo-
nent models: synchronous interactions provided by service invocation (such as
an RPC or RMI communication), and asynchronous interactions given through
notification of events (asynchronous messages). Service invocations take place
between a client interface requesting a service and a server interface provid-
ing the service. Besides, event communications are defined between one or more
event source interfaces generating events and one or several event sink interfaces
receiving event notifications. The reception of a notification causes the acknowl-
edgment of the reception and execution of a specified reaction called the handler
of the event. Some event services can use event channels for mediating event
messages between sources and sinks. An event channel is an entity responsible
for registering subscriptions of a specific type of event, receiving events, filtering
events according to specific modes, and routing them to the interested sinks.

A component can contain itself a finite number of other interacting compo-
nents, called sub-components, allowing the components to be nested at an arbi-
trary level. In this case, it is said a composite component. At the lowest level,
components are said primitive. Sometimes, assembling two components may re-
quire an adaptation of associated interfaces, whenever these interfaces cannot
directly communicate for example. In this case, the adaptation is done with an
extra entity, called connector, modelling the interaction protocol between the
two components.

124 N. Salmi and M. Ioualalen

For each component model, a corresponding Architecture Description Lan-
guage (ADL) allows to describe an assembly of components forming an appli-
cation. From such a description, a set of tools are used to compile and generate
the application code, while checking syntactical and even some semantical prop-
erties.

1.2 CBS Illustration: Public Internet Access Payment System

The Charles University in Prague, in collaboration with France Telecom, has
developed a prototype implementation of a payment system for public Internet
access on airports [13]. Clients access the system via a wireless network (e.g
WiFi). They are identified by an IP address. Before being able to establish
communication with the Internet, they have to authenticate themselves and/or
pay for the service. A client can gain access to the Internet using three different
ways:

Fig. 1. Basic architecture of the payment system

• The client has a valid ticket id for first class or business class and has full
internet access during the ticket validity period.
• The client has a valid Frequent Flyer Card and any valid fly ticket. He has
also full internet access during the ticket validity period.
• The client can be anyone prepaying Internet access by a credit card.

At the login page, the client is asked a valid ticket id or a frequent flyer id. For
authentication process, the system queries the appropriate database for a given
ticket id or for a given frequent flyer id. Once authenticated, the user is granted
access to any web page until he disconnects or his time-lease expires.

For simplicity, we focus only on a subset of the system. We consider only the
first kind of client. Modelling of the behaviour with regard to other clients is
similar and can be further studied. So, the architecture of the system of interest
(figure 1), described in a Fractal ADL (given by the authors of the paper),
consists of :

• A Fractal component user requests.
• A Firewall component which includes an Access Policy, a WebServer and an
Internet access sub-components. The Access Policy routes the traffic between
the WebServer and the Internet based on the firewall rules.

Efficient Component Performance Analysis 125

• An Arbitrator component responsible for the authentication process. It queries
a FlyTicket database, and sends back to the firewall the new access policies.
• A FlyTicket Classifier component which queries the airline database appropri-
ate to the requesting ticket id.
• A database component.

2 Previous Work

To allow efficient qualitative and performance analysis of CBS, we proposed
in [25,24] a general structured compositional method, based on the Stochastic
Well-formed Nets (SWN). The main motivations for this formalism is that it is
a state based model, making possible the computation of performance indexes,
such as the number of requests pending in some part of the system, the mean
utilization time of some resource, ... It is also so expressive allowing the mod-
elling of complex systems with concurrency and conflicts. Moreover, interaction
between components can be represented with transition/place merging between
subnets. Finally, when complex primitive components are involved, high level
Petri Nets such as SWNs are almost inevitably required.

2.1 Well-Formed Models WN and SWN

The Well-Formed Net (WN) is a high level net. It is a coloured Petri net, where
places, transitions and arcs are provided with structured type of tokens and
functions.

In this model, elementary entities are modelled with basic classes called colour
classes. A total order, expressed by a successor function, can be defined on a
colour class. A colour class, composed of colours modelling entities of same na-
ture(eg. processes, resources), can be partitioned into static sub-classes, where
a sub-class contains colours with identical behaviours, even in terms of perfor-
mance. Colour classes are brought together to form colour domains (Cartesian
product of colour classes) associated to places and transitions. Hence a colour is
a tuple of basic colours. The Cartesian product defining a colour domain can be
empty (for example, in the case of a place containing neutral tokens). It can also
contain repetitions of a class (modelling internal synchronization of this class).
Colours of a place label its tokens, whereas colours of a transition define possible
firings of the transition. A marking of a place is defined as a multiset (bag) of
coloured tokens.

A colour function is attached to each arc and defines for, a given colour of the
associated transition, the number of coloured tokens to add or to remove from
the attached place. A colour function is built from standard operations (linear
combination, composition, ...) of three basic functions. Projection (or identity,
denoted by X or Xj

i in figures) selects an element of a tuple; it is represented by
a typed variable or by X if no confusion is possible. Synchronization/diffusion
(denoted by Si or Si,k) returns the set of all colours of a class (Si) or a sub-
class (Si,k). Successor function is defined for ordered classes only and returns
the colour following a given colour.

126 N. Salmi and M. Ioualalen

A transition or an arc function can be guarded by a Boolean expression, a
linear combination of atomic predicates. An atomic predicate expresses equality
of two variables, or restricts the colour domain of a variable to a static sub-class.
A predicate is evaluated on colours instantiated at a transition firing.

The structured definition of a WN allows us to exploit automatically system
symmetries, by compacting its reachability graph (RG), leading to a Symbolic
Reachability Graph (SRG). Nodes of the SRG are symbolic markings; each sym-
bolic marking represents a set of ordinary (coloured) markings with equivalent
behaviours. Arcs of the SRG stand for sets of equivalent (to within a colour
permutation) firings, termed as symbolic firings.

Most of the qualitative properties of a WN may be checked directly on its SRG,
providing important savings due to the compactness of the SRG with respect to
the standard RG when the system exhibits many symmetrical behaviours.

Stochastic Well-formed Net (SWN) is the stochastic extension of WN. Each
transition is associated with an exponentially distributed delay (depending on
the firing colour, and possibly on static sub-classes). The SRG of an SWN, aug-
mented with stochastic firings information, is equivalent to an aggregated Markov
chain of the chain derived from the coloured net. Thus, main performances in-
dexes of a system can be computed directly from this aggregated chain.

Formal definitions of WN and SWN are given in appendix A and we refer the
reader to [4] for more details on SWN.

2.2 Overview of Our Method

This method, previously proposed in [25,24] and summarized through figure 2,
consists of two main phases :

• A modelling phase : consisting in building automatically a global SWN model
for the CBS, seen as a composition of SWN models associated to components
and their interconnections, and
• An analysis phase : applying a structured analysis method for the computation
of performance indexes.

Modelling Phase. This phase starts from the CBS description given with the
ADL related to the component model, and translates each component behaviour
(source code) and interactions between components into the SWN framework.
A component is modelled by an expert by analyzing its source code and mod-
elling activities related to a certain level of details : the expert determine from
source code what are main tasks (instructions) to model, depending on the tar-
geted details level, then, given the necessary resources, he models the selected
tasks. This is a non trivial and tricky task, that’s why an expert knowing the
system functioning is required. To avoid to non expert users the modelling task,
a repository of SWN models of components can be used. In this case, the user
picks, from the repository, models corresponding to the components of his sys-
tem, provides the cardinalities of modelled entities (colors), such as servers and
resources, then, launches the modular analysis.

Efficient Component Performance Analysis 127

Fig. 2. Principle of compositional analysis approach of CBS

As components communicate through interfaces, a set of rules were proposed
for automatic SWN translation. These rules provide generic SWN models for
interfaces. In this context, two main components interactions were studied :
(i) A request/response interface, involved in a synchronous method invocation
interaction. In this case, the interface is either a server interface exposing a ser-
vice or methods, or a client interface invoking a method from a server interface.
The client is being blocked upon completion of service processing.
(ii) An event based interface, involved in an event based communication. It
can be a source or publisher interface notifying one or more sinks, or a sink
or subscriber interface receiving and processing events. The source resumes its
activity while the sinks process the received event. Event messages can also
be brokered through an event channel, depending on the specification of the
component model.

We illustrate component and interface SWN modelling with figures 3, 4 and 5,
showing SWN models built respectively for the Firewall, Arbitror and Classifier
components of our CBS example1:

1 Figures obtained using the GreatSPN tool [21].

128 N. Salmi and M. Ioualalen

P23
Acces,AccesM,Arb

P21
Acces,AccesM

P22
Acces,AccesM

P65
Acces,AccesM

P64
Acces,AccesM

P46
Acces,AccesM,Fir

P47
Acces,AccesM,Fir

P45
Acces,AccesM,Fir

AccessServ
AccesM0Acces

AccessMeth
AccesMM0AccesM

P32
Acces,AccesM

P33
Acces,AccesM,Web

P34
Acces,AccesM

WebServ
WebM0Web

WebMeth
WebMM0WebM

P37
Web,WebM

P38
Web,WebM,Arb

P39
Web,WebM

P44
Acces,AccesM,Fir

P54
Acces,AccesM

InternServ
InternM0Intern

InternMeth
InternMM0InternM

P57
Intern,InternM

P58
Intern,InternM

P59
Acces,AccesM

P61
Acces,AccesM,Intern

P27
FirM0Fir

T12EndDisconnect

disconnect

T37

EnablePortBlock

T26

CancelPortBlock

OpenPorts

ForwToFireSys

GetPage

IInternetAccessInternet

ReturnPage Authorize

DisablePortBlock

ILogin
IRedirectTypeURL

IDHCPCallBack

T16

T32T33

T38

<f,fm>

<f,fm>

<ac>

<acm>

<ac,acm>

<i>
<im>

<ac,acm>

<ac,acm,i>

<i,im>

<ac>

<acm>

<ac,acm>

<ac,acm,ar>

<ac,acm>

<ac,acm>

<ac>

<acm>

<w,wm>

<ac,acm,w>

<w>
<wm>

<ac,acm>

<w,wm,ar>

<w,wm>

<ac,acm,f>

<ac>

<acm>

<w,wm>

<w,wm,ar>

<w>
<wm>

<ac,acm> <w,wm>

<ac,acm,w>

<ac,acm>

<ac>

<acm>

<ac,acm,i>

<i,im><ac,acm>

<i>
<im>

<i,im>

<i,im>

<ac,acm,f>

<ac,acm,f>

<ac,acm,f>

<ac,acm,f>

<ac,acm,f>

<ac,acm,f>

<ac>

<acm>
<ac,acm,f>

<f,fm>

<acm>

<ac>

<acm>

<ac>

<f,fm>

<ac,acm>

<acm>

<ac>

<acm>

<ac>

<ac,acm> <ac,acm>

<ac,acm,ar>

<f>

<f>

Fig. 3. Firewall component SWN model

Efficient Component Performance Analysis 129

P27
Arb,ArbM

P26
Arb,ArbM

P25
Arb,ArbM

P24
Arb,ArbM

ArbServ
ArbM0Arb

ArbMeth
ArbMM0ArbM

P42
Arb,ArbM

P43
Arb,ArbM,Class

P48
Arb,ArbM,Acces

P49
Arb,ArbM

P50
Arb,ArbM

P51
Arb,ArbM

P63
Arb,ArbM,Acces InvalidateToken

T12

T37

EnablePortBlock

T26

AddRefToTable

IFlyTickAuth

Authorize

DisablePortBlock

ILogin

TerminSessionIDHCPCallBack

T22

<ar,arm>

<ar,arm>

<ar,arm> <ar,arm>

<ar,arm,f>

<ar,arm,f>

<ar,arm>

<ar,arm>

<ar,arm>

<ar,arm>
<ar,arm><ar,arm>

<ar>
<arm>

<arm>
<ar>

<ar,arm>

<ar,arm>

<ar,arm,c>

<ar,arm,c>

<ar,arm,ac>

<ar,arm,ac>

<ar,arm> <ar,arm><ar,arm><ar,arm>

<arm>
<ar>

<arm>
<ar>

Fig. 4. Arbitrator component SWN model

130 N. Salmi and M. Ioualalen

ClassifierServ
ClassM0Class

ClassifierMeth
ClassMM0ClassM

P75
Class,ClassM

P76
Class,ClassM

P77
Class,ClassM

P78
Class,ClassM

P79
Class,ClassM,DB

IDBQuery

CreateTokenC

SelectFlyTickIFlyTickAuth

T22 T48<c,cm><c,cm>

<c,cm> <c,cm>

<c,cm> <c,cm>

<c,cm>

<c,cm,db>

<c,cm,db>

<c>
<cm>

<cm>
<c>

<c,cm>

Fig. 5. Classifier component SWN model

– The Firewall model exhibits mainly actions triggered when a user types the
login url (transition TypeURL), accesses Internet (see transition
AccessInternet), or disconnects (transition disconnect) from the system.
The Web Server and the Access server sub-components are involved dur-
ing the first action, whether the Internet access with the Access server
sub-components take part in the other actions. In particular, the transition
DisablePortBlock models the firewall main work which is granting access
to the requesting user.

– The Arbitrator model represents the authorization process performed once
the login action is called (transition ILogin). Other actions are also modelled
like enabling port blocking (transition EnablePortBlack) or DHCP calling
back (transition IDHCPCallBack) for terminating a session.

– The Classifier model represents the fly ticket checking validity triggered when
asking for authorization (through transition IF lyT ickAuth).

Once the components and interactions modelled, the obtained models are adapted
and modified so that to be composable in the sense of Petri nets composition.
The modified models are then composed by merging interfaces elements. We
obtain a global model for the CBS, said the G-SWN. We keep also the SWN
models of components and interactions for the analysis step.

Analysis Phase. After generating the G-SWN of a CBS and the SWN models
corresponding to its components, we apply the analysis step, allowing to compute
performance indexes of the system, such as the response time to a request,
the throughput, the mean number of a certain resource... We can also check
qualitative properties like the existence of a deadlock between components, the
property of reaching a particular state, ...

Efficient Component Performance Analysis 131

This is achieved by finding first the set of SWNs representing a possible com-
patible decomposition of the G-SWN, that fulfill conditions for a structured
representation of the SRG and its aggregated generator. Then, we apply a mod-
ified version of the structured analysis method presented in [7,8]. The main idea
of this method is to study each SWN augmented with “parts” aggregating in-
teractions with other SWN models. These separated studies are then used to
derive a tensorial representation [6,3] of the generator of the underlying aggre-
gated Markov chain of the global net (G-SWN), and so to compute performance
indexes.

3 Modular CBS Analysis Process

We aim at assessing the impact of a given component on the performance of a
CBS. This can help to find the most appropriate component parameters that
allows to reach a satisfactory level of a targeted CBS quality service.

To reach this objective, our process builds a detailed modelling of the com-
ponent under study, while keeping an “abstract view” of all other components
of the architecture. Then, given the global model of the whole system, it com-
putes the main performance indexes of interest for some given parameters of the
component under study. If these indexes don’t satisfy the targeted CBS perfor-
mances, the component parameters are modified and the algorithm is applied
once again. This procedure is being repeated as many times as possible until
reaching the satisfactory level of the targeted quality of service or performance.

The detailed modelling and the “abstract view” of a component are explained
below.

3.1 Detailed Component Modelling

The detailed SWN model of a component is built by modelling its internal ac-
tivities (given a certain details level) and interfaces in the SWN formalism. To
achieve that, we proposed in [24,25] systematic rules, mainly devoted to model
interfaces involved in communications with other components. Two generic pat-
terns of interaction between components were studied: the synchronous request/
response interactions provided with the method or service invocation and the
asynchronous interactions consisting of notification of events.

Definition 1 (Detailed SWN model). Let C be a component of a CBS. N
is a detailed SWN model for C, as described in [25,24] if:
• Each service invocation interface (server/client) is modelled according to model
of figure 6.
• Each event-based interface (publisher/subscriber) is modelled according to
model of figure 7.
• Internal activities are modelling using SWN concepts.

132 N. Salmi and M. Ioualalen

ServTH
SThM0

ResServ
RM0

Request
STh,MP,R

Result
STh,MP,R

SoMP
MPM0

PBegReq
CThM0

PEndReq
CTh

TERS

TBRS

TEPS

TBPS

<t,mp,r>

<t>

<mp>

<r>

<t,mp,r>

<c>

<c>

Fig. 6. Generic SWNs models of client (left) and server (right) interfaces

3.2 Abstract View of a Component

The abstract view of a component is a macro representation or macro-view that
aggregates its behavior while keeping interactions with other components. It is
thus a minimal equivalent component modelling with interfaces and interactions
modelling.

To build an abstract or macro view, we need to keep a trace of entities being
transferred to or from communicating components. These entities correspond,
in the case of the SWN model, to colour entities synchronized with other nets.
We call them global colours. The notion of semiflow is used for computing an
abstract view. Let us recall what is a semiflow.

Definition 2 (Flow and semiflow). Let N be a WN with a set P of places,
a set T of transitions, and an incidence matrix W=Post-Pre, where Post(p,t),
Pre(p,t) for all p ∈ P , t ∈ T are input and output functions.

A flow (resp. semiflow) of N is a vector f �= 0 of Q|P | (resp. (Q+)|P |) such
that fT .W = 0.

For all reachable state M :
∑

p∈P fp.M(p) =
∑

p∈P fp.M0(p) = α (constant),
M0 being the initial state of N .

Efficient Component Performance Analysis 133

Ack_channelReleasTh
PTh

SentEventsPThreads
PThM0PTh

TNE

<p>

<p>
SAck

ReceivEvents

EToProcess
STh

SThreads
SThM0STh

P16
STh

P17
STh

TEHandler1

BeginTask EndTask

TTrigger1

TEHandler

TTrigger

<st>

<st>

<st>

<st>

<st>

<st>

<st>

<st>

<st>

<st> <st>

<st>

Fig. 7. SWN models of event publisher interface (left) and subscriber (right)

The construction of an abstract view follows the guidelines below:

1. Identify the global colours,
2. Find semiflows related to global colours,
3. For each service invocation interface, add the corresponding model.
4. For each event-based interface, add the corresponding model.
5. Connect places of the semiflows to the component interfaces.

The computation of semiflows limited to global colours is done as defined in [12]
for an SWN N . These semi-flows are said abstraction semiflows.

Definition 3 (Abstraction semiflow). f is an abstraction semiflow relative
to a colour class Ci of a SWN N iff f is a semi-flow such that:
• The colour domain of f (i.e of places relative to elements of f) D(f) = Ci;
• ∀p ∈ P , f is 0 or b times a projection (b is a positive constant).

Given this definition, an abstract view of a component SWN model can be
intuitively built by keeping element interfaces required for interconnection with
other components models and places containing synchronized entities that are
global colours.

Formally, we define an abstract view as follows:

Definition 4 (Abstract view).
Let N be the SWN model of a component. N is endowed with:

• k1 service invocation interfaces, and
• k2 event-based interfaces.
N has a abstract view iff an abstraction semiflow relative to each global class of
N exists.

134 N. Salmi and M. Ioualalen

Let F = {fCi|Ci is a global class of N} the set of abstraction semiflows of
N . The abstract view of N , denoted V(N), is an SWN with a set PV of places,
a set TV of transitions, and input and output functions PreV and PostV , such
that :

– PV is the set of places related to semiflows of F {pf |f ∈ F}, with :
• The color domain of pf D(pf) = D(f);
• The initial marking of pf M0(pf) =

∑
p∈P fp.M0(p).

– TV is the set of transitions belonging to interfaces.
– ∀p ∈ PV , ∀t ∈ TV :

• PreV (p, t) =
∑

p′∈•t fp′ ◦ Pre(p′, t), and
• PostV (p, t) =

∑
p′∈t• fp′ ◦ Post(p′, t).

Let us illustrate the construction of an abstract view for the Arbitrator compo-
nent of our example system. This component has two server interfaces connected
to the firewall component and three client interfaces, two linked to the firewall
and the third to the classifier component. We keep transitions associated to
these interfaces. Two global colours are used: Arb and ArbM . For each global
colour, an abstraction semiflow exist, to which we associate an abstraction place
(places Arb abstract, ArbM abstract). Linking between these transitions and
place according to definition 4 gives the abstract view depicted by figure 8.

3.3 Modular Analysis Process Algorithm

Let us consider a CBS S composed of n components C1, C2, . . . , Cn, and let us
denote Cx the component whose impact on the CBS performance is being inves-
tigated. We provide here the general algorithm (Algorithm 3.1), which takes as
input components C1, C2, . . . , Cn and different possible parameterizations of Cx.
Then, it tries to find the most appropriate Cx parameters, which allows to reach
a satisfactory level of the targeted performance or quality of service. The algo-
rithm mainly builds SWN models for the different components (detailed model
for Cx and abstract views for others), then builds the global SWN (G-SWN)
modelling the whole system. It checks then on the G-SWN and separate SWN
component models whether conditions for a structured analysis are satisfied on
the set of SWN models: if yes, Algorithm 3.2 is applied to compute steady state
probabilities and performance indexes; otherwise, the G-SWN is analyzed to get
steady state probabilities and performance indexes.

Deriving the G-SWN. The global model (G-SWN) of a CBS is derived for
two reasons :
(i) for checking satisfaction conditions of our structured method.
(ii) for global system analysis if conditions of the structured method are not
satisfied.

The G-SWN is built by interconnecting the detailed SWN model of the com-
ponent to assess and the abstract views of all others, according to their commu-
nication schemas. The communicating interfaces are connected. The obtained

Efficient Component Performance Analysis 135

Arb_abstract
ArbM0Arb

ArbM_abstract
ArbMM0ArbM

T12

T37

EnablePortBlock

T26

IFlyTickAuth

Authorize

DisablePortBlock

ILogin

IDHCPCallBack

T22

<ar>

<arm>

<arm>

<arm>

<arm>

<ar>

<ar>

<ar>

Fig. 8. Abstract view of the Arbitrator component

model is then completed by “closing” interfaces of the application with a small
Petri net marked adequately, to provide a G-SWN with finite state space. This
is a classical method, allowing to limit the number of entities in the model and
ensure model liveness . In the Petri net context, ”closing” means adding a small
Petri net to each interface of the application with an adapted initial marking,
generally an upper bound of the number of entities.

Notice that only one component modelling is detailed and others are ab-
stracted with abstract views, the associated G-SWN model is composed of sev-
eral “small nets” with one complete component SWN. However, the efficiency
of the structured analysis method depends on the number and the size of SWNs
making up the global SWN. So, it is sometimes useful to merge some abstract
views into one model for better analysis times.

Structured Method for Performance Analysis. After generating the
(SWNk)k∈K corresponding to CBS components, we apply the last step of our

136 N. Salmi and M. Ioualalen

Algorithm 3.1

C1, C2, . . . , Cn : components of S.
Cx : component to study.
Param(C) : function which parametrizes C with new parameters and returns

the new parametrized component.
Detail Modelling(C): function which returns the SWN detailed model of C.
Abstract Modelling(C): function which returns the SWN abstract model of C.
REPEAT

NewCx = Param(Cx);
Mx = Detail Modelling(NewCx);
For (i = 1; i <= n; i �= x; i + +) Mi = Abstract Modelling(Ci);
if (satisfy conditions((M1, M2, . . . , Mn)==True)

Apply Algorithm 3.2 on the set of SWNs {M1, M2, . . . , Mn}.
Get performance indexes (Perf Indexes) as results of algorithm 3.1.

else GSWN = Merge(M1, M2, . . . , Mn);
Perf Indexes = Perf analysis(GSWN);

UNTIL Satisfaction of required criteria on performance indexes Perf Indexes.

analysis approach which computes performance indexes of a system. Examples of
performance indexes are the response time of a request, the system throughput,
the mean number of a certain resource...

For this purpose, we apply algorithm 3.1, defining a structured analysis method,
extended for analysis of CBS in [25,24]. The main idea of the structured method
is to study each obtained SWN model augmented with “parts” abstracting inter-
actions with other SWNs. These separated studies are used to derive a tensorial
representation of the generator of the underlying aggregated Markov chain of
the global net. The tensorial representation is then used to compute steady state
probabilities providing important memory usage and computation time savings.
These probabilities are used to compute performance indexes.

Algorithm 3.2

Let (SWNk)k∈K be SWN models corresponding to the detailed and abstracted
component models of the CBS under study.
1. Extension of the SWNs Nk to autonomous SWNs N̄k, said extended nets.
2. Generation of the SRGs of these extended SWNs.
3. Computation of the synchronized product of these SRGs and of the tensorial

representation of the generator of the underlying aggregated Markov chain.
4. Computation of the steady state distribution of the aggregated model and

computation of the required performance indexes.
5. Expression of the results in the initial context of the components.

Algorithm 3.2 allows important savings of memory usage and computation time,
using the structured analysis implemented in our tool compSWN [7,8], applied
on separate SWN models.

Efficient Component Performance Analysis 137

Table 1. Transition rates of the studied configuration

Transition Rate value

TypeURL 0.8

IRedirect 0.9

AccessInernet 0.9

GetPage 0.6

IInternet 0.85

OpenPorts 0.75

EnablePortBlock 0.75

However, if conditions for a structured analysis are not satisfied, the analysis
is performed on the G-SWN modelling the whole CBS, instead of working on
the SWN component models, leading to a longer computation time and great
memory space, and sometimes, for an important model, the analysis is impos-
sible. The GreatSPN tool [21] is used for the analysis purpose operating on the
G-SWN.

3.4 Illustration

Let us illustrate our modular process by studying the impact of the firewall com-
ponent on the Public Internet access payment system presented in section 1.2.
The interest is to check whether the number of servers providing the firewall
functionalities are sufficient for an acceptable user request response time. To do
so, we study the variation of the response time for a client requesting access to
Internet, with respect to the firewall processing rate, allowing to grant access to
the requesting user.

Thus, the main component which we aim to study is the firewall component.

Parameters of the System. According to our modular process (Algorithm
3.1), we take a detailed view of the firewall component (figure 3) and build ab-
stract views for the other components. Before analyzing targetted performances
with our method, we need to check conditions for a structured analysis on the
global model (G-SWN) modelling the whole system. So, we compose the detailed
view of the firewall component and abstract views of other components to get
the G-SWN. As, the obtained G-SWN satisfies these conditions, we can apply
our structured analysis method following algorithm 3.2. This is done using our
tool compSWN on subnets which computes steady-state probabilities.

So, we fixed cardinalities of basic colours to 100 clients with 2 firewall servers
(modelled by the Fir colour class), 2 arbitrators (Arb colour class), 2 Fly ticket
classifiers (Class colour class) and 2 databases (DB colour class). We also take
firing rate values of a critical set of transitions (see table 1). Transitions not
appearing in this table have rate equal to 1, i.e. faster than all other transitions,
rates being given in the same unit. Then, we vary the DisablePortBlock transi-
tion rate, and study the evolution of response time from obtained steady-state

138 N. Salmi and M. Ioualalen

probabilities. We quote that a colour may model a group of elementary entities,
for instance a client colour can stand for 100 or 1000 clients. In this case, firing
rates of transitions involving this colour should be adapted to the semantics of a
colour (100 clients provide a 100 times slower method request rate for instance).

To evaluate the analysis process duration, we mainly focus here on the step
computing the steady-state probabilities, as it is the most important step. We
evaluated the duration of the modular approach (structured analysis) used for
this step and compare it with the usual approach operating directly on the
G-SWN for several configurations. The structured analysis proved to be more
efficient and provides important savings both in memory usage and computation
times, compared to the usual approach applied using the GreatSPN environment.
Some configurations cannot also be analyzed with the usual approach, while the
analysis was possible with the structured approach.

Table 2. State space sizes and computation times for steady-state analysis of the
example for various configurations

Config —Adr— —Fir— —TId— —Arb— —Fly— NbS NbO

1 2 2 2 2 2 38508 617952

2 2 2 2 3 4 90520 7886592

3 3 2 2 2 2 176964 8353632

4 3 3 2 2 2 468432 59261888

To give an idea of the analyzed state space size, we report in table 2 state space
size for some configurations of the whole system. Notations are the following:
—Color— is the cardinality of the static subclass, NbS is the number of symbolic
markings and NbO is the number of ordinary markings.

Note that for huge models, the two approaches can fail to compute the steady-
state probabilities.

Performance Results. To reach our goal of studying the impact of the
firewall component, we compute several request response times (thanks to the
obtained steady-state probabilities), and then compute the variation of the re-
sponse time with respect to the firewall processing rate, using the rate of the
DisablePortBlock transition which models the access granting action.

Figure 9 shows corresponding response time variation results computed first
for the configuration of two firewall servers in the firewall component, then for
six firewall servers. As the figure shows, the obtained response time is being
improved as the firewall processing rate gets bigger (blue curve). However, it is
greater than 287s (4,78mn) which is considered as a bad response time for a client
accessing to Internet. It is so still poor with respect to the client expectation.
Thus, we changed the configuration of the firewall component to six servers and
repeat our modular process. We obtain a much better and acceptable response
times (red curve), reaching a satisfactory level of the whole system quality of
service.

Efficient Component Performance Analysis 139

Fig. 9. Client response time versus firewall processing rate

4 Conclusion

This paper addresses performance modelling and analysis of systems composed
of several components, while focusing on a given component. Our goal is to be
able to predict the performance of the component on which the study is focused,
and estimate its impact on the CBS architecture. For this purpose, we have
proposed an efficient component analysis process, allowing to assess ”a priori”
independently performances of a critical component and predict its behavior.
Prediction is based on modelling techniques, allowing to avoid benchmarking
and performance testing which is costly and time consuming. The efficiency of
the proposed process is derived from that’s of the structured analysis method,
and consists in important time and memory savings especially when important
CBS architectures are addressed.

The process starts from the description of a CB designed application, given in
an Architecture Description Language. It models the critical component under
study with a detailed SWN model and aggregates the behavior of all other
components by building an abstract view for each one. The obtained SWNs are
then connected by fusing their interface elements. The resulted G-SWN model
is analyzed using our previous structured method.

We tested our proposed process on an example of public internet access pay-
ment system. The first results are very promising. But, they still require more
research work in several directions, such as automating the construction of a
detailed SWN model (which should be proper to each component model) and
the derivation of the abstract view of a component.

140 N. Salmi and M. Ioualalen

References

1. Barros, T., Cansado, A., Madelaine, E., Rivera, M.: Model checking distributed
components: The Vercors platform. In: 3rd Workshop on FACS. ENTCS (Septem-
ber 2006)

2. Bruneton, E., Coupaye, T., Stefani, J.B.: The fractal component model, version
2.0-3. Technical report, Fractal team (October 2006) (February 2004),
http://fractal.objectweb.org/specification/

3. Buchholz, P., Ciardo, G., Donatelli, S., Kemper, P.: Complexity of Kronecker oper-
ations on sparse matrices with applications to solution of Markov models. Technical
report 97-66, ICASE, Institute for Computer Applications in Science and Engineer-
ing, NASA/Langley Research Center, Hampton, VA, USA (1997)

4. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed
colored nets and symmetric modeling applications. IEEE Trans. on Comp. 42(11),
1343–1360 (1993)

5. Smith, C.U., Williams, L.G.: Performance Solutions. Addison-Wesley (2002)
6. Davio, M.: Kronecker products and shuffle algebra. IEEE Transactions on Com-

puters 30(2), 116–125 (1981)
7. Delamare, C., Gardan, Y., Moreaux, P.: Efficient implementation for performance

evaluation of synchronous decomposition of high level stochastic Petri nets. In:
Proc. of the ICALP 2003, Eindhoven, Holland, June 21-22, pp. 164–183. University
of Dortmund, Germany (2003)

8. Delamare, C., Gardan, Y., Moreaux, P.: Performance evaluation with asyn-
chronously decomposable SWN: implementation and case study. In: Proc. of the
10th Int. Workshop on PNPM 2003, Urbana-Champaign, IL, USA, September 2–5,
pp. 20–29. IEEE Comp. Soc. Press (2003)

9. Dias da Silva, L., Perkusich, A.: Composition of software artifacts modelled using
colored Petri nets. Science of Computer Programming 56(1-2), 171–189 (2005)

10. Firus, V., Becker, S.: Towards performance evaluation of component based software
architectures. In: Proc. of FESCA 2004 (2004)

11. Grassi, V., Mirandola, R., Sabetta, A.: Filling the gap between design and perfor-
mance/reliability models of component-based systems: A model-driven approach.
J. Syst. Softw. 80(4), 528–558 (2007)

12. Haddad, S., Moreaux, P.: Asynchronous composition of high level Petri nets: a
quantitative approach. In: Billington, J., Reisig, W. (eds.) ICATPN 1996. LNCS,
vol. 1091, pp. 193–211. Springer, Heidelberg (1996)

13. Jezek, P., Kofron, J., Plasil, F.: Model checking of component behavior specifica-
tion: A real life experience. Electronic Notes in Theoretical Computer Science 160,
197–210 (2006)

14. Koziolek, H.: Performance evaluation of component-based software systems: A sur-
vey. Performance Evaluation, Special Issue on Software and Performance (August
2010)

15. Medvidović, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. on Soft. Eng. 26, 70–93
(2000)

16. Microsoft. Net 3.0 framework (July 2007),
http://msdn.microsoft.com/netframework

17. Müller, P., Stich, C., Zeidler, C.: Components@work: Component technology for
embedded systems. In: Proc. of the Component-Based Software Engineering Track
at the 27th IEEE Euromicro Conference (Euromicro CBSE 2001) (September 2001)

http://fractal.objectweb.org/specification/
http://msdn.microsoft.com/netframework

Efficient Component Performance Analysis 141

18. Object Management Group. Common object request broker architecture (CORBA)
- specification, version 3.1, part 1: CORBA interoperability (July 2007) (2004),
http://www.omg.org/cgi-bin/doc?pas/04-08-01.pdf

19. Object Management Group. Common object request broker architecture (CORBA)
- specification, version 3.1, part 2: CORBA interfaces (July 2007) (2004),
http://www.omg.org/cgi-bin/doc?pas/04-08-02.pdf

20. Object Management Group. CORBA component model specification. version 4.0
(April 2007) (April 2006),
http://www.omg.org/cgi-bin/apps/doc?formal/06-04-01.pdf

21. Perf. Eval. Group. GreatSPN home page (2002),
http://www.di.unito.it/~greatspn

22. Petriu, D., Shousha, C., Jalnapurkar, A.: Architecture-based performance analysis
applied to a telecommunication system. IEEE Transactions on Software Engineer-
ing 26(11), 1049–1065 (2000)

23. Rugina, A.E., Kanoun, K., Kaaniche, M.: A system dependability modeling frame-
work using AADL and GSPNs. Technical Report 05666, LAAS (November 2006)

24. Salmi, N., Moreaux, P., Ioualalen, M.: From architectural design to swn models for
compositional performance analysis of component based systems: application to
ccm based systems. In: Proc. of the 24th UKPEW 2008 Performance Engineering
Workshop, pp. 123–136. Imperial College, London, UK (2008)

25. Salmi, N., Moreaux, P., Ioualalen, M.: Performance evaluation of fractal component
based systems. Annals of Telecommunications. Special issue: Software component:
The Fractal Initiative 64(1), 81–101 (2009)

26. Sun Microsystems. EJB 3.0 specification (July 2007),
http://java.sun.com/products/ejb/docs.html

27. Szyperski, C.: Component technology - what, where, and how? In: Proc. 25th Int.
Conf. on Software Engineering, May 3-10, pp. 684–693. IEEE (2003)

28. Weyuker, E., Vokolos, F.: Experience with performance testing of software sys-
tems: issues, an approach and case study. IEEE Transactions on Software Engi-
neering 26(12), 1147–1156 (2000)

29. Wu, X., Woodside, M.: Performance modeling from software components. SIG-
SOFT Softw. Eng. Notes 29(1), 290–301 (2004)

A WN and SWN Formal Definitions

We remind the reader with the definitions of WN and SWN. A detailed presen-
tation of these models can be found in [?].

Definition 5 (Well-formed Petri Net (WN)). A well-formed Petri Net S
is a tuple (P, T, C, cd, Pre, Post, Inh, Guard, Pri, M0) with:

– P, T : the finite sets of places and transitions,
– C = {Ci/i ∈ I = {1, · · · , n}}: the set of basic colour classes; Ci is possibly

partitioned into into ni static sub-classes: Ci =
⋃ni

j=1 Ci,j,
– cd: P

⋃
T → Bag(I). cd(r) = Ce1

1 ×Ce2
2 × . . .×Cen

n is the colour domain of
a node r; ei ∈ IN is the number of occurrences of Ci in the colour domain of
r, where Bag(I) is the set of multisets (bags) on I.

– Pre, Post, Inh: the input, output and inhibition standard colour functions
from C(t) to Bag(C(p)).

http://www.omg.org/cgi-bin/doc?pas/04-08-01.pdf
http://www.omg.org/cgi-bin/doc?pas/04-08-02.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/06-04-01.pdf
http://www.di.unito.it/~greatspn
http://java.sun.com/products/ejb/docs.html

142 N. Salmi and M. Ioualalen

– Guard(t) : C(t) →{true, false} is a standard predicate associated with the
transition t. By default, Guard(t) is the constant function of value True.

– Pri : T → IN the priority function. By default, we assume ∀t ∈ T, Pri(t) = 0;
– M0 : M0(p) ∈ Bag(C(p)) is the initial marking of p.

Definition 6 (Stochastic Well-formed Net (SWN)). A Stochastic Well-
formed Net is a pair (S, θ) such that:

– S is a Well-Formed Net.
– θ a function defined on T such that: θ(t) : c̃d(t)×∏

p∈P Bag(C̃(p)) −→ R+.

θ(t)(c̃, M̃) represents:

– The weight of t for the colour c in the marking M , if π(t) > 0 (t is immedi-
ate). the firing probability of t(c) in M is then: θ(t)(c̃,M̃)

∑
(t′,c′),M[t′(c′)> θ(t′)(c̃′,M̃)

.

– The firing rate of t for the colour c in M , if π(t) = 0 (t is timed): the en-
abling duration before the firing of t(c, M) follows an exponential probability
distribution with mean θ(t)(c̃, M̃).

In this definition, c̃ is the representation of the colour c in terms of static sub-
classes, and M̃(p) is the representation of the symbolic marking of p in terms of
tuples of static sub-classes. θ(t) depends only on static sub-classes of concerned
colours.

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 143–158, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Case Study on Software Risk Analysis in Medical
Device Development

Christin Lindholm, Jesper Pedersen Notander, and Martin Höst

Software Engineering Research Group, Department of Computer Science,
Lund University, Faculty of Engineering,

Box 118, 221 00 Lund, Sweden
{christin.lindholm,jesper.notander,martin.host}@cs.lth.se

Abstract. Software failures in medical devices can lead to catastrophic
situations. Therefore is it crucial to handle software related risks when
developing medical devices. This paper presents the experiences gained from an
ongoing case study with a medical device development organisation. This part
of the study focuses on the two first steps of the risk management process, i.e.
risk identification and risk analysis. The research is conducted as action
research, with the aim of analysing and giving input to the organisation’s
introduction of a software risk management process. The risk identification
activities focus on user risks based on scenarios describing the expected use of
the medical device in its target environment. Challenging problems have been
found in the risk management process with respect to definition of the system
boundary and system context, the use of scenarios as input to the risk
identification and estimation of detectability used during risk assessment.

Keywords: risk management, risk analysis, software development, medical
device development.

1 Introduction

Software has for many years been an important part of larger systems, such as
automotive, telecommunication and finance. The amount of software in health care
applications is also increasing. Both IT systems used in the medical domain, like
administrative systems, and medical devices like measurement systems, are becoming
increasingly implemented in software. Medical devices, which this paper focuses on,
often include a large amount of software that is crucial for the functionality of the
devices. Examples of devices are monitoring devices for blood pressure, or other
monitoring devices, and also actuating devices affecting the human body.

Both monitoring devices and actuating devices can be safety critical, and thus a
structured development process is required in order to be able to demonstrate safety
and quality of the devices. Standards for this include for example IEC 61508 for
development of new hardware and software, and IEC 61511 for integration of
components developed according to IEC 61508 [1]. Even if standards are available

144 C. Lindholm, J.P. Notander, and M. Höst

there is still a need to investigate in more detail how development of software can be
carried out with this type of requirements.

The focus of this paper is on risk management, which is an important part of a
development process for safety critical systems. Since this is an important area, which
is affected by the fact that much of the functionality is implemented in software, there
is a need to conduct research on how the steps of this process should be conducted.

Risk management includes identification of risks, analysis and prioritization of
risks, and handling and monitoring of risks. In these phases there is not only a need to
understand a complex product, but also to understand the complex usage of it. This
means that it is necessary to involve several different roles in the work, such as
domain experts, technical experts and process experts. In this study medical
physicians with competence on the monitored medical processes are involved,
together with engineers with competence on the software and hardware and personnel
with competence on the required procedures in the organization. The objective of the
presented research is to summarize experiences from conducting risk identification
and risk analysis in the development of a medical device. This is achieved by
participating in these steps in a case study in an ongoing development project.

An earlier version of this paper was presented at the EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA) 2011 [2].

In Section 2, background and related work is presented. In Section 3 the case study
research method is presented, while the results are presented in Section 4. These
results are discussed in Section 5, and the main conclusions are summarized in
Section 6.

2 Background and Related Work

The medical device domain is a complex domain for many reasons. The working
environment is one reason, personnel in healthcare are to a great extent mobile when
performing patient work, they are often interrupted and unexpected situations occur
during work with patients and medical equipment. Garde and Knaup [3] have
identified several domain characteristics that contributes to the complexity for
example the product of healthcare, meaning the treated patient has for all practical
purpose an unlimited set of characteristics which constantly change and interact. This
makes it impossible to categorise patients as products can be categorized. Another
characteristic mentioned by them is that the majority of stakeholders are non-technical
professionals, for example physicians, nurses and administrators. The multitude of
medical standards and medical terminology is another complicating factor that
contributes to complexity and have to be considered when working in the domain.

A risk is “the probability of incurring a loss or enduring a negative impact” [4] and
in the medical device area it is crucial that the medical device, not in any way
constitutes any risks. The medical device development organisations have to address
different risks regarding patients, users, environment and third parties (for example
service technicians) [5]. A fault or mistake in the medical device domain can mean
the difference between life and death. The use of medical software is an inherent risk

 A Case Study on S

to patients, medical perso
develops medical software
possible. A so complete set
to take action against the ris
them. Another challenge fo
needs to comply with the sa
strict and detailed it has to b
regulations to follow de
manufactured.

Risk management must
device according to Europe
that the organisation need
devices ISO 14971 (www.i
majority of the risk manage
process without specifying

Risk management is an
The risk management proce

The risk management pr
cover all four steps. The res
in the process, i.e. risk iden
steps are important in the f
with focus on detailed descr

There is a shortage o
processes in the medical de
process at a more detailed
often the whole risk manag
step by step. McCaffery et
improvement risk manage
integrates regulatory medic
and practices of the Capabi
also investigates the whole
risks, i.e. the remaining risk
overall residual risk of a pr
scenarios. There are some
management process for ex

Risk identification

Software Risk Analysis in Medical Device Development

onnel and surroundings. A goal for an organisation t
is to be able to identify a set of risks that is as complete
t of risks as possible gives the organisation the opportun
sks in order to avoid them or to reduce the consequence
or an organisation is that the software in a medical dev
ame laws and regulations as the medical device itself. H
be depends on the product, and there are different laws

epending in what part of the world the product

t be included in the development process for a med
ean and American law [6, 7], and there are also standa
ds to follow. Concerning risk management for med
iso.org) needs to be considered. This standard defines
ement terms and gives a framework for a risk managem
details about how things should be done.
organised process for identifying and managing risks

ess is often divided into four steps displayed in Figure 1

Fig. 1. Risk management process

rocess for a medical device development organisation m
search presented in this paper focuses on the two first st

ntification and risk analysis. The reason for this is that th
first part developing a complete risk management proc
ription of each step.

of documented research on software risk managem
evice area and a need for research on several steps in
level has been identified. The published research cov

gement process on a high level, not specifically descri
t al. [9, 10] have developed and tested a software proc
ement model (Risk Management Capability Model) t
cal device risk management requirements with the go
ility Maturity Model Integration (CMMI). Schmuland [
risk management process, although he focuses on resid

ks after the risks have been handled, and how to assess
roduct. It is based on the identification of all the import
e researchers that focus on one of the steps in the r
xample Sayre et al. [12] who look especially on the r

Risk analysis Risk planning Risk monitoring

145

that
e as
nity
s of
vice

How
and
t is

dical
ards

dical
the

ment

[8].
.

must
teps
hese
cess

ment
the

vers
ibed
cess
that
oals
[11]
dual
the

tant
risk
risk

146 C. Lindholm, J.P. Notander, and M. Höst

analysis step. They describe an analytical tool for risk analysis of medical device
systems, a Markov chain based safety model and they argue that this safety model
presents significant opportunities for quantitative analysis of aspects of system safety.

3 Case Study Methodology

The research in this paper is based on a study of a single case. According to Yin “a
case study is an empirical inquire that investigates a contemporary phenomenon
within its real-life context, specially when the boundaries between the phenomenon
and context are not clearly evident” [13]. In software engineering, process
improvement activities are often of a complex nature and cannot be studied in
isolation, which means that there is a need for empirical studies in real world settings
like in this study. The research design of a case study is flexible where the research
strategy develops during the data collection and analysis [14].

In action research there is collaboration between researchers and those who are the
focus of the research [14]. The observations in this study have been active
observations meaning that the researchers have been allowed to influence the outcome
of the observed activity. The aim has been to observe how the activities are performed
in their context, not to actually perform the activities but to give input and support.
The purpose of the active observations probably could be to get interesting aspects of
the activities by asking questions and giving advice on relevant topics.

3.1 Objectives

The objective of the research in this paper is to give input to the development of a
software risk management process in an organisation that develops medical devices.
The organisation has a defined risk management process for development of hardware
but a need for a risk management process adapted to software development. More
specific research questions are:

• RQ1: What are the experiences from using the chosen risk identification
method?

• RQ2: What are the experiences from using the chosen risk analysis
method?

• RQ3: What are the experiences from focusing on a sub system as a part of
a larger system?

That is, RQ1 and RQ2 are general questions about the defined risk management
process with focus on pros and cons, while RQ3 was defined based on the architecture
of the product that was analysed. The software risk management process focuses only
on the development of software for a new medical device (bedside monitor). In this
case the new device can be regarded as a sub system since it is a part of a lager system
for example the new device import blood pressure values from a patient monitor. The
defined risk management risk identification method and risk analysis method is
presented in Chapter 4.

 A Case Study on S

3.2 Case Study Process

The research process is ba
Höst [15]. The process in F

Foremost in the case stu
made. As part of the prepa
different risk identification
classification. The develop
software risk process for th
The software risk proces
researchers as active observ
active observations and th
back to the organisation in f

3.3 Case Study Contex

The case study was condu
maintaining medical device
and autumn in 2010. The ri

Define objectives • 3 re

Preparation • A ca• Disc
Data collection • Actimee

Analysis • Anaobs

Reporting and feedback
• A teresuorga• Fee

Software Risk Analysis in Medical Device Development

s

ased on the case study process described by Runeson
igure 2 was followed.

Fig. 2. Case study process

udy the objectives were defined and the preparations w
arations, discussion started with the organisation regard
n techniques, risk analysis methods and scales for r
pment organisation decided then on the design of
he first two steps, i.e. risk identification and risk analy
ss was then used during five risk meetings with
vers of the process. The data collection was made throu

he observations were documented, analysed and repor
form of a technical report.

t and Subjects

ucted at a department at a large hospital developing
es and was performed in different steps during the summ
isk analysis was carried out on a patient monitor system

esearch questions was identified
ase study protocol was created and updatedcussions with the development organisation
ive observations of the risk process during five risk etings was performed and documented

alysis of the documented notes from the active ervations
echnical report with all the material including the ults was created and sent to the development anisationdback from the development organisation was received

147

and

were
ding
risk
the

ysis.
the

ugh
rted

and
mer

m for

148 C. Lindholm, J.P. Notander, and M. Höst

monitoring intracranial pressure and calculating the cerebral blood flow, including
both software and hardware, however the risk analysis was focused on the software.
The software in this case is the software developed for the new device (bedside
monitor) and the risk identification activities focus on user risks. The purpose of the
patient monitor system is to monitor the patients’ intracranial pressure, calculate the
cerebral blood flow and present it to the medical personal. The patient monitor system
consists of mainly three parts:

1. Pressure sensor placed in the patients skull
2. Patient monitor connected to the sensor. The monitor presents and exports

blood pressure values
3. Bedside monitor, the new device which import the blood pressure values

from the monitor and calculate the cerebral blood flow

Part 1 and 2 of the system have been used before while part 3 is new.
The bedside monitor contains a PC with a Windows operating system and an

application based on Palcom and written in Java. The graphical interface presents the
calculated cerebral blood flow and the measured intracranial blood pressure.

Participants in the study represent three different groups:

• the intended users with special domain knowledge (e.g. physicians and
nurses)

• the development organisation (e.g. medical device expert and risk analysis
supervisor)

• the researchers (e.g. process experts and technical experts from academia)

At this stage of the process no representatives from patients´ organisations was
involved.

The target environment for the new medical device is an intensive care unit (ICU).
The development organisation has extensive experience in developing and

maintaining medical devices, but not devices including software.

3.4 The Study of the Organisation

This section is divided in two parts, the first describing the preparations together with
the organisation and the second the performed risk meetings were the data collection
was made.

Preparations with the Organisation. The organisation had a defined risk
management process for development of hardware but needed a risk management
process adapted to software development. The research started out with an
introductory discussion about the development process including the risk management
process. It was clear that the study should focus on the two first steps in the risk
management process, i.e. risk identification and risk analysis. As a result of these
introductory discussions a process for risk identification and risk analysis designed for
software systems was defined. The software risk process is described in Chapter 4.

 A Case Study on Software Risk Analysis in Medical Device Development 149

Data Collection. Five risk meetings were held during the autumn of 2010, first
meeting in September and the last meeting in December. The meetings lasted for
approximately three hours each time. At least two representatives from each group of
participants (users, development organisation, process experts and technical experts)
were present at the meetings. During the meetings a risk was both identified and
assessed at the same meeting. In total 152 risks were identified and 12 of them where
given a high risk value. The software in the medical device has taken approximately
18-man month to develop at this stage of the risk process meetings.

The authors made active observations during the risk process meetings. To capture
interesting aspects and pros and cons regarding the process the authors asked direct
questions during the meetings. For example, if something was vague regarding the
process or the product the authors asked for clarification.

All the authors have documented their observations during the risk process
meetings, and the notes contain both direct observations and the authors’ own
reflections.

3.5 Analysis

The analysis the fourth step in the case study process (Figure 2) is based on the notes
taken by the authors at the risk process meetings. After the meetings, the notes were
compiled as a list of statements in a protocol and distributed among the authors. The
group of authors compared and discussed interesting observations and reflections in
close connection to the risk process meetings. The listed statements in the protocol
were sorted into two different groups, with either “objective” observations or personal
reflections. In the next analysis step the two groups of statements were sorted
according to in which step of the risk analysis process they were noted. After that the
observations and reflections were categorised according to the problems they affect.
The purpose of this strategy was to get a better understanding of the material and
make it easier to navigate.

During the on-going study a case study protocol was maintained containing
purpose, procedures and detailed description of the course of events during the
process. The case study protocol was updated over time.

All the material, including the results, was compiled into a preliminary technical
report and includes the same information about the case study and the result as in this
paper. The report was sent to representatives from the development organisation as part
of the feedback process. The feedback process gives an opportunity to make
clarifications from all parts and it also gives the authors conformation that the studied
process is correctly. The representatives from the development organisation confirmed
that the content of the technical report was consistent with theirs comprehension of the
process and only minor details had to be corrected.

3.6 Validity

Validity of this kind of study can for example be analyzed with respect to construct
validity, internal validity, external validity, and reliability [13].

150 C. Lindholm, J.P. Notander, and M. Höst

Construct validity reflects to what extent the factors that are studied really
represent what the researcher have in mind and what is investigated according to the
research questions. In this study there were several different roles with different types
of expertise involved. This could be a potential threat since there is always a risk of
misunderstandings. One aspect that lowered this threat is that both the technical
experts and the process experts had a long tradition of working together with the
medical experts, which means that they had good knowledge of the investigated
product and the usage of it. However, the risk cannot be ruled out totally.

It can also be noted that if, for example, medical terms were misunderstood by the
researchers or the process experts, this would probably be a larger problem for the
result of the conducted risk analysis than for the research results presented in this
paper. The research was conducted as part of the risk analysis attempt and not seen as
a something completely different by the participants. There was, of course, a wish to
do an as good risk analysis as possible, which we also think is good for the research
results.

Internal validity is important in studies of causal relationships. We have not
identified any significant relations of this kind.

External validity is concerned with to what extent it is possible to generalize the
findings, and to what extent the findings are of interest to people outside the
investigated case. The study was conducted with a limited set of participants from one
single project. This means, of course, that the results cannot automatically be
generalized to other organizations and projects. Instead it must be up to the reader to
judge if it is reasonable to believe that the results are relevant also for another
organization or project. However it should be noted that this is the typical situation in
a case study. The case is studied in detail in order to learn as much as possible from it.

Reliability is concerned with to what extent the data and the analysis are dependent
on the specific researchers. The reliability was addressed by conducting both the data
collection and the data analysis as a group of researchers instead of one single
researcher. The preliminary results were also sent to the other participants in the form
of a technical report. This made it possible for the other participants to find possible
error by the researchers.

4 Software Risk Process

In the risk identification process, different techniques can be used, such as checklist-
based identification, development of prototypes, cost-benefit analysis, and scenario-
based analysis [16]. In this case study, scenarios were chosen by the development
organisation to be the main risk identification source. A scenario was defined as a
chain of events, with a cause-effect relationship that describes a realistic diagnosis
sequence during normal use, see Figure 3. Each scenario can be traced back to at least
one requirement for the product. The scenarios cover both normal operation and
special circumstances.

 A Case Study on S

Scenarios based on th
identification process as in
Figure 4.

The risks were identif
participants suggested poss
device expert acted as faci
was assessed separately ac
predefined by the Swedis
probability and severity as
the meetings. Both scales ar
“fault that will occur each m
never occur or very unlikely
injury and 1 to discomfort o
risk by multiplying the prob
S. The highest risk value a
was assessed according to t
could be detected before a s
could be detected” or “if th
assigned to detectability s
assessment of detectability

5 Results

In this section we present o
of the blood pressure mo
grouped, with regards to
definition (RQ3), risk ident
and 3 to get a brief summar

Step 1The patients blood pressurerise above the alarm limit.

Brainstorming input scenarios id

Software Risk Analysis in Medical Device Development

Fig. 3. Example scenario

he requirements specification were used in the r
nput. The design of the software risk process is shown

Fig. 4. Software risk process

fied through brainstorming on each scenario were
sible risks connected to the specific scenario. The med
ilitator during the brainstorming sessions. Then each r
ccording to probability, severity and detectability. Sca
sh national board of health and welfare was used
sessment and all identified risks were documented dur
re 4 graded scales. 4 on the probability scale correspond
month or more frequently at normal use” and 1 “fault w
y. On the severity scale 4 will correspond to death or se
or minor injury. The risk value, R, was calculated for e
bability, P, by the given figure for severity, S, i.e., R =
risk in this study can have is R = 4 × 4 = 16. Detectabi

the three following statements “if the fault (hazard) alw
severe situation occurred”, “if the fault (hazard) sometim

he fault (hazard) never could be detected”. No figures w
so it is not a part of the calculated risk value R. T
was made after risk value was stated.

our results from observations made during the risk analy
nitoring system described in Section 3. The results

the research questions, into three categories: syst
tification (RQ1) and risk assessment (RQ2). See Table
ry of the results.

e Step 2The alarm is activated after x minutes.
Step 3The user pauses the alarm and initiates treatment.

Risk entifikation Risk assessment probability severity detectability Risk dokumentation

151

risk
n in

all
dical
risk
ales

d for
ring
d to
will
ever
each
P ×
ility

ways
mes

were
The

ysis
are

tem
1, 2

n

152 C. Lindholm, J.P. Notander, and M. Höst

5.1 System Definition

The whole system, or the product, is defined as consisting of the devices, including
hardware and software, described in Section 3.3. In an effort to narrow down the
scope of the risk analysis and focus on the in-house developed software the analyzed
system was defined as consisting solely of the bedside monitor. Focus was on
software functions and user interaction.

Table 1. Summary of the results concerning the system definition

Area Summary
System Boundary The team had difficulties to decide whether a risk belonged to the

system or the environment.
System Boundary The team had to make assumptions about input from external

devices and their reliability.
System Context The target environment was not defined in detail and information

about workload, user experience and physical layout of the target
environment had to be supplied on the fly.

The team had to make assumptions about the devices not included in the analyzed

system, such as the patient monitor and the pressure sensors.
Major interfaces between the analyzed system and its environment were identified,

such as the graphical user interface and some of the technical interfaces between the
components in the whole system.

The target environment and the intended users were defined as the ICU
respectively nurses and physicians at the ICU. Factors in the environment such as
physical and mental working conditions, current practice and rules, were described
when questions about them arose. This also applied to differences between the
different user categories.

It was difficult for some risks, with the chosen system boundaries, to decide if they
were to be considered or not. This was especially true for risks that arose from bad
data from the measuring equipment or from incorrectly connected devices, i.e. should
sensor failures that result in bad readings, which is then used by the bedside monitor,
be analyzed.

5.2 Risk Identification

The used process puts emphasis on the users and the users’ interaction with the
system. In the process this is achieved by using realistic scenarios based on
knowledge of the target environment.

The risk identification was performed by going through each step of the scenarios,
and for each step discuss if there were any risks associated with that step. During this
part of the process the user representatives dominated the discussions. They had more
background information about the scenarios, e.g. medical knowledge, and the target
environment e.g. working conditions and were thus better suited to identify risks.

 A Case Study on Software Risk Analysis in Medical Device Development 153

Table 2. Summary of the results concerning risk identification

Area Summary

Scenario The user representatives had better background knowledge than development
representatives.

Scenario It was unclear if risk identification in a given event should be done
independently of the scenario or if the identification should be constrained by
the scenario history.

Scenario Technical risks were not restricted to the scenario they were identified in, as
opposed to user risks, which were to a larger degree only valid in a specific
scenario context.

Scenario The design of the scenarios clearly impacted the outcome of the risk
identification.

The representatives from the development organization shared valuable insights

about the technical nature of the system. In particular their expert knowledge of the
software and the graphical user interface was of value to the team. They had in
general less influence on the discussion than the user representatives.

Different views on how previous steps in a scenario should affect the current step
were noted during the risk assessment meetings. Some argued that previous steps
should put a constraint on the current step whereas others argued that the current
step should be analysed independent of previous steps, e.g. using the scenario in
Figure 3 should risks be identified when pausing the alarm in general or only when a
patient has a high blood pressure during x minutes?

There was a tendency that a perceived probability of a particular risk or the
severity of its consequences influenced the risk identification. At times the team
argued that a risk that was not very probable or had very mild consequences should
not be considered to be a risk.

In some of the cases where an identified risk originated from incomplete
requirements, this was treated as a fault in the requirements specification.

Although the scenario-based method focuses on user-interaction and user related
risks, some technical risks were found, mostly concerning interfaces. The technical
risks have in common that they are more general in nature than the user related risks,
and they are not bound to a specific scenario.

It became evident that the scenario composition had an impact on the outcome of
the risk identification; a wrongly constructed scenario would catch unrealistic
behaviour. In some cases scenarios had to be adjusted because they did not describe
the system or user behaviour well.

The method was expected to be able to identify all major user risks and provide
full coverage of relevant features by using at least one scenario for each relevant
product requirement. Critical functionality, such as the automatic alarm function, was
analysed during several scenarios.

154 C. Lindholm, J.P. Notander, and M. Höst

5.3 Risk Assessment

The risk assessment was conducted using a method influenced from the development
organisation’s prior risk management process for hardware projects. The method
specifies three variables, severity, probability and detectability, that are to be assessed
based on normal usage of the system.

Table 3. Summary of the results concerning risk assessment

Area Summary

System Context The risk assessment was made under the assumption of normal use,
which was defined as the average workload during a year.

Scenario The user representatives, due to their extensive medical domain
knowledge, dominated the estimation of severity and, to a lesser
extent, probability.

Detectability The team had problems with estimating detectability and refrained
from doing it for the majority of the identified risks.

Detectability The estimation of severity, probability and detectability was
sometimes influenced by the other values, e.g. a low probability
would result in a low severity; if a risk is detectable then it is not
likely to happen.

System Boundary The chosen system boundary was seen as too narrow because it did
not include all devices in the final product. A risk could have
catastrophic consequences in the chosen system but when considering
the whole product the risk would be non-existing or less severe.

Prior to the risk assessment the team had to define what normal usage meant for

the actual system. It was defined as the average workload, e.g. the average number of
patients at the ICU and the average duration a patient is connected to the system. The
process does not give any help on how normal use is to be defined.

Each risk was assessed separately from the other risks, starting with severity
followed by probability and finally detectability.

During the severity assessment the user representatives had great impact on the
results. Typically, they would be the only persons able to determine the consequence
of a particular risk in the target environment.

Assessing a risk’s probability required both the users and the developers. Risks
associated with user-interaction had probabilities assigned based on the current
situation at the ICU and on previous experience with similar systems. Technical risks
had their probabilities assigned based on the opinion of the developers. The team did
not assign probabilities to pure software related risks.

The team had problems with assessing the detectability value of a risk. In some
cases it was difficult or even impossible to assign an appropriate value, which was
usually the case when the risk had something to do with being unaware of an event.
Usually the users were the only participants that could determine if a risk was

 A Case Study on Software Risk Analysis in Medical Device Development 155

detectable. Due to the difficulties of estimating the detectability the team refrained
from estimating the value for most of the risks.

An issue that had to be solved during the risk assessment meetings was that it was
unclear what the severity and probability values actually meant and how they were
related to each other. It was determined from discussions that the severity is the
worst-case consequence of a risk and the probability is how often risk occurs,
independent of its consequences.

Although, the assessment of the risk values should be independent of each other it
was in some cases hard to separate the discussion about severity and probability.
When detectability could be assigned it sometimes influenced the assessment of
probability and severity, i.e. some argued that if a problem was detected actions
would be taken to prevent it form happening or leading to an accident.

Another issue was that the system definition was impractical when assessing some
risks, it was seen as too narrow. To alleviate this, the full system definition was used.
In the narrow definition a risk could be considered to have catastrophic consequences
but in the wider definition the risk was prevented or mitigated by devices not included
in the narrow system definition, e.g. the patient monitor.

6 Discussion and Conclusion

In this section we discuss our results and present the conclusions we made from our
analysis. The discussion is organized, with the aim of addressing the research
questions, into four areas: system boundary (RQ3), system context (RQ1 and RQ2),
scenario (RQ1) and estimation (RQ2). Each of these areas address problems that we
found especially challenging during the risk analysis which can be considered when a
new risk management process is defined.

6.1 System Boundary

In systems theory safety is an emergent property on the system level [17]. Even so,
one of the purposes of the study was to see if it was possible to do risk analysis on a
smaller part of the whole system, e.g. the in-house developed software and patient
monitoring device.

From our results we can draw the conclusion that the system boundaries must be
set carefully and not without considering dependencies between components.

As observed in the risk identification step it was necessary to make assumptions
about signals from external devices used in the analysed system. Later in the risk
assessment step the existence of these external devices could be used to argue that
certain risks was non-existing or had low severity.

Before defining the system boundary it should be clear how components are
coupled. Components with weak coupling might be analysed independently and
components with strong coupling should be analysed together.

156 C. Lindholm, J.P. Notander, and M. Höst

6.2 System Context

The system context like users, physical and psychological work conditions affect the
identification and assessment of risks. It is therefore important that the system context
is defined during the analysis.

In the studied risk process normal use is used as an indicator on how the system
will be used in the target environment. Normal use is defined as an average of the
workload on the system in the target environment. This is a simple approach but it
gives no detailed understanding about how the system is used and how it affects the
risk analysis.

By describing normal use in a more quantitative manner e.g. using a scenario or
use case, a more nuanced picture can be made about the use of the system in its
context. The description should not only describe for how long and how often the
system is used but also where and when. The description could be augmented with
special case scenarios where high load and low load could be defined.

6.3 Scenarios

The studied scenario-based risk identification method focuses on user interaction and
user related risks. Some technical risks were also identified using the scenarios and
the nature of these risks relates primarily to user friendliness that displayed values are
correct. Since technical risks are of a more general nature and not scenario-specific
there is a need for a separate risk identification regarding these risks, preferably
performed by the software development team that possesses domain knowledge of the
system. There is also a need for risk identification of external factors for example
process and project risks.

The scenarios have to be designed in a way so they reflect the system functions in
as correctly as possible. It is not possible to determine that a scenario is incorrect
based on the assumption that the course of events is unlikely. The balance between
plausible scenarios and special cases has to be considered. When the scenarios are
designed, a possible way could be to let the users and developers work separately.
After the separate design process the scenarios could then be discussed and decided
on in a plenary discussion before the risk identification starts.

The scenarios used in this case have no contextual description attached to the
scenario. It could be of value to put a scenario in its context and describe the
presumptions made regarding the scenario for example describe the working situation,
if it is an “ordinary” day with acceptable numbers of patient or a very stressful day
with a lot patients with severe traumas.

When the scenarios were discussed step by step, it could be noted that the user
representatives, as expected, are the dominant part, since they possess domain
knowledge regarding the target environment and medical issues. The developers had a
more peripheral role and were consulted regarding technical aspects of the system.

A possible solution to the dominance factor could be to have very strict control of
the meetings, with the ambition to get the opinion from all the participants, for
example give specific time slots to each participant.

 A Case Study on Software Risk Analysis in Medical Device Development 157

6.4 Estimation

The qualitative nature of estimating the value of the risk quantities, in particular that it
is based on the participant’s subjective opinions makes the result quite uncertain. It is
important to define and separate the different estimations to be made and strictly
comply the predefined scales.

Detectability was not estimated for the majority of the risks due to several reasons.
The scale was considered imprecise and did not assist the participants in the
estimation effort, as the scales for severity and probability did. Another problem was
that the concept of detectability was not well understood.

The used scale defines three levels of detectability: a risk is, never, sometimes or
always detected. It was found that these words lack precision and are subject to
personal interpretation. For instance, does always mean that a risk is always detected,
most of the time or only when it can be observed? The scale gives a false impression
that detectability can be measured quantitatively although it is a qualitative property.
Instead of detectability we would suggest that it is better to use observability – if a
risk is observable then it can be detected and vice versa – using the scale: a risk is
direct observable, indirect observable, unobservable.

In addition to the observed problems it could be argued that detectability should be
considered as a mitigating factor and be estimated during the risk treatment step.
There exists at least two counter-arguments for this: first, the expert knowledge that is
required to determine the detectability might not be available when risk treatment is
performed; secondly, the detectability value would give additional information when
prioritizing risks for further analysis and treatment.

After completing the risk assessment the development organization decided, based on
the encountered problems, to remove detectability from the process. Although this
simplifies the process it removes potentially important information about risks. There is a
need for further research on how to define and estimate detectability of identified risks.

6.5 Further Research

In this paper we present intermediary results from an ongoing case study. The results
are from the first two phases of the studied risk management process: risk
identification and risk analysis. We are currently monitoring the follow up meetings
of the risk management were risk mitigation and residual risk analysis is performed.
The use, definition and estimation of detectability is further discussed and analysed.

We intend to use our results to design an improved version of the risk management
process. Our focus will be on scenario based risk analysis in an iterative development
process, and the link between the risk analysis and the overall development process.

Acknowledgments. The authors would like to gratefully acknowledge the persons
involved in this case study. The authors would also like to acknowledge
Gyllenstiernska Krapperup-stiftelsen for funding the research studies of Christin
Lindholm.This work was also partly funded by the The Swedish Foundation for
Strategic Research under a grant to Lund University for ENGROSS - ENabling
GROwing Software Systems. The work has also been partially supported by
VINNOVA.

158 C. Lindholm, J.P. Notander, and M. Höst

References

1. Gall, H.: Functional Safety IEC 61508 / IEC 61511 The Impact to Certification and the
User. In: IEEE International Conference on Computer Systems and Applications (2008)

2. Lindholm, C., Notander, J.P., Höst, M.: Software Risk Analysis in Medical Device
Development. Accepted for Publication in Proceedings of EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA), Oulu, Finland, August 30-
September 2 (2011)

3. Garde, S., Knaup, P.: Requirements engineering in health care: the example of
chemotherapy planning in paediatric oncology. Requirements Engineering, 265–278
(2006)

4. Fairley, R.E.: Software Risk Management. IEEE Software, 101 (May/June 2005)
5. Rakitin, S.R.: Coping with Defective Software in Medical Devices. IEEE Computer 39(4),

40–45 (2006)
6. Commission of the European Communities, Council Directive 93/42/EEC EEC concerning

medical devices (1993)
7. U.S. Food and Drug Administration, Federal Food, Drug and Cosmetic Act section 201(h)

(2005)
8. Hall, E.M.: Managing Risk: Methods for Software systems development. Addison Wesley

(1998)
9. McCaffery, F., Burton, J., Richardson, I.: Risk management capability model for the

development of medical device software. Software Quality Journal (18), 81–107 (2010)
10. McCaffery, F., Burton, J., Richardson, I.: Improving Software Risk Management in a

Medical Device Company. In: Proceedings of International Conference on Software
Engineering (ICSE), Vancouver Canada (2009)

11. Schmuland, C.: Value- Added Medical-Device Risk Management. IEEE Transactions on
Device and Materials Reliability 5(3), 488–493 (2005)

12. Sayre, K., Kenner, J., Jones, P.: Safety Models: An Analytical Tool for Risk Analysis of
Medical Device Systems. In: Proceedings of 14th IEEE Symposium on Computer-Based
Medical Systems (CMBS 2001), Maryland, USA (2001)

13. Yin, R.K.: Case Study Research Design and Methods, 3rd edn. Sage, Thousand Oaks
(2003)

14. Robson, C.: Real World Research, 2nd edn. Blackwell Publishers Ltd., Oxford (2002)
15. Runeson, P., Höst, M.: Guidelines for Conducting and Reporting Case Study Research in

Software Engineering. Empirical Software Engineering 14(2), 131–164 (2009)
16. Boehm, B.: Software Risk Management: Principles and Practices. IEEE Software 8(1), 32–

41 (1991)
17. Leveson, N.G.: Safeware: System Safety and Computers, Addison-Wesley Professional

(1995)

Integrating Manual and Automatic Risk

Assessment for Risk-Based Testing

Michael Felderer1, Christian Haisjackl1, Ruth Breu1, and Johannes Motz2

1 Institute of Computer Science, University of Innsbruck, Austria
{michael.felderer,christian.haisjackl,ruth.breu}@uibk.ac.at

2 Kapsch CarrierCom AG, Vienna, Austria
johannes.motz@kapsch.net

Abstract. In this paper we define a model-based risk assessment proce-
dure that integrates automatic risk assessment by static analysis, semi-
automatic risk assessment and guided manual risk assessment. In this
process probability and impact criteria are determined by metrics which
are combined to estimate the risk of specific system development arti-
facts. The risk values are propagated to the assigned test cases providing
a prioritization of test cases. This supports to optimize the allocation
of limited testing time and budget in a risk-based testing methodology.
Therefore, we embed our risk assessment process into a generic risk-based
testing methodology. The calculation of probability and impact metrics
is based on system and requirements artifacts which are formalized as
model elements. Additional time metrics consider the temporal develop-
ment of the system under test and take for instance the bug and version
history of the system into account. The risk assessment procedure inte-
grates several stakeholders and is explained by a running example.

1 Introduction

In many application domains, testing has to be done under severe pressure due to
limited resources with the consequence that only a subset of all relevant test cases
can be executed. In this context, risk-based testing approaches are more and more
applied to prioritize test cases based on risks. A risk is the chance of injury, dam-
age or loss and typically determined by the probability of its occurrence and its
impact [1]. A core activity in every risk-based testing process is the risk assess-
ment because it determines the significance of the risk values assigned to tests
and therefore the quality of the overall risk-based testing process.

In current practice, mainly human experts conduct a risk assessment. There-
fore the process of risk assessment is expensive, time consuming, and contains non-
determinism regarding subjective human decisions. This makes the re-assessment
of risks during the testing process a challenging task. To avoid risk assessment to
become a critical cost driver in software development projects, we propose an ap-
proach to automate parts of the risk assessment. The basis for this partial automa-
tion is the fragmentation of its probability and impact into several criteria. Each
criterion in the resulting set of probability and impact criteria has an attached
metrics which is computed automatically, semi-automatically or manually.

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 159–180, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

160 M. Felderer et al.

To aggregate all probability and impact criteria to one risk value and to assign
this value to tests we attach the risk to so called features. Features specify ca-
pabilities of a component and link tests, requirements, and system components
together. Risk coefficients are computed for features and propagated to the as-
signed tests. The probability and impact criteria underlying the risk coefficient
are determined based on the model elements assigned to the feature.

Differing from other approaches we additionally consider separate time cri-
teria such as the version history or the test history depending on the temporal
development of the project. Time criteria can be computed automatically and
are considered as ratios that reduce the probability.

The risk assessment should start early in a software project to provide decision
support. Due to changes of the requirements or the design, risks have to be
reassessed regularly. Additionally not all artifacts are available in all phases
of a project and therefore it may not be possible to automatically compute
specific metrics at a specific point in time. Therefore the evaluation type and
the evaluation procedure of specific metrics may change during the life cycle of
a project. For example a metrics for complexity may be estimated manually at
the beginning of a project and automatically in later project phases.

In our approach we focus on product risks where the primary effect of a poten-
tial problem is on the quality of the product itself. Since testing is about finding
problems in products, risk-based testing is about product risks [2]. Thus, we do
not consider project risks related to management and control of the test project
like the capabilities of the staff or strict deadlines. The focus on product risks is ad-
ditionally motivated by the fact that product risks directly influence the test plan
and that product risks are typically more objective because they do not consider
the capabilities of the project staff. If desired by the software project management,
project risks can be considered in our approach as additional criteria [3].

In this paper we contribute to the integration of risk assessment into risk-based
testing in several ways. First we introduce a generic risk-based testing process
that highlights risk assessment as a core activity. We then define a static risk
assessment model that considers a probability, impact, and time factor which
have not been considered separately in other approaches. Moreover, each factor
is determined by several criteria. Finally, we define a risk assessment procedure
based on the risk assessment model and give an example. In the risk assessment
procedure each factor is calculated by an aggregation function based on several
criteria. Each criterion is determined by a metrics that is evaluated manually,
semi-automatically or automatically and that can change over time.

This paper is structured as follows. In Section 2, we present related work, and
in Section 3 we define a generic risk-based testing process. In Section 4, we then
define the underlying risk assessment model, and in Section 5 we discuss our risk
assessment procedure. Finally, in Section 6, we draw conclusions.

2 Related Work

The importance of risk management for software engineering [4] has been ad-
dressed in several risk management approaches tailored to software engineering

Integrating Manual and Automatic Risk Assessment for Risk-Based Testing 161

processes. Already the spiral model of Boehm [5] explicitly includes risk manage-
ment within software development. For instance, the Riskit method [6] provides
a sound theoretical foundation of risk management with a focus on the qualita-
tive understanding of risks before their possible quantification. Furthermore, the
Riskit method provides a defined process for conducting risk management which
is supported by various techniques and guidelines. Ropponen [3] highlights the
importance of mature project management for risk management.

Karolak [7] proposes a risk management process for software engineering that
contains the activities risk identification, risk strategy, risk assessment, risk mit-
igation, and risk prediction.

Risk-based testing is a test-based approach to risk management. Amland [8]
proposes a risk-based testing approach that is based on Karolak’s risk manage-
ment process comprising the following steps and the corresponding risk manage-
ment activities: planning (risk identification and risk strategy), identification of
risk indicators (part of risk assessment), identification of the cost of a failure (part
of risk assessment), identification of critical elements (part of risk assessment),
test execution (risk mitigation), and estimation of completion (risk reporting
and risk prediction).

Bach [9] presents a pragmatic approach to risk-based testing grounded on a
heuristic software risk analysis. Bach distinguishes inside-out risk analysis start-
ing with details about a situation and identifying associated risk, and outside-in
risk analysis starting with a set of potential risks and matching them to the
details of the situation.

Taxonomy–based risk identification, e.g., as proposed by the SEI [10], supports
the risk analysis.

Risk-based testing techniques have rarely been applied on the model level.
RiteDAP [11] is a model-based approach to risk-based system testing that uses
annotated UML activity diagrams for test case generation and prioritization.
This approach does not consider how the risk values are determined and only
considers the risk-based generation of test cases. But risk-based testing tech-
niques have so far not been integrated into a model-driven system and test
evolution process, and have not been applied for model-based regression testing.

Stallbaum and Metzger [12] introduce a model-driven risk-based testing ap-
proach similar to our methodology. But the approach of Stallbaum and Metzger
does not consider the system model and time criteria.

The basis for risk-based testing on the model level is model-driven risk analy-
sis. The CORAS method [13] addresses this task and defines a metamodel for risk
assessment. But CORAS is a defensive approach restricted to assets that already
exist. Additionally, risk-based testing based on CORAS has not been conducted
so far. There are several other model-driven risk analysis approaches like fault
trees [14], attack trees [15], misuse cases [16] or Tropos Goal-Risk modeling [17]
that are useful for risk-based testing.

McCall [18] distinguishes factors which describe the external view of the soft-
ware, as viewed by the users, criteria which describe the internal view of the

162 M. Felderer et al.

software as seen by the developers and metrics which provide a scale and a
method for measurement.

Many researchers have addressed the problem of risk assessment using guide
lines, checklists, heuristics, taxonomies, and risk criteria [19]. All these risk as-
sessment approaches strongly rely on experts that perform the assessment. Most
approaches that enable automation in risk assessment employ metrics based on
code artifacts.

There are several approaches, e.g., [20,21] that employ change metrics like the
change rate, code metrics like the number of code lines and complexity metrics
like the McCabe complexity [22] to predict the failure rate. Experiments indicate
that the combination of code and design metrics has a higher performance for
predicting the error-proneness of modules than just code or design metrics [23].
These approaches are not directly related to risk-based testing as our approach
but they form the basis for determining the probability of risks.

For instance, Nagappan et al. [20] investigate the correlation between classical
function, class, and module metrics and failures for selected projects. The authors
state that for each project, a set of metrics that correlates with the failure rate
exists but that there is no single set of metrics that fits for all projects. This
result is very useful for the assessment of the probability of a risk in our approach
as it argues for a mix of manual and automatic risk determination.

Illes-Seifert and Paech [21] explore the relationship of a file’s history and its
fault-proneness, and show that a software’s history is a good indicator for its
quality. There is not one indicator for quality but the number of changes, the
number of distinct authors, as well as the the file’s age are good indicators for
a file’s defect count in all projects. Illes-Seifert and Paech do not consider risk
assessment. But the results are a good basis for the determination of time criteria
in our approach.

Additionally, also vulnerability databases, e.g., the national vulnerability
database [24] or the open source vulnerability database [25] are powerful sources
for risk estimation [26].

Similar to our approach the Common Vulnerability Scoring Standard [27]
uses a variety of metrics to calculate a risk coefficient. The metrics are organized
in three different groups: one basic and two optional. Although the approach
focuses on security risks, its flexibility can also be applied to our approach for
integrating optional metrics.

3 Generic Risk-Based Testing Process

Risk-based Testing (RBT) is a type of software testing that considers risks as-
signed to test items for designing, evaluating, and analyzing tests [8, 9]. A risk
is the chance of injury, damage or loss. A risk is therefore something that might
happen and has a potential loss or impact associated with that event.

Typically, in risk-based testing the standard risk model is based on the two
factors probability (P), determining the likelihood that a fault assigned to a
risk occurs, and impact (consequence or cost) (I), determining the cost of the
assigned fault if it occurs in production.

Integrating Manual and Automatic Risk Assessment for Risk-Based Testing 163

The probability typically considers technical criteria, e.g., complexity, and the
impact considers business criteria such as monetary loss or reputation. These cri-
teria can be determined by automatically, semi-automatically or manually com-
puted metrics. Our risk computation model follows the approach of McCall [18]
who suggests using a divide-and-conquer strategy involving a hierarchy of three
types of characteristics: factors, criteria, and metrics. On a high level, the fac-
tors describe the external view of the software, as viewed by the users. Then,
the criteria depict the internal view of the software, as seen by the developer.
And the metrics are defined to provide a scale and method for measurement.

Mathematically, the risk (coefficient) R of an artifact a can be expressed by
the probability P and the impact I as follows:

R(a) = P (a) ◦ I(a)

The depicted operation ◦ is typically a multiplication of numbers or the cross
product of two numbers or letters, but can principally be an arbitrary mathe-
matical operation.

Risk-based testing is integrated into a testing process as shown in Fig. 1.
Such a process integrates elements of risk management and test management. In
most cases, risk-based testing is limited to risk prioritization and its full poten-
tial to improve software quality by mitigating risk and optimizing test resource
allocation is not exploited. To improve this situation, we define a comprehen-
sive risk-based testing methodology that is aligned with established risk-based
testing processes such as Amland [8] or the ISTQB [28]. Our generic risk-based
testing process therefore contains activities for the identification of risks, the test
planning, the risk assessment, the test design and the evaluation.

In Fig. 1 the activities are depicted as ellipses, and the artifacts as input and
output of the activities are depicted as rectangles. This paper focuses on the
core activity of Risk Assessment which is therefore highlighted in Fig. 1.

Our generic risk-based testing process depicted in Fig. 1 consists of the phases
Risk Identification, Test Planning, Risk Assessment, Test Design, and Static and
Dynamic Evaluation explained in the subsequent paragraphs.

In the Risk Identification phase risk items are identified and stored in a
list of risk items. Risk items are the elements under test for which the risk is
calculated. Therefore risk items need to be concrete such that a risk calculation
and an assignment of tests are possible. Risk items can be development artifacts,
e.g., requirements or components but also different types of risks such as product,
project, strategic or external risks. According to practical experiences [29], the
maximum number of risk items should be limited.

In the Test Planning phase the test strategy is defined. The test strategy
contains test prioritization criteria, test methods, exit criteria and the test effort
under consideration of risk aspects. Although our approach is independent of
a concrete test strategy, we assume that a given test strategy contains a basic
risk classification scheme as depicted in Fig. 4. Such a classification scheme
demonstrates how the calculated risk values can be further employed in our
risk-based testing methodology.

164 M. Felderer et al.

Risk Identification

Test Report

Risk Elements

Test Strategy Risk Classification

Test Plan

Test Planning Risk Assessment

Test Design

Static and Dynamic Evaluation

Fig. 1. Generic Risk-based Testing Process

In the Risk Assessment phase the risk coefficient is calculated for each risk
item based on probability and impact factors. The probability P and the impact
I are typically evaluated by several weighted criteria and can be computed as
follows for a specific artifact a:

P (a) =

m∑

j=0

pj · wj

m∑

j=0

wj

, I(a) =

n∑

j=0

ij · wj

n∑

j=0

wj

,

Integrating Manual and Automatic Risk Assessment for Risk-Based Testing 165

where pj are values for probability criteria, ij are values for impact criteria,
and wj are weight values for the criteria. The range of p, i, and w are typically
natural or real numbers in a specific range, e.g., for p and i we suggest natural
numbers between 0 and 9 (so the probability can be interpreted as percentage;
we skipped the value 10 (suggesting 100%) because we assume that a component
does not fail for sure), and for w we suggest real numbers between 0 and 1 (so
the weight can be naturally interpreted as scaling factor).

The values of the metrics are computed automatically, semi-automatically
or manually based on an evaluation procedure, and the weights are set manu-
ally. The responsibility for setting non–automatically derived values respective
checking the automatically derived values should be distributed among different
stakeholders, e.g., project manager, software developer, software architect, test
manager, and customer.

The impact I is computed by analogy to the probability and typically evalu-
ated manually by customers or product managers. Without loss of generality, we
use the same range for impact values as for probability values. In our adapted risk
assessment approach we additionally consider time criteria which take metrics
into account that change over time because of the products life cycle.

A time factor is a ratio that reduces the probability value which is reflected
in our adapted formula for determining the risk coefficient R of an artifact a:

R(a) = (P (a) · T (a)) ◦ I(a),

where T (a) is the time factor that is multiplied with the probability P (a) and
has a range between 0 and 1. The resulting product is then combined with the
impact I(a).

The time factor is computed by the mean of the values of k time criteria by
the following formula:

T (a) =

k∑

j=0

tj

k
,

where tj are values for time criteria. We assume that over time, stable parts of
the software have a lower probability to fail, so we scale the probability in this
way.

Based on the impact and probability factor, the classification of risk items
into risk levels is done. A typical way to do so is the definition of a risk matrix
as shown in Fig. 4. The risk classification is considered in the test planning
phase. An example for the risk assessment procedure and the risk classification
is presented in Section 5.

In the Test Design phase a concrete test plan is defined based on the test
strategy and the risk classification. The test plan contains a list of test cases
that has been designed under consideration of risk aspects defined in the test
strategy, the risk classification and the given resources.

166 M. Felderer et al.

In the Static and Dynamic Evaluation phase the test plan is executed
manually and/or automatically. Based on the execution result a test report is
generated. The evaluation phase may contain dynamic evaluation, i.e., test exe-
cution and static evaluation, e.g., inspections of documents that are assigned to
risk items that have been classified as risky.

The phases of risk identification, risk assessment and evaluation are together
called the risk analysis phase. As shown in Fig. 1, the process of risk-based
testing is iterative to consider changes of the risk items and previous evaluation
results in the risk analysis.

If the RBT process defined above is integrated with an existing test and
software development process, then the benefits of RBT may be as follows:

– Reduced resource consumption (i.e., more efficient testing) by saving time
and money

– Mitigation of risks
– Improved quality by spending more time on critical functions and identifying

them as early as possible
– Early identification of test issues, which can be started when the require-

ments specification is completed
– Support for the optimization of the software testing process by moving the

test phase from the latter part of the project to the start and allows the
concept of life cycle testing to be implemented

– Identifying critical areas of the application in the requirement stage. This
assists in the test process but also in the development process because it
supports the optimization of resources, e.g., time, budget, or person days.

4 Risk Assessment Model

In this section we present the risk assessment model which is the basis for the
risk assessment procedure defined in the next section. The risk assessment model
is shown in Fig. 2.

The model contains the package Risk which includes the core risk assessment
elements and the packages Requirements, Product, Implementation, and Test
which include requirements, system architecture, implementation, plus test arti-
facts relevant for risk-based testing. In the following subsections we explain each
package in detail. The modeling of the package Risk is more granular than the
others because it contains the core artifacts of the risk assessment procedure.

4.1 Requirements

The package Requirements contains the requirements each defining a certain
functional or non-functional property of the system. A Requirement is imple-
mented by a set of Feature elements and is related to a set of Document ele-
ments.

Integrating Manual and Automatic Risk Assessment for Risk-Based Testing 167

Risk

-function : Function
-scalingFunction : Scale

TimeMetricAggregationFunc

-function : Function
-scalingFunction : Scale

ProbMetricAggregationFunc

-evaluationProcedure : Function
-scalingFunction : Scale

TimeMetric

-evaluationProcedure : Function
-scalingFunction : Scale

ProbabilityMetric

-evaluationProcedure : Function
-scalingFunction : Scale

ImpactMetric

-function : Function
-scalingFunction : Scale

ImpactAggregationFunction

-function : Function
-scalingFunction : Scale

ImpMetricAggregationFunc

-function : Function
-scalingFunction : Scale

TimeAggregationFunction

-function : Function
-scalingFunction : Scale

ProbAggregationFunction

RiskCalculationFunction

-value : Object
-weight : Double

ProbabilityCriterion

-coefficient : Object
-scale : Scale

Risk

-value : Object
-scale : Scale

ProbabilityFactor

-lowerBound : Object
-upperBound : Object

Scale

-value : Object
-weight : Double

ImpactCriterion

-value : Object

TimeCriterion

-value : Double

TimeFactor

-value : Object
-scale : Scale

ImpactFactor

Test

TestRequirement TestEnvironment

TestableObject

Testresult TestCase

TestplanTestrun

Product

CompositeComponent

Component

Feature

System

Unit

Implementation

CodeDocument

Artifact

Update

Task
Requirements

Requirement

0..*

0..*

1

1

1

0..*

11
1 1

1

1

1

0..*0..*

1
1

1

1

1

0..*

1

1

1

0..*

11

1

0..*

1

1

1

1

0..*

1

1

1

1

1..*

0..*

11
1

1

0..*

1..*

0..*

1..*

1

1..*

1..*

0..*

1

1

1..*

*

1
1..

1

0..*

1

0..*

resultsIn 0..*1

1..*

Fig. 2. Model Elements for Risk Assessment

4.2 Product

The package Product contains the core elements of the system. A Feature de-
scribes one specific capability of a system or component. It is the central concept
to plan and control the implementation. Features are the core model elements
which link all packages together. A Feature validates Requirements and is verified
by TestCases. Therefore Features are the natural elements for the assignment of
Risks. Each Feature is implemented by several Tasks and assigned to a System
and several CompositeComponents.

A System consists of several CompositeComponents which are either Compo-
nents or Units. A CompositeComponent is an installable artifact that provides
the functionality of several Features and is defined in a hierarchy of Components
and Units which are the leaves of the hierarchy. Because all modern software
products are structured in a hierarchical way, the proposed structure can be
applied for most software products. For instance, the components of a software
architecture in the modeling language UML or the package structure in the pro-
gramming language Java are hierarchical and form a hierarchy of Components
and Units.

168 M. Felderer et al.

4.3 Implementation

The package Implementation contains the concrete implementation artifacts
Code and Document. Code represents implemented or generated source code,
and Document represents a specification or documentation file, e.g., text files
with user requirements or UML diagrams. If an Artifact is changed, an Up-
date is created containing the new version. A Task groups several Updates and
addresses the implementation or adaptation of a Feature.

4.4 Test

Several TestCases form a Testplan which has assigned TestRequirement elements
defining constraints on the test plan such as coverage criteria. The execution of a
Testplan is a Testrun which has several Testresult elements assigned. A Testplan
is executed on a TestableObject which is embedded in a TestEnvironment and
related to a CompositeComponent.

4.5 Risk

The Risk is computed as defined in Section 3 based on the ImpactFactor, the
TimeFactor and the ProbabilityFactor which are combined by a RiskCalcula-
tionFunction. The Risk, ProbabilityFactor and ImpactFactor have a value and a
scale. The ImpactFactor is computed by an ImpactAggregationFunction based
on ImpactCriteria, the ProbabilityFactor by a ProbabilityAggregationFunction
based on ProbabilityCriteria, and the TimeFactor by a TimeAggregationFunc-
tion based on TimeCriteria. In this paper we apply the function mean as aggre-
gation function.

Each ProbabilityCriterion, TimeCriterion and ImpactCriterion has a metric
aggregation function of type ProbabilityMetricAggregationFunction, TimeMet-
ricAggregationFunction or ImpactMetricAggregationFunction. The metric ag-
gregation function contains all information to calculate the values of the criteria.
Each aggregation function is based on metrics, i.e., ImpactMetric, TimeMetric,
or ProbabilityMetric. Each metric has an evaluation procedure which can be of
type manual, semi-automatic, or automatic, and a scaling function to normalize
values. To make this paper more readable, we often identify metrics and the
computed values.

The Risk, ImpactFactor, and ProbabilityFactor have a value and a scale for
that value (for the Risk the value is called the coefficient). Each ImpactCriterion
and ProbabilityCriterion has an additional weight value defining a ratio that a
specific criterion has for the overall risk computation. The TimeFactor has in
contrast to the other two factors only a value and no scale, because we assume
that the time factor is a rational number between 0 and 1. Furthermore, the
TimeCriteria do not have an additional weight because they are per definition
reduction factors for probability criteria.

For evaluating the risk coefficient efficiently, the different factors are assigned
to specific artifacts in our model.

Integrating Manual and Automatic Risk Assessment for Risk-Based Testing 169

– Feature: A Feature describes a specific functionality of the whole system.
The test cases are attached to features. Therefore, the risk coefficient is
assigned to this artifact.

– Unit: A Unit is the technical implementation of a Feature. Failures evolve
from Units and the probability that failures occur influences the value of the
probability factor and therefore also the risk coefficient. Thus, the Probabil-
ityCriteria are assigned to the Units.

– Requirements: The Requirements represent the view of the customer on
a system. If a Feature fails, a Requirement cannot be fulfilled and damage
(monetary or ideally) is caused. Thus, the ImpactCriteria are assigned to
the Requirements.

– Components: The Components consist of several Units and form subsys-
tems, where the same directives can be applied. Thus, we attached the
weights to the Components, so that the same weights can be applied to
the associated Units.

Each Feature belongs to one Component, implements one or more Requirements
and uses one or more Units. Exactly these relationships are used for calculat-
ing the risk coefficient. The aggregated values, e.g., by the aggregation function
mean (which we consider as aggregation function in the remainder of this doc-
ument), of the ImpactCriteria from the Requirements and the mean values of
the single ProbabilityCriteria of the Units are weighted by the Component’s
weights. Afterwards, both resulting factors are set into relation (by multiplica-
tion, cross product, etc.) for calculating the final Risk. The main principle behind
our evaluation procedure is the separation of the evaluation of the impact and
the probability factor.

The evaluation of the probability factor is based on internal system artifacts,
i.e., units in our respect, and the evaluation of the impact is based on external
requirements artifacts, i.e., user requirements in our respect. Therefore our risk
assessment model can be adapted to other development and testing processes
because most practical processes have a separation between internal and external
artifacts.

As mentioned above, the ProbabilityFactor and ImpactFactor are based on
several criteria, e.g., code complexity, functional complexity, concurrency, or
testability for ProbabilityCriteria, and, e.g., availability, usage, importance, im-
age loss, or monetary loss for the ImpactCriteria. Each of these criteria has its
own weight at the level of Components. If a Feature has more Units or Require-
ments, the mean value of a specific criterion is calculated afterwards multiplied
by the Component’s weight. As next step, the mean of these values is generated
as final factor for the risk coefficient calculation.

So far we have only considered probability and impact factors but we have not
considered their dynamics and the temporal development of Risk values. The
Risk changes only if a Requirement is redefined or a Unit is adapted. As a Feature
has a life cycle, the same holds for a Risk. But so far we have only considered
criteria that are determined statically. To address this problem, we introduced an
additional factor, called TimeFactor. The criteria of the TimeFactor are adapted

170 M. Felderer et al.

dynamically and are, e.g., change history, bug reports, test history or software
maturity, which change its value during the life cycle of a Feature. We have
integrated the time factor as a scaling factor between 0 and 1, that adapts
the ProbabilityFactor. Initially, the TimeFactor has the value 1 which means,
that the probability is not lowered. If a specific Feature turns out to be more
stable than other Features, some TimeCritera will be lowered and reduce the
probability of that Feature.

In the remainder of this document, we often use the singular or plural form
of the name of a metamodel element to refer to instances of it.

5 Risk Assessment Procedure

In this section we explain the algorithm for determining the risk coefficient by
an abstract example. The example refers to the activity Risk Assessment of
the generic risk-based testing process shown in Figure 1. The risk elements are
Feature elements and the resulting risk classification is based on the computed
risk coefficients. As the focus of this paper is the risk assessment procedure itself,
we do not explicitly consider adequate test reporting techniques.

The example of this paper is based on three ProbabilityCriteria, i.e., code
metrics factor, functional complexity and testability, two ImpactCriteria, i.e.,
usage and importance, and two TimeCriteria, i.e., change history and test his-
tory. Without loss of generality, the values of probability and impact criteria
have an integer range between 0 and 9. The values of time criteria have a real
number between 0 and 1. Additionally, each criterion except the time criteria
have a weight. We consider the weight as a real number between 0 to 1. As
aggregation function we apply the function mean. All values are rounded to one
decimal place. Our model (see Fig. 3) has two components (C1, C2), whereby

Requirement : R3

Requirement : R2

Requirement : R1

Component : C1 Component : C2

Feature : F1 Feature : F2

Unit : U2Unit : U1

Fig. 3. Example Model for risk assessment

Integrating Manual and Automatic Risk Assessment for Risk-Based Testing 171

each component has one feature (C1 is linked to F1, C2 is linked to F2). Fur-
thermore, we have two Units (U1, U2) and three Requirements (R1, R2, R3).
F1 uses U1 and U2 and implements R1 and R2. F2 uses U2 and implements
R3.

In the risk assessment phase, first the ProbabilityCriteria for the Units U1 and
U2 are set. We assume, that the project is in the planning phase and therefore the
code complexity is estimated manually, e.g., by software developer or architects
because there is no source code available for the automatic determination of
code complexity. The functional complexity is determined by a function point
analysis. The testability is also estimated manually. In our example, we assume
that a low code complexity implies a low value for testability. The following table
shows the estimated values for the probability criteria of the units U1 and U2
in our example:

Unit ProbabilityCriterion pj

U1 Code Complexity 8
U1 Functional Complexity 9
U1 Testability 7
U2 Code Complexity 3
U2 Functional Complexity 2
U2 Testability 2

In the next step, the ImpactCriteria of the three requirements R1, R2, and
R3 are determined manually, e.g., by the responsible product manager or the
customer based on the requirements documents. The following table shows the
estimated values for the impact criteria of the requirements R1, R2, and R3 in
our example:

Requirement ImpactCriterion ij
R1 Importance 9
R1 Usage 9
R2 Importance 4
R2 Usage 3
R3 Importance 8
R3 Usage 9

Additionally, for the determination of the factors the weights attached to the
components are needed for the computation of risk values. The weight values are
determined manually for the components C1, C2, and C3, e.g., by the project
or test manager, and are as follows in our example:

172 M. Felderer et al.

Component Criterion wj

C1 Code Complexity 0.4
C1 Functional Complexity 0.7
C1 Testability 0.6
C1 Importance 0.8
C1 Usage 0.5
C2 Code Complexity 0.9
C2 Functional Complexity 0.3
C2 Testability 0.4
C2 Importance 0.7
C2 Usage 0.7

In the last step, the time criteria of the features F1 and F2 have to be set
to determine the time factors. Because the example project is in the planning
phase, the TimeCriteria are set to the initial maximal value of 1, because the
change and test history are initially 1 and do not reduce the probability. Thus,
the time criteria for the features F1 and F2 are as follows:

Feature TimeCriterion tj
F1 Change History 1.0
F1 Test History 1.0
F2 Change History 1.0
F2 Test History 1.0

After the values for criteria and weights have been estimated, the values for
the factors are calculated automatically. For feature F1 which is related to the
units U1 and U2 (with the corresponding probability factors P1 and P2), and
to the requirements R1 and R2 (with the corresponding impact factors I1 and
I2), probability, impact and time factors are as follows:

ProbabilityFactor Formula P(a)
P1 (8·0.4+9·0.7+7·0.6)/(0.4+0.7+0.6) 8.1
P2 (3·0.4+2·0.7+2·0.6)/(0.4+0.7+0.6) 2.2

ImpactFactor Formula I(a)
I1 (9·0.8+9·0.5)/(0.8+0.5) 9.0
I2 (4·0.8+3·0.5)/(0.8+0.5) 3.6

TimeFactor Formula T(a)
T1 (1.0+1.0)/2 1.0

By analogy, the probability, impact, and time factors for feature F2 are as
follows:

Integrating Manual and Automatic Risk Assessment for Risk-Based Testing 173

ProbabilityFactor Formula P(a)
P2 (3·0.9+2·0.3+2·0.4)/(0.9+0.3+0.4) 2.6

ImpactFactor Formula I(a)
I3 (8·0.7+9·0.7)/(0.7+0.7) 8.5

TimeFactor Formula T(a)
T2 (1.0+1.0)/2 1.0

Based on the probability, impact, and time factors, the risk coefficients R1
and R2 for the features F1 and F2 can be calculated:

Risk Formula R(a)
R1 ((8.1+2.2)/2·1.0)·(9.0+3.6)/2 32.4 (5.2×6.3)
R2 (2.6·1.0)·8.5 22.1 (2.6×8.5)

The risk coefficients for R1 and R2 are shown in Fig. 4. Even though, the
ImpactFactor of R1 is not as high as the ImpactFactor of R2, it is categorized
into a higher risk category than R2 because of the high probability that a failure
occurs.

Fig. 4. R1 and R2 after first assessment

We assume that the next risk assessment session takes place after the first
prototype has been implemented. Furthermore, we suppose, that the different
impact and probability criteria have been estimated precisely, such that their

174 M. Felderer et al.

values do not change in the actual assessment session. The result of the first
risk assessment session was that the risk value of F1 is roughly 10 units higher
than F2’s risk. Therefore, in the first evaluation phase F1 has been tested more
deeply than F2. When testing the features after their implementation, we noticed
that F2 has more failures than F1. In our example, we assume that the the
value of failed test cases/number of test cases for F1 is only 40% of F2’s value.
Additionally, we assume that it is observed that F2 has been changed more
frequently than F1. In the example, F1 has only 60% of the number of updates
of F2. Thus, the change history and the test history value for F1 are reduced,
but are constant for F2:

Feature TimeCriterion tj
F1 Change History 0.6
F1 Test History 0.4
F2 Change History 1.0
F2 Test History 1.0

The recalculated time factors T1 and T2 are then as follows:

TimeFactor Formula T(a)
T1 (0.6+0.4)/2 0.5
T2 (1.0+1.0)/2 1.0

As mentioned before, we assume that none of the probability and impact
criteria have changed its value, such that the resulting risks coefficients R1 and
R2 are as follows:

Risk Formula R(a)
R1 ((8.1+2.2)/2·0.5)·(9.0+3.6)/2 16.2 (2.6×6.3)
R2 (2.6·1.0)·8.5 22.1 (2.6×8.5)

The updated risk coefficients and their classification are shown in Fig. 5 which
illustrates the effect of the TimeFactor, because it can seen, that the ImpactFac-
tor of R1 and R2 has not changed but the ProbabilityFactor of R1 decreased.
Therefore, R1 and R2 are now both in the same risk category and the risk
coefficient R1 is lower than the risk coefficient of R2.

With the procedure at hand, resources can be saved by prioritizing the test
cases and not implementing and/or executing all of them. Nevertheless, there is
an overhead of time and money needed for evaluating the different risk factors.
Therefore, if possible most of the criteria should be evaluated automatically. We
have categorized criteria according to the degree of automation into automated

Integrating Manual and Automatic Risk Assessment for Risk-Based Testing 175

Fig. 5. R1 and R2 after second iteration

evaluation, semi-automated evaluation, and manual evaluation. A criterion is
evaluated automatically, if all underlying metrics are evaluated automatically,
semi-automatically, if all underlying metrics are evaluated automatically or semi-
automatically, and manually, if at least one underlying metrics is evaluated man-
ually. Typically code complexity metrics are evaluated automatically, functional
complexity metrics are evaluated semi-automatically and customer-related met-
rics like importance of a product are evaluated manually.

We assume that automatic evaluation is easier to perform and more mean-
ingful for ProbabilityMetrics than for ImpactMetrics This assumption normally
holds because the ProbabilityMetrics are derived from formal artifacts like the
source code and its architecture for which many analysis tools are available. The
ImpactMetrics are derived from requirements which are typically only available
as informal text and evaluated manually.

The degree of automation of the evaluation can change for specific metrics.
For instance, time metrics like the change or test history can only be estimated
manually when a project starts but can later be computed automatically based
on data from version and test management systems.

Besides the automation, the precision of the assessment of manually and semi-
automatically determined metrics can be improved by distribution among the
stakeholders. Software developers and software architects may evaluate proba-
bility metrics, the project manager sets the component weights, and the impact
metrics are evaluated by customers. Time metrics are determined by the test
manager before the release and additionally by the customer support after the
release of the system.

In the following subsections, we give examples for the automated, semi-
automated and manual evaluation of metrics.

176 M. Felderer et al.

5.1 Automated Metrics

As automated metrics we consider e.g., code complexity metrics because there
exist many code metrics, e.g., the number of code lines or the McCabe com-
plexity, that can be determined automatically. In general, we suggest to project
the automatically evaluated values to a scale. The lowest value derived, will be
projected on the lowest value of the scale, and the highest value on the highest
scale value. The other derived values have to be interpolated on the remaining
values of the scale. There are many tools for automatically measuring the code
complexity, e.g., CAST [30], Understand [31], Sonar [32] or iPlasma [33].

The results of the automatic evaluation can be quantitative or qualitative.
Quantitative results are numeric values (see [34] for an overview of typical met-
rics) like lines of code (LoC), McCabe complexity [22] or depth of the inheritance
tree. Qualitative results are verbal description, e.g., of error-prone statements.
In this case, the different warnings and error messages have to be quantified.
Both types of metrics are derived by automatic static code analysis [35]. Thus,
if the evaluation procedure is based on several code metrics, only an algorithm
for automatically determining the value of a criterion has to be implemented.

5.2 Semi-automated Metrics

Semi-automated metrics are derived automatically but the resulting value is only
an approximation, e.g., because relevant information is not taken into account
by the derivation algorithm. Therefore, the value has to be corrected manually
and the automatically derived value only provides decision support for the user.
As an example for semi-automated metrics we consider functional complexity
metrics. There are several fuzzy metrics for measuring functional complexity,
e.g., the length of the textual description of an algorithm, the occurrence or
absence of keywords, the complexity of the computation graph of the algorithm,
and the computational complexity of the algorithm.

In many cases, none of the mentioned metrics is solely a precise measure
for the functional complexity. But they provide valuable input for a subsequent
manual estimation of the functional complexity.

5.3 Manual Metrics

As a manually determined metrics, e.g., the predicted usage, i.e., the frequency
of use and importance to user, can be considered. The usage can only be esti-
mated depending on the expected user number of the System and the privileges
needed to use the specific Requirement. Even though the text might contain
hints for a possible usage, the real usage only can be estimated with experience
and background knowledge. As support for the human estimators, a scale with
textual values can be provided. The following table shows such a scale with
textual values. The scale defines five values (seldom, sometimes, average, often,
highest) which are projected on the numeric values of the metrics.

Integrating Manual and Automatic Risk Assessment for Risk-Based Testing 177

Usage Metrics Ordinal Scale Values
seldom 1
sometimes 3
average 5
often 7
highest 9

Another possible interpretation of the usage criterion is shown in the next
table, which represents a cumulative scaling function. The selected entries are
summed up to determine the final value of the metric.

Usage Metrics Cumulative Scale Values
many different users +3
barrier-free +1
often used +3
untrained staff +2

The different values are defined during the risk identification phase and stake-
holders who conduct the risk assessment only have to select the proper values.
For the cumulative scale, the sum of all values has to be lower or equal to the
maximal scale value (in our case 9). As mentioned before the evaluation type of
metrics can change during the application life cycle. For instance, the usage has
to be manually estimated before the system is in use, but can be determined
automatically in the maintenance phase.

5.4 Metric Estimation Workshop

Many metrics have to be evaluated manually or semi-automatically. For the
evaluation process, estimation workshops may be conducted. For such work-
shops where human experts estimate values, it is very helpful if the scales for
manually or semi-automatically evaluated metrics do not only consist of numeric
values, but additional provide textual descriptions for each value of an ordinal
or cumulative scale (see Section 5.3 for examples).

As mentioned before, time metrics are typically computed in an automatic
way as soon as version and test management systems are available and are
therefore not separately considered in an estimation workshop. In our process
the semi-automatically and automatically evaluated probability and impact val-
ues are estimated by two separate teams. The impact metrics are estimated
by customer-related stakeholders such as product managers or customers them-
selves, and the probability metrics by technical stakeholders such as software
developers or architects. Each member of the particular estimation team gets
an estimation form for each requirement or unit for determining probability or
impact values. Afterwards, the estimated values of the single team members
are compared and discussed by the whole team, until a consensus is achieved

178 M. Felderer et al.

and the final value can noted by the moderator of the estimation workshop. It
may be useful to document the activities in the estimation workshop because
a complicated decision-finding can be an indicator for a high risk. The sepa-
rated estimation of probability and impact values guarantees an independent
and efficient estimation process.

6 Conclusion

In this paper we have defined a risk assessment model and a risk assessment
procedure based on a generic risk-based testing process. The risk-based test-
ing process consists of the phases risk identification, test planning, test design,
evaluation, and risk assessment which is the core activity of the process.

The package risk of the risk assessment model defines factors, criteria, met-
rics and functions for the computation of risks. Additionally, the model considers
requirements, implementation, plus system elements as basis for the risk assess-
ment, and tests to which the resulting risks are attached. The static view of the
risk assessment model is the foundation for the dynamic view of the risk assess-
ment procedure that is presented by an example considering impact, probability
and time criteria.

The concrete algorithms for the determination of risks are based on manu-
ally, semi-automatically, and automatically evaluated metrics. For each type of
metrics evaluation we present examples and determination strategies. The in-
tegration of manual, semi-automatically and automatic metrics as proposed in
our approach significantly improves risk assessment because it supports more
efficient determination of metrics by automation and distribution among stake-
holders. Efficient risk assessment is the prerequisite for the successful application
of risk-based testing in practice.

As future work we evaluate the effort of the risk assessment process empirically
by its application to industrial projects. Based on the results of the risk assessment
proposed in this paper, we investigate the other activities of the risk-based testing
process. The risk classification influences the definition of test methods and test
exit criteria in the test strategy. The prioritization of tests, where areas with high
risks have higher priority and are tested earlier, is considered for the test design.
In the evaluation phase residual risk of software delivery are estimated. All these
tasks are evaluated empirically by the application to industrial projects.

Acknowledgment. This work is sponsored by the project QE LaB - Living
Models for Open Systems (FFG 822740).

References

1. Merriam-Webster: Merriam-Webster Online Dictionary (2009),
http://www.merriam-webster.com/dictionary/clear (accessed: July 12, 2011)

2. Bach, J.: Troubleshooting risk-based testing. Software Testing and Quality Engi-
neering 5(3), 28–33 (2003)

http://www.merriam-webster.com/dictionary/clear

Integrating Manual and Automatic Risk Assessment for Risk-Based Testing 179

3. Ropponen, J., Lyytinen, K.: Components of software development risk: How to
address them? a project manager survey. IEEE Transactions on Software Engi-
neering 26(2), 98–112 (2000)

4. Pfleeger, S.: Risky business: what we have yet to learn about risk management.
Journal of Systems and Software 53(3), 265–273 (2000)

5. Boehm, B.: A spiral model of software development and enhancement. Com-
puter 21(5), 61–72 (1988)

6. Kontio, J.: Risk management in software development: a technology overview and
the riskit method. In: Proceedings of the 21st International Conference on Software
Engineering, pp. 679–680. ACM (1999)

7. Karolak, D., Karolak, N.: Software Engineering Risk Management: A Just-in-Time
Approach. IEEE Computer Society Press, Los Alamitos (1995)

8. Amland, S.: Risk-based testing: Risk analysis fundamentals and metrics for soft-
ware testing including a financial application case study. Journal of Systems and
Software 53(3), 287–295 (2000)

9. Bach, J.: Heuristic risk-based testing. Software Testing and Quality Engineering
Magazine 11, 99 (1999)

10. Carr, M., Konda, S., Monarch, I., Ulrich, F., Walker, C.: Taxonomy-based risk
identification. Carnegie-Mellon University of Pittsburgh (1993)

11. Stallbaum, H., Metzger, A., Pohl, K.: An automated technique for risk-based test
case generation and prioritization. In: Proceedings of the 3rd International Work-
shop on Automation of software Test. ACM (2008)

12. Stallbaum, H., Metzger, A.: Employing Requirements Metrics for Automating
Early Risk Assessment. In: Proc. of MeReP 2007, Palma de Mallorca, Spain, pp.
1–12 (2007)

13. Lund, M.S., Solhaug, B., Stolen, K.: Model-driven Risk Analysis. Springer, Heidel-
berg (2011)

14. Lee, W., Grosh, D., Tillman, F.: Fault tree analysis, methods, and applications -
a review. IEEE Transactions on Reliability (1985)

15. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

16. Alexander, I.: Misuse cases: Use cases with hostile intent. IEEE Software 20(1),
58–66 (2003)

17. Asnar, Y., Giorgini, P.: Modelling Risk and Identifying Countermeasure in Orga-
nizations. In: López, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 55–66. Springer,
Heidelberg (2006)

18. McCall, J., Richards, P.K., Walters, G.F.: Factors in software quality. Technical
report, NTIS, Vol 1, 2 and 3 (1997)

19. Haimes, Y.Y.: Risk Modeling, Assessment, and Management. Wiley (2004)
20. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In:

Proceedings of the 28th International Conference on Software Engineering. ACM
(2006)

21. Illes-Seifert, T., Paech, B.: Exploring the relationship of a file’s history and its
fault-proneness: An empirical method and its application to open source programs.
Information and Software Technology 52(5) (2010)

22. McCabe, T.: A complexity measure. IEEE Transactions on software Engineering,
308–320 (1976)

23. Jiang, Y., Cuki, B., Menzies, T., Bartlow, N.: Comparing design and code metrics
for software quality prediction. In: Proceedings of the 4th International Workshop
on Predictor Models in Software Engineering, pp. 11–18. ACM (2008)

180 M. Felderer et al.

24. NIST: National Vulnerability Database, http://nvd.nist.gov/ (accessed: July 12,
2011)

25. The Open Source Vulnerability Database, http://osvdb.org/ (accessed: July 12,
2011)

26. Frei, S., May, M., Fiedler, U., Plattner, B.: Large-scale vulnerability analysis. In:
Proceedings of the 2006 SIGCOMM Workshop on Large-Scale Attack Defense, pp.
131–138. ACM (2006)

27. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE
Security & Privacy 4(6), 85–89 (2006)

28. Spillner, A., Linz, T., Rossner, T., Winter, M.: Software Testing Practice: Test
Management. Dpunkt (2007)

29. van Veenendaal, E.: Practical risk–based testing, product risk management: the
prisma method. Technical report, Improve Quality Services BV (2009)

30. CAST, http://www.castsoftware.com/ (accessed: July 12, 2011)
31. Understand, http://www.scitools.com/ (accessed: July 12, 2011)
32. Sonar, http://www.sonarsource.org/ (accessed: July 12, 2011)
33. iPlasma, http://loose.upt.ro/iplasma/index.html (accessed: July 12, 2011)
34. Zhao, M., Ohlsson, N., Wohlin, C., Xie, M.: A comparison between software design

and code metrics for the prediction of software fault content. Information and
Software Technology 40(14), 801–810 (1998)

35. Nagappan, N., Ball, T.: Static analysis tools as early indicators of pre-release defect
density. In: Proceedings of the 27th International Conference on Software Engineer-
ing, pp. 580–586. ACM (2005)

http://nvd.nist.gov/
http://osvdb.org/
http://www.castsoftware.com/
http://www.scitools.com/
http://www.sonarsource.org/
http://loose.upt.ro/iplasma/index.html

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 181–192, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Inspection and Test Process Integration
Based on Explicit Test Prioritization Strategies

Frank Elberzhager1, Alla Rosbach1, Jürgen Münch2, and Robert Eschbach1

1 Fraunhofer IESE, Fraunhofer Platz 1,
67663 Kaiserslautern, Germany

{frank.elberzhager,alla.rosbach,
robert.eschbach}@iese.fraunhofer.de

2 University of Helsinki, P.O. Box 68,
00014 Helsinki, Finland

juergen.muench@cs.helsinki.fi

Abstract. Today’s software quality assurance techniques are often applied in
isolation. Consequently, synergies resulting from systematically integrating
different quality assurance activities are often not exploited. Such combinations
promise benefits, such as a reduction in quality assurance effort or higher defect
detection rates. The integration of inspection and testing, for instance, can be used
to guide testing activities. For example, testing activities can be focused on defect-
prone parts based upon inspection results. Existing approaches for predicting
defect-prone parts do not make systematic use of the results from inspections. This
article gives an overview of an integrated inspection and testing approach, and
presents a preliminary case study aiming at verifying a study design for evaluating
the approach. First results from this preliminary case study indicate that synergies
resulting from the integration of inspection and testing might exist, and show a
trend that testing activities could be guided based on inspection results.

Keywords: software inspections, testing, quality assurance, integration, focusing,
synergy effects, case study, study design.

1 Introduction

Quality assurance activities, such as inspection (i.e., static quality assurance) and
testing (i.e., dynamic quality assurance) activities, are an essential part of today’s
software development in order to ensure software products of high quality. However,
the costs for performing quality assurance activities can consume more than 50
percent of the overall development effort, especially for testing [7]. Moreover, it is
often unclear how to systematically guide and focus testing activities.

Existing approaches to focusing testing activities are widely based on metrics such
as size or complexity, gathered from the development of current or historical software
products. Regarding inspection and testing activities, systematic integration is often
missing. Inspection and testing activities are usually applied in sequence, i.e., in
isolation, and do not exploit synergy effects such as reduced effort or the use of
inspection results to guide testing activities.

182 F. Elberzhager et al.

This article presents an integrated inspection and testing approach that is able to
guide testing activities based on inspection results. Parts of a system that are expected
to be most defect-prone or defect types that are especially relevant can be prioritized
based on defect data gathered during an inspection. In order to be able to conduct a
focused testing activity, knowledge about relationships between inspections and
testing is required. Such relationships are usually context-specific. Therefore, it is
necessary to prove whether reliable evidence about such relationships exists in a
given context. If no such evidence exists, assumptions need to be made regarding the
relationships between inspection and testing activities. For example, one assumption
might be that parts of a system where a significant number of defects are found by an
inspection contain more defects to be found by testing (i.e., a Pareto distribution of
defects is expected). Such assumptions have to be evaluated in a given context in
order to provide appropriate guidance for testing.

A study design was determined and verified during a preliminary case study in
which the integrated inspection and testing approach was applied. The results showed,
for instance, that inspection and testing activities should focus on defect types that are
most suitable for detection (e.g., maintainability problems during inspections, and
usability problems during testing), and that an effort reduction for testing of up to
23% was achievable in the given context. However, one important prerequisite for the
applicability of the approach is the testability of the software under test.

The remainder of this article is structured as follows: Section 2 presents a short
overview of the integrated inspection and testing approach. The study design and the
preliminary case study are described in Section 3. Finally, Section 4 concludes the
article and gives an outlook on future work. An extended version of this article
includes related work and a more detailed description of the approach [5].

2 Approach

The main idea of the integrated inspection and testing approach [2], [3] is to use
inspection defect data to guide testing activities. In doing so, parts of a system under
test that are expected to be most defect-prone or defect types that are expected to
show up during testing can be prioritized based on an inspection defect profile
(consisting of, for example, quantitative defect data and defect type information from
an inspection). The approach is able to prioritize parts of a system or defect types (1-
stage approach), or both (2-stage approach), and can thus define a test strategy.

In order to be able to focus testing activities, it is necessary to describe relationships
between defects found in the inspection and the remaining defect distribution in the
system under test, which also counts for defect types. Consequently, assumptions are
explicitly defined. One example of an assumption is that for parts of a system where
many inspection defects are found, more defects are expected to be found with testing
activities (i.e., a Pareto distribution of defects is expected). Assumptions should be at
least grounded on explicitly described hypotheses to make them reliable. Nevertheless,
each assumption has to be validated in a given environment in order to be able to
decide whether the assumption can be accepted or not (and thus, checking whether
valuable guidance for testing activities is provided).

Inspection and Test Process Integration Based on Explicit Test Prioritization Strategies 183

In addition, context factors have to be considered, such as the number of available
inspectors or the experience of the inspectors. For example, consider the number of
available inspectors and time as two context factors. If only one inspector is available
for inspecting certain parts of a system within a limited amount of time, fewer parts
can be inspected. Consequently, more effort should be expended on testing activities.

Since an assumption is often too coarse-grained to be applied directly, concrete
selection rules have to be derived in order to be operational. For example, the
assumption regarding the Pareto distribution of defects can be refined in terms of
application level and thresholds, leading to the following exemplary selection rule:
“Focus a unit testing activity on code modules where the inspection found more than
10 major defects per 1,000 lines of code”.

In addition to the inspection defect profile, metrics and historical data can be
combined with inspection defect data in order to improve the prediction of defect-
proneness and relevant defect types, and thus, to obtain improved guidance for testing
activities. Fig. 1 presents the concrete process steps for guiding testing activities
based on inspection results.

Fig. 1. Integrated inspection and testing approach

3 Case Study

3.1 Goals

The primary goals of the preliminary study were to check the design of the study and
to evaluate whether an integrated inspection and testing approach is able to guide
testing activities based on inspection results. Inspection defect data should be used to
predict those parts of a system under test that remain especially defect-prone and
should therefore be addressed by additional testing activities. In addition, defect types
should be prioritized for testing based on inspection data.

184 F. Elberzhager et al.

While the initial case study showed first insights regarding the relationship
between inspection and testing activities on the code level, more data should be
gained in the preliminary case study presented here. Therefore, different assumptions
in a given context describing the relationship between defects found during inspection
and testing had to be evaluated regarding their suitability for guiding (i.e., focusing)
testing activities.

The following research questions are derived from the primary goals:

• RQ1: Is an evaluation of the integrated approach possible with the given study
design, and which assumptions between inspection and testing activities are
most suitable in the given context for guiding testing activities?

o RQ1.1: How appropriate is it to focus testing activities on certain
parts of a product based on inspection defect results?

o RQ1.2: How appropriate is it to focus testing activities on specific
defect types based on inspection defect results?

3.2 Main Results from Another Evaluation

The preliminary case study presented in this article is similar to an earlier case study
 [2], [3]. It could be shown that assumptions regarding a Pareto distribution of defects
led to suitable predictions of defect-prone parts, while combining inspection results
and product metrics led to inconsistent results for the prediction of defect-prone code
classes. The main differences of the preliminary study presented here compared to the
previous one are that new assumptions are defined, that the integrated approach is
evaluated in a different context (e.g., another product that was inspected and tested,
new subjects), and that system testing is considered. Furthermore, the preliminary
study presented here has a special focus on evaluating the design of the study before
applying the approach in an industrial environment.

3.3 Context

A Java tool called DETECT (dependability focused inspection tool) was used for
evaluating the integrated inspection and testing approach. The tool supports people
who perform an inspection. Currently, it mainly supports individual defect detection
with the help of different kinds of reading support and allows defining new checklists
for use during defect detection. The different kinds of reading support include
different tree structures and two kinds of checklists. The tool provides a three-part
view for the inspector: a tracking mode that documents each step; the artifact to be
checked; and the corresponding reading support (e.g., a checklist).

The tool was mainly developed by one developer. Currently, it consists of about
57k lines of code (without blank lines and comments), about 380 classes, and about
2,300 methods. The developer identified the critical code parts that should be
inspected and discussed the selection of the code classes with the inspection team. In
order to be able to finish the inspection within existing time constraints, it was
decided to inspect only one kind of reading support, namely GITs (goal-indicator

Inspection and Test Process Integration Based on Explicit Test Prioritization Strategies 185

trees [6]). Overall, six inspectors checked 12 code classes, comprising about 7,300
lines of code. Each inspector checked four code classes, consisting of about 2,500
lines of code.

Table 1 shows the experience, respectively the knowledge, of the six inspectors
regarding the inspection, the reading support to be checked, and the code structures
(i.e., programming knowledge). Three values (low, middle, high) are used for the
classification. Finally, the assigned checklists are shown.

The testing activities were performed by the developer of the tool and one
additional tester. Neither one was involved in the inspection.

Table 1. Experience of inspectors and assigned checklists

No.
Inspection
knowledge

GIT
knowledge

Programming
knowledge Defect detection focus

1 + ++ ++ requirements
2 ++ ++ ++ requirements
3 + o ++ implementation
4 ++ + ++ implementation, reliability
5 ++ o o code documentation
6 ++ ++ + code documentation

3.4 Design

The preliminary study described in this article followed a similar design compared to
the first evaluation of the integrated inspection and testing approach [2], [3].

First, a code inspection was conducted by six computer scientists (step 1) using
checklists. Overall, four different checklists were used, addressing requirements
fulfillment, implementation, reliability, and code documentation. Each checklist
consisted of three to eight questions and was assigned to those inspectors who could
answer the questions effectively. Finally, the checklists were mapped to the relevant
code classes by the developer of the tool so that each inspector checked four code
classes. One experienced quality assurance engineer aggregated the findings from all
inspectors. The developer analyzed each problem and decided whether a real defect
was found that had to be corrected or whether problems that were documented by an
inspector were only due to a misunderstanding and could be removed without any
correction.

The next step was the quality monitoring of the resulting inspection defect profile
(step 2). Reading rate, overall number of found defects, and defect distribution were
considered.

Step 3 comprised the prioritization, i.e., a prediction of defect-prone parts and
defect types had to be conducted. For this, four context-specific assumptions were
determined that were to be evaluated. Two assumptions of the initial study [2], [3]
were reused, and two new assumptions were defined based on experiences made
during the first study.

Finally, selecting test cases and conducting focused testing activities would be the
last steps (step 4 and 5). However, in order to be able to evaluate the stated
assumptions, prioritized as well as not prioritized parts were tested by two testers.

186 F. Elberzhager et al.

This enabled a detailed analysis of the assumptions regarding their appropriateness.
First, a unit test of code classes was started. Test cases were derived using
equivalence partitioning. Code classes that had been inspected and some additional
ones identified as being most critical or important were selected for testing. However,
it turned out that efficient unit testing was not possible due to bad testability of the
code classes. The code structure did not suit the unit test approach (e.g., due to
anonymous inner classes, anonymous threads, private fields and methods). To
neutralize the problems of the code structure, mocking frameworks (i.e., a simulation
of the behavior of code classes) were used. However, this framework turned out to be
very complex for inexperienced testers.

Beside unit testing, a manual system test was conducted in order to analyze
whether prioritization is possible between different levels (i.e., using defect
information from the code level to guide tests for the system level). System tests were
derived through typical walkthrough scenarios that followed the main functionality
the tool offers. Afterwards, the results from this testing activity were used as a
baseline and compared to the prioritization when the defined assumptions were
evaluated.

3.5 Execution

Step 1: Performing the inspection
Before the inspection was performed, a team meeting was held where the checklists
were explained and an overview of the code to be inspected was presented.
Afterwards, each inspector checked the assigned code classes with the assigned
checklist and documented all findings and the place of occurrence in a problem list. In
addition, defect type and defect severity were recorded. Each code class was checked
by at least two inspectors. Overall, 1450 minutes were spent on individual defect
detection (ranging from 90 to 280 minutes consumed per inspector).

Table 2. Defect content and defect density of each inspected code class

Code class I II III IV V VI VII VIII IX X XI XII
Defect content 4 18 19 2 34 18 13 24 31 11 10 5
Defect density .009 .021 .020 .008 .061 .057 .038 .031 .045 .026 .031 .016

One experienced quality assurance engineer compiled the defect detection profile

and the developer of the tool checked for each defect whether it has to be corrected or
not. Of 236 problems found in total, 189 defects to be corrected remained. Table 2
shows the defect content (absolute number of defects) and defect density (absolute
number of defects divided by lines of code) of the twelve inspected code classes.
Table 3 shows a sorted list of the ODC-classified defects [8]. 54 defects (e.g., unclear
or missing comments) could not be classified according to any of the existing defect
types.

Inspection and Test Process Integration Based on Explicit Test Prioritization Strategies 187

Table 3. ODC-classified defects from inspection

ODC defect types Sub-total ODC defect types Sub-total Total
algorithm / method 53 relationship 1
checking 36 timing / serialization 0
function / class / object 32 interface / o-o messages 0
assignment / initialization 13 other 54

Sub-total 134 55 189

Step 2: Monitoring the inspection results
Because this was the first systematic quality assurance run of the DETECT tool, no
historical data was available that could be used for monitoring the inspection results.
Instead, data from the first study of the integrated inspection and testing approach [2],
 [3] was used since the environment was similar. In addition, data from the literature
was considered. The reading rate was about 630 lines of code per hour, which is
similar to the first study (there, it was 550, respectively 685, lines of code per hour in
two quality assurance runs). The number is rather high compared to reading rates
recommended in the literature, but consistent with experiences from industry [1].
Some reasons for the high number are that all lines of code were counted (including
blank lines and comments) and that the individual checklists pinpointed the inspectors
to certain parts, whereas other parts were read faster. Finally, the overall number of
found defects seemed reasonable compared to the first study and the distribution of
minor, major, and crash defects was also similar to the first study.

Step 3: Prioritizing the testing activities
In order to guide testing activities, a prediction of defect-prone parts and defects of
those defect types that are expected to appear during testing was made, i.e., those
parts and defect types were prioritized. Four assumptions were stated, including
instructions for the prioritization. More details and explanations can be found in [2],
 [3], [4].

Assumption 1: If no defined selection criterion is used to determine parts of a system
that should be inspected, it is expected that a significant number of defects still remain
in those parts that are not inspected (i.e., an equal distribution of defects is assumed).
Consequently, testing should be focused especially on those uninspected parts of a
system.

Assumption 2: Parts of a system where a large number of inspection defects are found
indicate more defects to be found with testing (i.e., a Pareto distribution of defects is
assumed). Consequently, testing should be focused especially on those inspected parts
of a system that were particularly defect-prone.

Assumption 3: Inspection and testing activities find defects of various defect types
with different effectiveness. For inspections, this includes, e.g., maintainability
problems. For testing, this includes, e.g., performance problems. Consequently,
inspection and testing activities should be focused on those defect types that are most
convenient to find.

188 F. Elberzhager et al.

Assumption 4: Defects of the defect types that are found most often by the inspection
(i.e., a Pareto distribution of defects of certain defect types is assumed) indicate more
defects of the defect types to be found with testing. Thus, testing should be focused on
those defect types that the inspection identified most often.

A derivation of concrete selection rules is skipped here. However, this can be done
easily using the inspection defect profile; examples of concrete selection rules are
shown in [2], [3], and some applied selection rules are shown in Section 3.6.

Step 4 and 5: Selecting test cases and conducting the testing activities
To evaluate the integrated inspection and testing approach and the stated assumptions,
testing activities were performed without considering the inspection defect profile for
the prioritization (however, the inspection defects were corrected before testing
activities started). 40, respectively 42, similar test cases were applied during system test
by the two testers, covering the main functionality of the tool, i.e., different kinds of
reading support, the interaction of reading support and an artifact to be inspected, the
generation of a report of the findings, and creating a checklist was tested. In addition,
some explorative testing was performed by the tester that did not develop the tool.

Table 4. Test results from system testing

Tested functionality tester 1 tester 2 tester 1 tester 2 tester 1 tester 2 tester 1 tester 2
reading support: GIT 3 3 1 1 id1, id8* id1 10 6
reading support: SGIT 3 3 0 1 id9* id1 7 6
reading support: GC 3 3 0 0 id10* 7 6
reading support: VID 0 11 0 1 id11* id1 0 30
reading support: CL 1 1 0 0 3 2

interaction 15 8 5 2

id2, id3,
id4, id6,

id7, id12* id2, id3 33 21
report generation 1 1 1 0 id5, id13* 15 10
checklist creation 16 10 1 0 id4 40 10

Effort (min)
Number of

defects found Defect ids
Number of
test cases

During the system test, seven additional defects regarding functionality were found
by the two testers. Running the defined test cases took about 90, respectively 120
minutes. In addition, effort for explorative testing, test documentation, debugging, and
correction was consumed, resulting in an overall test effort for both testers of about 14
hours. The distribution of defects with respect to functionality can be found in Table 4
(id1 – id7). Tester 1 found one defect (defect id 1) when testing the GIT reading
support (which was inspected on the code level). However, this defect is independent
of the concrete reading support. Tester 2 also found this defect when testing GITs, but
also when testing the other tree-based reading model SGITs or VIDs. Furthermore,
most of the defects occurred when testing the interaction between reading support and
the artifact view. Two more defects were found when testing checklist creation and
report generation. In addition, tester 1 found six more usability problems that were
equally distributed (id8* – id13*), i.e., for almost each functionality tested, one
usability problem was found.

Inspection and Test Process Integration Based on Explicit Test Prioritization Strategies 189

3.6 Results of the Case Study and Lessons Learned

RQ1.1: Our first objective was to check whether the inspection defect information
could be used to predict defect-proneness within code classes in order to focus unit
testing activities. Unfortunately, the unit test activity could not be completed due to
bad testability of the code and no new defects were found. Therefore, research
question 1.1 could not be answered with respect to the unit level. Instead, the system
test activity was used to analyze whether the code inspection results can provide
valuable predictions for focusing system testing. Assumptions one and two were
applied accordingly. We were aware that this prioritization would mean a different
level of granularity, because for system tests it is not possible to address certain code
classes; rather, they are used to address functionalities.

Five different kinds of reading support and three additional tool functionalities
were tested and revealed that most of the defects were found in parts that had not been
inspected. One functional defect was found when applying the GIT reading support
(which was also inspected); however, this defect occurred independently of the
concrete reading support and was also found when testing other kinds of reading
support. Therefore, assumption one indicates a trend towards an appropriate
prioritization, respectively prediction, of defect-proneness and might help in guiding
system testing activities with reduced effort. Considering only the test execution
effort, an effort reduction of between 8% and 23% could be achieved, depending on
the concrete selection rules used. When defining a selection rule omitting the GIT test
cases, this leads to the lowest reduction in the number of test cases, while all
functional defects are found. Omitting SGITs as well, which are a very similar form
of reading support, increases the saved effort. In addition, omitting test cases for
checklists (i.e., low-complexity reading support), an effort reduction of up to 23% is
achievable, with all functional defects still being found. However, the absolute
numbers for conducting the tests are rather low and test derivation, documentation,
and further activities are not considered here. Consequently, the numbers have to be
treated with caution.

With respect to the evaluation of the study design, it is essential that appropriate
testability exists in order to focus the testing activities on the same system level.

RQ1.2: Our second objective was to analyze the relationship between defect types
identified in the inspection and during testing. Considering assumption three, many of
those inspection defects classified as ‘other’ were documentation problems (e.g.,
missing explanation of a method, unclear description). Such kinds of defects affect
the maintainability of the product under test and are not detectable with testing, since
they do not influence the observable functionality. Regarding testing, six additional
usability problems were found by a tester (e.g., bad readability of parts of reading
support). Such kinds of problems can be identified if a graphical user interface is used
during testing, but are usually not found during the inspection.

In terms of maintainability and usability, it is rather easy to dedicate them to
inspection respectively testing activities in order to find such problems. However,

190 F. Elberzhager et al.

Table 5. ODC-classified defects from inspection and system testing

ODC defect types Inspection Testing
algorithm / method 53 2
checking 36 4
function / class / object 32 0
assignment / initialization 13 0
relationship 1 1
timing / serialization 0 0
interface / o-o messages 0 0
other 54 6

Total 189 13

with respect to the ODC classification used for the inspection defects, detecting a
relationship to defects found during the system test is difficult due to the difference in
granularity between code defect types and system defect types. A post-mortem
analysis of the seven functional defects found during testing revealed that most of
them were classified as checking or algorithm / method defects, which fits exactly
with the two defect types identified most often during inspections (see Table 5).
Nevertheless, it is still unclear whether it is possible to derive system tests in a
systematic manner that can address such kinds of problems and how this could be
done. It might be possible that a defect classification, such as the ODC, is not suitable
for guiding system test activities. An explorative study for identifying an appropriate
defect classification would be necessary in this case. Finally, due to an uncompleted
unit testing activity, no new insights regarding relationships between inspection defect
types and testing defect types could be obtained on the unit level.

RQ1: To conclude the main results for research question one, a trend was found that
testing activities might be guided based on inspection results, i.e., defect-prone parts
and defect types could be predicted based on inspection defect data, and testing
activities could be focused on certain parts and defect types. However, the quality of
such focusing depends on the assumptions made in the given context. In our context,
parts that had not been inspected contained additional defects that were found during
testing. However, this can only be stated for defects found during system testing
because unit testing could not be fully completed (which shows the importance of
good testability). Therefore, appropriate testability is an inevitable prerequisite to
performing a suitable evaluation, respectively application, of the integrated approach.
An effort reduction for test case execution of up to 23% could be achieved when
focusing on parts of the system, with the same level of quality being achieved. With
respect to defect types, especially maintainability defects were found during
inspections, while usability problems were found during testing.

The initial results of the preliminary study presented in this article together with
results from the initial case study indicated a first trend towards the applicability of
the approach and the potential for exploiting further synergy effects when integrating
inspection and testing processes. As inspection and testing processes are established
quality assurance activities that are widely applied in industry, and effort reduction is

Inspection and Test Process Integration Based on Explicit Test Prioritization Strategies 191

both a current and a future challenge, using inspection results to focus testing
activities is a promising approach to be considered in order to address this challenge.

3.7 Threats to Validity

Next, we discuss what we consider to be the most relevant threats to validity.

Conclusion Validity: The number of testers and the number of found test defects was
low. One reason might be the low experience regarding testing. Consequently, no
statistically significant data could be obtained.

Construct Validity: To demonstrate the integrated approach, different assumptions
were derived in our context. Four assumptions were used and analyzed regarding their
suitability. However, more assumptions are reasonable and may lead to better or
worse predictions. Finally, the selection of ODC was reasonable when focusing on the
unit test level, but may not be suitable when using it for the system test.

Internal Validity: The subjects selected for the inspection and for the testing activity
may have influenced the number of defects that were found. However, the effect was
slightly reduced by using checklists that focus an inspector on certain aspects in the
code and by using equivalence partitioning, respectively addressing the main
functionality, for the testing activity. Finally, defects could be classified differently.

External Validity: The DETECT tool inspected and tested in the preliminary study is
one example to which the integrated inspection and testing approach was applied.
Few test defects were found that could be used for the analysis of the assumptions.
Larger software, as typically developed by software companies, is expected to result
in more test defects to be found. Assumptions have to be evaluated anew in each new
environment, meaning that the conclusions drawn with respect to the used
assumptions cannot be generalized directly. Finally, the results can only be transferred
to a context where a comparable number of defects are found.

4 Summary and Outlook

To address the challenge of guiding testing activities, an integrated inspection and
testing approach was presented that is used to predict defect-prone parts of a system
and defect types of relevance in order to focus testing activities based on inspection
results. This requires explicitly defined assumptions describing the relationships
between inspection defects and testing defects. A preliminary case study was
presented that analyzed four different assumptions in a given context. First trends
could be seen regarding a prediction of defect-proneness. In addition, inspection and
testing activities should be focused on those defect types that are most convenient to
find, e.g., addressing maintainability problems during inspections, and usability
problems during testing. It is worth noting that assumptions are probably not
generally acceptable and thus, have to be re-evaluated in each new context in order to
obtain evidence on them.

192 F. Elberzhager et al.

From an industry point of view, the integrated inspection and testing approach can
lead to several benefits. Improvements in effectiveness and efficiency are often goals
with respect to quality assurance activities. The approach might be applied in order to
reduce test effort or to find more defects by focusing the available test effort on parts
that are expected to be most defect-prone based on the inspection results.
Furthermore, detailed knowledge about inspection and test relationships can lead to
an improved overall quality assurance strategy and support the balancing of
inspection and testing activities.

With respect to future work, an improvement of the approach and additional
evaluations are planned. Based on the preliminary study and the evaluation of the
study design, we got new insights into what is necessary with respect to a sound
evaluation of the approach (e.g., appropriate testability). We recently began an
analysis of inspection and test defect data from an industrial context in order to prove
several of our assumptions as well as the potential for effort savings. The knowledge
from this study will be incorporated.

Regarding the improvement of the integrated inspection and testing approach,
more guidance on how to derive assumptions in a systematic manner should be
defined. Furthermore, results from different inspection activities or inspections of
only parts of an artifact might be used for guiding testing activities.

Acknowledgments. This work has been funded by the Stiftung Rheinland-Pfalz für
Innovation project “Qualitäts-KIT” (grant: 925). We would also like to thank Stephan
Kremer for tool development, all participants of the study, and Sonnhild Namingha
for proofreading.

References

[1] Cohen, J.: Best kept Secrets of Peer Code Review: Code Reviews at Cisco Systems, 63–87
(2006)

[2] Elberzhager, F., Eschbach, R., Muench, J.: Using Inspection Results for Prioritizing Test
Activities. In: 21st International Symposium on Software Reliability Engineering,
Supplemental Proceedings, pp. 263–272 (2010), http://inspection.iese.de

[3] Elberzhager, F., Muench, J., Rombach, D., Freimut, F.: Optimizing Cost and Quality by
Integrating Inspection and Test Processes. In: International Conference on Software and
Systems Process, pp. 3–12 (2011), http://inspection.iese.de

[4] Elberzhager, F., Eschbach, R., Muench, J.: The Relevance of Assumptions and Context
Factors for the Integration of Inspections and Testing. In: 37th Euromicro Software
Engineering and Advanced Application, Software Product and Process Improvement, pp.
388–391 (2011)

[5] Elberzhager, F., Eschbach, R., Rosbach, A., Münch, J.: Inspection and Test Process
Integration based on Explicit Test Prioritization Strategies, IESE Report (2011)

[6] Elberzhager, F., Eschbach, R., Kloos, J.: Indicator-based Inspections: A Risk-oriented
Quality Assurance Approach for Dependable Systems. In: Software Engineering 2010, GI
edn. Lecture Notes in Informatics, vol. 159, pp. 105–116 (2010)

[7] Harrold, M.J.: Testing: A Roadmap. In: International Conference on Software
Engineering. The Future of Software Engineering, pp. 61–72 (2000)

[8] Orthogonal Defect Classification, IBM,
http://www.research.ibm.com/softeng/ODC/ODC.HTM

Towards a Security and Dependability Pattern
Development Technique for Resource Constrained

Embedded Systems

Nicolas Desnos, Brahim Hamid, Christian Percebois, and Damien Gouteux

IRIT, University of Toulouse
118 Route de Narbonne, 31062 Toulouse Cedex 9 France
{desnos,hamid,percebois,gouteux}@irit.fr

Abstract. Security and Dependability (S&D) becomes a strong requirement even
in resource constraint embedded systems (RCES). Many domains are not tradi-
tionally involved in this kind of issue and have to adapt theirs current processes.

RCES development with S&D requirements represents a complex task. On
one hand, it is necessary to provide a solution which manages the cohabitation
of different concerns (hardware, software, security specialists, etc). On the other
hand, it is advantageous to assist S&D specialists by providing building blocks
corresponding to their needs. Of course, guidelines will help them during all the
application development life cycle.

A solution based on model driven engineering (MDE) and patterns seems
promising in order to resolve this issue. MDE authorizes different businesses
to work together with a higher usual abstraction level. Then, patterns can pro-
vide practical solutions to meet specific requirements. This paper presents a new
pattern development techniques to be inserted in a MDE-based solution. The ap-
proach uses a model as its first structural citizen along the course of the develop-
ment process of S&D patterns for trusted RCES applications.

Keywords: Resource Constrained Embedded Systems, Security, Dependability,
Pattern, Meta-model, Model Driven Engineering.

1 Introduction

An embedded system [24,13,15] is a system that is composed of two main parts, soft-
ware and hardware, which evolves in a real world environment. An embedded system
is an information processing systems integrating HW and SW embedded into enclosing
products to fulfill a specific function. Such systems come with a large number of com-
mon characteristics, including real-time and temperature constraints, dependability as
well as efficiency requirements. Embedded systems are not classical software, which
can be built with usual paradigms.

Consequently, their non-functional requirements such as security and dependability
(S&D) [18] become more important as well as more difficult to achieve. Embedded
systems solutions are expected to be efficient, flexible, reusable on rapidly evolving
hardware and of course at low cost [19]. Solutions are usually concrete technologies for
a specific domain (avionics, automotive, transports and energy).

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 193–204, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

194 N. Desnos et al.

Model-Driven Engineering (MDE) provides a very useful contribution for the design
of trusted systems, since it bridges the gap between design issues and implementation
concerns. It helps the designer to specify in a separate way non-functional requirements
such as security and/or dependability issues at an even greater level that are very impor-
tant to guide the implementation process. Of course, a MDE approach is not sufficient
but offers an ideal development context. While using a MDE framework, it is possible
to help S&D specialists in their task. Indeed, it would be interesting to suggest solu-
tions and to guide them according to their S&D requirements. In software engineering,
patterns meet this need. The goal of the paper is to propose a new pattern development
technique in order to make easy their use in a building process of software applications
with S&D support.

The concept of pattern was first introduced by Alexander [3]. A pattern deals with
a specific, recurring problem in the design or implementation of a software system. It
captures expertise in the form of reusable architecture design themes and styles, which
can be reused even when algorithms, components implementations, or frameworks can-
not. With regard to S&D aspects, Yoder and Barcalow [22] were the first to work on
security pattern documentation. Unfortunately, most of S&D patterns are expressed in a
textual form, as informal indications on how to solve some security problems. Some of
them use more precise representations based on UML diagrams, but these patterns do
not include sufficient semantic descriptions in order to automate their processing and
to extend their use. Furthermore, there is no guarantee of the correct application of a
pattern because the description does not consider the effects of interactions, adaptation
and combination.

The main purpose of this paper is to propose model-based S&D patterns to get a
common representation of patterns for several domains in the context of resource con-
strained embedded systems (RCES). This domain refers to systems which have mem-
ory, computational processing power constraints and/or limited energy constraints. The
solution considered here is based on meta-modeling techniques to encode S&D pat-
terns at even greater level of abstraction. Hence, we will present an approach using a
model as its first structural citizen all along the development process of S&D patterns
for trusted RCES applications. As a result, S&D patterns will be used as brick to build
trusted applications through a model driven engineering approach.

The rest of this paper is organized as follows. The next section presents the approach.
Based on three level of abstraction, a pattern development technique with S&D proper-
ties is detailed. In Section 3 we examine a test case that has several S&D requirements:
Secure Service Discovery. In Section 4, we review most related work that address pat-
tern development and S&D patterns. Finally, Section 5 concludes this paper with a short
discussion about future works.

2 S&D Pattern Development Life Cycle

The main difficulty to overcome S&D patterns in RCES is how to avoid the cost of
building a pattern for each S&D properties and/or for each domain. Classical pattern
representation is often based on a textual description and pattern structure is rigid (not
possible to capture S&D properties). For that, we need a flexible pattern which can be
specialized.

Towards a Security and Dependability Pattern Development Technique for RCES 195

The key ideas of the approach presented here are: To capture appropriate character-
istics of security and dependability patterns in RCES and to utilize several views. By
applying these ideas, we obtain a new engineering process to develop S&D patterns
with the desired complexity of use. The technique, as shown in Fig. 1, is based on three
levels of abstraction: At the pattern fundamental structure level, a meta-model defines
a flexible structure of patterns with S&D and RCES properties. Then, it is possible to
specify and develop patterns by a model. First, the pattern model is domain indepen-
dent and, finally, it is refined for adding domain specific informations. Each level is
discussed in the next sub-sections. We sketch a few notable example next. For clarity’s
sake, we use UML notations to describe such levels.

Fig. 1. Pattern Development Life Cycle

2.1 Pattern Fundamental Structure – PFS

The Pattern Fundamental Structure (PFS) is a meta-model which defines a new for-
malism for defining S&D patterns. The PFS is presented in the left side of Fig. 2. The
originality of this approach is to consider patterns as building blocks that expose ser-
vices (via interfaces) and manage S&D and RCES properties (via attributes). As we
shall see in the right side of Fig. 2, we based our representation on a component vision.

By doing so, we get a definition of a pattern with a clear and flexible structure.
Such a structure is already used with success in CBSE (Component-Based Software
Engineering). CBSE is a discipline that is known to be reliable in the area of software

Fig. 2. Pattern Fundamental Structure

196 N. Desnos et al.

engineering and that is considered as to be a good solution to optimize software reuse
and dynamic evolution while guaranteeing the quality of the software [5]. Moreover,
the modularity it enables allows to master the complexity of large systems. The follow
paragraphs detail the classes of our meta-model:

BasicPattern. This block represents a modular part of a system that encapsulates a
solution to a recurrent problem. A BasicPattern defines its behavior in terms of
provided and required interfaces. As such, a BasicPattern serves as a type whose
conformance is defined by these provided and required interfaces. One BasicPat-
tern may therefore be substituted by another only if the two are type conformant.
Larger pieces of a system’s functionality may be assembled by reusing patterns
as parts in an encompassing pattern or assembly of patterns, and wiring together
their required and provided interfaces. A BasicPattern is modeled throughout the
development life cycle and successively refined into deployment and run-time. A
BasicPattern may be manifest by one or more artifacts, and in turn, that artifact may
be deployed to its execution environment. A deployment specification may define
values that parameterize the pattern’s execution.

Interfaces. A BasicPattern possesses provided and required interfaces. A provided
interface is implemented by the BasicPattern and highlights the services exposed
to the environment. A required interface corresponds to services needed by the
pattern. Finally, we consider two kinds of interfaces:

– External interfaces allow implementing interaction with regard to:
• integrate a BasicPattern to an application model. These interfaces are re-

alized by the BasicPattern.
• compose BasicPatterns together.

– Internal interfaces allow implementing interaction with the application plat-
form. For instance, at a low level, it is possible to define links with software or
hardware module for the cryptographic key management.

Attributes. This information allows one to classify and to configure pattern’s parame-
ters (e.g. S&D parameters). Another issue is expressing the services provided by the
BasicPattern. Attributes can be used by configuration tools to preset configuration
values of a BasicPattern.

InternalStructure. It describes the implementation of the BasicPattern. Thus the In-
ternalStructure can be considered as a white box which exposes the details of the
BasicPattern.

To make our modeling framework easier and more intuitive, we explore in the subse-
quent sections only the information related to Attributes. That is, we use this informa-
tion to illustrate the power of our approach at the different level of abstractions. We also
detail Attributes when we sketch our notable example.

2.2 Domain Independent Pattern Model – DIPM

Here, we describe the DIPM (see Fig. 3) as an instance of the PFS meta-model. Its
objective is to describe patterns at high level of abstraction without domain properties.
Below we outline its principal elements.

Towards a Security and Dependability Pattern Development Technique for RCES 197

Fig. 3. Domain Independent Pattern Model

DomainIndependentPattern. This is the representation of a pattern at the model
level. It corresponds to an instance of a BasicPattern.

Interfaces. It is necessary to instantiate the interfaces of a BasicPattern. For instance
several kinds of external interfaces can be defined: Secure Access External Inter-
face, Secure Download External Interface, Secure Storage External Interface, etc.

InternalStructure. A Domain Independent Pattern has an internal structure that de-
scribes its implementation. This one is composed of both Entity and Link which
form the structure. A Behavior Protocol can be associated to the internal structure
in order to describe its behavior.

Attributes. One can define several kinds of attributes. For instance, in the context of
RCES we propose to address the following standards non-functional properties:

– Security: AccessControl, Integrity, Authenticity, Confidentiality, ...;
– Dependability: Availability, Reliability, Maintenability, ...;
– Mechanism: Cryptographic Algorithm, Integrity Algorithm and Flow Control

Protocol,...;
– RCES: timeDelay, RamSize, PowerConsumption, ...;
– SpecificContext: Ad-hoc Network,...;
– Quality: IEEE certification, SIL, ...;
– BehaviorLanguage: CSP,

2.3 Domain Dependent Pattern Model – DDPM

In this subsection, we describe the DDPM (see Fig. 4) which corresponds to a DIPM
refinement (model transformation). The motivation of this model is to specify S&D
patterns at domain specific application level. In the paper, the authors will not develop
all the model but will focus on the specialization of some elements.

DomainDependentPattern. It refines the DomainIndependantPattern. Several Do-
mainDependentPatterns can be built from a same DomainIndependantPattern.

Interfaces. They are specialized by domain constraints. For example, in Home Control
domain, a specific access control can be chosen.

198 N. Desnos et al.

Fig. 4. Domain Dependent Pattern Model

InternalStructure. It is composed of StakeHolderEntity and StakeHolderLink. A be-
haviorProtcol can be attached to the InternalStructure. For instance, in home con-
trol domain, a child, a elderly person, or an Operator subscriber corresponds to
StakeHolderEntity. Same, StakeHolderLink can represent a Wifi connection, HMI
(Human Machine Interface).

AttributeValue. It details all attributes defined at the DIPM level. For instance, when
dealing with mechanism attributes RC4 and WEP can be specified for a crypto-
graphic algorithm and flow control protocol, respectively and so on. Fig. 7 depicts
more specific attribute values for the other domain independent attributes.

2.4 Summary of the Proposition

To develop patterns, we choose a MDE-based solution. First, we have designed a meta-
model in order to define generic patterns with S&D for RCES concern. Then, it is
possible to model patterns by following a standard model approach.

In the perspective proposed in this paper, a pattern can be considered at two abstrac-
tion levels. The first one is independent of the domain in opposition to the second one
which is specific to one concern. At the DIPM (Domain Independent Model) level, it
is necessary to define the interfaces, attributes and the internal structure of the pattern.
During the specialization of DIPM, all elements defined at the DIPM level can be re-
fined in this phase such as the interfaces, the internal structure and the properties. This
step yield a representation of a patterns for a specific domain (DDPM). The approach
is highlight by a toy example in the next section.

3 Secure Service Discovery Pattern for Home Control

In the following, an example will illustrate the approach point defined in the previous
sections. The current trend aims at integrating more intelligence into the homes to in-
crease services to the person. For this purpose, electronics equipments are widely used
while providing easy and powerful services. However, to integrate all the services au-
tomatically requires a plug and play like system. For this issue, this example aims at
providing a pattern for home control domains which provides a secure service discov-
ery. Compared to a usual service discovery, this pattern will use a secure channel in

Towards a Security and Dependability Pattern Development Technique for RCES 199

Fig. 5. Secure Service Discovery Use Case

order to protect all data. Fig. 5 shows two use cases of this pattern: (i) adding a new
equipment (ii) updating the current configuration. The Fig. 5 is described in form of
UML notations and highlights the interfaces of the pattern in order to support the two
main use cases. In the next subsections, the interface and the static internal structure
will be pointed out while following the two abstraction levels (i.e., DIPM and DDPM)
proposed by the paper.

3.1 Representation at DIPM: Person Using a Remote InternetBox

Regarding to the interface, it is necessary to declare some operations which allow the
user to check if new implementations exist (i.e., update) and to detect the context (i.e.,
new equipment). Then, it is necessary to define all properties addressed by the pat-
tern. Fig. 6 illustrates the representation of secure connection pattern at DIPM. At this
level, the pattern deals with a person using a remote InternetBox. As mentioned in
the previous section, we choose Access control and Crypto algorithm for Security and

Fig. 6. Service Discovery example: Person using a remote InternetBox (DIPM)

200 N. Desnos et al.

Mechanism Attributes, respectively. Regarding the internal structure of the pattern, we
consider the following: a person uses a multi-media device which communicates with
an internetBox via a Wifi connection.

3.2 Specialize a Pattern through the DDPM: Subscriber Using a Remote
OperatorBox

The interfaces must be adapted in order to match with the specific communication used
in the domain. Regarding to the properties, at the DIPM, we only specify a very generic
security property. At this level, it is possible to refine this property by defining the
cryptographic mechanism, the length of the keys, etc. Moreover, it is possible to add
new properties. For instance, a RCES property can be added like the cryptographic time.
Fig. 7 illustrates the representation of secure connection pattern at DDPM. At this level,
the pattern deals with an operator subscriber using a ’Operato’Box. For instance, with
regard to AttributesValue, we choose OperatorX AC and WEP for Access Control and
Flow Control Protocol, respectively. The information expressed by the internal structure
of the pattern is the following: an operator subscriber person uses a computer which is
connected to a ’Operator’Box.

Fig. 7. Person using a remote InternetBox (DDPM)

4 Related Works

The development of embedded systems has been heavily explored in research areas,
ranging from design model level to runtime support level. However they do not give pre-
cise support for non-functional properties. Several works have been carried out to deal
with such properties but they impose solutions that are programming language-based.
Here, we focus on design and modeling techniques for software reliability. Firstly we
present a set of connected works including UML extensions, patterns and S&D patterns.
Secondly we propose a positioning of the work presented in this paper with regard to
the other works.

Towards a Security and Dependability Pattern Development Technique for RCES 201

4.1 Connected Works

Many studies have already been done on modeling security in UML. [14] presents an
extension UMLsec of UML that enables to express security relevant information within
the diagrams in a system specification. UMLsec is defined in form of a UML profile
using the UML standard extension mechanisms. [16] presents a modeling language
for the model-driven development of secure distributed systems based on UML.Their
approach is based on role-based access control with additional support for specifying
authorization constraints. SecureUML is a modeling language that defines a vocabulary
for annotating UML-based models with information relevant to access control.

The design patterns are usually represented using text-based languages, diagrams
with notations such as UML object modeling and most often improved by textual de-
scriptions and examples of code fragments to complete the description. Unfortunately,
the use and / or application of pattern can be difficult or inaccurate. In fact, the existing
descriptions are not formal definitions and sometimes generate some ambiguities about
the exact meaning of the pattern. To give a flavor of the improvement achievable by
using specific languages, we look at the pattern formalization problem. The best known
frameworks for this problem are UMLAUT, RBML, LePUS and DPML. UMLAUT was
proposed by Guennec et al. [2] as an approach that aims to formally model design pat-
terns by proposing extensions to the UML meta model 1.3. In the same way, Kim et al.
[6] presented another approach to represent design patterns in a language called RBML
(Role-Based Meta modeling Language) based on the UML. The RBML is able to cap-
ture various design perspectives of patterns such as static structure, interactions, and
state-based behavior. This language is based on the meta-modeling design patterns and
offer three specifications: Structural, Behavioral and Interactive.

Another issue raised in [10] and [7] is visualization. Eden et al. [10] presented a
formal and visual language for specifying design patterns called LePUS. With regard
to the integration of patterns in software systems, the DPML (Design Pattern Modeling
Language) [7] allows the incorporation of patterns in UML class models.

Several tentatives exist in the S&D design pattern literature [22,12,23,8,21,19]. They
allow to solve very general problems that appear frequently as sub-tasks in the design of
systems with security and dependability requirements. These elementary tasks include
secure communication, fault tolerance, etc. Particularly, [22] presented a collection of
patterns to be used when dealing with application security. The work of [12] reports an
empirical experience, about the adopting and eliciting S&D patterns in the Air Traffic
Management (ATM) domain, and show the power of using patterns as a guidance to
structure the analysis of operational aspects when they are used at the design stage. A
survey of approaches to security patterns is proposed in [23].

In addition to the above, the recently completed FP6 SERENITY project [1] has in-
troduced a new notion of S&D patterns. SERENITY’s S&D patterns are precise speci-
fications of validated security mechanisms, including a precise behavioral description,
references to the S&D provided properties, constraints on the context required for de-
ployment, information describing how to adapt and monitor the mechanism, and trust
mechanisms. Such validated S&D patterns, along with the formal characterization of
their behavior and semantic, can also be the basic building blocks for S&D engineering
for embedded systems. [20] explains how this can be achieved by using a library of

202 N. Desnos et al.

precisely described and formally verified security and dependability (S&D) solutions,
i.e., S&D classes, S&D patterns, and S&D integration schemes.

4.2 Positioning

The classical approaches (based on Gamma), SERENITY and the work presented in
this paper are classified and compared depending of the following criterions: language
of representation, kind of structure and levels of abstraction.

For the first kind of approaches [11] , the design patterns are usually represented by
diagrams with notations such as UML object, most often accompanied by textual de-
scriptions and examples of code to complete the description. Furthermore their structure
is rigid (Context, Structure, Solution, etc.). Unfortunately, the use and / or application of
a pattern can be difficult or inaccurate, in effect; the existing descriptions are not formal
definitions and sometimes leave some ambiguity about the exact meaning of patterns.

There are some promising and well-proven approaches [9] based on Gamma et al,
but nevertheless this kind of works do not allow to reach the high degree of pattern
structure flexibility which is required to reach our target.

UMLsec [14] (approach based on modeling security in UML) and our proposal are
not in competition but they complement each other by providing different view points
to the secure information system.

LePUS [10] is a framework that aims the specification of design patterns. For us, the
visualization technique is interesting but the degree of expressivity to design a pattern
is too restrictive.

On the other hand, SERENITY [1] proposes a pattern language. Nevertheless the
pattern structure is rigid (a pattern is defined as quadruplet) and consequently is not us-
able to capture specific characteristics of S&D patterns. We can note that SERENITY
proposes several levels of abstraction to bridge the gap between abstract solution and
implementation. Nevertheless SERENITY does not allow to get a common representa-
tion of patterns for several domains. As a side remark, note that our goal is to obtain
an even high level abstraction to represent S&D patterns to capture several facets of
security and dependability in the different domain of RCES, not an implementation of
a specific solution.

Finally, the work presented in this paper proposes an original pattern flexible struc-
ture based on a model as its first structural citizen all along the development process.
The structure of a pattern here is closest to a component vision (such as defined in
CBSE) that allows to use the pattern in RCES on easy way. The different levels of
abstraction we propose allow to get a common representation of patterns for several
domains.

5 Conclusion and Future Work

Security and dependability are not building blocks added to an application at the end
of the development life cycle. It is necessary to take into account this concern from
the requirement to the integration phases. This paper decides to follow a MDE-based
approach to specify patterns. Indeed, MDE solutions allows to meet several concerns

Towards a Security and Dependability Pattern Development Technique for RCES 203

around one model while ensuring coherence between all businesses. For this, we need
to develop a new pattern development technique supporting flexibility in order to meet
S&D needs. The proposed approach is structured in 3-layer architecture. The first one
corresponds to a metamodel which define a generic structure of patterns. Then, two
other layers are an instance of the metamodel. The two last levels allows us to integrate
domain specific features at the end of the process.

The next step is primarily the definition of a language to specify S&D and RCES
properties within the pattern. Existing work such as MARTE standard (Modeling and
Analysis of Real-Time Embedded systems) [17] and the characterization given in [4]
can be good candidate as the basis for this type of concern. Then, we will focus on
the integration of all the presented results in a more global process. The challenges of
the integration include for instance the complete pattern development life cycle (i.e.,
create, update, store patterns). All patterns are stored in a repository. Thanks to it, it is
possible to find a pattern regarding to S&D criterion. Patterns and the application are
formally validated regarding to S&D properties. Another objective for the near future is
to provide guidelines during the pattern development and the application development
(i.e., help to choose the good pattern) in order to enhance their integration during a
software engineering process.

References

1. Serenity, system engineering for security & dependability (2006),
http://www.serenity-project.org

2. Le Guennec, A., Sunyé, G., Jézéquel, J.-M.: Precise Modeling of Design Patterns. In: Evans,
A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 482–496. Springer, Hei-
delberg (2000)

3. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Center for Environmental
Structure Series, vol. 2. Oxford University Press, New York (1977)

4. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de-
pendable and secure computing. IEEE Transactions on Dependable and Secure Computing 1,
11–33 (2004)

5. Brown, A.W., Wallnau, K.C.: The current state of CBSE. IEEE Software 15(5), 37–46 (1998)
6. Ghosh, S., Kim, D.-K., France, R., Song, E.: A uml-based metamodeling language to specify

design patterns. In: Patterns, Proc. Workshop Software Model Eng. (WiSME) with Unified
Modeling Language Conf. 2004 (2004)

7. Grundy, J., Mapelsden, D., Hosking, J.: Design pattern modelling and instantiation using
dpml. In: CRPIT 2002: Proceedings of the Fortieth International Conference on Tools Pacific,
pp. 3–11. Australian Computer Society, Inc. (2002)

8. Daniels, F.: The reliable hybrid pattern: A generalized software fault tolerant design pattern.
In: PLOP 1997 (1997)

9. Douglass, B.P.: Real-time UML: Developing Efficient Objects for Embedded Systems.
Addison-Wesley (1998)

10. Gasparis, E., Nicholson, J., Eden, A.H.: LePUS3: An Object-Oriented Design Descrip-
tion Language. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI),
vol. 5223, pp. 364–367. Springer, Heidelberg (2008)

11. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

http://www.serenity-project.org

204 N. Desnos et al.

12. Di Giacomo, V., et al.: Using security and dependability patterns for reaction processes, pp.
315–319. IEEE Computer Society (2008)

13. Henzinger, T.A.: Two challenges in embedded systems design: Predictability and robustness.
Philosophical Transactions of the Royal Society A 366, 3727–3736 (2008)

14. Jürjens, J.: Umlsec: Extending uml for Secure Systems Development. In: Jézéquel, J.-M.,
Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425. Springer, Heidel-
berg (2002)

15. Kopetz, H.: The complexity challenge in embedded system design. In: ISORC, pp. 3–12
(2008)

16. Lodderstedt, T., Basin, D.A., Doser, J.: SecureUML: A UML-Based Modeling Language
for Model-Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002.
LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

17. OMG. A uml profile for marte: Modeling and analysis of real-time embedded systems,beta
2 (June 2008),
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf

18. Ravi, S., Raghunathan, A., Kocher, P., Hattangady, S.: Security in embedded systems: Design
challenges. ACM Trans. Embed. Comput. Syst. 3(3), 461–491 (2004)

19. Schumacher, M.: Security Engineering with Patterns. LNCS, vol. 2754. Springer, Heidelberg
(2003)

20. Serrano, D., Mana, A., Sotirious, A.-D.: Towards precise and certified security patterns. In:
Proceedings of 2nd International Workshop on Secure Systems Methodologies Using Pat-
terns (Spattern 2008), pp. 287–291. IEEE Computer Society (September 2008)

21. Tichy, M., et al.: Design of self-managing dependable systems with uml and fault toler-
ance patterns. In: WOSS 2004: Proceedings of the 1st ACM SIGSOFT Workshop on Self-
Managed Systems, pp. 105–109. ACM (2004)

22. Yoder, J., Barcalow, J.: Architectural patterns for enabling application security. In: Confer-
ence on Pattern Languages of Programs, PLoP 1997 (1998)

23. Yoshioka, N., Washizaki, H., Maruyama, K.: A survey of security patterns. Progress in In-
formatics, 35–47 (2008)

24. Zurawski, R.: Embedded systems. In: Embedded Systems Handbook. CRC Press Inc. (2005)

http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf

Modeling Ad-Hoc Collaboration for Automated

Process Support

Komlan Akpédjé Kedji1,2, Bernard Coulette1,
Redouane Lbath1, and Mahmoud Nassar2

1 Institut de Recherche en Informatique de Toulouse, Toulouse, France
{kedji,coulette,lbath}@univ-tlse2.fr

2 Universite Mohamed V Souissi, Rabat, Morocco
nassar@ensias.ma

Abstract. Understanding and supporting collaboration is a major con-
cern in any collective endeavor. In software engineering, planning col-
laboration is difficult and often occurs rather ad-hoc. However, many
proposals for the description and support of collaboration assume nec-
essary information is readily available and already integrated in process
models. We believe practitioners should be given the ability to represent
their evolving understanding about collaboration and should be sup-
ported by tools using such representation. We developed an extension
to the Software & System Process Engineering Meta-Model (SPEM),
which introduces concepts needed to represent precise and dynamic ad-
hoc collaboration setups. We also describe tool support and present a
proof-of-concept based on a fictitious but realistic application example.

Keywords: process planning, software quality, collaboration.

1 Introduction

Collaboration can be defined as a collective effort to construct a shared under-
standing of a problem and its solution [1], and is a pervasive concern in any
collective endeavor. This effort can be hindered when communication, recogni-
tion, trust, etc. incur too much cognitive overhead. In software engineering, these
problems are further complicated by frequent worldwide distribution of teams,
the amount of knowledge sharing required, communication among people with
different expertise, and high complexity and interdependency of artifacts [2].

Ad-hoc collaboration is prompted by a new issue or new considerations in an
existing issue, while planned collaboration happens because it was on the agenda.
When collaboration is needed because of the requirements-imposed amount of
work, which can be somewhat predicted, prior planning can help to sort things
out. However, everyday collaboration can be prompted but participants’ involve-
ment in the same work item or their interest (as users or editors) in the same
work product. Such situations are context-dependant, and each one needs a tai-
lored solution. It has been shown that while there can be a certain amount of
prior planning, collaboration, especially in software engineering, is significantly
ad-hoc [3,4] (as much as 69% of all collaborative work in a field study [4]).

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 205–216, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

206 K.A. Kedji et al.

A collaboration support tool should use concepts familiar to its users, so
as to not increase the cognitive overhead they are fighting with, and provide
a frictionless surface for development [5]. However, concepts used in popular
generic process formalisms (role, task, product) are not fine-grained enough to
describe ad-hoc collaboration, especially on the detailled project plan level:

– Role: how do we describe interactions between people playing the same
role, but implementing two different components with dependencies between
them, when the very need for two people surfaces only in the middle of the
project?

– Task: when we find out that more than one person is needed for a task, how
can we, for example, specify work dependency, when we lack a concept to
represent work done by a specific person in the context of a task?

– Product: how do we describe (temporary) agreements for merging changes
to produce an official version of a work product, from copies local to partic-
ipants, while lacking the ability to identify each of those copies?

Admittedly, existing abstractions try to make it easy to grasp huge process mod-
els, and promote the reuse of process models by stripping them of project specific
details. However, in everyday collaboration, participants are only interested in a
small, specific part of the process model. Before thinking about reuse, they need
immediate support for their current endeavor.

We propose to postpone the description of ad-hoc collaboration, so that the
creative collaboration setups practitioners create to answer their precise needs
can be taken into account (which helps maintain the connection with reality
[6]), using the more appropriate concepts that we introduce. This description
precises the standard description (based on roles, products, and tasks) which
remains generic and reusable.

Process quality and product quality have been repeatedly confirmed as linked
by researchers and industrials [7,8,9]. Formalizing software processes as mod-
els clarifies project concerns for all stakeholders, and also provides guidance on
task execution. However, process models are usually considered as a somewhat
rigid specification that must be enforced. We consider process models as living
descriptions of decisions about collaboration. Quality improvement is then real-
ized by the analysis and eventual automation of dynamic, day to day decisions
made by practitioners and represented in the process model. This naturally re-
sults in a feedback loop, where the process models guides short-term actions,
and those actions in turn help improve the process model. Additionally, the ac-
curacy of such representation enables a better evaluation of past decisions, which
is necessary for process improvement.

The rest of this paper is organized as follows. Section 2 presents some related
works, and section 3 formalizes our contribution as a metamodel. Section 4
describes typical ad-hoc updates to process models, and section 5 shows how
models based on our metamodel are to be created, updated, and exploited by
tools.

Modeling Ad-Hoc Collaboration 207

2 Related Works

Existing contributions studied the difficulty of formalizing knowledge about work
practices, and flexible instantiation of process models. Enhancing the precision
of process metamodels, and giving practitioners the ability to improve process
models with their evolving understanding have also been investigated.

In [10], M. Polanyi et al., discuss how practitioners rely on implicit knowledge
that is really hard if not impossible to formalize, summed up as “we know more
than we can tell”. It is even harder to formalize knowledge in the abstract, outside
of any practical situation. Therefore, our goal is to give practitioners the ability
to represent their ongoing interactions, thus departing from the approaches that
seek to embed fixed setups, once for all, in process models.

Killisperger et al., developed a framework for flexible process instantiation
[11]. The goal is to assist step-by-step tailoring and instantiation of generic and
complex process models. The progressive approach is shared by our proposal, but
the goal of [11] is to make sure tailoring and instantiation respect certain pre-
defined rules (syntax and organizational rules), while we focus on collaboration.

There have been other efforts to extend SPEM. For example, [12] defines a
formalism based on Petri nets geared towards precise definition of MDE (Model
Driven Engineering) process models and process execution tracking. It however
ignores resource allocation and roles definition, and concentrates on process steps
(described with links, models, flow, resource, etc.) This formalism is more de-
tailed than SPEM, but follows the same “define and execute” approach.

Witshel et al. [13] identified the need to make business process execution
more flexible. They start from the insight that while offering valuable context
information traditional business process modeling approaches are too rigid to
capture the actual way processes are executed. The paper explores how practi-
tioners can use their knowledge to enhance business process models, by leaving
semi-structured comments on business activities. Our contribution, while focused
on software processes (where deviations are also frequent), shares this feedback
approach, where information from actual execution enriches the process model.

In [6], Grudin et al. proposed a methodology for the design of collabora-
tive environment which is halfway between the top-down approach of put-all-
the-knowledge-in-at-the-beginning and the bottom up approach of just-provide-
an-empty-framework. Witshel et al. [13] used this approach to design a “task
pattern” formalism (task patterns are defined as “abstractions of tasks that
provide information and experience that is generally relevant for the task execu-
tion”). Task patterns are instantiated by assigning real persons to the positions
defined in the task pattern. A user can enhance a task pattern while executing
it. The enhancements are stored locally, reused automatically for subsequent
instances of the task pattern, and can be published so others can use it.

In [14], Alegria et al. use three perspectives (or views: role, task, work product)
to visualize process models, and discover their shortcomings. The usefulness of

208 K.A. Kedji et al.

visualisation is most manifest for rich models, with a lot of details about how the
process is actually being executed. This makes it a perfect fit for our approach,
as the following sections will demonstrate.

3 The CM SPEM Metamodel

Our conceptualization is presented as a metamodel, CM SPEM (Collaborative
Model-based Software & Systems Process Engineering Metamodel), that extends
SPEM [15] with ad-hoc collaboration description capabilities.

The SPEM metamodel is an industry standard introduced by the OMG (Ob-
ject Management Group). Its goal is to “accommodate a large range of processes,
and not to exclude them by having too many features or constraints” [15]. SPEM
is structured around the notion that process elements can be defined once, and
reused as needed in process models. Mapping to existing process formalisms like
RUP (Rational Unified Process [16]) are provided, to demonstrate that SPEM
fulfills its goal as a base lingua franca for process modeling.

The main concepts our metamodel borrows from SPEM are RoleUse (from
SPEM::ProcessStructure), ProductUse (from SPEM::ProcessStructure) and
TaskUse (from SPEM::ProcessWithMethods). The main concepts introduced
are Actor, ActorSpecificTask, and ActorSpecificArtifact. The other concepts are
relationships between the newly introduced concepts. Our additions to SPEM
are isolated in a “Collaboration Structure” package. (Figure 1). The OCL (Ob-
ject Constraint Language) [17] rules which specify the static semantics of the
metamodel as well-formedness rules have not been included for brevity.

To illustrate our metamodel, we consider a fictitious by realistic project con-
cerned with the development of a complex ticket reservation system (later re-
ferred to as “CTRS project”). A continuous deployment strategy is used, that is,
new features are regularly pushed into production, as they are requested by the
client and implemented by the team. The team in charge of the CTRS project
is composed of the following participants:

– Bob, the designer. Bob designs and writes architecture description models.
These models are used to generate interfaces and data conversion code.

– Alice, the integration manager. Alice’s role is to decide when features and
fixes are ready for production, and merge them while making sure the result
is functional and reasonably bug-free.

– Fred, the deployment manager. Fred deploys the project to production, mon-
itors execution, and reports errors back to developers.

– Karl and Mike, developers. They mostly write code which implements per-
formance sensitive functionalities and integration with legacy systems.

– Tracy, developer. She writes integration tests for the system under develop-
ment.

Most of the features of the system being implemented are original, which means
a lot of experimentation is done. The whole team is also not collocated. The
team uses a distributed version control so as to exploit the flexible branching
and local history manipulation capabilities needed in such situation.

Modeling Ad-Hoc Collaboration 209

Fig. 1. The Collaboration Structure package (shaded concepts come from SPEM)

3.1 Structural Concepts

Central Concepts. The people participating in the project, and their respec-
tive roles are: Bob (Architect), Alice (Integration manager), Fred (System admin-
istrator), Karl (Developer), Mike (Developer), Tracy (Developer). In CM SPEM,
people are called “actors”. An actor unambiguously identifies a specific human par-
ticipant in a project. It is linked to instances ofRoleUse (SPEM::ProcessStructure)
to specify that an actor plays the corresponding roles.

The tasks (SPEM TaskUse) involved are: “Edit architecture description model”
(Bob), “Implement components” (Karl and Mike), “Integrate and deploy” (Alice),

210 K.A. Kedji et al.

and “Write tests” (Tracy). For each task, we can specify how the different actors
participate in them, with “actor specific tasks”. In the special case of the “Imple-
ment components” task for example, two actor specific tasks are created, as two
actors are assigned to it. An ActorSpecificTask is a unit of work done by a specific
actor, towards the execution of a TaskUse. An ActorSpecificTask is linked to ex-
actly one instance of TaskUse (SPEM::ProcessWithMethods) to indicate that it
contributes to the realization of the corresponding TaskUse.

For each work product, the copy in each developer workspace is an “actor spe-
cific artifact”. An ActorSpecificArtifact is a physical occurrence of a WorkPro-
ductUse, in the personal workspace of a specific actor. This is the personal copy
of the actor, and is manipulated only by him/her. An ActorSpecificArtifact is
linked to exactly one instance of WorkProductUse (SPEM::ProcessStructure),
and specifies that the actor specific artifact represents the corresponding work
product. In other words, a work product is the collection of all actor specific ar-
tifacts that represent it. One copy is usually designated as the reference version,
and normally belongs to the integration manager or to the deployment manager
in software engineering projects.

Actor, ActorSpecificTask, and ActorSpecificArtifact are the central concepts
in CM SPEM, and each of them extend ExtensibleElement (from SPEM::Core).

Relationships. In the considered development setup, each feature is first pro-
totyped in a developer’s local (software configuration management) repository,
then pulled into the integration manager’s repository, before going into the offi-
cial repository, which is used in production. Developers bring their local repos-
itories up to date by pulling artifacts from the official repository. An initial set
of relationships can be introduced (Figure 2), to reflect this setup. These rela-
tionships are essentially actor relationships:

– “Pulls from”, which specifies where an actor pulls (retrieves) contributions
from by default.

– “Pushes to” which specifies where an actor sends contributions to by default.

Relationships encode knowledge about collaboration with links between con-
cepts. All relationships are subclasses of SPEM::Core::ExtensibleElement (which
allow them to have user-defined qualifications) and SPEM::Core::BreakdownEle-
ment (which allows them to be nested by SPEM containers like Activity).

User-defined qualifications (applicable to any subclass of SPEM::Core::
ExtensibleElement) are additional, detailed semantics that a modeler can apply
to SPEM model elements. This SPEM mechanism is heavily used in CM SPEM
to allow practitioners to augment relationships defined bellow with the precise
semantics needed for their use. For example, when defining a relationship be-
tween two actors, one can specify that this relationship means that one actor
reports to the other in the context of a specific task.

The following set of relationships are used to relate the central concepts one
to another: TaskAssignment which relates an Actor to an ActorSpecificTask as-
signed to him/her, ArtifactOwnership which relates an Actor to an ActorSpeci-
ficArtifact that belongs to his/her workspace, and ArtifactUse which relates an

Modeling Ad-Hoc Collaboration 211

Fig. 2. Actor relationships in the initial model

ActorSpecificTask to an ActorSpecificArtifact that is manipulated when carrying
the task out.

To describe the interactions of a couple of instances of one of the central
concepts (Actor, ActorSpecificTask, or ActorSpecificArtifact), the following re-
lationships are used:

– ActorRelationship, which is used to describe a couple of actors. As an ex-
tensible element, an ActorRelationship can be qualified by an instance of
ActorRelationshipKind (which inherits from SPEM::Core::Kind), using the
SPEM user-defined extension mechanism. An ActorRelationship can be used
to state that an actor A reports to actor B in a certain task, so that all con-
tributions made by A, in the context of that task, are by default sent to
B (when executing the “push” command in a version control system for
example).

– ActorSpecificTaskRelationship, which is used to describe a couple of Ac-
torSpecificTasks. The extension mechanism is similar to the one used for
ActorRelationship. An ActorSpecificTaskRelationship can for example spec-
ify temporal dependencies between the works done by two different actors
in the context of the same TaskUse.

– ActorSpecificArtifactRelationship, which is used to describe a couple of Ac-
torSpecificArtifacts. The extension mechanism is also similar to the one used
for ActorRelationship. An ActorSpecificArtifactRelationship can for exam-
ple specify that an artifact A is the reference version of an artifact B (A and
B represent the same work product).

3.2 Behavioral Concepts

Behavioral modeling in CM SPEM relates to how models can evolve over time,
and how this evolution is accounted for. In other words, behavioral modeling
is concerned with how changes to the process model are detected, transmitted,

212 K.A. Kedji et al.

and reacted to. Besides the state-machine based behavioral model [18] that has
already been developed to handle MDE aspects (like transformations), we pro-
pose, for collaboration support, an event-based behavioral model (SPEM allows
connecting to different behavioral models). We also introduce the concepts of
ToolUse, which allows tools (which assist practitioners) to be represented in
process models. This gives them the capability to generate and subscribe to
events as any other model elements, as described below.

In the CTRS project for example, the “Pulls from” and “Pushes to” relation-
ships introduced earlier are supported by a fictitious tool, which we will name
“DVCS Configuration tool”, which configures the version control system based
on the setup described in the model. This tool listens for “PullsFrom relationship
creation” and “PushesTo relationship creation” events. Whenever such relation-
ships are added to the model, the tool is notified. In this specific case, it can
setup remotes, branch tracking, default merge strategies, etc.

An event is a single occurrence of something of interest. Events have param-
eters, whose values describe the event. This concept is a reuse of the Event
concept defined for state machines in UML. Event classes are used to categorize
events. Events are raised (that is, generated) by event sources (any CM SPEM
model element which can trigger events), and received by event handlers (any
CM SPEM model element which can receive events an react to them). To be
able to receive an event, a handler must subscribe to an event class prior to the
occurrence of the event.

4 Dynamic Updates to a Process Model: Representation
in CM SPEM

The essential feature of CM SPEM is its ability to cope with additional deci-
sions that are made in the project as new information becomes available. This
section discusses a few situations derived from the CTRS project presented in
the previous section, and describes how they could be handled.

4.1 A New Member Is Added to the Team

The input validation code is found to be repetitive, and the team decides to
convert part of the hand-written code to models, backed by home-grown code-
generators. A new participant, Sue, a designer, is added to the team to assist
Bob in the task. Sue is thus instructed to send her contributions to Bob, who
now acts as a sub-system integrator. The implication for the DVCS configuration
is that the “Pulls from” relationship, which should have been created between
Alice and Sue is instead between Bob and Sue. This is illustrated in Figure 3.

4.2 A Serious Bug Is Found, and New Features Are Frozen Until
Resolution

In the course of the project, a bug is discovered by some new integration test writ-
ten by Tracy. The bug proved to be a serious one, requiring a tight

Modeling Ad-Hoc Collaboration 213

Fig. 3. Actor relationships after the integration of Sue in the team

collaboration between Bob (the designer), and all the developers (Karl, Mike,
and Tracy).

Karl is coordinating the effort in this particular bug-hunting. The team soon
realizes that a different setup is being used for the purpose of tracking and
solving this particular bug. As the effort is taking several days, the team decides
to introduce the new, temporary setup in the model, so as to have adequate tool
support.

A new version control branch is created for the purpose of developing a fix.
Karl acts as the integration manager on this branch, with respect to other de-
velopers, until the bug is fixed (Figure 4).

Fig. 4. Actor relationships for the work done on the bug fixing branch

214 K.A. Kedji et al.

5 Process Modeling and Enactment Using CM SPEM

This section provides guidelines about how CM SPEM models are built and
used. The ultimate goal of this work is to ease the development of tools that
improve quality by assisting developers in their collaborative endeavors. To this
end, there should be a practical way of creating process models with collabora-
tion information, continually enriching process models with new information on
collaboration, and using information extracted from process models to enhance
quality by automating boilerplate or recurring concerns.

5.1 Creating CM SPEM Process Models

To edit process models, we have defined a graphical notation which extends
the graphical representation in SPEM. A graphical editor, which supports this
notation, has been developed on top of TOPCASED (Toolkit in Open Source for
Critical Applications & Systems Development) [19]. Figure 5 shows a screenshot
of the editor with a sample model loaded.

Fig. 5. TOPCASED-based editor for CM SPEM

5.2 Modifying CM SPEM Process Models

When using CM SPEM, a process model conforming to SPEM acts as a baseline.
New elements, specific to CM SPEM, are introduced as needed, and linked with
their SPEM counterparts (actors are linked to role uses, actor specific tasks to
task uses, and actor specific artifacts to work products), and relations which
capture the collaboration setup are introduced between the concepts.

As elements are introduced in a running (in the sense that it is already being
exploited by some tool) process model, care must be taken so that the new
elements do not conflict with existing elements. This concern can be minimized
by considering all relationships as declarative data about a collaborative setup.
In other words, a relationship should always say “how things are done”, instead
of telling “how things should be done”, or “how work is supported by tools”.
This lowers the coupling between process models and how they are initially used.

Modeling Ad-Hoc Collaboration 215

5.3 Extracting Information from CM SPEM Process Models

Any tool which supports collaboration can query the process model whenever
they need to take action based on its content. This query interface is the
CM SPEM API (Application Programming Interface), and acts as a bridge be-
tween CM SPEM models and CM SPEM-based tools.

Besides being able to directly extract data from the process model, tools are
also represented in process models, which allows them to receive event notifica-
tions as any other model element, and react to them. The example discussed in
Section 4 is an illustration of how this capability could be used. At the time of
writing, only the TOPCASED-based editor for CM SPEM models is available.
The query API and sample tools are not yet ready.

6 Conclusion

This work introduced CM SPEM, a SPEM extension for the description of ad-
hoc collaborative work. Our guiding principle is that collaboration should be
conceptualized using the ideas most familiar to people collaborating. We hope
that the additional automation opportunities provided by the detailed process
models based on CM SPEM will help reduce repetition, and lower the cognitive
load on practitioners. This translates into a better quality of the end product.

An editor is already available for CM SPEM process models (developed with
TOPCASED, with OCL-based model checking functionality). We plan to add
other diagram types or visualizations to ease understanding, define a complete
query API for CM SPEM process models, and develop an ecosystem of tools
which support collaboration based on information extracted from process mod-
els.

Our effort is part of a research project where an industrial case study in avion-
ics will be soon described with CM SPEM, as a real-world validation. This will
also help us evaluate the additional effort needed to maintain typical CM SPEM
models, and the overall impact on productivity. One possibility we are investi-
gating for reducing such effort is to partially automate the inclusion of concepts
and relationships in models by mining the log files of developer tools.

Acknowledgment. This work is conducted in the context of the Galaxy Project,
funded by ANR France. The project explores collaborative development of com-
plex systems using heterogeneous development environments and following the
MDE approach.

References

1. Roschelle, J., Teasley, S.: The construction of shared knowledge in collaborative
problem solving. NATO ASI Series F Computer and Systems Sciences 128, 69–69
(1994)

2. Mistŕık, I., Grundy, J., van der Hoek, A., Whitehead, J.: Collaborative Software
Engineering: Challenges and Prospects. Springer, Heidelberg (2010)

216 K.A. Kedji et al.

3. Cherry, S., Robillard, P.: The social side of software engineering–A real ad hoc
collaboration network. International Journal of Human-Computer Studies 66(7),
495–505 (2008)

4. Robillard, P., Robillard, M.: Types of collaborative work in software engineering.
Journal of Systems and Software 53(3), 219–224 (2000)

5. Booch, G., Brown, A.: Collaborative development environments. Advances in Com-
puters 59, 1–27 (2003)

6. Grudin, J., McCall, R., Ostwald, J., Shipman, F.: Seeding, Evolutionary Growth,
and Reseeding: The Incremental Development of Collaborative Design Environ-
ments. Coordination Theory and Collaboration Technology, 447 (2001)

7. Harter, D.E., Slaughter, S.A.: Process maturity and software quality: a field study.
In: Proceedings of the Twenty First International Conference on Information Sys-
tems, ICIS 2000, pp. 407–411. Association for Information Systems, Atlanta (2000)

8. Rubin, H.A.: Software process maturity: measuring its impact on productivity and
quality. In: Proceedings of the 15th International Conference on Software Engi-
neering, ICSE 1993, pp. 468–476. IEEE Computer Society Press, Los Alamitos
(1993)

9. Ashrafi, N.: The impact of software process improvement on quality: in theory and
practice. Information & Management 40(7), 677–690 (2003)

10. Polanyi, M., Sen, A.: The tacit dimension. University of Chicago Press (2009)
11. Killisperger, P., Stumptner, M., Peters, G., Grossmann, G., Stückl, T.: A Frame-

work for the Flexible Instantiation of Large Scale Software Process Tailoring. In:
Münch, J., Yang, Y., Schäfer, W. (eds.) ICSP 2010. LNCS, vol. 6195, pp. 100–111.
Springer, Heidelberg (2010)

12. Porres, I., Valiente, M.C.: Process Definition and Project Tracking in Model Driven
Engineering. In: Münch, J., Vierimaa, M. (eds.) PROFES 2006. LNCS, vol. 4034,
pp. 127–141. Springer, Heidelberg (2006)

13. Witschel, H.F., Hu, B., Riss, U.V., Thönssen, B., Brun, R., Martin, A., Hinkel-
mann, K.: A Collaborative Approach to Maturing Process-Related Knowledge. In:
Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 343–358.
Springer, Heidelberg (2010)

14. Alegŕıa, J.A.H., Lagos, A., Bergel, A., Bastarrica, M.C.: Software Process Model
Blueprints. In: Münch, J., Yang, Y., Schäfer, W. (eds.) ICSP 2010. LNCS, vol. 6195,
pp. 273–284. Springer, Heidelberg (2010)

15. OMG: Software process engineering metamodel, version 2.0 (2007),
http://www.omg.org/spec/SPEM/2.0/

16. Kruchten, P.: The rational unified process: an introduction. Addison-Wesley Pro-
fessional (2004)

17. OMG: Object constraint language (2010), http://www.omg.org/spec/OCL/2.2/
18. Diaw, S., Lbath, R., Coulette, B.: Specification and implementation of

SPEM4MDE, a metamodel for MDE software processes. In: International Con-
ference on Software Engineering and Knowledge Engineering (SEKE 2011), Miami
- USA, pp. 646–653. Knowledge Systems Institute (2011)

19. Team, T.T.: Toolkit in open source for critical applications and system development
(2011), http://www.topcased.org/

http://www.omg.org/spec/SPEM/2.0/
http://www.omg.org/spec/OCL/2.2/
http://www.topcased.org/

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 217–229, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Quality Needs Structure: Industrial Experiences
in Systematically Defining Software Security Requirements

Christian Frühwirth1 and Richard Mordinyi2

1 Software Business Lab, BIT Research Center
Aaalto University – School of Science and Technology

Espoo, Finland
christian.fruehwirth@tkk.fi

2 Christian Doppler Laboratory “Software Engineering Integration for Flexible Automation
Systems”, Vienna University of Technology

1040 Vienna, Austria
richard.mordinyi@tuwien.ac.at

Abstract. Successful, quality software projects need to be able to rely on a
sufficient level of security in order to manage the technical, legal and business
risks that arise from distributed development. The definition of a ‘sufficient’
level of security however, is typically only captured in implicit requirements
that are rarely gathered in a methodological way. Such an unstructured
approach makes the work of quality managers incredibly difficult and often
forces developers to unwillingly operate in an unclear/undefined security state
throughout the project. Ideally, security requirements are elicited in
methodological manner enabling a structured storage, retrieval, or checking of
requirements. In this paper we report on the experiences of applying a
structured requirements elicitation method and list a set of gathered reference
security requirements. The reported experiences were gathered in an industrial
setting using the open source platform OpenCIT in cooperation with industry
partners. The output of this work enables security and quality conscious
stakeholders in a software project to draw from our experiences and evaluate
against a reference base line.

Keywords: Distributed Software Engineering, Security Requirements.

1 Introduction

Software quality and security are two closely connected issues in global software
engineering practices. Wherever a software project requires it’s stakeholders to work
together, in distributed multi-engineering environments, it is essential for maintaining
product quality that the information exchange between the engineers’ specialized
development tools is 1.) integrated 2.) reliable and 3.) secure. [1] [2]. A promising
approach to address these quality challenges was implemented in the Enterprise
Service Bus (ESB) [4]. The ESB facilitates the service-oriented architecture (SOA)
[3] paradigm, which is suitable to bridge most of the technical and semantic gaps

218 C. Frühwirth and R. Mordinyi

between engineering systems and tools. The ESB has been successfully applied as
agile integration platform for services in distributed, heterogeneous business software
environments [4].

Previous work has addressed the quality challenges in technical integration of this
type of service bus, like message exchange between semantically different
engineering tools [12,13]. This paper set out to add security quality considerations as
new aspect to the existing work.

The motivation to address security in this context comes from the experience that
successful industrial software projects need to be able rely on a sufficient level of
security in order to manage the technical (e.g., malware infections), legal (e.g.,
regulatory compliance), and business (e.g., damage liabilities) risks which arise from
distributed development. In today’s practice, such levels of security are often captured
in merely implicit requirements, and rarely covered in a methodological way. This
unstructured approach makes the work of quality managers incredibly difficult and
often forces developers to unwillingly operate in an unclear/undefined security state
throughout the project. In a best practice case, security requirements would be elicited
in a methodological manner that enables the structured storage and retrieval of
requirements throughout the lifetime of a software project. In our experience,
software project and quality managers are well aware of these best practices, but
refrain from their use due to a lack of personal or reported application experiences.

Our work addresses this problem by 1.) exemplifying the methodological
elicitation of key security requirements for a collaborative software engineering
environment and 2.) reporting on the gained experiences. We applied a method
proposed by Mellado [10] to conduct the methodological requirements elicitation.
Mellado approach was chosen for its structured format and easy extendibility. The
reported experiences were gathered in an industrial setting using the open source
platform OpenCIT [5] in cooperation with partners from the company logi.cals .

In addition to providing an application experiences, this work further contributes to
the discourse on software quality and security requirements by 1.) providing a
reference set of key security requirements for future quality management efforts, 2.)
demonstrating the practical application of misuse cases in combination with
Mellado’s [7] approach, and 3.) proposing a structured requirements assignment
matrix to improve the light weight categorization and handling of security
requirements by quality managers and application developers.

This work places its focus on the elicitation of security requirements because it is
one of the first in a serious of steps towards improved software product quality.
Equally important activities however are needed in the coding and testing phases of a
product. We consider these phases outside of the scope of this paper but plan to
include them in future work on the topic.

The remainder of this paper is structured as follows: Section 2 summarizes related
work on aspects of distributed software engineering, elicitation techniques, and
security requirements. Section 3 describes the findings of applying a standard
elicitation concept on CI&T. Finally, section 4 summarizes our gained experiences
while section 5 concludes the paper and identifies further work.

 Quality Needs Structure: Industrial Experiences 219

2 Related Work

This section summarizes related work on platforms regarding distributed software
engineering, security requirements in distributed development and methods for
security elicitation in the literature.

2.1 Software and System Integration for Distributed Software Engineering

Biffl and Schatten proposed a platform called Engineering Service Bus (EngSB),
which integrates heterogeneous engineering systems and tools as well as different
steps in the software development lifecycle [6, 7]. Figure 1 gives an overview of the
EngSB platform and its core components.

Fig. 1. Engineering Service Bus with connected software engineering tools

The EngSB platform introduces the concept of tool types (i.e. tool domains) that
provide different tools with common interfaces for solving a common problem,
independent of the specific tool instance used. Without then EngSB or an EngSB like
system, the communication between different tools is often handled in a semi-manual
manner, using spreadsheets, custom scripts, or the like. These traditional approaches
are heavily error prone and thus a serious issue for quality conscious project
managers.

The EngSB platform is used as basis for numerous industry applications. Our work
relates to the the Open Continuous Integration and Test (OpenCIT) server [5]
prototype which is based on the EngSB platform and can be used to automatically
build, test and deploy software projects. It integrates common tools like SCM, issue
tracker, notification server, policy management, etc. relevant for quality control in
software engineering projects. The industry project that supported this work chose

220 C. Frühwirth and R. Mordinyi

OpenCIT over other CI&T tools, like Hudson, for its ability to exchange tool
instances [11] and integration of a tool domain concept. More Information on the tool
domain concept is available at [11,1].

2.2 Security Requirements in Distributed Development

A software project requires its engineering assets to maintain an acceptable level of
availability, integrity and confidentiality throughout the project lifecycle. Specifying
what is acceptable in a given context is to define security quality requirements. In
globally distributed engineering environments however, this specification process can
be complex, as the ‘context’ of an action and resources becomes harder to pin down.
In distributed software projects, the project stakeholders operate with large numbers
of shared resources that make it difficult to assign ownership and requirements to
individual engineering assets [3]. Traditionally security decisions are based on the
factors User/Role -> Action -> Resource. In a distributed environment however,
dynamic factors, such as previous action (pre-conditions), post-conditions and
dependencies have to be taken into account. Authors like [7,9] discuss these issues in
extensive detail. In the scope of this work, we focus on the challenges of eliciting
security requirements for the engineering tools that enable a distributed software
engineering project. Most engineering tools that are used in the development process
typically follow local policies with local security requirements, while the
ramifications of a tool’s or its user’s action [6] (e.g. intentionally or un-intentionally
committing corrupted code to a repository) can affect the entire project. Previous
work like [3], further highlighted these specific challenges.

2.3 Methods for Security Requirements Elicitation

Frameworks like the Common Criteria (CC) [8], SSE-CMM [15] have been used
successfully to elicit security requirements in a structured fashion. We chose SREP,
an approach developed by Mellado et al. [10], for its integration of Common Criteria
(CC) elements and a relatively light-weight execution process. For a more complete
overview on requirements elicitation methods, we point to work by Tondel et al. [16].

2.4 Gaps in the Literature and Contribution

While there is an extensive research on security requirements engineering and
elicitation processes, we see a lack of reported experiences on the practical
application said research that would aid software project managers, developers and
other software business practitioners in their operations. Furthermore, security
conscious stakeholders in a GSE project lack categorization models for security
requirements and reference requirements for GSE platforms.

We attempt to improve upon this situation by 1) reporting experiences from a real-
world security requirements elicitation project on a GSE platform and 2) presenting
the results in a structured manner that facilitates future work.

 Quality Needs Structure: Industrial Experiences 221

3 Systematic Elicitation of Security Requirements

The following sections reflect our experiences from applying Mellado’s security
requirements engineering process (SREP) [10] in the requirements elicitation project
for the OpenCIT GSE platform. During the requirements elicitation project we used
all of Mellado’s 9 proposed steps, but placed special focuses on requirements-
elicitation and categorization in steps 6 and 7. We further replace the security
repository proposed by Mellado with a more light-weight approach based on misuse
case descriptions. The process was conducted over the course of 2 months in Q4/2010
and involved 3 lead developers of the OpenCIT platform, 1 project manager, 2
security managers and 1 end-user.

3.1 Activity 1 - Agree on Security Definitions, Terminology

We adopt the definitions of vulnerability, threat, risk, exposure and countermeasure as
outlined in the CISSP guide by Harris ([5], pp.58-59) due to their practitioner oriented
focus and wide acceptance in the industry.

3.2 Activity 2 - Identify Vulnerable Assets

Based on the OpenCIT architecture (Fig. 1) we have identified three main categories
of vulnerable and critical assets. The first one is the connector that enables
communication and exchange of data with software engineering specific tools
relevant in the engineering process. The second asset refers to EngSB-related
components (e.g., workflow management) facilitating the execution engineering
processes. The third main asset is the EngSB itself that enables message transfer
between EngSB-related components and engineering tools.

3.3 Activity 3 - Identify Security Objectives and Dependencies

We elicit and prioritize security requirements for all three asset categories by adapting
Fruehwirth et al.’s [2] approach for business-driven security objectives. The EngSB
stakeholders first identified the security objectives in a brainstorming session, then
weighted them through voting mechanism described in [2]. The results are compiled
and listed in table 1.:

Table 1. Security objectives, assets and weighting Assets: Tool Connectors Bus Components Objectives: Weight(=Importance) 40% 30% 30% Availability 45% HIGH HIGH MED Integrity 30% MED HIGH HIGH Confidentiality 25% LOW MED MED

222 C. Frühwirth and R. Mordinyi

The table cells, express the targeted security level in respect to a particular security
objective (e.g. “maintain high availability of tool connectors”). The concrete security
levels associated with the terms HIGH, MED, LOW are defined by the service level
agreements and security policy of the particular organization or its software
engineering project on a case-by-case basis.

3.4 Activity 4 - Identify Threats and Develop Artifacts

Threats originate from threat agents that may harm a system through intentional or
unintentional wrong-doing. Regular system users may become threat agents
unintentionally by, for example, diverting from pre-defined engineering workflows. A
common example is the case of software developers that put a system at risk by
deploying changes of code or configurations, but forget to run dependency checks
beforehand.

The concept of threat agents is well known in the literature [5] and can be used in
combination with misuse cases to identify threats to a system. To identify threats
relevant for a GSE platform like the OpenCIT, we 1) assume that a regular user may
unintentionally become a threat agent at any point and 2) add a threat agent to all
existing use cases descriptions of the OpenCIT documentation. We further created
distinct misuse cases for threat agents that target a GSE system deliberately (as opposed
to unintentionally), to describe their possible actions. This is in line with Mellado’s [10]
suggestion of developing misuse case artifacts during the threat analysis.

We compensate for the lack of knowledge about the threat agent’s real attack
motives with the assumption that his or her goal will at one point be to prevent the
project from reaching its security objectives (elicited in Activity 3). Due to space
constraints we exemplify the approach in Fig. 2 with the highest ranked misuse case:
“Compromise integrity of engineering artifact through forged messages”.

Fig. 2. An example misuse case, including threat activities, its adversary and countermeasures

 Quality Needs Structure: Industrial Experiences 223

In this use case (depicted in Fig. 2), the threat agent attempts a replay attack [14] to
compromise the integrity of an engineering artifact (e.g. a source code file). To
conduct a replay attack, the threat agent first eavesdrops on service bus transmissions
until he has found and recorded a message that he intends to use in the attack. In this
case, the threat agent captured a ‘delete’ command by a legitimate user. The threat
agent can now attempt to spoof (mimic) a legitimate user request by re-using (i.e.
replaying) either parts or the complete captured message. In the “compromise
integrity” use case, the threat agent would replay the captured ‘delete’ command, but
change the URI of the resource to be deleted. In the absence of adequate security
measures, a source code management system might accept the forged message, delete
the indicated resources and thus compromise the integrity of the engineering artifact.

To prevent the threat agent from reaching his goal, the misuse case presents him
with a second actor: the OpenCIT service bus. The OpenCIT service bus acts as an
adversary, who deploys mitigation activities that the threat agent needs to overcome
in order to fulfill his misuse case. The example in Fig. 2 shows two such mitigation
activities or countermeasures. On the right side, the inclusion of “message
encryption” in “capture message” forces the threat agent to first break the encryption
of transmissions in order to complete his “capture message” activity. On the left, the
inclusion of “Issue action vouchers” means that a disposable, 1-time-use ticket, or
voucher, is attached to each message sent on the service bus. The 1-time-use voucher
is verified by the bus and invalidated after a command has been successfully
executed. If the threat agent replays a previously captured “delete” command, it
contain an already used, thus invalidated, action voucher and would fail upon
verification by the OpenCIT service bus.

A larger overview that integrates the misuse cases presented in Fig. 2 is available
in the appendix of this paper and, along with the remaining cases, in [4].

We used developers’ and domain experts’ to develop misuse cases for the most
likely paths a threat agent could take to achieve this goal (e.g. UC1: compromise code
confidentiality by stealing user credentials. UC2: compromise code confidentiality by
eavesdropping bus communication). Since various attack paths lead to the same goal,
we organize them in a linked tree-model where each node represents an activity by
the threat agent and a branch the complete attack path. The full misuse case tree is
available in [4].

3.5 Activity 5 - Risk Assessment

Mellado [10] describes the purpose of the risk assessment with estimating “the
security risks based on the relevant threats, their likelihood and their potential
negative impacts”. Using domain experts and developers for this task is likely to
introduce personal bias in the outcome of the assessment. To at least partially
compensate for personal bias, we briefed the risk assessors with security trend reports
that we considered impartial, like Verizon’s 2009 and 2010 data breach reports [13].
The purpose of the reports is to provide the risk assessors with empirical indicators on
the likelihood and potential negative impacts of security incidents on a global scale,
without specifically referring to the area of GSE. To our knowledge, similar empirical
work has not yet been conducted in the context of GSE & security and should be
considered for future research.

224 C. Frühwirth and R. Mordinyi

3.6 Activity 6 - Elicit Security Requirements

Activity 4 developed a set of misuse cases that were then categorized by the security
objectives they threatened and prioritized by the level of perceived risk and organized
in a tree model. Since every tree node represents an activity by the threat agent to
reach his or her goal (i.e. the root node) we use the tree to identify the nodes that are
critical for the misuse case to succeed. At these critical activities (e.g. “captured
message”), we inserted possible mitigation activities or countermeasures (e.g.
“encrypt message”) that block the path and prevent the misuse case from succeeding.

We elicited the final security requirements by compiling a list of all inserted
mitigation activities and describing their purpose in the misuse cases. The resulting
security requirements are:

1) All message exchanges require the sender and recipient to authenticated themselves
(2-way authentication)

2) All message exchanges need to be encrypted on the network level
3) All message exchanges need to be encrypted on the application / message content

level
4) Every request for OpenCIT functionality (e.g. checkout or commit code) is subject

to a credentials and access control check
5) Granted request for OpenCIT functionality shall be answered with a 1-time-use

ticket, or ‘action voucher’ that can be redeemed by the owner at a 3rd party, in
exchange for the 1-time execution of a task (e.g. delete file).

6) Local tools that are part of the software development process need to undergo
integrity checks

Defensive programming guidelines need to be enforced in all parts of the OpenCIT
system that accept application messages as input.

3.7 Activity 7 - Categorize Requirements

In contrast to the applied elicitation technique, we use a matrix of requirements
defined by specific architectural levels and the given assets for structuring
requirements, shown in Table 2, rather than a prioritization in terms of impact and
likelihood of requirements only. The categorization of requirements takes into
account several parts of the ISO/OSI model [17] down to the Transport Layer. Lower
layers are meant to be future work for further investigation. In addition to the
ISO/OSI model we further add three more categories. The Workflows category
describes requirements related to engineering processes executed automatically and
transparent to engineering tools. The Tools category explicitly takes care of
engineering tools as they are closest to the engineer and as they play a significant part
in an engineering process.

 Quality Needs Structure: Industrial Experiences 225

Table 2. Assignment matrix of requirements to assets at different levels of architecture

 Connector EngSB Comp. EngSB

Tools
Tool Integrity
Check

Workflows
(Automated
Processes)

AC-Service, 1-
time voucher

AC-Service, 1-
time voucher

AC-Service ,
Message
encryption, 1-
time voucher

Application
Layer

AC-Service, 2-
way auth.,
Defensive
programming

AC-Service, 2-
way auth.,
Defensive
programming

AC-Service ,
Message
encryption, 2-
way auth.,
Defensive
programming

Presentation
Layer

Session Layer
Traffic
encryption

Traffic
encryption

Traffic
encryption

Transport
Layer

Traffic
encryption

Traffic
encryption

Traffic
encryption

Based on the CI&T use case and the misuse cases described in [4] we identified

techniques to be implemented in each cell of the matrix to counter those misuse cases.
Traffic encryption between all communicating assets has to be enforced in order to
prevent gaining access to OpenCIT by eavesdropping on network level. Message
encryption has to be enforced in order to prevent eavesdropping at application level.
Furthermore, tool integrity checks need to be implemented in order to make sure that
engineering tools have not been manipulated. Access Control (AC) Services have to
be deployed to enable checks regarding the credentials of requesters intending to
execute specific actions. Two-way authentication is necessary in order to handle
forged messages intending to take over someone’s identity. A similar technique, one-
time use action vouchers, prevents executing commands due to captured and then
replayed communication messages.

3.8 Activity 8 - Requirements Inspection

The matrix developed in Activity 7 was used to perform a sanity check of the elicited
requirements in an open workshop session with OpenCIT developers and the main
stakeholders of a software engineering project had been used for at the time.

3.9 Activity 9 - Repository Improvement

Mellado [10] proposed to store security requirements in a Security Resource
Repository (SRR). We chose to forgo the use of a full repository and made the
requirements available online [4], in a more light weight and tool supported UML use
case format, instead.

While we recognize an SRR as a practical storage format for security requirements,
experiences with our industry partner showed that software developers and quality

226 C. Frühwirth and R. Mordinyi

managers preferred a more visual, UML-type form for requirements storage. The
main reason reported developers on why they preferred to get security requirements in
the form of UML misuse cases was because its let them continue to use their familiar
engineering tools. Software quality managers preferred UML for the ability to
automatically deduct test cases, thus easing their quality & testing tasks.

Despite these experiences in the case of Open CIT, a growing number of
requirements may require the use of SRR in the future, hence we plan to conduct
further work in this area.

4 Experiences and Discussion

This section discusses the proposed approach and presents first gained impressions
experienced by means of cooperation with an industry partner in developing a secure
OpenCIT.

The applied process steps suggested by Mellado have been adapted in two different
ways. Step 7 proposes a categorization and prioritization based on a qualitative
ranking of each requirement whereas the requirement with the highest priority is
handled first. In contrast to that, we believe that quantitative prioritization of
requirements would be preferable with respect to a small team size in order to
implement representative use cases much faster. In contrast to Mellano’s suggestion
to use an XML based Security Resource Repository (SRR) in step 9, we applied
UML. In that particular industry context UML has been favored over SRR because
SRR was too heavy weight and too complex for a project of our size. Additionally,
OpenCIT developers lacked specialized security skills but were already experts and
daily users of UML style use cases, user stories, or requirements elicitation. This
approach proved to be complete and practically applicable even for non-security
experts. Nevertheless of UML, the proposed approach still facilitates accountability
regarding implementations of security requirements, and thus demonstrates an impact
on software quality this way. Furthermore, it helps identify security aspects which are
still missing but required in the design of the architecture and consequently in the
implementation.

From our experience in developing a secure implementation of OpenCIT, we
believe that it is essential to cooperate with domain experts (i.e. in our case with an
industry partner) for a successful creation of misuse cases as they are likely able to
put themselves in threat agent’s shoes. With respect to our approach, we have
understood that it works well when key requirements are identified, but lacks strength
when niche- or minor requirements (e.g., length of a specific encryption key to be
used for en/decryption) are discussed. However, those requirements may be reflected
in a tree-like structure and put as additional description to a specific set of key
requirements. Additionally, as noted by the industry partner, further work of the
alignment matrix should include aligning security requirements with business goals
(i.e. economic considerations) to track requirements to code more effectively and
efficiently.

 Quality Needs Structure: Industrial Experiences 227

5 Conclusion and Future Work

For the successful and efficient realization of global software engineering projects the
interconnection of distributed, multi-engineering environments and their tools is
essential. Furthermore, such projects need to rely on a sufficient level of security to be
sustainable and capable of to managing technical, legal and business risks that arise
from distributed development. However, the definition of a level is typically captured
in implicit requirements and rarely gathered in a methodological way resulting in an
unclear/undefined security state regarding operations implemented by developers.
In this paper we reported on our experiences in applying standard requirement
elicitation techniques regarding security aspects. The intention was to elicit
requirements in methodological manner enabling a structured storage, retrieval, or
checking of requirements. We used the OpenCIT platform, a continuous integration
and testing framework widely used in software engineering projects, to present our
report. Based on a list of gathered security requirements for secure collaboration of
software engineers in global software development environments, we identified key
security objectives and dependencies to gain a list of prioritized requirements (e.g.,
availability is more important than confidentiality). The combination of architectural
assets worth protecting and a layering of the architecture enabled to find and define
specific techniques of protecting the framework. It seems that although the number of
gathered security requirements is low, they still have to be coped with at each defined
asset of the architecture. Nevertheless, those specific requirements already cover a
relatively large number of misuse cases. However, as the OpenCIT platform is based
on a message system, we only investigated security issues related to communication
and data exchange.

Future work will include investigation and evaluation of the proposed assignment
matrix in large software engineering projects to verify its usability, in multi-vendor
engineering projects using software product lines (SPL) to identify its advantages and
limitations, and in multi-engineering environments. Furthermore, we will analyze the
impact on the presented approach regarding the complexity of UML descriptions, and
thus we will investigate its scalability.

Acknowledgments. This work has been supported by the Christian Doppler
Forschungsgesellschaft, the BMWFJ, Austria and TEKES, the Finnish Funding
Agency for Technology and Innovation.

References

1. Biffl, S., Mordinyi, R., Moser, T.: Automated Derivation of Configurations for the
Integration of Software(+) Engineering Environments. Paper presented at the 1st
International Workshop on Automated Configuration and Tailoring of Applications,
ACoTA 2010 (2010)

2. Fruehwirth, C., Biffl, S., Tabatabai, M., Weippl, E.: Addressing misalignment between
information security metrics and business-driven security objectives. Paper presented at
the Proceedings of the 6th International Workshop on Security Measurements and Metrics,
Bolzano, Italy (2010)

228 C. Frühwirth and R. Mordinyi

3. Frühwirth, C., Biffl, S., Schatten, A., Schrittwieser, S., Weippl, E., Sunindyo, W.:
Research Challenges in the Security Design and Evaluation of an Engineering Service Bus
Platform. Paper presented at the 36th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), Lille, France (2010)

4. Frühwirth, C., Mordinyi, R., Biffl, S.: Systematic Definition of Security Requirements by
means of Misuse Cases in Multi-Engineering Domains, Christian Doppler Laboratory,
Vienna University of Technology (2011),
http://cdl.ifs.tuwien.ac.at/techrep/icgse

5. Harris, S.: CISSP All-in-One Exam Guide. McGraw-Hill (2008)
6. Herbsleb, J.D.: Global Software Engineering: The Future of Socio-technical Coordination.

Paper presented at the 2007 Future of Software Engineering (2007)
7. Kang, M.H., Park, J.S., Froscher, J.N.: Access control mechanisms for inter-organizational

workflow. Paper presented at the Proceedings of the sixth ACM Symposium on Access
Control Models and Technologies, Chantilly, Virginia, United States (2001)

8. Keblawi, F., Sullivan, D.: Applying the Common Criteria in Systems Engineering. IEEE
Security and Privacy 4(2), 50–55 (2006), doi:10.1109/msp.2006.35

9. Long, D.L., Baker, J., Fung, F.: A prototype secure workflow server. In: Proceedings of
15th Annual Computer Security Applications Conference (ACSAC 1999), pp. 129–133
(1999)

10. Mellado, D., Fern, E., Medina, N., Piattini, M.: A common criteria based security
requirements engineering process for the development of secure information systems.
Comput Stand Interfaces 29(2), 244–253 (2007), doi:10.1016/j.csi.2006.04.002

11. Mordinyi, R., Moser, T., Biffl, S., Dhungana, D.: Flexible Support for Adaptable Software
and Systems Engineering Processes. Paper presented at the Proceedings of the 23rd
International Conference on Software Engineering and Knowledge Engineering (SEKE
2011), USA (2011)

12. Moser, T., Biffl, S.: Semantic Tool Interoperability for Engineering Manufacturing
Systems. Paper presented at the 15th IEEE International Conference on Emerging
Techonologies and Factory Automation (ETFA 2010) (2010)

13. Moser, T., Mordinyi, R., Sunindyo, W.D., Biffl, S.: Semantic Service Matchmaking in the
ATM Domain Considering Infrastructure Capability Constraints. In: Du, W., Ensan, F.
(eds.) Canadian Semantic Web: Technologies and Applications, pp. 133–157. Springer,
Heidelberg (2010)

14. Mut-Puigserver, M., Payeras-Capellà, M.M., Ferrer-Gomila, J.L., Huguet-Rotger, L.:
Replay Attack in a Fair Exchange Protocol. In: Bellovin, S.M., Gennaro, R., Keromytis,
A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 174–187. Springer, Heidelberg
(2008)

15. Systems Security Engineers - Capability Maturity Model,
http://www.sse-cmm.org/index.html

16. Tondel, I.A., Jaatun, M.G., Meland, P.H.: Security Requirements for the Rest of Us: A
Survey. IEEE Softw. 25(1), 20–27 (2008), doi:10.1109/ms.2008.19

17. Zimmermann, H.: OSI reference model\—The ISO model of architecture for open
systems interconnection. In: Innovations in Internetworking, pp. 2–9. Artech House, Inc.
(1988)

 Quality Needs Structure: Industrial Experiences 229

Appendix

F
ig

. 3
. M

is
us

e
C

as
e

O
ve

rv
ie

w

Author Index

Borges, Pedro 59
Breu, Ruth 159

Chaudron, Michel R.V. 1
Coulette, Bernard 205

Desnos, Nicolas 193
Dhungana, Deepak 84
Duarte, Francisco J. 39

Elberzhager, Frank 181
Eschbach, Robert 181

Felderer, Michael 159
Fernandes, João M. 39
Frühwirth, Christian 217

Gleirscher, Mario 14
Golubitskiy, Dmitriy 14
Gouteux, Damien 193

Haisjackl, Christian 159
Hamid, Brahim 193
Höst, Martin 143
Hruschka, Peter 10

Ioualalen, Malika 121
Irlbeck, Maximilian 14

Kedji, Komlan Akpédjé 205
Klein, Harald 71
Knauss, Eric 71

Lbath, Redouane 205
Lepmets, Marion 103
Lindholm, Christin 143

Machado, Ricardo J. 39, 59
McBride, Tom 103
Monteiro, Paula 59
Mordinyi, Richard 217
Moser, Thomas 84
Motz, Johannes 159
Münch, Jürgen 181

Nassar, Mahmoud 205
Notander, Jesper Pedersen 143

Percebois, Christian 193

Rausch, Andreas 71
Rosbach, Alla 181

Salmi, Nabila 121
Sunindyo, Wikan 84

Wagner, Stefan 14
Winkler, Dietmar 84

	Title Page
	Message from the General Chair
	Message from the Scientific Program Chair
	Organization
	Table of Contents
	Keynotes
	Quality Assurance in Model-Based Software Development - Challenges and Opportunities -
	The State of the Practice and the Need for Quality Assurance in Model Based Software Development
	Does Investing in Modeling and Quality of Modeling Make Business Sense?
	Practical Light weight Methods for Starting Quality Assurance for Model Based Software Development
	Quality of UML Models
	Assessing Correspondence between Source Code and UML Model
	Low Hanging Fruit for Quality Assurance for Model Based Software Development

	What Does the Future Have in Store for Quality Assurance in Model Based Software Development
	Conclusion
	References

	Quality Driven Software Architecture
	Introduction
	Quality Tree as a Starting Point
	Changing ATAM to a Constructive Process
	Summary and the Way Ahead
	References

	Software Product Quality
	On the Benefit of Automated Static Analysis for Small and Medium-Sized Software Enterprises
	Introduction
	Approach
	Research Context
	Research Questions
	Static Analysis Techniques
	Study Subjects and Objects
	Procedure

	Results
	Code Clone Detection
	Bug Pattern Detection
	Architecture Conformance Analysis

	Discussion
	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Conclusions and Future Work
	References

	Software Engineering Processes
	BIM: A Methodology to Transform Business Processes into Software Systems
	Introduction
	Related Work
	Proposed New Concepts
	Instantaneously Available Organizations
	Organizational Aspects
	Process Framework
	Orchestrated Business Objects

	A Business Implementation Methodology
	Activities of the BIM Phases
	Supporting Technology

	A Summarized Execution of the BIM
	Conclusions and Future Work
	References

	Mapping RUP Roles to Small Software Development Teams
	Introduction
	Related Work
	Tailoring RUP for Constructing the Base Model
	Mapping RUP Roles into Base Model Roles
	Accumulation of Roles
	Conclusions
	References

	Scaling Software Development Methods from Co-located to Distributed
	Introduction
	Related Work
	Context: Co-located Agile Development
	The Collaborative Process Approach
	Example: Deriving a Distributed Agile Development Process
	Applied Mediator Pattern in Example: Additive Vertical Integration
	Assessment of the Derived Process

	Conclusion
	References

	Software Process Improvement
	Improving Open Source Software Process Quality Based on Defect Data Mining
	Introduction
	Related Work
	Observation and Improvement in OSS Projects
	Bug Reporting System
	Data Mining

	Research Issues
	Solution Approach
	Effective Engineering Process Observation
	Evaluation of Engineering Process Model

	Results
	Engineering Process Observation Framework
	Evaluation Results

	Discussion
	Engineering Process Observation Framework
	Evaluation Results

	Conclusion and Further Work
	References

	The Many Forms of Process Improvement – Results of an International Survey
	Introduction
	Improvement
	Research Method
	Research Questions
	Survey Results and Data Analysis
	Demographic Information
	Motivation
	Improvement Initiation
	Improvement Goals
	Implementing the Improvement
	Improvement and the Organization
	Regional Differences and Process Improvement

	Limitations of the Study
	Discussion
	What Have We Learned
	Summary and Future Works
	References

	Component-Based Architectures
	Towards Efficient Component Performance Analysis in Component Based Architectures
	Component Based Systems
	Concepts
	CBS Illustration: Public Internet Access Payment System

	Previous Work
	Well-Formed Models WN and SWN
	Overview of Our Method

	Modular CBS Analysis Process
	Detailed Component Modelling
	Abstract View of a Component
	Modular Analysis Process Algorithm
	Illustration

	Conclusion
	References

	Risk Management
	A Case Study on Software Risk Analysis in Medical Device Development
	Introduction
	Background and Related Work
	Case Study Methodology
	Objectives
	Case Study Process
	Case Study Context and Subjects
	The Study of the Organisation
	Analysis
	Validity

	Software Risk Process
	Results
	System Definition
	Risk Identification
	Risk Assessment

	Discussion and Conclusion
	System Boundary
	System Context
	Scenarios
	Estimation
	Further Research

	References

	Integrating Manual and Automatic Risk Assessment for Risk-Based Testing
	Introduction
	Related Work
	Generic Risk-Based Testing Process
	Risk Assessment Model
	Requirements
	Product
	Implementation
	Test
	Risk

	Risk Assessment Procedure
	Automated Metrics
	Semi-automated Metrics
	Manual Metrics
	Metric Estimation Workshop

	Conclusion
	References

	Quality Assurance and Collaboration
	Inspection and Test Process Integration Based on Explicit Test Prioritization Strategies
	Introduction
	Approach
	Case Study
	Goals
	Main Results from Another Evaluation
	Context
	Design
	Execution
	Results of the Case Study and Lessons Learned
	Threats to Validity

	Summary and Outlook
	References

	Towards a Security and Dependability Pattern Development Technique for Resource Constrained Embedded Systems
	Introduction
	S&D Pattern Development Life Cycle
	Pattern Fundamental Structure – PFS
	Domain Independent Pattern Model – DIPM
	Domain Dependent Pattern Model – DDPM
	Summary of the Proposition

	Secure Service Discovery Pattern for Home Control
	Representation at DIPM: Person Using a Remote InternetBox
	Specialize a Pattern through the DDPM: Subscriber Using a Remote OperatorBox

	Related Works
	Connected Works
	Positioning

	Conclusion and Future Work
	References

	Modeling Ad-Hoc Collaboration for Automated Process Support
	Introduction
	Related Works
	The CM_SPEM Metamodel
	Structural Concepts
	Behavioral Concepts

	Dynamic Updates to a Process Model: Representation in CM_SPEM
	A New Member Is Added to the Team
	A Serious Bug Is Found, and New Features Are Frozen Until Resolution

	Process Modeling and Enactment Using CM_SPEM
	Creating CM_SPEM Process Models
	Modifying CM_SPEM Process Models
	Extracting Information from CM_SPEM Process Models

	Conclusion
	References

	Quality Needs Structure: Industrial Experiences in Systematically Defining Software Security Requirements
	Introduction
	Related Work
	Software and System Integration for Distributed Software Engineering
	Security Requirements in Distributed Development
	Methods for Security Requirements Elicitation
	Gaps in the Literature and Contribution

	Systematic Elicitation of Security Requirements
	Activity 1 - Agree on Security Definitions, Terminology
	Activity 2 - Identify Vulnerable Assets
	Activity 3 - Identify Security Objectives and Dependencies
	Activity 4 - Identify Threats and Develop Artifacts
	Activity 5 - Risk Assessment
	Activity 6 - Elicit Security Requirements
	Activity 7 - Categorize Requirements
	Activity 8 - Requirements Inspection
	Activity 9 - Repository Improvement

	Experiences and Discussion
	Conclusion and Future Work
	References

	Author Index

