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Preface

Analytical chemistry plays a very important role in most fields of science, industrial

and environmental control, healthcare, and many other areas of academic, ecologi-

cal, economic, and social values. Many innovations in analytics ultimately result in

the discovery of new complex chemical compounds, clear and thorough under-

standing of living nature, improvement of quality and safety of goods, reduction in

pollutant levels in the environment, and so on. Also, progress in analytical chemis-

try, as well as in any basic science, is certainly important as such.

In its structure, this science is the holistic unity of qualitative and quantitative

analysis, which can be considered separately in the fields of research, innovation

introduction, learning the discipline in universities, training and education pro-

grammes, etc. For the last two decades, a succession of scientists specialized in

general analytical methodology, chemical metrology, and analytical fields where

detection and identification of chemical compounds is of particular importance,

perceived and expressed an opinion that modern qualitative chemical analysis had

been insufficiently described in general treatises and guidances on analytics,

metrology, standardization, quality assurance, and so on. Unlike analytical techniques

for qualitative and quantitative determinations, well-presented in books and reviews,

theoretical principles of identification and general experimental approaches to its

implementation have not received comprehensive treatment in the literature.

This prevents progress in the development and consistent validation of particular

qualitative procedures, quality assurance of the proper analytical data, and

expressing and reporting identification errors analogously to errors/uncertainties

in quantitative analysis.

This book entirely devoted to chemical identification has been written espe-

cially to

l Remove “skewness” of presentation of two principal parts of chemical analytics

in the literature on an analytical methodology
l Generalize approaches to identification of both various chemical compounds and

samples containing these compounds
l Summarize methods of estimating trueness of identification results
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l Draw the special attention of practical analysts to non-target qualitative analysis

seldom or never considered in the general literature on analytical chemistry
l Spotlight issues of quality assurance and control in identification/qualitative

analysis

The book is intended for anyone engaged in analytical and bioanalytical chem-

istry: professionals in reference, test, and control laboratories; scientists in research

laboratories of universities and chemical, pharmaceutical, and biotechnology com-

panies; graduate students of analytical chemistry, chemometrics, chromatography,

spectroscopy, and quality assurance and control. In style, the book is both mono-

graph and also laboratory guidance/manual. I hope that these two aspects comple-

ment each other.

The book begins with the consideration of basic principles of chemical identifi-

cation, including main concepts and terminology (Chap. 1). Following are chapters

covering analytical techniques (Chap. 2) and statistical/calculation methods (Chap. 3)

required for identification purposes. Only brief information is given here, with

references to comprehensive literature sources. Chapter 4 deals with different

quantities and indices expressing trueness of results of qualitative analysis, detec-

tion and identification, and rates of their errors. In the book, procedures for

qualitative analysis are divided into target identification by methods (Chap. 5)

and unknown/non-target analysis (Chap. 7). For the latter, prior data extracted

from chemical databases are very essential (Chap. 6). Identification/classification

of objects such as foodstuffs, pollutions, microorganisms, materials, and so on is

described in Chap. 8. Finally, issues of quality assurance and control in relation to

qualitative analytical procedures are explored in Chap. 9.

Three remarks are necessary. First, because of my professional interest, low

molecular compounds are covered to a greater extent than high molecular ones.

Nevertheless, the latter are also of concern, in the respect that progress of analysis

of high molecules, first of all in proteomics, affects the development of general

analytical methodology. Second, general issues of chemical analysis are discussed

only if related to identification problems. Third, qualitative procedures related to

identification, such as detection, are also considered.

My view on the subject of chemical identification was formed not only by me

alone but also as the result of cooperation with other persons. I would like to name

them here.

Prof. Miguel Valcárcel (University of Córdoba) invited me to participate in the

MEQUALAN project. Dr. Willie May (NIST) and Dr. Reenie Parris (NIST)

introduced me to the analytical laboratory responsible for the development of

reference methods and materials. Dr. Stephen Stein (NIST) was my supervisor in

the project of building a library of tandem mass spectra. Mr. W.A. Hardcastle sent

me the LGC document on qualitative analysis cited in the book. Dr. Steven Lehotay

(USDA Agricultural Research Service) sent his recent articles on identification

methodology. Dr. Valeri Babushok (NIST) introduced me to details of the database

on retention indices. Dr. Inna Zhurkovich (Institute of Plant Protection) provided

me with considerable advice about general issues of chemical analysis, and explained
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many details concerning liquid chromatography and pesticide analysis. Dr. Yana

Russkikh and Mrs. Lyuba Tselikova (Centre for Ecological Safety) recorded some

mass spectra presented in the book. I wish to thank them all for their cooperation,

discussions, introductions, or assistance.

I also thank and formally acknowledge the following publisher and persons

for permission to use their materials as figures in this book: Elsevier Publishers,

Dr. John Cottrell (Matrix Science), Dr. Per Daling (SINTEF), and Dr. S. Stein.

My special thanks to the editorial staff of Springer Chemistry, and personally

Dr. Steffen Pauly, for all they did for publishing this book.

Saint Petersburg Boris L. Milman

November 2010
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Chapter 1

Principles of Identification

Abstract In this initial chapter, concepts and terms related to qualitative chemical

analysis are outlined and discussed. Chemical identification is defined as assigning an

analyte to one from known chemical compounds or a group/class of compounds.

General principles for identification through the use of chemical tests and instrumen-

tal measurements are formulated. Qualitative analytical procedures and approaches to

implement them are classified. Components of identification procedures are further

described. Objects for identification such as compounds, substances, and analyzed

samples are discussed in great detail, including identifiers of the objects. Known

chemical substances, which amount to more than 110 million entities, are statistically

reviewed. Finally, two key metrological issues, traceability in identification opera-

tions and qualitative scale of measurements, are discussed.

1.1 Introduction

The value of identification procedures is hard to overestimate.

Qualitative analysis may take place without quantitative analysis, but quantitative analysis

requires the identification (qualification) of the analytes for which numerical estimates are

given [1].

Another obvious statement is that any science or scientific field should be based

on the proper theory. Therefore one could discuss “theory for qualitative analysis”

or “theory of chemical identification”. Nevertheless, a theory of such a type seems

to be a rather loose (miscellaneous) structure consisting of (a) pieces of theories

from chemistry, physics, statistics, and so on, (b) empirical regularities derived

from experiments in analytical chemistry, and (c) elements of theory of decision-

making (see Chap. 3). To date, it is hard to consider this theoretical basis as a

holistic, rigorous, and logically consistent theory. Principles of chemical identifica-
tion, treated in this chapter, is a more adequate term for defining the theoretical

foundation of this part of chemical analysis.

One or other of the general principles of qualitative analysis (identification)

have been developed over the last few decades, possibly starting from the book [2]
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in which detection errors at low analyte concentrations were considered and

estimated. The reviews and articles [3–9], the special issue of Trends in Analytical

Chemistry [10], and two European Commission documents [11, 12] seem to be the

most valuable recent contributions in theoretical principles for chemical identifica-

tion. Those were issued before, at the same time, or after the author’s work devoted

to this topic [13–19].

1.2 The Concept of Identification

To identify, from Latin identificare, means to

. . . recognize as being, establish the identity of someone or something [20].

In chemistry, we consider identification of chemical entities such as chemical

elements, their compounds, and group/class/mixture of compounds. In chemical

analysis, those are components of systems/samples chemically analyzed, i.e., ana-

lytes. Analyzed samples themselves can also be identified, i.e., classified bymeans of

techniques and methods of chemical analysis. In the book, any identification related

to both chemical entities and chemical analysis is considered as a chemical one.

A number of definitions for chemical identification have been proposed (see

[19]). Combining some of them and the above consideration, the following defini-

tion can be proposed:

Chemical identification is assigning an analyte (analytical signal) to one of the
set of known individual chemical compounds or to a group/class of compounds.

The definition should be supplemented by some remarks and explanations.

1. An analyst often is not able to see the substance he/she determines because an

analyte is present in a sample in a very low amount. All an analyst sees is an

analytical signal, e.g., chromatographic or spectral peak. In such cases, identifi-

cation relates to different kinds of signal processing rather than direct manipu-

lation of the substance.

2. According to our treatment, identification is both an analytical procedure and its

result. It is also a “bridge” between a procedure and a result, which is the

analyst’s idea/decision on identity between an analyte and one of the known

compounds. The identity is concluded on the basis of identification criteria

established in advance or of ad hoc criteria.
3. A differentiation should be made between chemical substances and chemical

compounds. An (individual) compound is formed from different elements and

has a definite molecular structure. A substance may be (a) formed by a single

element, or (b) composed from one or more different individual compounds.

Substances, chemicals, and materials considered as products may be synonyms:

e.g., “benzene” may be both compound and substance. “Benzene 99%” manu-

factured by some chemical company is substance, chemical, and so on. It is also
clear that compound and substance are not absolutely different concepts. Com-
pound and pure complex substance are terms certainly related to each other.
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Compound(s) will be preferentially used in this book when discussing identifi-

cation operations (different from qualitative analysis II; see below).

4. In biochemical analysis, e.g., in analytical proteomics, known compounds may

be virtual (possible, predicted; see Chap. 7).

5. Identification of individual compounds may be required to identify/classify an

analyzed sample itself as the definite kind/type/grade/brand of products, materi-

als, compositions, formulations, and so on. This type of chemical analysis was

named qualitative analysis II [12, 19, 21] (see Chap. 8), and can be called

identification II. A sample can be also identified using methods of fingerprinting,

without individual recognition of its components. As a rule, such methods are

also referred to as chemical analysis. Therefore, the definition of identification

can be extended:

Chemical identification is also assigning an analyzed sample to one of the
classification groups for specimens, materials, products, foodstuffs, pollutions,
living organisms, and so on, using the techniques and methods of chemical analysis.

For qualitative analysis II, notions of identification and classification are obviously
similar. Here the terms of authenticity and authentication are also used; authentication
is a confirmation of identity. Classification occurs in “usual” identification when an

analyte is assigned to one of the classes of chemical compounds, e.g., organic nitrogen

ones. For other terms and concepts, see Chap. 8.

Identification and qualitative analysis is another pair of related terms (Fig. 1.1).

They are similar in their general sense, and used in different fields of chemical

analysis. Identification is mainly used as the name for the corresponding procedure

in instrumental analysis of organic and bioorganic substances. Qualitative analysis
refers to determination of elements or compound classes by relatively simple

methods/techniques such as qualitative/spot reactions and chemical test kits.

Qualitative
analysis

Screening

Recognition

Determination

Identification

Detection

Confirmation

Structure
elucidation

Fig. 1.1 Representation of the concepts and terminology related to identification. The over-
lapping circle shows very approximately a similarity degree between different terms
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There are also a number of other terms and concepts (Fig. 1.1) resembling

identification and qualitative analysis in one characteristic or another.

l Determination covers both quantitative and qualitative aspects of chemical

analysis.
l Screening is fast chemical analysis (often a multianalyte one) of a lot of samples,

with only preliminary conclusions about quantitative and qualitative results.
l Screening results should be verified and proved by a confirmatory (confirmation)

method with a higher reliability.
l Detection is that the analytical signal was received (and can be tentatively

identified).
l Structure elucidation relates to new compounds synthesized or isolated from

natural samples.
l Recognition mainly refers to results of the use of a computer algorithm for

pattern recognition.

1.3 General Principles for Identification

Based on the collective experience of many generations of analytical scientists

which is expressed in the literature, general principles for chemical identifications

can be formulated as follows.

An analyte is considered to be unambiguously identified as the compound A
when

l Physical, chemical, and biological properties of an analyte and A are identical
l Those of an analyte and all other compounds are different1

If the properties of an analyte and compounds A, B, C and so on are not
differentiated, there is a case of ambiguous/group identification.

If a sample contains the compound A specific for the kind of the sample or the
group of compounds A1, A2, A3, . . ., An in specific ratios, a sample can be identified/
classified as referring to the particular specimen, material, product, food, pollution,
living organism, and so on.

There are two types of properties required for identification. First, there are

qualitative features/characteristics which are the chemical properties, such as color/

spot reactions, gas evolution, and precipitation. This is the field of classical quali-

tative analysis (e.g., see [22, 23]). In modern laboratories, qualitative reactions are

1Different properties of chemical substances are usually correlated. So mismatch in one property

for a pair of compounds will lead to a difference in plenty of other properties. On the contrary, the

match in a few properties (but not the only one) between an analyte and the compound A will

probably result in (a) matching all others, and (b) difference from those of other compounds,

followed by (c) reliable identification of an analyte as A.

For negative identification of a target, a mismatch rather than a match in properties should be

proved.
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often performed using paper strips, indicator papers, powders and tubes, their kits,

and so on [24].

Classical qualitative analysis is related to determination of chemical elements. As

for organic analysis, qualitative reactions are insufficiently specific for determination

of most individual organic substances, many of which possess rather similar proper-

ties. Therefore, chemical test methods are mainly effective for recognizing classes of

compounds related to various heteroatomic groups [25]. This is true in many respects

for biological test methods for determining chemical compounds [26].

The principle of identification using these methods is determining an identity of

qualitative/discrete features (Fig. 1.2). If such features are indistinguishable, it is

appropriate to change to methods and techniques for identification based on com-

paring physical properties which are values of measured continuous2 quantities

(Fig. 1.2)

Before the appearance of spectral analysis and chromatography, chemists

isolated pure substances and obtained quantitative measures such as density, boil-

ing and melting point, refractive index, and so on to identify those substances [25].

In such experiments, an amount of substance of at least 1–10 mg was required. With

Dx

Dx

Aanalyte

Aanalyte

analyte

A

analyte A

Identity relation
(qualitative feature)

Similarity relation
(value of measurand)

Identification

No identification

Fig. 1.2 Chemical identification as comparing chemical and physical properties which are

features and quantities respectively. Identity of features and similarity in values of the quantity

observed/measured by the analytical chemist lead to identification of an analyte as the compound

A (circles). Mismatching features or a significant difference in values imply that the identification

is not achieved

2Consideration of physical quantities as continuous ones is an approximation ignoring the discrete

structure of matter and quantum effects. So they can be more properly named “quasi-continuous

quantities”.
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the progress of analytical techniques, this amount had been steadily decreased.

Reliable identification of at most a few nanograms of a complex organic/bioorganic

compound is a routine procedure when ion masses, corresponding peak intensities,

and retention parameters are measured in chromatography mass spectrometry

(Chaps. 5 and 7).

When discussing the role of measurements in performing chemical identification,

it should be noted that any value of measurand has some error/uncertainty [27]. In

other words, replicated values of measured quantities diverge from each other.

Therefore, the statement is true that similarity of values rather than their identity

is essential for identification based on comparing physical properties (Fig. 1.2).

However, the concept of identity with regard to a measurand can be also

applicable.

1. Rounded values can be taken into account: for example, m/z values in low-

resolution mass spectrometry are integral/discrete ones (Fig. 1.3). Their identity

is one of the criteria for identification (Chap. 5).

2. A set of any quantities is divided into ranges which can be considered as

different discrete features. If the value of measurand for an analyte falls within

the particular reference value range Dx specific for the compound A, it means (a)

identity/matching of features of an analyte and the compound A, and (b) the

possibility for identifying an analyte as A (Fig. 1.2). Here, different value ranges

of measurands correspond to criteria for identification of various compounds

(see below).

The main physical quantities in identification procedures based on spectrometry

and chromatography are wavelengths, frequencies, masses, and times. The second

I

m/z1m/z2 m/z3 m/z4 m/z5

Fig. 1.3 Typical mass spectrum. The quantities measured for identification and quantitative

determination are mass-to-charge ratios (m/z) of ions and ion currents/counts/abundances. For

most ions of low molecules, z ¼ 1. The ion masses m are measured in Da. Integral masses are

called mass numbers. Ion abundances are commonly expressed as relative intensities of mass

peaks (I, %)
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dimension of corresponding spectra or chromatograms is the intensity of signals/

peaks (Fig. 1.3). Here, intensity ratios of spectral peaks may be sufficiently specific

to characterize analytes.

Recently, the concept of identification point was introduced [11]. One point is

one property, i.e., one feature or one value of a measurand (one value ratio) to

characterize an analyte. There should be several identification points selected for

reliable identification (see Chap. 5).

1.4 Components of Identification

In the procedures under consideration, there are something that is identified (ana-

lyte), somebody who identifies (analyst), and many things (techniques and methods,

reference data and expert systems, etc.) needed for identification itself. Identifica-

tion as the system consists of those elements (Fig. 1.4). Correspondingly, quality

assurance (Chap. 9) should be provided at the level of both the system and its

elements.

Analytes as targets for identification are core components. The nature and origin

of analyte and matrix/sample predetermine the choice of analytical techniques and

approaches to implement qualitative determination (Chap. 2). It also obvious that

there is no chemical analysis without suitable instruments (Chap. 2) and particular

methods, whether the latter are standard (Chap. 5) or ad hoc (Chap. 7) ones.

Methods are used as guidance for carrying out analytical experiments.

A growing role is played by data/information, software, computers, data sys-

tems, and global networks (Chaps. 6 and 7). Computers with appropriate software

control laboratory instruments, and are used for searching and processing various

data. Chemical databases containing records on features, structures, and properties

of compounds, especially spectral libraries, are essential in unknown analysis, as

defined in Sect. 1.5.1 below. This book emphasizes the value of special/prior data

that describe the origin and use of different substances and their occurrence

(Chap. 6). Rare compounds, as compared with abundant ones, can be excluded

from consideration when solving most analytical problems.

Data obtained in analytical experiments and prior information are processed

using statistical and expert programs. Statistical methods (Chap. 3) are valuable

for qualitative as well as quantitative analysis, because they are used not only in

standard operations but also intended for expression and estimation of identifica-

tion reliability/error (Chap. 4). Knowledge expressed in different forms, ideally

as a component of computer expert systems (Chap. 7), is also one of the attributes

of identification procedures.

The main role in identification belongs to analysts themselves who choose

analytical techniques/methods, set up identification hypotheses (Chap. 3), establish

criteria for identification, and make the eventual decision on the nature of analytes

based on those criteria. Corresponding reference materials are aimed at confirma-

tion of identification results (Chaps. 5, 7–9). It is good practice when the analyst’s
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decision is supported by estimates of identification reliability. As a result of (a)

personal attitudes and (b) insufficient skill, experience, and responsibility of an

analyst, a result of identification including its reliability may (a) be personally

biased, and (b) contain human mistakes (e.g., see [9]).

1.5 Types and Objects of Identification

1.5.1 Main Classification

It may be clear or not clear what is to be analyzed, and correspondingly there are

two types of chemical analysis:

Analyst

· mental
operations

· decisions
Techniques

· tests

· instruments

· hyphenated

Methods

· procedures

· operations

· approaches

Knowledge
· human
· expert     

systems

Data systems

· databases

· software

· networks

Statistics
· data

processing
· probability

estimation

Reliability

· criteria

· errors

Reference
materials

· CRM
· pure

substances

Targets

· compounds

· mixtures

· samples

Identification

· principles

Fig. 1.4 Individual components of identification procedures
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l Target analysis is a determination of analytes specified before performing

analytical procedures.
l Non-target/unknown analysis is a determination of analytes unknown to a

chemist (but not necessarily absolutely new compounds) before analyzing

corresponding samples.

Correspondingly, there are two types of chemical identification. The difference

between them is shown in Fig. 1.5.

In the two cases, approaches to identification are not the same. Target analytes,

which are often regulated chemicals, are known to an analyst. So he or she can use

standard/validated methods for their determination, including standard operations

for identification. There are two possible results of target identification, which are

yes or no responses. Either one may be true or false (Chap. 4). Confirmation of

identification results may be required (Chap. 5).

Identification procedures of the second type are far more challenging to imple-

ment. General protocols for this kind of analysis are not only absent but also very

difficult to develop due to a profusion of possible analytes and approaches for

analyzing them. Unknown identification is initially based both on several different

analytical techniques and on various data (Chaps. 6 and 7). The skill and experience

of analysts engaged in non-target analyses are crucial for obtaining unambiguous

true results.

For discussion of some terminological differences between unknown and non-
target, see Sect. 7.1.

1.5.2 Subtypes of Identification

In this subsection, classification of sorts of identification is further considered.

The widespread identification subtype is identification of individual compounds.

Below, this sort of identification is supposed by default unless otherwise specified.

However, it is only one of the possible types of identification (see Table 1.1).

Chemical identification

Target

·  Does the analyte present
in the sample?

Non-target / unknown

·  What analyte present
in the sample? 

Fig. 1.5 Main classification of identification procedures
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Considering that chemical identification is essentially chemical classification, the

identification subtype is concluded to be predetermined by the type of the classifi-

cation unit (Table 1.1).

CH3

CH2
OH

1.1

If the classification unit is a group/class of compounds, there is one or other

subtype of group identification. Examples are aliphatic alcohols or oxygen com-

pounds as a whole (see Table 1.1).

It is also appropriate to differentiate between unambiguous and ambiguous
identification. The first is the exact assignment of the analyte to the corresponding

classification unit, e.g., identification of ethanol as “ethanol”. Ambiguous identifi-

cation means that only a wider class is determined, involving also other classified

groups at a necessary level. For the case of ethanol (Table 1.1), recognition of this

compound as “aliphatic alcohol” is certainly ambiguous, because this classification

unit covers also methanol, n-propanol, and the plethora of other alcohols. So group
identification of individual chemical compounds is always ambiguous. As such,

identification is rather “not fully accurate” than false; it may be valid when solving

some analytical problems.

Group identification of compound mixtures may be also unambiguous and ambig-

uous. The first case can be observed when there are no other mixtures within this class

(with this name). In the second one, there are two or more objects of the same name.

In the following situations, only group identification is possible or reasonable:

l The properties of compounds are very similar. In analytical conditions, they can

not be separated and characterized by their individual features. Enantiomer pairs

in achiral media are very good examples of this.

Table 1.1 Types of identification exemplified by ethanol 1.1

Classification unit Example Type of identification

Element C, H, O Element determination

Atomic group CH3, CH2, OH Structure elucidation

Individual compound CH3CH2OH Individual identification

Group of compounds Alcohols C1-C4 Group identification

Narrow class of compounds Aliphatic alcohols Group identification

Wide class of compounds Organic oxygen compounds Group identification

Substance, chemical, reagent,

material

Ethanol standard, 10% aqueous

solution

Qualitative analysis IIa

Product, commodity Ethanol–gasoline mixture

as biofuel

Qualitative analysis IIa

aIn this or similar cases, the qualitative procedure may be equivalent to common tests for

authenticity which include (a) composition analysis, (b) contamination/impurity detection and

identification, (c) fragrances and odor identification, and so on
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l Identification of many individual components of mixtures is possible but labori-

ous and expensive. Furthermore, the mixtures are used as a whole. Here, natural

mixtures of organic compounds such as petroleum fractions are good examples.

In qualitative analysis II (Chap. 8), identification of samples of compounds and

their groups is carried out. This is essential in industrial, custom, environmental,

and other controls performed using techniques of chemical analysis. Identification II

includes also chemotaxonomy (chemosystematics) where living organisms, e.g.,

bacteria or plants, are classified/identified according to a similarity in their bio-

chemical compositions. The objects mentioned above are differentiated by

l Specific/characteristic compounds and relationships between their amounts or
l Fingerprinting analytical signals in corresponding spectra or chromatograms

Different subtypes of chemical identification are illustrated in Fig. 1.6.

1.5.3 Identifiers

An analytical chemist recognizes chemical compounds not only in samples but

also in labels, documents, databases, and so on. For this purpose, identifiers are

used.

An unambiguous chemical identifier is a unique set of symbols such as letters,

numbers, lines, characters, and so on attributed to a chemical element, com-

pound, or substance for their unambiguous recognition in records, texts, and data

systems.

Among these are:

l Systematic names
l Registration numbers (RN) in data systems
l Formulas, first of all structural ones

OHN

Individual
compound

Group of compounds
or sample

Sample

Fig. 1.6 Objects for individual, group, and sample identification. The vitamin group can be

identified in the middle sample. The latter is also classified as a brand of multivitamin product

produces by some pharmaceutical company
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l Line identifiers to represent two- or three-dimensional (2D or 3D) structural

formulas

Such identifiers are shown in Table 1.2.

There are two basic systems of chemical nomenclature, which are IUPAC [30, 31]

and CAS [30, 32] naming, both being widespread. For many chemical species, there

is also a profusion of other names: (a) traditional, trivial, or semisystematic, and

(b) trade/brand ones. The latter mainly specify substances which are formulations

produced by chemical companies rather than absolutely pure individual compounds

as something abstract. Examples of trade and related names of Carbendazim

(Table 1.2) are: Carbendazole, Mecarzole, Carbendazime, Carbendazol, Bavistin,

Thicoper, Derosal, Funaben, and so on [28, 33]. These are name synonyms that can

be found in many chemical databases. A trade name may be an ambiguous identifier.

The most known registration numbers (the numeric identifiers) are connected

to the Chemical Abstract Service data system [34]. A CAS RN contains up to 10

digits, divided by two hyphens into three parts (see Tables 1.2 and 1.3). This

number designates only one substance, not necessarily the individual compound.

The mixture or group of isomers (see Table 1.3) or even non-isomeric compounds

may have the unique RN. This reflects a possibility of ambiguousness of identifica-

tion results; see Example 1.1.

Table 1.2 Unambiguous identifier for the pesticide Carbendazim [28, 29]

Type Identifier

IUPAC Name Methyl N-(1H-benzimidazol-2-yl)carbamate

CAS Name Methyl 1H-benzimidazol-2-ylcarbamate

CAS RN 10605-21-7

Structural formulas

N

N
H

N
H

O
O

SMILES COC(¼O)NC1¼NC2¼CC¼CC¼C2N1

InChI InChI¼1S/C9H9N3O2/c1-14-9(13)12-8-10-6-4-2-

3-5-7(6)11-8/h2-5H,1H3,(H2,10,11,12,13)

Table 1.3 Identifiers for sec-butylbenzenes C10H14

# CAS RN Semisystematic name IUPAC name Structure

1 5787-29-1 (R)-sec-Butylbenzene [(2R-Butan-2-yl]benzene 1.2

2 5787-28-0 (S)-sec-Butylbenzene [(2S-Butan-2-yl]benzene 1.3

3 36383-15-0 (�)-sec-Butylbenzene [(2RS-Butan-2-yl]benzene 1.2 þ 1.3

4 135-98-8 sec-Butylbenzene Butan-2-ylbenzene 1.2 or 1.3 or 1.2 þ 1.3
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H

1.2

H

1.3

Many CAS RN refer to patented formulations, e.g., pharmaceutical and agro-

chemical compositions. In general, RN of this data system are assigned to chemical

substances in a wide interpretation of this concept [34] (Fig. 1.7).

Structural formulas as identifiers are 2D or 3D dimensional ones (e.g., see

Table 1.2). These can be created and modified by numerous molecular drawing

programs. It should be noted that common molecular formulas (brutto formulas),

e.g., C2H6O, are not unambiguous identifiers. That formula belongs to ethanol

CH3CH2OH and dimethyl ether CH3OCH3 as well.

For computer input, storage, and processing of chemical information, structural

formulas are supplemented or substituted by line symbol identifiers such as

SMILES (Simplified Molecular Input Line Entry Specification) [35, 36] and

InChI (IUPAC International Chemical Identifier) [37] (e.g., see Table 1.2). Both

identifiers express chemical structures in standard machine-readable formats. There

are computer programs, e.g., the same molecule editors, for transformation of

structures to line identifiers and for the reverse operation (see [36, 37]).

In contrast to CAS RN, (a) the line notations are freely usable, non-proprietary,

and not assigned by the only organization, and (b) the corresponding structural

information can also be human-readable. Generally, all the above identifiers have

been entered in modern chemical databases and spectral libraries (Chaps. 6 and 7).

Certainly, modern chemical data systems also have their own identifiers, codes, and

notions. The latter refer to not only chemical entities but also different information

useful for identification, e.g., spectral bands [38].

1.5.4 Known Chemical Substances

Several universal chemical spaces, i.e., large sets of possible or available chemical

compounds, may be discerned:

Example 1.1. Identification of each enantiomer, 1.2 or 1.3, as (R)- or (S)-sec-
butylbenzene respectively is the unambiguous conclusion. The proper recognition

of the isomeric mixture of 1.2 and 1.3 as the racemic pair, (�)-sec-butylbenzene,

is the unambiguous group identification. Conversely, assigning the general name

of sec-butylbenzene to either enantiomer is an ambiguous group identification,

because this classification unit corresponds to three outcomes of determination:

the individual compound (a) 1.2or (b)1.3, or (c) themixture 1.2þ 1.3 (Table 1.3).
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1. All possible stable compounds

2. Compounds which can be synthesized by chemists with the use of known reac-

tions

3. Known compounds synthesized or isolated from natural sources

4. Widely occurring (abundant) chemical compounds

Here, each preceding set is far more numerous than the following one. Really, the

dimensionality (the number of set elements, i.e., compounds) of set 1 is estimated as

1020�10200 [39] or 1060 [40] compounds (drug-like ones with molecular masses

� 500 Da). The dimensionality of set 2 (“virtual organic chemistry space” [41]) is

supposed to be between 1010 [42] and 1020�1024 [41] compounds.

By definition, the number of possible answers obtained in identification does not

exceed the number of known chemical substances, i.e., the dimensionality of set 3.

By October 2009, more than 110 million substances had been recorded [43].

According to the simple binary classification, this set was composed of more than

50 million organic and inorganic substances, i.e., low-molecule ones, and more than

61 million of biosequences [43]. The overall number of CAS RN exceeds that of

individual chemical compounds. At the same time, the author’ observation is that

most RN of low-molecule substances are connected to individual compounds.

Nuclear
particles

Elements,
isotopes 

Inorganic
compounds

Metals,
alloys,

minerals,
materialsCoordination

compounds,
organo-
metallics

Organic
compounds

Proteins,
nucleic acids 

CAS RNPolymers

Fig. 1.7 Groups of chemical entities according to CAS classification.
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The growth of known substances is demonstrated in Fig. 1.8. So far, most of

them are proteins, nuclear acids, and other biosequences. They emerged in a great

number at the end of the previous century and at the start of this one, due to the

progress in genomics and proteomics. The rate of their growth slowed down by

2004–2005 (Fig. 1.8).

In recent years, the set of low-molecule substances has been rapidly increasing

(Fig. 1.8). This is possibly due both to the growing synthetic/analytical capacities of

chemists, and to the patenting of new formulations of “older” chemical compounds.

So, a new intersection of the trend lines for low and high molecules can be predicted

for the future (see Fig. 1.8).

Availability of the vast plethora of known/registered compounds does not imply

that any of them could be detected in analysis of materials, foodstuffs, environmen-

tal and biological samples, and so on. All known compounds can be divided into

abundant (popular, widespread, commonly occurring, i.e., belonging to the chemi-

cal space 4, see above) and rare ones. Rare compounds, which are about 99% of all

the substances (see Sect. 6.3), can hardly be determined in the above matrices.

Regular analytes are abundant compounds which are:

l Industrial chemicals and impurities in them, their metabolites and different

conversion/decomposition products
l Solvents
l Components of fossil fuels
l Toxins and toxic compounds of a different origin
l Biocompounds, both low-molecular ones such as metabolites and high mole-

cules, e.g., main nuclear acids, proteins, and carbohydrates
l Substances formed on storage and processing of wastes, and some others
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Fig. 1.8 The overall number of substances registered in CAS
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Most abundant compounds are regulated by international, national, and local

organizations. Regulated compounds/substances have been entered in the CHEM-

LIST special database [44].

1.6 Principal Approaches to Identification

General procedures which are specially performed for identification or in which

experimental analytical data are particularly used for that purpose can be named

general approaches for identification. Four such approaches are given and com-

mented on in Table 1.4.

As a whole, the identification reliability increases in series: 4<3<2<1 (for the

numbers, see Table 1.4). Only the most reliable means [first, comparison with
reference data obtained in conditions very similar to experimental ones (the version

of the approach 2) and second, co-analysis with authentic analytical standards (the
approach 1)] are used in target determinations by validated confirmatory methods

(Chap. 5). In the literature, identification of high reliability may be referred to as a

definitive one.
In non-target screening, all possible means are required, with the enforced use of

only approaches 3 (comparison with non-experimental reference data) and 4 (spectral
interpretation) in cases of very rare and new analytes where reference data/materials

are not available. Identification of the intermediate reliability typical for screening

procedures is called a tentative, preliminary, or putative one.

1.7 Metrological Issues

The foregoing shows that identification is based on observations and measurements.

For organic and bioorganic compounds, only measurements provide reliable results

of individual identification, with measurands being wavelengths, frequencies, ion

masses, retention times, and so on. Metrology is connected to identification (in

general, qualitative analysis) as well as to quantitative analysis [12, 19, 45, 46].

Metrological aspects of qualitative analytical procedures will be considered partly

in this section and further in Chap. 9.

Traceability. This is among the basic concepts connecting metrology and

chemical analysis. By definition, metrological traceability is

property of a measurement result whereby the result can be related to a reference through a

documented unbroken chain of calibrations, each contributing to the measurement uncer-

tainty [47].

The concepts of traceability chain and traceability to a measurement unit are
also used in this context [47].

16 1 Principles of Identification



In chemistry, (a) a reference is an analytical standard (reference material) and (b)

a measurand is an amount of substance, with the mole as the SI base unit. Also, it
has been emphasized that

. . . identity and amount. . . together constitute an “amount of substance”[48]

and

the mole is, by definition, the amount of a specified substance. . .[45].

Table 1.4 Means of identification

# Means Essence Remarks

1 Co-analysis Comparison of properties of

an analyte and a

authentic reference

material in the same

experiment (by

simultaneous analysis)

Spiking the sample with the reference

material of the analyte does not lead the

significant distortion of the analytical

signal. It is the strongest evidence for the

presence of the analyte. Classical mixed

probe in melting point measurements, co-

chromatography and co-spectrometry

(spectral mixing experiment) are the best

examples

2 Comparison to

experimental

reference data

Reference data originate

from the experiments;

experimental conditions

may be somewhat

different in compared

cases

The widespread cases are spectral libraries

and databases on chromatography RI,

where reference data were recorded on the

same instruments in not the same

conditions or on other instruments. The

most reliable reference data originate from

the same laboratory and analytical

instrument and replicate/successive

experiments (successive spectral scans,

chromatographic runs)

3 Comparison to

theoretical/

predicted

reference data

Reference data are

calculated/predicted

based on theories,

empirical regularities,

correlations, models,

and so on

The popular instances are estimating of GC RI

(Sect. 7.2), simulation of NMR spectra

(Sect. 7.6), and prediction of mass spectra

of peptides (Sects. 4.4.2.3, 7.4.1.4, and

7.7.2). In the absence of valid

experimental values, the data, if

accurately estimated, can be used in

screening-type procedures. The use of

data originated from an experiment and

corrected by one or other calculation

method can be referred to both the above

and this approach

4 Data

interpretation

Conclusion about molecular

composition and

structure made from

data (spectra) using

special rules and

algorithms

Individual spectral lines/peaks, more

properly, their features including

intensities and intensity ratios, and also

complex spectral patterns are assigned to

some atoms or atomic/functional groups.

Software for interpreting spectral data is

the core of computer expert systems. This

approach is the principal one in structure

elucidation of new compounds
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Indeed,

when the mole is used, the elementary entities must be specified and may be atoms,

molecules, ions, electrons, other particles, or specified groups of such particles [49].

It follows that the concept of traceability [45, 48, 50, 51] should be treated in the

wide version of both qualitative and quantitative determinations. In other words,

traceability claims are to be proposed to demonstrate “unbroken chains” covering

both identity and amount of substance (see [48]).

The consequence of such “metrologization” of identification processes is the

focus on a comparison between analytes and references (i.e., analytical standards)

in traceability chains; this comparison can be considered as a variant of special

“calibration for identity”. Analytical chemists have traditionally considered match-

ing properties of an analyte and a reference material in the same experimental

conditions as the perfect evidence for identification (Sect. 1.6). In line with that,

such procedures have also the highest metrological quality because analytes are

“related to a reference” in the direct, shortest, and most certain way (Fig. 1.9).

Other means of identification shown in Fig. 1.9 are of worse metrological

quality, in accordance with conclusions of analysts on their reliability (see

above). The RM values obtained in different experimental conditions, including

an analytical instrument from another manufacturer and/or an impure reference

material, may be significantly biased to a basic value. This increases uncertainties

related to that value, and therefore probabilities of identification errors. In the

subsequent approach, theoretical values may be inaccurate, i.e., the theory or

prediction model may be a weak link in “unbroken chain of comparisons,” though

such data as NMR spectra or GC retention indices are well-predictable. Lastly,

spectral interpretation commonly based on rules, regularities, pattern recognition,

etc. is as yet hardly traceable to any references in a direct way.

Thus, the traceability concept holds a central position in the metrology of

qualitative analysis (see also [7, 12]). Demonstration of traceability calls for

availability of reference materials (authentic pure compounds, matrix standards

and so on; see Chap. 9). The concept (in versions of “sample traceability”, “mate-

rial traceability”) is also applicable to qualitative analysis II where it is important,

e.g., to find out an origin of food products under their characterization (Chap. 8).

Nominal scale. In metrology of qualitative analysis, not only quantitative but

also other scales [52], ordinal and nominal, are of value (see Table 1.5). Identification

itself can be represented as ameasurement on a nominal/classification scale. Conditional

points in the scale are specified by corresponding identifiers (Fig. 1.10). There may not

only beCASRNbut also other numerical codes. Given that these are just codes, the only

arithmetic operations allowed for this scale are equality and inequality. The operations

are equivalent to considering the null and contrary hypotheses (Sect. 3.6).

The scale shown in Fig. 1.10 is advantageous for demonstrating some results and

errors of qualitative analysis. As an identification result, a point on the nominal

scale assigned to an analyte may be true or incorrect/false. In the case of assigning

the name of the individual compound (e.g., (R)- or (S)-sec-butyl benzene; see
Fig. 1.10 and also Table 1.3) to the compound group (butyl benzenes), it is a
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false identification. The opposite outcome (i.e., attributing the group identifier to

the individual substance) is group identification or individual “underidentification”

(“not fully accurate” identification), which is a not very significant error.

A special sort of false results may be due to inaccurate records in chemical

databases, including electronic spectral libraries:

l Incorrect chemical names
l Multiple registration of unique chemicals
l Confusion of identifiers (e.g., CAS RN) in the case of optic isomers
l Attribution of bases/acids to RN of corresponding salts and vice versa

These can be named “identifier errors”.

So a nominal scale is another aspect of metrology of qualitative chemical

analysis which emphasizes an importance of correct chemical identifiers in com-

puter-assisted identification. A somewhat analogous nominal scale is used in

medical data systems [53]. In qualitative analysis II, the concept of nominal scale

1

4

3

Value of the 
measured
quantity

Value of the 
measured
quantity

Biased
value of the 
measured
quantity

Interpretation
Theoretical
value of the 
measured
quantity

Analyte

RM

RM,
different 

conditions

2

Fig. 1.9 Traceability chains in identification of an analyte using general approaches. 1. Compari-

son of the value of the measurand between the analyte and the authentic RM in the same

experiment (“calibration for identity”). 2. Comparison with the value of RM obtained in not the

same experimental conditions or, in other words, with data of worse/unknown quality. 3. Compar-

ison with the theoretical/predicted value of the RM quantity. 4. Interpretation of experimental data

(spectra) obtained for analyte. Numbering coincides with that in Table 1.4

Table 1.5 Different scales related to identification procedures

Scale Example

Quantitative (ratio, interval) Time (RT, RRT), mass (m/z), wavelength,
frequency, and so on

Ordinal Rank of match factors in a hit list

Nominal Chemical identifier
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is less applicable. The reason is that classification units such as “wine brand” or

“pollution type” are not accurately defined as constant compositions. It is not clear

how many points and what identifiers should be in such classification scales. Taking

into account that it is also hard to make authentic RM for foodstuffs, pollutions, etc.

(Sect. 8.1.4), analysis II seems not to be reliably supported by metrology.
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Chapter 2

Techniques and Methods of Identification

Abstract In this chapter, techniques and method of chemical analysis are dis-

cussed, with the focus on their potential for use in identification procedures. It is

demonstrated that analytical techniques providing more information, in particular

molecular spectrometry, are preferred for identification. Other techniques are just

briefly considered, with for the exception of chromatography, whose combination

with spectrometric techniques sharply increases possibilities and trueness of iden-

tification. As a whole, mass spectrometry is superior to other spectral techniques in

such features as sensitivity, selectivity, generation possibility of molecular mass/

formula, and combinability with chromatography. Different types of mass spectro-

metric instruments are outlined, with many performances tabulated. Experimental

conditions for identification of volatile, non-volatile, and high-molecule com-

pounds are discussed. Next, classification of chemical methodologies is given

where screening and confirmatory methods are noted. Related procedures, sample

treatment, and quantitative determination are also considered as ones affecting

qualitative analysis.

2.1 General

Any analytical techniques can be used for the purpose of identification, though their

potentialities are not the same.

An analytical process can be considered as a generation of information [1, 2].

In turn, unambiguous true identification, especially that of unknown compound

(Sect. 1.5.1), needs a large amount of information. The reason is that the results of

the procedure are very often complex chemical compounds. Their molecules differ

between each other in elements and the number of their atoms, types of chemical

bonds, configurations and conformations. The molecule complexity increases with

the number and diversity of atoms, bonds, molecular configurations/conformations.

Correspondingly, the amount of information required for the full description of

complex molecules and differentiation between them is also increased. This is

expressed, for example, in a length of the line notation (see Table 1.2). Thus

analytical techniques providing more information (Table 2.1), such as those of

B.L. Milman, Chemical Identification and its Quality Assurance,
DOI 10.1007/978-3-642-15361-7_2, # Springer-Verlag Berlin Heidelberg 2011
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molecular spectrometry, are preferred for identification, other factors being equal.

Using proper methods, higher selectivity is achieved, which also expressed in a

larger number of identification points (Chap. 5). At the same time, some techniques

generating a lot of information such as emission spectral analysis (Table 2.1) are not

applicable in molecular analysis with its numerous identification problems.

Statistical data on articles related to identification prove the above conclusion

(Fig. 2.1). Spectrometry (-scopy) first, then mass spectrometry and chromatography

are the top techniques used for the purpose.

Another three techniques of molecular analysis are also prominent (Fig. 2.1).

Electrophoresis is a very important separation technique somewhat analogous to

chromatography. Fluorescence techniques are very widespread in biochemical

analysis, and often do not provide unambiguous identification; rather, they are

techniques for selective detection of certain compounds. The third common tech-

nique in this series, X-ray diffraction, is used in structure elucidation of new

compounds and qualitative analysis II, e.g., for identification of minerals.

2.2 Elemental Analysis

Qualitative determination of elements/metals/ions is rarely named “identification of

elements”, though this is what it means. In contrast to molecular qualitative

analysis, with a lot of organic compounds having very similar properties, elemental

identification is relatively simple in implementation, because elements are not

numerous and differ notably in their properties. Elemental analysis is well-

described in literature (e.g., see [4, 5]. Here, related techniques are only listed:

l Qualitative reactions: spot/tube tests, other chemical test systems
l Flame test
l Polarography and related methods
l Photometry and spectrophotometry
l Atomic emission/absorption spectroscopy
l X-ray fluorescence analysis

Table 2.1 Amount of information generated by different techniques

[1, 3]

Technique Potential information, bits

Spot test 1

Titrimetry 100

Emission spectral analysis �2,000,000

X-ray spectroscopy �50,000

Polarography 800

Gas chromatography 8,000

UV–Vis spectrometry �1,000

IR spectrometry ~10,000

Mass spectrometry ~2,000,000
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l Neutron activation analysis
l Ion chromatography
l Inductively coupled plasma mass spectrometry
l NMR and some others

These techniques mainly refer to inorganic analysis and can be applied to

organic one as well. There are also special techniques of organic elemental analysis

which use elemental analyzers (e.g., [6]).

Elemental analysis has been advanced in the version of speciation analysis,

which may be a combination of the former with a molecular one [7]. Speciation

is a determination of the particular chemical form, e.g., a charge/valence of a metal

ion or a molecular/complex compound in which an element occurs in a sample.

Analytical problems of the second kind are solved using techniques of molecular

analysis.

Fig. 2.1 The number of scientific articles on identification performed by different techniques. The

Google scholar engine was used for the search between 23 and 25 August 2009. In searches,

articles with a combination of (a) the “identification” key word and (b) the corresponding

technique name in the titles were retrieved
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Data obtained from elemental analysis can be required for identification/classi-

fication of samples themselves, i.e., in qualitative analysis II (Chap. 8).

2.3 Electrochemistry

Determination of inorganic and organic compounds by electroanalytical techniques

includes identification of analytes. For this purpose, polarographic and voltam-

metric techniques [8] seems to be the most popular ones. The techniques are

applicable for identification of electrochemically reducible (e.g., nitro, nitroso,

and azo) compounds and oxidizable (aromatic amines, phenols) compounds (e.g.,

see [9–11]). Voltammetric peak potentials are quantities measured for identifica-

tion. Two types of electrochemical devices, sensors [11, 12] and selective HPLC

detectors [13], are of value for advanced chemical analysis.

2.4 X-ray Diffraction

X-ray diffraction is used for structure determination of inorganic and organic solids

and identification of crystalline phases [14, 15]. In these types of analysis, diffrac-

tion theory and/or the comparison of the positions and intensities of the diffraction

peaks to libraries of known crystalline materials are exploited. Multiple phases in a

sample can be recognized. Identification of minerals in geological samples is the

best known example of the use of the technique in qualitative analysis II [14].

2.5 Microanalytical Systems

One of the trends in analytical chemistry, miniaturization of techniques [16], is

expressed in the appearance of, for example, numerous chemical test systems [17]

and sensors [12]. They are very suitable for:

l Purposes of detection and screening
l Field and industrial analysis
l Beginning analysts
l Qualitative analysis II

and applicable in both elemental and molecular analysis, but not sufficiently

selective to unambiguously identify most complex molecular species.
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2.6 Biological Techniques for Chemical Analysis

Developing biosensor techniques combined with electrochemical devices can be

used for screening of some chemicals [12, 18]. Methods based on bioassays, e.g.,

ones using enzymes, are specific to certain substances and sensitive, i.e., suitable

for qualitative confirmation [19, 20]

2.7 Chromatography and Related Techniques

The main chromatography techniques and capillary electrophoresis (CE) are briefly

described in Table 2.2. They are not only separation techniques but also complete

analytical ones, because the instruments include detectors. The chromatographic

signal is at least a two-dimensional one, as are most other analytical signals. One

measurand is a retention/migration parameter. The second measurand is an overall

intensity of a signal. For detection, just the fact of the presence of a signal itself, i.e., a

yes response, is adequate (Chap. 4). In chromatography combined with spectrom-

etry, signals are of complicated structure consisting of individual spectral peaks.

All the quantities are used for identification. The retention/migration parameters

are purely chromatographic quantities for qualitative analysis. The range criteria for

them are included in both analytical methods (retention times, Chap. 5) and non-

target analysis (indices, Chap. 7). Co-chromatography is of prime value in confir-

matory analysis (Sects. 5.2 and 5.4). Changes in polarity of stationary or mobile

(LC, TLC) phase provides additional evidence for confirmation.

In identification procedures as well as in quantitative analysis, chromatographic

resolution is the definitive parameter. As it increases (capillary columns > packed

columns in GC, UPLC > HPLC > column chromatography), selectivity of deter-

mination also rises, and probability of false and inconclusive results diminishes.

Other identification capabilities depend on the detector type. First, in the case of

a specific detector, a chromatographic signal itself may be diagnostic in terms of

identification. Examples are nitrogen phosphorous and electron capture detectors in

GC (Table 2.2), which indicate the presence of N and P and halogens respectively

in an analyte molecule. Second, signals of the basic universal detector, mass

spectrometer, and some other spectral tools are multiline spectra unambiguously

characterizing many analytes (see below). Chromatographs in such hyphenated

instruments can be rather considered as suitable inlet devices.

2.8 Molecular Spectrometry

Main spectrometric techniques usable in identification procedures are outlined in

Table 2.3. Mass spectrometry provides more useful information (Table 2.1), and

has more analytical applications and less limitations than other methods (see also

Sect. 7.8). However, many laboratories use one or more other spectrometric tech-

niques if possible for more reliable qualitative determinations.
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2.8.1 UV–Vis Spectroscopy

Spectra of this kind rarely lead to unambiguous identification of individual com-

pounds, and rather characterize classes of unsaturated organic compounds [28].

Numerous brand names of UV–Vis spectrometers are manufactured. Such “simple”

spectrometers are not easily applicable to identification of substances in mixtures.

Table 2.3 Techniques of molecular spectrometry (-scopy) for identification

Technique Principle Main applications Limitations

UV–Vis [28, 29] Measurements of light

absorption at different

wavelengths in ultraviolet

(wavelengths 190–400 nm )

and visible (wavelengths

400–780 nm) part of the

spectrum due to electronic

excitation

Detection for HPLC Spectra characterize

chromophore

types rather than

individual

compounds

IRa [28, 30] Absorption measurement of IR

radiation (wavenumbers

from 13,000 to 10 cm–1,

wavelengths from 0.78 to

1,000 mm) due to vibration

excitation

Structure elucidation

(determination of

functional

groups),

qualitative

analysis II

(polymers,

plastics, resins,

food, and so on)

Relatively low

sensitivity

(�1–10 mg is

commonly

needed for

spectral

recordingb); low

compatibility of

IR detector with

GC and

especially LC

NMR [28, 31] Absorption of radiation in the

radiofrequency range of the

electromagnetic spectrum

(hundreds of MHz) due to

changes in the spin states of

the atom nucleus

Structure elucidation

of pure

compounds,

metabolomics,

qualitative

analysis II

Relatively low

sensitivity

(�100 mg is

commonly

needed for 1H

spectral

recording, with

lesser amounts in

a few hours

acquisition

timec); slow

progress in

LC–NMR

MS [28, 32, 33] Measurement of mass (up to

106 Da) and amount of ions

(down to a few counts)

generated from atoms/

molecules of a substance

All kinds of

chemical

analysis

Lower applicability

in direct analysis

of unpolar high-

molecular

compounds
aRaman spectroscopy [34], together with IR called vibrational spectroscopy, provides comple-

mentary information for the particular functional groups
bIt was noted that from 5 to 20 ng was sufficient for recording spectra by GC–FTIR [35]
cMeasuring limits and analysis times have been sharply reduced with the progress in NMR

technique [36]
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However, a liquid chromatograph is easily combined with a photo-diode array

detector (DAD), which is the widespread analytical instrument for analyzing

complex mixtures [29]. For the purpose of identification

l Reference value tables of lmax, wavelengths at absorption maximums, and e,
molar absorptivities

l Full spectra entered in spectral collections, databases, and e-libraries

(Sect. 7.3.2)

are commonly used

2.8.2 IR Spectroscopy

In classical IR spectroscopy, pure organic compounds were elucidated/identified by

means of spectral interpretation using reference tables containing (a) specific

wavenumber of absorption bands of different functional groups and (b) specific

band absorption (strong, medium, or weak) [28, 30, 35]; see also references in

Sect. 7.5. The modern state of the technique, typically using FT-IR instruments, is

characterized by widespread application of:

l Electronic libraries of IR spectra (Sect. 7.5)
l NIR (13,000–4,000 cm–1), with minimal or no sample preparation, fast determi-

nation, and reduced costs, for analysis of foodstuff, pharmaceuticals, chemicals,

polymers, and so on, e.g., in qualitative analysis II (Chap. 8)

Substantial limitations of the technique become apparent when mixtures of

compounds and their traces are analyzed (see Table 2.3 and also Sect. 7.8).

2.8.3 NMR Spectroscopy

The technique of high-resolution NMR is indispensable for structure elucidation of

pure chemical compounds [28, 31]. Depending on the nucleus, the main types are
1H and 13C and also 15N, 17O, 19F, 29Si, and 31P NMR. There may be 1D or 2D

versions of the spectra; the role of 2D 1H-13C spectra used for identification has

been growing.

In the classical approach to structure elucidation by spectral interpretation,

reference tables of corresponding measurand values, chemical shifts and spin–spin

coupling constants, accounting for signal multiplicity, are used. The spectral values

are very sensitive to changes in molecular configurations and conformations. So

NMR techniques are of the first value in the solution of stereochemical problems.

Now, there are two advanced approaches to identification/structure elucidation

(Sect. 7.6). First, a computer spectral simulation is applicable. NMR spectra are

easily predictable for hypothetical structures, and can be used for comparison with

spectra recorded for analytes. Second, such comparisons can be performed if

reference databases comprising of experimental NMR spectra are available. Both
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approaches are rapidly developed, and well deserve more attention from the

analytical chemist. Nevertheless, relatively low (a) sensitivity and (b) identification

power in relation to individual components of complicated mixtures (see Table 2.3)

still limit NMR applicability in qualitative analysis I. In contrast, NMR applications

in qualitative analysis II seem to be in progress (Chap. 8).

2.8.4 Mass Spectrometry and Chromatography Mass
Spectrometry

As a whole, this technique is superior to other spectral ones in the combination of

features such as sensitivity, selectivity, generation possibility of molecular mass/

formula, and combinability with chromatography. Gas or liquid chromatographs as

inlet devices to mass spectrometers separate complex mixtures of chemical com-

pounds for their subsequent detection and recognition, with increased selectivity of

combined techniques.

Thus, mass spectrometry and chromatography mass spectrometry have the highest

potential for qualitative determination of complex organic compounds in complex

mixtures/matrices. This advantage, together with the perfect capabilities of quantita-

tive analysis (methods of isotope dilution), results in a rapid development and

widespread application of the two techniques. It is clearly proved by the statistical

data. Mass spectrometers held a 42% share of the global market for instruments for

molecular analysis [37]. The number of mass spectrometers in the world grew from

34,000 in 1999 to more than 200,000 in 2005 [37].

Figure 2.2 shows a typical schematic diagram of mass spectrometers. The type

of mass analyzer determines the main features of mass spectrometer and its

“generic name.” The most popular mass analyzers are specially specified in

Table 2.4. The most popular combinations of mass analyzers with different ion

sources and chromatographs as commercially manufactured mass spectrometers

and chromatograph-mass spectrometers are placed in Table 2.5. The choice of the

instrument for identification depends on properties of analytes and also data types

necessary for identification. The latter are:

l Masses of the most important ions, i.e., molecular and analogous ones and

intensities of the mass peaks
l Masses of individual fragment ions and intensities of their mass peaks
l Accurate ion masses and corresponding molecular formulas
l Full mass spectra, including tandem and high-resolution mass spectra

In mass spectrometry, the most important compound properties are volatility,

polarity of molecule, and molecular mass. Based on these properties, all compounds

are divided into three groups.

Gases, volatile, and semi-volatile compounds. These compounds are less

numerous than non-volatile ones, but until recent years have more often been

analyzed by mass spectrometry.
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Here, the combination GC–MS including EI (CI is less frequently applied) and

quadrupole mass analyzer is the standard working instrument. In most cases,

identification of volatile compounds is reliable. There are several reasons to form

this conclusion. First, the number of the volatile substances is theoretically limited.

A difference in properties between them is larger than among a huge number of

non-volatile compounds having higher (and indefinitely high) molecular masses.

Therefore, gases and volatile compounds are more easily differentiated for forth-

coming identification.

A second group of reasons partly related to the first one are:

l The properties of the compounds under discussion are also well-studied, and

corresponding values of measurand are well-reproduced
l Databases containing EI mass spectra and GC retention indices are commer-

cially produced (Chap. 7)
l Many efficient analytical methods of quantitative and qualitative determination

of this group of compounds have been developed and validated

Control
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Fig. 2.2 Schematic of mass spectrometer. Main methods of ionization and types of mass analyzer

are specified. Tandem mass spectrometers (tandem-in-space instruments) are made of several

analyzers. Chromatograph as separation instrument is sometimes substituted by electrophoresis

device. Mass spectrometers can be certainly used without chromatographs, e.g., instruments with

laser desorption/ionization (MALDI) and also secondary ion emission (SIMS)
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Reference comparisons to full (MS libraries) or partial (a few peak) spectra and

GC retention parameters and co-chromatography (co-spectrometry) are general

means for identification of these compounds (Chaps. 5 and 7).

Non-volatile low-molecular compounds. In comparison to the above group,

they have higher molecular mass and/or are more polar. Some polar compounds

can be derivatized into corresponding volatile ones for further identification by

GC–MS. If derivatization is impossible, inefficient or not achieved, various mass

spectrometers and liquid chromatograph mass spectrometers (Tables 2.4 and 2.5)

are used for the purpose.

ESI is the main ionization method. However, corresponding mass spectra are

not rich in peaks of fragment ions. Tandem mass spectrometry (MSn) is required

where fragmentation is enhanced, due to collisions (collision activation) of analyte

ions with the gas target within the special chamber. Integer-valued molecular

masses may be insufficient for differentiating between heavier molecules of many

Table 2.4 Modern mass analyzers and their combinationsa [38–40]

Mass analyzer Mass

range

Mass

accuracy

Fragments for

identification

Priceb MSn

Quadrupole þ þ EI: from þþ to

þþþ ESI: þ
$ no

Triple quadrupole þ þ ESI: þþ from $$ to

$$$

MS2

Ion trapc þ þ ESI: to þþ from $ to $$ MSn

Time-of-flightd þþþ up to

þþþ
MALDI: þe $$ no

Quadrupole-time-

of-flight

from þ to

þþþ
up to

þþþ
ESI and MALDI:

þþ
$$$ MS2

Orbitrap þ þþþ from þ to þþf from $$$ to

$$$$

g MSn

Ion cyclotron resonance þ þþþh from þ to þþf $$$$ g MSn

aGeneral interpretation of symbols unless otherwise stated: þþþ high, þþ medium, þ low. For

mass range and accuracy, þ corresponds to a few thousand Da and from a few hundredth through

several tenths of Da respectively. In the case of fragmentation: þ a few fragments, þþ not very

characteristic/reproducible fragmentation, þþþ reproducible fragment spectra providing reliable

identification
bPrice grows up from $ (up to about $ 100,000) through $$$$ (not less than about one million

dollars)
cThe common ion trap is a quadrupole one. Now analyzers of the newer type, linear ion traps, with

better performances, are also manufactured
dUnlimited mass range, high-speed scans, identification based on accurate molecular mass (accu-

racy about a few ppm)
eFor recording mass spectrum of fragments in MALDI, the Q-ToF and ToF-ToF instruments have

entered into practice
fDepends on the ionization technique and the tandem combination with different analyzers

providing MSn capabilities
gCombinations with ion traps
hThe highest mass accuracy
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compounds. So HRMS leading to accurate molecular mass is required more than in

the case of volatile substances. The combination of HRMSn is especially advanta-

geous (Chap. 7).

Techniques and methods of identification using HPLC–MC are in progress, and

approaches for many analytes have not yet been advanced. General challenges in

identification are due to the following factors:

l ESI–MSn spectra and also HPLC retention parameters are not very reproducible
l Libraries of MSn spectra are far from being complete

That is why identification means directly based on the use of reference materials,

starting with co-chromatography and co-mass spectrometry, are more important

than in the case of volatile analytes.

High-molecular compounds. These compounds, both bio substances and syn-

thetic polymers, are non-volatile “by definition.” High mass, up to 106–107 Da, is

the challenge because the corresponding mass range is only covered by ToF

instruments. Therefore, mass spectrometric analysis of molecular fragments formed

in the process of proteolysis (proteins) or pyrolysis (synthetic high molecules) is

typical for the field. However, in the case of polar N-containing bio polymers

(peptides, proteins and other), ESI produces multicharged ions [M þ nH]nþ that

shorten the m/z range necessary for comprehensive MS analysis of these com-

pounds with the use of non-ToF tools. Therefore, this ionization technique became

the leading one in bio mass spectrometry.

Table 2.5 The most common mass spectrometers and chromatograph mass spectrometers for

organic and bioorganic analysis

Instrument Application Comment

Gas chromatograph–mass

spectrometers

Volatile and semi-

volatile organic

compounds

l Rather simple, bench top, and

inexpensive instruments
l Commonly EI and single

quadrupole mass analyzers

Liquid chromatograph low-

resolution mass

spectrometers

Non-volatile low-

molecular

organic

compounds

l Increasing role of tandem

instruments, i.e. ion traps and

triple quadrupoles
l ESI is the most popular ionization

Liquid chromatograph–high-

resolution mass

spectrometers

Non-volatile organic

compounds

including high-

molecular bio

compounds,

proteomics

l Expensive instruments: time-of-

flight, Orbitrap, and ion

cyclotron resonance ones

combined with other analyzers
l ESI and some other ionization

techniques

Mass spectrometers for non-

volatile compounds without

chromatography

Bio compounds,

proteomics,

polymers

l Sample as a thin surface layer of

organic compound in matrix
l MALDI and also SIMS to a lesser

degree
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Determination of unpolar polymer compounds is a challenge for MS, because

they are hardly ionized. Here, some analytical approaches are proposed in which

MALDI, for example, is engaged [41].

Another concern is the production of reference materials providing the strongest

evidence for identification (Chaps. 1, 8, 9). For example, there are no available

standards for most proteins. So identification of many of them (Chap. 7) seems to

be tentative.

2.9 Methods

Different techniques form the basis of various analytical methods. In turn, methods

are classified according to techniques used for a proper determination of chemical

compounds.

There is also another classification of chemical methodologies consisting of a

hierarchy of analytical techniques, methods, procedures, and protocols [42]. In its

description, the top level placed by technique lacks numerous details with regard to

chemical operations. As lower hierarchy levels are reached, techniques become

more specific. A method document consists of descriptions of individual proce-
dures. At the bottom level, protocol, a complete description of all operations

included to perform chemical analyses is represented [42]. Also, standard
operating procedure occurs in the literature as a sort of synonym for a protocol.

Analytical methods are also divided on the basis of their reliability, i.e., a level of

erroneous results. Now, many analysts emphasize that there are screening and

confirmatory methods, with the latter being more reliable than the former [43]

(see Table 2.6).

Screening method means methods that are used to detect the presence of a substance or class

of substances at the level of interest. These methods have the capability for a high sample

throughput and are used to sift large numbers of samples for potential non-compliant

results. They are specifically designed to avoid false compliant results [FN – Author].

Confirmatory method means methods that provide full or complementary information

enabling the substance to be unequivocally identified and if necessary quantified at the

level of interest [43].

Confirmatory methods are mainly based on mass spectrometry. Earlier, the

similar pair of methods was named routine and reference methods (see [43]). The
latter definition often occurs in the modern literature for specifying a method of a

Table 2.6 Identification errors permitted in analytical methods

Method Probability

FN FP

Screening <1 : 104 <1 : 5

Confirmatory <1 : 104 <1 : 104

Proposals for residue analysis [44]
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high (the highest) metrological quality. The synonyms for a reference method are a

definitive, absolute, or primary method. However, these four terms are not often

used only as characteristics of qualitative analysis (identification).

Identification using screening and confirmatory methods will be thoroughly

treated in Chap. 5.

2.10 Preceding and Related Procedures

If full chemical analysis is performed, operations of qualitative determination are

combined with those of quantitative analysis or those preceding/subsequent to the

latter. Another preceding procedure or set of procedures is a sample treatment.

Identification can be considered as being independent from the two different ones.

However, the ways in which sample treatments and quantitative determinations are

made have an influence on the result of identification. This will be very briefly

outlined.

2.10.1 Sample Treatment

In organic analysis, e.g., carried out by chromatography and mass spectrometry,

most samples cannot be directly analyzed because

l The sample phase or chemical form of the analyte is not compatible with the

analytical technique
l Non-target sample components and matrices themselves interfere with determi-

nation of target compounds and
l Targets present in sample in too low/high amounts

Therefore samples should be treated before analysis. Tens of different proce-

dures for preparing samples for analysis are described [45]. The choice among them

depends on whether a sample is gas, liquid, or solid (Fig. 2.3).

Gas samples are often analyzed directly by being injected into chromatographs

and spectrometers. Analytes contained in liquids and solids should be isolated,

concentrated/diluted, and possibly chemically transformed. Different methods of

extraction, separation, clean-up, derivatization, and so on, consisting of many

simpler operations, are required (Fig. 2.3). In these procedures, analytes may be

lost or not separated from interfering substances; this is one of the sources of false

results of detection and identification. Therefore, the presence of the analytes in the

samples, rather than only in extracts, should be confirmed (see Sect. 5.3).

Some sample components and the sample itself can be identified, by IR spec-

troscopy for example, without numerous preparation operations.

In unknown analysis (Chap. 7), many operations of sample treatment, e.g.,

dissolution in various solvents, different methods of extraction, and even digestion
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of a matrix itself, are often required to study a qualitative composition in great

detail. The information obtained is also useful for qualitative analysis II, although

fingerprinting of intact samples may be sufficient to differentiate between them

(Chap. 9).

2.10.2 Quantitative Analysis

Measurements for quantitative and qualitative analysis are or may be done simulta-

neously, but using not the same measurands; e.g., (a) the intensity of the basic

spectral peak and (b) the relationship between intensities of several lines in the

same spectrum are destined for (a) quantitative determination and (b) identification

respectively.

Often, but not always, sensitivity and selectivity/specificity (and also a spectral

resolution correlated with selectivity) are inversely dependent. This should be taken

into account when it is necessary to choose optimal conditions for implementing

identification combined with quantitative analysis within the same experiment. This

can be exemplified by MS, where data can be recorded in the mode of SIM/SRM

[46] or full scans which are typical for quadrupole instruments. In the first case,

a few peaks are recorded, the maximum sensitivity is achieved, and quantitative

determination is made. Nevertheless, the amount of information (the number of IP)

may be insufficient for unambiguous identification. In the second situation,

full spectra are obtained, which make it possible to reliably identify an analyte

Gas, vapor Liquid Solid

Desintegration,
homogenization,
cutting, and so on

Powder,
smaller particles

Liquid-liquid
and

solid-phase
extraction 

Dissolution
Headspace

and
purge-and-trap

sampling

Solution

Other operations:

evaporation,
precipitation,

filtration, dialysis,
electrophoresis,
derivatization,

lyophilization, solvent
exchange, and so on 

Analysis

Solid-liquid
extraction

Fig. 2.3 Flow chart for treating gas, liquid, and solid samples in chromatographic and mass

spectrometric analysis. Only the most popular procedures and operations without multistep

sequences for their implementation are shown
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(more selective qualitative determination), and this demands a larger amount of

substance (analysis at not the best sensitivity).

Quantitative measurements are essential for estimating some limit performances

which also are required in qualitative analysis (see Sect. 4.3). Also, quantitative

determination may be part of procedures of qualitative analysis II, where a rela-

tionship between amounts of sample components is one of the quantities for

characterization of a sample itself (Chap. 8).
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Chapter 3

Probability, Statistics, and Related Methods

Abstract The probability/statistical methods used for identification purposes

are briefly considered. The basic statement is that many phenomena and proce-

dures included in qualitative analysis are of a probabilistic nature. The probability

of yes/no responses in target detection is described by binomial distribution.

Values of quantities required for identification, such as retention times in chro-

matography, wavelengths and frequencies in optical spectroscopy, masses in mass

spectrometry, intensities (heights, areas) of any analytical signals, are considered

as normally distributed (including t-distributed) ones over probabilities. Para-

meters of the distributions are used in calculations incorporated into procedures of

detection and identification. Multivariate statistics connected with chemometrics

is essential for classification/authentication of samples, i.e., qualitative analysis

II. Bayesian statistics takes into account a prior probability that an analyte is

present in a sample.

In the second part of this chapter, operations of setting up, testing, and

screening of hypotheses as the core processes of qualitative analysis, are consid-

ered. The simplest are hypotheses for a detection operation, e.g., ‘H0: an analyte is

absent in the sample’. In identification, analogous hypotheses: ‘H0: the analyte is

compound A’, and ‘H0: the analyte is not compound A’ are set up and tested.

Identification hypotheses are transformed into experimental and statistical ones to

be accepted or rejected on the basis of corresponding criteria, both range/toler-

ance and statistical criteria. False acceptance or rejection of hypotheses leads to

false positive/negative results of identification or detection, the probability of

which can be estimated.

3.1 General

A conclusion on reliability of an identification result is often of a probabilistic

nature. The reasons for this are the following.

B.L. Milman, Chemical Identification and its Quality Assurance,
DOI 10.1007/978-3-642-15361-7_3, # Springer-Verlag Berlin Heidelberg 2011
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l Analytes may get into samples1 under analysis in non-deterministic ways; the

presence in itself of analytes in samples in amounts sufficient for detection can

be considered as a random characteristic.
l Measurands used for identification, related to both (a) a position of an analytical

signal in a scale of time, frequency, wavelength, mass, and so on, and (b) an

intensity of an analytical signal are random variables, and their values are

statistically distributed.
l Chemical compounds are similar in their properties within related compound

groups. So there is a chance that experimental data obtained for the purpose of

identification will lead to several compounds rather than one of them.

Therefore the use of probability/statistical methods [1, 2] in identification

procedures is a natural decision for analysts, irrespective of what analytical tech-

niques and methods are involved. However, statistical methods for a simple yes/no

determination (Sect. 3.2), and complicated analytical techniques based on measure-

ments (Sect. 3.3), may be not the same. Many such methods, mainly multivariate

ones, have been developed within chemometrics [3–5].

Statistical methods are also used for testing hypotheses, which are the proce-

dures adequately expressing the essence of the identification process (Sect. 3.6).

Setting up and testing of identification hypotheses can be also considered as mental

operations of the analyst, followed by him/her making a decision with regard to

identification results.

3.2 Binary Responses of Qualitative Analysis

Answers to the question whether the particular substance presents in the sample are

binary responses of the yes/no type. Given that the qualitative method (chemical

test) is not absolutely reliable (all methods are such at low amounts of analytes), a

replication of an analytical experiment results in a sample of positive (P) and

negative (N) responses. The numbers of P or N outcomes of binary chemical test

are random variables. The probability of obtaining these results is described by

binomial distribution [1]. The example of this distribution is given in Fig. 3.1.

For the numbers of outcomes of a binary chemical test as random quantities, the

corresponding statistical error expressed as the confidence intervals Dc for the

proportion of the certain outcomes are given by equations as follows [6]:

DcðnP=nÞ ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nP=n � ð1� nP=nÞ

n

r
(3.1)

1In this book, two similar but not the same meanings of sample occur. They are “a part of

something to be tested” (this case) and “a subset of random values selected from a population”

(statistical issues).
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DcðnN=nÞ ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nN=n � ð1� nN=nÞ

n

r
; (3.2)

where nP and nN are the numbers of P and N test results respectively; n is the overall
number of replicates, n¼ nPþ nN; z is the quantile of the normal distribution for the

probability p (1.64, 1.96, 2.58, and 3.29 for p 0.90, 0.95, 0.99, and 0.999 respec-

tively). Equations (3.1) and (3.2) will be used further for estimating trueness rates of

qualitative methods (Sect. 4.2.1).

Binomial statistics can also be used in chemical informatics for evaluation of

compound proportions which have particular properties significant for qualitative

analysis. An abundance/rarity of compounds is the example of the property. For a

full set of chemical entities, the mentioned calculation may be laborious. Instead,

random sample methods are used. A random sample including n entities is chosen.

The number of compounds which have the particular property (also denoted as nP)
is counted. The nP=n ratio is the estimate for the proportion of such compounds in

the initial set. The statistical error for the sampling is given by (3.1).

3.3 Distribution of Measured Quantities

Unlike qualitative reactions and related tests of target determination with their

results as binary responses, analytical instrumental methods lead to values of

continuous (or conditionally continuous) quantities/variables. The latter are

0.00
1 5 9 13

0.04

0.12

17 21 25 29 33 37 41 45 49

p

number of positives

0.08

Fig. 3.1 The probability of the certain number of P responses of qualitative test with 50 replicates,

and the same chances of P and N outcomes. The distribution maximum (the mean value) is for half

of replicates; this is natural for a method with the same rates for both outcomes
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retention times in chromatography, wavelengths and frequencies in optical spec-

troscopy, masses in MS, and intensities (heights, areas) of any analytical signals

(Chap. 2). An infinite number of experimental replicates in the same conditions

provide a data population. It is commonly supposed that measurand values are

normally distributed over their probabilities [1, 2] (Fig. 3.2). The measure of a value

spread is here a population standard deviation s.
In reality, a sample of values rather than their population is obtained from

analytical experiment. Sample distribution is known as Student’s t-distribution or

simply the t-distribution [1–5] (Fig. 3.2). This is one from the family of normal

distributions for finite samples.

For identification as well as chemical analysis as a whole, the following distri-

bution parameters are calculated from a sample of values:

l Average x
l Standard deviation2 s
l Dispersion s2

l Confidence interval Dcx, and so on

x

p

Δ cx a /2a /2

Fig. 3.2 Normal and t-distributions of the quantity x as the property of chemical compounds over

probability of its observed values. The second one corresponds to a relatively small sample of

values. The central intervals Dcx of both distributions are confidence ones. These can be also

treated as distances between the (a/2)th and (1�a/2)th quantile points. There are 100(1�a)% values

within the confidence intervals, where a is significance level. For a ¼ 0.05, there are 95% values of

x within the central ranges. The parameter a expresses the probability of very low/high values of the

quantity, measured by the area under the distribution curve tails. If the measurand value is in the

tail, it may belong to not this compound, with the error (FN) of a

2In the case of a large number of replicate measurements, the population standard deviation s can

be estimated by the sample parameter s.
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Properties of chemical compounds required during identification processes are

sample distributions of corresponding measurands, or equivalently their mean

values combined with deviation parameters (d and others). For the purpose of

identification, similarity or difference in properties is searched. Either may be

significant or insignificant, which is decided according to results of statistical

tests. The t-tests [1–5] are widespread (Sect. 3.6.5) even though they are criticized

by metrological purists; this criticism seems to be disputable [7].

3.4 Multivariate Statistics and Chemometrics

Many quantities used in identification, such as spectra, can be considered as

multivariate ones. For example, mass spectrum is n-variate quantity as a set of

mass values mi and corresponding peak intensities Ii , where i ¼ 1, 2, . . ., n. Thus,
mass spectrum can be represented as the vector in multivariate space of mass

values, or as a point in this space. The similarity in spectra corresponds to a

negligible angle between vectors or a short distance between points (Sect. 4.4.2.1).

Multivariate distributions, their parameters, and corresponding statistical tests

[1] are analogous to them for monovariate quantities. For example, Hotelling’s T2

statistics can be used instead of simple t-tests (Sect. 3.6.5).
Data obtained in the analysis of mixtures can be also represented as multivariate

values. Here the univariate quantities are signal intensities Ii, e.g., heights or areas of
chromatographic peaks of each component of the mixture. Multivariate statistical

methods (see below) are used for analysis of such data. This mathematical approach

is efficient for qualitative characterization of compound mixtures and samples which

are analyzed as a whole under qualitative analysis II (Table 3.1 and Chap. 8).

Table 3.1 lists main multivariate statistical and chemometrical methods [3–5]

together with examples of their applications. The use of these methods makes it

possible to reduce the observed variates into a smaller number of components/factors

(artificial variables). As a result, the statistical picture becomes far more informative

and decisive for a data user, and applicable for subsequent mathematical processing.

A similarity of values of new variates between different objects (compounds,

mixtures, samples) is used for identification/classification of them. Classes/groups

of objects may be predetermined/supervised or unsupervised, i.e., established on

performing statistical analysis (see Table 3.1). In supervised classification, training

and evaluation data sets are first formed and explored to develop a classification

method.

Different methods are illustrated by Fig. 3.3.

3.5 Bayesian Statistics

It is emphasized in this section that not only the appearance of an analytical signal

and the distribution of its features but also the formation of an analyzed sample

itself are related to probability. Analytes originate in a system under analysis from
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Table 3.1 Multivariate statistical and chemometrical methods in classification/authentication of

chemical entities and systems [3–5]

# Method, procedure Remarks Examples of classification/

authentication

1 Data reduction/

processing

Conversion of raw data into

a more applicable form

including fewer

dimensions (see 1.1

and 1.2)

1.1 Principal component

analysis (PCA)

Transformation (by looking

for linear combinations)

of many possibly

correlated variates into

a smaller number of

uncorrelated variates

named principal

components

Drinks [8], genes/cells [9],

saccharides [10],

painting media [11],

plants [12], polymeric

materials [13], potatoes

[14],wastewaters [15],

1.2 Factor analysis (FA) Relates to PCA and is

distinct from it in some

initial assumptions and

calculation details

Genes/cells [9], HPLC

packings [16], painting

media [11], polymeric

materials [13], pollution

sources [17],

2 Classification,

discrimination

Group of supervised/

unsupervised

classification methods/

algorithms (see 2.1

and 2.2)

2.1 Supervised learning Computer learning method

for classification of the

input objects from

training data

2.1.1 Discriminant

analysis (DA)

Classifying a data set into

predefined classes based

on a training set; relates

to PCA and FA in the

use of linear

combinations of variates

Bacteria [18], drinks [8],

honey [19], potatoes

[14], wines [20]

2.1.2 K-nearest neighbor

(k-NN)

Classification of an object

by assigning to the class

most common amongst

its k nearest neighbors
(points in a multivariate

space)

Saccharides [10], proteins

[21], potatoes [14],

plants [12], wines [20]

2.1.3 Soft independent

modelling by

class analogy

(SIMCA)

Supervised classification

which identifies samples

as belonging to multiple/

overlapping classes

Drinks [8], saccharides [10],

painting media [11],

pharmaceutical

solutions [22],

wastewaters [15]

2.2 Unsupervised

learning

Classification where initial

object classes are

unknown and training

data are not used

(continued)
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outside (environmental samples such as air, water, soil, sediment) or within as the

result of industrial (materials) or natural (biosamples) processes. In general, it is

very difficult to predict their presence in a sample in amounts sufficient for

detection and identification. Nevertheless, one could try to express that in terms

of random events.

Table 3.1 (continued)

# Method, procedure Remarks Examples of classification/

authentication

2.2.1 Cluster analysis Sorting different objects

into groups, with the

degree of similarity

between two objects

being maximal if they

belong to the same

group

Drinks [8], electrophoretic

spots [23], genes/cells

[9], painting media [11],

waters [24]

2.1.4/ 2.2.2 Artificial neural

network (ANN)

Classification model

simulating the structural

and functional aspects of

biological neural

networks; may be

supervised or

unsupervised

Bacteria [25],

electrophoretic spots

[23], particles [26],

plants [12], potatoes

[14]

1

2

Fig. 3.3 Classification of chemical entities, e.g., compounds into three groups/classes.

Corresponding symbols are open square, open diamond, and open circle. Objects of distinct

classes are different in values of two variables. The latter, e.g., two principal components, are

obtained on processing initial analytical data. The object groups are predetermined, e.g., by the use

of discriminant analysis or formed as the result of statistical analysis (cluster analysis). Dotted

lines separate subspaces related to different classes. Unknown objects symbolized closed square
are very similar in values to ones from upper left subset open square and therefore classified as

belonging to this group
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An uncertainty in a priori knowledge about a chance for an analyte to present in

a sample is related to the concept of a prior probability. The latter is the probability

of an analyte being in a sample estimated before performing chemical analysis. By

its nature, a prior probability is a subjective one because it is derived from an

analyst’s personal judgment about whether a particular compound is likely to be

present, and reflects his/her opinion based on skill and past experience. However,

this type of probability can be estimated using appropriate quantitative rates

(Chap. 6).

Performing an analytical experiment changes the knowledge of the analyst

about whether an analyte is present in the sample. The probability of detection

and identification under consideration in the book is based on analytical data,

and named a posteriori one. The latter also depends on corresponding prior

probability.

The statistical method for estimation of probabilities incorporating prior ones is

Bayesian statistics (see [1, 3, 27–31]). According to this approach, the posteriori

probability p (Ai|result) of identification of the compound Ai based on the analysis

result, is estimated as follows:

pðAi resultj Þ ¼ pðresult AiÞ � pðAiÞjP
i

pðresult AiÞ � pðAiÞj ; (3.3)

where p(result|Ai) is the conditional probability of obtaining the result given the

substance Ai is present in the sample, and p(Ai) is the prior probability that Ai is

present there, the index i refers to one from analytes.

This equation can be qualitatively considered. The case is imaginable where the

spectral data indicate that several compounds Ai may be components of the sample,

i.e., their p(result | Ai) > 0. Based on the prior data, an analyst can assume that the

compound A1 (i ¼ 1) is unlikely to be present in the sample. Here, the prior

probability, p(A1), the product p(result|Ai) �p(A1), and therefore the posterior prob-

ability, p(A1|result), are close to zero. This means that the hypothesis: the analyte is

the compound A1, is rejected. The experimental test to confirm this conclusion may

be not needed.

Based on the prior data, an analyst also excludes the presence of other com-

pounds Ai but A2, i.e., p(Ai) ¼ 0 for i 6¼ 2. This means that only product p(result|
A2)�p(A2) 6¼ 0. Then p(A2|result)is evidently close to 1, see eq. (3.3), which implies

that the compound A2 is only detected and identified. Depending on applied

analytical techniques and methods, this identification result should or should not

be further confirmed.

The subjective or numerical estimation of prior probability is connected with

consideration of prior data/information, which will be addressed in Chap. 6. For

other pertinent applications of Bayesian approach, see for example [32–37] and

references in Sect. 8.1.2.
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3.6 Intellectual Operations, Making Decisions

3.6.1 General

Apart from experiments and statistical calculations, chemical analysis includes

also intellectual activity of analysts not reduced to performing experimental and

calculational work. In target analysis based on standard methods, rational (mental)

activity and creativity are not incorporated to a large degree. However, such a kind of

analysis as unknown/non-target determination demands significant intellectual labor,

including:

l Selection and adjustment of appropriate techniques, methods, reference data,

software, and so on to the analytical problem
l Estimation of trueness of an identification result

In many cases, advanced proposals are first demanded about the nature of

unknown analytes, followed by estimating plausibility of these speculations.

In science, such proposals being set up by analysts are named hypotheses. So we
consider chemical identification to be a process of setting up, testing, and screening

of hypotheses. This approach is rather common for procedures of detection (e.g.,

see [38, 39]), and has only recently been suggested for identification operations [30,

40, 41]. On performing both procedures, an analyst explicitly or implicitly accepts/

rejects corresponding hypotheses, i.e., makes one or another decision. Therefore,

the theory of hypothesis testing [42], and in part the theory of decision making

[4, 43], are of significance to chemists.

Due to the difference in the essence of detection and identification operations,

hypotheses connected with these are also not the same. This concerns mainly the

statement of a null hypothesis.

3.6.2 Hypotheses Connected with Detection

In the case of detection, the null hypothesis H0 (“no difference”) means that any

kind of difference between the blank and the sample is due to chance. So the tested

null H0 and alternative H0 hypotheses:

H0 : an analyte is absent in the sample (3.4)

H0 : an analyte is present in the sample (3.5)

can be stated and tested.

An analyst accepts or rejects the null hypothesis. The second decision stands for

accepting the alternative hypothesis. In both cases, the analyst can make a true or
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false decision. Thus, there are four different results of detection (or qualitative

analysis as a whole): TP, FP, TN, and FN (Table 3.2).

A statistical reason for false results of detection is shown in Fig. 3.4. The blank

signal combining detector noise together with chemical noise is inherently

distributed over its intensity. This distribution is obtained from numerous analyses

of a blank sample. The right tail of the distribution curve falls in the range of the

analyte signal for its concentration xb. The range about the intersection point at the
concentration xa is one of the possible false results. In that point, the signal may

belong to both the noise and signal with the same probability. The value a is set

before testing the hypothesis connected with the analyte detection.

Table 3.2 Hypotheses and errors associated with analyte detection

Analyst’s decision Reality

An analyte is absent,

H0 is true

An analyte is present,

H0 is true

An analyte is absent,

H0 accepted,

H0 rejected

TN

probability (1�a)
FN

type II error

probability b
An analyte is present,

H0 accepted,

H0 rejected

FP

type I error

probability a

TP

probability (1�b)

p

xa xb x, I

blank analyte

b a

Fig. 3.4 The probability distribution of the analytical signal intensity for a blank and the analyte

concentration xb. The horizontal axis is both concentration x and intensity I proportionally related

to x. For each concentration, e.g., xb, there is an inherent distribution with the maximum as the

most probable intensity. Signals higher or lower than the maximum one are observed with lower

probability, i.e., at x> xb or x< xb. The blank distribution is considered in a similar manner. In the

case of the analyte concentration xb, the other value, xa, is a critical value named a decision limit.

At lower concentration, an analyte is assumed to be undetected with the FN probability b. At a
higher amount, it is considered to be detected with the FP probability a. Here a and b are area

fractions under corresponding curves intercepted by the dotted line
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The border value xa is the special point for testing of hypotheses (3.4) and (3.5);

see Fig. 3.4. For a lower concentration, i.e., a weaker signal, the hypothesis H0 is

accepted and H0 is rejected. The possibility that this decision is false (FN result), and

that H0 is not correctly rejected, is expressed by the type II error with its value b.
For a concentration higher than xa and a stronger signal, the null hypothesis H0 is

rejected, and the analyte is assumed to be present in the analysed sample. However,

this result may be FP, and the corresponding error is a (type I error).

The value a, commonly 0.05, can be considered as the chance criterion of

accepting the hypothesis. For the single (not distributed) analytical signal which

is stronger than one in the point xa, the probability of FP measured by the area under

the blank distribution curve intersected by the vertical line right to xa (not shown in
Fig. 3.4) is smaller than a. It means that the null hypothesis is rejected, with a lower

error for FP than for the signal observed in xa. This fits the statement based on

common sense that the probability that a signal is noise is decreased with an

increase in signal intensity.

Correspondingly, if a signal is weaker than in the point xa, the intersected area

fraction under the blank probability curve is larger than a, and the hypothesis H0 is

certainly accepted.

For the established a, the value b depends on the concentration level xb rather

than a noise level. In the case of high concentration, its distribution curve is shifted

to the right as compared with the curve in Fig. 3.4. The error b becomes very low,

which naturally means that the probability of falsely rejecting the null hypothesis is

insignificant.

3.6.3 Identification Hypotheses

The fact that some compound is detected obviously does not imply its unambiguous

identification. Only appearance of an analytical signal can be rigorously stated.

However, one can propose that the detected analytical signal belongs to the particular

chemical compound/substance or the group of such objects. A proposal of this kind is

an identification hypothesis [30]. Structure hypotheses are also mentioned [44, 45].

An analyst determining an unknown compound suspects that it may be com-

pound A, and sets up two identification hypotheses:

H0 : the analyte is compoundA; (3.6)

H0 : the analyte is not compoundA (3.7)

The first is the null hypothesis. It states that there is no any difference between

the analyte and one of the known compounds, compound A, as the candidate for

identification. If the hypothesis (3.6) is rejected, one accepts the alternative one

(3.7). The identification results and proper errors are given in Table 3.3.
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Unlike the simple hypothesis (3.6), the alternative proposal (3.7) is a composite

one, i.e., a set of simple hypotheses:

H1 : the analyte is compoundB (3.8)

or

H2 : the analyte is compoundC (3.9)

or some other compound. So, if the null hypothesis is rejected and positive

identification is required, the next proposal (3.8) should be tested and so on.

In qualitative analysis II (Chap. 8), identification hypotheses are set up in a similar

way. That may be exemplified by the authentication procedure of honeys [33]:

H0 : the honey is Galician; (3.6a)

H0 : the honey is non-Galician (3.7a)

In identification, the hypotheses (3.6) and (3.7) can be reversed, and the hypoth-

esis H0 can be considered as the null one. Sometimes, it is more important for

analyst to find out that the analyte is not the predetermined compound, and more

certain identification does not really matter. Thus there is a seeming freedom in

choosing the null hypothesis.

However, the choice of the null hypothesis can be substantiated. For example,

the fact that type I error is a false rejection of a null hypothesis by definition can be

taken into account. Neyman, the author of fundamental works on the theory of

hypothesis testing, recommended the term type I error for denoting the error which
it was more important to avoid [42]. In chemical analysis, this is often a FN result.

Indeed, in the screening of samples, positive responses are further confirmed by

more reliable methods, whereas negative responses are considered to be final

(Sect. 2.9). Therefore, the probability of the FN response should be lower, which

means that a type I error is FN. This is the case for identification (Table 3.3), but in

contrast to the relationship between errors set up for detection (Table 3.2).

Table 3.3 Hypotheses and errors associated with analyte identification

Analyst’s decision Reality

An analyte is A, H0 is true An analyte is not A, H0 is true

An analyte is compound A,

H0 accepted,

H0 rejected

TP

probability (1�a)
FP

type II error

probability b
An analyte is not compound A,

H0 accepted,

H0 rejected

FN

type I error

probability a

TN

probability (1�b)
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Simplicity can also be a selection criterion for the null hypothesis [46]. For

chemical identification, the assumption H0 (3.6) is much simpler than the alterna-

tive H0 (3.7). Indeed, the latter is a composite one because it consists of many

simpler hypotheses – (3.8), (3.9), and so on.

Thus, the concept of simplicity and the statement of “no difference” are in line in

defining the same null hypothesis (3.6). Also, the relationship between the two

types of errors, FP/FN results and type I/II errors, is reversed for detection

(Table 3.2) as compared with identification (Table 3.3). This is due to the different

nature of the null hypotheses (3.4) and (3.6). In the literature on identification, both

this and the contrary interpretation of the concept of null hypothesis are available,

yielding a � FN, b � FP [7, 40] (see Table 3.3) and a � FP, b � FN [47] (see

Table 3.2). The last pair of relationships also occur in books on statistics in

chemistry [2, 4]. To avoid confusion in this book, the terms type I error and type
II error will not be used often; instead, the terms FN and FP, which are understood

unambiguously, will be preferred.

3.6.4 Experimental Hypotheses

In order to find out which of the identification hypotheses (3.6) or (3.7) is true, they

should be transformed into hypotheses suited for experimental testing:

H0 : properties of the analyte and compoundA are not differentiated; (3.10)

H0 : properties of the analyte and compoundA are different (3.11)

These can be named experimental hypotheses.
Properties of chemical compounds are (a) qualitative features, or (b) values of

measured quantities (see Chap. 1). In case (a), the identity of features resulting

from the use of validated methods stands for TP of qualitative determination, i.e.,

the hypothesis (3.10) is accepted. For measurements (b):

l A similarity degree of corresponding numerical values is taken into account or
l A value interval is divided into narrow ranges, each of which is a certain

qualitative feature

In any case, the fact that a value for an unknown compound falls in the window

range established for compound A means:

l Identity of features or close similarity in values
l Acceptance of the hypothesis (3.10) and
l A chance for the analyte to be identified as compound A

If a value of the measurand of any other compound is outside the range specific

for A, and different analytical techniques or their different versions also lead to
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values typical for compound A, a possibility of identification is transformed into the

analyst’s confident decision.

Such range criteria (terms of window criterion or tolerance criterion are

synonymous ones) for acceptance of hypotheses applied for retention parameters

(time, relative time, index) are widespread in chromatography (Chap. 5, Sect. 7.2);

see Fig. 3.5. For multivariate quantities, e.g., spectra, univariate range criteria

analogous to those shown in Fig. 3.5 can be applied for each variable (intensity

of spectral peak; see Chap. 5). In analytical practice, univariate measures/indices

are also calculated which express a similarity of full spectra as multivariate

quantities (Fig. 3.6). The window range of high indicator values is one for accep-

tance of experimental hypotheses. Dissimilarity in spectra is the reason for making

the decision to reject an experimental and thus identification hypothesis (Fig. 3.6).

The window range is chosen on the base of available reference data and their

measured or typical spreads. Several cases deserve to be noted.

a

b

c

2Dx 2Dx

2Dx

2Dx

2Dx

2Dx

xB xan xA x

xB xan xA x

xB xan xA x

Fig. 3.5 Range testing of identification hypothesis. There is the case of the univariate measurand

x, e.g. retention parameter, with xan, xA, xB being the values for the analyte, compounds A and B,

respectively. The ranges 2DxA and 2DxB are criterion windows about reference values xA and xB
and also the measures of identification uncertainty. (a) The analyte has the value xan falling within
the window range of A, and is therefore identified as that compound. In other words, the hypothesis

(3.10) is correctly accepted. (b) For the thin range 2DxA, the value xan measured with some

uncertainty may be fall outside this range. It results in FN, i.e., the false rejection of the null

hypothesis (3.10). The case is typical for very accurate reference data and experimental value

measured with a bias or vice versa. (c) In contrast, widening of the range 2DxA (and also the 2DxB )
may lead to overlapping of criterion tolerances of reference values for compounds A and B, i.e.,

A and B will be hardly distinguishable by x. If unambiguous identification is demanded, it may

lead to FP, which is the identification of B instead of A or vice versa. It is the possibility of false

acceptance of (3.6) or (3.8). The ambiguous answer that the analyte is compound A or B is true.

Due to a spread in real reference data, this is a very practical case
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1. There is a single reference value. The interval 2Dx (see Fig. 3.5) is a typical

range of the measurand observed in reliable experiments. The tolerance also can

be calculated from standard deviations of those data. In methods, range/interval

criteria for accepting hypotheses are predetermined (Chap. 5).

2. There are two or more reference values. The interval is xmax–xmin, which is

extracted from those references, with outliers being excluded. This range also

can be taken from equivalent methods (Chap. 5).

0
MF(an,B)

min MF

an

an

an

A'

an

A

an

B

MF(an,A)

max MF

Fig. 3.6 Range testing of identification hypothesis. There is a case of a multivariate measurand,

e.g., mass spectrum, with a match factorMF as a value of univariate criterion for accepting/rejecting

of experimental hypotheses (identification criterion) and the measure of reliability of identifica-

tion. The match factors MF(an,A) and MF(an,B) indicate how close the experimental spectrum of

an analyte matches that of A and B respectively. The latter are reference spectra. The range

between max MF and min MF is the interval of high MF values for acceptance of experimental

hypotheses. Here, max MF is the maximum value (1, 100, or 1,000 depending on the algorithm of

MF calculation and the particular software) and min MF (e.g., 900 at maximum value 1,000) is the

lowest value for acceptance of the null hypothesis, i.e., for positive identification. The comparison

of a spectrum to itself gives max MF. (1) Further, the point MF(an,A) expresses the similarity of

the experimental spectrum to a not fully similar spectrum of the compound A. The valueMF(an,A)
falls into that range for identification, so the hypothesis (3.10) is accepted. The factorMF(an,B ) is
much lower and outside the range. The hypothesis that the analyte is compound B is therefore

rejected. (2) For relatively high values of min MF (not shown), the observed valueMF(an,A) may

be fall outside the range for identification. It results in FN, i.e. the false rejection of the null

hypothesis (3.10). (3) In contrast, low values of min MF (also not shown) may lead to MF(an,B )
falling within the range between max and min. It leads to FP, which is the identification of B

instead of A or vice versa, or true ambiguous identification of the pair of compounds. For the last

case, the conclusion is that A and B would be hardly distinguishable by this kind of spectrometric

technique and these reference data
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3. Reference and experimental data are biased to each other due to different experi-

mental conditions when these data sets are obtained. The range for identification

should be corrected for the bias value (Sect. 7.2).

The range method for testing of experimental hypotheses is simplest and most

efficient if analytical conditions are not very different from those in which reference

values were recorded. For the same conditions and same compounds, deviations in

results of measurement results are just random. This is the case for statistical control

and setting up of statistical hypotheses. These are special types of experimental ones.

3.6.5 Statistical Hypotheses

Any property as a measurand can be expressed in the form of a statistical distribu-

tion. Accordingly, the hypotheses (3.10) and (3.11) can be formulated in the other

way:

H0 : distribution parameters of the variate x for the analyte and compoundA

are not significantly different; i.e:; values of x belong to the same population;

(3.12)

H0 : distribution parameters of the variate x for the analyte and compoundA

are significantly different; i.e:; values of x do not belong to the population for A

(3.13)

In a particular case, an analyst finds out whether a single value of an analyte

belongs to the distribution for one or another compound (Fig. 3.7).

Methods of testing of statistical hypotheses such as (3.12) and (3.13) depend on

the types of distribution and data. The latter can be approximated in the form of

normal distribution (see Fig. 3.7), but their population, i.e., the infinite set, is un-

attainable. All an analyst really has is a sample of values. For this case, the Student’s

t-distribution is usually considered, and the statistical t-test is often applied to test

hypotheses as follows (see books [1, 2, 4] for this and many other tests with full

details).

Given that an analyte is compound A, observed values of a particular variable x
for an analyte and A are x ¼ (x1, x2,...,xm) and xA ¼ (xA1, xA2,...,xAn) respectively;
the indices 1, 2, ..., m, A1, A2, ..., An refer to individual observations; measurement

methods and procedures involved are the same, the condition must be fulfilled:

x� xAj j
s

�
ffiffiffiffiffiffiffiffiffiffiffiffi
m � n
mþ n

r
< txða; uÞ; (3.14)

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2anðm�1Þþs2

A
ðn�1Þ

u

q
; san and sA are standard deviations for an analyte and

the compound A respectively; tx (a, u) is the critical value for t; a is the significance
level, which is usually 0.05; u ¼ m þ n – 2 is the degrees of freedom.
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In contrast, if the condition (3.14) is met, the hypothesis H0 (3.12) is accepted

and the alternate hypothesis H0 (3.13) is rejected for the significance level a. If the
relationship is the inverse of (3.14), the alternate hypothesis (3.13) is accepted and

the null hypothesis (3.12) is rejected. The lower the a value, the higher the

permitted difference in x for accepted hypotheses.

This t-criterion for accepting or rejecting the hypothesis is readily transformed to

the probability a criterion. If a value a that meets the equation:

x� xAj j
s

�
ffiffiffiffiffiffiffiffiffiffiffiffi
m � n
mþ n

r
¼ txða; uÞ (3.15)

is equal to or larger than 0.05, the hypothesis H0 is accepted and the alternate

hypothesis H0 is rejected for this significance level a, which is the statistical type I

error. Given (3.15) is met for a < 0.05, the conclusion on the hypotheses is reversed.

p

xA xBxa x

A B

b a

Fig. 3.7 Testing of hypotheses in which properties of candidate compounds are expressed by the

distributions of the variate x (horizontal axis). The mean x values of compounds A and B are xA and
xB respectively. The values x of the analyte are individual observations. The various kinds of the
null hypothesis are (3.6), (3.10), and (3.12). The left curve is the probability distribution for the

compound A. The value a, commonly 0.05, is the area fraction under the curve in the range of

relatively high values x not specific for A (x � xa). If the analyte has the relatively high value

x > xa, the decision is made that it is not compound A. This decision may be erroneous with the

type I error a, which is the probability of FN (see Table 3.3). For x closer to the mean xA, i.e., to the
left from the border value xa, the hull hypothesis (the analyte is A) is accepted, with the probability
of TP being (1�a). The acceptance may be also erroneous with the type II error b, which is the

corresponding area fraction under the curve for the candidate compound B (the probability of FP).

If the alternative hypothesis (the analyte is B) is tested, all considerations are analogical. If x¼ xa,,
the analyte can be identified as A or B with the same probability of FP. For a significant difference

in the mean x between both tested compounds, the B distribution curve shifts to the right (not

shown). In this case, if x ¼ xa (a ¼ 0.05), false identification as the compound B is improbable
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The probability a is not only the statistical parameter but also the type I

identification error related to the hypothesis (3.6) and one of the measures of

identification reliability. That is the probability of the means x and xA being far

different given an analyte ¼ A, which results in the erroneous decision that an

analyte is not A, i.e., FN (Table 3.3). Usually this is not a widespread error, since the

large difference between means is due to them belonging to different compounds.

Thus, the value a � 0.05 is the prerequisite for identification. However, it is a

necessary but insufficient criterion for unambiguous identification. The latter also

calls for low type II error, i.e., low FP, which means that the probability of similarity

in observed sample average of the quantity x between an analyte and substances B,

C, etc. is low, and therefore falsely accepting hypothesis H0 is unlikely.

The statistical type II error, designated b (see Table 3.3), can be evaluated for

statistical versions of every individual alternate hypothesis (3.8), (3.9), etc. by using

a non-central Student’s distribution [1]. An approximate way to do so is to equate

b to the value a obtained when testing hypotheses H1, H2, etc. This is illustrated by

Fig. 3.7, where type I error at testing of the hypothesis: analyte is B, is b.
Thus, two cases of testing of statistical hypotheses were considered above. First,

the theoretical one for normal distribution of reference data and single observations

for an analyte is shown in Fig. 3.7. Second, there are t-distribution (t-test) and two

samples of reference and experimental data. The latter is practical testing, where a

single value of the measurand without replicates can be used instead of a

corresponding sample of values.

For the same reference and experimental data, both tolerance (Sect. 3.6.4) and

statistical criteria can be applied for testing of hypotheses. Moreover they are

transformed into each other and may lead to a close level of FN and FP [48] (see

also Sect. 7.2.5). Range (tolerance) criteria are widespread, because they are

simpler to apply. Testing of statistical hypotheses demands a higher degree of

analyst skill and experience. However, in this approach errors are numerically

evaluated which are of value to estimate an overall reliability of identification

(Chap. 4). Therefore, statistical hypotheses should be formulated and tested in

particularly important analyses such as

l Interlaboratory comparisons in qualitative analysis
l Chemical analysis of samples originating from various accidents, e.g., disaster,

poisoning, and so on

For multivariate data, such as spectra, a suitable hypothesis can be tested by

using the Hotelling’ T2 statistics and the threshold value Fx [1]:

T2

aðuÞ ¼ ðx� xAÞ0C�1ðx� xAÞ < bðuÞ � Fxða; uÞ; (3.16)

T2

aðuÞ ¼ ðx� xBÞ0C�1ðx� xBÞ > bðuÞ � Fxða; uÞ; (3.17)
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where x¼ (x11, x21, ... ,xn1, x12, x22, ..., xn2, ..., x1m, x2m, ..., xnm) is the sample vector

of an analyte; index ij refers to univariate i and observation j, i.e., x21 means the first

observation of the variate 2, etc.; the vectors xA and xB, for the compounds

identified and unidentified respectively, are defined in a similar manner; a(u) and
b(u) are the factors depending on degrees of freedom n; C is the sample covariance

matrix, and Fx(a,u) is the value of the variable from F-distribution for significance

level a and degrees of freedom n. Threshold values Fx are readily converted to

the threshold a as the measures of identification reliability, in line with the univari-

ate formulae (3.15).

Although the Hotelling approach is attractive due to the possibility of estimating

identification error, this is not easy to implement. The reasons are that (a) the

corresponding software is not widespread, and (b) large data samples (numbers of

experimental and/or reference spectra) are required for calculations. So the approach

has rarely been applied in routine analysis; for the exception, see for example the

work [48].
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Chapter 4

Reliability and Errors of Identification

Abstract In this chapter, approaches to estimating reliability and errors of detec-

tion and identification are considered. Related terminology is presented; reliability

of identification is defined as a probability of its true result. False results are

demonstrated to be attributes of determination of low analyte amounts by screening

methods. Formulas for calculating rates of true and false, positive and negative

results are given. The rates are derived both from tests using analytical standards

(blank samples) and upon verification of screening results by confirmatory meth-

ods/techniques. A replication of analytical determinations is also considered,

including Bayesian statistics. Limit characteristics of detection and identification

are treated.

It is noted that confirmatory methods based on spectrometry must be free of

identification errors. Nevertheless, errors occur if methods are non-targeted, inva-

lidated, or ad hoc. True and false results obtained with use of spectral techniques are
discussed in terms of matching spectra. A best/good or poor matching resulting in a

high or low match factor means a good/fair or poor chance respectively of accepting

an identification hypothesis. Different match factors calculated in mass spectrome-

try and also NMR, IR-, and UV–V is spectroscopy are outlined, with many details

with regard to searches in reference spectral libraries. Further, a probability inter-

pretation of match factors is considered, which is essential for identification of

peptides and proteins in proteomics. Other approaches to deriving a probability of

identification from analytical/spectral data are also noted. This kind of probability,

as well as the reported result of identification, can be expressed in words.

4.1 General

In previous chapters, identification errors were only briefly considered when testing

of hypotheses was discussed. In this chapter, the matter of reliability of detection

and identification results and approaches to estimating corresponding error rates

will be considered as fully as possible.

B.L. Milman, Chemical Identification and its Quality Assurance,
DOI 10.1007/978-3-642-15361-7_4, # Springer-Verlag Berlin Heidelberg 2011
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A result of both detection and target identification is clearly positive or negative
and true or false (Table 4.1). Again, Table 4.1 shows the difference between

detection and identification:

l Detection is preliminary but decisive identification
l Type I/II errors are contrary to each other (Sect. 3.6.3)

It is easy to conclude that qualitative operations carried out during screening
procedures (Chap. 1) are far closer in matter to detection than identification (see

also Chap. 5). So detection is fairly synonymous with screening.
An analyst formulates the result of identification (see examples in Table 4.1)

based on experimental and reference data, method criteria, theoretical models,

reference materials, etc. The same data can be used to estimate chances for trueness

or falseness, i.e., error rate of results in qualitative analytical procedures. There are

concepts and terminology for reporting those results and errors.

In order to express the extent to which an analyst is confident in chemical

identification results, numerous terms occur in the literature on qualitative analysis.

There have been probability, reliability, uncertainty, certainty (see [1]), correct-
ness [2], confidence [3] and so on. In science as a whole, there are even more terms

with regard to identification (Table 4.2). The author has chosen the frequently used

term of reliability [4], with the following definition:

Reliability of identification is a probability of its true result, denoted by p(TP).
In this book, this term is also used. To some degree, it is the conventional one

because other terms also occur often (Table 4.2). To establish the standard termi-

nology in the field, some kind of consensus between analytical chemists is obvi-

ously required.

Other terms, FP and FN, are generally accepted. They probably originated in

medical diagnostics (see [6]). Then this terminology was transferred to biochemical

and chemical analysis, including instrumental techniques and chemo- and bioinfor-

matics (see Chap. 7).

The concepts of reliability, probability, and error are interrelated. As the sum of

probabilities p of true and false results is 1 (or 100% if expressed in percent),

reliability is 1�p(FP) or 100%�p(FP) and 1�p(FN) or 100%�p(FN) for negative
and positive results respectively. Thus, an analyst trying to estimate the reliability

of a result of qualitative analysis should (a) evaluate the probability of true results in

a direct or indirect way, or (b) first take into account the probability of false results.

Depending on the particular case, corresponding methods may be or not be confir-

matory. In confirmatory methods, p(FP) and p(FN) are taken to be about 0, which

has the result that reliability is about 1. Therefore, rates of FP or FN are estimated,

and used primarily in screening methods based on various techniques beginning

with simple qualitative reactions, chemical tests (Fig. 4.1). These techniques will be

treated in Sect. 4.2.

Analytical data obtained by confirmatory methods based on spectrometry reli-

ably determine positive and negative results if the methods are validated. In cases of

invalidated (ad hoc) methods, spectral data not only lead to statements of results but
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also make it possible to estimate identification errors (see Fig 4.1). That is the

subject of the second part of this chapter.

4.2 Formal Statistics of False and True Results

4.2.1 Statistics of False Results

Commonly used values characterizing the reliability of a used qualitative method

are false rates [6–8] such as false positive rate (FPR)

FPR ¼ 100� nFP
nFP þ nTN

% (4.1)

and false negative rate (FNR)

FNR ¼ 100� nFN
nFN þ nTP

%; (4.2)

where nFP, nTN , nFN , nTP are the numbers of false positives, true negatives, false

negatives, and true positives respectively. These and other terms expressing

Table 4.2 Terminology for a trueness degree of identification and related terms. Corresponding

frequency in the scientific literature

Term The number of articles Available word combinations and their occurrences

Performancea 8,432 Identification performance – 7,560, performance of
(the) identification – 872

Errorb 5,361 Identification error – 4,870, error of (the)
identification – 491

Efficiency 3,627 Identification efficiency – 2,960, efficiency of (the)
identification – 667

Reliability 2,970 Reliability of (the) identification – 2,380,

identification reliability – 590

Probability 2,360 Identification probability – 1,110, probability of
(the) identification – 1,250

Confidence 1,235 Identification confidence – 813, confidence of (the)
identification – 422

Certainty 903 Certainty of (the) identification – 752, identification
certainty – 151

Correctness 780 Certainty of (the) identification – 697, identification
correctness – 83

Uncertainty 685 Identification uncertainty – 400, certainty of (the)
identification – 285

Unreliability 75 Unreliability of (the) identification – 68,

identification unreliability – 7
aThe search in Google Scholar [5]
bThis term is not fully synonymous with reliability
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probabilities of different outcomes of qualitative test are characterized in Table 4.3.

Similar terminology is employed in screening procedures performed through the

use of information retrieval in data systems, including searches for identification

purposes (Chap. 7).

These rates are determined as follows. Identical samples, both containing a certain

practically important amount of the analyte, and blank samples containing no analyte

(or to be more exact, containing much lower concentration of the analyte), are taken.

Both series of samples are tested n times, recording positives and negatives. For the

samples containing analyte, true positives and false negatives are recorded (here

n ¼ nTP þ nFN). Conversely, for the blank samples, true negatives and false posi-

tives are recorded (in this case, n ¼ nTN þ nFP). False positive and false negative

rates are further calculated by (4.1) and (4.2).

These rates can also be evaluated in two different ways, which are (a) an

inspection of screening results with the use of confirmatory methods, and (b)

interlaboratory studies.

False rate FR is a random variable following a binomial distribution (see [12, 13]

and Sect. 3.2). Depending on the number of replicate experiments (trials), a false

rate can be determined with a certain degree of accuracy, expressed by a confidence

interval DcFR. This is calculated approximately by the formula (4.3), which is

obtained by transforming (3.1) or (3.2).

DcFR ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FR� ð100� FRÞ

n

r
%; (4.3)

where z is the distribution parameter; see its values in Sect 3.2. The confidence

intervals, including relative ones, calculated by (4.3) for various FR and p are given
in Table 4.4.

Table 4.4 indicates firstly that evaluating the false rate with the same accuracy

(same DcFR/FR values) requires a greater number n of trials for lower error level

Basis for a statement of
detection/identification errors

Statistics of binary responses

• experiments with standard
and blank samples 

• confirmation by a different
method 

Fact of error derived from data

• deviation of values
• match factors
• conclusions about

interpretation

Fig. 4.1 Ways in which errors of detection and identification are estimated
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(that is, FR). Second, an estimation of FR with a reasonable accuracy (DcFR/FR is

at most 50 rel %) requires hundreds and even thousands of replicates. Table 4.5

gives the number of trials necessary for the evaluation of FR with the confidence

probability of 0.95 and various levels of FR and DcFR/FR calculated by the

transformation of (4.3).

This large number of experiments is difficult and often unprofitable to perform.

This is especially true for reliable methods having low false rates (1% and 5%,

Table 4.5). In this case, many trials should be taken to obtain at least one false

response. Table 4.6 gives the number of these replicates calculated using a binomial

Table 4.3 Basic nomenclature for the metrology of qualitative methods

Result, rate, value Notation Definition, comment

Positive P Presence of the analytical signal

Negative N Absence of the analytical signal

True positive TP See Table 4.1

False positive FP See Table 4.1

True negative TN See Table 4.1

False negative FN See Table 4.1

Sensitivitya (true positive rate) St (TPR) Percentage of TP of the total of TP and

FN; calculated by (4.4)

False positive rate FPR Percentage of FP of the total of FP and

TN; calculated by (4.1)

Specificity (true negative rate) Sp (TNR) Percentage of TN of the total of TN and

FP; calculated by (4.5)

False negative rate FNR Percentage of FN of the total of FN and

TP; calculated by (4.2)

False rate FR FPR or FNR
Efficiencyb 100% (TPþ TN)/(TPþ TN þ FPþ FN)
Youden indexb (St þ Sp � 100)%

Likelihood ratiob (100� FNR)/FPR
Positive predictive valuec PPV Percentage of TP of the total of TP and FP;

calculated by (4.6) or (4.8)

Negative predictive value NPV Percentage of TN of the total of TN and

FN; calculated by (4.7) or (4.9)

Prevalence Pv Percentage of samples containing the

analyte; corresponds to a prior

probability of the presence of this

substance in a sample

Cumulative positive

predictive value

CPPV Percentage of TP of the total of positive

responses for duplicate testing;

calculated by (4.12)
a The synonym of recall is used in estimation of performances for information retrieval

(e.g., see [9, 10])
bIndices not treated in this book
cThe synonymic term of reliability occurs in reports on information retrieval in data systems,

including searches in spectral libraries [9]. This reliability is similar in meaning to reliability of
identification (see above). In the literature on identification of peptides and proteins by mass

spectral match, the (100�PPV)% rate is named false discovery rate (FDR) (e.g., see [11])
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distribution. The best way out of this situation is that one should take a relatively

small number of trials of a standard sample containing (or not containing) the

analyte in the necessary amount [14]. If no false responses are obtained, one can

state that the false rate is below the corresponding value given in Table 4.6. Thus,

the absence of false responses in 59 analyses means that the false rate is below 5%,

with a confidence probability of 0.95.

The above statistics characterize samples with the same amount of analytes.

However, FR can be estimated for not only concentration points but also ranges.

For example, these rates are calculated for all the samples used for estimating

performance functions at different concentrations of analytes. In this case, FPR or

FNR is some central value or a value interval for a concentration/amount range.

The same may refer to a series of samples different in not only levels of analytes

but also a composition of matrices, e.g., real biochemical samples. For the latter, FR
are evaluated by using confirmatory GC–MS methods (Sect. 4.2.7).

For estimating FR and related performances in interlaboratory studies, the

overall number of laboratories and trials per laboratory and typical numbers of

Table 4.4 Confidence intervals for FR at various p

FR, % n DcFR, % DcFR/FR, rel %

0.90 0.95 0.99 0.999 0.90 0.95 0.99 0.999

1 10 5.2 6.2 8.1 10 518 617 811 1035

100 1.6 2.0 2.6 3.3 164 195 256 327

1000 0.5 0.6 0.8 1.0 52 62 81 104

5 10 11 14 18 23 227 270 355 454

100 3.6 4.3 5.6 7.2 72 85 112 143

1000 1.1 1.4 1.8 2.3 23 27 36 45

10 10 16 19 24 31 156 186 244 312

100 4.9 5.9 7.7 9.9 49 59 77 99

1000 1.6 1.9 2.4 3.1 16 19 24 31

Values set in bold correspond to the condition DcFR/FR < 50 rel %

Table 4.5 Number of

method trials for p ¼ 0.95
FR, % DcFR/FR, rel %

20 30 40 50

1 9,508 4,226 2,377 1,521

5 1,825 811 456 292

10 864 384 216 138

Table 4.6 The most probable

number of trials necessary to

obtain at least one false result

FR, % P ¼ 0.95 P ¼ 0.99

1 299 459

5 59 90

10 29 44
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replicates per material will be outlined in Sect. 9.6. In any case, many tens or even

hundreds of replicate experiments are required to provide accurate estimates of

rates for qualitative analysis.

4.2.2 Statistics of True Results

Equations analogous to (4.1) and (4.2) can be used for calculating true result rates,

which in medicine and toxicology [6, 7] are called sensitivity and specificity
(Table 4.3). Sensitivity, St, is given by the formula:

St ¼ 100� nTP
nTP þ nFN

%: (4.4)

The equation for the specificity, Sp, is written as follows:

Sp ¼ 100� nTN
nTN þ nFP

%: (4.5)

This concept of sensitivity differs from that used in state-of-the-art analytical

chemistry and metrology (“the slope of the calibration curve” [15]), and agrees with

another interpretation of this term inversely related to a detection limit [16]. Indeed,
if the qualitative method allows small amounts of a compound to be detected (low

detection limit), the sensitivity, i.e., the true positive rate calculated by (4.4),

is high.

The above definition of the specificity of a qualitative method coincides with the

term specific recommended by IUPAC. This term

. . . expresses qualitatively the extent to which other substances interfere with the determi-

nation of a substance according to a given procedure. Specific is considered to be the

ultimate of selective,1 meaning that no interferences are supposed to occur [17].

Indeed, interfering substances cause false positives, which reduces the specific-

ity calculated by (4.5). Thus, treatment of concepts of sensitivity and specificity
originated from medicine, etc, does not conflict with that typical for chemistry.

Nevertheless, in order to not mix up the two interpretations, treatments

corresponding to (4.4) and (4.5) will be specified below using the term of statistical
or the notations of St (or TPR) and Sp (TNR).

The four rates (false or true, negative or positive) are not independent. They are

related in pairs: FNR þ St ¼ 100% and FPR þ Sp ¼ 100%. These relationships

can be easily derived using (4.1), (4.2), (4.4), and (4.5). Therefore, in characterizing

reliability of the qualitative determinations, both false and true rates can be used.

1I.e., specificity is 100% selectivity.
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4.2.3 Replication

In replication of qualitative testing for the same samples, the probabilities of the

positive and negative responses are multiplicative (e.g., see [8, 18]). Thus, if the

sample contains the analyte, and the probabilities of positive and negative responses

are equal to St and FNR respectively (which is true for reasonably large number of

trials), retrying the same test gives the following:

l Probability of the positive response ¼ St � St
l Probability of the negative response ¼ FNR � FNR
l Probability of the uncertain response (positive and negative responses in differ-

ent order) ¼ 2 � St � FNR

Setting aside the uncertain responses and evaluating the outcome by the positive-

to-negative ratio (i.e., odds), one can conclude that duplicate testing reduces the

probability of error.

Nevertheless, it is unknown a priori whether the analyte is present in the real

sample. Therefore, the positive response obtained can be either true or false. The

chances are determined by the corresponding probabilities. In this case, this is the

sensitivity-to-false positive rate ratio.

The latter example implies that prior probabilities of the presence or absence of

the analyte in the sample are equal. In general, this condition is not met, and the

trueness of chemical testing is to be assessed with the samples with and without the

analyte. Therefore, having prior statistical information about the sample composi-

tion substantially reduces the unreliability of screening tests (see below). This is

also achieved by using confirmatory methods (another simple qualitative method or

a more complicated instrumental technique); see Chap. 6 and [6, 18].

Example 4.2 Screening by the test method with the FNR of 5% and FPR 3%

has the odds in favor of the true positive response equal to (1�0.95)/0.03 �
32/1. A repeated trial substantially increases the odds (to about 1,000/1).

Example 4.1 For the analyte present in the sample, qualitative determination

with the false negative rate of 5% has the odds in favor of the true (positive)

response equal to St/FNR ¼ (1�0.05)/0.05 ¼ 19/1. The odds in favor of the

true response after two trials is (0.95/0.05)2 ¼ 361/1, that is, much higher

than in the first case.
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Thus, the screening run reveals the positive and negative responses, and the

repeated analysis is performed with one of these sample series (as a rule with

positives) to evaluate the rate of the true and false responses.

4.2.4 Predictive Values

Rates of St and Sp unambiguously characterize the efficiency of qualititative

methods when all the samples contain or do not contain the analyte. For the samples

containing the analyte with a certain probability, different numerical characteristics

are used.

Chemical testing of an arbitrary sample can give positive or negative responses;

in both groups, true and false responses are observed. The proportion of true

responses is characterized by the predictive values [6, 7, 14]. Two types of

predictive values are distinguished, positive predictive value PPV

PPV ¼ 100� nTP
nTP þ nFP

% (4.6)

and negative predictive value NPV

NPV ¼ 100� nTN
nTN þ nFN

% (4.7)

Equations (4.6) and (4.7) pertain to a series of n identical samples or similar ones

(the same matrix), where n ¼ nTP þ nFP or n ¼ nTN þ nFN respectively.

For real samples, (4.6) and (4.7) are hard to use. The reason is that it is

impossible to distinguish between true and false responses, i.e., TP from FP and

TN from FN. Nevertheless, if the proportion of the samples containing the analyte,

i.e., prevalence Pv (see Table 4.3) is known, the predictive values can be calculated
by the equivalent formulae using sensitivity St and specificity Sp [7].

PPV ¼ 100� St� Pv

ð100� SpÞð100� PvÞ þ St� Pv
% (4.8)

NPV ¼ 100� Sp � ð100� PvÞ
ð100� StÞ � Pvþ Sp � ð100� PvÞ%: (4.9)

The pair correspondence of (4.6) and (4.8) with (4.7) and (4.9) can be easily

demonstrated using definitions (4.4) and (4.5).

Estimating the PPV values being of concern in state-of-art statistical tests of

various identification methods (see footnote to Table 4.3) is exemplified further.

The above example requires an additional comment. Positive and negative

predictive values for each individual sample can be calculated if the prevalence
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of the analyte is known [(4.8)]. These data are mostly lacking, but they can be

obtained for a series of samples of a similar composition from the results of

analyzing this series. Indeed, assume that the numbers of positive and negative

responses correspond to the values above. In this case Pv ¼ (nTP þ nFP) � 100/

n ¼ (99 þ 9) � 100/1000 ¼ 10.8%; this value differs only slightly from the a

priori value of 10.0%. Taking into account the prevalence of 10.8%, we obtain a

PPV of 92.3%, which also differs only slightly from the above value of 91.7%.

Positive predictive values for the high sensitivity St of 99% and various speci-

ficity Sp and prevalence values are given in Table 4.7. It is easy to see that if more

than half of the samples contain no analyte (Pv < 50%), the positive response level

becomes lower than the nominal specificity. Thus, if the analyte is present in less

than 5% of samples and Sp is 95%, more than half of the positive responses become

false. For the statistical sensitivity and specificity of 90%, this result is obtained for

the prevalence below 10% (Table 4.8).

Example 4.3 A qualitative method with performances St and Sp of 99% is

applied to a series of 1,000 samples containing the analyte. These are, e.g.,

body fluids taken from people with a certain disease, or soil samples taken in

a relatively compact area. One would expect 990 (99%) true positives accord-

ing to (4.4). Since the false positive responses are excluded in this case, the

predictive value PPV in this case is 100%; see (4.6) or (4.8).

In the other case, the same test is applied to another series of 1,000

samples, of which one tenth (Pv ¼ 10%) contains the detectable amount of

the analyte. Analytical procedures followed by calculations by (4.1), (4.2),

(4.4), and (4.5) lead to the following results:

nTP ¼ (1,000 � 0.1 � 0.99) ¼ 99,

nFN ¼ (1,000 � 0.1 � 0.01) ¼ 1,

nTN ¼ (1,000 � 0.9 � 0.99) ¼ 891,

nFP ¼ (1,000 � 0.9 � 0.01) ¼ 9.

It is easy to demonstrate that the results of this method correspond to its

rates. Indeed, St ¼ (99 � 100)/(99 þ 1) ¼ 99% and Sp ¼ (891 � 100)/

(891 þ 9) ¼ 99%.

However, the positive predictive value derived from analytical experi-

ments, which characterizes not only the method but testing of the individual

samples as well, is less than 99% and equals (99 � 100)/(99 þ 9) ¼ 91.7%.

Therefore, each positive response can be false with a rather high probability

(more than 0.08). This results from a relatively large number of false positives

due to a large number of samples containing no analyte (900 samples),

although the probability of the false positive response is low (1%). Hence,

depending on the previously established criteria of reliability, further confir-

mation of the determination results may be necessary.
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Hence, if samples are tested in which the analyte is rare in occurrence, its

detection frequently can be false. Similar large errors occur in the quantitative

determination of the analyte at low concentrations.

4.2.5 Bayesian Approach

Equations (4.8) and (4.9) used for estimating the reliability of qualitative methods

can also be derived using the Bayesian approach to probability, taking into account

prior data (see Sect. 3.5 and the references therein). Indeed, the prevalence of the

samples containing the analyte can be known prior to the experiment as prior

information. Analysis of the samples implies its transformation into more reliable

a posteriori information as a result of the experiment.

This situation is described by the Bayesian equation (3.3), which can be also

represented in the form:

pðA resultj Þ ¼ pðresult AÞ � pðAÞj
pðresult AÞ � pðAÞ þ pðresult AÞ � pðAÞ���� ; (4.10)

where p(A|result) is the conditional probability of the presence of the analyte A in

the sample, given the analysis result is obtained; p(result|A) is the conditional

probability of the positive response in the presence of the analyte; p(A) is the

probability of the presence of the analyte; p(result|A) is the conditional probability

Table 4.7 Positive

predictive values for 99%

statistical sensitivity and

various specificity and

prevalence values

Pv, % Sp, %

99.9 99.0 95

100 100 100 100

75 100 99.7 98

50 99.9 99.0 95

25 99.7 97 87

10 99.1 92 69

5 98 84 51

1 91 50 17

Table 4.8 Positive

predictive values for 90%

statistical sensitivity and

specificity and various

prevalence values

Pv, % PPV, %

100 100

75 96

50 90

30 79

25 69

10 50

5 32

1 8
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of the positive response in the absence of the analyte; p(A) is the probability that the
analyte is absent.

In this case, the probability p(result|A) equals the proportion of the true positive

responses at a reasonably large number of samples tested, each of them containing the

analyte, i.e., the sensitivity St. In the same conditions, the other probability, p
(result|A), is FPR or 100%�Sp. The probability p(A) equals the prevalence, and so

on. Thus transforming (4.10) and taking into account (4.8), one obtains the following:

p Ajresultð Þ ¼ PPV: (4.11)

The corresponding Bayesian conditional probability pðresult AÞ�� , i.e., the proba-

bility of the absence of the analyte A given the negative response, is equivalent to

the negative predictive value, as can easily be demonstrated by modifying (4.10).

This equivalence as well as (4.11) implies that Bayesian a posteriori probabilities

are related to the sensitivity, specificity, and prevalence in the same way as

predictive values in (4.8) and (4.9).

4.2.6 Prior Data and Replication

A prior probability in the Bayesian equation (4.10) can either pertain to the amount

of the analyte in the sample known a priori or represent the results of another,

initial, screening test. In this case, conditional probabilities, including a posteriori

probability p(A|result), pertain to the second analytical experiment performed in

parallel with the first one or after it. As shown above, duplicate determination gives

more reliable results than each method performed separately. The particular esti-

mation is exemplified below.

Example 4.4A qualitative method with a statistical sensitivity and specificity

equal to 90% is used for screening of 300 samples, 30% of them containing

the analyte. The most probable results are the following:

nTP ¼ 300 � 0.3 � 0.9 ¼ 81,

nFN ¼ 300 � 0.3 � 0.1 ¼ 9,

nTN ¼ 300 � 0.7 � 0.9 ¼ 189,

nFP ¼ 300 � 0.7 � 0.1 ¼ 21.

The method exhibits the following predictive values:

PPV ¼ (81 � 100)/(81 þ 21) ¼ 79% (corresponds to the data of

Table 4.8),

NPV ¼ (189 � 100)/(189 þ 9) ¼ 95%.

(continued)
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In general, the result of the two combined analyses for the case when only the

samples with the positive response of the first test are retested can be expressed by

the equation obtained by transforming (4.8) or (4.10)

CPPV ¼ pðAjresultÞ1;2 ¼:
100� St2 � PPV1

ð100� Sp2Þð100� PPV1Þ þ St2 � PPV1

%; (4.12)

where CPPV is the cumulative positive predictive value of these analyses,

pðAjresultÞ1;2 is the conditional probability of the presence of the analyte in the

sample given the certain test results, and subscripts 1 and 2 pertain to the first

and second experiment respectively. Cumulative positive predictive values

calculated for various combinations of the prior probability of the presence

of the analyte in the sample, statistical sensitivity and specificity are given in

Tables 4.9 and 4.10.

Table 4.9 shows that the cumulative predictive value of the two independent

tests does not depend on the order in which they are performed. Thus, if one method

has the sensitivity and specificity of 90%, and the other one has the sensitivity and

specificity of 95%, the cumulative value for any order of qualitative analytical

experiments is 98.7%. Nevertheless, a different number of samples is tested in this

case, and one of the two experiments (the first one is more specific, and the second

one is more sensitive) is less laborious [6, 7]; see Example 4.5.

Therefore, 102 positive responses are obtained, and only 79% of them are

true. Repeated testing with the same specificity and sensitivity gives

improved results:

nTP ¼ 102 � 0.79 � 0.9 ¼ 73,

nFN ¼ 102 � 0.79 � 0.1 ¼ 8,

nTN ¼ 102 � 0.21 � 0.9 ¼ 19,

nFP ¼ 102 � 0.21 � 0.1 ¼ 2.

Simultaneous use of the two tests gives the predictive value

PPV ¼ (73 � 100)/(73 þ 2) ¼ 97%.

This implies that each positive response of the chemical test is true with a

high probability of 97%. Therefore, further confirmation of the true responses

is not necessary.

Here, the prevalence values (30%) were given, whereas they are unknown

in general. However, they can be calculated from the results of the first test.

Indeed, the number of positive responses is 81 þ 21 ¼ 102, and, therefore,

Pv ¼ 102 � 100/300 ¼ 34%. Using this value instead of 30% for calculat-

ing the predictive value gives 82 and 98% positive predictive values for the

first and duplicate analysis respectively. These values differ only slightly

from those calculated using the prior probability.
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4.2.7 Screening of Real Samples

Rapid test methods are widely used in biochemical, clinical, and toxicological analy-

sis. Table 4.11 gives the typical false positive and false negative rates and also other

performances for the screening detection of abused drugs in urine and other matrixes

of humans (average concentrations in the range of 1 ng/ml–1 mg/ml). Different

techniques of immunoassay and chromatography were used. Gas chromatography

mass spectrometry was used as a confirmatory method unambiguously determining

the presence or absence of these drugs down to a low concentration of about 1 ng/ml.

Table 4.10 Predictive values

of single and duplicate tests

for sensitivity and specificity

of 95% and various

prevalence values

Pv, % PPV, %
(method 1 or 2)

CPPV, %

0.1 2 27

1 16 78

5 50 95.0

10 68 97.6

20 83 98.9

30 89 99.4

40 93 99.6

50 95 99.7

Example 4.5 Three hundred samples with the analyte prevalence of 30% are

taken for analysis. Two qualitative methods are used: the first one having a

statistical sensitivity of 90% and specificity of 95%, and the second one

having a sensitivity of 95% and specificity of 90%. If the first one is used

first, true positive responses are recorded for 81 samples, and false positive

responses are recorded for 10 or 11 samples. Hence, only 91 or 92 samples

need retesting. If the second method is used first, 85 or 86 true positive and 21

false positive responses are recorded after the first stage. In this case, as many

as 106 or 107 samples need retesting, which is less cost-efficient.

Table 4.9 Predictive values of single and duplicate tests for 30% prevalence and various

sensitivity and specificity values

Method 1 Method 2 PPV, % CPPV, %
methods 1 þ 2St Sp St Sp method 1 method 2

90 90 90 90 79 79 97.2

90 95 90 95 89 89 99.3

95 90 95 90 80 80 97.5

95 95 95 95 89 89 99.4

90 90 95 95 79 89 98.7

95 95 90 90 89 79 98.7

90 95 95 90 89 80 98.7

95 90 90 95 80 89 98.7
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Table 4.11 shows that false rates are inevitable in screening methods. In some

cases, false responses occur in more than 10% cases. However, a high false negative

rate may result from relatively low concentrations of the analytes at and below

detection limits. Hence, these responses are false just relative to gas chromatogra-

phy mass spectrometry data.

Quantitative estimates of errors of qualitative methods also come into other

fields of analysis. Examples of such screening analyses are (see also Chap. 8):

l Environmental health analysis: the determination of lead in air and paint films

[13, 25, 26]
l Qualitative analysis II: the determination of hazelnut oil in olive oil based on

measuring triglycerides and sterols by GC and HPLC [27]

4.2.8 Other Indices

In toxicology and some other fields, the index of the mean list length (MLL) has

been proposed to define the overall efficiency of the identification method/

Table 4.11 Rates for immunoassay screening of sample containing abused drugs. Confirmation

by GC–MS

Sample Rate, %

FPR FNR St Sp PPV NPV

Opiates, cocaine, and so on

in urine [7]a
0.4–16 1.5–43 44–98.5 84–99.7 22.5–98.9 85–99.6

0–3.8 18–77 23–-82 96–100 79–100 75–96

0–2.2 21–92 4.5–79 98–100 23–100 68–96

0–0.4 16–29 71–84 99.6–100 94–100 82–97.5

Amphetamine, opiates, and so

on in urine [19]b
71–100

Cannabis and codeine in

saliva [20]c
90–100 90–100

Amphetamine, opiates, and

so on in urine [21]d
32–95 41–98 58–93 62–90

Amphetamine, opiates, and

so on in urine [22]e
0–3.8 0–0.9

Methamphetamine in hair [23]f 88–97 93–100

Cocaine and its metabolites in

urine [24]g
86–98.4 88–100 7.5–100 96.5–100

aScreening results by TLC, LC, and HPLC in second, third, and fourth lines respectively. Some

samples (2–18%) contain analytes under their detection limits (in most cases 25–300 ng/ml)
bDetection limits are 200–300 ng/ml. TLC is another confirmatory technique. Ranitidine interferes

with determination of amphetamine
cThe detection limit is 10 ng/ml
dThe analyte concentration is 15–700 ng/ml
eDetection limits are 4–2,000 ng/ml; HPLC–MS (MS2) is another confirmatory technique
fDetection limits are 0.75–1 ng/ml
gThe analyte concentration is 50–300 ng/ml, prevalence is 1–20%
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technique applied to a sample of analytes [28, 29]. This is one of the indices of

selectivity. In common screening, a result of identification is unambiguous for some

analytes and ambiguous for other detected compounds. In the second case, candi-

dates for identification are partially (within corresponding lists) indistinguishable.

By definition, the MLL is an average number of candidate compounds per one

analyte from some analyte group: N/n, where N is the overall number of candidates

and n is the number of compounds in a group. If the MLL is equal to 1, there is the

case of unambiguous individual identification of a group of compounds. The value

of 2 signifies that an average list of two candidates for identification per each

analyte is set up by a method. The index under consideration is estimated for

model samples of compounds.

Another index of selectivity, the discriminating power (DP), is also sometimes

reported (e.g., see [29]). The DP expresses the probability that two compounds from

a sample of analytes can be distinguished by the method/technique. This index is

1�2np/n(n�1), where np is the number of indistinguishable pairs of compounds, n

is again their overall number. The index DP clearly varies from 0 (all the com-

pounds from a group are indistinguishable and therefore np ¼ n(n�1)/2) through 1,

i.e., full recognition of all the analytes under analysis and np ¼ 0.

4.3 Concentration Dependence of Detection

and Identification Results

In the determination of a low amount/concentration of a substance, an analytical

method is near its capability limits. In consequence, detection and especially

identification of an analyte may be unreliable. Indeed, a low signal may be related

to (a) a noise, or (b) a foreign compound rather than a target one. Their interference,

as well as an occurrence of the analytical signal itself, is clearly dependent on

analyte concentration.

4.3.1 Binary Responses

General outcomes of screening in terms of true and false rates depend on the

concentration (amount) of the analyte. When the concentration decreases, TP rate

begins to decrease at a certain level (Fig. 4.2). This results from the following two

factors. The first is related to statistics, and consists of the fact that the proportion of

weak analytical signals in their intensity distribution increases at this concentration.

This can be manifested by the absence of

l The signal because it is masked by the noise background in the instrumental

detection and
l Any visible color changes in the sensory detection.
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The second factor causing false responses at low analyte concentrations is

mainly typical of qualitative reactions. These responses result from incompleteness

of the reaction and masking effects [14]. Analogous effects can be also observed in

instrumental analysis. For example, ESI of many analytes is suppressed by surfac-

tants [30, 31]. Therefore, low analyte concentrations are unavoidably associated

with negative responses. The latter can be called conditionally true negatives if the

corresponding concentrations are below the established regulatory values or other

values of practical importance. Obviously, the false negative level becomes reason-

ably low for relatively high analyte concentrations.

Conversely, false positives can be detected for blank samples, and they also can

be of two sorts. They can arise from the fluctuation of the noise level of the

instrument detector, or from the detection of some interfering substances.

Figure 4.2 shows the concentration dependence of results of common chemical

tests or other screening techniques. The highest error rate is found at relatively low

concentrations where the true rate is nonzero but does not reach 100%. The analyte

concentration range where this rate is between 5 and 95%, i.e., from c5% to c95%
(see Fig. 4.2) is called the unreliability region [32, 33]. Similar ranges are also

called the region of unreliable or unsteady reaction, the region of unreliably
detected concentrations (see [14]), and the uncertainty interval [13].

The boundaries of this uncertainty interval can characterize the chemical test

(qualitative method). Thus, the procedure for determination of lead in the air (spot

0

25

50

75

100

%

negative positive

c5% c50% c95%
concentration

Fig. 4.2 Percentage of positive and negative responses of a qualitative method as a function of the

analyte concentration (amount). The concentrations c5% and c95% correspond to 5 and 95% of

positive responses. In these two cases, false negative rates are 95 and 5% respectively. For c50%,

proportions of positive and negative responses as well as true and false results are the same
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test with rhodizonate) has the following performance characteristics for the confi-

dence probability of 0.95 [25]:

l positive > app. 10 mg Pb
l negative < app. 0.6 mg Pb

This implies that for samples with a lead content higher than 10 mg and lower

than 0.6 mg, the test will respond positively or negatively respectively, with a

probability of 0.95. The reverse is also true: for the positive response, the lead

content is higher than 10 mg, and for the negative response, the lead content is lower
than 0.6 mg with the same probability.

Various points at the boundaries of unreliability regions and in their centers also

have special names, although definitive terminology for binary response determi-

nations (Table 4.12) is not yet established.

The plots in Fig. 4.2 indicating the integral distribution of the positive and

negative responses are called performance functions/curves/graphs [4, 14, 39, 40].

These functions are approximated by normal, logarithmically normal, logistic,

exponential, the Weibull distribution and other distributions [13, 14, 25, 39, 40].

No significant difference has been found between the approximations; sometimes,

preference has been given to the exponential, logarithmically normal, or normal

distributions (references, see [14]). In a recent book [40], only two functions,

logistic and exponential ones, were proposed to be tested.

4.3.2 Measurands

4.3.2.1 Detection

In the previous section, just analytical signals as yes/no responses were treated.

Measured signals are also concentration-dependent. The examples of those for low

amounts are given in Fig. 4.3. Such limit performances, essential in many analytical

problems, e.g., a doping determination, food, and environmental analysis, are

further considered.

Signals are observed/recorded only if they exceed a noise level. The low limit

concentration (if observed) should correspond to low probability of the noise level

coming up to the intensity of such an analytical signal. This probability derived

Table 4.12 Terms for special concentration points in the unreliability region

Concentration Terminology

c5% Cut-off [34], low cut-off [35], low value of unreliability region [36]

c50% Identification limit [13, 25], mean detectable concentration [37],

c95% Cut-off [34], high cut-off [35], limit of detection [38], screening limit [34, 35],

upper value of unreliability region [36]

c99,7%
a Reliably detectable concentration, reliably detectable minimum [37]

aDefined in the same way as other points; see Fig. 4.2
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from the noise distribution is a, see Fig. 4.3. The a value 0.05 is usually estab-

lished. The calibration graph shows that corresponding analyte concentration is

critical concentration CCa. There are several names for this limit concentration

(Table 4.13).

Thus, if the analyte concentration is equal to or is higher than CCa, there is the
probability a that the corresponding signal with the intensity ICCa is the noise.

noise 

analyte

α

β

calibration

ССα ССβ p, c

IССβ

IССα

I

Inoise

Fig. 4.3 Probability distributions of an intensity of an analytical signal and a noise. This is Fig. 3.7

adapted to the case (see also [41, 42]). The vertical axis shows the signal intensity. The horizontal

axis demonstrates both the probability of the particular signal and the concentration/amount of an

analyte. The noise curve is recorded for a blank sample containing a very low amount of an

analyte. The most probable level of the noise corresponds to the amplitude Inoise. Two other signal
intensities shown here are related to a low and the most probable signals of an analyte at the limit

concentration CCb. This, and another point CCa, are discussed in the text

Table 4.13 Terms for limit concentration points

Critical

concentration

Terminology

CCa Critical value [43], critical value of the net state variable [41], decision

limit [44]

CCb Detection capability [41, 44], detection limit [43], minimum detectable

value [43]

82 4 Reliability and Errors of Identification



However, there is a relatively low probability (probability of FP). So, an analyst

decides that such a signal refers to the analyte.

With increasing concentration, the signal also rises. For the concentration CCb,
the most probable amplitude of this analytical signal is ICCb. (Fig. 4.3). Due to the

statistical nature of the signal, its amplitude may be as low as ICCa, depending on the
value a. The probability of that outcome (FN) is b. It should be noted that this is not
the only name for the limit quantity CCb (see Table 4.13).

Figure 4.3 demonstrates also that the signal in the point CCa refers to both noise
and the analyte with the same probability. Here, ICCa is the most probable signal

(not shown) for this concentration. There is a relatively low probability (e.g., the

same value a) that the signal amplitude for the level CCa measures up to ICCb. For
the intensity ICCb and higher, there is almost complete certainty that one observes

the analytical signal.

The concentrations CCa and CCb are calculated based on established values a
and b, standard deviations s (or s) of intensities of both noise and analytical signal,
and calibration dependence for the involved analytical experiment. In general form,

those quantities are (see [43]):

CCa ¼ zð1� aÞ � sbl; (4.13)

CCb ¼ CCaþ zð1� bÞ � san; (4.14)

where zð1� aÞ and zð1� bÞ are the (1�a)th and (1�b)th quantile respectively of

the normal distribution; sbl and san are the standard deviation of the signal intensity
for the noise (blank) and analyte respectively.

Equations (4.13) and (4.14) are transformed into the explicit forms [42–46] to

use in practical analysis. Different standard documents, the ISO 11843 standard

[45], the German standard DIN 32645 [47]), and the Commission Decision 2002/

657/EC [44], lead to the same or similar estimates for both values CC [48].
For the calibration line I ¼ a � c þ Inoise (see Fig. 4.3), a ¼ 0.01 or 0.05, and

b ¼ 0.05; simple forms of those equations [42, 44] are

CCa ¼ 1:645 � sbl
a

a ¼ 0:05ð Þ; (4.15)

CCa ¼ 2:33 � sbl
a

a ¼ 0:01ð Þ; (4.16)

CCb ¼ CCaþ 1; 645 � san
a

; (4.17)

where sbl and san are the sample estimates for the standard deviation of the signal

intensity for the noise (blank) and analyte respectively. The more replications of the

measurement are carried out, the more accurate this approximation becomes. At

least five replications have been reported [42, 45, 46]. As the level CCb is not
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known a priori, the analyte concentration and corresponding sample for estimating

san should be specially chosen. This may be [42, 44–46]

l The lowest concentration from samples taken for the calibration
l The level CCa at which the matrix is fortified with the analyte or
l The amount providing several times as much signal-to-noise ratio

For dangerous/banned compounds, permitted/legal/regulated limits are com-

monly established. In terms of an analytical purpose, the most important thing is

to find out whether an analyte content exceeds or is not higher than some estab-

lished value. In other words, it is necessary to determine a compliance with legal

limits. In these cases, a blank level of a concentration (Fig. 4.3) is substituted by a

permitted level to be treated [44].

In a more classical approach, a limit performance without calibration data is

estimated.

l CCa is the concentration corresponding to the signal amplitude, which is three

times the mean signal-to-noise ratio calculated for at least 20 repetitions of the

analysis of blank sample or matrix fortified with the analyte compound at the

regulated level [44].
l CCb is estimated analyzing the samples containing the analyte at and above the

level CCa. The standard deviation sCCa of the value ICCa for the first from

concentrations is further calculated. CCb is estimated which, by definition, is

the concentration at which the analytical signal is so large that only 5% of the

lower signal values for CCa measures up that level. The equation for the

calculation is: ICCb¼ ICCaþ1.645 � sCCa. Subsequently, the concentration CCb
inducing the response ICCb is chosen or calculated after the analysis of other

samples and the recording of their signals. Again, at least 20 repetitions of the

analysis of corresponding samples are recommended to be carried out [44].

In any case, if calibration data are not specially used, analysis of at least two

matrices fortified with an analyte at different concentrations is required to estimate

both limit concentrations.

For estimation of limit concentrations CC or analogous quantities, the EU

guidance [44] and ISO standard [45] are most commonly used. The document [44]

provides rules for arrangement and estimation of characteristics of analytical meth-

ods for residues of substances having a pharmacological action and their metabolites

transmitted to products of animal origin. Some estimates are shown in Table 4.14.

This guidance is also of value for analysts in containing many useful approaches,

rules, and criteria for routine chemical identification in the general case, although

some items from the document have been criticized (see Sect. 5.6).

There is an analogy between a qualitative determination with the use of yes/no

(Fig. 4.2) and measured (Fig. 4.3) responses with regard to critical concentra-

tions. Indeed, there are the same levels of false results in points of c50% and CCa,
c95% and CCb. Furthermore, measurement results can be expressed not only as
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values of quantities but also converted into yes/no responses. Three examples of

combinations of measurements and responses are noted.

1. For Hg monitoring in soils by atomic absorption spectrometry, the screening

method was developed, and a narrow region of unreliability was determined

(1.15–1.95 mg/g). The samples falling into this interval were destined to be

further analyzed by use of a more accurate technique [55].

2. In detection of pesticide residues in vegetables by GC–ECD, lower and upper

screening limits (probably corresponding to values c5% and c95%; see Table 4.12)
were estimated. The samples with responses which were equal to or higher than

signals in points of lower screening limits were considered as non-negative. The

GC–MS technique was further used for confirmation of an analyte presence in

such samples [56].

3. Even such a performance analytical technique as GC–MS2 may be just a

screening one if peaks of the only product ion are recorded. Using such screen-

ing method and counting positive and negative results, unreliability intervals,

from 3.7 (minimum low cut-off) to 22.2 mg/kg (maximum upper cut-off), were

estimated for determination of about 130 pesticide residues in vegetables. Two

or three other product ions (MS2 transitions) were intended for confirmation of

the screening result [36].

Table 4.14 Examples of limit concentrations of veterinary drugs in methods. Calculations accord-

ing to [44]

Residue, matrix,

reference

Technique Concentration

level

a b CCa CCb

Chloramphenicol

in muscle [49]

HPLC–MS2 Blank 0.01 0.05 0.15 mg/kg 0.22 mg/kg

3-Amino-2-

oxazolidinone a

in food [50]

HPLC–MS2 Zero 0.01 0.05 0.14 mg/kg 0.18 mg/kg

Tetracycline in

methanol–

water [51]

Fluorimetry Blank

Permitted limit

100 mg/l

0.05

0.05

0.05

0.05

13.1; 20.1b mg/l
123.6 mg/l

25.3; 38.5 b mg/l
136.0 mg/l

Five penicillin

antibiotics in

muscle [52]

HPLC Spiking from 25

to 300 mg/kg
0.05 0.05 From 26.6 to

341 mg/kg
From 29.1 to

380 mg/kg

Seven tetracycline

antibiotics in

milk [53]

HPLC Spiking

100 mg/kg
0.05 0.05 101–106 mg/kg 104–109 mg/kg

Ten quinolone

antibiotics in

milk [54]

HPLC Spiking from

6–8 to

100–103

mg/kg

0.05 0.05 From 7.8 to

103 mg/kg
From 9.2 to

105 mg/kg

a Nitrofuran metabolite, calculations according to the ISO standard 11843-2 (2000) [45]
bDifferent methods
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4.3.2.2 Identification

Above the concentration CCb, analytes are reliably detected. However, this does

not imply that those are reliably identified as well. For this purpose, another

definition is introduced:

. . . limit of identification (LOI). . . is defined as the lowest concentration for which the

identification criteria are met [57].

This limit value is analogously treated in [4].

There is another similar definition for the critical value named lowest concen-
tration for identification proposed by ISO standard guidelines for the identification

of analytes by GC–MS in soils:

. . . lowest concentration of the target compound, which, if present in the sample, can be

identified using the identification criteria. . . [58]

This definition is obviously generalizable to various techniques and matrices.

Thus, at the point CCb (Fig. 4.3), the criteria established independently from

analyte amount may be met or not met. There is also an intermediate case of so-

called indicationwhen some criteria are met and other ones are not met for the same

analyte [58]. This is typical for identification of low amounts of organic compounds

by MS based on several identification points. For GC–MS, an indication is treated

in Example 4.6. The possibility of such incomplete identification of the pesticide

analyte is illustrated in Fig. 4.4. The concentration dependence of how identifica-

tion criteria are met is given in Example 4.7.

Example 4.6 is based on the data from [58], and related to identification of

the particular compound by GC–MS. The chromatographic peak and three

mass peaks of characteristic/diagnostic ions are recorded for both standard

and analyzed samples. Identification criteria are:

(a) the relative retention time RRT of the analyte differs from that of the

standard by less than � 0.2%

(b) the relative intensities I (relative to the highest characteristic peak in

the mass spectrum of the standard solution) of all the characteristic ions in the

mass spectrum of the sample do not differ by more than � (0.1 � Istd
þ 10)% from those determined in the spectrum of the standard, where Istd
is I of the characteristic ion in the mass spectrum of the standard.

The analytical experiment showed that analyte times RRT had deviated by

less than � 0.2% from the reference value determined with the standard

calibration solution. So the chromatography criterion is met.

In mass spectra, three characteristic ions are selected. Corresponding ion

currents when recording the mass spectrum of the most diluted calibration

solution are 13.3, 9.75, and 12.8 (in 104 a.u.). Calculation of relative values

(continued)
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Example 4.7 [59]. The EC criteria [44] (see Sect. 5.2.2.2) for the confirma-

tion of the presence of anabolic steroids as illegal compounds present in

biological matrices at concentrations from 0.5 through 5.0 mg/kg were tested.
The analysis was carried out by GC–MS. Four characteristic ions were

monitored, and three ion abundance ratios were calculated and compared to

the criteria values. The latter were established using either standards or

fortified samples as references. The proportion of ion ratios falling within

the tolerance ranges as criteria was correlated to the S/N ratio of the least

abundant from recorded characteristic ions. In general, it was concluded that

at S/N¼3 the percentage of ratios within the tolerances was � 50%. With

more intense signals, S/N� 10, the proportion increased to more than 90%. In

other words, the identification criteria were met for (a)� 50% and (b)> 90%

of pairs of (a) very low peaks and (b) not very low peaks respectively.

Istd leads to 100, 73, and 96%, respectively. Than tolerance ranges for these

values are evaluated. They are � (0.1 � 73 þ 10)% ¼ � 17.3% and � (0.1

� 96 þ 10)% ¼ � 19.6% respectively.

In mass spectra of the target analyte, peaks of the same three ions are present.

Their currents and relative values I are 1.42, 1.01, 1.02 (in 104 a.u.) and 100, 71,
72% respectively. Subsequently, deviation of I in the sample from the calibra-

tion standard are calculated. They are (71–73)/73% ¼ �2.7% and (72–96)/

96% ¼ �25%, respectively. One can see that the deviation for the second ion

(�2.7%) is within the permitted range (� 17.3%, see above). In contrast, the

deviation for the third ion (�25%) is outside the maximum range (� 19.6%).

Thus, one from the MS identification criteria is not met. According to the

rule set up in the standard [58], this is the case of indication rather than full

identification, and at least one additional piece of evidence should be required

for the reliable recognition of this target analyte. It is hardly surprising

because those are low (i.e., not very reproducible) signals as compared to

spectral peaks recorded for the calibration solution.
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For combined qualitative and quantitative analysis, it is essential that analytes

would be reliably identified at the least concentration measured (i.e., at the limit of
quantitation,2 for example see [57]). In MS and other spectral techniques, a

RT: 0.00 - 10.12

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Time (min)

0

20

40

60

80

100

R
el

at
iv

e 
A

bu
nd

an
ce

0

20

40

60

80

100

R
el

at
iv

e 
A

bu
nd

an
ce

0

20

40

60

80

100

R
el

at
iv

e 
A

bu
nd

an
ce

RT: 3.35
MA: 318179
SN: 18RMS

5.92 9.212.641.49 7.49 8.075.353.920.93 8.50 8.786.35 6.78 7.064.64 9.50 9.78

NL: 2.21E4

m/z= 330.00-335.00 F: 
FTMS + c ESI Full ms2 
334.05@hcd35.00 
[50.00-360.00]  MS 
021208_Fenoxaprop_ms2_is
o50_7ev_energy_1

RT: 0.00 - 10.12

RT: 3.35
MA: 465267
SN: 30RMS

4.92 9.786.215.631.07 9.217.6446.253.1 6.63 6.922.06 3.92 8.6412.753.50.51 7.92 8.21

NL: 3.20E4

m/z= 285.00-290.00 F: 
FTMS + c ESI Full ms2 
334.05@hcd35.00 
[50.00-360.00]  MS 
021208_Fenoxaprop_ms2_is
o50_7ev_energy_1

RT: 0.00 - 10.12
RT: 3.35
MA: 221034
SN: 23

6.9287.512.4 9.927.646.212.64 8.355.06 9.354.782.060.93 4.49

NL: 1.49E4

m/z= 261.50-266.50 F: FTMS 
+ c ESI Full ms2 
334.05@hcd35.00 
[50.00-360.00]  MS 
021208_Fenoxaprop_ms2_is
o50_7ev_energy_1

021208_Fenoxaprop_ms2_iso50_7ev_energy_1  # 157-169 RT: 3.21-3.35 AV: 2 NL: 2.49E4
F: FTMS + c ESI Full ms2 334.05@hcd35.00 [50.00-360.00]

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

m/z

0

5000

10000

15000

20000

In
te

ns
ity

288.04

334.05

262.03244.05

261.02
238.05

260.05
209.08

257.80 270.03229.03 294.82233.57 242.04 273.02246.03 252.81 322.39284.27224.06216.97
289.54

339.83

264.58
336.37

314.17200.40 302.47 309.35

021208_Fenoxaprop_ms2_iso50_7ev_energy_1 12/2/2008 10:52:44 AM

Fig. 4.4 Mass chromatograms of three of the most intense peaks (m/z 334, 288, and 262, from top
to bottom) and corresponding tandem mass spectrum of the solution of pesticide fenoxaprop 4.1

The 1.3 ng amount of the compound was injected in HPLC–MS2 instrument (LIT-Orbitrap of

Thermo, USA). Relative intensities of mass peaks, app. 70:100:50, will change with a decrease in

the analyte amount due to non-zero interferences and the difference in S/N ratios (here 18, 30, and

23 respectively). This is the reason why one or two less intense peaks may be fallen outside of

permitted ranges of their relative intensities

2This is

the minimum concentration or mass of the analyte that can be quantified with acceptable

accuracy and precision [60]
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substance amount may be measured with different spectral peaks. The most intense

peak is commonly selected for measurement (so-called quantifier). So, at the limit

of quantification established for a quantifier signal, the relationship between the

intensity of characteristic peaks used for identification must be within tolerance

ranges, i.e., limit of identification � limit of quantitation. From the above, it is also

obvious that detection limit < limit of identification (see also [57]).

The synonymic terms of limit of identification and lowest concentration for
identification should be not confused with another one, identification threshold,
as if it were analogous to them. The latter is

a limit above. . . which a degradation product should be identified [62].

This concept expresses the need for identification rather than identification

capability as compared with the above term. Identification threshold is related to

the determination of impurities in pharmaceutical products [62] which is essential

for registration application of new drugs. Now, the concept is also extended to the

manufacture of chemical products (for example, see [63]). Thus if an impurity is

contained in a pharmaceutical or chemical at or above an established percentage,

that must be identified. Table 4.15 demonstrates the threshold values depending on

the amount of drug substance administered per day (maximum daily dose).

In turn, the concept of identification threshold can be ambiguously interpreted.

Indeed, this term occurs in publications on MS [64] and NIR [65] to specify a

minimum spectral matching providing true result of identification (see Fig. 3.6).

However, the term of identification threshold in its first understanding (limit

Table 4.15 Identification

thresholds for drug impurities

[62]

Maximum daily dose Threshold a

<1 mg 1.0% or 5 mg TDI, whichever is lower

1–10 mg 0.5% or 20 mg TDI, whichever is lower

>10 mg–2 g 0.2% or 2 mg TDI, whichever is lower

>2 g 0.10%
aThresholds given for impurities as degradation products are

expressed either as a percentage of the drug substance amount

or as total daily intake (TDI) of the degradation product. Lower

thresholds can be established if the degradation products are

unusually toxic

The limit of quantification in such definition is close to the concept of minimum required
performance limit (MRPL), i.e.,

. . . minimum content of an analyte in a sample, which at least has to be detected and

confirmed [44].

Modern MRPL values, e.g., setting for pharmaceutical residues in animal products are very low

at 0.3 – 1.0 mg/kg [61].

There is another synonymic term for low limit amount which can be measured. It is lowest
calibrated level:

the lowest concentration (or mass) of analyte with which the determination system is

successfully calibrated. . . [60]
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amount above which analyte should be identified) is “more standard” than as

introduced into the guidance [62].

4.4 Similarity of Spectra: Match Factors

4.4.1 General

Spectral properties are among the most important for identification because of their

uniqueness for many individual compounds and compound mixtures. Similarity of

spectra of an unknown analyte and one from reference compounds means, or may

mean, that this target is identified as just the reference. Here the key point is a measure

(indicator, index, and so on) of similarity calledmatch factor, MF (see Fig. 3.6), which

is a function (or its value) of a similarity/difference of spectral measurands for two

objects (chemical compounds and also their mixtures). An index MF expresses

l A similarity degree between spectra of the same compound (object)
l A difference degree between spectra of different compounds (object), and thus
l A criterion for accepting/rejecting identification hypotheses based on spectral

search (Sect. 3.6.3); an identification error (Sect. 3.6.4).

It is a feature of analytical practice to treat MF by type of spectrometry. This is

also due to the fact that different measures of similarity better fit to different

spectral type. For example, dot products and correlation coefficients efficiently

used to estimate a similarity in mass, IR, and UV-Vis spectrometry (see below)

have been noted not to be suitable for NMR [66].

4.4.2 Mass Spectrometry

4.4.2.1 Classical Algorithms

Two basic algorithms have been used to calculate a similarity of classical mass

spectra (EI–MS1) of low molecules for spectral searches in large MS libraries

(Sect. 7.4.1). In both, the match in peak masses and ion abundances is considered.

McLafferty proposed the search algorithm named ‘probability-based matching’
(PBM) [67, 68]. The general essence of this approach is that

l The probability of a chance match of mass spectra of different compounds is not

very high in most cases, thus
l Similarity of the unknown spectrum with that of a reference compound implies

that they are most likely one and the same compound.

In the PBMalgorithm,MF is the index (reliability ormatch quality;maximumvalue

is 100) which is estimated on the base of the uniqueness of mass values of spectral

peaks, the probability of different peak abundances, and other contributions [67, 68].
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The second type of MF in mass spectrometry is cosine function or dot product
[69–71]. These measures of mass spectral similarity are calculated by the formulas:

FOR ¼ 1000 �
XR

i

ffiffiffiffiffiffiffiffiffi
IRi I

U
i

q� �2 XU

i
IUi �

XR

i
IRi

.
(4.18)

REV ¼ 1000 �
XR

i

ffiffiffiffiffiffiffiffiffi
IRi I

U
i

q� �2 XR

i
IUi �

XR

i
IRi ;

.
(4.19)

where Ii is the peak intensity of the ith mass in the spectrum, and indices R and U
refer to the reference and unknown spectrum respectively. Some peaks are present

in only a reference or unknown spectrum that is accounted in sums with

corresponding upper indices.

The direct factor FOR reflects a general similarity between compared spectra.

That can be simply rationalized as being directly proportional to the cosine of the

angle between two spectra as multidimensional vectors in the space of mass values

(Fig. 4.5). Ii is the component of such a vector in the direction of ith mass; see

R1 R2

R1
rI85

I71

I57

R2

r

U
r

U

57 71 85 57 71 85 57 71 85

Fig. 4.5 Three-peak mass spectrum of an unknown compound U and two reference mass spectra

R1 and R2 and geometrical rationalization of these spectra as vectors ~U, ~R1 and ~R2 respectively.

The directions refer to the mass 57, 71 and 85 of recorded ions. The intensities of peaks represent

the length of the components of the vectors in these directions. The similarity of spectra U and R1

and the distinction of these from the spectrum R2 are evident. The angles between vectors ~U and
~R1,~U and ~R2display the similarity and the distinction under consideration. The indices FOR are

directly proportional to the cosine of the angles
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Fig. 4.5. The reverse index REV resembles the FOR one as a measure of the degree

to which the reference mass spectrum matches the mass spectrum of an unknown

substance. REV is calculated for mass peaks which are contained only in the

reference spectrum.

Another MF is spectral contrast angle [72]. This measure of spectral similarity is

analogous to cosine/dot function (Fig. 4.5), but the angle itself rather than its cosine

is calculated. Some other measures of mass spectral similarity have been also

proposed, including modified cosine function [70].

4.4.2.2 Modifications of MF

Matching factors were first used in computer algorithms to search spectra in

spectral databases (libraries). With this purpose, MF formulas have been improved

to represent in the best way

l Similarity of spectra of the same compounds recorded in somewhat different

conditions.
l Spectral mismatching between different compounds.
l The same characteristics for tandem and/or high resolution mass spectra.
l The same characteristics for high-molecular compounds (proteomics).

One of the examples of such improvements was peak intensity scaling and ion

mass weighting, to increase the significance of lower intensity and higher mass

peaks respectively [70, 73]. This improvement (composite algorithm) was further
included in NIST MS Search program for library search. Modern commercial

software for searches in mass spectral libraries use this or similar MF and also

PBM algorithm (Sect. 4.4.2.1). It should be noted that corresponding formulas are

commonly hidden from users of commercial mass spectrometers; main users are

analysts carrying out routine identification of volatile compounds using EI–MS1.

Further tests and improvement of formulas for calculating MF were in line with a

widespread application of HPLC–MSn and/or HRMS (Sects. 2.8.4 and 7.4) for both

low-molecular and high-molecular compounds. Typical MF used in spectrometry

such as the correlation coefficient [74] and the Euclidean distance [75] and also

another index (“R score” [76]) were introduced and used in MS2 libraries

(Sect. 7.4.1.2). In searches with the use of the new HRMSn library, (a) the match

in fragmentm/zwithin the narrow range (� 0.01�0.1 Da) between an unknown and

reference spectrum, and (b) the corresponding match degree in fragment peak

intensities, and the number of (c) fragment ions and (d) matching fragment ions

were taken into consideration [77].

In HRMS, the difference between experimental mass measured with high accu-

racy (� a few ppm) and one of the theoretical/formula masses is taken into account.

The formulas are generated by the special instrument software. This difference can

be combined with that of isotopic ratios between compared data to predict candi-

date formula(s) required in identification procedures (Fig. 4.6).
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Fig. 4.6 High-resolution mass spectrum of the blue-green algal hepatotoxin, microcystin RR

C49H75N13O12 4.2, processed by the Formula Predictor software (Shimadzu, Japan). From top to

bottom: the experimental spectrum in the wide m/z range and the range of [Mþ2H]2þ ion, the

overlap of the experimental and predicted peaks of that ion, the table with predicted molecular

formulas and their characteristics. The formulas are ranked according to their Score index which is

the hidden function of the difference in (a) accurate mass, Diff(mDa) or Diff(ppm), between

experimental and predicted data, and (b) the corresponding isotope ratio, Iso Score. There are a

number of candidate formulas matching this accurate molecular mass; the target molecule is of

only the 18th rank. The selection from a profusion of such candidate formulas is discussed in

Sect. 7.4.2.
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4.4.2.3 Peptides and Proteins

Protein and peptide molecules are built from residues of 20 common amino acids.

Due to very high molecular mass, it is very difficult to record the mass spectra of

most proteins. The standard bioanalytical practice is that proteins are cleaved by

enzyme treatment into peptides according to the rules depending on the nature of

the enzyme; the trypsin enzyme is widely applicable for this purpose [78–80]. Then

the mass spectrum of a set of peptides is obtained, which is composed of peaks of

(1) protonated (technique of MALDI), including multiply protonated (ESI–MS1)

peptide molecules, or (2) those and peptide fragments (ESI–MSn). There are two

further approaches to identification. Historically, the comparison to theoretical

spectra was first used for identification, with two possible sub-approaches related

to spectra of the 1st and 2nd kinds.

In the first case, peptide mass fingerprinting, the similarity in mass between

peaks in the experimental spectrum of a peptide set and theoretically possible

peptides which are formed from all the proteins contained in databases of amino

acid sequences, is searched [79]. Similarity in mass is matching within some

tolerance range set up before searches in databases. So, the MF named a score is
the number of matching masses (see Fig. 4.7). That is the simplest kind of

similarity measures. In advanced scoring, the probability of a chance match is

estimated. For example, if 500 identical peptides from 1,000,000 database entries

fall within the mass tolerance range about the experimental peptide mass, the

probability of the chance match is 500/1,000,000 ¼ 0.0005. The smaller this

probability is, the more significant the match becomes. As usual, the general

probability is the product of individual contributions (see Sect. 4.5.4.1) from

individual peptides. Furthermore, a statistical weight for each individual peptide

match is taken into account [81, 82]. Different peptides (with different size/mass)

as counterparts occur in protein molecules with differing probabilities depending

on the size of the peptide and the size of the protein. A small peptide originating

from a large protein leads to a low score, a large peptide from a small protein

results in a high score.

In the second case, fragment mass fingerprinting, the similarity in mass between

ions in the experimental MS2 spectrum containing peak set of peptide fragments
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and theoretically possible fragment ions that are formed from all the peptides of all

the proteins from corresponding database, is searched [78–80]. Theoretical spectra

are generated according to the rules of fragmentation (Fig. 4.8). Again, the number

N
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N
H

O R''''

OH

O

N
H

O

R'

H2N

R'''

R''

a

x

b

y

c

z

H+

Fig. 4.8 The bond cleavage leading to basic peptide fragments in tandem mass spectrometer

subsequent to protonation of a peptide molecule and collisional activation of this precursor. If the

positive charge is retained on the N terminal fragment, the ions are classified as a, b or c. If the
charge is retained on the C terminal, the fragment ion class is x, y or z. There are series of such

regular ions in longer peptides (three and more amino acid residues). Those may also be ionized by

adding two or more protons. Formation of all the ions or a part of them and also some other

fragments is incorporated in algorithms of computer MS identification of proteins. For example,

the Mascot program (Matrix Science, UK) takes into account by default: (1) a, b, and y ion series,
(2) their [a-NH3], [b-NH3], and [y-NH3] fragments, and (3) doubly-charged fragments if the

precursor is doubly or multiply charged [83]

Protein A

Protein B

Protein C

 Peptide 1  Peptide 2   Peptide 3 

Peptide 1 … Peptide 2 … Peptide 3

Peptide 1          …             Peptide 3

…    Peptide 2   … 

Experiment

Data base

Fig. 4.7 The example of peptide mass fingerprinting (adopted from [82]). There are three peptide

mass matches, which can be assigned to three proteins. The most probable answer is protein A,

composed of all the peptide residues and thus providing three matches. However, it is possible that

the sample actually contains a mixture of proteins B and C. This is the case where the proteins are

digested to peptides without prior separation
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of peak matches is the simplest score which can be further improved with evalua-

tion of match probabilities [11, 82].

Recently, tandem spectral peptides libraries began to be developed. These

databases make it possible to use the standard MS approach, which is comparison

to reference spectra. As a rule, various forms of cosine function (dot product) have

been included in algorithms for unknown peptides searches (e.g., [84–87]. Correla-

tion-type MF [87, 88] has been pointed out as the most robust one [87], and some

other similarity measures [85, 87] have also been used.

4.4.3 NMR Spectroscopy

4.4.3.1 Comparison with Predicted Spectra

Expert systems are used in NMR spectroscopy (Sect. 2.8.3) to predict spectra of

compounds for their structure elucidation. Trueness of a prediction is determined by

a similarity between experimental and predicted spectra. To measure this similarity,

MF as the objective function

F ¼ SðWShift � FShift þWQuant � FQuant þWMult � FMultÞ (4.20)

was invented for 1H NMR spectra [89]. Here, the terms of FShift, FQuant, and FMult

are the degree of similarity between the one and the other spectrum in chemical

shift, signal intensity and its multiplicity respectively. WShift, WQuant, and WMult are

corresponding weighting factors. The summation is carried out over all of the

predicted signals.

When F terms are estimated, a significant dissimilarity of compared quantities, if

observed, is expressed in a penalty included in a total score. If the latter is 0 (or a

little higher) and 1 (or a little lower), there is incorrect match and correct match
respectively [89]. This predictional approach has been validated for:

l
1H NMR spectra [89–91],

l Two-dimensional 1H–13C correlation spectra [90, 91].

For related topics, see also Sect. 7.6.

4.4.3.2 Comparison with Reference Spectra

The simple MF for searches in NMR spectral libraries (Sect. 7.6) consists of the

average difference in chemical shifts between the query spectrum and the database

one, corresponding squared difference, and Euclidean distance; such an MF was

named the hit quality index (see [92]). Also, complicated functions of differences in

chemical shifts between compared spectra have been reported [93–95].

In the general case, the similarity between experimental and reference 1H NMR

spectra was noted to be heavily estimated, because signals are very narrow as
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compared to their bias in different experimental conditions [66]. As one of the

possible ways of solving the problem, a compression of NMR data by a binning

technique has been proposed. The similarity index is further calculated, which

depends on the number of H atoms in each bin [66]. The use of another MF,

a weighted cross-correlation function, has also been discussed [66].

4.4.4 IR Spectroscopy

A number of similarity measures (in some cases, named hit quality index like NMR)

and related algorithms of librarian searches (IR spectral libraries, see Sect. 7.5)

have been tested and used in IR and also Raman spectrometry:

l Euclidean distance [96–98],
l First derivative absolute value (absorbance difference) [96, 98],
l Correlation coefficient [96, 99, 100],
l Absolute value (absorbance difference) [96, 97, 99],
l Squared absolute value (absorbance difference) [96, 97, 99],
l Dot product [99],
l First derivative correlation [96, 100],
l First derivative least squares [96]; see also [101].

In analytical practice, one or anotherMF is considered as a good or even the best one.

l For a flat baseline at very low IR absorbance, the Euclidean library search

algorithm is recommended. If a baseline is bad, (a) it can be corrected before

searches, or (b) the first derivative algorithm should be used [96, 98].
l In the case of low signal-to-noise ratios and negative bands/spikes (the case of

GC–IR), the correlation MF are recommended [96].
l Correlation coefficients work better than some other MF for the purpose of

structure elucidation achieved with the use of the reference IR spectral library [99].

4.4.5 UV-V is Spectroscopy

The correlation coefficient is a common form of MF for diode-array detection in

HPLC [102]. The corresponding maximum value 1,000 is established. Different

similarity indices, such as those mentioned above for IR spectroscopy, can also be

used [103]. Another MF is spectral contrast angle [104].

4.4.6 Meaning of MF

MF is a measure of how well an unknown spectrum matches a spectrum from the

database/library. Themaximumvalue (established as 1,000, 100 or 1 depending on the
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technique, software, library, and so on) indicates a perfect match. The minimum

possible value is zero, which indicates that a spectrum of the analyte did not match

a library spectrum at all. Commonly, a highMF, not lower than 80–90% ofmaximum

values, will be sufficient to take into account the identification hypothesis. However,

this value alone does not make it possible to definitely accept the corresponding

hypothesis. An analyst should compare MF for the first, second, and possibly some

subsequent spectra ranked top bymatch values with the unknown spectrum. If there is

not a large difference between correspondingMF, e.g., it is smaller than the difference

between the maximum value and MF of the first rank spectrum (see Fig. 3.6), search

results cannot be considered as fully definitive. Correspondingly, the unknown com-

pound could be any one of the compounds related to hit spectra. This is the case of

several candidates for identification.

On the whole, a quantity of MF can be rather considered as a measure or one of

the measures of identification reliability rather than some (intermediary) variable

for ultimate estimating rates of true and false results. However, in some models,

spectral similarity factors can be directly related to the probability of true/false

identification results, i.e., the identification reliability (see below).

4.5 Probabilistic Interpretation of Analytical Data

There is no single approach to estimating an identification reliability, i.e., the

probability of true results for any target in any matrix. Furthermore, there should

be one or another

l Development of a probability model of phenomena underlying an analytical

experiment,
l Probabilistic interpretation of raw or partly processed analytical data,
l Approximation in evaluation of the probability of true and false results.

In most cases, these are hard to implement. Nevertheless, some probability

interpretations and models have been developed and are considered below.

4.5.1 True and False Rates

Screening methods are characterized by their true/false result rates, which refer to

both detection and identification of analytes (Sect. 4.2). Therefore, a probability of

positive or negative identification results can be expressed by corresponding rates

(Table 4.3) obtained in numerous analytical trials. Table 4.16 lists the rates and

their interpretation just for identification.
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Now, such characteristics as St, FPR, and PPV are not only estimated in

chemical and biochemical tests and chromatography-based methods, but also

calculated as performances of searches in spectral databases (Chap. 7). This

emphasizes that ultimately all those are techniques/methods of holistic qualitative

analysis as the part of analytical science and practice.

4.5.2 Type I and II Error

These originate in false acceptance or rejection of identification hypotheses. These

errors are also interpreted as probabilities. The type I error a is the probability of

FN. The type II error b is that of FP (Sect. 3.6).

4.5.3 Confidence Probability

If an analyte value of some measurand falls in a confidence interval for the known

compound A, an analyte may be identified as A (Sect. 3.3). Here the confidence

probability, usually 0.95, can be equated to the identification probability. For

confirmation of an identification result, an analyst should check whether

l Conditions of measurement in compared cases are the same or very similar,
l Other compounds with a similar property (a similar value of the proper quantity),

are not present in the sample, i.e., the chance of FP is insignificant.

Table 4.16 Probabilistic interpretation of result rates

Rate Interpretation

Sensitivity (true positive rate), St Probability of true identification of analyte

False positive rate, FPR Probability of false identification of analyte

Specificity (true negative rate), Sp Probability of true non-identification of analytea

False negative rate, FNR Probability of false non-identification of analyte

Positive predictive value, PPVb Probability of true identification among all positive

results

Negative predictive value, NPV Probability of true non-identification among all

negative results

Prevalence, Pv Prior probability of the presence of analyte in the sample c

Cumulative positive predictive

value, CPPV
Probability of true identification among all positive

results of two combined identification procedures
aThe analyte is not present in the sample or not related to the analytical signal under consideration
bIn identification of peptides and proteins by mass spectral match, the (100�PPV)% rate named

false discovery rate (FDR), is calculated [11]
cFor probabilities derived from previous information, see Chap. 6
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4.5.4 Spectral Matching and Probability of Identification

4.5.4.1 General

Several probability models are based on estimating a probability of spectral match-

ing and a probability that a match is a random one (see below). In general, such

probability can be expressed by the formula:

Pmatch ¼
Yn
i¼1

pmatch;i (4.21)

wherePmatch is the full probability ofmatching the unknown and reference spectrum, n
is the number of spectral peaks, and pmatch,i is the probability ofmatching the ith peaks.

The lattermeans amatch of numerical valueswithin a tolerance range or an equality of

rounded values. These are (a) values of spectral variables, i.e., frequency, wavelength,

wave number, mass, and so on, and (b) peak intensities, i.e., their heights or areas.

For most types of spectra and most pairs of compounds, Pmatch<<1. Thus the

match of many peaks, if observed, is due to the fact that compared spectra belong to

the same compound. This is the reason to accept the identification hypothesis that

the analyte is the compound with the matching spectrum. In this case, Pmatch is the

probability of FP.

Most research devoted to this probabilistic approach to identification is related to

mass spectrometry (Sects. 4.5.4.2 and 4.5.4.3); for IR spectroscopy, see [105].

4.5.4.2 Mass Spectrometry of Low Molecules

Probability-based matching (Sect. 4.4.2.1), one of the main algorithms for mass

spectral retrieval, results rather in a probability of matching than that in ultimate

identification. The same applies to any other pertinent algorithm if the only MF

value obtained in library searches is used for identification.

Probability interpretation of spectral match indices becomes more straightfor-

ward if all MF of spectra of different compounds presenting in a hit list are taken

into account [106]. This is expressed by the general formula:

Probi ¼ f ðDMFi;iþ1Þ; (4.22)

where Probi is the relative probability of unknown identification as the compound

belonging to the ith hit in the list, and DMFi;iþ1 is the MF difference between ith and
(iþ1)th hits; only the hit with the highest MF is taken into account if two or more

reference spectra for a compound are included in a library. To transfer to absolute

probabilities, values Probi should be normalized with regard to all the differences

DMF from the hit list [106]. Estimating conventional identification probability of
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this sort was entered into the NIST MS Search program for mass spectra librarian

searches [107], and is exemplified below in Example 4.8 and Sect. 6.6.

4.3 4.4 4.5

Example 4.8 Results of the library search, the MF and corresponding Prob
values, for one (Fig. 4.9a) of the mass spectra of benzene 4.3 as an unknown

one, are given in Table 4.17. The most similar are other benzene spectra

(Fig. 4.9b and top lines in Table 4.17). Hits of non-benzene compounds are of

lower MF and correspondingly Prob than benzene spectra. The conventional

probability of identification Prob of two or three other compounds rather than

benzene itself, starting from diacetylene hydrocarbon 4.4 (about 18%, the

spectrum in Fig. 4.9c), is not very low. In the case of analysis of a real sample,

corresponding identification hypotheses should not be rejected. However, an

experienced mass spectrometrist will see the close resemblance of two

benzene spectra (Fig. 4.9a, b) and the spectral contrast between that pair

and the spectrum of 4.4 (Fig. 4.9c). This is a strong reason to reject the

identification hypothesis for 4.4 as well as any hypothesis not connected with

benzene 4.3.

a b c 
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Fig. 4.9 Mass spectra of benzene 4.3 as an unknown (a) and reference (b) compound and also 1,5-

hexadiyne 4.4 (c). The latter spectrum is the most similar to those for benzene. Mass spectra are

extracted from the NIST’05 library [107] (reproduced with permission) and reduced to ten main

peaks
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4.5.4.3 Mass Spectrometry of High Molecules

In the case of peptides and proteins, the MF is the number of matching ion masses

of peptides or their fragments. The more significant factor is the probability-based

score (�10·logP), where P is the probability of the chance match; see Sect. 4.4.2.3.

This score is considered as the measure of the statistical significance of matches

calculated in the following way [81].

Possible matches between the experimental mass set and theoretical ones lead

to the set of score values. The distribution of these values can be obtained, where

the highest score belongs to the most probable protein candidate for identifica-

tion. It is also important that the best value would fall in the range of low

probability of a chance match, e.g., � 0.05 (see Fig. 4.10). The fact that only

one protein is within this range and all other matches are outside the range means

that the match for the protein is significant, and strong evidence for its identifica-

tion is obtained.

It should be also noted that probability-based scores of this sort are evaluated in

identification procedures using both peptide mass fingerprinting and peptide frag-

ment mass fingerprinting (Sect. 4.4.2.3). For the latter, peptide matches are grouped

into protein ones for their scoring [81].

This or similar probability approaches to estimate the trueness of peptide

identification, are widespread. They could be supplemented by other ones, for

example the statistical model using discriminant and Bayesian analysis [109].

In any case, the identification method discussed in this subsection, as well as a

spectral library search of spectra of low-molecular compounds (Sect. 4.5.4.2 and

Chap. 7), is essentially a screening method. Therefore, identification results judged

correct according to a non-random match may be partly false. The corresponding

percentage, i.e., the FDR rate (see Table 4.3), can be statistically estimated [11].

Table 4.17 Spectral retrievala for the mass spectrum of benzene 4.3

# MF (Match) Prob Name

1 999 (Fig. 4.9a)b 77.2 Benzene 4.3

973 (Fig. 4.9b) 77.2 Benzene 4.3

965 77.2 Benzene 4.3

950 77.2 Benzene 4.3

938 77.2 Benzene 4.3

2 932 (Fig. 4.9c) 17.6 1,5-Hexadiyne 4.4

3 897 4.42 2,4-Hexadiyne

896 4.42 2,4-Hexadiyne

853 17.6 1,5-Hexadiyne 4.4

4 826 0.62 2-Butenedinitrile, (E)-
822 0.62 2-Butenedinitrile, (E)-

aThe NIST software and MS library [107]
bThis is self-matching
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Fig. 4.10 Histogram of the score distribution in the procedure of identification of the PML_

HUMAN protein, molecular mass 97489, by peptide mass fingerprinting (the Mascot software,

Matrix Science, UK [108], reproduced with permission) (top) and the amino acid sequence of this

protein (bottom). There are 15 peptide mass values matched (bold in the sequence). They provide

the high probability-based score 194, which falls within the range of statistically significant data,

i.e., that of the 0.05 probability (unshaded). The latter is analogous to the a range for the cases of

testing detection (Fig. 3.4) and identification (Fig 3.7) hypotheses. Here it is the range for

acceptance of the identification hypothesis: the analyte is the protein with the score which is not

random, i.e., within the 0.05 range. This probability is that of FP. Other candidates for identifica-

tion have scores of 56, 51, 50, 49, 42, 41 and smaller. These rates fall in the shaded area, i.e., that
of random match. In general, varying of FP probability affects rates of both TP and FP. Depen-

dencies between them are used to estimate a performance of peptide identification algorithms, see

Sect 7.4.1.4.

The Mowse (MOlecular Weight SEarch) is the name of the similar algorithm and scoring

system which preceded Mascot. There are a number of other programs under consideration

intended for the purpose (see [11]).

One-letter codes of amino acids: A is alanine, R is arginine, N is asparagine, D is aspartic acid,

C is cysteine, E is glutamic acid, Q is glutamine, G is glycine, H is histidine, I is isoleucine, L is

leucine, K is lysine, M is methionine, F is phenylalanine, P is proline, S is serine, T is threonine, W

is tryptophan, Y is tyrosine, V is valine.
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4.5.5 Spectral Interpretation

In past decades, computer-assisted systems for structure elucidation were devel-

oped [110–112]. Based on spectrum–structure correlations, corresponding rules,

logic, and knowledge, and chemometrical methods, a computer expert generates/

predicts plausible structures and substructures for experimental spectra recorded by

an analyst. Also, a conventional probability is assigned to candidate structures and

substructures; see Example 4.9.

The above example of the correlation between structures of relatively simple

compounds and mass spectra disclosed by the computer expert shows the good

possibility for discrimination between different classes of compounds, if not indi-

vidual identification. In any case, expert systems work in such a way that several

plausible structures as identification hypotheses are generated, which can be further

tested using different techniques/methods (Chap. 7).

Example 4.9 One of the options of the NIST MS Search program is the

generation of candidate substructures from unknown EI mass spectra [113].

Table 4.18 lists substructures or structural features of benzene and its isomer,

1,5-hexadiyne, deduced by the automatic interpretation of library mass

spectra of the compounds by the program. There are also corresponding

probabilities for the appearance of substructures/features and the same

outcomes for another testing compound, naphthalene, with a somewhat

different structure. All three compounds 4.3, 4.4, and 4.5 are considered as

unknown ones.

Table 4.18 classifies the two first compounds as unsaturated hydrocarbons,

with the probability of their features being over about 80% (top lines in

Table 4.18). The compound 4.3 is also concluded to be without alkyl groups

(two bottom lines). Therefore it is the ring compound, “probably” 6-mem-

bered (47%) aromatic (57%) ring, i.e., benzene characteristics are adequately

predicted. For the compound 4.4, the last two features are not so evident (22

and 34%). In contrast, the conclusion that the compound 4.4 is acyclic (no
rings 61%, no aromatic rings 54%) acetylene (non-ring CC triple bond 55%

and so on, Table 4.18) hydrocarbon can be made. Corresponding features of

4.3 are less apparent or absent.

Further, it is also logical that the compound 4.5 is unsaturated (81%)

aromatic (83%) hydrocarbon, non-benzene (83%), and without many features

of an acyclic structure (bottom probabilities, Table 4.18).
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4.6 Non-numerical Estimates of Reliability

It would be decisive to express a numerical probability of any identification

result. However, this is very hard to perform because of a plethora of factors

affecting identification results. In fact, even a perfect spectral match may lead to

an erroneous conclusion (FP) if, for example, (a) an “identified” compound is

the product of the analyte transformation formed during an analysis rather than

the analyte itself [57], or (b) a spectrum of an “identified” compound is similar

to the analyte spectrum which is actually absent from the spectral library. In

Table 4.18 Probability p of presence (þ) and absence (�) of substructures or structural features

Substructure, structural feature p·100%

Benzene 4.3

þ �
1.5-Hexadiyne 4.4

þ �
Naphthalene 4.5

þ �
Common features of benzene and its linear isomers

rings þ double bond counts ¼ 4 92 94 97

no branches 92 92 96

unsaturated hydrocarbon 86 93 81

hydrocarbon (C and H atoms only) 79 90 72

Benzene features

aromatic ring 57 34 83

isolated benzenoid (6-membered) ring 47 22 83

Features of acyclic hydrocarbon

no aromatic rings 34 54 88

no rings 26 61 98

non-ring CC triple bond 29 55 ?

2 CC double/triple bonds 29 52 74

ethynyl group 15 43 ?

methylene or methyl group (chain) 98 27 99

exactly one ethyl or dimethylene

group (chain)

84 26 95

The software and MS library [107]

Table 4.19 Scales of word expressions proposed for identification reliabilitya

Identification confidence [3] Reliability Strength of evidence [115]

Identified with utmost certaintyb

Confirmed

Identified with confidence

Identified

Indicated

Tentative identification

Suspected

Presumptive

Non-negative

Very strong evidence

Strong evidence

Good evidence

Fair evidence

Non-match
aThe levels are compared by the author
bCorresponds to the popular term of unambiguous identification
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Table 4.20 Word expressions for reporting the result of identification or detection

Terms Target Explanation

Analyte is (a) identified, (b)

tentatively confirmed, (c) not

identified, (d) not detected,

Pesticides (a) Selected ion ratios are within

established tolerance ranges at given

RT, 2–3 expected ion peaks (3) are

present in mass spectra at given RT or

(c) are not present, (d) RT are outside

the established tolerance range,

respectively [116]

(e) Identification, (f) indication,

(g) absence

Target

compounds

in soil

At least (e) three, (f) one or two, and (g)

no identification points are obtained

with the use of mass spectrometry,

respectively [58]

Positive, negative, not detected,

none detected

Toxicants The first result is that the substance is

identified according to the laboratory

protocols. The other results mean that

the analyte or analytes are absent;

none detected is preferred [117]

Unidentified A, unidentified with

relative retention of [value]

Pharmaceutical

impurities

Examples of descriptive labels for

unidentified impurities included in the

specifications of new drug substances

[62]

(h) Positive match, (i) probable

match, (j) non-match, and

(k) inconclusive

Oils Standardized degrees of quantitative

similarity/difference in ratios of

biomarker amounts between samples

of two oils. The match is in the (h)

narrow, (i) wide, and (j) very wide

ratio range respectively; (k) samples

available are difficult for definite

conclusions [118] (see Sect. 8.2.2)

Match, probable match, non-match,

and indeterminate

Oils Standardized degrees of qualitative

similarities/differences in

composition between samples of two

oils. Conclusions are made “in the

light of experience and the existing

body of knowledge about oil

analysis” [119]

(l) Yes, (m) no, (n) inconclusive Hg Content is respectively (l) above or equal

to the high cut-off point of screening

method, (m) equal to or below the

corresponding low cut-off point, and

(n) in the unreliability range [55]

(see Sect 4.3.2.1)

(o) Presence, (p) negative,

(q) non-negative

Pesticides Content is respectively (o) above the high

cut-off point of the screening method

(here, the upper screening limit), (p)

below the low cut-off point (the lower

screening limit), and (q) in the

unreliability range (between the

screening limits or equal to one of

them) [56] (see Sect 4.3.2.1)
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contrast, a spectral match for one and the same substance may be rather poor and

lead to FN due to:

l Insufficient selectivity of analysis and interference with matrix compounds.
l Low reproducibility/quality of experimental and reference spectral data and

many other reasons (see [4, 57, 114]).

These and other factors are very hard, if not impossible, to uniformly quantify

and further transform into identification probabilities.

Nevertheless, an experienced analyst takes into account these factors and

expresses, directly or latently, their role as general/fuzzy estimates, using certain

word combinations (prose terms [3], verbal conventions [115]). A series of such

word expressions have been proposed (Table 4.19). They can be considered as

points on another nominal scale (see Sect. 1.7) specially generated to express the

identification reliability.

One of two scales given in Table 4.19 and proposed for human identification

[115] can be quantitatively “calibrated” by means of the probability of matching

profiles derived from probes. In other cases, professional judgments of trained and

experienced analysts based on the knowledge are essential for expressing results

and errors of identification in those or other standardized terms/concepts (see also

[3, 57].

Word terms are or may be used for reporting results of qualitative analytical

operations in standard (standardized, validated) methods (Table 4.20). Here, words

expressing the result and reliability of identification are connected to method

criteria which should be met. The abundant criteria are related with, for example,

the number of identification points and corresponding tolerances for spectral

quantities (see Chap. 5) or unreliability concentration range (detection, screening;

see Sect. 4.3.1).

References

1. Milman BL, Konopelko LA (2000) Identification of chemical substances by testing and

screening of hypotheses. I. General. Fresenius J Anal Chem 367:621–628

2. Ellison SLR, Fearn T (2005) Characterising the performance of qualitative analytical

methods: Statistics and terminology. Trends Anal Chem 24:468–476

3. Bethem R, Boison J, Gale J, Heller D, Lehotay S, Loo J, Musser S, Price P, Stein S (2003)

Establishing the fitness for purpose of mass spectrometric methods. J Am Soc Mass Spec-

trom 14:528–541

4. Milman BL (2008) Introduction to chemical identification (In Russian). VVM, Saint Peters-

burg

5. Google Scholar. http://scholar.google.com. Accessed 14 Oct 2009.

6. Spiehler VR, O’Donnell CM, Gokhale DV (1988) Confirmation and certainty in toxicology

screening. Clin Chem 34:1535–1539

7. Ferrara SD, Tedeschi L, Frison G, Brusini G, Castagna F, Bernardelli B, Soregaroli D (1994)

Drugs-of-abuse testing in urine: statistical approach and experimental comparison of immu-

nochemical and chromatographic techniques. J Anal Toxicol 18:278–291

References 107

http://scholar.google.com


8. Ellison SLR, Gregory S, Hardcastle WA (1998) Quantifying uncertainty in qualitative

analysis. Analyst 123:1155–1161

9. McLafferty FW, Stauffer DA, Loh SY, Wesdemiotis C (1999) Unknown identification using

reference mass spectra. Quality evaluation of databases. J Am Soc Mass Spectrom

10:1229–1240

10. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874

11. Nesvizhskii AI, Vitek O, Aebersold R (2007) Analysis and validation of proteomic data

generated by tandem mass spectrometry. Nat Methods 4:787–797

12. Lloyd E (1984) Handbook of applicable mathematics. Wiley, Chichester

13. ASTM E 1828 (1996) Standard guide for evaluating the performance characteristics of

qualitative chemical spot test kits for lead in paint

14. Mil’man BL, Konopel’ko LA (2004) Uncertainty of qualitative chemical analysis: general

methodology and binary test methods. J Anal Chem 59:1128–1141

15. Sensitivity in metrology and analytical chemistry. In: IUPAC Gold Book. http://goldbook.

iupac.org/S05606.html. Accessed 11 May 2010

16. Detection limit in analysis. In: IUPAC Gold Book. http://goldbook.iupac.org/D01629.html.

Accessed 11 May 2010

17. Specific in analysis. In: IUPAC Gold Book. http://goldbook.iupac.org/S05788.html.

Accessed 11 May 2010

18. Song R, Schlecht PC, Ashley K (2001) Field screening test methods: performance criteria

and performance characteristics. J Hazard Mater 83:29–39

19. Dietzen DJ, Ecos K, Friedman D, Beason S (2001) Positive predictive values of abused drug

immunoassays on the Beckman Synchron in a veteran population. J Anal Toxicol

25:174–178

20. Jehanli A, Brannan S, Moore L, Spiehler VR (2001) Blind trials of an onsite saliva drug test

for marijuana and opiates. J Forensic Sci 46:1214–1220

21. Kadehjian LJ (2001) Performance of five non-instrumented urine drug-testing devices with

challenging near-cutoff specimens. J Anal Toxicol 25:670–679

22. Crouch DJ, Hersch RK, Cook RF, Frank JF, Walsh JM (2002) A field evaluation of five on-

site drug-testing devices. J Anal Toxicol 26:493–499

23. Miki A, Katagi M, Tsuchihashi H (2002) Application of EMIT(R) d.a.u. (TM) for the

semiquantitative screening of methamphetamine incorporated in hair. J Anal Toxicol

26:274–279

24. Cone EJ, Sampson-Cone AH, Darwin WD, Huestis MA, Oyler JM (2003) Urine testing for

cocaine abuse: metabolic and excretion patterns following different routes of administration

and methods for detection of false-negative results. J Anal Toxicol 27:386–401

25. Ashley K, Fischbach TJ, Song R (1996) Evaluation of a chemical spot-test kit for the

detection of airborne particulate lead in the workplace. Am Ind Hyg Assoc J 57:161–165

26. Ashley K, Hunter M, Tait LH, Dozier J, Seaman JL, Berry PF (1998) Field investigation of

on-site techniques for the measurement of lead in paint films. Field Anal Chem Technol

2:39–50
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33. Rı́os A, Barceló D, Buydens L, Cárdenas S, Heydorn K, Karlberg B, Klemm K, Lendl B,

Milman B, Neidhart B, Stephany R, Townshend A, Valcárcel M, Zschunke A (2003) Quality
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Chapter 5

Target Identification in Methods

Abstract Target identification is considered in detail. A qualitative analysis of this

type is mostly performed according to validated methods which are screening and

confirmatory. An identification result is the conclusion based on criteria. Those for

screening identification are not very rigorous and not numerous. An example is the

presence of a particular mass chromatographic peak in a rather wide range of the

retention parameter. Most chromatographic techniques are suitable for screening.

For confirmation of identity, more analytical data are required, e.g., three or four

mass peaks and matching tolerance/range criteria for peak intensities. Any such

value is named an identification point. An analyst should gather the required

number of points. Chromatography and mass spectrometry and their combinations

are the most appropriate techniques for the purpose. Different versions of the

techniques, as well as other types of spectroscopy, are considered. The require-

ments and guidelines for setting up identification criteria presented in a number of

laboratory guidances which have been issued by various organizations and agencies

are outlined in detail. These are not the same in different documents; that is the

reason for criticizing them. The system of identification points itself and the evident

or suspected invalidity of tolerance criteria has also been criticized. The criticism is

partly accepted, and some objections are also presented here. In general, the

guidelines are regularly tested through a global analytical practice, and new

improvements of identification criteria are reported.

5.1 General

Target identification (see Sect. 1.5.1) is mostly performed according to validated

(standard, standardized) methods. The fact that methods are already developed and

established provides

l Analytical selectivity, i.e., separation of interfering compounds leading to FP
l Identification criteria set up during a method development and confirmed by its

validations
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l The potential for confirmation of identification results by co-analysis (see

Table 1.4) with analytical standards (reference materials, solutions) prescribed

in methods.

Therefore, it is not very hard to avoid FP and FN when determining target

analytes by methods. This statement refers to screening methods to a lesser degree,

because they are not free from errors. This is the reason why screening and

confirmatory methods will be separately considered.

5.2 Screening

General. Two main attributes of screening methods are (1) a high throughput and

(2) rather low FNR (Sect. 2.9). Many analytical techniques, first of all simple

analytical tests (Chap. 2), make it possible to obtain fast results. Modern chroma-

tography techniques also provide high throughput performance, i.e., a separation of

tens and hundreds of components in several minutes. The second characteristic, a

low level of FN (e.g.,�5% for pharmaceutical and pesticide residues in food [1, 2]),

is established during the development and validation of a method. Further, negative

results cannot be confirmed but should be controlled by accompanying measure-

ments (e.g., by determining recovery; see [2]).

Criteria for identification in screening methods are related to a presence of an

analytical signal

l Within the value range of a measurand, e.g., RT in chromatography, m/z in mass

spectrometry, and so on (Sect. 3.6.3)
l Above the level corresponding to low limit concentration/amount (decision/

detection limit, see Sect. 4.3), e.g., the level of S/N ¼ 3:1

The second of the two criteria is typical for a detection procedure, and connected

with one or another estimate for detection limit (Sect. 4.3.2.1). For example,

according to the EC guidance [1], the corresponding limit value CCb is determined

by the mentioned 5% b error (FNR, see above).
The first criterion resembles that for confirmation procedures. The differences

are that here

l Only one or two quantities (e.g., the retention parameter plus m/z of abundant
characteristic ion in chromatography mass spectrometry) are required, whereas

more individual criteria (three and more points, see below) are commonly

intended for confirmation
l Criteria may be less rigorous, e.g., the tolerance for RT in GC is 1.5–3% vs about

0.2% in the case of confirmation [3]

Screening and confirmation. When proceeding to confirmation in chromatogra-

phy mass spectrometry, a measurement for one mass number is supplemented by

(e.g., see [4–6])
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l Increasing number of recorded characteristic ions
l Recording full MS1 scans
l Recording MSn spectra
l Measuring accurate ion masses

In some cases, the availability of one to two identification points may be sufficient

for unambiguous recognition of a substance. However, this is not the case for fast

multi-target determinations, where the same experimental conditions and similar

criteria cannot be chosen to be equally effective for all the analytes (see [7]).

In any case, positive screening results, particularly “a suspected non-compliant

result” [1], are or may be validated using confirmatory methods (Sect. 5.3).

General requirements for analytical methods to be met for the use in confirmation

of initial results are that they should be independent (orthogonally selective [8]).

If confirmatory methods are used without screening ones from the very beginning,

the former should be more specific then the latter. Individual requirements depend

on the sort of analytes and the type of analytical technique. This can be demon-

strated by two examples. The first is related to methods of residue/trace analysis

of products of animal origin (Table 5.1). If requirements for confirmatory meth-

ods, or rather techniques underlying methods, are not met (see the 3rd column of

Table 5.1 Requirements for confirmatory methods for residues [1]

Technique Group of

substancesa
Requirement to be met

GC–MS, LC–MS A, B Chromatography provides separation

Full mass spectra or at least three (group B) or four (group A)

identification points

GC–IR, LC–IRb A, B Specific requirements for IR spectrometry (see below)

GC–electron

capture

detection

B Two columns of different polarityc

LC–UV–Vis (full

scan, DAD)

B Specific requirements for UV spectrometry (see below)

LC–UV–Vis (single

wavelength)

B At least two different chromatographic systems or a second,

independent detection techniquec

LC–fluorescence B For compounds that exhibit native fluorescence or become

fluorescent after either transformation or derivatisation

LC–immunogram B At least two different chromatographic systems or second,

independent detection techniquec

TLC–UV–Vis (full

scan)

B Two-dimensional HPTLC and co-chromatography

aGroup A contains the banned substances (“which are prohibited from use in food-producing

animals in the EU”), e.g., substances having an anabolic effect. Group B contains “many

pharmacologically active substances which may be authorised for use in food-producing animals

in the EU”, e.g., certain pesticides [9]
bTechniques rarely used
cAnalytical signal of different type
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Table 5.1), the method/technique becomes less specific and classified as a screen-

ing one.

The second example, taken from pesticide analysis (Table 5.2), demonstrates a

variety of choice of confirmatory techniques for a particular method. However, the

demand remains that the confirmatory method should provide complementary

information, i.e., should not be the same and inconclusive.

For relatively high analyte amounts and simple mixtures, spectrometry techni-

ques without combination with chromatography can also underlie confirmatory

methods suitable for some analytical problems. In general,

. . . the rigorousness required of a confirmation depends to some extent on the importance of

the analytical finding and circumstances of the case [10].

This rule is of more value in unknown analysis (Chap. 7) but it should be taken

into account in developing methods.

Co-analysis. In some cases, a confirmatory method does not work well for the

purpose. To obtain the ultimate result, one can check the identification criteria using

matrix-matched standards or other techniques [3]. It should always be taken into

account that the most conclusive/confirmatory identification procedure is co-analysis,

first of all co-chromatography (see Sect. 1.6). This is the procedure where the

sample to be analysed or material extracted from it is fortified with an analytical

standard of a suspected/candidate compound contained in a sample. Then pre-

scribed analytical procedures are fulfilled. A candidate for identification can be

considered as identified, if [1]

Table 5.2 Recommended screening and confirmatory technique for pesticides [3]

Confirmatory

technique

Screening

GC,

specific

detectorsa

GC–MS LC–MS LC–UV–Vis

(full scan)

LC–UV–Vis

(single

wavelength)

LC–fluorescence

GC, specific

detectors

þb þc þ þ þ þ

GC–MS þ þd þ þ þ þ
LC–MS þ þ þ þ
MSn, HRMS,

non-EI

þ þ þ þ þ þ

LC–UV–Vis

(full scan)

þ þ þ þ þ

LC–UV–Vis

(single

wavelength)

þ þ þ

LC–fluorescence þ þ þ þ
Derivatization þ þ þ þ þ þ
TLC-enzyme assay also may serve as both the screening technique and the confirmatory one for all

other techniques. If TLC is used in both steps, mobile or stationary phases should be of different

polarity
aDetectors belong to the group consisting of ECD, NPD, FPD, and PFPD
bColumn of different polarity or another specific detector should be used
cColumn of different polarity should be used
dAnother GC-MS method
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l Only one peak is observed, the peak height (or area) being enhanced
l For GC or LC methods, the new peak width at half-height falls within the

90–110% range of the original width, and the retention times are similar within

the 5% deviation margin
l For TLC technique, only the spot assigned to the analyte should be intensified,

without any other changes of the visual appearance

In less simple cases (no validated methods, unknown analysis), this kind of tests

should be repeated using a different chromatography system, e.g., a column of

different polarity.

5.3 Confirmation

For this purpose, several range criteria are usually required (Sect. 3.6). It should

be repeated here that a value of a measurand xi, e.g., a retention parameter, a

relative intensity of spectral peak, and so on should fall within a relatively

narrow range from xri � Dxri to xri + Dxri, where xri is the reference value of

the ith measurand, and Dxri is its acceptable deviation. The set of criteria depends
on both the particular technique and the chemical nature of the analyte. Chro-

matography mass spectrometry is the principal confirmatory technique.

The confirmation term is here used in the sense of confirmation of identity (e.g.,
see [11]), confirmation of identification result. Its second interpretation is “confir-

mation of an analyte presence in a sample” [8]. For both confirmatory purposes, not

only different techniques but also different extracts of the same or a second sample

should be used [8, 10].

The essential requirements for development, validation, and status of confirma-

tory methods are given in many laboratory guidance documents issued by national

or international organizations/agencies (Sects. 5.4 and 5.5).

5.4 EPA Confirmatory Methods

The US Environmental Protection Agency have developed pertinent analytical

methods for many years. Methods based on GC–MS (Table 5.3) have become

classical and widespread in the analysis of volatile and semivolatile compounds.

Identification criteria included are related to the window ranges about (GC) the

reference RT or RRT and (EI–MS1) the relative peak intensities (ion abundances)

of at least three characteristic ions. If the values of those quantities fall outside the

ranges, a negative result is concluded.

A few EPA methods will be also cited below.

5.4 EPA Confirmatory Methods 119



5.5 Confirmation: Guidances and Methods of Various

Organizations and Agencies

5.5.1 General

The popular international and US laboratory guides considering identification

procedures in a standard way and describing them in many detail are given in

Table 5.4. It is easy to see that they refer to life-critical and socially significant fields

of chemical analysis such as food, environment, toxicology, and sport. It should

again be noted that chromatography mass spectrometry is the principal confirma-

tory technique, with individual independent (or conditionally independent) criteria

set up for each of two parts of this combination. Many documents recommend that

laboratories should establish their own criteria for identification based on the

corresponding guidelines.

Some other guides have been issued which are useful for an implementation

qualitative analysis, including identification, and its quality assurance. First of all,

there was the report on the MEQUALAN (formed from MEtrology of QUALitative

chemical ANalysis) European project [27]. In this report, many basic and applied

Table 5.3 The identification criteria in classical EPA methods for GC–MS and volatile/semi-

volatile compounds

GC MS General

Window for the analyte

peak about RT or

RRT of the standard

at calibration: � 3

s of mean RT [12];

� 5 s [13], 10 s [14,

15], 30 s [16];

� 0.06 RRT

[17–19]

The presence of:

- all ions having relative

abundance >10% in the

standard spectrum and some

minor ions of special

importance (molecular ion)

[12–15],

- three ions with preset m/z [16],
- three characteristic/diagnostic

ions with highest abundances

or any ions with abundance

>30% [17–19],

The agreement in peak relative

abundances within absolute

20% [12–16] or 30% [17–19].

Abundances of the characteristic

ions of an analyte maximize

in the same scan or within one

scan of each other [16, 19]

For the co-eluting analytes,

identification may be based on

the reference spectrum

containing extra ions

contributed by the co-eluting

compound [12–15, 17–19]

For chromatographic resolution

of the structural isomer peaks

less than 25% of the sum of

the two peak heights, the

compounds are identified and

reported as isomeric pairs

[12–14, 16–19]

There also are (a) the particular RRT window and (b) 30% tolerance range for the ratio of two

characteristic ion abundances for every analyte in the GC–HRMS method [20]
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approaches to qualitative analytical procedures, including chemical identification,

and estimation of trueness of corresponding results, are treated.

A concise document treating uncertainties in qualitative analysis, without for-

mulas and quantitative criteria, was developed by the EURACHEM Measurement

Uncertainty Working Group [28].

From national documents, the guide on the best practice in qualitative analysis

prepared by LGC (UK) [29] is worth mentioning. The document mainly describes

chemical tests, but can also be extended to techniques of chromatography and

spectrometry. In particular, the following requirements to analytical procedures

were included.

l The classification criteria, i.e., identification ones, should be defined.
l Analytical methods should be documented, validated, and fit to the purposes.

Rates of specificity, sensitivity, and misclassification (i.e., false results) should

be known and controlled.
l Results of computational procedures should be carefully taken, reviewed, and

checked for true conclusions. This requirement refers to computer libraries and

also expert systems.

In general, these items agree with guides specified in Table 5.4 and issued later.

The LGC document will be cited in great detail in Chap. 9, devoted to quality

control and assurance. Requirements for identification procedures or corresponding

recommendations presented in the documents listed in Table 5.4 will be considered

below by technique.

5.5.2 Chromatography

Common chromatography criteria are related to tolerance ranges about reference

values of RT or RRT obtained at calibration (Table 5.5). These values are less

reproducible in HPLC than with capillary GC. The acceptable RT of the analyte

under identification is not less than twice RT, corresponding to the void volume of

the column. For measuring RRT, some kind of an internal standard is used which is

a substance related to RT close to this value of the analyte. Further, RRT values are

reproduced better than corresponding absolute values of RT.

These regularities were taken into account when criteria were established,

though the most rigorous criteria were set just for RT ( � 1 s, see Table 5.5). The

last criterion may be unrealistically rigid, in spite of the existence of the suitable

technique named “retention time lacking” [30]. It should be noted here that the

issues of RT reproducibility and also the related challenge of aligning chromato-

grams (see [31]) are very important for quality assurance of qualitative analysis.

In usual chromatography mass spectrometry analysis, several chromatograms

for different ions (mass chromatograms) are recorded or extracted from the full

recorded data. Therefore, maximums of chromatographic peaks of the same analyte
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should fall within a narrow RT range. This is another criterion for identification (see

bottom lines, Tables 5.3, and the footnotesb,e, Table 5.5).

Here and below (mass spectrometry), all considered criteria are supplemented by

the requirement to S/N ratios which should not be very low, mostly not lower

than 3:1.

For the concept of identification points with regard to chromatography, see

Sect. 5.5.3.2.

5.5.3 Mass Spectrometry

5.5.3.1 Full Scans and Selective Monitoring

General and many particular requirements for mass spectrometry identification are

given in Table 5.6. The maximum permitted tolerances for relative peak intensities

of selective ions are presented. They are expressed as percents of the base peak

intensity (relative abundances, I). The percentage tolerances may depend on inten-

sities. Such a version of the criteria is separately given in Table 5.7. Furthermore,

the number of mass peaks taken into account during identification depends on what

MS technique is used. The relationship between the effective number of peaks/ions,

i.e., identification points and the technique type, is given in Table 5.8.

Table 5.5 Permitted ranges about RT or RRT of reference compounds

Guide GC HPLCa

EUb [1, 2] RRT, � 0.5% RRT, � 2.5%

FDA [21] RRT, � 2% RRT, � 5%

AORCc [22] RRT, � 1%

RT, � 1% or 6 s (whichever is the greater)

RRT, � 2%

RT, � 2% or 12 s

(whichever is the

greater)

WADA [23] RT, � 1% or � 0.2 min (whichever is smaller) c RT, � 2% or � 0.4 min

(whichever is smaller)

FAO/WHOd

[3],

ISOe [26]

RT, � 1 s (RT<500 s), RRT, � 0.2% (RT

500–5,000 s), RT, � 6 s (RT>5,000 s)

aThe example can be added where the range of � 15 s is suggested; see the EPA method [32]
bIn chromatography mass spectrometry, peaks in mass chromatograms should be of S/N> 3:1 and

of similar retention time and shape to those obtained from a calibration standard at comparable

concentration. Chromatographic peaks of different characteristic ions for the same analyte must

overlap with each other. In the case of significant chromatographic interference, residues must be

not identified. Subtraction of background spectra may be required to remove chemical noise [2]
cIf the chromatography system is overloaded by the sample, these criteria may be relaxed [23].

This factor also affects ratios of peak intensities of characteristic ions [2, 26]
dIn subsequent injections of solutions of the analyte and the standard of the same compound, both

are matrix extracts, the difference between the analyte and the standard in RRT typically is< 0.1%
eDifference in RT of peaks of all characteristic ions of the analyte � � 20% of the peak half-

widths or � 1 s. See also Example 4.6
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Table 5.6 MS characteristics for identification criteriaa

Guide MS, full scans MS1, SIM MSn, SRM

EU [1] The presence of all ions (�
four ions in MS1) having

I > 10% in the standard

spectrum

Tolerances for I are given in

Table 5.7

The selected characteristic ions preferably contain

molecular ion, and originate from different parts of

the molecule

The number of ions corresponds to a minimum four or

three (compounds of group A or B, respectively; see

Table 5.1) identification points; see text. Tolerances

for I are given in Table 5.7.

EU [2] The presence of three and more characteristic ionsb. Tolerances for I are given in

Table 5.7. In MSn, at least two product ions. Also, matrix-matched standards may

need to be used for measuring ratios of ion abundances.

FDA

[21]

The presence of three and

more characteristic

(structurally-specific)

ions c

In MSn, if the precursor

completely fragments to

product ions, at least two

products should appear

I for three or at least four
characteristic ions

match standard within

� 10 or � 15 absolute

% respectively

I for two (precursor is

fragmented) or at least

three characteristic

product ions match

standard within � 10

and � 20 absolute %,

respectively

AORC

[22]

The presence of all ions (�
three ions in MS1)

having I > 10% in the

standard spectrumd

� four ions with stricter

tolerances than required

for full scan

WADA

[23]

The presence of all ions

having I > 10% in the

standard MS1 spectrum

or lower peaks of

characteristic ions (<5%

in MSn)e

Tolerances for I of three
characteristic ions in

MS1 (�2 ions in MSn)

are given in Table 5.7

The presence of three or

more characteristic ions

Tolerances for I of three
characteristic ions are

given in Table 5.7

Tolerances for I of more

than one product ion are

given in Table 5.7

Other f, g, h

aUnless otherwise stated, standard conditions of gas chromatography mass spectrometry (MS1)

analysis are implied, which are EI, electron energy of 70 eV, several scans per chromatographic

peak, and so on (e.g., see [24, 26]). The combination of HPLC and ESI is very typical for MSn.

As a rule, only signals with S/N >3:1 are considered
bMolecular or related ion should be included in identification procedure whenever possible.

In general, high m/z ions are more characteristic than low m/z ions. Ions arising from loss of

water or that sort of low molecules may be useless. Selected characteristic ions are recommended

to be selected from different parts of the analyte molecule
c Ions related to water loss and isotopic peaks are discouraged
dMolecular or analogous ion is taken into account if >5% in MS1. In MSn, the precursor ion is

selected if insufficient ions are present; I should be in the range of 10–80%. If <3 suitable ions,

different techniques or derivatizations may be used. Tolerances in MS1 (MSn): match standard

within � 10 (20) absolute % or � 30 (40) relative %, whichever is the greater
eIf three characteristic ions with (I > 5% in MS1, full scans) or any characteristic ions (MSn)

are not available, a second ionization/fragmentation technique or a second derivative yielding

different ions should be used, with (MS1) two or more characteristic ions in each spectrum.

In MS2, the precursor ion should be present. In some cases a single precursor–product pair may

be characteristic
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Thus, full spectra or selected ions are used or recommended for identification in

methods (Tables 5.6–5.8). In the first case, visual inspection of an analyte spectrum

and its comparison to a reference one is performed (Table 5.9). Searches in

computer spectral libraries, followed by automatic calculation of MF, are also

permitted. However, library matches must be reviewed by a qualified experienced

analyst (Table 5.9). In general, the guidance demonstrate a cautious attitude to the

use of computer spectral libraries in target analysis, and do not disregard them,

because these documents cover to some degree challenges of non-target analysis

(see Chap. 7).

In selective ion detection (SIM, SRM), different (a) maximum tolerance ranges

(Tables 5.6 and 5.7) and (b) numbers of ions/IP (Tables 5.6 and 5.8) have been

proposed. Tolerances in different documents are not fully agreed (Fig. 5.1).

fThe tolerance ranges for the two or three ion abundance ratios match standard “within the limits of

� 30% of absolute ion abundances ratios” [3]
gCharacteristic ions match standard within an average � 20 and � 25–30 relative % in GC–MS

and LC–MS respectively [10]
hCharacteristic ions with high m/z values, especially the molecular ion, and high abundances

(>15%) are preferred due to their higher significance. Even mass fragment ions are preferred over

odd ones. For characteristic isotope clusters, e.g., chlorine, two characteristic ions are selected

from the same cluster, and so on. The presence of three characteristic ions, with I matching

standard within� (0.1·Istd + 10)%, where Istd is the relative intensity (in absolute %) of the peak of

the corresponding characteristic ion in the standard spectrum [26]. See also Example 4.6

Table 5.7 Maximum permitted tolerances for selective ions

I, % GC–EI–MS GC–CI–MS, GC–MSn, LC–MS, LC–MSn

EU [1, 2] WADA [23] EU [1, 2] WADA [23]

>50% � 10% (relative) � 10% (absolute) � 20% (relative) � 15% (absolute)

�25 to 50% � 20% (relative) � 25% (relative)

>20 to 50% � 15% (relative) � 25% (relative)

>10 to 20% � 20% (relative) � 30% (relative)

<25% � 5% (absolute) � 10% (absolute)

�10% � 50% (relative) � 50% (relative)

Table 5.8 The number of

identification points for

different MS techniques

[1, 33]

Techniquea IP per ion

MS1

MSn, precursor ion

1.0

1.0

MSn, product ion 1.5

HRMS1 2.0

HRMSn, precursor ion 2.0

HRMSn, product ion 2.5
aUnless otherwise stated, low-resolution mass spectrometry
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An analyst can choose the criteria from the suitable guidance or any criteria from

Tables 5.6–5.8, given that they are checked for ultimate performance (e.g., the

absence of FP and FN) on the method validation. Examples of estimating tolerances

and counting IP are as follows (Examples 5.1 and 5.2, see also Sect. 4.3.2.2).

Table 5.9 Full mass spectra in identificationa

Guide Requirements and guidelines to procedures and operations

EU[1] Computer spectral libraries searching may be used. MF for mass spectrum of the

analyte and that of the standard has to exceed a “critical” level. This factor is

determined during the validation process for every analyte.

Spectral variations “caused by the sample matrix and the detector performance”

are checked.

EU [2] Reference spectra should be generated using the same instruments as employed

for analysis of the samples. These spectra should be validated if they

significantly differ from published spectra. The reference spectrum can be

recorded during a previous injection without matrix components, preferably

from the same experimental batch (e.g., with calibration solutions). Signal of

an analyte must not overload the detector.

FDAb [21] There should be a general correspondence between analyte and standard in

relative/ranked abundances. The mass spectrum of a suspect compound

should visually match that of a contemporaneous standard.

All characteristic ions are present above a minimum level. The last is established

by the method developer based on either I or S/N.
“Library search algorithms should not be used to confirm identity”. “Strict

numerical criteria [i.e., MF – author] need not be applied”.

Appearance of abundant ions other than from targets can be explained, for

example, by the presence in blanks

WADA [23] The use of the computer libraries is permitted. Criteria based on MF are

established in the laboratory, but there is no guarantee of identification based

on MF. Thus, all library matches must be reviewed by a qualified scientist

ASTM [24] Computerized spectral matching and manual searching of mass/intensity matches

are included.

The library of reference spectra should contain spectra of all organic compounds

that may be present in the samples. The spectra should be recorded on the

same instrument and under the same conditions as the unknown. A mass

spectrometrist should be capable of evaluating the information provided with

the spectral matches.

The peak-by-peak comparison of the full mass spectrum of the analyte with that

of an authentic sample of the suspected compound should be also used.

SOFT/ AAFS

[10]

Searches in commercial/user-compiled libraries are performed. MF “must be

used as guides only and are not sufficiently reliable to be used as the final

determinant of identification.” Finally, an experienced toxicologist must

critically review spectral matches.

For a positive match, all the abundant characteristic ions present in the reference

spectrum must be present in the spectrum of “unknown”. Ions that are non-

abundant in the reference spectra may be missing in the latter. Additional

major ions from a co-eluting substance or “background” may be present.

ISO [26] Agreement with the mass spectrum of the pure compound and absence of other

ions.
aUnless otherwise stated, EI–MS1

bMS1 and MSn full scan.
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Example 5.1

The reference spectrum of a compound contains three peaks of character-

istic ions, intensities I of which are 100, 50, and 20%. An analyst should

estimate tolerance ranges to use this spectrum as the reference one for

identification. The dependence of ranges on I is taken into account there.

The percentage ranges necessary for calculations are given in Table 5.7.

Arithmetic calculations are placed in Table 5.10.

Tolerances obtained from calculations somewhat differ between guides for

the same technique(s). An analyst may choose the range set (a) according to

the specialization of the laboratory (e.g., determination of residues or doping),

or (b) in an arbitrary way. In the second case, the range criteria are checked for

acceptance for identification.

Table 5.10 Examples of permitted tolerances for three selective ions

I, % GC–EI–MS GC–CI–MS, GC–MSn, LC–MS, LC–MSn

EU [1, 2] WADA [23] EU [1, 2] WADA [23]

100% 100% 100% 100% 100%

50% (50 � 0.15·50) % ¼
(50 � 7.5) %

(50 � 0.2·50) % ¼
(50 � 10) %

(50 � 0.25·50) % ¼
(50 � 12,5) %

(50 � 0.25·50) % ¼
(50 � 12.5) %

20% (20 � 0.2·20) % ¼
(20 � 4) %

(20 � 5) % (20 � 0.3·20) % ¼
(20 � 6) %

(20 � 10) %

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

EU

W
ADA

SOFT/A
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O
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Fig. 5.1 The tolerance ranges about I ¼ 30% of an arbitrary mass peak, from minimum to

maximum limits, according to different guidances (Tables 5.6 and 5.7)
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5.5.3.2 Identification Points

The concept of IP came into being not long ago [1, 33]. Originally they were mainly

related to confirmation by MS (Table 5.8). The example of counting IP for various

MS techniques is as follows.

The concept of IP is also applicable to chromatography. It has been noted [1] that

“a maximum of one identification point’ may be obtained with the following

techniques”:

l Combinations of HPLC with DAD or fluorescence detection
l HPLC coupled to an immunogram
l Two-dimensional TLC coupled to spectrometric detection

Table 5.11 The number of identification points for various techniques (adapted from [1])

Technique The number of ions The

number of

IP

GC–EI–MS, GC–CI–MS, LC–ESI–MSa,

LC–APCI–MSa
3

4

n

3

4

n

GC–EI–MS and GC–CI–MS 2 (EI) þ 2 (CI) 4

GC–EI–MS or GC–CI–MS, analyte and

derivative or two derivatives

2 (analyte) þ 2 (derivative)

2 (derivative A) þ 2 (derivative B)

4

GC–MS and LC–MSa 2 þ 2 4

GC–MS2, LC–MS2 1 precursor and 2 product ions 4

GC–MS2, LC–MS2 2 precursors, each with 1 product ion 5

LC–MS3 1 precursor, 1 product, and 2 second-

generation product ionsb
5,5

HRMS 2

n
4

2n
GC–MS and LC–HRMS 2 þ 1 4
aThere may be the only characteristic ion unless in-source fragmentation is used
bIons are only counted once

Example 5.2

An analytical mass spectrometrist would like to know whether the certain

number of selective ions detected using various MS techniques provide

sufficient IP and therefore true identification of analytes in the samples.

One can easily do it calculating the number of IP with the use of initial

relationships; see Table 5.8. The typical outcomes for required three/four

points or their larger numbers are given in Table 5.11.
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Recently, the concept of IP in the broad sense was introduced into the ISO

standard for GC–MS identification of target compounds in soil samples and also

other environmental samples [26]. According to this standard, additional IP are

assigned also to a chromatographic signal recorded with another column or signal

of specific detector, a specific chromatographic pattern, even prior data, and so on

(Table 5.12). Additional IP are required in a multistep identification procedure, if an

attempt to gather the necessary three IP from the initial mass spectrum has not been

successful (Fig. 5.2).

It should be noted that in this standard [26] a sound IP is assigned to prior

information (“expectation, plausibility, earlier investigations”). This is not in line

with the author’s view that prior data are sources for setting up hypotheses rather

than confirmatory evidences (see Chap. 6).

5.5.3.3 High Resolution

The use of HRMS is recommended in some documents (Table 5.13), first of all the

guidance on MS for confirmation of the identity of animal drug residues [21]. That

is applicable to not only this group of analytes but also to a general unknown

analysis by HRMS. Now, this MS technique is fast progressing (see below). In the

future, new guidelines will be devoted to HRMS to a greater extent.

Table 5.12 The number of identification points in GC–MS (adapted from [26])

Technique, device, procedure, or informationa Remark, example IP

MS, characteristic ion every ion 1

GC–EI–MS and GC–CI–MS CI, positive/negative ion 1 (EI) + 2 (CI) 3

GC–MS2 1 precursor and 2 product ions 4

HRMS every ion 2

Column with other polarityb extra RT as GC criterion. 1

Spike/standard additionc 1

Isotope dilution 1

Chromatographic patternd i.e., PCB, PAH, dioxins 1

Other techniquese 1

Expectation, plausibility, previous investigationsf 1
a As above, the condition of S/N>3 must be met for analytical signals. One IP is also provided with

“absence of any other ions in full scan” [26]; there is no explicitation for this source of IP
bNot valid for non-separated isomers (e.g. chrysene/triphenylene, m/p-xylene)
cThis is the initial part of co-analysis. In fact, a standard addition, followed by chromatography

mass spectrometry analysis, automatically results in several IP and provides the strongest ultimate

evidence for identification
dI.e. a peak belonging to the compound group easily identified by its fingerprint
eEvery other selective detector (e.g., ECD for organochlorine compounds) or technique (e.g.,

LC–fluorescence for PAH)
fIn this book, these are named prior data; see Chap. 6

5.5 Confirmation: Guidances and Methods of Various Organizations and Agencies 129



GC
criterion

MS criteria

yes

Additional experimental information

no

1 charac-
teristic

ion

3 IP 1 or 2 IP
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Fig. 5.2 The flow scheme for identification procedure of environmental analytes (adapted from

[26]). The first step is chromatographic screening. If the range criteria related to RT (see Table 5.5)

are not met, the peak is considered not identified. If met, identification of corresponding com-

pounds is confirmed by MS in the second step. Three tolerance criteria for I of characteristic ions
(Table 5.6, bottom footnote) should be met. For three ions with the abundances within tolerances,

identification hypothesis is accepted. Full non-match means no identification. Only one or two IP

may be also observed. Corresponding ions are outside tolerances due to some factors, e.g., very

low absolute intensity of peaks. The second possible reason is that spectra of such compounds as

some PAH do not contain peaks of abundant ions but the only one. In any case, the gathering IP

should be continued. They may come from additional experimental evidences or, if unsuccessful, a

prior data (see Table 5.12). Finally, the set of IP becomes full or is kept incomplete. The result is

classified as identification or indication, respectively
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5.5.4 Other Techniques

5.5.4.1 GC with Specific Detectors

The status of these techniques in relation to methods is specified in Sect. 5.2. Some

requirements for the determination of an analyte by GC with ECD are noted in the

document [1]. General requirements for GC, including the 0.5% tolerance for RRT

and a possibility for co-chromatography, remain valid (see above).

For certain substances, selective detectors may be not sufficiently selective,

resulting in FP. An example is that positive responses of ECD are observed not

only to halogen compounds but also phthalate esters [3].

5.5.4.2 HPLC–UV–Vis

According to the EU guidance [1], there are the following requirements and criteria

for the technique.

l A 2.5% tolerance interval for RRT and other general requirements to chroma-

tography methods are proposed, see Sect. 5.5.2.

Table 5.13 HRMS in guidance documents

Guide Requirements and guidelines to procedures and operations

EU [1] Resolution >10,000 at 10% valley

FDA

[21]

Mass resolution and peak purity should be sufficient to provide only one

predominant ion formula per mass peak.

Standard of known formula/composition is used to demonstrate acceptable

mass accuracy in method.

Accuracy is reported in the unit of ppm.

At low mass,< m/z 500, the criterion of< 5 ppm difference is acceptable to

confirm a unique molecular formula. At higher mass, this criterion does

not provide unambiguous confirmation.

The possibility of other candidate compositions within the mass accuracy of

the instrument is evaluated for C, H, N, O and some other elements. The

range of candidate compositions should be shown. In addition, multiple

candidates are evaluated for their logicality. The numbers of

heteroatoms, the isotopic patterns, or other characteristics are taken into

account. The possibility of alternative compositions diminishes the

importance of exact mass measurements.

WADA [23] Resolution >3,000 at 10% valley

FAO/WHO [3],

ISO [26],

The fact of the use of HRMS for confirmation is noted.

EU [2] Requirements for identification:�2 characteristic ions (preferably including

the molecular or related ion), at least one fragment ion. Mass accuracy

<5 ppm.

The EPA method [20] can be added where resolution >5,000 at 10% valley and two characteristic

ions, are recommended
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l In conditions of diode array detection, the absorption maxima in the spectrum of

the analyte typically match those of the corresponding analytical standard within

� 2 nm wavelength intervals.
l For above 220 nm and the spectral regions with a relative absorbance�10%, the

spectrum of the analyte and that of the standard are not visibly different, i.e., the

same maxima are present and the difference between absorbances at any point is

not larger than 10% of the absorbance in the standard spectrum.
l In the case of searching in computer spectral libraries, the analyte spectrum

matches that of the standard solution above a critical MF. The latter is deter-

mined during the validation procedure for every analyte. Spectral variability

caused by various factors is checked.

Here, the tolerance of � 2 nm is somewhat wider than corresponding values of

resolution, accuracy, and precision of modern diode array detectors. For example,

optical resolution, wavelength accuracy, and wavelength repeatability are

1.2, � 1.0, and � 0.1 nm respectively [34]. So this tolerance range is suitable, if

only instrumental factors affect a spread in wavelength. However, this is not the

case when conditions for recording spectra of analyte and standard are not the same,

e.g., there is some difference in pH. Therefore, the range of that tolerance should be

checked during validation of the method.

A detector of this type is also used in TLC (next Section)

5.5.4.3 Thin Layer Chromatography

Requirement established for this techniques are the following ([1]; see also

Sect. 5.2).

l Such technique options as two-dimensional HPTLC and co-chromatography are

considered mandatory.
l The tolerances for the RF values of analyte are � 5% with reference to those for

the analytical standards.
l The spot of the analyte is visually indistinguishable from that of the standard.

The same is true for corresponding spectra recorded at full-scan UV–Vis detection.
l The separation of spots of the same color should be so effective that centers of

the spot of the analyte and the nearest one are separated by a distance of not less

than half the sum of the spot diameters.

For detection by UV–Vis, see also Sect. 5.5.4.2.

5.5.4.4 IR Spectroscopy

The EU guide [1] (see also Sect. 5.2) exploits the concept of adequate peaks, which

are absorption maxima in the IR reference spectrum of an analytical (calibration)

standard fulfilling a number of the requirements.
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l Absorption maximum is in the wavenumber range of 500–4,000 cm-1.
l Relative intensity of absorption, with respect to (a) zero absorbance or (b) peak

base line, is not less than (a) 12.5% or (b) 5% respectively of the absorbance of

the most intense peak in the region noted above.
l There are a minimum of six adequate peaks in the reference spectrum of the

standard. If there are less than six peaks, the spectrum of the standard is not

qualified as the reference one.

Criteria for identification are the following [1] (see also [35]).

l Absorption is present in all regions of the analyte spectrum corresponding with

adequate peaks of the standard.
l At least 50% of the adequate peaks are found in the IR spectrum of the analyte.
l Correspondence of peaks in the IR spectrum of the analyte with adequate peaks in

the spectrum of the standard is determined within a tolerance range 1 of� 1 cm�1.
l “Where there is no exact match for an adequate peak, the relevant region of the

analyte spectrum shall be consistent with the presence of a matching peak.”
l The requirement of S/N � 3:1 is applicable to absorption peaks of the analyte.

The remark should be made that the use of IR spectroscopy for a determination of

residues concerned in the guide [1] is not fully appropriate due to a relatively low

sensitivity of the technique. The IR spectral technique is far more effective for

identification of materials which are accessible in large amounts. Therefore proce-

dures of IR spectral analysis have beenwidespread in qualitative analysis II (Chap. 8).

5.5.4.5 NMR Spectroscopy

There are a few standard methods using NMR, as compared with the abundance of

those based on chromatography and mass spectrometry. However, a number of

methods have been developed in ASTM and some other organizations (see [37]).

Usually, the chemical shifts of particular groups in analyte molecules are main

quantities used for identification as a qualitative part of methods. Three points

should be noted which may give an advantage for NMR over other techniques for

developing standard methods.

l NMR is very sensitive in relation to changes in molecular stereochemistry where

different spectral techniques, first MS, meet with failure. One of the new

examples is the use of 13C-NMR for regiospecific analyses of triacylglycerols

to differentiate between fish oils for their authentication [38].
l A specificity of analytical results is further provided by the resonance techniques

for the nuclei of 15N, 17O, 19F, 23Na, 29Si, 31P and some other elements, if these

are contained in the respective molecules.

1This is probably a too rigorous criterion, see [36].
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l This technique is required in metabolomics and also proteomics, which are among

the principal challenges for modern analytical science and practice (Chap. 7).

5.6 Testing and Criticism of Guidances

There have been many scientific reports criticizing the guides considered in this

chapter, firstly the requirements of the EU document [1]. An example of relevant

sentences is as follows:

What could be the scientific basis for the above criteria? As regards the tolerance windows,

the general opinion is that the repeatability of ion ratio measurements decreases with lower

RIs [relative intensities, i.e. I – author], but the guidelines do not provide substantiating

references nor other indications how they arrived at the tolerance windows [in Tables 5.6

and 5.7 – author]. It seems that the latter are just based on arbitrary decisions. The reasons

for switching between absolute and relative differences [Table 5.7 – author], as advocated

by WADA, also remains unexplained.. . . obviously the widely divergent criteria between

the Guidelines for number of ions to be monitored and tolerance windows in SIM are

scientifically unsound and legally untenable. It cannot be that one and the same test result

may lead to a ‘positive’ identification when using Guideline A and a ‘negative’ identifica-

tion when using Guideline B. However, even if the identification result remains the same

under all guidelines, we cannot guarantee that the result is correct [39].

Another judgment is also worth mentioning:

. . . the identification-points system is not scientific. . . . as in the case of essentially all

identification guidelines to date, a critical drawback is that a rigorous assessment has not

been conducted to determine the uncertainty of the approach(es). For example, what are the

differences in the rates of false positives and false negatives by requiring four IP for banned

substances [group A, see Table 5.1 – author] over three IP for registered compounds [group

B, Table 5.1 – author]? Why should a high-resolution ion always be worth two points in the

IP system, and MS2 ions always be worth 1.5, whereas the (pseudo)-molecular ion is only

worth 1? [8]

The quotations show that the choice of (1) a length of tolerance ranges and (2)

the number of ions/IP is the attackable target. Also, the use of tolerances themselves

as the type of criteria has been put in doubt [40].

In general, one would find difficulty not to accept many things from the

criticism. It is an indisputable fact that every analyte (or more exactly, the analyte

in a particular matrix at a certain concentration) is the individual analytical target.

Uniform requirements and guidelines do not provide unambiguous true identifica-

tion in all such cases, e.g.,

. . .many exceptions can be found that indicate a three-ion requirement is either too strict or

not strict enough [8].

Further, it should be accepted that there is an uncertainty as to what particular

level of FP and FN is related to tolerance criteria (see [8, 40]).

Nevertheless, the EU guide [1] and other documents (see Table 5.4) are based on

the results of research by numerous reputed laboratories (e.g., see [33]). There
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appears to be little doubt about the reliable empirical basis for many of the above

requirements and many (but not all) proper analytes and matrices. There is some-

thing else that supports the discussed system of IP and the accompanying toler-

ances. This is the simplicity of criteria. According to our observations, many

chemists engaged in routine analysis prefer simple rules and simple decisions.

There are simple and uniform criteria that are consistent with expectations of

analysts.

However, testing the recommendation and rules for identification in confirma-

tory methods has generated exemptions. Careful registration of the latter would lead

to “the list of rules” supplemented with “the list of exemptions” as another basis for

true identification or no identification. In turn, it would be some kind of a step to a

new system of criteria. “The registration of exemptions” could be carried out in a

natural way if it accompanies validation of qualitative methods in the spirit of

proposals of the critical review [8].

Also, different documents should be mutually adjusted.

One of the aspects of the criticism is rather inconsistent. It was noted [8, 41] that

uniform rigid tolerances were narrow as compared to experimental spreads of a ion

abundance ratios, e.g., standard deviations about corresponding mean values. That

may lead to a significant rate of FN (Fig. 5.3a). In contrast, other workers are

concerned about excessively wide tolerance ranges established by guidelines and a

subsequent chance for FP [42]; see Fig. 5.3b. It has been concluded that statistical

criteria based on real data spreads for analytes in one or another sample would be

narrower and therefore more correct [42].

However, it has been demonstrated that statistical processing of data does not

improve results of qualitative determination of pesticide residues [43]. In our

research, window/tolerance (RI in GC, MF in mass spectrometry) and statistical

(t-test for the same data) criteria led to similar results of impurity identification [44].

So, a substitution of rigid windows by statistical criteria may be efficient or

inefficient depending on the case and is not a panacea from all troubles, especially

taking into account possible deviations from normal distribution [43]. Further

research of this topic is certainly essential.

Another aspect of requirements and guidelines for identification and confirma-

tion is due to the progress in MS techniques and the wide use of MSn and HRMS in

numerous analytical laboratories. Corresponding range criteria (Tables 5.6–5.8 and

5.11–5.13) for those have been further tested for trueness of identification. Two

findings will be outlined.

In pesticide residue analysis using HPLC–MS2, there was the false determina-

tion of a coeluting interfering compound instead of the pesticide sebuthylazine

[45]. The identification criteria matching the EU guide [1] included two MS2

transitions (one precursor and two product ions; see Table 5.11 for the criterion)

and just one abundance ratio of product ions (Table 5.7). It was found that those

criteria were insufficient to obtain the true result. The FP error was detected

by anything from (a) the third fragmentation of the precursor, (b) GC–MS, or

(c) UHLC–HRMS [45].
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The second case is related to HRMS, particularly HRMSn. Most relevant criteria

for the technique, Table 5.13, look outdated and need to be improved. One of the

proposals includes [46]:
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Fig. 5.3 Adapted from [42]. Relative intensities of two mass peaks for two analytes (triangles for
compound A and circles for analyte B, four experimental values per every analyte) and two criteria

for identification of A as rectangle tolerances of different sizes. Any values of intensities are

arbitrary. Criteria are “soft” (large rectangle) and “rigorous” (small rectangle). (a) The case where
compound B is absent and the measurement result for A is somewhat biased. If the rigorous

criterion is accepted, the identification result is FN (triangles are outside the small rectangle). In
other words, one can falsely reject the hypothesis that analyte is compound A. For the soft criterion

(large rectangle), triangles are inside and TP is declared. (b) Both A and B are present in the

sample. Applying the rigorous criterion, one obtains the identification result which is the combi-

nation of TP (triangles are within the small rectangle) and TN (circles are outside). For the soft

criterion, the result is FP in relation to compound B due to both groups of points being within the

large rectangle
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l Minimum mass resolution measured for width at half peak maximum 2 (rather

than at 10% valley, see Table 5.13) �10,000
l Different resolution values for screening �10,000, the reliable confirmation (up

to �20,000), and unknown analysis (by HRMS2, up to �70,000)
l Dependence of the number of IP (1.5 or 2 IP per ion vs 2–2.5 IP/ion; Table 5.8)

earned by different ions on mass resolution
l Not only mass measurement but also calculation of at least one ion abundance

ratio, likewise low-resolution mass spectrometry
l Different mass tolerances for screening and confirmation (� 50 and 5 mDa

respectively were proposed)

In our opinion, the central ideas of the proposals [46] are healthy, and the

particular values of tolerances and different criteria may depend on many factors,

such as the molecular mass of analyte, its concentration, the nature of the matrix,

and so on (see above).
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Chapter 6

Prior Data for Non-target Identification

Abstract This chapter is devoted to prior information required to set up and test

identification hypotheses. According to its type, the relevant information is divided

into meaning and statistical data. Knowledge with regard to the origin, properties,

and use of chemical compounds is very essential in order to be able to propose and

reject candidate compounds for identification. Prior information about samples

analyzed is important in order to gather full evidence of the trueness of an identifi-

cation result. Plausibility of qualitative analytical results is also taken into account

to confirm conclusions made by analysts. Much of such data are extracted from

chemical databases outlined in this chapter. These data sources are also used to

calculate statistical rates of occurrence and co-occurrence of chemical compounds

in the literature. The occurrence rate is the direct measure of the abundance of

chemical compounds, and the related possibility of presenting in samples to be

analyzed. Rare compounds are filtered out by means of this rate, and further

excluded from consideration for identification purposes. Most known compounds

are rare ones, as proved by respective statistical data. Facts and rates of the co-

occurrence of chemical compounds in the literature provide the possibility of a

priori prediction of a group of compounds available in the same samples analyzed.

Different methods of estimating these rates are described; examples of their use for

identification are given.

6.1 General

This type of analysis will be considered in Chap. 7 with all possible details. In this

chapter (and also the succeeding one), it will be demonstrated that data/information

play the main role in obtaining true results of non-target/unknown identification.

In this chapter, information about (a) the origin, properties, and use of chemical

compounds, (b) their popularity (abundance, occurrence) and quantitative measures

for them will be considered.

These data are/may be required for both setting up and screening candidates for

identification (identification hypotheses).
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6.2 A Variety of Prior Data

Candidates for identification can be predicted before or during chemical analysis by

means of various prior data; see Table 6.1. Such information may be conditionally

classified as statistical data (Table 6.1, the bottom line) and meaning data (the bulk
of Table 6.1). Information analysis makes it possible to set up the particular

candidate(s) for identification based on properties and characteristics of (a) the

sample under analysis, or (b) already identified analyte(s) [1–3]; see Fig. 6.1.

Table 6.1 Prior data as sources for identification hypothesesa

Data Remarks, examples

Method targets The particular sample/matrix may contain compounds commonly

determined in this matrix. Such compounds listed in corresponding

methods can be considered as candidates for identification

Previous and current

analyzes, information

about samples

Analytical reports from the home or different laboratory may contain

valuable information on possible analytes. Further, the presence of

some compounds in the sample means that other compounds of the

same groups can also be detected (e.g., PAH, PCB, PCDD/F)

Thermodynamic and

kinetic data

Unstable compounds can be often excluded from consideration

Compounds synthesized/

transformed in nature

by regular rules.

Compounds rare for

natural matrices

(1) DNA determines amino acid sequence of proteins synthesized in

the living organisms. (2) Metabolites are formed according to the

regularities [6–9]. (3) Alkenes are not appreciable components of

oil. (4) Cyclopropane derivatives are very rare substances in nature

Databases/reference

books on known

compounds

See Sect. 6.3. The example is that all compounds available in the

database and having the certain molecular masses are considered as

candidates for identification

Compositions and

formulations. Origin

and use of particular

compounds

A composition of commercial mixtures of substances (e.g., glues or

drug dosages) is relatively easy to search in corresponding

reference books, databases, patent and other literature. Such

formulations can therefore be considered as “mixtures” of

candidates for identification to be tested during analysis of real

samples. Related information on origin and use of the particular

compounds can be found in some databases (see Sect. 6.3)

Lists of regulatory

chemicals

As a rule, they are widely occurring compounds/substances. Collected

in the CHEMLIST data base (see Table 6.2)

Hit lists Search of matching spectra in corresponding spectral libraries results

in the ranked list of the spectra of compounds which are advanced

candidates for identification

Occurrence and co-
occurrenceb of
chemical compounds

in databases and the

literature

Popular compounds, i.e., ones with high rates of occurrence in the

chemical literature and databases, are present in a sample with a

greater probability than rare compounds. Constituents of the same

sample are or may co-occur with each other and with the name of

the matrix in the chemical literature. So data on occurrence and co-

occurrence are useful in setting up identification hypotheses or,

equally, predicting composition of samples [1–3]. See Sects. 6.4

and 6.5
aFor references, see [4, 5] unless otherwise noted
bThe synonymic terms of citation and co-citation (co-reference), respectively are also used by the
author [1, 2]
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In the discussion of various kinds of chemical information, it is important to find

out what is the set of popular compound/substances which should be taken into

account for the purpose of identification of components in real samples.

6.3 Set of Abundant Compounds

In spite of huge sets of known and especially possible compounds (Sect. 1.5.4), an

analytical chemist cannot consider most of them which are rare ones. The latter are

compounds synthesized or isolated from natural sources (detected in them), as a

rule in subgram amounts, in a few laboratories. Such substances are not present in

common samples chemically analyzed, such as environmental, food, or biochemi-

cal ones. Those differ from industrial chemicals, solvents and other abundant

compounds (see Sect. 1.5.4) which can be detected in many matrices.

Abundance of chemical compounds can be estimated by their occurrence in the

literature and databases [1–3]. Principal relevant databases are given in Table 6.2;

there are also many other e-sources of chemical information, see [26, 27]. For the

purpose of determining popularity/abundance, various observations or indicators

can be used. From our point of view, the compound is considered abundant if it

occurs

Sample 

Components 

Particular analyte

Fig. 6.1 Information relations between a sample and its components. Analysis of a sample leads

to identification of an individual analyte or all (many) sample components. The same analysis may

determine the identity/authenticity of a sample itself (qualitative analysis II, Chap. 8). Results of

previous analyzes have been directly or indirectly introduced into documents (protocols, reports,

articles, database entries, and so on) which can be used to predict a sample composition from such

retro-information on a sample or its individual components. This kind of prediction is based on not

only analytical data but also similarity in properties between the compounds as sample compo-

nents. This is expressed in co-occurrence of related compounds both in the same samples and in

the same documents; see Sects. 6.4 and 6.5. Thus, if an analyst knows about the presence of one or

several analytes, he/she may predict the existence of some other sample components and deter-

mine the nature of the sample itself. The kinds of reverse conclusions are also true.
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1. In the database of the most known compounds such as the Dictionary of Organic

Compounds and related Dictionaries (Table 6.2).

2. Very frequently in the large chemical/general data system containing multiple

records/entries for any abundant compound, such as CAS or even the Internet as

a whole (see Table 6.2 and Sects. 6.4 and 6.5).

3. In several chemical/spectral databases (see Sect. 6.6).

Abundant and rare compounds are differed by their occurrence rates. There are

common distributions of chemical entities over that rate. Two such distributions are

shown in Fig. 6.2. In the data sources, the great majority of compounds occur only

once! They are just rare or relatively rare substances.

The set of abundant compounds is not so large, but they occur in the literature far

more frequently than rare ones. Indeed, the example of the sample from CA

Fig. 6.2 Distribution of unique chemical compounds over their occurrences in the database or

reports/lists. (a) The random sample of 300 compounds from CA up to 2003 (for sampling, see

[3]). (b) Reports on organic analysis of water for 1970–1976 containing 1,258 compounds in 175

lists [28]. The most frequently occurring compounds are not shown
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(Fig. 6.2a) demonstrates that only 1.3% (more exactly, not larger than 2.7% with the

probability 0.95) of compounds occur at least ten times, but these occur cumula-

tively in 83% of cases [29]! Taking ten citations as the threshold for the abundance,

the overall number of such compounds can be estimated as 50 � 106 � 0.013

¼ 650,000, where 50 � 106 is the number of known low molecules

(Sect. 1.5.4). It is appropriate to compare this value to sizes of other sets of popular

compounds.

l More than 248,000 inventoried/regulated substances covered by the CHEM-

LIST data base [30].
l More than 570,000 compounds are included in the last version on Dictionaries;

see Table 6.2.
l The exact number of commercially available unique chemicals is unknown, but

certainly measured in millions (see Table 6.2).

So the upper limit for the number of widely occurring low-molecule substances

as potential analytes and candidates for identification in common analytical pro-

blems seems to be within the order-of-magnitude range of 105–106.

It has been proved that there is positive correlation between the occurrence rate

of chemical compounds and their presence in the sample to be analyzed [1–3], see

below. So the chance of detecting an abundant compound in a corresponding matrix

is relatively high, and rare compounds can be often disregarded in setting up

identification hypotheses.

In relation to high molecules, related statistics seem to be less clear and more

misleading. In May 2010, CAS registered 61,885,559 sequences [31]. There are

nucleic acids, proteins, possibly polysaccharides, and also partial nucleotide

(genes) and amino acid sequences [32, 33], i.e., fragments of molecules. Further-

more, this data system contains not only real compounds, i.e., ones having experi-

mentally proved formula and structure, but also virtual/predicted molecules, e.g.,

“sequences deduced from gene translations” [32]. Certainly, a chemist should not

refer possible rather than real-world structures and molecular pieces to molecules of

known individual chemical compounds!

Some other databases on sequences make it possible to estimate the number

of known high-molecule compounds more precisely. For example, in June 2010

one of the main protein data banks, UniProtKB/Swiss-Prot, contained 517,100

sequence entries [34]. Only for 69,384 sequences (13.4%) was “evidence at protein

level” obtained which

. . . indicates that there is clear experimental evidence for the existence of the protein. The

criteria include partial or complete Edman sequencing, clear identification by mass spec-

trometry, X-ray or NMR structure, good quality protein–protein interaction or detection of

the protein by antibodies [35].

The largest fraction of proteins, 363,688 or 70.8%, was “inferred from homol-

ogy,” i.e.,

. . . the existence of a protein is probable because clear orthologs [some kind of analogy –

author] exist in closely related species [35].
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Therefore, it is reasonable to suppose that the existence of only a minority of

the predicted high molecules have been proved. The set of 10 � 106 compounds

(16% of registered sequences, see above) would be the reasonable conventional

estimate for the overall number of actually known high molecules (any compounds,

rather than only abundant ones).

6.4 Occurrence and Co-Occurrence Rates

6.4.1 Kinds of rates

The abundance of analytes is estimated by occurrence and co-occurrence rates which

are the absolute or relative number of corresponding records (entries) in databases

(Table 6.3). The first of these rates is a direct measure of abundance of chemical

compounds, which is evaluated by simple counting. In evaluating co-occurrences, the

information is retrieved for a pair of words which are the names of (1) two com-

pounds (one of themmay be the known component of the sample), or (2) a compound

and a matrix; the two words must present in the same record (Table 6.3).

6.4.2 Databases

The rates were mainly evaluated for the Chemical Abstract database, including its

printed version and the recent version on CD [36]. The abstract extracted from CA is

shown in Fig. 6.3. For a simple occurrence rate, documents are retrieved for names

of compounds in queries. The number of documents returned is just the value of the

rate. For complicated or multiple names, unambiguous RN should be requested.

Recently, searches in both CA and PubChem (see Table 6.1) for molecular formulas

were also carried out; corresponding occurrence rates belong to groups of isomers

combined by the same formulas [37]. Different databases consisting of multiple

records per an abundant compound or compound group can be also used in statistical

calculations of occurrence and co-occurrence rates. In general, a search of the

Internet seems to be the simple way (e.g., Table 6.3), but it should be further tested.

The preliminary research shows that only semiquantitative correlation of occur-

rences is observed between rates estimated by CA and the Internet (Fig. 6.4). In any

case, corresponding values differ between the two data systems (see also Table 6.3).

In information analysis, one should compare rates of different chemical entities

which are obtained using the same data source for the same time periods.

S

6.1

S O

6.2
S

O

6.3

148 6 Prior Data for Non-target Identification



T
a
b
le

6
.3

O
cc
u
rr
en
ce

an
d
C
o
-O

cc
u
rr
en
ce

R
at
es

(a
d
ap
te
d
fr
o
m

[2
])

R
at
e

D
efi
n
it
io
n
,
ex
p
la
n
at
io
n

E
x
am

p
le

O
cc
u
rr
en
ce
,
in
d
iv
id
u
al
co
m
p
o
u
n
d

T
h
e
n
u
m
b
er

o
f
d
if
fe
re
n
t
d
o
cu
m
en
ts
(p
ap
er
s,
p
at
en
ts
,
n
o
te
s,

et
c.
)
re
co
rd
in
g
th
e
p
ar
ti
cu
la
r
co
m
p
o
u
n
d
.
E
v
al
u
at
ed

as

th
e
n
u
m
b
er

o
f
(1
)
ab
st
ra
ct
s
in

ab
st
ra
ct

d
at
ab
as
e/
jo
u
rn
al
,

(2
)
en
tr
ie
s
in

in
d
ex

to
th
is
d
at
ab
as
e,
o
r
(3
)
re
co
rd
s
in

o
th
er

d
at
ab
as
es

co
u
n
te
d
fo
r
th
e
co
m
p
o
u
n
d

In
fo
rm

at
io
n
re
tr
ie
v
al

in
th
e
C
h
em

ic
al

S
u
b
st
an
ce

In
d
ex

(C
S
I)
to

C
A
fo
r
Ja
n
u
ar
y
to

Ju
n
e,
1
9
8
7
re
su
lt
ed

in
4
0
3

en
tr
ie
s
fo
r
cy
cl
oh

ex
an

e.
T
h
e
an
al
o
g
o
u
s
se
ar
ch

in
2
0
0
9

u
si
n
g
th
e
G
o
o
g
le

S
ch
o
la
r
en
g
in
e
[2
3
]
re
tu
rn
ed

8
,5
1
0

ar
ti
cl
es

a
w
it
h
cy
cl
oh

ex
an

e.
S
o
,
th
e
o
cc
u
rr
en
ce

ra
te
s
o
f

th
e
co
m
p
o
u
n
d
es
ti
m
at
ed

fo
r
d
if
fe
re
n
t
d
at
a
se
ts
in

d
if
fe
re
n
t
w
ay
s
ar
e
4
0
3
an
d
8
,5
1
0
,
re
sp
ec
ti
v
el
y

O
cc
u
rr
en
ce
,
co
m
p
o
u
n
d
g
ro
u
p

T
h
e
n
u
m
b
er

o
f
d
if
fe
re
n
t
d
o
cu
m
en
ts
(p
ap
er
s,
p
at
en
ts
,
n
o
te
s,

et
c.
)
re
co
rd
in
g
th
e
co
m
p
o
u
n
d
g
ro
u
p
.
E
v
al
u
at
ed

as
th
e

n
u
m
b
er

o
f
(1
)
ab
st
ra
ct
s
in

ab
st
ra
ct

d
at
ab
as
e/
jo
u
rn
al
,
(2
)

en
tr
ie
s
in

in
d
ex

to
th
is
d
at
ab
as
e,
o
r
(3
)
re
co
rd
s
in

o
th
er

d
at
ab
as
es

co
u
n
te
d
fo
r
th
e
co
m
p
o
u
n
d
g
ro
u
p

S
ea
rc
h
es

in
C
A
o
n
C
D
fo
r
2
0
0
8
re
su
lt
ed

in
2
7
1
d
o
cu
m
en
ts

fo
r
C
2
2
H
1
7
N
3
O
5
,i
.e
.,
th
e
o
cc
u
rr
en
ce

ra
te
o
f
th
e
g
ro
u
p
o
f

is
o
m
er
s
w
it
h
th
at

fo
rm

u
la

fo
r
th
e
p
er
io
d
is
2
7
1
.
T
h
e

an
al
o
g
o
u
s
se
ar
ch

in
P
u
b
ch
em

[1
7
]
re
tu
rn
ed

7
6
4
re
co
rd
s

fo
r
th
at

m
o
le
cu
la
r
fo
rm

u
la

C
o
-o
cc
u
rr
en
ce
,
co
m
p
o
u
n
d
-t
o
-

co
m
p
o
u
n
d

T
h
e
n
u
m
b
er

o
f
d
if
fe
re
n
t
d
o
cu
m
en
ts
m
u
tu
al
ly

re
co
rd
in
g
th
e

tw
o
co
m
p
o
u
n
d
s.
E
v
al
u
at
ed

as
th
e
n
u
m
b
er

o
f
(1
)

ab
st
ra
ct
s
in

ab
st
ra
ct

d
at
ab
as
e/
jo
u
rn
al
,
(2
)
en
tr
ie
s
in

in
d
ex

to
th
is
d
at
ab
as
e,
o
r
(3
)
re
co
rd
s
in

o
th
er

d
at
ab
as
es

co
u
n
te
d
fo
r
th
e
p
ai
r
o
f
co
m
p
o
u
n
d
s

In
th
at

is
su
e
o
f
C
S
I
(s
ee

ab
o
v
e)
,
th
er
e
w
er
e
1
1
3
d
if
fe
re
n
t

ab
st
ra
ct
s
b
el
o
n
g
in
g
to

b
o
th

he
xa
ne

an
d
cy
cl
oh

ex
an

e,
as

in
d
ic
at
ed

b
y
th
e
sa
m
e
ab
st
ra
ct

n
u
m
b
er
s.
H
en
ce
,
th
e

cy
cl
oh

ex
an

e-
to
-h
ex
an

e
co
-o
cc
ur
re
nc
e
ra
te

w
as

1
1
3
in

Ja
n
u
ar
y
–
Ju
n
e,
1
9
8
7
.
T
h
is
ra
te

ev
al
u
at
ed

u
si
n
g
G
o
o
g
le

S
ch
o
la
r
(s
ee

ab
o
v
e)

w
as

3
,7
5
0

R
el
at
iv
e
co
-o
cc
u
rr
en
ce
,

co
m
p
o
u
n
d
-t
o
-c
o
m
p
o
u
n
d

C
o
m
p
o
u
n
d
-t
o
-c
o
m
p
o
u
n
d
co
-o
cc
u
rr
en
ce

in
re
fe
re
n
ce

to
th
e

o
cc
u
rr
en
ce

ra
te

o
f
o
n
e
o
f
th
e
co
m
p
o
u
n
d
p
ai
r

T
h
e
re
la
ti
v
e
cy
cl
o
h
ex
an
e-
to
-h
ex
an
e
co
-o
cc
u
rr
en
ce
s
fo
r

cy
cl
o
h
ex
an
e
ar
e
1
1
3
/4
0
3
an
d
3
,7
5
0
/8
,5
1
0
(4
0
3
an
d

8
,5
1
0
ar
e
o
cc
u
rr
en
ce

ra
te
s,
se
e
ab
o
v
e)
,
i.
e.
,
0
.2
8
an
d

0
.4
4
,
re
sp
ec
ti
v
el
y

C
o
-o
cc
u
rr
en
ce
,
co
m
p
o
u
n
d
-t
o
-

co
m
p
o
u
n
d
g
ro
u
p

T
h
e
su
m

o
f
in
d
iv
id
u
al
co
-o
cc
u
rr
en
ce

o
f
th
e
co
m
p
o
u
n
d
w
it
h

ev
er
y
m
em

b
er

o
f
th
e
g
ro
u
p
o
f
co
m
p
o
u
n
d
s

L
it
er
at
u
re

co
-o
cc
u
rr
en
ce

o
f
9-
m
et
hy
la
nt
hr
ac
en
e
an
d
se
v
er
al

P
A
H

d
et
ec
te
d
in

w
as
te

g
as

is
ca
lc
u
la
te
d
.
T
h
e
co
u
n
t
o
f

en
tr
ie
s
in

C
S
I
to

C
A
fo
r
Ja
n
u
ar
y
to

Ju
n
e,
1
9
9
5
le
d
to

th
e

co
-o
cc
u
rr
en
ce

o
f
th
is
an
th
ra
ce
n
e
d
er
iv
at
iv
e
as

fo
ll
o
w
s:

n
in
e,
w
it
h
an
th
ra
ce
n
e;

fi
v
e,
w
it
h
p
y
re
n
e,
an
d
so

o
n
.
T
h
e

su
m

o
f
in
d
iv
id
u
al

co
n
tr
ib
u
ti
o
n
s
(2
7
)
is
th
e
9-

m
et
hy
la
nt
hr
ac
en
e-
to
-P
A
H

ra
te

(c
on

ti
nu

ed
)

6.4 Occurrence and Co-Occurrence Rates 149



T
a
b
le

6
.3

(c
o
n
ti
n
u
ed
)

R
at
e

D
efi
n
it
io
n
,
ex
p
la
n
at
io
n

E
x
am

p
le

R
el
at
iv
e
co
-o
cc
u
rr
en
ce
,

co
m
p
o
u
n
d
-t
o
-c
o
m
p
o
u
n
d

g
ro
u
p

C
o
m
p
o
u
n
d
-t
o
-c
o
m
p
o
u
n
d
g
ro
u
p
co
-o
cc
u
rr
en
ce

in
re
fe
re
n
ce

to
o
cc
u
rr
en
ce

o
f
an

in
d
iv
id
u
al

co
m
p
o
u
n
d

T
h
e
re
la
ti
v
e
9-
m
et
hy
la
nt
hr
ac
en
e-
to
-P
A
H

co
-o
cc
u
rr
en
ce

is

2
7
d
iv
id
ed

b
y
1
5
(o
cc
u
rr
en
ce

ra
te
),
i.
e.
,
1
.8

C
o
-o
cc
u
rr
en
ce
,
co
m
p
o
u
n
d
-t
o
-

m
at
ri
x
g
ro
u
p

T
h
e
n
u
m
b
er

o
f
d
if
fe
re
n
t
d
o
cu
m
en
ts
m
u
tu
al
ly

re
co
rd
in
g

n
am

es
o
f
th
e
co
m
p
o
u
n
d
an
d
th
e
m
at
ri
x
.
E
v
al
u
at
ed

as
th
e

n
u
m
b
er

o
f
ab
st
ra
ct
s
in

ab
st
ra
ct

d
at
ab
as
e/
jo
u
rn
al

o
r

re
co
rd
s
in

o
th
er

d
at
ab
as
es

co
u
n
te
d
fo
r
th
e
p
ai
r
o
f
th
e

co
m
p
o
u
n
d
an
d
th
e
m
at
ri
x
.
T
h
is
ra
te

ca
n
b
e
se
p
ar
at
el
y

ca
lc
u
la
te
d
fo
r
o
n
ly

ar
ti
cl
es

in
an
al
y
ti
ca
l
ch
em

is
tr
y
,

n
am

el
y
fo
r
d
et
er
m
in
at
io
n
o
f
th
e
p
ar
ti
cu
la
r
co
m
p
o
u
n
d
in

th
e
m
at
ri
x
.

F
o
r
cy
cl
oh

ex
an

e,
C
S
I
to

C
A
fo
r
th
e
fi
rs
t
h
al
f
o
f
1
9
8
7
re
v
ea
ls

th
re
e
d
if
fe
re
n
t
ab
st
ra
ct
s
as
so
ci
at
ed

w
it
h
d
et
er
m
in
at
io
n

o
f
th
is
h
y
d
ro
ca
rb
o
n
in

ai
r
(o
n
e
o
f
m
at
ri
ce
s
o
f

en
v
ir
o
n
m
en
ta
l
ty
p
e)
.
H
en
ce
,
th
e
ra
te
o
f
cy
cl
oh

ex
an

e-
to
-

ai
r
co
-o
cc
u
rr
en
ce

is
th
re
e
fo
r
th
e
ti
m
e
ra
n
g
e.
In

an
o
th
er

se
ar
ch

in
2
0
0
9
(G

o
o
g
le

S
ch
o
la
r,
se
e
ab
o
v
e)
,
th
er
e
w
er
e

3
,8
1
0
ar
ti
cl
es

w
it
h
th
e
w
o
rd
s
cy
cl
oh

ex
an

e
an
d

en
vi
ro
nm

en
ta
l;
th
at

v
al
u
e
is
th
e
cy
cl
oh

ex
an

e-
to
-

en
vi
ro
nm

en
ta
l
co
-o
cc
u
rr
en
ce

R
el
at
iv
e
co
-o
cc
u
rr
en
ce
,

co
m
p
o
u
n
d
-t
o
-m

at
ri
x
g
ro
u
p

C
o
m
p
o
u
n
d
-t
o
-m

at
ri
x
co
-o
cc
u
rr
en
ce

in
re
fe
re
n
ce

to
th
e

o
cc
u
rr
en
ce

o
f
a
co
m
p
o
u
n
d
.

T
h
is
in
d
ic
at
o
r
es
ti
m
at
ed

fo
r
cy
cl
oh

ex
an

e
an
d
ai
r
m
at
ri
x
fo
r

th
e
fi
rs
t
h
al
f
o
f
1
9
8
7
is
3
/4
0
3
¼

0
.0
0
7
4
,w

h
er
e
4
0
3
is
th
e

o
cc
u
rr
en
ce
.
T
h
e
cy
cl
oh

ex
an

e-
to
-e
nv
ir
on

m
en
ta
l
co
-

o
cc
u
rr
en
ce

ra
te

in
2
0
0
9
is
3
,8
1
0
/8
,5
0
0
¼

0
.4
5

a
In
cl
u
d
in
g
cy
cl
o
h
ex
an
e
d
er
iv
at
iv
es

150 6 Prior Data for Non-target Identification



6.4.3 The Co-Occurrence Rate

The co-occurrence rate is more complicated in interpretation than the simple

occurrence. There are two general factors: (a) a similarity in different features/

properties, and (b) a presence in the same sample/system, causing the existence of

names of chemical compounds within the same database record (Table 6.4). For

example, the reaction mixture described in the older article (Fig. 6.3) had contained

thianaphthene 6.1 and two of its derivatives 6.2 and 6.3. The reason of their

presence in the article and the corresponding abstract was the same reaction system
(Table 6.4).

It has been reasonably proposed that analytes which occurred in the same

samples under analysis also have high co-occurrence rates in literature/databases

[1–3]. Indeed, any factor noted in Table 6.4 can lead to facts of real analyte co-

occurrence in samples. It can be exemplified by the following cases.

l Similarity in such properties as solubility in water may result in mutual presence

of many industrial chemicals in significant amounts in the same samples of

waste water.
l Closeness in boiling points causes corresponding impurities in chemicals pur-

ified by distillation/rectification.

TTitle

Acyl derivatives of thianaphthene

AAuthor

Royer, Rene; Demerseman, Pierre; Cheutin, Andree

Organization

Inst. Radium, Paris

Publication Source

…

…

…

Bulletin de la Societe Chimique de France (1961) 1534-42

Abstract

Accession Number

1962:45923 CAPLUS

Acetylation of 0.25 mole thianaphthene (I) with 0.25 mole AcCI in 300 cc. C6H6 and 0.25
mole SnCI4 and distn. of the product, b14 170.5°, gave a mixt. of 2-acetyl deriv. (II) of I,
m. 45°, and largely 3-acetyl deriv. (III) of I, m.64°,sepd. by repeated fractional crystn.
from EtOH... 

Fig. 6.3 The fragment of typical CA abstract recording names of thianaphthene 6.1 and its

derivatives, first 2-acetyl- 6.2 and 3-acetyl thianaphthene 6.3 (names in bold). At least, the three

compounds are present in the same reaction mixture, i.e., they are components of the same system.

The abstract expresses the unit occurrence of compounds 6.1–6.3 and co-occurrence of any pair

from them. Counting abstracts (entries) results in overall rates
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l PAH formation in the same combustion reactions leads to mixtures of these

hydrocarbons being detected in environmental samples (e.g., see [40].
l Synthetic precursors and decomposition products of chemicals are their native

impurities.

A co-occurrence rate can also be calculated for a word pair denoting a chemical

compound and matrix in which that compound may be present. Different key words

for various matrixes suitable for information searches are listed in Table 6.5. The

particular analyte often presenting in the particular kind of samples also seems to

have a high co-occurrence rate of compound-to-matrix type [1–3] (Table 6.3). The

reverse statement implies that the rate, if high enough, can be taken into account

to set up the hypothesis on the presence of the compound in a sample of the

corresponding sort (see below).

Fig. 6.4 The correlation between Chemical Abstracts and the Internet in the number of occur-

rence of different molecular formulas. The data for the artificial sample consisting of 114 formulas

(25 pesticides and compounds most similar in molecular mass to the former) are shown. The

pesticides were randomly sampled from their list [38]. The formulas of other compounds were

generated using the NIST Formula Generator of the NIST MS Search 2.0 software [39]. The

occurrence rates for all the molecular formulas were evaluated by a search (1) in the CA edition on

CD for 2007 (see [36)], and (2) using the Google engine [22]. Formulas without citation in both

information sources are excluded. In the case where widely occurring formulas (>100 times) are

also excluded, correlation between the two rates becomes worse (R2 ¼ 0.60)
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6.4.4 Methodological Aspect

Exploration of occurrences in chemical databases [1–3] is methodologically related

to citation (occurrence) and co-citation (co-occurrence) analysis of text constitu-

ents, i.e., bibliographic references, words/terms, and author names, which is widely

used in the science of science, information science, sociology, etc. to explore

intellectual and social structure of science [41–48]. Co-word networks created by

text mining in databases have also been used for the generation of advanced

hypotheses and the discovery of new relationships between phenomena in biomed-

icine [49–52]. In those researches, some words belonged to names of chemical

compounds depicting research specialties [45–47] or having biological activity

[49–51]. The MEDLINE database is another information source [49–52] which

can be also used for a generation of identification hypotheses discussed here.

6.5 Identification Hypotheses and Occurrence/

Co-Occurrence Rates

These rates are required for the generation and deletion of identification hypotheses

for unknown analytes which are shown in Fig. 6.5. The essence of the approach is

rather simple.

Table 6.4 Reasons of co-occurrence [3]

Factor % Examples

Similarity in properties,

activity, structure, use

58 PAH, PCB, PCDD/F; drugs/pharmaceuticals of the same

class

The same reaction system 13 Reactants and products belonging to the same reaction

The same mixture/solution/

matrix/sample

17 The same formulation; impurities of the same product;

pollutions in the same water sample

Other/hidden 12

Table 6.5 Different matrixes and related key words

Matrix type Word

Biomedical Bacteria, bile, blood, breath, saliva, tissue, urine

Coal Coal, coal gases, coal tar

Environmental Aerosols, air, environmental, dust, gases, sediments, soil, water

Petroleum Gasoline, naphtha, oil, petroleum, petroleum products

Pharmaceutical Capsules, dosage forms, drugs, pharmaceuticals, suppositories, suspensions,

tablets, transdermal systems

Waste Combustion gas, exhaust, refuse, smoke, waste

If the co-occurrence rate is estimated only for cases where chemical systems are analyzed

(“analytical entries” in databases), words such as analysis, determination, assay, and so on are

further introduced in search queries
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6.5.1 Redundant Hypotheses

Chromatographic and MS analysis using reference retention data and mass spectra

very often does not provide unambiguous identification, i.e., the identification

results (candidate compounds) are multiple computer answers per each analyte.

SampleChromatography
MS, MSn HRMS

Prior data
• facts and rates of occur-

rence and co-occurrence

• individual compounds

Candidate compound A Candidate formula 1

Candidate   formula 3 

Candidate formula 2 

            

            result of the analytical experiment

setting up and rejecting the identification hypothesis

transition from formulas to individual compounds by

searches in chemical data bases

information on the sample and its known components

rejected hypotheses

Candidate compound B

Candidate compound C

Candidate compound D

Prior data
• facts and rates of occur-

rence and co-occurrence

• molecular formulas

Fig. 6.5 Schematic of the use of prior data in unknown analysis. Candidate compounds and

formulas are generated in analytical experiments by various chromatographic and mass spectral

techniques. Prior data, including occurrence and co-occurrence are used (a) to set up candidates for

identification independently from experimental data, and (b) to remove redundant hypotheses

related to rare formulas and compounds, i.e., in the cases of no occurrence or a low rate of

occurrence. If a sample composition is partly known, co-occurrence with the known sample

components may be efficient in generating new hypotheses. Some candidate compounds can be

retried in searches in chemical databases for candidate formulas. Definitive identification of

candidates; see text in Sect 6.5 and Chap. 7
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Rare (rarely occurring) compounds, e.g., ones with occurrences which are smaller

than 5% of the sum of entries for all the candidates [37], cannot be considered. In

the same manner, rare formulas are filtered out. The 95% and 5% occurrences can

be considered as rates of TP and FN respectively, derived only from prior data.

6.5.2 Deficient Hypotheses

There are no advanced hypotheses for some analytes. However, some components

of the sample are a priori known or established in the initial analytical stages. As a

rule, the matrix kind is also clear. Further, the candidate compounds and/or their

formulas which co-occurred with known analytes or the matrix itself can be

searched. Candidates are tested vs retention values and spectra recorded before or

after such operations of setting up hypotheses.

Definitive conclusions about identification are stated when the number of ana-

lytes and candidate compounds is consistent, all possible hypotheses are tested, and

conditions/criteria of identification are met; see Sect. 7.1.

In the general case, the list of advanced hypotheses to be further tested is formed

according to high values of corresponding occurrence and co-occurrence rates. For

a long list of hypotheses, they are tested in the order of decreasing rates, starting

from the highest ones. In the cases of unit rates, all selected hypotheses are tested.

The methods of setting up candidates for identification under consideration were

validated by the comparison of the rates evaluated for (1) groups of analytes,

including ones specially identified for the researches, and (2) reference groups of

compounds similar to the analytes in RI, mass spectra, or accurate molecular

masses (Table 6.6). In almost all tests, mean rates of the first group are higher

than in the case of reference compounds. However, not all the differences were

statistically significant [a < 0.05, (3.15)].

The overall conclusion derived from the researches cited in Table 6.6 is that

significance was observed for 2/3 and 3/4 tests of occurrence and co-occurrence

rates, respectively. Therefore, in order not to miss advanced hypotheses, there

should be some redundancy of candidate compounds. The use of the combination

of rates of different type (Table 6.3) may also be efficient in setting up identification

hypotheses. The efficiency and productivity of the occurrence and co-occurrence

approach in qualitative chemical analysis also depend on the availability of special

software for on-line processing records in databases.

Below, two examples of evaluating these rates are given. The first of them

(Example 6.1) refers to occurrence rates which are estimated for molecular formulas.

The use of co-occurrence rates is further illustrated for reverse prediction of the

impurity composition [3] (Example 6.2). Here advanced identification hypotheses

are not efficiently selected by high rates, but consideration of all facts of co-

occurrences ensures that no analyte is missed.

The procedures of evaluation and use of statistical rates based on occurrences in

chemical databases are somewhat analogous to corresponding intellectual
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operations, reasoning, and discourse, and so on, specific for experienced research-

ers. Indeed, when solving identification problems, chemists traditionally tend to

consider (a) widely occurring compounds and (b) compounds similar to already

detected ones in some or other features. This approach, proposed in reports [1–3]

and described in this section, and partly simulating intellectual activity of a

scientist, gains advantage because it

l Is free from subjectivism and specialization inherent to any chemist as well as

any expert
l Uses huge data sets
l Requires little personal skill to initially process database information

Example 6.1

The new MS2 library (see Chap. 7), TaMaSA, supplemented with HRMS and

searches in chemical databases, was examined for screening/identification of

organic compounds, as exemplified by pesticides [37]. Occurrence rates

obtained by the search in Pubchem [17] were used for filtering out rare

formulas/compounds. The model data set consisted of formulas of 18 pesti-

cides (model analytes from real-world samples) and 153 candidate formulas

(continued)

Table 6.6 Different groups of analytes and compared compounds. Searches of occurrences and

co-occurrences in CA

Group of analytes Reference group References

Impurities in n-hexane (1) Impurities in naphthalene. (2) Candidates for

impuritiesa in n-hexane. (3) Candidates for
impuritiesa in naphthalene. (4) Pharmaceuticals

[1, 2]

Impurities in naphthalene (1) Impurities in n-hexane. (2) Candidates for
impuritiesa in n-hexane. (3) Candidates for
impuritiesa in naphthalene. (4) Pharmaceuticals

[1, 2]

PAH, unambiguously

identified

(1) PAH, ambiguously identified. (2) PAH and their

isomers, candidates for identificationa. PAH and

their isomers, without reference GC and MS data

[2]

Impurities in 17 chemical/

pharmaceutical products

(1) Random sample from known compounds. (2)

Candidates for impuritiesb. (3) The same group,

without rare compounds

[3]

Impurities in three chemical/

pharmaceutical products

(1, 2) Candidates for impuritiesb, two groups. (3,4)

The same groups, without rare compounds

[3]

25 pesticides Candidates for identificationc [53]

25 pesticides and their known

isomersd
Candidates for identificationc [53]

18 pesticides Candidates for identificationc [37]

18 pesticides and their known

isomersd,e
Candidates for identificationc [37]

aCompounds with similar RI and mass spectra
bCompound co-occurred with products but co-occurring impurities
cCompounds with similar molecular masses
dCompounds with the same molecular masses
eSearch in both CA and PubChem (see Table 6.2)
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(see Table 6.6). Figure 6.6 shows that the former occurred far more frequently

than candidates for analytes similar in molecular mass. Mean occurrence

rates were approximately 643 and three in the two groups respectively,

which is a very significant difference (t-test, a ¼ 0.0000). The proportions

of overall occurrences were 94 and 6%, respectively. The threshold of 5% of

the overall rate (the conditional limit for rare chemical entities) was not

exceeded by the vast majority of candidate formulas (148 from 153), i.e.,

about 97% from them were filtered out. On the other hand, 12 from 18

pesticide formulas exceed the threshold of 95%, i.e., here other candidate

formulas cannot be taken into account. Statistics for occurrences of pesticides

themselves and their isomers covered by pesticide formulas will be reported

below (Sect. 7.4.2). To search individual compounds corresponding to known

formulas, CAS databases are suitable.

Example 6.2

2-Acetylbenzothiophene (2-acetyl thianaphthene) 6.2, the material for the

synthesis of drug zileuton 6.4, contains nine impurities 6.5–6.13 [54] which

resemble 6.2 in structure: the common substructure is the benzene ring

bonded to the sulfur atom. One of the reasons leading to relatively frequent

co-occurrence of compounds is their structural similarity observed here for

the main component 6.2 and those impurities. Therefore it is no wonder that

(continued)

Occurence rate
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a  is analyte, c  is candidate for identification
a a a a a a a a a a a a c a a c c a a c c c a c a c c c c c c c c c c c c c c

Fig. 6.6 Occurrence rates for formulas of 18 pesticides (analytes, a) and compounds (candidates,

c) similar to analytes in molecular mass (differences <5 ppm). The pesticides are azoxystrobin,

carbendazim, carbofuran, carboxin, chlormequat, chlorsulfuron, cloquintocet-mexyl, ethaboxam,

fenhexamid, fenoxaprop, flumioxazin, glyphosate, imidacloprid, ipconazole, iprodione, iprovali-

carb, metsulfuron-methyl, and pyriproxyfen. Candidate formulas were generated using the soft-

ware of the LIT-Orbitrap instrument (LTQ Orbitrap XL, Thermo, USA). Occurrences were

searched in the Pubchem database [17]. Only rates � 2 are shown here
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compounds 6.5–6.13 occurred at least one time together with 6.2 in the

chemical literature, as found out by searches in CA for 1964–2003 [3].

However, there are 36 other compounds which co-occurred with 6.2 in

corresponding abstracts. From them, the compounds 6.14–6.19 more fre-

quently co-occurred with the compound 6.2. Here, both compound groups,

nine impurities which were detected and identified, and 36 candidate com-

pounds are hardly differentiated by occurrence or (relative) co-occurrence

rates, because mean values in the two groups are comparable. Let us suppose

the case that the impurities are unknown. It is evident that all the hypotheses

which related to 45 (9 + 36) candidate compounds should be tested. The MS

method is very efficient for testing the hypotheses. In most cases, integer

molecular mass measured by low-resolution mass spectrometry makes it

possible to accept/reject identification hypotheses. To differentiate impurity

6.7 from candidates for identification of 6.20–6.22 having the same integer

molecular mass, high-resolution mass spectrometry for measuring different

accurate mases is necessary; monoisotopic mass: 232.06 (6.7), 232.01 (6.20),

232.09 (6.21 and 6.22). Four candidate chlorine/bromine compounds can

be also removed because of isotope patterns different from those of impurity

molecules. Statistics of rejected identification hypotheses are given in

Table 6.7.
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(continued)

Table 6.7 Rejected identification hypotheses

Feature Technique for testing hypotheses Rejections

Molecular mass MS, common resolution 29

MS, high resolution 3

Molecular mass, isotope pattern MS, common resolution 4
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6.6 Prior Data Involved in Analytical Procedures

Prior data are or may be included in identification procedures in different ways.

Using statistics of occurrence rates (see above) is one of the approaches. Related or

different ones are considered in this section.

6.6.1 Searches in Databases

Common information retrieval in chemical databases can be used for identification

purposes. An example is the analysis of the indoor air by GC–MS carried out by the

author; some components proved to be hard to recognize. For certain identification,

different volatile compounds detected in air before that analysis were retrieved

in CA using a query containing analysis and air. Two esters of isobutyric acid

6.23 and 6.24, possibly metabolites from microorganisms, were suitable findings

[55, 56] fitting to mass spectra of two unknowns.
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6.6.2 Penalty for Rare Compounds

Using NIST MS library searching program [39], an analyst can penalize rare

compounds. It means that MF for spectra of these compounds will be reduced up

to 50 out of 1,000 units. A compound is classified as rare if contained in only a few

chemical databases. The penalty value depends on the number of such databases.

This approach to the consideration of a prior probability is exemplified for mass

spectrum of 1,5-hexadiene 6.25 as the unknown analyte (Table 6.8). The software

“concluded” that all candidate compounds, but 1,5-hexadiene itself and cyclohex-

ane are rare ones (see Table 6.8). Corresponding MF were properly decreased,

leading to a somewhat higher probability of identification (see Sect. 4.5.4.2) of

three candidate compounds (see Table 6.8). Compounds determined as rare ones

could be excluded from further testing of identification hypotheses, i.e., from

confirmation of an identity screened by library searches.

6.6.3 Information About the Sample

In complicated identification problems, the ISO standard [57] (see Sect. 5.5.3.2)

calls for

gathering additional identification points using knowledge and interpretation of this knowl-

edge about the sample or sampling site.

Table 6.8 Comparison in library searchesa

Name Regular search Penalizing rare compoundsb

No. MF (Match) P (Prob.) No. MF (Match) P (Prob.)

1,5-Hexadiene 1 944 79.4 1 944 " 80.9

1,5-Hexadiene 2 917 79.4 2 917 " 80.9

Bicyclo[3.1.0]hexane 3 888 4.95 4 # 838 # 1.80

Cyclopropane, 1-propenyl- 4 887 4.76 5 # 837 #1.73
1,1’-Bicyclopropyl 5 865 1.88 6 # 835 # 1.59

Cyclopropane, 1,2-dimethyl-3-

methylene-

6 864 1.80 18 # 814 # 0.70

1,1’-Bicyclopropyl 7 846 1.88 16 # 816 # 1.59

1,4-Pentadiene, 2-methyl- 8 841 0.66 9 # 831 " 1.35

Cyclohexene 9 841 0.66 3 841 " 2.03

Cyclopropene-1,3,3-trimethyl 10 834 0.50 33 #784 # 0.23
aThe NIST MS Search 2.0 program and NIST’05 MS library [39]
bThe symbols " and # depict the increase and decrease respectively of the MF and probability
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The kinds of such information are as follows.

– The component is identified in earlier samples from the same site. . .
– From historical investigation, it was shown that presence of the component was

expected.

– Other samples from the same site give positive identification.

In [57], this information is considered as significant as direct experimental

evidence (obtained by GC–MS). Our point of view is that any prior data is rather

a prompt for an analyst, a source for hypotheses. The standard [57] also takes into

account this judgment.

Strictly taken, an identification point obtained in Step 3 [gathering additional information,

see Fig. 5.2 – author] is of another order than the identification points obtained in Steps 1

and 2 [gathering identification points using analytical procedures – author].

The value of the sample information is noted for pesticide determination.

The need for confirmatory tests may depend upon the type of sample or its known history.

In some crops or commodities, certain residues are frequently found. For a series of samples

of similar origin, which contain residues of the same pesticide, it may be sufficient to

confirm the identity of residues in a small proportion of the samples selected randomly.

Similarly, when it is known that a particular pesticide has been applied to the sample

material, there may be little need for confirmation of identity, although a number of

randomly selected results should be confirmed [58].

Circumstances accompanying sampling which are properly documented should

be taken into account in the arrangement of analytical operations. Toxicologists

provided the instance related to the medication digoxin.

In practice, the extent and nature of methods used to “confirm” the presence of a particular

analyte will depend in part on the type of case and nature of the analyte. A “holistic”

approach is required. For example, in a well-documented suicide where a note is found with

an empty container of digoxin that was prescribed to that person, an appropriately validated

RIA [radioimmunoassay – author] for digoxin may be all that is required. However, a

digoxin-related death where there was no suspicion of suicide and where the medication

was not prescribed to that individual may require much more extensive testing, including

LC/MS [59].

6.6.4 Plausibility of Analytical Results

Critical considerations of results of chemical analysis (may) require comprehensive

data about the practical use of chemical products.

The use of certain compounds for a particular crop grown in a given environment requires

some plausibility. Accordingly, it is difficult to explain e.g., high concentrations of a long-

forbidden herbicide in plants where an application makes no sense or large amounts of old

outdated insecticides such as dicrotophos in produce from countries with high agricultural

standards, e.g., peppers from Holland [60].
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Chapter 7

Non-target Identification. Chromatography

and Spectrometry

Abstract The content of this chapter are focused on unknown analysis when a

chemist answers the question of what compounds are present in the sample. The

true result of identification is provided by at least two independent (orthogonal)

methods. The most general approach to the identification of non-targets is based on

chromatography mass spectrometry. Gas chromatographic parameters, widely used

for identification, are retention indices. To a lesser degree, retention indices are

applicable in liquid chromatography. Now, retention parameters are required in

proteomics. In mass spectrometry, volatile analytes are preferably identified by

means of reference libraries of electron ionization mass spectra. For identification

of nonvolatile compounds, libraries of tandem/product mass spectra have been

built. Their use is especially effective when combined with high-resolution mass

spectrometry which provides candidate molecular formulas. Interpretation of mass

spectra is also possible but not widely applied. NMR and IR spectroscopy are

comparable to MS in identification potential if there are a relatively large amount of

analytes and a simple composition of a sample under analysis. In NMR, algorithms

of spectral prediction as well as respective spectral databases have been rapidly

developed. Analytical metabolomics and proteomics are individually discussed,

with the focus on approaches to identification, identification criteria, the problems

arising due to a great complexity of analytes and unavailability of analytical

standards, and interlaboratory comparisons. For all the techniques, information

about reference spectral libraries/databases is tabled. Quality assurance of identifi-

cation is widely covered in the chapter.

7.1 General

Definitions. Non-target identification is a qualitative determination of analytes

unknown to a chemist before performing analytical procedures (Sect. 1.5.1).

When determining unknown, an analyst answers the questions of what compounds

are present in the sample, or what the nature of the sample is.
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There is not just one approach to this sort of chemical analysis, and just ad hoc
methods are used by necessity. A large number of candidate analytes have some

chance of presenting in a sample. Tens of millions of compounds/substances are

known to chemists; hundreds of thousands of them are widespread and practically

useful (see Sects. 1.5.4 and 6.3). Many compounds resemble each other closely in

structure and properties. This circumstance leads to numerous FP results of

identification. However, most popular/abundant/common compounds differ in

properties, which demands a variety of analytical methods, procedures, and

operations. A use of the particular method for determination of a “foreign”

analyte, i.e., in the case not fitted for the purpose leads to FN. However, some

guidances (see Sect. 5.5) describing common experimental conditions for identi-

fication of targets and corresponding identification criteria can be also applied to

unknown analysis.

In many various fields of chemical analysis, identification of unknown is very

essential. The first example is toxicology, where this type of analysis is called

general unknown analysis [1]. The number of unknown compounds in toxicolog-

ical analysis is measured in thousands [2]. This is a considerable but not very

large number if compared to the overall number of known substances. So the type

of the analysis for toxicology could be named “semi-unknown analysis”. Envi-

ronmental research and technology [3] and processing of wastes [4], as well as

food/residue analysis, are other examples of fields which demands identification

of unknowns.

In the recent literature, the terms of non-target analysis or non-target screening
have often occurred instead of unknown analysis. So those can be treated as

synonyms. However, the terms are sometimes differentiated. One can easily find

some semantic difference between the terms in the quotation:

In pesticide residue analysis (PRA), as well as traditional quantitative analysis of target

compounds – mainly pesticides in their parent form – there is now remarkable interest in

screening pesticides in a comprehensive way, including not only common pesticides but

also less common or relatively new pesticides (non-target) or unknown transformation

products (unknowns) [5].

So, “more unknown” and “less unknown” compounds can be seen. In this book,

these groups of compounds, as well as unknown analysis and non-target analysis,
are not specially differentiated.

General approaches. The most general approach to identify unknowns is based

on using chromatography mass spectrometry. The simple chart for individual

identification of organic compounds is given in Fig. 7.1 (see also Fig. 2.3). Methods

of isolation of analytes from a sample and techniques of subsequent analysis depend

on the type of sample (solid, liquid, gas) and analyte (volatile, non-volatile, polar,

unpolar, acidic, basic, and so on) and on whether all or only some sample compo-

nents are of interest for an analyst. If all components are to be determined, they

should be transferred into solution(s) without affecting the analytes. For solids,

sample disintegration and digestion, followed by inorganic/element analysis,

may be required. If high-molecular compounds are determined, size-exclusion
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Sample

Separation of sample,
isolation of analytes

Headspace
procedures

Liquid-liquid, solid
phase, solid-liquid

extraction
Electrophoresis

Volatile and
semivolatile
compounds

Nonvolatile
compounds 

GC-MS 
(MSn)

LC-MSn

(HRMSn)

Spectral libraries,
collections of

retention parameters

Tentative
identification

Prior data on candidate compounds
and methods for their determination

RM RM

Prior data
on sample Preliminary tests

Removal of
interfering

substances

Definitive identification

Fig. 7.1 The flow chart of identification of unknown organic/bioorganic compounds using

techniques of chromatography mass spectrometry. To choose the particular separation/isolation

methods and analytical techniques, one should search prior information on the sample, visually

inspect it, and test it for solubility, burning, and so on. If a sample is an organic substance, it is

analyzed further as a vapor or solution in organic solvents. In the case of water samples, non-

organic solids/quasi-solids (such as soils and sediments) and biosamples (urine, serum, tissues and

so on), unknown organic compounds are extracted from the sample. GC–MS is intended for

volatile or relatively volatile compounds; non-volatile analytes are determined using LC–MS

techniques. Chromatograms and spectra are recorded in the widest range of conditions: the
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chromatography, dialysis, ultra filtration, and so on are used for the isolation of the

sample component. All possible methods are also used for separation from those

compounds which are unsuitable for the analysis by the particular analytical

technique. In a determination of individual compounds having certain properties

(partial analysis of a sample), selective extraction of components of interest is

applicable.

Qualitative determination of individual1 volatile compounds is the simplest

exercise in identification (see Sect. 2.8.4). Identification of non-volatile com-

pounds is a far more complicated problem (see also Sect. 2.8.4). Here, availability

of RM and the use of HRMSn, various databases, and expert systems are of the

most value. Identification becomes a yet harder task for high molecules, first

proteins, due to an almost total absence of RM (pure compounds). Incidentally,

there may be no standards available also for some low-molecular substances, e.g.,

designer drugs, new prescription drugs, and drug metabolites [6], and emerging

pollutants.

The criterion for true identification carried out without analytical standards

is that

l The true result is provided by at least two independent (orthogonal) methods

fitting the valid determination of the analyte with the given properties.

Properly, at least two techniques are/may be also required when an identity is

confirmed with the use of analyte standards for candidate compounds which

appeared after tentative identification.

Independent methods are mainly based on techniques where observed analytical

signals are due to different physical and chemical processes. GC, LC, and MS can

be considered as independent or almost independent techniques. Different methods

connected to the same technique may be to some degree independent. In MS, such

“partly orthogonal” methods are related to

Fig. 7.1 (continued) range of programming column temperature in GC, the percentage of organic

mobile phase for gradient elution in LC, the range of mass numbers in MS. Comparison of mass

spectra and retention parameters obtained in analytical experiments with those from spectral

libraries and databases of parameters/indices results in identification hypothesis(es) or tentative

identification(s) at once. In some cases (e.g., an analyte has unique properties), the latter may be

even a definitive answer to the qualitative problem. Nevertheless, additional/prior information is

often required to accept/reject identification hypotheses and remove redundant candidate analytes.

Furthermore, having a few candidate compounds, one can find validated methods for their true

identification, and therefore verify conditions of the analytical experiment and change it if

necessary. A clarified list of candidates is further reduced to the final version by incorporating

RM in co-analytical experiments, i.e., top quality confirmatory ones

1Multi-analyte determination, e.g., in metabolomics (Sects. 7.4.1.3 and 7.7.1), is far more

challenging.
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l Different ionization (EI vs ESI)
l Different chemical forms of compounds (an analyte and its derivative)
l Algorithms of comparison of experimental and theoretical spectra (proteomics,

see Sects. 4.4.2.3, 7.4.1.4, and 7.7.2) and so on

For some analytes, an availability of even partly independent methods may

provide reliable identification.

In general, agreement in identification results achieved by several methods

implies a definitive identification, and does not demand confirmation with RM if

evidence gathered for every method excludes FP. This is the case when, for

example, there are no other compounds other than the basic candidate for identifi-

cation with (a) spectra similar to the reference one and (b) RI within the target

range. Correspondingly, other candidates for identification have (a) spectra little

resembling the reference one and (b) RI which are far outside the reference range.

However, the confirmation of identification results in co-analysis procedures is

essential for cases involving legal responsibility, e.g., in analysis of samples

originating from such accidents as disaster, poisoning, and so on.

Co-analysis. It was noted above (Sects. 1.6 and 5.2) that co-analysis using RM

(analytical standards) provides the strongest evidence for true identification. This

is valid not only for target determination but also for unknown analysis. The

difference between the two cases is that this analytical approach cannot be

initially applied for the non-target determinations, because an analyte is un-

known. So tentative identification should be achieved and some identification

hypotheses (candidate compounds) should be set up and tested. The use of two

and more orthogonal methods/techniques in co-analytical procedures is also

appropriate.

Information. The discussion of the problem of unknown/non-target identifica-

tion shows that data/information play the main role for achieving the true results.

There are several groups of data:

l Information about properties, origin, and use of chemical compounds
l Data on their abundance/popularity/occurrence
l Spectral libraries, first of all mass spectral ones
l Collections of chromatographic retention parameters, first of all RI in GC

The first two information groups required for setting up identification hypotheses

(prior data on a sample 1, Fig. 7.1) and screening and accepting/rejecting candidates

for identification (prior data on candidate compounds) were considered in Chap. 6.

The same information may be used in different stages of the identification process.

Other data, noted in the centre of Fig. 7.1, are used for comparison

with experimental data. Reference chromatographic and spectral information,

with programs required for data use, corresponding data bases/systems, and related

non-information topics, will be considered in this chapter in terms of different

approaches to identification of unknowns.
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7.2 Gas Chromatography Retention Indices

7.2.1 Index Types

Retention times as measured quantities in chromatography depend on too many

factors to be specific enough for identification of analytes.2 Influence of many

factors is removed if retention parameters are calculated using a relative scale.

These chromatographic parameters named indices (see reviews [8, 9] and the

website [10]) are the essential supplements to mass spectra in non-target analysis.

To obtain true results of GC identification, different types of RI, reference data for

them, and correct choice of reference values and identification criteria, should be

taken into consideration.

Kovats indices (KI) were the first to be introduced in the practice of qualitative

chromatography analysis (see [8]). KI denoted by Ix are measured under isothermal

column conditions and calculated by the formula:

Ix
100

¼ nþ lg t0Rx
� lg t

0
Rn

lg t
0
Rnþ1

� lg t
0
Rn

: (7.1)

where x is the analyte, n and n+1 are the number of carbon atoms of the reference

n-alkanes which bracket the retention time of the analyte, t
0
Rx
, t

0
Rn
, and t

0
Rnþ1

are the

adjusted retention times of the analyte and reference n-alkanes (t
0
Rn
<t

0
Rx
<t

0
Rnþ1

);

the adjusted retention time t
0
R¼ tR�tM, tR is the retention time, and tM is the gas

hold-up time.

For temperature-programmed GC, linear retention indices (LRI) ITx have been

proposed (see [9]). For a linear ramp temperature program, the indices are calcu-

lated by the following formula:

ITx
100

¼ nþ tTRx
� tTRn

tTRnþ1
� tTRn

(7.2)

where different tTR are the corresponding retention times; x, n, and n+1 are specified
above.

The version of LRI (Lee indices) with aromatic hydrocarbons as reference

compounds was proposed for identification of PAH (see [11]). The references are

benzene, n ¼ 1, tTR ¼ 100; naphthalene, n ¼ 2, tTR ¼ 200; phenanthrene, n ¼ 3,

tTR ¼ 300; chrysene, n ¼ 4, tTR ¼ 400; picene, n ¼ 5, tTR ¼ 500.

2A collection of RT can be also used for identification if they are perfectly reproduced [7].
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7.2.2 Reference Data

Different collections of RI have been issued as reference books and databases on

CD, or can be accessed through respective on-line versions (Table 7.1); also see

[12, 35, 36] for these and some other databases. Collections are divided into

general and special (field-oriented) ones. The NIST collection is the largest from

general collections; it encloses the most known RI values (Table 7.1). The

example of the record from NIST database on CD [37] is given in Fig. 7.2. In a

similar way to the citation of compounds in CAS and other chemical databases

(Sect. 6.3), index values are not uniformly distributed over different compounds

[12]. More than one half of collected compounds have only been measured once.

On the other hand, the minority of 2.4% abundant compounds with no less than 46

replicate indices for each compound provide more than 50% of the total of RI

values [12].

Field-oriented reference data (see Table 7.1) have been mainly developed in:

l Toxicology
l Flavor and fragrance compounds, odorants, related substances
l Metabolomics

In new databases, RI are included together with mass spectra (see Table 7.1). In

metabolomics (Sects. 7.4.1.3 and 7.7.1), reference data essentially are chro-

matographic profiles with RI values and MS tags. In some cases, metabolite com-

pounds are not identified [26–28].

7.2.3 Choice of Reference Values

The choice first depends on chromatographic conditions used in the identification

experiment. In isothermal conditions, Kovats indices are determined, which mainly

depend on the composition of the stationary phase and the column temperature [8,

9, 12]. For the same nominal phase and temperature, KI are reproduced relatively

well between columns, instruments, and laboratories. So reference data used in

qualitative chromatographic analysis must refer to the same temperature and

column (phase). On the other hand, experimental conditions can be chosen accord-

ing to reliable reference data.

For several reference values available in databases for the same compound,

phase, and temperature, a mean value may be used for comparison with an experi-

mental RI. Means and corresponding standard deviations are suitable for statistical

estimation (Sect. 3.6.5). With this, outliers should be discarded using statistical tests

or analyzing distributions of reference values [38].

If reliable reference data for some columns and temperatures are absent or not

representative enough for a statistical estimation, different values may be used,

corrected for
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l Column phase, with the use of typical or specially calculated differences in RI of

specified compound classes between different phases and
l Temperature differences, using the temperature increment found in the literature

or calculated for a given or similar compound; see Example 7.1

128. Value: 653 iu
Column Type: Capillary
Column Class: Standard non-polar
Active Phase: OV–1
Column Length: 17.5 m
Column Diameter: 0.2 mm
Phase Thickness: 0.15 um
Data Type: Kovats RI
Program Type: Isothermal
Start T: 50 C
Source: Johansen, N.G.; Ettre, L.S. Retention index values of hydrocarbons on
Open-tubular columns coated with methyIsilicone liquid phases Chromatographia,
15(10), 1982, 625-630.

Fig. 7.2 One of the records for benzene from NIST 05 database [37] (reproduced with

permission)

Example 7.1. In order to confirm the presence of methylcyclopentane as the

impurity in n-hexane, KI of the compound was determined by GC–MS with

the use of the poly(5% diphenyl-95% dimethylsiloxane) column at 30�C [39].

There were no literature reference values for just this phase and temperature.

So data determined for (a) this column at different temperatures, and (b)

different phases at various temperatures were used and corrected for both

characteristics (Table 7.2). Reference indices were recalculated to 30�C with

the use of the temperature increments, DRI/10�C, extracted from the respec-

tive reports (see [39]). Further, the phase correction of 4.0 i.u was added to

experimental values according to the difference in KI of cycloalkanes

between the two phases. Corrected values were finally averaged (Table 7.2).

Table 7.2 Corrected KI of methylcyclopentane [39, 40]

Literature data RI correction, i.u. RI corrected, i.u.

RI, i.u.a RI, i.u.a DRI, i.u./10�C 30�C phase

624.4a 30 0 + 4.0 628.4

626.0a 30 0 + 4.0 630.0

628.2a 45 1.45 �2.2 + 4.0 630.0

635.0b 60 1.66 �5.0 0 630.0

626.6a 40 1.64 �1.6 + 4.0 629.0

mean 629.5
aPoly(dimethylsiloxane)
b Poly(5% diphenyl-95% dimethylsiloxane)
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The LRI values depend on the larger number of factors than just KI [9].

Therefore, it is very important to choose (and standardize) conditions for recording

chromatograms in temperature-programmed GC as well as isothermal conditions.

The parameter S, which should be constant, was proposed for such standardization:
S ¼ rT�tM/bI,where rT is the heating rate; tM, see (7.1); bc is the column phase ratio;

bc~dc/4df, dc is the column inner diameter, df is the thickness of stationary phase

film (see [9]). However, that formula is not applicable to all possible cases. In

particular, it discards a start temperature of a program. It is simpler to implement

other approaches to compare indices in a correct way.

l Experimental conditions which are the same or similar to those used for record-

ing reference data, can be chosen.
l Another approach is that the temperature program would be set in such a way to

match reference indices of known components of a mixture under analysis [41].
l The known compounds from a mixture can act as the special markers to

calculate the LRI difference between the experimental and reference data. This

difference can subsequently be used as the correction to experimental indices.
l Those components can be recognized during the analysis itself, e.g., by using

MS (in GC–MS analysis).
l Corrections can be required to remove the effects of irreproducibility of tempera-

ture programs [33]. The compounds used to recalculate RI by the formula (7.3) can

initially be introduced into analyzed mixtures as secondary references/standards.

ITx ¼ ITR1
þ tTRx

� tTR1

tTR2
� tTR1

ðITR2
� ITR1

Þ (7.3)

where tTRx
, tTR1

, and tTR2
are RT of the unknown analyte and secondary standards,

respectively; tTR1
<tTRx

<tTR2
[33].

l (a) Indices measured in conditions of not the same temperature programs and

even (b) KI and LRI may be not very different from one another. Thus, they can

eventually be combined for statistical (or rather, quasi-statistical) estimates [38].

Corresponding mean index values, together with the standard deviations, are

suitable for both tolerance and statistical tests of identification hypotheses

(Sect. 3.6).

Indices estimated from different physical quantities and molecular features can

be also used as reference RI. Current methods of estimation are based on:

l Correlations of RI with physical chemical properties, for example [42]
l Quantitative structure–property (retention) relationships (QSRRs) [43]
l The use of molecular statistical methods [44], and some others (see [43, 45])

Some quantitative predictions have resulted in a good accuracy of several i.u.

[43], which is comparable with an uncertainty in many experimental reference RI.

Thus, upon a careful examination of the origin, calculated indices can be used in

identification procedures.
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7.2.4 Identification Criteria

Criteria of identification based on RI are related to their reference values and

corresponding tolerance/range windows, � DRI, consistent with a typical or spe-

cially estimated spread of values for particular experimental conditions. There are

several ways of setting reasonable criteria.

General tolerance criteria. If experimental and reference data refer to (a) the

same stationary phase and index type (isothermal or programming temperature) and

(b) not very different other conditions, the general identification ranges of � DRI
may be set up. They are (e.g., see [45]):

l 5–10 i.u. for standard non-polar, poly(dimethylsiloxane), and slightly polar, poly

(5% diphenyl-95% dimethylsiloxane), phases
l 15–25 i.u. for standard polar, polyethylene glycol, columns

These ranges resemble values of interlaboratory reproducibility (see [43]).

Further, a conventional view is that methylsiloxane columns provide better repro-

ducibility of GC data. Therefore non-polar and slightly polar columns should be

preferred to solve identification problems if the columns provide sufficient separa-

tion of mixtures under analysis. That may be not the case, e.g., see [46].

Special criteria. These are used for identification of particular groups of sub-

stances in similar conditions of chromatographic analysis. Some examples are

presented below.

l Narrow tolerances can be established for identification of, for example, alkanes,

using non-polar phases where the RI reproducibility is better (even far better)

than � 5 i.u., e.g., see [47].
l Metabolites [27, 28] and components of essential oils [48] are identified in the

LRI window of � 3 i.u.
l The range of � 5 i.u is suitable for plant volatile compound KI calculated for

temperature programming [49].
l LRI of food aroma volatile compounds are reproduced in the range �10 i.u. at

different temperature programs [50].

Criteria changed on correcting for RI. Corrected indices are more accurate,

and therefore fall into narrower ranges of values. This is the case for recalculating

indices with the use of secondary indices [33]; see above. The LRI collection of

compounds of toxicological interest measured for packed columns was used for

identification using capillary columns and the criterion of � 50 i.u. The wide range

was due to interlaboratory irreproducibility of temperature programming. The

recalculations of indices made it possible to narrow down the range to� 25 i.u. [33].

Statistical criteria. These save analysts the trouble of selecting suitable toler-

ance ranges. The drawback of such criteria is that (a) conditions of recording

current and reference data must be the same, and (b) there must be a sample of

experimental and/or reference RI rather than individual indices. An example of

statistical estimation is given below (Example 7.2).
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The reference indices which are in the above example were extracted from the

literature. Now there is the large NIST database containing RI for numerous

compounds from different sources (Table 7.1). This dataset makes it possible to

generate RI samples required for statistical tests. For example, the mean values of

multi-literature RI, corresponding standard deviations, and confidence intervals

have been estimated for components of essential oils [38]. Any interested analyst

may make such estimations for his/her own researches based on the free version of

the RI collection [10]. Depending on whether sample values (a) refer to the same RI

type, columns, and temperatures/temperature programs, or (b) represent different

index types and a wide range of experimental conditions, tests using these data are

considered as (a) statistical or (b) quasi-statistical ones respectively (see [51]).

Samples from reference RI data are also useful for establishing range identifica-

tion criteria. Indeed, it is appropriate to consider 95% confidence intervals as

reasonable criteria for identification or no identification of unknown compound

with RI which fall in or outside the ranges.

7.2.5 GC–MS

Mass spectrometry is the most reliable technique for identification (see Sect. 7.4).

However, at least two different techniques are required for unknown identification

(Sect. 7.1). Thus, the combination of GC (reference RI) and MS (reference full EI

mass spectra or selected ions) provide unambiguous identification of many volatile

combinations, e.g., see [27, 28, 39, 41, 45–48, 50, 52]. The role of RI is that a group

of compounds with similar mass spectra may be differentiated by these chro-

matographic parameters. Thus, the windows of � DRI can be considered as filters

for MS data [48, 53].

Example 7.2. For the impurity in n-hexane [39], the replicate KI of 628.5 and
629.7 were obtained. The analytical purpose was to identify the impurity. The

identification hypothesis was that the impurity is methylcyclopentane. This

hypothesis was accepted if experimental and reference indices were insignif-

icantly different, i.e., at a > 0.05 (see Sect. 3.6.5). The reference indices for

the compounds are represented in Table 7.2. The a values can be returned

using numerous computer programs, starting with Excel. For those RI, in the

cases of two-side distribution and the same dispersions, a was 0.58. So the

hypothesis is accepted. The identification hypotheses for other candidate

compounds with the same molecular formula of C6H12 were rejected by

this t-test. The identification result was fully consistent with MS data [39].
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For all that GC–MS is very popular in identification operations, there are a few

reports where rigorous criteria for identification by each from the two techniques

are set. The three examples below refer to such researches.

l Metabolites were identified with the MSmatch factor (see Sect. 4.4.2)> 650 and

the LRI window � 3 [28].
l The pair of the criteria for unambiguous identification of PAH was: MF � 800

and D(Lee RI) � 2 [52].
l Different numerical criteria were established for different reliability of identifi-

cation, see Table 7.3.

7.3 HPLC and Related Techniques

7.3.1 Introductory Note

In the popular techniques of HPLC–UV–Vis, unknowns can be identified by

their UV–Vis spectra and chromatography retention parameters. Also, retention

parameters are now engaged in qualitative analytical procedures in proteomics.

Parameters analogous to retention times are of value for identification in capillary

electrophoresis and related techniques. In combination with MS, retention/migration

parameters act as filters for redundant candidates for identification derived frommass

spectrometry.

7.3.2 Libraries of UV–Vis Spectra

Use of libraries of UV–Vis spectra is not very widespread as compared with MS or

IR spectral libraries (see below). However, several data collections are available for

comparison with experimental spectra acquired together with chromatograms

(Table 7.4); see also [10, 57, 58].

Table 7.3 Tolerances for identification of alkanes, cycloalkanes, and alkenes

Technique Parameter, quantity Reliability level

High Medium Low

GC a, t-test � 0.05 0.01–0.05 < 0.01

GC � DKI < 5 5–10 > 10

MS a, T2 statistics � 0.05 0.01–0.05 < 0.01

MS MF > 950–1,000 925–950 < 925

Extracted from [39] with a minor changes. The terms of high, medium, and low identification

reliability accepted in the book correspond to low, medium, and high identification uncertainty

[39] respectively
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It would be perfect for an analyst if the HPLC-DAD instrument could be directly

provided with the spectral library for on-line fast identification. That is available in

toxicology, where reference spectra were recorded under the same experimental

conditions [56] (see Table 7.4).

7.3.3 Retention Parameters and Their Reproducibility

It is very hard if not impossible to identify unknowns using only RT, due to their

general irreproducibility caused by variations in column properties, composition of

mobile phase, temperature, and so on. In a similar way to GC, influence of many

factors is removed if retention parameters are calculated in relative terms. In

reversed-phase liquid chromatography, RI calculated by formulas (7.1) and (7.2)

for isocratic and gradient conditions respectively were proposed for identification

purposes; see [59–61] and references therein. Alkan-2-ones, alkyl aryl ketones, and

1-nitroalkanes were mainly used for scaling RI (see [59–61]).

However, some effects of irreproducibility, e.g., caused by different brands and

batches of column [60], also remain with index parameters. As in GC (see

Sect. 7.2), these effects can be partly removed using secondary standards when

indices are recalculated by (7.3). In toxicology, different corrections were made for

(a) acidic and neutral drugs and (b) basic drugs. This increased the interlaboratory

reproducibility of RI estimated for 62 acidic and basic compounds. Without the

corrections, the reproducibility was as large as � 25 i.u. The spread of corrected

values was diminished to � 10 i.u. Nevertheless, the general tolerance of � 30 i.u.

was recommended for identification [60] where RI were combined with UV spectra

or wavelength maxima [59–61]. The standardization of LC conditions, with the

special focus on pH, is indispensable for interlaboratory reproducibility of RI

values [62].

Recently, the approach related to secondary standards was combined with the

chemometrical method of the resolution of overlapped chromatographic peaks.

This was done for the purpose of the high-throughput screening of drugs by

Table 7.4 Libraries of UV–Vis spectra

Databasea Remarks

HaveItAll UV–Vis [54] 20,928 spectra of pure organic compounds. Contains three databases:

14,464 spectra for the range of 200–350 nm, 5,559 spectra for

200–500 nm, and 905 spectra for 200–800 nm.

UV/Visþ [55] About 5,600 spectra of about 900 substances

HPLC-DAD Data

Base [56]

3,270 toxicologically relevant substances, HPLC-DAD detector, RRT

NIST Chemistry

WebBook [10]

1,600þ spectra

aCommercial databases excluding NIST collection
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HPLC-DAD, using the library of RI and UV spectra [63, 64]. A very high RT

repeatability of better than 0.002 min in consecutive runs was achieved. Identifica-

tion criteria for the method included (a) the spectral correlation coefficient � 0.98

and (b) the RI range � 12 i.u. Rather low FP and FN rates were recorded that

resulted in St 92% and Sp 94% (see Sect. 4.2 for the terminology and notions). The

MLL rate (Sect. 4.2.8) with regard to compounds contained in the library was

1.255, i.e., relatively close to the limit value of 1 and far better than such rates for

earlier techniques of toxicological analysis [65]. In contrast to this rate, two single

criteria based on either RI or UV spectra led to ambiguous identification, as

reflected by the MLL values of 3.26 and 3.72 respectively [63, 64].

A relatively good (home) RI reproducibility was observed in screening of 474

mycotoxins and fungal metabolites [66]. That was � 1–2 i.u. for most compounds.

However, some alkaloid- and amino acid-derived substances showed a variation in

RI up to 10–20 i.u. and even the bias to 30 i.u. due to interactions with silanol groups

of columns. The maximum bias in RI (up to 50 i.u.) was caused by ion-pairing with

the component of the mobile phase [66]. In that report, RI are used for identification

together with maxima of UV absorption and accurate ion masses.

Another screening method of toxicological analysis [67] has the similar selec-

tivity as expressed by MLL of 1,253. The approach to identification was based on

combination of the RRT collection and the library of UV spectra for 2,682 toxico-

logically relevant substances. Testing of the library resulted in 60 and 84% of

compounds being unambiguously identified by UV spectra alone and by the pair

data of the spectrum and RRT respectively [67]. Spectra of 3,270 compounds are

contained in the newer version of the library (see Table 7.4).

Just as other types of chromatography RI, the HPLC indices are predictable, e.g.,

with ANN models. However, the prediction accuracy of � 30 i.u. [68] seems to

exceed typical values of experimental irreproducibility (see above).

The appearance of HPLC–MS (MSn, HRMS) has shifted focus of identification

procedures away from the use of the combination UV with RI to different types of

mass spectra (see below). Nevertheless, mass spectrometric identification is not

always unambiguous, and therefore retention parameters included in combined

analytical procedures may provide more certain results. It is also clear that the

use of RI will progress further with better reproducibility of RT and RI in liquid

chromatography.

7.3.4 Retention Parameters of Peptides and Proteins

Recent advances in proteomics related to sequence analysis of many proteins and

peptides have been mainly due to peptide mass fingerprinting by MS (HPLC–MS).

Also, the possibility that the chromatographic behavior of peptides can assist

protein identification has been successfully explored; see reviews [69, 70] and

references therein. Reference retention data used in proteomics are mainly pre-

dicted ones.
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The peptide retention times, combined with MS2 data analysis, enlarge the

reliability of peptide identifications. Various approaches for peptide RT prediction

in HPLC have been proposed [70]. Just as in the case of RI for volatile compounds

(Sect. 7.2.3), many models for the prediction of peptide retention times are based on

QSRRs, e.g., regression methods and artificial neural networks [69, 70]. Both

peptide sequences and physicochemical features such as peptide hydrophobicity

and molecule length have had an influence on peptide RT [70].

Predictive models, particularly those based on ANN, are relatively efficient. The

RRT values named there normalized elution time were predicted with the error <
3–4% [69]. An even lower average error of 1.5% has been observed [71]. For an RT

of 10 min, the error of 3% corresponds to the accuracy of about 20 s. This is quite

similar to the experimental repeatability (reproducibility) of peptide RT expressed

by the confidence interval (� 6 � 22 s) [72]. Special programs are developed to

calculate sequence RT [73, 74].

Predicted values are used in a combination with MS data as a filter for candidate

peptide mass matches (See Sects. 4.4.2.3, 7.4.1.4, and 7.7.2), which leads to a

significant increase in the proportion of identified (correctly identified) peptides

[75]. Preliminary filtering of candidate peptides by predicted RT increased the

number of positive peptide identifications by as much as 50% at the false discovery

rate (percentage of FP, see Table 4.3) of 3% [76]. In other research, concomitant

filtering out FP with the use of predicted RT led to a ~19% increase in the number of

positive peptide identifications achieved by MS [77]. The improvement of identifi-

cation results may also be related to a large reduction of FP without a significant

effect on the number of TP [78].

The use of HPLC, including corresponding retention parameters, is not neces-

sarily related to proteomics. It was proved that RT of hemoglobins are diagnostic

and reproducible, which makes it possible to reliably detect and identify more than

30 different hemoglobin variants; in many cases, it is superior to the efficiency of

conventional electrophoresis procedures [79].

7.3.5 Migration Parameters in Electromigration Techniques

Capillary electrophoresis (CE) and also related techniques are widespread in

genomics and proteomics. To a somewhat lesser degree, they are applied for

chemical determinations of low-molecule compounds. In toxicology, CE and

micellar electrokinetic chromatography (MEKC) have been considered as methods

of choice [80–84]. Migration parameters, such as migration time, relative migra-

tion, and mobility values (see [82]) are analogous to retention parameters in

chromatography.

As reference data for CE, values of relative migration and electrophoretic

mobility for more than 650 drug compounds have been reported [82]. Reproduc-

ibility of such parameters was improved when they were corrected (in a similar way
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to HPLC) [80, 83–85]. However, neither CE nor MEKC (as with GC and HPLC

alone) provided unambiguous identification of drugs, even with corrected para-

meters. This is expressed in relatively high MLL rates, 4.32 and 1.44 respectively,

when these electromigration methods have been used (see Sect. 4.2.8 for the

definition of MLL rates). Nevertheless, pair combinations of CE and MEKC with

each other and with GC or HPLC led to more certain identification, with MLL of

1.0–1.2 [80].

Migration times in CE as reference data for identification are reasonably well

predictable by the ANN technique. In identification of metabolites based on pre-

dicted values, true results appear among the best three candidate compounds in 78%

of cases [86].

As is the case for HPLC–MS, the combination of CE with MS is the preferred

technique for identification [85, 87]. Here, migration parameters are also consid-

ered. Examples can be given from metabolomics and proteomics. In the research

[88], metabolites were tentatively identified by HRMS, taking into account accu-

rate masses, isotopic patterns (see below), and electrophoretic mobilities of ana-

lytes. The relative migration time predicted based on absolute mobility and

dissociation constant was in less than 2.0% agreement with corresponding experi-

mental data for cationic metabolites [89]. That inaccuracy is consistent with

experimental repeatabilities of such parameters: less than 1.5–4.5 % for migration

times [85].

The contribution of CE in combined identification by CE–MS may be not only

the relatively accurate estimation of migration values but also the prediction of

migration order. It has been observed that the migration order of the phosphopep-

tides was correlated closely with their isoelectric points [87]. In the general case,

such kinds of regularities are usable for differentiation between a limited number of

candidates for identification.

7.4 Mass Spectrometry

7.4.1 Libraries

For identification of unknowns, analysts use spectral libraries and also go to spectral

interpretation. The versions of the MS technique used in these approaches to

identification depend on the volatility of compounds and the complexity of sys-

tems/samples under chemical analysis.

Volatile compounds are mostly identified by GC–EI–MS1. So mass spectral

databases for analyses of these analytes contain electron ionization spectra. For

determination of non-volatiles, the technique of HPLC-ESI–MSn is widespread.

Here, MS2 and other MSn spectra are the most useful for identification. Such spectra

have been included in reference libraries, which are of the special type in metabo-

lomics and proteomics.
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7.4.1.1 EI–MS1

Reference libraries. The main libraries are listed in Table 7.5; see also [36, 96].

Standard conditions for recording mass spectra are quadrupole instruments and the

70 eV energy of ionizing electrons. EI mass spectra obtained in such conditions are

reproduced well between time intervals, instruments, and laboratories, presenting

the “gold standard” of mass spectral reproducibility. However, large spectral

collections (NIST, Wiley; see Table 7.5) contain also replicate spectra with some

variations in ion abundances. Replicates improve library searches [97]. Further,

users of MS databases should take into account that there are some exemptions

from standard conditions for mass spectrometric experiments; see Table 7.5.

Two large libraries, Wiley and NIST, consist of hundreds of thousands of mass

spectra (Table 7.5). Furthermore, the publisher Wiley distributes a combined MS

Table 7.5 EI mass spectral libraries

Name Compounds Spectra Remarks

Wileya,b [90] 667,000 796,000 General dataset

NIST 08a [13 ] 192,108 220,460 General dataset

NIST Chemistry WebBook [10] Over 15,000 General dataset

HaveItAll MSa [91] 199,000 NIST 02 and several other

collections

SDBS [92] Appr. 24,500 General dataset. Magnetic

and double-focusing

sector mass

spectrometers, electron

energy 75 eV

AAFS Drug Library [93] Hundreds Over 2,700 Drugs and metabolites

Pherobase [25] � About 2,500 Pheromones,

semiochemicals

Terpenoids Librarya [22] Appr. 2,000 Constituents of essential

oils. Double-focusing

sector mass

spectrometer

MassBank [94] About 13,000 Metabolites and related

compounds. Partly (a)

CI spectra and (b) ToF

mass spectrometer

GMD [26–28] Over 2,000 Metabolites spectra,

including 1,206 unique

spectra and 535

identified unique

spectra. Quadrupole and

ToF mass spectrometers

FiehnLiba [29, 30] Over 1,000 1,200 Identified metabolites
aCommercial library
bRegistry of Mass Spectral Data, 9th edn with NIST 08. Smaller collections are also issued which

relate to organic compounds from combinatorial synthesis, designer drugs, pharmaceuticals and

agrochemicals, steroids, flavors and fragrances, pesticides, volatiles in food, geochemicals and

petrochemicals, biomarkers [90, 95]

182 7 Non-target Identification. Chromatography and Spectrometry



collection [90]. In general, libraries of such sizes are sufficient for solving most

identification problems found by organic analysts when determining volatile/semi-

volatile compounds. However, mass spectra of some targets may be absent or be

erroneous in large collections. Thus, smaller databases should not be disregarded,

especially in such areas as toxicology, pharmaceuticals, metabolomics, and so on

(Table 7.5).

To search reference spectra in MS libraries and compare the analyte spectra with

reference ones, there are special computer programs. The NIST MS Search (current

version 2.0f [13]) is specifically designated to search in NIST libraries (see

Table 7.5). The Wiley and NIST libraries have been also issued in software formats

of the main manufacturers of mass spectrometers and other companies [13, 90].

Given that very complex mixtures are commonly analyzed by chromatography

mass spectrometry, there is the need in programs for automated spectral deconvolu-

tion, i.e., detection and extraction of the spectrum of each component in a mixture

for its further identification. The NIST AMDIS [13] is just such a program

for GC–MS, and not the only one. For example, one of the modules of the Mass

Frontier program (HighChem) enables component detection and spectra deconvo-

lution from GC–MS and LC–MS (MSn) data [98]. Such software has been devel-

oped specially for metabolomics; see [99] and other references in Sect. 7.4.1.3.

Evaluation of Databases. The success of the identification procedure is criti-

cally dependent on a library quality provided by evaluation and testing of a library.

The methods for critical evaluation of a large mass spectral library at its building

from many individual collections have been described [100]. The main points of

evaluation methods used in the NIST practice are the following.

l The quality is controlled by experts in the course of a spectrum-by-spectrum

review of the library. A gain in quality depends critically on the expertise of the

reviewers/evaluators.
l Chemical structures which are required for the evaluation of their mass spectra

must be digitally represented for all compounds in the library. The correctness of

compound names is also important.
l When reviewing spectra, the evaluator identifies peaks in terms of fragmentation

reactions, and decides whether to accept, edit, flag (for example, as low quality),

or delete the spectrum. If there is a problem how to act best, the spectrum is

considered by a second evaluator. Evaluators should come to an agreement upon

an action.
l A spectrum is included if it is consistent with the structure of the molecule and

contains the majority of the characteristic peaks. An assigned name, structure,

and the spectrum itself should be consistent. Incomplete spectra are included

only if the compounds are of special interest for builders of the library. Further,

the isotope ratios should be correct for both the molecular ion and its major

fragments. The major peaks are examined to be reasonable for the particular

structure of the compound under consideration. The expertise of the evaluator is

based on an intimate knowledge of rules of fragmentation in EI ion source (e.g.,

see [101]).
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l Spectra are edited if there are correctable errors such as (a) peaks due to

impurities, (b) effects of ion–molecule collisions in an ion source, (c) displace-

ments of peaks in the mass scale by one unit, (d) spurious peaks, and some

others. Problems arising from low volatility and/or reactivity of compounds or

impurities in the sample are specially treated. For example, the region of the

molecular ion peak is examined to confirm that the compound does not decom-

pose on vaporization.

The procedures [100] described above are not only human/manual but also

computer-assisted, e.g., an inspection of isotope ratios. Somewhat similar

approaches are used in the evaluation of Wiley libraries [97].

The so-called quality index was introduced, which takes into account higher

molecular mass impurities, illogical neutral losses, isotopic abundance inaccuracy,

number of spectral peaks, and some other factors leading to false results [102].

Later, the index was modified to express an overall data base quality [97]. The

indices in both versions are estimated by computer. Nevertheless, the author agrees

with the point of view that a full quality of spectral library can not be provided

without expert inspection of spectra [100].

The practice of the use of spectral libraries is that the experimental spectrum is

compared vs. library ones and then a ranked list of matching reference/library

spectra is generated (e.g., Tables 4.17 and 6.8). Modern large libraries and search-

ing algorithms and programs provide correct answers placed in the top lines of

search result lists, i.e., answers of high ranks. According to testing results of

libraries and searching algorithms summarised in Table 7.6, appr. three quarters

of searches led to correct identification at the 1st rank3 (the highest MF and upper

line in hit lists).

Table 7.6 Performance of searches in EI mass spectral libraries

Algorithma Reference library Test spectral set % Correct answers

(TP) at rank

1 1–3

Dot product [103] 62,235 12,593 72.9 90.8

NIST dot productb [103] 62,235 12,593 75.7 92.5

PBM [103] 62,235 12,593 64.7 84.8

NIST dot productb [104] 62,235 12,593 77.0 91.6

PBMc [104] 62,235 12,593 74.9 86.4

NIST dot productb [104] 228,998 370 75.4 87.8

PBMc [104] 228,998 370 77.0 88.9

PBM [97] 229,000 310d 79
aSee Sects. 4.4.2.1 and 4.4.2.2
bSo-called composite algorithm in the article [103]
cCommercial PBM according to [104]
dThere are 1,421 spectra of these compounds included in the reference library

3Interlaboratory comparison resulted in the lower rate, but the test spectra sample was very small

[105].
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The performance of spectral searches affects the choice of identification criteria.

Beginning analytical mass spectrometrists often consider the upper lines in the search

lists as definitive identification results. Table 7.6 shows that this is false for about

20–25% of cases. The low MF threshold (min MF in Fig. 3.6) seems to be a more

reliable criterion. For not very high threshold values, the MF of most analytes falls in

the tolerance range for identificationwhich is betweenminMF andmaxMF (Fig. 3.6).

On the other hand, this range collects not only TP but also FP, which are mainly

compounds similar to analytes in structure/spectrum. The relationship between TPR
and FPR is another performance of spectral database combined with searching

algorithms. Corresponding two-dimensional plots are named receiver operating
characteristics (ROC) [106]. There are plots of dependencies of TPR from FPR (or

related quantities). Values of both variables are determined by changing the MF

threshold, including changes due to modifications in searching algorithms and

formulas for the calculation of MF. In previous research on retrieval of spectra

(e.g., [97, 103]), dependencies of this kind were named recall–reliability plots; see

Table 4.3 for terminology, and Example 7.3.

Example 7.3. The library consisted of 200 mass spectra of 200 different

compounds to be tested. Experimental/test spectra were specially acquired for

the test sample of 100 compounds, reference spectra of which were contained

in the library. Library searches (Table 7.7), i.e., comparisons of each query

spectrum (from the test set) vs. all the reference spectra, were performed at

different MF thresholds starting with the almost maximum value of 990 (the

maximum is 1,000). A computer answer of the 1st rank (the top line) was a

positive result. If matching spectra belonged to the same compound, it was

TP. At the highest threshold, only 30 top reference spectra were retrieved

(Table 7.7). Most of them (29 items) were spectra of test compounds. In this

series of searches (see Table 4.3 for notations), TPR ¼ St ¼ recall is 29/

100 ¼ 0.29 or 29 %, FPR is 1/100 ¼ 1%, PPV ¼ reliability is 29/30 ¼ 97%.

By diminishing the MF threshold, the number of retrieved reference spectra

was increased as well as result rates, with the exception of the proportion of

true positives (PPV, reliability); see Fig. 7.3. In unknown analyses, this

means that most computer answers will need a confirmation.

Figure 7.3a shows that TPR values were far from 100% at low FP (high

MF; see Table 7.7). A perfect librarian search would be achieved in the case

of 100% TPR at any level of FPR. The perfect ROC would coincide with the

vertical axis and the line parallel to horizontal axis at the 100% level (upper

line, Fig. 7.3a). The area under the ROC curve is the special measure of

the integral performance of the search algorithm/software (and the library

quality), independent of the choice of the particular threshold MF or

corresponding FPR, e.g., see [107, 108]. For the perfect searching method,

the area is 100% 	 100% ¼ 100 area%. In the case under consideration

(curve in Fig. 7.3a), the area under ROC was about 85%.
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The above in this section shows that the 1st rank of matching spectrum is not the

perfect criterion for identification. Setting a MF threshold is a better decision.

However, it is followed by (a) appearance of a group of candidates for identification

and (b) a need to test related identification hypotheses by other methods. Some of

the redundant hypotheses can be rejected using prior information (Chap. 6).

7.4.1.2 MSn

Electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI),

laser desorption (MALDI), and other “soft” ionization techniques, have increased

the potential of MS and its combination with liquid chromatography in analysis of

non-volatile compounds (see Sect. 2.8.4 and reference below). Over time, several

ESI/APCI–MS1 (conventional single-stage mass spectrometry) libraries containing

up to approximately 1,600 spectra of hundreds of compounds have been generated

[109] (see also [110] and Table 7.8). In comparison with MS1, the combination of

new ionization techniques with tandemmass spectrometry (MS2), with the interface

of collision-induced dissociation (CID), led to more reliable identification because

of (a) better control of fragmentation of ions containing intact molecules of analytes

by varying the collision energy, and (b) removal of background ions arising from

solvents, etc.

Reference libraries. For purposes of identification, ESI–MS2 libraries (product-

ion libraries) of different sets of compounds ranging up to several thousands of

substances have been generated (Table 7.8). Libraries may be classified according

to such characteristics as large/small, universal/field-specific, transferable/home,

and so on.

The NIST 08 is the largest4 of the universal libraries (and possibly the only

current universal library). It seems to be transferable to a greater or lesser degree

between instruments and laboratories, because it consists of tandem mass spectra

from various collections, acquired on tandem instruments of different types. How-

ever, the library size is yet inadequate for the purpose of identification of many

significant substances. Indeed, if one assumes that at least tens of thousands of

Table 7.7 True and false results of MS librarian search depending on

MF

MF TP FP TP+FP

990 29 1 30

975 47 3 50

950 77 25 102

900 90 60 150

850 96 85 181

800 99 99 198

4The largest collection [120] (see Table 7.8) was reported without many details about this home

library.
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Fig. 7.3 (a) Receiver operating characteristic and (b) recall–reliability plot for the same library

searches, Table 7.7. For conceptions and terms, see Table 4.3. The two lines in Fig. 7.3a are: real

librarian searches (the bottom curve, see data in Table 7.7) and perfect results (the upper line)
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compounds are abundant (this is an underestimation, see Sect. 6.3) and takes into

account that up to 10 different spectra are required for reliable recognition of an

analyte by MS2 [107, 142], the conclusion can be made that hundreds of thousands

of spectra is a minimum requirement for the comprehensive universal MS2 library

of low molecules.

Field-specific databases are also relatively large, ranging to thousands or even

tens of thousands of spectra (Table 7.8). They have been developed within meta-

bolomics, which is one of the moving forces of the progress in modern analytical

science/practice, chemo- and bioinformatics. Other prominent fields for the use of

MSn libraries are toxicology, food, and environment (Table 7.8). Most libraries are

home-made, with MassBank [94] and TaMaSA [133] as exceptions. Possibilities of

the use of home-made libraries in other laboratories should be explored.

MS libraries under consideration have been generated using various instrumen-

tal platforms. ESI is the most popular ionization method, although APCI is also

used. Reference EI/CI spectra for GC–MSn are rather rare items [13, 133]). As for

mass analyzers, most library spectra were acquired on TQ (tandem in space, special

cell of collision activation for fragmentation) and classical IT (tandem in time). In

recent years, the contribution of Q–ToF and combinations including LIT, ICR and

Orbitrap (see Sect. 2.8.4) has been growing.

As a rule, the number of reference library spectra is larger than the number of

corresponding compounds, i.e., there are several replicate spectra for each unique

compound. Replicates may be “true” ones, i.e., generated in the same or similar

experimental conditions, or “quasi-replicates”, acquired at different collision ener-

gies on the same/different tandem instrument. Replicates of the second kind are

both very dissimilar to each other, and very essential to provide the best matching

experimental spectra to reference ones (see below). It should be noted that a

spectral appearance is critically dependent on the conditions of CID, first collision

energy [143].

Algorithms and programs of the library search are or may be the same as in the

case of EI–MS1. It would be appropriate if the modified versions, e.g., providing the

option of fractional m/z tolerances of precursor and/or product ions (see [13, 116])
were available for advanced retrieval of reference spectra.

General evaluation of libraries. Quality assurance of tandem MS libraries has

not yet been concerned with all the details which are considered in building EI–MS1

libraries [100]. However, some aspects of the quality of MS2 reference data have

been controlled.

When generating the research library consisting of 3,766 MSn spectra of 1,743

compounds [142] and included later in NIST MS library [13] and the TaMaSA MSn

library of pesticides [133], the author deleted spectra of poor quality and edited/

processed many intended spectra. A poor quality of a spectrum5 means that

l Intense peaks are annotated with incorrect m/z values or are not annotated at all

5The MS2 spectrum with a few peaks is sometimes considered as of low quality [129]. However,

this may be just a case of fragmentation where one or a few reactions prevail.
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l There are intense peaks with m/z exceeding the precursor ion mass
l There are intense fragment peaks related to “illogical” neutral losses
l In a series of spectra obtained at a gradual collision energy ramp, the peak

intensity ratio is very different from that for “neighboring” spectra recorded at

close energies
l The noise is intense (at least several percent relative to a basic peak) and

distributed over the full spectral range, and so on

The edition of spectra is commonly accompanied by the removal of individual

noise, spurious, or artifact peaks. The latter may appear in experimental spectra

when a computer program processes anomalously wide and/or tailed peaks of

precursor ions. Spectral editing similar to that has been reported [107].

Spectral reproducibility. In general, the use of product-ion mass spectra for

identification of unknowns may be limited by insufficient spectral reproducibil-

ity in different tandem mass spectrometers. Specific inter-laboratory studies

have been conducted to compare tandem spectra and to evaluate the uncertainty

in compound identification based on spectral matching (Table 7.9). As a result

of standardization of experimental CID conditions with a selected tuning compound,

MS2 spectra acquired on three [144] or four [145] TQ mass spectrometers from two

manufacturers were rather similar. Recently, a good match of MS2 spectra was

observed between the TQ and Q–LIT instruments where standardized collision

energies and probably one-type collision cells were used [114] (Table 7.9).

Earlier, good reproducibility for those types of tandem instruments was not

observed [146]. In general, a spectral similarity degree between the tandem in

space (TQ) and time (IT and other instruments) used without their combinations

seems to be poor [134, 135, 138, 139] (see Table 7.9). Correspondingly, that affects

a potential of identification. On the whole, MS2 spectra are reproduced much worse

than EI–MS1 ones and the match degree, e.g., demonstrated by Fig. 7.4, should be

declared as good or even very good.

Testing and validation of libraries. Spectral reproducibility is indirectly

revealed by testing libraries and estimating rates of true or false computer answers.

Two transferable libraries [133, 142] (see Table 7.9) were evaluated and validated

in such a way. The method for such evaluation of libraries is that all the test MS2

spectra were in turn incorporated into the test sample of “unknowns” spectra and

into the reference library. Spectra of any given compound were considered as test

ones if originated from at least two different sources, i.e., laboratories or publica-

tions. At the beginning of the particular search for any test compound, the subset of

its spectra originated from the same source was extracted from the library, followed

by searching in the MSn library with every spectrum from this subset. The search

results were combined and the best match over the subset was selected. Then this

subset was returned to the library and the next subset for the particular compound

was extracted (Fig. 7.5). In statistics/chemometrics, a similar procedure is named

cross-validation (see Chap. 8).

The rank of the correct computer answer depends or may be dependant on the

number of replicate (“quasi-replicate”) spectra involved in librarian searches, a
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Fig. 7.4 Tandem mass spectra of the pesticide imidacloprid extracted from TaMaSA [133] ( four
top spectra) and acquired in the author’s laboratory (two bottom). Mass analyzers and collision

energies are specified. TQ and TQ’ are different triple quadrupoles. The acronyms of cid and hcd
denote different modes of MS2 scans of the LIT–Orbitrap instrument [148]
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difference in the type of tandem instrument, and so on. For the library of 3,766 MSn

spectra, the first rank was nothing more than fair (�60%) in general, and growing to

the level of 77% in searches with two and more replicates of both “unknown”

spectra and two references [142] (see Table 7.9). Therefore, the efficiency of

identification by means of MS2 reference libraries may be close to that using the

standard EI–MS1 library, where the percentage of 1st rank correct answers was 79%

(Table 7.6). The latter result was provided with an average of 4.6 reference entries

vs. the only “unknown” spectrum [97] For the tandem library under consideration,

the result of 77% for searches was based on 4.0 spectra of “unknown” and 7.8

reference spectra on average (Table 7.9).

1 or ≥ 2 “unknown” spectra
- compound A 
- data source X

• TaMaSA library 
- without spectra of A from X
• NIST’05 MS2 library

Search 1 ↓

Search 2 ↓

Search 3 ↓

• TaMaSA library 
- without spectra of A from Y
• NIST’05 MS2 library

• TaMaSA library 
- without spectra of B from Z
• NIST’05 MS2 library

↓

1 or ≥ 2 “unknown” spectra
- compound A 
- data source Y

1 or ≥ 2 “unknown” spectra
- compound B
- data source Z

Fig. 7.5 Chart for library searches in the TaMaSA library of pesticide spectra [133]. These

originate from the literature sources and Internet. The search result is the best matching, its MF

value and the rank of MF in the hit list. A similar method of testing the library was used in the

research [142] where spectral subcollections from not only articles but different laboratories were

entered into the database
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Testing of the library of the lesser size, TaMaSA, resulted in even better perfor-

mance [133] (Table 7.9). In librarian searches performed with two and more

replicates of both sorts (an average of 3.0 “unknown” and 3.6 reference spectra),

90% of correct answers of the 1st rankwere observed. The addition of the criterion of

matching precursor m/z increased the latter percentage up to a “suspicious” 95%.

The dependence of the percentage on the number of both replicates is shown in

Fig. 7.6.

Interlaboratory comparisons of TQ vs. TQ and IT vs. IT in the researches [133,

142] were not fully conclusive, because some spectral samples were not sufficiently

large. However, the tendency can be seen that TQ spectra are more similar to each

other than those recorded on IT. Cross-comparisons, i.e., TQ vs. IT and v.v. provided

search results closer to those obtained for samples of TQ [133] or IT [142] spectra.

Recent studies [107, 116] have confirmed that (a) a large number of replicate

spectra (up to 10 “quasi-replicates” recorded at different energies) and (b) the

requirement of matching precursor m/z within the tolerance established before

MS analysis led to high rates of true positive and negative results of librarian

searches, close to 100%. That library was one of the first ones for HRMSn, which

combines the identification powers of HRMS and MSn. It should be added that in

the article [107] as well as in other reports, e.g., [131, 133], the identification

performance of MS2 libraries is discussed in terms of true/false result rates and

correspondingly selectivity/specificity (for the terminology, see Chap. 4).

Thus, some recent tests [107, 133] demonstrated a very low rate of FP if only

computer answers of the 1st rank, with matching m/z of precursor ions, are taken

into account as the identification criteria. However, it would be correct to check the

robustness of this conclusion over a wide range of libraries, including transferable

Fig. 7.6 The results of library searches; n is the number of searches, ‘unkn’ is “unknown” spectra,
ref is reference ones. Replicate “unknown” spectra were mainly acquired at different collision

energies

196 7 Non-target Identification. Chromatography and Spectrometry



ones, analytes, analyte concentrations, and matrices. Without such confirmations,

the “good old” criterion attached to the MF threshold as in EI–MS (see above)

seems to be a good solution when analytes are identified by the use of MSn

libraries.

This is exemplified by unknown screening in toxicology, where the MS1 library

built for the technique of CID-in-source (fragmentation in the ion source, the

special collision cell is absent) was used. There,

l MS criterion of the reverse MF > 60% (100% is the maximum value) and
l LC criterion of RRT being within � 20% of the reference value

were applied [149]. These MS criteria can be established as corresponding to one or

another level of TP and FP based on a dependence type shown in Fig. 7.3. Example

7.4 demonstrates how to make such estimations.

7.4.1.3 Metabolomics

Collections of mass spectra of metabolites are described in Tables 7.5 and 7.8. They

are useful for both target analysis and metabolite profiling (see Sect. 7.7.1). For the

intended purpose of metabolomics, reference metabolite profiles, e.g., pair sets of

Example 7.4. In testing the TaMaSA library [133] (see Tables 7.8 and 7.9),

TP and FP were recorded. The first of them are related to the best match

spectra of target compounds (pesticides) retrieved at the 1st rank. The second
are non-pesticide compounds, with spectra matched to those of test com-

pounds also at the 1st rank. For example, pair comparisons between three

“unknown” and four reference MS2 spectra of diuron resulted in the best

match of MF 592. Meanwhile, the spectrum of another compound was similar

to a greater degree to each of three test diuron spectra, providing FP with MF

605 which is the best matching.

Two MF sets for TP and FP, i.e., for two sets of identification hypotheses,

are distributed (Fig. 7.7). The distribution of FP is not surprisingly shifted to a

lower MF. The threshold value of 275 can be established for the identification

criteria. That provides TPR 95%. FP data may also be observed above the

threshold, which leads to only 87 % proportion of TP in reference to the

overall number of TP and FP (the PPV value, see Table 4.3).

The lower and higher thresholds can be set up. In the case of the former

established at MF ¼ 200 (not shown in Fig. 7.7), TPR of 100% with PPV of

86% is produced. At the higher threshold of 620, the FPR index decreased to

5%, but some TP can be missed in the general case (Fig. 7.7). The presence of

FP at each MF border value means that identification results obtained with the

use of such an MS2 library must be confirmed by at least one other method/

technique.
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retention parameters and mass spectra, are of more value than single chro-

matographic or MS data. The profiles have been also included in such databases as

GMD [26–28], FiehnLib [29, 30], RIKEN Plant Science Center library [125, 126],

and MMD [36, 127]; see Tables 7.5 and 7.8.

Not all metabolite components of such data samples, both references and data

obtained from experimental workflows, are definitely identified. Non-identified

components are or may be annotated by retention parameters and mass spectra,

including accurate mass values, e.g., see [36, 99, 150]. Special software has been

developed for rather similar purposes of (a) the management and editing of metab-

olite mass spectral libraries [151], (b) systematically cataloguing metabolite peaks

and their further identifying [152], and (c) alignment of large metabolite profile sets

into data useful for identification [99].

7.4.1.4 Proteomics

In the standard way, proteins are identified by peptide ion mass fingerprinting

(Sects. 4.4.2.3, 4.5.4.3, and 7.7.2). Non-spectral databases consisting of amino

acid sequences of proteins have been required for respective identification of

these high-molecules (e.g., see [153–156]). In proteomics, libraries of MS2 peptide

spectra and corresponding identification procedures have been also developed.

The libraries are built from spectra of peptides which are (a) produced by protein

digestion, and (b) identified by peptide fragment fingerprinting of theoretical MS2

spectra generated from reference sequences on the basis of rigorous criteria [108];

Fig. 7.7 The histogram of MF for TP and FP results of searches in the TaMaSA library [133]. The

NIST MS Search program [13], the search options of MS/MS identity and matching precursor m/z,
the case of two and more both test and reference spectra available per one test compound. Two

lines are at threshold values of MF (275 and 620). Above the first and second borders, 95% of TP

and 5% of FP matches were observed, respectively
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see also [157] and [158]. This approach to building peptide MS2 libraries can be

considered as the typical one.

If purified protein standard samples are selected for digestion [159], peptides

produced can be considered as transferable to identities of initial proteins. From the

perspective ofmetrology, both libraries eventually generated just fromprotein/peptide

standards and the identification approach itself based on the use of such libraries are of

the upper reliability for proteomics. For protein reference materials, see also [160].

In most experimental spectral collections constituting raw data, there are many

spectral replicates per peptide. The “best” spectrum can be selected, and so-called

best-replicate libraries have been proposed (see [161]). In another way, the peptide

MS library was created by averaging different experimental spectra contained in the

large proteome database (the Global Proteome Machine Database, see below)

[162]. Averaging was demonstrated to provide a better combination of perfor-

mances for library searches than individual replicates [161, 162]. Such combined/

averaged spectra, called “consensus spectra,” have been included in the SpectraST

library and NIST Peptide Mass Spectral Libraries [161, 163, 164].

Among many other subapproaches to protein identification, the use of the MS2

peptide library consisting of spectra simulated by means of the kinetic model [165],

should be also noted.

Building of peptide tandem MS libraries and their use has called for new special

software (see [166, 167] and references in this Subsect.).

There is a global repository, the Global Proteome Machine Database [168],

containing MS data on 888,874 of unique (“distinct”) proteins. The data sets have

been contributed by researchers from many countries and selected by database

developers for data quality, biological interest, and so on. The Peptidome is another

public resource that collects, archives, and freely distributes tandem mass spectra

for peptide/protein identification [169]. For references to other public data reposi-

tories, see also [163].

Just as with other MS libraries, peptide ones are evaluated in terms of quality and

performance. In quality control, problems of noisy, contaminated, and singly

observed spectra and also contradictory identifications have been addressed [161,

163]. There are other characteristics of poor quality spectra such as low ion

abundances, a few peak spectra, and ones with very short peptides; see [170] and

also Sect. 7.7.2. Spectra of insufficient quality have been filtered out before being

entered in libraries [157, 161, 163, 170].

The library quality affects the performance of spectral searching. The perfor-

mances themselves have been expressed as rates of TP, FP, and so on, and also

ROC curves (see Sect. 7.4.1.1 and Table 7.10). All of those variables were recorded

with varying MF (score) thresholds established for true peptide identification

(Table 7.10).

The spectrum library-based approach for peptide identification was compared

with the conventional one of matching theoretical spectra. It was concluded that

the former is more rapid in implementation, and results in the larger number of

truly identified peptides [158, 162, 163]. Therefore, the conclusion can be made

that the identification procedure based on libraries is preferable for target
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proteins, and the approach with searches in amino acid sequence databases is

applicable for both proteins already studied (with a somewhat lower performance)

and new sequences.

7.4.2 HRMS

Various topics related to identification with the use of HRMS were considered

above:

l Instruments, Sect. 2.8.4
l The difference between experimental and theoretical/formula masses (� a few

ppm) as the spectral MF and the criterion for identification, Sect. 4.4.2.2
l Requirements for HRMS in methods, Sect. 5.5.3.3
l The schematic role of this technique in unknown identification (Figs 6.5 and 7.1)
l Appearance of HRMS libraries (spectra mostly acquired by ToF instruments, see

Tables 7.5 and 7.8)

As the value of the technique has been highly increased, HRMS-based identifi-

cation procedures should be addressed in more detail. This is especially significant

for the approach where identification begins with the use of HRMS (the right part,

Fig. 6.5). This mass spectrometric technique is commonly combined with ESI to

ionize and analyze non-volatile compounds.

There is a serious handicap to identification using only this technique. As a rule,

HRMS overgenerates molecular formulas of analytes corresponding to the

measured ion mass and the accuracy of its measurement. For a mass within the

m/z range of 300 � 1,000 and a reasonable mass accuracy of 5 ppm, the number of

elemental compositions of ions containing C, H, N, O and other common elements

is measured in hundreds and thousands (Table 7.11). Even very high mass accuracy

commonly achieved by FT ICR (� 1 ppm, e.g., see [171]) cannot provide an

unambiguous determination of molecular formulas. Thus, incorrect formulas must

be removed in one or another way. Several operations have been introduced to filter

these formulas and reduce their number, to achieve certainty in solving identifica-

tion problems (Fig. 7.8).

Table 7.10 ROC curves, y ¼ f(x), as performances of searches in

peptide MS2 libraries

Reference y x

[108] TP FP
[157] St (recall) 1-Sp (FPR)
[158] St 1-Sp (FPR)
[161] TP FDR

Notations, see Table 4.3. Different MF (spectral similarity scores) are

varying threshold parameters
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Filter 1: abundance of isotope peaks. The first filtering out of improper formulas

is based on criteria of isotope ratios. There is the (different) natural abundance of

isotopes of D, 13C, 15N, 18O and others which form peaks of the [M+1]+� and [M+2]+�
ions in EI mass spectra and [M+2]+ and [M+3]+ species in ESI/MALDI spectra.

So isotope ratios/patterns, first of all [M+1]+/M+ � or [M+2]+/[M+1]+, are character-

istic of elemental compositions of molecules. In turn, tolerances of these ratios are

Table 7.11 The approximate number of possible molecular formulas for elements: C, H, N, O, S,

P, F, Br, Cl, and Na [136]

Mass accuracy, ppm Number of formulas for the ion mass, Th

m/z 100 m/z 200 m/z 300 m/z 400 m/z 1000

10 5 100 300 1,000 10,000

5 3 50 150 500 5,000

2 2 20 60 200 2,000

1 1 10 30 100 1,000

Candidate molecular formulas

Filter 2:  element ratios and related rules

Filter 3:  chemical databases (prior data)

Searches in chemical databases (prior data)

Reduced list of candidate formulas

Candidate compounds

Testing of hypotheses by chromatography and
tandem mass spectrometry 

Filter 1:  isotopic ratios

Fig. 7.8 Flow diagram of

filtering out of redundant

candidate formulas and

further pathway to candidate

compounds. Filter 1 may not

be very efficient, see text. The

diagram can be incorporated

into the general schematic for

unknown identification, see

Figs. 6.5 and 7.1. In the case

of a plethora of candidate

compounds, the technique of

MSn can be also used first

before applying HRMS, see

Example 7.5 below
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filters for removing molecular formulas, with compositions significantly differing

from the correct analyte formulas (e.g., see [172, 173] and references therein).

From early years of the technique, especially with the appearance of double-

focusing sector mass spectrometers and later ToF, FT ICR, and Orbitrap, analytical

and organic mass spectrometrists have taken into account isotopic ratios to perform

structure elucidations. In recent years, the approach to identification incorporating

measuring isotopic abundances has been developed by metabolomists [172, 174,

175] (for metabolomics, see Sects. 7.4.1.3 and 7.7.1). It was demonstrated that a

low percentage tolerance for isotopic ratios might theoretically be a powerful filter

for enriching a set of candidate formulas with a few advanced ones. For example,

a substance with molecular mass of 500 Da may have 266 and 64 elemental

compositions at a mass accuracy of 10 and 3 ppm respectively. The 2% isotopic

abundance accuracy added to the last mass window reduces the set of 64 formulas

to only three [172].

In another report, 5% tolerance as some kind of standard window for isotopic

ratio deviation was considered [175]. Unfortunately, this accuracy level of the

relative intensity of isotopic peaks is hardly approachable for most common high-

resolution mass spectrometers in routine analytical practice (complicated mixtures,

high-throughput determinations, a few or no replicates, low signals of analytes).

This follows both from the author’s experience of analyses using such instruments

as IT–ToF and LIT–Orbitrap and from the literature [174]. For ToF, deviations

from correct isotope ion ratios were up to 50, 20, and 10% in the case of peak

intensities of < 60, 60 � 200, and > 200 counts respectively [176]. Therefore,

special efforts should be made to efficiently use the filter under consideration;

special software has been developed for the purpose [177].

Commonly, there are no problems with isotopes of chlorine and bromine (and

also silicon and sulfur). The presence of atoms of these elements in many molecules

can be easily determined without accurate measuring ion masses and abundance

ratios [101].

In any case, commercial software processing data obtained by HRMS may

provide scoring differences between experimental and formula isotopic ratios (e.

g., in instruments manufactured by Shimadzu; see Fig. 4.6, and Waters, see [178]).

Filter 2: element ratios. An experienced organic chemist knows that, as a rule,

in most molecules, the number of hydrogen atoms exceeds that of carbon atoms,

and the number of nitrogen and oxygen heteroatoms is smaller than two first

numbers. In general, the ranges for possible element ratios are relatively wide,

but probably limited by the estimates presented in Table 7.12. According to our

observations, a common software which generates candidate formulas from exper-

imental accurate ion masses and established mass tolerances does, as a rule, mostly

provide plausible elemental compositions within limits of ranges indicated in

Table 7.12. The reason seems to be that unusual combinations of elements lead to

rare molecular masses deviating from those of analytes. The fact of “correct’

elemental ratios is demonstrated in Table 7.13, where formulas generated by the

Thermo Xcalibur software for one from the unknown components of the sample

202 7 Non-target Identification. Chromatography and Spectrometry



Table 7.12 Element ratios in

molecules of abundant

compound [175]

Element ratio Value range

H/C 0.2–3.1

F/C 0–1.5

Cl/C 0–0.8

Br/C 0–0.8

N/C 0–1.3

O/C 0–1.2

P/C 0–0.3

S/C 0–0.8

Si/C 0–0.5

Correspond to 99.7% of 45,000 formulas from the Wiley MS

library

Table 7.13 Candidate formulas for ion with m/z 426.2425

Theo. Mass Delta (ppm) Ion composition for

[M+2H]2+
Molecular formula Occurrencea

PubChem Google

426.2426 �0.23 [12]C26 H54 O5 N29 C26H52N29O5 no no

426.2426 �0.23 [12]C27 H60 O10 N22 C27H58N22O10 no no

426.2426 �0.24 [12]C28 H66 O15 N15 C28H64N15O15 no no

426.2423 0.35 [12]C43 H70 O14 N3 C43H68N3O14 no no

426.2423 0.35 [12]C42 H64 O9 N10 C42H62N10O9
b

9(5) 3

426.2423 0.36 [12]C41 H58 O4 N17 C41H56N17O4 no no

426.2430 �1.21 [12]C42 H54 N21 C42H52N21 no no

426.2430 �1.21 [12]C43 H60 O5 N14 C43H58N14O5 1(1) no

426.2430 �1.22 [12]C44 H66 O10 N7 C44H64N7O10 no no

426.2430 �1.23 [12]C45 H72 O15 C45H70O15 7(6) 6

426.2419 1.33 [12]C26 H64 O14 N18 C26H62N18O14 no no

426.2419 1.34 [12]C25 H58 O9 N25 C25H56N25O9 no no

426.2433 �1.80 [12]C28 H56 O6 N26 C28H54N26O6 no no

426.2433 �1.81 [12]C29 H62 O11 N19 C29H60N19O11 no no

426.2433 �1.82 [12]C30 H68 O16 N12 C30H66N12O16 no no

426.2417 1.92 [12]C41 H68 O13 N6 C41H66N6O13 no no

426.2417 1.93 [12]C40 H62 O8 N13 C40H60N13O8 no no

426.2417 1.94 [12]C39 H56 O3 N20 C39H54N20O3 no no

426.2437 �2.78 [12]C44 H56 O1 N18 C44H54N18O1 no no

426.2437 �2.79 [12]C45 H62 O6 N11 C45H60N11O6 no no

426.2437 �2.80 [12]C46 H68 O11 N4 C46H66N4O11 2(2) no

426.2413 2.90 [12]C25 H68 O18 N14 C25H66N14O18 no no

426.2412 2.91 [12]C24 H62 O13 N21 C24H60N21O13 no no

426.2412 2.92 [12]C23 H56 O8 N28 C23H54N28O8 no no

Data for the extract of the algal biomass sampled in the Sestroretskij Razliv lake, Saint-Petersburg

region, Russia, in summer of 2008. ESI mass spectrum was acquired on the Orbitrap

HPLC–HRMS. Theo. Mass is the formula mass, Delta (ppm) is the difference between experi-

mental and predicted/formula mass
aSearches on 12 March, 2010. Data sources, see Table 6.2. The number of formulas is noted, with

the number of unique compounds/structures in parentheses
bThe tentative identification as anabaenopeptin F, monoisotopic mass 850.4701, based on several

criteria (see below)
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analyzed are verified against the rules under consideration. One can see that there is

no elemental composition with ratios falling outside the ranges given in Table 7.12.

Filter 3: Chemical databases. It was proved in Sect. 6.2 that a presence of an

analyte in sample can be predicted if the corresponding compound widely occurs

both in real-world samples and in chemical databases, with many entries in the case

of the most abundant compounds. A relevant search can be carried out by their

names or other identifiers, e.g., formulas. Ultimately, filtering of molecular for-

mulas generated from high-resolution mass spectrometry data according to the

presence (and the number of occurrences) in databases shortens the list of candidate

formulas for their testing in subsequent identification procedures. In recent years,

the search in chemical databases has become a common practice in many labora-

tories using HRMS, e.g., see [133, 175, 176, 179].

Table 7.13 shows that most formulas generated by software for high-resolution

mass spectrometers are those of nonexistent or very rare chemical compounds.

Only four from 25 formulas generated for the ion with m/z 426.2425 which is the

[M+2H]2+ doubly charged ion of the biomass component occur in the particular

chemical database and Internet.

Candidate compounds. Molecular formulas are ambiguous identifiers

(Sect. 1.5.3). Thus, each candidate formula may cover more than one individual

compound. Further searches in chemical databases are required to find out candi-

date compounds instead of candidate formulas for definite identification. The

number of compounds exceeds the number of formulas, and the difference between

them determining a set of hypotheses to be subsequently tested varies widely.

Two cases considered, see Table 7.13 and Example 6.1 with regard to pesticides,

demonstrate statistics of formula/compound occurrences in two databases.

l For relatively heavy organic compounds, there may not very many known

candidate compounds for each formula (more than two compounds in only

two cases, Table 7.13). Ultimately, 14 compounds should be further tested,

most of which are easily rejected without experimental tests (see below).
l Pesticide formulas are far more ambiguous. On average, the formula covers 71

isomer compounds (searches in CA for 2 years, see Table 7.14). Nevertheless,

this does not mean that the same number of hypotheses should be tested. The

most cited candidates for identification, i.e., test pesticides themselves, occur

about 100 times more frequently than other candidate/isomer compounds. In

most cases, the latter are so rare that each from them occurs in no more than 5%

of the overall citation count for the particular formula. So this test proves the

Table 7.14 Statistics of database occurrences of 18 pesticides and their isomers and formulas

Quantity Value

Number of formulas 18

Average number of candidate compounds per one formula 71

Average number (%) of database occurrences

pesticides

other candidate compounds

163 (62%)

1.7 (1.4%)

Searches in CA (CD editions) for 2007–2008. See Example 6.1 for other details
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statement that the compound which occurs most in the database may turn out to

be analyte presenting in the sample.

HRMSn. The database occurrence filter removes many redundant candidates for

identification and not all of them. Combination of HRMS with another technique,

first of all MS2, will lead to more definite results. In the general case, a combined

procedure can be implemented starting with each one, e.g., see [180]. For a particu-

lar analytical problem, the order of application of the techniques (or the order of data

analysis if data are simultaneously acquired) depends on whether spectra for the

analytes are present in MS2 libraries. If this is the case, it would be more productive

to start with librarian searches; see Example 7.5 below. Libraries consisting of

spectra with accurate mass value would be the best solution, but they are only

beginning to emerge. Nevertheless, common libraries for low-resolution mass

spectrometry with integer mass values (most in Table 7.8) are also fit to the purpose.

The searches may result in very low MF for hit records. It means that

corresponding reference spectra probably are not available in a library. In this

case, candidate formulas and corresponding compounds should be found in chemi-

cal libraries. Advanced/filtered candidate compounds are further tested as identifi-

cation hypotheses by means of (a) interpretation of tandem mass spectra, (b)

prediction of retention parameters, and/or (c) co-analysis with the proper reference

materials; see Example 7.6 in Sect. 7.4.3.

Example 7.5.Here, the identification potential and productivity of techniques

of HRMS and MS2 are estimated for the test set of 18 pesticides (see Example

6.1, Fig. 6.6, and Table 7.14). ESI–HRMS1,2 spectra were simultaneously

acquired for corresponding reference materials (the Orbitrap instrument). So

(a) accurate m/z of [M+H]+ ions and (b) MS2 spectra, six per compound, were

obtained.

If identification starts with HRMS data (see Fig. 7.8), it would result in 171

candidate formulas without their filtering. Among them, 48 formulas occurred

in PubChem at least one time, and 23 passed the filter of 5% of the overall

occurrence rate; see Example 6.1. In any case, 23 or 48 elemental composi-

tions correspond to hundreds of individual compounds (Table 7.14). To

continue identification, these compounds should be found in chemical data-

bases and reference MS2 spectra should be also found, recorded, or predicted

for widely occurring compounds from those hundreds of structures. Next,

reference or predicted spectra should be compared to experimental ones.

However, many spectra are unlikely to be found or predicted with the neces-

sary accuracy. Even if one supposes that the abundant candidate compounds

are not very numerous and the required spectral data are available, it would be

a lengthy procedure to test this volume of hypotheses from the beginning.

(continued)
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Some other approaches to identification based on a very challenging combina-

tion of HRMS and MS2 have been reported, e.g., see [133, 140, 176, 178, 181–183].

High molecules. This section is mostly devoted to low molecules. Applications

of HRMS for identification of high-molecular compounds, e.g., in proteomics is

also very essential. Reduction in the number of candidate formulas of peptides is

not the only gain obtained from the use of this technique. A new analytical

In general, the conclusions about the use of only HRMS are that (a)

individual identification is impossible, (b) all pesticide formulas meet the

criterion of low difference between experimental and formula mass (measured

difference < 4 ppm), and (c) 2/3 formulas are identified as true ones with low

FPR, i.e., other candidate formulas have less than 5% of the overall occurrence

rate (see Example 6.1).

The start with experimental MS2 spectra is more productive and advanced.

The special TaMaSA library was developed for pesticides (Table 7.8), eval-

uated for true and false result rate (Fig. 7.7), and used for this case. The results

of library searches are given in Table 7.15. Fifteen from 18 results are reliable

true positive or negative ones which are based on the low probability of a false

result. The remainder are false or less certain results. Combining these results

with those obtained with the use of HRMS changes that relationship.

The identity of eight pesticides reliably recognized byMS2 is confirmed by

the use of HRMS, with low probability of FP estimated by means of occur-

rence searches in the database (Table 7.15). The other two from ten reliable

TP go into the group of less certain results (< 95% “true” occurrences). The

overall conclusion about the use of both techniques is that the 13 from 18

results are true, with a low false result rate. It is just the level of screening

methods to which identification based on database searches refers in most

cases. It should be noted that MS2 spectra of other candidate compounds, if

available, could affect the above estimations.

Table 7.15 Test for identification of 18 pesticides

Number of

compounds

MS2

Resulta Reason

Number of

compounds

MS2 and HRMS

Combined result Reasonb

10 TP 1st rank of the spectrum

in hit list, FPR < 5%

8

2

TP and TP

TP and ~TP

> 95% occurrences

< 95% occurrences

2 ~TP 1st rank of the spectrum

in hit list, FPR > 5%

1

1

~TP and TP

~TP and ~TP

> 95% occurrences

< 95% occurrences

1 FP 3rd rank of the spectrum

in hit list

1 FP and ~TP < 95% occurrences

5 TN No spectra in the library, TNR < 5 %.
aThe ranges for MF corresponding to different positive and negative results are shown in Fig. 7.7.

~TP specifies the particular TP result which is relatively uncertain, i.e. FPR is larger than 5%
bSearches in PubChem; see Example 6.1. Here ~TP specifies the TP result with <95% of overall

occurrences in that database
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methodology has been developed which includes an initial characterization of

intact protein ions by accurate masses (‘top-down” approach, see [184, 185]).

High resolution is required for resolving overlapping isotope peaks of multi-charged

protein ions ([M+nH]n+) typical for ionization of these high-molecular compounds

in conditions of ESI [154, 155]. The distance between peaks in such spectra

expressed in the mass unit is very short (1/n Da); see Fig. 7.9. Thus, high-resolution

measurements take it possible to resolve a peak and to determine a charge of an ion

and further generate possible molecular formulas.

7.4.3 Spectral Interpretation

In addition to searches on spectral databases, non-target identification can be also

provided by means of computer-assisted methods commonly used for the structure

elucidation of new organic compounds. This approach is of more value for identifi-

cation of compounds whose spectra are unavailable in libraries. The methods of

computer-aided structure elucidation based on the use of expert systems are briefly

considered in Sect. 4.5.5. Modern systems of this kind are mainly intended for

structure interpretation of NMR spectra, and approaches related to other types of

spectra have been also developed [187–189].

In mass spectrometry practice, especially in that of MS2, computer systems

which are directed to the prediction of mass spectra from structures of organic

compounds, based on known fragmentation rules, have been increasingly used.

The most popular programs probably are Thermo/HichChem Mass Frontier [98]

(applications, e.g., see [128, 129]) and ACD MS Fragmenter [190]; some other

programs have also been created [191]. The use of the MS Frontier software is

demonstrated in Example 7.6. In this and many other cases of complex structures

of analytes, such a program of the predictor type has a heuristic value, rather than

providing strong evidence for absolutely reliable identification.
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In determinations where an analyte amount is sufficiently large to record IR and/

or NMR spectra and an analyte is sufficiently pure, MS could be used in combina-

tion with those spectral techniques [187, 189, 193].

7.5 IR Spectroscopy

IR, and to a lesser degree Raman spectroscopy, have traditionally been required for

structure elucidation of pure new organic compounds using reference data on full

spectra or individual specific bands; see references in Sect. 2.8.2 and also [194,

195]. This is the kind of general approach 4 to identification; see Table 1.4.

Traditional methods of such spectral interpretation rely on the analyst’s experience.

Software tools have appeared to assist in verification and interpretation of IR

spectra, which may provide more rapid and reliable identification. Software of

this sort uses spectral interpretation rules based on spectra–structure correlations,

e.g., see [196–198]. It is also possible to obtain information about substructures of

unknown analytes from similar spectra of other compounds retrieved by searches in

IR spectral libraries [199, 200].

Reference IR spectral libraries (including NIR and Raman, Table 7.16) are

mostly used for direct identification of compounds by matching their spectra with

reference ones (general approach 2, Table 1.4) as well as in mass spectrometry. The

use of IR spectroscopy is especially appropriate when there is a rather large amount

of a substance and no need to determine minor components of complex mixtures. It

is the case of product quality control and authentication of various samples,

identification of microorganisms, and so on (Chap. 8).

Each of the large commercial databases (Table 7.16) can be supplied as an

integrated package, or one of the special libraries devoted to, for example, polymers

and related compounds, organic, inorganic and organometallic compounds, indus-

trial chemicals, compounds of forensic and environmental interest, pesticides, dyes,

pigments, coatings, vapors/gases, and so on. Typical spectra are ones recorded by

FTIR. Special libraries are or may be originated from different producers/vendors;
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Fig. 7.9 The peaks view of the [M+10H]10+ ion of horse myoglobin (C769H1212N210O218S2,

monoisotopic mass 16,940.96) depending on the resolution: (a) 15,000, (b) 25,000, (c) 30,000,

and (d) 50,000. The spectrum was generated by the use of the MS-Isotope program [186]. A

resolution not less than 50,000 is evidently required for more accurate measurements
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replicates of the same collections are or may be presented in different integrated

libraries.

There are also other large non-commercial spectral collections.

Example 7.6. This is identification of the component of algal biomass by

means of the high-resolution tandem mass spectra of the [M+2H]2+ precursor

ion (Fig 7.10). With the accurate mass of this ion and the criterion of Delta

(ppm) � 3, all possible formulas were generated (see Table 7.13). Only four

formulas and 14 corresponding compounds were found in PubChem (this

database, see Table. 6.2). Searches in Internet did not enlarge this number of

formulas.

Three-step fragmentations of the [M+H]+ ions of eight compounds were

further generated using the Mass Frontier software, version 5.1.0.1. Six

isomers of the C45H70O15 formula were not taken into account because

they did not contain nitrogen atoms, and only molecules of basic (mostly

N-containing) compounds form doubly and multicharged ions (multiply

protonated molecules). Ion masses of fragments predicted by the program

were compared with experimental mass values (see Fig. 7.10). Here, it should

be noted that Mass Frontier does not fragment doubly protonated molecules

and only handles single-charged ions. Therefore, the comparison of the

experimental cleavages in the [M+2H]2+ ion with predicted fragmentations

of [M+H]+ ions was some kind of speculation.

The highest number of matches, precisely nine from the 15 most abundant

single-charged ions in the spectrum (Fig. 7.10), was observed for anabaeno-

peptin F 7.1, a compound with the formula C42H62N10O9 which was isolated

from cyanobacteria contained in the sample of just the same type [192]. In the

case of the second hit, isomeric anabaenopeptin E 7.2, there were two fewer

matches. These refer to the fragments 7.3 and 7.4 predicted only for the

precursor 7.1. It looks very plausible because one can easily see that these

ions, 7.3 with sec-butyl group and 7.4 with unsubstituted p-hydroxyphenyl,
are fragments of 7.1 rather than 7.2. The same matches as for 7.2 were

observed in the case of its isomer, where a methyl substitute of p-hydroxy-

phenyl group is transferred to oxygen atom. There are far fewer matches for

five other compounds considered.

Thus, anabaenopeptin F 7.1 is the most probable result of identification.

However, (1) the speculation was done (see above) and (2) it is theoretically

possible for a large number of isomers of 7.1 to exist. So a rigorous analyst

will consider this identification as a tentative one needing to be confirmed, for

example by co-analysis with the reference material.
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l Database of National Institute of Advanced Industrial Science and Technology

(AIST, Japan) [92], free on-line searches. The database contains about 52,100

FT–IR spectra and 3,500 Raman spectra.
l SpecInfo [96], with access for eligible users. There are 21,000 IR spectra.

Special databases should be also selected:

l Gas/vapor IR spectral collections [207, 208] (vapor spectra of organic com-

pounds are also included in some databases, noted in Table 7.16) which are
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Fig. 7.10 Mass chromatogram and MS2 spectrum of the component of algal biomass sampled in

the Sestroretskij Razliv lake near Saint-Petersburg, Russia (summer, 2008). Mass spectra were

acquired on the LIT–Orbitrap high-resolution tandem mass spectrometer. The chromatogram was

recorded for the precursor [M+2H]2+ doubly charged ion with m/z 426.2425. In this mode of MS2,

fragment ions were formed in IT and further separated by accurate m/z and detected in Orbitrap.

In the initial ESI–MS1 spectrum, the peak of common [M+H]+ ions was also observed.

Corresponding fragments were less characteristic
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characterized by the highest resolution achieved, as compared to spectra for

other phase states and intended for atmospheric environmental monitoring and
l The library of spectra of coryneform bacteria: 730 reference strains, covering

220 different species from 46 genera [209]

For the given library, a search result may depend on the search algorithm connected

with the particular MF. Various commercial algorithms make it possible to find

compounds of similar structure if spectra of unknowns are not available in the library,

or reduce the effects of offset or slope in the baseline which increases differences

between spectra compared; see Sect. 4.4.4. A high-resolution spectral library

improves the spectral match between the unknown sample and library references as

compared with common resolution. For example, characteristic shoulders of a stron-

ger absorbing peak may be seen only in a high-resolution library spectrum [210].

In contrast to the above MS libraries, there have not been many reports on

performances of librarian searches in IR spectral libraries. The exceptions can be

exemplified by (a) the evaluation of an IR spectral library searching for the purpose

of identification of automotive paints [211], and (b) performances of the Raman

spectral library built for 309 pharmaceutical reference materials [212]. In the

second case, a significant fluorescent signal observed for some test samples pre-

vented identification (TPR 88–96% depending on the search algorithm). Without

those cases, TPR was up to 100% [212].

7.6 NMR Spectroscopy

This type of spectroscopy, mainly proton and 13C NMR, has been traditionally used

for structure elucidation of new organic compounds by organic chemists, based on

reference tables of chemical shifts and spin–spin coupling constants; see references

in Sect. 2.8.3 and [195]. Now, special computer expert systems containing structure

generators, spectra predictors (Table 7.17), and other software modules assist

Table 7.16 Large commercial IR spectral libraries a

Name Spectra Remarks

HaveItAll IR [201] over 233,000 88 databases, including NIR and Raman

spectra

NICODOM IR [202] 150,758 Smaller packages/libraries of various

vendors, including Raman and NIR

collections

ACD/IR and Raman [203] Over 100,000 13 libraries, including Raman spectra

Nicolet, Aldrich, and related

IR libraries [204]

Over 88,000 Ten libraries, including Raman and high-

resolution spectra (4 cm�1 resolution)

Thermo IR [205] Over 41,000 15 libraries of various vendors.

FDM FTIR/Raman [206] Over 33,000 20 databases, including Raman spectra
aMay be available also in other collections
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chemists in setting up, evaluating, and accepting/rejecting identification/structure

hypotheses [213].

An initial hypothesis is a known molecular formula or one of the compounds/

structures corresponding to this formula. Similar structures, as other candidates for

elucidation, can be further generated. For each structure, spectra are predicted and

compared with experimental ones. Hypotheses are ranked by the MF (Sect. 4.4.3)

for these structures. Compounds having the best MF are the most probable candi-

dates for identification [188, 189, 197, 213–216].

There are several methods for predicting NMR spectra which are based on additiv-

ity rules (incremental approach), correlations between structures and spectra, ANN, so

called hierarchical organization of spherical environments (HOSE) code, and so on;

see references in Table 7.17. The HOSE code algorithm uses data from databases

where chemical structures and their NMR spectra are present. Also, quantummechan-

ical calculations of chemical shifts can be found in the literature [216].

In the right column of Table 7.17, evaluations of the shift prediction accuracy are

given; the accuracy for 1H chemical shifts of 0.17–0.18 ppm, has also been reported

[225]. These are indicators of the predictability efficiency of different algorithms,

but not the direct measure of reliability of identification/structure elucidation.

Estimations of identification trueness have been made by matching experimental
1H and 13C spectra of test structures with theoretical spectra predicted for a set of

known structures; structures corresponding to the best matching were considered as

true results [226]. Another evaluation method was based on statistics of MF (see

Sect. 4.4.3) for experimental and predicted spectra of test structure sets. The low,

medium, and high MF were initially referred to as negative, ambitious, and positive

results respectively; positives and negatives definitely appeared to be true or false

[227–229]. All these rates of prediction are collected in Table 7.18. The rates

depended on what techniques, test sets, and prediction algorithms had been used.

In most cases, more than 50% of predictions were correct.

Table 7.17 Prediction of NMR chemical shifts

Predictor Algorithma Nuclei Accuracy, ppmb

NMRPredict [217,

218]

HOSE code, ANN,

functional

groups based

1H, 13C, 15N, 19F, 31P,
17O, 29Si, 2D

1H: down to 0.14 [219]
13C: 1.4c [220]

ACD/NMR

predictors [216,

221]

additivity rules,

ANN, HOSE

code

1H, 13C, 15N, 19F, 31P,

2D (1H-13C)

13C: 1.59c (ANN) [222],

1.8 (additivity rules,

ANN) [216]

CSEARCH [218] HOSE code, ANN 13C 2.19–2.22c

Upstream Solutions

NMR prediction

[223]

Additivity rules 1H, 13C 1H: 0.2–0.3 (90% of CHx

groups), 13C: 3.8

(> 95% shifts)

SpecInfo [96, 224] Rule-based,

database-based

1H, 13C, 19F, 31P, 17O

aThe authors’ names of algorithms are given
bAverage deviation between calculated and experimental chemical shifts
cThe NMRShiftDB data set, see Table 7.19, was used to evaluate the prediction accuracy
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Another approach to identification, direct matching of reference NMR spectra as

well as in MS and IR spectroscopy, was made possible with an appearance of the

respective databases/libraries (Table 7.19; see also [125, 242]). Special libraries have

been built in metabolomics and proteomics (Table 7.19). Together with MS, NMR

spectroscopy belongs to the main instrumental techniques of metabolomics (e.g., see

[243]). Both platforms can lead to complementary results of metabolite analysis [244]

or correlate between each other [245]. The term of metabonomics is sometimes used

instead of metabolomics if just NMR is the analytical technique (e.g., see [244]),

although there is some semantic difference between the two concepts [246].

In early evaluation of 13C NMR libraries, TPR was up to 94% [247]. Recently,

evaluations were made for identification of metabolites contained in biofluids of

complex composition by means of 2D NMR spectrometry, with the use of a

specially built library consisting of reference spectra of about 500 compounds

and special software [248]. The rate of TP was about and over 80%, which can

be evaluated as a high value, given that the analytes were not isolated [248]. A bit

earlier, even higher estimates of TPR and TNR were reported for the same instru-

mental technique and similar samples [249].

7.7 “Omics”

Advances in genetics and genomics have originated a plenty of research fields

combined with the “omics” suffix in their names and the “ome” suffix in the names

of corresponding subjects of scientific research.

The goal of ‘omic’ approaches is to acquire comprehensive, integrated understanding of

biology by studying all biological processes to identify the different players (e.g., genes,

RNA, proteins and metabolites) rather than each of those individually [250].

Among different “omics”, metabolomics (metabolome, the particular study of

metabolites; see Sects. 7.7.1 and also 7.4.1.3) and proteomics (proteome, the

Table 7.18 Evaluations of prediction efficiency

Reference Technique Result

[227] 1H St 97–100%, Sp 60–100%, not including 2-50% ambiguous

results

[226] 1H, 13C St 49–63% and 65–92% (known molecular formula)

[228] 1H St 91–100%, Sp 67–100%, not including 7–17% ambiguous

resultsa

1H and 2D 1H-13C St 92–100%, Sp 94–100%, not including � 7% ambiguous

results

[229] 1H Sp 28%, at 10% ambiguous results
1H and 2D 1H-13C St 56%, Sp 21%, at 23% ambiguous results

See also [230, 231]
aWithout results for very small samples
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particular study of proteins, Sects. 7.7.2 and also 4.4.2.3, 4.5.4.3, and 7.4.1.4) are

from widespread “omics” fields, and directly correlate to issues of chemical identi-

fication, even if not fully relevant to the goals of the book. In these and other

“omics”, there are great analytical challenges relating to:

l The general complexity of the sample
l A vast number of target analytes (hundreds, thousands, tens of thousands in the

same samples)
l Large diversity of their structures
l Large dynamic ranges of abundance of different analytes, up to 108–1012

l Very low concentrations of many biocompounds (� 1 pg/l � 1 ng/l)
l Their rapid transformations in living systems, and so on [250].

Table 7.19 NMR spectral databases

Name Spectra/records Remarks

SpecInfo [96] 359,000 13C, 130,000 1H, 90,000

heteroatoms

Heteroatoms: 15N, 17O, 19F, 11B, 31P.

Access for eligible users.

Prediction of spectra

HaveItAll NMR,

HaveItAll

XNMR [232]

Over 438,000 13C, over 51,000 1H,

71,000 heteroatoms

Heteroatoms: 19F, 31P, 15N, 17O, 11B,
29Si. Prediction of solvent-specific

chemical shifts. Also 1,060 spectra

of metabolites and 740 those of

monomers and polymers.

ACD/NMR [233] Over 200,000 13C, 210,000 1H, over

53,000 heteroatoms, and others

Heteroatoms: 15N, 19F, and 31P. Eight

databases, including Aldrich NMR

library. Prediction of spectra

NMRPredict

[234]

465,349 13C, 1H, 19F, 31P, 15N, 17O, 11B, 29Si

NMR. Three subcollections.

Prediction of spectra.

CSEARCH

[235, 236]

75,000 13C NMR spectra. Access is to be

allowed, prediction of spectra.

NMRShiftDB

[237]

Over 47,000 38,802 compounds. 13C, 1H, 15N, 31P.

Free on-line access, prediction of

spectra.

SDBS [92] 13,500 13C, 15,200 1H Free on-line access

MMCD [141] 20,306 compounds Metabolites, 1H and 13C, including 2D.

Free on-line access

HMDB [121] 1,800 compoundsa Metabolites, 1H and 13C. Free on-line

access

MDL [238] Access for privileged users

BMRBb [239] 3,964,515 1H, 13C and 15N chemical

shifts of proteins and peptides and

over 54,000 13C, 1H, 15N, 31P

shifts of nucleic acids

Repository for NMR spectra of

biomolecules. Free on-line access

RefDB

[240, 241]

2,162 files Evaluated 1H, 13C and 15N chemical

shifts of proteins from

BioMagResBank. Free on-line

access
aProbably, not all compounds are unique
bIt was concluded that nearly 40% of protein entries deposited in this data bank had at least one

erroneous assignment of the chemical shift [241]
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7.7.1 Metabolomics

This is the new field of bioanalytical and biological research [180, 243, 250–252].

Corresponding definitions, including these of analytical procedures, are given in

Table 7.20. Those can be accomplished with the quotation:

Metabolomics can be used for two major and very different purposes: the screening for

differences between global metabolic fingerprints of cohorts of populations, which is

often referred to as metabonomics, or efforts to understand the regulatory structure of

metabolic pathways, its connectivity, control of cellular concentrations and fluxes of

metabolites, and partitioning of metabolic products between cellular compartments and

excretion [180].

Table 7.20 shows that there are three principal groups of analytical procedures in

metabolomics: targeted analysis, metabolic profiling, and metabolic fingerprinting.

The first two are related to identification of individual compounds. Most analyses

are performed with GC–MS, LC–MSn (HRMSn), and NMR techniques [180, 243,

250–252]. GC–MS is mainly used for plant metabolite analysis, e.g., see [125, 126].

In this field of metabolomics, derivatization of metabolites is often needed to obtain

volatile and thermostable compounds. NMR spectroscopy (Sect. 7.6) has been used

for metabolic profiling, e.g., that of physiological fluids (serum, urine) though the

sensitivity of this technique is not the highest. This limitation also applies to IR

spectroscopy. The technique of CE–MS can be used instead of LC–MS for deter-

mination of polar (ionizable) metabolites [85].

In general, identification of components of very complicated biochemical sam-

ples is a prerequisite for solving the inherent problems of metabolomics. Different

types and subtypes of qualitative analysis (see Chap.1) as well as outcomes of

identification operations may be:

Table 7.20 Definitions related to metabolomics (adapted from [243, 251, 252])

Concept Definition

Metabolome The complete collection of metabolites produced by cellsa present in an

organism

Metabolomics The analysis and the study of metabolome

Metabolite target

analysis

Determination of one or a few selected metabolites

Metabolite profiling Determination of a relatively large number of metabolites resulting in a

(graphic) form of biochemical profiles commonly recorded by

combined separation and detection techniques (mainly,

chromatography mass spectrometry)

Metabolic fingerprinting Rapid, global analysis of biological samples based on their patterns/

“fingerprints”, commonly without separation into fractions, to

classify samples according to their origin, state (physiological and

disease states), and so on

Metabolic footprinting Fingerprinting referring to extracellular metabolites
aThere are also metabolites of foreign compounds (xenobiotics)
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l Identification of known compounds
l Structure elucidation of new ones (named de novo identification in the literature

on “omics”)
l Unambiguous, tentative, and group/class identification
l Ultimate identification failures

All the items are very common for chemical analysis of low-molecular com-

pounds, though considered [180] as something attributive to this field.

Two strategies of qualitative analysis have been proposed [180] (see also

Example 7.5 above).

l The start from HRMS determining accurate ion masses and isotope ratios, then

generation of candidate molecular formulas and search for candidate compounds

in chemical databases.
l The start from searches in MS libraries.

Ultimately, both lead to profiles of metabolite samples annotated with identifiers

of chemical compounds: unambitious identifiers (see Chap. 1) or even retention

parameters and mass spectra. In this context, metabolomists pull together concepts

of identification and annotation.
Groups of metabolite analytical signals such as chromatographic profiles or

integral MS/NMR/IR spectra of biosamples act as fingerprints in metabolic finger-

printing [137, 253–255], which is one of the numerous methodologies of quantita-

tive analysis II (Chap. 8).

Structures of metabolites produced in living organisms can be predicted based

on metabolic reaction rules (Table 6.1). This can facilitate identification of com-

pounds under consideration.

An ambitious goal of metabolomists aimed at global determination of a meta-

bolome seems not to be very attainable.

Metabolic profiling (sometimes referred to as untargeted analysis or metabolite profiling)

provides a more or less holistic study of a metabolome with detection of hundreds or

thousands of metabolites. . . Although metabolic profiling has been described as unbiased

and global, in reality all methods of sample preparation and all analytical platforms

introduce a level of chemical bias [36].

A complexity of a metabolome, poor reproducibility of analytical signals of

metabolite traces, and an absence of analytical standards for many metabolome

components are important factors precluding true metabolic results. However,

many new information technologies and analytical methodologies have been devel-

oped within metabolomics (as well as proteomics, see below) which are very useful

in respect of general progress of analytical chemistry.

7.7.2 Proteomics

By analogy with metabolomics (Table 7.20), proteomics is defined as the analysis

and the study of proteomes. In turn, a proteome is a set of proteins produced by
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a genome present in cell, tissue, or organism. Researchers begun to study pro-

teomes earlier than metabolomes, being guided by considerations such as the

following ones.

Proteomics can be viewed as an experimental approach to explain the information

contained in genomic sequences in terms of the structure, function, and control of

biological processes and pathways. Proteomics attempts to study biological processes

comprehensively by the systematic analysis of the proteins expressed in a cell or tissue.

Mass spectrometry (MS) is currently proteomic’s most important tool [155].

Identification of proteins holds a central position in proteomics [155, 156]. In

Sects. 4.4.2.3 and 4.5.4.3, two main versions of the MS approach (the so-called

bottom-up one) for protein identification are treated:

l Peptide mass fingerprinting
l Peptide fragment mass fingerprinting

Both subapproaches are based on matching an experimental mass spectrum with

theoretical ones which are generated from all amino acid sequences contained in

special data banks. Criteria for identification are related to high score values for the

sequence from peptides/proteins, low scores for all other candidate sequences, and

low probabilities of a random match for an identified peptide/protein (see

Sects. 4.4.2.3 and 4.5.4.3).

There are also other general approaches to MS identification of amino acid

sequences.

l De novo sequencing [155, 256] where fragment ion spectra are interpreted

according to the rules/regularities derived from studies of fragmentation of

protonated peptide molecules; see Fig. 4.8 for types of fragments.
l A version of the method of peptide fragment mass fingerprinting, with reference

tandem spectra retrieved from corresponding libraries (Sect. 7.4.1.4) rather than

generated from amino acid sequences.
l “Top-down” identification based initially on the mass analysis of intact protein

ions (see Sect. 7.4.2).
l Hybrid approaches; see [166].

It should be noted once again that decisions on trueness of protein identification

by existing techniques have been made basing on statistical estimations of signifi-

cance of spectral matching (Sect. 4.5.4.3). The criterion of at least two peptide

matches per protein should also be applied (e.g., see [108, 257, 258]). In establish-

ing the strongest rules for protein identification, some other criteria expressing the

spectral quality have been added [108]:

l Identified peptides should be sufficiently long (length at least seven amino acid

residues)
l Peptide fragments are predictable (at least 30% of b/y ions, see Fig. 4.8)
l Peptides are fully tryptic, i.e., produced by the particular rules of protein

cleavage when trypsin is used; see Sect. 4.4.2.3
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These and other similar rules [163] have been set for identification of peptides

preceding the inclusion of their spectra in MS libraries.

Top quality identification with the use of reference materials (Table 1.4)

widespread in qualitative analysis of small molecules is practically unattainable

in the case of most high molecules, due to a vast number of theoretically possible

amino acid sequences and therefore unavailability of corresponding references.

Without such co-analytical data, a decrease of FP rates can be achieved by a

combination of

l Different identification approaches
l Not the same algorithms of searches in databases and subsequent match scoring
l Data from different ionization techniques, precursor ions, or MSn scans

(different n)
l Analytical results obtained for different pieces of the same protein
l MS data and auxiliary information,

and so on [166, 259–261]. In this context, retention parameters (Sect. 7.3.4) are

considered as an important new type of auxiliary data.

The potential of every method/approach/algorithm is evaluated by interlabora-

tory comparisons in a conclusive way. Some comparisons are shown next.

l Two MS methods based on platforms of MALDI–IT–MS2 and ESI–

ToF–HRMS2 were compared in respect of the analysis of protein samples

isolated by the common technique of 2D gel electrophoresis. A reliable identifi-

cation, i.e., one performed by both methods, was observed for 85 from the total

of 128 identified proteins (66%) [257].
l Comparisons were carried between several search algorithms for matching spec-

tra, using the same test subset of MS2 spectra and the estimation of true and false

result rates. Peptides were conventionally considered correctly identified if the

scores were at the 1st rank hit and fell in the range of low probability for random

match; see Fig. 4.10. Out of 608 peptides correctly identified by at least one

algorithm, only 335 peptides (55%) were recognized by all four algorithms.

Mascot (Fig. 4.10) was the most efficient algorithm/software [262].
l Establishing the most rigorous identification criterion for proteins, with two or

more matching distinct peptides instead of one or more peptides, led to 37%

decrease in the number of discovered proteins. Again, only 55–57% of proteins

were identified by all algorithms. Also, there may be little difference in the

output of the popular search algorithms if improved and consistent scoring

methodology is used [258].
l In an interlaboratory study of reliability of protein identification, 120 laboratories

requested the standard mixture of 49 human proteins. Seventy four laboratories

(62%) reported identification results. On the average, 60% of results (estimated

by the author) from those laboratories were TP. The conclusion was reached that

“success was possibly experience- or technical ability-dependent” [263].
l The study was repeated for another mixture containing phosphorylated and

non-phosphorylated proteins. Problems in relation to phosphorylation site
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identification, laboratory evaluation, and creation of standard materials were

highlighted [264].
l One more interlaboratory study of that sort was carried out by another group.

The test sample consisting of 20 human proteins was distributed to 27 labora-

tories for identification. Initially, only seven participants reported true identifi-

cation of all 20 proteins. Nevertheless, all the proteins had in fact been detected

in all the participating laboratories, but were not reported. The sources of such

FN were noted to be problems that laboratories had in regard to database

searches and spectral data matching [265].

The three last studies are of special value because their results were evaluated in

conditions of traceability to the known identity of original proteins.

On the whole, the comparative experiments showed that there are many labora-

tories with the potential of true identification of proteins. Nevertheless, algorithms

of MS identification by ion mass fingerprinting are still imperfect, and may be hard

to adopt in laboratories. The following conclusion belongs to proteomists them-

selves.

Despite the high-mass accuracy of modern mass spectrometers, the general perception of

the reliability of MS-based proteomics is that it is low [265].

Nevertheless, the progress in proteomics directly or indirectly affects develop-

ments in a general methodology of analytical chemistry.

7.8 Comparison of Spectral Techniques

In this section, brief conclusions will be reached regarding the efficiency of

different spectral techniques in unknown/non-target analysis. General evaluations

of different constituents and features of analysis are given in Table 7.21; particular

comparisons of potentialities of various techniques can be found in the literature,

e.g., see [253].

General conclusions can be divided into two parts, differing according to the

kind of sample.

l A sample contains a complex mixture of analytes being present in low amounts.

Combinations of chromatography with mass spectrometry are indispensable.

Either (a) GC/LC and at least one MS technique or (b) several different MS

techniques should be applied to achieve reliable results for identification.
l A sample of relatively simple composition: the only or a few analytes being

present in rather large amounts. Another case is characterization of just a

sample rather than individual analytes. All three techniques under discussion

are comparable in overall performance and should be used in a combina-

tion with each other or a different technique to obtain reliable identification

results.
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Independently of the particular technique(s), a confirmation of identity by

subsequent co-analysis (Table 1.4, Sect. 5.2) is required in crucial analyses, e.g.,

following mass poisoning or disaster.
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Chapter 8

Chemical Qualitative Analysis II

Abstract Qualitative analysis II is identification/classification/authentication of

such objects as foodstuffs, products, specimens, materials, pollutions, living organ-

isms, and others. Typical procedures of this sort are authentication of food, deter-

mination of its adulteration, oil spill identification, and that of microorganisms.

Identification of an object is based on recognition of its indicative component(s),

measuring ratios between several components of a sample, or fingerprinting overall

sample signals. Almost all analytical techniques are applicable for the purpose, with

an indispensable role for chemometrics/multivariate statistics in processing of

analytical data. In the same way as in identification of individual chemical com-

pounds, quality of identification II is assured by validation of methods, the use of

reference materials, and availability of standard/valid reference data. Examples of

qualitative analysis of vegetable oils, honey, wine, and some non-food samples

are given.

8.1 General

8.1.1 Concepts and Definitions

In its second implementation, chemical identification is recognition of such objects

as foodstuffs, products, specimens, materials, pollutions, living organisms, and so,

on rather than individual chemical compounds and their simple mixtures (see

Chap. 1). Following [1–3], the term of qualitative analysis II is used here. Up to

about ten not fully identical versions of such qualitative procedures occur (Fig. 8.1).

Some typical procedures can be used as examples:

l Authentication of food [6–18]
l Oil spill identification [19–22]
l Identification of microorganisms [23–32]

The type of identification under consideration can be also named qualitative
analysis of complex chemical mixtures [33]. This is not a very exact definition in all

B.L. Milman, Chemical Identification and its Quality Assurance,
DOI 10.1007/978-3-642-15361-7_8, # Springer-Verlag Berlin Heidelberg 2011
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cases, because an object such as a bacterium or fruit is something far more complex

than complex mixtures of chemical compounds. However, if one focuses on

samples extracted from objects identified instead of objects themselves, the defini-

tion related to complex chemical mixtures seems to fit the case.

What is determined is the object type or the object having the particular feature(s).

Detection of features related to an origin and state of an object is predominant in

qualitative analysis II (Fig. 8.2). There is another feature/characteristic closely related

to authenticity and origin. It is traceability (a “non-metrological” procedure; see

Sect. 1.7) which is defined by ISO as “ability to trace the history, application, or

location of that which is under consideration” (see [34]). A special attention has been

focused on food traceability [34].
In a very broad sense, any chemical analysis related to detection of controlled

chemicals in food and so on, and targeted to subsequent characterization of a

sample as hazardous/dangerous or safe according to compliance with some acts,

Quality
- control
- assessment
- assurance

Qualification 

Identification 

Discrimination Differentiation 

Classification

Characterization

Authentication

Adulteration
- detection 

Qualitative
analysis II

Fig. 8.1 Terminology of qualitative analysis II: names of procedures including analytical opera-

tions. Names are partly synonymic and carry different shades of meaning. Identification
(Sect. 1.2), classification, and qualification are rather similar in meaning. Authentication is a

confirmation of identity, “verification of the claimed identity. . .” [4]. Characterization is rather a

determination or description of characteristics/properties/features of an object for its further

identification. The terms of differentiation and discrimination have been used to emphasize a

possibility of distinction between objects or their states under identification. Adulteration is

understood to be “. . .replacing valuable ingredients with inferior ones” [5]; the respective analyti-
cal procedure for determination of those components (adulterants) is named detection or determi-
nation of adulteration. Lastly, these procedures are required when quality of food, materials, raw

products, and so on is controlled/assessed
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standards, rules, regulations, and so on, can be considered as a version of qualitative

analysis II.

8.1.2 Analytical Approaches, Techniques, and Methods

Approaches. Identification of an object is based on identification of

l A single sample component (indicative component, marker)
l Group of components or
l Fingerprinting its composition without certain determination of its constituents

Examples are given in Table 8.1.

Techniques. In contrast to identification I, where individual compounds in com-

plicated mixtures are predominantly determined by chromatography mass spectrom-

etry, there is a wide variety of analytical techniques for chemical qualitative analysis

II; see books [7, 18, 38]. The number of proper applications of GC, GC–MS, HPLC,

HPLC–MS, and MSn is certainly very large. The same holds true for NIR and other

versions of IR spectroscopy [9, 12, 13, 17]. The following techniques are also widely

or rather widely used.

l NMR [39–41].
l Isotopic ratios mass spectrometry [36, 40], pyrolysis mass spectrometry [42] and

direct injection/infusion ESI mass spectrometry (see [43]) which are a very special

branch of MS.

Sample or
subsample

IdentificationObject

Reference

Composition differences due to:

1. type
• species, category/subcategory, taxon,

group/subgroup, grade, brand; organ, cell

2. origin
• botanical/geographical origin, growing 

conditions, production/technology/processing,
treatment, adulteration

3. state
• maturity, ripeness; dysfunction, disease

Fig. 8.2 Schematic of qualitative analysis II. One identifies a subject of a certain type, origin, and

state, analyzing its sample using techniques and methods of chemical identification and reference

data/materials
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l Fluorescence spectroscopy [14].
l Electrochemical sensors [44], including electronic nose [45] and electronic

tongue [46].
l DNA analysis-based methods [15].

What particular technique should be used for qualitative analysis II? This

depends on the kind of object and the version of analysis. In the general case, the

use of several techniques is appropriate, because their advantages and disadvan-

tages are commonly mismatched (Table 8.2) and different indicative components of

the sample are not determined by the same technique/method (e.g., see [47]).

Techniques of chemical analysis have been also applied, together with physical

characterization [48] and sensory analysis [47] of samples.

Standard Methods play the same important role as in analysis I. Some impor-

tant examples are as follows (see also Chap. 5).

l The European Commission regulates methods of analysis of food, e.g., olive oil

and olive-residue oil [49, 50].
l Methods of testing foodstuffs are described or noted in the food standards,

guidelines, and related texts of the Codex Alimentarius Commission (operating

under the aegis of FAO/WHO) [51].

Table 8.1 Different approaches in qualitative analysis II

Analyte, measurand Remark Examples

Individual

component, its

amount

Specific compound in the

sample which characterizes

the object

1. Typical phenolic compounds in food

authentication, e.g., phloretin 20-
xylosylglucoside and phloretin 20-
xylosylglucoside for apples [10]

2. Anthocyanins for detecting the

adulteration of expensive fruit purees

(see [35]).

Diagnostic ratio of

components

Specific ratio between amounts

of the particular

components characterizes

the object

1. Diagnostic ratios of biomarkers for

spill identification of oil and its

fractions [20, 22]

2. Ratios of the heavy to light isotopes of

the same elements (13C/12C, 18O/16O,
87Sr/86Sr and other) for origin

assignment and adulteration detection

of wines [36].

Fingerprinting Identification of objects by

matching their complex

analytical signals with the

use of multivariate statistics

1. Mass chromatograms of oil

hydrocarbons processed by PCA for

characterization of oil spill samples

[33].

2. MALDI mass spectra of milk proteins

for differentiation between industrial

processes or milk samples from

different mammal species,

observation of milk adulteration, and

so on [37]
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l Among standards for identification waterborne oil samples are ASTM docu-

ments, e.g., [21] (see also [20]).
l ASTM standard general methods exist which are developed for identification of

different materials; see [52].
l There are standard methods of NIR analysis of foods, e.g., determination of

cereal proteins [9].
l In the collection of official methods of AOAC International, methods for the

authenticity testing of fruit juices, syrups, and honey and the revelation of the

origin of ethyl alcohol are presented [53]. These methods are based on measure-

ments of the isotope ratio of carbon 13C/12C (the value d13C, ‰) in carbon

dioxide formed upon combustion of organic samples.

Multivariate Analysis and Chemometrics. Another difference between iden-

tifications I and II is that in the second case multivariate/chemometrical methods

(see Sect. 3.4 and [14, 33, 47, 48]) have been far more often applied. There are all

possible methods listed in Table 3.1, and also Bayesian approach [54–57], with the

widely occurring combination of PCA (see Fig. 8.3) and various variants of DA.

There is a standard for implementation of NIR qualitative analysis by means of

multivariate statistical methods [59].

As in the use of other methods/techniques, the potentialities of different statisti-

cal ones are best found out from their methodical comparisons.

l Chemometric analysis of the Vis and NIR spectra by (a) DA (as discriminant

partial least squares regression, PLS DA), (b) k-NN, and (c) SIMCA, (see

Table 3.1) has been carried out to discriminate between unadulterated honey

samples and those adulterated with fructose and glucose. This is a widespread

case of adulteration. The DA version led to the most accurate results as com-

pared to the other two methods [60]
l In solving the same analytical problem, different versions of DA such as PLS

DA, linear (LDA) and quadratic discriminant analysis were tested and com-

pared. Good classification results were obtained with all DA variants tested [57].
l Honey samples have been also differentiated by their floral origin. Techniques of

Vis and NIR spectroscopy with both PLS DA and LDA made it possible to

discriminate between two groups of honey samples with up to 100% trueness [61].

Table 8.2 Comparative advantages and disadvantages of different spectroscopic techniques

applied for the determination of the quality/identity of undiluted milk (adapted from [47])

Technique Sensitivity Information content Interferences Repeatability Light scatter

NIR Intermediate Intermediate Many Intermediate Intermediate

FT-IR High High Many Good Intermediate

Fluorescence High Low Few Intermediate Severe

NMR Intermediate Intermediate Many Intermediate No

Techniques are compared with each other. Terminology is not adapted. Information content can be

defined as the amount of information useful for the purpose of qualitative analysis (see Sect. 2.1).

Availability of interferences characterizes the degree of selectivity of techniques. Commonly, light

scattering limits performances of spectroscopic analysis
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8.1.3 Reliability of Results

Method validation. Chemometric methods proving classification of unknown

samples are developed and tested using training (calibration) and test (validation)

sets of reference samples [14, 41, 54, 56, 58]. The first set is commonly employed to

optimize mathematical models and derive classification rules for the attribution of

unknown objects, whereas the second one is used to validate the classification/

identification reliability of the ultimate optimized statistical model.

The approach to verification of classification models named cross-validation1 is

widespread [12, 14, 47, 54, 57, 58]. Here, the original sample set is selected, which

is further partitioned into subsets. The subsets, with one exception, are used for

training, and the single/excluded subset is intended for testing/validating the model.

The validation process is then repeated with each of the subsets treated exactly once

as the test data. The results can be further averaged/combined to estimate classifi-

cation power.

There may also be a double validation: (a) cross-validation (an internal one) and

(b) subsequent verification procedure with another sample set (named external
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Fig. 8.3 Mid-infrared spectroscopy and PC analysis discriminating between meats of fresh

chicken, turkey, and pork [58]. These data can be further processed by technique of discriminant

analysis for accurate classification and estimating corresponding errors (reproduced by permission

of Elsevier)

1This procedure is also used in validation of bioanalytical methods [62] and evaluation of MS

libraries (without using this term [63, 64]; see Chap. 7).
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validation) [65, 66]. Correspondingly, two estimates for reliability will be produced

(see below).

For the number of tests needed to reliably estimate an error level, see Sect. 4.2.1.

Errors of identification/classification. As the result of any type of qualitative

analysis may be positive/negative and true/false, the identification terminology

related to its reliability and errors (Chap. 4) holds valid for the classification of

objects under discussion. The common concept is correct classification expressed

in percents, i.e., percent of sample truly classified [12, 13, 56, 61, 66]. It is

obviously the same as TPR (or statistical sensitivity; see Sect. 4.2.2 and Table 4.3).

Estimation of these indices incorporated into a validation of chemometric proce-

dures, is shown below. Example 8.1 is that of a triple classification.

Another example refers to the binary classification, with some cases unclassified.

Among other terms, there are for example recognition ability (%) and prediction
ability (%) [54]. These are the percentages of correct classifications of the members

of the training and evaluation sets respectively, with the classification rules deriving

from training procedure. Such rates (80–100%) were evaluated for authentication of

Galician (Spain) honeys by several multivariate methods based on processing of

results of metal determination in the samples; the evaluation sample set was formed

according to the cross-validation rule [54].

Example 8.1

In the report [2], NIR analysis of wastes carried out with the purpose of their

classification into three classes (wood, plastic, and stone) was considered.

Variables were abundances at six wavelengths selected from the range of

1,154–1,700 nm. LDA was used for classification of data obtained. Classifi-

cation rates were evaluated with the test samples of all three groups. The

identification results as normalized ones are given in Table 8.3. The ultimate

error level is not high.

Example 8.2

Wine vinegar has been adulterated by adding alcohol vinegar. To discrimi-

nate between wine vinegar and the product containing adulterant, NIR spec-

troscopy and chemometric techniques, PCA, and the potential functions

method were used [65]. Eventually, both types of individual samples were

(continued)

Table 8.3 Classification of wastes

Sample Classified as (%) Correct classification (St) (%) FPR (%)

Wood Plastic Stone

Wood 98.6 (TP) 0.7 (FP) 0.7 (FP) 98.6 1.4

Plastic 0.0 (FP) 96.9 (TP) 3.1 (FP) 96.9 3.1

Stone 2.9 (FP) 2.5 (FP) 94.6 (TP) 94.6 5.4

Adapted from [2])
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correctly classified in 80–100% of cases, depending on the mathematical

model selected for classification. This is just the index of sensitivity or

TPR, see Table 4.3. In these cases, the statistical specificity or TNR was

estimated for correct unclassification of samples. The index of TNRwas in the

wide range of 0–100%. The best statistical models demonstrated St and Sp of
96–100% and 100%, respectively. The practically essential rate of TPR for

vinegar blends was from about 94 to 100% [65].

These estimates were obtained for the particular validation set; see above.

The cross-validation (internal one) led to not very different values.

8.1.4 Reference Materials

The most reliable approach to classification of objects is when an analyst com-

pares analysis results of unknown samples and reference materials. The latter are

required to train/validate chemometric and other methods. Other purposes are

also declared.

Such CRMs also provide measurement traceability for food exports to facilitate acceptance

in foreign markets, assess compliance with legal limits, and improve the accuracy of label

information that is provided to assist consumers in making sound choices [67].

Main types of proper standards are characterized in Table 8.4. There have been no

available standards for many plant/animal materials because their compositions

depend on many factors, e.g., plant growing conditions and growing site. So those

materials are just substances of variable composition, launching a challenge against

the analyst’s skill and experience. The challenge is that co-analysis of unknown and

reference samples (see Table 1.4) may be impossible due to an absence of a

reference of exactly the same composition.

Sometimes, analysts make reference materials themselves from proper raw

materials in their own laboratories (Table 8.4). Some methods of food authentica-

tion, e.g., based on polymerase chain reaction, may not need corresponding refer-

ence materials [15].

8.1.5 Reference Data on Sample Composition

Among information of this sort, reference data related to food compositions quan-

titatively prevail over those for other objects. Examples are the following.

l Numerous standards, tables, and other documents of the FAO/WHO Codex

Alimentarius Commission [51].
l The FAO International Network of Food Data Systems (INFOODS) [75, 76].
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l The USDA Nutrient Database for Standard Reference of so named key foods
[76, 77].

l The particular data, e.g., the database of authentic poultry samples originated

from the proper research reports [71].

Composition of other objects for qualitative analysis II, e.g., petroleum is search-

able; see [20, 22, 78].

8.2 Objects

8.2.1 Food

A profusion of reports on authentication/classification/characterization/ of food

samples have been published, e.g., see [6–18]. The emphasis was put on analysis

of plant oils (first, olive oil), honey, wines and some other foodstuffs and beverages

because of their sales volume and the practice of their adulteration.

In the context of the authenticity of edible oils and fats, three main areas have to

be differentiated:

l Economic adulteration, i.e., blending of cheaper oils with commodities of higher

economic value.
l Minimally processed (non-refined, cold-pressed) oils.
l Characterisation and denomination of geographical origin [79].

Oils and fats [6–8, 12, 15, 39–41, 45, 66]. Here, detection of adulteration of

olive oil is the challenge for analysts. Adulterants are cheaper oils such as soybean

oil, sunflower oil, walnut oil, hazelnut oil. The latter is not easily detectable due to

its similarity to olive oils in composition [80].

Table 8.4 Types of reference material for qualitative analysis II

Type Example

Individual component (markers) of samples Oil hydrocarbons [68] , triglycerides [69]

Reference substance of nominal isotope ratio Standard mean ocean water (isotopes of H and O),

atmospheric air (N), Pee Dee belemnite

(limestone, C), Canyon Diablo triolite (iron

meteorite, S) [36]

Authentic food sample from outside Established reference oil (petroleum) [70], plant

oils [69], poultry samples [71]

Home-made standard of food, drinks, raw Dried samples of medicinal herbs [72], “model

wine” [73], plant oil from seeds [69]

Food-matrix standard reference material

characterizing nutrient, element, and

contaminant concentrations

Fatty acids and cholesterol in a frozen diet

composite, trace elements in spinach leaves,

whole milk powder and other NIST and non-

NIST standards/certified reference materials

[67, 74]
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In general, a modern analytical method is based on separate detection of

triglycerides, main components of plant oils. Triglycerides of different fatty acids

and their different ratios characterize various oils. There are different types of LC

which are very efficient for analysis of corresponding mixtures (e.g., see [69, 81]),

although GC may also be usable to some degree [81]. Using the technique of UPLC

with different detectors, one can detect and identify different oil impurities but not

more than a few percents of other seed oils in olive oil samples [82]. Most other

techniques and methods, including chemometric ones (Sect. 8.1.2), have also been

required to analyze olive and other vegetable oils.

Honey [12, 13, 48, 53, 54, 60, 61]. Several examples of honey authentication

were cited above.

The adulteration of honey has been commonly performed by its extension with

sugar solutions, syrups, and also simple mixtures of fructose and glucose. Techni-

ques of near- and mid-IR spectroscopy followed by chemometric processing of

data, correctly classify 88–100% of honey authentic samples and samples mixed

with those adulterants [12, 13]. The use of isotope analysis as the standard method

[53] should be noted once again.

Wine [65, 73, 83, 84]. Again, isotopic ratio mass spectrometry is a valuable

technique for authentication ofwines, e.g., bymeasuring 18O/16O and 13C/12C isotope

ratios in glycerol, the significant by-product of wine fermentation [73]. There are also

other applications of this technique to detect sugar additions and wine watering, and

to determine product origin/traceability [83, 85]. It has been proposed that grapevine/

wine identification be performed by DNA analysis, e.g., see [86]. Different techni-

ques combined with chemometrics are also outlined in Table 8.5.

Other foodstuffs and food raw materials tested for purposes of qualitative

analysis II are: coffee [87], essential oils [88], fruit juices [12, 13, 40], meat/fish

[71], milk and dairy products [11, 18, 37, 47], organic food [89], tea [90], and

transgenic foods [17].

8.2.2 Oil Spills

Oil spills became a global problem many years ago. The characterization/identifi-

cation of spilled oils is a conclusive part of assessments related to the liability

Table 8.5 Some techniques combined with PCA and DA for qualitative analysis of grape and

wine

Techniques Purpose

Electronic nose Wine classification, wine spoilage, classification of

aroma compounds

Electronic nose and tongue Wine classification

NIR Discrimination of Riesling and Chardonnay wines

NIR and MIR Wine grading

Adapted from [84])
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for oil released into the environment. There are a number of methods for such

identification. The most reliable methods are based on the combination of chroma-

tography and mass spectrometry [19–21].

Figure 8.4 shows the chart for the accepted protocol of oil spill identification

using GC–FID and GC–MS [22]; see similar procedures in [19–21]. According to

this methodology, (a) chromatography profiles or abundance ratios of n-alkanes,
PAH, (b) hydrocarbon biomarkers of terpane series, e.g., hopane 8.1, C30H52, and

the sterane series, e.g., cholestane 8.2, C27H48 (different enantiomers of both

hydrocarbons), and (c) other characteristic compounds are compared between oil

extracts of the spilled sample and suspected sources. Matching corresponding

analytical signals implies TP in regard to the suspicion. No match recorded

means that the result is negative, but this may be FN if composition differences

are caused by weathering and/or degradation of oil in water and soil. Thus, the

origin of differences must be made clear, e.g., special supplemental experiments

should be carried out with “intact” oil samples undergoing artificial weathering.

8.1
8.2

There are different types of matching. A semi-quantitative match is sufficient for

alkanes and PAH. A certain match is required for diagnostic ratios of biomarker

hydrocarbons recorded by GC–MS. The match degree between the spill and an oil

source can be estimated by the use of t-criterion (3.14) and (3.15); analogous

estimations are made with the use of confidence intervals [22]. A significant/positive
match means that the criterion (3.14) is fulfilled for difference between ratios at the

level of a � 0.05. Possible match means that a larger difference in ratio values, at

a � 0.02, is obtained. A significant difference (a < 0.02) leads to the conclusion of

no match. The fourth kind of conclusions an inconclusive result, is made when, for

example, heterogeneity of oil samples is observed. Many details of this methodology

are placed in its updated version [22]; the terms in italics are from this report.

The cited [22] and other recent methodologies have been largely focused on just

biomarkers [91] as oil components most resistant to weathering/biodegradation. For

example, it was proved in the case of heavily biodegraded oils that diagnostic ratios

of some triaromatic steranes and high molecular-mass terpane and sterane did not

reveal significant changes during biodegradation [92].

The above methods certainly fit the purpose of identification of not only crude oil

but also its fractions (oil fuels), e.g., spilled diesel [68, 70]. For this fuel, it has been

demonstrated that the number of biomarker diagnostic ratios can be reduced using

PCA [93]. For chemometrics applied to the problem of spilled oils, see also [33].
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Fig. 8.4 Oil spill identification flow chart [22] (reproduced by permission)
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8.2.3 Microorganisms

The possibility of the deployment of biological weapons, including microorganisms

(viruses, bacteria, ricketsia, fungi), asks for rapid and efficient methods for charac-

terization of these objects at the level of the species, subspecies, strain, and others.

Together with traditional tests and methods of DNA analysis (e.g., see [23]), IR
spectroscopy [24–26] and mass spectrometry [27–32] have provided advanced

methods for this field of qualitative analysis II.

The identification approach by IR is based on librarian searches [24, 26] or

fingerprinting using chemometrical methods of data processing and classification

[25]. Spectral database of coryneform bacteria (730 reference strains, covering

220 different species from 46 genera) makes it possible to correctly identify 98%

of the validation set of 208 strains at the species level. This was the result of internal

validation, where single replicates of strain spectra available in the spectral library

were tested vs. the database. The second validation was an internal one, with strains

absent in the spectral library. The result was the correct identification of 87 and 95%

at the species and genus level respectively [24]. In both cases, the identification

criteria were the best matching and high MF values (see Chap. 4). Equally good

identification results were achieved in some other researches using this method

(see references in [24]).

Recently, approaches based on MS techniques and methods of proteomics

(Chap. 7) have become popular.

Confident identification of an organism can be achieved by top-down proteomics following

identification of individual protein biomarkers from their tandem mass spectra. In bottom-

up proteomics, rapid digestion of intact protein biomarkers is again followed by MS/MS to

provide unambiguous bioagent identification and characterization [32].

The identification is related to organism-specific protein biomarker molecules (the

first approach in Table 8.1) and/or specific distribution of a protein group (the third

kind of identification, Table 8.1). Unique proteins are recognized by a peptide mass

or fragment mass fingerprinting (Sect. 4.4.2.3) or even by direct mass measuring if

corresponding sequences are short and have no isomers. Techniques of MALDI

[27, 29, 31, 32] and ESI–MSn [28, 30] have been required for recording mass

spectra of intact protein ions and their fragments, respectively.

Multi-peak protein MALDI spectra are processed by means of chemometrics,

as well as any other multidimensional data (see above), which results in up to

100% TPR and PPV [31]. Such spectra can be also used as reference ones in

library searches; a library of about 3,500 spectra, with replicate strain ones for

most species, was built [29]. The rate of correct identification (TPR) with the use

of this database ranged between 33 and 100%. The lower percentage was

explained by “poor representation of some species within the database” [29].

For bacterial identification based on MALDI and database of protein masses, see

also [27].

Identification of bacteria using MS2 was carried out by comparing experimental

peptide fragment spectra with those predicted based on the special proteome
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database constructed from 87 [28] and 170 [30] sequenced bacterial genomes; true

positive results of classification were reported for most test cases.

8.2.4 “Omics”

Metabolic Sect. 7.7.1 and peptide/protein (proteomics, Sect. 7.7.2) profiles are

characteristics of different metabolomes and proteomes, originated from different

species, organisms, organs, tissues, populations of cells, individual cells and their

different states (“normal” function, dysfunction, good health, disease, status of

metabolism, and so on), see [94]. Numerous researches have been carried out to

develop and validate methods of profiling. For example, the capability of differen-

tial profiling up to 30,000 different ions of both metabolite and peptide molecules

by LC–MS has been demonstrated [95].

Multisignal metabolic profiles have been processed by techniques of multivari-

ate statistics to classify/differentiate biosamples, e.g., according to their classes/

types, responses of organism to toxicity or disease, and so on [43, 96–101].

Appropriate software has also been engaged to detect the contribution of individual

compounds to multidimensional data, e.g., to discover biomarkers [100]. Just as in

metabolomic data, MS– and LC–MS-based proteomic profiles/patterns have been

used for clinical diagnosis and biomarker discovery, e.g., see [95, 98].

8.2.5 Other Objects

Methodologies of qualitative analysis II similar to those outlined above have also

been applied to paintings [102, 103], counterfeit drugs [104], powder residues

[105], and so on.
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103. Zadrożna I, Połeć-Pawlak K, Głuch I, Ackacha MA, Mojski M, Witowska-Jarosz J, Jarosz M

(2003) Old master paintings – A fruitful field of activity for analysts: Targets, methods,

outlook. J Sep Sci 26:996–1004

104. Olsen BA, Borer MW, Perry FM, Forbes RA (2002) Screening for counterfeit drugs using

near-infrared spectroscopy. Pharm Technol 26:62–71

105. MacCrehan WA, Smith KD, Rowe WF (1998) Sampling protocols for the detection of

smokeless powder residues using capillary electrophoresis. J Forensic Sci 43:119–124

References 253

http://www.iosc.org/papers/2008%20052.pdf
http://www.iosc.org/papers/2008%20052.pdf


Chapter 9

Good Identification Practice

Abstract Good identification practice is considered as an underlying system of

particular requirements and guidelines with regard to laboratories, personnel,

instruments, and methods directed to quality assurance and quality control of

chemical identification (qualitative analysis). Terminological standardization and

“metrologization” of qualitative analysis are stated to be general prerequisites for

consistency and comparability of identification results between analytical/bioana-

lytical chemists and laboratories. Requirements and guidelines concerning quality

assurance and control of identification procedures which are contained in official

laboratory guidances are considered. According to principles of good identification

practice, criteria for detection and identification in target methods, screening and

confirmatory ones, should be formulated and validated. Accepted levels of false

result rates are established. In non-target/unknown analysis, approaches to identifi-

cation should be validated, which include evaluation of pertinent databases, spectral

libraries, predictor programs, identification/classification algorithms, and so on.

Interlaboratory studies provide assessment of laboratory performances and evalua-

tion (validation) of identification methods/approaches.

9.1 General

Processes for obtaining true, unambiguous, accurate, precise, and reproducible

results of chemical analysis, i.e., high-quality analytical data have been supported

by both requirements to performance and quality of analytical procedures

incorporated in analytical methodology itself, and supplemental quality assurance

and quality control (QA/QC) programs [1–3] based on international [4] and national

standard requirements and related to the GLP principles [5]. Different aspects of

QA/QC as applied to chemical identification and other procedures of qualitative

analysis are shown in Fig. 9.1 and will be considered in this chapter, starting with

issues of terminology and metrology.
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9.2 Standardization of Terminology

As in any other field of science, technology, and practice, qualitative chemical

analysis needs clear, definite, and unambiguous terminology. Current problems

with regard to the terminology can be divided into three groups.

1. Concepts and terms are absent in basic glossaries such as IUPAC Compendium

on Analytical Nomenclature [6] and Compendium of Chemical Terminology

[7]. This is particularly true for identification itself, although there is a good

definition for qualitative analysis [8]:

Analysis in which substances are identified or classified on the basis of their chemical or

physical properties, such as chemical reactivity, solubility, molecular weight, melting point,

radiative properties (emission, absorption), mass spectra, nuclear half-life, etc.

A 

Sample 

· Valid sampling 

 Laboratory 

· Accreditation 
· Proficiency tests 

Analyst 

· Training 
· Skill 
· Experience 

Instrument 

· Qualification 
· System

suitability 

Method 

· Identification/
detection criteria  

· FPR, FNR 

· Validation 
· Interlaboratory

studies   

· Documentation 

Reference data,
chemical

databases 

· Evaluation,
validation 

· Evaluation, 
validation     

Reference
marerials,
pure chemicals 

· Certification 
· Purity 

Identification/detection
result

· Trueness rate 
· Terminology 

· Evaluation of raw data 

Software:
interpretator,

predictor,
library searching

Fig. 9.1 An underlying system of good identification practice in implementation of special

procedures of qualitative analysis in combination with different aspects of QA/QC. Methods are

intended for target analysis (Chap. 5). Searches in chemical databases, matching reference chro-

matographic and spectral data, spectral interpretation, prediction of spectra, and ultimately co-

analysis with reference materials, are used in non-target/unknown analysis (Chap. 7)
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2. Concepts and terms are ambiguous alone or in relation to other ones. This can be

exemplified by sensitivity and specificity, which are equivocal (Sect. 4.2.2).

Another case is type I (type II) error which may be FP or FN (FN or FP)

depending on what qualitative procedure, detection or identification, is consid-

ered (Sect. 3.6).

3. There are multiple terms for the same concepts (synonymy). The main example

is reliability of identification (Sect. 4.1). This term was selected from numerous

synonyms and eventually preferred by the author. Other kinds of such disorder

occur among statistical terms, e.g., both sensitivity and recall signifies TPR
(Table 4.3).

In this book, the author selected one or another synonym on the traditional or

logic base, or used several terms if the choice was not easy. In any case, an

individual worker may prefer and suggest various concepts, terms, and notations,

but they are discussed, modified, and eventually accepted or rejected by the

chemical and metrological community. In a good way, a terminology is established

in the spirit of its harmonization in accordance with international standards (e.g.,

see [9]).

9.3 Metrology for Chemical Identification

Issues of theoretical metrology, traceability and nominal scales, were treated in

Chap. 1. Here, other (more practical) metrological aspects of chemical analysis will

be considered.

Reference materials (analytical standards). These are used to obtain reference

data (Chap. 7) and for the purpose of co-analysis (Sects. 1.6, 5.2, and 7.1). Various

RM [10, 11] are of different metrological quality/status. The top place of the

metrological hierarchy is occupied by RM produced and/or certified by National

or International metrological institutions (CRM, standard RM):

l The Institute for Reference Materials and Measurements (IRMM, Europe) [12]
l National Institute of Standards and Technology (NIST, USA) [13]
l LGC (UK) [14]
l Federal Institute for Materials Research and Testing (BAM, Germany) [15]
l The Ural Research Institute for Metrology (UNIIM) [16] and D.I. Mendeleyev

Institute for Metrology (VNIIM, both Russia) [17]
l National Metrology Institute of Japan (NMIJ, Japan) [18], and so on [11]

The fact that these standards are of the highest quality first of all means the high

accuracy of certified values of the target compound amount. There are no doubts

about the identity of the targets in CRM/standard RM, and the same also applies to

most pure chemicals produced by numerous chemical companies. However, the use

of CRM in qualitative analysis is limited because they are produced only for a

minority of known chemicals. Commonly, pure chemicals are analytical standards
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(references) in identification operations. There should be periodical monitoring of

their purity according to the special standard operating procedure developed in the

laboratory [19].

There are not less than about two thousand main suppliers of commercial

chemicals in the world [20]. There were more than 42 million commercially

available chemicals in June 2010 [21]. The accurate number of chemicals with

unique identifiers is unknown, because the above number is the sum of records in

catalogs. However, the number of unique commercial substances is obviously

measured in millions (5.7 million “different products” in June 2010 [20]). So the

vast majority of abundant analytes can be identified with the use of chemicals

available in the market.

In order to find out whether chemicals as analytical standards are accessible to

analysts, it is appropriate to search for information on them and their vendors in

various chemical databases (Fig. 9.2). In such searches, databases and sites compiling

e-catalogs of many companies, e.g., Chemcats (ACS, USA) [21] and ChemExper

(Belgium) [20] (see also Fig. 9.2) are especially useful.

Shortcomings of many analytical standards are that concomitant impurities are

not specified. Sensitivity of analytical instruments in reference to some impurity

compounds may be higher than for base components. Thus, the signal of an

impurity may be the most intensive, e.g., in the cases of specific detectors in GC

or highly ionizable compounds in ESI MS. This results in a false identification.

In chemical analysis, matrix effects, i.e., an influence of matrix interfering

compounds on intensity and the shape of an analytical signal, are widespread.

In turn, this leads to both inaccurate results of quantitative analysis and false

identification. To avoid matrix effects, matrix-matched standards of the target

and suspected analytes should be used in identification procedures, e.g., for confir-

mation [24].

For progress in proteomics, it is important to develop protein standard samples

[25] (see Sect. 7.7.2).

Chemicals used for calibration of analytical instruments are other kinds of

references essential for qualitative analysis (see below).

Accuracy in measurand values. Accuracy (trueness and precision) of measure-

ment results directly determine the quality of experimental and reference data and

therefore reliability of identification. The effect of inaccurate data is briefly as

follows.

l Low accuracy, i.e., a large bias of experimental or reference values to each other

means a real possibility of a significant divergence between them for the same

compound, followed by FN.
l Low precision, i.e., a large uncertainty of experimental or reference values

means a possibility of apparent similarity between values of different com-

pounds, which results in FP or ambiguous identification.

The accuracy of measurements for qualitative analysis is provided by the timely

calibration of analytical tools (e.g., see [26, 27]). Corresponding technical aids and

chemicals are listed in Table 9.1. In spectrometers, scales of wavelengths (UV-Vis),
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wave numbers (IR), chemical shifts (NMR), and m/z values (MS) are calibrated. In

high-resolution spectrometers, the foremost NMR and MS instruments (Chap. 2),

high-precision scales are established.

High-performance chromatography, including GC with capillary columns and

HPLC/UPLC, is somewhat analogous to high-resolution spectrometry. In both

cases, a better separation of peaks is obtained and thinner peaks are recorded than

N

N

O

PO S

O

APAC Sourcing Solutions: 827704
Aurora Feinchemie: kasf-167599, kasf-126617
Bosche Scientific: D5663
MicroSource: 00330017
National Cancer Institute: 8938
NCI Plated 2007: 8938
PubChem: 3017, 180695
spectrum: 00330017
Toronto Research Chemicals: D416882
ref: mol2, SDF, SMILES, flexibase
3.58,8.62,-17.2,0,5,0, 304.352, 7  

Similar to: 5575979, 5649524, 5862152, 5862888, 6070194

Substance Vendors: 9 Links 
ChemSpider ( 2 ) 

SID 36528219 - External ID: 13861378 
SID 29222164 - External ID: 2909 

Sigma-Aldrich ( 6 ) 
ZINC ( 1 ) 

SID 58106937 - External ID: ZINC00001309

Click on a product name to get more information on that compound, on a supplier name to get 
more information on that supplier.  

Supplier Description Reference

orgchem  Diazinon 333-41-5 on request Get offer

orgchem  Diazinon  on request Get offer

sinoqf  on request Get offer

a

b

c

d

Diazinon, 98% 

Fig. 9.2 (a) Formula of the pesticide diazinon and examples of information about its vendors in

chemical databases, (b) ZINC [22], (c) Pubchem [23], and (d) ChemExper [20]. There are names

of different databases and sites of chemical companies and hyperlinks to them
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in conditions of low resolution when older/simpler instruments are used. It is

correspondingly important that accurate retention times can be measured. Chemical

mixtures for controlling the performance and standardization of chromatography

system are also stated in Table 9.1. For standard chemicals used in calculations of

RI, see Sects. 7.2 and 7.3.

9.4 Instrumental Parameters

In target identification by methods, instrumental parameters should be optimized,

standardized, and documented. In pharmaceutical/biochemical analysis and some

other analytical fields, the concept of system suitability has been introduced in

laboratory practice and QA programs [24, 44–47].

System Suitability - The fitness of analytical instruments for the purpose at hand, based on

manufacturer specifications, instrumental Standard Operating Procedure, or specific

requirements of the analytical method. Suitability may be established through verification

of relevant instrumental parameters such as calibration, pressure, flows, temperature, multi-

plier gain, etc., or through verification of method-specific parameters such as signal-to-noise

level for a known amount injected, peak shape, test spectra, etc. [45].

There are standard tests for system suitability, e.g., monitoring of gas chromato-

graphs with special chemical mixtures for pesticide analysis [46], which are or may

be a part of analytical protocols, as well as any routine conditions of maintenance of

analytical equipment. One or another version of system suitability testing, e.g.,

Table 9.1 Standards for calibration and testing of analytical instruments

Technique Standard

UV-Vis, NIR Light-emitting sources, e.g., mercury and deuterium lamps, filters,

solutions of potassium dichromate, rare earth compounds, and others

[28–31]

IR IR-emitting sources, filters, polystyrene films [32, 33]

NMR Tetramethylsilane (1H, 13C, 29Si), trichlorofluoromethane (19F), H3PO4

(31P), and so on [34, 35]

MS Perfluorotributylamine, perfluorokerosene and other fluorine organic

substances (EI); CsI, polyethylene glycol and its ethers, other

chemicals (ESI); peptides, proteins, other compounds, and special

mixtures (MALDI) [34, 36–40]

GCa Grob mixture: fatty acid methyl esters C10–C12, 2,3-butanediol,

dicyclohexylamine, 2,6-dimethylaniline, 2,6-dimethylphenol,

2-ethylhexanoic acid, nonanal, 1-octanol, undecane, decane; other

mixtures [41]

HPLC, UPLC NIST standard RM: amitriptyline hydrochloride, ethylbenzene, quinizarin,

toluene, uracil, and other mixturesa [42, 43]; mixture of five peptidesb

[40]
aFor controlling the performance of chromatography columns and chromatography systems at a

whole
bFor standardization of RT in LC–MS
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verification of resolution in chromatography or sensitivity in spectrometric meth-

ods, are required also in non-target analysis. Insufficiently good instrumental

parameters may lead to non-detection of unknown analytes or their false identifica-

tion, i.e., one or other FN/FP.

System suitability tests are related to some degree with an overall process of

instrument qualification [47].

As modern analytical instruments are under computer control, computer/computer

system validation is also essential (see [48]).

9.5 Laboratory Practice and Quality Assurance

Commonly, chemical identification (qualitative analysis) has been poorly consid-

ered in general treatises on QA/QC. Many requirements for QA of qualitative

analytical procedures can be taken from some special documents.

Special documents related to qualitative analysis. One of the first guides

issued for the purpose under consideration was the LGC document [49], which

placed procedures of qualitative analysis in the context of common laboratory

practice. Below are some extracts from this guidance, with more details referring

to identification operations, there named classification.

Definition. Qualitative Analysis: The classification of objects against specified criteria

to meet an agreed requirement.

Health and Safety. Laboratory staff should be made aware of any potential dangers

associated with the collection, analysis or storage of sample materials.

Establishing the Requirements. An Agreed Requirement. The analyst and customer

should agree on the business requirement and the technical solution.

The Customer Requirement. The analyst and customer need a clear mutual under-

standing of the requirement to ensure that the work done meets the customer’s needs.

The Technical Requirement. The methodology selected should be technically capable

of satisfying the business needs. . . Criteria should be selected to give demonstrably

acceptable performance against the business needs. The performance of the methodology

on the subject materials must therefore be taken into account when selecting criteria and

setting decision criteria. The test method must itself satisfy performance criteria which will

ensure that it is capable of establishing whether the technical criteria have been met.

The sample. Collection. Samples should be collected in such a way as to provide a

representative portion of the source material free from contamination by the sampling

process. In addition, the sampling process should not contaminate the source material.

Containment. Sample containers should provide a safe and secure environment for the

storage and transport of their contents. A container should not in any way alter the

composition of its contents.

Preservation. The sample should remain unaltered with respect to the unknown(s) of

interest between the time of collection and the time of analysis.

Identification.All samples should be uniquely identified [i.e., labeled – author] in some

way.

Documentation. All materials intended for analysis should be accompanied by suffi-

cient information so as to enable their correct storage, appropriate analysis and safe

handling.
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Packaging.Where sample containers are required to be packaged for transportation, the

method of packaging and the packaging materials themselves should be chosen so as to

minimize the likelihood of damage to the containers or contamination of their external

surfaces.

Transportation. The method of transportation should be chosen with regard to the

stability of the sample or components of interest and any known hazards.

Receipt. Laboratories should have a clear and workable procedure for the reception of

samples.

Opening. Sample containers should be opened in a manner which maintains the

integrity of their contents and ensures the safety of staff.

Sub-sampling. Where it is necessary to take a sub-sample from an existing sample,

such sub-samples should be uniquely identified and should be traceable to the parent

sample.

Storage.Material received for analysis should be stored in a safe and secure manner and

under conditions which preserve its integrity.

Disposal. Laboratories should have a policy covering the retention and disposal of

analyzed samples.

The Analytical Process. Classification Criteria. The classification criteria should be

sufficiently well defined to enable an unambiguous result to be obtained by appropriate

methods. Qualitative analysis is based on criteria. Criteria may be, for example, the

presence of a particular analyte above a specified level, physical properties within particu-

lar limits, a match between two spectra, or combinations of features. Whatever the nature of

the criteria, however, it is important that the criteria be unambiguous, clearly stated and, as

far as is possible, objective. For example, “the melting point should match the reference

value” is insufficient because it does not specify the degree of match acceptable, “The

melting point should match the reference value within 1�C and the material should melt
entirely within a range less than 0.5�C” is a clear, unambiguous and objective state-

ment. . .The criteria should demonstrably distinguish adequately between different classes

and permit unambiguous assignment of an object or material. The criteria used to interpret

each category of observational or experimental data should be recorded and available for

reference by relevant staff as required.

Method Selection. All methods used for qualitative analysis (and also for quantitative

analysis) should be documented and fit for their intended purpose.

Method Validation. Specificity. The specificity of a test for identity should always be

known.

Detection Limit. Any qualitative test employed must be sensitive enough to detect the

species of interest at the concentration levels of interest.

Misclassification Rate. Rates of misclassification must be known and controlled.

Computations. There should be a policy for reviewing computational procedures and

checking the correctness of results obtained.

Confirmation. If appropriate, a confirmatory test should be employed to substantiate

the conclusions from the primary test or tests. It is important that any confirmatory test used

is completely independent of the primary test. It should also be noted that, just as it is

possible to obtain a false positive result, it is also possible to obtain a false negative result.

The use of confirmatory tests is therefore not restricted to confirming only positive results.

Quality Assurance. Environment. The working environment should be actively con-

trolled to ensure that all relevant parameters are within appropriate limits.

Equipment. Equipment used in the course of an analysis should be well maintained and

operated within its design parameters.

Reagents. The purity of all reagents employed in a method should be known, at least

approximately, and all materials used should be tested to ensure they do not contain

substances which would interfere in the analytical method.
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Operators. All analyzes should be conducted by personnel who have demonstrated the

relevant competencies.

Documentation ofMethods.Analytical methods should be documented sufficiently well

as to enable their successful use by competent analysts unfamiliar with them.

Laboratory Records. A record should be kept of all observations made and of all data

generated during an analysis. All information necessary to perform the analysis should also

be recorded.

Quality Control. Quality control measures should be in place which cover all activities

likely to affect a result.

Independent Assessment. There should be independent assessment of performance.

Interpretation of Results. The interpretation of observations or experimental data

should provide a classification consistent with the available information. . . Interpretation
criteria will typically specify the basis for prediction and the quality of match between

prediction and observation. . . Interpretation of observations or experimental data also

requires some skill and in some instances, considerable skill. . . Interpretation should be

consistent with the observations, the established criteria and relevant quality control and

assurance data.

Analysis Report. The analysis report should clearly indicate to the customer how the

analysis has met his/her requirements.

Field Testing. Field testing is subject to additional problems to those found in the

laboratory and staff working in the field should be aware of these before they set out [49].

Another important document treating qualitative analysis in relation to the

QA/metrology principles was issued as the report on the MEQUALAN project

[26, 27]. Some principal conclusions are as follows.

l The traceability concept is applicable to qualitative analysis, which requires an

availability of analytical standards, e.g., pure compounds and matrix standards.
l Calibration of analytical instruments as the metrological procedure is necessary

not only in quantitative analysis but also for identification.
l Unreliability as the analog of the term of uncertainty, especially for qualitative

analysis, has been proposed. The unreliability region is the low concentration

interval where the percentage of false results is high (Sect. 4.3).
l To validate qualitative/identification methods, selectivity/specificity, the limit of

detection, FPR, and FNR and other characteristics should be evaluated.
l Control cards are proposed for internal quality control of screening yes–no

procedures.
l In external quality control, special proficiency tests are performed where false

results are counted and further summed to obtain the value of z-score [26, 27].

The aspects of QA outlined in MEQUALAN were further developed [50–52].

Laboratory Guides.Modern analytical guidances (see Sect. 5.5) contain a lot of

details with regard to QA/QC requirements. The FDA guidance on MS applied for

confirmatory of identity of animal drug residues [45] specified the following

requirements for QC:

l Preliminary establishment of system suitability (see above), and reanalysis of

samples if system suitability was not adequate
l At least one negative control and one fortified control sample injected per day,

meeting fail and pass identification criteria respectively
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l Provision of the control that analysis of standards/fortified control samples is not

followed by carryover causing false positives
l The specification and use of confirmation criteria without any substitution of

the criteria after analytical experiments have been performed

In ad hoc cases where unanticipated situations arise and fully validated proce-

dures are unavailable, additional procedures for control samples are prescribed, and

good training and high expertise in the laboratory are of great concern [45]. It

should be noted that this is the same case as for unknown/non-targeted analysis

(Chap. 7).

Forensic toxicology guidelines [19] and other documents direct attention to

proficiency tests (see below) which highlight false results. False positive errors

treated as more serious, and also false negative results, should be investigated. As

for control samples commonly used in QA/QC, it is proposed that each batch of

specimens under analysis should include at least 10% positive and negative con-

trols. There may be open (identity is known to the analyst) and blind (identity is

unknown to the analyst) controls. The latter is more suitable for maintaining quality

control [19].

Data quality. The modern principles of GLP have been also extended to

acquisition and processing of electronic raw data [53].

There are also such aspects of QC/QA as the particular quality of experimental

raw data obtained in chemical analysis (chromatograms, spectra). The guide [19]

states that the validity of analytical data, e.g., shape and signal-to-noise ratio of

chromatographic peak, should be reviewed by scientific personnel. Verification of

chromatographic peak purity may show how unambiguous are identification

results. Low-quality mass spectra having high noise, low S/N ratios, and anoma-

lous/irreproducible relationships between peak intensities should be paid special

attention. Such spectra cannot provide reliable identification, and therefore must be

excluded from data processing and analysis. This is of special value for determina-

tion of low amounts of complex molecules (proteomics, see Sect. 7.7.2).

9.6 Validation of Methods and Approaches

According to the ISO/IEC 17025 standard [4],

Validation is the confirmation by examination and the provision of objective evidence that

the particular requirements for a specific intended use are fulfilled.

There may be (a) validation of methodology,1 data, and samples, and (b) in-house

validation and interlaboratory studies [1–3, 55–59]. For the particular aspects

of method validation in qualitative analysis, see [47, 50, 52, 60, 61]. For

1There is also the method verification term, see [54]. A verification is a series of tests demonstrating

that a standard method has specified performances when a laboratory starts to use it.
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unknown/non-target analysis, validated methods are absent by definition. Here an

analyst faces the challenge of validation of some kind of general methodology, i.e.,

various rather general approaches to identification.

9.6.1 Methods

For validation of screening and confirmatory qualitative methods, the European

Commission Decision [62] (see Chap. 5) established that their following perfor-

mance characteristics have to be determined.

l Detection limit CCb and decision limit CCa (only for confirmatory methods);

see Sect. 4.3.2.1.
l Selectivity/specificity. A validation of these characteristics results in the power

of differentiation between the analytes and closely related substances such as

isomers, transformation products, and matrix components, being tested. Effects

of the interferences and chances of false identifications are examined for blank

samples and those fortified with the proper amounts of compounds which may

interfere with the identification (and quantitative determination) of the analytes.
l Ruggedness (robustness is used in other documents). Poor ruggedness means

that an analytical method is susceptible to changes in experimental conditions

which may include the composition of the sample, sample preparation condi-

tions, the reagent stability, pH, temperature, etc. Effects of these changes on

parameters of methods should be studied and indicated.

According to [62], it is mandatory to estimate FPR at the CCb level in screening
procedures; the rate is limited (<5%). Evaluation of other true/false result rates

was not explicitly specified.

In the guidance for method validation and QC of pesticide determinations [63],

a screening FNR threshold (not specified in [62]) of 5% at the concentration

of interest is recommended. There should be a duplicate analysis of ten different

samples referring to each group of commodities; samples are spiked with analytes

at the lowest concentration level. FP should be excluded when analyzing unspiked/

blank samples. However, if confirmation is further applied, the limitation for the

number of FP is not strict. Usually, screening positives require confirmation, and

negatives need no confirmation [63].

Confirmation of identity is best performed using MS (Chaps. 5 and 7). The

corresponding guidance, intended for determination of animal drug residues, con-

tains the following recommendations [45].

l Five control samples are taken for in-house validation. These are duplicated for

an interlaboratory study, with two concentration levels and five samples at each

level.
l What should be demonstrated are (a) zero FPR for negative control and (b)

FNR � 10% at or above the tolerance/safe concentration level for fortified and

incurred samples.
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l Validation of ruggedness/robustness is provided with the demonstration that the

suitable rates come on 2 or more days. This helps to ensure that the method is

rugged and under control.
l Validation for specificity is that the analyte should be demonstrated not to be

contaminated by other animal drugs and matrix components of control samples

from two and more individual animals.

The last guideline hold true for other types of analytes and matrices, though the

number of samples taken for validation of selectivity/specificity may be different.

In bioanalytical methods, there is the necessity for analyzes of blank samples of the

appropriate biological matrix (plasma, urine, and so on) obtained from six or more

sources [64]. In the case of LC–ESI–MSn, matrix effects affect ion currents and

relative intensities of different component ions of samples (e.g., see [65]), and

should therefore be investigated throughout method validation [47, 64].

It is specially noted that validation of MS methods should be carried out for all

analytes, with necessary estimation of false result rates for blind fortified and blank

samples [66].

There are both quantitative and qualitative aspects of selectivity/specificity.

Interference of foreign matrix components with an analyte changes not only the

amplitude of the analytical signal, e.g., chromatography peak height/area, but also

the corresponding spectrum if a combination of chromatography with mass spec-

trometry is used. So it is important to confirm not only that this effect is insignificant

in terms of quantitative determination (response in blank samples should be <30%

of limit of quantitation [63]) but also that spectral distortion will be sufficiently

small not to significantly change abundances of characteristic ions (see identifica-

tion criteria, Sect. 5.5.3).

9.6.2 Approaches

In non-target analysis (Chap. 7), at least at the start of identification procedures,

valid methods may be unavailable “by definition.” In such analyzes, different

versions of four general approaches (Sect. 1.6) are applied, and one or another ad
hoc method is adjusted. To validate approaches to identification, corresponding

constituent parts such as individual operations, databases, algorithms, and so on,

should be evaluated. These are:

l Setting up identification hypotheses by using prior data from chemical databases

(Chap. 6 and Sect. 7.4.2)
l Reference GC RI (see Sect. 7.2)
l Mass spectrometry libraries (Sect. 7.4.1)
l Generation of candidate formulas by HRMS (Sect. 7.4.2)
l Prediction of NMR spectra (Sect. 7.6)
l Algorithms of protein identification (Sects. 4.4.2.3, 4.5.4.3, 7.4.1.4, and 7.7.2)
l Chemometrical methods for classification in qualitative analysis II (Sect. 8.1.2),

and others
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The respective approaches are mainly based on computer databases and soft-

ware. Therefore, unknown identification approaches are tending to be more valid

with the progress in chemoinformatics, e.g., as chemical and related databases

become more complete, correct, and updated. This is particularly significant for

biochemical analysis (e.g., see [67, 68] and references in Sect. 7.7).

As with any “omics” discipline, metabolomics is highly dependent on the availability and

quality of electronic databases. Furthermore, because metabolomics combines molecular

biology with chemistry and physiology, there is a need for not just one type of database, but

a wide variety of electronic resources [68].

For chemical databases, it is important that compound identifiers are unambiguous,

and that origins of chemical compounds are specified to differ between real-world

and virtual molecules.

As methods of non-target analysis are difficult to standardize and proper identifi-

cation results certainly need some kind of verification and confirmation, minimum

reporting standards (sample preparation, experimental analysis, quality control, and

so on) proposed for metabolomics [69] seems to be a good idea which is applicable

in other cases of qualitative chemical analysis. Another general approach to

unknown identification is that initial ad hoc identification procedures performed

by multiple analytical techniques and statistical calculations are followed by confir-

matory co-analysis with reference materials (Sects. 1.6, 5.2, and 7.1). The last step is

usually inapproachable in proteomics, where standards of most proteins are not

available.

Unknown analysis is difficult to describe in terms of standard operation and

formal requirement for method validation and laboratory accreditation. However,

this kind of qualitative analysis is indirectly taken into account in the guidance for

accreditation.

It is accepted that sometimes it is not practicable for laboratories to use a fully documented

method in the conventional sense, which specifies each sample type and determinand.

However the laboratory must have a generic method or procedure for the use of the

instrument in question, which includes a protocol defining the approach to be adopted

when different sample types are analyzed. Full details of the procedures, including instru-

mental parameters and ad hoc validation, must be recorded at the time of each analysis such

as to enable the procedure to be repeated in precisely the same manner at a later date [70].

9.7 Proficiency Tests, Interlaboratory Comparisons

These procedures are intended for (e.g., see [3, 71]):

l QA/QC of participating laboratories, assessment of laboratory performances
l Development/evaluation/validation/ of analytical methods and individual con-

stituents of methodologies
l Certification of reference materials
l Gaining experience, and so on
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Reference/control/test and similar laboratories must participate regularly in

proper proficiency tests [19, 44, 63]. As a rule, this refers to quantitative determi-

nation. Nevertheless, requirements for qualitative operations and procedures to be

studied in interlaboratory experiments also appear. For example, levels of FP and

FN should be found out in interlaboratory studies related to pesticide determination

[63]. Earlier, the count of false results was recommended for z-scoring in such tests
[26, 27, 72]. More complicated scoring systems have also been proposed [73, 74].

In the case of qualitative analysis performed by the microbiological method,

requirements for interlaboratory studies intended for evaluation of laboratory and

methodical performances are as follows [44].

l At least ten valid laboratories reporting data for each food type are needed.
l Six test subsamples per analyte concentration level for each food type and six

negative (uninoculated) control subsamples for each type, all blind coded, are

required.
l By counting positive and negative results and using a statistical test (a chi square

test), it is estimated whether (a) any laboratory shows results which significantly

differ from the determinations in the other laboratories, and/or (b) the test method

is statistically different from the established reference method.

The common statistical indicators, sensitivity, specificity, false negative rate and

false positive rate (for rates, see Table 4.3), together with the test for significance of

differences, provide a basis for the assessment of test methods and laboratories.

This system of interlaboratory studies seems also to be suitable for chemical

identification performed by chromatography and spectrometry.

At present, the best known proficiency tests for qualitative analysis (identification)

are those organized by the Organisation for the Prohibition of Chemical Weapons

(OPCW) and provided on a regular basis since 1996 [75]. Participating laboratories

must detect and identify chemicals relevant to the Chemical Weapons Convention

[76] present in the samples. Laboratories successfully completing the tests prove

their competence in the analysis of chemicals related to the Convention. Principles

of the tests are briefly as following.

l Samples. The participants receive two subsamples of test, control, and blank

samples of unknown composition. Participants analyze all the samples for

presence of possible chemicals as spikes, volatile or non-volatile. Various

matrices such as soil, water, waste, etc., often with a high background, are tested.
l Methods. Neither methods of sample preparation nor analytical methods/

techniques are prescribed to participating laboratories. Identification results

must be provided by two or more different analytical techniques consistent

with each other; a spectrometric technique must be used.
l Report. Results are thoroughly reported, including “unbroken chain of evidence

linking each test sample to each reported chemical in the entire report”. There

are only 15 calendar days allowed for performing tests and sending the report.
l True positives. Among identified compounds, “only the chemicals relevant to

the aim of the test should be reported.”
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Table 9.2 Interlaboratory studies: qualitative determination, identification

Year, reference Study Technique

1984 [77] Standard operating conditions for the

acquisition of MS2 spectra

TQ–MS2

1987 [78] Reproducibility of chemical shifts in

NMR spectra

1H and 13C NMR

1990 [79] Limits of detection NCI–MS

1993 [80] Reproducibility of RI HPLC

1993- [81–83] Determination of drug of abuse in hair Various, including GC–MS

1996- [75] Identification of chemicals related to

the chemical weapons convention

Spectrometry and others

1996- [84] Determination of pesticide residues in

fruits and vegetables

GC, HPLC, GC–MS (MS2),

HPLC–MS (MS2)

1997 [85] Determination of 13C in sugars and

fruit juice pulp

MS

1997 [86] Determination of environmental

contaminants, different matrices

GC–MS libraries

1998 [87] Determination of abused drugs in urine Immunoassay, GC–MS

1999 [88] Determination of veterinary drug

residues

in bovine urine

Immunoassay, GC–MS

1999 [89] Identification of organic compounds in

solution

GC–MS libraries

2000 – see

Table 7.9

Reproducibility of tandem mass

spectra, efficiency of MSn libraries

Mainly ESI–TQ–MS2 or

ESI–IT–MS2

2001- [90, 91] Reproducibility of ESI mass spectra,

efficiency of MS libraries

ESI–MS1

2001- [92–94] Polystyrene molecular mass

distribution and other

characteristics

MALDI

2002 [95] Reproducibility of migration

parameters

CE

2002- [96, 97] Oil spill identification GC, GC–MS

2003 [98] Identification of gunshot residues Scanning electron microanalysis

2004 [99] Determination of cholesterol oxidation

products (COP) in food

GC, HPLC, GC–MS, MS

2005 [100] Identification of bacterium in clinical

samples

PCR

2005 [101] Identification of yeasts PCR

2005 [102] Determination of antibiotics in milk Immunoassays, biosensors

2005 [103] Search algorithms for matching mass

spectra in protein identification

MS2

2006- [104–106] Identification of test protein mixture HPLC–MS2

2006 [107] Detection of peanut proteins in cookies Dipstick tests

2007 [108] Detection of hazelnut oil in olive oil Column and gas chromatography

2008 [109] Detection of animal proteins in feed Microscopy, PCR, immunoassay

2009 [110] Study of artworks Various, including

pyrolysis–GC–MS

2009 [111] Optimal performances of HPLC–MS2

instruments in proteomics

HPLC–MS2

Some studies are on both determinations, qualitative and quantitative
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l False positives. Any chemical compound which (a) is not contained in the

sample, or (b) could not be formed in the corresponding matrix from analytes,

or is identified on the base of “erroneous or misinterpreted analytical data,” is

considered as FP. Reporting any FP means failure of the test for the laboratory.
l Individual rates. Each of (a) TP, (b) the product of full degradation of TP

(original spiking special chemical), and (c) group identification of special

nerve agents, even without full structure elucidation, is scored as +1 point.

Non-detection of one spiking compound or corresponding degradation product

is FN, scored as �1 point.
l Laboratory ratings. Result scores for all the samples are combined. The maxi-

mum laboratory rating specified as A is that all chemicals were identified. If the

laboratory identified (1) all analytes but one, (2) more, or (3) less than 50% of the

chemicals, the rating codes are (1) B, (2) C, or (3) D respectively. A failure is

coded as F.
l Conclusions. A laboratory can be designated for analysis of authentic samples if

it participated in one or more proficiency tests per year and scored A3 or A2B,

i.e., unidentified no or only one analyte, in the last three successive tests [75].

OPCW proficiency tests are good examples of how interlaboratory studies in

chemical identification can be performed. These and other interlaboratory tests

(mainly round robins) in qualitative analysis/identification known to the author are

listed in Table 9.2.

A series of these studies have been carried out by means of routine analytical

methods; corresponding areas of analysis are of great social value (drug of abuse

determinations). These were parts of external QA/QC programs. In many other

cases, collaborative researches have been related to development, evaluation, and

expansion of new analytical methodologies such as new MS techniques and new

applications of MS. Evaluation of laboratories participating in such comparisons is

that of their receptivity to new techniques/methods/approaches. It should be noted

that the converse type of comparison, namely comparing different analytical

methods/techniques in the same laboratory, also provides improvements in meth-

odology of chemical/biochemical analysis and its quality; see Chap. 7.
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97. Sørheim KR, Faksness LG, Almås IK (2008) Round robin oil comparison study – 2008.

SINTEF Report SINTEF A8539. http://www.sintef.no/Home/Publications/Publication?page¼
28511. Accessed 19 June 2010

98. Niewoehner L, Andrasko J, Biegstraaten J, Gunaratnam L, Steffen S, Uhlig S, Antoni S

(2008) GSR2005 – Continuity of the ENFSI proficiency test on identification of GSR by

SEM/EDX. J Forensic Sci 53:162–167
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108. Garcı́a-González DL, Viera M, Tena N, Aparicio R (2007) Evaluation of the methods based

on triglycerides and sterols for the detection of hazelnut oil in olive oil. Grasas y Aceites

58:344–350

109. Van Raamsdonk LWD, Hekman W, Vliege JM, Pinckaers V, Van der Voet H, Van Ruth SM

(2008) The 2008 Dutch NRL / IAG proficiency test for detection of animal proteins in

feed. RIKILT – Institute of Food Safety Report 2008.007. RIKILT, Wageningen. http://

library.wur.nl/way/bestanden/clc/1876397.pdf. Accessed 6 Nov 2010

110. Van Keulen H (2009) Gas chromatography/mass spectrometry methods applied for the

analysis of a Round Robin sample containing materials present in samples of works of art.

Int J Mass Spectrom 284:162–169

111. Paulovich AG, Billheimer D, Ham AJ et al (2010) Interlaboratory study characterizing a

yeast performance standard for benchmarking LC–MS platform performance. Mol Cell

Proteomics 9:242–254

References 275

http://http://www.sintef.no/Home/Publications/Publication?page&equals; 28511.
http://http://www.sintef.no/Home/Publications/Publication?page&equals; 28511.
http://http://www.abrf.org/ResearchGroups/ProteomicsStandardsResearchGroup/EPosters/ABRFsPRGStudy2006poster.pdf.
http://http://www.abrf.org/ResearchGroups/ProteomicsStandardsResearchGroup/EPosters/ABRFsPRGStudy2006poster.pdf.
http://http://www.abrf.org/ResearchGroups/ProteomicsStandardsResearchGroup/EPosters/Gawinowicz_sPRG07_032707.pdf.
http://http://www.abrf.org/ResearchGroups/ProteomicsStandardsResearchGroup/EPosters/Gawinowicz_sPRG07_032707.pdf.
http://library.wur.nl/way/bestanden/clc/1876397.pdf.
http://library.wur.nl/way/bestanden/clc/1876397.pdf.


Index

A

Abused drugs, 78, 269

Adulterant, 236

Adulteration, 236

Agrochemicals, 182

Algal biomass, 210

Anabolic steroids, 87

Analysis

non-target, 9, 165

target, 9, 115

unknown, 9, 165

ANN, 47

Annotation, 217

Antibiotics, 85, 269

APCI, 186, 192

Artworks, 269

Authentication, 3, 236

Authenticity, 3, 236

B

Bayesian approach, 74

Bayesian statistics, 45

Binary response, 42, 79

Binomial distribution, 42

Bioassay, 27

Biomarkers, 182, 245, 248

C

Capillary electrophoresis, 27, 180

CE-MS, 181

Characterization, 236

Chemical compound, 2

Chemical databases, 143, 148, 156, 204, 258

Chemical nomenclature, 12

Chemical shifts

prediction, 213

Chemical substance, 2

Chemical Weapons Convention, 268

Chemometrics, 45, 239, 266

Chromatography, 27, 77, 117, 122, 269

criteria, 122

mass spectrometry, 31, 34

CI, 192

Citation, 153

Classification, 3, 46, 236, 261

errors, 241

Cluster analysis, 47

Co-analysis, 17, 118, 169, 267

Co-chromatography, 118

Co-citation, 153

Collision-induced dissociation, 186

Combinatorial synthesis, 182

Compounds

abundant, 143

co-occurrence rate, 148

flavor, fragrance, 172, 182

occurrence rate, 148

rare, 160

Confirmation, 4, 77, 87, 116, 119

Confirmatory methods, 35, 119, 265

Contrast angle, 92

Control samples, 265

Co-occurrence rate, 148, 153

Coryneform bacteria, 212

Cosine function, 91

Criteria, 54, 115, 165

range, 54

statistical, 58

Critical concentration, 82

CCa, 82
CCb, 82

Cross-validation, 190, 240

Cut-off, 81

B.L. Milman, Chemical Identification and its Quality Assurance,
DOI 10.1007/978-3-642-15361-7, # Springer-Verlag Berlin Heidelberg 2011

277



D

Data quality, 264

Decision limit, 82, 265

Derivatization, 118, 124, 169

Detection, 4, 64, 79, 81

concentration dependence, 79

errors, 50, 67

Detection limit, 82, 265

Detectors, 28

specific, 131

Diagnostic ratio, 238

Differentiation, 236

Discriminant analysis, 46, 239

Discriminating power, 79

Discrimination, 236

DNA, 142

analysis, 238

Doping, 121

Dot product, 90

Drugs, 121, 153, 172, 182, 188

counterfeit, 248

impurities, 89

residues, 116, 121

veterinary, 269

Dyes, 188

E

Electroanalytical techniques, 26

Electrochemical sensors, 238

Electronic nose, 244

Electronic tonge, 244

Electron ionization, 33

Electrospray ionization, 33

Elemental analysis, 24

Environment, 190, 269

Environmental health analysis, 78

ESI, 33, 186, 192

ESI-IT, 188

ESI-IT-MS2, 269

ESI-MSn, 94, 247

ESI-TQ, 188

ESI-TQ-MS2, 269

Essential oil, 172, 182

Explosives, 189

External validation, 240

F

False discovery rate, 68

False results, 66

Fingerprinting, 238

Flavonoids, 189

Fluorescence spectroscopy, 238

FN, 50, 52, 64, 257

FNR, 66, 99

Food, 172, 182, 190, 242

databases, 242

FP, 50, 52, 64, 257, 270

FPR, 66, 99
FR

confidence interval, 69

FT ICR, 192, 200

G

Gas chromatography, 31, 170

GC-EI-MS1, 181

GC-IR, 117

GC-MS, 32, 78, 85, 86, 117, 118, 120, 128,

167, 176, 183, 216, 237, 269

GC-MS2, 85, 128

GC-MSn, 125, 127

Geochemicals, 182

GLP, 255

Good identification practice, 255

Gunshot residues, 269

H

High-molecular compounds, 34

High-performance liquid chromatography, 28,

85, 97, 117, 118, 128, 178, 186

Honey, 241, 244

HPLC-ESI-MSn, 182

HPLC-MC, 34

HPLC-MS, 180, 237, 269

HPLC-MS2, 85, 88, 269

HPLC-UV-Vis, 131

HRMS, 92, 118, 128, 129, 156, 200, 216, 266

filter for formulas, 202

HRMSn, 168, 196, 204, 217

Hydrocarbons, 104

Hypothesis, 49

alternative, 49

experimental, 53

identification, 51, 141, 153, 158

null, 49

statistical, 56

structure, 51

testing, 49

I

Identification, 2–4, 64

ambiguous, 10

approaches, 16, 166

bottom-up, 218

concentration dependence, 79

confidence, 105

confidence probability, 99

criteria, 86, 120, 124, 175, 197, 262

de novo, 216, 218

278 Index



errors, 35, 52, 67, 241

group, 10

individual, 9

information, 169

interlaboratory studies, 269

limit, 86

metabolomics, 216

methods, 35, 115

microorganisms, 247, 269

non-numerical estimates, 105

non-target, 165

oil spills, 245

point, 7, 125, 128

principles, 4

proteomics, 217

quality assurance, 255, 261

quality control, 255

reliability, 63, 68, 257

reliability in proteomics, 218

spectral matching, 100

strength of evidence, 105

subtypes, 9

target, 115

techniques, 23

threshold, 89

tolerances, 125

top-down, 218

types, 8

unambiguous, 10

unknown, 165, 267

word expression, 105

Identification limit, 81

Identifier, 11

line symbol, 13

Identity, 6

Immunoassay, 77, 269

Impurities, 156, 158, 176

Interlaboratory

comparisons, 267

studies, 192, 219

IR spectroscopy, 29, 30, 97, 132, 208, 216

IT, 192

J

Juice, 269

K

k-NN, 46, 239

L

Laboratory evaluation, 268

Laboratory guides, 120, 263

criticism, 134

LC-MS, 117, 118, 167, 183, 248

LC-MS2, 128

LC-MSn, 125, 127, 216

LGC document, 261

Librarian search, 186

Library searches, 101, 160

Limit of detection, 81

M

Making decisions, 49

MALDI, 32, 94, 186, 247

Mass analyzers, 33

ion cyclotron resonance, 33

ion trap, 33

Orbitrap, 33

quadrupole, 33

time-of-flight, 33

triple quadrupole, 33

Mass spectra

prediction, 207

reproducibility, 269

Mass spectrometers, 32, 34

mass accuracy, 33

mass range, 33

price, 33

Mass spectrometry, 29, 31, 90, 123, 181, 220

full scans, 123

isotopic ratios, 237

pyrolysis, 237

selective monitoring, 123

Match factor, 90, 97

IR, 97

mass spectrometry, 90

NMR, 96

UV-Vis, 97

Matrix effects, 266

Matrixes, 153

Mean list length, 78

Measurement

accuracy, 258

MEQUALAN, 120, 263

Metabolomics, 171, 183, 188, 197, 214, 216,

248, 267

Metabonomics, 214

Methods

confirmatory, 117

EPA, 120

validation, 240, 264

verification, 264

Metrology, 16, 257

institutions, 257

Micellar electrokinetic chromatography, 180

Microcystin, 93

Microorganisms, 247

Migration parameters, 180

Index 279



Milk, 239, 269

MS2, 269

MS libraries, 126, 181, 217, 266, 269

EI, 182

evaluation, 183, 190, 191

metabolomics, 197

performance, 184, 269

proteomics, 198

quality index, 184

searching algorithm, 90

tandem, 186, 269

MSn, 118, 124, 237

Multivariate analysis, 239

Multivariate statistics, 45

N

Natural products, 188

NIR spectroscopy, 237

NMR spectroscopy, 29, 30, 96, 133, 216,

221, 237, 269

Nominal scale, 18

Non-volatile compounds, 33

Normal distribution, 44

Number of trials, 69

O

Occurrence rates, 148, 153, 204

Oils and fats, 243

Oil spills, 244

Oligosaccharides, 189

Olive oil, 269

“Omics”, 214, 248

Orbitrap, 202

P

PAH, 142, 149, 153, 156

Paintings, 248

PCB, 142, 153

PCDD/F, 142, 153

Pesticides, 85, 118, 121, 156, 161, 172,

182, 188, 189, 204, 197, 269

Petrochemicals, 182

Pharmaceuticals, 156

Pheromones, 172, 182

Poisons, 172

Pollutants, 172

Polystyrene, 269

Powder residues, 248

Predicted formula, 93

Predicted spectra

NMR, 96, 213, 266

Predictive value, 72, 76

cumulative, 68, 76, 99

negative, 68, 72, 99

positive, 68, 72, 99

Prevalence, 75, 99

Principal component analysis, 46, 239

Prior data, 48, 75, 142

analytical practice, 159

Prior probability, 48

Probabilistic interpretation, 98

Probability

result rates, 99

spectral match, 100

Probability-based matching, 90, 100

Proficiency tests, 267

Proteomics, 15, 94, 198, 214, 217, 248, 267

fragment mass fingerprinting, 94, 218

HRMS, 205

match probability, 102

peptide mass fingerprinting, 94, 218

retention parameters, 179

top-down, 247

Q

Q-LIT, 192

Q-ToF, 188, 192

Qualification, 236

Qualitative analysis, 3

Qualitative analysis II, 3, 11, 78, 235

approaches, 237

methods, 238

techniques, 237

Quality assurance, 255

Quality control, 255

R

Recall, 68, 257

Receiver operating characteristics, 185, 200

Reference materials, 242, 257

Replication tests, 71, 75

Retention indices, 170

collections, 171

criteria, 175

GC, 170

HPLC, 179

Kovats, 170

Lee, 170

linear, 170

Robustness, 265

Ruggedness, 265

S

Sample composition, 242

Screening, 4, 35, 64, 77, 116, 265

criteria, 116

280 Index



Selectivity, 70, 79, 265

Sensitivity, 68, 70, 99, 257

Sensors, 26

SIMCA, 46, 239

SIMS, 32

Specificity, 68, 70, 99, 257, 265

Spectral interpretation, 104, 207

Spectral libraries

IR, 212

MS, 181

NMR, 214

Raman, 212

UV-Vis, 177

Spectral techniques

comparison, 220

Spectrometry, 27

Standards

calibration, 260

Steroids, 182

Structural feature, 105

Structure elucidation, 207

Substances

known, 13, 143

Substructure, 105

System suitability, 260

T

TaMaSA, 156, 193, 197

Tandem mass spectra

reproducibility, 191

Tandem mass spectrometry, 33

t-distribution, 44
Techniques

confirmatory, 118

information amount, 24

Terminology, 256

Test systems, 26

Thin layer chromatography, 28, 117, 128, 132

TN, 50, 52, 65

Toxicology, 172, 188

TP, 50, 52, 65, 270

TQ, 192

Traceability, 16, 236

True results, 70

T2 statistics, 58

t-test, 56
Type I error, 50, 52, 99, 257

Type II error, 50, 52, 99, 257

U

Unknown analysis, 141, 166, 267

Unreliability region, 80

UV-Vis spectroscopy, 29, 97, 177

V

Validation

approaches, 266

methods, 265

Vapor spectra, 211

Veterinary drug, 85

Volatile compounds, 32

W

Wastes, 241

Wine, 244

Wine vinegar, 241

X

X-ray diffraction, 26

Y

Yeasts, 269

Index 281


	Preface
	Contents
	Abbreviations and Symbols
	Chapter 1: Principles of Identification
	1.1 Introduction
	1.2 The Concept of Identification
	1.3 General Principles for Identification
	1.4 Components of Identification
	1.5 Types and Objects of Identification
	1.5.1 Main Classification
	1.5.2 Subtypes of Identification
	1.5.3 Identifiers
	1.5.4 Known Chemical Substances

	1.6 Principal Approaches to Identification
	1.7 Metrological Issues
	References

	Chapter 2: Techniques and Methods of Identification
	2.1 General
	2.2 Elemental Analysis
	2.3 Electrochemistry
	2.4 X-ray Diffraction
	2.5 Microanalytical Systems
	2.6 Biological Techniques for Chemical Analysis
	2.7 Chromatography and Related Techniques
	2.8 Molecular Spectrometry
	2.8.1 UV-Vis Spectroscopy
	2.8.2 IR Spectroscopy
	2.8.3 NMR Spectroscopy
	2.8.4 Mass Spectrometry and Chromatography Mass Spectrometry

	2.9 Methods
	2.10 Preceding and Related Procedures
	2.10.1 Sample Treatment
	2.10.2 Quantitative Analysis

	References

	Chapter 3: Probability, Statistics, and Related Methods
	3.1 General
	3.2 Binary Responses of Qualitative Analysis
	3.3 Distribution of Measured Quantities
	3.4 Multivariate Statistics and Chemometrics
	3.5 Bayesian Statistics
	3.6 Intellectual Operations, Making Decisions
	3.6.1 General
	3.6.2 Hypotheses Connected with Detection
	3.6.3 Identification Hypotheses
	3.6.4 Experimental Hypotheses
	3.6.5 Statistical Hypotheses

	References

	Chapter 4: Reliability and Errors of Identification
	4.1 General
	4.2 Formal Statistics of False and True Results
	4.2.1 Statistics of False Results
	4.2.2 Statistics of True Results
	4.2.3 Replication
	4.2.4 Predictive Values
	4.2.5 Bayesian Approach
	4.2.6 Prior Data and Replication
	4.2.7 Screening of Real Samples
	4.2.8 Other Indices

	4.3 Concentration Dependence of Detection and Identification Results
	4.3.1 Binary Responses
	4.3.2 Measurands
	4.3.2.1 Detection
	4.3.2.2 Identification


	4.4 Similarity of Spectra: Match Factors
	4.4.1 General
	4.4.2 Mass Spectrometry
	4.4.2.1 Classical Algorithms
	4.4.2.2 Modifications of MF
	4.4.2.3 Peptides and Proteins

	4.4.3 NMR Spectroscopy
	4.4.3.1 Comparison with Predicted Spectra
	4.4.3.2 Comparison with Reference Spectra

	4.4.4 IR Spectroscopy
	4.4.5 UV-V is Spectroscopy
	4.4.6 Meaning of MF

	4.5 Probabilistic Interpretation of Analytical Data
	4.5.1 True and False Rates
	4.5.2 Type I and II Error
	4.5.3 Confidence Probability
	4.5.4 Spectral Matching and Probability of Identification
	4.5.4.1 General
	4.5.4.2 Mass Spectrometry of Low Molecules
	4.5.4.3 Mass Spectrometry of High Molecules

	4.5.5 Spectral Interpretation

	4.6 Non-numerical Estimates of Reliability
	References

	Chapter 5: Target Identification in Methods
	5.1 General
	5.2 Screening
	5.3 Confirmation
	5.4 EPA Confirmatory Methods
	5.5 Confirmation: Guidances and Methods of Various Organizations and Agencies
	5.5.1 General
	5.5.2 Chromatography
	5.5.3 Mass Spectrometry
	5.5.3.1 Full Scans and Selective Monitoring
	5.5.3.2 Identification Points
	5.5.3.3 High Resolution

	5.5.4 Other Techniques
	5.5.4.1 GC with Specific Detectors
	5.5.4.2 HPLC-UV-Vis
	5.5.4.3 Thin Layer Chromatography
	5.5.4.4 IR Spectroscopy
	5.5.4.5 NMR Spectroscopy


	5.6 Testing and Criticism of Guidances
	References

	Chapter 6: Prior Data for Non-target Identification
	6.1 General
	6.2 A Variety of Prior Data
	6.3 Set of Abundant Compounds
	6.4 Occurrence and Co-Occurrence Rates
	6.4.1 Kinds of rates
	6.4.2 Databases
	6.4.3 The Co-Occurrence Rate
	6.4.4 Methodological Aspect

	6.5 Identification Hypotheses and Occurrence/Co-Occurrence Rates
	6.5.1 Redundant Hypotheses
	6.5.2 Deficient Hypotheses

	6.6 Prior Data Involved in Analytical Procedures
	6.6.1 Searches in Databases
	6.6.2 Penalty for Rare Compounds
	6.6.3 Information About the Sample
	6.6.4 Plausibility of Analytical Results

	References

	Chapter 7: Non-target Identification. Chromatography and Spectrometry
	7.1 General
	7.2 Gas Chromatography Retention Indices
	7.2.1 Index Types
	7.2.2 Reference Data
	7.2.3 Choice of Reference Values
	7.2.4 Identification Criteria
	7.2.5 GC-MS

	7.3 HPLC and Related Techniques
	7.3.1 Introductory Note
	7.3.2 Libraries of UV-Vis Spectra
	7.3.3 Retention Parameters and Their Reproducibility
	7.3.4 Retention Parameters of Peptides and Proteins
	7.3.5 Migration Parameters in Electromigration Techniques

	7.4 Mass Spectrometry
	7.4.1 Libraries
	7.4.1.1 EI-MS1
	7.4.1.2 MSn
	7.4.1.3 Metabolomics
	7.4.1.4 Proteomics

	7.4.2 HRMS
	7.4.3 Spectral Interpretation

	7.5 IR Spectroscopy
	7.6 NMR Spectroscopy
	7.7 ``Omics´´
	7.7.1 Metabolomics
	7.7.2 Proteomics

	7.8 Comparison of Spectral Techniques
	References

	Chapter 8: Chemical Qualitative Analysis II
	8.1 General
	8.1.1 Concepts and Definitions
	8.1.2 Analytical Approaches, Techniques, and Methods
	8.1.3 Reliability of Results
	8.1.4 Reference Materials
	8.1.5 Reference Data on Sample Composition

	8.2 Objects
	8.2.1 Food
	8.2.2 Oil Spills
	8.2.3 Microorganisms
	8.2.4 ``Omics´´
	8.2.5 Other Objects

	References

	Chapter 9: Good Identification Practice
	9.1 General
	9.2 Standardization of Terminology
	9.3 Metrology for Chemical Identification
	9.4 Instrumental Parameters
	9.5 Laboratory Practice and Quality Assurance
	9.6 Validation of Methods and Approaches
	9.6.1 Methods
	9.6.2 Approaches

	9.7 Proficiency Tests, Interlaboratory Comparisons
	References

	Index

