

The Fraunhofer IESE Series on
Software and Systems Engineering

Series Editors

Dieter Rombach
Peter Liggesmeyer

Editorial Board

W. Rance Cleaveland II
Reinhold E. Achatz
Helmut Krcmar

.

J€urgen M€unch • Ove Armbrust •
Martin Kowalczyk • Martı́n Soto

Software Process
Definition and
Management

Jürgen Münch
University of Helsinki
Department of Computer Science
Helsinki
Finland

Martin Kowalczyk
Fraunhofer IESE
Kaiserslautern
Germany

Ove Armbrust
Alpine Electronics Research of America
Torrance, CA
USA

Martı́n Soto
eleven GmbH
Berlin
Germany

ISBN 978-3-642-24290-8 ISBN 978-3-642-24291-5 (eBook)
DOI 10.1007/978-3-642-24291-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012936487

ACM Codes: D.2, K.6

Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

One of the most significant contributions of the agile methods community has been

to put to rest the mistaken belief that there could be a one-size-fits-all software

process by which all software systems could be developed. The agilists not only

produced a family of process models that were clearly different from the traditional

single-pass, sequential, requirements-first models, and their attendant baggage, but

also they provided evidence of their successful application, often in situations in

which the traditional approaches had failed. Further, they were willing to admit

that their methods were not a panacea for all projects. For example, agilist Kent

Beck stated in his pioneering 1999 book, Extreme Programming Explained, that

“Size clearly matters. You probably couldn’t run an XP project with a hundred

programmers. Not fifty. Nor twenty, probably. Ten is definitely doable.” (As an

example of the pace of process technology, an increasing number of organizations

have successfully evolved Architected Agile processes using a combination of

architecting, XP practices, and a Scrum-of-Scrums approach to scale up to about

100-person teams—but not further to date).

Once one accepts that multiple types of processes are going to be needed for

different project situations, a whole new field of questions arises. What are the

process driver factors that lead projects toward more agile, more plan-driven, more

risk- and value-based, or other methods? How does the existence of large, cost-

effective, but often incompatible COTS products or cloud services affect a project’s

processes? What sort of processes best fit a project that must provide high levels of

confidentiality, integrity, and availability assurance while being rapidly adaptable

to high rates of change? How do factors such as corporate or national cultures affect

a project’s choice of processes? How does a project cope with the need to integrate

different process models being used in different parts of the project? How does an

organization evolve from an opportunistic quick-to-market process as a startup, to

a high-assurance process once the product has a large customer base to satisfy?

How does an organization evaluate the maturity and domain of applicability of new

process approaches?

The number, variety, and importance of such process questions have caused

many organizations to appreciate the need for a much broader and adaptable

v

approach to software processes, including standards groups, professional societies,

the Software Engineering Institute, and some government organizations. But there

is a large amount of inertia to overcome, in terms of traditional standards, guide-

lines, contracting mechanisms, entrenched bureaucracies, and course curricula.

Thus, there is a great need for well-organized guidance about the properties and

areas of strength and weakness of various classes of software and system develop-

ment and life cycle processes.

This book provides a major step forward in providing such guidance. It is written

by authors with a wide variety of experience in commercial, industrial, government,

and entrepreneurial software processes. It provides an organized approach for

addressing the questions above, and numerous other questions, by describing and

distinguishing among various classes of process technology such as prescriptive

and descriptive processes, process modeling and simulation languages and tools,

experimental and observational process evaluation approaches, and process

improvement approaches.

Following the Osterweil “Software processes are software too” insight about the

duality between software products and processes, the book addresses software

process counterparts to software product technologies such as software process

requirements engineering, architecting, developing, evolving, execution control,

validation and verification, and asset reusability. It provides good illustrative

examples of their use, well-worked-out definitions of process terms, and ques-

tion-and-answer assignments for use in teaching software process engineering to

students or practitioners.

As a bottom line, this book has arrived at an opportune time to help many

classes of software-reliant people and organizations learn how to cope with a

multiparadigm software process world. These include software-reliant enterprise

managers and their staffs; software-intensive project managers, systems engineers,

and developers; academic faculty researchers and teachers; and a growing body of

next-generation software process engineers. If you fit into any of these classes,

I believe that you will benefit greatly from reading this book and having it around

for future reference.

Los Angeles, CA, USA Barry Boehm

vi Foreword

Preface

The concept of processes is at the heart of software and systems engineering.

Software process models integrate software engineering methods and techniques

and are the basis for managing large-scale software and IT projects. High product

quality routinely results from high process quality. Process management deals with

getting and maintaining control over processes and their evolution.

Who Should Read this Book?

This book is aimed at students in undergraduate and graduate courses, at practi-

tioners who are interested in process definition and management for developing,

maintaining, and operating software-intensive systems and services, and at

researchers. Readers of this book should have basic familiarity with software

development.

1. Students. The book can be used in general software engineering courses, in

specialized process management courses, or in courses such as software project

management, software quality management, software process improvement, or

software measurement. The book may also be interesting for students who want

to get a focused introduction to software process management, but would rather

avoid general software engineering textbooks that typically present comprehen-

sive process models with canned technology or nonintegrated development

techniques.

2. Practitioners such as project managers, process engineers, or consultants.
Practitioners may find the book useful as general reading in order to become

familiar with the topic, for updating their knowledge, for understanding the

relationships between process management and other aspects of their daily

work, and for better assessing the relevance of the topic. Besides project

managers, the book is especially relevant for process engineers, consultants,

software engineers, SEPG members, members of process improvement groups,

vii

heads of software development departments, quality managers, project planners,

and coaches.

3. Researchers. Although the maturity of software process management practices

in industry has increased and the state of software process research has

advanced, the field is still quite immature. Students, practitioners, as well as

researchers should be aware of the limitations of existing process management

technologies, know the deficiencies of existing process models, and understand

unsolved problems in the field. There is still a long road ahead toward mature

software process management. We challenge software process researchers to

address the vision that by using an appropriate combination of process and

product engineering techniques, value creation for customers, adherence to

cost and schedule constraints, and the fulfillment of quality requirements can

be guaranteed on the basis of empirical facts.

Why a Textbook on Process Definition and Management?

One might argue that there are already many textbooks that include descriptions

of software process models. The answer is “yes, but.” Becoming acquainted with

existing software process models is not enough. It is tremendously important to

understand how to select, define, manage, deploy, evaluate, and systematically

evolve software process models so that they appropriately address the problems,

applications, and environments to which they are applied. Providing basic knowl-

edge for these important tasks is the main goal of this textbook. There are many

reasons that argue for a software process textbook:

Industry is in search of software process management capabilities. The emergence

of new job profiles in the software domain (such as the agile coach, ScrumMaster,

process engineer, or offshore development coordinator), the lean and agile trans-

formation of many organizations, and the establishment of so-called Software

Engineering Process Groups emphasize the industry’s need for employees with

software-specific process management capabilities. Most of today’s products and

services are based to a significant degree on software and are the results of large-

scale development programs. The success of such programs heavily depends on

process management capabilities, because they typically require the coordination

of hundreds or thousands of developers across different disciplines. Additionally,

software and system development is usually distributed across different sites

and time zones. To make things even more complex, technical and business

environments as well as project goals often change during project execution,

and an organization has to react to this in a controlled manner. The situation is

similarly complex for operation and maintenance projects. Can such endeavors be

mastered by using nothing but the appropriate software development and quality

assurance techniques? The answer is “no, not at all.” Analyses of large-scale

development programs have shown that, with few exceptions, the reasons for the

viii Preface

failure of such programs were not technical [1]. They almost always fail due to

management problems. Due to the fact that process models glue together all

activities, products, and resources, the relevance of process models for project

management and especially for the success of large-scale software development

programs is enormous. This need for process management capabilities is

contrasted by the typical capabilities of young software engineering professionals.

Such first-time employees are usually skillful with respect to software techniques

such as coding or testing, but only have a marginal command of process manage-

ment knowledge. This book provides basic building blocks of process manage-

ment, such as process modeling or improvement, in order to lay a solid foundation

for successful, sustainable processes.

Professional software engineers must fulfill process obligations. The duties of

professional software engineers with respect to adherence to process models are

becoming increasingly important. In order to illustrate this, let us compare

a program that is developed by a student and a program that is developed by a

software organization: Student programs usually solve small problems and are

built to demonstrate that they work. If a student program fails, the consequences

are limited. The student might not see the advantages of following a defined

process because he does not coordinate his tasks with others and defects can be

fixed without further consequences. If we consider the development of a soft-

ware program by professional developers in a company, the situation is quite

different: Each developer’s personal work needs to be coordinated with the work

of others; there is a customer paying for it, and the customer’s business might

depend on the resulting software. Thus, quality requirements are very important

and the effects of potential failures are more serious or not tolerable at all. This

means that there is often no way to avoid the definition, deployment, and control

of high-quality development, operation, and maintenance processes. It is not

sufficient anymore that a developer or a development team is convinced that

specific quality requirements are fulfilled. Other parties such as customers

also need to be convinced. Adherence to state-of-the-art processes and process

management practices plays a crucial role when it comes to convincing others or

even proving to them that quality requirements are fulfilled. This book explains

different approaches to process improvement and conformance in order to

support practitioners with respect to fulfilling process obligations.

Applicable knowledge from other disciplines is missing. Knowledge from other

disciplines such as production engineering or business process management has

only limited applicability for the software domain. One main reason is that

production and business processes are typically repetitive processes in the

sense that the same, well-understood process is enacted again and again with

no or only minor variations. Quality assurance, for instance, is typically treated

in production engineering and business management as the planning and deploy-

ment of a stable production or business process. Quality requirements can be

fulfilled under given organizational constraints by just repeating this process.

The situation is significantly different in software engineering: Software devel-

opment is always the creation of an individual product. Therefore, process

Preface ix

management cannot be based on the paradigm of repeatable processes. Quality

cannot be achieved by just repeating processes. In the software domain, process

and quality models need to be adaptable to individual development projects.

There are no software development processes that fit for all types of projects or

development environments. Consequently, approaches and techniques from

production engineering or business process management (such as Statistical

Process Control) cannot be transferred without difficulties. Sometimes they are

useful when adapted appropriately. People who only have a production engi-

neering or economic science background lack important capabilities for managing

software projects and software processes. Software-specific process management

capabilities are needed. This book introduces proven software-specific approaches

to process management in order to support software engineers in their projects.

How Is the Book Organized?

Process management can be roughly divided into three areas: activities, infrastruc-

ture, and models (Fig. 1). Process management activities (left column in Fig. 1) can

be seen as central: They consume, create, or modify different kinds of models

(bottom part of Fig. 1), and are supported by a process management infrastructure

(right column of Fig. 1).

The rationale for structuring the book is as follows (see middle part of Fig. 1):

The basic concepts are given at the beginning. Afterward, existing representative

process models are presented in order to give the reader an idea of what kinds of

models exist and what they look like. A description of how to create individual

models follows, and the necessary means for creating models (i.e., notations and

tools) are described. Finally, different possible usage scenarios for process man-

agement are given (i.e., process improvement, empirical studies, and software

process simulation).

Many books present practices, individual process models, or process standards

in rich detail. However, there is often no description of how to customize these

process models to a specific environment in a systematic way, information about

the effects in specific project environments is not provided, and underlying

assumptions are not true for many real situations (e.g., the assumption that devel-

opment is performed in a colocated manner). As a consequence, project managers

do not learn enough to assess the suitability of the presented models with respect to

their own project goals and environments. Process engineers do not learn enough

about how to customize or design appropriate models. In this textbook, we aim at

providing knowledge that enables readers to develop useful process models that are

suitable for their own purposes. In other words, the emphasis is not on working with

given process models but on developing useful process models. Therefore, this

textbook includes aspects such as descriptive modeling, continuous improvement,

empirical studies, simulation, and measurement.

x Preface

Reading. Although the chapters are self-contained, we recommend reading

the book in a sequential order. Each book chapter starts with a short summary

and a description of the chapter objectives. For each chapter, literature references,

associated exercises, and sample solutions are given. The exercises aim at repeating

and refining the material. They help the reader to get a better understanding and

think about the contents from different perspectives. In addition, a glossary and an

Process
Management

Project
Management

Product
Management

Quality
Management

Resource
Management

Software Engineering Management

Maturity
Models

Quality
Models

Product
Models

Resource
Models

Economic
Models

Models

Activities

Select, Apply and
Deploy Process Models

Design Process
Models

Describe Process
Models

Assessand Improve
Processes

Understand
Process Effects

Introduction

Prescriptive
Process Models

Descriptive
Process Models

Process Modeling
Notations and Tools

Analyze Process
Behavior

Process Improvement

Empirical Studies

Software Process
Simulation

Book Chapters Infrastructure

Modeling Concepts

Languages and Tools

Empirical Methods

Simulators

… …

Lifecycle
Process Models

Engineering
Process Models

Business
Process Models

Social
Process Models

Process Models

covered in this book = consists of = use, create, or modify

Fig. 1 Structuring of software process management

Preface xi

index are given so that the book can also be used as a reference book. The chapters

focus on the following topics:

Introduction. In this chapter, the need for software process management

and process models is motivated and the basic concepts and terminology are

presented.

Prescriptive Process Models. In this chapter, prescriptive software process

models are classified, a number of widely used process standards is introduced,

two types of process representations are introduced (process handbooks and

electronic process guides), and an exemplary deployment strategy is described.

This helps to get an overview of existing models, to understand their advantages

and disadvantages, and to get an understanding of what it means to select and

deploy a process model.

Descriptive Process Models. In this chapter, a method is described for designing

a process model based on observing current practices in an organization. Due to

the fact that software engineers only change their behavior in small increments,

the design of process models should start with or incorporate current practices of

an organization. Deploying a process model that is too distant from currently

lived practices implies high risks of nonacceptance. In addition, it is immensely

important that the documented processes in an organization reflect the current

practices. Quoting Watts Humphrey, “if you don’t know where you are, a map

won’t help”—meaning that improving processes efficiently requires an under-

standing of the current practices. Therefore, this chapter puts a focus on descrip-

tive process modeling for creating process models that match their counterparts in

reality.

Process Modeling Notations and Tools. In this chapter, a characterization

scheme for process modeling notations is given and selected notations are

presented. One of the aims of this chapter is to show that different notations

serve specific purposes differently, and that it is necessary to carefully consider

which notation to choose. The so-called multi-view process modeling language,

MVP-L, is described in more detail as an example of a notation that provides

comprehensive modeling concepts. In addition, a reference framework for a

process engineering tool infrastructure and an example tool are presented.

Process Improvement. In this chapter, different types of process improvement

and assessment frameworks are presented, especially continuous and model-

based approaches. In addition, selected software measurement and business

alignment approaches are presented due to their significant role for process

improvement.

Empirical Studies. In this chapter, a brief overview is given on how to determine

the effects of a process model in a concrete environment. Such effects can be, for

instance, the reliability of a developed code module, the defect detection rate of

an inspection process, or the effort distribution of a life cycle process model.

Software processes are, to a large extent, human-based and consequently non-

deterministic. In addition, they are heavily context-dependent, i.e., their effects

vary with the development environment. Therefore, empirical studies of

xii Preface

different types are needed to understand and determine the effects of processes

and to analyze risks when changing processes or introducing new ones.

Process Simulation. In this chapter, process simulation is introduced as a means

for analyzing process dynamics. It is shown how simulation models can be

created and how they can be combined with empirical studies to accelerate

process understanding and improvement. In addition, a library of existing

model components ready for reuse is introduced.

What Are the Benefits for the Reader?

Readers will gain knowledge and skills for designing, creating, analyzing, and

applying software and systems development processes. In particular, the essential

learning objectives of the book are:

– Understanding the importance of software processes and software process

improvement

– Becoming acquainted with industrial software and system development pro-

cesses and process standards

– Understanding the advantages and disadvantages of different process manage-

ment techniques and process modeling notations

– Getting basic knowledge for modeling and analyzing software and system

development processes

– Being aware of process management activities in software-related organizations

After studying the book’s contents, readers will be able to contribute to process

management activities, especially to applying common methods and notations

for process modeling, designing software development processes, defining process

improvement goals, selecting software process improvement approaches, partici-

pating in improvement programs, increasing process maturity, assessing processes,

and evaluating processes by performing empirical studies.

Who Are the Authors?

The foci of this book were selected based on the comprehensive process manage-

ment and software engineering experience of the authors. Although this book is

intended as a general introduction to software process definition and management,

it places an emphasis on specific areas, whereas others might highlight different

aspects. The authors of this book have defined many organizational process

standards, were involved in a multitude of industrial software process improvement

programs, and have conducted many empirical studies of different types. They have

produced national and international process standards for organizations such as the

European Space Agency (ESA), the Japan Aerospace Exploration Agency (JAXA),

Preface xiii

and other governmental authorities. Some of the authors defined process assessment

models and acted as certified process assessors for different schemes such as

ISO/IEC 15504. Research-wise, the authors have developed, deployed, and

evaluated a multitude of process management methods, techniques, and tools,

including technologies for multi-view process modeling, process scoping, process

tailoring, process compliance management, process visualization, and process

evolution. All authors can draw on several years of experience as members of

a process management division at a leading institute for applied research and

technology transfer. They have helped many companies worldwide to improve

their software development processes and their software process management.

The authors also have significant experience in teaching software process manage-

ment, be it by giving lectures at a university, in-house tutorials, or public seminars.

The material presented in this book has been used, for instance, many times in a

graduate process modeling course at the University of Kaiserslautern, Germany,

and in a course of an accredited international distance education master program.

One of the authors held several management positions in the area of process

management, including being the head of a process engineering and technology

group, the head of a process and measurement department, and the head of a process

management division. In addition, the authors have served the scientific community

in several ways such as co-organizing and contributing to the International Confer-

ence on Software and System Process (ICSSP), the International Conference on

Product Focused Software Development and Process Improvement (PROFES), and

the International Symposium on Empirical Software Engineering and Measurement

(ESEM).

Helsinki, Finland J€urgen M€unch
Torrance, CA, USA Ove Armbrust

Kaiserslautern, Germany Martin Kowalczyk

Berlin, Germany Martı́n Soto

Reference

[1] Humphrey WS, Konrad MD, Over JW, Peterson WC (2007) Future directions

in process improvement. Crosstalk J 20(2):17–22

xiv Preface

Acknowledgments

We appreciate the encouragement of Dieter Rombach and William E. Riddle to

work in the area of software process management. Their way of thinking signifi-

cantly influenced our approach to process engineering.

Our special thanks go to Barry Boehm, Thomas Bauer, S€oren Kemmann, and

Bastian Zimmer as well as many other individuals who gave us valuable review

comments. We would also like to thank Sonnhild Namingha for proofreading the

book.

This textbook integrates previous work by the authors (such as authored or

coauthored articles, reports, or studies) and work of others. In cases where the

authors intentionally reference material from others, the authors tried to cite this

correctly and completely. The provided references can be used for a deeper or more

comprehensive introduction to the respective topic.

We wish you interesting and enjoyable reading. We hope that you will benefit

from this textbook and that you will be able to make use of the values of software

process management—as an important step toward professional software and

systems development.

xv

.

Contents

1 Introduction . 1

1.1 Objectives of This Chapter . 1

1.2 Motivation . 1

1.3 Software Process Modeling and Improvement 6

1.4 Process Modeling Goals and Benefits . 7

1.5 Terminology . 8

References . 17

2 Prescriptive Process Models . 19

2.1 Objectives of This Chapter . 19

2.2 Introduction . 20

2.2.1 Prescriptive vs. Descriptive Models 20

2.2.2 The Product–Process Relationship 21

2.2.3 Prerequisites . 22

2.3 Prescriptive Process Model Classes . 24

2.3.1 Lifecycle Process Models . 24

2.3.2 Engineering Process Models . 37

2.4 Process Standards . 44

2.4.1 ISO/IEC 12207:2008 . 45

2.4.2 IEC 61508 . 46

2.4.3 ISO 26262 . 55

2.4.4 IEC 62304 . 57

2.5 Process Representations in Organizations 58

2.5.1 Process Handbooks . 58

2.5.2 Electronic Process Guides . 63

2.6 Deploying Prescriptive Process Models 65

2.6.1 Deployment Strategies . 66

2.6.2 An Exemplary Deployment Approach 69

2.6.3 Experience from Industrial Practice 74

References . 75

xvii

3 Descriptive Process Models . 79

3.1 Objectives of This Chapter . 79

3.2 Introduction . 80

3.3 Goals of Descriptive Process Modeling 80

3.3.1 Stable and Accurate Process Execution 80

3.3.2 Process Understanding . 81

3.3.3 Process Propagation . 81

3.3.4 Process Measurement . 82

3.3.5 Process Administration . 82

3.3.6 Process Automation . 83

3.4 Creating a Descriptive Process Model . 83

3.4.1 Approach Overview . 84

3.4.2 Step 1: State Objectives and Scope 86

3.4.3 Step 2: Select or Develop a Process Modeling Schema . . . 88

3.4.4 Step 3: Select (a Set of) Process Modeling Formalisms . . 91

3.4.5 Step 4: Select or Tailor Tools . 93

3.4.6 Step 5: Elicitation . 94

3.4.7 Step 6: Create the Process Model 96

3.4.8 Step 7: Analyze the Process Model 97

3.4.9 Step 8: Analyze the Process . 99

3.5 Descriptive Process Modeling Alternatives 100

3.5.1 Multi-view Process Modeling . 100

3.5.2 Elicit . 102

3.6 Guidelines for Process Elicitation Interviews 104

3.6.1 Interview Preparation . 104

3.6.2 Beginning the Interview . 105

3.6.3 The Main Interview . 105

3.6.4 Interview Closure . 106

3.7 Managing Risk in Descriptive Process Modeling Efforts 107

3.7.1 Resistance of Participants . 107

3.7.2 Inaccurate Reporting . 108

3.7.3 Underestimating Necessary Investments 109

3.7.4 Underestimating Process Model Complexity 110

References . 110

4 Process Modeling Notations and Tools . 111

4.1 Objectives of This Chapter . 111

4.2 Introduction . 112

4.3 Criteria for Assessing Process Modeling Notations 112

4.3.1 Characteristics of Process Modeling Notations 113

4.3.2 Requirements for Process Modeling Notations 114

4.4 Multi-view Process Modeling Language 116

4.4.1 Overview . 116

4.4.2 Concepts . 116

4.4.3 Notation Constructs . 117

xviii Contents

4.4.4 Instantiation and Enactment . 122

4.4.5 Assessment with Respect to the Defined Criteria 127

4.5 Software Process Engineering Metamodel 127

4.5.1 Overview . 127

4.5.2 Concepts . 128

4.5.3 Notation Constructs . 130

4.5.4 Assessment with Respect to the Defined Criteria 131

4.6 Tools for Software Process Modeling . 131

4.6.1 The ECMA/NIST Reference Model 132

4.6.2 The Eclipse Process Framework (EPF) Composer 136

References . 138

5 Process Improvement . 139

5.1 Objectives of This Chapter . 139

5.2 Introduction . 140

5.3 Model-Based Improvement Approaches 143

5.3.1 Capability Maturity Model Integration 145

5.3.2 ISO/IEC 15504 (SPICE) . 150

5.4 Continuous Improvement Approaches . 152

5.4.1 PDCA Cycle (Deming Cycle) . 153

5.4.2 Total Quality Management . 153

5.4.3 Total Quality Control . 155

5.4.4 Company-Wide Quality Control 156

5.4.5 Kaizen . 157

5.4.6 Zero Defect Program . 157

5.4.7 Six Sigma . 158

5.4.8 The Quality Improvement Paradigm 160

5.4.9 The Experience Factory . 161

5.5 Process Improvement and Measurement: The GQM Approach . . 162

5.6 Aligning Improvement Goals and Strategies with Business 164

5.6.1 The Balanced Scorecard . 165

5.6.2 GQM+Strategies . 166

References . 175

6 Empirical Studies . 177

6.1 Objectives of This Chapter . 177

6.2 Experiments . 178

6.2.1 Controlled Experiments: Research in the Small 180

6.2.2 Case Studies: Research in the Typical 182

6.2.3 Surveys: Research in the Large . 182

6.2.4 Experiment Sequences . 183

6.3 Benefits . 185

References . 185

Contents xix

7 Software Process Simulation . 187

7.1 Objectives of This Chapter . 187

7.2 Software Process Simulation . 188

7.2.1 Continuous Simulation . 191

7.2.2 Discrete-Event Simulation . 192

7.2.3 Hybrid Simulation . 193

7.2.4 Benefits . 193

7.3 A Method for Developing Simulation Models 194

7.3.1 Requirements Identification and Specification 196

7.3.2 Process Analysis and Specification 198

7.3.3 Model Design . 202

7.3.4 Model Implementation . 204

7.3.5 Model Calibration, Validation, and Verification 204

7.4 Plug & Play Process Models . 206

7.5 Combining Process Simulation and Empirical Studies 207

References . 209

8 Glossary . 211

9 Authors . 217

Appendix . 219

Index . 233

xx Contents

Chapter 1

Introduction

This chapter motivates the need for defining and managing software process

models. Basic concepts and terminology are presented. Figure 1.1 displays the

chapter structure.

1.1 Objectives of This Chapter

After reading this chapter, you should be able to:

– Understand the reasons why software processes are important for software

development projects and organizational learning

– Name the different goals of software process modeling

– Appreciate the need for software process modeling, process management, and

process improvement in organizations that are developing, operating, or

maintaining software-based systems or services

– Explain the basic terms

1.2 Motivation

Nowadays, the business of many companies and organizations is essentially based

on software. Software-intensive systems, such as automotive or telecommunication

systems, and services, such as financial services, increasingly depend on software.

Software adds significant value to many products and services and allows for

Motivation

Software
Process

Modeling and
Improvement

Process
Modeling

Goals and Benefits
Terminology

Fig. 1.1 Chapter structure

J. M€unch et al., Software Process Definition and Management,
The Fraunhofer Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-24291-5_1, # Springer-Verlag Berlin Heidelberg 2012

1

competitive differentiation in the market. The increasing importance of software as

well as new software development paradigms such as model-driven or lean soft-

ware development and future software-based applications impose many challenges

and demands on software development, operation, and maintenance. In the follow-

ing, several reasons are given for why organizations should place an emphasis on

process management.

Typically, software and software-intensive systems are developed with hundreds

or thousands of people in teams. They perform a multitude of different activities,

so-called processes. Systematic coordination and cooperation mechanisms are

needed in order to successfully create customer value and fulfill project goals

under given project constraints such as budget limitations or deadlines. Descriptions

of processes, so-called process models, are a necessary means for coordinating such

endeavors. Process models can be used to define work procedures, prescribe the

interfaces between tasks, support the organization of work products, or support the

management of necessary resources. Team-based development has several

characteristics that are challenging to deal with when conducting projects. Some

typical characteristics are:

– Many activities are not performed by individuals, but are shared among different

developers working together smoothly.

– In large projects, a multitude of activities can be performed in parallel. This

requires good coordination so that the results of these tasks fit together in a

planned way.

– There are many relationships between activities. Documents or code, for

instance, can be exchanged between activities or may be used jointly by different

activities. In addition, temporal dependencies may exist between activities.

– Many activities need to be synchronized so that they contribute to overall project

goals. In systems engineering, for instance, software engineering processes often

need to be synchronized with processes from mechanical and electrical

engineering.

– As software development is a largely human-based activity, building teams is an

important issue. Teamwork involves, for instance, selecting a team, harmonizing

the contributions of individual members, integrating different skills and

interests, and solving conflicts. Clear responsibilities can help to overcome

problems with team development.

– Managing human-based processes requires great leadership skills. One of the

main tasks is to motivate people to contribute to common goals.

– Besides product requirements, project managers have to consider process

requirements when performing projects and leading teams. Examples of process

requirements include adherence to process standards or required productivity.

Software and systems development is being increasingly performed concur-

rently in different countries with many customer–supplier relationships along the

development chain. Outsourcing, offshoring, and nearshoring are aggravating this

trend. Global software development is close to becoming the norm. Motivators for

globally distributed software development are [1]:

2 1 Introduction

– Limited trained workforce in technologies that are required to build today’s

complex systems

– Differences in development cost that favor geographical dispersal of teams

– A “shift”-based work system facilitated by time zone differences allowing for

shorter times to market

– Advances in infrastructure (e.g., availability of Internet bandwidth and software

development and integration tools)

– A desire to be “close” to a local market

It is inherently more difficult to coordinate projects where teams are physically

distributed than projects with colocated teams. This is mainly due to the lack of

implicit knowledge shared among developers who work in colocated environments.

In addition, different cultures significantly aggravate the coordination of large

software development projects and lead to manifold new coordination mechanisms.

Supporting such distributed development requires well-understood and accurately

implemented process interfaces and process synchronization. In addition, tasks

need to be distributed among different sites (Fig. 1.2).

Large systems usually consist of components from different disciplines (e.g.,

electrical engineering, mechanical engineering, software engineering). In addition,

software-based systems penetrate more and more areas of our daily life, which

means that these systems must be easy to use for nonexperts. Hence, disciplines

such as sociology and psychology are getting increasingly relevant for software

development. In consequence, specialists from many disciplines have to work

together when developing, maintaining, or operating software-based systems

and services. Historically, software engineering has, to a large extent, evolved

separately from other disciplines. Other disciplines have developed their own

terminology, methods, techniques, tools, culture, and way of solving problems.

Fig. 1.2 Distribution of software engineering tasks to different sites

1.2 Motivation 3

Therefore, integrated development between different disciplines requires a very

careful understanding of the other disciplines and, as a minimum, harmonized and

synchronized interfaces between the processes of the different disciplines.

More and more organizations are deploying systematic improvement programs.

Often they follow so-called process capability or maturity models such as ISO/IEC

15504 [2] and CMMI [3]. The reasons for this are, for instance, that some

organizations are forced to demonstrate their capabilities (such as for winning a

bid) or that organizations use these maturity models as a framework for their

improvement activities. At a certain level, these maturity models typically require

the existence of explicit processes; on higher levels, they require capabilities for

managing these processes in a quantitative way.

Nowadays, an increasing number of organizations are forced to adhere to

regulatory constraints that require the presence of explicit processes and the

demonstration of adherence to those processes. Examples are the IEC 61508

standard [4] for safety-related systems and the tailoring of European Cooperation

for Space Standardization (ECSS) software engineering standards [5] for ground

segments [6] at European Space Agency (ESA).

One of today’s most important challenges is that software is taking over more

and more critical functionality. Therefore, software failures have a large potential

for causing economic or even physical harm. Software is currently becoming the

major source of critical system failures. This implies that the software included in

many systems and services needs to be developed, operated, and maintained in such

a way that critical qualities such as reliability, safety, security, privacy, or robust-

ness can be assured at acceptable levels. Since many important critical product

requirements cannot be fulfilled by features added to a system already developed,

these requirements have to be considered systematically throughout the entire

development process. As a consequence, activities regarding the assurance of

these desired qualities need to be integrated into the overall development process,

understood with respect to their effects on the resulting system, and adhered to

during project performance.

Market dynamics require an organization to adapt better and faster to changes in

the development environment, and to enforce innovations. Advanced process

management is required to support assessing the impact of process changes and

the flexible adaptation of processes.

All these challenges and demands on software development, operation, and

maintenance require a significant transition from craft-based software development

to more engineering-style software development. This addresses especially the

following principles:

– Planning is based on experience

– Project execution is goal- and value-oriented and adheres to defined processes

– Projects are traceable and controllable

– Relevant process effects are predictable

– Learning and improvement cycles are established

4 1 Introduction

These principles are widely accepted and established in traditional disciplines

such as production engineering or mechanical engineering. In applying these

principles to software engineering, one needs to consider the specifics of software

(e.g., software is developed rather than produced; the effects of techniques depend

on the development environment; software development involves many creative

activities; data is less frequent and mostly of a nonparametric nature).

There are several approaches to applying engineering principles to software

development that aim at so-called disciplined software development, including

the problem-oriented Quality Improvement Paradigm (QIP) [7] and the solution-

oriented Capability Maturity Model Integration (CMMI) [3]. According to

Rombach et al. [8], essential elements of these frameworks are:

– With respect to processes: defined processes, prediction models (with respect to

effort, schedule, quality), analytical and constructive quality assurance processes

throughout the whole lifecycle, understanding of the context-dependent aspects

of key methods and techniques

– With respect to products: adequate documentation, traceable documentation,

evolvable architecture

– With respect to management: adequate workforce capabilities and staffing,

sufficient continuing education and training, guaranteeing the sustainability of

core competencies

– With respect to organizational improvement: traceable quality guidelines, com-

prehensive configuration management, learning organization

Understanding and gaining intellectual control over processes is a prerequisite

for managing, controlling, and optimizing the development and evolution of

software-intensive systems and services. This implies the establishment of

advanced process management capabilities and an adequate understanding of the

impact of processes on the generated products, services, and business values in

different situations.

Due to the importance of software process models, organizations should have

adequate process management capabilities in place to define, use, and evolve

process models. Insufficient process management can lead to serious failures,

including inefficient productivity, increased time to market, and decreased work-

force motivation. If no adequate process management is established, this typically

causes problems such as

– Unnecessary rework

– Deviations from plan are detected too late

– Confusion regarding roles and responsibilities

– Documents cannot be found when needed because they are not associated with

process steps

– Variations in process execution

– Permanently incomplete and inconsistent process documentation

1.2 Motivation 5

– Deferred certification because appropriate process documentation cannot be

produced promptly

– Performance inefficiency (due to “unfit for purpose” processes)

– Uncertain execution and dependence on individual efforts (due to vague and

incomplete process descriptions)

– Inefficient division of work and double work (due to poorly defined interfaces)

Hence, the typical question is no longer if process management is necessary,

but how to define and implement a strategy for introducing advanced process

management step by step and how to evaluate its success.

1.3 Software Process Modeling and Improvement

Following Osterweil [9], process models can be seen as generalized solution

specifications that can be instantiated to perform concrete activities: While a

process is a vehicle for solving problems and achieving development goals, a

process model is a specification on how this is done. Process models can be used

for different purposes, e.g., for coordinating, synchronizing, monitoring, and

improving software development, maintenance, and operation activities.

There is no set of ideal process models that can be used for the development or

evolution of software-intensive systems and services. The suitability of a process

model heavily depends on the so-called context of a project, i.e., the characteristics

of a development environment and the goals of a project. The effectiveness of a

specific testing process, for instance, can highly depend on context characteristics,

like the required reliability level of the test object, the experience of the test team,

the budget for testing, the application domain, and other factors.

Choosing appropriate process models and tailoring them for a specific project

and development environment is important and requires sufficient understanding of

the effects of the processes in this very environment. This, in turn, requires an

understanding of the cause-effect relationship between processes and products

under typical conditions of the development environment. Therefore, development

organizations should invest effort into determining the effects of processes in their

own environment. Empirical studies and simulation are means to gaining such

knowledge.

The need for software process improvement (SPI) is being widely recognized

nowadays. Due to the fact that software development processes are usually human-

based and depend on the development context, changes to these processes typically

cause significant costs and should be considered carefully. Alternative improve-

ment options need to be evaluated with respect to their implementation cost and

their potential impact on business goals.

The field of software process modeling, analysis, and evolution is also an

important research area. This is especially motivated by the following:

6 1 Introduction

– Software engineering methods, techniques, and tools are being used in processes

(i.e., the processes form the prerequisites for their successful use). Hence,

research on methods, techniques, and tools requires an understanding of how

they are being used. Appropriate processes are a critical success factor for

gaining benefits from research results. Researchers who are not familiar with

processes in which their research results are being used will likely fail to produce

beneficial results.

– Processes need to be investigated in order to identify and assess strengths and

weaknesses and to identify and evaluate improvements. Due to the fact that

many processes are human-based activities, their behavior is nondeterministic,

and the effects of processes need to be studied empirically for specific contexts.

– There are still many problems and challenges related to process management

that lead to fundamental research questions (e.g., how to support the replanning

of human-based processes, how to provide process models for reuse, how to

define the degree of allowed flexibility).

1.4 Process Modeling Goals and Benefits

Software process modeling supports a wide range of objectives. Based on Curtis

et al. [10], the following basic objectives for software process modeling can be

observed:

– Facilitate human understanding and communication

– Support process improvement

– Support process management

– Provide automated guidance in performing process

– Provide automated execution support

Among others, the following benefits are expected from systematic process

modeling:

– Better transparency of software engineering activities

– Reduced complexity of large development efforts

– The ability to perform process measurement (i.e., process models that are used in

practice are a prerequisite for process measurement and, in consequence, for

process improvement)

– The ability to undergo process assessments (i.e., explicitly defined process

models are a prerequisite for demonstrating process maturity)

– Predictability with respect to the process characteristics and the characteristics

of the results is only achievable with explicit models (i.e., enabling predictability

for characteristics such as consumed effort, completion date, or reliability of a

produced software component requires the existence of explicit process models,

although this is not enough and other models are needed, too)

1.4 Process Modeling Goals and Benefits 7

1.5 Terminology

Compared to other engineering disciplines, software engineering and especially

software process modeling is quite a young discipline. Currently, a mature or

standardized terminology does not exist. Besides the newness of the domain, this

is mainly caused by the parallel emergence of different process notations and

influences from different other domains such as business process modeling or

programming notations.

In practice, organizations often use different terms for similar constructs (e.g.,

activity, task, work assignment, work package, step, . . .), or people mix terms that

describe models with terms that describe real objects (e.g., using the term “software

process” instead of “software process model”). Often the domain is unspecified

(e.g., using the term “process” instead of “software process”). However, a common

understanding of terms does exist. In the case of imprecise usage of terms, the

semantics can often be determined by the context.

In the following, we present a terminology that can be considered as a kind of

common sense in the process modeling community. This terminology is mainly

based on [10–12], and to a minor degree on [9, 13] and [14], as well as on other

publicly available sources.

A software process is a goal-oriented activity in the context of engineering-style
software development.

Examples are the creation of a product (e.g., coding of system component no. 15

in project Alpha at company ACSoft), testing of a system, measurement of a code

module, planning of a project, or packaging of experience for reuse in future

projects.

Typical characteristics of software processes are:

– They are enacted in the real world

– They usually transform one or more input products into one or more output

products by consuming further products (e.g., guidelines)

– They can be performed by humans (“enactment“) or machines (“execution“) or

both together

– They can be refined by subprocesses, each of which can also be refined

Often, software processes are also called “software development processes”. We

recommend using the term software process because (a) many processes are not

directly related to development (such as maintenance processes), and (b) software

processes are also relevant in areas where not only software is produced (e.g., when

building software-based systems).

In this book, if the context is clear, the term “process” is used instead of

“software process.”

8 1 Introduction

A project is a unique endeavor, which is limited by a start date and an end date

and should achieve a goal.

It should be recognized that permanent or routine activities are not projects.

A project phase (short: phase) is a collection of logically separated project

activities, usually culminating in the completion of a major deliverable or the

achievement of a major milestone.

Typical characteristics of project phases are:

– Phases are mainly completed sequentially, but can overlap in some project

situations

– Phases can be subdivided into subphases

– Unlike a process, a phase is always defined by a start date and an end date. If this

period is finished, the phase is finished. Typically, processes can be activated

multiple times

– Typical examples of phases are the elaboration phase, the construction phase, or

the transition phase. Phases are usually used when looking at a project from a

management perspective

A major reason why it is important to differentiate between a process and a

project phase is that there are two essentially different views on projects: a

management view and an engineering view. Management often needs a period-

based view on activities because investors, investments, dividends, revenue

calculations, and financial plans are typically period based. Engineers usually

need a product-based view on activities, i.e., a view on activities that describe in

a goal-oriented way the steps needed to create, maintain, or operate a product or

service.

It should be recognized that a project phase can be only performed once. If a

requirements definition phase has been declared completed, it cannot be enacted

again, even if there are still requirements engineering activities to be done.

A process, however, can be reenacted. If, for instance, requirements defects were

detected during a design review, a requirements engineering process can be

reenacted in order to remove the defects (Fig. 1.3).

Amodel is an abstract and simplifying representation of an object or phenomenon

of the real world.

1.5 Terminology 9

Typical characteristics of models are:

– They describe only those aspects of the object or phenomenon that are (believed

to be) relevant for the understanding and intended usage of the model

– They encapsulate experience and allow for an explicit representation of

experience

– They can be created for different purposes such as planning, control, or

prediction

– They have their own lifecycle, i.e., they can be specified, built, implemented,

analyzed, used, assessed, evolved, or rejected

The frequently quoted phrase “Essentially, all models are wrong, but some are

useful,” attributed to the statistician George Edward Pelham Box, highlights that a

model only represents a limited number of real-world aspects and details. The

challenge lies in capturing sufficient real-world aspects and details in a model so

that the model can be used for its purpose.

A software processmodel (short: processmodel) is amodel of a software process.

A software process model is a description of a software process. Process models

are often used as a means for problem solving. The specification of the enactment of

a software process by a process model is comparable to the specification of baking a

cake using a recipe. Process models can be represented by using different notations

(e.g., graphical, natural language, machine-readable notations).

A process model can describe a process on different levels of abstraction (e.g.,

lifecycle process level, engineering process level, atomic step level).

Create user
requirements

document

Create software
requirements

document

Requirements
review

Create
architectural

design document

Requirements
definition

Architectural
design

Design
review

Rework

Reinspection

Rework

Reinspection
Requirements
defects found

Reenacted
processes

Phase

time

…

…

…

= process enactment = control flow

Requirements
definition

Architectural
design

Rework

Reinspection

Rework

Reinspection

Process

Fig. 1.3 Process vs. phase

10 1 Introduction

The main elements of process models are:

– A description of an identifiable activity or a group of activities

– A description of the product flow (i.e., input and output products for activities)

– A description of the control flow between processes (i.e., the enactment or

execution sequence)

– A description of a refinement (i.e., the definition of a hierarchy of processes)

– A description of the relationships to techniques, methods, tools

– A description of the relationship to roles

Other process-related definitions or statements are:

Process: A set of partially ordered steps intended to reach a goal [12].

Process description: While a process is a vehicle for doing a job, a process

description is a specification of how the job is to be done. Thus, cookbook recipes

are process descriptions, while preparing a recipe is a process [9].

Process model: A software process model reflects an organization’s know-how

regarding software development. Software engineering know-how has to be

developed andmaintained. Practical experience has shown the need formodeling

software engineering entities (especially processes), measuring those entities,

reusing the models, and improving the models [8].

Often, only selected elements are shown in graphical representations of process

models. Figure 1.4, for instance, shows only activities, artifacts, and the product

flow, while Fig. 1.5 also shows the control flow and the relationships to roles.

In the following, further basic terms are defined:

An atomic process (synonym: process step) is a process that does not allow

further structuring in the form of subprocesses.

Process enactment is the performance of process steps undertaken to reach

a given goal. The process performer (i.e., “agent”) can be a human or a

machine. In case of a machine, the term “process execution” is usually used.

A process definition is a description of a process that is enactable.

Process scripts and process programs are specializations of process definitions:

A process script is a description of a process that is suitable for interpretation
by humans. A process script should be tailored to the needs of the process

performer.
(continued)

1.5 Terminology 11

A process program is a description of a process that can be interpreted by

machines.

A process schema (synonym: process metamodel, process architecture) is

a conceptual framework for the consistent description of process models and

their relationships. A process schema describes, on the one hand, building

blocks and their relationships that form a process model, and, on the other

hand, constraints on their composition.

Fig. 1.4 Process model with product flow

12 1 Introduction

Fig. 1.5 Process model with product and control flow and roles

1.5 Terminology 13

Until now, a single commonly accepted process schema for software develop-

ment processes has not been established. Only few process management tools are

flexible enough to cope with multiple process schemata or are able to import

individual process schemata. Often, a process schema is created ad hoc together

with the process model. This often implies description failures (e.g., phases are

refined by process models).

A process agent (synonym: process performer) is a person or machine that

enacts/executes the process in order to reach the process goal(s). Humans inter-

pret process scripts, machines interpret process programs.

A process owner is a human or organizational entity that sets the goals of a

process and is responsible for their achievement.

A process owner provides resources for the enactment or execution of the

process and is responsible for providing appropriate process definitions.

A process engineer is a person who pursues one or several goals of process

modeling (e.g., defining, extending, maintaining, improving process models).

To that end, a process engineer uses process models, which he defines, extends,

improves, and manages. The process engineer should pay attention to the accuracy

of the model, i.e., the correspondence between the real-world process enactment/

execution and the process model.

A principle is a policy or mode of action that describes important characteristics

of a process model.

Often, new process models evolve from principles. Examples of principles are:

– Active user involvement is imperative

– Frequent inspection

– Work in progress should be limited

– Timeboxed iterations

– Develop small incremental releases and iterate

– Frequent delivery of product

– Continuous integration

14 1 Introduction

– Colocation

– Common coding guidelines

– Self-organizing teams

– Daily meeting

A principle is not a process or a process model, but a process or a process model

can capture one or more principles. Principles should be adapted to contexts (e.g.,

by using experimentation) and integrated into process models. Sometimes the term

“practice” is used as a synonym for principle, e.g., the principle “continuous

integration” is often referred to as an XP practice.

A product is each artifact that is consumed or produced in the context of

engineering-style software development.

Products can be refined by other products. Examples of products are:

– Source code

– Specification document

– Problem description

– Configuration data

– Component design

– Test case

– Test result

– Project plan

A product model is a description of a product or a class of products.

Usually, software product models consist of a description of the information

units of a software product (e.g., functional requirements, nonfunctional

requirements, design decisions) and a structure for arranging the information

units (e.g., a table of contents for a requirements document).

The product flow consists of the relationships between products and processes that

describe the access mode to the products.

The following access modes are typically defined:

– Produce (write)

– Consume (read)

– Modify (read/write)

1.5 Terminology 15

A role is a set of processes belonging together that are assigned to one or several
agents. A role combines the functional responsibility for the enactment of a

process.

Examples of technical development roles are: requirements engineer, designer

(architecture), designer (data/algorithms), programmer, inspector, system integra-

tion engineer, and tester.

Examples of organizational and management-oriented roles are project planner,

project manager, product manager, and quality engineer.

Like a process, a role is an abstraction. A role groups competencies (i.e.,

knowledge and rights). Several different types of relationships between roles and

agents can be defined, especially 1:1 (e.g., the tester is Mr. Miller), m:1 (e.g.,

Mr. Miller plays both the role of the requirements engineer and the role of the code

inspector), 1:n (the role of the project manager is shared by Mr. Miller and Ms.

Scott), m:n (a mixture of the previous cases). It is important that the relationship

between a role and an agent is explicitly defined. This is typically done during

project planning, resource planning, and replanning.

A role is typically described as a specific view on the process by:

– The activities the role is involved in (described independently of the person)

– The documents that are consumed or produced in these activities

– The level of involvement of a role in an activity

– The requirements for playing a role (e.g., qualifications)

Figure 1.6 shows an example of the activities and the product flows that relate to

the role module developer.

Module
requirements

Module
design

Module
code

Module development

Module
design

Module
coding

Module developer

Product flow
Control flow

Document Activity Refinement

Fig. 1.6 Role example

16 1 Introduction

Benefits of the role concept are:

– Activities and responsibilities of persons involved in a project can be clearly

defined

– Transparency supports communication and cooperation between roles

– Necessary competencies are clearly defined

– Project planning is simplified

– Resources for a project or an organization can be specified independently of

available personnel

– Role bottlenecks can already be determined at an early stage during project

planning

The relationship between roles and process models can be qualified: For

instance, a role can perform a process or a role needs to be informed when a process

is performed or completed. Often, a so-called “Responsibility Assignment Matrix”

(RAM) is used to qualify the relationship between roles and processes.

Finally, we define the term project plan, which integrates and instantiates several

of the concepts presented above:

A project plan is a specification of the necessary resources for the execution of a
process definition, the relationships between these resources and processes, the

produced products including the product flows, and restrictions of any type

concerning the execution of the process.

References

1. Sangwan R, Bass M, Mullick N, Paulish DJ, Kazmeier J (2007) Global software development

handbook. Auerbach Publications, Boca Raton, FL

2. International Organization for Standardization (2006) ISO/IEC 15504:2004, ‘Information

technology—Process assessment’. ISO/IEC, Geneva, Switzerland

3. Carnegie Mellon Software Engineering Institute (2010) Capability maturity model integration

1.3. http://www.sei.cmu.edu/cmmi/. Accessed 9 Jun 2011

4. International Electrotechnical Commission (2005) IEC 61508, ‘Functional safety of electrical/

electronic/programmable electronic safety-related systems’. IEC, Geneva, Switzerland

5. European Cooperation for Space Standardization (2009) Collaboration Website of the

European Cooperation for Space Standardization. http://www.ecss.nl/. Accessed 9 Jun 2011

6. ESA Board for Software Standardisation and Control (BSSC) (2005) Tailoring of ECSS

software engineering standards for ground segments in ESA. http://www.esa.int/TEC/

Software_engineering_and_standardisation/TECT5CUXBQE_0.html. Accessed 9 Jun 2011

7. Basili VR, Caldiera G, Rombach HD (1994) The experience factory. Wiley, New York

8. Rombach HD, M€unch J, Ocampo A, Humphrey WS, Burton D (2008) Teaching disciplined

software development. Int J Syst Software 81(5):747–763. doi:10.1016/j.jss.2007.06.004

9. Osterweil LJ (1987) Software processes are software too. In: Proceedings of the 9th interna-

tional conference on software engineering (ICSE 1987), Monterey, CA, pp 2–13

10. Curtis B, Kellner MI, Over J (1992) Process modeling. Commun ACM 35(9):75–90.

doi:10.1145/130994.130998

References 17

http://www.sei.cmu.edu/cmmi/
http://www.ecss.nl/
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECT5CUXBQE_0.html
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECT5CUXBQE_0.html
http://dx.doi.org/10.1016/j.jss.2007.06.004
http://dx.doi.org/10.1145/130994.130998

11. Rombach HD, Verlage M (1995) Directions in software process research. In: Zelkowitz MV

(ed) Advances in computers 41. Academic Press, Boston, MA

12. Feiler PH, Humphrey WS (1993) software process development and enactment: concepts

and definitions. In: Proceedings of the 2nd international conference on the software process

(ICSP 2), Berlin, Germany, February 1993, pp 28–40

13. Heidrich J, M€unch J, Riddle W, Rombach D (2006) People-oriented capture, display, and use

of process information. In: New trends in software process modeling, vol 18, Series on

software engineering and knowledge engineering. World Scientific, Singapore, pp 121–179

14. Cugola G, Ghezzi C (1998) Software processes: a retrospective and a path to the future.

Software Process Improve Pract 4(3):101–123. doi:10.1002/(SICI)1099-1670(199809)

4:3<101::AID-SPIP103>3.0.CO;2-K

18 1 Introduction

Chapter 2

Prescriptive Process Models

This chapter introduces prescriptive process models as a means of instructing an

organization on how to achieve its business, software development, and improve-

ment goals. It is structured into four main parts. First, two major classes of

prescriptive process models are distinguished: lifecycle models and engineering

models. These classes are described and discussed with respect to their advantages

and challenges. Second, a number of widely used process standards are introduced

to give an impression of the material the software industry is currently working

with. Since these standards are not intended or fit for direct application, they must

be amended and transformed into more user-friendly representations. Hence, the

third part introduces two types of representations: process handbooks and electronic

process guides (EPGs). Finally, it is typically not sufficient to prepare and publish a

process handbook or EPG: Any new or changed process must be deployed in a

systematic manner, to cause as little unnecessary pain for the organization as

possible. The fourth part of this chapter thus discusses the deployment of a

prescriptive process model to an organization. Figure 2.1 displays the chapter

structure.

2.1 Objectives of This Chapter

After reading this chapter, you should be able to:

– Distinguish prescriptive and descriptive process models

– Explain the relationship between product and process

– Explain the prerequisites for applying prescriptive process models

– Name and explain different lifecycle process models

Prescriptive Process
Model Classes

Process
Standards

Process
Representations

Process
Deployment

Fig. 2.1 Chapter structure

J. M€unch et al., Software Process Definition and Management,
The Fraunhofer Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-24291-5_2, # Springer-Verlag Berlin Heidelberg 2012

19

– Name and explain some widely used process standards

– Develop a process handbook for a specific target audience

– Support the deployment of a prescriptive process model to an organization

2.2 Introduction

This section distinguishes prescriptive from descriptive process models and

discusses their relationship. It further defines the product–process relationship as

a central basis for all process modeling activities. Finally, prerequisites for applying

a prescriptive process model are discussed.

2.2.1 Prescriptive vs. Descriptive Models

One can distinguish two main types of process models: prescriptive and descriptive
process models. Both types may exist in parallel in a software organization, often

in several instances. They do not necessarily differ in content, but rather in their

intended purpose: Prescriptive process models tell us how something should

be done, whereas descriptive process models describe how something is done

in reality.

This constitutes a major difference. Whereas a descriptive process model is

created by observing the processes actually performed, a prescriptive process

model typically aims to address all relevant issues of developing a piece of

software. It is therefore often based on an ideal model of software development,

for example, a set of best practices that should be applied in projects in order to

yield their benefits.

This fact, by its very nature, leads to a number of conflicts. Human beings often

tend to be somewhat reluctant in applying practices (or a process) perceived as

boring, unnecessarily complicated, or laden with useless overhead. Especially if the

prescribed process demands work that does not seem to directly benefit the working

person itself, or only little so, it is often hard to persuade this person to do work

perceived as unnecessary.

Hence, the problem is not only to construct a prescriptive process model, but also

to get people to follow it as intended. In fact, the latter is more difficult than the

former, but often neglected. A descriptive process model describes what people do

every day—which means that it reflects current practices. A prescriptivemodel tells

people to do (some) things differently, which means that they need to change their

behavior. Getting people to change their behavior is one of the most difficult tasks

in software engineering, so the successful deployment of a prescriptive process

model is difficult, too: Deploying a prescriptive process model means changing

people’s behavior!

20 2 Prescriptive Process Models

Typically, descriptive and prescriptive models follow each other in a cycle.

Often, the current processes are modeled and transferred into a descriptive process

model. Using this model, problems are identified and mitigated by changes to the

process model, often using additional external knowledge such as best practices.

This model then becomes a prescriptive process model, effectively instructing

people to do things differently than before. When the changed process is fully

integrated into people’s daily work, the process model becomes descriptive again,

and another improvement cycle can start. Figure 2.2 displays this circle.

2.2.2 The Product–Process Relationship

The problems addressed by process changes are typically properties of the software

product or the project that produces or modifies the product. For example, the

product might not provide the required amount of throughput to satisfy its

requirements, or it may be finished later than planned. Another typical problem is

cost overrun. In any of these cases, a problem was detected with the product, and

one should aim at solving this problem by changing the process. This is feasible

because of the relationship between the process and quality aspects of the products.

This relationship can be described according to the process–product relationship

model from Rombach [1]:

Q � f (Process, Context)

Q here means some quality aspect of the product, for example, reliability or cost

of construction. This quality aspect is determined by a function of both process and

context, such as a model-based testing (process) in the automotive domain, where

the experience level of the testers is low and the programming language is C

(context). So, in order to improve the reliability of a specific product, changing

Prescriptive
Model

Descriptive
Model

improvedeploy

Fig. 2.2 The relationship between descriptive and prescriptive process models

2.2 Introduction 21

the context might be an option, for example, by improving tester experience. If this

cannot be done, it might be possible to adjust the process, in order to cope better

with inexperienced testers.

Besides quality aspects of the produced or modified product, other important

properties of a project can be affected by processes. Such properties may be, for

instance, the duration or effort consumption of a process. In addition, services can

be considered as the object being developed, maintained, or operated by a process.

Therefore, the function f can be described in more general terms as

Goal � f (Process, Context)

Here, the goal can be any relevant product, service, or project property that can

be affected by the process in the specific context.

Software engineering research is still quite immature in determining the function

f (which is actually an empirical relation), because the methods and processes are

not yet well understood and thus not completely manageable [1]. Well understood
means that the effects of methods and processes on goal properties (such as product

quality, cost, time) in varying contexts (e.g., different lifecycle models, personnel

experience, or tool support) are known.Manageable means that for a given project

context, processes can be chosen so that they guarantee the expected effects (such

as product qualities).

Due to the relevance of cognitive laws for human-based processes, f (i.e., the

relationship symbolized by �) is nondeterministic and can only be determined

empirically. This implies that process and context must be described as precisely as

possible, and that the respective goal properties need to be defined so that they are

measurable.

The impact of changes to the process or context can then be determined through

(combinations of) empirical studies of different types (e.g., qualitative or quantita-

tive studies, controlled experiments or case studies, real studies or simulations).

The results obtained in such studies can be used to create prescriptive process

models that are proven to be beneficial in certain contexts and thus guarantee

specific product qualities. Note that due to these circumstances, process changes

only rarely result in major product quality improvement within a short period of

time—in reality, process improvement (and thus, product quality improvement) is a

mid- to long-term effort. Hence, process changes will yield most of their benefits in

the long run.

2.2.3 Prerequisites

In order to apply any prescriptive process model, a number of prerequisites should

be fulfilled. If one or more of the following prerequisites are not fulfilled, the effects

of applying the prescriptive process model may be unpredictable. This means that

in the optimal case, it may work exactly as intended. However, it is more likely that

it does not work as planned, leading to worse results than planned, possibly even

22 2 Prescriptive Process Models

worse than before it was applied—which means that the new prescriptive model is

likely to be rejected.

The prerequisites that should be fulfilled when applying a prescriptive process

model include, but are not limited to:

The scope of validity should be known. It should be known which context(s) and
goal(s) the process model is valid for. Context comprises factors such as domain

characteristics (e.g., aerospace: highly safety critical, with products being used

for decades), organizational characteristics (e.g., large organizations with low

employee turnover), project characteristics (e.g., long-term projects with distributed

development), and others. Goals comprise, for example, the reduction of cycle time

or the improvement of code quality. A prescriptive model may have been applied

successfully in a large aerospace organization with long-term projects and low

employee turnover, leading to a significant reduction in cycle time. Applying the

same model in a small Web application development organization with short-term

projects and high employee turnover and the goal of improving code quality is likely

to not achieve this goal, because the model was never intended for this context

and goal.

The impact of a process should be known. It should also be known what the

effects of the process described by the prescriptive process model are for a specific

context. Effects may be, for example, the reduction of cycle time by 30% or the

reduction of design defects by 20%. The specific context may be a large aerospace

organization with long-term and distributed projects and low employee turnover.

Applying the same process as prescribed by this specific process model in the same

or a similar context is likely to have a similar impact. If the impact of a prescriptive

process model is unknown, applying it leads to unpredictable results. Knowledge of

this kind is usually specific for an application domain or organization and thus must

be obtained in the respective setting.

The degree of confidence should be known. Furthermore, it should be known to

what degree of confidence the process described by the prescriptive process model

has been evaluated in a specific context. For example, the reports on the impact of a

specific process may stem from a single application in a specific context—in this

case, the degree of confidence is rather low, since other factors may have played a

significant role, but were not recorded. On the other hand, if a specific process has

been applied in a multitude of similar contexts, with the desired effects reported in

all or most cases, the degree of confidence is rather high, because it is very unlikely

that other factors were responsible, but not recorded, in all the success cases.

The process should be tailorable. Finally, it should be possible to adapt the

process described by the prescriptive process model to specific project goals and

contexts. Since the context for which a process model has been developed rarely

presents a perfect match for the context it is supposed to be applied in next, and since

goals may also differ, it should be possible to adapt the process and its corresponding

model to the new context. For example, if in the original context, employee turnover

was low, but in the new context, it is high, the process must be adapted to cope with

this, e.g., by increasing the (written) documentation of project information. Obvi-

ously, there must be sufficient knowledge about the effects of the process changes in

order to retain the validity of the process model for the changed context.

2.2 Introduction 23

2.3 Prescriptive Process Model Classes

This section introduces two types of process models that can be distinguished:

lifecycle models and engineering models.

The first subsection discusses important classes of lifecycle models such as the

waterfall model, the iterative enhancement model, the prototyping model, the spiral

model, and the incremental commitment spiral model (ICSM). Two example

lifecycle models often found in industry that adopt these general concepts, the

Unified Process and the IBM Cleanroom Process, are explained. The second

subsection discusses engineering process models such as a process model for

statistical testing, a process model for hybrid cost estimation, and the Extreme

Programming process model.

Lifecycle process models capture the complete lifecycle of a software product.

Typically, they abstract from a number of details, and instead provide a broader

view on the process (focus on “what,” not on “how”).

Engineering process models describe (possibly in very much detail) a fraction of

the complete software lifecycle process, for example a specific type of inspection.

Engineering process models can be very detailed, often not only describing

“what” to do, but also explaining “how” to do it.

2.3.1 Lifecycle Process Models

Lifecycle process models, as opposed to engineering process models, typically

cover the complete lifecycle of a software product or a large fraction of it. This

means that they often cover quite a lot of ground, which in turn generally leads to a

high level of abstraction. Therefore, lifecycle process models typically tell the

software engineer “what” to do, and in what sequence, but not “how” to do it.

They usually do not recommend (or prescribe) any specific method or technique,

but rather demand that something needs to be done “effectively,” meaning that

whatever method is applied, it must yield the expected result(s). For example, a

lifecycle process model may demand that traceability be established between

requirements and components, but it will not prescribe how this should be achieved

(with or without a tool, how many traceability links are expected, etc.)—this can

(and must) be determined by the process engineers at the respective organization.

The following subsections introduce some common classes of lifecycle process

models. The main principles of these classes can be found in many existing

lifecycle process models, two of which will be introduced in Sect. 2.3.1.6.

24 2 Prescriptive Process Models

2.3.1.1 The Waterfall Model

One of the best-known lifecycle models is the waterfall model. It was first formally

described by Winston Royce in 1970 [2], although Royce did not name it waterfall

model. The idea behind the waterfall model is the sequential creation of products on

different levels of abstraction (e.g., precede code by design, precede design by

requirements) and integration in reverse direction. The strict sequence can be

weakened by controlled iterations. Figure 2.3 displays the original model, with

envisioned iterative interactions between various activities (continuous arrows).

However, Royce also noted that this kind of interaction is not likely to be confined

to successive steps, but may rather jump from testing to program design and back to

software requirements (dotted arrows).

Adhering to the sequential order of the activities is extremely hard to achieve,

even if interaction with the immediate neighboring activities is allowed. Necessary

prerequisites to applying a prototyping approach include being familiar with the

domain, methods, techniques, tools, engineering processes and having a very good

understanding of the requirements. The requirements themselves must be stable,

and one must possess high capabilities for effort estimation.

Advantages. Typically, waterfall-like projects face only few problems during

integration. Version and configuration management is also simplified.

Challenges. Unexpected requirements or context changes pose high risks.

Gaining experience and learning during a project is difficult. Fixed delivery

deadlines are risky for waterfall projects. The documentation created is often

voluminous and heavyweight. The waterfall approach does not scale very well

for large projects and long cycle times.

Thewaterfall processmodel is often referenced, but rarely applied in its strict form.

System
Requirements

Testing

Coding

Program
Design

Analysis

Software
Requirements

Operations

Fig. 2.3 Waterfall model as described by Royce, with iterations

2.3 Prescriptive Process Model Classes 25

2.3.1.2 The Iterative Enhancement Model

Basili and Turner described an iterative approach to developing software systems in

1975 [3]. The iterative enhancement model proposes to first implement a (properly

chosen) part of the complete system, and then add functionality in a number of

iterations, which all together finally form the complete system. Each iteration is

completed in a waterfall-like style, i.e., a requirements analysis for the respective

iteration is followed by designing the system part of the iteration, which is again

followed by its implementation, and so on. The result of each iteration is integrated

with the already existing system. The focus of an iteration may be on introducing

new functionality, but it might also be on refinement, improvement, or architectural

consolidation.

Figure 2.4 displays the iterative enhancement model as described by Basili and

Turner with three iterations. The first iteration (checkerboard pattern) develops the

core part of the complete system, the second iteration (vertical stripes) and the third

iteration (horizontal stripes) both add functionality. A prerequisite for applying the

iterative enhancement model is that the problem permits incremental development.

System
Requirements

Customer
Requirements

Developer
Requirements

System
Design

Unit
Requirements

Unit
Design

Unit
Code

Executable
Units

Executable
System

Fig. 2.4 Iterative enhancement model (three iterations)

26 2 Prescriptive Process Models

For example, requirements to be considered in later iterations should not require a

complete redesign of the system architecture.

Advantages. Iterative projects support efficient learning.With iterations designed

properly, the core of the final product is available very early, thus featuring essential

properties of the complete product. This allows for early customer involvement and

feedback. Iteratively developing the requirements helps when requirements are not

entirely clear or still unstable. Integration testing is supported due to relatively small

increments being added at a time. In case of fixed delivery dates, incremental

development helps to ensure that the most important functionality can actually be

delivered—and the customer can decide what is most important to him.

Challenges. Since the product design is based on the current set of requirements,

there is a risk that requirements showing up later may be expensive to fulfill, due to

design decisions made earlier. Good and comprehensive version and configuration

management is necessary to distinguish increments. Integration may become

increasingly difficult with the number of iterations, depending on how well

requirements may be partitioned and on the system architecture.

Many modern software process models, such as the Unified Process, Extreme

Programming, or Scrum follow an iterative pattern.

2.3.1.3 The Prototyping Model

Another common lifecycle model is the prototyping model. Prototyping con-

centrates on the development of an executable version of the system that fulfills a

limited number of requirements. Specifically, user interfaces are often simplified

and/or performance and throughput requirements are reduced or even ignored.

In other cases, e.g., for performance-critical components, different designs may

be tested for their capabilities. The primary goal of building prototypes is to gain

initial experience (e.g., regarding unclear requirements or difficult design aspects).

Getting a first version of the final product should usually not be a goal. In fact, when
all questions have been answered by the prototype, it should be thrown away and a

system fulfilling all requirements should be developed based on one of the other

lifecycle models.

Figure 2.5 displays the prototyping model. Note that developer requirements or

even customer requirements typically directly lead to code, skipping all the other

steps encountered, for example, in the waterfall or the iterative enhancement model.

As necessary prerequisites to applying a prototyping approach, one must possess

a high level of experience with the development techniques used, because all

common assistance in the form of designs, modules, etc., is usually missing.

In addition to that, the technical infrastructure for creating and evaluating a

prototype must be available, e.g., the hardware to run the prototype on.

Advantages. A prototype can be developed when the final properties are not

entirely clear. The direct contact between customer and developer reduces

misunderstandings. Inconsistent requirements are discovered earlier, either by the

developer or by the customer who evaluates the prototype. Comprehensive version

2.3 Prescriptive Process Model Classes 27

and configuration management is not necessary because the code produced is not

meant to exist for a long time. The risk of project failure (e.g., developing a product

that does not satisfy the customer requirements) is reduced due to the early

involvement of the customer. In some cases, prototypes may even be used

for evaluating business models, before a lot of money is spent on developing the

real software.

Challenges. There is an inherent risk that side effects are not sufficiently

considered, especially nonfunctional requirements such as reliability or safety.

Another risk is that the customer (or the developer) considers the prototype as

the first version of the system, and that the system will be evolved from the

prototype, potentially leading to poorly documented, badly architected systems.

The prototyping phase of a project may also induce higher costs compared to a

nonprototyped approach.

A prototype is a great way to clarify ambiguous or unknown requirements;

however, don’t ever confuse it with the first version of the actual system!

Problem
Description

Customer
Requirements

Developer
Requirements

Unit
Code

Executable
Units

Executable
System

Fig. 2.5 Prototyping model

28 2 Prescriptive Process Models

2.3.1.4 The Spiral Model

The spiral model was first published in 1986 by Barry Boehm [4]. It represents a

risk-driven approach, i.e., the assessment of risks determines the next project phase.

The spiral model combines aspects of the waterfall model, the iterative enhance-

ment model, and prototyping. Figure 2.6 displays the model. The first step of each

spiral cycle identifies the objectives of the product part being elaborated (e.g.,

performance or functionality), the different alternatives for implementing the

product part (e.g., different designs or reuse of existing components), and the

constraints for each of the identified alternatives (e.g., cost or schedule). The next

step evaluates the identified alternatives and identifies and resolves risks that come

with the different alternatives. The third step is determined by the risks that remain

after the second step. During the third step, the development approach that is suited

best for the risks is chosen. This may be the construction of a prototype or the

application of a strict waterfall process for implementing a clearly defined feature.

Finally, the next phases are planned, and the complete cycle is reviewed by the

stakeholders. Obviously, a prerequisite for applying the spiral model is the capabil-

ity to identify and assess risks, as well as a project context that allows for changing

the process model during project run-time.

Cumulative cost

Progress
through
steps

Determine
objectives,
alternatives,
constraints

Review Commitment
partition Requirements plan

Lifecycle plan Concept of
operation

Risk
analysis

Risk
analysis

Risk
analysis

Prototype 2 Prototype 3
Operational
Prototype

Simulations, models, benchmarks

Software
requirements

Requirements
validation

Development
plan

Design validation
and verification

Integration
and test plan

Software
product
design

Detailed
design

C
o

d
e

U
n

it test

In
teg

ratio
n

an
d

 test

A
ccep-
tan

ce
testImplemen-

tation
Plan next phases

Evaluate alternatives,
identify, resolve risks

Develop, verify
next-level product

P.1
R. a.

Fig. 2.6 Boehm’s spiral model

2.3 Prescriptive Process Model Classes 29

Advantages. The third step accommodates features of other lifecycle process

models as needed. The spiral model is therefore very flexible. The explicit consid-

eration of risks avoids many of the difficulties of other process models. Similarly,

unattractive alternatives are identified and eliminated early. The spiral model forms

a single approach for software development and maintenance, whereas other

models often concentrate on one or the other.

Challenges. For contract software, the spiral model is difficult to apply because

individual project phases are not fully determined during project setup. It relies

heavily on the organization’s expertise with respect to risk assessment—therefore,

a bad risk assessment may lead to the selection of bad alternatives or development

approaches.

Boehm’s spiral model embraces risk as its central aspect, and chooses the best

approach for every iteration. This distinguishes it from other lifecycle models,

which consider risks, but do not change the basic model accordingly.

2.3.1.5 The Incremental Commitment Spiral Model

The original spiral model demands that for every spiral, a project should identify

its objectives, constraints, and alternative solution approaches; evaluate these

alternatives; and then decide on the next steps based on the identified risks.

By intention, this could be anything from straight waterfall development to

completely stopping development. However, this has often been misunderstood;

in particular, the choice between the different development process alternatives has

often been neglected, leading to “unrolling” of the spiral model into a strict

waterfall model or perceiving it as a simple incremental development process

without any decision making in between. To address these issues, a new version

of the model was developed that makes the decision points and different paths that

can be taken explicit: the ICSM.

In 2008, Boehm proposed the incremental commitment model (ICM) as a

lifecycle model for developing large systems with high development risks [5].

Such systems are typical for the military, in which context the ICM was developed.

In subsequent years, the model was refined into the ICSM. Figure 2.7 shows an

overview of the model as described by Boehm in [6]. Similar to the original spiral

model, it consists of a spiral covering the development lifecycle of a system.

However, it makes the risk-driven decisions explicit, accentuated by the stake-

holder commitment reviews 1–6. Each of these reviews constitutes a decision point

with four possible exits: (For reasons of clarity, Fig. 2.7 only displays the first three;

Fig. 2.8 shows all four in full detail [6].)

– If the identified risks are acceptable for the stakeholders and well covered by

appropriate mitigation plans, the project will continue into the next spiral

(top exit in Figs. 2.7 and 2.8). An example would be a software system that

does not reach its intended throughput, but that scales well with the number of

30 2 Prescriptive Process Models

CPUs—the mitigation plan would be to add additional CPUs in order to reach

the target throughput.

– If the identified risks are high, but expected to be addressable, the project will

remain in the current spiral until the risks are resolved or covered by appropriate

mitigation plans (bottom exit in Figs. 2.7 and 2.8). An example would be

working out safety cases for a safety-critical system or producing acceptable

versions of missing risk mitigation plans.

– If the identified risks are negligible, the project can skip the next spiral(s)

(left exit in Figs. 2.7 and 2.8). This means, for example, that if the risks are

determined to be negligible during the Exploration spiral, both the Valuation and

Foundations spirals can be skipped, and the project can go directly to the

123456

RISK-BASED
STAKEHOLDER
COMMITMENT
REVIEW POINTS:

Opportunities to
proceed, skip
phases,
backtrack, or
terminate

Cumulative level of
understanding, product, and
process detail (risk-driven) Concurrent

engineering of
products and
processes

Valuation

Foundations

Development 1
Foundations 2

Operations 1, Development 2,
Foundations 3

…

1 Exploration commitment review 2 Valuation commitment review 3 Foundations commitment review

4 Development commitment review 5 Operations 1, development 2
commitment review

6 Operations 2, development 3
commitment review

Operations 1, Development 2,
Foundations 3

…

1

Exploration

Fig. 2.7 Boehm’s incremental commitment spiral model

Risk
negligible

acceptable

high, but can
be addressed

too high, cannot
be addressed

Fig. 2.8 Risk-based decisions

2.3 Prescriptive Process Model Classes 31

Development spiral. For example, this can happen if the Exploration spiral finds

that the solution can be easily produced by tailoring a COTS package rather than

developing a custom system.

– If the identified risks are determined to be too high or cannot be addressed, the

project should be terminated or rescoped (back exit, indicated by the dashed

arrow in Fig. 2.8). An example would be that the market window for the product

under development has already closed—hence, the project should either be

terminated, or it should be rescoped to address a different market sector whose

market window is still open.

Being an incremental model, each spiral concurrently addresses all of the

activities of product development: Requirements (objectives and constraints) and

solutions (alternatives); products and processes; hardware, software, and human

factors aspects; and business case analysis of alternative product configurations or

product line investments are all being considered in every spiral. The development

team does not only produce (development) artifacts, but also provides evidence of

their combined feasibility. This evidence is central to the ICSM; in fact, during each

of the stakeholder commitment reviews, all evidence is assessed by independent

experts, and significant risks identified are then addressed by appropriate risk

mitigation plans.

In [7], Boehm gives an example of total vs. incremental commitment in gam-

bling. A typical total commitment game is roulette: you put all your chips (money)

on a number and wait to see whether you win or lose. In a software project, you

would bet your development budget on the on-time delivery of your product, and

then wait and see whether you will make it. Typical incremental commitment

games are poker or blackjack. You put some chips in, see your cards and some of

the others’ cards, and then you decide whether and how much more money to

commit. If your cards are too bad, you bail out, avoiding losing more money in a

situation where it is highly unlikely for you to win. The ICSM enables a similar

strategy for software projects: You spend some of your development budget and

check the results (for example, whether your application interfaces correctly with

another application) in order to find out whether and how to progress.

A necessary precondition to applying the ICSM is the understanding of all

involved partners and their willingness to stop a project if the risk analysis suggests

that. In other words, the ICSM cannot be applied in projects that must deliver a

result, no matter how good (or bad) it is. Applying the ICSM also requires the

capability to identify and assess risks.

Advantages. The ICSM prevents premature total commitments, which can lead

to a situation where there is no way back. The early identification of project risks

and either their mitigation or the adjustment of the project scope facilitates the

congruence of expected and actual project results. Additionally, the ICSM opens an

exit strategy to stop a project before burning away lots of money, without the need

for anyone to lose their face—which can be highly beneficial in projects where

politics play an important role.

32 2 Prescriptive Process Models

Challenges. Honestly assessing risks requires great openness within an organi-

zation. This may be difficult for certain employee evaluation models. The systems

addressed by the ICSM (large, high-risk) are sometimes political projects that

normally cannot be stopped, no matter how bad the situation is—in these cases,

a cultural change both on the buyer and on the supplier side is required.

The ICSM was developed for very large, very risky projects where one does not

know at the beginning whether and to what extent the goal can be reached.

2.3.1.6 Example Lifecycle Models

This section introduces two example lifecycle models that adopt the general

concepts described in the previous sections. The Unified Process is a widely used

process framework for developing software. The Cleanroom Development Process

model is described here as an exemplary model that enforces the use of early defect

detection techniques and the use of formal methods. It can be seen as an alternative

approach that aims at producing higher quality software than traditional, testing-

and debugging-based approaches.

Unified Process

Published by Jacobson, Booch, and Rumbaugh in 1999, the Unified Process is a

generic process framework for software development [8]. It consists of a generic

description of phases and activities that can—and normally must!—be adapted for

different types of organizations, the class of software system to be developed,

different application domains, competence levels, and project sizes. The Unified

Process distinguishes project phases like the waterfall model does and supports

iterative development within the phases like the iterative enhancement model does.

It also specifically considers risks during the iterations, borrowing from the spiral

model. In addition, it contains traces of the prototyping model, since it recommends

building prototypes within iterations under special circumstances.

The Unified Process is component based, i.e., the system to be built is compiled

from software components that are interconnected via well-defined interfaces. The

Unified Modeling Language (UML) is used to model all central artifacts describing

the system—e.g., requirements and design. Both UML and the Unified Process

were developed in parallel.

Besides focusing on components, the Unified Process is use-case driven.Within

the Unified Process, use cases replace the traditional functional specification of the

system. According to the philosophy of the Unified Process, a functional specifica-

tion describes what the system is supposed to do, whereas use cases describe what

the system is supposed to do for each user. Therefore, the Unified Process focuses

on the user who will work with the system, as opposed to the system itself. Use cases

are central to system development, also driving design, implementation, and test.

2.3 Prescriptive Process Model Classes 33

The Unified Process is also architecture-centric, i.e., it focuses strongly on the

system architecture, embodying the most significant static and dynamic aspects of

the system. Use cases and system architecture are developed in parallel: Whereas

the use cases describe the function of the system, the architecture describes its form.
Therefore, the architecture is influenced by the use cases, because it must satisfy all

the stated user needs. It is also influenced by external factors such as the platform.

The system architect must find an architecture that satisfies these external factors as

well as the requirements stated in the use cases. He typically starts with a part of the

architecture that is not specific to the use cases, for example, the aforementioned

platform. Still, a general understanding of what the system should do is necessary,

in order to go in the right direction. As soon as a set of use cases is available that

describes the key functions of the system, the architecture is refined. The more

detailed and mature the use cases become, the more details are added to the

architecture, which in turn facilitates the maturation of additional use cases. This

process continues until the architecture is deemed stable.

Finally, the Unified Process is iterative and incremental. This reflects the fact

that for large and high-risk systems, a waterfall-like approach is not likely to work

very well. Therefore, the Unified Process divides the work into mini projects

forming iterations and resulting in increments that are added to the system.

An iteration typically groups together use cases that extend the usefulness of the

system and deals with the most important risks first. Each iteration contains the core

workflows requirements, analysis, design, implementation, and test. Their intensity
varies with the phase the project is currently in: At the beginning of a project,

requirements work will be more intensive than towards the end of a project. Not all

iterations add functionality; for example, the system architecture may be modified

in one increment without adding any new features.

Figure 2.9 displays the core workflows and project phases of the Unified Process

together with a rough estimate of the intensity in terms of effort for each workflow

as described by Jacobson et al. [8]. A project typically goes through the phases

Inception, Elaboration, Construction, and Transition. The phases are separated by

milestones, defined by the availability of a set of artifacts (i.e., certain models or

documents are in a prescribed state). The inception phase creates a vision of and a

business case for the final system. During the elaboration phase, most of the

system’s use cases are specified and its architecture is defined. The construction
phase builds the system, evolving the architecture to its final state. Finally, the

transition phase covers the system’s beta testing, correcting the defects found by

the beta testers.

Each phase contains a number of iterations, adding increments to the system.

Each iteration elicits requirements; performs an analysis that allocates the system
behavior to a set of objects of the system; provides a design that describes the static
structure of the system as subsystems, classes, and interfaces as well as the use

cases realized as collaborations among them; creates an implementation that

includes components (i.e., source code); and finally performs a test of the system,

using test cases that verify the use cases.

The Unified Process is a popular lifecycle model; however, its application

requires some process maturity, e.g., to clearly distinguish the project phases and

34 2 Prescriptive Process Models

the development activities. It must be adapted to the respective context—a fact that

is often neglected. The iterative nature within the phases may be confusing, because

the phases make the Unified Process look like a waterfall process. Another chal-

lenge is the fact that the Unified Process “stops” when the system is in beta testing,

so actually bringing it into service and operation must be done using other means—

a detail that may easily be forgotten.

The Unified Process is a comprehensive development process that must be

adapted to the specific organization before it can be applied.

Cleanroom Development Process

Published by Mills, Dyer, and Linger in 1987 [9], the Cleanroom Development

Process distinguishes itself from other approaches by focusing on the formal

verification of correctness, as opposed to trying to eliminate as many defects as

possible by testing a system. This has some obvious advantages: While a formal

proof guarantees that something is correct, even successful test cases can never

prove the absence of defects—and thus correctness. The Cleanroom Development

Process is based on developing and certifying a sequence of software increments

that together form the final system. Each increment is developed and certified by a

small, independent team. The development teams assure correctness via formal

specification, design, and verification. In fact, team correctness verification takes

the place of testing and debugging—the development team does not execute the

code that it writes! The Cleanroom Development Process is therefore an iterative

process, similar to the iterative enhancement model.

Figure 2.10 displays the Cleanroom Development Process as described by

Linger [10]. It features two cooperating teams: the development team and the

specification team. Initially, both teams together analyze and clarify customer

requirements. If requirements are unclear, the teams can develop prototypes to

elicit feedback iteratively. During the specification activity, the teams produce a

Inception Elaboration Construction Transition

Iteration
1

Iteration
2 … … … … … … … … Iteration

n-1
Iteration

n

Inception Elaboration Construction Transition

Iteration
1

Iteration
2 … … … … … … … … Iteration

n
Iteration

n

Requirements

Analysis

Design

Implementation

Test

C
o

re
 W

o
rk

fl
o

w
s

C
o

re
 W

o
rk

fl
o

w
s

PhasesPhases

one iteration in
the elaboration
phase

one iteration in
the elaboration
phase

Fig. 2.9 The core workflows and phases of the Unified Process

2.3 Prescriptive Process Model Classes 35

functional specification and a usage specification. The functional specification

defines the required external system behavior in all circumstances of use in a formal

way; the usage specification defines usage scenarios and their probabilities for all

possible system usages, both correct and incorrect ones. While the functional

specification is the basis for the incremental system development, the usage speci-

fication is the basis for generating test cases. On the basis of both specifications,

the development and certification teams together define an initial plan for incre-

mentally developing the system.

Incremental
development

planning

Formal design &
correctness
verification

Statistical test
case generation

Statistical
testing

Quality
certification

model

Function Usage

Specification

Customer requirements

MTTF estimates

Functional specification Usage specification

Source code Test cases

Interfail times

Improvement
feedback

Incremental
development

plan
Formal design &

correctness
verification

Statistical test
case generation

Statistical
testing

Quality
certification

model

Function Usage

Specification

Function Usage

Interfail times

Improvement
feedback

Fig. 2.10 The Cleanroom Development Process

36 2 Prescriptive Process Models

After that, incremental development starts (indicated by stacked boxes in

Fig. 2.10). For each increment, the development team creates a system design

and carries out correctness verification for the respective design. The design

contains a number of program functions transforming input data into output data.

This transformation corresponds to a mathematical function and thus can be

formally verified. Since there is only a limited number of program functions (e.g.,

sequence, alternation, iteration), and since each program function can be verified

using a limited number of steps, verification itself is a finite process. The certifica-

tion team proceeds in parallel, using the usage specification to generate test cases

that reflect the expected use of the accumulated increments.

Each completed increment is integrated with the system (i.e., all prior

increments) and delivered to the statistical test team. The previously created test

cases are run against the system and the results are checked for correctness against

the functional specification. The elapsed time between failures (interfail time) is

measured and passed to a quality certification model, which computes objective

statistical measures of quality, such as mean time to failure (MTTF). All errors

found during testing are returned to the development team for correction.

The Cleanroom Development Process has proven to be able to produce high-

quality (in terms of number of defects) software [10]. However, it is not widely

adopted, which is to be expected. The reasons lie mostly in its prerequisites:

In order to correctly develop a software system with Cleanroom, all involved

developers must be highly skilled, especially with respect to formal specification

and verification. Considering the contexts in which software is being developed

today, this prerequisite can only be met under very rare circumstances. Another

challenge is the fact that formally specifying software behavior tends to “explode”

the requirements and designs. Most success stories are from projects creating up to

100,000 lines of code, with some going up to 400,000. Today’s systems, however,

often consist of millions of lines of code, making a formal specification extremely

laborious and costly. Focusing the Cleanroom Development Process on critical

parts of a system and combining it with other process models, however, could be a

way to cope with these challenges.

The Cleanroom Development Process is capable of delivering high-quality

software; however, it requires extremely skilled process performers, and its scal-

ability for large systems is unknown.

2.3.2 Engineering Process Models

Engineering process models, as opposed to lifecycle process models, typically cover

only a relatively small fraction of the complete lifecycle of a software product. This

makes the topic they cover smaller; therefore, they typically elaborate more details

than lifecycle models. Still, engineering process models do follow the same

principles as lifecycle process models, such as waterfall or iterative enhancement.

2.3 Prescriptive Process Model Classes 37

The following subsections introduce some example engineering process models,

covering different areas such as testing, cost estimation, and implementation.

2.3.2.1 Process for Model-Based Statistical Testing

Model-based statistical testing [11] is a system validation technique based on a

Markov chain usage model. A usage model represents the actual system usage.

(Please note that the term “model” is used ambiguously in this section: “model”

within “usage model” is different from “model” within “process model”!) The

usage model is used to derive realistic test cases considering the operational profile

of the test object. This enables the estimation of system reliability based on the test

results. The name of the method comes from the heavy use of statistics, e.g., for

constructing and analyzing the usage model, for generating test cases from the

model, and for estimating system reliability from the test results. Model-based

statistical testing consists of several steps, which are shown in Fig. 2.11 [12].

A functional system specification is derived from the system requirements by

applying the sequence-based specification technique (not explained here). Then, the

system usage is modeled and a Markov chain usage model is derived. Test case

generation, execution, and evaluation are automated using appropriate tools.

Usage modeling. A usage model describes how the system under test is expected

to be used. Usage models are finite state machines with transition probabilities. The

transitions describe the possible system triggers by external stimuli and the

expected system responses. The probabilities express the frequency of system

stimuli at certain states and form the probability distribution of the usage model.

Several usage profiles might be annotated for one test object, e.g., for different user

groups. Usage models have one start state and one exit state, which correspond to

the beginning and end of a system use. Any path through the model from the start

state to the exit state represents a valid system use.

t

1

Requirements
Documents

Black Box
System

Specification
Test Cases Test Results

Interfaces
System usages

Expected responses

Textual,
System+Domain

Knowledge

Executable test
scripts on target

platform

1. step1
2. step2
3. step3
4. step4

Management
decisions

Test stopping
criteria

1. ok
2. ok
3. failed
4. ok

1

t

1

Reliability+
Risk Coverage

Estimation

Test Model Building Automated Testing

Sequence-based
Specification (SBS)

Usage modeling
probabilities, risk,

criticality, cost

Automated
Test Generation

Automated
Test Execution

Automated
Test Evaluation

Test Model

Markov Chain
Usage Model Passed / failed

test steps

Fig. 2.11 Model-based statistical testing process overview

38 2 Prescriptive Process Models

Figure 2.12 shows an example of a usage model of a telephone as described

in [13]. Different usage profiles might exist, e.g., to represent a “call-center”

environment, which would be different from a “private home” environment.

Test case generation. A test case is a path through the usage model. The

transitions of the usage model are annotated with test scripts that drive a test runner.

To generate a specific test case, the scripts of the transitions lying on a path through

the usage model will be appended one after another and saved as a single test case

script. During a test case, the test runner runs each test script sequentially. The

statistical testing method includes various ways of automated test case generation,

representing various tactics for walking through the usage model:

– Generating the minimum-cost coverage set for a usage model: Simplified, a

collection of test cases that visit every arc in a model with the minimum number

of test steps is generated.

– Generating tests randomly based on a probability distribution.

– Generating tests in order by weight (most or least probable paths).

In complex usage models with rarely traversed arcs, random test case generation

cannot assure the coverage of the whole model, even with a large number of test

cases. Therefore, it is advisable to generate the model coverage test cases first in

order to pass each transition at least once. Afterwards, a number of random test

cases should be generated and executed in order to get statistically relevant test

results, which can be used for the reliability analysis.

Test execution. Automated test execution needs a test runner that executes the

generated test cases. A test case is a sequence of test scripts (each representing

a test step) collected from the usage model transitions during test generation.

On hook

Ringing

Connected

Off hook

Busy tone
Error tone

Exit

Ring tone

incoming call
(0.5)

disconnected
(0.5) lift receiver

(0.5)

lift receiver
(0.5)

disconnect
(0.5)

dial busy
(0.25)

dial bad
(0.25)

dial good
(0.25)

hang up
(0.25)

connect
(0.5)

hang up
(0.5)

hang up
(1.0)

hang up
(1.0)

hang up
(0.5)

Exit

lift receiver
(0.5)

Fig. 2.12 Example system usage model of a telephone

2.3 Prescriptive Process Model Classes 39

The transition from one usage model state to another is performed by invoking the

corresponding test script. Test scripts are written in an executable notation.

Test evaluation. The test scripts in the test cases include the required input for

the test object and the expected output from the test object, i.e., they include the test

oracle. A test case is considered to have failed if at least one test script does not

observe the specified output. As an example, consider the telephone again. One

possible test script would be to try to lift the receiver. The test step fails if the script

does not observe a free line signal.

Test analysis. Based on the test results, the reliability of the test object is

estimated by using a particular reliability model, the Miller model [14]. Reliability

numbers are estimated for each transition and stimulus. When no prior information

is given, the model assumes an initial reliability of 0.5. Reliability increases with

successful executions and decreases after failures. The goal is to achieve a reliabil-

ity of close to 1. The reliability of the test object is the weighted sum of all transition

reliabilities. It is also feasible to calculate the so-called optimum reliability, which

is the highest reliability estimated that can be achieved by applying the current set

of test cases, assuming no failures. If faults that cause failures are corrected, one

should therefore first focus on single elements (stimuli, transitions) whose observed

reliabilities deviate the most from the corresponding optimum reliability. Using this

prioritization, one could achieve higher improvement in single-use reliability due to

the same multiplication effect described earlier.

The process for statistical testing introduced here is quite sophisticated and

requires in-depth study. Some details have been omitted; the full process can be

found in [12].

2.3.2.2 Process for Hybrid Cost Estimation

The CoBRA® method for cost estimation is a method for the systematic utilization

of expert and empirical knowledge to estimate the costs for an upcoming project

[15, 16]. Based on a combination of measurement data and expert judgment,

it predicts the probable costs for projects of the same kind. CoBRA® focuses on a

very small fraction of the complete software product development lifecycle

(cost estimation at project start) and gives very detailed instructions on what to

do and how to do it. The method involves four major steps: develop causal model,
quantify causal model, determine nominal project costs, and generate cost
overhead model. Figure 2.13 displays an overview of the CoBRA® method,

which will be explained in the following paragraphs.

Develop causal model. The causal model contains factors affecting the costs of

projects within a certain context. The causal model is typically obtained through

expert knowledge acquisition (e.g., involving experienced project managers).

An example is presented in Fig. 2.14 [16]. The arrows indicate direct and indirect

relationships. A sign (“+” or “–“) indicates the way a cost factor contributes to the

overall project costs. The “+” and “�” represent a positive and negative relation-

ship, respectively; that is, if the factor increases, the project costs will also increase

40 2 Prescriptive Process Models

(“+”) or decrease (“�”). For instance, if requirements volatility increases, costs will
also increase. One arrow pointing to another one indicates an interaction effect. For

example, an interaction exists between disciplined requirements management and
requirements volatility. In this case, increased disciplined requirement management

compensates for the negative influence of volatile requirements on software costs.

Quantify causal model. The direct and indirect (through other factors) impact on

costs for each factor is quantified using expert evaluation and/or empirical data. The

influence is measured as a relative percentage increase of the costs above a nominal

project (i.e., a “perfect” project where everything runs optimally). For each factor,

experts are asked to give the increase in costs when the considered factor has the

worst possible value (extreme case) and all other factors have their nominal values

(best case). In order to capture the uncertainty of evaluations, experts are asked to give

Fig. 2.13 The CoBRA® method for cost estimation

Cost

Disciplined
requirements
management

Requirements
volatility

Platform
capabilities

Application
domain

capabilities

Development
team capabilities

Customer
participation

Cost

Fig. 2.14 An example CoBRA® causal model

2.3 Prescriptive Process Model Classes 41

three values: the maximal, minimal, and most likely cost overhead for each factor.

These three values are then represented as a triangular probability distribution.

Determine nominal project cost. The nominal project costs, i.e., the costs of a

“perfect” project where everything runs optimally, are based on data from past

projects that are similar with respect to certain characteristics (e.g., development

type, lifecycle type) that are not part of the causal model. These characteristics

define the context of the project. Past project data is used to determine the

relationship between cost overhead and (nominal) costs. Since it is a simple

bivariate dependency, it does not require much measurement data. In principle,

merely project size and effort are required. The size measure should reflect the

overall project volume including all produced artifacts. Common examples include

lines of code or function points. Past project information on identified cost factors is

usually elicited from experts.

Generate cost overhead model. Based on the quantified causal model, past

project data, and current project characteristics, a cost overhead model is generated

for the current project using a simulation algorithm (e.g., Monte Carlo or Latin

Hypercube). The probability distribution obtained could be used further to support

various project management activities, such as cost estimation, evaluation of cost-

related project risks, or benchmarking. Figure 2.15 illustrates two usage scenarios

using the inverse cumulative cost distribution: computing the probability of exceed-

ing given project costs (scenario A) and calculating the project costs for a given

probability level (scenario B).

Let us assume (scenario A) that the available budget for a project is 900,000

euros and that this project’s costs are characterized by the distribution in Fig. 2.15.

There is roughly a 90% probability that the project will overrun this budget. If this

probability represents an unacceptable risk in a particular context, the project

budget might not be approved. On the other hand, let us consider (scenario B)

that a project manager wants to minimize the risks of overrunning the budget. In

other words, the costs of a software project should be planned so that there is

minimal risk of exceeding them. If a project manager sets the maximal tolerable

risk of exceeding the budget to 30%, then the planned budget for the project should

not be lower than 1,170,000 euros.

1.0

800 1000 1200 1400

Cost

P
ro

ba
bi

lit
y

B

0.8

0.6

0.4

0.2

0.0

A

Fig. 2.15 Example cumulative cost distribution

42 2 Prescriptive Process Models

Similar to the process for statistical testing, the process for hybrid cost estima-

tion is a sophisticated method. More information, including tool support, can be

found in [17].

2.3.2.3 Extreme Programming

Extreme Programming (XP) is an agile approach to software development with a

strong focus on producing code, whereas all other activities are only executed if

they provide direct benefit for the customer [18]. In practice, this means an

enormous reduction in documentation, especially with respect to requirements

and design. In XP, traditional requirements are replaced by “user stories” created

by the customer that explain a part of the system behavior. A typical user story

should not contain more than three sentences and should be realized within

1–3 weeks. User stories not fitting this scheme should be split or merged.

User stories are used for schedule planning, not for a detailed problem description.

A user story is then broken down into 1- to 3-day programmer tasks. There is no

explicit design phase; the programmers write code directly using the tasks as input.

If the current system design does not work for the new user stories, it is refactored

until the new user stories can be accommodated.

Typically, XP projects feature a weekly cycle. This means that at the beginning

of a week, the customer picks a week’s worth of user stories to be implemented,

and the XP team implements them. Therefore, XP is heavily iterative. A larger

iterative cycle plans “themes” quarterly, i.e., larger fractions of the whole product

that involve a high number of interrelated user stories. Figure 2.16 displays the

two cycles.

Beyond this, XP features more practices that should be obeyed in daily work.

These practices are:

– Sit together, i.e., the whole team works together in one room.

– Whole team, i.e., all required skills are represented by team members (cross-

functional teams).

Weekly user
story cycle

Quarterly theme
cycle

Fig. 2.16 Interaction of XP’s weekly and quarterly cycles

2.3 Prescriptive Process Model Classes 43

– Informative workspace, i.e., the workspace the team works in should display all

important facts about the project and its status.

– Energized work, i.e., people should spend their time working with all their

strength—but not more than that, i.e., not spend countless overtime that does

not add value to the project.

– Pair programming, i.e., when programming, two people sit together at one

machine.

– Slack, i.e., the prioritization of tasks, so that less important ones can be dropped

if necessary.

– Ten-minute build, i.e., the whole system can be built and all test cases can be run

within 10 min.

– Continuous integration, i.e., any changes are integrated into the system and

tested after no more than a few hours.

– Test-first programming, i.e., writing the test case(s) before the actual program.

– Incremental design, i.e., the system design should always reflect what is needed

at the very point in time, and nothing more—any additions will change the

design as needed.

Extreme Programming has generated much discussion about the “right” way to

develop systems. Whereas the reduction of documentation was generally welcomed

by most programmers, other quality aspects of an XP-developed system that

consists only of user stories and code, such as maintainability, degraded. XP has

been successful for the development of smaller systems or of systems without clear

requirements; however, for safety-critical systems that mandate certain documen-

tation and verification steps, XP seems less suitable. The discussion about XP is

anything but over, however; it seems that XP will find its place among the

traditional process models. Beware: In many cases, when organizations claim to

do “agile development” or XP, they merely apply one or two practices, but follow a

chaotic process otherwise. In these cases, it is necessary to find out what such

organizations really do in order to evaluate their performance.

2.4 Process Standards

This section introduces some process standards widely used in industry. ISO/IEC

12207:1995 [19] and ISO/IEC 12207:2008 [20] are the basis for many other, derived

standards, such as ISO/IEC 15504 (SPICE) [21] or the European Space Agency’s

ECSS standards [22]. IEC 61508 [23] is commonly used for the development of

safety-critical systems such as automotive or aerospace (embedded) systems.

It defines functional safety as “. . .part of the overall safety relating to the EUC

(Equipment Under Control) and the EUC control system which depends on the

correct functioning of the E/E/PE safety-related systems, other technology safety-

related systems and external risk reduction facilities.” ISO/DIS 26262 [24] is an

upcoming adaptation of IEC 61508 to comply with needs specific to the application

44 2 Prescriptive Process Models

sector of electric and electronic (E/E) systems within road vehicles. Finally,

IEC 62304 [25] is a standard describing the software lifecycle for the development

of medical devices, with a specific focus on safety aspects after delivery.

2.4.1 ISO/IEC 12207:2008

The international standard ISO/IEC 12207:2008 [20] is a process standard that

establishes a common framework for software lifecycle processes, with a well-

defined terminology, which can be referenced by the software industry. It addresses

the issue that often, the same or similar concepts are referenced using different

terms, or that one term is used for different meanings. The standard covers the

software lifecycle from collecting the first ideas and concepts via implementing the

system to decommissioning obsolete systems. Many other standards, such as

CMMI [26] or ISO/IEC 15504 (SPICE) [21], are derived directly or indirectly

from ISO/IEC 12207 (either from its first version from 1995 or from the later

2008 version).

The standard groups the activities executed during the software lifecycle

into seven process groups. Each of the 44 processes described within the process

groups contains a purpose statement and a list of expected outcomes. Furthermore,

activities and tasks that are necessary to produce the expected outcomes

are described. ISO/IEC 12207:2008 was developed together with ISO/IEC

15288:2008 (System Lifecycle Processes) [27] and in many cases constitutes a

software-specific variant thereof. Additionally, ISO/IEC 12207:2008 has been

designated explicitly to be used as a process reference model (PRM) within

ISO/IEC 15504 (SPICE).

Figure 2.17 shows an overview of the standard. In contrast to its predecessor

(ISO/IEC 12207:1995), ISO/IEC 12207:2008 distinguishes processes for stand-

alone software products or services (System Context Processes, left-hand part of

Fig. 2.17) and processes for software products or services that are part of a superior

system (Software Specific Processes, right-hand part of Fig. 2.17).

Within the System Context Processes, the process group Agreement Processes
contains the processes necessary to reach an agreement between two organizations.

Organizational Project-Enabling Processes are processes that facilitate and sup-

port project execution on a strategic level. Project Processes deal with “classic”

project management tasks, i.e., planning and controlling, decision management,

risk management, configuration and information management, and measurement.

Product development, including (system) requirements elicitation, system architec-

ture, implementation, integration, testing, installation, operation, maintenance,

and disposal, is described by the Technical Processes.
Within the Software Specific Processes, the Software Implementation Processes

describe the activities necessary to create a specific system element that is

implemented in software. This includes software requirements analysis, software

architecture and design, implementation, integration, and testing. The Software

2.4 Process Standards 45

Support Processes contain software-specific processes with respect to documenta-

tion, configuration management, quality assurance, verification and validation,

reviews and audits, and problem resolution. Finally, Software Reuse Processes
define processes for systematically reusing system components.

ISO/IEC 12207 is sometimes called “the mother of all standards,” because most

specialized standards are based directly or indirectly on it. Beware: Many derived

standards still reference ISO/IEC 12207:1995, the predecessor of ISO/IEC

12207:2008!

2.4.2 IEC 61508

The international standard IEC 61508 [23] as well as the corresponding German

standard DIN EN 61508 [28] set out a generic approach for all safety lifecycle

activities for systems comprised of electrical and/or electronic and/or programma-

ble electronic components (E/E/PESs) that are used to perform safety functions

in order to ensure risks are kept at an acceptable level.

IEC 61508 is a general standard that shall be refined for different application

domains. For the automotive domain, such a refinement is currently in progress:

ISO 26262 [24] is an upcoming adaptation of IEC 61508 to comply with needs

specific to the application sector of electric and electronic (E/E) systems within

Software Specific ProcessesSystem Context Processes

Agreement
Processes

Project
Processes

Technical
Processes

SW Implement-
ation Processes

SW Support
Processes

Organizational
Project-Enabling

Processes

Stakeholder
Requirements Definition

System Requirements
Analysis

System Architectural
Design

Implementation

System Integration

System Qualification
Testing

Software Installation

Software Acceptance
Support

Software Operation

Software Maintenance

Software Disposal

Acquisition

Supply

Life Cycle Model
Management

Infrastructure
Management

Project Portfolio
Management

Human Resource
Management

Quality Management

Project Planning

Project Assessment
and Control

Decision
Management

Risk
Management

Configuration
Management

Information
Management

Measurement

Software Reuse Processes

Software
Implementation

Software
Requirements Analysis

Software
Architectural Design

Software
Detailed Design

Software
Construction

Software
Integration

Software
Qualification Testing

Software Documentation
Management

Software Configuration
Management

Software
Quality Assurance

Software
Verification

Software
Validation

Software
Review

Software
Audit

Software
Problem Resolution

Domain Engineering

Reuse Asset
Management

Reuse Program
Management

Fig. 2.17 Overview of ISO/IEC 12207:2008

46 2 Prescriptive Process Models

road vehicles. However, IEC 61508 will remain the relevant standard for all safety-

related automotive systems until it is replaced by ISO 26262.

For that reason, this section gives a brief overview of the specific requirements

of IEC 61508 on development processes. The IEC 61508 defines two types of

requirements: organizational and technical requirements. This section focuses on

the organizational requirements.

With regard to the organizational requirements, a development process for

safety-related systems is quite similar to standard high-quality development pro-

cesses [19, 29, 30]. In general, the organizational requirements of IEC 61508 first

influence the organizational processes, including project management and docu-

mentation. Second, they influence the supporting processes, including configuration

management, quality assurance, and change management.

The following additional tasks, in particular, must be considered in the develop-

ment of safety-related systems:

– The management of functional safety is added to the project management.

– Additional tasks for ensuring functional safety are required.

– A hazard and risk analysis must be performed.

– Depending on the safety integrity level (SIL), specific methods and measures

must be applied, e.g., specific test activities.

– A final assessment of the functional safety is required.

In the following, the organizational requirements of IEC 61508 will be briefly

described and related to standard development processes. For this purpose,

Sect. 2.4.2.1 gives an overview of the safety-specific requirements on organiza-

tional and supporting processes. Section 2.4.2.2 identifies and briefly describes the

safety-specific overall lifecycle phases required in addition. The software safety

lifecycle is regarded in Sect. 2.4.2.3. Finally, Sect. 2.4.2.4 introduces important

aspects regarding the certification of systems.

2.4.2.1 Requirements on Organizational and Supporting Processes

IEC 61508 defines organizational and technical requirements on the develop-

ment processes for safety-related systems. With regard to the organizational

requirements, these are usually fulfilled by mature processes (for example with

CMMI-Level 2 [29, 30] or CMMI Level 3 [31]). The most important safety-specific

requirements are outlined in the following sections. Regarding the technical

requirements, however, it must be clearly stated that reaching a maturity level

does not imply compliance to IEC 61508 [32]. The major challenges raised by

IEC 61508 are the technical requirements on the engineering process.

Documentation. As a general requirement, IEC 61508 specifies the necessary

information to be documented in order for all phases of the overall, E/E/PES, and

software safety lifecycles to be performed effectively.

IEC 61508 defines the following general requirements on all documents that are

created during the lifecycle:

2.4 Process Standards 47

– The documentation shall contain sufficient information for each phase of the

different lifecycles that is necessary for the effective performance of subsequent

phases and verification activities. However, it is not explicitly defined what

constitutes sufficient information. In fact, this strongly depends on the develop-

ment context.

– The documentation must contain all information that is required for the manage-

ment and assessment of functional safety.

– The documentation must be accurate and concise; it must be easy to understand

by all stakeholders; it must suit the purpose for which it is intended; and it must

be accessible and maintainable.

– Each document shall contain a minimum of organizational information, includ-

ing titles or names indicating the scope of the contents, some form of index

arrangement, and a revision index.

– All relevant documents shall be revised, amended, reviewed, and approved and

shall be under the control of an appropriate document control scheme.

Regarding these requirements, there is no significant difference to common

process standards and to the requirements of capability/maturity models.

Management of functional safety. An additional, safety-specific task of project

management that is required by IEC 61508 is the management of functional safety.

As the output of this task, a safety plan is created as an additional work product.

In this step, the management and technical activities during all lifecycle phases

that are necessary for achieving the required functional safety of the safety-related

systems are defined. Moreover, the responsibilities of each person, department,

and organization for the different project phases and activities within the phases

are defined.

It makes sense for the project leader to appoint a safety manager who is

responsible for performing the management of functional safety and who defines

the safety plan [29].

The safety plan must include at least the following information:

– It must be defined which of the lifecycle phases defined in IEC 61508 are

actually applied and which of the recommended techniques and measures are

used in these phases.

– It must be identified who carries out and who reviews these phases. This means,

in particular, that it must be defined who is responsible for taking care of the

functional safety of the system. Responsibilities may also be assigned to licens-

ing authorities or safety regulatory bodies.

– The functional safety assessment activities must be defined. Additionally, it is

required to define the procedures for how the recommendations of the different

review and assessment activities can be resolved.

– It is required that all persons involved in the overall lifecycle must be ade-

quately trained and periodically retrained.

– Regarding the operation of the system, procedures must be defined that specify

that dangerous incidents will be analyzed and appropriate recommendations will

be made to improve the system.

48 2 Prescriptive Process Models

– Procedures for analyzing the operation and maintenance performance must be

defined.

– Requirements for periodic functional safety audits must be specified.

– Procedures for initiating modifications to the safety-related systems as well as

the required approval procedure and authority for modifications must be defined.

– The procedures for maintaining accurate information on potential hazards and

safety-related systems must be defined.

– It is further necessary to specify the procedures for configuration management.

This includes the definition of the stage at which formal configuration control

must be used and the definition of the procedures used for uniquely identifying

all constituent parts and for preventing unauthorized items from entering service.

All of these specified activities shall be formally reviewed and implemented and

progress is to be monitored. All responsible stakeholders for the management of

functional safety activities shall be informed.

Suppliers providing products or services shall have an appropriate quality

management system that is compliant with the defined requirements.

Configuration management. The requirements on the configuration management

are only defined roughly in IEC 61508. According to [29], in addition to standard

configuration management processes, the following aspects must be considered:

– All tools and development environments used must be additional configuration

elements.

– All versions of the software must be documented. All released versions of the

software and all related documents must be kept throughout the operation

lifetime of the system in order to support the maintenance and modification of

the software.

Quality assurance. Quality assurance is obviously one of the major aspects

regarding the development of safety-related systems. Nonetheless, mature pro-

cesses already include a sophisticated quality assurance process. In terms of

IEC 61508, quality assurance plays an important role in two respects: First, it is

necessary to perform a dedicated overall safety validation. Second, the functional

safety of the system must be assessed. These issues are addressed by the additional

safety-specific development phases that are described in Sect. 2.4.2.2.

Change management.With respect to change management, it is basically neces-

sary to extend the impact analysis in order to identify impacts on the functional

safety of the system. As a result of the analysis, it must be decided whether or not a

new hazard and risk analysis is required. In the worst case, the latter has to be

repeated completely. In turn, the safety requirements and the SILs of the safety

functions may change. Further, it must be decided which phases must be repeated.

After each modification, it is at least necessary to repeat the verification activities.

Depending on the SIL, it might not be sufficient to reverify affected subsystems;

rather, the overall system must be verified again.

2.4 Process Standards 49

2.4.2.2 Overall Safety Lifecycle

As a major requirement, IEC 61508 defines a lifecycle model for the development

of safety-related systems. All development processes for the development of safety-

related systems must comply with this lifecycle model or at least the equivalence

must be shown. The overall lifecycle model of IEC 61508 is shown in Fig. 2.18.

This section will not describe the complete lifecycle model, but will focus on the

safety-specific lifecycle phases 3 (hazard and risk analysis) and 4 (overall safety

requirements) of IEC 61508.

Hazard and risk analysis. A hazard and risk analysis must be conducted as soon

as the overall concept and scope definitions of the future system have been finished.

It aims at identifying all hazards and hazardous events, explaining their causes,

forecasting their consequences, and finding detection and mitigation possibilities.

Often it also contains quantitative aspects, at least the assignment of a SIL or a risk

priority number on an ordinal scale, partly also an estimation of occurrence

probability or severity of the consequences (e.g., costs). IEC 61508 leaves the

choice between qualitative and quantitative techniques open.

A number of techniques are known that help to find all hazards and determine

the sequences of events leading to the hazards. Most practically applied techniques

are graphical or tabular techniques. Often the same techniques can be applied in

later development phases for a more detailed breakdown of hazard influences.

Among the recommended techniques in IEC 61508 are:

– Failure modes and effects analysis (FMEA) and its derivatives

– Cause consequence diagrams

– Event tree analysis

– Fault tree analysis

Overall installation and commissioning12

Overall safety validation13

Overall operation, maintenance & repair14

Decommissioning or disposal16

Overall modification and retrofit15

Overall planning

Overall
operation &

maintenance
planning

6

Overall
safety

validation
planning

7

Overall
installation &

commissioning
planning

8

Safety-
related

systems:
E/E/PES

9

Realization

Safety-
related

systems:
other

technology
10

Realization

11

Realization

External risk
reduction
facilities

Concept1

Overall scope definition2

Hazard & risk analysis3

Overall safety requirements4

Safety requirements allocation5

Fig. 2.18 IEC 61508 Safety Lifecycle model

50 2 Prescriptive Process Models

– Hazard and operability studies

– Markov models

– Reliability block diagrams

Annexes B.6 and C.6 of IEC 61508 give a short explanation and further

references for these techniques. Other techniques that might be appropriate,

according to the literature, are preliminary hazard analysis (PHA) and functional

hazard analysis (FHA).

Overall safety requirements. Actually, the definition of the safety requirements

is not an additional lifecycle phase. In fact, it is more an extension of already

existing requirements analysis phases. In general, those requirements that affect

safety functions of the systems must be considered as safety requirements. A safety

requirement always consists of two parts:

– Safety function requirements define what the safety function does.

– Safety integrity requirements define the likelihood of a safety function being

performed satisfactorily.

Usually the safety function requirements are derived from the results of the

hazard analysis. The hazards identified in this analysis shall be prevented by means

of appropriate safety functions. The safety integrity requirements can be derived

from the results of the risk analysis.

As an example, consider a machine with a rotating blade that is protected by

a hinged solid cover [33]: In order to protect the operator, the motor is de-energized

and the brakes are applied whenever the cover is lifted. As a result of the hazard

analysis, it is detected that it must not be possible to lift the hinged cover more than

5 mm without the brake activating and stopping the blade within less than a second

in order to prevent accidents. During risk assessment, various aspects, such as the

likelihood of this hazard occurring and the associated severity, were looked at,

and the corresponding safety function was classified to SIL 2. The complete safety

requirement could then be defined as follows:

When the hinged cover is lifted by 5 mm or more, the motor shall be de-energized
and the brake activated so that the blade is stopped within 1 second. The safety
integrity level of this safety function shall be SIL 2.

The higher the SIL of a safety function gets, the more strongly IEC 61508

recommends formal requirements specification techniques such as Z [34] or

VDM [35]. During the (ongoing) adaptation of the standard to the automotive

industry, this recommendation seems to be weakened and a requirements specifica-

tion using natural language comparable to the example above will be sufficient.

The safety requirements are initially related to the overall system. Therefore, an

additional step is necessary to allocate the safety requirements to different

subsystems, including E/E/PES, safety-related systems of other technologies,

and external risk reduction facilities. This process is repeated in the context

of software development by assigning safety requirements to the software and

2.4 Process Standards 51

subsequently to the individual software components. Obviously, allocating safety

requirements is no different from allocating functional requirements in a systems

engineering process.

Overall safety validation. In order to validate whether or not the overall system

meets the specification of the overall safety function and integrity requirements,

an overall safety validation phase is required.

Before the actual validation takes place, a safety validation plan must be defined

during the safety validation planning phase. This plan specifies the validation of

the functional safety and shall include:

– Information about when the safety validation takes place.

– Who is responsible for carrying out the validation.

– Which safety-related systems must be validated in which operation mode.

– The technical strategy for the validation (for example, analytical methods,

statistical tests, etc.)

– The measures, techniques, and procedures that shall be used for confirming that

the allocation of safety functions has been carried out correctly. This shall

include confirmation that each safety function conforms to the specification for

the overall safety functions requirements and to the specification for the overall

safety integrity requirements.

– The required environment in which the validation activities are to take place (for

tests, this would include calibrated tools and equipment).

– The pass and fail criteria.

– The policies and procedures for evaluating the results of the validation, particu-

larly failures.

During the actual overall safety validation phase, the following aspects must

be considered:

– All validation activities shall be carried out in accordance with the overall safety

validation plan.

– During the validation, the following aspects shall be documented in particular:

the validation activities in chronological order with the corresponding results

and the discrepancies to the expected results, the version of the safety

requirements specification used, the validated safety functions, the tools and

equipment used.

– When discrepancies are discovered, it shall be documented whether validation

will be continued or whether a change request will be issued.

The overall safety validation phase is certainly not the only validation activity in

the lifecycle. In fact, the lifecycles of software and hardware development include

specific validation activities. The requirements on these activities, however, are

more of technical interest, since they define specific validation and verification

techniques that have to be applied.

52 2 Prescriptive Process Models

2.4.2.3 Software Safety Lifecycle

The previous section considered the overall safety lifecycle model of IEC 61508.

Additionally, the latter defines lifecycle models for the individual realization

phases. This section illustrates the safety-specific aspects of the software safety

lifecycle as illustrated in Fig. 2.19.

The IEC 61508 software safety lifecycle model is obviously no different from

standard lifecycle models. This is particularly true since the individual phases can

be (and shall be) adapted to the specific development context. From the point of

view of a management process, the development of safety functions can thus simply

be integrated into existing software development processes that define comparable

development phases.

In general, the safety functions are developed using the standard lifecycle model.

However, it is usually necessary to obey additional requirements on the methods

and measures applied in order to meet the technical requirements of IEC 61508. For

that reason, it is very important to clearly separate safety-related and non-safety-

related functions in a system. Otherwise, the whole system development must be

compliant to IEC 61508. Further, a clear separation between safety functions of

different SILs is very important. Otherwise, all functions must be developed

compliant to the highest SIL one of the safety functions is assigned to.

In most cases, the two aspects mentioned earlier are the focus of many industrial

activities in the context of IEC 61508. First, appropriate techniques are defined that

fit the development processes, techniques, and tools commonly used in the respec-

tive domain (e.g., automotive systems). Second, reasonable system and software

architectures are defined that enable an economically feasible approach to the

development of standard-compliant systems.

E/E/PES safety
requirements
specif ication

E/E/PES
architecture

Sof tware safety
requirements
specif ication

Sof tware
architecture

Sof tware
system
design

Module
design

Coding

Module testing

Integration
testing

(module)

Integration
testing

Validation
testing

Output

Verif ication

Fig. 2.19 Software safety lifecycle model of IEC 61508

2.4 Process Standards 53

2.4.2.4 Certification: Assessment of Functional Safety

A major step in the development of safety-related systems is the final assessment of

whether or not the safety requirements could be achieved. For this assessment,

various aspects must be considered, which will be described in this section.

In order to assess whether or not the required functional safety has been

achieved, one or more safety assessors must be appointed who are responsible for

the assessment of the functional safety. These assessors must have access to all

involved persons as well as to all relevant information and equipment. The required

levels of independence of the assessors are given in Table 2.1.

The assessment of functional safety must be applied to all lifecycle phases. The

assessors look at all activities and at the outputs obtained. As a result of the

assessment, they judge the extent to which the objectives and requirements of

IEC 61508 have been met.

The system must be assessed throughout the entire development cycle. The

functional safety shall be assessed after each phase or after a number of phases,

but at the latest before the commissioning of the system.

Another important aspect to consider is that any tool that is used during system

development is also subject to assessment. This includes, for example, modeling

tools, code generators, compilers, and host target systems.

During the assessment, all steps that have been performed since the last assess-

ment, the plans and strategies for implementing further assessments, as well as the

recommendations of the previous assessments and the corresponding changes must

be looked at.

At the conclusion of the assessment, recommendations shall be produced for

acceptance, qualified acceptance, and rejection.

Before the actual assessment takes place, an assessment plan has to be defined

and must be approved by the assessors and by the safety manager who is responsi-

ble for the assessed safety lifecycle phase. Such a plan shall contain the following

information:

– The persons who shall undertake the functional safety assessment

– The outputs from each functional safety assessment

– The scope of the functional safety assessment (in establishing the scope of the

functional safety assessment, it will be necessary to specify the documents, and

their status, which are to be used as inputs for each assessment activity)

– The safety bodies involved

– The resources required

– The level of independence of the persons undertaking the functional safety

assessment

– The competence of those undertaking the functional safety assessment relative

to the application

IEC 61508 currently forms the basis for safety-related activities in automotive

software engineering. However, it will be replaced by ISO 26262 [24].

54 2 Prescriptive Process Models

2.4.3 ISO 26262

ISO 26262 [24] is an upcoming standard concerned with the functional safety of

road vehicles, specifically their electric and electronic (E/E) systems. It currently

exists as a Final Draft International Standard (as of June 6, 2011, it was in stage

50.20 “DIS ballot initiated: 2 months”) and is expected to be published as an

international standard in 2011. ISO 26262 is an adaptation of IEC 61508 [23] for

road vehicles. Please note that all statements with respect to ISO 26262 are based
on the current draft and thus should be considered as preliminary.

The standard provides an automotive safety lifecycle (management, develop-

ment, production, operation, service, decommissioning) for E/E systems and

supports tailoring of the necessary activities during these lifecycle phases. It

provides an automotive-specific risk-based approach for determining risk classes

called Automotive Safety Integrity Levels, or ASILs. The standard uses such ASILs

for specifying an item’s safety requirements that are necessary for achieving an

acceptable residual risk and provides requirements for validation and confirmation

measures to ensure that a sufficient and acceptable level of safety is achieved. ISO

26262 consists of ten parts. The general process defined in ISO 26262 is very

similar to the one from IEC 61508. Major changes include better consideration of

software in general and requirements on software engineering in particular, and the

way risks are assessed. Figure 2.20 shows an overview of the nine normative parts

(part 10 is informative only).

Part 1: Glossary. This part provides a glossary of the terms used throughout the

standard.

Part 2: Management of functional safety. This part specifies the requirements on

functional safety management for automotive applications. These requirements

cover the project management activities of all phases and consist of project-

independent requirements and project-dependent requirements to be followed

during development and requirements that apply after product release.

Part 3: Concept phase. This part specifies the requirements on the concept phase for

automotive applications. These requirements include the item definition, the

initiation of the safety lifecycle, the hazard analysis and risk assessment, and

the functional safety concept.

Table 2.1 Minimum levels of independence

Minimum level

of independence

Safety integrity level

1 2 3 4

Independent

person

Highly recommended Highly recommended Not recommended Not recommended

Independent

department

– Highly recommended Highly recommended Not recommended

Independent

organization

– – Highly recommended Highly recommended

2.4 Process Standards 55

Part 4: Product development: system level. This part specifies the requirements on

product development at the system level. These include requirements on the

initiation of product development at the system level, the specification of the

technical safety concept, system design, item integration and testing, safety

validation, functional safety assessment, and product release.

Part 5: Product development: hardware level. This part specifies the requirements

on product development at the hardware level. These include requirements on

the initiation of product development at the hardware level, the specification of

the hardware safety requirements, hardware design, hardware architectural

constraints, assessment criteria for the probability of violation of safety goals,

hardware integration and testing, and safety requirements for hardware–software

interfaces.

1. Glossary

2. Management of functional safety

2-4 Overall independent safety
management

2-5 Project-dependent safety
management during development

2-6 Safety management after product
release

3. Concept phase 7. Production and operation

3-4 Item definition

3-5 Initiation of safety
lifecycle

3-6 Hazard analysis and
risk assessment

3-7 Functional safety
concept

7-4 Production

7-5 Operation, service,
and decommissioning

4. Product development: system level

4-4 Initiation of product
development at system
level

4-5 Specification of
technical safety concept

4-6 System design
4-7 Item integration and
testing

4-8 Safety validation

4-9 Functional safety
assessment

4-10 Product release

8. Supporting processes

8-4 Interfaces with distributed development

8-6 Configuration management

8-7 Change management

8-8 Verification

8-5 Overall management of safety requirements

8-9 Documentation

8-11 Qualification of software components

8-12 Qualification of hardware components

8-13 Proven in use argument

8-10 Qualification of software tools

5. Product development: hardware level

5-4 Initiation of product development at hardware level

5-6 Hardware design

5-7 Hardware architectural constraints

5-8 Assessment criteria for probability of violation of
safety goals

5-9 Hardware integration and testing

5-5 Specification of hardware safety requirements

6. Product development: software level

6-4 Initiation of product development at software level

6-6 Software architectural design

6-7 Software unit design and implementation

6-8 Software unit testing

6-9 Software integration and testing

6-10 Software safety acceptance testing

6-5 Specification of software safety requirements

9. ASIL -oriented and safety -oriented analyses

9-4 ASIL decomposition

9-5 Criticality analysis

9-6 Analysis of dependent failures

9-7 Safety analyses

5-10 Safety requirements for hard/software interface

Fig. 2.20 Overview of the normative parts of ISO 26262 (draft)

56 2 Prescriptive Process Models

Part 6: Product development: software level. This part specifies the requirements

on product development at the software level for automotive applications. This

includes requirements on the initiation of product development at the software

level, specification of software safety requirements, software architectural

design, software unit design and implementation, software unit testing, software

integration and testing, and software safety acceptance testing.

Part 7: Production and operation. This part specifies the requirements on produc-

tion as well as operation, service, and decommissioning.

Part 8: Supporting processes. This part specifies the requirements for supporting

processes. These include interfaces within distributed development, overall

management of safety requirements, configuration management, change

management, verification, documentation, qualification of software tools, quali-

fication of software components, qualification of hardware components, and

proven-in-use argument.

Part 9: ASIL-oriented and safety-oriented analyses. This part specifies the

requirements for ASIL-oriented and safety-oriented analyses. These include

ASIL decomposition, criticality analysis, analysis of dependent failures, and

safety analyses.

Part 10: Guideline. General guidelines, application examples, and further

explanations (informative only).

So far, IEC 61508 is the standard that guides the development of safety-critical

systems. For the automotive domain, ISO 26262 will take over this role when it

is published.

2.4.4 IEC 62304

IEC 62304 [25] is a standard describing the software lifecycle for the development

of medical devices. Similar to the software lifecycle described in IEC 61508,

it describes a process for software development, starting with system requirements

elicitation and ending with tests. In comparison to the more generic IEC 61508,

it explicitly mentions and elaborately describes the handling of the product after

commissioning, i.e., during operation. The operation issues, however, are limited to

the scope of safety and give information on how to handle safety issues emerging

after delivery.

Another difference to IEC 61508 is that IEC 62304 specifically describes the

software development process and the implications for risk management. The

processes describing the development of the complete (hardware/software) system

are elaborated in ISO 60601 [36] (Fig. 2.21).

In addition to the engineering processes described in IEC 62304 and ISO 60601,

ISO 13485 [37] describes a comprehensive quality management system for

organizations developing medical devices, similar to the DIN EN ISO 9000 [38]

and 9001 [39] standards for traditional organizations. ISO 13485 is complemented

by ISO 14971 [40], which focuses on risk management for medical devices.

2.4 Process Standards 57

IEC 62304 is harmonized, i.e., by proving compliance to this standard, an

organization is also presumed to be compliant to the (mandatory) EWG directives

90/385/EWG, 93/42/EWG, and 98/79/EG. IEC 62304 is a process standard for

developing medical device software that is complemented by many other standards

and should not be viewed as standalone.

2.5 Process Representations in Organizations

This section describes two major alternatives of making process information

publicly known in an organization: process handbooks and EPGs. Both can serve

various purposes and have their specific strengths, which will be briefly illustrated.

2.5.1 Process Handbooks

This section describes process handbooks as a means of documenting and publish-

ing process information. It describes the typical purpose and content of a process

handbook and gives an exemplary outline for structuring a process handbook.

Software integration
and system verification
(component integration

and verification)

Development of the
software architecture

(component
development)

Software module
development

Software module
verification

System requirements
elicitation

Development of the
system architecture

Development of the
subsystem

architecture

System validation

System integration
and verification

Subsystem integration
and verification

user requirements validated system

system requirements specification

system architectural design

software requirements specification

software architectural design

Implementation of the software module

verified software code

verified software component

verified subsystem

verified system

system validation plan

system test specification

subsystem test specification

software test
specification

Covered by
IEC 62304

Covered by
ISO 60601

Fig. 2.21 Coverage of IEC 62304 and ISO 60601

58 2 Prescriptive Process Models

2.5.1.1 Purpose and Content

Process handbooks are generally thought of as information that helps process

performers do the right thing at the right time. As such, they define the work that

should be done, expected outcomes, the responsibilities of the various roles,

the conditions that control the sequencing of the work, the conditions that can be

used to track progress, etc. Process handbooks are usually organized according to a

logical decomposition of the work that must be done, with chapters for major

subprocesses, sections for major activities within each subprocess, and subsections

for specific tasks.

The content and organization of a process handbook should reflect task-related

questions posed by process performers, i.e., agents who are assigned to a project

and responsible for carrying out the process. Some typical questions are:

– What do I have to do to perform an activity?

– What are the prerequisites for performing a task?

– What do I have to produce during the course of my work?

– Why do I have to perform a task in a specific way (rationale)?

– Which tasks am I responsible for?

– How can I determine whether or not I have successfully completed a task?

– Where can I find a particular template?

Across all the roles in a process, there will be many questions of many different

kinds. For each kind of question, there should be one or more views that help in

answering questions of this kind. For example, an activity decomposition view

helps to answer questions about the interdependencies among activities and an

artifact lifecycle view helps to answer questions about when to produce which

document, and whom to send it to.

One handbook often cannot conveniently meet the needs of all the roles that will

have questions about the process and its performance. Actually, many handbooks

are needed, each oriented towards some role’s domain of questions. This severely

complicates the maintenance of an organization’s process descriptions because

changes and additions have to be accurately and consistently made to a possibly

large number of handbooks. Therefore, a mature organization typically maintains

only one comprehensive process model, and generates process handbooks

for specific audiences out of this, covering the views required by the respective

audience.

The content of process handbooks (and their underlying process models) usually

comprises at least the following information:

– A description of the activities a process performer has to execute,

– A description of the work products that are produced by each activity, and thus

have to be created by the process performer, and

– A description of the roles associated with the activities.

2.5 Process Representations in Organizations 59

In addition to this, there is a variety of optional information that can be

covered by process handbooks, depending on their purpose. This information

may include:

– A description of resources or tools to be used during the activities,

– Document templates for the work products,

– Examples of the work products, i.e., an exemplary, “perfect” instance of a

particular work product,

– How-tos for specific tasks, e.g., detailed instructions on how to complete the

task using a specific tool, and

– Tips and tricks, e.g., workarounds for a bug in a tool.

Process handbooks always address a specific audience and try to convey specific

information. Keep this in mind when developing a process handbook!

2.5.1.2 Exemplary Outline and Structure

The structure of process handbooks varies greatly. So far, there exists no common

standard for process handbooks, i.e., no specification on where to find which

information. Typically, an organization’s process handbooks also follow the

respective organization’s corporate design, which may make the same content

look very different across different organizations. This section introduces

a generic outline for a process handbook that structures the information in a

sensible way.

Introduction

– Purpose:What is the purpose of the process handbook—why was it created, e.g.,

for auditing purposes or for daily usage?

– Target audience: Which audience is addressed by the handbook, e.g.,

programmers or project managers?

– History: What is the history of the handbook, which previous version does the

current handbook replace, and what was changed?

– Process specifics: What is specific about the process that is described in the

handbook? Where does it differ from standard/other processes? What makes it

special, what should people direct special attention to?

– Applicability: In which context(s) is the process applicable, e.g., is it for the

development of safety-critical embedded systems or for the development of a

Web application?

– Relationships to other models: Which other standards (e.g., international

standards or other organization standards) or process models is this process

handbook derived from? Where does it have similarities, where is it different?

60 2 Prescriptive Process Models

– Version: Which version of the process model is described in the handbook?

What are the differences to its predecessor/which problems were addressed

with this version?

– Structure: What is the structure of the handbook? Which information can be

found in which section?

Definitions

– Terminology: A definition of the terms used in the handbook. This is especially

important since different terms are often used synonymously throughout the

process community, while other terms have different meanings in different

contexts.

– Abbreviations: Every organization has its own organizational slang, especially

when it comes to abbreviating terms. Therefore, it is important to define the

abbreviations used in the handbook.

– Schemes for describing products, processes, roles, and their relationships:

These descriptions typically follow some kind of (semi-)formal structure. For

example, a role can be linked to an activity (“performs”) or to a document

(“responsible for”). These schemes should be explained in order to enable the

reader to understand the relationships described in the handbook.

Process Views

The views displayed in the handbook depend on its purpose and content; therefore,

no generally applicable recommendation exists. However, typical views contain:

– Major entities: Which are the (sub-)processes/activities/tasks, which are the

work products of the processes?Which roles exist, and which resources are used?

– Control flow: Which activity is preceded by which other activity, and which

activity follows?

– Product flow: Which activity produces which work product, and which ones

does it consume or modify?

– Role-specific views: Which role is participating in which activities? Which role

is responsible for which work products?

– Hierarchical decomposition: Which activities and tasks belong to which

subprocess?

Depending on the purpose of the process handbook, the descriptions will need to

be on different levels of abstraction. For example, if the handbook should support

assessors in identifying the company processes, detailed task descriptions including

methods and techniques are less important. However, in order to assist process

performers during their daily work, a precise and concise description of the design

method can be most beneficial.

2.5 Process Representations in Organizations 61

List of Figures and Tables, Index

In order to allow people to quickly find a figure or table they previously discovered

somewhere, a list of figures and tables should be added. An index allows for quickly

finding relevant information on specific keywords. The index should point to

specific entry points and thus complements a full-text search (for electronic

handbooks).

List of References

Finally, the list of references should provide additional information to that provided

in the handbook. It may contain books on specific methods, tool manuals, or online

resources in the organization’s intranet or on the Internet. The references should

either be referenced from within the process handbook or accompanied by a short

explanation of what to expect from the reference.

Appendices

The appendices typically contain additional information that may be relevant for

some groups of people, but that is not needed for daily work. For example,

traceability information to other standards may become important for assessments

or certifications, but is not required for daily project work. Such information is

typically stored in appendices to the handbook, where it does not distract from daily

work but can be accessed readily when needed. Appendices may also contain

document templates, examples, checklists, tips and tricks, information on how to

tailor the process for specific contexts, etc.

2.5.1.3 Usability

One of the most important—and difficult to achieve—aspects when it comes to

process handbooks is their usability. Process handbooks are created for a purpose,

a part of which is usually to support process performers in their daily work. If they

do not like the process handbook, for whatever reason, they are less likely to fully

apply the described processes, leading to compliance problems and possibly further

mayhem. Therefore, the process handbook should make it easy to use it and

encourage people to take a look at it.

While every process handbook is different, there are some general directions that

should be considered when creating such a handbook:

– Consistency: The handbook should be consistent. This means that the same

terms should always mean the same thing, and this thing should not be described

using different terms. It should also be consistent on a higher level of abstraction.

62 2 Prescriptive Process Models

This means, for example, that when a document is created at some point and a

detailed description of the document is referenced, this reference should exist

and describe the right document. Of course, the underlying process itself should

be consistent, too, i.e., when a document is created, it should also be used

somewhere else.

– Up-to-date-ness: The handbook should be up to date, i.e., it should describe the

currently active process. For example, documents that are not used anymore

should not be demanded by the process handbook.

– Design: The display of information should be functional, yet look nice. For

example, the new 8-point company font may look cool, but it may be very hard

to read—and thus should not be used for major content. The same applies to

colors: The extensive use of colors may look great on screen—but if most people

print the handbook on black-and-white printers and the colors suddenly all look

like the same gray, this does not help.

– Accessibility: The information in the process handbook should be readily

accessible. A single printed version of the handbook on the department’s

bookshelf is not likely to be used—or applied during daily work. An EPG,

prominently linked in the organization’s intranet or process portal, with power-

ful search functionality and direct template download, is much more helpful.

Remember: The best process handbook is worthless if it is difficult to use and

is thus ignored!

2.5.2 Electronic Process Guides

This section describes EPGs as another means of documenting and publishing

process information that makes the provided information easily accessible.

It describes the typical purpose and content of an EPG and offers some examples

of EPGs.

2.5.2.1 Purpose and Content

EPGs are typical instruments used to guide process performers in doing the right

thing at the right time—much more so than process handbooks. While a process

handbook as a linear representation of the process cannot really capture its

networked structure, an EPG can. Interlinked Web pages allow following every

possible path through the process easily, and are thus much easier to use for process

guidance than a handbook that either requires following the given structure,

or necessitates a lot of skimming through the pages.

An EPG is typically generated by a process modeling environment, i.e., it uses

the process model as input and generates a Web-based representation, i.e., a set of

interlinked Web pages. This type of EPG is usually called a “static” Web guide,

2.5 Process Representations in Organizations 63

because it consists of only static elements (Web pages, images). Any changes to the

underlying process model result in the regeneration of the EPG.

Another variant generates the EPG on demand, i.e., an active server component

reads the necessary information from the process model and generates the appro-

priate Web pages on demand. This EPG flavor will always represent the underlying

process model accurately; however, it typically feels a bit slower when it is used

due to the generation process.

Given the purpose of guidance for process performers, the content may be

similar to that of process handbooks, yet a lot more useful for performing the

process. For example, a template for a specific work product may be provided for

download from the intranet—so that the creation of, for example, a requirements

specification as prescribed is a lot simpler. A process handbook will typically be

less comfortable to use and require, for instance, going to a specific intranet Web

site manually (by typing in the URL). While this may sound like a minor issue,

it may just be the reason for people not to use the provided template.

An EPG may also provide other helpful material: Besides templates, examples

of “good” work products may show the process performers how to create the

respective document. Discussion areas provide process performers with the ability

to give direct feedback on the process description—what seems perfectly

understandable to the process engineer may be rather complicated for a software

developer, and vice versa. Similarly, process performers may give helpful tips for

performing a certain task themselves—for instance, how to work around bugs in the

tools that are used.

Apart from this kind of supportive material, an EPG may also support process

performance by providing different views on the process. While a process

handbook typically comprises the complete process (and thus features a rather

global view), an EPG may provide different views for different roles. For example,

a tester might not always need to know how to use the requirements management

tool—thus, for his view, such details may be omitted. This helps people to focus on

their specific role and does not clutter them with unnecessary (and potentially

confusing) details. However, they usually have the option of switching to a different

view with all the details. An EPG may even provide specific process views on

demand, by generating them from the underlying process model.

The following section gives some examples of EPGs.

2.5.2.2 EPG Examples

Figure 2.22 displays an example of a static EPG that was generated by the process

modeling tool SPEARMINT™. Each symbol is clickable, leading to a detailed

description of the activity or work product it represents. In addition, the text may

contain arbitrary links to other entities of the process model (i.e., to other pages

within the EPG) or to any intranet or Internet URL.

Figure 2.23 shows a different variant of a static EPG. It provides basically the

same features as the one shown in Fig. 2.22, yet has a completely different look and

64 2 Prescriptive Process Models

feel. Most process modeling environments provide a standard look and feel for the

generated EPGs, which may then be adopted to follow the organization’s corporate

design, if necessary.

Figure 2.24 displays a wiki-based EPG. In this case, a MediaWiki installation

was used with the Semantic MediaWiki extension, i.e., the process model is

contained in the wiki itself [41]. All standard wiki functionality is available,

such as commenting and subscribing for changes. In addition to that, the

wiki provides a meta model that allows automatic listing of activities, work

products, etc.

Figure 2.25, finally, displays another part of the wiki-based EPG. The displayed

page is generated completely automatically from the wiki content. It displays a

graphical rendition of the process description, which is automatically updated when

the process description in the wiki changes [41].

2.6 Deploying Prescriptive Process Models

Process deployment deals with getting a prescriptive process into daily practice,

i.e., getting people to follow the new or changed process. As already stated in

Sect. 2.2.1, this means changing people’s behavior, which is a difficult task to say

Fig. 2.22 EPG example 1

2.6 Deploying Prescriptive Process Models 65

the least. This section describes possible strategies for deploying processes to an

organization. It introduces an approach that has proven to be successful in practice,

as well as experience from industrial process deployments, including a number of

commonly made mistakes.

2.6.1 Deployment Strategies

Two general strategies for deploying a changed process to an organization are the

big-bang and the phased approach:

– Big-bang: The complete organization is switched from the old to the new

process at the same time. In this case, there will be no confusion resulting

Fig. 2.23 EPG example 2

66 2 Prescriptive Process Models

from people working in different projects/departments using different processes.

However, this strategy requires a large amount of support capability for

educating and coaching the employees. An intensified version of the big-bang

strategy also switches running projects to the new process. However, this creates

a lot of overhead; therefore, this is rarely done.

– Phased: The new process is applied only selectively in specific, newly starting

projects. This requires only limited training and coaching capabilities and

eliminates the switching overhead. However, if this strategy is pursued on a

continuing basis, there will be a plethora of process variants active within the

organization at the same time.

No matter which strategy is pursued, it is important that the process performers

know about the new process. This means they must be educated in its contents and

application. It is not enough to simply publish the new process handbook on the

intranet and expect everyone to follow it! Most people are unwilling to change a

behavior they have followed in the past, and they will use all kinds of excuses not to

do so. Therefore, their changing behavior must be facilitated and supported. A first

Fig. 2.24 Wiki-based EPG example

2.6 Deploying Prescriptive Process Models 67

step is to make it easy for them to find out what has changed in the first place.

Typically, a process is not changed completely, but only some parts are altered. By

pointing out the parts that were kept constant and highlighting those that were

actually changed, the process performers will not need to read the whole handbook,

but only the parts that apply to them and were actually changed.

This analysis has to be done by the process engineer who is preparing the

changed process. This knowledge must then be transferred to the process

performers. This can be done through classroom-style education, through coaching,

by providing a “diffed” version of the process handbook that highlights changes,

or through other means. In addition to a one-time knowledge transfer, process

performers should be continuously supported by a helpdesk that assists them with

the new process. Many problems and ambiguities will only show up during daily

practice, for example, when a new template is to be used. In these cases, it is

advisable to help process performers to correctly fill in this template, lest they either

do not use it at all or use it incorrectly.

Fig. 2.25 Generated graphical process overview within wiki-based EPG

68 2 Prescriptive Process Models

Industry example. A CMMI level 5 organization updates its processes every

3 months, based on feedback collected from all process performers. Every newly

started project has to apply the new version from the start. Every already running

project has to switch to the new process 3 months after the version was released at

the very latest. The new version of the process is taught to all affected process

performers in a classroom-style setting. After that, the Software Engineering Pro-

cess Group (SEPG) provides coaching for the process performers, i.e., they provide

a helpdesk that people can contact if they have questions. Every project is audited at

least once every 3 months in order to assure that current processes are followed.

The following section describes an exemplary deployment approach for a new

or changed software process. For rolling out the process to the organization, it

supports both the “big-bang” and “phased” strategies described earlier.

2.6.2 An Exemplary Deployment Approach

With every change to a process, there is a risk that the changed process does not

yield its expected benefits, i.e., does not perform better than the old one, or even

worse, does not even perform as well as the old process and thus makes the situation

worse. Therefore, a changed process should be tested before it is widely applied.

A staged strategy permits to do this and has, in fact, proven to be a good choice [42].

Figure 2.26 displays one such approach, which supports both a big-bang and a

phased rollout. We will explain this approach in the following subsections.

2.6.2.1 Process Development

During this phase, the changed process is developed, i.e., its model is created and the

necessary documentation (handbooks, EPGs, etc.) is prepared. A typical approach is

to create a descriptive model of the current process, analyze it for weaknesses, and

modify the model to remove these weaknesses. However, this activity is not

considered part of process deployment, and therefore is not detailed here.

2.6.2.2 Quality Gate 1: Piloting Maturity

This quality gate checks the changed process to see whether it is mature enough to

be piloted. In particular, the following aspects should be checked:

– Goal achievement

• Are the goals of the changed process documented in a verifiable form?

• Which problems are addressed?

• Does a cost/benefit analysis justify changing the process?

– Process handbook (presentation and contents)

2.6 Deploying Prescriptive Process Models 69

• Are the essential elements included (cf. Sect. 2.5.1.2)?

• Are the presentation and contents okay for the target audience?

• Is the process handbook complete and correct?

– Quality assurance

• Was the changed process reviewed? By whom?Was the review documented?

Was the process reworked according to the review results?

• Were all stakeholders identified and involved?

– Context factors

• What is the environment (technical/social) of the target audience?

• Are document templates available?

• Is there a definition of when the process is “successful”? What are the success

criteria?

• Has a deployment strategy been defined?

2.6.2.3 Infrastructure

The infrastructure necessary to adequately support the new process must be sup-

plied before the piloting starts, in order to provide realistic circumstances. This

includes providing a sufficient number of tools (e.g., a requirements management

tool), workplaces, hardware resources such as engine test beds or test vehicles, as

well as education resources such as classrooms, personnel for helpdesk services,

and others.

Process
development

Infrastructure

Piloting

Rollout

Operation

Infrastructure support

QG1 QG2

Process performer education

Process performer support

Phase QG1 Quality GateCross-functional task

Fig. 2.26 A phased process deployment approach

70 2 Prescriptive Process Models

2.6.2.4 Process Performer Education and Support

These tasks are cross-functional, i.e., they are required to run continuously during

the deployment of the changed process. At the beginning, education will require

more resources, while at the end, this will shift towards supporting the process

performers in their daily work. In particular, the following aspects should be

considered:

– Process performer empowerment

• Create trust and acceptance

• Enable participation of process performers: include their input, let them take

responsibility

– Education before project start

• Common introductory courses

• Role-specific courses

• Tool-specific courses

– Process performer support before project start, during project runtime, and after

the project finishes

• Provision of education materials

• Electronic newsletters

• Community building: forum, wiki, blog

• Coaching of process performers during the project

• Provision of helpdesk service

– Feedback mechanisms before project start, during project runtime, and after the

project finishes

• To decrease the process performers’ fear

• To identify process problems (“you missed a step here”)

• To identify potentially problematic areas (“this is never going to work”)

• To check when the project is over: Was the education adequate? Tool

support? Process handbook?

• To create a “Wishlist” for future changes to the process

2.6.2.5 Piloting

When Quality Gate 1 has been successfully passed, the pilot project(s) using the

changed process can commence. During a pilot project, the changed process is

tested, i.e., it is applied in a realistic setting and the effects of its application are

recorded. The goal of such a pilot project is to evaluate whether the changed process

is fit for organization-wide deployment. However, it should not be forgotten that the

pilot project itself introduces a bias: By choosing “simple” or “complicated”

2.6 Deploying Prescriptive Process Models 71

projects, the result can be manipulated. Therefore, a representative project should

be chosen. In addition, it is also likely that project performance (e.g., cycle time)

will decrease at the beginning. This is because a changed process always introduces

a certain amount of confusion, which degrades process performance. It is important

not to mistake the confusion-generated performance decrease with a general pro-

cess failure; however, making this distinction is not easy and requires a certain

experience. Figure 2.27 shows the typical performance development over time

when deploying a changed process, with a temporary decrease compared to the

old performance level, and subsequent increase and stabilization on the new, higher

performance level.

For the piloting phase, the following aspects should be considered:

– Pilot project selection

• Project type (representative for the organization?)

• What is the influence of the changed process? Parallelization/elimination/

acceleration/. . .
• Are fallback scenarios necessary? If yes, are they defined and realistic?

• Are context factors considered (e.g., higher-level management attention, or

an expected new standard, or new technologies)?

– Identification of stakeholder classes within the organization

• Promoters

• Supporters

• Hoppers

• Opponents

– Success evaluation

• Along the previously defined success criteria

• Organization-wide rollout only if successful as defined by the criteria!

new performance level

old performance level

Time

Performance

Fig. 2.27 Typical process performance over time

72 2 Prescriptive Process Models

2.6.2.6 Quality Gate 2: Rollout Maturity

If piloting of the changed process was successful, it should be evaluated whether the

new process has actually been applied—otherwise an untested process could be

rolled out organization wide. Such an evaluation typically analyzes those artifacts

that should be prepared according to the changed process and/or interviews the

process performers who applied the changed process. It should also be evaluated

whether it is plausible that the changed process can also reach its goals outside

the pilot project.

2.6.2.7 Rollout

The rollout takes the changed process to the entire organization. As mentioned

before, there is no common “best practice” rollout strategy (cf. Sect. 2.6.1).

Whether to choose a more big-bang-like rollout or a phased rollout depends on

various influence factors within the organization, including, but not limited to,

factors like the degree to which processes and projects are interwoven, the available

support resources, the change climate, and many others.

Typically, it is not a good idea to switch running projects—however, this may be

necessary for heavily interrelated projects. This must be decided on a case-by-case

basis. Figure 2.28 displays some influencing factors. For example, if support

resources are plenty, then a big-bang strategy can work. However, if the quality

of the new process is questionable, a phased rollout is more appropriate.

It should also be considered in which order the organizational structure

(departments, groups, etc.) and the process organization (workflows) are changed.

It is possible to do either one first and then the other, or to change both at the same

time.

First change the process organization, then the organizational structure. This is
suitable for small process changes, or, in a phased rollout scenario, in the early

phases (when only few process performers follow the new process). If the future of

the changed process is unknown (i.e., if it is unclear whether it will remain active),

it is also a good idea not to change the organizational structure too early.

Quality of the
new process

Testing of the
new process

Support
resources

Good Bad

Phased
rollout

Big-bang
rollout

In
flu

en
ce

 fa
ct

or
s

Fig. 2.28 Big-bang vs. phased rollout

2.6 Deploying Prescriptive Process Models 73

First change the organizational structure, then the process organization. This is
advisable if the new process mandatorily requires certain services or structures

within the organization, e.g., a test center or specific hardware. In a big-bang rollout

scenario, this may also be the way to go.

Concurrent introduction of new organizational structure and process organiza-
tion. This is, in fact the most frequently chosen variant. It reduces additional friction

losses due to improper organizational structures and allows for the creation of the

new organizational structure as needed, thus minimizing overall effort. However, it

may increase the effort required for rolling out the process compared to the

organizational-structure-first variant.

No matter whether the structure or the process is changed first, there will most

likely be some resistance to the intended changes. The deployment approach

described earlier is likely to decrease this resistance; however, it will not remove

it completely. A proven measure against any remaining resistance is (visible) top-

level commitment in combination with maximal openness and transparency. The

former makes it clear to everyone that “resistance is futile,” i.e., that the changes are

actively demanded and supported by the management. The latter will reduce the

affected people’s fears through information. Since most of the resistance is powered

by (founded or unfounded) fears, this helps to reduce resistance as well. Solid trust

between management and employees is another important factor: If the employees

cannot trust statements made by management, they will resist change automati-

cally, because they typically fear the worst. Rolling out process changes in an

organization is thus usually the hardest part of any improvement effort—however,

this is often not recognized!

2.6.2.8 Operation

When the changed process has been rolled out to the entire organization, the

operational phase starts. During this phase, the process should be closely monitored

and evaluated with respect to its effects. However, this activity is not considered

part of process deployment, and therefore not detailed here.

2.6.3 Experience from Industrial Practice

In today’s software organizations, process deployment is often performed less than

optimally. Typical process management failures thus include the following:

– Process handbooks do not fulfill their purpose, e.g., important information is

missing or they are too detailed to read.

– Process definitions are vague and incomplete, i.e., the actual problems are not

addressed, but hidden underneath soft, meaningless statements.

– Interteam interfaces are poorly defined.

74 2 Prescriptive Process Models

– Nonapplication of the changed process is not sanctioned, i.e., people are not

forced to use the changed process and thus do not use it.

– The process engineers are not seen as service providers who assist the developers

in their daily work, but rather as enemies of success, i.e., only keeping

developers from “doing the real work.”

There are more problems, of course. However, these are the most common ones

that should be considered in any process organization. Nevertheless, most problems

encountered in industrial practice are not technical problems, but social problems.

The latter cannot be solved using a specific technology, but only by adequately

treating the major influencing factor: humans.

References

1. Rombach HD (2001) Guaranteed Software Quality. In: Keynote address at the third interna-

tional conference on product focused software process improvement (PROFES),

Kaiserslautern, Germany, 10–13 Sept 2001, pp 1–2

2. Royce WW (1970) Managing the development of large software systems. In: Proceedings of

IEEE WESCON, Los Angeles, CA, USA, pp 1–9

3. Basili VR, Turner AJ (1975) Iterative enhancement: a practical technique for software

development. IEEE T Software Eng 1(4):390–396

4. Boehm BW (1986) A spiral model of software development and enhancement. ACM Sigsoft

Software Eng Notes 11(4):22–42

5. Boehm BW, Lane JA (2008) Guide for using the Incremental Commitment Model (ICM)

for systems engineering of DoD projects. Center for Systems and Software Engineering,

University of Southern California, Los Angeles, CA

6. Boehm BW (2011) Some future software engineering opportunities and challenges. In: Nanz S

(ed) The future of software engineering. Springer, Heidelberg. doi:10.1007/978-3-642-15187-3_1

7. Boehm BW (2009) The incremental commitment model (ICM), with ground systems

applications. In: Ground systems architectures workshop (GSAW), Torrance, CA, USA,

23–26 Mar 2009

8. Jacobson I, Booch G, Rumbaugh J (1999) The unified software development process. Addison-

Wesley, Amsterdam, The Netherlands

9. Mills HD, Dyer M, Linger RC (1987) Cleanroom software engineering. IEEE Software

4(5):19–25

10. Linger RC (1994) Cleanroom process model. IEEE Software 11(2):50–58

11. Prowell SJ, Trammell CJ, Linger RC, Poore JH (1998) Cleanroom software engineering—

technology and process. Addison-Wesley, Reading, MA

12. Bauer T, B€ohr F, Landmann D, Beletski T, Eschbach R, Poore J (2007) From requirements to

statistical testing of embedded systems. In: Proceedings of the 4th international workshop on

software engineering for automotive systems (SEAS’07), Minneapolis, MN, 26 May 2007

13. Prowell SJ (2003) JUMBL: a tool for model-based statistical testing. In: Proceedings of

the 36th annual hawaii international conference on system sciences (HICSS’03), Hawai’i,

HI, 6–9 Jan 2003

14. Miller KW, Morell LJ, Noonan RE, Park SK, Nicol DM, Murrill BW, Voas JM (1992)

Estimating the probability of failure when testing reveals no failures. IEEE T Software Eng

18(1):33–43

References 75

http://dx.doi.org/10.1007/978-3-642-15187-3_1

15. Briand LC, El Emam K, Bomarius F (1997) COBRA: a hybrid method for software cost

estimation, benchmarking, and risk assessment. International software engineering research

network technical report ISERN-97-24

16. Trendowicz A, Heidrich J, M€unch J, Ishigai Y, Yokoyama K, Kikuchi N (2006) Development

of a hybrid cost estimation model in an iterative manner. In: Proceedings of the 28th interna-

tional conference on software engineering (ICSE 2006), Shanghai, China, 20–28 May 2006

17. Fraunhofer Institute for Experimental Software Engineering IESE (2009) CoBRA—master

your software projects. http://www.cobrix.org/. Accessed 9 Jun 2011

18. Beck K, Andres C (2005) Extreme programming explained. Addison Wesley, Boston, MA

19. International Organization for Standardization (1995) ISO/IEC 12207:1995. ISO/IEC,

Geneva, Switzerland

20. International Organization for Standardization (2008) ISO/IEC 12207:2008, ‘Systems and

software engineering—software life cycle processes’. ISO, Geneva, Switzerland

21. International Organization for Standardization (2006) ISO/IEC 15504:2004, ‘Information

technology—process assessment’. ISO/IEC, Geneva, Switzerland

22. European Cooperation for Space Standardization (2009) Collaboration Website of the

European cooperation for space standardization. http://www.ecss.nl/. Accessed 9 Jun 2011

23. International Electrotechnical Commission (2005) IEC 61508, ‘Functional safety of electrical/

electronic/programmable electronic safety-related systems’. IEC, Geneva, Switzerland

24. International Organization for Standardization (2009) ISO/FDIS 26262, ‘Road vehicles—

functional safety’ (draft). ISO, Geneva, Switzerland

25. International Electrotechnical Commission (2006) IEC 62304, ‘Medical device software—

software life cycle processes’. IEC, Geneva, Switzerland

26. Carnegie Mellon Software Engineering Institute (2002) Capability maturity model integration

1.2. http://www.sei.cmu.edu/cmmi/. Accessed 9 Jun 2011

27. International Organization for Standardization (2008) ISO/IEC 15288, ‘Systems and software

engineering—system life cycle processes’. ISO, Geneva, Switzerland

28. Deutsches Institut f€ur Normung e.V (2010) DIN EN 61508—Funktionale Sicherheit

sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme.

Beuth Verlag, Berlin

29. BMW Group (2005) BMW Group Standard 95014—embedded software development

30. Amsler KJ, Fetzer J, Erben MF (2004) Sicherheitsgerechte Entwicklungsprozesse—alles neu

geregelt?. In: Proceedings of Aktive Sicherheit durch Fahrerassistenz, Garching, Germany

31. Benediktsson O, Hunter RB, McGettrick AD (2001) Processes for software in safety critical

systems. Software Process Improve Pract 6(1):47–62

32. Jacobs M, Ferré A, Honekamp U, Scheidler C, Chen X, Blecken A, Fitterer E, Josko B (2004)

Electronic architecture and system engineering for integrated safety systems—state of the art,

EASIS-Report, Deliverable D.0.1.2. EASIS Consortium

33. IEC (2002) Functional safety and IEC 61508—a basic guide. IEC, Geneva, Switzerland

34. Spivey JM (1992) The Z notation: a reference manual. Prentice Hall, Upper Saddle River, NJ

35. Fitzgerald J, Larsen PG (2009) Modelling systems: practical tools and techniques for software

development. Cambridge University Press, Cambridge, MA

36. International Electrotechnical Commission (2006) IEC 60601, ‘Medical electrical equipment’.

IEC, Geneva, Switzerland

37. International Organization for Standardization (2003) ISO 13485:2003, ‘Medical devices—

quality management systems—requirements for regulatory purposes’. ISO, Geneva,

Switzerland

38. International Organization for Standardization (2005) DIN EN ISO 9000, ‘Qualit€atsmanage-

mentsysteme—Grundlagen und Begriffe’. ISO, Geneva, Switzerland

39. International Organization for Standardization (2008) DIN EN ISO 9001, ‘Quality manage-

ment systems—requirements’. ISO, Geneva, Switzerland

40. International Organization for Standardization (2007) ISO 14971:2007, ‘Medical devices—

application of risk management to medical devices’. ISO, Geneva, Switzerland

76 2 Prescriptive Process Models

http://www.cobrix.org/
http://www.ecss.nl/
http://www.sei.cmu.edu/cmmi/

41. Armbrust O, Weber S (2008) Wiki-basierte Dokumentation von Software-Entwicklung-

sprozessen—Erfahrungen aus der industriellen Praxis. In: Proceedings of the 3rd Workshop:

Vorgehensmodelle in der Praxis—Werkzeuge und Anwendung, 38. Jahrestagung der Gesell-

schaft f€ur Informatik (INFORMATIK 2008), Munich, Germany, 8–13 Sept

42. Armbrust O, Ebell J, Hammerschall U, M€unch J, Thoma D (2008) Experiences and results

from tailoring and deploying a large process standard in a company. Software Process Improve

Pract 13:301–309

References 77

Chapter 3

Descriptive Process Models

This chapter introduces descriptive process models as a means of capturing the

processes being pursued by an organization. It first describes some typical goals of

descriptive process modeling efforts and then details a systematic approach for

creating a descriptive process model. In addition, alternatives to a part of the

approach as well as for the complete approach are presented in order to provide a

broader view on the subject. In most process modeling approaches, eliciting process

information through interviews is one of the hardest activities; hence the chapter

gives some guidelines on conducting efficient and effective interviews. Finally, the

chapter introduces some tactics for managing the risks that accompany descriptive

process modeling efforts. Figure 3.1 displays an overview of the chapter structure.

3.1 Objectives of This Chapter

After reading this chapter, you should be able to

– Define goals for a descriptive process modeling effort

– Plan and conduct a descriptive process modeling effort based on an 8-step

approach

– Conduct process elicitation interviews

– Assess and manage the basic risks associated with a descriptive process

modeling effort

Descriptive Process
Modeling Goals

Creating
Descriptive

Process Models

Descriptive
Modeling

Alternatives

Process
Elicitation
Guidelines

Risk
Management

Fig. 3.1 Chapter structure

J. M€unch et al., Software Process Definition and Management,
The Fraunhofer Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-24291-5_3, # Springer-Verlag Berlin Heidelberg 2012

79

3.2 Introduction

The last chapter explained that one of the main purposes of prescriptive process

models is to provide a reference process framework that an organization can adopt.

Since these process descriptions are usually based onwell-proven andwidely accepted

practices, their adoption often constitutes a safe path to process improvement.

The downside of prescriptive models is that, being generic, they cannot exactly

fit the particularities of a specific organization. A number of factors can influence

the way software development activities are shaped in an organization. Obvi-

ously, the strongest of these factors are usually related to the type of product that

is being developed, as well as to the technology involved in producing this

product. Still, even organizations that produce similar, potentially competing

software products often have widely different ways of developing them. These

differences can be related to factors such as their organizational culture and

history; the social, legal, and political contexts in which the organization

operates; and the level of skill and type of education of the people involved,

among many others. The result is that, in practice, no organization exactly follows

a generic prescribed process, and no two organizations operate according to

exactly the same process.

The actual processes present in an organization, those that are used in practice to

produce and deliver the organization’s products and services, can usually be

counted as one of its main assets. Normally, these processes encompass a good

deal of the experience and knowledge that make an organization successful. For this

reason, managing them appropriately can become a crucial activity for an

organization’s long-time survival.

The discipline behind this type of process management is called descriptive
process modeling. As its name implies, this discipline is concerned with producing

an explicit and accurate representation of an organization’s actual processes, for

purposes such as documentation, dissemination, analysis, and improvement.

3.3 Goals of Descriptive Process Modeling

Descriptive process modeling can serve a number of goals in an organization. This

section describes some common reasons why organizations decide to describe their

processes explicitly.

3.3.1 Stable and Accurate Process Execution

Software processes can be very complex, involving large numbers of interrelated

activities. For every software development project, these activities must be care-

fully orchestrated, so that dependencies are respected and resources are available

80 3 Descriptive Process Models

where and when they are needed. This complexity makes it very hard to guarantee

that processes are always executed in the same way. Given the large number of

individual activities and their complex interdependencies, there is a high risk that

some activities are not planned or are skipped because of external pressure. Also,

there is always the risk that people will change the process over time without even

noticing it, maybe eliminating beneficial activities.

A documented process helps to mitigate these risks. With a proper process

description at hand, both project planners and project performers can make sure

that they are performing all important and expected activities, and that they are

taking into account all relevant interrelations between those activities. Also, a

documented process makes it easier to introduce changes in a controlled fashion,

which leads us to our next point: understanding the process.

3.3.2 Process Understanding

Software development processes must change for a number of reasons. Some-

times, external factors—such as changes in laws and regulations, or technological

progress—force changes in the development process. Very often, however, the

process is changed in order to introduce improvements. In many organizations,

this happens in an organic fashion, because people identify situations where work

can be done in a better way. There is always the risk, however, that changes that

are originally perceived as improvements end up having unintended, detrimental

consequences, which may negatively affect the overall process performance. For

example, tools are often introduced because they are expected to improve the

process by automating parts of it. It may happen, however, that a particular tool is

designed with a process in mind that is too different from that of the organization.

In this case, the tool is likely to introduce inefficiencies that are not compensated

by its potential advantages.

Understanding the process is fundamental for managing this risk. An explicit

process representation makes it much easier to assess the overall impact of process

changes, thus allowing better management of process changes.

3.3.3 Process Propagation

A common problem, present especially in large organizations, is that different

development groups in the organization follow different processes for the same

task. Sometimes, these process differences are related to the fact that different groups

may have different needs. However, it often happens that they work differently

simply because it is difficult for a group to exactly tell what other groups are doing.

By explicitly describing the processes followed by various organizational units,

it is easier to achieve a unified process. Differences between groups can still exist,

but they are the result of conscious decisions based on analyzing each group’s

3.3 Goals of Descriptive Process Modeling 81

particular needs. A unified process is important because it allows for practices that

are widely accepted as being beneficial, to be propagated to all units in a large

organization.

3.3.4 Process Measurement

As an organization reaches a higher degree of process maturity, it becomes

increasingly important to measure process performance. Aspects that are com-

monly measured in a process are its productivity (amount of output produced vs.

resources invested into producing it), its ability to deliver results on time, and its

ability to detect and correct product defects as early as possible, among many

others. The reasons for measuring vary widely from one organization to another,

but often include the desire to improve planning and increase the quality of

software products by reducing the number of defects present in them when they

are delivered.

Measuring a process involves acquiring quantitative information about the

actual activities, products, and resources involved. This is a hard task requiring

high levels of discipline in order to yield satisfactory results, and which therefore

must be carefully planned and executed. A proper process description greatly

facilitates such planning by making it easier to identify appropriate measurement

objects and to specify the procedures necessary to measure them. In addition, it

provides the basis for comparing two processes with each other: It is only feasible to

compare, for instance, the “duration of code development” if it is known which

activities are contained: only coding, or also unit/integration testing?

3.3.5 Process Administration

In the long term, one of the main reasons for explicitly describing an organization’s

development processes is to be able to define goals for the process and work

systematically on achieving them. Doing this involves at least some of the descrip-

tive process modeling goals explained earlier, such as process understanding and

process measurement. Long-term goals for a process are often related to improve-

ment (e.g., increase product quality, reduce time dedicated to product rework, etc.),

but may be related to other process aspects. For example, many companies are

forced by legal regulations, or, simply, by the critical nature of their products, to

comply with existing norms and regulations regarding the way their products are

produced and validated. For these organizations, one important reason for modeling

their processes explicitly is to guarantee that they comply with whatever norms and

regulations are considered relevant. Without a proper process description, this can

be very difficult or even impossible to achieve.

82 3 Descriptive Process Models

3.3.6 Process Automation

It happens quite often that once a process has been properly described and

stabilized, opportunities for supporting parts of it with automated tools become

evident. Analyzing a detailed process description is probably one of the best ways

to determine the exact requirements of new process-supporting tools.

One area where processes can be supported in a particularly effective way is

information flow. Since process models often contain detailed descriptions of the

product and control flows in a process, a tool can effectively support process

participants by giving them access to the pieces of information that are relevant

for their activities and by providing appropriate mechanisms for storing new work

products and informing other process performers about their availability and status.

This type of support is especially useful in modern development environments,

where developers are frequently distributed geographically, often across several

time zones.

3.4 Creating a Descriptive Process Model

This section introduces a systematic approach for creating and validating a descrip-

tive process model.

Process engineers working on describing an organization’s processes are con-

fronted with twomain challenges. The first of these challenges is the so-called process
elicitation, namely, collecting information about how the process is actually

performed. This can be done by working together with the actual process performers,

by observing their work, or by analyzing the results of their work, such as the

documents produced during past development projects. Through interviews, direct

observation of people’s work, and analysis of documents and final products, among

other techniques, process engineers gain a detailed understanding of the process.

The second challenge process engineers face is storing the process knowledge
for future use. The process-related information must be expressed in a clear and

unambiguous way that is amenable to the goals of the modeling effort (e.g., process

measurement, improvement, analysis, etc.). A number of notations and modeling

tools are available to facilitate this task. Notations allow expressing processes using

a predefined, standardized set of concepts. They can be formal or graphical in

nature, with graphical notations being preferred in recent years because they

facilitate communication with process stakeholders. Tools, in turn, help process

engineers to deal with the complexity of process models, which, in practice, may

easily grow to contain hundreds or even thousands of individual elements.

Normally, descriptive process modeling is performed in an iterative fashion,

with the elicitation and modeling phases being interwoven. Process engineers work

to gain some initial knowledge of the modeled process, describe this knowledge

using an appropriate process notation, and then discuss this initial description with

the process stakeholders. This discussion often leads to additional knowledge being

3.4 Creating a Descriptive Process Model 83

collected, which can be incorporated into the description and validated again with

the stakeholders. This cycle can be repeated until satisfactory levels of detail and

accuracy of the process description have been achieved.

The following sections detail a systematic approach to creating a descriptive

process model for an organization. It is based on the 8-step approach presented in

[1]. In addition to the approach described in this section, Sect. 3.5.1 describes an

alternative to steps 5 and 6, whereas Sect. 3.5.2 introduces a complete alternative to

creating a descriptive process model.

3.4.1 Approach Overview

The approach consists of two major phases: a set-up phase configuring the modeling

approach for the organization, the modeling goals and context; and an execution
phase performing the actual modeling. The set-up phase consists of these four steps:

1. State objectives and scope

2. Select or develop a process modeling scheme

3. Select (a set of) process modeling formalisms

4. Select or tailor tools

The execution phase consists of these four steps:

5. Elicitation

6. Create the process model

7. Analyze the process model

8. Analyze the process

In theory, these steps should be repeated for every process modeling effort in order

to achieve optimal results. In practice, however, the process modeling scheme,

formalisms, and tools are likely to be rather stable across different modeling efforts,

because in a real-world setting, it is usually not feasible to frequently switch them

due to cost reasons. Nevertheless, every modeling effort should clearly state its

objectives and scope, because they will likely not be stable across different modeling

efforts. Steps 5 through 8 will have to be repeated in any case.

The eight steps are explained in detail in the following sections, illustrated by

three different case studies highlighting different contexts and goals of a descriptive

process modeling effort. Although the case studies are fictitious, they reflect the

realities of common process modeling efforts. The general settings in which each of

the case studies takes place are as follows.

3.4.1.1 Case Study 1: The Defect Management Process at DocVault

DocVault is a small software development company, with about 50 employees and

6 years in the market. DocVault’s main product is an Internet-based document

management system that is made available to clients through a subscription-based

84 3 Descriptive Process Models

model (software as a service). The company already has more than 30 corporate

customers and good prospects for acquiring several more in the upcoming months.

Since DocVaults’s product is already quite large and complex, it is relatively

common for clients to be affected by defects in the system that were not detected by

the quality assurance procedures used by the company (mainly testing). Until now,

the company has relied on email as the main mechanism for clients to report

problems they might have found. This simple mechanism has served the company

well so far, but with the number of customers quickly increasing, the need for a

more elaborate and potentially automated solution is becoming urgent.

For this reason, DocVault wants to start by modeling its defect management

process. This process involves not only the actual problem reporting by users, but

also the classification of problem reports by company staff, the assignment of

potential defect-fixing tasks to developers, and the follow-up of defect fixes until

they are released to clients, among other tasks.

3.4.1.2 Case Study 2: Software Development at Selene Aerospace Systems

Selene Aerospace Systems specializes in building complex data transmission and

storage systems for satellites and other spacecraft. Selene was founded almost

20 years ago, and currently has about 700 employees, about 250 of whom perform

tasks related to software development.

The development process at Selene has evolved from the company’s long

experience in aerospace systems and can be considered quite stable at this time.

Since Selene’s systems are very often very complex and often subject to strong

reliability requirements, the development processes at the company are very elabo-

rate and complex, involving a large number of steps for tasks such as requirements

management and quality assurance.

The complexity of Selene’s development process can easily become problem-

atic: The only way to make sure that processes are executed as desired is by

involving highly experienced project managers and developers in each project.

The company keeps growing, however, which makes it impossible to find enough

experienced people for all new projects. For this reason, the company is considering

modeling its complete set of development processes in order to make them more

accessible to less experienced developers and project managers.

3.4.1.3 Case Study 3: Software Customization at Soster

Soster Inc.’s product is an Enterprise Resource Planning (ERP) system oriented

towards small- and medium-sized companies. Soster is about 10 years old and has

about 200 employees. Over the years, Soster has developed a solid, highly customiz-

able core system implementing most of the required ERP functionality. For this

reason, its current business centers on customizing this system for specific customers.

3.4 Creating a Descriptive Process Model 85

Soster’s system has already been customized for more than 250 customers,

which is a pretty large number given the company’s relatively small size. This

has been possible because the customization process is very streamlined, consisting

mostly of creating a set of UML models for each client, which are used to generate

code automatically. The generated code often has to be complemented by hand-

written code, but the size of this manually created code can be kept quite small.

Since Soster’s revenue comes mostly from customization, the company is

especially interested in optimizing this process. In particular, it is important to

maximize product quality and project predictability. For this reason, the company

has decided to start a modeling effort to describe this particular process.

3.4.2 Step 1: State Objectives and Scope

Section 3.3 described a variety of possible goals a descriptive process modeling

effort may have. In order to properly plan and later manage the process modeling

effort, it is thus important to state its goals clearly before any modeling has started.

The scope of the effort must also be clearly stated. This includes specifying

– Who will use the process model

– What these people expect of the model

– Which processes should be covered

– Which processes are explicitly excluded from the model

With this information as a basis, it is possible to specify the scope more

concretely. For example, knowing the general goals of the effort as well as people’s

concrete expectations makes it possible to determine which processes to model in

which detail in order to better fulfill the stated goals and meet the stated

expectations.

The following subsection explains how this first step was performed in the

exemplary case studies.

3.4.2.1 Case Study 1: DocVault

The modeling effort at DocVault is restricted to the defect management process.

This means that the scope is relatively narrow:

– Modeling is limited to the defect management process. It includes taking

problem reports from users, classifying them, assigning accepted reports to

responsible people in the company, and following them up until fixes are

released. Technical processes related to the actual fixing of defects, such as

determining the causes of particular failures, designing and implementing code

fixes, and testing fixed code, are excluded, however.

– The main users of the description are the developers of the automated defect

management system. Notice that these are likely to be not the same people

86 3 Descriptive Process Models

developing DocVault’s product, since DocVault will probably subcontract the

defect management system to another company. DocVault’s clients, as well as

the software developers and quality management team at DocVault, are consid-

ered secondary users, as they may use the process description for their own

purposes, such as guidance while actually handling problem reports.

– The developers of the defect management system (primary users) expect a detailed

description they can use as an initial set of requirements for implementing the

process automation. The secondary users, on the other hand, expect a clear

description that can be used for guiding internal users at DocVault.

3.4.2.2 Case Study 2: Selene

The modeling effort at Selene has a very wide scope, covering all software

development processes in the company:

– The main objective of the modeling effort is to provide guidance for all roles in

the organization. This involves describing the processes at a level of detail that

allows for processes to be performed reliably even by people who were only

recently trained and still lack experience with a particular process.

– All processes related to software development are covered, with no exception.

The level of detail is expected to be high.

– The users are all roles participating in development, again with no exception.

3.4.2.3 Case Study 3: Soster

Soster’s modeling effort is narrower than that at Selene, since it involves only one

process. This process, however, is relatively large and complex and has to be

covered in a very detailed way:

– The main objective of the modeling effort is to support improvement. In

particular, enough information must be available in the model to make it

possible for product quality and project predictability to be optimized. Notice

that the goal of the modeling effort is to provide the necessary information for

process analysis, but not to perform the actual improvements on the process.

– Processes related to customization are covered, such as requirements elicitation

and management, model creation and validation, quality assurance, customiza-

tion of the generated system through manually written code, and system deploy-

ment. The processes related to the development and maintenance of the core

system are explicitly excluded.

– The target users of the resulting model are the members of Soster’s SEPG, since

they are responsible for the improvement effort. Other roles at the company,

such as developers and project managers, are explicitly excluded.

3.4 Creating a Descriptive Process Model 87

3.4.3 Step 2: Select or Develop a Process Modeling Schema

The second step of descriptive process modeling consists of identifying the set of

concepts that will be used to describe processes. The following (very simplified)

example illustrates how this step may be done in practice.

Example: An organization decides that it will model its processes based on the

following informal description:

“We see processes in our company as consisting of a number of individual

activities (such as Requirements Elicitation, Design Specification, Module Imple-

mentation, etc.). Each of these activities has a set of inputs, which are work products
of different kinds (e.g., Functional Requirements Specification, High Level Class

Diagram, Module Source File, etc.). The goal of an activity is to produce a set of

outputs based on the inputs it receives. The outputs, of course, are also work
products. In this way, activities are interconnected through their associated work

products: The outputs of an activity can be inputs to the subsequent activities.

Finally, activities are associated to particular people’s roles (e.g., Requirements

Engineer, Software Architect, Programmer, etc.) This means that the people

occupying these roles are responsible for the corresponding activities.”

From this description, it is possible to identify a number of basic concepts that

are important for describing processes in the organization:

– Activity

– Work product

– Role

– Product flow between activities and work products, i.e., which products are

inputs or outputs to which activities

– Assignment of roles to activities, i.e., which roles are responsible for performing

which activities

Usually, a set of concepts such as this used to model processes is called a process
schema.

Although identifying an appropriate set of modeling concepts may appear to be

quite simple from this small example, it is, in practice, a very difficult task, and one

that deserves very careful consideration given its importance for the success of

the subsequent modeling steps. As a minimum, the following requirements should

be taken into account while choosing a process schema:

– The concepts must cover those aspects of a process that are relevant for the

current modeling effort. The general concept of a model is related to conve-

niently representing certain specific aspects of reality, while purposefully ignor-

ing those that are irrelevant for a specific purpose. Process models are no

exception in this respect. The chosen set of concepts must cover those aspects

of the process that are necessary for achieving the stated modeling goals. For

instance, if reducing time to market for new products is a stated modeling goal,

modeling the amount of time required by different activities will be fundamen-

tal. The chosen process schema must be able to represent this information.

88 3 Descriptive Process Models

– The concepts must allow for an adequate level of detail and formalism. Achiev-

ing an appropriate level of detail and precision while modeling can be very

important. Too much detail may be as inadequate as too little detail, depending

on the particular situation. For example, a model that is intended for personnel

training may be more detailed and informal than one that is intended to provide

fine-grained support for process enactment. A set of concepts that does not allow

for the level of detail or formalism required by a particular modeling effort, or

that requires too much of any of them, will be inadequate and must be adjusted.

– The concepts must facilitate modeling. A process schema that appears adequate

at first sight may indeed be very difficult to use in practice. For example, it may

happen that common situations are difficult to express and end up requiring too

many entities or a convolved structure of the entities in order to be described

appropriately. For this reason, it is important to test modeling concepts in

advance before committing to them for a large modeling effort. Trying to

model a few, well-known processes or process excerpts may greatly help to

assess the relative easiness or difficulty of modeling the complete process.

– Modeling results must be accessible for their intended audience. If process

models are intended for people to use, this obviously means that these people

must be able to properly read and understand them. If the chosen set of modeling

concepts is too complex or unintuitive, chances are that users will be confused

when they try to make sense of a model, no matter how careful process engineers

were while producing the model.

Designing a set of concepts “from scratch” that fulfills all of these requirements

can be a difficult task even for experienced process engineers. The main problem

lies in the fact that one cannot determine by simple observation whether a particular

schema fulfills any of the criteria. Normally, a schema must be extensively tried in

practice before all of its disadvantages become apparent.

For this reason, it is strongly advisable to use an existing schema whenever

possible. Fortunately, there are enough schemata available that cover most com-

mon modeling needs and that have been extensively tested in practice and are

already known to have withstood the proverbial “test of time.” If tailoring of a

schema is necessary, it should be performed by sufficiently experienced process

engineers and the result thoroughly tested before being used in any significant

modeling efforts.

3.4.3.1 Case Study 1: DocVault

Given the narrow scope of its modeling effort, DocVault can live with a small set of

modeling concepts: task, artifact, and role. Also, modeling more specific

dependencies among entities of these types is not necessary, because the involved

work flows are relatively simple. For this reason, a produces and a consumes
relationship, together with a relation to associate roles to tasks are enough for this

modeling effort.

3.4 Creating a Descriptive Process Model 89

3.4.3.2 Case Study 2: Selene

Due to the size and level of detail of its modeling effort, Selene requires a large set

of concepts. Because of its complexity, only the most important concepts of the

Selene schema will be covered:

– Processes with several levels of refinement: activity, task, step
– Deliverables, also with several refinement levels: deliverable, part, chapter, etc.
– Individual (e.g., Project Manager, Tester) and group roles (Change Management

Board)

– A number of secondary concepts associated to the primary ones mentioned

earlier, such as

• Generic methods used to perform an activity or task

• Templates for deliverables used to facilitate the creation of new documents

• Level of training and experience required to occupy a role etc.

– A complex set of relationships between concepts, including

• Grouping and hierarchy

• Dependencies

• Associations between main and secondary concepts etc.

Many of the elements in this schema have textual attributes that allow describing

them in detail.

3.4.3.3 Case Study 3: Soster

The modeling scope at Soster does not require a schema with the level of complex-

ity required at Selene. Still, a number of concepts are necessary:

– Processes with two levels of refinement: activity, subactivity.
– Nonhierarchical deliverables and roles.

– Specialized entity types for modeling project planning and control activities, as

well as for modeling quality control activities. These are necessary in order to

provide finer-grained modeling for the most relevant concepts, namely, those

related to project predictability and product quality.

– Relations to connect the special entities with the basic entities and among

themselves:

• Processes used to plan a given development activity

• Processes used to monitor the execution of a given development activity

• Processes used for quality assurance of a particular deliverable etc.

90 3 Descriptive Process Models

3.4.4 Step 3: Select (a Set of) Process Modeling Formalisms

Process modeling not only requires an appropriate set of concepts but a concrete

notation in which these concepts can be expressed. A variety of modeling notations

have been used over time, with significant differences in formalism and expressive

power. Of course, the notation chosen for a particular modeling effort must be able

to express the concepts identified in the previous step. Additionally, process

notations can be characterized along a number of dimensions:

– Graphical vs. textual. Some notations rely mainly on text, whereas others are

mainly graphical. Some combine these aspects to various extents.

– Formal vs. informal. Some notations rely on mathematically defined elements,

which can only be combined according to strict rules, whereas others rely on

natural language text and loosely defined graphical elements. Formal elements

are often combined with informal ones to achieve a richer description that is

easier to understand.

– Fine grained vs. coarse grained. Some notations are intended to describe

processes at a macro level, whereas others provide support for producing very

detailed descriptions.

– Predetermined vs. extensible. Some notations are intended to be used “as-is,”

with no modifications whatsoever, whereas others allow for extensibility. Exten-

sibility, in turn, may range from very basic, allowing only for simple tailoring

that is useful only in certain common cases, to very advanced, allowing for

tailoring that can handle almost any practical situation imaginable.

Taking these dimensions into account, it is possible to choose a notation that is

appropriate for the needs of a particular modeling effort. For instance, if the main

modeling goal is to support automated enactment, a formal and fine-grained

notation would be desirable. On the other hand, if the main purpose is to support

personnel training, a more informal and coarser-grained notation would likely be

enough. Notice that, for both of these examples, the notation could be either

graphical or textual, as long as the necessary levels of formality and detail are

achieved.

Similar to the identification of modeling concepts discussed in the previous step,

selecting an appropriate notation is a demanding task. Indeed, a set of requirements

analog to the one presented for the previous step applies here as well:

– The notation must cover the concepts selected in the previous step.

– The notation must allow for an adequate level of detail and formalism.

– The notation must facilitate modeling.

– The modeling results (as represented in the chosen modeling notation) must be

accessible to their intended audience.

As in the previous step, these requirements make it very advisable to stick to

existing notations whenever possible, and to reduce their tailoring to a minimum.

3.4 Creating a Descriptive Process Model 91

Given the difficulty of finding appropriate modeling notations, this step is often

interwoven in practice with the previous one, that is, the detailed set of modeling

concepts and the notation are selected simultaneously. Still, thinking of both steps as

conceptually separate remains useful. In particular, by thinking about the necessary

modeling concepts in advance, one can guarantee that a notation was chosen

because it was appropriate for the modeling effort at hand. Otherwise, there is a

high risk that a notation is chosen because it appears convenient (e.g., because it is

supported by well-known vendors and/or popular tools) and not because it offers a

set of modeling concepts that fulfill the needs of the process stakeholders.

3.4.4.1 Case Study 1: DocVault

Since DocVault’s aim is to automate the defect management process, they require a

process description that is essentially free of imprecision and ambiguity. For this

reason, the process modeling team decides to define a formal, yet simple process

notation. This textual notation allows for defining instances of the concepts men-

tioned in the last section. While defining a process, entities must be given unique

identifiers that can later be used for referring to them from other elements, such as

relations. Additionally, a formula notation can be used to express pre- and

postconditions for tasks. These conditions can later be used by the programmers

automating the process.

3.4.4.2 Case Study 2: Selene

In order to provide detailed guidance to a variety of process performers, Selene

largely requires using natural language text for describing processes. Maintaining

a purely informal description of the large and complex set of processes at Selene

would be very difficult, however. As seen in the previous section, Selene’s

schema involves a significant number of relations between elements. Making

these relations explicit in a natural-language description is cumbersome, and

verifying them or updating them after changing the model becomes very difficult,

because of the need to search for them in a mostly manual way.

For this reason, Selene decided to add a formal structure to the plain-text

description. This structure is used to organize the elements in appropriate

hierarchies as well as to explicitly represent the many relationships among

elements. Individual entities inside this structure are still mainly described using

natural-language text, but this text is integrated in the formal structure so that it

can be more easily managed. In particular, when the text references model entities

other than the one being described, these references use explicit, model-unique

identifiers. This way, they can later be traced and corrected when the model

is updated.

92 3 Descriptive Process Models

3.4.4.3 Case Study 3: Soster

For Soster, the ability to identify inefficiencies in their customization processes is an

absolute priority, so they wanted a notation that is especially amenable to analysis.

For this reason, they decided to express their schema concepts using a graphical

representation. This representation makes it convenient for process experts to look

at the process, identify potential inefficiencies, and discuss potential improvements.

3.4.5 Step 4: Select or Tailor Tools

Tool support is usually necessary to effectively model complex processes. Among

other things, in a descriptive modeling effort, tools are useful for:

– Supporting the use of the chosen modeling notation. The more complex the

chosen modeling notation, the higher the need for an editing tool that supports it

explicitly. Editing tools not only facilitate creating and changing models, but

often help guarantee that the notation is being used properly.

– Storing large models or model collections in a convenient and safe way.

Depending on the technology used, modeling efforts may end up producing

large numbers of interrelated objects. Tools often help to manage these objects

so that they can be conveniently accessed and changed in a safe, controlled way.

This type of functionality may be integrated in the modeling tool itself, or it can

be provided by separate tools, such as a version management system.

– Producing alternative representations of models. In many cases, different pro-

cess stakeholders have different needs regarding the way a process model is

presented. For instance, project managers may require an overview of the

activities involved in a process, whereas the people working on specific

activities will need to see the details of how such activities must be performed.

One important aspect about tools is that they do not have to be specialized

process modeling tools in order to be adequate for a particular modeling effort. In

many cases, standard office tools (word processor, spreadsheet) and/or generic

diagramming tools can be effectively used to model processes, as long as the

chosen notation is simple enough for them and the models are small and need

only little maintenance. Specialized tools, on the other hand, can provide specific

support for particular notations and model maintenance, which can be a deciding

factor when very large or complex models are involved. Of course, such tools are

often accompanied by higher license and user training costs.

3.4.5.1 Case Study 1: DocVault

The relatively small size of DocVault’s defect management process as well as the

selected, text-based notation make it possible to conduct the modeling without

using advanced modeling tools. For this reason, DocVault decided to use standard

programming text editors for creating and maintaining the model.

3.4 Creating a Descriptive Process Model 93

3.4.5.2 Case Study 2: Selene

For its modeling effort, Selene had to edit a significant amount of text. Moreover,

this text must be properly formatted, included typical rich text features such as

titles, numbering and bullet lists, use of various fonts for highlighting, etc. As

explained before, however, Selene’s needs are not restricted to editing text, but also

involve organizing the edited text into a complex model structure.

In order to support these needs, Selene chose a commercial tool that stores the

model structure and text context in a shared, relational database, but uses a standard

word processor as its front end. Process engineers can then use the word processor

to comfortably create rich text (including, for example, graphics and tables) and

then store it in the database for later processing. Formal elements of the model, such

as relations between entities, are entered in the word processor using special

templates, which are later processed by the tool in order to create the actual

relations in the database.

3.4.5.3 Case Study 3: Soster

Soster’s emphasis on a graphical process display led them to choose a commercial

graphical model editor as their main modeling tool. This editor can be adapted to

support a variety of schemata, so they started by customizing it to support their

chosen schema.

3.4.6 Step 5: Elicitation

The elicitation step is intended to collect all information necessary for actually

describing the target software process. Mainly, the necessary information comprises:

– The process entities. These include activities, roles, work products, tools, and,

potentially, many others. Oftentimes, entities form hierarchies. For example,

major activities can be decomposed into smaller tasks, and tasks, in turn, can be

decomposed into individual steps.

– Relationships between entities. For example, information about which activities

produce or consume which products, which tools are necessary for performing a

task, or which tasks compose an activity is expressed through relationships.

– Behavioral properties of the process entities, e.g., which conditions must hold in

order for an activity to be started (preconditions), or which criteria a work

product must fulfill in order to be accepted.

The information items listed earlier can be obtained from a number of sources:

– Individual interviews with process performers

– Group-oriented workshops with process performers

– Direct observation of people at work

94 3 Descriptive Process Models

– Analysis of preexisting work products

– Analysis of other data left by the execution of a process, e.g., meeting minutes,

electronic discussions, issue/bug reports, software version history, etc.

The techniques used to elicit information are a central success factor for a

descriptive process modeling effort. Depending on the organization’s culture, for

example, either individual interviews, group workshops, or a combination of both

may be the best option for obtaining direct information from process participants.

One delicate and often very critical aspect of process elicitation is that process

engineers should avoid issuing judgments about the process they are eliciting or

about the people performing it. The fear of being judged frequently moves people to

describe an ideal process that they expect will be accepted better. Of course, this is a

very undesirable situation, because the main goal of descriptive process modeling is

to produce an accurate representation of the actual process.

3.4.6.1 Case Study 1: DocVault

DocVault used three information sources for elicitation:

– Interviews with members of the quality assurance team

– Interviews with staff members of one large customer, who had reported several

problems over the years

– Archived e-mail messages from various problem reports

3.4.6.2 Case Study 2: Selene

In order to cover their large scope, Selene required a comprehensive interview

program, covering all roles in the organization. In order to improve the complete-

ness and accuracy of the resulting model, it was decided to conduct separate

interviews with several people in the same role whenever possible. Although this

additional effort actually helped to collect more complete and detailed information

about the process, it also caused difficulties because, oftentimes, several somewhat

contradictory or otherwise inconsistent views arose. Solving these inconsistencies

required significant effort on the part of the elicitation team, often involving special

meetings for discussing the details of a particular activity or set of activities with

process participants.

3.4.6.3 Case Study 3: Soster

The elicitation effort at Soster relied on two main information sources:

– Interviews with engineers in charge of the customization process

– Documentation from old and current customization projects

3.4 Creating a Descriptive Process Model 95

3.4.7 Step 6: Create the Process Model

The information collected during the elicitation step can now be used to create

a model using the chosen modeling notation. It is advisable to collect the informa-

tion in the following general order [2]:

– Start by modeling products, because they are usually the easiest process entities

to identify. In contrast to activities, which are often only implicitly defined, a set of

products usually explicitly exists in an organization and can be directly modeled.

– Continue with the activities and the product flow.

– When activities are modeled, attach associated roles to the activities or the

products.

– Model further entity types, such as resources, as needed.

– As a last step, model behavioral restrictions associated with entities, such as the

preconditions that must be met before an activity can start.

Here again, there is a conceptual separation between the elicitation and the

actual modeling steps, although, in practice, they are normally interwoven. Once

an initial model is available based on elicited information, it must be reviewed by

the process participants. Such a review will often result in additional elicitation

activities and successive model refinements. In most cases, several elicitation/

modeling cycles will be necessary to achieve an adequate level of agreement

about the process model.

3.4.7.1 Case Study 1: DocVault

The model creation work at DocVault was conducted by two process engineers,

who prepared detailed step sequences in a regular programming text editor using

the defined formal notation. In order to review the resulting model, a workshop was

conducted where selected members of DocVault’s Quality Assurance team worked

together with the process engineers. The process engineers presented the model,

while the QA members were encouraged to criticize it and make suggestions. Issues

were written down during the workshop and corrected afterwards.

3.4.7.2 Case Study 2: Selene

After the interview phase was completed at Selene, the process engineers moved on

to creating the model. They proceeded in two main steps:

1. Create a high-level model. This model contained the basic structure and

relations, but no detailed text descriptions. Meetings with small groups of

process performers were conducted in order to validate this high level model.

2. Add textual descriptions. When the high-level structure was considered suffi-

ciently stable, detailed textual descriptions were added. The process engineering

team used the help of technical writers to conduct this step.

96 3 Descriptive Process Models

When the model was completed, an Electronic Process Guide was generated

from the model and validated with selected performers in small focused meetings.

3.4.7.3 Case Study 3: Soster

The use of a graphical notation and editor had a particular advantage for Soster:

Initial versions of the process models for particular activities could be created

“live” during interviews with process participants. This made it easier to determine

whether the interviewer’s view of the process matched that of the interviewee. After

the interviews, the process engineers proceeded to merge these views into a single,

unified, graphical model.

3.4.8 Step 7: Analyze the Process Model

As process models become complex, there is an increasing risk of defects being

inadvertently introduced into the model by the process engineers. The purpose of

the process model analysis step is to detect such defects and correct them.

Depending on the notation used, there are many possible types of defects that

may arise in practice. The following list contains a few examples of possible

process model defects:

– Dangling reference: An entity references another, undefined entity, e.g., an

activity description mentions an input work product that has no definition of

its own in the model.

– Inconsistent precondition: The start conditions stated for an activity are contra-

dictory and cannot be fulfilled in practice.

– Inconsistent references: The same entity is mentioned in the model using

different, inconsistent names.

– Orphan entity: An entity is defined in the model, but is not referenced by any

other entity in a meaningful way.

– Dependency cycle: An activity depends on a particular input product in order to

start, but, according to the model, this input product cannot be produced unless

the activity has already been finished.

– Incomplete descriptions: Important entity attributes, such as activity or product

descriptions, are missing or empty in some or all of the process entities.

The analyses that can be performed to detect defects such as those listed earlier

roughly fall into three categories:

– Completeness analyses. Even if a model correctly describes a process, the level of

detail or the amount of information in the description could be insufficient. Com-

pleteness analyses are concerned with making sure that all relevant information is

available and at a sufficient level of detail. Checking for empty fields in entity

description forms, and making sure that all activities in a process are refined to the

level of individual tasks, are two examples of possible completeness analyses.

3.4 Creating a Descriptive Process Model 97

– Consistency analyses. This type of analysis is related to making sure that elements

of the model do not contradict each other. An example of a consistency analysis is

to make sure that all products mentioned by the natural language description of an

activity are modeled explicitly as inputs or outputs of the activity, and that they are

mentioned using the same name used in the corresponding product description.

– Dynamic analyses. These analyses are concerned with problems that may arise

when the process described by the model is executed. A typical dynamic analysis

is to search for potential deadlocks that may occur while executing the process.

Depending on the levels of formality and detail of the chosen process model

notation, process analysis can be automated. Indeed, this is one of the main benefits

of using a formal modeling notation. Automated model checks can be described in a

declarative fashion as rules (e.g., for all entities of the type “Activity,” the attribute

“description” must not be empty) or as arbitrary programs that navigate the model

elements checking for particular conditions.

In many cases, however, automation is not possible, either because the informa-

tion is not formal enough (e.g., it is available only as natural language text) or

because checking for a particular property may be beyond the ability of a computer

algorithm (in certain cases, making sure that a model does not contain deadlocks is

equivalent to solving the halting problem for a nontrivial computer program). For

these cases, manual model reviews must be conducted, possibly using disciplined

inspection techniques similar to those intended for inspecting software programs.

3.4.8.1 Case Study 1: DocVault

Since DocVault’s model ended up being relatively small, most checks were

conducted by manually inspecting the model. However, the process engineering

team also created a simple syntax checker to make sure that a set of minimal

syntactic requirements was fulfilled by the text-based specifications.

3.4.8.2 Case Study 2: Selene

At the end of the initial modeling effort, Selene’s model contained almost 1,000

separate entities and several thousand relations. It was absolutely necessary to

check this model for potential errors. Most checks were achieved automatically

by writing simple programs that checked the structural properties of the model by

consulting the model database and looking for potentially problematic elements or

constructs.

3.4.8.3 Case Study 3: Soster

For checking, Soster relied mainly on the built-in capabilities of the graphical model

editor they were using. The editor allowed for defining a set of basic correctness and

consistency rules, and Soster used those to detect basic problems in the model.

98 3 Descriptive Process Models

3.4.9 Step 8: Analyze the Process

The final step of descriptive process modeling is perform a process analysis, i.e., to

use the process model to track or analyze process performance, depending on the

process modeling objectives stated in step 1. One possibility is to track the process

by asking process performers to log, for example, the start and finish times for their

activities. Another option is to make “snapshots” by asking people about their

current activities at regular intervals. The resulting data can be used for qualitative

or for quantitative analyses.

Qualitative analyses aim at identifying weaknesses of the processes, e.g., when

too many responsibilities are pinned to a single role, or when too many roles are

assigned to a single person, or when feedback loops become so excessive that they

consume more time than productive project work.

Quantitative analyses aim at identifying correlations between process attributes,

e.g., when the number of requirements is more than 30% higher than average, the

number of defects rises by 70%.

Both kinds of analysis results can then be used to modify the process (in order to

remove the weaknesses), or the process model (in case it does not fit the process after

all), or to influence project planning (e.g., allocate more resources to requirements

reviews when the number of requirements is more than 30% higher than average).

3.4.9.1 Case Study 1: DocVault

Although the defect management process at DocVault had been handled manually

for the most part, it actually left traces in a number of data repositories. First, a good

portion of the communication and software defects happening between customers,

QA people, and developers were reported via email, and those messages were

archived. And, second, changes made to the software because of defects found

were always registered in the version management system, together with a log entry

explaining the reason for the change.

The process group then proceeded to isolate a number of defect-fixing cases and

to identify email messages and entries in the version management system that were

relevant to each case. By looking at this data, the process engineers were able to

create detailed profiles for these cases, identifying the people involved, the

activities that were conducted, and the time for each event.

With these profiles at hand, the process group then proceeded to check their

models. The basic question was to determine whether the process model could be

instantiated for each one of the particular cases, and how difficult this would be.

Together with the primary users (developers of the defect management system) and

the secondary users of the model (developers of the defect management system and

DocVault’s clients, as well as the software developers and quality management team

at DocVault), they decided that the model adequately describes the process and

proceeded with the implementation of the automated defect management system.

3.4 Creating a Descriptive Process Model 99

3.4.9.2 Case Study 2: Selene

Since Selene’s primary objective was to provide guidance for all roles in the

organization with respect to its processes, the process itself was of secondary

interest. However, Selene instructed all performers to watch for potential problems

or inconsistencies and to report them actively. An issue report system was set up to

collect these reports, and the SEPG conducted regular meetings to evaluate the

reports and follow up as necessary.

3.4.9.3 Case Study 3: Soster

Since Soster’s goal was to gather information for improvement, a detailed process

analysis was conducted. A number of influence factors for product quality and

project predictability was identified, including the frequency of requirements

changes and the time available for reviews (quantitative data); as well as role

assignments, people overloading, and tool availability (qualitative data). From the

data gathered, Soster’s SEPG developed a strategic improvement plan, covering

3-month Quick Wins and long-term goals to be realized within 3 years.

3.5 Descriptive Process Modeling Alternatives

This section presents two alternatives to the approach described in Sect. 3.4. The

Multi-View Modeling method [3] replaces steps 5 and 6 with an approach that

collects and integrates multiple views on the same process, and the Elicit method

[4] completely replaces the eight-step approach with a perspective-based tactic.

3.5.1 Multi-view Process Modeling

Multi-view process modeling [3] provides a specific way to conduct the elicitation

step and build a model based on it (steps 5 and 6 described in Sects. 3.4.6 and 3.4.7).

The main assumption behind multi-view process modeling is that, given the

complexity of actual software processes, no single process participant has a com-

plete, unified, and sufficiently detailed view of the process. Quite on the contrary,

participants are normally experts in rather narrow areas of the process. For this

reason, multi-view modeling starts by modeling the process as understood by

individual participants. This results in separate, role-specific process views that

contain potentially detailed but partial process information. In a later step, the

individual views are systematically integrated to form a single, complete process

model. This procedure is illustrated in Fig. 3.2.

100 3 Descriptive Process Models

The integration of role-specific views is an iterative process comprising four

steps:

1. Modeling. In the modeling step, role-specific views are created by indepen-

dently interviewing participants. The resulting views are partial process models that

contain all activities performed by a role, together with related process entities such

as work products or other roles with which the analyzed role interacts. Role-specific

views are expected to be internally consistent, but they are not guaranteed to be

consistent with each other.

2. Similarity analysis. In this step, the various role-specific views are analyzed to
identify common objects, such as shared activities or work products. Notice that,

due to the fact that each view comes from a different person or group of persons,

there may be inconsistencies in naming and other modeling aspects. For this reason,

a combination of manual and automated techniques is used to find matching

entities.

3. Inter-view consistency checking. Once matching elements have been

identified, a number of consistency checks are performed between interrelated

views in order to detect potential inconsistencies between them. Whenever

inconsistencies are found, they are resolved by changing the views as necessary.

A
B

C

D

View
A

View
B

View
C

View
D

View Integration

Comprehensive
Process Model

Implicit Real-World
Process

Fig. 3.2 Multi-view process modeling overview

3.5 Descriptive Process Modeling Alternatives 101

4. Integration. At this point, the separate views are consistent enough to be

merged into a single, integrated process model.

As originally proposed, the Multi-View Modeling method is based on the

MVP-L process language. In practice, however, most of it is independent of a

specific modeling language and can be applied in a quite general way.

Steps 2 and 3 ofmulti-viewmodeling can be particularly challenging. In the case of

similarity analysis (Step 2), as already noted earlier, matching entities in different

views can be named differently and will certainly be described using different words.

In order to deal with such inconsistencies, it is possible, for example, to search for

names that are similar (although not identical) or to use advanced text analysis

techniques to identify pairs of descriptions that speak (with different words) about

the same entity. Also, similarities in the structure of a product flow can be used to

suggest possible matching areas. It is important to note that all of these techniques are

potentially imprecise and susceptible to reporting nonmatching entities as matching

(false positives) and to missing actual pairs of matching entities (false negatives). For

this reason, all results obtained automatically must be verified manually.

Regarding inter-view consistency (Step 3), a number of consistency rules can be

applied once matching entities have been found. For example, matching entities in

all views must have the same name, whereas entities that do not match any other

entity should have a unique name. Depending on the set of modeling concepts used,

more advanced rules can be devised.

3.5.2 Elicit

Elicit [4] is a general framework for process elicitation. Its main difference to the

general, eight-step approach presented in this chapter is that it does not expect the

organization to select a schema, a modeling language, or a set of modeling tools.

Elicit provides all of these elements, together with a set of methodological steps for

using them, thus making its application somewhat simpler.

Elicit works by looking at the process from a variety of viewpoints, which are

later consolidated into a unified view. The Elicit schema is structured as a set of five

so-called perspectives, together with three types of properties that must be described

for each perspective. The Elicit perspectives are artifacts, process steps, roles,
resources, and constraints, and the property types are descriptive, static, and

dynamic. The combination of a perspective and a property is called a view in Elicit.

This means that there are 15 possible views (5 perspectives times 3 property types).

For each of these views, Elicit provides a set of so-called attributes. For example, the

descriptive view of the artifacts perspective contains the following attributes:

– Identifier

– Has purposes

– Stored in formats

– Is of artifact type

– Characterized by artifact description

102 3 Descriptive Process Models

Models are created by providing values for these and similar attributes in all

views.

As already mentioned earlier, Elicit provides a set of steps for producing

descriptive models. These steps are illustrated in Fig. 3.3 (adapted from [4]) and

can be summarized as follows:

1. Understand organizational environment. This step consists of understanding key
aspects of the organization, such as its size, management structure, number and

size of the running projects, common roles played by people in projects, etc.

Understanding these issues is considered fundamental for process engineers to

be able to do their job in later steps.

2. Define objectives. This includes defining the exact scope of the model—e.g., its

granularity and the degree of consistency, completeness, accuracy, and clarity

that must be achieved—and setting goals for the modeling effort itself, such as

its targeted costs and time frame.

3. Plan the elicitation strategy. Given the set of goals produced in the previous step,
it must be defined how to achieve these goals. A key aspect of this step is to allocate

appropriate resources for the modeling effort. For example, it must be decided

which people will be interviewed, when reviews are going to be conducted, etc.

4. Develop process models. This step involves collecting information according to

the Elicit process schema, as explained earlier. The collected information is then

used to create models using process modeling tools and submitted for review. If

reviews find deficiencies in the model, further information collection and

modeling must be performed.

Fig. 3.3 The steps of the Elicit method

3.5 Descriptive Process Modeling Alternatives 103

5. Validate process models. The main objective of this step is to have the models

validated by their intended recipients. This includes checking that the models

represent the actual process in an appropriate way, and, generally, validating the

models against the modeling objectives stated originally.

In addition to these five steps, which are concerned with modeling itself, the Elicit

method contains some steps that are intended to learn from the overall process

modeling effort and package this experience for the benefit of future modeling efforts.

These steps are represented by the feedback arrows (pointing upward) in Fig. 3.3.

Originally, the Elicit method proposed the use of two modeling tools, namely a

specialized Elicit modeling tool and the simulation tool Statemate. Although the

Elicit tool is not available commercially, the method can be supported with generic

modeling tools.

3.6 Guidelines for Process Elicitation Interviews

Interviews are a central component of process elicitation. Thus, this section

provides some basic guidelines regarding how to conduct elicitation interviews in

a software organization.

3.6.1 Interview Preparation

Before conducting a set of elicitation interviews in an organization, a number of

preparation steps should be taken:

– Get to know the organization. As a minimum, interviewers should have basic

knowledge about the organizational structure, the roles played by their

interviewees in that structure, and the software domain in which the organization

works. It is also advisable to begin the interviews with quality assurance people

or with project managers, since they will be able to provide a better overall view

of the organization.

– Find out if the organization is being restructured or was restructured recently.

Large changes in the organization’s structure normally have an impact on the

software process and on people’s roles. If restructuring is recent or is in progress,

the interviewer must find out in advance which version of the process he is being

told about.

– Take a look at existing documents and other work products. This not only helps

the interviewer to acquire a general idea of how the process is executed, but it

makes it easier to speak with interviewees about their usual tasks.

Before conducting interviews, it is important to make sure that the interviewees

were selected according to the requirements of the elicitation effort. It is to be

expected that the people who are most knowledgeable about a process are also most

104 3 Descriptive Process Models

likely to be busy. For this reason, there is always the risk that interviewers will be

“diverted” to less critical, but also less knowledgeable people. It is important to

make sure that your interviewees are knowledgeable and experienced enough to

provide you with the necessary information. Otherwise, insist on interviewing the

right person.

3.6.2 Beginning the Interview

The first minutes of an interview are crucial, because during this time, a proper

relationship with the interviewee must be established. In particular, it is important

to create an environment of confidence and teamwork. The interviewee must

understand that s/he is not being evaluated and that the purpose of the interview

is to achieve a better understanding of the actual process. In order to create this

positive environment, it is advisable to:

– Make sure that the interviewee has proper knowledge regarding the overall

elicitation process, i.e., how it is being conducted, who is taking part, and

what its general objectives are.

– Explain the goals and purposes of the interview. Let the interviewee know why

s/he is being interviewed and why her/his knowledge is important for the overall

elicitation effort.

– If necessary, make a confidentiality agreement with the interviewee. Explain

clearly how the information acquired during the interview is going to be handled

in terms of privacy and security (if relevant). In some cases, it may be appropri-

ate to present interview results anonymously. If this is your intention, make sure

that you mention it.

– Formulate some general questions about the interviewee and her/his role in the

process. In particular, try to confirm any knowledge you may have previously

acquired about the interviewee and his/her job.

3.6.3 The Main Interview

After the introduction, you can concentrate on its actual purpose: eliciting process

information. Some general guidelines are:

– Behave neutrally. It is fundamental that the interviewer avoids being judgmental

about the process. Any remark in this direction may destroy the confidence

created with the interviewee and cause the interview to fail. Remember that you

are there for understanding the process, not for criticizing it. Also, take into

account that aspects of the process that, at first sight, may appear outlandish or

even nonsensical may be supported by very good justifications that you do not

yet understand.

3.6 Guidelines for Process Elicitation Interviews 105

– Ask first about products. As already explained, products are sometimes easier to

identify for software engineers, so it may be wise to start by asking people which

work products they usually work on and in which exact ways they are involved

with their creation. When asking about products, take into account that different

organizations may use widely different words to refer to process work products.

Document, system, program, module, and report, to mention but a few, are terms

that may be used to refer to work products in practice.

– Ask about processes. After a clear view of the documents has been created, you

can move to ask about the processes related to producing these products. Some

of the relevant questions are: Which inputs are necessary? Which other roles

participate in the processes? Which conditions must be met in order to start

creating the product? When is the product considered finished? Who reviews the

product and how?

– Look for typical deviations. If the interviewee has not spoken of deviations

already, make sure to ask about them. What are typical problems that happen

during this process? How are they normally handled?

– Try to identify variants. Processes are often subject to variation depending on

factors such as the availability of certain resources (e.g., “if the project

budget allows for a separate test team, we do X, otherwise we do Y”), the presence

of specific product requirements (e.g., “if the product is intended for the interna-

tional market, we conduct an additional internationalization review. . .”), or partic-
ular customer characteristics (“when the customer is a government institution, we

have to produce an additional accounting report as required by current law. . .”).

When conducting the interview, always try to make sure that you are getting a

consistent picture of the process. In particular, make sure that you ask questions

even in those cases when you only see small ambiguities: It often happens that

major deficiencies in understanding are hidden behind an apparently minor issue.

3.6.4 Interview Closure

The final part of the interview should help to involve the interviewee in the whole

elicitation effort. Before you finish the interview:

– Speak about future steps. Explain to the interviewee which steps will follow. In

particular, make clear how the information obtained in the interview will be used

during the remainder of the elicitation process. If the interviewee is expected to

actively participate in further steps of the elicitation effort such as a review, this

may be a good time to clarify the schedule.

– Thank your interview partner. Make sure that you stress the importance of the

interviewee’s contribution to the overall elicitation process, and thank her/him

for that.

When further steps of the elicitation process are completed, it is advisable to

inform all participants of the progress and to let them know how their individual

106 3 Descriptive Process Models

contributions are shaping up into a detailed picture of the software process. In

particular, interview results can be written down, summarized, and presented to the

interviewees for revision.

3.7 Managing Risk in Descriptive Process Modeling Efforts

Modeling a process is a potentially highly complex task, which involves dedicating

a significant amount of work and time to it. It is hence not surprising that many risks

are involved in a process modeling effort. In order for such an effort to be

successful, these risks must be taken into account and mitigated whenever possible.

This section explains the most common risks and possible countermeasures.

Although it is impossible to predict every possible problem that may arise during

a process modeling effort, experience collected over the years allows us to enumer-

ate some issues that are likely to be present. The remainder of this section discusses

these issues as well as potential countermeasures.

3.7.1 Resistance of Participants

A disciplined, detailed process modeling effort can easily awaken resistance in an

organization. Considering how the modeling effort may be seen by process

participants, the reasons for this become obvious:

– Participants may see the process experts as the people who are placing their daily

work “under the microscope.” They fear that, as soon as their work practices are

made explicit, they will be judged for any deficiencies or limitations of the

process that may become visible through process analysis. In a similar vein,

participants may see the renewed interest in their daily work activities solely as a

way to control them.

– Participants may perceive a defined process as a way to constrain them. They

may fear that, once a defined process is in place, they will have no freedom to

change and adjust the way they work according to their needs.

– Participants may generally perceive processes as bureaucratic. They may expect

explicitly defined processes to introduce significant additional administrative

overhead that will divert them from the technical and managerial tasks they are

pursuing.

– Finally, participants may simply not see any added value in the process modeling

effort and may thus be reluctant to put time or work into it.

In order to mitigate the risk of a process modeling effort failing because of

resistance—or even active sabotaging—from process participants, it is important

that the processes and their definition are “owned” by the participants themselves.

Acquiring deeper knowledge about the process should never be seen as a means of

3.7 Managing Risk in Descriptive Process Modeling Efforts 107

control, but rather as a way to improve project execution and product quality, with

obvious benefits for everyone involved.

Some ways to put the process modeling effort “into the hands” of the process

participants are:

– Promote the benefits of proper process management. Better process management

can significantly contribute to improving a participant’s work life. For example,

better project planning can reduce or eliminate the need for working long hours,

and better product quality can reduce the stress associated with unexpected

product failures. Before a process modeling effort starts, process participants

should know the potential benefits and properly understand how process

modeling can contribute to achieving them.

– Whenever possible, involve process participants in the definition of the goals for

the modeling effort. A process modeling effort (and, in general, a process

improvement effort) that is only intended to benefit an organization’s manage-

ment is much more likely to meet resistance from the people at lower organiza-

tional levels, since they do not see any direct, personal benefits. When

participants are involved from the bottom up in the definition of goals for the

effort, they can pursue their own goals while contributing to the effort, making it

much more likely to succeed.

– Actively involve process participants in all process modeling activities. Apart

from goal definition, interested participants can be engaged in various activities,

ranging from detailed elicitation to high-level process description and review.

This is not only likely to turn these engaged participants into “process

proponents,” but will help guarantee that the resulting process represents the

views and goals of all stakeholders.

– Make the modeling effort as open as possible. Make sure that the results of the

modeling effort are visible and that participants have a voice if they disagree. For

example, it is advisable to provide an official mechanism for reporting problems

with the process definition and to make sure that such reports are promptly

reviewed and answered, too, either by correcting the process definition or by

providing an explanation of why changes will not be made.

By taking these and similar measures, it is possible to achieve much higher

commitment by the process participants, consequently increasing the chances that

the process modeling effort will be successful.

3.7.2 Inaccurate Reporting

When participants are interviewed about the way they work, there is a significant

risk that their description of their own activities will not fit reality to a certain

extent. Reasons for why this may happen include self-protection, forgetting process

details, and idealization of the process.

108 3 Descriptive Process Models

As explained in the previous subsection, people may fear that a process

modeling effort will immediately expose them to judgment and criticism. For this

reason, and in order to protect themselves, they may try to “embellish” the process

in ways that they expect to be more satisfactory to external observers than “the

naked truth” about how things are done. As also explained in the previous section,

active involvement of the process participants in the modeling effort is probably the

best way to minimize this problem.

A related problem may arise when process participants are discontent with their

organization or management. In this case, theymay tend to present the process worse

than it really is, in order to stress the problems they are currently going through.

Although such an attitude is a clear signal of potential process-related problems

and should not be dismissed, there may still be strengths to the actual process that

are being unnecessarily downplayed by disgruntled process participants.

Even when participants have a positive attitude towards their organization and

the modeling effort, they may end up reporting incomplete or outright false

information about a process. This may be caused by people forgetting details,

which should not be surprising given the high complexity and variability of many

software-related processes. Also, people who are fond of a particular procedure

may tend to idealize it, and to present it as being simpler and more straightforward

than it really is.

The usual way to deal with problems of this type is to gather information

redundantly from various sources whenever possible in order to spot possible

inconsistencies caused by missing or (either deliberately or inadvertently) false

information. Redundancy can be achieved, for instance, by interviewing many

participants who play the same role or by comparing the process described

by people with the actual work products that resulted from past instances of

the process.

3.7.3 Underestimating Necessary Investments

Descriptive process models involve potentially large investments. First of all, it

should be clear from the modeling steps discussed in Sect. 3.5 that modeling the

whole set of software development processes in an organization represents a

significant amount of work. In particular, the elicitation step requires the involve-

ment of a possibly large number of people in the organization. In order for the

process modeling effort to be successful, these people must dedicate considerable

time to interviews, reviews, and other process-related activities.

Additionally, it often happens that the improved understanding of the process

brought on by process modeling triggers changes to a process, sometimes in an

immediate fashion. Although these changes are likely to eventually bring

improvements, in the short term they may involve increased operation costs, for

example due to a temporary reduction in productivity.

3.7 Managing Risk in Descriptive Process Modeling Efforts 109

Underestimating these costs is, of course, a serious risk for a process modeling

effort. An effort can easily fail if the organization’s management is not conscious of

its potential costs. Proper planning is, thus, necessary to properly estimate these costs

from the ground up and guarantee appropriate commitment of the organization’s

management.

3.7.4 Underestimating Process Model Complexity

When planning a process modeling effort, it is easy to underestimate the complexity

of the final model. Process model complexity is mainly related to the number of

entities and entity relations in it, and less so to the number of concepts in the

selected process schema. Since estimating the number of entities in a model before

creating it is difficult, the risk of underestimation during planning can be high.

For this reason, descriptive process models should not overemphasize accuracy,

but rather concentrate on achieving a level of detail that is adequate for the stated

modeling goals. Also, organizations that lack process modeling experience should

start with pilot modeling efforts that are restricted to relatively small and well

delimited processes. The experience obtained from such pilot efforts should help to

estimate the potential model size (and involved modeling effort) for larger and

more complex processes.

References

1. Becker U, Hamann D, Verlage M (1997) Descriptive modeling of software processes, ISERN

Report 97-10. Fraunhofer Institute for Experimental Software Engineering IESE, Kaiserslautern,

Germany

2. Br€ockers A, Differding C, Threin G (1996) The role of software process modeling in planning

industrial measurement programs. In: Proceedings of the 3ird international software metrics

symposium, Berlin, March 1996

3. Verlage M (1994) Multi-view modeling of software processes. Lect Notes Comput Sci

772:123–126

4. Madhavji NH, Holtje D, Hong W, Bruckhaus T (1994) Elicit: a method for eliciting process

models. In: Proceedings of the 3rd international conference on the software process (ICSP 3),

Reston, VA, USA

110 3 Descriptive Process Models

Chapter 4

Process Modeling Notations and Tools

This chapter introduces notations for process modeling and gives an overview of

tool support for process modeling and management. The chapter is structured into

three main parts. First, it introduces a set of criteria for process modeling notations

in order to enable the reader to distinguish different process modeling notations and

to understand that different purposes might be addressed by different notations.

Second, it discusses two different process modeling notations, namely, MVP-L and

SPEM 2.0, and characterizes them according to the previously defined criteria.

Finally, it introduces process management tools by discussing the ECMA/NIST

framework and the Eclipse Process Framework (EPF) Composer. Figure 4.1

displays an overview of the chapter structure.

4.1 Objectives of This Chapter

After reading this chapter, you should be able to

– Distinguish different process modeling notations and assess their suitability with

respect to different purposes

– Explain and use the basic concepts of MVP-L

– Explain and use the basic concepts of SPEM 2.0

– Understand and explain the components of process management tools

Criteria for Process
Modeling Notations

Notations for
Process

Modeling

Tools for Software
Process Modeling

Fig. 4.1 Chapter structure

J. M€unch et al., Software Process Definition and Management,
The Fraunhofer Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-24291-5_4, # Springer-Verlag Berlin Heidelberg 2012

111

4.2 Introduction

When we think of process modeling notations, we can identify a plethora of

different approaches. This is due to the fact that during the historical development

of process modeling notations, different communities have influenced the discipline

of process modeling. In terms of software engineering processes, two major groups

that influenced the development of process modeling notations can be identified [1].

The first group was significantly influenced by tool developers and programmers.

Within this group, notations for the representation of processes were developed or

adopted aimed at creating representations that could be interpreted by machines.

Thus, this group focused on process automation and the notations used were

typically not designed to be interpreted by humans. The underlying vision was to

create software development environments where the execution of software devel-

opment tools would be controlled by a process-driven engine. The main focus was

on small, low-level processes such as the code–compile–test–fix cycle. As a result,

this approach focused on processes with a high potential of automation.

The second group has its origins in the community that was concerned with

software process improvement. In this discipline, the aim was to make software

development more mature by means of introducing best practices and establishing

learning cycles. For this reason, the need arose to represent software processes in

order to understand and improve the processes of software development performed

by humans. The notation constructs developed in this context aimed at describing

real-world concepts and creating models that humans can interpret. This approach,

and in particular the representation of software engineering processes, focused on

higher level processes and a minor degree of automation. Therefore, processes are

described in a more informal and less detailed way and, most importantly, they

provide guidance that can be interpreted and enacted by humans. In this context,

process guides based on natural notation became popular. They concentrate on

providing people with the information necessary to appropriately enact the process.

Currently, an abundance of different process modeling notations exists and,

therefore, a strong need for standardization has developed. As a result of this

development, the Software Process Engineering Metamodel (SPEM) was created.

Its goal is to enable the representation of different software engineering concepts.

4.3 Criteria for Assessing Process Modeling Notations

The multitude of existing process modeling notations has been developed due to

different motivations and needs. As needs usually differ greatly for different

stakeholders, purposes, and contexts, there is no best representation for processes,

and thus different representations cannot be assessed from a general point of view.

But it can be useful to compare different concepts in order to understand the specific

aspects that are addressed by a specific representation.

112 4 Process Modeling Notations and Tools

This section will introduce concepts for characterizing process modeling

notations and furthermore define requirements for process modeling notations

from different perspectives. These concepts are useful for comparing different

notations for the representation of processes.

4.3.1 Characteristics of Process Modeling Notations

In order to understand the context and motivation of a certain representation,

Rombach and Verlage [1] use the following aspects for characterizing process

modeling notations.

4.3.1.1 Process Programming vs. Process Improvement

A major distinction can be made between process modeling notations for the

implementation of processes (i.e., process programming) and notations for the

conceptual modeling of processes (i.e., process improvement). Process program-

ming notations focus on a representation for interpretation and execution by

machines. Process improvement notations focus on representation of real-world

concepts and provision of a representation that can be interpreted by humans.

4.3.1.2 Hidden vs. Guiding

When the process model is used, the representation of the process models can be

hidden or presented to the process user. When hidden, the process instantiation is

completely encoded in the process models or tools that support process enactment.

Thus, only filtered information is provided concerning the current project state.

If used for guiding, the process models themselves are used to inform the user and

to provide guidance during process instantiation.

4.3.1.3 Prescriptive vs. Proscriptive

In the early days of software process research, the main focus was placed

on automating process execution with the help of software development tools.

Therefore, the user of such tools would be guided by an execution mechanism

in a prescriptive manner. This approach of prescribing the process and thus also the

human activities has been subject to criticism and is difficult to implement.

The proscriptive approach represents a nonrestrictive way of formulating processes.

The process models provide guidance in order to enable performance of the

required process steps, but process users have a certain freedom in deciding

which actions to take at a particular stage of the project.

4.3 Criteria for Assessing Process Modeling Notations 113

4.3.1.4 Single Person vs. Multiperson

Software development projects are not performed by a single person and, in

consequence, collaboration and cooperation between persons, teams, and organi-

zations is highly relevant. Process models should support all these different levels

in order to make collaboration and cooperation possible. Historically, process

representations have evolved from a single-person focus in order to ensure proper

application of specific techniques by individuals. For the purpose of cooperation, a

multiperson focus is needed in order to coordinate the processes of different

persons. Therefore, a process representation should contain constructs for modeling

concepts of collaboration.

4.3.2 Requirements for Process Modeling Notations

In the following, a set of requirements for process modeling notations will be

described in accordance with [1]. The fulfillment of these requirements can be

seen as an indicator for the suitability of the notation to support process manage-

ment for software engineering organizations. Based on the viewpoint, the purpose,

and the context, different requirements might be relevant. A process engineer who

wants to automate a build process of a business unit might select different

requirements than an education department that aims at introducing a company-

wide training program. The stated requirements help to find suitable process

modeling notations by first selecting the relevant requirements and afterwards

selecting such notations that fulfill the requirements. The following requirements

can be applied [1].

– R1—Natural Representation: A process modeling notation should not only be

able to capture all relevant aspects of software development, but it should also be

able to represent these aspects in a natural, intuitive, and easy-to-identify manner.

Amapping between real-world phenomena and process model elements that is as

complete as possible facilitates the modeling and maintenance of these models.

– R2—Support of Measurement: A process modeling notation should take into

account the measurability of the process model. In order to enable software

process improvement, the impact of different technologies on products and

processes has to be observed. Furthermore, the scientific evaluation of the

efficiency and effectiveness of these technologies should be based on measure-

ment. For this reason, the notation has to take into account the definition of

attributes and measurement within process models.

– R3—Tailorability of Models: On the one hand, a process modeling notation

should enable a generic representation of information in order to allow for

process models that can describe commonalities of processes from several

different projects. On the other hand, no development project is completely

similar to another one and therefore, the process environment is most likely to

114 4 Process Modeling Notations and Tools

change for each project. Thus, in planning a project, the differences must be

considered and the process model has to be instantiated and tailored accordingly.

The use of tailorable models limits the number of process models and thus

reduces maintenance efforts. Therefore, concepts for defining and supporting

process variability and tailoring are needed.

– R4—Formality: A process modeling notation should allow for the creation of

process models with a certain degree of formality. Formality is needed to support

communication among different process participants and to foster a common

understanding of the process model by different people. Fulfillment of this

requirement means that process model constructs are defined formally within

the process model.

– R5—Understandability: Understandability is a key aspect of a process modeling

notation, as process models are used as a reference during projects. Most

activities related to process engineering rely on human interpretation rather

than interpretation by a machine and understandability is therefore a crucial

factor for the success of any process representation. Understandability refers to

the style of presentation and to how difficult it is for its users to retrieve needed

information.

– R6—Executability: A process modeling notation should support the interpreta-

tion and execution of the process representation by a machine. This need arises

due to the fact that standard procedures of software development are often

supported by tools that aim at providing automated support for the process user.

– R7—Flexibility: A notation for process representation should account for

handling decisions made by humans during process performance. These

decisions are characterized by creativity and nondeterminism. A process

modeling notation thus should contain constructs that are capable of capturing

these aspects.

– R8—Traceability: Traceability should be ensured within and across layers of

abstraction (i.e., horizontal and vertical traceability). This means that, for each

piece of information, it should be possible to determine its context, the processes

that rely on it, and how it was transformed. A process modeling notation should

thus support process representations that provide constructs for the explicit

description of different relationships between various process elements.

These characteristics and requirements can be used to define a framework that

helps to distinguish different process modeling notations and their purpose. All

elements of this framework are summarized in Table 4.1 (adapted from [1]). For the

evaluation of requirements satisfaction, (+) represents full, (O) partial, and (�) no

fulfillment of the respective requirement.

In the following sections, two software process modeling notations, MVP-L and

SPEM 2.0, will be introduced. MVP-L represents a notation that offers a compre-

hensive set of modeling constructs. SPEM 2.0 will be introduced because it has the

potential to become a future process model notation standard. The framework of

characteristics and requirements that was introduced earlier will be used to give an

overview and characterization of these notations.

4.3 Criteria for Assessing Process Modeling Notations 115

4.4 Multi-view Process Modeling Language

4.4.1 Overview

Multi-view process modeling language (MVP-L) was developed in the 1980s at the

University of Maryland. Subsequent development was conducted at the University of

Kaiserslautern, Germany. MVP-L has its origins in the Multi-view process modeling

(MVP) project, which focused on process models, their representation, and their

modularization according to views, as well as their use in the context of software

process improvement, namely, the quality improvement paradigm. MVP-L was

developed to support the creation of descriptive process models, packaging of these

models for reuse, integration of the models into prescriptive project plans, analysis of

project plans, and use of these project plans to guide future projects [2].

The main focus of MVP-L is on modeling “in-the-large.” It is assumed that the

ability to understand, guide, and support the interaction between processes is more

beneficial than the complete automation of low-level process steps [2].

4.4.2 Concepts

The main elements that are used in MVP-L for the description of process models are

processes, products, resources, and quality attributes, as well as their instantiation

in project plans [2]. A process model is actually a type description that captures the

properties common to a class of processes. For easy adaptation of process models to

different project contexts, the process models are structured using the concepts of a

process model-interface and a process model-body. An interface describes a

generalization of the formal parameters that are relevant to all models of a particu-

lar kind. As an example, a process model “Design” (Fig. 4.2, based on [2])

Table 4.1 Characterization framework

Characterization

Process programming vs. improvement Prescriptive vs. proscriptive

Hidden vs. guidance Single person vs. multiperson

Requirements satisfaction

R1—Natural representation (+/O/�)

R2—Support of measurement (+/O/�)

R3—Tailorability of models (+/O/�)

R4—Formality (+/O/�)

R5—Understandability (+/O/�)

R6—Executability (+/O/�)

R7—Flexibility (+/O/�)

R8—Traceability (+/O/�)

116 4 Process Modeling Notations and Tools

could describe a class of processes that require an input of the product type

“Requirements_document,” which must produce an output of the product type

“Design_document,” and which must be executed by a resource of the type

“Design_group.” These product and resource model declarations are part of the

interface of the process model “Design.” The actual implementation of the process

model is “hidden” in the body of the process model. Thus, MVP-L models

implement the important concept of information hiding [3]. The model-body

contains information that is only visible internally, whereas the model-interface

contains information that is visible to other models. By implementing the concept

of information hiding, changes to models or parts of models can be performed and

handled locally without affecting other models.

4.4.3 Notation Constructs

Processes, products, and resources can be used for modeling the basic elements of a

software project. Attributes can be used for defining specific properties of these

three basic elements. MVP-L calls the constructs for describing these elements

“models.” However, they can be understood as types [2].

– Product_model: Software products are the results of processes for development

or maintenance. In addition to the final software product, by-products, artifacts,

and parts of a product’s documentation are called products as well.

– Resource_model: Resources are the entities that are necessary for performing

the processes (e.g., people or tools).

– Process_model: Processes are the activities that are performed during a project.

They produce, consume, or modify products.

– Attribute_model:Attributes define properties of products, resources, and processes.
The attributes that are used are process_attribute_model, product_attribute_model,

and resource_attribute_model. Attributes correspond to measures and their values

correspond to specific measurement data.

design : Design
req_doc:

Requirements_
document

des_doc:
Design_

document

design_team : Design_group

Project plan “Design_project”

Fig. 4.2 Example of process model “Design”

4.4 Multi-view Process Modeling Language 117

In the following, these constructs will be discussed in more detail and examples

will be given for illustration purposes. The following descriptions and examples are

based on the MVP-L language report [2].

4.4.3.1 Product Models

Product models describe the structure and properties of a class of software products.

Product models do not only describe code artifacts, but all artifacts that are part of

software development activities and supporting activities. Each product representa-

tion consists of an interface and a body. Information in the <product_interface> is

visible to other objects. The product attributes are declared in the<exports> clause,

and their type must first be imported in the product interface’s <import> clause.

The product model “Requirements_document” imports a product attribute model

“Product_status” in order to declare a product attribute “status.” The formal instan-

tiation parameter “status_0” is used to provide the initial value for the attribute.

4.4.3.2 Resource Models

Resource models describe resources involved in performing a process. Resources can

be differentiated into organizational entities (e.g., groups or teams) and human

individuals (active resources) or tools (passive resources). Active resources perform

processes and passive resources support the performance of processes. Note that

traditional software tools can be represented in MVP-L as resources as well as

processes. A compiler, for example, could be represented as an MVP-L process

118 4 Process Modeling Notations and Tools

integrated into anMVP project plan dealing with program development. In contrast, an

editor may be used as a passive resource within a project plan to support the design

process. Like product models, resource models consist of a<resource_interface> and

a <resource_body>. For instantiation, parameters can be defined. Parameters are

special kinds of attributes for passing values to objects when the objects are

instantiated. In the example below, the parameter “eff_0” of the type “Resource_effort”

is used. It contains the effort that is available to a designer for the execution of the

process in the context of a specific project plan.

4.4.3.3 Process Models

Process models contain the information that is relevant for performing a specific

task. In particular, process models combine the basic elements of products and

resources in a manner that allows producing the resulting product. Similar to

product and resource models, process models are structured into a model-interface

and a model-body.

The process interface is described through <imports>, <exports>, <con-

sume_produce>, <context>, and <criteria> clauses, as shown in the following

example, which describes an exemplary design process. The process body is defined

in terms of an <implementation> clause. The <imports> clause lists all externally

defined models used to declare formal parameters within the<product_flow> clause

or attributes within the <exports> clause. The <exports> clause lists all externally

visible attributes that can be used by other models. These constructs provide a clear

4.4 Multi-view Process Modeling Language 119

interface to other models. In the example described later, the attribute “effort” of the

type “Process_effort” is made available to all models importing the process model

“Design.” A product flow is implemented in the process model through the

<product_flow> clause, which lists all products that are consumed, produced, or

modified. Products that are modified are declared in the<consume_produce> clause.

For the exemplary process model “Design,” a product “req_doc” of the type

“Requirements_document” is consumed and a product “des_doc” of the type

“Design_document” is produced.

Furthermore, constraint-oriented control flows can be defined by using explicit
entry and exit criteria as well as invariants within the MVP-L process models.

The <criteria> clause within the process model interface describes the pre- and

postconditions that have to be fulfilled in order to enter or exit the respective

process. In addition, invariants are used to describe states that need to be valid

throughout the enactment of the process. Criteria are specified as Boolean

expressions. The expression following the keyword <local_entry_criteria>
defines the criteria necessary to execute the process in terms of locally defined

attributes and local interface parameters. In this example, the local invariant

specifies that the actual effort spent for any instance of the process model

“Design” should never exceed a value specified by “max_effort.” Invariants can

be used to implement elements that need to be tracked permanently during

process performance and are not allowed to exceed a certain limit. In particular,

this accounts for monotonously rising or falling elements. Project effort, for

example, should not exceed its maximum value. In the example, the local entry

criteria state that any process of the type “Design” can only be executed if the

attribute “status” of the product “req_doc” has the value “complete” and the

attribute “status” of the product “des_doc” has either the value “non_existing”

or “incomplete.” The expression following the keyword <local_exit_criteria>
defines the criteria expected upon completion of process execution in terms of

local attributes and the local interface. In the example, the locally expected result

upon completion is that the attribute “status” of the product “des_doc” has the

value “complete.” Thus, the concept of entry and exit criteria can be used to

describe an implicit constraint-oriented control flow. MVP-L also provides

constructs for defining global criteria and invariants that address global attributes,

such as calendar time.

The <implementation> clause describes how an elementary process is to be

performed. This can either be a call of a supporting tool, or simply an informal

comment characterizing the task at hand for performance by a human. Processes are

related to products via explicit <product_flow> relationships, to attributes via

<criteria> clauses, and to resources via a separate <process_resources> clause.

In the example of the process model “Design,” a resource “des1” of the type

“Designer” is designated to execute any process of the type “Design.”

120 4 Process Modeling Notations and Tools

Example – Process Model: Design

Process_model Design(eff_0: Process_effort, max_effort_0: Process_effort) is

process_interface

imports

process_attribute_model Process_effort;

product_model Requirements_document, Design_document;

exports

effort: Process_effort := eff_0;

max_effort: Process_effort := max_effort_0;

product_flow

consume

req_doc: Requirements_document;

produce

des_doc: Design_document;

consume_produce

entry_exit_criteria

local_entry_criteria

(req_doc.status = “complete”) and (des_doc.status =

“non_existent” or des_doc.status = “incomplete”);

local_invariant

effort <= max_effort;

local_exit_criteria

des_doc.status = “complete”;

end process_interface

process_body

implementation

{textual description}

end process_body

process_resources

personnel_assignment

imports

resource_model Designer;

objects

des1: Designer;

tool_assignment

and process_resources

end process_model Design

4.4 Multi-view Process Modeling Language 121

4.4.3.4 Attribute Models

Each attribute model refers to a certain model type and consists mainly of a

definition of the <attribute_model_type> (and <attribute_manipulation>, which

is not discussed here). The <attribute_model_type> characterizes the type of

values the attribute stores. This type could be an integer, a real, string, Boolean,

or enumerated type (see example).

Example - Attribute Model: Product status

product_attribute_model Product_status () is

attribute_type

(“non_existing”, “incomplete”, “complete”);

...

end product_attribute_model Product_status

4.4.4 Instantiation and Enactment

The basic MVP-L models described so far can be refined and combined to create

complex process models, which can be used to describe typical software and

systems engineering processes. The instantiation of a process model allows

operationalizing the process model and creating a concrete project plan, which

can then be used for project analysis or execution. This section introduces the

MVP-L representation of project plans, with an emphasis on the instantiation of

processes and process enactment as described in [2]. The creation of project plans in

MVP-L allows for creating executable <project_plan> objects.

4.4.4.1 Instantiation

Software process models in MVP-L are instantiated through <project plan>
objects. A <project_plan> is described through <imports>, <objects>, and

<plan_object_relations> clauses. The imports clause lists all models that are used

to specify the process, product, and resource objects that make up the project plan.

These objects are declared in the <objects> clause. The objects are interconnected

according to their formal interface definition in the<plan_object_relations> clause.

A project plan needs to be interpreted by a process engine (a human or a computer) in

order to enact the contained processes.

122 4 Process Modeling Notations and Tools

Example – Project Plan: Design Project 2

project_plan Design_project_2 is

imports

product_model Requirements_document, Design_document;

process_model Design;

resource_model Design_group;

objects

requiremements_doc: Requirements_document(„complete“);

design_doc: Design_document(„non_existent“);

design: Design(0, 2000);

design_team: Design_group(0);

object_relations

design(req_doc => requirements_doc, des_doc => design_doc,

designers => design_team);

end project_plan Design_project_2

The project plan example consists of four objects: one process “design,” two

products “requirements_doc” and “design_doc,” and one resource “design_team.”

The interconnection of these products and the resource with the process “design” is

performed according to the formal interface specification of the process model

“Design.” In this example, a complete requirements document (“requirements_doc”)

is provided, the design document “design_doc” does not yet exist, and the time that is

available for the performance of the process “design” is restricted to 2000 time

units. Finally, only members of the “Design_group” are allowed to perform the

process “design.”

4.4.4.2 Enactment

The notion of a project state is the basis for the enactment model in MVP-L [2].

A project state is defined as the set of all attribute values (i.e., all attributes of all

objects instantiated within a project plan). Thus, the project state provides valuable

information about the status of the projects at any given time. This is an important

foundation for effective project control. The initial project state is defined in

terms of the initial values of all user-defined attributes and the derived values of

built-in attributes.

The values of attributes of the built-in type “Process_status” depend on the entry

and exit criteria. The only triggers that change the current project state are user

invocations of the kind “start(<object_id>)” and “complete(<object_id>)” to start

and complete processes, or the invocation “set(. . .)” to address external changes of

attributes. In each case, the new values of all user-defined and built-in attributes

4.4 Multi-view Process Modeling Language 123

are computed to determine the new project state. A new project state provides

information about the processes that are in execution (i.e., the value of the process

status is “active”), ready for execution (i.e., the value of the process status

is “enabled”), or not ready for execution (i.e., the value of the process status is

“disabled”). The different states of a process can be represented in a state transition

model (Fig. 4.3). Starting in the disabled state, processes may only get enabled

when the entry criteria are true. An enabled process may get active when it is

triggered by a user with the “start” invocation. As long as the exit criteria are not

fulfilled and the user does not trigger the user invocation “complete,” the process

will remain in the active state. When the exit criteria are fulfilled and the

user invocation “complete” is triggered, then the process gets disabled. Addition-

ally, for each project state, the state of the associated work products is

represented as “non_existent,” “incomplete,” or “complete” with the built-in type

“Product_status.”

Consequently, a state transition model can also be defined for products (Fig. 4.4).

At the beginning, the product does not exist. When the producing process starts,

the product state changes to incomplete. Finally, when the producing process

enabled

User Event start

active

User Event complete AND
Exit Criteria = False

User Event complete AND
Exit Criteria = True

disabled

Entry Criteria = True

Entry Criteria = False

Fig. 4.3 State transition model for processes

non_existent

producing
process starts

incomplete

producing
process

terminates

complete

rework is
needed

Fig. 4.4 State transition model for products

124 4 Process Modeling Notations and Tools

terminates, the product state turns to complete. When rework is needed, several

iterations between the product states complete and incomplete are possible.

In addition to the textual representation of MVP-L, a graphical representation is

defined for MVP-L in order to facilitate understanding and support process model

reviews by process users [4]. Figure 4.5 introduces a graphical representation for

MVP-L’s products, processes, resources, and entry as well as exit criteria. Figure 4.6

displays the product–process relationships.

For illustration purposes, a simple example of an actual project is provided

(Fig. 4.7). This example illustrates the notion of the project state as well as the

capabilities of MVP-L in implementing a constraint-oriented control flow using

entry and exit criteria. The exemplary process consists of three process instances,

namely, requirements specification, design, and coding. In this example, the process is

strictly sequential. There are fourwork products that constitute the product flowwithin

this process. According to Fig. 4.6, an arrow from a product to a process indicates that

a product is consumed by this process. An arrow pointing from a process to a product

indicates that a product is produced by this process. Control of the process flow is

realized implicitly via pre- and postconditions of the process. Since the process is

sequential in our case and every subprocess creates one work product, the entry

consume

produce

consume-produce

Fig. 4.6 Elements of MVP-L product–process relations

Products

Processes

Entry / Exit CriteriaEntry
Exit

Resources

Fig. 4.5 Elements of graphical MVP-L representation

4.4 Multi-view Process Modeling Language 125

condition could be described as follows: The prior work product has to be complete
AND the next work product has to be nonexistent. The exit condition is defined as:

The next work product has been completed. In the right column of Fig. 4.7, entry and

exit criteria are explicitly specified. For example, in order to begin coding, the status of

the design document “dd” has to be “complete” and the status of the code document

“cd” has to be “non_existent.” In order to finish coding and to exit the process,

the status of the code document has to be “complete.”

Finally, on the left of Fig. 4.7, project states are represented that correspond to the

enactment scenario provided in the state table in Fig. 4.8 (adapted from [5]). The state

table provides a sequence of project plan execution states. Starting in project state S-0,

let us assume that the product description “pd” is already “complete” and other

products are “nonexistent.” As the product description is “complete,” the process

instance requirements specification can be enabled. The process instance is initiated

with the invocation “start(req_s)” and state S-1 is reached. In S-1, the requirements

specification process instance is “active” and the requirements specification document

“rs” is being produced and is therefore in the state “incomplete.” Upon completion of

the requirements specification, “complete(req_s)” triggers another project state

change. In state S-2, the requirements specification document is “complete,” and

thus the exit criterion for requirements specification is fulfilled. The requirements

specification process instance gets “disabled.” Now the entry conditions for the design

process are fulfilled, state S-3 can be achieved (“start(design)”), and the design process

instance becomes “active.” The active design process instance creates the design

document and therefore the design document is “incomplete.” All other process

instances are “disabled.” State S-4 is triggered upon completion of the design

document (i.e., its exit criterion is fulfilled and “complete(design)” is triggered).

Now the entry criteria for the coding process are fulfilled and state S-5 can be entered.

States
pd: PD

req_s:
Req_S

rs: RS

dd: DD

cd: CD

design:
Design

coding:
Coding

pd.status = complete AND rs.status = non_existent

reqs.status = complete

rs.status = complete AND dd.status = non_existent

dd.status = complete

dd.status = complete AND cd.status = non_existent

cd.status = complete

Entry
Exit

Products Processes

S-0

S-1

S-2

S-3

S-4

S-5

S-6

Ti
m

el
in

e

Fig. 4.7 Exemplary process in MVP-L graphical representation

126 4 Process Modeling Notations and Tools

In S-5, the code document is under creation (code document: “incomplete”) and the

coding process instance is “active.” When the code document reaches the state

“complete,” the exit criterion for coding is fulfilled and state S-6 is reached through

user invocation “complete(coding).” In S-6, all work products are “complete” and all

process instances are “disabled” (Fig. 4.8, adapted from [5]).

In this section, the basic concepts of MVP-L were introduced. For more infor-

mation, the interested reader may refer to [2] and [4].

4.4.5 Assessment with Respect to the Defined Criteria

Table 4.2 describes the four characteristics of MVP-L as well as the satisfaction of

the eight requirements R1–R8, based on a subjective assessment. In this context,

(+) represents full, (O) partial, and (�) no fulfillment of the respective requirement.

4.5 Software Process Engineering Metamodel

4.5.1 Overview

The first version of the SPEM standard was introduced by the Object Management

Group (OMG) in 2002 and was built upon UML 1.4. It was revised in 2005 and

again in 2007, when major changes led to version SPEM 2.0, which is compliant

with UML 2. Due to UML compliance, standard UML diagrams such as activity

diagrams or state chart diagrams can be used for visualizing processes models.

State table S-0 S-1 S-2 S-3 S-4 S-5 S-6
P

ro
du

ct

pd
rs n-existent incomplete

dd n-existent n-existent n-existent incomplete

cd n-existent n-existent n-existent n-existent n-existent incomplete complete

complete complete complete complete complete complete

complete
completecompletecomplete

completecompletecompletecomplete
complete

P
ro

ce
ss req_s enabled active disabled disabled disabled disabled disabled

design disabled disabled enabled active disabled disabled disabled

coding disabled disabled disabled disabled enabled active disabled

start(req_s)

com
plete(req_s)

start(design)

com
plete(design)

start(coding)

com
plete(coding)

Fig. 4.8 Example of a state table

4.5 Software Process Engineering Metamodel 127

The development of SPEM was motivated by the abundance of different

concepts for process modeling and software process improvement. These different

concepts are usually described in different formats using different notations. Since

achieving consistency between different approaches became increasingly difficult,

the need for standardization arose. The SPEM standard for modeling software

development processes has the following characteristics:

“The Software and Systems Process Engineering Meta-Model (SPEM) is a process engi-

neering metamodel as well as conceptual framework, which can provide the necessary

concepts for modeling, documenting, presenting, managing, interchanging, and enacting

development methods and processes.” [6]

4.5.2 Concepts

In the following sections, the basic SPEM concepts will be introduced. The

conceptual framework of SPEM will be discussed, as will the basic notation

constructs and the structure of the SPEM standard.

4.5.2.1 Conceptual SPEM Framework

The conceptual framework of SPEM mainly summarizes the aims of the standard.

These are, on the one hand, to provide an approach for creating libraries of reusable

method content and, on the other hand, to provide concepts for the development and

management of processes. The combination of these two basic goals is seen as a

solution that enables the configuration of more elaborate process frameworks and

finally their enactment in real development projects (Fig. 4.9, based on [6]).

Table 4.2 MVP-L characteristics and requirements

Characterization: MVP-L

Improvement Proscriptive

Guidance Multiperson

Requirements satisfaction: MVP-L

R1—Natural representation +

R2—Support of measurement +

R3—Tailorability of models O

R4—Formality O

R5—Understandability O

R6—Executability +

R7—Flexibility +

R8—Traceability O

128 4 Process Modeling Notations and Tools

As depicted in Fig. 4.9, the conceptual SPEM framework consists of four main

elements: method content, processes, configuration, and enactment.

Libraries of method content address the need to create a knowledge base

containing methods and key practices of software development. Method content

captures key practices and methodologies in a standardized format and stores them

in adequate libraries. This allows creating and managing reusable practices and

methodologies. Such standardized content enables inclusion and integration of

external and internal method content according to the current development

requirements of an organization, and thus provides methodological support

throughout different lifecycle development stages. Furthermore, the standardized

method content elements can be used as a basis for the creation of custom

processes.

The creation of processes can be supported based on the reusable method

content. Processes can be defined as workflows and/or breakdown structures and,

within this definition, the selected method content is supposed to be adapted to the

specific project context. SPEM intends to provide support for the systematic

development and management of development processes as well as for the adapta-

tion of processes to specific project context.

As no two development projects are exactly alike, there is a need for tailoring

specific processes from the organization’s set of standard processes. With the

element of configuration, SPEM aims at addressing concepts for the reuse of

processes, for modeling variability, and for tailoring, thus allowing users to define

their own extensions, omissions, and variability points on reused processes.

In order to support the enactment of processes within development projects,

processes need to be instantiated in a format that is ready for enactment with a

“process enactment system” (e.g., project and resource planning systems, workflow

systems). Although SPEM 2.0 provides process definition structures, which allow

Standardize representation
and manage libraries of

reusable Method Content

Develop and manage
Processes for projects

Configure process
framework customized for a

specific project’s needs

Create project plan for
Enactment of process in the
context of a specific project

Fig. 4.9 SPEM 2.0 conceptual framework

4.5 Software Process Engineering Metamodel 129

process engineers to express how a process shall be enacted within such an

enactment system, support for enactment is generally regarded as weak [7].

4.5.3 Notation Constructs

The central idea of the SPEM is that a software development process is a collabo-

ration between abstract active entities called process roles, which perform

operations called tasks on concrete entities called work products [8].
The associations between role, task, and work product are shown in Fig. 4.10.

Tasks are performed by one or more roles. Furthermore, tasks require one or more

work products as input. They produce one or more work products as output. A role

is responsible for one or more work products.

As described within the conceptual framework, SPEM uses an explicit distinc-

tion between method content and process, and the basic three entities must therefore

be defined for both approaches.

Method content elements can be defined by using work product definitions,

role definitions, and task definitions. Furthermore, Category and Guidance can be

used. Guidance represents supporting resources, such as guidelines, whitepapers,

checklists, examples, or roadmaps, and is defined at the intersection of method

content and process because Guidance can provide support for method content as

well as for specific processes. Table 4.3 gives an overview and description of basic

notation construct elements belonging to Method Content.

Figure 4.11 shows an example representing a tester and all the tasks he performs

(create test case, implement test, perform test) as well as the work products he is

responsible for (test case, test log) within the software development process.

For the description of a Process, activities are mainly used as the major structur-

ing element. Activities can be nested in order to define work breakdown structures

or related to each other in order to define a flow of work. Furthermore, activities

may have references to method content elements. These references refer to explicit

method content by “using” the concepts Task Use, Role Use, and Work Product
Use. Table 4.4 gives an overview and a description of basic notation construct

elements belonging to Process.

The SPEM method content represents a library of descriptions of software

engineering methods and best practices. It defines the “who, what, and how”

of work increments that have to be done.

A SPEM process represents descriptions of coherent process steps, which

enable performance of a certain task. It defines the “when” of work

increments that have to be done.

130 4 Process Modeling Notations and Tools

4.5.4 Assessment with Respect to the Defined Criteria

Table 4.5 describes the four characteristics of SPEM 2.0 as well as the fulfillment

of the eight requirements R1–R8, based on a subjective assessment. In this context,

(+) represents full, (O) partial, and (�) no fulfillment of the respective requirement.

4.6 Tools for Software Process Modeling

Practitioners and process engineers are in need of software support for process

modeling in order to be able to deal efficiently with process model creation and the

administration of changes and modifications. For example, typical process guidelines

Table 4.3 Key elements used for method content

Element Description

Work product definition Defines any artifact produced, consumed, or modified by a task.

Work products can be composed of other work products.

Examples: document, model, source code

Role definition Defines a role and thus related skills, competencies, and

responsibilities of one person or many persons. Is responsible for

one or many work product(s) and performs one or many task(s).

Examples: software architect, project manager, developer

Task definition Defines work being performed by one or many role(s). A task has

input and output work products. Inputs are differentiated into

mandatory and optional inputs. Tasks can be divided into steps that

describe subunits of work needed to perform the task

Category Category is used for structuring other elements

Guidance Can be associated with any SPEM model element to provide more

detailed information about the element. Examples: checklist,

template, example, guideline

*

*

*

**

1

performs

Input/Output

responsible for

Work Product

Task
Role

Fig. 4.10 Core method content concepts of role, task, and work product

4.6 Tools for Software Process Modeling 131

are not only extensive but also cross-referenced, and, consequently, changes in certain

areas lead to changes in other parts. Support is therefore useful for maintaining

consistency. Such supporting software can have different functionalities. In order to

be able to compare different solutions, the introduction of a reference model is useful.

Therefore, in the first part of this section, the ECMA/NIST Reference Model for

Software Engineering Environments will be introduced, which provides a framework

for the discussion of different Software Engineering Environments (SEE). The second

part will give an overview of the Eclipse Process Framework (EPF) and especially of

the EPF Composer, as a specific tool for process modeling.

4.6.1 The ECMA/NIST Reference Model

The ECMA/NIST Reference Model for Frameworks of Software Engineering

Environments was developed jointly by ECMA (European ComputerManufacturers

performs

responsible for

Tester

Define
Test Case

Test Case Test Log

Implement
Test

Perform
Test

Fig. 4.11 Example for the role “Tester” with related elements

Table 4.4 Key elements used for process

Element Description

Work product use Instance of a work product defined within Method Content. Can be used

multiple times within process context

Role use Instance of a role defined within Method Content. Can be used multiple times

within process context

Task use Instance of a task defined within Method Content. Can be used multiple times

within process context. Additionally, definition of task-specific steps can be

performed

Activity Activities can be used to define work breakdown structures or workflows and

thus group tasks within a software development process, which can then be

used multiple times. Activities are used to model software development

processes

Process Can be used for structuring subprocesses by associating activities or tasks to it

Guidance Can be associated with any SPEM model element to provide more detailed

information about the element. Examples: checklist, template, example,

guideline

132 4 Process Modeling Notations and Tools

Association) and NIST (National Institute of Standards and Technology, USA). The

reference model provides a framework for describing and comparing different

Software Engineering Environments (SEE) or Computer Aided Software Engineer-

ing (CASE) Tools [9]. As such, it is not a standard, but should help to identify

emerging standards. In order to promote comparability, different services are

grouped in this framework. These services are Object Management Services, Pro-

cess Management Services, Communication Services, User Interface Services,

Operating System Services, Policy Enforcement Services, and Framework Admin-

istration Services.

Furthermore, tools (respectively tool slots) are provided, which represent soft-

ware that is not part of the SEE platform but uses services of the platform and can

add further services to the platform. Based on [9], Fig. 4.12 displays an overview of

the ECMA/NIST reference model.

In the following, the services that provide the core functionalities that a SEE

should implement in some way are described in more detail (based on [9]):

– Object Management Services: The objective of these services is the definition,

storage, maintenance, management, and access of object entities and of the

relationships they have with other objects.

– Process Management Services: The objective of these services is the definition

and computer-assisted performance of software development activities through-

out the whole software lifecycle. As this service group addresses processes,

the specific services will be described below in more detail. They are:

• Process Development Service (process modeling)

• Process Enactment Service

• Process Visibility Service

• Process Monitoring Service

• Process Transaction Service

• Process Resource Service

– Communication Services: The objective of these services is to provide informa-

tion exchange among the services of an SEE.

– User Interface Services: These services are designed to allow interaction

between the user and the SEE.

Table 4.5 SPEM 2.0 characteristics and requirements

Characterization: SPEM 2.0

Improvement Proscriptive

Guidance Multiperson

Requirements Satisfaction: SPEM 2.0

R1—Natural representation +

R2—Support of measurement O

R3—Tailorability of models +

R4—Formality O

R5—Understandability +

R6—Executability �
R7—Flexibility O

R8—Traceability O

4.6 Tools for Software Process Modeling 133

– Operating System Services: These services provide descriptions for and integra-

tion with operation systems on which the SEE can be realized.

– Policy Enforcement Services: The purpose of these services is to provide

security in an SEE.

– Framework Administration Services: These services provide support for con-

stant adaptation of changes for the SEE.

All these service groups are further refined into specific services within the

reference model, but a detailed discussion of all services is beyond the scope of

this section. After this brief overview of the reference model, a closer examination

of the six services from the Process Management Services group will be provided

below (based on [9]):

The Process Development Service as described by ECMA/NIST shall enable the

modeling of processes within the SEE. Therefore, a form for documenting the

process models should be defined, and operations for the creation, modification, and

deletion of process models should be included. The formalism of the process

description is not restricted, thus allowing informal process description in natural

language as well as the use of formal process modeling notations.

The Process Enactment Service should facilitate control and support for the

enactment of processes defined in the SEE. The operations that are regarded as

appropriate in this context are:

– Instantiation of process definitions

– Linking together of process elements

– Enactment of instantiated process definitions

– Suspension and restart of an enacting process

– Abortion of an enacting process

– Tracing of an enacting process

– Checkpoint and rollback

– (Dynamic) Change of enacting instances of a process definition

Object Management
Services

Tool Slots

Communication
Services

Process
Management

Services

User Interface
Services

Policy Enforcement Services
Framework Administration Services

Fig. 4.12 ECMA/NIST reference model

134 4 Process Modeling Notations and Tools

The Process Visibility Service aims at the definition and maintenance of visibil-

ity information, by defining which information should be visible to other entities

and when and where it should be visible. Operations that are regarded as appropri-

ate for visibility are:

– Establishing access to specified information for an entity

– Hiding information from other entities

– Defining and managing visible areas and communication structures

– Visualizing defined areas and communication structures

– Controlling access rights

The Process Monitoring Service observes the evolving process states, detects the
occurrence of specified process events, and enacts necessary actions based on

observation and detection. In this context, the definition of specific process events

and derived actions should be supported. Relevant operations are:

– Definition, modification, deletion, and querying of event definitions

– Manipulation of the control process definitions

– Attaching/detaching actions to/from events

– Querying of the state of a process

The Process Transaction Service provides support for the definition and enact-

ment of process transactions, which can be understood as process elements com-

posed of a sequence of atomic process steps. Such a transaction should be either

completed entirely or rolled back to the preenactment state. Appropriate operations,

which are described in this context, consist of:

– Creation, initiation, abortion, deletion, modification of transactions

– Commit of transactions

– Checkpoints and rollback of process states

– “Login” and “logout” of long-lived transactions

The Process Resource Service accounts for allocation and management of

resources during enactment of a defined process. The operations defined for the

Process Resource Service are:

– Definition, creation, modification, and deletion of process resource types and

resource entities

– Mapping of project resources to resource model instances

– Mapping of resource model instances to process instances

– Adaptation of mapping

In this section, an overview of the ECMA/NIST Reference Model for Software

Engineering Environments was given, which is useful for describing and comparing

tools for process management and its functionalities. In the following section, one

example of a tool that supports process modeling will be given by introducing

the Eclipse Process Framework and the EPF Composer as well as its main

functionalities.

4.6 Tools for Software Process Modeling 135

4.6.2 The Eclipse Process Framework (EPF) Composer

The Eclipse Process Framework (EPF) is an open-source project within the Eclipse

Foundation and was initiated in January 2006. The EPF project has two main

objectives. The first objective is to provide an extensible framework and exemplary

tools for software process engineering. This includes support for method and

process authoring, library management, configuration, and publishing of processes.

The second objective is to provide exemplary and extensible process content for a

range of software development and management processes, and thereby support a

broad variety of project types and development styles [10].

The EPF Composer has been developed in order to fulfill the first objective.

Its conceptual framework is based on SPEM 2.0, and for this reason, the aforemen-

tioned concepts in the section about SPEM are useful for understanding the func-

tionality of this tool. The EPF Composer is equipped with predefined process

content, which addresses the second objective. The process framework provided

with the EPF Composer is calledOpenUnified Process, and is strongly influenced by

IBM’s Rational Unified Process [10]. As it was not the aim of the project to provide a

process framework, this process content can be understood as a suggestion. In the

meantime, further process content has been provided (e.g., agile practices).

4.6.2.1 Basic Concepts

According to SPEM 2.0, the EPF Composer1 [10] implements the distinction

between Method Content and Process, providing capabilities for creating method

libraries.

Using the authoring capabilities of EPF Composer, method content can be

defined. This definition of method content resembles the creation of method content

libraries according to SPEM 2.0.

Tasks are a main element of method content. For tasks, a description can be

provided that contains general information. It is also possible to provide detailed

information and versioning. Tasks can be refined into the steps that should be

performed during task performance. These steps can be defined, ordered, and

their content can be described in detail. Moreover, the associated roles, work

products, and guidance can be added. Those are defined and described as separate

entities within the method content library and then related to a task during task

definition. This approach represents an implementation of the task concept

provided by SPEM 2.0.

The EPF Composer addresses mainly two audiences. By providing authoring

capabilities, it addresses process authors/engineers and provides them with a

tool for creating and publishing method content and processes. Simultaneously,

it provides functionalities that address process consumers/users by integrating the

1 The content presented here is based on the EPF Composer Version 1.5.0.3.

136 4 Process Modeling Notations and Tools

possibility to publish content in the form of websites that can be browsed. There, the

user can find necessary information concerning processes, methods, and guidance

(checklists, concepts, guidelines, etc.).

In addition to Method Content, EPF Composer provides capabilities for process

definition and adaption. Similar to method content, processes can be authored and

published. Within the authoring view, new processes can be composed by creating a

sequence of tasks that were already defined in method content. In this way, tasks are

integrated that contain associated roles and work products. During process compo-

sition, the predefined tasks can be modified, and it is therefore possible to tailor

specific processes from predefined method content. Furthermore, it is also possible

to tailor previously defined process compositions. The concepts of method content

and process variability will be discussed in more detail in the next section.

4.6.2.2 Method Variability

Method variability provides the capability of tailoring existing method content

without directly modifying the original content. This is an important ability,

as future updates might lead to inconsistencies in the dataset. Variability can be

used, for example, to change the description of a role, to add/change steps to an

existing task, or to add/change guidance.

The concept used is similar to inheritance in object-oriented programming.

Thus, it allows reuse of content with further specialization/modification. For

realizing this concept, the EPF Composer uses “plug-ins.” After such a plug-in

has been created, it can be defined which existing content should be “inherited.”

There are four types of method variability [10]:

– Contribute: The contributing element adds content to the base element. The

resulting published element contains the content of the base element and the

contributing element.

– Replace: The replacing element replaces the base element. The resulting

published element is the replacing element.

– Extend: The extending element inherits the content of the base element, which

can then be specialized. Both the base element and the extending element are

published.

– Extend and Replace: Similar to extend, but the base element is not published.

4.6.2.3 Process Variability

Concepts for process variability are based on activities, which are the elements used

to compose processes. Activity variability is based on the same four types of

variability as method content (see above: contribute, replace, extend, and extend

and replace).

4.6 Tools for Software Process Modeling 137

Additionally, activities may be used to create capability patterns. Capability

patterns can be defined as a special type of process that describes a reusable cluster

of activities for a certain area of application/interest. Processes can be created by

using capability patterns in the following ways [10]:

– Extend: The process inherits the properties of the capability pattern. Updates to

the capability pattern or respective activities are also realized in the respective

process.

– Copy: A process is created based on a copy of the capability pattern. In contrast

to extend, the respective process is not synchronized with the capability pattern

when changes occur.

– Deep Copy: Similar to copy, but is applied recursively to activities of the

respective capability pattern.

References

1. Rombach HD, Verlage M (1995) Directions in software process research. In: Zelkowitz MV

(ed) Advances in computers, vol 41. Academic Press, Boston, MA

2. Br€ockers A, Lott CM, Rombach HD, Verlage M (1995) MVP-L language report version 2,

Technical Report Nr. 265/95, University of Kaiserslautern, Department of Computer Science,

Software Engineering Chair

3. Parnas D (1972) On the criteria to be used in decomposing systems into modules. Commun

ACM 15(12):1053–1058

4. Br€ockers A, Differding C, Hoisl B, Kollnischko F, Lott CM, M€unch J, Verlage M, Vorwieger S

(1995) A Graphical Representation Schema for the Software Process Modeling Language

MVP-L, University of Kaiserslautern, Department of Computer Science, Software Engineer-

ing Chair

5. Rombach HD (1991) MVP-L: a language for process modeling in-the-large. University of

Maryland, College Park, MD

6. Object Management Group (2008) Software & systems process engineering meta-model

specification version 2.0. OMG, Needham, USA

7. Bendraou R, Combemale B, Crogut X, Gervais M (2001) Definition of an Executable SPEM

2.0. In: Proceedings of the 14th Asia-Pacific Software Engineering Conference (APSEC’07),

Nagoya, Japan, 5–7 Dec 2007. doi: 10.1109/ASPEC.2007.60

8. Object Management Group (2005) Software process engineering meta-model specification

version 1.1. OMG, Needham, USA

9. ECMA/NIST (1993) Reference model for frameworks of software engineering environments,

Technical Report ECMA TR/55

10. Eclipse Foundation (2009) EPF composer: open UP library. http://www.eclipse.org/epf/

downloads/tool/tool_downloads.php. Accessed 27 Jun 2011

138 4 Process Modeling Notations and Tools

http://www.eclipse.org/epf/downloads/tool/tool_downloads.php
http://www.eclipse.org/epf/downloads/tool/tool_downloads.php

Chapter 5

Process Improvement

This chapter introduces concepts for improving software processes. The chapter is

structured into four main parts. First, it describes model-based improvement

approaches in general and furthermore introduces two specific model-based

improvement frameworks, CMMI and SPICE. Second, it introduces continuous

improvement approaches, beginning with a short overview of commonly used

continuous improvement approaches and furthermore introducing specific software

engineering concepts, especially the Quality Improvement Paradigm (QIP) and the

Experience Factory (EF). Third, it focuses on the role of measurement in the

context of process improvement. Operationalizing process improvement creates a

need for measurement and therefore, the goal/question/metric (GQM) method is

presented, which is a de-facto-standard for goal-oriented software measurement.

Finally, the organizational and business context of process improvement is

discussed by introducing the Balanced Scorecard (BSC) and the GQM+Strategies

approaches, which can be used as means to align specific improvement activities

with business goals and strategies. Figure 5.1 displays an overview of the chapter.

5.1 Objectives of This Chapter

After reading this chapter, you should be able to

– Differentiate between continuous and model-based improvement approaches

– Understand the principles of model-based process improvement

– Know important model-based improvement approaches such as CMMI and ISO

15504 and their relevance for software and system development

Model-based
Improvement

Continuous
Improvement

Measuring
Improvement

Aligning
Improvement

Fig. 5.1 Chapter structure

J. M€unch et al., Software Process Definition and Management,
The Fraunhofer Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-24291-5_5, # Springer-Verlag Berlin Heidelberg 2012

139

– Know how a process is evaluated by using an assessment model

– Understand the principles of continuous process improvement

– Know the basics of important continuous improvement approaches (e.g., QIP)

– Know how GQM measurement can be used for process improvement

– Understand the importance of aligning improvement goals and strategies with

business

5.2 Introduction

A lot of organizations still face a multitude of problems when it comes to creating

high-quality software products. On a regular basis, the Standish Group publishes

the so-called “Chaos Report,” which documents these problems in terms of IT

project success and failure [1]. The Chaos Report regularly surveys a large set of IT

projects and distinguishes three categories of projects (Fig. 5.2):

– Successful: Projects that have achieved the given target on time and within

budget.

– Challenged: Projects that have been completed, but with extensive additional

effort and/or budget.

– Failed: Projects that were cancelled without having achieved the given target.

The results of these surveys have been quite stable over many years: many

projects failed or needed more effort and budget than planned. There are many

reasons for these problems and a lot of them can be related to processes. Some are

related to a lack of indispensable processes such as sound project management,

configuration and change management, and validation and verification processes.

These problems impose significant risks and consequently potential damage on the

organization. The resulting risks include financial risks, liability risks, the risk of

losing important customers, or the risk of losing the organization’s good reputation,

to name but a few.

Another, more fundamental challenge resides in the lack of understanding of the

relationship between processes and their effects in concrete development

environments (e.g., what is the relationship between a specific test process and

the resulting reliability of a tested electronic control unit in the automotive

domain?). Nowadays, this is not sufficiently understood yet. Based on the widely

accepted assumption that there is a relationship between process quality and the

quality of the resulting software product [2], the following four cases can be

distinguished (Fig. 5.3).

As shown in Fig. 5.3, investing in process improvement and thus high process

quality is promising. Low process quality often leads to bad product quality, as chaotic

ad-hoc realization of software projects is very defect-prone (quadrant 1 in Fig. 5.3),

although achieving good product quality with bad processes can sometimes be seen in

practice (quadrant 2 in Fig. 5.3). However, this is usually due to the work of excellent

140 5 Process Improvement

developers in combination with enormous effort and overtime work. Such software

development conditions are not beneficial for an organization, as it is difficult to repeat

and institutionalize success when developing high-quality software. Additionally,

organizations with such bad development conditions often are subject to high person-

nel fluctuations. Therefore, the experts who contributed to the last success might not

be available anymore for the next software development project. The institutionaliza-

tion of processes can help to build up and preserve organizational knowledge with

respect to software development (quadrant 3 in Fig. 5.3). Thus, mature software

development processes can be seen as a prerequisite for high-quality software

products [2]. In consequence, without good process quality and an understanding of

the effects that processes have in a specific development environment, success is not

easily repeatable. This is true in particular for processes that rely solely on some sort of

“high-quality process documentation” without adapting and improving the processes

in the context of the development environment (quadrant 4 in Fig. 5.3). If processes do

not evolvewith the development context and do not support developers in an adequate

way, the resulting product quality often remains low. Past experience with insufficient

process quality has motivated the development of software process improvement

(SPI) approaches that address these issues. These approaches will be discussed in

the following.

Currently, mainly two types of SPI approaches are being used in practice:

model-based SPI approaches (also referred to as problem-oriented approaches or

Fig. 5.2 Overview of the “Chaos Report” results since 1994

5.2 Introduction 141

top-down approaches) and continuous SPI approaches (also referred to as solution-

oriented approaches or bottom-up approaches).

Model-based SPI approaches compare the current processes and practices of a

development organization against a reference model or a benchmark. They can be

used to identify problematic process areas with respect to the used reference model.

Using the identified problematic process areas helps to derive potential improve-

ment options. Usually, model-based SPI approaches provide different so-called

capability or maturity levels with different sets of processes and practices. These

levels often define an improvement roadmap.

Continuous SPI approaches focus on solutions for the most important challenges

of a software development organization and usually involve improvement cycles

based on an initial baseline. Continuous approaches focus on solving a specific

problem by analyzing the problem, implementing and observing problem-focused

improvement actions, and measuring the effects of the actions. The interpretation of

the measurement data is used as input for further optimization of the solution.

Model-based and continuous SPI approaches can be seen as being complemen-

tary: Model-based approaches can be used to identify problem areas and potential

improvement options, and continuous approaches can be used to solve respective

company-specific problems. Continuous approaches can be successfully applied,

independent of the maturity of an organization, whereas model-based approaches

usually require continuous improvement from a certain point on.

The need for SPI is being widely recognized nowadays. In the following sections,

model-based and continuous SPI approaches will be introduced. Due to the fact that

software development processes are usually human-based and depend on the devel-

opment context (including domain characteristics, workforce capabilities, and

organizational maturity), changes to these processes typically cause significant

costs and should be considered carefully. Alternative improvement options need to

highlow

ad-hoc
realization

low

high

Software Process Quality

Software
Product
Quality

above-average
effectiveness

and experience
of employees

mature SW-
development

processes and
software

engineering

system is not
improving

1 4

32

Fig. 5.3 Dependency between process and product quality

142 5 Process Improvement

be evaluated with respect to their implementation cost and their potential impact on

business goals. To address these organizational aspects, concepts of business align-

ment will be discussed in the last section of this chapter.

Model-based SPI approaches compare organizational processes with a refer-

ence model and can be used to identify coarse-grained problem areas and

potential improvement options.

Continuous SPI approaches can be used to develop company-specific

solutions for important problems and assess the effects of improvement actions.

5.3 Model-Based Improvement Approaches

Model-based SPI approaches such as ISO/IEC 15504 (SPICE) [3] or CMMI [4]

compare an organization’s processes or methods with a reference model containing

proven processes or methods. To be precise, such a reference model often contains

only requirements for such processes or methods that result from experience

collected in successful organizations. Typically, the elements of such a reference

model are associated with different levels that are supposed to reflect an

organization’s different capability or maturity levels. Therefore, this type

of model is often called capability or maturity model. One key element in model-

based improvement approaches are assessments. An assessment (sometimes

also called appraisal) determines to which degree an organization complies with

the demands of the respective model and is typically performed by comparing the

processes actually used against the requirements for these processes as stated in the

reference model. Such assessments may serve to evaluate an organization with

respect to its process maturity, or to identify improvement options for an

organization’s processes. From this, a coarse-grained overview of potential

improvement areas and alternative improvement options and, in consequence, an

improvement roadmap can be derived.

Model-based improvement approaches are widely used and provide a number of

benefits:

– Creating quality awareness: Model-based approaches can be easily used to

create and enforce awareness for quality issues in large organizations because

many different stakeholders (e.g., managers, project managers, developers) are

involved in the improvement actions.

– Measurable goals: Improvement goals like “reach maturity level 3” can be easily

understood, independent of technical details, and are thus, easier to communi-

cate to and by managers. Additionally, from the management point of view,

reaching a specific capability level can be defined as a clear, measurable, and

assessable goal.

5.3 Model-Based Improvement Approaches 143

– Process areas and important base practices: The reference models contain

relevant process areas and the maturity levels prescribe a way to process

improvement, which is perceived as being reasonable. Furthermore, the models

feature the early introduction of important base practices such as project man-

agement practices.

– Focused improvement actions: Model-based approaches support the prioritiza-

tion and selection of the most important improvement measures. Thus, improve-

ment actions with high impact can be performed first and the resulting benefits

can be realized within a short timeframe.

– Independent assessment: Assessments are usually performed by external experts

and thus, an independent assessment and evaluation of the respective organiza-

tion is facilitated.

The basic assumption behind model-based improvement approaches is that the

selected reference model is suitable for an organization. However, since software

development highly depends on the context, this is a questionable assumption.

Many software development activities are human-centered and thus, nondetermin-

istic. Therefore, individual processes or practices may have very different effects in

varying contexts and might not be suitable at all under certain circumstances.

Because of this, model-based improvement approaches seem applicable especially

for establishing and improving base practices, such as project and product manage-

ment, which are mostly context-independent. Context-dependent activities, such as

software design, are much more difficult to improve, which is why the application

of fixed reference models is rather questionable in this context. These models

typically only prescribe some generic policies, but detailed elaboration is left to

the user – as is the selection of the right practices to achieve the improvement goals.

Model-based improvement approaches may be criticized in a number of points:

– Generic nature of model-based SPI approaches: Model-based approaches typi-

cally do not assess the impact of processes on product characteristics and

therefore, cannot be used to analytically identify process problems that cause

concrete product deficiencies. Moreover, the process reference models (PRMs)

are generic and typically lack guidance for tailoring. The practices described in

reference models are usually based on the hypothesis that they can be success-

fully applied in the domain the approach is intended for.

– Unclear business goal alignment: Typically,model-based improvement approaches

are independent of an organization’s goals. Assessments can be characterized as

syntactic activities; during an assessment, it is checkedwhether a process or practice

is in place, but its impact on a business goal or its value for the organization is not

evaluated. In particular, this means that reaching a certain maturity level does not

automatically lead to the achievement of the organization’s business goals. There-

fore, having a high maturity level does not mean that the organization is successful

in fulfilling its business goals (such as an appropriate trade-off between time to

market and product quality). As a consequence, most maturity models explicitly

demand a reference to the organization’s goals on the higher maturity levels;

however, they often elaborate only little on how to do this.

144 5 Process Improvement

– Unclear value of improvement activities: As the improvement actions are not

linked explicitly to the organizational business goals, the added value of the

improvement measures suggested by the models and implemented in the orga-

nization often remains unclear.

– Conflict of objectives: Performing assessments and appraisals has become a

successful business model for consulting companies. These companies are there-

fore, actively involved in the creation and maintenance of model-based improve-

ment approaches. This creates the danger that the primary goal of achieving high

process quality is undermined by business interests, i.e., the generation of con-

sulting business.

– Low acceptance in small enterprises: Model-based approaches do not enjoy high

acceptance in small enterprises, as certain costs are involved, for example for the

assessments. The International Organization for Standardization, for instance,

addresses this problem by offering an approach for small companies with up to

25 employees [5]; however, with limited success so far.

The following sections will present the model-based SPI approaches CMMI and

ISO/IEC 15504 (SPICE) in more detail.

5.3.1 Capability Maturity Model Integration

In 1991, the Software Engineering Institute (SEI) at Carnegie Mellon University

(CMU) published an approach that supported the evaluation and improvement of an

organization’s processes by using a best-practice model. The model has been

continuously refined. Version 1.2 of the Capability Maturity Model Integration

was published in 2006 [6] and updated to Version 1.3 in November 2010 [4]. Since

most organizations are still using CMMI 1.2, yet are moving toward 1.3, we will

describe the major concepts of CMMI 1.2 and the changes performed in CMMI 1.3.

In general, CMMI describes processes for development (CMMI-DEV), for

acquisition (CMMI-ACQ), and for services (CMMI-SVC). CMMI can be used

for the evaluation of processes using appraisals as well as for process improvement,

using the reference model as a template. The following paragraphs introduce the

core concepts of CMMI for software development projects (CMMI-DEV 1.2).

CMMI-ACQ and CMMI-SVC are constructed similarly.

CMMI-DEV 1.2 distinguishes 22 process areas in four groups:

– Project Management

– Engineering

– Process Management

– Support

Theprocesses of theProjectManagementgroup areprovided tomanage andcontrol

development projects, including risks and purchased components or entire software

systems. Engineering describes constructive processes for software development

5.3 Model-Based Improvement Approaches 145

as well as verification and validation processes. The Process Management group
describes processes for the definition, establishment, and control of organizational

processes, including training of employees and organizational innovation manage-

ment. The Support group describes cross-functional processes like configuration

management, measurement, process and product quality assurance, and others.

In its purpose statement, each process area explains the goals that should be

fulfilled by means of the described process. The main elements of the process areas

are the specific goals and the generic goals. The specific goals are individual for

each process area and should be reached by performing the processes of the

particular process area. For example, the process area Technical Solution (TS) has
the following specific goals:

– (SG 1) Select Product Component Solutions

– (SG 2) Develop the Design

– (SG 3) Implement the Product Design

If these goals are achieved, product alternatives are identified and evaluated, and

one is selected, designed, and implemented. Thus, the specific goals help to reach

the goals of the specific process area.
In contrast to the specific goals, the generic goals are defined globally and need

to be instantiated for every process area. Generic goal 1 (GG 1), for example,

essentially demands that the specific goals must be reached for the particular

process area. This means that for the Technical Solution (TS) process area, GG 1

demands that the specific goals SG 1, SG 2, and SG 3 as noted above are achieved.

For a different process area, GG 1 demands achieving its specific goals accordingly.

Higher-level generic goals pose requirements that exceed pure activities.

While GG 1 essentially demands that certain things be done (no matter how,

and consuming whichever effort), GG 2 demands managing the respective

activities. This means that within a project, performing the respective activity

has to be planned and controlled, resources and responsibilities must be consid-

ered, stakeholders must be identified and involved, etc. This applies to every

process area.

GG 2 demands certain things to be done in a managed fashion. However, every

project may decide independently how to implement the required activities. GG 3

takes care of this by demanding that the processes and activities performed in

projects must be derived from an organization-wide standard process, and that

improvement information is collected systematically. Beyond that, GG 4 demands

quantitative process management and GG 5 finally establishes continuous, active

improvement of those processes that are especially important for the organization to

reach its business goals.

During an appraisal, an organization’s finished projects are evaluated with

respect to which generic goals were achieved. CMMI supports two representations

[7]. Continuous representation allows for appraising any selection of process

areas. For each process area, a capability level (CL) is assigned, leading to a

comb-shaped capability profile (Fig. 5.4). Staged representation appraises a very

specific selection of process areas, looking for specific generic goals, and assigns an

146 5 Process Improvement

organization a single maturity level (ML). Both representations will be explained in

the following sections.

5.3.1.1 Continuous Representation

Continuous representation allows for appraising any selection of process areas. For
every process area, a capability level (CL) is determined that symbolizes the

organization’s process capabilities with respect to this process area. CMMI defines

six capability levels:

– CL 0 (Incomplete): No requirements (every organization automatically achieves

CL 0).

– CL 1 (Performed): The process achieves its specific goals (GG 1).

– CL 2 (Managed): CL 1 and the process is managed (GG 2).

– CL 3 (Defined): CL 2 and the process is derived from a standard process (GG 3).

– CL 4 (Quantitatively Managed): CL 3 and the process is under statistical/

quantitative control (GG 4).

– CL 5 (Optimizing): CL 4 and the process is continuously improved, using data

from the statistical/quantitative process control (GG 5).

Evaluating an organization using continuous representation typically results in a
comb-shaped process capability profile (Fig. 5.4) that includes all CMMI process

areas (for more details on the process areas, refer to the next section). This

representation is similar to that produced by SPICE assessments (see Sect. 5.3.2).

0

1

2

3

4

5

C
A

R

C
M

D
A

R

IP
M

M
A

O
ID

O
P

D

O
P

F

O
P

P

O
T P
I

P
M

C

P
P

P
P

Q
A

Q
P

M R
D

R
E

Q
M

R
S

K
M

S
A

M T
S

V
A

L

V
E

R

Fig. 5.4 Comb-shaped profile of a CMMI appraisal in continuous representation

5.3 Model-Based Improvement Approaches 147

5.3.1.2 Staged Representation

Originally taken from CMMI’s predecessor CMM, staged representation assigns a

single maturity level (ML) to an organization. There are five maturity levels:

– ML 1 (Initial): No requirements (every organization is automatically on ML 1).

– ML 2 (Managed): Projects are managed, a similar project can be repeated

successfully.

– ML 3 (Defined): ML 2 and projects follow a process derived from a standard

process; continuous process improvement is performed.

– ML 4 (Quantitatively Managed): ML 3 and statistical (quantitative) process

control.

– ML 5 (Optimizing): ML 4 and processes are being improved systematically and

in a goal-oriented way, using data from statistical/quantitative process control.

Since maturity levels are supposed to make different organizations comparable,

for every maturity level (ML), CMMI precisely defines the process areas and their

required capability levels (CL). For ML 2, the following process areas must at least

reach CL 2:

– Requirements Management (REQM)

– Project Planning (PP)

– Project Monitoring and Control (PMC)

– Supplier Agreement Management (SAM)

– Measurement and Analysis (MA)

– Process and Product Quality Assurance (PPQA)

– Configuration Management (CM)

To reach ML 3, the aforementioned process areas plus the following process

areas must reach CL 3:

– Technical Solution (TS)

– Product Integration (PI)

– Validation (VAL)

– Verification (VER)

– Organizational Process Focus (OPF)

– Organizational Process Definition (OPD)

– Organizational Training (OT)

– Requirements Development (RD)

– Decision Analysis and Resolution (DAR)

– Integrated Project Management (IPM)

– Risk Management (RSKM)

For ML 4 (ML 5), process areas that are especially relevant for reaching the

appraised organization’s business goals must reach CL 4 (CL 5). For example, an

organization featuring a process profile such as the one displayed in Fig. 5.4 would

achieve ML 2, but not ML 3, because TS only achieves CL 0. Deriving a maturity

level from the determined capability levels is called equivalent staging.

148 5 Process Improvement

The maturity level representation determined with CMMI’s staged representa-

tion makes organizations (partially) comparable; however, it also carries some risk.

If an organization achieves ML 2, this only means that the process areas REQM, PP,

PMC, SAM, MA, PPQA, and CM achieve CL 2. ML 2 makes no statement

whatsoever about the other process areas, such as TS, which covers actual software

construction!

5.3.1.3 CMMI 1.3

In November 2010, CMMI 1.3 was published by the SEI [4]. Apart from

refinements in many descriptions and much of the informative material, two

changes from version 1.2 should be noted in particular:

– Changes in process areas. The CMMI 1.2 ML 5 process area of Organizational
Innovation and Deployment (OID) has been reshaped so that it addresses

the overall performance management. Remaining a ML 5 process area, it has

been renamed to Organizational Performance Management (OPM). Further-

more, the IPPD extensions of CMMI 1.21 were integrated into the respective

process areas.

– No more capability levels 4 and 5. CMMI 1.3 contains only 4 CLs where

CMMI 1.2 had 6. The top two CLs (4, “Quantitatively Managed” and 5,

“Optimizing”) were removed together with their generic practices. This

means that the highest CL an organization can reach in CMMI 1.3 is CL3

(“Defined”). The maturity levels remain the same, though. Up to ML 3, the

rules for equivalent staging are the same for CMMI 1.2 and CMMI 1.3. For

ML 4, CMMI 1.3 demands that all process areas assigned for this ML reach

CL 3, which includes the process areas OPP and QPM. This means that for

process areas that are especially relevant for the business success of the

organization, process performance measures are defined, collected, and statis-

tically analyzed. This aims at making the selected processes predictable in a

quantitative way. For ML 5, the two process areas of OPM and CAR must

fulfill the same requirement, leading the organization to continuous improve-

ment based on quantitative data.

These changes constitute a gentle refinement of CMMI 1.2, but not a major

revision. The process areas, though revised, remain well-known. The changes

regarding ML 4 and ML 5 clarify the high-maturity section of CMMI, which has

always been somewhat blurry in CMMI 1.2.

1 Integrated Product and Process Development, an addition to CMMI-DEV that aims at specifi-

cally supporting organizations with respect to the collaboration of all product stakeholders

throughout the entire product lifecycle, in particular nonsoftware-specific stakeholders.

5.3 Model-Based Improvement Approaches 149

5.3.2 ISO/IEC 15504 (SPICE)

ISO/IEC 15504 [3], often simply called SPICE, is an international standard for

evaluating and improving an organization’s software processes. The international

standard consists of five parts. Part 1 (ISO/IEC 15504-1:2004) defines concepts and

vocabulary, part 2 (ISO/IEC 15504-2:2003) the requirements for performing pro-

cess assessments, as a basis for process improvement and capability level determi-

nation. Part 3 (ISO/IEC 15504-3:2004) supports the users of the standard in

fulfilling the requirements for an assessment as stated in part 2. Part 4 (ISO/IEC

15504-4:2004) assists with utilizing SPICE-compliant assessments for process

improvement and capability level determination.

Usually, themost important part of SPICE is part 5 (ISO/IEC 15504-5:2006). Part 5

provides an exemplar Process Assessment Model (PAM), which fulfills the

requirements stated in part 2. This PAM uses ISO/IEC 12207:1995 [8] as its Process
Reference Model (PRM). Most SPICE assessments are based on this PAM. More

PAMs exist for specific domains, e.g., Automotive SPICE [9] for the automotive

domain. For the remainder of this section, SPICEwill refer to ISO/IEC 15504-5:2006.

In addition to the five parts of the international standard, two additional parts

were released as technical report (TR): part 6 (ISO/IEC TR 15504-6:2008) and part

7 (ISO/IEC TR 15504-7:2008). Part 6 describes an exemplar PAM for system life

cycle processes, conformant with the ISO/IEC 15504-2 requirements for such a

PAM. It is derived from the PRM defined in ISO/IEC 15288 [10]. Part 7 defines the

conditions for an assessment of organizational maturity (similar to CMMI’s staged

representation). It defines a framework for determining organizational maturity,

based upon profiles of process capability derived from process assessment, and

defines the conditions under which such assessments are valid.

Similar to ISO/IEC 12207:1995, SPICE defines three process categories that

cover 49 processes for developing and acquiring software products and services in

nine process groups. Figure 5.5 displays an overview of process categories and

process groups.

Within the Primary Life Cycle Processes, the Acquisition group ACQ contains

the processes for the party acquiring software components, whereas the Supply
group SUP contains those for the party delivering such components. Engineering
(ENG) describes the engineering processes necessary to develop the software, and

Operation (OPE) those for later operation of the finished software product.

The Organizational Life Cycle Processes affect the whole organization. Man-
agement (MAN) describes the management of projects and individual activities.

Process improvement (PIM) takes care of improving all processes, while Resource
and Infrastructure (RIN) provide the necessary infrastructure for all other pro-

cesses. Finally, Reuse (REU) facilitates systematic reuse of previously developed

software components.

The Supporting Life Cycle Processes contain only a single process group.

Support (SUP) contains cross-functional processes that support the other two

process categories. These include, in particular, processes for quality assurance,

150 5 Process Improvement

verification, validation, reviews, and audits. Furthermore, documentation, configu-

ration management, problem resolution management, and change request manage-

ment are described.

A SPICE assessment evaluates a defined subset of the 49 SPICE processes,

assigning each evaluated process a Capability Level (CL), similar to CMMI’s

continuous representation (see Sect. 5.3.1.1). Evaluation is performed using

predefined Process Attributes (PA). CL 1 requires only one PA; all higher levels

require two. A SPICE process description states the Process Purpose, expected
Outcomes that should be produced by the process, and Base Practices and Work
Products, indicating the extent of achievement of the process purpose and

outcomes. In addition to that, typical inputs and outputs are defined.

Like CMMI, SPICE defines six capability levels:

– CL 0 (Incomplete): No requirements (every organization automatically achieves

CL 0).

– CL 1 (Performed): The process exists and achieves its specific goals.

– CL 2 (Managed): CL 1 and the process is managed (planned, monitored, and

adjusted), and its work products are established, controlled, and maintained.

– CL 3 (Established): CL 2 and the process is implemented using a defined process

that is capable of achieving its process outcomes.

– CL 4 (Predictable): CL 3 and the process operates within defined limits to

achieve its outcomes.

– CL 5 (Optimizing): CL 4 and the process is continuously improved to meet

relevant current and projected business goals.

In order to reach CL 1, a process must achieve its outcomes (PA 1.1 Process
Performance). For CL 2, the two attributes PA 2.1 Performance Management and PA
2.2 Work Product Management must be achieved, i.e., the process and its work

products, in particular, must be managed. CL 3 demands PA 3.1 Process Definition
and PA 3.2 Process Deployment, i.e., it is required that the organization follows a

Supporting Life Cycle Processes

Organizational Life
Cycle Processes

Primary Life Cycle
Processes

Acquisition (ACQ)

Supply (SUP)

Engineering (ENG)

Operation (OPE)

Management (MAN)

Process Improvement
(PIM)

Resource and
Infrastructure (RIN)

Reuse (REU)

Support (SUP)

Supporting Life Cycle Processes

Organizational Life
Cycle Processes

Primary Life Cycle
Processes

Acquisition (ACQ)

Supply (SUP)

Engineering (ENG)

Operation (OPE)

Management (MAN)

Process Improvement
(PIM)

Resource and
Infrastructure (RIN)

Reuse (REU)

Support (SUP)

Fig. 5.5 ISO/IEC 15504 overview

5.3 Model-Based Improvement Approaches 151

defined standard process. For CL 4, PA 4.1 Process Measurement and PA 4.2 Process
Control are required, i.e., the process must be under quantitative control. CL 5, finally,

requires an organization to comply with PA 5.1 Process Innovation and PA 5.2
Continuous Optimization, i.e., continuous process improvement has to be performed.

The result of a SPICE assessment is a comb-like process capability profile, similar

to CMMI’s continuous representation (Fig. 5.4). SPICE does not support assigning a

single maturity level to an organization like CMMI’s staged representation does.

However, when the new SPICE parts 6 and 7 become an International Standard (IS),

SPICE will also be able to provide a CMMI-like organization-wide maturity level.

5.4 Continuous Improvement Approaches

Continuous SPI approaches focus on the important problems of a software devel-

opment organization and usually involve improvement cycles (like Plan-Do-

Check-Act (PDCA) or QIP) based on an initial baseline that defines the respective

starting point of each improvement action. Continuous improvement approaches

focus on solving a specific problem by analyzing the problem, implementing and

observing problem-focused improvement actions, and measuring the effects of the

actions. The interpretation of the measurement data is used as input for further

optimization of the solution. In addition, solving one problem typically reveals

further improvement potential in related areas. Thus, further improvement actions

can be defined and an improvement roadmap can be created “bottom up.”

Continuous improvement approaches provide a series of benefits:

– Focused: Continuous approaches can often be focused on specific problems or

improvement opportunities within an organization or its processes; as a conse-

quence, the improvement actions are often highly effective and efficient.

– Specific: Continuous approaches are organization-specific and are therefore

suitable for achieving the desired process characteristics. Additionally, the

inclusion of measurement can illustrate the immediate impact of an improve-

ment action on process and product quality aspects.

Continuous improvement approaches can be criticized for:

– Need of experience: Setting up a continuous improvement approach usually

requires a lot of experience in the area of process improvement; additionally,

domain knowledge is beneficial.

– Missing external view: Often, continuous improvement approaches are

conducted and driven by internal process experts and, as a result, an external

view on the software process environment might be missing that would help to

identify critical improvement options.

– Danger of isolation: Due to the fact that continuous improvement approaches are

focused, they are often not well suited for creating an overall awareness for

quality issues in large software organizations. Thus, it is beneficial if they are

embedded into an organizational improvement framework.

152 5 Process Improvement

In the following, different continuous improvement approaches will be

introduced, starting with an overview of the PDCA cycle and the associated

organizational framework of Total Quality Management (TQM). After presenting

this outline of continuous improvement approaches, software-specific approaches

will be introduced with the presentation of the QIP and its associated organizational

framework, the Experience Factory (EF).

5.4.1 PDCA Cycle (Deming Cycle)

Continuous improvement approaches concentrate on problems in an organization’s

development process. Generally speaking, these approaches consist of iterative

improvement cycles based on the PDCA cycle, which was made popular by

W. Edwards Deming and is based on the work of Walter A. Shewhart [11].

PDCA is not explicitly focused on software development, but has traditionally

been used for industrial production and business processes. It consists of a four-step

problem-solving process (Fig. 5.6):

Plan: Perform a problem or potential analysis. Based on the results, define

measurable improvement goals and plan appropriate improvement actions that

will allow achieving the defined improvement goals. Additionally, determine the

results expected from a successful implementation of the planned improvement

actions.

Do: Implement and perform improvement actions.

Check: Analyze the success of the improvement actions. In particular, compare

the results of the improvement actions against the expected results and record any

observed differences.

Act: Analyze the differences between the actual and the expected results,

determine their causes, and define appropriate means to achieve the expected

results. A new cycle may be initiated, e.g., for follow-up improvement activities

or with modified improvement activities in the event of failure. In case of successful

improvement actions, determine where else the performed improvement actions

can be applied within the organization and deploy them.

The PDCA cycle represents a very basic approach for the performance and

institutionalization of continuous improvement, and is the basis for the organiza-

tional framework of TQM.

5.4.2 Total Quality Management

TQM is a holistic management approach toward quality management and, in

particular, continuous improvement within an organization. The TQM approach was

mainly developed in the context of industrial production processes. Although classic

production processes and software development processes differ, it was possible to

transfer basic TQM concepts to the domain of software development [12].

5.4 Continuous Improvement Approaches 153

TQM has its origins in the United States, but it became popular due to its

application in Japan after World War II. In the aftermath of the war, American

specialists in statistical control methods, such as Dr. W. Edwards Deming, came to

Japan to support the TrainingWithin Industry (TWI) program designed to restore the

country. Deming, Feigenbaum, and others made approaches like the PDCA cycle

popular and focused on statistical control of production processes as well as contin-

uous improvement. Since many different individuals were involved, multiple ideas

and developments regarding continuous improvement led to the concept of TQM.

Throughout the 1970s and 1980s, the popularity of TQM grew in the United States

and in Europe. As the subject of quality became more and more important, the U.S.

government supported the TQM approach with the Baldrige award for quality, while

in Europe, TQM was promoted by the European Foundation for Quality Manage-

ment with the EFQM framework for organizational management systems [13].

Figure 5.7 (adapted from [11]) shows the evolutionary development of TQM

from inspection to quality control, to quality assurance, and finally to TQM. In

brief, the main focus of an inspection was to identify and sort out products with

defects. Quality control introduced a broader view of quality and provided the first

methods (e.g., product testing, basic quality planning) for improving quality.

Quality assurance then started to focus on the prevention of defects and on statisti-

cal process control. Finally, TQM took a holistic approach to the subject of quality.

“Total” means that customers, employees across all departments and the overall

organizational environment need to be considered. “Quality” refers to quality of the

products, processes, and the organization. Management relates to leadership and

goals with respect to the other two aspects [14].

The objective of TQM is to have an organization achieve long-term success by

focusing on customer satisfaction. A definition highlighting these characteristics of

TQM is provided in Ref. [15]:

“All work is seen as a process and total quality management is a continuous process of

improvement for individuals, groups of people, and whole organizations. What makes total

quality management different from other management processes is the concentrated focus

on continuous improvement. Total quality management is not a quick management fix; it is

about changing the way things are done within the organization’s lifetime.”

Continuous
Improvement

Increasing Quality

Fig. 5.6 The PDCA cycle

154 5 Process Improvement

As indicated, TQM has a long history and many different influences have formed

what we understand today as TQM. The following sections will introduce the

important approaches of Total Quality Control (TQC), Company-Wide Quality

Control (CWQC), Kaizen, Zero Defect Program, and finally Six Sigma.

5.4.3 Total Quality Control

The term TQC was coined by Armand Feigenbaum and introduced in 1951 in his

book “Quality Control” [16]. TQC was a major step in the development toward

TQM and describes a system that integrates quality development, maintenance, and

improvement within an organization in order to enable the economical creation of

products that achieve full customer satisfaction. In his book, Feigenbaum

emphasizes the importance of quality to customers:

“Quality is the basic customer decision factor for an explosively growing number of

products and services today—whether the buyer is a housewife, an industrial corporation,

a government agency, a department store chain or a military defense program.” [16]

TQC is based on the assumption that as quality improves, productivity improves

and costs are reduced. Feigenbaum used the term TQC to describe the importance

of all employees within an organization with respect to responsibility for the

quality of the products. Thus, not only those employees who are directly involved

Policies
Suppliers and customers
Process management
Performance measurement
Teamwork and employee involvement

Total Quality Management

Organization Processes Products

Basic quality planning
Develop quality manual
Use of basic statistics
Self-inspection
Product testing

Identify sources of non-conformance
Sorting, grading
Corrective actions
Salvage

Quality systems development
Quality planning and quality costs
Focus on design
Failure mode and effects analysis
Statistical process control

Quality Assurance

Processes Products

Inspection

Products

Quality Control

Products

Fig. 5.7 Evolution of the TQM approach

5.4 Continuous Improvement Approaches 155

in manufacturing are responsible for product quality, but employees on different

levels of hierarchy share responsibility for product quality [12].

The implementation of TQC includes several steps [16]:

– Finding out what the company needs to improve

– Analyzing the present situation and specifying a problem statement

– Analyzing the problem

– Developing actions to address the problem

– Controlling results through measurement

– Establishing and standardizing processes that effectively resolved the problem

– Establishing continuous improvement

In order to successfully implement the TQC approach, the following factors

have to be accounted for:

– Continuous quality improvement guides organizational actions.

– Statistical data are the basis for decisions.

– Organization members must be focused on customer needs.

– Customer requirements define quality and quality improvement.

The positive impact of the TQC approach is based on all organizational levels

being involved in quality matters. The TQC approach is assumed to have a positive

effect on the required production effort, as improvements in quality reduce rework,

waste, and associated customer complaints. Thus, costs related to a product are

expected to be reduced and the overall profit of an organization increases [17].

5.4.4 Company-Wide Quality Control

Karou Ishikawa introduced the concept of CWQC in his book “What is Total

Quality Control? The Japanese Way” [18]. He was strongly influenced by the

works of Deming and particularly Feigenbaum and his concept can be seen as an

extension of TQC. In contrast to Feigenbaum, who mainly focused on the partici-

pation of all organizational levels of hierarchy in quality improvement, Ishikawa

introduced an approach that emphasized the participation of all employees. Conse-

quently, all employees, from top managers to workers, should contribute to product

quality in their area of work and responsibility.

Furthermore, Ishikawa advocated cooperation and communication across

functions/departments. He came up with the idea that “the next process is your

customer.” He had this idea because of his experience of work reality at the time,

where workers referred to the people in the next process as “enemies.” From this

experience, he concluded that the strict separation of functions needs to be

abolished in order to enable CWQC [19].

In the context of CWQC, Ishikawa developed methods for quality control in

order to implement continuous improvement. One of the most popular methods

is the Quality Control Circle. Quality Control Circles aim at involving workers in

156 5 Process Improvement

the continuous improvement of quality and at using this institution for educa-

tional purposes at the same time [20].

5.4.5 Kaizen

The Japanese word “Kaizen” stands for “improvement” and was adopted in busi-

ness to describe the philosophy of continuous improvement [21]. The evolution of

this term took place in the context of the development of continuous quality

improvement concepts such as TCQ or CWQC. The Kaizen philosophy includes

continuous improvement in manufacturing activities, business activities, or even all

aspects of life depending on the specific context of usage.

Kaizen is based on the following five elements [22]:

– Quality planning

– Teamwork

– Personal discipline and responsibility

– Involvement and suggestions for improvement

– Quality circles.

Kaizen can be characterized as an omnipresent continuous process of evolution-

ary improvement that aims at eliminating waste and inefficiency and furthermore

strives toward standardization [22].

5.4.6 Zero Defect Program

The Zero Defect Program was pioneered by Philip Crosby and is a business practice

aimed at minimizing the number of defects and errors in a process and at doing

things right the first time. As emphasized by the name of the program, the ultimate

objective of this method is to reduce the level of defects to zero, which most

probably is not completely possible in practice, but should still be the aim:

“The quality manager must be clear, right from the start, that zero defects is not a motivation

program. Its purpose is to communicate to all employees the literal meaning of the words

“zero defects” and the thought that everyone should do things right the first time.” [23]

The core of this methodology is based on four principles [24]:

1. Quality is defined as conformance to requirements. Requirements represent a

description of customer needs and expectations. When a product meets customer

requirements, it thereby achieves a level of quality that is high enough to satisfy

the customer.

2. Defect prevention is preferable to correction. It is better to spend some effort on

defect prevention than to spend a lot of effort on inspections and rework. Defects

are understood as nonfulfillment of customer requirements and therefore, failure

to satisfy the customer.

5.4 Continuous Improvement Approaches 157

3. Zero Defects is the quality standard. This is the objective of the approach.
4. Quality is measured as price of nonconformance. Every defect represents costs,

which sometimes may not be obvious. Defect costs include inspection time,

rework, wasted material and labor, loss of revenue, and costs associated with

customer dissatisfaction. The aim should be to quantify the price that has to be

paid for nonconformance, as this yields several benefits. Quantification or

measurement provides justification for costs created through quality improve-

ment. Additionally, measurement allows tracking progress and thus, maintaining

management commitment for improvement activities.

The concept of zero defects is of great importance in the context of continuous

improvement and was an important step from quality control, which stands mainly

for identification of defects, to quality assurance, which aims at prevention of

defects. In consequence, this was also an important step toward TQM. Additionally,

the concept of zero defects led to the development of the widely known Six Sigma

methodology.

5.4.7 Six Sigma

Six Sigma (6s) is widely associated with highly efficient, customer-focused

companies that are able to reduce their costs while increasing customer satisfaction

[25]. Six Sigma has its origins in statistics, as the term itself comes from statistics

and Sigma describes variance. Themain objective of Six Sigma is to reduce variance

in processes and prevent defects that interfere with customer satisfaction. By

achieving these goals, it becomes possible to reduce the costs of production pro-

cesses and, furthermore, to continuously improve quality and achieve high customer

satisfaction. Processes are analyzed by means of statistical methods, and a process

operating at the Six Sigma level produces only 3.4 defects per million opportunities.

Table 1.1 gives an overview of different Sigma levels. Note that every defect leads to

certain costs and that there is a factor of approximately 2,000 when comparing the

number of defects of level-4 and level-6 processes (see Table 5.1).

Although Six Sigma comes from statistical analysis and was introduced in

manufacturing, by now it has developed into a broader framework that is also

applied to software development. The term encompasses different concepts and

tools supporting the achievement of nearly perfect processes and can also be

applied beyond manufacturing. This is possible due to the understanding of the

term defect, which can be nearly everything that leads to customer dissatisfaction.

The Six Sigma framework is based on the following aspects [26]:

1. Prevention of defects

2. Reduction of variation

3. Focus on the customer

4. Decision making based on facts

5. Teamwork

158 5 Process Improvement

http://dx.doi.org/10.1007/978-3-642-24291-5_1#Tab1_1

The Six Sigma framework contains methodologies for continuous improvement

of processes as well as for the design of processes to satisfy Six Sigma

requirements. The Define Measure Analyze Improve Control (DMAIC) method

is used for process improvement and the Define Measure Analyze Design Verify

(DMADV) method, also known as Design for Six Sigma (DFSS), is used for

process design. Since this section focuses on process improvement, the DMAIC

method will be introduced.

The DMAIC method can be used to find problems in existing processes and to

improve the processes in order to solve the problems. It can also be used to expand

the current capabilities of an existing process by identifying opportunities for

improving the processes. The continuous DMAIC approach is represented in

Fig. 5.8 and its phases are explained below [26]:

– Define: Identify the problem and the customers. Define and prioritize the

customers’ expectations and describe the current process on a high level. Initiate

the improvement project.

– Measure: Confirm and quantify the problem by measurement. Measure the steps

of the process to collect data about current processes. Revise and clarify the

problem statement if necessary. Define the desired outcome of improvement.

– Analyze: Determine the cause of the problem and identify solutions to decrease

the gap between the current performance level and the desired performance level.

– Improve: Prioritize the different available solutions. Then implement those

solutions with the highest benefit for reaching the desired improvement.

Table 5.1 Number of defects on different Sigma levels

Sigma level Percentage correct Number of defects per million opportunities

3 93.3193 66,807

4 99.3790 6,210

5 99.9767 233

6 99.9997 3.4

Define

6 Continuous
Improvement

Fig. 5.8 The Six Sigma scheme

5.4 Continuous Improvement Approaches 159

– Control: Measure the improvements which were achieved and perform the

maintenance of the improved process in order to ensure sustainability of the

improvement.

After this presentation of the historical outline and evolution of TQM and further

important continuous improvement approaches, the following sections will focus

on other concepts of continuous improvement that were developed exclusively for

the domain of software development.

5.4.8 The Quality Improvement Paradigm

The QIP is a six-step procedure for structuring software improvement activities

[27]. The QIP is based on PDCA and tailored to the specifics of software develop-

ment. Thus, the QIP consists of the following six steps: (1) Characterize, (2) Set

Goals, (3) Choose Process, (4) Execute, (5) Analyze, and (6) Package (Fig. 5.9). In

order to explicitly support reuse of existing experience, steps 1 and 6, in particular,

are of great importance within the QIP.

The six steps of the QIP can be grouped into three phases: planning, performing,

and evaluating the improvement activities. The planning phase at the start of a new

improvement cycle is based on the explicit characterization of the initial situation

and organizational context (step 1—characterize); the identification of desirable

learning or improvement goals and associated hypotheses (step 2—set goals); and

the development of a suitable plan, identification of (pilot) projects for investigating

the hypotheses and selection of adequate processes for achieving the planned goals

(step 3—choose process).

The performing phase consists of one step. The created plans guide the execution

of the improvement or project as well as the collection of measurement (step 4—

execute). The subsequent evaluation phase involves analyzing the performed

actions with respect to the goals and hypotheses (step 5—analyze), and packaging

the experience into reusable artifacts for future use (step 6—package). The analysis

and packaging should allow for effective reuse in similar projects in the future and

may even set future learning goals. Thus, the gained experience can be used to

support the planning phase of further iterations of the QIP [28].

Due to the fact that software development is very context-specific, reuse of

experience artifacts is usually achieved through the creation of models, which

should fulfill the following requirements [27]:

– The experience models should be annotated with respect to their scope of

validity (e.g., a defect profile is stored in step 6 together with a description of

the project context it was gained from).

– The model can be tailored to a specific context (e.g., a defect profile originating

from a project with highly experienced quality assurance engineers needs to be

adapted if the actual project is performed with quality engineers having a low

experience level).

160 5 Process Improvement

– The selection of models should be based on a characterization of the actual

situation (i.e., the context of a reused defect model needs to be applicable in the

project where it will be used).

– The models should be systematically maintained over time. One reason for this

may be, for instance, that relevant impact factors were not considered until now

or project contexts have been changed. In consequence, existing models need to

be maintained or new experience models need to be created.

The QIP can be implemented on the project level and on the level of an

organization. If the QIP is implemented on the organizational level, step 4 has

one or more nested QIP cycles for piloting the improvement on a small scale.

Figure 5.9 displays the integration of a project feedback/learning QIP cycle (control

cycle) and the organization feedback/learning QIP cycle (capitalization cycle).

5.4.9 The Experience Factory

The implementation and institutionalization of the QIP as an organizational struc-

ture is the Experience Factory (EF). The concept of the EF, which was proposed by

Rombach and Basili [27], makes an explicit distinction between a project organi-

zation and an experience organization within the Experience Factory. The main

reason for this is the fact that projects that are run within an organization usually

aim at delivering specific results, which could be a product or a service, for

instance. The success of such a project is measured based on the delivered result

and, in consequence, as the capturing of project experience does not contribute

directly to the project results, these activities are not regarded as important within

1. Characterize

2. Set Goals

3. Choose Process4. Execute

5. Analyze

6. Package

Planning Phase

Performing
Phase

Evaluation Phase

Organization

Project

Fig. 5.9 Quality improvement paradigm (QIP)

5.4 Continuous Improvement Approaches 161

the project organization. Therefore, an independent experience organization is

suggested, whose primary goal is to capture experience from projects and transform

this experience into reusable artifacts. The experience organization can be seen as

an organizational unit that supports the project organization. The entire organiza-

tional setup of the Experience Factory is represented in Fig. 5.10 (adapted from

[29]), where the steps of the QIP are mapped to the organizational units of the

Experience Factory.

5.5 Process Improvement and Measurement: The GQM

Approach

Measurement plays an important role in the context of process improvement and is,

in fact, the core technique when it comes to the evaluation of the effects of process

improvement. Only when the results of an improvement effort are measured and

compared to the improvement goals is an evaluation of the success of the respective

improvement effort possible. In consequence, measurement is at the very core of all

improvement approaches. This section will briefly introduce a goal-oriented

approach to measurement: the GQM method. GQM was developed by Basili

and Weiss [30] and has evolved into a quasi-standard in the area of software

development. GQM represents a systematic approach for tailoring and integrating

measurement goals with models of the software processes, products, and quality

perspectives of interest, based upon the specific needs of the project and the

software domain of an organization.

Project Organization

Characterize

Set Goals

Choose Process

1

2

3

Execute4

Experience Organization

Project
Support

Environment
Characteristics

Tailorable Knowledge

Project Analysis,
Process Modification

Data, Lessons
Learned

Package6

Generalize
Tailor
Formalize
Disseminate

Analyze5

Experience Factory

Products, Lessons
Learned, Models

Experience
BaseExecution

Plans

Fig. 5.10 Mapping of QIP steps onto the experience factory

162 5 Process Improvement

GQM is explicitly goal-oriented, where goal-oriented means that measurement

is not the purpose, but the tool to reach some superior goal. In practice,

organizations often collect measurement data without knowing the purpose for

which the data are collected. In such a situation of missing goal orientation,

unnecessary measurement data are collected, which is a waste of valuable

resources. On the other hand, there is often not enough appropriate data available

to make definite statements with respect to organizational goals. In this situation,

the organization or project acts based on insufficient information, which can lead to

severe misjudgments. GQM can be used to resolve both situations and to provide

the required information efficiently. Thus, GQM can be seen as a base technique for

organizational measurement and improvement approaches.

The GQM approach ensures that measurement goals are defined explicitly by

providing a formalization framework for the definition of measurement goals. This

formalization framework basically consists of the following five questions that need

to be answered [30]:

– What is the object that is being measured?

– What is the purpose of the measurement activities?

– Which focus of the object is of interest?
– Under which viewpoint is the object analyzed?
– What is the context in which the measurement activities happen?

Table 5.2 shows an example of possible GQM goal definitions:

After specification of the measurement goals, for every measurement goal, a set

of quantifiable questions is derived. These questions are used to refine and

operationalize the measurement goals. For every question, metrics are defined,

and these metrics, in turn, specify the data that needs to be collected, which

forms the basis of the measurement plan. Using the measurement plan, an organi-

zation can then collect measurement data. Finally, through the very nature of its

structure, the GQM approach provides a framework for interpretation of the

collected data. Thus, the GQM approach defines, top-down, what should be

measured and provides, bottom-up, a way to interpret the measurement data

(Fig. 5.11) [30]. In summary, the GQM approach ensures that, on the one hand,

Table 5.2 Example for GQM goal definition

Examples Example definition

Object Process, product, other experience model, etc. Analyze the system test

process

Purpose Characterize, evaluate, predict, motivate, improve, etc. For the purpose of

evaluation

Focus Cost, correctness, defect removal, changes, reliability,

user friendliness, etc.

With respect to defect

slippage

Viewpoint User, customer, manager, developer, corporation, etc. From the point of view of

the corporation

Context Problem factors, people factors, resource factors,

process factors, etc.

In the context of

organization XY

5.5 Process Improvement and Measurement: The GQM Approach 163

no unnecessary data are collected, and, on the other hand, that all required mea-

surement data are available to make statements with respect to the defined questions

and ultimately to reach the measurement goal (Fig. 5.11).

5.6 Aligning Improvement Goals and Strategies with Business

The previous sections discussed the two basic approaches to SPI, namelymodel-based

and continuous improvement approaches. Both approaches represent different

strategies for pursuing SPI within software organizations. One problematic aspect

for both improvement strategies and associated goals is that they are usually not

directly linked to business goals and thus to the contribution of business value. This

does not mean that they have no value for a software organization, but rather that the

characteristic of value contribution through improvement has an indirect nature and is

difficult to show. In consequence, this value contribution might be questioned by

management and software engineers may find themselves in a situation where they

will need to advocate the value contribution of their improvement goals and strategies.

This situation arises at the very beginning of an improvement endeavor, when

stakeholders from management and engineering departments need to be convinced.

However, this situation might also occur in the course of or at certain milestones of

an improvement endeavor, e.g., in the context of budget negotiations or during

management reviews. In such situations, it is very important to be able to clearly

show the value contribution of a specific improvement action. Thus, it is not sufficient

to merely implement and follow an improvement strategy, but it is necessary to link

the respective improvement strategy to the business goals of the organization. Linking

the improvement strategy to business goals provides the necessary alignment of

business goals and allows showing the direct value contribution. In order to quantify

this value contribution, an approach to measurement is needed that explicitly

integrates with high-level business goals and software measurement data.

In the area of strategic measurement systems, the concept of the BSC [31] is very

popular. The BSC aims at aligning the organizational vision and strategies with its

lower-level activities by defining a scoring-based measurement model that

encompasses the most important organizational top-level dimensions. However,

Fig. 5.11 The goal/question/metric paradigm

164 5 Process Improvement

creating an effective measurement program is a very challenging task: It involves

observation, experience facilitation, collaboration, decision making, analysis, and

synthesis regarding goals and underlying context factors as well as assumptions.

Furthermore, it assumes organizational learning and continuous evolvement of the

measurement program. Thus, most organizations fall short of creating such an

effective measurement program.

GQM+Strategies is a measurement approach that has its origins in software

measurement and extends the established Goal Question Metric approach [32]. It

adds the capability to create measurement programs that ensure alignment between

business goals, strategies to reach these goals, associated software-specific

(improvement) goals, and corresponding measurement goals.

This section will give a short introduction to the concept of the BSC and the

GQM+Strategies approach. Furthermore, it will show how to align improvement

goals and strategies with business goals within a software organization.

5.6.1 The Balanced Scorecard

The BSC [31] is a strategic management concept that aims at aligning a company’s

activities with its vision and strategy through the definition of a strategic measure-

ment system. The BSC approach tries to measure whether the activities of a

company are meeting its goals with respect to vision and strategy. BSC was initially

developed by Robert S. Kaplan and David P. Norton and first published in 1992.

Being a strategic management framework, the concept of the BSC originally aims

at the top level of an organization [31]. At this level, the BSC helps to define and

control organizational goals from the perspective of decision makers based on the

definition of measures (called key performance indicators). The BSC framework

differentiates four basic dimensions, which help to provide a holistic view of the

organization. Figure 5.12 gives an overview of these dimensions, which are finan-
cial, internal process, learning and growth, as well as customer perspectives from
an organizational point of view [33].

The financial dimension covers the financial aspects of the organization, e.g.,

revenues or costs. The internal process dimension describes the quality of internal

processes, e.g., the time needed for product development. The learning and growth
dimension covers aspects with respect to the organization’s underlying capabilities

for long-term development, e.g., the ratio of new vs. old products, or the rate with

which high potentials leave the organization. Finally, the customer dimension

investigates the organization’s focus on its customers, e.g., customer satisfaction.

The operationalization of the BSC framework requires the definition of goals for

the dimensions of the BSC, based on organizational characteristics. In order to

derive goals and document relationships among them, the concept of the strategy

map is used. A strategy map defines casual links between the four dimensions and

goals and strategies that are related to them. For each goal of a BSC dimension,

corresponding measures as well as target values are defined. The alignment of

5.6 Aligning Improvement Goals and Strategies with Business 165

different organizational levels or units is performed through the definition of

corresponding measures that define objectives for lower levels. But the actual

linkage and alignment of high-level measures to lower-level measures often

remains implicit.

Nevertheless, the BSC is a widely adopted concept. It makes strategic goals

explicit, defines measures for controlling the goals and sets target values, helps

define causal chains for strategies in order to reach business goals, and is a widely

adopted concept in the strategic management community. However, the definition

of goals and measures is difficult and usually requires a lot of experience, and the

goals and strategies on different organizational levels tend to be isolated from each

other. In particular, there is no explicit linkage between measurements on the

business level and on the project level; context and assumptions are missing, and

typically, no interpretation models are defined.

5.6.2 GQM+Strategies

The GQM+Strategies2 approach [32, 34, 35] addresses the need for a measurement-

based approach that explicitly links goals and strategies through different organi-

zational levels. Thus, it allows creating an alignment of business goals and

strategies and lower-level (improvement) goals and strategies. Even though the

development of the approach focused on software-related organizations, the basic

Internal Process
Process measures such as

Efficiency
Effectiveness

Vision

&

Strategy

Customer
Customer measures such as

Quality
Service

Financial
Financial measures such as

Costs
Revenues

Learning & Growth
Measures of improvements
with respect to capabilities

Qualification
Continuous education

Fig. 5.12 The four BSC dimensions

2GQM+Strategies is registered trademark no. 302008021763 at the German Patent and Trade

Mark Office; international registration number IR992843.

166 5 Process Improvement

concepts can be generalized to set up organization-wide measurement programs for

controlling business goals and strategies as well as improvement goals and

strategies on lower levels. GQM+Strategies is based on the well-known GQM

approach, which is in widespread use for creating and establishing measurement

programs throughout the software industry. But the GQM approach never provided

explicit support for integrating its software measurement model with elements of

the larger organization, such as higher-level business goals and strategies.

GQM+Strategies adds those needed extensions to GQM and thus, provides the

capability to create measurement programs that provide alignment between busi-

ness goals and strategies and lower-level goals and strategies. In particular, the

approach can be used to define aligned (improvement) goals and strategies in a top-

down or bottom-up fashion, based on the perspective and organizational role of the

person applying the approach. In consequence, the GQM+Strategies approach helps

to clarify and harmonize goals and strategies across all levels of an organization, to

communicate business goals throughout the whole organization, to align goals with

strategies, to monitor the deployment strategy, and to obtain feedback about the

success or failure of strategies and business goals.

Table 5.3 (adapted from [32]) provides an overview of terms that are frequently

used in the GQM+Strategies approach in order to support the understanding of the

main concepts.

The definition of aligned goals and strategies across different organizational

levels requires a structured way of modeling goals and strategies on the respective

organizational levels. Furthermore, measurement models are needed to determine

the success or failure of goals and strategies. Additionally, underlying assumptions

and environmental factors need to be modeled in order to allow for informed

Table 5.3 Terms used in GQM+Strategies

Term Definition

Business goal Top-level goal an organization wishes to accomplish

Context factors Environmental variables that represent the organizational environment

and affect the kind of models and data that can be used

Assumptions Estimated unknowns that can affect the interpretation of the data

Strategy Planned and goal-oriented course of actions to achieve the defined

goals at the respective organizational level

Lower-level goals A set of goals inherited from upper-level goals as part of the upper-

level goal strategy

GQM+Strategies element Conceptual element of the GQM+Strategies grid that consists of a goal,

strategies, context, and assumptions

GQM goal Goal defined so that it can be measured using the GQM approach.

A GQM goal is associated with goals at all levels and is used to

measure the goal and strategy at the respective organizational level

Interpretation model Model that helps interpret data to determine whether goals at all levels

are achieved

GQM graph Conceptual element of the GQM+Strategies grid that consists of the

GQM goal and associated questions and metrics as well as a

corresponding interpretation model

5.6 Aligning Improvement Goals and Strategies with Business 167

decision making and interpretation, e.g., to determine the reasons why a specific

strategy was not successful. The GQM+Strategies grid (Fig. 5.13) is the central

component of the GQM+Strategies approach and addresses all these issues. The

GQM+Strategies grid specifies goals and strategies across all organizational levels,

including the measurement program needed for monitoring and controlling the

respective goals and strategies and interpretation of results.

For modeling these grids, the GQM+Strategies approach provides the conceptual

elements that are represented in Fig. 5.14 (adapted from [35]). Goal+Strategies

elements (left side of Fig. 5.14) provide the capabilities to define linked sequences

of goals and associated strategies.

GQM Graph

GQM Graph

GQM Graph

M1

M2

M3

M4

M5

…

Q1

Q2

Q3

Q4

Q5

Q6

…

Goals
Goal+Strategies

Element

Element

leads to

Goals

> made
measurable

through

< measures
achievement

of

Element

leads to

Goals

GQM Goals Questions MetricsGoal+Strategies Elements
B

us
in

es
s

Le
ve

l
S

of
tw

ar
e

Le
ve

l
P

ro
je

ct
 L

ev
el

Goal+Strategies

Goal+Strategies

Fig. 5.13 Generic GQM+Strategies grid

GQM Graph

GQM
Goal

Question

Question

Metric

Metric

Metric

made measurable through

Interpretation Model

GQM Graph

is part of

Goal+Strategies Element

Goal

Context/
Assumption

Strategy

realized
by a

set of

influences

influences

> made
measurable

through

< measures
achievement

of

Goal+StrategiesElement

leads to
a set of

Fig. 5.14 GQM+Strategies conceptual model

168 5 Process Improvement

The conceptual model [35] allows defining multiple goals for each organizational

level, and for each goal, multiple strategies can be derived. Strategies describe a

planned and goal-oriented course of actions to achieve the defined goals at the

respective organizational level. A goal may be realized by a set of strategies, which

may in turn lead to a sequence of goals. Additionally, Goal+Strategies elements

provide the capabilities to capture the underlying rationales for the defined goals,

strategies, and their linkages using context factors and assumptions. Context factors are

environmental variables that represent the organizational environment. Assumptions

are estimated aspects that can affect the interpretation of measurement data and,

consequently, the interpretation of related goals and strategies. GQM+Strategies

provides organizations not only with a mechanism for modeling goals and strategies,

but also for defining measures consistent with larger, upper-level organizational

objectives and for interpreting and rolling up the resulting measurement data at each

level. For this purpose, GQM graphs (right side of Fig. 5.14) are defined at each goal

level in order to measure the achievement of defined goals in combination with the

chosen strategies. To this end, GQM measurement goals and derived questions and

metrics, as well as an interpretation model, are defined. A GQM graph consists of a

single GQM goal (which measures a Goal+Strategies element), corresponding

questions, metrics, and interpretation models.

The conceptual model is supplemented by the GQM+Strategies derivation process

(Fig. 5.15) for the definition of GQM+Strategies grids. The combination of the

conceptual model and the derivation process provides a mechanism for organizations,

not only for defining a GQM+Strategies grid, including measurement, consistent with

upper-level organizational goals and strategies, but also for interpreting and

Determine a GQM+Strategies element and
corresponding GQM graph taking

advantage of context and assumptions

Task “Goal Definition”:
Determine and define a goal and its

links to upper-level goals and
strategies, if any

Task “Strategy Decisions”:
Select strategy decisions to accomplish

the goal

Task “GQM Graph”:
Develop a GQM graph (GQM goal,

questions, metrics, and interpretation
model) for the goal and strategy

decisions

Iterate the tasks
until the

GQM+Strategies
grid is complete

Task “Context & Assumptions”:
Identify context and assumptions

Fig. 5.15 GQM+Strategies grid derivation process

5.6 Aligning Improvement Goals and Strategies with Business 169

aggregating the resulting measurement data at each level. Figure 5.15 gives an

overview of the GQM+Strategies grid derivation process and summarizes the tasks

that need to be performed during the creation of a GQM+Strategies grid. As the

process of creating the GQM+Strategies grid is usually iterative and based on strong

interaction between different stakeholders, there is no fixed “best” order of performing

these tasks. Moreover, this overview of tasks should help to define the respective

levels within the GQM+Strategies grid.

It can be generally stated that the performance of these tasks can be divided into

the definition of the GQM+Strategies elements, which constitute the basic structure of

the to-be-defined GQM+Strategies grid, and the definition of the corresponding GQM

measurement. The derivation process is iterated until all organizational levels (for

which the measurement program is to be created) are defined. The following tasks are

performed during the derivation process as described in [35].

– Context and Assumptions: Before defining the respective goals for an organiza-

tion, the basic environment and motivation of the organization need to be deter-

mined and the rationales that lead to organizational goals need to be captured.

Context factors explicitly characterize the organization and its environment and

usually describe aspects like the organization’s business model (i.e., products or

services, customers, income sources), existing organizational processes and

structures, as well as existing measurement programs. Assumptions document

aspects which the stakeholders believe to be true but for which they have little or

no empirical evidence. These aspects might include assumptions made about the

technology, the market environment, future trends or organizational capabilities,

and the workforce.

– Goal Definition: The definition of business or top-level goals can be supported by
asking some basic questions, such as: What are the organizational principles upon

which the organization thrives (e.g., organizational vision and mission)? What are

the key elements of the organizational vision and mission (e.g., entrepreneurship,

employee satisfaction, customer satisfaction, risk preference, learning environ-

ment)? Where does the organization want to be in 5 or 10 years? How do you

define the success of the organization? How do you want to increase the success of

the organization? What are current documented business goals of the organiza-

tion? After compiling a list of top-level goals, conflicts and relationships between

those goals should be analyzed. Furthermore, it is beneficial to prioritize these

goals according to importance. Finally, either all or the most important goals can

be formalized using the GQM+Strategies goal template (Table 5.4, adapted from

[34]). The definition of lower-level goals has strong interdependencies with

higher-level goals and strategies. In consequence, the implications of chosen

upper-level strategies (e.g., strategies of the business level) on lower-level goals

(e.g., software development-specific goals) have to be analyzed. Adequate lower-

level goals need to be defined that help to achieve higher-level goals and

strategies. Again, goal prioritization can be performed in order to select the

most promising goals with respect to feasibility, cost, and benefit. These lower-

level goals should then again be formalized using the goal template.

170 5 Process Improvement

– Strategy Decisions: Potential strategies for achieving the business goal need to

be identified in this step. A strategy describes a planned and goal-oriented course

of actions to achieve a defined goal at the respective organizational level.

Multiple strategies may be defined and the most promising strategy has to be

selected considering its costs and benefits, and taking into account context

factors and assumptions that naturally restrict the feasibility of potential

strategies.

– GQM Graph: Defining the GQM measurement plan for each GQM+Strategies

grid level can be performed in parallel to the grid definition, but usually it is not

an isolated task. Metrics derived across different levels of the GQM+Strategies

grid can be reused and interpretation models for a higher-level goal may only be

defined completely if the lower-level metrics and success criteria have already

been modeled. The purpose of the GQM measurement plan is to evaluate the

achievement of goals and strategies. Measurement goals need to be identified

and the GQM goal template [32] (object, purpose, quality aspect, viewpoint, and

context) is used for formalizing the chosen measurement goal. Based on the

measurement goal, GQM questions and metrics as well as criteria for evaluating

the achievement of the measurement goal are determined and the interpretation

model is defined in order to aggregate and interpret the collected measurement

data for decision making.

According to [35], there are three essential success factors for putting together an

effective and sustainable measurement program:

Table 5.4 GQM+Strategies goal formalization template

Description Examples

Activity Activity that should be

performed in order to

accomplish the goal

Reducing, increasing, achieving,

pursuing, or providing the main focus of

the business goal

Focus The main focus of the

business goal

Cost, profit, turnover, market share,

prestige, customer satisfaction

Object The object of relevance People, market, a project, collection of

projects, customer

Magnitude (degree) The quantification of the

goal specified by a

magnitude

X%, $YZ, A% increase

Timeframe The timeframe in which the

goal and the magnitude

have to be achieved

X weeks, months or years, or permanently

Scope The scope of the goal within

the organization

The whole organization, a certain business

unit, or a person

Constraints

(limitations)

Basic constraints that may

limit or interfere with

accomplishing the goal

Limited influence on certain factors, laws,

mission statement, and basic principles

Relations with

other goals

Potential relations with

other (complementary or

competing) goals

Tradeoffs, conflicts, hierarchy, and

ordering

5.6 Aligning Improvement Goals and Strategies with Business 171

1. Definition of the right goals: Defining the right goals includes linking goals across

all levels of the organization. Additionally, it is very important to identify the

context and assumptions aswell as the time frame and success criteria for each goal.

2. Collect the right data: Collecting the right data means quantifying and

interpreting the goals at all levels. It is of particular importance to focus on

maximizing the benefits as well as minimizing data collection and data analysis

costs. This also includes taking maximum advantage of reusing and aggregating

already existing data.

3. Define a sustainable measurement process: Defining a sustainable measurement

process means institutionalizing measurement within your organization. This

includes creating the right organizational structures for organizational learning,

getting feedback to projects in a timely fashion, and maintaining commitment

throughout all organizational levels.

The following example (adapted from [35]) will help to improve the understand-

ing of the basic concepts of GQM+Strategies:

Let us assume that company X builds a class of standard shrink-wrapped

products for the general market. The products are sold directly to the customers

and the organization has some measures in place to help manage the product

lifecycle. The market for the kind of products that this company offers is very

competitive. Customer satisfaction is seen as a major factor for securing market

shares and remaining competitive, as satisfaction with the products implies cus-

tomer loyalty. Management decides that in order to improve the current market

position, an increase in customer satisfaction is required. Thus, the business level

goal can be formalized as represented in the Goal+Strategies element in Fig. 5.16:

Further assumptions for this goal are that the number of customer complaints is a

feasible indicator for customer satisfaction. Additionally, it is assumed that many

customer complaints are associated with reliability problems.Management concludes

Goal Increase Customer Satisfaction

Activity Focus Object Magnitude Timeframe Scope Constraints Relations

Increase Customer
Satisfaction

Product
“Mash”

Reduce
number of
customer
complaints
by 10%

12 weeks
after
release

Web
Products
Division

Mash price,
functionality

Cost
goals,
schedule
goals

Context - Highly competitive market
- Little control over development
 process
- Limited budget

Assump-
tions

- Improving customer satisfaction
 will increase customer loyalty
- Satisfaction can be measured by #
 of complaints
- Many complaints are due to
 product reliability

Strategy Test reliability in

Context Assump-
tions

- Reducing defects by 20% reduces
 complaints by 10%

Fig. 5.16 Goal+Strategies element

172 5 Process Improvement

that product reliability should be improved. In the following step, a strategic decision

has to be made on how to achieve improvements in product reliability. Improvements

in product reliability could be achieved by improving the development processes or by

increasing testing capabilities. As budget and timeframe are important constraints, it

becomes obvious that starting large process improvement initiatives is not a feasible

strategy. Therefore, the organization decides to improve product reliability by increas-

ing the testing capabilities. The assumption for this strategy is that reducing the

number of defects by 20% will reduce customer complaints by 10% (Fig. 5.16).

In order to evaluate the success of the Goal+Strategies element, a GQM mea-

surement model has to be defined that analyzes the trend in customer complaints.

Using the classic GQM approach, the measurement goal for the trend in customer

complaints can be formalized:

Analyze the trend in customer complaints for the purpose of evaluation with respect to

improvement in customer complaints from the point of view of quality management in the

context of Web Products Division

For details of the GQM measurement model, see Fig. 5.17. From the mea-

surement goal, questions can be refined and associated metrics can be derived.

Thus, the trend in customer complaints is evaluated for the product Mash

through an analysis of the ratio of customer complaints (CCR) that consists of

customer complaints for Mash (CCM) and average customer complaints (mea-

surement baseline CCB). The decision criterion describes the condition for

success. Consequently, if CCR � 0.9, the defined business goal is achieved

within the defined timeframe.

Next, the business level strategy has to be refined to the next organizational

level, which is the software level in our example. Based on the business level

strategy of testing reliability in and the assumption that a defect reduction of 20% is

required, the software level goal can be defined as “Improve system test effective-

ness by 20%” (Fig. 5.16). The grid derivation process (Fig. 5.15) can now be

GQM Goal Object Purpose Focus Viewpoint Context

Customer
Complaints
Trend

Customer
Complaints

Evaluation Improvement
in Customer
Complaints

Quality
Management

Web Products
Division

Questions
Q1: What is the trend in customer complaints?
Q1.1: How many customers complain 12 weeks after the Mash release?
Q1.2: How many customers complain for baseline products?

Metrics
CCR CCM/CCB Q1
CCM Number of customer complaints in the first 12 weeks after release

of Mash
Q1.1

CCB Average number of customer complaints in the first 12 weeks after
release of a set of baseline products

Q1.2

Decision criterion
CCR <= 0.9 �Business Goal is achieved

Fig. 5.17 GQM measurement model

5.6 Aligning Improvement Goals and Strategies with Business 173

performed on the software level and, in a subsequent iteration, also on the project

level. A resulting GQM+Strategies grid is represented in Fig. 5.18.

In real life, GQM+Strategies grids may easily become very large, depending on

the number of organizational levels, the goals on each level, and the strategies

defined for each goal. Figure 5.19 shows a real-world GQM+Strategies grid that

refines two organizational business-level goals to the software and project levels of

an organization.

Goal: Increase
customer satisfaction
by 10%

Strategy: Test
reliability in

Goal: Improve system
test effectiveness by
20%

Strategy: Introduce
new system test
process

G3: Analyze
representative

projects to build a
defect slippage

baseline

Q1.1: How many
customers complain

for baseline
products?

Q1.2: How many
customers complain
12 weeks after the

Mash release?

CCB: #
customer

complaints for
baseline
products

CCM: #
complaints 12

weeks after the
Mash release

G1: Evaluate
trend in

customer
complaints

G2: Evaluate
trend in

complaints
related to

software defects

Q2.1: How many
software defect -
related customer
complaints are

reported for
baseline products?

Q2.2: How many
software defect -
related customer
complaints are

reported 12 weeks
after the Mash

release?

CDB: #
software

defect-related
customer

complaints for
baseline
products

Q3.1: What is the
ratio of defects

found in system test
to defects found

after test for
baseline projects?

Q3.2: What is the
ratio of defects

found in system test
to defects found
after test for the

pilot project?

DB: % defects
slipped for
baseline
projects

DP: % defects
slipped for pilot

project

Goal: Reduce defect
slippage by 20%

Strategy: Establish
baseline, evaluate new
project, analyze
improvement

CCR: Customer
Complaints Ratio
CCM/ CCB<= 0.9

CDR: Ratio of
Customer

Complaints
Related to

SoftwareDefects
CDM/ CDB<= 0.8

DSR: Defect
Slippage Ratio
DP / DB<= 0.8

Decision Criteria GQM Goals Questions Metrics

CDM: #
software

defect-related
customer

complaints 12
weeks after the
Mash release

Goal+Strategies Elements
B

us
in

es
s

Le
ve

l
S

of
tw

ar
e

Le
ve

l
P

ro
je

ct
 L

ev
el

G4: Analyze pilot
project using new
test process with
respect to defect

slippage

G5: Analyze new
test process with
respect to defect

slippage
improvement

Fig. 5.18 GQM+Strategies grid example

Software Level

Business Level

Project Level

Fig. 5.19 Exemplary GQM+Strategies grid

174 5 Process Improvement

The GQM+Strategies approach strongly focuses on fulfilling specific business

and measurement goals by creating explicit links from business goals all the way

down to measures. It provides instructions on how to derive measures, yet is a

generic approach that is widely applicable. However, stating (good) goals is not

easy, but a necessary precondition. In general, the GQM+Strategies approach is an

advanced approach that cannot be applied “out of the box,” but must be tailored to

an organization.

References

1. The Standish Group (2011) Welcome to the Standish Group International. http://www.

standishgroup.com/. Accessed 11 Mar 2011

2. Humphrey WS (1989) Managing the software process. Addison-Wesley, Reading, MA

3. International Organization for Standardization (2006) ISO/IEC 15504:2004, ‘Information

technology—process assessment’. ISO/IEC, Geneva, Switzerland

4. Carnegie Mellon Software Engineering Institute (2010) Capability maturity model integration

1.3. http://www.sei.cmu.edu/cmmi/. Accessed 9 Jun 2011

5. International Organization for Standardization (2009) ISO/IEC ITC1 SC7WG24, ‘SLC profile

and guidelines for VSE’. http://www.iso.org/iso/iso_technical_committee.html?

commid¼45086. Accessed 27 Jun 2011

6. Carnegie Mellon Software Engineering Institute (2002) Capability maturity model integration

1.2. http://www.sei.cmu.edu/cmmi/. Accessed 9 Jun 2011

7. Liggesmeyer P (2009) Software-Qualit€at: Testen, Analysieren und Verifizieren von Software.

Spektrum Akademischer Verlag, Heidelberg

8. International Organization for Standardization (1995) ISO/IEC 12207:1995. ISO/IEC,

Geneva, Switzerland

9. Automotive SIG (2007) Automotive SPICE process assessment model and SPICE process

reference model

10. International Organization for Standardization (2008) ISO/IEC 15288, ‘Systems and software

engineering—system life cycle processes’. ISO, Geneva, Switzerland

11. Dale B (2003) Managing quality. Blackwell, Oxford

12. Moriguchi S (1997) Software excellence—a total quality management guide. Productivity

Press, Portland, OR

13. Crosier T (1990) A guide for implementing total quality management, report SOAR-7.

Reliability Analysis Center, Rome, NY

14. Kamiske GF, Brauer J (1999) Qualit€atsmanagement von A bis Z. Carl Hanser Verlag,

M€unchen Wien

15. Kanji KG, Asher M (1996) 100 Methods for total quality management. Sage, London

16. Feigenbaum AV (1951) Quality control: principles, practice, and administration. McGraw-

Hill, New York

17. Liang Z (1991) Total quality control in education. In: Proceedings of the frontiers in education

conference, September 1991, Purdue University, West Lafayette, IN, USA

18. Ishikawa K (1985) What is total quality control? The Japanese Way. Prentice Hall, Englewood

Cliffs, NJ

19. Macedo J, Usano RR (1992) An expert system for conceiving company wide quality control

strategies. In: Proceedings of 10th international conference of the system dynamics society,

Utrecht, The Netherlands, 14–17 Jul 1992

20. Chu CH (1998) Topics in operations management quality and process reengineering,

Pennsylvania state university course. http://net1.ist.psu.edu/chu/course/m428.htm#tqm1.

Accessed 12 May 2011

References 175

http://www.standishgroup.com/
http://www.standishgroup.com/
http://www.sei.cmu.edu/cmmi/
http://www.iso.org/iso/iso_technical_committee.html?commid=45086
http://www.iso.org/iso/iso_technical_committee.html?commid=45086
http://www.iso.org/iso/iso_technical_committee.html?commid=45086
http://www.sei.cmu.edu/cmmi/
http://net1.ist.psu.edu/chu/course/m428.htm#tqm1

21. Brunet AP, New S (2003) Kaizen in Japan: an empirical study. International Journal of

Operations & Production Management 23(12):1426–1446

22. Brunet P (2000) Kaizen: from understanding to action. In: Seminar, Institution of Electrical

Engineers (IEE), March 2000, pp 1/1–1/10

23. Crosby P (1979) Quality is free. McGraw-Hill, New York

24. Bellows WJ (2004) Conformance to specifications, zero defects, and six sigma quality—a

closer look. International Journal of Internet and Enterprise Management 2(1)

25. Pan Z, Park H, Baik J, Choi H (2007) A Six Sigma framework for software process

improvements and its implementation. In: Proceedings of the 14th Asia-Pacific software

engineering conference, Nagoya, Japan, 5–7 Dec 2007

26. Tayntor CG (2003) Six Sigma software development. Auerbach Publications, Boca Raton, FL

27. Basili VR, Caldiera G, Rombach HD (1994) The experience factory. Wiley, New York

28. Althoff KD, Bomarius F, Tautz C (1998) Using case-based reasoning technology to build

learning software organizations, IESE-Report No. 037.98/E, Fraunhofer IESE, Kaiserslautern,

Germany

29. Bomarius F, Feldmann RL (2006) Get your experience factory ready for the next decade: ten

years after ‘How to build and run one’, IESE-Report No. 075.06/E. Fraunhofer Institute for

Experimental Software Engineering IESE, Kaiserslautern, Germany

30. Basili VR, Weiss DM (1984) A methodology for collecting valid software engineering data.

IEEE Transactions on Software Engineering 10(6):728–738

31. Kaplan RS, Norton DP (1992) The balanced scorecard—measures that drive performance.

Harvard Business Review (February) 1992:71–79

32. Basili V, Heidrich J, Lindvall M, M€unch J, Regardie M, Rombach HD, Seaman C, Trendowicz

A (2007) Bridging the gap between business strategy and software development. In:

Proceedings of the international conference on information systems (ICIS), Montréal, Canada,

9–12 Dec 2007

33. Kaplan RS, Norton DP (1996) The balanced scorecard: translating strategy into action.

Harvard Business School Press, Boston, MA

34. Basili V, Heidrich J, Lindvall M, M€unch J, Regardie M, Rombach HD, Seaman C, Trendowicz

A (2007) GQM+Strategies®: a comprehensive methodology for aligning business strategies

with software measurement. In: Proceedings of the DASMA-Software-Metrik-Kongresses

(MetriKon 2007), Kaiserslautern, Germany, 15–16 Nov 2007

35. Basili V, Heidrich J, Lindvall M, M€unch J, Regardie M, Rombach HD, Seaman C, Trendowicz

A (2009) Determining the impact of business strategies using principles from goal-oriented

measurement. In: Proceedings of the 9th Internationale Tagung Wirtschaftsinformatik,

Vienna, Austria, 25–27 Feb 2009

176 5 Process Improvement

Chapter 6

Empirical Studies

This chapter introduces the role of empirical studies for software process engineer-

ing as an aid in determining the effects of a process model in a concrete environ-

ment. Such effects can be, for instance, the reliability of a developed code module,

the defect detection rate of an inspection process, or the effort distribution of a

lifecycle process model. Software processes are, to a large extent, human-based

and consequently nondeterministic. In addition, they are heavily context dependent,

i.e., their effects vary with the development environment. Therefore, empirical

studies of different types are needed to understand and determine the effects of

processes and to analyze risks when changing processes or introducing new ones.

This chapter introduces controlled experiments as a means to evaluate process

effects in a tightly controlled environment, case studies as a means to evaluate

such effects in a typical environment, and surveys as a means to explore such

effects on a large scale, with very little control over the context. Finally, experiment

sequences as a means to learn from a number of (related or unrelated) empirical

studies are described. Figure 6.1 displays the chapter structure.

6.1 Objectives of This Chapter

After reading this chapter, you should be able to:

– Distinguish and explain different experiment types

– Know when to select which type

– Know the benefits of conducting empirical studies

Controlled
Experiments

Case Studies Surveys
Experiment
Sequences

Fig. 6.1 Chapter structure

J. M€unch et al., Software Process Definition and Management,
The Fraunhofer Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-24291-5_6, # Springer-Verlag Berlin Heidelberg 2012

177

6.2 Experiments

Due to the ever-increasing demands on software (better, faster, cheaper), software

development has changed a lot during the past 50 years. On the one hand, small

programs written by single persons have evolved into gigantic “code monsters”

developed and maintained by hundreds or thousands of people. In addition, soft-

ware fulfills more functions every day, particularly critical ones, thus increasing

complexity even more. On the other hand, business and technological environments

change so fast that innovative software needs to be developed in a rapid and flexible

way at acceptable quality levels. To cope with this, new techniques, methods, and

tools are being developed constantly. New programming paradigms and languages

are being introduced to improve the quality of software development and the

resulting products.

There is, however, no silver bullet for software development. Each tool or

programming paradigm has its own benefits and disadvantages. The hugely popular

object-oriented programming, for example, makes construction of large systems

possible in the first place and improves product quality in most cases. Nevertheless,

engine control software is still being developed mostly in a functional manner,

because using object-oriented technology would make the system more complex

and slower.

This example makes it clear that there must be some kind of evaluation for new

processes. No engineer would build a bridge with new and untested material. The

same applies to software engineers: Using a new process without testing it properly

may result in a disaster, namely low product quality and time/cost overruns.

One of the key elements of software process engineering is the proposal of new

or the modification of existing process models, e.g., for reducing costs or improving

product quality. For example, implementing a new inspection technique will most

probably influence the time needed for defect detection and possibly correction, as

well as the costs for these activities. To reflect this in an appropriate model, three

possible ways to arrive at a new model can be distinguished. Either an existing

model can be adapted, or a new model is introduced based on theoretical

considerations, or a new model may be derived from observation. There are also

combinations of two or all three ways.

When a new process model is introduced, adequate measures must be

formulated so that the behavior of the model (compared to reality) can be evaluated.

Often, this would be efficiency (e.g., the number of defects found per hour) and

effectiveness (e.g., the total number of defects found). When evaluating a process

model for the first time, this can be done through experiments.

Experiments are called “real” (as opposed to “virtual”) if they feature real people

spending real time on solving (possibly constructed) problems in a real-world

environment. This costs time and money, because the people taking part in the

experiment cannot do their normal work. This illustrates one characteristic feature of

software (process) engineering: human involvement. Unlike other sciences such as

chemistry or physics, software (process) engineering experiments heavily involve

178 6 Empirical Studies

humans, and are in turn heavily influenced by human behavior. The psychological

aspect is similarly important in software (process) engineering as in typical social

sciences like anthropology, political science, psychology, and sociology.

The purpose of an experiment is usually to prove a hypothesis. A hypothesis is a

supposed connection between a number of (controlled) input variables and a certain

result. The experiment should either prove the correctness of the hypothesis or show

that it is wrong. A null hypothesis symbolizes the opposite state to that suggested

in a hypothesis, postulated in the hope of rejecting it and therefore proving the

hypothesis. For example, if the hypothesis states “Reading technique A is more

efficient than reading technique B,” then the null hypothesis would be “Reading

technique B is more efficient or equal to reading technique A.”

An experimental treatment defines all kinds of measures a team is exposed to in

an experiment in order to make statements after the treatment about a hypothesis

defined prior to the treatment. One commonly used classification distinguishes the

number of experimental treatments and teams. Table 6.1 gives an overview of the

possible combinations [1].

A 1:1 situation does not provide reliable information for comparisons. The

results may completely depend on the team members who were assigned to the

experiment (experimental subjects), or on the task the team was supposed to deal

with (experimental object). There is no way to know how much each of the two

extremes influenced the result.

For example, if a team performs very badly in a defect detection experiment, this

may be because team competence in this specific area is low, or because the reading

technique used was not appropriate, or a combination of both. Without further

information, there is no way to tell. 1:1 settings may be used as a proof of concept,

though, or to check in which areas current processes may be improved. Case studies

usually are conducted as a 1:1 experiment type.

A 1:m situation already enables the experimenter to have one team solve several

problems. This enables him/her to evaluate whether team performance is caused by

a certain method (the team performs poorly using one method, but well using

another) or by the team itself (the team performs poorly using any method).

Still, the methods may all be bad, thus making the team perform badly although

it is not a bad team per se. Additionally, it is difficult to exclude learning effects

throughout the treatments.

Using more than one team makes experiments more expensive. Having n teams

replicate a single experiment (n:1 setting) enables the experimenter to assess team

performance as well as an average for the method examined in the treatment. Still,

Table 6.1 Classification by number of treatments and teams

Number of teams per treatment Number of treatments

1 m

1 1:1 (case study) 1:m

n n:1 (replicated experiment) n:m (controlled experiment)

6.2 Experiments 179

this does not allow for comparing different approaches. This approach is often

chosen to prove the validity of findings or to examine the benefits of a new method

or technique in greater detail. The experiment is set up and conducted by one team

and is replicated by other teams to validate the results.

The only approach for comparing different solutions for a problem in one

experiment is the laboratory experiment, also referred to as controlled or formal

experiment. Using an n:m setting, several teams perform several tasks. This

provides information about how the methods compare (relatively) and how the

respective team influenced the results. Unfortunately, this type of experiment is the

most expensive one.

An n:m setting requires an amount of control that can typically only be achieved

in laboratory environments. Conducting an n:m experiment in an industrial setting

would increase project costs extremely, so most controlled experiments can be

found in facilities such as universities or research institutes. Because of the high

costs and the number of variables monitored, controlled experiments mostly have a

very narrow focus. Table 6.2 gives an overview of the experiments described in this

chapter and some of their characteristic factors.

Three of the most commonly used experiment types will be introduced briefly:

controlled experiments, case studies, and surveys. Controlled experiments and case

studies may be used to verify a newly introduced model very well, whereas surveys

usually help in determining the current state of the practice and major causes of

undesired effects.

The three experiment types differ in the types of variables that are considered.

An overview is given in Fig. 6.2. Dependent variables are influenced by indepen-

dent variables and therefore not considered separately. There are two types of

independent variables: controlled ones and not controlled ones. Typically, the

experimenter aims at lowering the number of controlled variables to save effort,

and to choose the “right” ones for the respective context. The uncontrolled variables

are to be kept as constant as possible, and also as representative for the respective

context as possible. This prevents uneven influence on the experiment and describes

the context well.

6.2.1 Controlled Experiments: Research in the Small

A controlled experiment aims at completely controlling the experimental environ-

ment. In the field of software engineering, this includes the number and expertise of

Table 6.2 Characteristic factors of real experiments

Factor Survey Case study Controlled experiment

Execution control None Low High

Investigation cost Low Medium High

Ease of replication High High High

180 6 Empirical Studies

the test persons, the tasks they are given, but also variables like the time of the day

at which the experiment takes place, or the room temperature. Because of this high

level of control, controlled experiments are also called laboratory experiments.

The tasks examined in the experiment vary from real problems taken from earlier

software projects to completely imagined situations.

If a new defect detection method were being checked for efficiency, for example,

it would be a good idea to use real documents from an older project. By doing so,

two benefits can be achieved: First, an average real-world problem is present. This

ensures that the results are not only some academic insights, but do help with

everyday work. Second, comparing the new method against the currently used one

is easy. The number and severity of errors remaining in the documents after defect

detection with the new method may be weighed against the time consumed, and so

the method may be compared against the “traditional” one. Of course, this only

works if the test persons do not know the test data; in other words, if they were not

part of the project, because in this case, they might not really detect the defects, but

rather remember them.

If test subject knowledge or project confidentiality prevents the usage of real

data as experimental material, then artificial data must be used. This could be

specially created documents or a complete training system, which is developed

and maintained exclusively for experimentation purposes. Still, help with a problem

that really exists is the purpose of the experiment, so there should at least be some

relationship to actual development in order to ensure that the results are not purely

academic.

Made-up problems may also be used for comparing several new methods. Here,

the problem may be specially tailored to the methods, focusing on areas with

special interest. In our example, if project experience has shown a great density

of interface problems, documents with a complex interface structure could be

artificially created to test the new methods very intensively in this area. Creating

a new scenario that has never happened before, but might happen someday and

possibly have very severe consequences, could be a third area where this kind of

experiment could be used.

Variables

IndependentDependent

Not
controlled

Controlled

Fig. 6.2 Variable types in experiments

6.2 Experiments 181

Conducting a controlled experiment, however, requires significant amounts of

both time and money. In most cases, an n:m setting as described above is used. Due

to this costly approach and the amount and complexity of the data acquired, only

small portions of the software development process are analyzed in this way.

Examples might include testing of different reading techniques in a defect detection

process or different programming languages for solving specific problems.

6.2.2 Case Studies: Research in the Typical

A case study does not try to control all variables, but still aims at identifying the

significant ones before the project starts. Once this is done, their status is recorded

and monitored throughout the study in order to identify their influence on the

results. This makes case studies suitable for industrial use because projects are

only influenced on a minor scale: The number of values measured as well as project

documentation (other than product documentation) may increase slightly, but this

is only a minor “add-on” and does not require enormous amounts of extra time

and money.

The most commonly recorded variables are inputs, constraints, and resources

(technical and human). Most of the time, a single current software project is

examined. Usually, only one team per task is scheduled, so the 1:1 setting is typical

for a case study.

The case study approach can be found far more often in industry than the

controlled experiment. This is because case studies can be conducted concurrent

to the real project without enormous extra expenses. A sensible approach for

process changes would be to alter a small part of the development process, small

enough to prevent great problems for the overall process, but large enough to notice

possible time and money savings, and then conduct a case study for a project

with the new process. There is still a risk of confusing team influence and

process influence, but in a software organization, it is possible to estimate team

performance from other projects, thus making the extraction of process influence

fairly accurate.

Because case studies only pay special attention to factors that are typical for the

current situation, instead of controlling the complete environment, they are quite

popular. Plenty of knowledge about project progression may be achieved at

relatively low costs in a realistic setting.

6.2.3 Surveys: Research in the Large

In contrast to case studies where monitored variables are defined before the project

starts, surveys are retrospective studies: The occurrence that is to be examined has

already taken place. This means that typically, the survey is planned and conducted

182 6 Empirical Studies

after the project is finished [2]. The focus of surveys is on larger-scale relationships

and not so much on details. The experimenter tries to collect as much data as can be

found, evaluate it, and determine connections between the discovered factors and

the results. An analogy would be an assessment in a company: There is no influence

of the survey on the project and the data available. The experimenter can only use

whatever data were recorded throughout the project. Examples of surveys can be

found in [3] and [4].

This shows one great risk of surveys: If, from comparison to past projects,

a survey states that a certain factor combination has a significant effect on the

project outcome, this may be an incorrect assumption. The observed effect might

not have been caused by the formulated factor combination, but by another reason

that was not discovered because it was not recorded during the project.

Of course, this risk does not only exist in surveys, but also in laboratory

experiments and case studies, where the researcher has the possibility to set the

monitored variables. The difference is that in laboratory experiments and case

studies, the experimenter can use his/her experience to minimize the risks of

mistakes such as not measuring important variables. A normal project usually is

not explicitly set up to later support a survey, but rather to achieve the desired goals

at minimum costs. Hence, the risk that important variable data is missing is greater

in surveys than in laboratory experiments and case studies.

The results of a survey are usually not as detailed and “hard” as results from a

case study or a controlled experiment. If a significant cause for a certain undesired

effect was (supposedly) detected, a more thorough investigation may need to be

undertaken to refine the findings. This may be done in the form of a case study or a

formal experiment, depending on the situation. A case study may be conducted if a

strong indication exists that a certain factor influences the result significantly, and

there is a proposal to improve that factor with only a limited risk of failure. If there

are several improvement proposals, or if it is not even sure which factor(s) are to be

altered, a formal experiment may help to reduce the risk for everyday business,

at higher experimentation costs.

6.2.4 Experiment Sequences

One of the biggest problems with experiments is comparing and evaluating the

results. This is easy to understand when we look at surveys or case studies, because

here, the context can only be described, and typically not changed. Nevertheless,

why is this also difficult with controlled experiments? Was not one of their

advantages the complete control of all variables, including the context?

Controlling all variables makes the results very valid—in the respective context.

For example, Fagan argues that most defects would be detected during team

meetings [5], whereas McCarthy et al. [6] and Votta [7] come to the opposite

6.2 Experiments 183

conclusion. The context is very different in all three cases. So which study is

“correct” and which one is not? This question cannot be answered, because in

their respective contexts, all three are correct.

Recording the context with every study is very important to evaluate the

outcome. However, to arrive at a more comprehensive view of the software

development process, all the different studies must be combined somehow. Their

“essence” must be extracted and combined. This can be done by looking at all

experiments in one process area (e.g., requirements specification, defect detection)

as a sequence of experiments. Common variables and phenomena may then be

detected and included in the global model.

Experiment sequences may be planned or unplanned. A planned experiment

sequence usually consists of a number of teams conducting a number of experiments.

An unplanned sequence collects experimental data from many experiments and

extracts commonalities and differences. In most cases, the majority of the teams

will take part only in one experiment, and the experiments usually examine similar

phenomena.

An example of an unplanned experiment sequence can be found in [8]. Here, the

author examined a large number of experiments (surveys, case studies, and labora-

tory experiments) and extracted factors that influence the progression and results of

software inspections. The factors form a complex network of interrelations. Only

very few common factors were found in every experiment that was reviewed.

The combination of the experiments showed new correlations that would not

have been obvious when regarding every experiment individually.

The question of context, however, still has not been answered satisfactorily.

How can factors be included that significantly influence the process only some-

times? Here, for example, a model of the software development process would need

to be tailored to the specific situation. Context information is mandatory and must

be individually determined for each situation. Depending on the context, some

factors may be left out at some point, while others are added. More research is

needed here to determine when to include what.

A planned experiment sequence, on the other hand, might consist of several

teams carrying out several tasks. For the purpose of evaluating a word processor,

these tasks might be writing a 50-page thesis with few figures, writing a five-page

report with lots of formulae, and writing a one-page application for a scholarship.

One possible experimental setup is depicted in Table 6.3. By shuffling teams and

tasks, both team performance and tool capability can be evaluated.

Unplanned experiment sequences may be used when findings from isolated

experiments are to be generalized and supported by a broader foundation.

Table 6.3 Exemplary setup for a planned experiment sequence

Team Thesis Task report Application

1 X X

2 X X

3 X X

184 6 Empirical Studies

Analyzing many experiments concerning similar phenomena can lead to new

conclusions and explanations, better than a single experiment would. In addition,

case studies and surveys are often too hard to coordinate with each other to form a

planned experiment sequence.

Planned experiment sequences may be used to break up tasks too complex to be

investigated in a single n:m laboratory approach. By conducting an experiment

sequence, the researcher may examine a complex phenomenon over several years

without losing his/her focus.

6.3 Benefits

Following Basili et al. [9], benefits in the following areas can be expected from

experiments in software engineering:

– Basis. Experiments provide a basis for the needed advancement in knowledge

and understanding. Through experiments, the nature of the software develop-

ment process can be assessed and evaluated.

– Process and product effects. Experiments help to evaluate, predict, understand,

control, and improve both the software development process and the product.

– Model and hypothesis development and refinement. In iterations, models are

built and hypotheses about the models are postulated. These hypotheses can be

tested by experiments and then be refined, or new models can be constructed.

– Systematic learning. In a rather young profession such as software engineering,

where there is still very much to learn, it is important to follow a systematic

approach rather than intuition.

References

1. Rombach HD, Basili VR, Selby RW (1993) Experimental software engineering issues: a critical

assessment and future directions. Proceedings of the International Workshop, Dagstuhl Castle,

Germany. Lecture Notes in Computer Science 706, Springer, Heidelberg, 14–18 Sept 1992

2. Wohlin C, Suneson P, H€ost M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in

software engineering: an introduction. Kluwer Academic, Boston, MA

3. Meyer A (2002) Wer verdient wie viel? http://www.heise.de/artikel-archiv/ct/2002/06/110.

Accessed 27 June 2011

4. Lurie M (2002) Winning database configurations: an IBM Informix Database survey. http://

www7b.software.ibm.com/dmdd/zones/informix/library/techarticle/lurie/0201lurie.html.

Accessed 27 June 2011

5. Fagan ME (1976) Design and code inspections to reduce errors in program development.

IBM Syst J 15(3):182–211

6. McCarthy P, Porter AA, Siy HP, Votta LG (1996) An experiment to assess cost-benefits of

inspection meetings and their alternatives: a pilot study. In: Proceedings of the 3rd international

software metrics symposium (METRICS), Berlin, Germany, pp 100–111

References 185

http://www.heise.de/artikel-archiv/ct/2002/06/110
http://www7b.software.ibm.com/dmdd/zones/informix/library/techarticle/lurie/0201lurie.html
http://www7b.software.ibm.com/dmdd/zones/informix/library/techarticle/lurie/0201lurie.html

7. Votta LG (1998) Does every inspection really need a meeting? Empirical Software Eng

3(1):9–35

8. Armbrust O (2002) Developing a characterization scheme for inspection experiments

9. Basili VR, Selby RW, Hutchens DH (1986) Experimentation in software engineering.

IEEE T Software Eng 12(7):733–743

186 6 Empirical Studies

Chapter 7

Software Process Simulation

This chapter introduces software process simulation as a means to amend and

complement empirical studies, for example, to evaluate changing contexts and to

analyze process dynamics. It introduces two types of simulation models, namely

continuous and discrete-event models, as well as their combination in hybrid

models. In addition, this chapter describes a systematic method for the creation of

simulation models and introduces an existing library of simulation model

components that can be easily reused. Finally, it explains how process simulation

can be combined with empirical studies to accelerate process understanding and

improvement. Figure 7.1 displays the chapter structure.

7.1 Objectives of This Chapter

After reading this chapter, you should be able to:

– Explain the role of simulation in software process engineering

– Name and explain the two major types of software process simulation

– Explain their combination into hybrid simulation

– Understand the development of a simulation model

Simulation
Model Types

Developing
Simulation

Models

Process Model
Library

Simulation
Models and

Empirical Studies

Fig. 7.1 Chapter structure

J. M€unch et al., Software Process Definition and Management,
The Fraunhofer Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-24291-5_7, # Springer-Verlag Berlin Heidelberg 2012

187

7.2 Software Process Simulation

While experiments are a valuable tool for evaluating the effects of a specific process

(change), it may not always be possible to perform such experiments. In this case,

simulations may help.

Software process engineering has only recently started to discover the

possibilities of simulation. In this section, the benefits of process simulations will

be discussed, as well as the question of what to simulate. Two different simulation

approaches will be introduced later in this chapter, as will their combination.

Three main improvement classes benefitting from software development process

simulation can be identified: cost, time, and knowledge improvements. Cost

improvements originate from the fact that conventional experiments are very

costly. The people needed as experimental subjects are usually employees. This

makes every experimentation hour expensive, since the subjects get paid while not

immediately contributing to the company’s earnings. Conducting a simulation

instead of a real experiment saves the expenses for experimental subjects.

Time benefits can be expected from the fact that simulations can be run at

(almost) any desired speed. While an experiment with a new project management

technique may take months, the simulation may be sped up almost arbitrarily by

simply having simulation time pass faster than real time. On the other hand,

simulation time may be slowed down arbitrarily. This is done when simulating

biological processes, for example. It might be useful in a software engineering

context when too much data is accumulated within too little time and therefore

cannot be analyzed properly. While in the real world, decisions would have to be

based on partial information, the simulation can be stopped and the data analyzed.

When the analysis is complete, the simulation can be continued with a decision

based on the completely analyzed data.

Knowledge improvements stem mainly from two areas: Simulation can be used

for training purposes and experiments can be replicated in different contexts.

Training software engineers in project management, for example, requires a lot of

time. The trainee needs to make mistakes to learn from, which in turn cost time and

money in the project, and has to be instructed to prevent him from making really

bad mistakes that would cost even more time and money. Training people in a

laboratory setting might be even worse. Using a simulation environment such as the

one introduced in [1] enables the trainee to experience immediate feedback to his

decisions. The consequences of choosing a certain reading technique, for example,

do not occur months after the decision, but minutes. In this way, the complex

feedback loops can be better understood and mistakes can be made without

endangering everyday business.

Simulations can also be used to replicate an experiment in a different context, for

example with less experienced subjects. If the properties of the experimental

objects are sufficiently explored, the consequences of such changes can be exam-

ined in simulations instead of costly experiment replications. Learning from

simulations can save both time and money compared to real experiments.

188 7 Software Process Simulation

Another useful application of simulation is high-risk process modifications.

These may be (yet) uncommon processes or catastrophe simulations. An example

of the former is Extreme Programming, which seemed to contradict many software

engineering principles of documentation and planning at first, but has proved to be

beneficial in certain situations after all. When high-risk process changes are to be

examined, simulations can provide a sandbox in which the changes can be tried out

without any consequences. If the results show the proposed changes to be a

complete letdown, at least no money was spent on expensive experiments.

A catastrophe simulation can investigate extreme process changes, for example,

the loss of key personnel in a project. While it is clear that this will influence the

process and its outcome noticeably, determining quantitative effects can only be

done in an experiment. Will a project be delayed by 20% or by 200%? What about

product quality? Since this situation rarely occurs, this kind of real experiment is

not conducted because of the high costs associated with it. A simulation does not

have such high costs. It probably also does not forecast the exact numbers, but

nevertheless, it shows their magnitude and, as its main benefit, helps to better

understand the situation and problem/challenge at hand. It may also show key

problem areas, which may then be addressed in real life in order to absorb the

worst consequences of the hypothetical catastrophe.

The following classification of simulations follows Kellner et al. [2]. Kellner

et al. have determined relationships between a model’s purpose and what has to be

modeled, and have classified approaches on how to simulate.

When a simulation is to be set up, the first question to be answered is about the

purpose. What is the simulation to be used for? Is it for strategic planning, or for

training, or for operational process improvement? After having answered this

question, it is possible to determine what to include in the simulation and what to
leave out. To structure this decision, the model scope, result variables, process
abstraction, and input parameters can be distinguished.

The model scope must be adapted to the model purpose. Let us say a software

company wants to test a new reading technique for defect detection. Clearly, the

inspection process must be modeled, but changes to the reading technique will most

likely have other effects later in the development process. The defect density might

be higher, therefore lowering product quality and increasing rework time. This must

be considered in the model because, otherwise, the impact of the process change

will not be reflected correctly in the model.

According to Kellner et al. [2], the model scope usually ranges from a part of the

lifecycle of a single product to long-term organizational considerations. They

introduced two subcategories: time span and organizational breadth. Time span is

proposed to be divided into three subcategories: less than 12 months, 12–24 months,

and more than 24 months.Organizational breadth considers the number of product/

project teams: less than one, exactly one, or multiple teams involved.

The result variables are mandatory for answering the questions posed when

determining the model purpose. Variables can be thought of as information sources

in an abstract sense here; however, most models include variables such as costs,

effort, time consumption, staffing needs, or throughputs. The choice of variables

7.2 Software Process Simulation 189

once again depends on the purpose of the model. If the purpose is to predict overall

end-of-project effort, different variables must be measured than the ones needed for

predictions at the end of every major development step.

Questions like these also influence the level of abstraction at which the model is

settled. If effort at every major development step is to be determined, the model

probably needs finer granularity than if only overall end-of-project effort is the

focus. In any case, it is important to identify key activities and objects (documents)

as well as their relationships and feedback loops. In addition, other resources such

as staff and hardware must be considered. Depending on the level of abstraction,

this list will get more or less detailed.

Finally, input parameters must be determined. They depend largely on the

desired output variables and the process abstraction. In general, many parameters

are needed for software process simulation; the model by Abdel-Hamid and

Madnick [3] requires several hundreds. Kellner et al. [2] provide some examples:

effort for design and code rework, defect detection efficiency, personnel

capabilities, etc. Figure 7.2 illustrates the relationships among the aspects described

above according to [2].

After determining the purpose of the model and what to include, the choice of a
simulation technique is next. The continuous and the discrete simulation

approaches will be introduced in Sects. 7.2.1 and 7.2.2, as will their combination

(Sect. 7.2.3). In addition to that, there are several state- and rule-based approaches

as well as queuing models [4].

Simulation techniques may be distinguished into visual and textual models.Most

models support some kind of visual modeling today in order to facilitate

Model Purpose
Key questions to address

Model Scope
Organizational breadth,

time span

Input Parameters
Data and information
needed to compute

result variables

Result Variables
Metrics/model outputs
designed to address

key questions

Process Abstraction
Level of process
detail captured

Fig. 7.2 Relationships among model aspects

190 7 Software Process Simulation

development of the models. Some modeling tools support a semiautomatic valida-

tion functionality, e.g., Fraunhofer IESE’s Spearmint [5]. Appropriate possibilities

for specifying interrelationships among entities of the model enable accurate

modeling of the real world. Continuous output of result variables as opposed to

only presenting the results allows monitoring the simulation run and providing

early intervention. Interactive simulations allow for altering input variables

during execution.

Simulations can be entirely deterministic, entirely stochastic, or a mix of both.

Entirely deterministic models use input parameters as single values without varia-

tion. The simulation needs to be run only once to determine its results. A stochastic

simulation assumes random numbers out of a given probability distribution as input

parameters. This recognizes the inherent uncertainty in software development,

especially when evaluating human performance. Consequentially, several runs are

needed to achieve a stable result. Batch runs of simulations with changed input

parameters simplify this approach significantly.

A sensitivity analysis explores the effects of input variable variations on the

result variables. This has two advantages: First, the researcher knows how much

variation in the results has to be expected due to variations in input parameters, and

second, he/she can identify the parameters with the biggest influence on the result.

These should be handled and examined with special care.

Finally, to obtain valid results from the simulation, calibrating the simulation

model against the real world is necessary. This should be done by integrating

actually measured data into the model and comparing the results of simulations

of real processes with the respective real-world values. Accurate measuring of input

parameters and result variables is mandatory here. In many cases, however, no

suitable real-world data is available. In this case, Kellner et al. [2] suggest trying to

construct the data needed from available data (e.g., constructing cost data from

effort data) or retrieving it from original documents, rather than final reports,

or obtaining estimates from the staff or from published values.

7.2.1 Continuous Simulation

In 1972, the Club of Rome started an initiative to study the future of human

activities on our planet. The initiative focused on five physical and easily measur-

able quantities: population, food production, industrial capital, production, and

nonrenewable natural resources [6]. A research group at the Massachusetts Institute

of Technology (MIT) developed a societal model of the world. This was the first

continuous simulation model: the World Model [7].

Today, most continuous models are based on differential equations and/or

iterations, which use several input variables for calculation and in turn supply output

variables. Themodel itself consists of nodes connected through variables. The nodes

may be instantaneous or noninstantaneous functions. Instantaneous functions

7.2 Software Process Simulation 191

present their output at the same time the input is available. Noninstantaneous

functions, also called memory functions, take some time for their output to change.

This approach of a network of functions allows simulating real processes

continuously. An analogy would be the construction of mathematical functions

(add, subtract, multiply, integrate) with analog components like resistors, spools,

or condensers. Even complex functions containing partial differential equations that

would be difficult or impossible to solve analytically or numerically may be

modeled using the three basic components mentioned above. Before computers

became as powerful as they are today, the analog approach was the only way to

solve this kind of equations within a reasonable amount of time. Due to the

continuous nature of the “solver,” the result could be measured instantly.

Of course, simulating this continuous system on a computer is not possible due

to the digital technology used. To cope with this, the state of the system is computed

at very short intervals, thereby forming a sufficiently correct illusion of continuity.

This iterative recalculating makes continuous models simulated on digital systems

grow complex very fast.

In software engineering contexts, continuous simulation is used primarily for

large-scale views of processes, like the management of a complete development

project or strategic company management. Dynamic modeling enables us to model

feedback loops, which are very numerous and complex in software projects. The-

well-known System Dynamics framework for continuous simulation models is

described in great detail in [8].

7.2.2 Discrete-Event Simulation

The discrete approach shows parallels to clocked operations like those used by car

manufacturers in production. The basic assumption is that the modeled system

changes its state only at discrete moments of time, as opposed to the continuous

model. So, every discrete state of the model is characterized by a vector containing

all variables, and each step corresponds to a change in the vector.

Example. Let us consider a production line at a car manufacturer. Simplified,

there are parts going in on one side and cars coming out on the other side.

The production itself is clocked: Each work unit has to be completed within a

certain amount of time. When that time is over, the car-to-be is moved to the next

position, where another work unit is applied. (In reality, the work objects move

constantly at a very low speed. This is done for commodity reasons and to realize

minimal time buffer. Logically, it is a clocked sequence.) This way, the car moves

through the complete factory in discrete steps.

Simulating this behavior is easy with the discrete approach. Each time a move is

completed, a snapshot is taken of all production units. In this snapshot, the state of

all work units and products (cars) is recorded. At the next snapshot, all cars have

moved to the next position. The real time that passes between two snapshots or

simulation steps can be arbitrary. Usually the next snapshot of all variables is

192 7 Software Process Simulation

calculated and then the simulation assigns the respective values. Since the time

needed in the factory to complete a production step is known, the model appropri-

ately describes reality.

A finer time grid is certainly possible: Instead of viewing every clock step as one

simulation step, arrival at and departure from a work position can be used, thereby

capturing work and transport time independently.

The discrete approach is used in software engineering as well. One important

area is experimental software engineering, e.g., regarding inspection processes.

Here, a discrete simulation can be used to describe the process flow. Possible

simulation steps might be the start and completion of activities and lags, together

with special events like (late) design changes. This enables discrete models to

represent queues.

7.2.3 Hybrid Simulation

Continuous simulation models describe the interaction between project factors

well, but suffer from a lack of detail when it comes to representing discrete system

steps. Discrete simulation models perform well in the case of discrete system steps,

but make it difficult to describe feedback loops in the system.

To overcome the disadvantages of the two approaches, a hybrid approach as

described by Martin and Raffo [9] can be used. In a software development project,

information about available and used manpower is very important. While a contin-

uous model can show how manpower usage levels vary over time, a discrete model

can point out bottlenecks, such as inspections. Because of insufficient manpower,

documents are not inspected near-time, so consumers of those documents have to

wait idly, which wastes manpower.

In a purely discrete approach, the number of inspection steps might be decreased

to speed up the inspection process. While possibly eliminating the bottleneck, this

might introduce more defects. The discrete model would not notice this until late in

the project because continually changing numbers are not supported. The hybrid

approach, however, would instantly notice the increase, and—depending on how

the model is used for steering the project—more time would be allocated for

rework, possibly to the extent that the savings in inspection are overcompensated.

Thus, the hybrid approach helps in simulating the consequences of decisions more

accurately than each of the two single approaches does individually.

7.2.4 Benefits

Following Kellner et al. [2], benefits in the following areas can be expected from

simulation in software engineering:

7.2 Software Process Simulation 193

– Strategic management issues. These may be questions such as whether to

distribute work or concentrate it in one spot, or whether development should

be done in-house or be outsourced, or whether to follow a product-line approach

or not.

– Planning. Planning includes forecasting schedule, costs, product quality, and

staffing needs, as well as considering resource constraints and risk analysis.

– Control and operational management. Operational management comprises

project tracking, an overview of key project parameters such as project status

and resource consumption, comparison of actual to planned values, as well as

operational decisions such as whether to commence the next major phase (e.g.,

coding, integration testing).

– Process improvement and technology adoption. This includes evaluating and

prioritizing suggested improvements before they are implemented as well as

expost comparisons of process changes against simulations of the unchanged

process with actually observed data.

– Understanding. Simulation models can help process members to better under-

stand process flow and the complex feedback loops usually found in software

development processes. Also, properties pervading many processes can be

identified.

– Training and learning. Similar to pilots training in flight simulators, trainees can

learn project management with the help of simulations. The consequences of

mistakes can be explored in a safe environment and experience can be collected

that is equivalent to years of real-world experience.

7.3 A Method for Developing Simulation Models

This section summarizes a method for systematically developing discrete-event

software process simulation models, which was previously published in [10].

However, even though used for developing a discrete-event model, it can also be

used to develop continuous simulation models. The method considers the develop-

ment of a new simulation model without reusing or incorporating existing

components. If reuse is considered (by either incorporating existing components

or developing for reuse), the method has to be changed to address possible reuse of

simulation model elements.

The lifecycle of a simulation model for long-term use is similar to that of

software and consists of three main phases: development, deployment, and opera-
tion, including maintenance and evolution. The activities within these phases can

have different temporal orders and dependencies; therefore, the resulting lifecycle

can take on different forms, such as waterfall, iterative, or even agile.

The activities throughout the lifecycle can be divided into two categories:

engineering and management activities.

194 7 Software Process Simulation

The engineering activities for model development are (Fig. 7.3):

– Requirements identification and specification for the model to be built

– Analysis and specification of the modeled process

– Design of the model

– Implementation of the model

– Verification and validation throughout development

The management activities are (Fig. 7.4):

– Model development planning and tracking

– Measurement of the model and of the model development process

– Risk management (this refers to identifying and tracking risk factors and

mitigating their effects. Some of the risk factors are: changes in customer

requirements, changes in the description of the modeled process, and nonavail-

ability of data for the quantitative part of the model.)

During the lifecycle of a simulation model, different roles are involved. In the

development phase, mainly the model developer and the customer are involved.

A “pair modeling” approach for creating the first version of the static process model

and influence diagram can be very useful during this phase, because the discussion

about the model and the influences is very inspiring. The following sections

introduce the engineering activities in more detail.

Engineering activities

Requirements identification
and specification

Process analysis
and specification

Model design

Model implementation

Model calibration,
validation, and verification

Fig. 7.3 Simulation model development engineering activities

7.3 A Method for Developing Simulation Models 195

7.3.1 Requirements Identification and Specification

During the requirements activity, the purpose and the usage of the model have to be

defined. According to this, the questions that the model will have to answer are

determined and so is the data that will be needed in order to answer these questions.

The steps of the requirements specification are:

7.3.1.1 Definition of the Goals, Questions, and the Necessary Metrics

A goal-question-metrics-based approach like GQM can be used for defining the

goal and the needed measures [11]. GQM can also be used to define and start an

initial measurement program if needed. Purpose, scope, and level of detail for the

model are described by the goal. The questions that the model should help to

answer are formulated next. Afterward, parameters (metrics) of the model (outputs)

have to be defined that (once their value is known) will answer the questions. Then

those model input parameters have to be defined that are necessary for determining

the output values. The input parameters should not be considered as final after the

requirements phase; during the analysis phase, they will usually change.

7.3.1.2 Definition of Usage Scenarios

Define scenarios (“use cases”) for using the model. For example, for answering the

question: “How does the effectiveness of inspections affect the cost and schedule of

the project?,” a corresponding scenario would be: “All input parameters are kept

constant and the parameter inspection effectiveness is given x different values

between (min, max). The simulator is executed until a certain value for the number

of defects per KLOC is achieved, and the values for cost and duration are examined

for each of the cases.” For traceability purposes, scenarios should be tracked to the

questions they answer (for example, by using a matrix).

Management activities

Model development
planning and tracking

Model and development
process measurement

Risk management

Fig. 7.4 Simulation model development management activities

196 7 Software Process Simulation

7.3.1.3 Development of Test Cases

Test cases can be developed in the requirements phase. They help to verify and

validate the model and the resulting simulation.

7.3.1.4 Validation of Requirements

The customer (i.e., the organization that is going to use the simulation model) has to

be involved in this activity and must agree with the content of the resulting model

specification document. Changes can be made, but they have to be documented.

Throughout this section, we will illustrate the outputs of the activities by using

some excerpts from a discrete-event simulator. This model and simulator support

managerial decision making for planning the system testing phase of software

development. The simulator offers the possibility of executing what-if scenarios
with different values for the parameters that characterize the system testing process

and the specific project. By analyzing the outputs of the simulator, its user can

visualize predictions of the effects of his/her planning decisions.

7.3.1.5 Examples for Step 1 and Step 2

Goal

– Develop a decision support model for the planning of the system testing phase in

the context of organization x such that trade-offs between duration, cost, and

quality (remaining defects) can be analyzed and the most suitable process

planning alternative can be selected.

Questions to be answered

– Q1: When to stop testing in order to achieve a specified quality (number of

defects expected to remain in the delivered software)?

– Q2: If the delivery date is fixed, what will be the quality of the product if

delivered at that time, and what will be the cost of the project?

– Q3: If the cost is fixed, when will the product have to be delivered and what will

be its quality at that point?

– Q4: Should regression testing be performed? To what extent?

Output parameters

– O1: Cost of testing (computed from the effort) [$] for cost or [staff hours] for

effort

– O2: Duration of testing [hours] or [days]

– O3: Quality of delivered software [number of defects per K lines of code]

7.3 A Method for Developing Simulation Models 197

(Some of the) Input parameters

– I1: Number of requirements to be tested

– I2: Indicator of the “size” of each software requirement (in terms of software

modules (components) that implement that requirement and their “complexity/

difficulty” factor)

– I3: For each software module, its “complexity/difficulty” factor

– I4: Number of resources (test beds and people) needed

– I5: Number of resources (test beds and people) available

– I6: Effectiveness of test cases (historic parameter that gives an indication of how

many defects are expected to be discovered by a test case)

Scenarios

– S1: For a chosen value of the desired quality parameter, and for the fixed values

of the other inputs, the simulator is run once until it stops (i.e., the desired quality

is achieved) and the values of the cost and duration outputs are examined.

– S2: The simulator is run for a simulation duration corresponding to the chosen

value of the target duration parameter, and for the fixed values of the other

inputs. The values of the cost and quality outputs are examined.

– S3: For a chosen value of the desired cost parameter, and for the fixed values of

the other inputs, the simulator is run once until it stops (i.e., the cost limit is

reached) and the values of the quality and duration outputs are examined.

– S4: For a chosen value of the desired quality parameter, and for the fixed values

of the other inputs, the simulator is run once until it stops (i.e., the desired quality

is achieved) and the values of the cost and duration outputs are examined

according to the variation in the extent of regression testing.

– S5: The simulator is run for a simulation duration corresponding to the chosen

value of the target duration parameter, and for the fixed values of the other

inputs, and the values of the cost and quality outputs are examined according to

the variation in the extent of regression testing.

– S6: For a chosen value of the desired cost parameter, and for the fixed values of

the other inputs, the simulator is run once until it stops (i.e., the cost limit is

reached) and the values of the quality and duration outputs are examined

according to the variation in the extent of regression testing.

7.3.2 Process Analysis and Specification

The understanding, specification, and analysis of the process that is to be modeled is

one of the most important activities during the development of a simulation model.

Process analysis and specification can be divided into four subactivities, as

shown in Fig. 7.5:

198 7 Software Process Simulation

– Analysis and creation of a static process model (“a,” straight line)

– Creation of the influence diagram for describing the relationships between

parameters of the process (“b,” dashed line)

– Collection and analysis of empirical data for deriving the quantitative

relationships (“c,” dash–dot line)

– Quantification of the relationships (“d,” dash–dot–dot line)

Figure 7.5 sketches the product flow of this activity, i.e., it describes which

artifacts (document symbol) are used or created by each task (arrowed circle

symbol).

(a) Analysis and creation of a static process model. The software process to be

modeled first needs to be understood and documented. This requires that the

representations (abstractions) of the process should be intuitive enough to be

understood by the customer and to constitute a communication vehicle between

modeler and customer. These representations lead to a common definition and

understanding of the object of modeling (i.e., the software process) and to a

refinement of the problem to be modeled (initially formulated during the

requirements specification activity). As input and sources of information for

this activity, process documents are possibly supplemented with interviews

with people involved in the process (or with the process “owner”). The created

process model describes the artifacts used, the processes or activities

performed, and the roles and tools involved. The process model shows which

activities transform which artifacts and how information flows through the

model.

(b) Creation of the influence diagram for describing the relationships between
parameters of the process. For documenting the relationships between process

parameters, influence diagrams can be used. Influence factors are typically

c

a b

d

Fig. 7.5 Process analysis and specification

7.3 A Method for Developing Simulation Models 199

factors that change the result or behavior of other project parameters. The

relationships between influencing and influenced parameters are represented

in an influence diagram by arrows and + or �, depending on whether variation

of the factors occurs in the same way or in opposite ways.

When the influence diagram is created, the inputs and outputs identified in the

requirements phase should be considered. These inputs and, especially, the

outputs have to be captured in the influence diagrams. Figure 7.6 presents a

small excerpt of a static process model, Fig. 7.7 a corresponding influence

diagram.

The influence diagrams that are developed in this step are later refined during

design and especially during implementation, driven by a better understanding

of what is really needed for implementation.

(c) Collection and analysis of empirical data for deriving the quantitative
relationships. For identifying the quantitative relationships between process

parameters, one needs to identify which data/metrics need to be collected and

analyzed. Usually, not all required data is available, and additional metrics from

Fig. 7.6 Static process model

Number of
requirements

Size of
requirements

Test case
development
productivity

People resource

Number of
test cases

Duration for
creating
test cases

Effort for
creating
test cases

+

+

+

+

+

-

-

Fig. 7.7 Influence diagram

200 7 Software Process Simulation

the target organization should be collected. In this case, developing a process

model can help to shape and focus the measurement program of a project.

(d) Quantification of the relationships. This is the task that is probably the

hardest part of the analysis, because it requires quantifying the relations and

distinguishing parameter types. The following parameter types can be distinguished:

– Calibration parameters: These parameters are used to calibrate the model

according to the organization, such as productivity values, learning, skills,

and number of developers.

– Project-specific input: These parameters are used to represent a specific

project, such as number of test cases, modules, and size of tasks.

– Variable parameters: These are the parameters that are changed to analyze

the results of the output variables. In general, these can be the same as the

calibration parameters. The variable parameters during the model’s lifecycle

are determined either by the scenario from the requirements or by new

requirements.

The distinction between these parameters is often not easy and shifts, especially

for calibration and variable parameters, depending on the scenarios that are

addressed by the model.

The mathematical quantification is done in this step. Depending on the avail-

ability of historical metric data, sophisticated data mining methods might be used to

determine these relationships. Otherwise, interviews with customers or experts, or

literature sources have to be used.

The outputs of the process analysis and specification phase are models (static

model, influence diagrams, and relations) of the software development process and

parameters that have to be simulated, measures (metrics) that need to be received

from the real process, and a description of all the assumptions and decisions that are

made during the analysis. The latter is useful for documenting the model for later

maintenance and evolution.

The artifacts created during process analysis and specification have two distinct

properties: the level of static or dynamic behavior they capture and the quantitative

nature of the information they represent. Figure 7.8 shows the values for these

properties for the static process model (which is static and qualitative), the influence

diagram (static and qualitative), and the end product simulator, which is quantita-

tive and dynamic.

Throughout this activity, several verification and validation steps must be

performed:

– The static model has to be validated against the requirements (to make sure it is

within the scope, and also that it is complete for the goal stated in the

requirements) and against the real process (here the customer should be

involved).

– The parameters in the influence diagram must be checked against the metrics

(to ensure they are consistent) and against the input and output variables of the

requirement specification.

7.3 A Method for Developing Simulation Models 201

– The relations must be checked against the influence diagrams for completeness

and consistency. All the factors of the influence diagram that influence the result

have to be represented, for instance in the equation of the relation.

– The influence diagrams (possibly also the relations) must be validated by the

customer with respect to their conformance to real influences.

– The units of measurement for all parameters should be checked.

7.3.3 Model Design

During this activity, the modeler develops the design of the model, which is

independent of the implementation environment. The design is divided into differ-

ent levels of detail, the high-level design and the detailed design.

7.3.3.1 High-Level Design

In the high-level design, the surrounding infrastructure is defined. Also, the basic

mechanisms describing how the input and output data is managed and represented

is defined, if necessary. Usually, a model’s design comprises components such as a

database or a spreadsheet, a visualization component, and the simulation model

itself, together with the information flows between them.

Figure 7.9 shows the high-level design for a system testing simulation (STS)

model. The model has two main modules, the Development module, which models

the development of the software, and the STS Testing module, which models the

system testing of the software. These two modules interact through the flow of

items such as Code, Resources, and Defects. The whole model has graphical user

QuantitativeQualitative

Static

Dynamic

Process Model
Product flow,

Control flow, ...

Cause Effect Diagram
Or

Influence Diagramm

Discrete Event
Model

Fig. 7.8 Properties of different modeling artifacts

202 7 Software Process Simulation

interfaces (GUI), both for input and for output. Through the input interface, the user

of the simulator provides the values of the input parameters, which are saved in a

database and then fed into the simulator. The outputs of the simulator are also saved

in the database and then used by a visualization software, which displays them in a

user-friendly format to the users of the model. The high-level design is the latest

point in time for deciding which type of simulation approach to use (e.g., system

dynamics, discrete event, or something else).

7.3.3.2 Detailed Design

In the detailed design, the “low-level design” of the simulation model is created.

The designer has to make several decisions, such as:

– Which activities do we have to model? (i.e., what is the level of granularity for

the model?)

– What items should be represented?

– What are the attributes of these items that should be captured?

Additionally, the designer has to define the flow of the different items (if more

than one type of item is defined, also the combination of items). When creating the

detailed design, the static process model can be used for identifying the activities

and items, whereas the influence diagrams can be used for identifying the items’

attributes.

The outcome of this activity is a detailed design of the model. Figure 7.10 shows

such a design using a UML-like notation. The Activity object models an activity in a

software process. Its attributes are: duration, cost, effort, inputs, outputs, resource

type, and number (both people and equipment resources). The Resource object

corresponds to the real-world resources needed to perform an activity. An example

of instances of the People_Resource sub-class of Resource would be Developer or
Tester. The human resources are characterized by their productivity, represented as

the attribute Productivity. The object Artifacts captures the code (SW_Artifacts) and
test cases (Testing_Artifact). The code has attributes such as its size, complexity,

Input
GUI

Output
GUI

Model

Development
module

STS testing
module

Code

Resources

Defects

Database

Fig. 7.9 High-level design (excerpt)

7.3 A Method for Developing Simulation Models 203

and number of defects, while the test cases have an attribute related to their

capability of detecting defects in code (Effectiveness).
In the design phase, verification and validation activities must be performed, for

example to check the consistency between high- and low-level design as well as

with the process description (static, influence diagrams, and relations) and the

model requirements.

7.3.4 Model Implementation

During implementation, all of the information as well as the design decisions are

transferred into the simulation model. The documents from the process specifica-

tion and analysis and the design are necessary as inputs. This activity in the

development process depends heavily on which simulation tool or language is

used and is very similar to the implementation activity for a conventional software

product. Figure 7.11 shows an excerpt of a discrete-event model developed in the

commercial modeling tool Extend, using building blocks connected through inputs

and outputs to determine model behavior.

7.3.5 Model Calibration, Validation, and Verification

Besides the validation and verification that occur throughout development, the

implemented model and simulator must be checked to see whether they are suitable

for the purpose and the problems they should address. Also, the model will be

checked against reality (here the customer/user has to be involved). During such

calibration runs, the model’s parameters will be set. Figure 7.12 displays the results

of one calibration run. It shows the mean deviation of the model outputs compared

to the real experiment it is tested against for different parameter values. It can be

-Identifier : string
-Available : int

Resource

-Productivity : int

People_Resource Equipment_Resource

-Duration : int
-Cost : int
-Effort : int
-Inputs : int
-Outputs : int
-ResourceType : int
-newAttribute : int
-ResourceNumber : int

Activity

Fig. 7.10 Example of detailed design objects

204 7 Software Process Simulation

observed that for the particular parameter displayed, model deviation from reality is

lowest for a parameter value of 0.6–0.7.

Throughout the simulator development process, verification and validation

(usually implemented by means of reviews) must be performed after each activity.

Also, traceability between different products created during the simulator’s

Fig. 7.11 Example simulation model

0

2

4

6

8

10

12

14

16

0,3 0,4 0,5 0,6 0,63 0,64 0,645 0,65 0,66 0,7 0,8 0,9

M
ea

n
 D

ev
ia

ti
o

n
 [

%
D

D
R

]

w/ Pilot

w/o Pilot

Fig. 7.12 Mean deviation simulation—experiment

7.3 A Method for Developing Simulation Models 205

development must be maintained, thus enabling the modeler to easily go back to

correct or add elements during model development or evolution. Implementation

decisions must be documented to allow future understanding of the current imple-

mentation and to facilitate model evolution.

Finally, when the simulation model has been validated against reality and

calibrated, it can be used to replace real experiments and predict their outcome.

Figure 7.13 displays a plot of one simulation run, depicting the number of defects

found during an inspection in relation to the inspection team size. It can be observed

that, for instance, with more than five inspectors, the number of defects found

during the inspection rises only marginally, whereas the overall effort and the

inspection duration continue to climb significantly [12].

7.4 Plug & Play Process Models

With the increasing popularity of software process modeling, it became apparent

that process models cannot be developed from scratch every time such a model is

needed. However, similar to software itself, a number of patterns can be observed

within software processes, for example, a work–test–rework pattern that describes

the common situation that some work is performed, its results are evaluated by a

verification/validation step, and based on the evaluation results, some rework

becomes necessary. Such generic patterns can be used for different processes

(e.g., requirements elicitation, writing code) and in different domains (e.g., auto-

motive, information systems). It is therefore feasible and recommendable to define

such patterns for simulation models as well, forming “macroblocks” that can be

used to quickly develop simulation models.

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9 10 11

Inspection team size

Defects found in inspection Defects after inspecion Overall effort [person days] Duration [hours]

Fig. 7.13 Simulation model run results

206 7 Software Process Simulation

One such approach is the SimSWE library of reusable components for software

process simulation [13]. The library provides (tool-independent) definitions of a

multitude of components and, for each component, a Matlab®/Simulink® refer-

ence implementation under the LGPL license [14] for download [15]. The library

contains components for both continuous and discrete-time simulation models.

A basic set of components can be used with a standard Matlab/Simulink configura-

tion without add-ons, supporting continuous simulation only. An extended set

contains components that can also be used for discrete-event simulation, but

requires Simulink addons (at present Stateflow® and SimEvent®). Each set is

divided into six subcollections that represent different types of model components:

– Generators, e.g., for requirements

– Estimators, e.g., using cocomo ii [16]

– Generic activities, e.g., performing work

– Generic processes, e.g., the work–test–rework pattern mentioned earlier

– Management components, e.g., for employee training

– Utilities like conversions

The library is developed and shared as Open Source, yet the license allows for

using components in a proprietary context without the need to publish

modifications as Open Source as well. The library maintainers encourage users to

apply the components and contribute additional components as well, in order to

construct a set of standard software process simulation components that allow for

the rapid development of software process simulation models and that make them

easier to compare.

7.5 Combining Process Simulation and Empirical Studies

Even though discussed in separate chapters in this textbook, empirical studies and

process simulation models can be combined to get additional benefits. For example,

while in the 1960s or 1970s, nuclear weapon tests were a rather common phenome-

non, this has ceased completely in the new millennium. In part, this reduction has

been caused by increased knowledge about the harmful side effects of nuclear

weapons (namely radiation and contamination of vast areas for many years), but

not entirely.

Since the military has priorities other than preventing ecological damage, but an

increasing fraction of human society was no longer willing to accept that, other

ways for testing these weapons had to be found. Today, most nations have the

ability to simulate nuclear explosions. This saves enormous expenses, because real

testing is always destructive and nuclear weapons are not exactly cheap. In addition,

simulations are not making people upset. Another great advantage is that

simulations can be repeated as often as desired with any set of parameters, which

is impossible with real tests.

7.5 Combining Process Simulation and Empirical Studies 207

Other areas where simulation is used amply are mechanical engineering and

construction. Here, simulation helps to save cost and time. As a rather young

profession, software engineering has only recently started to discover and use the

benefits of simulation. Empirical software engineering is not very common yet in

industry. Many decisions are still based on intuition rather than on measured data.

This trial-and-error approach is very expensive and delivers lower-quality products

than more systematic approaches would. When implemented, experiments already

yield good results, for example in choosing a reading technique for inspections.

Still, the required experiments cost a lot of money, which companies naturally

dislike, despite the benefits. But as in other professions, simulation can also help

with this aspect in software engineering. A simulation is conducted in two basic

parts: modeling the real-world situation, and afterwards simulating it on a com-

puter. The model tries to reproduce some aspects of the real world as accurately as

needed, in a representation that can be used in the simulation. The optimal model

would contain exactly those entities and relations needed for the simulation,

nothing more and nothing less.

An entity represents an element of the real world, e.g., a person or a document.

Like their real counterparts, entities interact with each other; this is mapped to

relations in the model. One problem in modeling is that it is usually not clear which

entities and relations of the real world need to be modeled. This depends on the

scope of the model: If the goal is to predict product quality, other factors must be

included than when process optimization is aimed at. In any case, including too

many factors increases model complexity unnecessarily and may even influence the

results, whereas considering too few factors may render the results unreliable.

Working with simulations can be seen as research in a virtual lab (Fig. 7.14).

Conventional software engineering laboratories explore the research object by

using various empirical studies, e.g., controlled experiments or case studies.

The virtual laboratory examines its research object with simulations. Transferring

information from one to the other can help to improve research results on

both sides.

Simulation supports any of the three types of experiments regarded earlier, each

in a different way. Once the simulation model has been built and verified,

SimulationEmpirical Studies

Model of
Research

Object

Research
Object

Fig. 7.14 Real and virtual laboratory approach

208 7 Software Process Simulation

laboratory experiments can at least partially be replaced, for example to determine

the consequences of (gentle) context changes. Case studies focus on monitoring

real-life variables, so completely replacing them with simulations would not make

sense. Simulations may still be useful for identifying variables that should be

monitored. A simulation of an altered process can reveal variables that are likely

to change significantly, so the case study can pay special attention to them. In terms

of the other direction of the information flow, case studies can deliver valuable data

for calibrating the simulation model. The authentic nature of the data (they are

taken directly from a real project) also helps to refine the model.

Simulation does not seem very useful for replacing surveys, since surveys are

optimized for finding relations in real-life processes. Replacing surveys of real

processes with surveys of modeled processes would not save time or money.

Actually, surveys can supply information for simulation models, just like case

studies: In retrospective, problems often become obvious that were invisible during

the project. A survey reveals them in many cases.

Let us say that a certain product was delivered significantly later than planned,

and that this phenomenon did not occur for the first time. A survey reveals that the

customer changed the initial specifications of the software several times in cooper-

ation with customer service. However, it took customer service several weeks to

communicate these changes to the development team, thus already delaying the

necessary rework and, in addition, making it more complex by forcing the

developers to change a more mature piece of software.

The survey reveals this lack of communication within the software development

process, and modeling that part of the process could help to understand and solve

the problem. Once the model has been built, the data from the survey can be used to

calibrate it. Process changes can then be simulated before realizing them in the

actual process. This indicates that surveys and simulation should be used as

complements to each other, not as alternatives.

References

1. Navarro EO (2006) SimSE: a software engineering simulation environment for software

process education. Dissertation, University of California, Irvine, CA

2. Kellner MI, Madachay RJ, Raffo DM (1999) Software process simulation modeling: why?

what? how? J Syst Software 46(2–3):91–105

3. Abdel-Hamid T,Madnick SE (1991) Software project dynamics. PrenticeHall, Englewood Cliffs

4. Glass RL (1999) The journal of systems and software—special issue on process simulation

modeling. Elsevier, New York

5. Fraunhofer Institute for Experimental Software Engineering IESE (1997–2011) Spearmint.

http://www.iese.fraunhofer.de/competence/process/pmi/index.jsp. Accessed 27 Jun 2011

6. Pfahl D (2001) An integrated approach to simulation-based learning in support of strategic and

project management in software organisations. Dissertation, University of Kaiserslautern,

Germany

7. Meadows DH, Meadows DL, Randers J, Behrens WW III (1972) The limits to growth.

Universe Books, New York

References 209

http://www.iese.fraunhofer.de/competence/process/pmi/index.jsp

8. Madachy RJ (2008) Software process dynamics. Wiley, Hoboken, NJ

9. Martin RH, Raffo DA (2000) A model of the software development process using both

continuous and discrete models. Software Process Improv Pract 5(2–3):147–157

10. Rus I, Neu H, M€unch J (2003) A systematic methodology for developing discrete event

simulation models of software development processes. In: Proceedings of the international

workshop on software process simulation and modeling (ProSim), Portland, OR, USA,

3–4 May 2003

11. Basili VR, Caldiera G, Rombach HD (1994) Goal question metric paradigm. Wiley, New York

12. Neu H, Hanne T, M€unch J, Nickel S, Wirsen A (2003) Creating a code inspection model for

simulation-based decision support. In: Proceedings of the 4th international workshop on

software process simulation and modeling (ProSim), Portland, OR, USA, 3–4 May 2003

13. Birkh€olzer T, Madachy R, Pfahl D, Port D, Beitinger H, Schuster M, Olkov A (2010)

SimSWE—a library of reusable components for software process simulation. In: Proceedings

of the international conference on software process (ICSP 2010), Paderborn, Germany,

8–9 Jul 2010, pp 321–332

14. Free Software Foundation (2007) GNU lesser general public license. http://www.gnu.org/

licenses/lgpl.html. Accessed 27 Jun 2011

15. Birkh€olzer T, Madachy R, Pfahl D, Port D, Beitinger H, Schuster M, Olkov A (2010)

SimSWE—library for software engineering simulation. http://simswe.ei.htwg-konstanz.de/

wiki_simswe/index.php/Main_Page. Accessed 9 Jun 2011

16. Boehm BW, Harrowitz E (2000) Software cost estimation with Cocomo II. Prentice Hall,

Englewood Cliffs, NJ

210 7 Software Process Simulation

http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://simswe.ei.htwg-konstanz.de/wiki_simswe/index.php/Main_Page
http://simswe.ei.htwg-konstanz.de/wiki_simswe/index.php/Main_Page

Chapter 8

Glossary

Atomic process An atomic process (synonym: process step) is a process

that does not allow further structuring in the form of

sub-processes

Balanced Scorecard The Balanced Scorecard (BSC) is a strategic manage-

ment concept that aims at aligning a company’s

activities with its vision and strategy. The BSC approach

tries to measure whether the activities of a company are

meeting its goals with respect to vision and strategy

BSC see Balanced Scorecard

CASE Computer Aided Software Engineering

CMMI CMMI is an approach that supports the evaluation and

improvement of an organization’s processes using a

best-practice model

Continuous model In a continuous (simulation) model, variables can

change their value at any given moment. This means

that model output is calculated continuously over time,

not only at discrete points in time as it is done for

discrete-event models

Continuous SPI Continuous SPI focus on solutions for the most impor-

tant challenges of a software development organization

and usually involve improvement cycles based on an

initial baseline

Control flow The sequence of activities in a process (may be partially

ordered)

Deming cycle See plan, do, check, act

Discrete-event model In a discrete-event (simulation) model, variables can

change their value only at discrete moments of time.

This means that between these times, all variables are

constant, and the model state can be described as a vector

of all variables at every such discrete point in time

J. M€unch et al., Software Process Definition and Management,
The Fraunhofer Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-24291-5_8, # Springer-Verlag Berlin Heidelberg 2012

211

ECMA European Computer Manufacturers Association

Elicitation See process elicitation

Engineering process

model

A process model that describes (possibly in very much

detail) a fraction of the complete software lifecycle

process, for example, a specific type of inspection. Engi-

neering process models can be very detailed, often not

only describing “what” to do, but also explaining “how”

to do it

EPF Eclipse Process Framework

EPG Electronic Process Guide, an electronic representation

of a process description, e.g., a collection of linked web

pages. An EPG typically contains links to additional

information, e.g., document templates or work product

examples

Experience Factory The Experience Factory is an organizational structure

that fits to the QIP

GQM GQM is a systematic approach for tailoring and

integrating measurement goals with models of the soft-

ware processes, products, and quality perspectives of

interest, based upon the specific needs of the project

and the software domain of an organization

GQM+Strategies® GQM+Strategies® is a strategic measurement approach

that links higher-level goals of an organization, such as

business goals, with software-related goals

ISO/IEC 15504 see SPICE

Lifecycle process model A process model that captures the complete lifecycle

of a software product. Typically, lifecycle process

models abstract from a number of details, and instead

provide a broader view on the process (focus on “what”,

not on “how”)

Method content Represents a library of descriptions of software engi-

neering methods and best practices

Model A model is an abstract and simplifying representation

of an object or phenomenon of the real world

Model-based SPI Model-based SPI approaches compare the current pro-

cesses and practices of a development organization

against a reference model or a benchmark

MVP-L Multi-View Process Modeling Language

NIST National Institute of Standards and Technology

PDCA See plan, do, check, act

Plan, Do, Check, Act Plan, do, check, act (PDCA) is an iterative four-step

problem-solving process also known as Deming cycle

Practical Software and

Systems Measurement

Practical Software and Systems Measurement (PSM)

defines an information-driven measurement process that

212 8 Glossary

guides projectmanagers in selecting, collecting, defining,

analyzing, and reporting specific software issues

Principle A principle is a policy or mode of action that describes

important characteristics of a process model

Process See software process

Process agent See process performer

Process architecture See process schema

Process definition A process definition is a description of a process that

can be enacted. Process scripts and process programs

are specializations of process definitions

Process description While a process is a vehicle for doing a job, a process

description is a specification of how the job is to be

done. Thus, cookbook recipes are process descriptions,

while preparing a recipe is a process

Process elicitation The discipline concerned with acquiring data from pro-

cess participants in order to build a process model

Process enactment Process enactment is the performance of process steps

undertaken to reach a given goal. The performer (i.e.,

“agent”) can be a human or a machine. In case of a

machine, the term “process execution” is usually used

Process engineer A process engineer is a person who pursues one or

several goals of process modeling (e.g., defining,

extending, maintaining, improving process models)

Process handbook A description of the process that is intended to assist

process performers with their daily work, i.e., tells them

when to do what

Process manual See process handbook

Process meta-model See process schema

Process model See software process model

Process notation A formal language, i.e., a well-defined set of syntactical

conventions, used to describe a process

Process owner A process owner is a human or organizational entity

that sets the goals of a process and is responsible for its

achievement

Process performer A process performer (synonym: agent) is a person or

machine that enacts/executes the process in order to

reach the process goal(s). Humans interpret process

scripts, machines interpret process programs

Process program A process program is a description of a process that can

be interpreted by machines

Process schema A process schema (synonym: process meta model, pro-

cess architecture) is a conceptual framework for the

consistent description of process models and their

relations. A process schema describes, on the one hand,

building blocks that form a process model, and, on the

other hand, constraints on their composition

8 Glossary 213

Process script A process script is a description of a process that is

suitable for interpretation by humans. A process script

should be tailored to the needs of the process performer

Process stakeholder A person or organizational entity that has an interest in

the process, for example, because it is required to

deliver specific input

Process step See atomic process

Product A product is each artifact that is consumed or produced

in the context of engineering-style software development

Product flow The product flow consists of the relationships between

products and processes that describe the access mode to

the products

Product model A product model is a description of a product or a class

of products

Project A project is a unique endeavor, which is limited by a

start date and an end date and should achieve a goal

Project phase A project phase (short: phase) is a collection of logi-

cally separated project activities, usually culminating in

the completion of a major deliverable or the achieve-

ment of a major milestone

Project plan A project plan is a specification of the necessary

resources for the execution of a process definition, the

relations between these resources and processes, the

produced products including the product flows, and

restrictions of any type concerning the execution of

the process

PSM See practical software and systems measurement

QIP The Quality Improvement Paradigm (QIP) is a six-step

procedure for structuring software development and

improvement activities. The QIP is based on PDCA

and tailored to the specifics of software development

Real experiment An experiment that takes place in the real world, with

real experimental subjects

Role A role is a set of processes belonging together that are

assigned to one or several agents. A role combines the

functional responsibility for the enactment of a process

SEE Software Engineering Environment

Six Sigma Six Sigma is a quality management framework that

mainly aims at reducing variance in processes and

preventing defects

Software process A software process is a goal-oriented activity in the

context of engineering-style software development

Software process model A software process model (short: process model) is a

model of a software process, i.e., an abstract and

214 8 Glossary

simplifying representation of a (class of) real-world

software process(es)

SPEM Software Process Engineering Metamodel, describing

entities to be used for software process modeling

SPI Software process improvement, i.e., activities targeted

at improving the existing processes of an organization

with respect to a certain goal, for example, for reducing

the number of defects introduced in a product

SPICE ISO/IEC 15504 (SPICE) is an international standard for

evaluating and improving an organization’s software

processes

TQM Total Quality Management (TQM) is a holistic man-

agement approach towards quality management and, in

particular, continuous improvement within an

organization

UML Unified Modeling Language

Virtual experiment A simulation of an experiment, typically on a computer,

using a simulation model that describes some real-

world phenomenon

8 Glossary 215

Chapter 9

Authors

J€urgen M€unch
J€urgenM€unch is a Professor in the Department of Computer Science at the University

of Helsinki. His research in software and systems engineering centers on the measure-

ment and quantitative analysis of software processes and systems, software process

modeling andmanagement, cloud-based software engineering, global software devel-

opment, and empirical software engineering. Prior to his current position, Prof. Dr.

M€unch was a division head at the Fraunhofer Institute for Experimental Software

Engineering IESE in Kaiserslautern, Germany, where he was responsible for research

and technology transfer in the area of software process and quality engineering. He

was also an executive boardmember of the temporary research institute SFB501 at the

University of Kaiserslautern. Prof. Dr. M€unch has been awarded the Distinguished

Professor Award (FiDiPro), the IFIP TC2 Manfred Paul Award for Excellence in

Software Theory and Practice, several best paper awards, and the technology

innovation award from the Rhineland-Palatinate Lotto Foundation.

Ove Armbrust

Ove Armbrust is a Software Engineering Process Group Lead at Alpine Electronics

Research of America. In this position, he is responsible for all software develop-

ment processes of Alpine’s U.S. R&D operations, including product development,

customer interaction, and standards compliance. Prior to his current position, Dr.

Armbrust was a researcher and senior engineer at the Fraunhofer Institute for

Experimental Software Engineering IESE in Kaiserslautern, Germany. In its Pro-

cesses and Measurement department, he focused his research activities on context-

specific process adaptation, process compliance, and process scoping. In 2010, he

received his Ph.D. in Computer Science from the University of Kaiserslautern,

Germany. Besides his academic work, Dr. Armbrust has provided consultation

services to a wide range of organizations from the automotive, aerospace, and

finance domains regarding process improvement issues.

Martin Kowalczyk

Martin Kowalczyk graduated from the University of Karlsruhe, Germany, with a

Diplom degree in Industrial Engineering in 2009 and started working at the

J. M€unch et al., Software Process Definition and Management,
The Fraunhofer Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-24291-5_9, # Springer-Verlag Berlin Heidelberg 2012

217

Fraunhofer Institute for Experimental Software Engineering (IESE) thereafter.

He is a member of the Processes and Measurement department and works on

subjects concerning software development processes and goal-oriented measure-

ment approaches such as GQM+Strategies®. In the context of industrial projects, he

has worked for several organizations from the aerospace, finance, and services

domains on topics from the area of process improvement and measurement. His

current research interests focus on measurement-based alignment of goals and

activities within software-based organizations.

Martı́n Soto

Martı́n Soto was born in Bogotá, Colombia, where he received his master’s degree

in Computer Science in 1995 from the Universidad de los Andes. In 2009, he

received his Ph.D. in Computer Science from the University of Kaiserslautern,

Germany. From 2000 to 2010, he was a researcher at the Fraunhofer Institute for

Experimental Software Engineering (IESE) in the Processes and Measurement

department, where he was working on process modeling for industrial and research

purposes. His research interests concentrate on change management for process

models. Since 2010, Dr. Soto has been Senior Developer at eleven GmbH.

218 9 Authors

Appendix

Problems for Chapter 1

Problem 1.1

What are the differences between a process and a project phase? It can often be

observed when reading process standards or books about development processes

that a phase is refined into process models. As an example, the requirements

phase might be refined by the process models “Define and Describe Software

Requirements,” “Define Interface Requirements,” and “Prioritize and Integrate

Software Requirements.” What might be problems with such a modeling approach

and why should this be avoided?

Problem 1.2

Some process quality standards require that all processes of an organization need to

be documented systematically. Discuss whether this is sufficient for assessing the

quality of the processes performed in an organization or for improving processes.

Problem 1.3

Assume that a project consists of ten tasks that may be distributed across three

different development sites in different countries. How many combinations of

assigning these tasks to the different sites exist? What could be criteria for assigning

specific tasks to sites?

J. M€unch et al., Software Process Definition and Management,
The Fraunhofer Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-24291-5, # Springer-Verlag Berlin Heidelberg 2012

219

Solutions to the Problems for Chapter 1

Solution for Problem 1.1

One main difference is that the project phase has a defined start and end date,

whereas a process can be enacted several times depending on the conditions under

which it can be enacted. For instance, the process “Define Interface Requirements”

could also be enacted in the design phase if defects are detected in the interface

specification. The requirements phase has already terminated at this point in time.

Therefore, refining phases by processes (or vice versa) often leads to inconsistent

models and can cause significant problems during project execution.

Solution for Problem 1.2

Having all processes documented is not sufficient. It is important that the documented

processes reflect the current practices of an organization.

Solution for Problem 1.3

If a software development project consists of ten independent development tasks

that may be distributed across three development sites, theoretically 310 ¼ 59,049

different combinations of allocating tasks to sites exist.

Typical criteria for allocating tasks to sites in global software development are:

– Cost

– Availability of resources (such as developers)

– Expertise

– Proximity to markets (this is especially relevant for requirements engineering

tasks)

– Development quality

– Personal trust

– Time differences

– Cultural differences

– Willingness at site

– Established relationships

In addition, political or strategic decisions as well as contractual issues and the

collaboration history between sites might have an influence.

220 Appendix

Problems for Chapter 2

Problem 2.1

Explain the difference between a descriptive and a prescriptive process model.

Problem 2.2

What is the difference between a lifecycle model and an engineering model? Name

two examples each and explain why they fit into their corresponding category.

Problem 2.3

Describe two typical problems that may occur while deploying a prescriptive

process model. For each of these problems, discuss potential strategies for

overcoming it.

Solutions to the Problems for Chapter 2

Solution for Problem 2.1

The difference between the two lies in purpose, not necessarily in content.

Prescriptive models tell people what to do in projects and are intended to be used

as guidance or handbooks during daily work. However, they are often used to

publish a specific (mandatory) process, the application of which is expected.

Descriptive models are normally a description of the actual, currently used real-

world process. They are typically used for evaluation and improvement of the

current work procedures, in particular to pin down (unspecific) problems experi-

enced during daily business.

A prescriptive model and a descriptive model may be 100% identical in contents

and presentation—yet one may be used to mandate a specific process (“you must

follow what is written here”), and the other may describe the current processes (“so

this is how we are doing our projects”).

Appendix 221

Solution for Problem 2.2

Lifecycle models describe activities of a product development lifecycle at a high

level of abstraction. Engineering process models describe the same object as

lifecycle models, but they differ in the level of abstraction and the focus on specific

roles and aspects. In particular, engineering models are usually more detailed and

highlight certain aspects. As a (very simple) rule of thumb, an engineering model

would enable a new employee to start working, while a lifecycle model would leave

the same employee asking “ok, but what am I supposed to do concretely?”
Examples of lifecycle models:

– Waterfall model: Very generic, covers only major processes.

– Iterative enhancement model: Describes a number of processes and the general

sequence to execute them. Not tied to particular practices or techniques.

– Unified process: Covers a large fraction of the lifecycle including requirements

elicitation and testing.

Examples of engineering models:

– Checklist-based design inspections: Describe a specific technique for defect

detection.

– Model-based statistical testing: Describes specific testing techniques (model-

based).

– Hybrid cost estimation (CoBRA): Is relevant in a single phase (project planning)

and describes a specific estimation technique.

Solution for Problem 2.3

Resistance to change: People can resist change and insist on doing their work as

they are used to. They may fail to see the point of introducing a new process, feel

that the changes may make their existing knowledge irrelevant, etc.

Counter-strategies:

1. Consider a more gradual process deployment strategy so that people have more

time to adapt to change and can learn the new procedures in a step-wise fashion.

2. Sell the new process, for example, by making sure that people are well informed

about the potential advantages of the new process.

3. Involve affected people in process improvement efforts, for example, by giving

them the opportunity to provide feedback (and by seriously taking this feedback

into account).

Inappropriate process: The deployed process is not appropriate for the organi-

zation/unit or its effects and risks are not sufficiently understood. For example, the

process may be intended for an application domain that does not match the organi-

zation. Also, necessary tailoring such as changing, for instance, a test process,

222 Appendix

might lead to lower test efficiency/effectiveness and bear unknown risks with

respect to the reliability of the tested product.

Counter-strategies:

1. Perform case studies to determine how appropriate the process is for the

organization.

2. Use feedback from process performers to tailor the process.

3. Analyze process traces to identify potential inefficiencies and use that informa-

tion to improve the process definition.

Missing tailoring support: No or insufficient guidelines are provided to custom-

ize the process to its context.

Counter-strategies:

1. Analyze potential variations by looking at specific project needs.

2. Define tailoring guidelines.

3. Validate the guidelines by tailoring the process for specific project contexts and

analyze process performance after project completion.

Problems for Chapter 3

Problem 3.1

Looking at the eight-step approach: Suppose that for a certain process modeling

effort, the goal “process automation” was chosen in step 1. What would be the

consequences for step 3?

Problem 3.2

Suppose now that the selected goal was “process guidance.” What would be the

consequences for step 3 in this case?

Problem 3.3

Steps 7 and 8 of the presented descriptive process modeling approach are concerned

with analyses. What are the differences between these two steps? Why are they

separate from each other?

Appendix 223

Problem 3.4

You have just finished creating a detailed model for the development processes of a

medium-sized software company. One aspect of the process you have learned about

during your process modeling work is that the company uses a version management

system to store the source code of all of their products, as well as many documents

related to said products. You know that most people in development-related

roles rely quite strongly on this system for their daily work. Indeed, people in the

company normally collaborate around products by storing them in this system, so

that other people have access to them and can change them if necessary.

How could you use the version management system data (content, logs, etc.) to

determine whether your process model reflects your real software processes?

Suggest concrete ways in which data stored in the version management system

could be used to check the accuracy of your new process model.

Solutions to the Problems for Chapter 3

Solution for Problem 3.1

In general, the selected notation would have to be interpretable by a machine, so

that it can be used as a basis for supporting execution through an automated system.

This requires a notation with a high level of formality.

Solution for Problem 3.2

The selected notation would have to be human-readable, or at least, it should

be able to produce human-readable documentation, for example, by automatically

generating it using a documentation generator.

Solution for Problem 3.3

Step 7 analyzes the process model with respect to internal properties such as

consistency. This is basically a quality assurance step regarding the created process

model; it normally contributes only little to the goals of the process-modeling

effort. In step 7, the process model is the object of interest, and a set of (external)

tools is used to analyze it.

224 Appendix

Step 8 uses the model to analyze the process itself, i.e., to achieve the goals of the

modeling effort. In step 8, the process itself is the object of interest, and the process

model is used as a tool to identify bottlenecks, for example.

The two steps are separate because without being sure that the model has

sufficient quality, it is very hard to make any statements with respect to the

underlying process. In particular, with an unchecked model, if a shortcoming is

detected (such as, for example, a missing input our output product), one cannot be

sure whether it is because the model is faulty or because the process itself is faulty.

Solution for Problem 3.4

Since the version management system logs every checking and update of all

documents, it is possible to create a timeline, with the documents’ lifecycle in

(partial) order. This order can be used to check whether the actual process that

people are following is represented accurately in your process model. For instance,

if the process model states that document A is used as input for an activity that

produces document B, you could check whether document A exists before docu-

ment B is checked in for the first time, and in which state document A is when B

is checked in. Similarly, you can check which people read and write which

documents, which in turn allows for checking your process model’s role

assignments.

Problems for Chapter 4

Problem 4.1

The development process for a certain company involves the following products:

– Problem Description (PD)

– Requirements (Req)

– Design (Des)

– Component Requirements (CReq)

– Component Test Cases (CTC)

– Components Code (Co)

– Component Test Results (CTR)

Your task is to create an MVP-L graphical process model for this company. Start

by defining process steps for producing the products listed above (with the excep-

tion of the Problem Description, which is provided at the start of the process).

In order to make sure that the test cases for each component properly match the

requirements specified for the component, the Component Requirements and the

Appendix 225

Component Tests Cases products must be produced by a single process step. Also,

in order to test the components, not only the Components Code product, but also the

Component Test Cases are necessary as input. Create a process model that produces

the products in a simple waterfall. Use the following template.

Problem 4.2

Draw the MVP-L state diagram for processes. Make sure that you include all

possible transitions and label them properly.

Problem 4.3

Suppose you want to create an MVP-L process model that is able to limit the

maximum effort invested into a development task. Why is it inadequate to include

this limit in the task exit criteria? What would be the appropriate place for making

sure that effort limits are not surpassed?

226 Appendix

Solutions to the Problems for Chapter 4

Solution for Problem 4.1

PD

Req

Des

CReq

CTC

Co

CTR

ReqAnl

Design

CompSpec

Coding

Testing

PD.status = complete AND Req.status = non_existent

Req.status = complete AND Des.status = non_existent

Des.status = complete AND CReq.status = non_existent
AND CTC.status = non_existent

CReq.status = complete AND Co.status = non_existent

CTC.status = complete AND Co.status = complete
AND Co.status = non_existent

Req.status = complete

Des.status = complete

CReq.status = complete AND CTC.status = complete

Co.status = complete

CTR.status = complete

PDPD

ReqReq

DesDes

CReqCReq

CTCCTC

CoCo

CTRCTR

ReqAnl

Design

CompSpec

Coding

Testing

Solution for Problem 4.2

enabled

User Event start

active

User Event complete AND
Exit Criteria = False

User Event complete AND
Exit Criteria = True

disabled

Entry Criteria = True

Entry Criteria = False

User Event complete AND
Exit Criteria = False

User Event complete AND
Exit Criteria = True

Entry Criteria = False

Solution for Problem 4.3

Appendix 227

Using the exit criteria is inadequate because they are checked only after the process

is marked as “complete” by the user. This could be too late, because the effort limit

may have already been surpassed—so you cannot do anything about it anymore.

The right place to check would be an invariant. Since invariants are checked in a

continuous fashion, any problems will be noticed immediately.

Problems for Chapter 5

Problem 5.1

Explain the difference between continuous and model-based improvement

approaches.

Problem 5.2

What is the difference between the staged and continuous representations of

CMMI?

Problem 5.3

What is equivalent staging in the context of CMMI?

Problem 5.4

Which process areas must be considered for a CMMI maturity level 3 appraisal?

Which specific/generic goals must be fulfilled by these processes?

Solutions to the Problems for Chapter 5

Solution for Problem 5.1

Model-based improvement approaches compare an organization’s processes with a

predefined model (assessment/appraisal). From the comparison results, conclusions

are drawn on the quality of the organization’s processes, and improvement actions

228 Appendix

are derived that are supposed to make the organization’s processes more similar to

the model, assuming that this improves the processes.

Continuous improvement approaches focus on specific areas where problems

are detected, or where huge benefits are expected from improvement. For these

areas, specific improvement actions are determined. This is assumed to provide

a more context- and organization-specific path to improvement than model-

based approaches, but it also requires more skills, for example, in determining the

weaknesses in the first place.

Solution for Problem 5.2

Continuous representation allows for appraising any selection of process areas. For

every process area, a capability level (CL) is determined, which symbolizes the

organization’s process capabilities with respect to this process area.

Originally taken from CMMI’s predecessor CMM, staged representation assigns

a single maturity level (ML) to an organization, based on a specific selection of

process areas.

Solution for Problem 5.3

Maturity levels are associated with particular capability levels of specific process

areas. An organization has reached a particular maturity level when it has reached

the corresponding capability levels in all relevant process areas. Equivalent staging

is the process of deriving a maturity level from the determined capability levels.

Solution for Problem 5.4

Process areas to be considered:

– Requirements Management (REQM)

– Project Planning (PP)

– Project Monitoring and Control (PMC)

– Supplier Agreement Management (SAM)

– Measurement and Analysis (MA)

– Process and Product Quality Assurance (PPQA)

– Configuration Management (CM)

– Technical Solution (TS)

– Product Integration (PI)

– Validation (VAL)

Appendix 229

– Verification (VER)

– Organizational Process Focus (OPF)

– Organizational Process Definition (OPD)

– Organizational Training (OT)

– Requirements Development (RD)

– Decision Analysis and Resolution (DAR)

– Integrated Project Management (IPM)

– Risk Management (RSKM)

For a maturity level 3 appraisal, generic goals 1, 2, and 3 must be fulfilled by

these process areas.

Problems for Chapter 6

Problem 6.1

The traditional test method in a large development organization involves producing

test cases in a primarily manual way. These test cases are then reviewed and

collected into a test suite, which, in turn, is used to test every product release.

The organization is considering the gradual introduction of a new model-based test

method. In this method, a set of models is created that describe the tested system

and its environment. Using these models as a basis, a test suite generation system

produces a large number of test cases in a completely automated fashion.

Although this new method has the potential of saving a significant amount

of work, its introduction would also involve significant risk. For this reason, the

organization wants to empirically study its viability and effectiveness. Concretely,

the following questions should be addressed:

1. Are the Quality Assurance (QA) people satisfied with the current method?

(There are around 100 people in the QA department).

2. Does the new method reduce Quality Assurance costs (with respect to the current

method) when applied to small systems?

3. Will the application of the new method reduce overall project costs when used in

the (rather large) projects that are common in the organization?

Which types of empirical studies (controlled experiment, case study, survey)

would you use to address each of these questions? Explain why your type of choice

for each question would be appropriate and why it would be better than other study

types in that particular case.

230 Appendix

Solutions to the Problems for Chapter 6

Solution for Problem 6.1

1. Survey. Other methods would not address the existing experience, but new

experiences happening during the execution of the experiment or case study.

A survey would also make it possible to maximize the number of QA members

that are reached. Other methods would normally reach fewer participants and

usually involve much higher costs. Also, since members are already familiar

with the current method, a survey is convenient because it collects data about

their existing experience and perception in a systematic fashion.

2. Controlled experiment. A controlled experiment can be used here because of

the small size of the tested system. It provides a higher level of control over the

influence factors than a case study, so it is preferable.

3. Case study. Given the project size, it is probably impossible to use controlled

experiments in this case because the influence factors cannot be properly con-

trolled during the long time frame necessary for completing a whole project.

Problems for Chapter 7

Problem 7.1

When would you use a continuous simulation approach, and when would you prefer

a discrete-event approach? Give an example for each preference and explain your

decision.

Solutions to the Problems for Chapter 7

Solution for Problem 7.1

A continuous simulation approach is beneficial for large-scale processes, for exam-

ple, when modeling an entire organization. Since a continuous simulation model

immediately reacts to changes in its variables, it provides an adequate representa-

tion of the complex feedback loops found in (software) organizations.

When analyzing a specific portion of the organization’s processes, however, a

discrete-event provides more detailed insight into the process. Since the simulation

is clocked, it can be run at any speed and stopped at any time, so causes and effects

can be analyzed in great detail. It also provides the means to model the activities of

interest in very fine detail, and to identify different states such as the start of an

Appendix 231

activity or the creation of a document. This helps to understand the simulation

results.

Both forms can be combined, of course: The continuous model can be used for

the “big picture,” i.e., the overall organization with all feedback loops. Discrete-

event models can be used within the continuous model to describe those parts of the

process that are of particular interest, and thus contributing the necessary level of

detail.

232 Appendix

Index

A

Agent, 14

Analysis, 97, 99

Appraisal, 148

Atomic process, 11

Attribute models, 122

Automotive SPICE, 152

B

Base Practice, 153

Big-bang process deployment, 67

C

Capability level (CL), 148, 149, 153

Capability Maturity Model Integration

(CMMI), 4

Catastrophe simulation, 191

Chaos Report, 142

Cleanroom development process, 35

Club of Rome, 193

CMMI. See Capability Maturity Model

Integration (CMMI)

CMMI 1.3, 151

CoBRA, 40

Continuous representation, 148, 149

Controlled variables, 182

Crosby, 159

D

Define Measure Analyze Improve Control

(DMAIC), 161

Dependent variables, 182

Descriptive process models, 20

Deterministic simulation, 193

DIN EN 61508, 46

Disciplined software development, 5

DMAIC. See Define Measure Analyze

Improve Control (DMAIC)

E

Eclipse process framework (EPF), 136

Electronic process guides (EPGs), 64

Elicitation, 94

Enactment, 11

Engineering process model, 24, 37

Engineering-style software development, 4

Equivalent staging, 150

Executability, 115

Experimental treatment, 181

Experiment classification, 181

Extend, 206

Extreme programming, 43

F

Feigenbaum, 157

Flexibility, 115

Formality, 115

G

Generic goal, 148

Global software development, 3

Goal-oriented measurement, 164

Goal+Strategies element, 170

GQM+Strategies grid, 170

H

Hybrid cost estimation, 40

Hypothesis, 181

J. M€unch et al., Software Process Definition and Management,
The Fraunhofer Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-24291-5, # Springer-Verlag Berlin Heidelberg 2012

233

I

IEC 61508, 4, 46

IEC 62304, 58

Improvement programs, 4

Incremental commitment model, 30

Incremental commitment spiral model, 30

Independent variable, 182

Influence diagram, 202

Inspection, 156

Ishikawa, 158

ISO 26262, 56

ISO/IEC 12207:1995, 45

ISO/IEC 12207:2008, 45

ISO/IEC 15288:2008, 45

ISO/IEC 15504, 4

Iterative enhancement model, 26

K

Kaplan, 167

L

Lifecycle process models, 24

M

Maturity level, 149, 150

Method content, 130

Model, 9

N

Natural representation, 114

Near-shoring, 2

Norton, 167

O

Object Management Group (OMG), 127

Offshoring, 2

Outsourcing, 2

P

PAM. See Process assessment model (PAM)

Phased process deployment, 67

Planned experiment sequence, 186

Prescriptive, 113

Prescriptive process models, 19, 20

Principle, 14

PRM. See Process reference model (PRM)

Process assessment model (PAM), 152

Process attribute (PA), 153

Process, 8, 11, 115, 130

analysis, 99

architecture, 12

area, 147

capability profile, 149, 154

definition, 11

description, 11

development service, 134

elicitation, 83

enactment service, 134

engineer, 14

handbook, 59

improvement, 113

management, 5

metamodel, 12

model analysis, 97

modeling formalisms, 91

modeling goal, 7

modeling schema, 88

model, 11, 96, 119

monitoring service, 135

owner, 14

performer, 14

program, 11

programming, 113

requirements, 2

resource service, 135

schema, 12

script, 11

step, 11

transaction service, 135

visibility service, 135

Process reference model (PRM), 45, 152

Product-process relationship, 21

Product, 15, 115

flow, 15

model, 15, 118

Product state transition model, 124

Project, 9

phase, 9

plan, 17, 115

state, 123

Proscriptive, 113

Prototyping model, 27

Q

Qualitative analyses, 99

Quality assurance, 156

Quality attribute, 115

Quality control, 156

Quality improvement paradigm (QIP), 5

Quantitative analyses, 99

234 Index

R

Resistance, 107

Resource model, 118

Resources, 115

Retrospective study, 185

Role, 16

Royce, W., 25

S

Safety lifecycle, 50

SEI. See Software Engineering Institute (SEI)

Sensitivity analysis, 193

Shewhart, 155

SimSWE, 209

Software development process, 8

Software Engineering Institute (SEI), 147

Software process, 8

Software process model, 10

Software safety lifecycle, 53

Specific goal, 148

Spiral model, 29

Staged representation, 148, 150–151

State table, 124

Statistical testing, 38

8-Step approach, 84

Stochastic simulation, 193

Storing the process knowledge for future

use, 83

Support of measurement, 114

System dynamics, 194

T

Tailorability of models, 114

Team, 181

Traceability, 115

Training Within Industry (TWI), 156

Treatment, 181

U

UML. See Unified Modeling Language (UML)

Understandability, 115

Unified Modeling Language (UML), 127

Unified process, 33

Unplanned experiment sequence, 186

V

Variable types, 183

Variance, 160

Virtual laboratory, 210

W

Waterfall model, 25

Work product, 130, 153

World Model, 193

Index 235

	Software ProcessDefinition andManagement
	Foreword
	Preface
	Acknowledgments
	Contents
	Chapter 1: Introduction
	Chapter 2: Prescriptive Process Models
	Chapter 3: Descriptive Process Models
	Chapter 4: Process Modeling Notations and Tools
	Chapter 5: Process Improvement
	Chapter 6: Empirical Studies
	Chapter 7: Software Process Simulation
	Chapter 8: Glossary
	Chapter 9: Authors
	Appendix
	Index

