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Preface

Analytical chemistry plays an important role in many branches of chemistry,

biochemistry, pharmacy, life science and food production, as well as in monitor-

ing of our environment, our health, etc. Many decisions are based on the results of

quantitative chemical analysis, and it is important to be aware of the quality of

the results whenever analytical chemistry methods are used. The development

of analytical chemistry is thus increasingly characterized by the introduction of

analytical quality assurance principles. The harmonization of European and

international markets is triggering this process, and analytical laboratories in

the chemical and pharmaceutical industries, as well as analytical routine labora-

tories in other disciplines such as environmental and food analysis, have generally

accepted and introduced the appropriate standards, norms, and principles in the

analytical process.

Nowadays, the analyst is not only expected to understand modern instrumental

methods, they are also expected to understand and follow the regulatory require-

ments: for example, good laboratory practice (GLP) used in pharmaceutical

analysis and elsewhere. This is a wide field, starting with the planning and

selection of methods and sampling protocols. Next, the analyst has to validate

the method and to test whether the approach is fit-for-purpose. This means they

must use appropriate, calibrated equipment for the analytical measurements and

must complete documentation at the end of the process, according to the stated

requirements. Moreover, using principles of internal quality assurance, the ana-

lyst must be able to prove that the analytical methods are fit-for-purpose at any

time. In addition, the work of the laboratory should be checked by interlaboratory

comparison.

Despite its increasing importance, analytical quality assurance is hardly covered

in university education. The beginner working in a chemical analytical laboratory

will therefore face many issues for which they have not been trained. This book

tries to help overcome this deficiency. Approaches are introduced and explained in

detail on the basis of challenges as they appear to an analytical chemist in analytical

practice. Most of the examples result from research in cooperation with industry

and non-university laboratories. They have also been successfully applied in prac-

tical student courses in analytical quality assurance at our university.
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Objective decisions require statistical tests. Therefore, all the challenges are

solved by appropriate statistical tests which must be applied according to the

regulatory requirements or which are recommended to establish the analyst’s

decision. Considerable weight is placed on solutions obtained according to these

regulatory requirements.

Clearly, nowadays there are software packages for most of the problems, but we

present each solution in detail in order to recalculate the results from first principles,

because we believe that the analyst should know what the software program

calculates. There are software packages, for example, for the calculation of the

limit of detection. However, is it calculated on the basis of the German norm (DIN)

or the IUPAC recommendations? Here, the analyst will obtain different results and

therefore, in case of doubt, should be able to check the calculations. Besides the

solutions given immediately following the challenges, MS Excel1 spreadsheet

functions can be found on the internet for solving the challenges, and these can

also be applied to the reader’s own problems.

As mentioned above, analytical quality assurance is a wide field which includes,

besides the experimental requirements, the creation of documents according to

regulatory requirements such as standard operation procedures (SOPs). Therefore,

we had to make a selection of topics, and omitted this important documentation,

which the analyst will learn, for example, in special workshops. We have only briefly

introduced the extensive field of method development and tool qualification. How-

ever, the reader will find good books written by specialists in these fields.

Method validation is one of our main objectives. As all decisions must be taken

with the help of statistical tests, the reader will find a comprehensive overview of

method validation, taking into account all regulatory requirements. Thus the analyst

will find, for example, all six methods for checking the trueness of analytical

methods, and all the tests for linearity. The reader will find suitable methods for

their own analytical approaches, as each test is supported by practical challenges.

We also point out that some frequently used procedures in statistics might not

be the correct approach in analytical chemistry. For example, linearity is almost

always checked by the correlation coefficient r. However, we argue that this is false,
and discuss it in detail.

For further information on each chapter, there are many good books written by

specialists. We apologize to colleagues whose work we could not cite because of

space limitations. We wanted to introduce the reader to the wide field of analytical

quality assurance in the style of a textbook rather than present a monograph with an

exhaustive bibliography.

A comment on the symbols: we endeavored to apply unified symbols but we

sometimes used the symbols suggested in documents such as DIN in order to retain

compliance with the regulations. Last but not least, we have presented about 80

complex challenges. As there may be mistakes remaining, the authors will be grateful

for any readers’ comments.

Thus, we hope that beginners will find these inspiring challenges a positive and

helpful introduction to the experimental work of analytical quality assurance.
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Advanced analysts will also find suggestions and statistical tests necessary to ensure

objectivity in their decisions.

Finally, we would like to express our thanks to the staff at Springer for all their

help and courtesy, especially with regard to correction of the English.

Jena, January 2011 Manfred Reichenbächer and Jürgen W. Einax
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Challenges

Excel-worksheets for solving the challenges are available at http://extras.springer.

com/2011/978-3-642-16594-8. For further information, please consult the file

README_978-3-642-16594-8.txt.
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List of Important Symbols

Some important symbols and abbreviations are listed below. Further symbols and

abbreviations the use of which is restricted to special sections are defined in those

sections.

A Absorbance (without unit); peak area (in counts)

a0 Regression coefficient (intercept)

a1 Regression coefficient (slope)

a2 Regression coefficient (quadratic term)

As Asymmetry factor

c Concentration

Ĉ Calculated value of the Cochran test on homogeneity of variances

CI Confidence interval

CV Coefficient of variation

df Degrees of freedom

e Error; difference between measured and estimated values; residual

F Values of the F-distribution
H0 Null hypothesis

H1, HA Alternative hypothesis

I Intensity

k Number of groups

k0 Retention factor

l Distance

L0 Limit or threshold value

LAL Lower action limit

LD Limit of detection

LOF Lack-of-fit

LQ Limit of quantification

LWL Lower warning limit

MS Mean square

m Number of features; mass

M Molecular mass

med, x̃ Median

xv



n Number of objects, experiments, or observations

P Two-sided probability
�P One-sided probability

PE Pure error

PI Prediction interval

Q Quantile

Q̂ Calculated value of the Dixon outlier test

QC Quality coefficient

q̂r Calculated value of the David test on normal distribution

r Correlation coefficient; repeatability limit; number of reflections

R Range; reproducibility limit

Rs Resolution

r̂m Calculated value of the Grubbs outlier test

Rr% Recovery ratio

Reg Regression

Rf Response factor

RMS Root mean squares

RSD Relative standard deviation

s Standard deviation

sy.x Residual standard deviation; calibration error

sx.0 Process standard deviation; analytical error

s2 Variance

Sens Sensitivity

SS Sum of squares

t Value of the t-distribution
T Transmission; temperature

tr Retention time

u Uncertainty

U Expanded uncertainty

ucomb Combined uncertainty

UAL Upper action limit

UV Ultraviolet

UWL Upper warning limit

V, v Volume

VIS Visible

w Weighting factor; peak width

x Variable
��x Grand mean value

y Variable; response

z Standardized variable

a Probability of an error of the first kind; risk; absorptivity; selectivity

factor

b Probability of an error of the second kind

g Activity coefficient
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l Wavelength

m True mean value

s True standard deviation

w2 Value of the chi-square distribution

ŵ2 Calculated value of the Bartlett test for homogeneity of variances

Superscript Indices

^ Estimated value

� Mean value; median

* Outlier suspected value

Subscript Indices

a Analysis

add Stocked

bl Blank

bw Between

cal Calibration

crit Critical

i Running index

in Within

j Running index

max Maximum

min Minimum

p Pooled

r, rel Relative

r Repeatability

R Reproducibility

sp Spiked

st Standard

tot Total

val Validation

w Weighted
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List of Abbreviations

AAS Atomic absorption spectroscopy

ANOVA Analysis of variance

API Active pharmaceutical ingredient

AQA Analytical quality assurance

CuSum Cumulative sum of differences

DAD Diode array detector

DIN Deutsches Institut für Normung e. V. (German standards)

CRS Chemical reference substance

CRM Chemical reference material

ECD Electron capture detector

ELISA Enzyme-linked immunosorbent assay

FID Flame ionization detector

GC Gas chromatography

GLP Good laboratory practice

HPLC High performance liquid chromatography

HS Headspace

IC Ion chromatography

ICH International conference on harmonization

ICP–OES Optical emission spectroscopy with inductively coupled plasma

IS Internal standard

ISO International organization for standardization

MHE Multiple headspace extraction

MS Mass spectrometry

ODR Orthogonal distance regression

OL Outlier

OLS Ordinary least squares

SPE Solid phase extraction

SPME Solid phase micro extraction

St Stock solution

USP United States Pharmacopeia
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Chapter 1

Introduction

Quality of products and services has encompassed more and more areas of society,

such as foods and drugs, environment, health, safety of the working population, and

many others. According to DIN ISO 8402 [1], quality is “the totality of features and
characteristics of product or service that bear on its ability to satisfy stated or

implied needs”, and the assurance of quality is defined as “all those planned and

systematic actions necessary to provide adequate confidence that a product, process

or service will satisfy quality requirements”. Responsible for the compliance with

these requirements is the quality management system, defined by ISO 9001:2008 [2]

as “coordinated activities to direct and control an organization with regard to

quality”. The quality management system provides assurance through the following

four tools [3, 4]:

l Quality planning:

Planning activities are focused on setting quality objectives and specifying

necessary operational processes and resources to fulfill quality objectives.

They also include planning for quality assurance, quality control, and quality

improvement activities.
l Quality assurance:

Quality assurance includes all preventive activities which are focused on

providing confidence that quality requirements will be fulfilled. It also

includes proactive controls to prevent problems associated with customer

dissatisfaction.
l Quality control:

Quality control concerns activities focused on conforming to quality require-

ments so that customers receive only products that meet their requirements.
l Quality improvement:

Quality improvement is the part of the management system which is focused on

the continual improvement of activities increasing the ability to fulfill the

requirements.

Analytical chemistry plays an important role in almost all parts of human life. Its

results are essential for the output of industrial, pharmaceutical, and agricultural

production, for research and development, and also for education. This includes the

overwhelming majority of branches of chemistry, biochemistry, pharmacy, and life

M. Reichenb€acher and J.W. Einax, Challenges in Analytical Quality Assurance,
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science, food production, material sciences, but also monitoring and control of our

environment, human health, etc.

Analytical chemistry has a key position in the field of quality assurance. But it

has a double function: on the one hand, the analysis must provide reliable data for

customers; on the other hand, it must indicate that these data are valid. Its self-

control is achieved by validation, which is defined in the international standard EN

ISO/IEC 17025:2000 [5] as “validation is the confirmation by examination and the

provision of objective evidence that particular requirements for a specific intended

use are fulfilled”. According to these requirements only properly validated methods

may be applied and, additionally, using concepts of internal and external quality

control, it must be documented that the test methods are capable of producing

results that are fit-for-purpose every time.

This part of the extensive field of “quality” – quality assurance by means of

instrumental analytical methods – is the subject of this book. In the field

of harmonization of European and international markets, analytical laboratories

of chemical and pharmaceutical industries as well as routine analytical labora-

tories in other disciplines such as environmental and food analysis have

accepted and generally introduced appropriate standards, norms, and principles.

These are mostly based on objective and statistically defined methods. They are

the basis of numerous decisions not only in the development and production of

pharmaceuticals and chemicals, but also in the field of environmental and

consumer protection.

Because these decisions require the use of statistical methods, using statistics

effectively is an important part of the analyst’s job. This concerns all steps,

beginning with the planning and realization of appropriate experiments for the

validation of analytical methods, calibration of instruments, data acquisition under

controlled conditions in order to make objective decisions, and ends with the

analytical report as well as the archiving of the data. For most steps, statistical

methods can or must be applied for objective decisions. Therefore, the modern

analyst should not only have an excellent knowledge of instrumental methods and

the chemistry of the analytes, they must also be able to understand and follow the

regulatory requirements; for example, the principles of good laboratory practice

(GLP) in the course of the analysis of pharmaceutical products, explosives, or

pesticides, which also includes the application of statistical methods.

There are many good books which comprehensively present the theoretical basis

of chemometrics and statistics; some of them are cited as references [6–11]. There

are also a few books, mainly in German, applying the statistical treatment of

analytical data to problems of analytical quality assurance [12–15].

The present book focuses on the procedures for solving practical and reasonable

problems within Analytical Quality Assurance (AQA) which the analyst may meet

in everyday work, using statistics as a help for decisions rather than concentrating

on the theory. These problems are presented as “Challenges” and their solutions.

This book pursues the aim of learning by exercises. After a short theoretical and

methodological introduction to the problems of analytical practice and its back-

ground, the reader should practice by means of the Challenges, which are mainly
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taken from daily problems met in an analytical laboratory. Although nowadays

commercial software packages are mostly applied for the estimation of measured

data, the answers will indicate the solution step-by-step on the basis of MS Excel

spreadsheet functions which are used by international regulatory norms such as

DIN/EN and others. Furthermore, the reader will also find simple Excel spread-

sheets on the internet for the solution of most Challenges, with possible application

to their own problems.

Each chapter builds on topics from previous chapters and the solution of

Challenges given in subsequent chapters will mostly require the knowledge

acquired in earlier chapters.

After a short listing of the possible kinds of errors in analytical measurements

Chap. 2 is focused on the characteristics of random errors which can be evaluated

by statistical methods. Important distributions of measured values, calculation of

the standard deviation as the parameter of the distribution of measured values, and

the confidence interval as the parameter of the analytical error and its relation to

quality are briefly explained.

In Chap. 3 an outline is given of the statistical testswhich are relevant in the field
of AQA. After an introduction to the principles of hypothesis testing, the relevant

tests for series of measurements are given which are important for the evaluation of

the standard deviation. These are a simple test of normal distribution and a test of

trends as well as outlier tests, which have to be used in AQA according to

regulatory requirements. Furthermore, methods of comparison of standard devia-

tions and mean values are presented, subdivided into methods for two standard

deviations and mean values, respectively, and those for more than two parameters.

The Cochran and Bartlett tests are two common methods for checking the signifi-

cance of more than two standard deviations, and the analysis of variance (ANOVA)
must be applied for testing more than two mean values. Challenges in the applica-

tion of one-way and two-way ANOVA are presented. Note that the ANOVA design

explained in Chap. 3 will be applied in further applications such as linearity test and

internal or external laboratory tests.

Linear regression and its special case – calibration – is one of the main subjects

of this book and it is extensively discussed in Chap. 4, which starts with a critical

evaluation of the terms correlation, regression, and calibration (Sect. 4.1). A critical

evaluation of the correlation is necessary because this parameter is often used

erroneously in analytical practice. Challenges concerning the parameters of the

linear calibration model are presented in Sect. 4.2, as well as its simplification if

the intercept cannot be distinguished from zero (Sect. 4.3), and application of the

quadratic regression model in Sect. 4.4.

In analytical practice, the choice of the proper working range, the difference

between the highest and lowest values of the analyte in the sample, is an important

parameter if the analytical method is to be fit for a specific purpose, because

predicted values outside of the working range are not statistically guaranteed.

Therefore, special attention has to be paid to the choice of the correct working

range using some practical examples which also include preparation steps of the

samples (Sect. 4.5).
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Chapter 5 provides an overview of all the parameters which must be validated on

the basis of the regulatory requirements within the scope of AQA. Many Challenges

taken from problems of research in the areas of environmental and pharmaceutical

analysis should enable the reader to employ this knowledge in their own problems.

The parameter precision (Sect. 5.2) is separated into instrumental or system preci-

sion and the precision of the analytical procedure: its repeatability, intermediate

precision, and reproducibility. A considerable part of this book is dedicated to tests

for linearity of the regression line (Sect. 5.3). Besides visual methods, all statistical

tests for checking linearity are presented and proved as Challenges: theMandel test,
the lack-of-fit test by ANOVA applied to replicated measurements, and the test of

significance of the quadratic regression coefficient a2. As explained above, the

correlation coefficient most frequently used as the argument for linearity is often

not appropriate for the linearity test and should be avoided in the analysis.

Section 5.4 provides challenges for testing outliers in the regression line by

means of the F- and t-tests. Sections 5.5 and 5.6 describe the test of the homogeneity
of variances within the regression line and the alternative weighted linear least
squares estimation method which can be applied by heteroscedasticity of variances.

Section 5.7 provides challenges for testing outliers in the regression line by means

of the F- and t-test. Section 5.7 presents all methods and Challenges for checking

trueness within the scope of AQA: mean value t-test, recovery rate, recovery rate of
stocked samples, recovery function, standard addition method, and method com-

parison. Furthermore, standard addition is presented as an alternative analytical

method applied to samples which are influenced by the matrix. The Challenges of

this section encompass a broad field of problems so that the reader will find an

appropriate method for solving their own specific analytical problem.

Many problems concern the analysis of samples with very low concentrations of

analytes, e.g. for trace analytical methods in environmental analysis or for the

determination of byproducts in substances, for which the parameters limit of
detection and limit of quantification are defined. However there are differences in

the definition of these parameters between the IUPAC definition and the German

DIN regulatory documents; the latter are used in this book (Sect. 5.8).

Robustness or ruggedness of an analytical method is not explicitly given in the

list of the required validation parameters, in documents such as International

Conference on Harmonization (ICH), but it is recommended as part of method

development to establish the critical measurement parameters which can be influ-

enced by sample preparation and by the measurement conditions. The evaluation of

the robustness of an analytical method is described in Sect. 5.9 and verified by a

Challenge from pharmaceutical analysis.

After the reader has learnt step-by-step how to validate a new analytical method,

Sect. 5.10 provides an application of the validation steps on the basis of the

validation of an analytical method by the example of the determination of nitrite-

N in iron-containing waste water in terms of monitoring the limit value. Thus, the

reader can test their knowledge of method validation.

Chronologically, the choice and development of an appropriate analytical

method for a specific analytical purpose is the first stage in the validation of a
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method. But method development is a wide field with specific investigations for

each method, and therefore within the scope of this book only some aspects of one

analytical method can be considered. Thus, method development is focused on

chromatographic methods described in Chap. 6. After the definition of the relevant

performance parameters of a chromatogram (Sect. 6.1), the important validation

parameters selectivity and specificity are explained and verified on the basis of

Challenges obtained by the analytical practice given in Sect. 6.2. Finally, the

method development of headspace gas chromatography (HS-GC) is chosen as an

example of one of the most important methods for the determination of organic

compounds in liquid and in solid samples. Challenges provide solutions for various

applications of HS-GC in AQA.

Besides the validity of the analytical methods, the reliability of all the instru-

ments used for the experiments and measurements provide the fundamentals of

analytical quality assurance. The performance verification of analytical instruments

and tools is described for selected examples: UV–ViS spectrometers (Sect. 7.2),

HPLC instruments (Sect. 7.3), and balances (Sect. 7.4).

After the reader has learnt about method development, tool qualification, and the

steps of the validation of an analytical method, they must also know how to control

the quality of the results in routine analysis. This is realized by methods of internal

quality control, preferably verified by control charts, which are described in Chap. 8.
Control charts are extremely valuable in providing a means of monitoring the total

performance of the analyst, the instruments, and the test procedures, and can be

utilized by any laboratory. There are a number of different types of control charts

but the Shewhart (Sect. 8.2) and CuSum charts (Sect. 8.3) are those which are

mainly used.

Chapter 9 concerns interlaboratory studies, which are organized into method-

performance studies, material-certification studies, and proficiency studies. Note

that participation in proficiency studies is necessary for laboratories in the process

of their accreditation and participation in proficiency testing is obligatory for each

accredited laboratory. A method performance study according to relevant ISO and

DIN documents is described in Sect. 9.2 and is verified by the data obtained by an

interlaboratory study for the determination of bromide in industrial waste water.

Section 9.3 provides a Challenge for proficiency testing by the example of the

determination of lead in flood sediment.

Finally, Chap. 10 attends to the problem of measurement uncertainty, which is a
requirement of some regulatory documents; its estimation can be realized by

various procedures. After explaining purpose, definition, and terminology in

Sect. 10.1, the steps in evaluating measurement uncertainty according to ISO

Guide 89:1995 (GUM) are described in Sect. 10.2. However the calculation of

measurement uncertainty is best realized by the MS Excel spreadsheet method

which is given in Sect. 10.3 together with some Challenges. A practical and

understandable way of calculating measurement uncertainty is the Nordtest Report

which is described and verified as a Challenge in Sect. 10.4. Note that this

procedure is primarily written for environmental laboratories in the Nordic

countries but is also applied in other countries, in particular in water analysis.
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It is obvious that this book cannot claim a comprehensive coverage of the topic,

but we think that the encapsulation of the essential requirements of AQA in about

80 Challenges offers a good starting point for the requirements of a modern

analytical laboratory.

In spite of a careful audit of the numerous Challenges, the authors are grateful to

hear of any mistakes which may remain. Note that all results presented were

calculated by Excel functions; therefore, small differences to results calculated by

a hand computer are possible.
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Chapter 2

Types of Errors in Instrumental Analysis

2.1 Overview

Even under constant experimental conditions (same operator, same tools, and same

laboratory, short time intervals between the measurements), repeated measure-

ments of series of identical samples always lead to results which differ among

themselves and from the true value of the sample. Therefore, quantitative measure-

ments cannot be reproduced with absolute reliability.

According to their character and magnitude, the following types of deviation can

be distinguished [1–4]:

Random Errors. Random errors are the components of measurement errors that

vary in an unpredictable manner in replicated measurements. They reflect the

distribution of the results around the mean value of the sample which are randomly

distributed to lower and higher values. Random errors characterize the reproduc-
ibility of measurements, and, therefore, their precision. They are caused by effects

such as measuring techniques (e.g. noise), sample properties (e.g. inhomogene-

ities), and chemical effects (e.g. equilibrium). Even under carefully controlled

conditions random errors cannot, in principle, be avoided, they can only be mini-

mized and evaluated with statistical methods.

Systematic Errors. Systematic deviations (errors) displace the results of analytical

measurements to one side, to higher or lower values which lead to false results.

Such an effect is described by the performance characteristic trueness, which is

defined as “the closeness of agreement between the expectation of a test result or

measurement result and a true value” [1]. Measurement trueness is not a quantity
and cannot be expressed numerically [2], but measures for closeness of agreement

can be given. Thus the trueness can be quantified as bias which is defined as the

difference between the average of several measurements on the same sample �̂x and
its (conventionally) true value m:

BiasðxÞ ¼ �̂x� m (2.1-1)

or if expressed as a percentage

M. Reichenb€acher and J.W. Einax, Challenges in Analytical Quality Assurance,
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Bias % ¼ ð�̂x� mÞ
m

� 100 (2.1-2)

or as the recovery ratio

Rr% ¼ �̂x

m
� 100: (2.1-3)

In contrast to random errors, systematic errors can and must be avoided or

eliminated if their origins become known, because they yield false results. Note

that systematic errors cannot be statistically evaluated.

Systematic errors are always combined with random errors as shown in Fig. 2.1-1.

The measurement accuracy is defined as the “closeness of agreement between a

measured quantity value and a true quantity value of a measurand” [2]. The

measurement accuracy is not given a numerical value, but it is a qualitative

performance characteristic which expressed the closeness of agreement between a

measurement result and the value of the measurand, and thus it describes the

precision as well as the trueness [5]. Therefore, the term “measurement accuracy”

should not be used for measurement trueness.

The performance parameter of accuracy is the measurement uncertainty.

Measurement Uncertainty. The uncertainty of measurements is defined as “a

parameter associated with the result of a measurement that characterizes the

dispersion of the value that could reasonably be attributed to the measurand” [2].

The uncertainty concept divides the errors into two uncertainty components:

– Those that can be characterized by the experimental standard deviations (uncer-
tainty components from Type A).

– Those that can be evaluated from assumed probability distributions based on

experimental or other information (uncertainty components from Type B).

The combined uncertainty from both components is calculated by the law of

propagation of errors (see Chap. 10).
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Outliers. Outliers are individual measurement values which considerably differ

from the mean value. Outliers would falsify the estimation of parameters such as the

mean value and the standard deviation, and therefore they must be detected by

statistical methods and eliminated from the data set or, if this is not possible, one

must work with methods resistant to outliers (robust methods [6]).

Trend. A data set shows a trend when the chronologically ordered values move

steadily downwards or upwards. Such a data set is not under statistical control;

therefore, after it has been recognized statistically, the trend must be eliminated.

Note that a data set which shows a trend is to be rejected.

Gross Errors. Gross errors result from human mistakes, or have their origins in

instrumental or computational errors. Frequently, they are easy to recognize and the

origins must be eliminated.

Challenge 2.1-1

Table 2.1-1 shows series of data sets obtained by the five methods A–E.

Which kinds of errors can be visually detected? The true content of the

sample is m ¼ 100:

Solution to the Challenge 2.1-1

The data set in series C obviously shows a trend downwards, i.e. a trend is

present. Though the calculated mean value is correct the data are not appro-

priate for the analytical result. The data set in C has to be rejected.

The value 82 in seriesD is obviously an outlier which leads to a false mean

value. After elimination of this value a correct value (100) can be calculated.

Method E clearly yields a false mean value �x ¼ 115: The result is obvi-

ously too high because a systematic error is present.

Methods A and B yield correct mean values but the individual results show

a higher dispersion around that mean in series B than in A. This means that

the precision in series A is better.

This exercise can be regarded as a plausibility control, which is an import step

in analytical quality assurance. Plausibility control means checking data series,

Table 2.1-1 Hypothetical analytical results obtained with five methods

Method x1 x2 x3 x4 x5 x6 �x

A 99 101 98 100 100 102 100

B 106 98 104 95 94 103 100

C 106 102 102 99 98 93 100

D 99 101 98 82 100 102 97

E 115 117 116 116 112 114 115
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analytical results, and others, without statistical tests, to see if the data can be
corrected. This procedure has to be carried out before the release of data for

further processes or for the documentation of analytical results. Thus, for example,

the check of series D reveals the existence of an outlier (x4 ¼ 82) for which an

outlier test must be carried out (see Challenge 3.3-1), and the trend in series C is

also obvious.

Note that errors cannot always be clearly recognized; statistical methods are

mostly necessary, but this is the subject of the following chapters.

2.2 Random Errors

2.2.1 Distribution of Measured Values

When one wants to view the distribution of many available data, it is useful to group

the n data into k classes with nj variables in each class and visualize their frequency
density or probability distribution p(x) with a histogram, which is a graphical

display of tabulated frequencies presented as bars [7–9]. Figure 2.2.1-1 shows an

example for the frequency density p(x) of measured values x. The bars must be

adjacent and the intervals (or bands) are generally of the same size. The rule of

thumb k ¼ ffiffiffi
n

p
provides an appropriate number of classes k for the construction of a

histogram with n data.

If the number of repeated measurements is increased to infinity and one reduces

the width of the classes towards zero, a symmetrical bell-shaped distribution of

measurement values is usually obtained, which is called Gaussian or normal
distribution (see curve ND in Fig. 2.2.1-2).

The frequency density p(x) is described by the function

pðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp � 1

2

x� m
s

� �2� �
: (2.2.1-1)
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The parameters of the normal distribution are:

l Mean value m

m ¼
Pn
i¼1

xi

n
: (2.2.1-2)

l Variance s2

s2 ¼
Xn
i¼1

xi � mð Þ2
n

: (2.2.1-3)

To avoid the scale effect, standardized values with

z ¼ x� m
s

(2.2.1-4)

are often used. Equation (2.2.1-1) is transformed into (2.2.1-5):

pðxÞ ¼ 1ffiffiffiffiffiffi
2p

p exp � z2

2

� �
: (2.2.1-5)

Equation (2.2.1-5) holds true for the standardized normal distribution.
In the literature one can find some tables for z-values [7]. Table A.1 gives the

areas between the boundary z ¼ 0 and a chosen value z (see Fig. 2.2.1-3).
Because of the symmetry of the normal distribution the table gives p-values only

for positive values of z. With this table one can ask, for example, what percentage

of determinations will fall between two chosen boundaries (see Challenge 2.2.1-2).
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In analytical practice, random samples of the basic population are investigated.

The parameters m and s are substituted by the estimated values �x and s for n
measurements, which are calculated by (2.2.1-6) and (2.2.1-7), respectively:

�x ¼
Pn
i¼1

xi

n
; (2.2.1-6)

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � �xÞ2

n� 1

vuuut
: (2.2.1-7)

Both values can be obtained by MS Excel functions ¼ AVERAGE(Data) and

¼STDEV(Data), respectively.

Note the calculation of the mean value �x as well as the standard deviation s is
based on the normal distribution of the data set.

However, there are data sets for which no assumptions about the distribution

of the population can be made. These data sets are handled by so-called robust
methods [9, 10]. The central tendency is expressed by the median ~x instead of the

mean value �x. The median is resistant to outlying observations which have a large

effect on the mean and the standard deviation.

After ranking the n data, the median ~x is the middle value of the given numbers

in ascending order.

The median of a ordered data set x1, x2,. . ., xn is

~x ¼ x
nþ1
2

(2.2.1-8)

when the size of the distribution is odd, and

~x ¼ 1

2
xn
2

þ xn
2
þ1

� �
(2.2.1-9)

when the size of the distribution is even.
In practice, the median is calculated by the Excel function ¼ MEDIAN(Data)

without ranking of the data set.
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Fig. 2.2.1-3 The shaded
area describes the probability

p(x) of finding a value

between 0 and z
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Challenge 2.2.1-1

The mean values of 40 batches of an intermediate product of a synthesis for

an active pharmaceutical ingredient (API), calculated as the content relative

to a standard, are given in Table 2.2.1-1.

Create the histogram for the data set with an appropriate number of

classes!

Can the data set be considered normally distributed?

Solution to Challenge 2.2.1-1

The mean values �x arranged in increasing size are listed in Table 2.2.1-2.

With the rule of thumb for the choice of the number of classes
k ¼ ffiffiffiffiffi

40
p ¼ 6:3, seven classes are chosen. The number of mean values nj

which belong to the k classes are given in Table 2.2.1-3. The histogram is

visualized in Fig. 2.2.1-4 from the data of Table 2.2.1-3. Figure 2.2.1-4 shows

that the mean values �x may be regarded as normally distributed, which is

demonstrated by the bell-shaped curve in Fig. 2.2.1-5. (A statistical test for

normal distribution is presented in Sect. 3.2.1.)

Table 2.2.1-1 Mean values �x in % (w/w) of 40 batches of an intermediate product of a

synthesis

n �x n �x n �x n �x

1 103.9 11 96.2 21 99.7 31 96.9

2 102.7 12 99.9 22 100.6 32 108.0

3 101.0 13 92.3 23 107.5 33 105.8

4 94.8 14 101.2 24 90.5 34 94.6

5 105.2 15 100.8 25 108.8 35 102.8

6 100.4 16 99.0 26 101.9 36 104.2

7 97.0 17 100.8 27 102.5 37 99.9

8 101.6 18 104.0 28 97.4 38 106.4

9 109.0 19 99.2 29 107.0 39 103.5

10 90.8 20 109.7 30 104.5 40 96.7

Table 2.2.1-2 Mean values �x in % (w/w) arranged in increasing size

n �x n �x n �x n �x

24 90.5 16 99.0 14 101.2 30 104.5

10 90.8 19 99.2 8 101.6 5 105.2

13 92.3 21 99.7 26 101.9 33 105.8

34 94.6 12 99.9 27 102.5 38 106.4

4 94.8 37 99.9 2 102.7 29 107.0

11 96.2 6 100.4 35 102.8 23 107.5

40 96.7 22 100.6 39 103.5 32 108.0

31 96.9 15 100.8 1 103.9 25 108.8

7 97.0 17 100.8 18 104.0 9 109.0

28 97.4 3 101.0 36 104.2 20 109.7
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(continued)

Challenge 2.2.1-2

Calibration standards were prepared in the range 90–110% (w/w) for the

determination of the content of the API with the same method as given in

Challenge 2.2.1-1.

(a) What percentage of determinations will fall in this range?

(b) What percentage of determinationswould fall in the range 99–101% (w/w)?

Table 2.2.1-3 Classes k with
their width as well as the

number of the mean values

nj for each class k

k Width nj

1 90–93 3

2 93–96 2

3 96–99 6

4 99–102 12

5 102–105 8

6 105–108 6

7 108–111 3

1 2 3 4 5 6 7

Classes
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Fig. 2.2.1-4 Histogram

generated with the data of

Table 2.2.1-3
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Classes

1 2 3 4 5 6 7Fig. 2.2.1-5 Bell-shaped

curve of the histogram in

Fig. 2.2.1-4

14 2 Types of Errors in Instrumental Analysis



Solution to Challenge 2.2.1-2

According to the results in Challenge 2.2.1-1, the data set of the mean values �xi
is normally distributed. Using the data set given in Table 2.2.1-2, the grand

mean is ��x ¼ 101:2% (w/w) and the standard deviation is s ¼ 4:857% (w/w):
These values are used for the calculation of the z-values according to (2.2.1-4).

(a) The z-value of the lower limit is zll ¼ �2:31 and that of the upper limit is

zul ¼ 1:81: According to Table A.1 the probability p of finding an value

between 0 and z is 0.4896 for the lower and 0.4649 for the upper limit,

which gives the sum 0.9545. Thus, 95.5% of the results will fall within

the range of the calibration standards, and only 4.5% will fall outside.

(b) For the range 99–101%(w/w), only 19.3% of the values are included

and 80.7% fall outside, which is calculated by the intermediate

quantities: zll ¼ �0:46; pðzllÞ ¼ 0:1772; zul ¼ �0:04; pðzulÞ ¼ 0:0160;
pðzll þ zulÞ ¼ 0:1932:

Challenge 2.2.1-3

The screening of atrazine on a field by ELISA has yielded the mean values of

12 samples (n) obtained by triplicates given in Table 2.2.1-4.

Solution to Challenge 2.2.1-3

(a) The mean value �x and the standard deviation s calculated by (2.2.1-6) and
(2.2.1-7), respectively, are �x ¼ 4:28 ppm (w/w) and s¼ 4:145 ppm(w/w):
In order to calculate the median, the data set has to be ordered

(Table 2.2.1-5). Note that the median can also be calculated by the

Excel function ¼ MEDIAN(Data) without ordering of the data set.

Because the rank n is even the median is obtained by (2.2.1-9); the

median is the mean of the values of rank 6 and 7: ~x ¼ 2:80 ppm (w/w):
(continued)

Table 2.2.1-4 Data set obtained by screening of atrazine using ELISA

n �xatrazine
ppb (w/w)

n �xatrazine
ppb (w/w)

n �xatrazine
ppb (w/w)

1 2.5 5 4.6 9 13.8

2 0.9 6 0.5 10 1.2

3 1.1 7 8.6 11 0.8

4 7.9 8 3.1 12 6.4

(a) Calculate the mean value �x; the standard deviation s, and the median ~x; (b) Calculate the
same parameters after addition of a further value 100 ppb (w/w) to the data set. Evaluate the

results.
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(b) After addition of the value 100 ppb (w/w) to the data set the mean value is

�x ¼ 11:65 ppb (w/w)and the standard deviation is s¼ 26:842 ppb (w/w):
Because the rank is now odd (n ¼ 13) the median is the observation with

rank (13 þ 1)/2 ¼ 7, according to (2.2.1-8): ~x¼ 3:1 ppb (w/w):
Whereas the addition of a single but outlying observation causes

a large effect on the mean value as well as on the standard deviation,

the median is hardly changed. The mean value increases from 4.28 to

11.65 ppb (w/w) whereas the median increases only from 2.8 to 3.1 ppb

(w/w), which shows that the median is a better representative of the

central tendency after addition of only one value to the data set.

2.2.2 Standard Deviation

The standard deviation s is calculated from n replicate measurements of the same

sample by (2.2.1-7). The number of degrees of freedom is df ¼ n � 1 which

corresponds to the number of control measurements.

The standard deviation obtained from replicates of different samples with

varying content is calculated by (2.2.2-1)

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnA
i¼1

Pm
j¼1

ðxij � �xiÞ2

n� m

vuuut
(2.2.2-1)

with df ¼ n � m, in which m is the number of samples, nA is the number of

replicates for each sample, and n is the total number of determinations, n ¼ m � nA:
Equation (2.2.2-2) should be used for the computation of s:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1

SSi

n� m

vuuut
: (2.2.2-2)

SSi is the sum of squares of the sample i, which is a calculator function and also a
MS Excel function ¼ DEVSQ(Data).

Table 2.2.1-5 Analytical values of Table 2.2.1-4 in their ascending order n

n xatrazine
ppb (w/w)

n xatrazine
ppb (w/w)

n xatrazine
ppb (w/w)

1 0.5 5 1.2 9 6.4

2 0.8 6 2.5 10 7.9

3 0.9 7 3.1 11 8.6

4 1.1 8 4.6 12 13.8
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In the special case of paired replicates, each determination is carried out in

duplicate. The standard deviation is calculated according to (2.2.2-3):

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðx0j � x00jÞ2

2 � m

s
: (2.2.2-3)

The degrees of freedom df ¼ m; x0j and x00j are the paired values of double

measurements for each sample, and m is the number of samples.

The variance (var) is the square of the standard deviation:

var ¼ s2: (2.2.2-4)

The relative standard deviation sr is given by

sr ¼ s

�x
(2.2.2-5a)

and when it is expressed as a percentage by

sr% ¼ 100 � sr (2.2.2-5b)

which is, for example, an appropriate parameter for the comparison of precision of

various analytical methods.

The standard deviation of the means (SEM) sð�xÞ is called the standard error of

the mean and is calculated using the equation

sð�xÞ ¼ sffiffiffi
n

p : (2.2.2-6)

The standard error of the mean is the standard deviation of the sample mean

estimate of a population. It represents the variation associated with a mean value.

The SEM is the expected value of the standard deviation of means of several

samples.

Challenge 2.2.2-1

The process standard deviations for the determination of sulphur in steels

according to the volumetric titration of SO2 after burning of the samples were

obtained by two different methods:

Method A: Repeated measurements of the same steel standard. The results
are listed in Table 2.2.2-1.

(continued)
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Method B: Double measurements with ten different steel standards always
of different content. The results are given in Table 2.2.2-2.

Calculate the standard deviation and give the degrees of freedom for both

methods.

Note that the statistical test for normal distribution, the requirement for

standard deviation, is given in Sect. 3.2.1.

Solution to Challenge 2.2.2-1

Method A: The standard deviations for the data set in Table 2.2.2-1 are

calculated by (2.2.1-5), but this is a function on every hand calculator and

an Excel function ¼ STDEV(Data).

The standard deviation is s ¼ 0.0010% (w/w) S, obtained by df ¼ 10

degrees of freedom.

Method B: The standard deviation is s ¼ 0.00137% (w/w) S calculated by

(2.2.2-3) with the intermediate quantities
P ðx0 � x00Þ2 ¼ 0:0000375 and

df ¼ m ¼ 10.

Note that the degrees of freedom df are equal for both methods!

Table 2.2.2-1 Analytical

values for a steel standard
Replicate x in % (w/w)

1 0.0259

2 0.0238

3 0.0257

4 0.0242

5 0.0267

6 0.0239

7 0.0248

8 0.0259

9 0.0262

10 0.0241

11 0.0240

Table 2.2.2-2 Analytical

values for ten steel standards
Standard x0 in % (w/w) x00 in % (w/w)

1 0.0252 0.0236

2 0.0096 0.0110

3 0.0298 0.0282

4 0.0430 0.0448

5 0.0274 0.0281

6 0.0326 0.0294

7 0.0456 0.0480

8 0.0156 0.0135

9 0.0352 0.0330

10 0.0362 0.0374

18 2 Types of Errors in Instrumental Analysis



Challenge 2.2.2-2

An analytical laboratory has to determine manganese in steels with contents

between 0.35 and 1.15% (w/w) Mn. For the determination of the standard

deviation of the analytical method, five steel standards were analyzed by the

volumetric method. The results are presented in Table 2.2.2-3.

Solution to Challenge 2.2.2-2

The standard deviation for the data set inTable 2.2.2-3 is calculated by (2.2.2-1).

The sums of squares SSi obtained by the MS Excel function ¼ DEVSQ(Data)

are:

Standard 1 2 3 4 5

SSi 0.0005 0.000275 0.0003 0.0009 0.000875

The standard deviation is s ¼ 0:014% (w/w) Mn which is obtained withP
SSi ¼ 0:00285; n ¼ 20, m ¼ 5, and df ¼ 15.

Note that the calculation of the standard deviation by (2.2.2-1) is only

allowed if the variances of groups are homogeneous, which will be tested

later (see Challenge 3.4-1).

2.2.3 Confidence Interval

Measured values which follow a normal distribution can occur in the whole range

defined as �1 < x < 1. Therefore, it is useful to define dispersion ranges which

include a certain number of measured values with a given high level of significance

P, usually P ¼ 95% or P ¼ 99%. The integration interval for P ¼ 95% is

m � 1:96 � s and its limits are called confidence limits at the significance level

P ¼ 95%: The range between the limits is called the confidence interval. Note that
the integration between the limits � 1:96 � s covers 95% of the values xi. Thus,
there is a probability of 95% that a measured value �x will fall in the range

m� 1:96 � s under the assumption the values xi of the mean belong to the same

population.

Table 2.2.2-3 Analytical

values for the five steel

standards in % (w/w) Mn

Standard 1 0.31 0.30 0.29 0.32

Standard 2 0.59 0.57 0.58 0.57

Standard 3 0.71 0.69 0.71 0.71

Standard 4 0.92 0.92 0.95 0.95

Standard 5 1.18 1.17 1.21 1.19

Calculate the standard deviation.
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For small sample sizes with n samples, the normal distribution nðs; mÞ is

substituted by the t-distribution ntðs; �x; nÞ: Figure 2.2.1-2 shows the relation

between the normal distribution of a given population and the t-distribution for

small samples. One can recognize that the t-distribution (curve tD) is broader at

the base and the confidence interval is also broader. The confidence limits are

given for the various n and degrees of freedom df, respectively, in the t-table
(Table A.2) or by Excel function ¼TINV(a, df). Note that a is the risk, which is

connected with the significance level by the relation a ¼ 1� P:
Note that only two-tailed values are directly available from this function. In

order to obtain a one-tailed critical value for the significance level a and df degrees
of freedom the function ¼TINV(2a, df) is used. (One- and two-tailed values are

explained in detail in Chap. 3.)

The confidence interval is calculated by (2.2.3-1):

D�x ¼ sx � tðP; dfÞffiffiffi
n

p : (2.2.3-1)

The t-values, i.e. the critical values of the t-distribution, are taken from

Student’s t-table for a certain significance level P (usually 95 or 99%) and the

degrees of freedom df refers to the data set from which the standard deviation sx
is obtained.

The analytical result is expressed in the form:

�x� D�x; given in the units of measurement: (2.2.3-2)

The mean value �x is calculated by (2.2.1-2). But there is still a question: how big

may the difference of two or more measurement values be for the formation of the

mean value? Can all values xi obtained be utilized or there are limits?

The critical difference Dcrit between the highest and the lowest measurement

values in a set of repeated determinations is given by Pearson’s criterion:

Dcrit ¼ xmax � xminj j<DðP; njÞ � sx: (2.2.3-3)

The Pearson factors DðP; njÞ for P ¼ 95% and the number of repeated determi-

nations nj are given in Table 2.2.3-1.

Table 2.2.3-1 Pearson factors DðP; njÞ for the critical difference between the highest and lowest

measurement value of repeated determinations nj with the significance level P ¼ 95%

nj 2 3 4

DðP; njÞ 2.77 3.31 3.65
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For example, the difference between the two measurement values may not

exceed the limit 2:77 � sx for a double determination.

However, sometimes the simple relation Dcrit < 2 � sx is used; therefore, the

limit criterion used should be given in the documents.

Challenge 2.2.3-1

Let us come back to the determination of sulphur in steel (Challenge 2.2.2-1).

Calculate the confidence interval for the mean value of sulphur using

method A and method B at the significance level P ¼ 95% for

(a) Double determinations

(b) Fourfold determinations

Solution to Challenge 2.2.3-1

The confidence interval is calculated by (2.2.3-1).

The results are listed in Table 2.2.3-2. The values of sx and df were

determined in Challenge 2.2.2-1.

Challenge 2.2.3-2

(a) According to the procedure given in Challenge 2.2.2-2, the double deter-

mination of manganese in a steel sample yields the values x1 ¼ 0.65%

(w/w) Mn and x2 ¼ 0.63% (w/w) Mn.

Present the analytical result in the form x� D�x% (w/w) Mn:
Give a verbal interpretation of the result.

(b) The analytical results obtained with triplicates of a sample of manganese

steel are:

% (w/w) Mn 0.65 0.63 0.68

Test whether the calculation of the mean value is permitted.

What should one do if the limit is exceeded?

Table 2.2.3-2 Intermediate quantities and results of the calculation of the confidence

interval D�x for the determination of sulphur in steel by different methods

Parameter Method A Method B

sx 0.0011 in % (w/w) 0.0014 in % (w/w)

df 10 10

t(P ¼ 95%, df) 2.228 2.228

a. D�x for n ¼ 2 0.0017 in % (w/w) 0.0022 in % (w/w)

b. D�x for n ¼ 4 0.0012 in % (w/w) 0.0015 in % (w/w)

2.2 Random Errors 21



Solution to Challenge 2.2.3-2

(a) The confidence interval is D�x ¼ 0:021% (w/w) Mn calculated for

nj ¼ 2(double determination) with the data obtained by Challenge

2.2.2-2: sx ¼ 0.014% (w/w) Mn and t(P ¼ 95%, df ¼ 15) ¼ 2.131.

The analytical result is 0.64 � 0.02% (w/w) Mn.

The true value of the content of manganese in the steel sample lies in

the range 0.62–0.66% (w/w) Mn. But this is true only for the significance

level P ¼ 95%, with the risk a ¼ 5% that the true value will lie outside

this range.

(b) For nj ¼ 3 the Pearson factor is 3.31. With sx ¼ 0.014% (w/w) Mn, the

critical difference is 0.046% (w/w) Mn, but the difference in the experi-

mental values is xmax – xmin ¼ 0.05% (w/w) Mn. The calculation of the

mean value is not permitted.

One should at best make a further analysis.

2.2.4 Confidence Interval and Quality

The quality control of products in environmental compartments and elsewhere

requires decisions on the basis of analytical results, which means deciding whether

a limit value is transgressed or not. Such a limit or threshold value stipulated in

official documents can be an upper limit (e.g. in the case of environmental compart-

ments) or a lower limit (e.g. for the potassium content of a fertilizer).

Let us take an example: the specified threshold for the content of the monomer

styrene in industrially produced polystyrene for a certain application is�0.8% (w/w).

Analytical quality assurance yields a content of 0.75% (w/w) for a batch pf polysty-

rene. Is the limit value exceeded or not, i.e. is this batch has to be discarded or is the

quality standard fulfilled? How is it to be recognized easily: this decision is of great

economic interest?

But, as Fig. 2.2.4-1 shows, the decision cannot be made without knowledge of

the confidence interval of the analytical result.

The same mean value �x was obtained with two methods which are different in

regard to their precision. The quality criterion is fulfilled in the upper case I,

because the limit value L0 falls outside the confidence interval CI. One says that

L0 does not belong to the parent basic population of the sample. But in case II

with the larger standard error, L0 is included in the basic population of the sample

which means, in a statistical sense, there is no difference between �x and L0.
Therefore, the limit value is exceeded and, for example, the product cannot be

delivered for sale.

For the control of limiting values, as well as some other problems, only the one-
sided limit of the confidence interval is important. This is the upper limit in the
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case of Fig. 2.2.4-1. The significance level of one-sided confidence intervals is

also taken from the t-table or the MS Excel spreadsheet, but with another value for

the statistical significance level. It is worth knowing that for the usual significance

levels tð �Pone�sided ¼ 95%; dfÞ � tðPtwo�sided ¼ 90%; dfÞ:
An analytical mean value fulfils the quality standard for a required maximal

threshold value L0 if

�xþ s � tð �Pone�sided; dfÞffiffiffiffiffi
na

p bL0: (2.2.4-1)

The degrees of freedom df refer to the number of replicates with which the

standard deviation of the analytical method s has been determined, and na is the

number of replicates in the routine analysis.

As Figure 2.2.4-1 reveals, an analytical method with a small confidence interval

is desirable because the experimentally determined mean value can be closer to the

limit value without it being exceeded. If one inspects (2.2.3-1), the confidence

interval for a given significance level, usually P ¼ 95%, is determined by the

standard deviation of the method s and the degrees of freedom df for its determina-

tion as well as the number na of the replicates in the routine analysis. The larger the
number n the smaller will be the value D�x. But the influence of n on the value of the
confidence interval falls exponentially, as demonstrated in Fig. 2.2.4-2 [9]. Many

replicates in routine quality control quickly increases costs, but the effect is only

small. Double determinations are often sufficient.

However, the standard deviation of the analytical method s is direct proportional
to D�x: Thus, it has the biggest influence on the magnitude of D�x: The determination

of s is a unique procedure, and therefore a larger number of replicates should be

made. On the other hand, the greater the number of replicates for the determination

of s, the smaller the t-value.
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Challenge 2.2.4-1

According to a company specification the content of benzene (bz) in technical

n-hexane may not be greater than L0 ¼ 0:80% (v/v): The analytical quality

control will be carried out by GC with n-octane as an internal standard (IS).

The process standard deviation was determined with varying numbers of

replicates of the same sample:

Method A: 12 individual samples

Method B: 6 individual samples.

The relative peak areas Abz=AIS obtained from the chromatograms are

given in Table 2.2.4-1.

(continued)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

s

n

Fig. 2.2.4-2 Relation between s and the number of repeated measurements n [9]

Table 2.2.4-1 The relative

peak areas Abz=AIS obtained

from the chromatograms

Replicate Abz=AIS Replicate Abz=AIS

Method A

1 0.855 7 0.866

2 0.834 8 0.873

3 0.862 9 0.819

4 0.860 10 0.854

5 0.854 11 0.886

6 0.843 12 0.875

Method B

1 0.788 4 0.796

2 0.772 5 0.747

3 0.769 6 0.758

Abz is the peak area of benzene and AIS is the peak area of

the internal standard n-octane
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Which mean value of benzene �xbz may not be exceeded if

(a) Double determinations or

(b) Fourfold determinations will be carried out in the quality control?

Evaluate the results.

Solution to Challenge 2.2.4-1

The critical mean value of benzene �xcrit;bz which may not be exceeded is

calculated according to (2.2.4-1):

�xcrit:;bzbL0 � s � tð �Pone�sided; dfÞffiffiffiffiffi
na

p : (2.2.4-2)

The intermediate quantities and the critical mean value of benzene �xcrit;bz
calculated according to (2.2.4-2) are given in Table 2.2.4-2 for the various

conditions.

(continued)

As Table 2.2.4-2 shows, the critical mean value of benzene �xcrit;bz differs
only minimally with the various conditions. Double determinations in the

routine quality control and determination of the standard deviation of

the analytical method with twelve replicates yields the critical value

�xcrit;bz ¼ 0:78% (v/v): Increasing the numbers of replicates for the determi-

nation of s as well as in the routine quality control does not have a practical

influence on the critical mean value.

Challenge 2.2.4-2

A company produces polystyrene for a certain application. The content of the

residual monomer may not exceed 0.60% (w/w) styrene. The monomer will

(continued)

Table 2.2.4-2 Intermediate

quantities and the limit value

of benzene �xcrit;bz calculated
according to (2.2.4-2)

Parameter Method A Method B

Determination of the standard deviation s
n 12 6

df 11 5

s in % (v/v) 0.0184 0.0182

tð �Pone�sided ¼ 95%; dfÞ 1.796 2.015

Routine quality control

na 2 2

D�x in % (v/v) 0.023 0.026

�xcrit;bz in % (v/v) 0.777 0.774

na 4 4

D�x in % (v/v) 0.017 0.018

�xcrit;bz in % (v/v) 0.783 0.782
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be analyzed by MHE-HS-GC (see Chap. 7). The standard deviation of the

analytical method was determined by two replicates with six samples. The

results are listed in Table 2.2.4-3.

In the routine quality control of a sample the following analytical results

were obtained:

% (w/w) styrene 0.562 0.591 0.559

Will the sample meet the quality requirement?

Solution to Challenge 2.2.4-2

The standard deviation of the analytical method sx calculated according

to (2.2.2-3) with
P ðx0 � x00Þ2 ¼ 0:014726 ð%ðw=wÞÞ2 and m ¼ 6 is

s ¼ 0:03503% ðw=wÞ:
The confidence interval calculated by (2.2.3-1) with �x ¼ 0:5707% (w/w),

tð �Pone�sided ¼ 95%; df ¼ 6Þ ¼ 1:943; and na ¼ 3 is D�x ¼ 0:0393% (w/w):
Thus, the upper confidence limit is �xþ D�xone�sided ¼ 0:61% (w/w) styrene:
This value exceeds the documented quality limit of L0 ¼ 0:60% (w/w),

and therefore the sample does not fulfil the quality requirements. It cannot

be delivered for sale.

2.2.5 Propagation of Errors

When the final result is obtained from more than one independent measurement, or

when it is influenced by two or more independent sources of errors, these errors can

be accumulated or compensated. This is called the propagation of errors.

In the case of independent variables x1, x2,. . ., xn, i.e. if there is no correlation

between the x-values, i.e. the covariances

covðx1;x2;:::;xnÞ¼ 1

n�1
�
X

x1i��x1ð Þ� x21��x2ð Þ����� xni��xnð Þ
h i

¼0; (2.2.5-1)

the total error can be estimated according to the Gaussian law of error
propagation:

Table 2.2.4-3 Analytical results x in % (w/w) styrene obtained by two replicates with six

polystyrene samples by MHE-HS-GC

Sample 1 2 3 4 5 6

x0 0.573 0.654 0.916 0.439 0.753 0.848

x00 0.525 0.691 0.972 0.489 0.812 0.892
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s2x ¼
@f

@x1

� �2

� s2x1 þ
@f

@x2

� �2

� s2x2 þ � � � þ @f

@xn

� �2

� s2xn : (2.2.5-2)

For addition or subtraction the variances are additive:

s2x ¼ s2x1 þ s2x2 þ � � � þ s2xn : (2.2.5-3)

Formultiplication or division the squared relative standard deviations are additive:

sx
x

� �2
¼ sx1

x1

� �2

þ sx2
x2

� �2

þ � � � þ sxn
xn

� �2

: (2.2.5-4)

Note that, as mentioned above, these equations are correct only when the

variables are independent, i.e. if they are not correlated!

Challenge 2.2.5-1

The content of a pharmaceutical product will be detected by HPLC.

The percentage content of the active pharmaceutical ingredient (API)

xAPI% (w/w) is calculated by (2.2.5-5).

xAPI% (w/w) ¼
�As in counts � 100

ðcs in g L�1ÞðRf in counts L g�1Þ (2.2.5-5)

�As is the mean peak area of the sample obtained by the chromatogram, cs is
the concentration of the sample, and Rf is the response factor which is

determined with a solution of chemical reference substance (CRS) according

to (2.2.5-6):

Rf ¼
�ACRS in counts

ðcCRS in g L�1Þ � ðxCRS in % (w/w)) � 0:01 : (2.2.5-6)

�ACRS is the mean of the peak area of CRS, cCRS is the concentration of

CRS, and xCRS% (w/w) is the certified content of CRS.

According to the United States Pharmacopeia (USP) the relative stan-

dard deviation of the precision of injection of the sample should be

sr%b1:0:
Testing the precision of injection, as usual in pharmaceutical analyses, a

sample CRS was measured with six replicates. The peak areas obtained from

the HPLC chromatograms are presented in Table 2.2.5-1.

The experimental data for the determination of the content of the API

xAPI% (w/w) are given in Table 2.2.5-2.
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Solution to Challenge 2.2.5-1

(a) The data set of Table 2.2.5-1 gives s ¼ 6; 190:1 counts, �ACRS ¼ 674; 002:3
counts, and sr% ¼ 0:92:

The relative standard deviation sr% is smaller than the limit value

given in USP. This means the injection precision of the HPLC method is

achieved.

(b) The intermediate quantities are:

� Rf ¼ 142; 343:1 counts L g�1 calculated by (2.2.5-6) with
�ARf ¼ 114; 741:3 counts and further data given in Table 2.2.5-2

� s2ARf
¼ 742; 016:9 counts2;

� �As ¼ 112; 408:0 counts,

� s2As
¼ 449; 492:7 counts2:

The content of the sample calculated by (2.2.5-5) is �xAPI% (w/w) ¼ 98:34:
The total variance s2tot for the determination of the API derived according

to (2.2.5-2) is

(continued)

Table 2.2.5-1 Peak areas A
obtained from the HPLC

chromatograms of a CRS

solution

Replicate A in counts

1 678,458

2 670,554

3 678,458

4 664,119

5 680,246

6 672,179

Table 2.2.5-2 Experimental

data for determination of

the API

Solutions

Determination of Rf cCRS ¼ 0.813 g L�1

Determination of xAPI cs ¼ 0.803 g L�1

Certified content of the CRS xCRS 99.15% (w/w)

Peak areas A in counts obtained by the HPLC

chromatograms

Rf Sample

114,856 112,969

115,681 111,781

114,836 111,876

113,592 113,006

(a) Test whether the claimed precision of injection is achieved;

(b) Calculate the API content of the sample with its confidence interval

�x � Dx% (w/w) API:
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s2tot ¼
100

cs � Rf
� �2

s2As
þ 100 � �As

cs � Rfð Þ2
 !2

s2ARf
: (2.2.5-7)

s2tot calculated by (2.2.5-7) is s2tot ¼ 0:3576 g2 L�2 and the standard devia-

tion is stot ¼ 0:5980 g L�1; respectively.
The confidence interval

D�xAPI% (w/w) ¼ stot � tðP; dfÞffiffiffi
n

p (2.2.5-8)

is D�x% (w/w) ¼ 0:73 calculated with dftotal ¼ dfRF þ dfs ¼ 6; tðP ¼ 95%;
df ¼ 6Þ ¼ 2:447; and n ¼ 4.

Result: The content of the sample is D�x% (w/w) ¼ 98:34� 0:73: The true
value lies in the range 97.61–99.07% (w/w) at the significance level P ¼ 95%
and with the risk a ¼ 5% that the true value may be found outside this range.

Challenge 2.2.5-2

Let us now estimate the errors in photometric analysis which is an important

method in AQA. As example, we will choose IR spectrophotometric analysis

which must often be applied in AQA (see for example Challenge 3.3-3).

The spectrophotometric analysis is based on Lambert–Beer’s law

A ¼ a � c � l (2.2.5-9)

where a is the absorptivity (a constant which is usually given in L mol�1

cm�1 or in m2 mol�1Þ; c is the concentration in mol L�1; and l is the optical
path length, i.e. the diameter of the cuvette.

In IR spectrophotometry the optical path length lies in the mm range, and

therefore it is determined by the interference method. The order of the

interferences n which are obtained if the empty cuvette is traversed by IR

light is calculated by

r ¼ 2 � l � nmax (2.2.5-10)

where nmax is the maximum of the interference, r is the number of the

reflection, and l is the optical path length. According to (2.2.5-10) l is

obtained from the slope of the function n ¼ f ð2nÞ.
Using standard calibration solutions with amount m in volume V, the

absorptivity a is calculated by (2.2.5-11). Usually, in IR spectrophotometry

the constant a is given in the units L g�1 cm�1 according to (2.2.5-11):

(continued)

2.2 Random Errors 29



a ¼ A � V
l � m ; (2.2.5-11)

which will also be used in the following.

Finally, let us turn to the absorbance A which is measured by the spectro-

photometer.

The absorbance is defined by

A ¼ log I0
log I

¼ log I0 � log I; (2.2.5-12)

where I0 and I are the intensity of the reference beam and the intensity of the

sample beam, respectively.

The error of the measurement of the absorbance is given by the law of

error propagation according to (2.2.5-2):

s2A ¼ @A

@I0

� �2

� s2I0 þ
@A

@I

� �2

� s2I : (2.2.5-13)

From (2.2.5-12) follows

s2A ¼ @ log I0 � Ið Þ
@I0

� �2

� s2I0 þ
@ log I0 � Ið Þ

@I

� �2

� s2I ; (2.2.5-14)

which gives (2.2.5-15), and with log e ¼ 0.43 (2.2.5-16), respectively

s2A ¼ log e

I0

� �2

� s2I0 þ
log e

I

� �2

� s2I (2.2.5-15)

s2A ¼ 0:43

I0

� �2

� s2I0 þ
0:43

I

� �2

� s2I : (2.2.5-16)

The Challenges are:

(a) Derive the equation for variance of the absorptivity s2a from the law of

propagation of errors.

(b) A problem in spectrophotometry is the magnitude of the chosen absor-
bance A. Decide if the relative error of the measurement of the absor-

bance is constant or variable. Derive the relation for this relative error and

create a graph for the relative error of the measurement of the absorbance

using values in the range 0.025–2.5 in appropriate steps. Estimate the

result with regard to the choice of an optimal range for the measurement

of A.
(continued)
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(c) A further parameter in IR spectrophotometry is the magnitude of the slit

width and the slit width program, respectively. Decide which slit width

program should be chosen.

A tip: consider the fact that I0 grows with the square of the slit width.

(d) Calculate the absorptivity a in L cm�1g�1 with its random error for the

carbonyl band of lactic acid ester (LAE) at 1,735 cm�1 from the following

data:

Sample solution m ¼ 50.28 mg LAE in 10 mL n-hexane

Absorbance A 0.391525 0.391701 0.392668

0.393124 0.392147 0.391010

The diameter of the cuvette is determined by the interference maxima

given in Table 2.2.5-4.

The random errors of mass m, diameter of the cuvette l, and volume V
are estimated from the data sets given in Tables 2.2.5-3 and 2.2.5-5.

Note that the influence of temperature, the tolerance of the volumetric

flask, and other factors are neglected here. This is the subject of Chap. 10.

Calculate the percentage of the individual variances in the variance of the

absorptivity.

(e) Test whether a fivefold increase in sample volume will appreciably

diminish the random error sA. The procedure for the determination of

(continued)

Table 2.2.5-3 Estimation of the random error of the balance

Number Gross weight

in g

Tare weight

in g

Number Gross weight

in g

Tare weight

in g

1 6.19740 6.09748 6 6.13155 6.03159

2 6.09595 5.99596 7 6.22193 6.12196

3 6.13175 6.03178 8 6.09995 6.00000

4 6.13467 6.03472 9 6.07420 5.97420

5 6.06939 5.96935 10 6.08567 5.98577

Table 2.2.5-4 Estimation

of the random error of the

diameter of the cuvette l from
interference maxima Imax

measured with the empty

cuvette

Order number r Imax Order number r Imax

1 793 11 1,128

2 829 12 1,160

3 861 13 1,191

4 895 14 1,226

5 927 15 1,259

6 960 16 1,292

7 993 17 1,327

8 1,027 18 1,358

9 1,060 19 1,394

10 1,092 20 1,425
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volume error is the same as for 10 mL volumes (Table 2.2.5-5). The

experimental values are listed in Table 2.2.5-6.

Solution to Challenge 2.2.5-2

(a) Using the law of propagation of errors, equation (2.2.5-2), the error of the

absorptivity a is given by (2.2.5-17):

s2a ¼ sA � V

l � m
� �2

þ sV � A

l � m
� �2

þ sl � �A � V
l2 � m

� �2

þ sm � �A � V
l � m2

� �2

I II III IV

(2.2.5-17)

Term I represents the error in the measurement of the absorbance, term

II that for the volume of the measuring solution, term III that of the

optical path length, and term IV that for the weight of the mass of the

sample for the preparation of the measuring solution.

(b) The equation for the relative error in the measurement of the absorbance

sA A= is obtained from (2.2.5-15) with sI0 ¼ sI ¼ 1:

sA
A

¼ lg e

A
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I20
þ 1

I2

s
: (2.2.5-18)

Next, I is substituted as follows:

From (2.2.5-12) one obtains for I

log I ¼ log I0 � A (2.2.5-19)
(continued)

Table 2.2.5-5 Estimation of

the random error of the

volume V ¼ 10 mL. A 10 mL

volumetric flask was filled up

with water and the mass was

determined.

Number m in g Number m in g

1 9.964761 6 9.962722

2 9.974138 7 9.989396

3 9.983647 8 9.972522

4 9.985056 9 9.983176

5 9.997446 10 9.969295

Table 2.2.5-6 Estimation

of the random error of the

volume with V ¼ 50 mL. A

50 mL volumetric flask was

filled up with water and the

mass was determined.

Number m in g Number m in g

1 50.063150 6 50.061528

2 50.090792 7 50.116459

3 50.051704 8 50.116849

4 50.066276 9 50.031270

5 50.052144 10 50.097729
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and

I ¼ 10ðlog I0Þ�A ¼ I0

10A
: (2.2.5-20)

Equation (2.2.5-20) in (2.2.5-18) gives:

sA
A

¼ log e

A
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I20
þ 102A

I20

s
¼ log e

I0
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 102A

p
A

: (2.2.5-21)

Equation (2.2.5-21) shows that the relative error for the measurement

of the absorbance is not constant, but is a function of the absorbance.

The relative errors for the measurement of the absorbance for a chosen

data set calculated by (2.2.5-21) with I0 ¼ 1 and log e ¼ 0.43 are listed

in Table 2.2.5-7 and the graph is presented in Fig. 2.2.5-1.

As the graph shows, the minimum of the relative errors of the mea-

surement of the absorbance is in the range from about 0.3 to about 1.0.

Therefore, this is an optimal range for spectrophotometry. For solutions

with absorbance lower than 0.1 or greater than 2.0 the relative error rises

rapidly.

(c) As (2.2.5-18) shows, the relative error of the measurement of the

absorbance diminishes with increasing I0. Because I0 grows with the

square of the slit width, one should take the largest slit width or the split

program.

(d) The diameter of the cuvette l is determined by the regression analysis of

the data set in Table 2.2.5-4 and is the slope of the function n ¼ f ð2nÞ
according to (2.2.5-10), l ¼ 0.01505 cm. The standard error of the

diameter corresponds to the standard deviation of the slope calculated

by (5.2-13), which is sl ¼ 1.833 � 10�5 cm obtained with SSxx ¼
2; 934; 826:2 and sy:x ¼ 0:0314027:

(continued)

Table 2.2.5-7 Relative errors of the measurement of the absorbance sr;A ¼ sA A=
calculated by (2.2.5-21)

A sA
A

A sA
A

A sA
A

0.020 31.13 0.400 2.91 0.850 3.62

0.025 25.06 0.450 2.86 0.900 3.83

0.050 12.93 0.500 2.85 0.950 4.06

0.100 6.91 0.550 2.88 1.000 4.32

0.150 4.96 0.600 2.94 1.250 6.13

0.200 4.03 0.650 3.03 1.500 9.07

0.250 3.51 0.700 3.14 1.750 13.82

0.300 3.20 0.750 3.27 2.000 21.50

0.350 3.01 0.800 3.43 2.250 33.99
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The mean value of the absorbance �A is 0.392029. The absorptivity a is
calculated according to (2.2.5-11):

a ¼ 0:392029 � 0:01 L

0.01505 cm � 0.05028 g
¼ 5:18 L cm�1g�1: (2.2.5-22)

The standard deviation of the measurement of the absorbance is

sA ¼ 7:773� 10�4:
The standard deviation of the net values (difference between gross and

tare of the data in Table 2.2.5-3) is sm ¼ 3 � 98 � 10�5 g:
The standard deviation of the filling of the volumetric flask is calcu-

lated using the data set in Table 2.2.5-5: sV ¼ 0.01128 mL for a 10 mL

volumetric flask.

The random error of the absorptivity a is calculated by (2.2.5-17) with the
parameters V ¼ 0.01 L, m ¼ 0.05028 g, l ¼ 0.01505 cm, A ¼ 0.392029,

sV ¼ 1.128 � 10�5 L, sm ¼ 3.979 � 10�5 g, sl ¼ 1.833 � 10�5 cm, and

sA ¼ 0.0007773.

The result is s2a ¼ 0:0001962 and sa ¼ 0.0140.

The absorptivity a calculated according to (2.2.5-11) is a ¼
5:18 L g�1cm�1: Thus, the relative standard deviation calculated by

(2.2.2-5a) is sr% ¼ 0:27:
The percentages of the individual variances in the total variance s2a are

given in Table 2.2.5-8.

As Table 2.2.5-8 shows, the measurement of the absorbance has the

greatest influence on the random error of the absorptivity a, but one has to
consider that all the uncertainties of Type B were rejected here.

(e) The standard deviation of the filling of the volumetric flask is calculated

with the data set in Table 2.2.5-6: sV ¼ 2.908 � 10�5 L for a 50 mL

volumetric flask. The variance of the absorptivity is s2a ¼ 0:000155
calculated with the fivefold-increased mass m ¼ 2:514 g according to

(continued)
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Fig. 2.2.5-1 Relative errors of the measurement of the absorbance sr; A as a function of the

absorbance A
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(2.2.5-17). The standard deviation of the absorptivity is sa ¼ 0:01245
and sr% ¼ 0:24:

The increase in sample volume does not improve the precision in

practice, but would only incur higher costs for the sample and the solvent.
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Chapter 3

Statistical Tests

3.1 General Remarks

Hypothesis testing is a very important part of statistics, and can be used to investi-

gate whether the mean values of two or more series of measurement are equal,

whether the variances of two or more data sets are identical, etc.

The hypothesis tests used in AQA are carried out using the following steps:

1. Stating the null and alternative hypotheses
Statistical tests are based on the null and alternative hypotheses. The null
hypothesis H0 is that there is no difference between the values being compared.

For example, when the mean values of two data sets are compared, the null

hypothesis is that the population means are equal or, in other words, the mean

values m1 and m2 belong to the same population.

The shorthand notation is

H0: m1 ¼ m2.
In the case that the null hypothesis is not true, one needs to formulate an

alternative hypothesis H1 (or HA):

H1: m1 6¼ m2.
The alternative hypothesis is that the population means are not equal, i.e. the

mean values m1 and m2 differ significantly and belong to different populations.

The alternative hypothesis is confirmed if the null hypothesis has to be rejected.

The alternative hypothesis H1: m1 6¼ m2 does not make any assumptions about the

sign of the difference, but sometimes this can be important.

The following cases can be distinguished:

H0: m1 ¼ m2 (the population means are equal),

H1: m1 > m2 (m1 is significantly higher than m2), or another alternative hypothesis:
H1: m1 < m2 (m1 is significantly lower than m2).

2. Checking the distribution of the data
Significance tests obtained in AQA mostly assume that the data are approxi-

mately normally distributed. Appropriate tests for normal distribution will be

given in Sect. 3.2.1. Significance tests can give misleading results if the

assumptions are not appropriate for the data sets.

M. Reichenb€acher and J.W. Einax, Challenges in Analytical Quality Assurance,
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3. Selection and calculation of the appropriate test
Each test has to be carried out by using a particular equation for the calculation

of the test value, which is marked by a particular sign, for example t̂ or F̂. This is
the subject of the following chapters.

4. Comparing the calculated test value with the critical value
In order to decide whether the null hypothesis can be accepted or must be

rejected, the calculated test value, for example t̂ or F̂, has to be compared with

the critical value. If the calculated test value is greater than the critical value, in

this case tðP; dfÞ and FðP; df1; df2Þ; respectively, the null hypothesis has to be

rejected and the alternative hypothesis is valid.

The appropriate critical value is determined by

– a level of significance P
– the number of “tails” (one- or two-sided tests)

– the degrees of freedom df.

Each test result is only valid for a certain freely chosen level of significance P.
For the majority of tests a significance level P ¼ 95% is used. Note this corresponds

to the risk a ¼ 5%:
The confidence interval (CI) is related to the risk a as follows:

CI% ¼ 100ð1� aÞ: (3.1-1)

Thus, a risk of a ¼ 0.05 is equivalent to a confidence interval of CI ¼ 95%:
In cases where great consequence is attached to the test result, a higher confi-

dence interval P ¼ 0:99 and P ¼ 99%; respectively, with the lower risk a ¼ 0.01

must be chosen. If H0 for the significance level P ¼ 99% is rejected, then the

difference is highly significant.
The alternative hypothesis given above H1: m1 6¼ m2 means only that there is

a difference between the means in either direction, i.e. m1 may be greater or less

than m2. This is known as a two-sided, two-tail, or two-tailed hypothesis test.
But there are situations where we are concerned only in knowing whether the

mean of one data set is “greater than” or “smaller than” that of the other. These

alternative hypotheses tests are H1: m1 < m2 and H1: m1 > m2, respectively. In both

cases we are only interested in whether there is a difference between the means in

one direction. This hypothesis test is called a one-sided, one-tail, or one-tailed
hypothesis test.

The distinction between one- and two-sided tests is important because of the

various significance limits as shown in Fig. 3.1-1 for the normal distribution of a

mean �x around m at the risk a ¼ 0.05. The distance a is the interval within which H0

would be accepted for the two-sided test and b is the interval in which H0 would

be accepted for a one-sided test. 95% of the data lie within the limits � 1:96s and

þ 1:96s for the two-sided test (distance a) and within the limits –1 and þ 1:65s
for the one-sided test (distance b).
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In statistics, two types are used to describe potential errors made in a statistical

decision process:

– Type I error (a-error): H0 is rejected although it is true (false positive decision or

false alarm).

– Type II error (b-error): H0 is erroneously not rejected although the alternative

hypothesis is true (false negative decision).

The relation between the null hypothesis and the actual condition – the reality –

is summarized in Table 3.1-1.

3.2 Tests for Series of Measurements

The precision of the analytical method given by the standard deviation is an

important validation parameter. But the following three requirements have to be

fulfilled for the calculation of the standard deviation:

F
re

qu
en

cy
 p

(x
)

x

2s

–1.96 s 1.96 s
m 1.65 s

a =0.05

a =0.025
a =0.025

a

b

Fig. 3.1-1 One-sided

decision limit (at m + 1.65s)
compared to two-sided limit

(between m – 1.96s and

m + 1.96s). (a) Interval within
which H0 would be accepted

for the two-sided test. (b)

Interval within which

H0 would be accepted for

a one-sided test

Table 3.1-1 Kinds of errors and the reality

Decision of the test Actual condition

H0 is true H1 is true

H0 is not rejected True decision with the significance

level P ¼ 1� a
Error of second kind (Type II)

b-error
H0 is rejected Error of first kind (Type I)

a-error
True decision

3.2 Tests for Series of Measurements 39



l The data set must be normally distributed.
l The data set must be free of outliers.
l The data may not show a trend with the respect to their time of measurement.

The fulfilment of these requirements can be verified by statistical tests.

3.2.1 Rapid Test for Normal Distribution (David Test)

Several tests can be used to verify whether data are based on a normal distribution

(e.g. w2 test, Kolmogorov–Smirnov test, Shapiro–Wilk test) [1], but in AQA the

rapid test by David is usually preferred. The test value q̂r is given by (3.2.1-1):

q̂r ¼ xmax � xmin

s
: (3.2.1-1)

The parameters xmax and xmin are the greatest and the lowest values in the series

of measurement, respectively, and s is the standard deviation.

The data are normally distributed according to David if the calculated value

q̂r is inside the boundaries of the David table for a given significance level P
(see Table A-8).

Challenge 3.2.1-1

The data set given in Table 2.2.1-1 was tested for normal distribution by the

histograms in Challenge 2.1-1.

Which result does the statistical test yield?

Solution to Challenge 3.2.1-1

With xmax ¼ 109.7, xmin ¼ 90.5, and s ¼ 4.857 the test value calculated

by (3.2.1-1) is q̂r ¼ 3:95: This value is inside the boundaries of the David

table for n ¼ 40 at P ¼ 95% (3.67 < 3.95 < 5.16) and P ¼ 99%
(3.47 < 3.95 < 5.56), respectively.

3.2.2 Test for a Trend

A trend is a progressively decreasing or increasing drift of measured values in

chronological order. A trend is an indicator that a process is not under statistical
control. If this is the case, statistical parameters cannot be calculated. Therefore, it
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is evident that trends must be avoided and data sets with a trend have to be

rejected.

Sometimes, the presentation of the data in chronological order, as for example in

control charts (see Chap. 8), can visually indicate the trend in a data set. But without

control charts a statistical test has to be used for the detection of a trend unless

a drift can be visually recognized for definite. The simple test by Neumann may be

used in AQA [2].

In the Neumann test for a trend, the test value is the ratio of the variances of the

(n � 1) pairs of consecutive data of a measurement series in chronological order

x1, x2, . . ., xn (D
2) to the variance of the data values s2 themselves:

D2 ¼
Pn
i¼1

ðxi � xiþ1Þ2

n� 1
; (3.2.2-1)

D2

s2
¼
Pn
i¼1

ðxi � xiþ1Þ2

Pn
i¼1

ðxi � �xÞ2
: (3.2.2-2)

Pn
i¼1

ðxi � �xÞ2 is the sum of squares SSi which may be calculated by the Excel

function ¼DEVSQ(Data).

Consecutive values are considered independent at a significance level P if

the test value calculated by (3.2.2-2) is larger than a critical limit tabulated by

Neumann (Table A-10) for a given sample size n.
In analytical practice a trend will often be detected with this simple relation: a

trend must be considered if D2< 2s2; and a consecutive series of measurements can

be assumed to vary randomly and not show a trend if D2 � 2s2:

Challenge 3.2.2-1

The analytical results for the determination of benzene in three samples of

waste water with HS-GC are given in Table 3.2.2-1.

Test whether the mean value may be calculated for both samples and

evaluate the results.

Table 3.2.2-1 Analytical results (given in mg L�1) for the determination of benzene of

waste water in chronological order

Sample x1 x2 x3 x4 x5 x6

1 3.13 3.19 3.18 3.24 3.25 3.28

2 3.13 3.19 3.18 3.24 3.25 3.26

3 3.14 3.12 3.15 3.13 3.12 3.17
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Solution to Challenge 3.2.2-1

The inspection of the data sets in Table 3.2.2-1 shows that the measured

values for sample 3 are randomly distributed, but the chronological order of

the values for samples 1 and 2 reveals a trend because the values rise steadily.

Therefore, the data must be checked by a trend test. The results calculated by

(3.2.2-2) are listed in Table 3.2.2-2.

The exact (Table 3.2.2-2) as well as the rough test (Table 3.2.2-3) deliver

an unequivocal result only for sample 3: in sample 3 no trend is detected then

the critical values are smaller than the calculated one at each significance

level, and the rough test D2 � 2s2 also fulfils the conditions for a trend-free

data set.

The situation for samples 1 and 2 is different. A trend is found by the exact

test in both samples at the significance level P ¼ 95%; but for P ¼ 99% only

the data set for sample 1 shows a trend, whereas the calculated test value is

somewhat greater than the critical value of sample 2.

Strictly speaking, no trend is proved, but according to the result of the

rough test as well as the result at the significance level P ¼ 95%; the data set
of sample 2 should also be rejected. The origin of the drift in the data set of

sample 2 should be sought, and the determination should be repeated after the

cause is removed.

Of course, the measured values of sample 3 must be also checked for

normal distribution.

The test value q̂r ¼ 2:576 calculated by (3.2.1-1) lies between the lower

(2.28) and upper limits (3.012) of the David table for P ¼ 95%; which means

that the data may be regarded as normally distributed. The standard deviation,

the mean value, and further parameters may be calculated with the data of

sample 3.

Table 3.2.2-3 Results for the

rough test
Sample 2�s2 D2 Result

1 0.00603 0.00166 D2 < 2�s2
2 0.00507 0.00150 D2 < 2�s2
3 0.00075 0.00086 D2 > 2�s2

Table 3.2.2-2 Results for the Neumann test

Sample
P ðxi � xiþ1Þ2

P ðxi � �xÞ2 Test value (3.2.2-2)

1 0.0083 0.015083 0.5503

2 0.0075 0.012683 0.5913

3 0.0043 0.001883 2.2832

Critical value for P ¼ 95%; n ¼ 6 0.8902

Critical value for P ¼ 99%; n ¼ 6 0.5615
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3.2.3 Test for Outliers

There are some statistical tests for outliers in series of measurements, but in AQA

the tests by Dixon and Grubbs are usually applied [3]. Note that an outlier value x�

must always be only the highest or the lowest value in a series of measurements.

According to DIN EN 53 804-1 [3], theDixon test must be used for measurement

series up to n � 29. The measured values are sorted in ascending or descending

order, depending on whether the suspected outlier value is the lowest or the highest

value. The test value Q̂ calculated by (3.2.3-1)

Q̂ ¼ jx�1 � xbj
jx�1 � xkj (3.2.3-1)

depends on the magnitude of the data set n. The indices b and k have the following
values:

b ¼ 2 for 3 � n � 10 b ¼ 3 for 11 � n � 25

k ¼ n for 3 � n � 7 k ¼ n – 1 for 8 � n � 13

k ¼ n – 2 for 14 � n � 29

The test value Q̂ is compared with the critical limit QðP; nÞ given in Table A-7.

An outlier value is statistically detected at the significance level P if Q̂ is greater

than the critical value QðP; nÞ:
In practice, the statistical outlier test according to Grubbs is used for nearly all

measurement series but DIN EN 53 804-1 [3] recommends at least 30 replicates for

a reliable performance of this statistical test. Note that some regulatory documents

demand the Grubbs test independent of the data size. With the subdivision of the

test according to n, different results obtained by both tests are avoided.

The test value of the Grubbs test r̂m is calculated by (3.2.3-2).

r̂m ¼ jx� � �xj
s

: (3.2.3-2)

An outlier value is statistically detected with the significance level �Pone-sided
if the test value r̂m is greater than the critical value rmð �Pone-sided; nÞ given in

Table A-6.

Note that each outlier value detected with a statistical test in a series of

measurements has to be rejected from this series.

Because the tests by Dixon and Grubbs often do not yield the same result, the

outlier test by Hampel can be used in addition. This test is based on robust statistics
using the median, which is more robust than the mean value �x. An outlier must

always be the highest or the lowest value. When one of these values is removed as a

suspected outlier, both the mean value and the standard deviation become smaller,

which results in changes to the values found by the Grubbs test. But after removing

an outlier checked by the Hampel test, the re-calculated test values will usually
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remain the same. In contrast to other tests where only one outlier can be discarded

or the outliers are discarded sequentially, the Hampel test makes no assumptions

about the potential outlier(s).

The test values are calculated by the following steps [4]:

1. Calculation of the median ~x:
2. Calculation of the absolute residuals of the median:

ri ¼ jxi � ~xj: (3.2.3-3)

3. Calculation of themedian of the absolute deviations (MAD) according to (2.2.1-8)

and (2.2.1-9), respectively.

4. Calculation of the test values Ĥi for all observations i:

Ĥi ¼ ri
5:06MAD

: (3.2.3-4)

If the test value Ĥi is greater than 1, this observation is regarded as an outlier at

the significance level P ¼ 95%:

Box and whisker plots:

The box and whisker plot (also called “box plot”) is a type of graph which is used to

show the shape of the distribution, its central value, and its spread, which allows a

visual representation of the data. It is helpful for indicating whether a distribution is

skewed and whether there are any unusual observations (outliers) in the data set.

Box plots are constructed as following:

1. Calculate the median according to (2.2.1-8) and (2.2.1-9) or by the Excel

function ¼MEDIAN(Data).

2. Calculate the first (lower) and the third (upper) quartiles Q1 and Q3, respectively.
Quartiles, by definition, separate a quarter of data points from the rest. The first

quartileQ1 is the value under which 25% of the data lie and the third quartileQ3
is the value overwhich 25% of the data are found. Note the second quartile Q2 is
the median itself. The calculation of quartiles can be verified by the Excel

function ¼ QUARTILE(Data, 1), and ¼ QUARTILE(Data, 3), respectively.

3. Calculate the interquartile range (IQR) which is the difference between Q3
and Q1:

IQR ¼ Q3� Q1 (3.2.3-5)

4. Calculate the lower and upper whisker lines, LW and UW, respectively:

LW ¼ Q1� 1:5 � IQR, (3.2.3-6)

UW ¼ Q3þ 1:5 � IQR: (3.2.3-7)

5. Construct the graph of the box plot with ends corresponding to Q1 and Q3 in

which the median is represented by a horizontal bar.
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6. Draw a vertical line from each end to the lower and the upper whisker line

(shown by a small horizontal line) which is the most remote data points that are

not outliers.

7. Outliers are indicated by points outside the whiskers.

Figure 3.2.3-1 shows an example of a box and whisker plot.

Box and whisker plots allow a visual interpretation of data sets. The median

shows the central line for each group, the length of the box indicates the dispersion

of the data, its range is characterized by the whiskers, and outliers are shown as

points which lie outside of the whiskers.

The bar of the median situated outside the box indicates a skew distribution of

the data.

Furthermore, box plots are also useful for the comparison of different groups

of data.

Challenge 3.2.3-1

(a) In Table 2.2.2-3 the analytical results are given for the determination of

Mn in steels. The largest value for sample 5 x ¼ 1:21% (w/w) may be a

suspect value. Test whether it is an outlier using the appropriate method.

(b) According to the visual inspection of the analytical data for method D in

Table 2.1-1, value 82 was regarded as an outlier. This assumption is to be

confirmed by a statistical test.

Solution to Challenge 3.2.3-1

(a) For a short data set with n ¼ 4 the Dixon test must be used according to [3].

Because the suspect value is the highest in the series of measurement,

the values have to be sorted in descending order. Note that the suspect

value is always x1 (Table 3.2.3-1).
The calculation for the Dixon test is

Q̂ ¼ jx�1 � x2j
jx�1 � xnj ¼

ð1:21� 1:19Þ
ð1:21� 1:17Þ ¼ 0:500:

(continued)

* *

x in a unit 

median

x~Lw Uw
outlier

Q1 Q3

Fig. 3.2.3-1 Example of a

box and whisker plot
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The critical value for n ¼ 4 at the significance level P ¼ 95%
obtained from Table A-7 is Q ¼ 0:765, which is greater than the test

value Q̂, and therefore the measured value 1.21 is not an outlier.

Although the Dixon test must be applied according to DIN EN 53 804-1

[3], we are interested in the result of the Grubbs test.

With s ¼ 0.01708 and �x ¼ 1:187; the Grubbs test value calculated by
(3.2.3-2) is r̂m ¼ 1:317. The test value is smaller than the critical value

rmð �P ¼ 95%; n ¼ 4Þ ¼ 1:463; and therefore the value 1.21 is not an

outlier, which is the same result as obtained by the Dixon test.

(b) The suspect value is the lowest one, and therefore sorting the

measured values in ascending order is necessary, which is given in

Table 3.2.3-2.

The calculation for the Dixon test for n ¼ 6 with b ¼ 2 and k ¼ n is:

Q̂ ¼ x�1 � x2
�� ��
x�1 � xn
�� �� ¼ 82� 97j j

82� 102j j ¼ 0:750: (3.2.3-6)

The critical value Q ðP ¼ 95%; n ¼ 7Þ ¼ 0:507 is smaller than the

test value Q̂, and thus the suspected outlier can be confirmed at the

significance level P ¼ 95%:
The same result is obtained by the Grubbs test with s ¼ 6:831 and

�x ¼ 97; the test value calculated by (3.2.3-2) is r̂m ¼ 2:196. The

test value exceeds the limit of the critical value rmð �P ¼ 95%;
n ¼ 7Þ ¼ 1:938:

Challenge 3.2.3-2

The analytical results of the determination of benzene in waste water with

HS-GC are given in Table 3.2.3-3.

In order to calculate the mean value, the data sets have to be checked for

outliers. Test both samples for outliers. Evaluate the result.

Table 3.2.3-1 Ordered

values of the data of sample

5 in Table 2.2.2-3

x1 x2 x3 x4 ¼ xn

1.21 1.19 1.18 1.17 % (w/w)

Table 3.2.3-2 Ordered

values of method D in

Table 2.1-1

x1 x2 x3 x4 x5 x6 x7

82 97 98 99 100 101 102
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Solution to Challenge 3.2.3-2

According to DIN EN 53 804-1 [3], the Dixon test must be applied for the

data sizes n ¼ 8 and n ¼ 6, respectively.

The test value is calculated for sample 1 with n ¼ 8 by (3.2.3-7)

Q̂ ¼ x�1 � x2
x�1 � xn�1

����
���� (3.2.3-7)

and for sample 2 with n ¼ 6 by (3.2.3-8)

Q̂ ¼ x�1 � x2
x�1 � xn

����
����: (3.2.3-8)

The values x�1; x2; and xn�1 are obtained by Excel functions which are

given together with intermediate quantities and the test values Q̂ in

Table 3.2.3-4.

Note that the data set of sample 2 is the same as replicates 1–6 of sample 1.

While the highest value xmax ¼ 1:531 is not an outlier in the data set of

sample 1, it is confirmed as an outlier in the data set of sample 2 because

the test value Q̂ ¼ 0:830 exceeds the critical value at the significance level

P ¼ 95%:
Using the Grubbs test, xmax ¼ 1:531 is also confirmed as an outlier. The

test value r̂m ¼ 2:226 calculated with s ¼ 0:1074 and �x ¼ 1:2919 is higher

than the critical value rmðP ¼ 95%; n ¼ 8Þ ¼ 2:032:
Because it is possible that the results obtained by both statistical tests may

be different, it is necessary in AQA to document the procedure used, or,

better, if there is no established statistical test for an outlier in the regulatory

documents, one should apply the outlier test according to DIN 51 848-3 and

53 804-1.

Table 3.2.3-3 Analytical

results (given in mg L�1) of

the determination of benzene

in waste water by HS-GC

Replicate Sample

1 2

1 1.234 1.234

2 1.251 1.251

3 1.226 1.226

4 1.238 1.238

5 1.531 1.531

6 1.278 1.278

7 1.363

8 1.214
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Challenge 3.2.3-3

Check if the maximum value of the analytical results of atrazine

x ¼ 13:8 ppb (w/w) given in Table 2.2.1-4 can be regarded as an outlier

according to the Grubbs, Dixon, and Hampel tests.

Solution to Challenge 3.2.3-3

Dixon test

The test value is calculated by (3.2.3-1) with b ¼ 3 and k ¼ n� 1: The test

value is Q̂ ¼ 0:454 calculated with x�1 ¼ 13:8; x3 ¼ 7:9; and xn�1 ¼ 0:8: The
critical value QðP ¼ 95%; n ¼ 12Þ ¼ 0:546 is greater than the test value Q̂
which means that the maximum value of 13.8 ppb (w/w) cannot be regarded

as an outlier.

Grubbs test

The test value r̂m ¼ 2:296 obtained with �x ¼ 4:283 and s ¼ 4:145 according

to (3.2.3-2) exceeds the critical value rmðP ¼ 95%; n ¼ 12Þ ¼ 2:285: Thus,
the suspect value xmax ¼ 13:8 ppb (w/w) is confirmed as an outlier at the

(continued)

Table 3.2.3-4 Excel functions, intermediate quantities, and test values Q̂ of the Dixon

outlier test

Function x�1 x2 xn�1 Q̂

Sample 1
x�1 ¼ xmax

¼ MAX(Data) 1.531

¼ LARGE(Matrix, 2) 1.363

¼ SMALL(Matrix, 2) 1.226 0.551

x�1 ¼ xmin

¼ MIN(Data) 1.214

¼ SMALL(Matrix, 2) 1.226

¼ LARGE(Matrix, 2) 1.363 0.081

QðP ¼ 95%; n ¼ 8Þ 0.554

Sample 2
x�1 ¼ xmax

¼ MAX(Data) 1.531

¼ LARGE(Matrix, 2) 1.278

¼ MIN(Data) 1.226 0.830

x�1 ¼ xmin

¼ MIN(Data) 1.226

¼ SMALL(Matrix, 2) 1.234

¼ MAX(Data) 1.531 0.026

QðP ¼ 95%; n ¼ 6Þ 0.560
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significance level P ¼ 95%:This contradicts the result obtained by the Dixon
test.

Which result will the Hampel test give?
The median is obtained with the Excel function ¼ MEDIAN(Data):

~x ¼ 2:80: The values of the absolute residuals of the median ri ¼
xi � 2:80j j are given in Table 3.2.3-5.

The MAD of the ri values is also obtained with the Excel function ¼
MEDIAN(Data): MAD ¼ 1:95:

The test values Ĥi calculated according to (3.2.3-4) are also listed in

Table 3.2.3-5.

As Table 3.2.3-5 shows, the test value Ĥ9 is greater than 1, therefore the

maximum analytical value of 13.8 ppb (w/w) for n ¼ 9 is confirmed as an

outlier at the significance level P ¼ 95%: This is in accordance with the

Grubbs test. In order to calculate the average atrazine content, this value

should be discarded from the data set.

Challenge 3.2.3-4

The determination of aroma compounds in white wine should be carried out

by headspace–solid phase micro extraction–gas chromatography (HS-SPME-

GC) [5] in routine analysis. The problem is the choice of an appropriate fiber

for the extraction step. In order to check some fibers, a test solution of

33 mg L�1 linalool (as an example of terpenoids), 50 mg L�1 ethyl butyrate

(as an example of the substance class of esters), and 30 mg L�1 hexanoic acid

(as an example of aliphatic acids) in 10% (v/v) ethanolic solution was

analyzed using various fibers. The results obtained by the strongly polar

polyacrylate fiber are given in Table 3.2.3-6.

Construct the box and whisker plots and evaluate the results.

Table 3.2.3-5 Absolute

residuals of the median
~x ¼ 2:80 obtained with

the data set given in

Table 2.2.1-4

Sample

ni

ri ¼ jxi � 2:80j Ĥi

1 0.3 0.030

2 1.9 0.193

3 1.7 0.172

4 5.1 0.517

5 1.8 0.182

6 2.3 0.233

7 5.8 0.588

8 0.3 0.030

9 11.0 1.115

10 1.6 0.162

11 2.0 0.203

12 3.6 0.365
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Solution to Challenge 3.2.3-4

The median ~x and the quartiles Q1 and Q3 are obtained by the corresponding

Excel functions ¼ MEDIAN(Data), ¼ QUARTILE(Matrix, 1), and ¼
QUARTILE(Matrix, 3), respectively. The interquartile range (IQR) is calcu-

lated by (3.2.3-5) and the whiskers by (3.2.3-6) and (3.2.3-7). The results are

summarized in Table 3.2.3-7 and the box and whisker plots are shown in

Fig. 3.2.3-2.

Figure 3.2.3-2 yields the following results:

– The data sets for linalool and hexanoic acid show skewness because the

medians are not situated in the centre of the boxes. Furthermore, in both

data sets an outlier is present.

– The data for linalool show only a small distribution and the true value m
lies inside the box. This means that the fiber and the headspace SPME

technique are appropriate for the extraction of terpenoids.

– The data for the ester are widely distributed, but the true value m is situated

inside the box. The strongly polar polyacrylate fiber is obviously not

appropriate for the extraction of esters with reasonable precision. A less

polar fiber should be tested.

– The headspace extraction of polar acids yields false results. Obviously, the

headspace technique is not appropriate for the extraction of strongly polar

analytes because of their low volatility. The direct injection SPME tech-

nique should be tried for the extraction of organic acids.

Table 3.2.3-6 Analytical

results (given in mg L�1) of

the determination of test

analytes linalool, ethyl

butyrate, and hexanoic acid

obtained by HS-SPME-GC

Replicate Linalool Ethyl butyrate Hexanoic acid

1 32.5 45.7 35.6

2 34.8 56.3 21.6

3 35.6 33.5 10.8

4 33.9 51.8 22.8

5 33.7 39.8 27.5

6 39.8 52.7 28.9

7 33.3 41.2 23.6

Table 3.2.3-7 Intermediate

quantities for the calculation

of the box and whisker plots

Linalool Ethyl butyrate Hexanoic acid

~x 33.90 45.70 23.60

Q1 33.50 40.50 22.20

Q3 35.20 52.25 28.20

IQR 1.70 11.75 6.00

LW 30.95 22.88 13.2

UW 37.75 69.88 37.2

~x 34.80 45.86 24.40
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3.3 Comparison of Two Standard Deviations

Two standard deviations s1 with degrees of freedom df1 and s2 with degrees of

freedom df2 are compared by means of the F-test. The test value F̂ is calculated by

(3.3-1), usually with s1 > s2:

F̂ ¼ s21
s22
: (3.3-1)

The test value F̂ is compared with the corresponding quantiles of the F-distribu-
tion for a certain significance level FðP; df1; df2Þwhich are given in Tables A-3 and
A-4 for P ¼ 95% and P ¼ 99%. The critical value is found at the intersection of the

column df1 corresponding to s21 and the row df2 corresponding to s22: Note that

confusing these values produces mistakes!

Sometimes, comparison is necessary between the laboratory standard deviation

sLab obtained with the degrees of freedom dfLab and a standard deviation s from a

document, such as a handbook or a DIN. In this case, given no degrees of freedom,

infinity is chosen for df if no other information is given about the degrees of

freedom of the documented standard deviation s. The test value is calculated by
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F̂ ¼ s21
s22

¼ s2Lab
s2

: (3.3-2)

The critical value is FðP; df1 ¼ dfLab; df2 ¼ 1Þ:
Note that if one finds the critical F-value by the Excel function ¼ FINV(a, df1,

df2), one has to input a high number for df2, 1,000 or so.

Challenge 3.3-1

In Challenge 2.2.2-1 the process standard deviations for the determination of

sulphur in steels was determined by two different procedures with the same

degrees of freedom, df ¼ 10.

Method A: s ¼ 0.00108% (w/w) S

Method B: s ¼ 0.00137% (w/w) S

Test if the standard deviations are equal in the statistical sense, or whether

a difference could be detected.

Solution to Challenge 3.3-1

The test value F̂ ¼ 1.620 calculated with s1 ¼ sB and s2 ¼ sA is smaller than

the critical value FðP ¼ 95%; df1 ¼ df2 ¼ 10Þ ¼ 2:987: Because F̂ does not

exceed the quantiles of the F-distribution, no difference is detected between

the two standard deviations; in other words, sA and sB belong to the same

population, or the null hypothesis H0: sA ¼ sB is true.

Challenge 3.3-2

Let us once again consider Challenge 2.2.2-2, the determination of manga-

nese in steel.

According to the handbook (hb) for steel analysis the process standard

deviation for the determination of Mn is sr;hb ¼ 0:000708% (w/w) Mn:
Test whether there is a difference between sr;hb and the standard deviation

determined in the laboratory with the data set given in Table 2.2.2-3.

Solution to Challenge 3.3-2

Starting with the results of Challenge 2.2.2-2, sLab ¼ 0.0137% (w/w) Mn

determined by df ¼ 15, the test value is calculated to be F̂ ¼ 379:04;
which is very much higher than the table value FðP ¼ 95%; df1 ¼ 15;
df2 ¼ 1Þ ¼ 1:666: Because the test value is greater than the critical

F-value, the null hypothesis
H0 : sLab ¼ sr;hb must be rejected, and the alternative hypothesis

H1 : sLab 6¼ sr;hb is true.
(continued)
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The laboratory standard deviation sLab differs from that of the handbook,

which means that precision is not yet reached for the routine quality control of

Mn in steel in the laboratory.

Strictly spoken, the value 0.69 (Standard 3) has to be eliminated because

it is checked being an outlier. But the result is the same because the new

calculated test value F̂ ¼ 363:367 exceeds the table valueF(P¼ 95%, df1¼ 14,

df2 ¼ 1) ¼ 1.693.

Challenge 3.3-3

Quality control of fuel oils is carried out by DIN 51603-1 [6]. The specifica-

tion of the maximal threshold value for FAME (fatty acid methyl ester) is

0.5% (v/v). The determination of FAME is accomplished by IR spectropho-

tometry. The repeatability limit r is specified by the (3.3-3):

r ¼ 0:0126xþ 0:0079; (3.3-3)

with x as the mean value of the measurement values in % (v/v).

The quality control of such fuel oils must be introduced in an analytical

laboratory. The process standard deviation for the determination of FAME is

calculated using six standard oil samples with two replicates each. The results

are listed in Table 3.3-1.

(a) Test if the experimentally determined process standard deviation sr fulfils
the DIN requirement using the data set given in Table 3.3-1. Give the

precision of the laboratory as the relative standard deviation sr%.

(b) If the required precision is achieved, routine quality control can be started.

Let us evaluate the results of four oil samples also given in Table 3.3-1.

The Pearson criterion should be applied to the test to see if calculation of

the mean value is allowed.

As described in Sects. 3.6 and 5.2, the repeatability limit r obtained by

interlaboratory trials is calculated by (3.3-4):

r ¼ tðP; dfinÞ � srepeat �
ffiffiffi
2

p
: (3.3-4)

Table 3.3-1 Analytical results given in % (v/v) for the determination of FAME in fuel oils

Determination of the process standard deviation sr

Sample 1 2 3 4 5 6

x0 0.386 0.397 0.379 0.411 0.436 0.478

x00 0.378 0.385 0.371 0.419 0.429 0.471

Routine quality control

Oil 1 0.492 0.491 0.486

Oil 2 0.491 0.558 0.487

Oil 3 0.467 0.447

Oil 4 0.495 0.496
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Solution to Challenge 3.3-3

This complex Challenge is best solved by the following steps.

(a) 1. Calculation of the repeatability limit r
The repeatability limit r calculated by (3.3-3) with the mean values

�x ¼ 0:4117% (v/v) obtained with six oil samples is r ¼ 0:0131%
(v/v):

2. Calculation of the precision of the analytical process

srepeat ¼ rffiffiffi
2

p
tðP ¼ 95%; df ¼ 1Þ : (3.3-5)

The standard deviation is srepeat ¼ 0:00472% (v/v) calculated with

r ¼ 0:0131% (v/v) and tðP ¼ 95%; df ¼ 1Þ ¼ 1:96:
3. Estimation of the precision of the laboratory

The precision of the laboratory sLab is determined by the results of

the six oil samples given in Table 3.3-1. The intermediate quantities

are presented in Table 3.3-2.

The standard deviation calculated by (2.2.2-3) is sLab ¼
0:00601% (v/v):

4. Comparison of the precision of the laboratory with the precision

required by DIN with an F-test
The test value is F̂ ¼ 1:623 calculated with s1 ¼ sLab ¼ 0.00601%

(v/v) and s2 ¼ 0.00472% (v/v). The critical value is

FðP ¼ 95%; df1 ¼ dfLab ¼ 6; df2 ¼ dfDIN ¼ 1Þ ¼ 2:099; which is

greater than the test value F̂. Thus, the null hypothesis H0: sDIN ¼ sLab
is true. The precision required by DIN is accomplished.

Because the required precision is achieved, the routine quality

control can start.

5. Calculation the precision of the analytical process expressed as sr%
The laboratory precision is sr% ¼ 1.46% calculated according

(2.2.2-5a) with s ¼ sLab ¼ 0:00601% (v/v) and �x ¼ 0:411% (v/v):
(b) 1. Checking the data for outliers

The value 0.558% (v/v) in sample 2 is a suspect value which is

tested as an outlier by the Dixon test. The test value is Q̂ ¼ 0:944;
calculated by (3.2.3-1) with x�1 ¼ xmax ¼ 0:558; x2 ¼ 0:491 and

xn ¼ 0.487. The test value Q̂ is greater than the critical value

(continued)

Table 3.3-2 Intermediate quantities and results for the calculation of the precision of the

laboratory

Sample 1 2 3 4 5 6

105(x0–x00)2 6.4 14.4 6.4 6.4 4.9 4.9

S(x0–x00)2 0.000434 m 6
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QðP ¼ 95%; n ¼ 3Þ ¼ 0:941, which means that the value 0.558%

(v/v) is confirmed as an outlier at the significance level P ¼ 95%.

Thus, it has to be removed from the data set.

2. Estimation of the calculation of the mean values

The criterion of whether the calculation of the mean is allowed or

not is determined by the repeatability r which is given in the DIN. The
criterion is Dexp ¼ xmax � xmin< r: Thus, the calculation of the means

is only allowed if the difference between the highest and lowest value

does not exceed the repeatability r. As Table 3.3-3 shows, the differ-

ence Dexp of sample 3 is greater then r, and thus the analysis of sample

3 has to be repeated. For the other three samples Dexp is smaller than r,
and the means can be calculated.

Note that if one does not reject the outlier in the data set of

sample 2, Dexp ¼ 0.071% (v/v) exceeds the limit and the analysis of

sample 2 would also have to be repeated.

3. Analytical quality control of the means of samples 1, 2, and 4

The critical mean value �xcrit is given by the difference between

a fixed limit L0, in this case the DIN value L0 ¼ 0.5% (v/v), and

the critical confidence interval CIcrit which is calculated from the

experimental data from the laboratory (see Sect. 2.2.4):

�xcrit ¼ 0:5% (v/v)� CIcrit;one-sided (3.3-6)

with

CIcrit;one-sided ¼
sLab � tð �Pone-sided; dfLabÞffiffiffiffi

nj
p : (3.3-7)

The values in Table 3.3-4 were calculated with the outlier-free data set,

sLab ¼ 0.00601% (v/v), and tð �P ¼ 95%; dfLab ¼ 6Þ ¼ 1:943.
As Table 3.3-4 shows, the mean values �x of the samples 1 and 2 do not

exceed the critical threshold value �xcrit but the mean value of sample 4 is

greater than �xcrit: Thus, the threshold value L0 of the allowed concentration of
FAME is exceeded for oil sample 4, and therefore this oil cannot be delivered.

(continued)

Table 3.3-3 The intermediate quantities and results for the calculation of the means using

the outlier-free data set

Sample nj xmax xmin Dexp ¼ xmax � xmin

1 3 0.492 0.486 0.006

2 2 0.491 0.487 0.004

3 2 0.467 0.447 0.020

4 2 0.495 0.495 0.001
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Only samples 1 and 2 fulfill the quality norm, but only after the rejection of

the outlier in the analytical values of sample 2.

3.4 Comparison of More than Two Standard Deviations

To decide whether more than two variances differ randomly or significantly, two

tests are usually employed in AQA:

(a) Cochran test [7,8]

The test value Ĉ is calculated by (3.4-1):

Ĉ ¼ s2max

s21 þ s22 þ � � � þ s2k
; (3.4-1)

where s21, s
2
2, . . ., s

2
k are the variances of the measurement values with equal size

(n1 ¼ n2 ¼ � � � ¼ nk and df1 ¼ df2 ¼ � � � ¼ dfn, respectively).

The test value Ĉ is comparedwith the value of the Cochran table (Table A-9)

for k samples and df degrees of freedom at the significance level P ¼ 95%:
The test hypotheses for the Cochran test are

H0 : s
2
max ¼

Pk
1

s2k ;

HA : s
2
max 6¼

Pk
1

s2k :

The null hypothesis H0 is rejected if the test value Ĉ is greater than the critical

value CðP ¼ 95%; k; dfÞ:
(b) Bartlett test [1,9]

The homogeneity of variances from measurement values of different sizes is
tested by the Bartlett test. The test value is calculated by (3.4-2) for k groups

and the total number of measurement values n

ŵ2 ¼ 2:3026

c
� df � lg s2 �

Xk
i¼1

dfi � lg s2i
 !

(3.4-2)

Table 3.3-4 The intermediate quantities and results for quality control

Sample nj �x in % (v/v) CIcrit,one-sided
in % (v/v)

�xcrit in % (v/v) Result

1 3 0.490 0.00675 0.493 �x < �xcrit
2 2 0.489 0.00826 0.492 �x < �xcrit
4 2 0.496 0.00826 0.492 �x > �xcrit
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with the total number of degrees of freedom df ¼ n � k, and s2i the variances of the
ith group with degrees of freedom dfi.

The variance s2 is calculated by (2.2.2-2). The correction factor c

c ¼
Pk
i¼1

1

dfi
� 1

df

3ðk � 1Þ þ 1 (3.4-3)

has to be considered only if the test value ŵ2 is slightly greater than the table value

w2ð �P; df ¼ k � 1Þ:The homogeneity of the variances is given at the significance

level P if the test value ŵ2 does not exceed the limits of the w2 distribution which are
listed in Table A-5 for P ¼ 95%.

Challenge 3.4-1

Let us return to Challenge 2.2.2-2 in which the process standard deviation

must be calculated for the determination of Mn in steel from the measurement

values of five samples. However, the calculation of the process standard

deviation requires the homogeneity of the variances of the data set listed in

Table 2.2.2-3.

Test whether homogeneity is present.

Solution to Challenge 3.4-1

Because the qualitative inspection of the data set in Table 2.2.2-3 reveals that

no outliers are obviously present, outlier tests will not be made, and therefore

the number of measurement values is equal for all five samples. The Cochran

test can be used with k ¼ 5 (five samples) and df ¼ 3 (four replicates). The

results are summarized in Table 3.4-1.

The test value Ĉ ¼ 0.3158 does not exceed the critical value CðP ¼ 95%;
k ¼ 5; df ¼ 3Þ ¼ 0:5981:Therefore, homogeneity of the variances is present

and the process standard deviation can be calculated.

Table 3.4-1 Results of the Cochran test for the measurement values given in Table 2.2.2-3

Sample 1 2 3 4 5

10; 000 � s2k 1.667 0.917 1.000 3.000 2.917

10; 000 � s2max
3.000 Pk

1

10; 000 � s2k
9.500

Ĉ 0.3158 CðP ¼ 95%; k ¼ 5;
df ¼ 3Þ

0.5981
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Challenge 3.4-2

Because of the small injection volume of 1 mL or less in gas chromatography,

the injection of the sample is a frequent source of errors; therefore, checking

the precision of the syringe is an important operation in AQA.

For the testing of five syringes in the autosampler of a GC equipment, a

stable test sample was splitlessly injected with nine replicates under the same

conditions for all syringes. The peak areas A given in counts obtained from

the GC chromatograms are listed in Table 3.4-2.

Check if all syringes are equal in their injection precision.

Solution to Challenge 3.4-2

The syringes work with the same precision if one cannot detect a difference

between the variances of the peak areas obtained under the same conditions;

this is the case if the variances are homogeneous. Before testing the homoge-

neity of the variances, a test for outliers in the data set is necessary, for which,

in accordance with the DIN, we will choose the Dixon test.

According to (3.2.3-1) for n ¼ 9, the test value Q̂ is calculated by

Q̂
x�1 � x2
x�1 � xn�1

����
����: (3.4-4)

The test values for each maximum and minimum value are summarized in

Table 3.4-3. The critical value is QðP ¼ 95%; n ¼ 9Þ ¼ 0:512:
The test value for the largest value of syringe 2 (12,392) exceeds the

critical value. Therefore, the value 12,392 confirmed as an outlier and it must

be rejected from the data set, with the consequence that the numbers of

replicates are no longer equal. The Cochran test cannot be used, but the

Bartlett test must be applied.

(continued)

Table 3.4-2 Peak areas in counts of the GC chromatograms testing the injection precision

of five syringes

Syringe 1 2 3 4 5

Replicate

1 12,350 12,305 12,375 12,351 12,364

2 12,376 12,346 12,370 12,350 12,360

3 12,348 12,328 12,378 12,352 12,360

4 12,352 12,392 12,383 12,352 12,365

5 12,340 12,310 12,371 12,354 12,366

6 12,382 12,319 12,368 12,349 12,363

7 12,372 12,333 12,377 12,349 12,359

8 12,339 12,326 12,375 12,350 12,361

9 12,340 12,335 12,367 12,354 12,360
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The intermediate quantities and results for the homogeneity of the five

syringes according to the Bartlett test are summarized in Table 3.4-4.

The test value ŵ2 ¼ 45:41 exceeds the critical value w2ð �P ¼ 99%;
df ¼ k � 1 ¼ 4Þ ¼ 13:277 substantially, and therefore the injection precision
of the five syringes is not equal.

3.5 Comparison of Two Mean Values

The comparison of two mean values �x1 and �x2 of two different independent samples

with n1 and n2 determinations is made by the t-test. The test value t̂

t̂ ¼ j�x1 � �x2j
sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

r
(3.5-1)

with the pooled (average) standard deviation

Table 3.4-3 Intermediate quantities and results for the Dixon outlier test

Syringe 1 2 3 4 5

x�1 ¼ xmax

xmax 12,382 12,392 12,383 12,354 12,366

x2 12,376 12,346 12,378 12,354 12,365

xn�1 12,340 12,310 12,368 12,349 12,360

Q̂max
0.143 0.561 0.333 0.000 0.167

x�1 ¼ xmin

xmin 12,339 12,305 12,367 12,349 12,359

x2 12,340 12,310 12,368 12,349 12,360

xn�1 12,376 12,346 12,378 12,354 12,365

Q̂min
0.027 0.122 0.091 0.000 0.167

Table 3.4-4 Intermediate quantities for the test of homogeneity of the five syringes

according to (3.4-2)

Syringe 1 2 3 4 5

ni 9 8 9 9 9

n 44 k 5 df ¼ n–k 39

SSi 2,246.2 1,275.5 217.6 29.6 52.0P
SSi 3,820.8

s2 97.970 log s2 1.9911

df � log s2 77.65

s2i 280.78 182.21 27.19 3.69 6.50

log s2i 2.448 2.261 1.434 0.568 0.813

dfi 8 7 8 8 8

dfi � log s2i 19.587 15.824 11.476 4.540 6.503P
dfi � log s2i 57.931
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sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1Þs21 þ ðn2 � 1Þs22

n1 þ n2 � 2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
df1 � s21 þ df2 � s22

df1 þ df2

s
(3.5-2)

must be compared with the critical value tðP; df1 þ df2Þ from the t-table. If t̂ is
smaller than the critical value, the null hypothesis H0 : �x1 ¼ �x2 is true; in other

words, there is no difference between the two mean values at the significance P.
The calculation of the average standard deviation according to (3.5-2) is only

allowed and the t-test can only be applied if the variances s21 and s22 do not differ

significantly or, in other words, if they belong to the same population. This must be

checked by the F-test according to (3.3-1).

If the variances s21 and s
2
2 differ significantly the t-test according toWelch [9] can

be applied. The test value t̂W is calculated by (3.5-3)

t̂W ¼ �x1 � �x2j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s (3.5-3)

and, as above described, is compared with the critical value tðP; dfWÞ: The degrees
of freedom of the Welch test dfW are calculated according to (3.5-4):

dfW ¼
s21
n1

þ s22
n2

� �2

s21
n1

� �2

n1 � 1
þ

s22
n2

� �2

n2 � 1

: (3.5-4)

Note that the degrees of freedom calculated by (3.5-4) are non-integral numbers

which are not given in the t-table. Either one has to interpolate or, better, the Excel
function ¼ TINV(a, dfW) is used.

When it is necessary to decide if the mean value of a sample �x differs randomly

or significantly from a “true” value m, which might be, for example, the theoretical

value calculated from the stoichiometry of the chemical formula or a certified value

from an interlaboratory trial, the t-test according to (3.5-5) has to be made:

t̂ ¼ j�x� mj
s

� ffiffiffi
n

p
: (3.5-5)

The null hypothesis H0: �x ¼ m is true if t̂ does not exceed the critical value

tðP; dfÞ:
If the mean values �x1 and �x2 differ from each other and one would like to know

which value is false, both means must be tested separately against m.
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Challenge 3.5-1

The HPLC method for the assay of an API in a drug must be transferred from

reference laboratory 1 to laboratory 2. The analysis should be conducted in

accordance with good laboratory practice (GLP) rules [10].

According to the lab-to-lab transfer plan, one batch is selected and the

determination of the assay is performed six times in each laboratory by the

same procedure. The assay of the chosen batch is 98:0% (w/w): The accep-

tance criterion of the plan is fulfilled if the results from the two laboratories

do not differ significantly. The analytical results from the laboratories are

given in Table 3.5-1.

(a) Can you detect a significant difference between the results obtained by

the laboratories?

(b) Are the results of both laboratories true?

Note the significance level for all tests is P ¼ 95%:

Solution to Challenge 3.5-1

(a) The transfer of an analytical method from one laboratory to another is

permitted if the independent sample means �x1 and �x2 are not significantly
different, which is checked by the t-test. The t-test is based on the

following assumptions:

1. The samples with means �x1and �x2 are drawn from normal populations,

which can be tested by the David test.

2. There must be no outliers in the data sets, for which the Dixon test will

be applied.

3. There are no significant differences between the variances s21 and s22,
which is tested by the F-test.

The test values for normal distribution (David test) and for outliers

(Dixon test) are given in Table 3.5-2.

Results of the test for normal distribution:

For laboratory 1 and laboratory 2 the test values q̂r lie within the

boundaries of the David table: 2.28 and 3.012, respectively, for a sample

size of n ¼ 6 at the significance level P ¼ 95%. The analytical results of

both laboratories can be regarded as normally distributed.

Results of the outlier test:

(continued)

Table 3.5-1 Analytical results in % (w/w) obtained from two laboratories

Laboratory 1 98.0 98.4 98.7 98.4 97.5 98.6

Laboratory 2 98.7 97.5 97.0 97.7 97.6 97.4
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The critical value is QðP ¼ 95%; n ¼ 6Þ ¼ 0:560: The test value of

the highest value xmax of laboratory 2 is larger than the critical value. As a

consequence, xmax in laboratory 2 is regarded as an outlier at the signifi-

cance level P ¼ 95%. Therefore, it must be removed from the data set.

Comparison of the two means �x1 and �x2 :
The test values of the homogeneity of the variances by means of the

F-test with the outlier-free data set are listed in Table 3.5-3.

Do the laboratories work statistically with the same precision?

The test value F̂ ¼ 2:721 calculated by (3.3-1) is smaller than the

critical value FðP ¼ 95%; df1 ¼ 5; df2 ¼ 4Þ ¼ 6:256: Note that for the

F-test s21 must always be higher than s22.
The null hypothesis H0: s

2
1 ¼ s22 is accepted. Both laboratories work

with equal precision, and therefore the t-test may be carried out.

Comparison of the means:

The test value calculated by (3.5-1) and (3.5-2) with sp ¼ 0:3779 is

t̂ ¼ 3:613: This value exceeds the limit of the critical value

tðP ¼ 95%; dftotal ¼ 9Þ ¼ 2:262, and as a consequence there is a differ-

ence between the results of the two laboratories.

Note that if one does not remove the outlier, the t-test value calculated
is t̂ ¼ 2:091: In this case, t̂ is smaller than the critical value which means

that the mean values in the two laboratories are equal, but this result is not

correct.

(b) The t-test can also be used as a check for trueness. For each laboratory the
test value t̂ is calculated using (3.5-5) with the “true” value m ¼ 98.0%

(w/w), the known assay of the chosen batch. The analytical result is

regarded as true if the t̂-value calculated is smaller than the critical

(continued)

Table 3.5-2 Results of the tests for normal distribution by the David test and for outliers

by the Dixon test

David test according to (3.2.1-1)

Laboratory xmax xmin s q̂r
1 98.7 97.5 0.446 2.69

2 98.7 97.0 0.568 2.99

Dixon test according to (3.2.3-1)

Laboratory x2;max x2;min Q̂ðxmaxÞ Q̂ðxminÞ
1 98.6 98.0 0.083 0.417

2 97.7 97.4 0.588 0.235

Table 3.5-3 Intermediate

quantities for the F-test
Laboratory n �x s df

1 6 98.27 0.4457 5

2 5 97.44 0.2702 4
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t-value at the significance level P and the number of degrees of freedom

df of the data set in each laboratory. With the data set listed in Table 3.5-3

the following t-values are obtained:
Laboratory 1 (the reference laboratory):

t̂1 ¼ 1:465 tðP ¼ 95%; df1 ¼ 5Þ ¼ 2:571

Laboratory 2:

t̂2 ¼ 4:635 tðP ¼ 95%; df2 ¼ 4Þ ¼ 2:776
The analytical result of the reference laboratory 1 is true, but the

analytical result for the laboratory 2 is false. The lab-to-lab transfer is

not yet successful.

Challenge 3.5-2

In an analytical laboratory the determination of Ni in the presence of a great

amount of Fe in waste water must be introduced. For the choice of analytical

method, a internal laboratory comparison of six different methods was

carried out. A standard solution with 50.0 mg L�1 Ni and 500 mg L�1 Fe

was analyzed by nj ¼ 10 replicates. The results are presented in Table 3.5-4.

Which methods provide a true value and which mean value is false? Check

it at the significance level P ¼ 95%.

Solution to Challenge 3.5-2

The test values for checking the normal distribution according to the David

test are listed in Table 3.5-5.

(continued)

Table 3.5-4 Analytical results in mg L�1 Ni

Method 1 2 3 4 5 6

nj
1 49.0 50.2 50.2 49.3 49.3 49.9

2 50.1 50.5 49.3 49.3 49.9 50.2

3 49.4 49.2 49.8 49.7 49.6 50.5

4 49.1 49.9 50.3 49.5 49.0 50.0

5 50.2 50.1 50.1 50.2 49.3 49.6

6 49.8 50.3 49.4 49.8 49.1 50.1

7 49.9 50.6 51.2 49.9 49.6 49.7

8 49.5 49.8 49.8 49.5 50.2 49.5

9 50.3 50.5 49.9 49.9 49.2 50.4

10 49.7 50.4 50.1 49.9 49.4 50.1

Key for the analytical methods:

(1) volumetric analysis, (2) polarography, (3) photometry, (4) flame AAS (flame: N2O/

C2H2, l ¼ 232 nm), (5) flame AAS (flame: air/C2H2, l ¼ 342 nm), (6) ICP-OES
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All test values lie within the limits of the David table at the significance

level P ¼ 95%: 2.67 and 3.685. Thus, the data sets are normally distributed.

The test values for Dixon’s outlier test are calculated according (3.2.3-1) by

Q̂ ¼ x�1 � x2
x�1 � xn�1

����
����: (3.5-6)

The intermediate quantities obtained by the corresponding Excel functions

as given in Table 3.2.3-4 are summarized in Table 3.5-6. The critical value

QðP ¼ 95%; n ¼ 10Þ ¼ 0:477 is exceeded by the maximal value 51.2 for

method 3. Thus, this value must be rejected as an outlier. Further outliers

cannot be checked.

The visual inspection of the data sets does not give any hint for using a

statistical trend test.

The test for trueness is carried out by means of the t-test using (3.5-5) with
m ¼ 50.0 mg L�1 Ni. The test values t̂ are listed in Table 3.5-7. If the test

value t̂ is smaller than the critical value tðP ¼ 95%; dfjÞ then the analytical

result is true, otherwise it is false. The results are also given in Table 3.5-7.

As the results in Table 3.5-7 show, the same mean value �x can be “true”

or “false” if the standard deviations are different. This is the case for

(continued)

Table 3.5-5 Results of checking the normal distribution according to the David test

Method 1 2 3 4 5 6

xmax 50.3 50.6 51.2 50.2 50.2 50.5

xmin 49.0 49.2 49.3 49.3 49.0 49.5

s 0.447 0.425 0.530 0.294 0.372 0.330

q̂r 2.907 3.295 3.584 3.057 3.228 3.030

Table 3.5-6 Intermediate quantities and test values for Dixon’s outlier test

Method 1 2 3 4 5 6

x�1 ¼ xmax

xmax 50.3 50.6 51.2 50.2 50.2 50.5

x2 50.2 50.5 50.3 49.9 49.9 50.4

xn�1 49.1 49.8 49.4 49.3 49.1 49.6

Q̂max
0.083 0.125 0.500 0.333 0.273 0.111

x�1 ¼ xmin

xmin 49.0 49.2 49.3 49.3 49.0 49.5

x2 49.1 49.8 49.4 49.3 49.1 49.6

xn�1 50.2 50.5 50.3 49.9 49.9 50.4

Q̂min
0.083 0.462 0.100 0.000 0.111 0.111
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�x ¼ 47:70 mgL�1 Ni in methods 1 and 4. Note that the statement “true” or

“false” cannot be made without knowledge of the precision (see Sect. 2.2.4).

Challenge 3.5-3

The photometric determination of methylene blue active detergents in waste

water has to be introduced in a laboratory. To test the necessary sample

preparation procedure, two samples were analyzed:

1. A waste water sample after a simple filtration (sample 1)

2. A waste water sample which was purified by solid phase extraction (SPE)

(sample 2)

The analytical results of six replicates each are given in Table 3.5-8.

(a) Test whether there is a significant difference between the mean values of

the two samples.

(b) The relative standard deviation sr% for this analytical method should not

exceed 5% routinely. Check whether this will be reached with the two

procedures for the average sample amounts of 500 mg L�1.

Note that the significance level for all tests is P ¼ 95%.

Evaluate the results.

Table 3.5-8 Analytical results (in mg L�1) of the determination of methylene blue active

detergents for two samples with different preparations with ni ¼ 6 replicates

ni 1 2 3 4 5 6

Sample 1 438 512 478 490 515 438

Sample 2 456 478 469 493 476 456

Sample pre-treatment:

Sample 1 – simple filtration

Sample 2 – purification by SPE

Table 3.5-7 Results of testing the trueness of the determination of Ni in the presence of

a high Fe content with six different methods, obtained with outlier-free data sets

Method 1 2 3 4 5 6

�x 49.70 50.15 49.88 49.70 49.46 50.00

nj 10 10 9 10 10 10

dfj 9 9 8 9 9 9

sj 0.447 0.425 0.346 0.294 0.372 0.330

t̂j; (3.5-5) 2.121 1.116 1.061 3.223 4.593 0.000

t(P ¼ 95%, dfj) 2.262 2.262 2.306 2.262 2.262 2.262

Result true true true false false true
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Solution to Challenge 3.5-3

(a) The t-test is required for testing of differences between two mean values,

but the calculation of the test values t̂ according to (3.5-1) and (3.5-2) is

only allowed if there is no significant difference between the respective

standard deviations, which is checked by an F-test according to (3.3-1). If
the two standard deviations do not belong to the same population, the

Welch test has to be carried out. But firstly, the data must be checked to

see whether the standard deviation can be calculated. The test values on

normal distribution are q̂r;1 ¼ 2:25 and q̂r;2 ¼ 2:60; respectively. Thus,

the data set of sample 1 exceeds the critical values at the significance

level P ¼ 95%, which are 2.28 and 3.012, respectively. The deviation is

only small; therefore the test result is ignored.

As the results of the Dixon test given in Table 3.5-9 shows, there is no

outlier in either data set because the test values do not exceed the critical

value QðP ¼ 95%; n ¼ 6Þ ¼ 0:560:
As Table 3.5-9 shows, the test value F̂ is greater than the critical value

FðP ¼ 95%; df1 ¼ df2 ¼ 5Þ ¼ 5:050 which means that the variances are

different. Therefore, the Welch test is necessary, with the following

results: t̂W ¼ 0:473 calculated according to (3.5-3), dfW ¼ 6:674 calcu-

lated by (3.5-4), and the critical value tðP ¼ 95%; dfWÞ ¼ 2:447 obtained
by Excel functions.

The test value t̂W does not exceed the limit of the critical value, which

means that there is no significant difference between the mean values

obtained by two different sample pre-treatments.

Note that this result only gives the information that there is no differ-

ence between the means, but no information about the trueness of the

analytical results. It is possible that both means are wrong. Information

on the trueness would only be possible with a test against a known content

m according to (3.5-5), but m is not given.

(b) The precision, calculated by (2.2.2-5a), is sr% ¼ 7:2 for sample 1 and

sr% ¼ 3:0 for sample 2. The precision with the simple filtration is

obviously worse than the required 5%; therefore, the SPE cleaning step

has to be applied.

Table 3.5-9 Results for the Dixon and F-tests

Sample Dixon test (3.2.3-1)

xmax x2 Q̂max
xmin x2 Q̂min

1 515 512 0.039 438 438 0

2 493 478 0.405 456 456 0

F-test, (3.3-1)

Sample si dfi F̂
1 34.256 5 5.802

2 14.222 5
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3.6 Comparison of More than Two Mean Values: Analysis

of Variance

Let us first consider some examples: in a laboratory the same sample is analyzed by

k analysts under the same conditions with nj replicates to check the mode of

operation of the analysts. Another example is the testing of the performance of an

accredited laboratory, which is also carried out in an interlaboratory study in which

k laboratories participate. A partitioned sample is given to k laboratories to carry out
the analysis with nj replicates under the same conditions. A final example concerns

the comparison of k analytical results obtained by kmethods in the same laboratory.

The results obtained can be presented in the fashion given in Table 3.6-1 for all

the examples mentioned above, but the replicates in the columns can also be

different. In all these examples the question is, are the mean values �xk statistically
equal or not? This question is answered by the ANalysis Of VAriance (ANOVA).

The fundamental technique of ANOVA is a partitioning of the total sum of

squares (SStotal) into components related to the effects used in the model, for

example,

SStotal ¼ SStreatment þ SSerror: (3.6-1)

The number of degrees of freedom can be partitioned in a similar way:

dftotal ¼ dftreatment þ dferror: (3.6-2)

There are some assumptions for ANOVA:

1. The populations from which the samples were obtained must be normally

distributed.

2. The subjects are sampled randomly.

3. The population variances must be homogeneous.

4. The groups (cells) must be independent.

5. The null hypothesis H0

H0: m1 ¼ m2 ¼ � � � ¼ mk
is rejected if at least one mi is not equal to another.

Table 3.6-1 General scheme

for the one-way ANOVA

layout with k series
of measurements and

n replicates

Group: Analyst; sample;

laboratory; method; and others

1 2 . . . k

x11 x12 . . . x1k
x21 x22 . . . x2k

..

. ..
. . . . ..

.

xi1 xi2 . . . xik

..

. ..
. . . . ..

.

xn1 xn2 . . . xnk
Mean �x1 �x2 . . . �xk
Variances s21 s22 . . . s2k
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There are three conceptual classes of such models:

1. Fixed-effects models assume that the data came from normal populations which

may differ only in their means (Model I).

2. Random effects models assume the data describe a hierarchy of different popula-

tions whose differences are constrained by their hierarchy (Model II).

3. Mixed-effect models describe situations in which both fixed and random effects

are present (Model III).

If only a single effect is studied – the mode of operation of laboratory analysts or

the influence of a method on the analytical result – this is called a one-way
ANOVA.

The computational scheme of the required variances is summarized in an

ANOVA table with a similar format to that for one-way experiments, given in

Table 3.6-2.

SSbw, SSin, and SStot are the between-columns sum of squares, within-columns

sum of squares, and total sum of squares, respectively; s2bw and s2in are the variances
(also called mean squares) between and within the columns calculated with the

degrees of freedom dfbw and dfin, respectively. �xi is the mean value of column i and
��x is the grand mean value which is obtained from all values xij and the total number

of values n:

��x ¼

Pk
i¼1

Pnj
j¼1

xij

n
: (3.6-12)

The comparison of more than two mean values is traced back to the comparison

of variances, which is performed by an F-test. The test value F̂ is given by

Table 3.6-2 Computational scheme of one-way ANOVA

Source of error: Between columns Equation

Sum of squares
SSbw ¼Pk

i¼1

ni � ð�xi � ��xÞ2 (3.6-3)

Degrees of freedom dfbw ¼ k � 1 (3.6-4)

Variance s2bw ¼ SSbw
dfbw

(3.6-5)

Source of error: Within columns Equation

Sum of squares
SSin ¼

Pk
i¼1

Pnj
j¼1

ðxij � �xjÞ2
(3.6-6)

Degrees of freedom dfin ¼ n� k (3.6-7)

Variance s2in ¼ SSin
dfin

(3.6-8)

Source of error: Total Equation

Sum of squares
SStot ¼

Pk
i¼1

Pnj
j¼1

ðxij � ��xÞ2

SStot ¼ SSbw þ SSin

(3.6-9)

(3.6-10)

Degrees of freedom dftot ¼ n� 1 (3.6-11)
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F̂ ¼ s2bw
s2in

: (3.6-13)

The F̂-value calculated by (3.6-13) must be compared with the critical F-value
for df1 ¼ dfbw ¼ k � 1 and df2 ¼ dfin ¼ n� k degrees of freedom at a significance

level P.
If F̂ > FðP; df1; df2Þ; then the null hypothesis, that all mean values are equal in

the statistical sense

H0: m1 ¼ m2 ¼ � � � ¼ mk;
must be rejected.

Because within-column variances are pooled, one must test whether these

variances are equal. The homogeneity of more than two variances may be tested

by the Cochran or Bartlett test (see Sect. 3.4). Furthermore, as a general require-

ment for the calculation of variances, the data sets must be normally distributed,

which can be tested by the rapid David test (Sect. 3.2.1).

When the null hypothesis has been rejected, in the fixed effect model it is

considered that at least one column has a mean value which is different from the

others, but which column is this? It may be that the visual representation of the data

can single out those columns for which it is most likely that differences exist.

However, if this cannot be decided clearly, statistical tests are necessary.

There are some tests for such a problem in the literature, but the Least Significant
Difference (LSD)method is fascinating in its simplicity. Any pair of means for which

j�xj � �xkj>LSD is considered different. LSD is calculated according to (3.6-14) and

(3.6-15):

LSD ¼ tðP; dfinÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2in � ½ð1=n1Þ þ ð1=n2Þ�

q
: (3.6-14)

For equal sample size, i.e. n1 ¼ n2, (3.6-14) can be simplified:

LSD ¼ tðP; dfinÞ �
ffiffiffiffiffiffiffiffiffiffiffi
2 � s2in
nj

s
: (3.6-15)

The t-value is obtained from the t-table for the significance level P, which is

usually 95%, and the degrees of freedom dfin.

Two-way ANOVA:

Let us look at an example, as it very often occurs in analytical practice. To explore

an appropriate method for the determination of the content of some metals in soil

samples by atomic absorption spectroscopy (AAS), some experiments with two

factors are necessary: the first factor is given by the various conditions for the

solubility of the samples, and the second factor is the subsequent cleaning step with

SPE or the techniques of AAS. The question is which factor will influence the

result? This can be answered by the two-way ANOVA method because there are

two independent variables.
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A further assumption mentioned above has to be added: the groups must have the

same sample size.

Table 3.6-3 shows the general two-way ANOVA design.

The two independent variables in a two-way ANOVA are called “factors”,

because the two variables (two factors) affect the dependent variables. Each factor

will have two or more levels within it.

Treatment groups (cells) are formed from all possible combinations of the two

factors; if the first factor has l levels and the second factor has k levels, then there

will be l � k different treatment groups.

In many experimental systems, the effect of one factor depends on the level of

the other. This is called interaction. The interaction effect is the effect that one

factor has on the other. The computational scheme of the two-way ANOVA with

consideration of the interaction effect is given in Table 3.6-4.

The computational scheme of ANOVA is also used for many other problems.

Of course there are also ANOVA applications with more than two factors, so

called multi-way ANOVA, but these are used extremely rarely in AQA.

Challenge 3.6-1

To check the compatibility of four laboratory analysts in their analysis of

nitrite in waste water by DIN EN ISO 10304-1 [11], a waste water sample had

to be analyzed by the four analysts under the same conditions with the same

ion chromatograph. The results obtained are given in Table 3.6-5.

(continued)

Table 3.6-3 Two-way ANOVA design

Notations

Any Last

Score i n
Factor A j p
Factor B k q

Factor B A Marginals

Factor A b1 b2 bk bq
a1 xi11 xi12 xi1k xi1q �x1�

xn11 xn12 xn1k xn1q
�x11 �x12 �x1k �x1q

a2 xi21 xi22 xi2k xi2q �x2�
xn21 xn22 xn2k xn2q
�x21 �x22 �x2k �x2q

aj xij1 xij2 xijk xijq �xj�
xnj1 xnj2 xnjk xnjq
�xj1 �xj2 �xjk �xjq

ap xip1 xip2 xipk xipq �xp�
xnp1 xnp2 xnpk xnpq
�xp1 �xp2 �xpk �xpq

A Marginals �x:1 �x:2 �x:k �x:q Grand mean
��x
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(a) Check whether the mean values obtained by three replicates are statisti-

cally equal or whether a difference can be detected at the significance

(continued)

Table 3.6-4 Computational scheme of two-way ANOVA

Factor A Equation

Degrees of freedom dfA ¼ p� 1 (3.6-16)

Sum of squares
SSA ¼ n � q �Pp

j¼1

�xj: � ��x
� �2 (3.6-17)

Mean square s2A ¼ SSA
dfA

(3.6-18)

Test value F̂
F̂A ¼ s2A

s2R

(3.6-19)

Critical value FðP; dfA; dfRÞ
Factor B Equation

Degrees of freedom dfB ¼ q� 1 (3.6-20)

Sum of squares
SSB ¼ n � p �Pq

k¼1

ð �x:k � ��xÞ2 (3.6-21)

Mean square s2B ¼ SSB
dfB

(3.6-22)

Test value F̂
F̂B ¼ s2B

s2R

(3.6-23)

Critical value FðP; dfB; dfRÞ
Interaction Equation

Degrees of freedom dfAB ¼ dfA � dfB (3.6-24)

Sum of squares
SSAB ¼ n �Pp

j¼1

Pq
k¼1

�xjk � �xj: � �x:k þ ��x
� �2 (3.6-25)

Mean square s2AB ¼ SSAB
dfA �dfB

(3.6-26)

Test value F̂
F̂AB ¼ s2AB

s2R

(3.6-27)

Critical value FðP; dfAB; dfRÞ
Residual Equation

Degrees of freedom dfR ¼ dfT � dfA � dfB � dfAB (3.6-28)

Sum of squares SSR ¼ SST � SSA � SSB � SSAB (3.6-29)

Mean square s2R ¼ SSR
dfR

(3.6-30)

Total Equation

Degrees of freedom dfT ¼ nkl� 1 (3.6-31)

Sum of squares
SST ¼Pn

i¼1

Pp
j¼1

Pq
k¼1

xijk � ��x
� �2 (3.6-32)

Table 3.6-5 Analytical results (in mg L�1 NO�
2 ) obtained by ion chromatography

with four analysts and three replicates nj

Analyst 1 2 3 4

Replicates nj
1 10.2 11.2 10.3 10.5

2 10.4 10.9 10.4 10.7

3 10.0 10.9 10.7 10.4
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level P ¼ 95%: First, give a visual presentation of the analytical results of
the four analysts.

(b) If you have detected a statistical difference between the means, check

which mean(s) is/are different.

Solution to Challenge 3.6-1

(a) Any statistical test should always be preceded by visual inspection of the

data. The visual presentation of the analytical results of the four analysts

given in Table 3.6-5 is given in Fig. 3.6-1.

As the figure shows, neither the question of the difference between the

means nor the question as to which mean(s) is/are different from the

others can be decided visually, and therefore statistical tests are necessary

to answer these questions.

First, we have to check the homogeneity of the variances in the four

columns of Table 3.6-5. Because all columns are the same size, the

Cochran test can be applied. The test value Ĉ ¼ 0:3171 is calculated by

(3.4-1) with
P
j

s2j ¼ 0:1367 and s2max ¼ 0:04333.
The critical value CðP ¼ 95%; k ¼ 4; df ¼ 2Þ ¼ 0:7679 is greater

than Ĉ, which means the variances of the groups are homogeneous, and

ANOVA is allowed. The ANOVA data are summarized in Table 3.6-6.

Because the test value F̂ exceeds the tabulated value FðP ¼ 95%;
dfbw; dfinÞ, a difference between the means of the four analysts is

detected: at least one analytical result is different from the others. But

ANOVA has not told us which mean(s) is/are different, and furthermore

the inspection of Fig. 3.6-1 does not give an answer either. Therefore, we

will try to answer this question using the LSD test.

(b) The test value is LSD ¼ 0.3480 calculated by (3.6-15) with tðP ¼ 95%;

dfin ¼ 8Þ ¼ 2:306; s2in ¼ 0:0342; and nj ¼ 3. The absolute differences

(continued)

x i
j
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1 2 3 4

Analyst

Fig. 3.6-1 Visual

presentation of the analytical

results of the four analysts

given in Table 3.6-5
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of all mean values together, given in Table 3.6-7, reveals that only the

mean value of analyst 2 is different from the other mean values. Note that

according to Fig. 3.6-1 the mean of analyst 1 also seems to differ signifi-

cantly from the other means, but the statistical test gives another result.

Challenge 3.6-2

In an laboratory, a method for the routine analysis of Ni in industrial waste

water is to be introduced. For this purpose, the AAS method according to DIN

38406-E 11 [12] was chosen. It is known that Fe in various concentrations can

be present in the waste water. With this information three problems arise:

(a) Does the Fe concentration have an influence on the Ni determination?

(b) Which experimental conditions are appropriate for the AAS?

(c) Is there an interaction between (a) and (b)?

Here it should be easily recognized that these questions can be answered

with a two-way ANOVA.
The first factor A is the influence of Fe on the determination of Ni, for

which three types of test solutions were prepared:

(continued)

Table 3.6-6 Intermediate quantities for ANOVA of the data given in Table 3.6-5

n 12 k 4

��x (3.6-12) 10.55

Analyst 1 2 3 4

�xj 10.20 11.00 10.47 10.53

nj 3 3 3 3

nj � ð�xj � ��xÞ2 0.36750 0.60750 0.02083 0.00083

SSbw (3.6-3) 0.99667 dfbw (3.6-4) 3

s2bw (3.6-5) 0.3322P
j

ðxij � �xjÞ2 0.0800 0.0600 0.0867 0.0467

SSin (3.6-6) 0.2733 dfin (3.6-7) 8

s2in (3.6-8) 0.0342

F̂ (3.6-13) 9.724 FðP ¼ 95%; dfbw; dfinÞ 4.066

Table 3.6-7 The comparison

of the paired absolute

difference of mean values

together with the LSD value

Comparison of analysts Differencej j Result

1 with 2 0.8000 Greater

1 with 3 0.2667 Smaller

1 with 4 0.3333 Smaller

2 with 3 0.5333 Greater

2 with 4 0.4667 Greater

3 with 4 0.0667 Smaller
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1. A test solution was used which does not contain Fe (denoted “without”).

2. A test solution was used with a small concentration of 10 mg L�1 Fe

(denoted “small”).

3. A test solution was used with the highest possible concentration of

50 mg L�1 Fe (denoted “high”).

The concentration of Ni is equal in all test solutions: 30 mg L�1 Ni.

The second factor B includes the conditions of the measurement by the

AAS method:

1 Flame: N2O/C2H2 l ¼ 232 nm (Condition I)

2 Flame: Air/C2H2 l ¼ 342 nm (Condition II)

The results of the AAS determinations of Ni with five replicates are

summarized in Table 3.6-8.

Answer the questions given above on the basis of the experimental results.

Solution to Challenge 3.6-2

Firstly, we have to check whether the variables in each cell are normally

distributed and whether the variances of the populations are statistically equal

(normality and homoscedasticity of all cells). Note that there is no reason for

a test of outliers in the data set.

The test for normal distribution is carried out by the David test (see

Sect. 3.2.1) and the homogeneity of the variances is tested by the Bartlett

test (see Sect. 3.4).

The intermediate quantities and the results for the David and Bartlett tests

are given in Tables 3.6-9 and 3.6-10.

(continued)

Table 3.6-8 Results of the AAS determination of Ni (in mg L�1) under two different

conditions

Factor B: AAS Factor A: Fe content

Without Small High

Condition I 20.1 20.7 22.0

19.0 20.3 21.2

20.5 20.9 22.0

19.7 20.5 20.6

20.3 19.6 22.3

Condition II 18.0 19.8 22.1

19.3 20.1 21.2

18.7 19.2 22.2

21.0 19.6 22.0

19.6 20.3 22.4
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The lower and upper limit values of the David test are 2.15 and 2.753 at the

significance level P ¼ 95%: Thus, a normal distribution is present in all cells.

As Table 3.6-10 shows, the variances are homogeneous at the significance

level P ¼ 99% as well as P ¼ 95% because the test value ŵ2 does not exceed
the corresponding critical value. Thus, two-way ANOVA may be carried out.

The intermediate quantities for the calculation of the sum of squares, the

variances, the test and the critical values for two-way ANOVA are given in

detail in Table 3.6-11.

Since there are three questions about the analytical task, we have three

decisions to make.

(a) Since the test value F̂A ¼ 28:649 exceeds the critical value FðP ¼ 95%;
dfA; dfRÞ ¼ 3:403; the null hypothesis H0 ¼ m1 ¼ m2 ¼ � � � ¼ m6 must

be rejected. There is a very significant effect of the Fe content on the

determination of Ni.

(continued)

Table 3.6-9 Intermediate quantities and results for the check of normal distribution (David

test)

A1 A2 A3

B1

xmax 20.5 20.9 22.3

xmin 19.0 19.6 20.6

s 0.5933 0.5000 0.7014

q̂r 2.53 2.60 2.42

B2

xmax 21.0 20.3 22.4

xmin 18.0 19.2 21.2

s 1.1212 0.4301 0.4604

q̂r 2.68 2.56 2.61

Table 3.6-10 Intermediate quantities and results for the check of homogeneity of

variances (Bartlett test)

Aj 1 2 3 1 2 3

B1 B2

SSj 1.408 1.000 1.968 5.028 0.740 0.848P
SSj 10.992

s2 (2.2.2-2) 0.4580 df log s2 �8.1392

s2j 0.352 0.250 0.492 1.257 0.185 0.212

dfj 4 4 4 4 4 4

dfj log s2j �1.814 �2.408 �1.232 0.397 �2.931 �2.6947

Sdfj log s2j �10.6828

ŵ2 5.857 w2ðP ¼ 99%; df ¼ 5Þ
w2ðP ¼ 95%; df ¼ 5Þ

15.086

11.070
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(b) The influence of the conditions of AAS measurement on the result is not

significant because the test value F̂B ¼ 1:284 is smaller than the table

value FðP ¼ 95%; dfB; dfRÞ ¼ 4:260:
(c) The test value for the interaction F̂AB ¼ 1:677 does not exceed the limits

of the table value FðP ¼ 95%; dfAB; dfRÞ ¼ 3:403; and thus factor A (the

concentration of Fe) does not interact with factor B (the conditions of

AAS measurement).

The two-way ANOVA yields the important result that the analytical

method proposed for the determination of Ni in ferrous waste water

cannot be applied without elimination of the influence of Fe.
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Table 3.6-11 Intermediate quantities and results for the two-way ANOVA; the equations
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Chapter 4

General Aspects of Linear Regression

4.1 Correlation, Regression, and Calibration

Correlation and regression analysis investigate the relationships between associated

variables, but with different objectives depending on the nature of the variables.

Correlation analysis studies whether there is a linear relationship between two

random variables xi and yi and how strong is it. The strength of the relationship

between a pair of variables is quantified by the correlation coefficient rxy (also

called the Pearson correlation coefficient), which is calculated by (4.1-1):

rxy ¼ SSxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSxx � SSyy

p ¼ s2xy
sx � sy ; (4.1-1)

with the covariance

s2xy ¼
SSxy

df
; (4.1-2)

the sums of squares

SSxx ¼
X

x2i �
P

xið Þ2
n

¼
X

ðxi � �xÞ2 (4.1-3)

SSyy ¼
X

y2i �
P

yið Þ2
n

¼
X

ðyi � �yÞ2 (4.1-4)

SSxy ¼
X

ðxi � yiÞ �
P

xi �
P

yi
n

¼
X

ðxi � �xÞ � ðyi � �yÞ; (4.1-5)

and the degrees of freedom

df ¼ n� 1: (4.1-6)

M. Reichenb€acher and J.W. Einax, Challenges in Analytical Quality Assurance,
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The square of the correlation coefficient between xi and yi; r2 is called the

coefficient of determination. It expresses the proportion of the sum of squares of

regression SSreg in the total sum of squares SStot:

r2 ¼
P

ŷi � �yð Þ2P
yi � �yð Þ2 ¼

SSreg

SStot
: (4.1-7)

Note that in practice, the sumof squares SSxx, SSyy, the correlation coefficient r, and
the coefficient of determination r2 are obtained by the corresponding MS Excel

functions ¼DEVSQ(Data xi), ¼DEVSQ(Data yi), ¼CORREL(Matrix 1, Matrix 2),

and ¼RSQ(Matrix 1, Matrix 2), respectively.

One variable is not expressed as a function of the other since both are equivalent.

There is neither a dependent nor an independent variable. Correlation questions can

be, for example, the stability of a steel wire and its content of carbon or the

concentration of certain metals in soil measured at different location near a plant.

The correlation coefficient rxy is a dimensionless number in the range

� 1< rxy <þ 1. The values þ1 or –1 indicate a perfect linear relationship between

the variables xi and yi, and rxy ¼ 0 indicates that the variables are uncorrelated.

Figure 4.1-1 illustrates some cases.
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Fig. 4.1-1 Scatter plots of variables x and y with various degrees of correlation: (a) a nearly

perfect positive correlation with rxy � þ1, (b) a moderate positive correlation with rxy < 1, (c) a

strong negative correlation with rxy � �1, and (d) no correlation, rxy ¼ 0
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Note that in the analytical calibration in which xi ¼ ci is fixed, there is no

correlation problem because the function y ¼ f ðxÞ is well-known, mostly from

natural laws; for example, the Lambert–Beer law.

Regression analysis includes any techniques for modeling and analyzing several

variables when the focus is on the relationship between one and more dependent
variables and one or more independent variables. This relationship is expressed by a
mathematical function. If this function is known it is possible to predict one and

more variable. More specifically, regression analysis helps us to understand how the

typical value of the dependent variable changes when any one of the independent

variables is varied while the other independent variables are held fixed.

The determination of the mathematical relationship is carried out by calibration,
a fundamental objective of instrumental analysis where an instrumental response

(peak area, absorbance, and others) as the dependent variable is related to the

known (given a priori) concentrations of the calibration standards as the indepen-

dent variables.

There are some important conditions for calibration:

– Certified reference material (CRM) or certified reference substances (CRS)

must be used for the preparation of standard solutions as independent variables.

– All calibration standards must be prepared independently, which means that

each standard has to be prepared separately.

– The measurement strategy has to be fixed: the number of calibration stan-

dards, their distance (equally distributed or in larger numbers at the beginning

or the end of the calibration range), the number of real replicate measurements

must be fixed, which means that each standard must be prepared with the

same treatments. If, for example, for HPLC analysis the preparation of the

standard solutions means merely dissolving defined amounts of the CRS in

the eluent, then two injections from the same vial are two independent

measurements, because the error is mainly determined in the peak areas of

HPLC analysis and not in the preparation of the standard solutions. If,

however, HPLC analysis occurs with solutions which are produced, for exam-

ple, with a pre-treatment (extraction of the sample or similarly), then two

injections from the same vial would only produce two measured values from

which a mean for this standard can be calculated, because the error of the pre-

treatment is not involved.

– The type of calibration model has to be fixed: linear or non-linear, univariate or
multivariate. However, the univariate linear model is the one usually applied in

AQA.

– The y-values must be normally distributed.
– The variances of the y-values have to be equal throughout the range of x, i.e. there

must be homogeneity of variances at each calibration point. If this is not the case,
weighted calibration must be applied.
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Challenge 4.1-1

In order to develop the method for the determination of some metals in solid

samples in routine analysis, the extraction step must be optimized. For this

purpose, the extraction of Cu, Ni, and Zn is tested under various conditions

(temperature, microwave, etc.). The analytical results obtained by AAS

analysis are summarized in Table 4.1-1 for ten different extraction conditions.

Check whether there is a correlation between the extraction of Cu and Ni

as well as between Cu and Zn. Interpret your result.

Solution for Challenge 4.1-1

Table 4.1-2 presents the intermediate quantities and result for the calculation

of the correlation coefficient between the extracted amount of Cu and Ni,

rxy(Cu/Ni), according to (4.1-1)–(4.1-5). The other correlation coefficients

obtained by Excel functions are rxy(Cu/Zn) ¼ 0:0502 and rxy(Ni/Zn) ¼
0:0952:

The correlation coefficient rxy(Cu/Ni) ¼ 0:9465 is close to 1. This indi-

cates a strong positive correlation which means that both elements are

extracted with the same efficiency. For further investigations concerning

the extraction step, only one element needs to be determined to know the

extraction efficiency of the other.

The correlation coefficient between the extracted amounts of Cu and Zn,

rxy(Cu/Zn) ¼ 0:0502, indicates that there is only a very weak correlation,

which means that the extracted amount of Zn is independent of the extraction

conditions. Under each condition the amount of Zn is completely extracted,

perhaps because Zn exists as a slightly soluble compound.

Table 4.1-1 Analytical

results of Cu, Ni, and Zn

determined by AAS after the

extraction of the same solid

sample under various

conditions

Extraction condition Cu in

mg L�1
Ni in

mg L�1
Zn in

mg L�1

1 14.5 34.6 55.6

2 16.8 33.2 54.8

3 12.6 30.4 56.0

4 21.4 59.3 56.3

5 20.3 58.0 54.0

6 9.50 27.4 56.4

7 25.8 63.0 58.2

8 23.7 61.8 57.3

9 28.6 65.3 55.9

10 25.9 61.0 53.6
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4.2 Linear Calibration Model

With independent concentrations of the standard xi which fulfills the conditions

given above, the dependent information values (response) yi are obtained by

measurement. The linear calibration function can be expressed by

yi ¼ a0 þ a
1
� xi þ eyi (4.2-1)

in which the model parameters a0 and a1 are the intercept and the slope of the true
but unknown regression line, respectively.

The linear function can be fitted to the measured values by means of Gaussian
least squares estimation or ordinary least squares estimation (OLS):

ŷi ¼ a0 þ a1 � xi: (4.2-2)

The residuals eyi are the deviations of the measurement values yi from their

values predicted by the regression line:

eyi ¼ yi � ŷi ¼ yi � a0 � a1 � xi: (4.2-3)

The graph for the linear calibration function and its parameters is shown in

Fig. 4.2-1.

Table 4.1-2 Intermediate quantities and the result for the calculation of the correlation

coefficient rxy between the amounts of extracted Cu (x-values) and Ni (y-values) according
to (4.1-1)–(4.1-5)

�x(Cu) in mg L�1 19.91 �y(Ni) in mg L�1 49.40

Extraction condition ðxi � �xÞ2 ðyi � �yÞ2 ðxi � �xÞ � ðyi � �yÞ
1 29.27 219.04 80.07

2 9.67 262.44 50.38

3 53.44 361.00 138.89

4 2.22 98.01 14.75

5 0.15 73.96 3.35

6 108.37 484.00 229.02

7 34.69 184.96 80.10

8 14.36 153.76 47.00

9 75.52 252.81 138.17

10 35.88 134.56 69.48

Sum 363.57 2,224.54 851.22

¼ SSxx ¼ SSyy ¼ SSxy
rxy 0.9465
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Parameters of the linear calibration model [1]:

1. Intercept a0, and slope a1
The slope a1 is the sensitivity of the analytical method, and the intercept a0 is
predominantly the blank.

Although the calibration intercept and slope can be usually calculated by a

hand calculator or by Excel functions¼ INTERCEPT(yi, xi) and¼ SLOPE(yi, xi),
respectively, the equations for their calculation will be given:

Intercept a0:

a0 ¼ �y� a1 � �x : (4.2-4)

Slope a1:

a1 ¼
P ðxi � �xÞ � ðyi � �yÞP ðxi � �xÞ2 ¼ SSxy

SSxx
: (4.2-5)

In linear regression analysis, besides the intercept a0 and the slope a1, the
following parameters are important; most of them are shown in Fig. 4.2-2.

2. Residual standard deviation, sy.x
The residual standard deviation sy.x indicates the calibration error. It is calcu-
lated by (4.2-6) or (4.2-7):

sy:x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nc � 2

� �
� SSyy �

SS2xy

SSxx

 !vuut ; (4.2-6)

sy:x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnc
i¼1

ðyi � ŷiÞ2

df

vuuut
: (4.2-7)
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The degrees of freedom df is given by df ¼ nc – 2 for the linear calibration
function in which nc is the number of independently measured values.

The sums of squares SSxx, SSyy, and SSxy are calculated by (4.1-3), (4.1-4),

and (4.1-5), respectively, but SSxx and SSyy can be obtained with the Excel

functions DEVSQ(xi) and DEVSQ(yi).
The sum of the residuals can also be calculated by (4.2-8):

Xnc
i¼1

ðyi � ŷiÞ2 ¼
X

y2i � a0 �
X

yi � a1 �
X

xi � yi: (4.2-8)

Note that in practice the residual standard deviation is obtained by Excel

function ¼STEYX(yi, xi).
3. Analytical error, sx:0

The analytical standard deviation sx.0 indicates the random error of the analytical

process:

sx:0 ¼ sy:x
a1

: (4.2-9)

The relative standard deviation sr% of the analytical process is

sr% ¼ sx:0
�x

� 100: (4.2-10)

4. Standard deviation of the intercept, sa0

sa0 ¼ sy:x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nc
þ �x2

SSxx

s
: (4.2-11)

5. Confidence interval of the intercept, CI(a0)

CIða0Þ ¼ a0 � tðP; dfÞ � sa0 : (4.2-12)
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ŷ = a0 + a1x

Fig. 4.2-2 Linear calibration

function ŷ ¼ a0 þ a1 � x
with its upper and lower

confidence intervals CIupper
and CIlower, respectively; sx.0,j
is the analytical error for the

information value yj; and sy.x,i
is the calibration error for the

standard xi
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6. Standard deviation of the slope, sa1

sa1 ¼
sy:xffiffiffiffiffiffiffiffiffi
SSxx

p : (4.2-13)

7. Confidence interval of the slope, CI(a1)

CIða1Þ ¼ a1 � tðP; dfÞ � sa1 : (4.2-14)

8. Prediction of x from y, x̂
The calibration line is used to predict the concentration of an analyte in a sample

x̂ using (4.2-15):

x̂ ¼ �̂y� a0
a1

; (4.2-15)

in which �̂y is the mean of the information values with na determinations

performed on the sample.

The error of the predicted value sðx̂Þ is calculated by (4.2-16):

sðx̂Þ ¼ sy:x
a1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nc
þ 1

na
þ ð�y� �̂yÞ2
a21 � SSxx

s
; (4.2-16)

in which na is the number of the replicates of a measured value yi. All other
symbols are explained above.

9. Confidence interval of the predicted concentration, CIðx̂Þ
The confidence interval CI of the predicted concentration CIðx̂Þ for the signifi-
cance level P is calculated by (4.2-17):

CIðx̂Þ ¼ x̂� tðP; dfÞ � sðx̂Þ: (4.2-17)

As already mentioned above, the degrees of freedom is df ¼ nc – 2 for a

linear regression function. The upper and lower confidence limits of a regression

line are the dotted lines in Fig. 4.2-2.

Challenge 4.2-1

In an analytical laboratory, a method is to be introduced for the quality

control of technical n-hexane produced by the hydrogenation of benzene.

The limit value L0 of the residual content of benzene is specified as

L0 ¼ 0.03% (v/v). In order to minimize the cost, simple and inexpensive

photometry should be chosen.

Before one selects an analytical method suitable for the task, one must

check whether the sensitivity of the method is sufficient. The sensitivity of the

(continued)
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photometry is determined by the absorptivity, which is a � 250 Lmol�1 cm�1

at l ¼ 254 nm for the analyte benzene.

(a) Check if the sensitivity of the photometry is sufficient for this analytical

problem, as follows: estimate which concentration has to be prepared

for the absorbances Amin ¼ 0:1 and Amax ¼ 1:5 using a cuvette l ¼ 1 cm

and decide whether the critical concentration lies inside this absorbance

range. Note that the limit values of the absorbance A result from

Challenge 2.2.5-2.

With the answer to this question, the choice of the concentration range

given in Table 4.2-1 is confirmed. The calibration standards are prepared

as following: in five 100 mL volumetric flasks which are about half-filled

with n-hexane (CRS), the volumes of benzene (CRS) given in Table 4.2-1

are injected into the n-hexane solution in order to avoid loss of the

volatile analyte benzene. Then, the flasks are filled with n-hexane and

closed. After each calibration solution has been filled in a closable

cuvette, starting with standard 1, the absorbance A is measured at the

wavelength l ¼ 254 nm. This procedure is repeated with every calibra-

tion solution. The measured values of the absorbance Ai are also given in

Table 4.2-1.

The density of benzene is r ¼ 0.8765 g cm�3 (at room temperature).

(b) Determine the following parameters for the calibration function:

– Intercept with its confidence interval

– Slope with its confidence interval

– Calibration error

– Analytical error

– Relative standard deviation of the analytical process

(c) Let us assume that the calibration function is valid. The following values

Ai are obtained for a sample of a batch of n-hexane measured under the

same conditions in triplicate:

(continued)

Table 4.2-1 Preparation of

standard solutions for the

calibration of benzene in n-
hexane as well as the twofold

determination of the

absorbance of the standard

solutions

Standard Vinj in mL Measured absorbance A

First

determination

Second

determination

1 7 0.1991 0.2008

2 14 0.3958 0.3992

3 21 0.6076 0.6012

4 28 0.7999 0.8016

5 35 1.0013 1.0095

Vinj is the injected volume of benzene (CRS) in

100 mL volumetric flasks which are about half-filled

with n-hexane (CRS)
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yi 0.8304 0.8301 0.8309

Check if this batch fulfills the quality requirement stated in the quality

document of the plant or, in other words, can the batch be released?

(d) According to the Lambert–Beer law Ai ¼ al � c � l, the basis of photomet-

ric analysis, the slope is the absorptivity al at the wavelength l, which is

the sensitivity of the photometric method. Estimate the absorptivity al for
benzene at the wavelength l ¼ 254 nm in the usual units L mol�1 cm�1

and m2 mol�1, respectively.

Solution to Challenge 4.2-1

(a) The critical limit is L0 ¼ 0.03% (v/v) or 0.03 mL benzene in 100 mL

solution which is, taking into account the density of benzene,

0.2630 g L�1. Thus the critical concentration is

ccrit ¼ 0:2630 g

78 gmol�1 � 1L ¼ 0:00337mol L�1 ¼ 3:37mmol L�1: (4.2-18)

Is the sensitivity for concentrations ccrit � 3:5 mmol L�1 sufficient for

the reliable measurement of the absorbance in the range Amin ¼ 0:1 to

Amax ¼ 1:5, which is the requirement of the photometry?

The concentrations for the lower and upper limits of the absorbance

Amin and Amax; respectively, calculated according to the Lambert–Beer

law with a cuvette of l ¼ 1 cm are

cmin ¼ 0:1

250 Lmol�1 cm�1 � 1 cm ¼ 4 � 10�4 mol L�1 ¼ 0:4mmol L�1

(4.2-19)

and

cmax ¼ 1:5

250 Lmol�1 cm�1 � 1 cm ¼ 6 � 10�3 mol L�1 ¼ 6mmol L�1:

(4.2-20)

As (4.2-19) and (4.2-20) show, the critical concentration ccrit �
3:5 mmol L�1 lies within the range of reliable measurement of the

absorbance.

The estimate of the concentration shows that the sensitivity of the

photometry is sufficient for the determination of benzene in n-hexane in
(continued)
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routine analysis and the chosen concentration range given in Table 4.2-1

should be appropriate: the absorbance lies in a range of low relative error

(see Fig. 2.2.5-1) and the critical concentration lies within this range.

(b) Sometimes, as in the current calibration, the number of independent
concentration standards nc has to be reconceived.

As Fig. 4.2-3 shows, in contrast to a structureless absorption band (b),

the absorbance of the analyte benzene (a) has to be determined by a

vibrationally structured absorption band. However, measurements of the

absorbance at a rising or decreasing edge with strong variation of the

absorbance within the range of the measurement can be linked to a higher

distribution of the measured absorbance, as in the maximum of a struc-

tureless absorption band such as (b) in Fig. 4.2-3. Therefore, and because

the preparation of the standard solutions consists only of the simple

pipetting of the analyte benzene with high quality CRS, the random

error of the calibration is nearly all produced by the measurement of

the absorbance Ai; i.e. sA � sc:
If this is valid, the twofold measurement of the absorbance of the same

standard solution may be considered as two “independent” measure-

ments. Therefore, the number of calibration standards is nc ¼ 10 and,

thus, the degrees of freedom df ¼ 8.

After the estimation of the number ni of calibration standards, the

concentrations of the standard solutions must be calculated by (4.2-21)

and (4.2-22):

(continued)
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Fig. 4.2-3 The vibrationally

structured absorption spectra

of the analyte benzene (a) and

a structureless absorption

band obtained, for example,

with phenol (b). The range

marked with an arrow is

roughly the spectral band

width (sbw) for the

measurement of the

absorbance
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c ¼ m g

M gmol�1 � Vsol L
(4.2-21)

c ¼ r gmL�1 � Vbenzene mL

M gmol�1 � Vsol L
¼ 0:8765 gmL�1 � Vbenzene mL

78 gmol�1 � 0:1 L
: (4.2-22)

As an example, the calculation for standard solution 1 is given:

c ¼ 0:8765 gmL�1 � 0:007 mL

78 gmol�1 � 0.1 L
¼ 0.0007866 mol L�1 ¼ 0.7866 mmol L�1:

The further concentrations are listed in Table 4.2-2. With the interme-

diate quantities given in Table 4.2-2, the calibration parameters may be

calculated and they are summarized in Table 4.2-3.

The intermediate quantities of the calculation, intercept a0, slope a1,
and the residuals ei, are presented in Table 4.2-2.

(c) As discussed in Sect. 2.2.4, the quality criterion is given by

x̂critical < L0: (4.2-23)

Thus, the critical value x̂ calculated by

x̂critical ¼ x̂þ CIupperðx̂Þ ¼ x̂þ tð �Pone�sided; dfÞ � sx̂ (4.2-24)

must be smaller than the limit value L0 specified in the documents of

AQA which in the given case is L0 ¼ 0.03% (v/v).

(continued)

Table 4.2-2 Intermediate quantities of the calculation of the calibration parameters inter-

cept a0, slope a1 and the residuals ei for the photometric determination of benzene in

technical n-hexane

c(x) in mmol L�1 A(y) ðxi � �xÞ2 ðxi � �xÞðyi � �yÞ 106ðyi � ŷiÞ2
0.7866 0.1991 2.475 0.633 0.11

0.7866 0.2008 2.475 0.631 4.10

1.5732 0.3958 0.619 0.162 19.00

1.5732 0.3992 0.619 0.159 0.97

2.3598 0.6076 0.000 0.000 36.00

2.3598 0.6012 0.000 0.000 0.16

3.1464 0.7999 0.619 0.156 9.70

3.1464 0.8016 0.619 0.157 2.00

3.9330 1.0013 2.475 0.629 9.80

3.9330 1.0095 2.475 0.642 26.00

�x ¼ 2:360 �y ¼ 0:602
Sum 12.375 SSxx 3.169 SSxy 107.80
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Note that in this case the upper confidence interval is calculated with

the one-sided t-factor.
The predicted concentration x̂ calculated by (4.2-15) with the mean

value �̂y ¼ 0:83047 obtained by three replicates is x̂ ¼ 3:254 mmol L�1:
The one-sided confidence interval at the significance levelP ¼ 95% calcu-

lated according to (4.2-16) and (4.2-17) with tð �Pone�sided; df ¼ 8Þ ¼ 1:860
and the parameters given above is CIðx̂Þ ¼ 0:0188 mmol L�1: The upper

value is thus x̂þ CIone�sidedðx̂Þ ¼ 3:272 mmol L�1:
Transformation into the units % (v/v) gives c in % (v/v) ¼ 0:0291:

The upper concentration of benzene in n-hexane is smaller than the limit

value L0 ¼ 0.03% (v/v), and thus the batch fulfills the quality require-

ments and can be released.

(d) The absorptivity is the slope of the calibration function. The slope

was determined using a cuvette with l ¼ 1 cm, therefore a (l ¼ 254 nm) ¼
256 L mol�1 cm�1 which is within the range of the literature values.

Sometimes, the values of the absorptivity are given in the units m2mol�1.

The conversion for benzene gives

a ¼ 256 L

mol cm
¼ 256 � 1; 000 cm3

mol cm
¼ 25:6m2

mol
: (4.2-25)

Challenge 4.2-2

In an analytical laboratory the determination of iron in the range of

0–3 mg L�1 must be carried out in a routine using simple and inexpensive

photometry. In contrast to the analysis of organic compounds, inorganic ions

(continued)

Table 4.2-3 Calibration parameters for the photometric determination of benzene in

technical n-hexane

Parameter Equation Value

Intercept a0 (4.2-4) �0.00265

Slope a1 in L mmol�1 (4.2-5) 0.2561

Calibration error sy.x (4.2-7) 0.00367

Analytical error sx.0 in mmol L�1 (4.2-9) 0.01434

sr% (4.2-10) 0.61

Standard deviation of the intercept sa0 (4.2-11) 0.00272

Confidence interval of the intercept CI(a0) (4.2-12) �0.00628

Standard deviation of the slope sa1 in L mmol�1 (4.2-13) 0.00104

Confidence interval of the slope CI(a1) in L mmol�1 (4.2-14) �0.00241

Number of calibration standards nc 10

Degrees of freedom df 8

Student’s t-factor tðP ¼ 95%; df ¼ 8Þ 2.306
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must be transferred in a complex with high absorptivity by addition of a

reagent. However, the chemical equilibrium for the formation of the complex

is a source of a relatively high random error, which means that the error of the

measurement of the absorbance A will be much smaller than that of the

preparation of the measurement solution. Therefore, in this case, the double

measurement of the absorbance of the same sample does not comply with the

requirement of two independent determinations because the main error

(chemical equilibrium) is not included. The mean value is calculated from

both measurement values and corresponds to one determination.

Another problem is the choice of an appropriate reagent for the iron

complex. In the literature one finds, for example, ferrozine (a ¼ 2,790 m2

mol�1 at 562 nm) [2] as well as sulfosalicylic acid (SSA) with absorptivity

a ¼ 560 m2 mol�1 at the maximum of the absorption band.

The standard solutions for the calibration are prepared as follows:

The volumes of a Fe standard solution Vst given in Table 4.2-4 are pipetted

into eight 100 mL volumetric flasks. The concentration of the standard

solution is 4 mg L�1 Fe. After filling with water the absorbances are

measured in duplicate. The results are also listed in Table 4.2-4.

(a) Confirm that ferrozine is suitable as a reagent for the photometric deter-

mination of Fe in the given concentration range, but not sulfosalicylic

acid.

For which analytical problems can a reagent with a considerably lower

absorptivity be applied?

(b) Determine the following calibration parameters for the general calibra-

tion function Ai ¼ f(ci in mmol L�1):

– Intercept

– Slope

– Calibration error

– Analytical error

– Relative standard deviation (sr%)

(continued)

Table 4.2-4 The volumes Vst

for the preparation of the

calibration standard solutions

and the measured values of

the absorbance A

Calibration standard Vst in mL Absorbance A

A1 A2

1 5 0.1056 0.1076

2 15 0.2951 0.2923

3 25 0.5103 0.5109

4 35 0.6933 0.6987

5 45 0.9075 0.9082

6 55 1.1002 1.0009

7 65 1.2899 1.2904

8 75 1.5089 1.5095
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What are the calibration and the analytical functions?

Show the regression function.

(c) 100 g plant ash was repeatedly extracted. The total volume of the extract

is 500mL. The Fe content of the plant ashmust be determined in ppm (w/w).

The measurement solutions were prepared as follows: 75 mL of extract

was pipetted into two 100 mL volumetric flask. After addition of the

reagents, each absorbance A is measured twice, giving the following

results:

Sample 1 A11 ¼ 0.7682 A12 ¼ 0.7689

Sample 2 A21 ¼ 0.7473 A22 ¼ 0.7478

Calculate the result.

(d) Propose some methods of minimizing the confidence interval.

Solution to Challenge 4.2-2

(a) The concentrations of the lowest and highest limit values in the unitsmol L�1

are clowest ¼ 5:376 � 10�6 mol L�1 and chighest ¼ 5:3763 � 10�5 molL�1,

calculated withMFe ¼ 55:8 gmol�1:
According to the Lambert–Beer law A ¼ a � c � l the values of the

absorbance obtained with the lowest and highest concentrations are

Alowest ¼ 0:030 and Ahighest ¼ 0:301 for the iron complex with SSA

(a ¼ 5,600 L mol�1 cm�1) and Alowest ¼ 0:150 and Ahighest ¼ 1:500 for

the iron complex with ferrozine (a ¼ 27,900 L mol�1 cm�1), respec-

tively, using the standard cuvette with l ¼ 1 cm.

Thus, the absorbance is considerably smaller than 0.1 in the range of

the lowest limit with the SSA complex, but for this small absorbance the

relative error is very high (see Fig. 2.2.5-1). However, the absorbance

values obtained by the ferrozine complex lie in the optimal range.

With about a tenfold higher concentration the samples have to be

diluted, because the absorbances cannot be directly measured any more.

In order to avoid the dilution stage, a reagent can be used which yields a

complex with a lower absorptivity, i.e. lower sensitivity.

(b) The concentrations of the calibration standard solutions ccal for 100 mL

volumetric flasks calculated by (4.2-26) with the stock concentration

cst ¼ 4 mgL�1 are given in Table 4.2-5.

ccal ¼ cst
Vst

Vflask

¼ 71:68 mmol L�1 Vst mL

100 mL
(4.2-26)

(continued)
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The volumes of the stock solution Vst are given in Table 4.2-4.

The calibration parameters are best calculated by the corresponding

Excel functions given above, but for the calculation of a0, a1, and sy.x
according to (4.2-4), (4.2-5), and (4.2-7), respectively, the intermediate

quantities are presented in Table 4.2-6.

As already mentioned above, the two measured values given for each

standard are only double measurements of the absorbance from which the

means is formed and not double determinations with double degrees of

freedom. Therefore, the mean values �A obtained by the double measure-

ments of the absorbances must be used for the calculation of the calibra-

tion parameters.

The regression parameters obtained by Excel functions or calculations

according to the formulae are summarized in Table 4.2-7 and the regres-

sion function is shown in Fig. 4.2-4.

The calibration function is

ŷ ¼ 0:00357þ 0.02762 L mmol�1� x (4.2-27)

and the analytical function for the predicted values x̂ is
(continued)

Table 4.2-5 Concentrations

of the calibration standard

solutions

Calibration standard Vst in mL c in mmol L�1

1 5 3.58

2 15 10.75

3 25 17.92

4 35 25.09

5 45 32.26

6 55 39.43

7 65 46.59

8 75 53.76

Table 4.2-6 Intermediate quantities and results of the calibration parameters

c in mmol L�1 �A ðxi � �xÞ2 ðxi � �xÞðyi � �yÞ 105ðyi � ŷiÞ2
3.58 0.1066 629.49 17.286 1.62

10.75 0.2937 321.17 8.994 4.73

17.92 0.5106 115.62 3.064 14.45

25.09 0.6960 12.85 0.357 0.03

32.26 0.9079 12.85 0.402 17.60

39.43 1.0506 115.62 2.742 176.69

46.59 1.2902 321.17 8.863 0.02

53.76 1.5092 629.49 17.904 42.49

Sum 2158.25 SSxx 59.613 SSxy 257.63

�x 28.674 �y 0.796
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x̂ in mmol L�1 ¼ ŷ� 0:00357

0.02762 L mmol�1
: (4.2-28)

(c) Because of two replicates, the number of analyses na ¼ 2 and the

measured grand mean is �̂y ¼ 0:75805:
With the other parameters required for (4.2-15)–(4.2-17), the predicted

concentration of the measured samples is x̂� CIðx̂Þ ¼ 27:32�
1.45 mmol L�1Fe. Note that in contrast to Challenge 4.2-1, the two-

sided t-factor must be used because in this case � CIðx̂Þ must be calcu-

lated.

However, we must still consider the dilution of the sample of the

extract. Because 75 mL of extract solution was diluted to 100 mL of

measuring solution, the dilution factor is 1.333. Therefore, the concentra-

tion of iron in the extract is c ¼ 36.4 � 1.9 mmol L�1 Fe, which equates

to 1016� 54 mg Fe in the total extract of Vextract ¼ 500 mL obtained

from 100 g plant ash. Thus, the content of Fe in the plant ash is

10:2� 0:5 ppm (w/w):
(d) For the analytical problems discussed in Sect. 2.2-4, besides the predicted

value x̂ its confidence interval is also important, particularly whenever

(continued)

Table 4.2-7 Calibration

parameters of the photometric

determination of iron using

the reagent ferrozine

Parameter Equation Value

Intercept a0 (4.2-4) 0.00357

Slope a1 in L mmol�1 (4.2-5) 0.02762

Calibration error sy.x (4.2-7) 0.02072

Analytical error sx.0 in mmol L�1 (4.2-9) 0.75020

sr% (4.2-10) 2.62

Number of calibration standards nc 8

Degrees of freedom df 6

tðP ¼ 95%; df ¼ 6Þ 2.447

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 10 20 30 40 50 60
c in µmol L-1

A

Fig. 4.2-4 Regression function of the spectrophotometric determination of iron using the

reagent ferrozine
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decisions must be made. If the confidence interval is too big then speci-

fied limit values can be easily crossed with the consequence that quality

requirements are not fulfilled. Therefore, the question arises as to how

one can minimize the confidence interval.

According to (4.2-16) and (4.2-17) the confidence interval is mainly

determined by parameters of the calibration from which sx.0 and tðP; dfÞ
are directly proportional to CI(x̂Þ, whereas from the analysis stage only

the square root of the number of replicates na is considered in (4.2-16).

This fact is important for the strategy of an analytical method. In order to

minimize the confidence interval one should choose

(1) a high number of calibration standards nc, which also diminishes the

value of the t-factor.
(2) a method, if possible, with a high sensitivity a1, which diminishes sx.0

according to (4.2-9).

Many replicates in the analysis increase the time and cost of the

analysis but have hardly any effect on the confidence interval.

Challenge 4.2-3

The determination of Cd by flame AAS (air/C2H2, l ¼ 228.8 nm) was carried

out under various conditions with results presented in Tables 4.2-8 and 4.2-9.

Evaluate the results with regard to an effective procedure for the determina-

tion of Cd in routine analysis giving a small confidence interval. In calibration

procedure I (Table 4.2-8) the absorbance was determined without replicates

whereas in calibration II (Table 4.2-9) each standard was determined by two

replicates. For two samples, the predicted value x̂ was determined with

two and four replicates. The predicted value x̂ with its confidence interval is

(continued)

Table 4.2-8 Concentrations c and measured values of the absorbance A for calibration I

with nc ¼ 8 as well as the analysis results obtained with na ¼ 2 and na ¼ 4, respectively

Calibration I Analysis

Standard c in mg L�1 A Sample 1 Sample 2

1 2 0.2156 A A
2 3 0.3244 0.5851 0.5863

3 4 0.4463 0.5872 0.5842

4 5 0.5409 0.5887

5 6 0.6474 0.5854

6 7 0.7538 Replicates

7 8 0.8936 2 4

8 9 0.9706
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to be calculated for both samples using the parameters of both calibration

functions.

Evaluate the result.

Solution to Challenge 4.2-3

After the detailed calculation of the calibration parameters was presented in

two Challenges, we will now use the respective Excel functions for further

calculations, but the important intermediate quantities will be given in order

to understand and reproduce the calculations.

Table 4.2-10 gives the parameters of the calibrations obtained by the two

procedures.

Note that because of the double degrees of freedom, the values for sx.0 and
tðP; dfÞ are smaller in calibration II.

The predicted values (i.e. the analytical results) x̂ and their confidence

intervals CIðx̂Þ calculated by (4.2-15)–(4.2-17) are given in Table 4.2-11.

As the results in the table show, the number of replicates na and the

number of calibration standards do not have an influence on the predicted

value x̂ but the confidence interval is largely determined by nc and na. The
(continued)

Table 4.2-9 Concentrations c and measured values of the absorbance A for calibration II

with nc ¼ 16 as well as the analysis results obtained with na ¼ 2 and na ¼ 4, respectively

Calibration II Analysis

Standard c in mg L�1 A A Sample 1 Sample 2

1 2 0.2154 0.2168 A A
2 3 0.3245 0.3243 0.5851 0.5863

3 4 0.4461 0.4465 0.5872 0.5842

4 5 0.5409 0.5409 0.5887

5 6 0.6475 0.6474 0.5854

6 7 0.7535 0.7541 Replicates

7 8 0.8937 0.8935 2 4

8 9 0.9703 0.9709

Table 4.2-10 Parameters for

calibration procedures I and II
Parameters Calibration I Calibration II

a0 �0.000693 �0.000392

a1 in L mg�1 0.10905 0.10902

sy.x 0.011807 0.010923

sx.0 in mg L�1 0.10828 0.10021

�x in mg L�1 5.5 5.5

sr% 1.97 1.82

nc 8 16

df 6 14

tðP ¼ 95%; dfÞ 2.447 2.145
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same confidence interval is reached with half of the numbers na calculated by
the parameters of calibration II with the higher number of the degrees of

freedom in the calibration. For routine analysis where many analyses must be

carried out, calibration parameters should be determined with a high number

of calibration standards nc and not with a high number of replicates na.

Challenge 4.2-4

In general one would like to illustrate the calibration function with confidence

intervals graphically, which is possible using common commercial software.

But if such software is not available, the graph must be constructed with an

Excel spreadsheet.

Table 4.2-12 gives the calibration data set for the determination of quinine

by fluorimetry. The relative intensity of the fluorescence was determined by

two replicates.

Provide the graph of the calibration function with confidence intervals.

Solution to Challenge 4.2-4

The calibration parameters calculated by Excel functions are given in

Table 4.2-13 together with the lower and upper confidence intervals required

for the construction of the graph.

(continued)

Table 4.2-11 Analytical results x̂� Dx̂ in mg L�1 obtained under different conditions

Parameter Calibration I Calibration II

Sample 1 Sample 2 Sample 1 Sample 2

df 6 14

na 2 4 2 4

SSxx in mg2 L�2 42 84

�̂y 0.58615 0.58615 0.58615 0.58615

x̂ in mg L�1 5.38 5.38 5.38 5.38

CIðx̂Þ in mg L�1 0.21 0.16 0.16 0.12

Table 4.2-12 Calibration of

quinine by fluorimetric

analysis

Standard i c(xi) in mg L�1 Measured Irel (yij) in counts

y1j y2j

1 0.01 97 99

2 0.02 170 162

3 0.03 238 250

4 0.04 320 321

5 0.05 411 416

6 0.06 492 495
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The confidence interval is calculated by

CIðŷÞ ¼ ŷ� sy:x � tðP ¼ 95%; df ¼ 4Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

na
þ 1

nc
þ ð�y� �̂yÞ2
a21 � SSxx

s
: (4.2-29)

The calibration function ŷ ¼ 9:60 countsþ 7,990 counts L mg�1 x with

confidence intervals is presented in Fig. 4.2-5.

Table 4.2-13 Calculation of the confidence interval for the calibration function of the

fluorimetric determination of quinine according to the data set given in Table 4.2-12

Standard c in mg L�1 �Irel in counts Calibration parameters

x �y SSxx in mg2 L�2 0.00175

1 0.01 98.0 a0 in counts 9.600

2 0.02 166.0 a1 in counts L mg�1 7,990

3 0.03 244.0 sy.x in counts 7.537

4 0.04 320.5 t(P ¼ 95%, df ¼ 4) 2.776

5 0.05 413.5 �y in counts 289.3

6 0.06 493.5 na 2

Examples for the calculation of the confidence interval CI(x̂Þ
x̂ ŷ CI(x̂Þ CIlowerðx̂Þ ŷ – CI(x̂Þ CIupperðx̂Þ ŷ þ CI(x̂Þ
0.000 9.60 24.46 �14.86 34.06

0.001 17.59 24.11 �6.52 41.70

0.002 25.58 23.76 1.82 49.34

0.003 33.57 23.41 10.16 56.98

0.004 41.56 23.07 18.49 64.63

0.005 49.55 22.74 26.81 72.29

. . . . . . . . . . . . . . .
0.066 536.94 23.07 513.87 560.01

0.067 544.93 23.41 521.52 568.34

0.068 552.92 23.76 529.16 576.68

0.069 560.91 24.11 536.80 585.02

0.070 568.90 24.46 544.44 593.36

0.0

100.0

200.0

300.0

400.0

500.0

0.000 0.010 0.020 0.030 0.040 0.050 0.060
c in µg L-1 

I r
el

Fig. 4.2-5 Calibration

function ŷ ¼ 9:60 counts þ
7,990 counts L mmol�1 � x
with confidence intervals

obtained by Excel functions
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4.3 Simplification of the Linear Calibration Function

The calibration function ŷ ¼ a0 þ a1 � x can be simplified if the intercept a0 does
not differ significantly from zero. This is the case if zero is included within the

range of the confidence interval of the intercept CIða0Þ:
The parameters of the simplified calibration function

ŷ ¼ a01 � x (4.3-1)

are calculated by (4.3-2)–(4.3-7) [3]:

� Slope : a01 ¼
P

xi � yiP
x2i

(4.3-2)

� Variance of the slope : s0
2

a1
¼ s0

2

y:xP
x2i

(4.3-3)

� Confidence interval of the slope : CIða01Þ ¼ s0a1 � tðP; dfÞ (4.3-4)

� Degrees of freedom : df ¼ nc � 1 (4.3-5)

� Residual standard deviation : s0y:x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðŷi � yiÞ2

df

s
(4.3-6)

with
X

ðŷi � yiÞ2 ¼
X

y2i � a01 �
X

xi � yi: (4.3-7)

The analytical error s0x:0 is calculated analogously to (4.2-8) and (4.2-9):

s0x:0 ¼
s0y:x
a01

(4.3-8)

sr% ¼ s0x:o
�x

� 100: (4.3-9)

The predicted value x̂ with its confidence interval is calculated by (4.3-10) and

(4.3-11)

x̂ ¼ �̂y

a0
1

(4.3-10)
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CIðx̂Þ ¼ x̂� s0x:0 � tðP; df ¼ nc � 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

na
þ 1

nc
þ ð�y� �̂yÞ2
a021 � SSxx

s
(4.3-11)

in which nc and na are the number of calibration standards and replicates in the

analysis, respectively, SSxx is the sum of squares of the x-values (calibration

standards), �y is the mean of the measured information values (response) and �̂y is

the means of the repeated information values obtained by the sample; all other

symbols are explained above.

Challenge 4.3-1

In a laboratory the determination of Zn in waste water for the range

0.5–5 mg L�1 must be carried out by flame AAS in routine analysis.

(a) The following calibration parameters are to be calculated with the data set

given in Table 4.3-1: residual error, analytical error, sr%; and slope with

its confidence interval. What is the calibration function?

(b) Draw the graph of the calibration function with the confidence intervals.

(c) Calculate the predicted value x̂� CIðx̂Þ of a sample from the measured

absorbance of two replicates ŷ1 ¼ 0:9561 and ŷ2 ¼ 0:9610:

Solution to Challenge 4.3-1

(a) The parameters for the linear calibration function ŷ ¼ a0 þ a1 � x calcu-

lated by Excel are summarized in Table 4.3-2.

As Table 4.3-2 shows, the value zero is within the range of the

confidence interval of the intercept CI(a0), i.e. the intercept is not signifi-
cantly different from 0. Therefore, the calibration function can be sim-

plified into the form ŷ ¼ a01 � x:
(continued)

Table 4.3-1 Calibration data

set for the determination of Zn

by flame AAS

Standard c in mg L�1 A

1 0.5 0.1727

2 1 0.3277

3 1.5 0.4650

4 2 0.6620

5 2.5 0.7617

6 3 0.9034

7 3.5 1.1082

8 4 1.3196

9 4.5 1.4148

10 5 1.6240
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Intermediate quantities for the calculation of the parameters of the

simplified calibration function ŷ ¼ a01 � x are given in Table 4.3-3.

The calibration function is ŷ ¼ 0.3189 L mg�1 � x:
(b) The graph for the calibration function with its confidence intervals is

generated as described in Challenge 4.2-4. The data set of the confidence

interval used for the Excel graph is calculated by

CIðx̂Þ ¼ ŷ� s0y:x � tðP ¼ 95%; df ¼ 9Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

nc
þ ð�y� �̂yÞ2
a012 � SSxx

s
(4.3-12)

with the values given in Table 4.3-3.

An extract of the data set is listed in Table 4.3-4 and the graph is

presented in Fig. 4.3-1.

(c) The predicted value x̂ and its confidence interval are calculated by (4.3-10)
and (4.3-11), respectively.

(continued)

Table 4.3-2 Parameters of

the calibration function and

the lower and upper limits of

the confidence interval

CIlowerða0Þ and CIupperða0Þ,
respectively

a0 �0.00494

a1 in L mg�1 0.32031

df 8

SSxx in mg2 L�2 20.63

sa0 0.02209

tðP ¼ 95%; dfÞ 2.306

CIlowerða0Þ �0.05587
CIupperða0Þ 0.04598

Table 4.3-3 Intermediate quantities for the calculation of the parameters of the simplified

calibration function ŷ ¼ a 0
1 � x

Standard xiyi x2i ŷi ðyi � ŷiÞ2
1 0.0864 0.25 0.1594 0.000176

2 0.3277 1 0.3189 0.000077

3 0.6974 2.25 0.4783 0.000179

4 1.3240 4 0.6378 0.000587

5 1.9041 6.25 0.7972 0.001266

6 2.7101 9 0.9567 0.002844

7 3.8786 12.25 1.1161 0.000064

8 5.2784 16 1.2756 0.001939

9 6.3667 20.25 1.4350 0.000409

10 8.1202 25 1.5945 0.000875

Sum 30.6936 96.25 0.008414

a01 in L mg�1 (4.3-2) 0.3189 df (4.3-5) 9

sa 0
1
in L mg�1 (4.3-3) 0.003117 s0y:x (4.3-6) 0.03058

s0x:0 in mg L�1 (4.3-8) 0.09588
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With �̂y ¼ 0:95855, na ¼ 2, and further parameters given in Table 4.3-3

the following result is obtained:

x̂� CIðx̂Þ ¼ 3:01� 0:169 mgL�1 Zn: (4.3-13)

4.4 Quadratic Regression Analysis

The pairs of values x, y given in Fig. 4.4-1 cannot be fitted by a linear regression, but
a quadratic regression may be the better model

ŷ ¼ a0 þ a1 � xþ a2 � x2: (4.4-1)

Table 4.3-4 Extract of intermediate quantities for the calculation of the lower and upper

limit of the confidence interval

xi c ŷi s0ðŷiÞ CIlowerðŷiÞ CIupperðŷiÞ
0.5 0.15945 0.25153 �0.09208 0.41097

0.6 0.19134 0.24953 �0.05819 0.44086

0.7 0.22323 0.24760 �0.02438 0.47083

0.8 0.25512 0.24576 0.00936 0.50087

0.9 0.28700 0.24399 0.04302 0.53099

. . . . . . . . . . . . . . .
4.6 1.46691 0.24410 1.22281 1.71102

4.7 1.49880 0.24588 1.25293 1.74468

4.8 1.53069 0.24773 1.28296 1.77842

4.9 1.56258 0.24966 1.31292 1.81224

5 1.59447 0.25166 1.34281 1.84613

-0.5

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
c in mg L-1

A

Fig. 4.3-1 Calibration function ŷ ¼ 0.3189 L mmol�1� x with the confidence intervals
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For a quadratic regression model the calibration parameters are calculated by the

following equations [4]:

– Coefficients, a0, a1, and a2

a0 ¼ 1

nc
�
X

yi � a1 �
X

xi � a2 �
X

x2i

� �
; (4.4-2)

a1 ¼ SSxy � a2 � SSx3
SSxx

; (4.4-3)

a2 ¼
SSxy � SSx3 � SSx2y � SSxx
ðSSx3Þ2 � SSxx � SSx4

: (4.4-4)

– Sum of squares, SS

SSx3 ¼
X

x3i �
P

xið Þ � P x2i
� �

nc
; (4.4-5)

SSx4 ¼
X

x4i �
P

x2i
� �2

nc
; (4.4-6)

SSx2y ¼
X

x2i � yi
� �� P

yið Þ �P x2i
nc

: (4.4-7)

SSxx and SSxy are calculated by (4.1-3) and (4.1-5), respectively.

– Residual standard deviation, sy.x

sy:x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðyi � ŷÞ2

df

s
(4.4-8a)

with

ŷ ¼ a0 þ a1 � xþ a2 � x2: (4.4-8b)

y

x

·
·

·
·

·

·
· · · ·

Fig. 4.4-1 Non-linear

relationship between the x
and y-values of a calibration
experiment
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– Degrees of freedom df for nc calibration standards

df ¼ nc � 3: (4.4-9)

– Predicted value x̂ (analytical result) with negative curvature

x̂ ¼ � a1
2 � a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

2 � a2

� �2
� a0 � �̂y

a2

s
(4.4-10)

with positive curvature

x̂ ¼ � a1
2 � a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

2 � a2

� �2
� a0 � �̂y

a2

s
: (4.4-11)

– Confidence interval CIðx̂Þ with na replicates

sðx̂Þ ¼ sy:x
ða1 þ 2 � a2 � x̂Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nc
þ 1

na
þ A

B

r
(4.4-12)

with

A ¼ ðx̂� �xÞ2 � SSx4 þ x̂2 �
P

x2i
nc

� �2
� SSxx � 2 � ðx̂� �xÞ � x̂2 �

P
x2i

nc

� �
� SSx3

( )

B ¼ SSx4 � SSxx � SSx3ð Þ2

CIðx̂Þ ¼ x̂� sðx̂Þ � tðP; dfÞ: (4.4-13)

– Sensitivity, Sens

Sens ¼ a1 þ 2 � a2 � x: (4.4-14)

Because, unlike linear regression, sensitivity is a function of x, it is usually
given as the means of the range �x :

Sens ð�xÞ ¼ a1 þ 2 � a2 � �x: (4.4-15)

– Process standard deviation, sx.0

sx:0 ¼ sy:x
Sens

: (4.4-16)
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– sr% (the error of the analytical procedure)

sr% ¼ sx:0
�x

� 100: (4.4-17)

Using the Excel function

¼ LINEST(y values; ½x; x2 values�; 1; 1Þ

the regression parameters presented in Table 4.4-1 are given for a quadratic

function. Note that the data input of a matrix must be made by using CTRL þ * þ
Enter.

Challenge 4.4-1

The determination of organophosphorus pesticides in seepage water must be

introduced in an analytical laboratory. After extraction with acetonitrile and

clean-up by solid phase extraction (SPE), the analytes should be determined

by gas chromatography using the highly specific flame photometric detector

(FPD). However, this detector may have a non-linear response. In order to

choose the correct regression model for the gas chromatograph software, the

calibration function was tested with the pesticide malathion in methanolic

solution. The results are given in Table 4.4-2.

(continued)

Table 4.4-1 Parameters for the quadratic regression function in Excel

Matrix position Parameter Matrix position Parameter Matrix position Parameter

1, 1 a2 1, 2 a1 1, 3 a0
2, 1 sa2 2, 2 sa1 2, 3 sa0
3, 1 r2 3, 2 sy:x
4, 1 F-value 4, 2 df

5, 1 SSyy 5, 2
P ðyi � ŷiÞ2

Table 4.4-2 Calibration data

of the determination of

malathion by GC-FPD

Standard c in mg L�1 Response y in mV

1 0.05 27

2 0.10 49

3 0.15 68

4 0.20 82

5 0.25 92

6 0.30 105

7 0.35 111

8 0.40 120

9 0.45 128

10 0.50 132
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(a) The decision on the quadratic regression is to be made from the graphical

representation of the function ŷ ¼ f ðxÞ. Note that if the quadratic regres-
sion is really the better model of the relationship between the x- and
y-values, this will be tested with methods given in Sect. 5.3.

(b) Calculate the coefficients as well as further parameters of the quadratic

calibration function.

(c) Calculate the analytical result as x̂� CIðx̂Þ in mg L�1 for a malathion

sample which was analyzed under the same conditions with two repli-

cates y1 ¼ 94:6 mV and y2 ¼ 94:1 mV:

Solution to Challenge 4.4-1

(a) As the calibration function y ¼ f ðxÞ in Fig. 4.4-2 shows, the linear

regression model should be rejected and the x, y-values are better fitted

by the quadratic regression model.

(b) The constants of the quadratic regression function are best obtained by

using the Excel function ¼ LINEST(y values; ½x; x2 values�; 1; 1Þ with
the results given in Table 4.4-1. In order to recalculate the parameters of

the quadratic calibration function according to (4.4-2)–(4.4-7), the inter-

mediate quantities are given in Table 4.4-3.

Thus, the quadratic calibration function is

ŷ¼ 8.883 mVþ431.0mV Lmg�1 �x�374.2 mVL2 mg�2 � x2 (4.4-18)

(c) The calibration function shows a negative curvature, therefore (4.4-10)

must be used for the calculation of the predicted value, which is x̂ ¼
0:2545 mgL�1 calculated with the mean measured value �y ¼ 94.35 mV

and the values a0, a1, and a2 given in Table 4.4-3. The standard deviation
of x̂ is sðx̂Þ ¼ 0:0077 mgL�1 calculated by (4.4-12) with the values

(continued)
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function of the determination
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given in Table 4.4-3. Thus, the confidence interval calculated according to

(4.4-13) is CIðx̂Þ ¼ 0:018 mgL�1 at the significance level P ¼ 95%:
The analytical result is 0.2545 � 0.018 mg L�1 Zn.

4.5 Working Range and Calibration Standards

The working range is the difference between the highest and lowest values of the

analyte in the sample. The working range of an analytical method is the concentra-

tion range over which results are obtained that are fit for a specific purpose. Note

that outside of the working range predicted values x̂ are not statistically certain.

Therefore, special attention must be paid to the choice of the working range

appropriate for the given analytical purpose.

Each validation starts with the choice of the provisional range, which is deter-

mined by the purpose of the analysis. In pharmaceutical analysis, required working

ranges are given for many tests; some of them are given in Table 4.5-1.

In order to assess the working range and confirm its fitness for purpose, the

concentration range should exceed the required limits by 10% or more. In general,

the calibration standards should be evenly spaced across the range. To establish the

suitability of the working range used for the validation of parameters such as

Table 4.4-3 Intermediate quantities and results of the calculation of the coefficients of the

quadratic calibration function

xi � yi x2i x3i x4i x2i � yi ðyi � ŷÞ2
1.35 0.0025 0.00013 0.000006 0.068 6.2500

4.90 0.0100 0.00100 0.000100 0.490 0.5693

10.20 0.0225 0.00338 0.000506 1.530 8.2961

16.40 0.0400 0.00800 0.001600 3.280 3.5242

23.00 0.0625 0.01563 0.003906 5.750 1.5739

31.50 0.0900 0.02700 0.008100 9.450 0.2351

38.85 0.1225 0.04288 0.015006 13.598 8.4364

48.00 0.1600 0.06400 0.025600 19.200 2.0242

57.60 0.2025 0.09113 0.041006 25.920 0.8655

66.00 0.2500 0.12500 0.062500 33.000 1.3330

Sums

297.8 0.9625 0.37813 0.158331 112.285 33.1076P
xi 2.75

P
yi 914 nc 10

Sums of squares

SSxx 0.20625 SSxy 46.45 SSx2y 24.3125

SSx3 0.11344 SSx4 0.06569

Results

a0 8.8833 in mV a1 in
mV L mg�1

431.0455 a2 in
mV L2 mg�2

�374.24

sy.x 2.1748 sr% 3.51 Sensð�xÞ in
mV L mg�1

225.2
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linearity, homogeneity of variances, limit of determination, etc., at least seven

different concentration levels should be used in the process of method validation.

Another problem which should be addressed concerns linearity and sensitivity of

the instrument response in relation to the working range studied. Thus, for example,

non-linearity of the analytical method obtained by a statistical test can be caused by

non-linearity of the analytical method (interfering compounds, an incomplete

equilibrium, etc.) or by non-linearity of the instrument response or both. Checking

the linearity of the instrument response across the required working range in an

initial study can be done by analyzing standard solutions produced by CRS of

appropriate concentrations. If the linearity of the response values obtained is

confirmed (see Sect. 5.3), then any non-linearity observed in analyzing the calibra-

tion solutions has its origin in the calibration stage.

Sensitivity is mainly a problem in trace analysis. If the sensitivity is too small for

an analytical problem, a change to another method with a higher sensitivity is

required; for example, a change from UV detection in HPLC to fluorescence

detection, fluorescent markers can be added to non-fluorescent substances, the use

of an electron capture detector (ECD) instead of a flame ionization detector (FID)

for GC determination of chlorinated hydrocarbon compounds, or graphite furnace

atomization instead of flame atomization in the AAS.

If the working range checked by the tests given in the following chapters is

appropriate, the provisional range is fixed as the actual working range of the

analytical method.

Some practical advice for the preparation of calibration solutions:

– The preparation of standard solutions must be made by chemical reference

materials (CRM) or chemical reference substances (CRS), i.e. substances

which are characterized by a certificate. This also holds for the solvents used.

– In order to achieve the required independence of the calibration standards, each

solution must be prepared separately. Because weighing is more precise than

measuring volumes, weighing should be preferred over volume dosage.

– The preparing of calibration standards cannot always be made by separate

weighings of the CRS because the amounts required are too small; for example,

preparation of a stock solution in the sub-microgram range. However, further

dilutions required for the preparation of the calibration standards have to be

made starting with the stock solution and not by successive dilution steps.

– If possible, the same syringe should be used for the preparation of solution rows.

– The calibration solutions c in mol L�1 are prepared using (4.5-1a):

Table 4.5-1 Examples of the

range of some tests for

pharmaceuticals

recommended by the

International Conference on

Harmonization (ICH) [5]

Test Range

Assay of the API 80–120% of the documented concentration

Content uniformity 70–130% of the documented concentration

Release �20% of the specified limit

Impurity Specification up to 120% of the

specified value
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c in mol L�1 ¼ ma in g

Ma in g mol�1 � Vsol in L
(4.5-1a)

¼ ma inmg

Ma in g mol�1 � Vsol in mL
(4.5-1b)

in which ma is the mass and Ma the molar mass of the analyte or CRS,

respectively, and Vsol is the volume of the volumetric flask.

– The concentration c2 obtained by the dilution of a solution 1 with concentration

c1 is given by (4.5-2):

c2 ¼ c1 � V1

V2

(4.5-2)

in which V1 and V2 are the volumes of the solutions 1 and 2, respectively.

Challenge 4.5-1

The assay of an API and the impurity of the byproduct X must be tested for

tablets within the scope of quality control.

The following data are known in advance and will be given:

– The weight of a tablet is 200 mg and the content of the API is 10% (w/w).

– According to EUROPHARM the limit of the content of the impurity X

should be 0.1% (w/w) of the API.

– According to the test regulation, ten tablets are to be dissolved per 100 mL

eluent (methanol/water, v/v ¼ 50/50).

– The CRS is certified to contain 95% (w/w) API and 4% (w/w) impurity X.

Instructions for the preparation of the calibration standard solutions are to

be established for testing

(a) The assay of the API.
(b) The impurity X in tablets.

The volume of the calibration standards should be VCS ¼ 100 mL.

Solution to Challenge 4.5-1

(a) Calibration standards for the assay of the API:
According to the regulatory guidelines given in Table 4.5-1 the range

for the assay test is established at 80–120% of the documented

concentration.

(continued)
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With a content of 20 mg API in one tablet, the concentration of the

sample is 200 mg API in 100 mL eluent for ten tablets. Therefore, the

required range is from 160 to 240 mg API in 100 mL eluent, which gives,

taking in account the API content of the CRS, 168.4 up to 252.6 mg CRS

in 100 mL eluent.

The five standard solutions given in Table 4.5-2 should be prepared.

If each calibration standard is determined by two replicates, the

degrees of freedom df ¼ 8:
Note that as discussed in Sect. 4.1, two HPLC-replicates from the

same vial whose solution was prepared by weighing a certain amount of

the CRS gives two independent determinations because the error is

caused by the chromatographic stage and not by the preparation of the

standard solution.

(b) Calibration standards for the impurity X in the tablets:

According to EUROPHARM the limit of the content of the impurity X

should be 0.1% (w/w) of the API. Therefore, the limit of the content of X

in one tablet with 20 mg API is 20 � 0:001 ¼ 0:02 mg X: Because ten

tablets are used for the preparation of each calibration standard, 0.2 mg X

may be contained in each solution. According to the regulatory guide-

lines (Table 4.2-1), the range for the testing of impurities is set up to

120% of the specificied value. Therefore, the range is from 0.2 to 0.24 mg

X in 100 mL eluent.

According to the CRS certificate, the content of the impurity X is 4%

(w/w), and the following amounts of CRS are used in 100 mL eluent to

prepare the lower and the upper limit concentrations, respectively:

xCRS(mg) ¼ 0:2mg

4% � 0:01 ¼ 5:0mg (4.5-3)

and

xCRS(mg) ¼ 0:24mg

4% � 0:01 ¼ 6:0mg: (4.5-4)

The five standard solutions given in Table 4.5-3 should be prepared.

If each calibration standard is determined by two replicates the degrees

of freedom df ¼ 8 as discussed above.

Table 4.5-2 Range of the calibration standards for the determination of the assay

Standard 1 2 3 4 5

mg CRS in 100 mL eluent 168.4 189.5 210.5 231.6 252.6
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Challenge 4.5-2

In a laboratory the determination of BTXE (benzene, toluene, xylenes, and

ethylbenzene) in solid samples must be carried out. The concentration range

of the analytes may be between 10 and 50 ppm (w/w), and some alkanes may

be also present, but they do not necessarily have to be determined. In order to

choose the calibration range, the following questions must be answered:

(a) Which pretreatment of the samples is to be applied?

Let us assume that the extraction of each 1 g sample will be extracted

with 10 mL methanol (CRS). From each clear extract, 4.0 mL is pipetted

by a syringe which is equipped with a filter with pore size 0.45 mm into a

5 mL volumetric flask, which is then filled with methanol.

Instructions for the preparation of the calibration standards are to be

compiled.

Considering the high price of high-quality solvent, only 10 mL volu-

metric flasks should be used.

(b) Which analytical method should be used?

GC analysis with FID using the internal standard method should be the

best analytical procedure for this purpose. Let us assume that n-octane is
not present in the samples, so this alkane can be used as an internal

standard because it is also a hydrocarbon compound and its boiling point

is in the area of those of the analytes.

(c) Why should the FID be used as detector?

To answer this question, the detector parameters sensitivity and

linearity must be considered. Let us assume the split may be 10 : 1:

Solution to Challenge 4.5-2

(a) Calculation of the limit concentrations of the solutions obtained accord-

ing to the proposed pretreatment:

Lower limit: 10 ppm (w/w) means 10 mg analyte per 1 g solid sample.

Assuming quantitative extraction with the proposed 10 mL of solvent, the

concentration of the extract is cextract ¼ 1 mg mL�1 analyte: Because

4 mL of this solution is diluted to 5 mL, the concentration of the lower

limit is clow ¼ 0:8 mg mL�1 CRS:
(continued)

Table 4.5-3 Range of the calibration standards for the determination of the impurity X

Standard 1 2 3 4 5

mg CRS in100 mL eluent 5.0 5.25 5.55 5.75 6.0
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Upper limit: The upper concentration is five times higher than clow,
therefore cup ¼ 4 mg mL�1 CRS:

The proposed working range given in Table 4.5-4 extends beyond the

required concentration range by �25% and +5%, respectively.

In order to assess the working range and confirm its fitness for purpose,

calibration standard solutions must be produced.

Because all analytes are liquids, the calibration solutions have to be

made by defined volumes, but, taking into account the density, mg mL�1

means volumes in the nanoliter range which cannot be achieved. Therefore,

the calibration solutions must be produced by appropriate dilutions of

stock solutions.

Let us assume two dilution steps with each dilution 1:100 (i.e. 0.1 mL

into a 10 mL volumetric flask) to give a solution from which the calibra-

tion standards are made.

According to (4.5-2) for the lower standard concentration given in

Table 4.5-4 ðc1 ¼ 0:6 mgmL�1Þ the concentration of stock solution

cðSt1Þ is given by (4.5-5):

c(St1Þ ¼ 0:6
mg
mL

� 10mL

0:1mL
¼ 60 mgmL�1: (4.5-5)

The stock solution St1 is obtained if the stock solution St0
cðSt0Þ ¼ 6; 000 mgmL�1 is diluted 1 : 100 (0.1 mL into 100 mL).

Thus, only the stock solution St0 is to be prepared from the analytes; all

other solutions are made by dilutions.

Preparation of the stock solution St0:

For each solution, 60 mg of the analyte must be added to the 10 mL

volumetric flask. Taking into account the density of the analyte, the

volumes given in Table 4.5-5 must be used for preparation of the stock

solutions St0 for the six analytes. Because of the high volatility of the

(continued)

Table 4.5-4 Proposed working range for the GC determination of BTXE according to the

extraction method

Standard 1 2 3 4 5 6 7

c in mg mL�1 CRS 0.6 1.2 1.8 2.4 3.0 3.6 4.2

Table 4.5-5 Preparation of the solutions St0 for all BTXE analytes for the 10 mL volu-

metric flask

B T o-X m-X p-X EB

r in g mL�1 0.877 0.862 0.876 0.860 0.857 0.867

VðSt0Þ in mL 68 70 68 70 70 69

B – benzene, T– toluene; o-X – o-xylene, m-X – m-xylene, p-X – p-xylene, EB – ethylben-

zene
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analytes, each volumetric flask is half-filled with the solvent methanol

and the analytes are pipetted into the solvent.

Preparation of stock solution St1 for all BTXE analytes:

100 mL of stock solution St0 is pipetted in a 10 mL volumetric flask and

then filled with methanol.

Preparation of the solution of the internal standard (n-octane) St0;IS:
A solution of 5 mL n-octane in 10 mL methanol is diluted 1:100 (100 mL

in 10 mL). The concentration of the solution St0;IS ¼ 0:005 mLmL�1:
Preparation of the calibration solutions (CS):
The volumes of each analyte given in Table 4.5-6 are added to 10 mL

volumetric flasks. After addition of 100 mL internal standard (solution

St0;IS), the flask is filled up.

Only 210 mL methanol (CRS) are used with the given procedure for

the preparation of the seven calibration standards. If each calibration

standard is measured by two replicates (two injections per vial) the

degrees of freedom df ¼ 12: Last but not least, the same 100-mL syringe

can be used for the preparation of all the stock solutions St0, and all other

solutions are prepared with the same 1,000-mL syringe.

(b) As discussed in Sect. 4.2, in general, a linear calibration function is

required for calculation of analytical results. In order to decide if any

non-linearity is caused by the sample (interfering compounds, association

equilibrium, or other effects), the linearity of the instrument response has

to be given. But the FID with a linearity of 107 always shows a linear

response.

The sensitivity of the FID is documented by its detection limit which

is about 10 pg.

Let us estimate the amount of analyte to be transferred onto the GC

column by the condition given above for the smallest concentration of

c ¼ 0:6 mgmL�1ð¼ 0.6 ng mL�1Þ: The usual injection volume for the

split injection technique is 1 mL. Thus, with the split ratio 10:1 about

60 pg is transferred onto the GC column, which can be easily detected.

Challenge 4.5-3

Seven calibration standards should be prepared for the determination by

HS-GC of benzene in waste water in the range 5–15 mg L�1.

(continued)

Table 4.5-6 Preparation of the calibration solution by dilution of the stock solution St1 in

10 mL volumetric flasks

Calibration standard CS 1 2 3 4 5 6 7

Solution St1in mL 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Give instructions for the preparation of the calibration standard solutions.

The degrees of freedom should be df ¼ 5.

Solution to Challenge 4.5-3

In general, calibration solutions are prepared according to (4.5-1a) and (4.5-2):

from a stock solution (cst ¼ constant) various volumes (V ¼ variable) are

pipetted into volumetric flasks which are then filled with the solvent. However

this procedure cannot be applied to the preparation of water-insoluble organic

analytes, such as benzene.

The preparation of calibration standard solutions for water-insoluble com-

pounds is carried out as follows:

– A stock solution of the analyte in a modifier is produced for every

calibration standard. The modifier must be soluble in water and it enables

the analyte to be dissolved in water. Acetone is frequently used.

– For every calibration standard, volumetric flasks of a large volume (25mL or

more) are filled with water. In this case we will take 25mL volumetric flasks.

– The same but low volume (V ¼ constant) of the stock solutions of various

concentrations (cst ¼ variable) is stirred into the water with very fast

stirring using a magnetic stirrer. The volumetric flasks are then closed

and the stirring is continued for 15 min or so. In this case we will use

25 mL of stock solution.

Seven calibration standard solutions are needed for df ¼ 5. A stock

solution St0 is prepared using 13.0 mL benzene (CRS) (m ¼ 11.4 g) in

100 mL acetone. The stock solution St0 with cst;0 ¼ 114 gL�1 benzene is

used for the preparation of the seven stock solutions Stadd: The volumes V
(St0) given in Table 4.5-7 are pipetted into 5 mL volumetric flasks which are

then filled with methanol. The concentrations of the calibration solutions ccs
prepared by stirring in each of 25 mL stock solutions Stadd in 25 mL water

according to the steps given above are presented in Table 4.5-7.

The required lower and upper limits are extended by �8.5% and þ22%.

Table 4.5-7 Preparation of

the calibration standard

solutions for the

determination of benzene

in waste water by HS-GC

analysis

Standard VðSt0Þ in mL

for 5 mL flask

c(Stadd) in

g L�1
cCS in
mg L�1

1 0.2 4.56 4.56

2 0.3 6.84 6.84

3 0.4 9.12 9.12

4 0.5 11.40 11.40

5 0.6 13.68 13.68

6 0.7 15.96 15.96

7 0.8 18.24 18.24
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Chapter 5

Validation of Method Performance

5.1 General Remarks

In the area of AQA, only validated methods should be used to solve the analytical

problems. Analytical methods need to be validated or revalidated:

1. Before their introduction into routine use

2. Whenever the conditions change for which the method has been validated (for

example, samples with a changed matrix or in a different concentration range)

3. Whenever the method is changed (for example, changing the determination

of nitrite in waste water by photometry into the ion chromatographic method,

or substitution of the determination of organic compounds according to the

headspace GC extraction method)

The procedures of method validation are mandated by regulatory agencies.

Guidelines with the required validation parameters for pharmaceutical and the

environmental analysis are:

1. The US FDA CGMP requirements in section 211.165 (e)

2. ISO/IEC 17025, Sect. 4.4

3. The validation procedure of ICH

4. Method development and validation for the Resource Conservation and Recovery

Act (RCRA) by the US EPA (Environmental Protection Agency)

Method validation given in ISO/IEC 17025 “is the confirmation by examination

and the provision of objective evidence that the particular requirements for a specific

intended use are fulfilled” [1]. According to the definition, the method validation is

characterized by three requirements:

– The need for experimental investigations.
– The objective evidence which is provided by performance parameters.

– The specific intended use, which means that a method is valid only for the

purpose for it has been validated. If, for example, the determination of benzene

in waste water has been validated by HS-GC for the working range 5–15 ppm

(w/w), then the same method cannot be applied either for concentrations outside

this working range or for other aromatics in the same range.

M. Reichenb€acher and J.W. Einax, Challenges in Analytical Quality Assurance,
DOI 10.1007/978-3-642-16595-5_5, # Springer-Verlag Berlin Heidelberg 2011
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Method validation assumes that an appropriate analytical method has been

selected (for example, titration, photometry, AAS, chromatographic methods) and

that the method has been developed (see Chap. 6).

The selection of an appropriate analytical method and the method validation

procedure are determined by the type of samples which have to be analyzed in

routine analysis. Some aspects are:

– The type of analytes and their concentration range which must be detected

– The type of sample matrices

– The interfering substances expected

– Whether qualitative or quantitative information is needed

– The required robustness of the method

– Last but not least, the cost per analysis

The extensive procedure of method validation starts with the development of an

operating procedure or a validation master plan, goes through the definition of the

performance parameters and acceptance criteria, the determination of the validation

experiments, the performance of the validation experiments, the development of

SOPs (Standard Operation Procedures) for executing the method in routine analysis,

and ends with the documentation of the validation experiments and results in the

validation report if the method is fit-for-purpose. From these steps, the main perfor-
mance parameters (also called validation parameters) which are required by the

regulatory agencies given above and their evaluation are discussed in the following

sections.

5.2 Precision

The definition of precision given in ISO 3524-2 (2006) [2] is the “closeness of

agreement between independent test results obtained under stipulated conditions”.

The precision of a set of results of measurements is quantified as a standard deviation

obtained from replicate measurements of a sample which is representative in terms of

the matrix and analyte concentration. As discussed in Sect. 3.2, three requirements

have to be fulfilled for the calculation of the standard deviation from a data set:

normal distribution, no outliers, and no trend. The precision of an analytical

procedure is expressed as the variance s2; standard deviation s, or the relative

standard deviation sr%, sometimes also called coefficient of variation (CV) of a

series of measurements.

In instrumental analysis the distribution of measurement values may be caused

by two sources:

1. The instrument precision itself

2. The analytical procedure

In order to estimate the precision of the analytical method, knowledge of the

instrument precision is necessary.
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Precision of the instrument (measurement precision, system precision). In

general, the instrument precision is given by the sr% value calculated by the

measured response values with a CRS compound or a stable, homogeneous sample.

The number of replicates may be ten, but six replicates are required by ICH

[Q2(R1)] [3] in pharmaceutical analysis.

Errors in instrumental precision are mostly caused by injection techniques.

For example, because of the small injection volume of 1 mL or less combined

with split injection techniques, the injection precision of GC analysis may be no

better than 2%. In general, these sources of error are inherently smaller for HPLC

and photometry, and the limit of injection precision is 1%.

Challenge 5.2-1

(a) In order to test the assay of the drug ergocalciferol (vitamin D2) by HPLC

analysis according to EUROPHARM, the injection precision has to be

checked by six replicates of a test solution prepared by dissolving 0.5 g

ergocalciferol (CRS) in 2.0 mL toluene without heating and then making

up the eluent to 10.0 mL. The limit value of sr% evaluated by the peak

areas obtained from the chromatograms has to be no greater than 1.0%.

The test was carried out using an autosampler with was equipped with

two different syringes. The peak areas in counts obtained by the chroma-

tograms are given in Table 5.2-1.

Check if the old syringe 1 is appropriate for testing the injection precision

or if the new syringe 2 has to be used.

(b) In an analytical laboratory the photometric determination of nitrite-N

by DIN EN 26777 (1993) [4] must be introduced. According

to the analytical procedure, NO�
2 is transferred into an azo dye with

lmax ¼ 540 nm, which is the wavelength for the measurement of the

absorbance A. But this dye cannot be used for checking the instrument

precision, i.e. the precision of the absorbance measurement, because it is

generated by a chemical equilibrium. Therefore, in order to test the

instrument precision a stable dye which absorbs in the visible range has

to be used, which may be methylene blue with lmax ¼ 665 nm. 0.48 mg

methylene blue (M ¼ 319.98 g mol�1) was dissolved in ethanol/water

(continued)

Table 5.2-1 Peak areas A obtained from the HPLC chromatograms for the determination

of the injection precision using two different syringes

Replicate 1 2 3 4 5 6

Syringe 1

A in counts 125,401 127,997 125,397 126,578 127,834 124,675

Syringe 2

A in counts 128,321 128,298 128,732 128,395 128,201 128,163
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80% (v/v) and the absorbance was measured with ten replicates using a

1 cm cuvette. The results are listed in Table 5.2-2.

Calculate sr% of the measurements of the absorbance A.

Solution to Challenge 5.2-1

There is no a hint of a trend in both data sets, but the tests for normal

distribution and outliers must be carried out:

(a) The David test calculated by (3.2.1-1) gives 2.401 and 2.785 for syringe 1

and 2, respectively. These values lie within the limit values qr;lower ¼ 2:28
and qr;upper ¼ 3:012: Thus, both data set sets can be regarded as normally

distributed.

As Table 5.2-3 shows, no outlier is detected in the data set of syringe 1 at the

significance level P ¼ 95%:After rejection of peak area 128,732 as an out-
lier in the data set of syringe 2, the injection precision with the new syringe

is sr% ¼ 0:07, calculated with the standard deviation s ¼ 93:626 counts

and the mean value �x ¼ 128; 275:6 counts: This value of syringe 2 fulfills

the regulatory requirement, whereas the relative standard deviation of the

old syringe 1, sr% ¼ 1:1, exceeds the required limit value 1%.

(b) The statistical tests for normal distribution and outliers are made as

described above. The data set is normally distributed: the test value is

q̂r ¼ 2:963 which lies between the lower (2.67) and the upper (3.685)

critical values of the David table at the significance level P ¼ 95% and

n ¼ 10.

On inspection of the data set of the measured values of absorbance A, the
value 1.0225 is suspected to be an outlier, and is checked by the Dixon

test. Remember that for ten replicates the test value has to be calculated

according to (3.2.3-1):

^
Q ¼ x�1 � x2

�� ��
x1 � xn�1j j :

(continued)

Table 5.2-2 Measurement

values of the absorbance A
obtained by a methylene blue

solution used as a test

substance for the photometric

determination of nitrite-N

Replicate A

1 1.0223

2 1.0219

3 1.0222

4 1.0222

5 1.0220

6 1.0225

7 1.0219

8 1.0223

9 1.0224

10 1.0222
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Neither xmax nor xmin are confirmed to be an outlier. The test values

Q̂max ¼ 0:1667 and Q̂min ¼ 0 do not exceed the critical value QðP ¼
95%; n ¼ 10Þ ¼ 0:477:
The precision of the absorbance measurements in the visible range is

sr% ¼ 0:02 calculated with s ¼ 0:000202 and �x ¼ 1:0222:

Precision of the Analytical Procedure. The precision of the analytical procedure

may be considered under three headings [3, 5]:

1. Repeatability

2. Intermediate precision

3. Reproducibility

Repeatability. Repeatability expresses the precision under the same operation

conditions, which “include the same measurement procedure, same operators,

same measuring system, same operation conditions and same locations, and repli-

cate measurement on the same or similar objects over a short time” [5]. Precision

under repeatability conditions is also termed as “within-batch” or “intra-assay”

precision. Repeatability reflects the differences between replicate measurements

obtained in a single batch of analysis.

Repeatability is expressed quantitatively by the repeatability standard deviation

sr which is the deviation obtained from a series of n measurements under repeat-

ability conditions, as well as the repeatability interval r which is also called the

repeatability limit. The repeatability limit is calculated by (5.2-1)

r ¼ tðP; dfÞ �
ffiffiffi
2

p
� sr (5.2-1)

in which tðP; dfÞ is the quantile of the two-tailed t-distribution. It is the confidence

interval representing the maximum permitted difference between two results

obtained under repeatability conditions.

Table 5.2-3 Results of the

check for outliers by the

Dixon test according to

(3.2.3-1) for both HPLC

syringes

Syringe 1 Syringe 2

x� ¼ xmax 127,997 128,732

x2 127,834 128,395

xn ¼ xmin 124,675 128,163

Q̂max
0.0491 0.592

x� ¼ xmin 124,675 128,163

x2 125,397 128,201

xn ¼ xmax 127,997 128,732

Q̂min
0.217 0.067

QðP ¼ 95%; n ¼ 6Þ 0.560
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The repeatability standard deviation can be estimated by simple replication

studies, which involve making repeated measurements on a suitable sample under

the same conditions. The precision is expressed as the relative standard deviation

sr% given in (2.2-5a). The number of replicates should be at least six because

otherwise the confidence interval becomes too wide.

Intermediate Precision. Intermediate precision is obtained from “condition of

measurement, out of a set of conditions that includes the same measurement

procedure, same location, and replicate measurements on the same or similar

objects over an extent period of time, but may include other conditions involving

changes” [5]. The changes can include new calibrations, operators, and measure-

ment systems. The intermediate precision is also known as “within-laboratory

reproducibility”.

Reproducibility. Reproducibility is also defined in [5]. It is the precision obtained

from “conditions of measurement, out of a set of conditions that includes different

locations, operators, measuring systems, and replicate measurements on the same

or similar objects”. Reproducibility is expressed quantitatively by the reproduc-

ibility standard deviation sR which is the experimental standard deviation

obtained from a series of measurements under reproducibility conditions.

The number of measurements n should be sufficiently large to estimate a repre-

sentative standard deviation. The reproducibility interval R or reproducibility

limit is a confidence interval representing the maximum permitted difference

between two single measured results under reproducibility conditions. It is calcu-

lated by (5.2-2)

R ¼ tðP; dfÞ �
ffiffiffi
2

p
� sR (5.2-2)

in which tðP; dfÞ is the quantile of the two-tailed Student’s t-distribution. The

degrees of freedom df relate to the number of replicates by which sR has been

established. As mentioned above, sR is estimated by a large number of replicates,

therefore the Student’s t-value is approximately 2 and, according (5.2-2),

R ¼ 2:8 � sR:
In order to estimate the intermediate precision or the reproducibility, a nested (or

hierarchical) design can be used. If, for example, the intermediate precision of an

analytical procedure has to be studied using various sets of equipments or carried

out by different analysts, portions of the same bulk are analyzed by replicates under

repeatability conditions using different equipment or performed by different ana-

lysts. Another example concerns interlaboratory studies with regard to method

validation or production of certified parameters of chemical reference materials

(CRM). The results from this type of study are calculated by one-way ANOVA (see

Sect. 3.6).

Limit Values of the Precision. The precision of the analytical procedure which is

acceptable is determined by the complexity of the method, the matrix, and the

concentration.
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In EUROPHARM [6–8], the regulatory documents of pharmaceutical analysis,

limit values of the precision of analytical procedures are established. Thus, the limit

value of the relative standard deviation srmax;r% is given by

srmax;r% ¼ K � B � ffiffiffi
n

p
tðP ¼ 90%; dfÞ � 100 (5.2-3)

in which the constant K ¼ 0.349, B is the difference between the upper limit

value of the assay and 100% given in each special monograph, n is the number of

replicated injections of a appropriate reference solution, and df is the degrees of

freedom calculated by df ¼ n� 1: The limit values calculated by (5.2-3) are valid

only for the determination of the assay but not for impurities or related substances

whose content is much smaller. The limit values of the related substances and

other byproducts are determined by their content. The following values are

common:

sr%b5 for content of 1 to 10% (w/w) and

sr%b10 for content of 0.1 to 1% (w/w).

However, in environmental analysis much smaller values of the content are

possible. The limit values of the precision were established by Horowitz [9, 10]

from the results of a very large number of interlaboratory trials. The limit value of

the precision under reproducibility conditions srmax;R% is given by (5.2-4)

srmax;R% ¼ 2ð1�0:5 log cÞ (5.2-4)

in which c is the concentration of the analyte in the sample (as a decimal).

The corresponding precision under repeatability conditions is calculated by

(5.2-5):

srmax;r% ¼ 0:67 � srmax;R%: (5.2-5)

Challenge 5.2-2

(a) Calculate the limit values of the precision under repeatability and repro-

ducibility conditions for the analyte concentration given in Table 5.2-4,

and complete the table.

(b) During preliminary investigations of the analysis of dioxin in water

solutions, a test analysis was carried out by the recovery of the content

of a stock solution (cst ¼ 0.45 nmol L�1 2,3,7,8-TCDD). The mean

values obtained by six replicates are given in Table 5.2-5.

1. Check whether the precision of the analytical procedure is satisfac-

tory.

2. Present the analytical result as �x� D�x nmol L�1 2,3,7,8-TCDD:
(continued)
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3. Estimate whether the experimentally determined content of the stock

solution used is within the confidence interval of the analytical

result.

The sum formula of 2,3,7,8-TCDD is C12H4O2Cl4. The value r ¼ 1

g cm�3 can be used for the density of the stock solution.

Solution to the Challenge 5.2-2

(a) The values for srmax;R% and srmax;r% calculated according to (5.2-4) and

(5.2-5), respectively, are summarized in Table 5.2-6.

(continued)

Table 5.2-4 Limit values of

the precision for various

analyte concentrations

Relative amount srmax;R% srmax;r%

10%

5%

1%

0.1%

100 ppm

10 ppm

1 ppm

100 ppb

10 ppb

1 ppb

Table 5.2-5 Analytical results for the determination of 2,3,7,8-TCDD in a water sample

Replicate 1 2 3 4 5 6

�x in ppt (w/w) [parts per trillion] 125 80 115 203 90 165

Table 5.2-6 Limit values of

the precision for various

analyte concentrations

Relative amount srmax;R% srmax;r%

10% 2.8 1.9

5% 3.1 2.1

1% 4.0 2.7

0.1% 5.7 3.8

100 ppm 8.0 5.4

10 ppm 11.3 7.6

1 ppm 16.0 10.7

100 ppb 22.6 15.2

10 ppb 32.0 21.4

1 ppb 45.3 30.3
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(b) 1. The value of the precision is sr% ¼ 36:0 calculated by (2.2-5a) with

mean value �x ¼ 129:7 ppt and standard deviation s ¼ 46:7 ppt. The

limit value of srmax;r% calculated by (5.2-5) for the range 130 ppt is

srmax;r% ¼ 41:2: Thus, the experimentally determined relative standard

deviation under repeatability conditions does not exceed the limit

value calculated by (5.2-5). The value of the precision, although

high, can be accepted and the analytical result may be calculated.

2. With n ¼ 6 and tðP ¼ 95%; df ¼ 5Þ ¼ 2:571, the confidence interval
calculated by (2.3-1) is 130� 49 ppt (w/w): Conversion into the units

nmol L�1 gives 0:40� 0:15 nmol L�1 2,3,7,8 - TCDD:
3. The stock solution cat ¼ 0:45 nmol L�1 is within the range of the

analytical result which is 0.25–0.55 nmol L–1.

Challenge 5.2-3

Let us assume that the content of three drugs is fixed in EUROPHARM,

measured in relation to the CSR standard:

Drug I: c ¼ 98.5–102% (w/w)

Drug II: c ¼ 98.0–102.5% (w/w)

Drug III: c ¼ 98–103% (w/w)

Calculate the limit of the repeatability standard deviations srmax;r% for 3, 4, 5,

and 6 replicates.

Solution to Challenge 5.2-3

The values of the repeatability standard deviation srmax;r% calculated by

(5.2-3) are listed in Table 5.2-7.

Challenge 5.2-4

In order to certify the Cd content of a soil sample, an interlaboratory trial was

organized between seven laboratories. Each laboratory had to determine the

Cd content in a portion of the same homogenous bulk. The results are listed in

Table 5.2-8.

(a) Check the homogeneity of variances of the seven groups at the signifi-

cance level P ¼ 95%
(b) Estimate the certificate of the soil sample as ��x� D��x ppm (w/w) Cd, also

with P ¼ 95%.

(continued)
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(c) Estimate the mean values of laboratories F and G with respect to the

confidence interval determined by the interlaboratory trial.

(d) The same certified reference material was used to test the performance of

laboratories H and I with regard to the determination of Cd in soil

samples. The results are given in Table 5.2-9.

Check whether for laboratories H and I

1. The requirement of the precision of the analytical procedure is

achieved.

2. The analytical results are true.
(continued)

Table 5.2-7 Repeatability standard deviations srmax;r% for various values of B% (w/w) and

different numbers of replicated injections

Number of replicate injections n

3 4 5 6

Degrees of freedom df

2 3 4 5

tðP ¼ 90%; dfÞ
2.920 2.353 2.132 2.015

Drug B% (w/w) srmax;r%

I 2.0 0.41 0.59 0.73 0.85

II 2.5 0.52 0.74 0.92 1.06

III 3.0 0.62 0.89 1.10 1.27

Table 5.2-8 Cd content in ppm (w/w) of a soil sample determined by seven laboratories

with five replicates

Replicates Laboratory

A B C D E F G

1 45.09 45.20 45.37 45.23 45.40 45.63 44.92

2 45.19 45.27 45.45 45.26 45.41 45.65 44.95

3 45.22 45.30 45.48 45.31 45.45 45.73 44.93

4 45.25 45.40 45.60 45.39 45.61 45.85 45.18

5 45.31 45.75 45.62 45.44 45.60 45.86 45.17

Table 5.2-9 Analytical

results of the determination of

Cd in ppm (w/w) using the

CRM with the parameters

determined by the data set of

Table 5.2-8

Replicate Laboratory H Laboratory I

1 45.61 45.17

2 45.63 44.83

3 45.73 44.95

4 45.85 44.83

5 45.84 45.18

6 45.96 45.18

7 45.73 45.00

8 45.54 44.98

9 45.63 44.99

10 45.78 45.10

11 45.76 45.12

12 45.81 45.03
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(e) The method of determination of Cd in soil samples was used in lab-

oratory K. The results obtained were x1 ¼ 40:45 ppm (w/w) and

x2 ¼ 40:86 ppm (w/w) in a sample determined by two replicates. Is the

calculation of the mean value �x ppm (w/w) permitted?

Solution to Challenge 5.2-4

(a) As Table 5.2-10 shows, the test values q̂r of laboratories E, F, and G lie

outside the limit values at the significance level P ¼ 95%, which means

that a normal distribution is not present. However, this result should be

ignored because of the small data quantities in each data set.

All seven data sets are free of outliers according to the Dixon test at the

significance level P ¼ 95%:
The data sets of equal size can be checked for the homogeneity of the

group variances by the Cochran test. As Table 5.2-11 shows, the test

values calculated by the intermediates given in Table 5.2-11 does not

exceed the critical value. The group variances can be regarded as homo-

geneous at the significance level P ¼ 95%.

The alternative check, the Bartlett test, yields the same result.

The test value calculated according to (3.4-2), ŵ2 ¼ 2:303
28 � log 0:0161� ð�52:941Þ½ � ¼ 6:209, does not exceed the critical

value w2ðP ¼ 99%; df ¼ 6Þ ¼ 16:812:
(b) The grand mean value ��x, the mean of the laboratory mean values, is

��x ¼ 45:38 ppm (w/w) Cd:
The equation which one has to use for the calculation of its confi-

dence interval is determined by the relation of the variances between

(continued)

Table 5.2-10 Results of the check for normal distribution and outliers according to the

David and Dixon tests, respectively

Laboratory A B C D E F G

David test according to (3.2.1-1)

q̂r 2.704 2.536 2.380 2.389 2.037 2.128 1.957

Limit values at P ¼ 95%; n ¼ 5 Lower 2.15 Upper 2.753

Dixon test according to (3.2.3-1)

x� ¼ xmax 45.31 45.75 45.62 45.44 45.61 45.86 45.18

x2 45.25 45.4 45.6 45.39 45.6 45.85 45.17

xn ¼ xmin 45.09 45.2 45.37 45.23 45.4 45.63 44.92

Q̂max
0.273 0.636 0.080 0.238 0.048 0.043 0.038

x� ¼ xmin 45.09 45.2 45.37 45.23 45.4 45.63 44.92

x2 45.19 45.27 45.45 45.26 45.41 45.65 45.93

Q̂min
0.455 0.127 0.320 0.143 0.048 0.087 0.038

QðP ¼ 95%; n ¼ 5Þ 0.642
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(s2bw) and within (s2in) the laboratories’ values, which is checked by an

F-test:

F̂ ¼ s2bw
s2in

: (5.2-6)

The variances s2bw and s2in are calculated by the one-way ANOVA proce-

dure (see Sect. 3.6).

If the test value F̂ is larger than the table value FðP; df1 ¼ dfbw;
df2 ¼ dfinÞ; then the variance between laboratories is significantly larger
than the variance within laboratories, and the confidence interval is

calculated by (6.5.2-7):

D��x ¼ sbw � tðP; dfbwÞffiffiffi
n

p : (5.2-7)

The number of degrees of freedom between the k laboratories is

dfbw ¼ k � 1; and n is the total number of measured values obtained

with the k laboratories and nj replicates n ¼ k � nj:
If the variances between and within laboratories are homogeneous, which

is the case if the test value F̂ calculated by (5.2-6) is smaller than the

critical value FðP; dfbw; dfinÞ, the confidence interval is calculated by

(5.2-8):

D��x ¼ stot � tðP; dftotÞffiffiffi
n

p : (5.2-8)

The total standard deviation stot is calculated by (5.2-9):

stot ¼
ffiffiffiffiffiffiffiffiffiffi
SStot

dftot

r
: (5.2-9)

(continued)

Table 5.2-11 Intermediate

quantities and result of the

Cochran test of homogeneity

of the group variances

calculated by (4.4-1)

Laboratory s2i
A 0.0066

B 0.0470

C 0.0110

D 0.0077

E 0.0106

F 0.0117

G 0.0176P
s2i 0.1124

s2max
0.0470

Ĉ 0.4185

CðP ¼ 95%; k ¼ 7; df ¼ 4Þ 0.4307
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The total degrees of freedom dftot is given by (5.2-10):

dftot ¼ n� 1: (5.2-10)

The total sum of squares SStot is:

SStot ¼ SSbw þ SSin: (5.2-11)

Estimation of the variances s2bw and s2in by one-way ANOVA:

The intermediate quantities and results of one-way ANOVA calculated

according to the computational scheme given in Table 3.6-2 are summar-

ized in Table 5.2-12.

According to the results presented in Table 5.2-12, the test value F̂
exceeds the quantiles of the F-distribution FðP ¼ 95%; dfbw ¼ 6;
dfin ¼ 28Þ ¼ 2:445: This means that the variances between the labora-

tory results are significantly greater than the variances within the labora-

tories at the significance level P ¼ 95%: The confidence interval must be

calculated by (5.2-7) which gives D��x ¼ 0.21 ppm (w/w) Cd calculated

with sbw ¼ 0:5118, n ¼ 35, and tðP ¼ 95%; dfbw ¼ 6Þ ¼ 2:447:
The certificate of the soil sample is ��x� D��x ¼ 45:38� 0.21 ppm (w/w) Cd:

(c) As discussed in Sect. 2.2.3, the true value is within the range

45.17–45.59 ppm (w/w) Cd but this range does not include the mean

values of the laboratories F (�xF ¼ 45:74 ppm (w/w)and G (�xG ¼ 45:03
ppm (w/w)): The question arises whether the results of the laboratories

F and G have to be rejected as outliers.

However, the test values of both laboratories calculated by the Dixon test

(continued)

Table 5.2-12 Intermediate quantities and results of one-way ANOVA

Laboratory

A B C D E F G

SSi

0.0265 0.1881 0.0441 0.0309 0.0425 0.0467 0.0706P
SSi ¼ SSin 0.4495

�xi

45.21 45.38 45.50 45.33 45.49 45.74 45.03
��x 45.38 n 35 ni 5

ni �xi � ��xð Þ2
0.1494 0.0000 0.0710 0.0173 0.0596 0.6449 0.6296P

ni �xi � ��xð Þ2 ¼ SSbw 1.5718 k 7

dfin 28 s2in 0.0161

dfbw 6 s2bw 0.2620 F̂ 16.319

5.2 Precision 129



Q̂F ¼ 45:74� 45:50j j
45:74� 45:03j j ¼ 0:336

Q̂G ¼ 45:03� 45:21j j
45:03� 45:74j j ¼ 0:255

do not exceed the critical value QðP ¼ 95%; n ¼ 7Þ ¼ 0:507: Thus, there
is no cause to reject the mean values obtained by laboratories F and G.

(d) The precision of laboratories H and I (sLab) is checked by the F-test

F̂ ¼ s2Lab
s2in

: (5.2-12)

The variance within the laboratories s2in is obtained by the interlaboratory
trial given above.

The trueness is checked by the t-test

t̂ ¼ �xLab � ��xj j
sLab

� ffiffiffiffiffiffiffiffi
nLab

p
; (5.2-13)

in which �xLab is the mean values obtained by nLab replicates in labora-

tories H and I, respectively, and ��x is the grand mean value obtained by the

interlaboratory trial, i.e. the mean value of the certificate.

The test values are obtained by the Excel functions explained in the

previous chapter, giving the following results:

Both data sets are normally distributed, as checked by the David test

(3.2.1-1).

Test values: q̂r;H ¼ 3:50; q̂r;I ¼ 2:82
Critical values:

qr;lowerðP ¼ 95%; n ¼ 12Þ ¼ 2:80;

qr;upperðP ¼ 95%; n ¼ 12Þ ¼ 3:91:

Outlier test by Dixon according to (3.2.3-1):

For n ¼ 12, test values must be calculated by (5.2-14)

Q̂ ¼ x�1 � x3
x�1 � xn�1

����
����: (5.2-14)

(continued)
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For example, the test value for the maximum value of the data set of

laboratory H is

Q̂xmax;H ¼ 45:96� 45:84

45:96� 45:61

����
���� ¼ 0:343:

The other test values are

Q̂xmin;H ¼ 0:290;

Q̂xmax;I ¼ 0:029;

Q̂xmin;I ¼ 0:343:

The critical value with QðP ¼ 95%; n ¼ 12Þ ¼ 0:546 is larger than all

four test values, and therefore both data sets can be regarded as outlier-

free.

Estimation of the precision of the laboratories sLab:
The test values F̂ are F̂H ¼ 0:899 and F̂I ¼ 0:957: The critical value

FðP ¼ 95%; df1 ¼ dfLab ¼ 11; df2 ¼ dfin ¼ 28Þ ¼ 2:151 is larger than

the test values, which means that the required precision in the analytical

procedure is achieved in both laboratories.

Test for trueness:
The check for trueness is performed by the t-test according to (5.2-13).

The test values are t̂H ¼ 10:359 and t̂I ¼ 9:782 calculated with the

following parameters:
��x ¼ 45.38 ppm (w/w), �xH ¼ 45:74 ppm (w/w), �xI ¼ 45:03 ppm (w/w),

sH ¼ 0:120 ppm (w/w), sI ¼ 0:124 ppm (w/w), and n ¼ 12

Both test values are larger than the critical value tðP ¼ 95%;
dfLab ¼ 11Þ ¼ 2:201, and thus the analytical results of both laboratories

are false!

Note that the mean values obtained in laboratories H and I are the same as

in laboratories F and G, whose results could not be rejected as outliers

from the data sets of the interlaboratory trial, but the same values

obtained by using the CRM yield a false result.

(e) The confidence interval for the difference between two results obtained

under repeatability conditions is calculated by (5.2-1). With sr ¼
ffiffiffiffiffi
s2in

p
¼

0:1267 and tðP ¼ 95%; dfin ¼ 28Þ ¼ 2:048 the repeatability interval is

r ¼ 0:37 ppm (w/w) Cd, but the difference between the two measured

values is D ¼ 0:41 ppm (w/w) Cd: This means that calculation of the

mean values is not permitted.
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5.3 Linearity of Calibration Lines

5.3.1 General Remarks

As discussed in Sect. 4.2, the objective of regression analysis is to use the mathe-

matical expression relating response to concentration to predict concentrations of

unknown samples. In general, linear regression is used to establish a relationship

between the x and y variables. But the question is whether the linear regression

function is really the best mathematical model for this relationship. Therefore,

validation of the regression model is necessary to verify that the chosen model

adequately describes the relationship between the two variables x and y. This means

one has to verify that the best model is a straight line or whether the data are better

described by a curve.

Remember that according to (4.2-15) the coefficients of the linear regression a0
and a1 are the basis of the calculation of the predicted values x̂ of unknown samples.

But if these constants are not valid, the analytical results are false. It is clear that

checking the linearity is an important validation parameter which is included in all

the regulatory requirements given above.

In practice the correlation coefficient rxy (see Sect. 4.1) and the coefficient of

determination r2xy are frequently used in order to verify the linearity of the regres-

sion model, but this is incorrect. The correlation coefficient as a measure of the

linear relationship cannot be applied for calibration. Concentrations (or contents) as

x-values are commonly defined and, thus, fixed in advance in analytical practice.

Consequently, these values are not random variables. However, there are various

procedures for testing the linearity, which are given below.

5.3.2 Quality Coefficient

A suitability check for linearity with homoscedastic measurements is the estimation

of the quality coefficient (QC) [11] which is calculated by (5.3.2-1):

QC ¼ 100 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP yi�ŷi
�y

� �2

df

vuut
: (5.3.2-1)

Each residual yi � ŷið Þ is related to the mean of all observations �y: The degrees
of freedom are df ¼ n� 2 as proposed in [11].

If a target value for the quality coefficient QC has been specified (for example,

obtained from previous experiments), the suitability of the linearity can be

checked.
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Challenge 5.3.2-1

Let us assume from previous experiments that the target value of the quality

coefficient has been specified as 1%.

(a) Calculate the QC value for calibration of the photometric determination

of benzene in n-hexane according to Challenge 4.2-1 and check whether

the linearity is valid.

(b) Calculate the QC value of the data set for the determination of malathion

by GC-FPD given in Table 4.4-2 and evaluate the result.

Solution to Challenge 5.3.2-1

(a) The intermediate quantities for the calculation of the QC value are given

in Table 5.3.2-1 calculated with the parameters a0 ¼ �0:00265;

a1 ¼ 0:2561 Lmmol�1; �y ¼ 0:6016 obtained by Table 4.2.3.

The quality coefficient is QC ¼ 0:61% calculated by (5.3.2-1) with

df ¼ 8: The QC value is smaller than the target value of 1%, and thus

linearity can be assumed.

(b) The intermediate quantities presented in Table 5.3.2-2 are calculated

using a0 ¼ 29:467 mV, a1 ¼ 225:212 mVLmg�1; and �y ¼ 91:4 mV:
The quality coefficient is QC ¼ 8:61% calculated by (5.3.2-1) using

df ¼ 8: The QC value is greater than the target value which means

linearity cannot be assumed.

Table 5.3.2-1 Intermediate quantities for the calculation of the quality coefficient QC for

the photometric determination of benzene

ni xi yi (Ai) ŷi ei ¼ yi � ŷið Þ 105
yi�ŷið Þ2

�y

1 0.787 0.1991 0.1980 0.00033 0.0250

2 0.787 0.2008 0.1988 0.00203 1.1064

3 1.573 0.3958 0.4002 �0.00439 5.4661

4 1.573 0.3992 0.4002 �0.00099 0.3034

5 2.360 0.6076 0.6016 0.00600 9.6287

6 2.360 0.6012 0.6016 �0.00040 0.0682

7 3.146 0.7999 0.8030 �0.00312 2.9107

8 3.146 0.8016 0.8030 �0.00142 0.6601

9 3.933 1.0013 1.0044 �0.00313 2.9991

10 3.933 1.0095 1.0044 0.00507 6.6487
�y 0.6016 P yi�ŷi

�y

� �2 29.8164

The concentrations xi are given in mmol L�1 and yi are the measured values of the

absorbance Ai.
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5.3.3 Visual Examinations

Sometimes a visual inspection of the calibration line y ¼ f(x) can already give

information as to whether linearity should be rejected. For example, the calibration

function presented in Fig. 4.4-2 shows clearly that the relationship between the

Table 5.3.2-2 Intermediate quantities for the calculation of the quality coefficient QC for

the determination of malathion by GC-FPD

ni xi yi ŷi ei ¼ yi � ŷið Þ yi�ŷi
�y

� �2

1 0.050 27 40.7273 �13.7273 0.0226

2 0.100 49 51.9879 �2.9879 0.0011

3 0.150 68 63.2485 4.7515 0.0027

4 0.200 82 74.5091 7.4909 0.0067

5 0.250 92 85.7697 6.2303 0.0046

6 0.300 105 97.0303 7.9697 0.0076

7 0.350 111 108.2909 2.7091 0.0009

8 0.400 120 119.5515 0.4485 0.00002

9 0.450 128 130.8121 �2.8121 0.0009

10 0.500 132 142.0727 �10.0727 0.0121
�y 91.4 P yi�ŷi

�y

� �2 0.0593

The concentrations xi are given in mg L�1 and the measured y-values in mV.
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Fig. 5.3.3-1 Examples of residual plots
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x and y values is better fitted by a non-linear function. However, this simple check

does not usually give unequivocal information.

A better result can be obtained by residual analysis. The residuals ei calculated
by (4.2-3) plotted against the xi-values or the standard numbers can provide

valuable information concerning the goodness of fit of the mathematical model.

In Fig. 5.3.3-1 two possible patterns of residual plots are given. The residuals

in Fig. 5.3.3-1a are randomly distributed within a horizontal band with equal

(or approximately equal) numbers of negative and positive residuals. This means

there is a good fit between the data and the linear regression model. But the

U-shaped residual plot in Fig. 5.3.3-1b illustrates a residual plot typical of when

the calibration line is fitted by a non-linear regression model.

Challenge 5.3.3-1

(a) In Challenge 4.2-1 the regression coefficients of the photometric deter-

mination of benzene in n-hexane were calculated by establishing a linear

regression model.

Check by visual examination whether the assumed linearity is valid.

(b) The calibration function of the determination of malathion by GC-FDP

presented in Fig. 4.4-2 of Challenge 4.4-1 shows that the data set is best

fitted by a curve.

Check whether the quadratic regression function can be also confirmed

by examination of the residual plot.

Solution to Challenge 5.3.3-1

(a) The calibration function of the photometric determination of benzene in

n-hexane presented in Fig. 5.3.3-2 shows that the linear regression func-

tion may be valid, which is also confirmed by the pattern of the residual

plot in Fig. 5.3.3-3 obtained with the residuals ei from Table 5.3.2-1

(fifth column). The residuals are distributed randomly around zero with a

pattern which is similar to Fig. 5.3.3-1a.

(continued)
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(b) The residual plot of the values ei of Table 5.3.2-2 is presented in

Fig. 5.3.3-4. The residual plot is similar to the pattern of a quadratic

regression function illustrated in Fig. 5.3.3-1b. The non-linearity is

confirmed.

5.3.4 Mandel Test

Because visual tests do not usually deliver an unequivocal result, it is necessary in

addition to apply a mathematical linearity test, which is also included in the most

common software. Such a test was proposed by Mandel and is recommended in a

DIN [12]. According to Mandel the residual error is calculated for a quadratic

regression function sy:x;2: An F-test is then used to decide whether or not the

quadratic regression is a better mathematical model than the linear regression.

The test value is given by (5.3.4-1)

F̂ ¼ s2y:x � ðn� 2Þ � s2y:x;2 � ðn� 3Þ
s2y:x;2

; (5.3.4-1)

in which s2y:x and s
2
y:x;2 are the variances of the calibration error of the linear and the

quadratic regression function, respectively, and n is the number of calibration

standards. Note that the degrees of freedom for the linear and quadratic regression

function are df1 ¼ n� 2 and df2 ¼ n� 3; respectively.
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The calculated test value F̂ is compared with the critical value

FðP; df1 ¼ 1; df2 ¼ n� 3Þ. If F̂ does not exceed the critical F-value at the statisti-
cal significance P (in this case usually P ¼ 99%) the quadratic regression model

does not provide a better description of the relationship between the x and y
variables.

The residual standard deviation for the linear regression sy:x is calculated by (4.2-6)
or (4.2-7), and for calculation of the quadratic regression sy;x;2 (4.4-8) is used.

Challenge 5.3.4-1

(a) Check whether the linearity tested by the visual examination of the

calibration function and by the residual pattern in Challenge 5.3.3-1a

can be confirmed by the Mandel test.

(b) Check whether a non-linear regression function for the data set given in

Table 4.4-1 obtained by visual examinations of Figs. 4.4-2 and 5.3.3-4

can be confirmed by the Mandel test.

Solution to Challenge 5.3.4-1

The calculation of the residual error of the linear regression sy:x can be

realized by the Excel function ¼ STEYX(y, x): sy:x ¼ 0:003671:
The residual error of the quadratic linear regression sy:x;2 must be calcu-

lated according to (4.4-8):

sy:x;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi � ŷið Þ2
n� 3

s
(5.3.4-2)

with ŷi ¼ a0 þ a1 � xi þ a2 � x2i or by the Excel function (see Table 4.4-1).

(a) The residual standard deviation for the linear regression function is

sy:x ¼ 0:003671 calculated according to (4.2-6). The intermediate quan-

tities for the calculation of the residual standard deviation of the quadratic

regression function and the result are listed in Table 5.3.4-1.

Comparison of the calculated F̂ value with the critical F̂ value shows that

the quadratic regression is not the better model and, hence, the results of

the tests given above are confirmed.

(b) The residual standard deviation for the linear regression function is

sy:x ¼ 7:8684 calculated according to (4.2-6). The intermediate quantities

for the calculation of the residual standard deviation of the quadratic

regression function and the result of the Mandel test are given in

Table 5.3.4-2.

(continued)
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The test value F̂ ¼ 97:722 is much greater than the critical F̂ value, and

thus the quadratic regression better describes the relationship between the

x and y values. The non-linearity obtained by the visual test as well as by
the quality coefficient is confirmed by the Mandel test.

5.3.5 The Lack-of-Fit Test by ANOVA

Analysis of variance (ANOVA) can be applied in order to verify whether the model

chosen is the correct one. For this test replicate measurements are needed but, in

practice, this procedure is frequently used anyway.

Table 5.3.4-1 Intermediate quantities and the result of the Mandel testP
xi 23.598

P
yi 6.016P

x2i 68.062
P

xiyi 17.365P
x2i yi 55.905

P
x3i 219.017P

x4i 749.608

SSxx (4.1-3) 12.375 SSxx (4.1-5) 3.169

SSx3 (4.4-5) 58.405 SSx2y (4.4-7) 14.959

SSx4 (4.4-6) 286.367

a0 (4.4-2) �0.00082 a1 (4.4-3) 0.25407

a2 (4.4-4) 0.000421 sy:x;2 (4.4-8) 0.003889P
yi � ŷið Þ2 0.0001059 n 10

Test result

F̂ (5.3.3-1) 0.126

FðP ¼ 99%; df1 ¼ 1; df2 ¼ 8Þ 12.246

Table 5.3.4-2 Intermediate quantities and the result of the Mandel testP
xi 2.75

P
yi 914P

x2i 0.9625
P

xiyi 297.800P
x2i yi 112.285

P
x3i 0.3781P

x4i 0.1583

SSxx (5.6-3) 0.206 SSxx (5.6-5) 46.450

SSx3 (5.4-5) 0.1134 SSx2y (5.4-7) 24.313

SSx4 (5.4-6) 0.06569

a0 (5.4-2) 8.883 a1 (5.4-3) 431.045

a2 (5.4-4) �374.242 sy:x;2 (5.4-8) 2.1748P
yi � ŷið Þ2 33.108 n 10

Test result

F̂ (5.3.3-1) 97.722

FðP ¼ 99%; df1 ¼ 1; df2 ¼ 8Þ 12.246
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The total sum of squares SStot

SStot ¼
Xk
i

Xni
j

ðyij � ��yÞ2 (5.3.5-1)

is composed of the following sums of squares [11]:

SStot ¼ SSPE þ SSLOF þ SSReg: (5.3.5-2)

SSPE is the pure error sum of squares, a component which measures the pure

experimental error. It is calculated by

SSPE ¼
Xk
i

Xni
j

ðyij � �yiÞ2: (5.3.5-3)

SSLOF is the sum of squares due to lack-of-fitwhich measures the variation of the

group means �yi about the regression line. It is calculated by

SSLOF ¼
Xk
i

ni � ð�yi � ŷiÞ2: (5.3.5-4)

SSReg is the sum of squares due to regression, which is calculated by

SSReg ¼
Xk
i

ni � ðŷi � ��yÞ2: (5.3.5-5)

SSR is the residual sum of squares which is the sum of SSPE and SSLOF

SSR ¼ SSPE þ SSLOF; (5.3.5-6)

where:

k is the number of calibration levels, i.e. different x-values
ni is the number of replicate measurements made at xi
yij is one of the ni replicate measurements at xiPk
i¼1

ni ¼ n is the total number of all measurements, including all replicates

��y is the grand mean, i.e. the mean of all observations

�yi is the mean value of the replicates yij at xi
ŷi is the value of yi at xi estimated by the regression function. All replicates at xi

have the same estimated value ŷi

The mean squares MS are obtained by dividing the sums of squares SS by their

corresponding degrees of freedom df:
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MS ¼ SS

df
: (5.3.5-7)

The ANOVA scheme is given in Table 5.3.5-1.

The mean square MSPE is an estimate of s2, the pure error of the measurement,

and MSLOF is an estimate of s2 if it is chosen as the correct one. It estimates

s2 þ (bias)2 if the model is not adequate.

The test value F̂ calculated by (5.3.5-8) is compared with the one-sided

F-distribution at the significance level P and the degrees of freedom df1 ¼
ðk � 2Þ; df2 ¼ ðn� kÞ: If the F̂ – values of the lack-of-fit test is greater than the

critical value Fone�sidedðP; df1; df2Þ, one concludes that the model chosen is inade-

quate, because the variation of the group means along the line cannot be explained

in terms of pure experimental uncertainty. If the test value F̂ does not exceed the

critical F value, the model is justified.

Challenge 5.3.5-1

The validation of the determination of Zn by flame AAS in waste water was

verified at six levels with three replicates. The results are listed in Table 5.3.5-2.

(a) Check if the linear regression model is valid and show the calibration

line.

(b) Check the linearity of regression if the observation y61 ¼ 0:805
(expressed by the value in italics in Table 5.3.5-2) is substituted by the

value y61 ¼ 0:960:

Table 5.3.5-1 ANOVA scheme for the linearity test of the regression model with replicate

measurements

Source of variation SS df MS (5.3.5-7) F̂

Regression SSReg (5.3.5-5) 1 MSReg
Residual SSR (5.3.5-6) n � 2 MSR
Lack-of-fit SSLOF (5.3.5-4) k � 2 MSLOF MSLOF

MSPE
(5.3.5-8)

Pure error SSPE (5.3.5-3) n � k MSPE
Total SStot (5.3.5-1) n � 1

Table 5.3.5-2 Determination of Zn by flame AAS

Level 1 2 3 4 5 6

Concentration c in mg L�1

xi 1 2 3 4 5 6

Absorbance A
yi1 0.040 0.260 0.422 0.605 0.754 0.805
yi2 0.055 0.261 0.409 0.612 0.725 0.778

yi3 0.041 0.271 0.420 0.601 0.728 0.785
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Solution for the Challenge 5.3.5-1

(a) The intermediate quantities for the determination of the required sums of

squares SSPE and SSLOF according to (5.3.5-3) and (5.3.5-4) with the

regression coefficients a0 ¼ �0:056178 and a1 ¼ 0:1521143 Lmg�1 are

listed in Table 5.3.5-3.

According to the ANOVA scheme given in Table 5.3.5-1, the mean

squares MSPE, MSLOF and the test value F̂ are calculated to give the

following results:

Level k ¼ 6, number of the observations n ¼ 18, degrees of freedom

of the pure error dfPE ¼ 12, degrees of freedom of the lack-of-fit dfLOF
¼ 4, mean square of the pure error MSPE ¼ 0.00010633, mean square of

lack of fit MSLOF ¼ 0.0086061. The test value is F̂ ¼ 80:935: The one-
sided critical value is Fone�sidedð �P¼ 95%;dfLOF ¼ 4;dfPE ¼ 12Þ ¼ 3:259
which is much smaller than the test value F̂: Thus, the linearity of the

regression function must be rejected.

As Fig. 5.3.5-1 shows, the relationship between the x-and y-values can
be better described by a quadratic calibration curve.

(b) The results of ANOVA using the observation y61 ¼ 0:960 are listed in

Table 5.3.5-4. The new regression coefficients are a0 ¼ �0:073400 and

(continued)

Table 5.3.5-3 Intermediate quantities and results for the calculation of the sums of squares

SSPE and SSLOF (c in mg L�1)

Level c xi A yij �yi ŷi 3 � ð�yi � ŷ1Þ2 Pk
i

Pni
j

yij � �y1
� �2

1 1 0.040 0.0000284

0.055 0.0000934

0.041 0.0453 0.0959 0.00768 0.0000188

2 2 0.260 0.0000160

0.261 0.0000090

0.271 0.2640 0.2481 0.00076 0.0000490

3 3 0.422 0.0000250

0.409 0.0000640

0.420 0.4170 0.4002 0.00085 0.0000090

4 4 0.605 0.0000010

0.612 0.0000360

0.601 0.6060 0.5523 0.00866 0.0000250

5 5 0.754 0.0003361

0.725 0.0001138

0.728 0.7357 0.7044 0.00293 0.0000588

6 6 0.805 0.0002454

0.788 0.0001284

0.785 0.7893 0.8565 0.01354 0.0000188

Sum 0.034424 SSLOF 0.0012760 SSPE
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a1 ¼ 0:159495 Lmg�1: The test value is F̂ ¼ 2:359, and therefore it is

smaller than the critical value which is the same as in Challenge 5.3.5-1a.

The increase in measurement error, the denominator of (5.3.5-8), reduces

the test value F̂ and the linearity may be valid, which can also be seen by

the calibration line in Fig. 5.3.5-2.

(continued)
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Fig. 5.3.5-1 Calibration curve for the determination of Zn by flame AAS obtained by the

data set given in Table 5.3.5-2 with the observation value y6:1 ¼ 0:805

Table 5.3.5-4 Intermediate quantities and results for the calculation of the sums of squares

SSPE and SSLOF (c in mg L�1)

Level c(xi) A(yij) �yi ŷi 3 � ð�yi � ŷ1Þ2 Pk
i

Pni
j

yij � �y1
� �2

1 1 0.040 0.0000284

0.055 0.0000934

0.041 0.0453 0.0861 0.004985 0.0000188

2 2 0.260 0.0000160

0.261 0.0000090

0.271 0.2640 0.2456 0.001017 0.0000490

3 3 0.422 0.0000250

0.409 0.0000640

0.420 0.4170 0.4051 0.000426 0.0000090

4 4 0.605 0.0000010

0.612 0.0000360

0.601 0.6060 0.5646 0.005147 0.0000250

5 5 0.754 0.0003361

0.725 0.0001138

0.728 0.7357 0.7241 0.000403 0.0000588

6 6 0.960 0.0141610

0.788 0.0039690

0.785 0.8410 0.8836 0.005437 0.0031360

Sum 0.017414 0.0221493

(¼ SSLOF) (¼ SSPE)

MSLOF 0.0043535

MSPE 0.0018458
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However the observation y61 ¼ 0:960 must still be checked as to whether

it has to be rejected as an outlier. The test value of the Dixon test is

Q̂ ¼ 0:962 and the critical value is QðP ¼ 95%; n ¼ 3Þ ¼ 0:941: There-
fore, it must be removed from the data set. After rejecting the outlier

value, the test value is F̂ ¼ 98:878 which exceeds the critical value. The

linearity is not confirmed.

5.3.6 Test of the Significance of the Quadratic Regression
Coefficient a2

The linearity is confirmed if the quadratic regression coefficient a2 of the equation
given in (4.4-1)

y ¼ a0 þ a1 � xþ a2 � x2

is not significant. But if a2 is significantly different from zero, a polynomial

regression may better describe the relationship between the x and y values, i.e. the
non-linearity should be tested.

The hypothesis that the quadratic term is zero or not

H0 : a2 ¼ 0

H1 : a2 6¼ 0

can be checked by two methods:

1. Check whether zero is included in the coefficient interval of a2
The coefficient interval is calculated by

CIða2Þ ¼ a2 � tðP; df ¼ n� 3Þ � sa2 : (5.3.6-1)

2. Using a t-test.
The absolute test value t̂
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Fig. 5.3.5-2 Calibration line for the determination of Zn by flame AAS obtained by the

data set given in Table 5.3.5-2 with the observation value y6:1 ¼ 0:960
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t̂ ¼ a2
sa2

����
���� (5.3.6-2)

is compared with the critical t-value for tðP; df ¼ n� 3Þ: The null hypothesis is

valid if the test value t̂ does not exceed the critical value tðP; df ¼ n� 3Þ.
The standard deviation of the regression coefficient sa2 used for these tests

is found in most statistical software packages and also in Excel with the

function ¼ LINEST(y values; ½x; x2 values�; 1; 1Þ; see Sect. 4.4.

Challenge 5.3.6-1

Check whether the relationship between the x and y values in

(a) Table 5.3.2-1

(b) Table 5.3.2-2

can be better described by a second-degree equation or not, i.e. can the

linearity tested with the previous methods be confirmed by using the test of

the significance of the quadratic regression coefficient a2?

Solution to Challenge 5.3.6-1

Table 5.3.6-1 presents the LINEST-data matrix obtained by the Excel function
using the data set of Table 5.3.2-1, and in Table 5.3.6-2 gives the respective

values with the data set of Table 5.3.2-2.

(a) 1. Coefficient interval of a2
The coefficient interval CI(a2) calculated by (5.3.6-1) with

tðP ¼ 95%; df ¼ 7Þ ¼ 2:365 is CIða2Þ ¼ �0:000421� ð2:365�
0:001188Þ ¼ �0:000421� 0:002809: Zero is included in the range

of CI(a2) (from �0.00239 to 0.00323), and therefore the regression

(continued)

Table 5.3.6-1 Regression parameters with their standard deviation for the data set given in

Table 5.3.2-1 obtained by the Excel function ¼ LINEST(y values; ½x; x2 values�; 1; 1Þ
yi xi x2i Excel output data matrix

0.1991 0.7866 0.61937 a2 a1 a0
0.2008 0.7866 0.61937 0.000421 0.254068 �0.000820

0.3958 1.5732 2.47433 sa2 sa1 sa0
0.3992 1.5732 2.47433 0.001188 0.005715 0.005899

0.6076 2.3598 5.56960 df 7

0.6012 2.3598 5.56960

0.7999 3.1464 9.89732

0.8016 3.1464 9.89732

1.0013 3.9330 15.46849

1.0095 3.9330 15.46849
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constant a2 cannot be statistically distinguished by zero. The null

hypothesis is valid; i.e. linearity is confirmed.

2. t-test
The test value calculated by (5.3.6-2)

t̂ ¼ �0:000421

0:001188

����
���� ¼ 0:354

does not exceed the critical t-value tðP ¼ 95%; df ¼ 7Þ ¼ 2:365:
Thus, the null hypothesis is valid, and linearity of the regression

function is confirmed.

(b) The test values are calculated as described above for the values of

Table 5.3.6-2. The following results are obtained:

1. Coefficient interval of a2
The range of the confidence interval (from �463.76 to �284.72) does

not include zero, i.e. the quadratic term is not zero. Consequently non-

linearity is demonstrated.

The check of significance of the quadratic regression coefficient a2
reveals the same results as obtained by the other test procedures.

2. t-test
The test value t̂ ¼ 9:885 exceeds the critical value tðP ¼ 95%;
df ¼ 7Þ ¼ 2:365 which means that the null hypothesis has to be

rejected and the alternative hypothesis H1 : a2 6¼ 0 is valid.

There are two possibilities if non-linearity is significantly detected:

– Reducing the working range or, if this is not possible

– A quadratic calibration function must be used

Note that significant non-linearity does not imply that the data are correctly fitted

by a second-degree model. But there are no general rules for the solution of a non-

linear calibration function; each problem requires an individual solution.

Table 5.3.6-2 Regression parameters with their standard deviation for the data set given in

Table 5.3.2-2 obtained by the Excel function ¼ LINEST(y values; ½x; x2 values�; 1; 1Þ
yi xi x2i Excel output data matrix

27 0.05 0.0025 a2 a1 a0
49 0.10 0.0100 �374.242 431.045 8.883

68 0.15 0.0225 sa0 sa1 sa2
82 0.20 0.0400 37.858 21.365 2.558

92 0.25 0.0625 df 7

105 0.30 0.0900

111 0.35 0.1225

120 0.40 0.1600

128 0.45 0.2025

132 0.50 0.2500
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5.4 Test for Outliers in the Linear Regression Function

Although testing for outliers in the regression function is not explicitly required by

all the regulatory agencies given in Sect. 5.1, the linear regression function used for

the determination of analytical results in routine analysis should be checked for

outliers in the course of method validation. In general, the regression function is

obtained by using chemical reference materials certified for the calibration. Under

such nearly “ideal” conditions observations with a large distance from the regres-

sion line should not occur. However, if this is the case, the cause must be sought and

may be, for example, an single mistake in the automated sampling or a human

mistake in the preparation of the calibration standards, or others. Whatever the

cause, an observation which is inconsistent with the rest of the data set will affect

both the slope and the intercept of the calibration line, resulting in false analytical

results. Therefore, the absence of such observations in the calibration data, called

outliers in the linear regression line, is an indispensable requirement and should be

checked early in the method validation procedure. If the test result is positive the

causes must be sought and removed and the calibration procedure should be

completely repeated. Note that a test for outliers is included in most of the software

for method validation. Therefore, we will present two statistical tests for outliers.

An outlier is an observation which lies outside the confidence interval of the

linear regression function y ¼ a0 þ a1 x (see the point xOL in Fig. 5.4-1).

Such a value shows an unusually high or low residual (see residual x in Fig. 5.4-2).
However, a statistical test is necessary to decide whether this suspicious value is in

fact an outlier, because visual inspection is usually not sufficient.

Several diagnostics have been proposed for the identification of regression

outliers, but for linear regression two tests are usually applied [13].

1. The F-test
First, the x and y values detected as suspicious outliers in the residual plot are

removed from the data set and the calibration error is again calculated. Then, the

test value F̂ is estimated by (4.4-1):

R
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CIlower

CIupper

ŷ = a0 + a1 x

xOL

Concentration c

•
•

•
•

••

•
Fig. 5.4-1 Calibration

function ŷ ¼ a0 þ a1 x with
the lower and upper limits of

the two-sided confidence

intervals CIlower and CIupper;
respectively, as well as the

outlier in the regression line

xOL
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F̂ ¼ s2y:x � df � s2y:x;OL � dfOL
s2y:x;OL

; (5.4-1)

where sy:x; sy:x;OL are the calibration errors calculated using the whole data set
and the data set inwhich the x and y values suspected as an outlier are removed,

respectively. The df and dfOL are the degrees of freedom for these data sets.

Then, the test value F̂ is compared with the critical F-value FðP ¼ 99%;
df1 ¼ 1; df2 ¼ n� 3Þ; where nOL is the number of standards without the

removed xOL, yOL-values. If the test value F̂ is greater than the critical F-value,
the suspicious y-value is in fact an outlier and the calibration has to be repeated.

If F̂ is smaller than the critical F value, the suspicious y-value is not an outlier at
the significance level P and the x- and y- values have to be included in the

calibration data set.

2. The t-test
After removing the xOL, yOL-value suspected of being an outlier from the data

set, the prediction interval PIðŷOLÞ is recalculated according to Eqs. (5.4-2) and

(5.4-3) for the concentration xOL

PIðŷOLÞ ¼ ŷOL � tðP; dfOLÞ � sy:x;OL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

nOL
þ xOL � �xOLð Þ2

SSxx;OL

s
(5.4-2)

with

ŷOL ¼ a0;OL þ a1;OL xOL: (5.4-3)

sy.x,OL is the residual error, SSxx,OL is the sum of squares and t(P,dfOL) is the
t-value for the degrees of freedom dfOL at the significance level P. The index OL

means that all parameters are calculated without the xOL, yOL-values.
Finally, if the ŷOL value lies outside the prediction interval, it must be regarded

as an outlier at the significance level P ¼ 99%; but if the ŷOL value lies inside
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Fig. 5.4-2 Residual plot for the calibration function ŷ ¼ a0 þ a1 � x with an unusually high value

of the residual (multiplication sign) which is suspected to be an outlier
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the limits of the prediction interval, then the xOL, yOL-values must be included in

the calibration data set.

Challenge 5.4-1

In the course of the validation of a HPLC method for the determination of an

API in tablets in routine analysis, two calibration data sets were compiled

which are presented in Tables 5.4-1 and 5.4-2.

(a) Check whether the linearity of the regression function is valid for each

calibration set.

(b) Use the F-test and the t-test to determine whether each calibration data

set is free of outliers.

Solution to Challenge 5.4-1

Note that the regression parameters are calculated by the Excel function

LINEST.

(continued)

Table 5.4-1 Calibration data set I based on the peak areas obtained from the HPLC

measurements of the API

Standard c in g L�1 A in counts

1 3.750 7,367

2 5.625 11,652

3 7.500 15,953

4 9.375 19,605

5 11.250 23,937

6 13.125 27,551

7 15.000 31,599

8 16.875 36,005

9 18.750 40,010

10 20.625 45,096

Table 5.4-2 Calibration data set II based on HPLC measurements of the API

Standard c in g L�1 A in counts

1 3.750 7,370

2 5.625 11,648

3 7.500 15,980

4 9.375 19,615

5 11.250 23,935

6 13.125 27,448

7 15.000 31,167

8 16.875 35,012

9 18.750 40,088

10 20.625 44,580
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(a) Linearity test
The regression parameters for calibration data sets I and II are listed in

Table 5.4-3. The residuals calculated by (4.2-3) are given in Table 5.4-4

for both calibration sets and are presented as plots in Figs. 5.4-3 and 5.4-4.

In both plots the residuals are randomly distributed around zero which

means the linearity may be valid for both regression functions. This is

confirmed by the Mandel test. The test values calculated by (5.3.4-1) with

the data given in Table 5.4-3 are F̂ ¼ 2:884 and F̂ ¼ 1:373 for the

calibration data sets I and II, respectively. Neither test value exceeds

the critical F-value FðP¼ 99%;df1 ¼ 1;df2 ¼ 7Þ ¼ 12:246; which means

the linearity of the proposed regression function is valid.

(b) Outlier F-test
According to Figs. 5.4-3 and 5.4-4 and the residual data sets in Table 5.4-4,

the greatest residual belongs to calibration level 10 and 8 in calibration

data set I and II, respectively. After rejection of these x and y values

from the data sets the residual standard deviation sy.x,OL calculated by

Excel function ¼ LINEST(y values; ½x; x2 values�; 1; 1Þ is sy:x;OLðIÞ ¼
210:705 and sy:x;OLðIIÞ ¼ 393:62 for data set I and II, respectively. The

test values F̂ calculated by (4.4-1) are F̂ðIÞ ¼ 18:323 and F̂ðIIÞ ¼ 4:772
for the calibration data sets I and II, respectively. The test value F̂ðIÞ
obtained with calibration data set I is greater than the critical values of the

F distribution for the significance level P ¼ 99% which is FðP ¼ 99%;
(continued)

Table 5.4-3 Regression parameters for calibration sets I and II obtained by the Excel

function LINEST

Calibration data set I

Linear regression

a0 in counts �828.558 a1 in counts L g�1 2,191.266

sy:x in counts 374.873 df 8

Quadratic regression

a0 in counts 18.867 a1 in counts L g�1 2,018.458

a2 in counts L2 g�2 7.090

sy:x;2 in counts 337.266 df 7

Calibration data set II

Linear regression

a0 in counts �603.236 a1 in counts L g�1 2,156.926

sy:x in counts 478.857 df 8

Quadratic regression

a0 in counts 208.385 a1 in counts L g�1 1,991.419

a2 in counts L2 g�2 6.790

sy:x;2 in counts 468.059 df 7
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Table 5.4-4 Residuals ei for the regression function obtained for calibration data sets

I and II

Calibration data set I

ni xi yi ŷi ei ¼ yi � ŷi

1 3.750 7,367 7,388.7 �21.7

2 5.625 11,652 11,497.3 154.7

3 7.500 15,953 15,605.9 347.1

4 9.375 19,605 19,714.6 �109.6

5 11.250 23,937 23,823.2 113.8

6 13.125 27,551 27,931.8 �380.8

7 15.000 31,599 32,040.4 �441.4

8 16.875 36,005 36,149.1 �144.1

9 18.750 40,010 40,257.7 �247.7

10 20.625 45,096 44,366.3 729.7

Calibration data set II

ni xi yi ŷi ei ¼ yi � ŷi

1 3.750 7,370 7,485.2 �115.2

2 5.625 11,648 11,529.5 118.5

3 7.500 15,980 15,573.7 406.3

4 9.375 19,615 19,617.9 �2.9

5 11.250 23,935 23,662.2 272.8

6 13.125 27,448 27,706.4 �258.4

7 15.000 31,167 31,750.7 �583.7

8 16.875 35,012 35,794.9 �782.9
9 18.750 40,088 39,839.1 248.9

10 20.625 44,580 43,883.4 696.6

The greatest absolute value of the residuals is given in italics.
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Fig. 5.4-3 Residual plot for calibration data set I
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df1 ¼ 1; df2 ¼ 7Þ ¼ 12:246; which means that observation y10 ¼ 45; 096
is statistically confirmed as an outlier.

The test value calculated for data set II obtained by a repeated calibration

is F̂ ¼ 4:772 which does not exceed the critical value; this is the same as

for calibration I. The observation y8 ¼ 35; 012 is not an outlier, and

therefore the x and y values must be included in the data set.

Outlier t-test
After removing the xOL,yOL-values from the calibration data sets, i.e.

level 10 from the data set I and level 8 from the data set II, the prediction

interval PIðŷOLÞ is recalculated according to (5.4-2) and (5.4-3).

The intermediate quantities and the results are summarized in Table 5.4-5.

The regression parameters are obtained by respective Excel functions.

As the results given in Table 5.4-5 show, the test value y10 ¼
45; 096 counts in calibration data set I lies outside the limits of the

prediction interval. Thus, the measured value y10 ¼ 45; 096 counts

must be regarded as an outlier. The whole calibration must be repeated,

resulting in calibration data set II given in Table 5.4-2. The measured

value of calibration standard 8 y8 ¼ 35; 012 counts lies inside the limits

of the prediction interval, which means that calibration level 8 is not

identified as an outlier and the values of calibration level 8 must be

included in the calibration data set. The result of the outlier F-test is
confirmed.

The linearity of the regression function of the calibration data set II was

confirmed and the data set is free of outliers, and thus calibration data set

II is appropriate for further method validation tests.
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Fig. 5.4-4 Residual plot for calibration data set II
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Challenge 5.4-2

According to the British Standard BS 6748 [14], the content of Cd in

ceramics is determined by the flame AAS method after extraction with

4% (v/v) acetic acid. Using a standard solution with the certified content

cst ¼ 500 � 0:5 mgL�1, five calibration solutions are prepared in the fol-

lowing manner: the volumes of the standard solution given in Table 5.4-6

are pipetted into 100 mL volumetric flasks and the flasks are filled up

with distilled water. The absorbance Ai of these calibration solutions

is then measured in triplicate. The experimental results are given in

Table 5.4-6.

(a) Is the acceptance of the linearity of the regression function justified?

(b) Determine whether the calibration set is free of outliers at the significance

level P ¼ 95% using the F- and t- tests.

Note that the uncertainty given for the standard solution was neglected;

this is a problem discussed in Chap. 10.

Table 5.4-5 Intermediate quantities and results for the calculation of the prediction

interval PIðŷOLÞ with the calibration data sets given in Tables 5.4-1 and 5.4-2

Calibration data set I

a0;OL in counts �544.8 a1;OL in counts L g�1 2,158.84

sy:x;OL in counts 210.705 �x in g L�1 11.25

SSxx in g2 L�2 210.9375 dfOL 7

ŷOL in counts 43,981.2 tðP ¼ 99%; dfÞ 3.499

y10 in counts 45,096

PIðŷOLÞ in g L�1 43,070–44,893

Calibration data set II

a0;OL in counts �693.46 a1;OL in counts L g�1 2,172.28

sy:x;OL in counts 394.75 �x in g L�1 11.67

SSxx in g2 L�2 265.662 dfOL 7

ŷOL in counts 35,9662 tðP ¼ 99%; dfÞ 3.499

y10 in counts 35,012

PIðŷOLÞ in g L�1 34,440–37,483

Table 5.4-6 Preparation of the calibration levels and the measured absorbance Ai by the

flame AAS method (Vst ¼ volume of the standard solution)

Calibration level 1 2 3 4 5

Vst in mL 20 60 100 140 180

A1 0.028 0.084 0.134 0.180 0.215

A2 0.027 0.083 0.132 0.181 0.231

A3 0.059 0.081 0.133 0.183 0.216
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Solution to Challenge 5.4-2

Preparation of the calibration solutions:

According to the formula for the dilution of solutions given in (4.5-2),

the concentration of the calibration solution CL with the concentration

of the standard solution c1 ¼ cst ¼ 500 mgL�1 and the volumetric flask

V2 ¼ 100 mL, the concentration of the calibration levels c2 ¼ cCL is calcu-

lated by (5.4-4):

cCL in mgL�1 ¼ 500mgL�1 � Vst mL
100mL � 1; 000 : (5.4-4)

For example, with Vst ¼ 20 mL the concentration of calibration level 1 is

0.1 mg L�1 and so on.

Note that “triplicates” refers to three measurements of the absorbance and

not to three determinations. Thus, the mean values of the measured absor-

bance �A are used for the calculation of the regression parameters and the

degrees of freedom df ¼ n� 2 ¼ 3, where n is number of calibration levels.

Choice of an appropriate method for the linearity test:

The Mandel test cannot be applied for checking the linearity because it

requires least seven calibration levels; therefore, the check of the quadratic

regression coefficient a2 is applied.
The hypothesis that the quadratic term is zero or not

H0: a2 ¼ 0

H1: a2 6¼ 0

can be tested by means of the confidence interval for a2 or by means of the

t-test (see Sect. 5.3.6).
The concentrations calculated by (5.4-4), the mean values of the measured

absorbance �A; linear and quadratic regression parameters obtained by Excel

functions, the residuals ei ¼ ðyi � ŷiÞ, and the intermediates and results for

checking the linearity are listed in Table 5.4-7.

(a) The residuals shown in Fig. 5.4-5 are statistically distributed around zero,

and therefore the linearity of the regression function may be valid.

As the results in Table 5.4-7 show the null hypothesis H0 is valid, and thus

the linearity of the regression function is confirmed.

(b) According to Table 5.4-7 and the residual plots presented in Fig. 5.4-5,

the largest value of the residuals is observation number 4, which must be

checked as to whether it is an outlier or not.

The intermediate quantities are obtained by the Excel function after

removing the x4, y4-values.
(continued)
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(c) Outlier F-test
The test value calculated by (5.4-1) is F̂ ¼ 3:341, calculated with

sy:x;OL ¼ 0:002485; dfOL ¼ 2 and further data given in Table 5.4-7. The

test value is smaller than the critical value FðP¼ 99%;df1 ¼ 1;df2 ¼ 2Þ ¼
98:50; which means that calibration level 4 is not an outlier.

(continued)

Table 5.4-7 Concentrations of the five calibration levels, mean values of the measured

absorbance �A, regression parameters, residuals ei ¼ ðyi � ŷiÞ, and intermediates and

results for checking the linearity for the flame AAS analysis of Cd

Linear regression parameters

Level 1 2 3 4 5

ci in mg L�1 0.1 0.3 0.5 0.7 0.9
�A ¼ �y 0.0380 0.0827 0.1330 0.1813 0.2207

a0 0.01513 a1 in L mg�1 0.2320 sy:x 0.00332

ŷi 0.03833 0.08473 0.13113 0.17753 0.22393

ei �0.00033 �0.0021 0.0019 0.0038 �0.0033

Linearity check by testing the quadratic regression coefficient a2

Quadratic regression parameters

a2 in L2 mg�2 �0.02262 sa2 in L2 mg�2 0.02192 df 2

Results of the t-test according to (5.3.6-2)

t̂ 1.032 tðP ¼ 95%; df ¼ 2Þ 4.303

Results of the test of PIða2Þ according to (5.3.6-1)

PIða2Þ 0.09430 range from �0.1169 to 0.0717
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Fig. 5.4-5 Plot of residuals for the calibration of Cd determination by the flame AAS

method
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(d) Outlier t-test:
After removing the xOL, yOL-values of calibration level 4 the predicted

interval is:

PIðŷOLÞ ¼ 0:1759� 9:925 � 0:00248 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
þ ð0:7� 0:45Þ2

0:35

s

¼ 0:1759� 0:2946 (5.4-5)

The experimental information value y4 ¼ 0:1833 lies inside the limits of

the prediction interval 0.1464–0.2054 at the significance level P ¼ 99%.

Both test methods give the same result. The values of calibration level 4

must be included in the data set. The calibration parameters are appropri-

ate for further method validation steps.

5.5 Homogeneity of Variances

Like tests for outliers in the calibration line, the test for homogeneity of variances in

the calibration line is not a validation parameter required in the regulatory guide-

lines of ICH (Q2A) or FDA but is a requirement given, for example, in the DIN ISO

Guide for water analysis [15]. Therefore, we will consider the test for homogeneity

of variances as a validation parameter.

Remember that one of the conditions for calibration is the homogeneity of the

observations yi (see Sect. 4.1). Inhomogeneity of variances does not only diminish

the precision but it can also influence the trueness of the results caused by changing
of slope. As Fig 5.5-1 shows, the variances of the information values increase with

the concentration. But if the increase in the variance is significant at a chosen

probability P, this must be checked by a statistical test.

In order to test the homogeneity of variances recommended by DIN ISO [15], the

homogeneity of variances is checked by the variances obtained by ten replicates

only at the lower and upper end of the calibration standards x1 and xn, respectively.
The F-test is carried out after checking both data sets for normal distribution and

outliers. The test value F̂ is calculated by (5.5-1)

F̂ ¼ s21
s22

(5.5-1)

with the condition s21 > s22, see (3.3-1) in chap. 3.3.

The hypothesis that the variances differ significantly or not H0 : s
2
1 ¼ s22

H1 : s
2
1 > s22 is checked by comparison of the test value F̂ with the tabulated

one-sided F-value for df1 ¼ n1 � 1 and df2 ¼ n2 � 1 degrees of freedom at the
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chosen significance level P, for example P ¼ 99% as recommended in DIN ISO

[15]. The indices 1 and 2 refer to data sets 1 and 2, respectively. Note that the

denominator s21 of (5.5-1) is not necessarily the variance obtained by the replicates

with the lower concentration x1; it is the larger of the two variances.

If the test value F̂ does not exceed the critical F-value, the null hypothesis

s21 ¼ s22 is valid, which means that the homogeneity of variances, checked at the

lower and upper ends of the calibration line, is confirmed, and one assumes that the

variances between the limit values x1 and xn are also homogenous.

The homogeneity of variances is not always essential for analytical purposes, but

if the predicted observations are to be used for the evaluation of limit values, i.e. if

the confidence interval of the analytical results is necessary, then the homogeneity

of variances must be checked.

What one can do if the check confirms inhomogeneity of variances? One

possibility may be the shortening of the working range, if this is possible, i.e. if

the analytical purpose is still fulfilled. Another possibility is the use of weighted

regression which is described in the next Chapter.

Challenge 5.5-1

Control of limit values of Cd in waste water should be carried out by flame

AAS (air/C2H2, l ¼ 228.8 nm). Control of limit values requires not only

knowledge of the means of the samples but also of their confidence interval.

Therefore, the homogeneity of variances has to be tested in the course of

method validation. The assumed threshold value L0 ¼ 4:5 mgL�1 Cd and

the working range 2, 3, 4, 5, 6, and 7 mg L�1 Cd is chosen.

In order to check the homogeneity of variances at the lowest

(x1 ¼ 2 mg L�1) and the highest concentration level (xn ¼ 7 mg L�1), ten

replicate measurements of each were carried out. The measured values of the

absorbance are given in Table 5.5-1.

(continued)
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If the check confirms inhomogeneity of variances the working range

should be shortened, i.e. the highest concentration standard should be

c ¼ 6 mgL�1: In order to check whether the shortening of the working

range will result in homogeneity of variances the second highest concentra-

tion level xn–1 ¼ 6 mg L�1 Cd is also tested, and the results are also sum-

marized in Table 5.5-1.

(a) Check the homogeneity of variance for the whole and shortened working

range.

(b) According to the results obtained in part a. shortening of the working

range is necessary. This is allowed because the homogeneity of variances

are given and the analytical purpose can be fulfilled with the assumed

limit value L0 ¼ 4:5 mgL�1 Cd: In routine analysis two replicates will

be carried out.

Table 5.5-2 lists the calibration data for the determination of Cd by flame

AAS for the shortened working range.

The following values of the absorbance were measured for a sample:

A1 ¼ 0:4495 and A2 ¼ 0:4498:
Check whether the limit value is exceeded or not.

Table 5.5-1 Measured mean values of the absorbance A for the test of homogeneity of

variances obtained by flame AAS at the lowest (level 1), the second highest (level 5), and

the highest calibration level (level 6), obtained by ten replicates each

Replicate Level 1 Level 5 Level 6

1 0.2154 0.6152 0.7500

2 0.2165 0.6175 0.7541

3 0.2197 0.6148 0.7593

4 0.2166 0.6145 0.7519

5 0.2158 0.6161 0.7581

6 0.2164 0.6187 0.7525

7 0.2149 0.6137 0.7594

8 0.2177 0.6155 0.7509

9 0.2163 0.6165 0.7610

10 0.2159 0.6109 0.7519

Table 5.5-2 Calibration data for the determination of Cd by flame AAS obtained for the

shortened working range

Level 1 2 3 4 5

xi (ci) in mg L�1 2 3 4 5 6

yi (Ai) 0.2168 0.3241 0.4468 0.5422 0.6159
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Solution to Challenge 5.5-1

(a) Remember that for the calculation of standard deviations the data set

must be normally distributed, it must be free of outliers, and the data set

may show no trend. Note there are no hints of a trend, and therefore tests

are not required.

The intermediate quantities and the results of the check for normal

distribution by the David test and that for outliers by the Dixon test are

summarized in Tables 5.5-3 and 5.5-4, respectively.

As Table 5.5-3 shows, the test values q̂r lie between the critical values,

and thus the data sets are normally distributed at the significance level

P ¼ 95%.

After ranking the data sets in ascending order for checking the lowest

observation or in descending order for checking the highest observation,

the test values Q̂ are calculated according to (4.2-3) with n ¼ 10

observations:

Q̂ ¼ x�1 � x2
x�1 � xn�1

����
����:

However, in practice, the values x2 and xn–1 are obtained with the non-

ranked data set by the Excel functions¼ LARGE(data, 2) and¼ SMALL

(data, 2), respectively. The intermediate quantities and results of the

Dixon outlier test (see Sect. 3.2.3) are given in Table 5.5-4.

(continued)

Table 5.5-3 Intermediate quantities and results of the David test for normal distribution

(see Sect. 3.2.1)

Level 1 5 6

xmin 0.2149 0.6109 0.7500

xmax 0.2197 0.6187 0.7610

q̂r 3.561 3.640 2.681

qr;lowerðP ¼ 95%; n ¼ 10Þ 2.67

qr;upperðP ¼ 95%; n ¼ 10Þ 3.685

Table 5.5-4 Intermediate quantities and results of Dixon’s outlier test on the calibration

levels 1, 5, and 6

Level Check for xmin Check for xmax

1 5 6 1 5 6

x1 0.2149 0.6109 0.7500 0.2197 0.6187 0.7610

x2 0.2154 0.6137 0.7509 0.2177 0.6175 0.7594

xn�1 0.2177 0.6195 0.7594 0.2154 0.6137 0.7509

Q̂ (4.2-3) 0.1786 0.4242 0.0957 0.4651 0.2400 0.1584

QðP ¼ 95%; n ¼ 10Þ 0.477
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According to the results given in Table 5.5-4, all data sets are free of

outliers. Because the data are also normally distributed, the test for

homogeneity of variances can be carried out.

Let us start with the test for homogeneity of variances at the whole

working range.

The standard deviations obtained for calibration levels 1 and 6 are s1 ¼
0:00135 and s6 ¼ 0:00410, respectively. The test value is F̂1=6 ¼ 9:261

calculated by (5.5-1) with s1 ¼ 0:00410 and s2 ¼ 0:00135. The critical

value of the one-sided F-distribution is FðP ¼ 95%; df1 ¼ df2 ¼ 9Þ ¼
3:179: The critical value is smaller than the test value which means that

the homogeneity of variances in the working range with the six calibra-

tion levels is not confirmed. Therefore, a shortening of the working range

should be checked as long as the following questions are satisfied:

1. Is the analytical purpose still fulfilled by the shortened working range?

2. Is homogeneity of variances present in the shortened range from 2 to

6 mg L�1 Cd?

Although the working range should markedly exceed the limit value,

shortening of the range is possible because the limit value L0 ¼
4:5 mgL�1 Cd is still inside the shortened calibration range with the

highest calibration standard x5 ¼ 6:0 mgL�1 Cd:
The test of homogeneity of variances obtained by the data of levels 1 and 5

given in Table 5.5-1 follows the same procedure as described above.

The test value calculated with the standard deviations s1 ¼ 0:00135 as

the denominator s2 in (5.5-1) and s5 ¼ 0:00214 as the numerator s1 is

F̂1=5 ¼ 2:527: This value is smaller than the critical F-value which is

3.179 as given above. Thus, the variances are homogeneous in the shortened

working range which is confirmed to be valid for the analytical purpose.

(b) According to (4.2-24), the critical value xcrit ¼ x̂þ CIone�sidedðx̂Þmay not

exceed the declared limit value L0. The predicted value x̂ is calculated by
(4.2-15) and the one-sided confidence interval by (5.5-2):

CIðx̂Þ ¼ sy:x
a1

� tone�sidedð �P; df ¼ n� 2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

na
þ 1

nc
þ ð �̂y� �yÞ2
a21 � SSxx

s
: (5.5-2)

The parameters are obtained by the calibration data given in Table 5.5-2

using the respective Excel functions: intercept a0 ¼ 0:02264; slope a1 ¼
0:10163 Lmg�1; residual standard deviation sy:x ¼ 0:01642; tone�sided

ð �P ¼ 95%; df ¼ 3Þ ¼ 2:353; number of the replicates in routine analysis

na ¼ 2, number of the calibration standards nc ¼ 5, mean value of the

measured values �y ¼ 0:4292; the mean value obtained by two replicates

�̂y ¼ 0:44965; and sum of squares of the x-values SSxx ¼ 10: The predicted
(continued)
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value is x̂ ¼ 4:20 mgL�1 Cd and CIone�sidedðx̂Þ ¼ 0:32 mg L�1 Cd: Thus,
the critical value is xcrit ¼ 4:52 mgL�1which exceeds the declared limit

value L0 ¼ 4:5 mgL�1 Cd:

5.6 Weighted Linear Least Squares Regression

If the measured values are not homogeneous, the least squares procedure described

in Sect. 4.5.2 cannot be used. Except for the shortening of the working range

proposed and verified in Sect. 5.5, the problem of the inhomogeneity of variances

(heteroscedasticity) can be solved by a transformation or by a weighted least

squares procedure, which is described in this section.

In weighted linear least squares regression, the issue of heteroscedasticity is

overcome by introducing weighting factors that are, e. g., inversely proportional to

the variance [11]:

wi ¼ 1

s2yi
: (5.6-1)

The variances must be obtained experimentally from replicate measurements

performed across the whole working range.

The weighted slope a1,w and the weighted intercept a0,w are calculated from [11]

by (5.6-2) and (5.6-3), respectively:

a1;w ¼
P

wiðxi � �xwÞ � ðyi � �ywÞP
wiðxi � �xwÞ2

; (5.6-2)

a0;w ¼ �yw � a1;w � �xw: (5.6-3)

The weighted mean values are calculated as follows:

�xw ¼
P

wi � xiP
wi

; (5.6-4)

�yw ¼
P

wi � yiP
wi

: (5.6-5)

Using the weighted regression parameters the predicted x̂ value is calculated by

(5.6-6):

x̂ ¼ ŷ� a0;w
a1;w

(5.6-6)

and its confidence interval by (5.6-7)
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CIðx̂Þ ¼ sy:x;w
a1;w

� tðP; dfÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ws � ns þ
1P
wi

þ �̂ys � �yw
� �2 �Pwi

a21;w � P
wi �

P
wi � x2i �

P
wi � xið Þ2

� �
vuuut : (5.6-7)

The weighted residual standard deviation is calculated by (5.6-8):

sy:x;w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

wiðyi � ŷiÞ2
df

s
(5.6-8)

where

– ns is the number of calibration standards and replicates, respectively, for the

sample with the mean response value �̂ys
– sy:x;w is the residual standard deviation

– tðP; dfÞ is the t-factor at the statistical significance level P with df degrees of

freedom for the calibration levels

– ws is the weighting factor of the sample calculated according to (5.6-1).

Challenge 5.6-1

The content of polyasparagine acid (PAA) in cooling water in the range

20–90 mg L�1 can be determined by fluorimetry as described in [16].

Because the standard deviation increases with the concentration, the large

working range means that the variance at the highest calibration standard will

be much higher than that at the lowest calibration standard. Because the

highest concentration is nine times greater than the lowest, homogeneity of

variances cannot be expected, and therefore weighted least squares regression

should be applied. In order to estimate the weighting factor, five replicates are

measured at each of the eight calibration levels. The results are listed in

Table 5.6-1.

In the course of the method validation the following tasks must be done:

(a) Check the linearity of the calibration function.

(b) Inspect the calibration line with its confidence intervals for the presence

of outliers.

(c) Confirm the inhomogeneity of variances using an appropriate test.

(d) Determine the parameters of the unweighted and weighted least squares

regression and evaluate the results.

(continued)
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(e) For two water samples the following response, in arbitrary units, was

obtained with three replicates:

Sample 1 44 42.5 44 I in counts

Sample 2 174 176 173 I in counts

Predict the concentration with the correct confidence interval for both

samples.

Compare and estimate the results obtained by unweighted and weighted

regression analysis.

Solution to Challenge 5.6-1

(a) Tests for linearity are described in Sect. 5.4. Let us test the significance of

the quadratic regression coefficient a2.
The hypothesis that the quadratic term is zero or not

H0 : a2 ¼ 0

H1 : a2 6¼ 0

can be checked by means of a t-test. The regression of the second degree

polynomial and its standard deviation obtained by Excel function

LINEST are:

a2 ¼ �0:000929 counts L2 mg�2

sa2 ¼ 0:001369 counts L2 g�2:

The test value calculated by (5.3.6-2)

(continued)

Table 5.6-1 Calibration data for the determination of PAA by fluorometry

Replicate 1 2 3 4 5

ci in mg L�1 Fluorescence intensity I in counts

20 41 42 41 40 40

30 59 57 60 59 61

40 80 78 82 79 83

50 98 100 95 103 97

60 121 126 122 117 120

70 142 137 144 141 146

80 158 152 160 161 154

90 178 172 185 177 180

The excitation wavelength was lex ¼ 336 nm and the emission was measured at the

emission wavelength lem ¼ 411 nm. The response yi represents the fluorescence intensity
(I) in counts
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t̂ ¼ a2
sa2

����
���� ¼ �0:000929

0:001369

����
���� ¼ 0:678 (5.6-9)

does not exceed the quantiles of the t-distribution for df ¼ n – 3 degrees of

freedom at the chosen significance level P, tðP ¼ 95%; df ¼ 5Þ ¼ 2:571:
Therefore, the null hypothesis H0: a2 ¼ 0 is valid.

The hypothesis test may also be carried out by means of the confidence

interval for the quadratic regression coefficient a2, which is calculated by
(5.3.6-1) with the 95% significance interval:

CIða2Þ ¼ �0:000929� 2:571 � 0:001369 ¼ �0:000929� 0:003520:

Zero is included in the range of CIða2Þ, �0.00444 to þ 0.00259, and thus

the null hypothesis is valid.

(b) As Fig. 5.6-1 shows, all measured mean values yi lie inside the upper and
lower confidence intervals, and thus no outliers are present in the calibra-

tion line.

(c) According to the F-test of the variances at the lower and upper working

range, homogeneity of variances is not present. The test value using the

variances s28 ¼ 22:30 and s21 ¼ 0:7 obtained by the measured value of the

upper and the lower working range, respectively, is

F̂ ¼ s21
s22

¼ 22:30

0:7
¼ 31:857; (5.6-10)

which is larger than the critical value Fone�sidedðP ¼ 99%; df1 ¼ df2 ¼ 4Þ
¼ 15:977: The null hypothesis H0 : s

2
1 ¼ s28 has to be rejected and the

alternative hypothesis H1 : s
2
1 6¼ s28 is valid. Because of the heteroscedasti-

city of variances, the weighted least squares procedure must be applied.

(d) The design of the calibration, measuring all calibration standards by

replicates, enables the calculation of the weighting factors required for

the weighted least squares procedure. Table 5.6-2 and its continuation

(continued)
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Table 5.6-3 presents the intermediate quantities for the computation of

the weighted regression line according to (5.6-1)–(5.6-3) with

�xw ¼ 30:9925 and �yw ¼ 62:278.
The weighted regression equation is:

ŷ ¼ 1:03776 countsþ 1:97596 counts L mg�1 � x: (5.6-11)

The corresponding unweighted parameters obtained by Excel function

LINEST are slope a1 ¼ 1:97571 counts Lmg�1 and intercept a0 ¼
1:03571 counts:
The slope and intercept of the unweighted regression parameters are very

similar to those for the weighted regression (5.6-11), with the conse-

quence that both regression equations yield similar results for the pre-

dicted concentrations x̂ (see Table 5.6-5). However, are there significant
differences in the prediction errors, i.e. in the confidence interval CIðx̂Þ?
The answer is given below.

(e) The confidence intervals are calculated by (4.2-17) and (5.6-7) for the

unweighted and weighted regression equations, respectively.

(continued)

Table 5.6-2 Data for the computation of the weighted regression line (continuation in

Table 5.6-3)

Level xi �yi si wi wi�xi wi � �yi
1 20 40.8 0.837 1.429 28.571 58.286

2 30 59.2 1.483 0.455 13.636 26.909

3 40 80.4 2.074 0.233 9.302 18.698

4 50 98.6 3.050 0.108 5.376 10.602

5 60 121.2 3.271 0.093 5.607 11.327

6 70 142.0 3.391 0.087 6.087 12.348

7 80 157.0 3.873 0.067 5.333 10.467

8 90 178.4 4.722 0.045 4.036 8.000

Sum 2.515 77.950 156.636

Table 5.6-3 Data for the computation of the weighted regression line (continuation of

Table 5.6-2)

Level xi � �xw �yi � �yw wi xi � �xwð Þ2 wi xi � �xið Þ �yi � �ywð Þ
1 �10.993 �21.478 172.622 337.277

2 �0.993 �3.078 0.448 1.388

3 9.007 18.122 18.869 37.962

4 19.007 36.322 38.848 74.236

5 29.007 58.922 78.639 159.737

6 39.007 79.722 132.312 270.414

7 49.007 94.722 160.116 309.473

8 59.007 116.122 156.138 307.268

Sum 757.990 1497.757
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Table 5.6-4 gives the intermediate quantities for the calculation of the

confidence interval using the data given in Tables 5.6-2 and 5.6-3.

The weighted residual standard deviation calculated by (5.6-8) is

sy:x;w ¼ 0:57689 counts and the critical t-value is tðP ¼ 95%; df ¼ 6Þ ¼
2:447. With these data, intermediate quantities given in Tables 5.6-2 –

5.6-4 as well as the individual data of both samples

Sample 1:

�ys;1 ¼ 43:5 ns ¼ 3 ws;1 ¼ 1:3333

Sample 2:

�ys;1 ¼ 174:333 ns ¼ 3 ws;2 ¼ 0:42857

the confidence intervals for the weighted regression give the following

results:

Sample 1: CIðx̂1;wÞ ¼ 0:626 mgL�1

Sample 2: CIðx̂2;wÞ ¼ 1:663 mgL�1

The respective unweighted confidence intervals are calculated by (4.2-17)

and (4.2-17) using intermediate quantities which are obtained by Excel

functions. The results of both regression models are summarized in

Table 5.6-5, which shows that the unweighted and weighted regression

analyses yield similar predicted concentrations x̂ but give very different

uncertainties for the predicted results, i.e. confidence intervals CIðx̂Þ: In
(continued)

Table 5.6-4 Intermediate quantities for the calculation of the confidence interval for the

weighted regression line

Level wi ŷi wi yi � ŷið Þ2 wi � x2i
1 1.42857 40.5569 0.0844 571.4286

2 0.45455 60.3165 0.5666 409.0909

3 0.23256 80.0761 0.0244 372.0930

4 0.10753 99.8357 0.1642 268.8172

5 0.09346 119.5952 0.2407 336.4486

6 0.08696 139.3548 0.6084 426.0870

7 0.06667 159.1144 0.2980 426.6667

8 0.04484 178.8740 0.0101 363.2287

Sum 2.5151 1.9968 3173.8606

Table 5.6-5 Comparison of the results obtained by unweighted and weighted least squares

regression analysis

Sample Regression model x̂ in mg L�1 CI(x̂Þ in mg L�1

1 Unweighted 21.490 1.786

Weighted(correct data) 21.489 0.626

2 Unweighted 87.703 1.771

Weighted(correct data) 87.702 1.663
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the weighted regression analysis the confidence interval increases with

the concentration, and this reflects the heteroscedasticity.

Generalization of the results
The correct confidence interval is important if the uncertainty of the

predicted concentration has to be known, for example when monitoring

limit values.

Let us assume that the limit of an analytical parameter is 23.0 mg L�1.

The limit is exceeded with the unweighted result for sample 1

ðx̂ ¼ 21:49 mgL�1 þ 1:79 mgL�1 ¼ 23:28 mgL�1Þ; but the true value
obtained using weighted regression analysis is smaller than the limit

value ðx̂ ¼ 21:49 mgL�1 þ 0:63 mgL�1 ¼ 22.11 mgL�1Þ; and thus the
limit is not exceeded.

On the other hand, a limit value of, for example, 90 mg L�1 is

not exceeded neither with the unweighted ðx̂ ¼ 87:70 mgL�1þ
1:77 mgL�1 ¼ 89:47 mgL�1Þ; nor the weighted results ðx̂ ¼ 87:70

mgL�1 þ 1:66 mgL�1 ¼ 89:36 mgL�1Þ:

5.7 Tests for Trueness

Trueness is a validation parameter which is explicitly mentioned in all the regu-

latory guidelines. Note that some regulations use the term “accuracy” but this can

be misleading because accuracy includes both trueness and precision [17].

Measurement trueness is defined as the “closeness of agreement between the

average of an infinte number of replicate measured quantity values and a reference

quantity value” [5]. In pharmaceutical analysis trueness is usually reported as

percent recovery by assay, using a proposed analytical procedure.

Before we turn to tests for trueness, we will look at the systematical errors which

have an influence on the analytical results.

The analytical procedure can be influenced by

1. Previous steps such as extraction or others,

2. Effects caused by the matrix such as interferences

Both influences result in constant and/or proportional systematic errors.

5.7.1 Systematic Errors in the Least Squares Regression
Procedure

Constant systematic errors In constant systematic errors, the deviation is inde-

pendent of the concentration of the analytical component; therefore, the calibration

line is shifted sideways as shown in Fig. 5.7.1-1.
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The origin of this additive shift could be co-registering of a matrix compo-

nent because of lack of specificity of the analytical procedure, as described in

Sect. 6.2.

Proportional systematic error In proportional systematic errors, the amount of

the deviation is a function of the concentration. This leads to a change of the slope,

as shown in calibration line 2 in Fig. 5.7.1-2.

This multiplicative deviation can originate in stages of sample preparation,

such as extraction or matrix effects.

Of course, both systematic deviations can be present simultaneously.

In contrast to random errors, systematic errors must be avoided or eliminated

if their origins become known, because they lead to false analytical results. There

are various procedures for checking the presence of systematic errors which will be

described in the following sections.

5.7.2 Mean Value t-Test

The mean value �x obtained by n replicates of a sample is compared with the

“true” value m of a certified reference material (CRM) or substance (CRS) by
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means of a t-test (see Sect. 3.5). The test value calculated by (3.5-5) is compared

with the quantiles of the two-sided t-distribution. The null hypothesis H0 : �x ¼ m
is rejected and the alternative hypothesis H1 : �x 6¼ m is valid if the calculated

t-value exceeds the quantiles of the t-distribution at the chosen statistical signifi-

cance level P and the degrees of freedom df ¼ n� 1: In some regulations, such as

pharmaceutical analysis, six replicates are required. Note that in order to calculate

the standard deviation of the replicates, the measured values must be normally

distributed, free of outliers, and the data in chronological order must show no

trend.

Challenge 5.7.2-1

In a laboratory, the trueness of a new HPLC method must be checked by

comparison of the measured mean value of a drug with the certified reference

substance whose amount is c ¼ 97:7% (w/w):
The results obtained by six replicates are:

c in % (w/w) 97.3 97.8 97.5 98.0 97.2 97.4

Check if the new HPLC method is valid for determinating the assay of the

drug.

Solution to Challenge 5.7.2-1

Inspection of the measured values shows that there is no trend in the data, and

thus a statistical test is not necessary.

The check for normal distribution is carried out by the David test (see

Sect. 3.2.1).

The test value according to 3.2.1-1 is:

q̂r ¼ xmax � xmin

s
¼ 98:0� 97:2

0:3077
¼ 2:600:

The test value lies between the lower limit (2.28) and the upper limit (3.012)

of the David table at the significance level P ¼ 95% and n ¼ 6; which means

that the data are normally distributed at the chosen significance level.

For checking an outlier with the Dixon test, (5.7.2-1) must be used for

n ¼ 6:

Q̂ ¼ x�1 � x2
x�1 � xn

����
����: (5.7.2-1)

The calculated test values are Q̂xmin
¼ 0:125 and Q̂xmax

¼ 0:250 for the

lowest and the highest measuring values, respectively. None of the test values

(continued)
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exceeds the critical values at the significance level QðP ¼ 95%; n ¼ 6Þ ¼
0:560; and therefore no outlier is present in the data set.

The test value calculated by (5.7.2-2) with the mean value

�x ¼ 97:535% (w/w)

t̂ ¼ 97:535� 97:7j j
0:3077

�
ffiffiffi
6

p
¼ 1:327 (5.7.2-2)

does not exceed the critical value tðP ¼ 95%; df ¼ 5Þ ¼ 2:571; and therefore
the null hypothesis H0 : �x ¼ m is valid, which means the new HPLC method

may be applied for the determination of the assay of the drug.

5.7.3 Recovery Rate

If the value of the recovery rate Rr% calculated by

Rr% ¼ �̂x

m
� 100; (5.7.3-1)

in which �̂x is the observed mean value of a sample and m is the known true value, is

nearly Rr% ¼ 100; then no systematic errors are present.

The estimation of the recovery rate should be carried out at two or more different

concentration levels. A false result can be obtained if the concentration level used is

close to a point of intersection of the measured with the hypothetical true calibration

line obtained with error-free calibration solutions, as Fig. 5.7.3-1 shows. The

predicted response ŷ2 gives a correct value x2 because the error-free calibration

line (1) crosses the real but erroneous calibration line (2). Thus, concentration x2
used for testing the trueness of the regression parameters would give a recovery rate

of approximately 100%. But the response values ŷ1 and ŷ3 obtained with very

R
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Fig. 5.7.3-1 Influence of

three different calibrations on

the result of the check for

trueness. (1) calibration

line obtained by error-free

calibration solutions;

(2) calibration line of real

samples

5.7 Tests for Trueness 169



different concentrations will give false analytical results x1;f and x3;f ; respectively.
Note that x1;c and x3;c; respectively, are the correct results.

The question is which value of the recovery rate is the criterion for trueness

using this test method?

If no regulatory requirements are given, the accepted range for the recovery

rate can be determined. Remember that an analytical result is true if the predicted

value x̂ is inside its confidence interval x̂� CI(x̂Þ: Therefore, the range of recovery
rates which will be accepted by the test of trueness which is given by (5.7.3-2) and

(5.7.3-3):

Rrmin% ¼ x̂� CIðx̂Þð Þ
m

� 100 (5.7.3-2)

Rrmax% ¼ x̂þ CIðx̂Þð Þ
m

� 100: (5.7.3-3)

The confidence interval CIðx̂Þ

CIðx̂Þ ¼ sx:o � tðP ¼ 95%; dfÞ (4.2-17)

can be calculated by the known validation parameters.

Challenge 5.7.3-1

The validated method for HPLC determination of the assay of an API is

carried out in routine analysis with autosampling. The regression coefficients

used for the determination of the analytical results are calculated by the

software of the HPLC equipment using five calibration standard solutions at

positions one to five of the autosampler. The subsequent places are occupied

by vials of the samples. However in the pharmaceutical analysis the test for

the trueness of the regression coefficients determined at the beginning of the

analytical run must be carried out after every five samples in order to check

whether the regression coefficients are still suitable. For this check, the

recovery rate procedure is an appropriate test. After each fifth sample a

validation sample with a known concentration m is measured by the same

analytical procedure and the predicted value x̂ is calculated using the regres-

sion coefficients of the software. According to (5.7.3-1), the recovery rate is

calculated from the predicted value x̂ and the known value m. If the recovery
rate does not exceed the limits of the recovery rate determined by the

validation parameters, the regression coefficients are valid for calculating

true analytical results.

Let us assume that the following parameters were determined for HPLC

determination of an API in the course of method validation for the working

(continued)
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range 3.750–20.635 g L�1: intercept a0 ¼ �725 counts, slope a1 ¼ 2; 173

counts Lmg�1; calibration error sy:x ¼ 523 counts, and number of calibration

standards nc ¼ 10, mean value of the response �y ¼ 14804 counts, and the

sum of squares SSxx ¼ 290 g2 L�2.

In order to analyze 40 samples, eight validation samples (VAL) are used

for testing the trueness of the regression coefficients. The concentrations

chosen and the measured responses y are listed in Table 5.7.3-1.

Check whether the regression coefficients determined by the software are

valid for the whole run at the significance level P ¼ 95%: Note that the

analytical result obtained by the software is considered as true for the five

samples which are positioned between the validation samples whose recovery

rates lie inside the lower and upper limits.

Solution to Challenge 5.7.3-1

The check for trueness is best realized by the evaluation of the recovery rates.

The required limits of the recovery rates for the evaluation of trueness are

calculated by (5.7.3-2) and (5.7.3-3). The required confidence interval CIðx̂Þ
is calculated by (4.2-17).

With the t-factor tðP ¼ 95%; df ¼ 8Þ ¼ 2:306, the confidence interval

CIðx̂Þ and, thus, the limits of the recovery rates can be calculated for each

predicted value x̂:
The results are summarized in Table 5.7.3-2.

The results given in Table 5.7.3-2 show that the recovery rates of the eight

validation samples lie inside the limits of the recovery rates, which means that

the analytical results of all 40 samples calculated from the regression coeffi-

cients of the software are true.

Note that in order to avoid false results because of the choice of an

unfavorable validation concentration such as x2 in Fig. 5.7.3-1, the concen-

tration of the validation samples should vary over the whole working range.

Table 5.7.3-1 Concentration of the validation solutions m ordered by their position in the

autosampler and the mean response �y in counts obtained by two replicates

Validation sample VAL m in g L�1 �y in counts

1 4 7,715

2 16 33,746

3 10 21,305

4 5 10,463

5 18 39,034

6 9 18,678

7 12 25,609

8 6 13,456
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5.7.4 Recovery Rate of Stocked Samples

If the influence of the matrix is unknown, the recovery rate can be determined by a

sample which is stocked with a known amount of the analyte:

Rr% ¼ x̂total � x̂s
xadd

� 100: (5.7.4-1)

Two determinations must be carried out by the same procedure: the amount of

the sample x̂s and then, after addition of the amount xadd; the total amount x̂total: The
recovery rate is calculated by (5.7.3-5). The limits of the recovery rate can be

evaluated as described in Sect. 5.7.3.

Challenge 5.7.4-1

The validation of the determination of Cd by flame AAS in waste water from

a measuring station in the range 2–9 mg L�1 was verified by ten calibration

standard solutions. The linearity of the calibration line was checked and tests
for outliers were negative but in order to apply this method in AQA the check

for trueness must still be carried out, i.e. does the matrix of the waste water

influence the regression coefficients determined by matrix-free solutions?

The test using the recovery function described in the next section cannot be

(continued)

Table 5.7.3-2 Predicted concentrations x̂ in g L�1; the lower and upper limits of the

recovery rates Rrlower% and Rrupper%, respectively, the calculated recovery rates of the

validation samples (Rr%), and the results of the trueness check

VAL 1 VAL 2 VAL 3 VAL 4

m in g L�1 4 16 10 5

x̂ in g L�1 3.884 15.863 10.138 5.149

Rr in % 97.1 99.2 101.4 103.0

x̂� CIðx̂Þ in g L�1 3.292 15.216 9.548 4.563

Rrlower in % 82.3 95.1 95.5 91.3

x̂þ CIðx̂Þ in g L�1 4.476 16.511 10.728 5.734

Rrupper in % 111.9 103.2 107.3 114.7

Result True True True True

VAL 5 VAL 6 VAL 7 VAL 8

m in g L�1 18 9 12 6

x̂ in g L�1 18.297 8.929 12.119 6.526

Rr in % 101.7 99.2 101.0 108.8

x̂� CIðx̂Þ in g L�1 17.611 8.344 11.514 5.944

Rrlowerin % 97.8 92.8 96.0 99.1

x̂þ CIðx̂Þ in g L�1 18.970 9.503 12.712 7.097

Rrupper in % 105.5 105.7 106.0 118.5

Result True True True True
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used because the components of the matrix are unknown, but the check using

the recovery rate of stocked samples is applicable.

The regression coefficients obtained by matrix-free solutions are intercept

a0 ¼ �0:00039 and slope a1 ¼ 0:1090 Lmg�1:
The preparation of the samples was carried out as follows: 90 mL waste

water was added to a 100 mL volumetric flask and the flask filled up with

distilled water. This sample was used for the determination of the value x̂s in
(5.7.4-1). The mean value of the measured absorbance of the waste water

sample obtained by the same procedure as used for the determination of the

regression coefficients is �ys ¼ 0:5324:
90 mL waste water was also added to two other 100 mL volumetric flasks.

After the addition of

(a) 2 mL

(b) 5 mL

of a stock solution with cstock ¼ 300 mgL�1 Cd, the flasks were filled up with

distilled water. These samples were used to determine two values x̂total with
different concentrations.

The mean values of the measured absorbance of the stocked samples

obtained by the same procedure as used for the determination of the regres-

sion coefficients are:

(a) Sample 1: �ytotal;a ¼ 0:5964 (response of the waste water sample stocked

by 2 mL stock solution)

(b) Sample 2: �ytotal;b ¼ 0:7035 (response of the waste water sample stocked

by 5 mL stock solution).

Check whether the matrix influences the regression coefficients. The limit

value of the trueness should be given if the recovery rate lies in the range

95.0–105.0%.

Solution to Challenge 5.7.4-1

The predicted concentration of the non-stocked waste water solution calcu-

lated according to (4.2-15) is

x̂s ¼ ð0:5321þ 0:00039Þ
0.1090 L mg�1

¼ 4:89mgL�1 Cd: (5.7.4-2)

The intermediate quantities and results are presented in Table 5.7.4-1.

As the results in Table 5.7.4-1 show, the recovery rate obtained by both

stock solutions is inside the required range of 95.0–105.0%. This means that

the predicted values calculated by the regression coefficients which were

(continued)
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obtained by matrix-free calibration solutions are also correct with waste water

solutions. The method is validated for the determination of Cd in samples

from the measuring station.

5.7.5 Recovery Function

The check of trueness by the recovery function covers not only individual points, as

with the recovery rate, but also the whole calibration function. The application of

this procedure requires knowledge of the components of the matrix which possibly

have an influence on the regression coefficients. This is always given in pharma-

ceutical analysis because the placebo of each drug is known and available. There-

fore, in the course of pharmaceutical analysis the application of the recovery

function for checking trueness is popular.

Apart from the analysis of pharmaceutical products, the matrix is unknown in

detail. But if the matrix can be simulated by the components which possibly

influence the regression coefficients, then the recovery function can also be applied

for such samples. For example, in order to check the trueness of the determination

of nitrite-N in waste water containing high levels of iron, all calibration solutions

can be spiked by addition of iron in such a concentration that the iron concentration

corresponds to that of the waste water.

To apply the check using the recovery function, the calibration function is first

determined by matrix-free solutions:

ŷ ¼ a0;c þ a1;c � x: (5.7.5-1)

All calibration solutions are then spiked by the components of the matrix and

are analyzed by the same procedure. Using the measured response obtained by

the matrix-spiked calibration solutions ym and the regression coefficients a0;c and
a1;c determined by the matrix-free solutions, the predicted concentrations x̂m are

calculated by (5.7.5-2):

Table 5.7.4-1 Intermediate quantities and results of the test of trueness using the recovery

rate of stocked samples

Sample 1 Sample 2

Vadded in mL 2 5

madded in mgL�1 6 15

�ytotal 1.1753 2.2459

x̂total in mgL�1 10.786 20.608

Rr in% 98.3 104.8
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x̂m ¼ ym � a0;c
a1;c

: (5.7.5-2)

The relationship between the predicted concentration obtained by the matrix-

spiked solutions x̂m and the concentrations of the calibration solutions xc is the

so-called recovery function:

x̂m ¼ a0;m þ a1;m � xc: (5.7.5-3)

Ideally, the recovery function should have intercept a0;m ¼ 0 and slope a1;m ¼ 1:
But the matrix might not influence the precision of the method, which must be

checked.

Because of the same measurement units of the variances, the residual standard

deviation sx:y;m in units of concentration should correspond to the standard deviation

of the analytical process sx:0;c which has been determined with matrix-free solu-

tions. This last requirement must be checked.

The hypotheses

H0 : s
2
y:x;m ¼ s2x:0;c

H1 : s
2
y:x;m 6¼ s2x:o;c

are checked by an F-test:

F̂ ¼ s2y:x;m
s2x:0;c

: (5.7.5-4)

If the test value F̂ does not exceed the critical value FðP ¼ 99%;
df1 ¼ df2 ¼ nc � 2Þ; then the null hypothesis H0 is valid, which means that the

matrix does not significantly influence the precision of the analytical procedure and

evaluation of the regression coefficients of the recovery function is possible.

The following results are obtained:

A constant systematic error is confirmed at the chosen significance level P if the

confidence interval of the intercept of the recovery function CIðao;mÞcalculated by

(5.7.5-5)

CIðao;mÞ ¼ a0;m � tðP; df ¼ nc � 2Þ � sa0;m (5.7.5-5)

does not include zero.

The standard deviation of the intercept sa0o;m is calculated by (4.2-11).

5.7 Tests for Trueness 175



A proportional systematic error is confirmed at the chosen significance level P if

the confidence interval of the slope of the recovery functions CIða1;mÞ calculated by
(5.7.5-6)

CIða1;mÞ ¼ a1;m � tðP; df ¼ nc � 2Þ � sa1;m (5.7.5-6)

does not include the value 1.

The standard deviation of the slope sa1;m is calculated by (4.2-13).

Note that the required values sa0;mand sa1;m are obtained by the matrix of the Excel

function LINEST.

Thus, the check using the recovery function not only reveals the information that

a systematic error is present but the test result distinguishes between the different

kinds of error. This can be very helpful in searching for the sources of errors.

Note that if the null hypothesis H0 has to be rejected, then the alternative

hypothesis is valid, which means that the matrix has a significant influence on the

precision of the analytical procedure. In that case, information as to the presence of

a systematic error cannot be obtained, the reason for the worsening of the precision

caused by the matrix has to be sought and, after removal of the cause, the test

procedure has to be repeated.

Challenge 5.7.5-1

Let us return to the validation of the HPLC method for the determination of

the assay of an API begun in Challenge 4.5-1. After checking linearity and

outliers in the previous Challenges, the test of trueness must be carried out.

After addition of all placebo components of the drug into the same

calibration solutions x1–x10 used for the estimation of the validation para-

meters and given in Challenge 5.4-1, the HPLC analysis was repeated using

the same procedure. The response values ym;i obtained by the matrix-spiked

solutions are presented in Table 5.7.5-1.

(continued)

Table 5.7.5-1 Calibration data sets for the test of trueness by the recovery function

Level ci in g L�1 Measured response yi in counts

Without placebo With placebo

1 3.750 7,370 7,655

2 5.625 11,648 12,005

3 7.500 15,980 15,985

4 9.375 19,615 19,665

5 11.250 23,935 23,922

6 13.125 27448 27429

7 15.000 31,167 31,485

8 16.875 35,160 35,056

9 18.750 40,088 39,566

10 20.625 44,575 45,155
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(a) Check whether the placebo significantly influences the regression coeffi-

cients or, in other words, test the trueness.

(b) If both tests will show that the variances are homogeneous and the

placebo does not influence the regression coefficients, the method can

be applied in order to determine the assay of drug samples.

Let us assume that the proportion of API in the tablets is 65%. The

solution obtained by dissolving ten tablets (2,025 mg) in 100 mL of the

HPLC eluent was analyzed according to the procedure used in the

method validation. The measured y-values obtained by two replicates

were y1 ¼ 27; 583 counts and y2 ¼ 27; 562 counts:
Calculate the mean value of ten tablets and state the result both

�̂x� CI( �̂xÞ in g L�1: Check whether the confidence interval includes the

required amount of API in ten tablets.

Solution to Challenge 5.7.5-1

(a) Using the regression coefficients obtained by Excel function LINEST,

a0;c ¼ �616:315 counts and a1;c ¼ 2; 159:173 counts L g�1, the pre-

dicted concentrations x̂m ¼ cm;i calculated by (5.7.5-2) are listed in

Table 5.7.5-2 and the recovery function is shown in Fig. 5.7.5-1.

The regression coefficients of the recovery function with their standard

deviations and the residual standard deviation obtained by Excel function

LINEST are summarized in Table 5.7.5-3.

Check for the precision according to (5.7.5-4):

The analytical standard deviation of the calibration function sx:0;c is

calculated by (4.2-9) with the residual standard deviation sy:x;c ¼
449:186 counts, and also obtained by the Excel function LINEST giving

sx:0 ¼ 0:2080 gL�1:
The test value calculated by (5.7.5-7) is

(continued)

Table 5.7.5-2 Predicted

concentrations x̂m ¼ cm;i for
the placebo-spiked calibration

solutions

Level ci in g L�1 cm;i in g L�1

1 3.750 3.831

2 5.625 5.845

3 7.500 7.689

4 9.375 9.393

5 11.250 11.365

6 13.125 12.989

7 15.000 14.867

8 16.875 16.521

9 18.750 18.610

10 20.625 21.199
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F̂ ¼ s2x:y;m
s2x:0;c

¼ 0:27122

0:20802
¼ 1:700 (5.7.5-7)

The table value FðP ¼ 99%; df1 ¼ df2 ¼ 8Þ ¼ 6:029 is greater than the

test value F̂ which means that the placebo of the drug does not signifi-

cantly influence the precision of the analytical procedure. Therefore, a

check for systematic errors is possible.

Test for a constant systematic error:
The range of the confidence interval of the intercept of the recovery

function calculated by (5.7.5-5)

CIða0;mÞ ¼ 0:1026� 0:21216 � 2:306 (5.7.5-8)

(continued)
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Fig. 5.7.5-1 Recovery function

Table 5.7.5-3 Regression parameters of the recovery function

Intercept a0;m in g L�1 0.1026

Standard deviation of the intercept sa0;m in g L�1 0.21216

Slope a1;m 0.9951

Standard deviation of the slope sa1;m 0.01592

Residual standard deviation sy:x;m in g L�1 0.2712
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is from �0.3866 to 0.5919. The value zero is included; therefore, the

placebo does not cause a constant systematic error.

Test for a proportional systematic error:
The confidence interval of the slope of the recovery function calculated

by (5.7.5-6)

CIða1;mÞ ¼ 0:9951� 0:01592 � 2:306 (5.7.5-9)

includes the value 1; therefore, a proportional systematic error cannot be

detected.

Thus the placebo does not cause a systematic error at the chosen signifi-

cance level P ¼ 95%. The analytical results obtained with this method

are correct.

(b) The amount of API in 0.1 L eluent is 2.025 g � 0.65 ¼ 1.316 g.

With the regression coefficients a0;c and a1;c given above and the mean

value of the measured response �y ¼ 27; 572:5 counts, the predicted con-

centration is x̂ ¼ 13:055 gL�1:
The confidence interval calculated by (4.2-17) with the regression coeffi-

cients and the analytical error given above as well as na ¼ 2, nc ¼ 10,

df ¼ 8, SSxx ¼ 290.04, and tðP ¼ 95%; df ¼ 8Þ ¼ 2:306 is

CIðx̂Þ ¼ 13:055� 0:3724 gL�1: (5.7.5-10)

Thus, the required amount of API of the ten tablets (1.316 g) is included

in the range 1.268–1.343 g.

5.7.6 Standard Addition Procedure

If the matrix is unknown and the check for trueness cannot be made using the

recovery function, the test for a proportional systematic error can be verified by the

standard addition procedure.

A representative sample is stocked up with the analyte at six or more levels up to

twofold concentration of the analyte. The non-stocked and the stocked samples are

analyzed by the same procedure and the slope a1;add of the calibration function is

calculated. The proportional systematic error is checked by comparison of the slope

a1;c of the calibration function obtained from matrix-free standard solutions and

the slope a1;add of the calibration function obtained by stocked standard solutions.

The hypotheses

H0 : a1;c ¼ a1;add
H1 : a1;c 6¼ a1;add

are checked by the t-test.
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The test value is calculated by (5.7.6-1)

t̂ ¼ a1;c � a1;add
�� ��

sp
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nc � nadd
nc þ nadd

r
: (5.7.6-1)

The pooled standard deviation sp is given by (5.7.6-2)

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nc � 2ð Þ � s2a1;c þ nadd � 2ð Þ � s2a1;add

nc þ nadd � 4

s
; (5.7.6-2)

in which sa1;c and sa1;add are the standard deviations of the slope a1;c of the calibration
function from the matrix-free solutions and the slope a1;add of the calibration

function from the stocked solutions, respectively, obtained by the respective num-

ber of calibration standards nc and nadd.
The null hypothesis H0 : a1;c ¼ a1;add is rejected and a systematic error is

confirmed if the test value t̂ exceeds the two-sided critical t-value at the chosen

significance level P and degrees of freedom df ¼ nc þ nadd � 4:
The requirements for this test are:

1. No significant change in precision

2. Linearity of the calibration function

The check for requirement (1) is performed by comparing the calibration errors

obtained by the normal calibration sy;x;c and the stocked procedure sy:x;add with an F-
test:

F̂ ¼ s2y:x;add
s2y:x;c

: (5.7.6-3)

The matrix does not significantly influence the precision if the F̂-value does not
exceed the critical value FðP ¼ 99%; dfadd ¼ nadd � 2; dfc ¼ nc � 2Þ:

The linearity of the calibration line (2) is checked by tests described in Sect. 5.3.

Note that a constant systematic error cannot be proved by the standard addition

method.

Challenge 5.7.6-1

Let us continue the validation of the flame AAS method for the determination

of Cd in waste water which was begun in Challenge 5.5-1. Because the matrix

of the waste water samples is unknown, the recovery function by matrix-

simulated calibration standards cannot be applied, but the standard addition

method can be used in order to check the method for trueness.

The data set obtained for the calibration in distilled water is presented in

Table 5.7.6-1.

(continued)
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(a) For a representative waste water sample the mean measured absorbance

�y ¼ 0:33585 was obtained by two replicates.

Calculate the predicted value x̂ using the regression coefficients obtained

by the calibration parameters.

(b) The stocked solutions which are needed for the application of the stan-

dard addition method were prepared as follows:

Seven 25 mL volumetric flasks were each filled with 20 mL waste water.

Then, the volumes of a stock solution (cst ¼ 25 mg L�1 Cd) given in

Table 5.7.6-2 were added, and the flasks were filled with distilled water.

The solutions were analyzed by the same procedure as was used for the

calibration method.

The mean values of the absorbance �yi obtained by two replicates are

given in Table 5.7.6-2.

1. Test the linearity of the calibration line.

2. Check whether the matrix influences the precision.

3. Check the trueness of the method.

Solution to Challenge 5.7.6-1

(a) The regression parameters obtained by the Excel function are

a0;c ¼ 0:0331; a1;c ¼ 0:0985 Lmg�1; sy:x;c ¼ 0:0161; df ¼ 4:

The concentration of Cd calculated by (4.2-15) is x̂ ¼ 3:07 mgL�1:
Note that this result may be not correct because the check for trueness

was not yet carried out, but this value is useful in choosing the required

stocked concentrations which should be stocked up to the twofold

concentration. Thus, the highest stocked concentration should be

cn ¼ 3 mgL�1:
(continued)

Table 5.7.6-1 Data set for the calibration of the determination of Cd by flame AAS in

matrix-free solutions

c in mg L�1 2 3 4 5 6 7

A 0.2168 0.3241 0.4468 0.5422 0.6159 0.7121

Table 5.7.6-2 Preparation of the stocked solution and the mean values of the absorbance �yi
obtained by two replicates

Added volume (Vadd) of the stock solution (cst ¼ 25 mg L�1) in mL

0 0.5 1.0 1.5 2.0 2.5 3.0

Mean value of the absorbance �yi obtained by two replicates

0.3275 0.3658 0.4271 0.4758 0.5249 0.5784 0.6298
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The check for trueness is verified by the standard addition procedure.

(b) The concentrations of the stocked solutions calculated by

cadd ¼ cst � Vadd

Vflask

¼ 25mgL�1 � Vadd mL

25 mL
(5.7.6-4)

with the added volume Vadd given in Table 5.7.6-2 are listed in

Table 5.7.6-3 together with the mean values of the measured absorbance

�yi of the i stocked solutions.

The calibration function obtained by the stocked concentrations is shown

in Fig. 5.7.6-1. The regression parameters required for the tests are

obtained by Excel LINEST functions for the linear and the quadratic

regression model, respectively.

The calibration parameters obtained for the linear regression model are

a1;add ¼ 0:10214 mgL�1; sa1;add ¼ 0:0016560 mgL�1; dfadd ¼ 5:

(continued)

Table 5.7.6-3 Concentration

of the stocked solutions

cadd in mgL�1and the mean

values of the measured

absorbance �yi

Level cadd in mg L�1 �yið �AiÞ
1 0 0.3275

2 0.5 0.3658

3 1.0 0.4271

4 1.5 0.4758

5 2.0 0.5249

6 2.5 0.5784

7 3.0 0.6298

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3

c in mg L–1

A

Fig. 5.7.6-1 Calibration

function obtained from the

stocked solutions
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The regression coefficient a2;add and its confidence interval for the

quadratic regression model are

a2;add ¼ 0:00130 (mg2 L�2;

sa2;add ¼ 0:00204 mg2 L�2;

sy:x;2;add ¼ 0:00467:

1. Linearity tests (see Sect. 4.3)

The test hypotheses

H0 : a2;add ¼ 0 (the linear regression model is valid)

H1 : a2;add 6¼ 0 (the quadratic regression is the better model) can be

checked by means of the confidence interval for a2;add or by means of a

t-test, or the linearity can be checked by the Mandel test. All tests provide

the same result: the null hypothesis is valid, which means that the linear

regression model can be applied.

The results of the various linearity tests are given below.

The range of the confidence interval of a2,add calculated according to

(5.3.6-1)

CIða2;addÞ ¼ 0:00130� 0:00204 � 2:776
includes the value zero.

The test value t̂ calculated by (5.3.6-2)

t̂ ¼ a2;add
sa2;add

¼ 0:00130

0:00204
¼ 0:638

does not exceed the critical value tðP ¼ 95%; df ¼ 4Þ ¼ 2:776:
The test value F̂ of the Mandel test calculated by (5.3.4-1)

F̂ ¼ 5 � 0:0043812 þ 4 � 0:0046672
0:0046672

¼ 0:406

does not exceed the critical value FðP ¼ 95%; df ¼ 1; df ¼ 4Þ ¼ 7:709; and
therefore the quadratic regression model must be rejected.

2. The hypotheses for the check on the significant influence of the matrix are:

H0 : sy:x;add ¼ sy:x;c
H1 : sy:x;add > sy:x;c:

The test value F̂ is calculated by (5.7.6-3).

(continued)
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The null hypothesis H0 is rejected if the test value F̂ does not exceed the

one-sided critical F-value FðP ¼ 99%; dfadd ¼ nadd � 2; dfc ¼ nc � 2Þ:
The values of the residual standard deviation are sy:x;c ¼ 0:01611 and

sy:c;add ¼ 0:00438. Because in the example given sy:x;add is even smaller

than sy:x;c the null hypothesis is valid without the F-test.
3. Trueness test

The test for trueness is made by comparing the slopes a1;c and a1;add
according to (5.7.6-1) and (5.7.6-2):

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4 � 0:003851Þ2 þ ð5 � 0:001656Þ2

6þ 7� 4

s
¼ 0:002849

t̂ ¼ 0:09849� 0:10214j j
0:002849

�
ffiffiffiffiffiffiffiffiffiffiffi
6 � 7
6þ 7

r
¼ 2:298:

The test value t̂ does not exceed the critical value tðP ¼ 99%; df ¼ 9Þ ¼
3:25:
Thus, a proportional systematic error could not be confirmed at the chosen

significance level P ¼ 95%:
Note that information on a constant systematic error cannot be obtained by

this method.

5.7.7 Test by Method Comparison

Let us assume that a validated method has to be replaced by another method, for

example, the photometric determination of Cd by flame AAS, or that the vali-

dated method must be changed, for example, for another matrix or for a larger

working range; in all these cases a new validation or a revalidation must be

carried out.

In order to avoid this extensive validation procedure, comparison of the results

obtained by the new method and by the validated method is very useful. If no

differences between results obtained from the same real samples are detected, both

methods are equivalent and the old method can be substituted by the new method

for routine analysis. However, the study of relationships between two variables that

are measured quantities obtained by two methods requires regression methods that

take the error in both variables into account.

Up to now it has been assumed that only the response variable y is subject to error
and that the variable x ¼ c is known without error, but on comparison of paired
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results obtained by different methods the assumption that x is error-free is not

justified. If both variables are subject to error, model II regression techniques
must be applied. The regression analysis according to the model I regression
technique assumes that the independent variable is not subject to error. A special

application is the calibration which is described in Sect. 4.2.

Remember, in the ordinary least squares (OLS) regression method justified by

the requirement that the error in the x-values is neglected, the regression coeffi-

cients are estimated by minimizing
P

e2i , which is the sum of squares of the

distances between the data points and the regression line parallel to the y-axis
(see ei in Fig. 5.7.7-1).

However, if both variables are affected by random errors an unbiased estimation

of the regression coefficients is obtained by minimizing
P

d2i , which is the sum of

squares of the perpendicular distances from the data points to the regression line

(see di in Fig. 5.7.7-1). This method is called orthogonal distance regression
(ODR).

Although one can find various procedures using ODR, in all estimations the

covariances have to be considered. However, in the course of AQA the procedures

given in DIN 38402-71 [18] must be applied. There are some general requirements

in the application of this directive:

– There must be no significant difference between the precision of both analytical

procedures in matrix-free solutions, confirmed by an F-test.
– The data sets have to be free of outliers, confirmed by the Grubbs test, indepen-

dent of the size of the data set.

– One or more replicates are allowed, but the procedure has to be equivalent in

both methods.

– Agreement of the working ranges of both methods is not required because the

tests are carried out only by analytical results including the preparation of the

samples.
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DIN [18] emphasizes the evidence of the equivalence between analytical

results obtained by samples with the same matrix and samples with different
matrices. The individual steps of the procedure will be given in both cases. In

the following, the index “R” is used for the data which were obtained by the

reference procedure and “C” refers to data of the comparative or alternative

method.

(a) Check for equivalence of results obtained by one matrix
The requirement of this test method is the statistical equivalence of the preci-

sion of both methods in matrix-free samples, confirmed by an F-test. The proof
of equivalence of both methods is verified by a t-test of the analytical results

obtained by real samples with at least six replicates under repeatability condi-

tions.

The test parameters are calculated by (5.7.7-1)–(5.7.7-3).

1. Comparison of the precision in matrix-free solutions by an F-test
If the relative standard deviation of the comparative method sr;C is greater

than that of the reference method sr;R; then the significance is checked by the
F-test. If the test value calculated by

F̂ ¼ s2r;C
s2r;R

(5.7.7-1)

does not exceed the critical value FðP ¼ 99%; dfC ¼ dfR ¼ n� 2Þ, then the
precision of both analytical procedures is equal at the significance level

P ¼ 99%:
2. Check on the equivalence by means of real samples

An aliquot of a representative sample is analyzed by the comparative and

the reference method using at least six replicates. Each data set is checked

for outliers using the Grubbs test at the significance level P ¼ 95% (see

Sect. 3.2.3), whereby each data set may not have more than one outlier

which is to be rejected. The equivalence of the precision is checked by an

F-test according to (5.7.7-1) at the significance level P ¼ 99%. Note that

the variance of the comparative method is permitted to be smaller than

that of the reference method. After testing homogeneity of variances, the

mean values �xC and �xR obtained by the comparative and the reference

method, respectively, are checked by the mean value t-test according to

(5.7.7-2):

t̂ ¼ �xR � �xCj j
sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nR � nC
nR þ nC

r
: (5.7.7-2)

The pooled standard deviation is calculated by (5.7.7-3):
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sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnR � 1Þ � s2R þ ðnC � 1Þ � s2C

nR þ nC � 2

s
: (5.7.7-3)

Note that if the variance of the comparative method is smaller than that of

the reference method, then, instead of sp in (5.7.7-3), the larger standard

deviation of the reference method is used.

If the test value t̂ is smaller than the critical value tðP ¼ 99%;
df ¼ nR þ nC � 2Þ, the analytical results are assumed to be equal at the

significance level P ¼ 99%:
For a wide working range, the mean value t-test must be carried out at both

ends and in the middle of the working range, at the very least.

(b) Check for equivalence of results obtained by various matrices
After testing the equivalence of the relative standard deviations of both analyti-

cal methods with matrix-free solutions as described above, the check for

equivalence of analytical results obtained by both methods must be carried

out, either by orthogonal regression or by the difference method.

1. Using orthogonal regression

The requirements are as follows:

– At least n ¼ 30 real samples of various matrices and various concentra-

tions are analyzed by the reference and the comparative or alternative

method.

– For the highest analytical result obtained by the reference method, is

(5.7.7-4) valid if

5 � �xmin < �xmax < 100 � �xmin: (5.7.7-4)

If is �xmax < 5 � �xmin; then the difference method must be applied, and if

�xmax > 100 � �xmin the working range must be split.

– One or more replications may be done but the number of replicates must

be same in both methods.

– The quotient Qmc calculated by each pair of values

Qmc ¼ xC;i
xR;i

(5.7.7-5)

is tested by outliers using the Grubbs test (see Sect. 3.2.3)

r̂m ¼ Q�
mc � �Qmc

�� ��
sQmc

(5.7.7-6)
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with

�Qmc ¼
P

Qmc;i

n
(5.7.7-7)

and

sQmc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðQmc;i � �QmcÞ2
q

n� 1
: (5.7.7-8)

The test value r̂m is compared with the critical value rmðP ¼ 95%; nÞ. If
this value is smaller than the test value r̂m the suspect pair of values has

to be rejected, but more than one outlier in each data set is not allowed.

The regression coefficients are calculated by the outlier-free data set of

the pairs of values using the orthogonal regression method.

Slope:

a1 ¼ sC
sR

(5.7.7-9)

with the standard deviation of the data obtained by the comparative

method

sC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxC;i � �xCÞ2

n� 1

s
(5.7.7-10)

and the standard deviation of the data obtained by the reference

method

sR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxR;i � �xRÞ2

n� 1

s
: (5.7.7-11)

Intercept:

a0 ¼ �xC � a1 � �xR: (5.7.7-12)

Check for proportional systematic error:
The check is carried out by a w2-test.
The test value is calculated by
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ŵ2 ¼ n � ln s4 � s4RC
s2R � s2C � s4RC

� 	
(5.7.7-13)

with the geometric mean of the variances of the data obtained by the

reference and the comparative methods

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� s2R þ s2C
� �r

(5.7.7-14)

and the covariances

sRC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxR;i � �xRÞ � ðxC;i � �xCÞ

n� 1

r
; (5.7.7-15)

which can also be obtained by the Excel function ¼COVAR(Matrix 1,

Matrix 2). Note that there is a small difference between the values of the

covariance obtained by the Excel function and (5.7.7-15) because the

degrees of freedom (denomination) is n instead of n � 1.

The data follow a chi-square distribution with n> 20. Because the

critical value is w2ðP ¼ 95%; df ¼ 1Þ ¼ 3:8, a proportional systematic

error is confirmed at the significance level P ¼ 95% if the calculated

value ŵ2 is greater than 3.8.

Check for constant systematic error
A constant systematical error shifts the regression line parallel to the

angle bisector. This shift �D corresponds to the difference of the means.

The bias is:

�D ¼ �xC � �xR: (5.7.7-16)

The presence of a constant systematical error is checked by a t-test

t̂ ¼ j�xC � �xRj
sD

� ffiffiffi
n

p
(5.7.7-17)

with the standard deviation

sD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðDi � �DÞ2

n� 1

s
: (5.7.7-18)

If the test value t̂ is greater than the critical value tðP ¼ 99%;
df ¼ n� 1Þ a constant significant error is confirmed at the significance

level P ¼ 99%:

2. Using the difference method

The following conditions must be fulfilled:
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– There must be n � 30 pairs of values.

– One or more replicates are necessary but the number of replicates must

be the same for both methods. For each pair of values the difference Di is

calculated:

Di ¼ �xR;i � �xC;i: (5.7.7-19)

– For the highest analytical result �xmax is valid:

�xmax < 5 � �xmin (5.7.7-20)

– Only one pair of values may be rejected as an outlier confirmed by the

Grubbs test:

the test value r̂m is calculated by

r̂m ¼ D� � �Dj j
sD

(5.7.7-21)

with

�D ¼
P

Di

n
(5.7.7-22)

and

sD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Di � �Dð Þ2
n� 1

s
: (5.7.7-23)

The test value r̂m is compared with the critical value rmðP ¼ 95%; nÞ:
The suspect difference D�, which is either the highest or the lowest

value, is identified as an outlier if the test value is greater than the critical

value. This pair of values must be rejected from the data set. Note that

only one pair of values can be rejected as an outlier.

The check for the equivalence of the analytical results is performed by a

t-test. The calculated test value t̂

t̂ ¼ j �Dj
sD

� ffiffiffi
n

p
(5.7.7-24)

is compared with the critical value tðP ¼ 99%; df ¼ n� 1Þ. If the test

value t̂ exceeds the critical value, then the results are not equal and a

systematic error is present.
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Challenge 5.7.7-1

The validated photometric determination of nitrite-N in surface water accord-

ing to EU-Norm [4] should be replaced by ion chromatography (IC) [19].

Check whether both methods are equivalent by means of the analytical results

obtained by the reference method “photometry” and the comparative method

“IC” given in Tables 5.7.7-1 and 5.7.7-2.

The analytical error of the reference method determined in the

course of validation in the working range 0.025–0.25 mg L�1 is

sx:0 ¼ 0:001834 mgL�1N with mean value �x ¼ 0:15mgL�1 and df ¼ 8

degrees of freedom.

(continued)

Table 5.7.7-1 Analytical results of 32 samples of surface water obtained by the reference

method “photometry” and the measured peak areas A (yi) in counts using the alternative

method “IC”

Sample no. Photometry ci in mg L�1 N IC A in counts

1 0.206 69,977

2 0.053 16,954

3 0.119 37,478

4 0.151 55,832

5 0.221 80,814

6 0.076 23,202

7 0.176 62,969

8 0.232 82,343

9 0.214 79,284

10 0.046 15,555

11 0.106 32,889

12 0.185 69,597

13 0.123 41,047

14 0.134 45,125

15 0.241 87,951

16 0.140 52,263

17 0.063 21,673

18 0.216 78,264

19 0.157 71,637

20 0.081 23,202

21 0.059 16,065

22 0.193 72,656

23 0.203 71,127

24 0.102 36,458

25 0.070 21,673

26 0.157 59,401

27 0.095 34,929

28 0.090 33,909

29 0.238 83,363

30 0.140 51,243

31 0.064 19,124

32 0.206 77,755
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Calculate the concentration of nitrite-N using the regression parameters of

the alternative method calculated from the calibration data given in

Table 5.7.7-2.

Solution to Challenge 5.7.7-1

The regression parameters of the alternative method obtained from the data

given in Table 5.7.7-2 using Excel function LINEST are:

intercept a0;C ¼ �1; 399:57 counts,

slope a1;C ¼ 382; 375 counts Lmg�1;
residual standard deviation sy:x;C ¼ 944:48 counts:
The analytical error calculated by (4.5-9) is sx:0;C ¼ 0:00247 mgL�1: The

relative standard deviation of the alternative method is sr;C% ¼ 1:54 obtained
with �xC ¼ 0:16 mgL�1; and that of the reference method is sr;R% ¼ 1:22
calculated from the data given above.

1. Comparison of the precision of both methods in matrix-free solutions

The test value F̂ calculated by (3.3-1) is

F̂ ¼ 0:01542

0:01222
¼ 1:594: (5.7.7-25)

The critical value FðP ¼ 99%; df1 ¼ 5; df2 ¼ 8Þ ¼ 6:632 is greater than

the test value F̂; and therefore the precision in matrix-free solutions is

comparable.

2. Calculation of the analytical results obtained by the alternative method

The predicted values x̂i;C of the 32 samples determined by the alternative

method are calculated from the regression coefficients given above. The

results are presented in Table 5.7.7-3.

(continued)

Table 5.7.7-2 Calibration

data of the ion

chromatographic

determination of nitrite-N

Level ci in mg L�1 yi in counts

1 0.04 14,506

2 0.08 27,969

3 0.12 45,657

4 0.16 58,938

5 0.20 74,886

6 0.24 91,034

7 0.28 105,473
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3. Check for outliers in the data set of pairs of values

The quotients Qmc;i calculated by (5.7.7-5) are listed in Table 5.7.7-3. The

smallest quotient Qmc;min ¼ 0:7768 and the greatest Qmc;max ¼ 1:2182 are

checked as outliers by the Grubbs test. The test values calculated by (5.7.7-6)

with �Qmc ¼ 0:9444 and sQmc
¼ 0:08364 are r̂m;Qmc;min

¼ 2:004 and r̂m;Qmc;max
¼

3:273; respectively. Thus, the greatest quotient exceeds the critical value

rmðP ¼ 95%; n ¼ 32Þ ¼ 2:773: The pair of values number 19 is confirmed as

an outlier and it must be rejected from the data set. Further outliers are not

found, and therefore the test for equivalence can be carried out. The number

of samples is thus n ¼ 31:
(continued)

Table 5.7.7-3 Analytical results of surface water samples in mgL�1 obtained by the

reference and the alternative method and their quotients Qmc;i calculated by (5.7.7-5).

The values of sample number 19 (in italics) confirmed as an outlier are rejected from the

data for further calculations

Sample no. Photometry IC Qmc;i

1 0.206 0.187 0.9070

2 0.053 0.048 0.9022

3 0.119 0.102 0.8544

4 0.151 0.150 0.9899

5 0.221 0.215 0.9720

6 0.076 0.064 0.8510

7 0.176 0.168 0.9543

8 0.232 0.219 0.9424

9 0.214 0.211 0.9851

10 0.046 0.044 0.9597

11 0.106 0.090 0.8428

12 0.185 0.186 1.0047

13 0.123 0.111 0.9010

14 0.134 0.122 0.9053

15 0.241 0.234 0.9704

16 0.140 0.140 1.0024

17 0.063 0.060 0.9578

18 0.216 0.208 0.9663

19 0.157 0.191 1.2182
20 0.081 0.064 0.7924

21 0.059 0.046 0.7768

22 0.193 0.194 1.0024

23 0.203 0.190 0.9344

24 0.102 0.099 0.9688

25 0.070 0.060 0.8620

26 0.157 0.159 1.0141

27 0.095 0.095 0.9980

28 0.090 0.092 1.0306

29 0.238 0.222 0.9314

30 0.140 0.138 0.9834

31 0.064 0.054 0.8334

32 0.206 0.207 1.0059
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Because xmax;R ¼ 0:241> 5 � xmin;R ¼ 5 � 0:046 ¼ 0:23, orthogonal regres-
sion must be used for testing the results regarding equivalence.

4. Calculation of the regression coefficients

The orthogonal regression coefficients are calculated by (5.7.7-9)–(5.7.7-12)

using the outlier-free data sets of Table 5.7.7-3. The parameters are:

slope a1 ¼ 1.00281, intercept a0 ¼ 0:000378mgL�1 calculated with the

standard deviations sR ¼ 0:0633 mgL�1; sC ¼ 0:0635 mgL�1;

�xC ¼ 0:135 mgL�1; and �xR ¼ 0:142 mgL�1:
The function ccomparative ¼ f ðcreferenceÞ is shown in Fig. 5.7.7-2.

5. Check for proportional systematic error

The intermediate quantities for the calculation of the test value ŵ2 accord-
ing to (5.7.7-13) are summarized in Table 5.7.7-4. A proportional systematic

error is not detected because the test value ŵ2 is much smaller than the critical

value 3.8. Note that this result should be expected because the slope

a1 ¼ 1:00281 is close to 1.0.

6. Check for constant systematic error

The intermediate quantities for the calculation of the test value t̂ according
to (5.7.7-17) are also given in Table 5.7.7-4.

(continued)
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Fig. 5.7.7-2 The function ccomparative ¼ f ðcreferenceÞ after rejecting the outlier pair of sample

number 19
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The test value t̂ exceeds the critical value at the significance level

P ¼ 99%, which means that a constant systematic error is present. Thus,

the comparative method is not equivalent to the reference method, and the

photometric reference method cannot be replaced by the comparative IC

method without further tests.

Challenge 5.7.7-2

In a laboratory the determination of atrazine in seepage water is carried out by

a validated GC method. Information as to whether an analysis is generally

necessary because of elevated concentrations should be obtained by a quick

test, for which ELISA was chosen.

With ELISA, about hundred samples can be analyzed in less than an hour,

and it can therefore be used as a screening method in order to identify the

samples whose content must be determined again by the validated GC

method. In order to use ELISA, the test of trueness of this method must be

checked, which can be accomplished by checking the equivalence of the

ELISA method (the comparative method C) with the validated GC method

(the reference method R) on one matrix.

The analytical results of a split seepage water sample analyzed by both

methods are given in Table 5.7.7-5.

Using matrix-free samples the following results were obtained for testing

the precision of the methods.

(continued)

Table 5.7.7-4 Intermediate quantities for the calculation of the test values ŵ2 and t̂;
respectively

Parameter Equation Excel function Value

s2R (5.7.7-11) ¼VAR(R) 0.004003

s2C (5.7.7-10) ¼VAR(C) 0.004027

s (5.7.7-14) 0.063368

s2RC ¼COVAR(R,C) 0.003864

�xR ¼AVERAGE(R) 0.142

�xC ¼AVERAGE(C) 0.135P ðxR;i � �xRÞðxC;i � �xCÞ 0.119793

s2RC (5.7.7-15) 0.003993

ŵ2 (5.7.7-13) 0.003293
�D (5.7.7-16) �0.007217P ðDi � �DÞ2 0.007804

sD (5.7.7-18) 0.00695

t̂ (5.7.7-17) 6.002

tðP ¼ 99%; df ¼ 30Þ ¼TINV(1%,30) 2.750
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Reference method:

sr;R% ¼ 22:5;

dfR ¼ 8

Comparative method:

sr;C% ¼ 32:4;

dfC ¼ 6

Estimate whether the large values of the precision obtained in matrix-free

solutions can be accepted.

Check whether the comparative method ELISA is equivalent to the refer-

ence method GC.

Solution to Challenge 5.7.7-2

According to (5.4-2), the values of the relative standard deviations under

repeatability conditions lie at approximately 30% of the concentration in the

ppb-range (see Table 5.2-6). Therefore, the large values of sr% can be

accepted.

Because the precision of the comparative method is greater than that of the

reference method in matrix-free solutions, the homogeneity of precision of

the methods must be checked by an F-test according to (5.7.7-1). The test

value

F̂ ¼ s2r;C
s2r;R

¼ 32:4

22:5

� 	2
¼ 2:074 (5.7.7-26)

(continued)

Table 5.7.7-5 Predicted x̂ values obtained by a seepage water sample analyzed by the

reference method GC and the comparative method ELISA with ni replicates

ni Reference method R x̂i in ppb (w/w) Comparative method C x̂i in ppb (w/w)

1 5.25 3.29

2 3.03 4.64

3 3.82 3.02

4 4.58 3.25

5 3.11 4.21

6 4.52 3.32

7 3.13
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is smaller than the critical value FðP ¼ 99%; dfC ¼ 6; dfR ¼ 8Þ ¼ 6:371:
Thus, the precision of the methods checked with matrix-free samples is not

statistically different.

Next, the data sets must be checked for outliers using the Grubbs test. The

results are summarized in Table 5.7.7-6.

As Table 5.7.7-6 shows, no outlier is detected.

The equivalence test for one matrix is checked by a t-test. After checking
the homogeneity of the precision by an F-test, the test value t̂ is calculated by
(5.7.7-2) and (5.7.7-3).

The homogeneity of the variances is confirmed because the test value

calculated by (5.7.7-1) F̂ ¼ 0:538 is much smaller than the critical value

FðP ¼ 95%; dfC ¼ 5; dfR ¼ 6Þ ¼ 8:746: Thus, the t-test can be carried out.

The test value calculated by (5.7.7-2) with sp ¼ 0:78225 is t̂ ¼ 0:686: The
critical value tðP ¼ 99%; dfR þ dfCÞ ¼ 3:106 is greater than the test value t̂.
Thus, the comparative method ELISA is equivalent to the reference method

GC and can be used as a screening method for the determination of atrazine in

seepage water.

Challenge 5.7.7-3

The validated reference method for the photometric determination of Cd in

waste water, must be replaced by flame AAS because of the use of harmful

carbon tetrachloride. The equivalence of the comparative method should be

checked by orthogonal regression.

The check for homogeneity of precision of both methods in matrix-free

solutions is accomplished by the results obtained by the two calibration data

sets shown in Table 5.7.7-7.

(continued)

Table 5.7.7-6 Intermediate quantities and results for the Grubbs outlier test calculated by

(3.2.3-2)

Reference method R

�xR 3.920 sR 0.880

xmin;R 3.03 r̂m;R;min 1.011

xmax;R 5.25 r̂m;R;max 1.511

rmðP ¼ 95%; nR ¼ 7Þ 1.938

Comparative method C

�xC 3.622 sC 0.646

xmin;C 3.02 r̂m;C;min 0.932

xmax;C 4.64 r̂m;C;max 1.577

rmðP ¼ 95%; nC ¼ 6Þ 1.822
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Table 5.7.7-7 Data sets of absorbances measured with two replicates in matrix-free

solutions for the reference and comparative methods, respectively

Reference method R – Photometry

Standard c in mg L�1 A1,i A2,i

1 0.3 0.1502 0.1501

2 0.6 0.2427 0.2428

3 0.9 0.3579 0.3579

4 1.2 0.4778 0.4776

5 1.5 0.5811 0.5809

6 1.8 0.6907 0.6909

Comparative method C – Flame AAS

Standard c in mg L�1 A1,i A2,i

1 0.2 0.1336 0.1334

2 0.4 0.2784 0.2781

3 0.6 0.4001 0.4008

4 0.8 0.5417 0.5421

5 1.0 0.6782 0.6786

6 1.2 0.8141 0.8139

7 1.4 0.9539 0.9539

8 1.6 1.0667 1.0661

9 1.8 1.2115 1.2111

10 2.0 1.3599 1.3595

Table 5.7.7-8 Mean values of absorbances measured with two replicates of 30 real waste

water samples obtained by the reference and comparative methods, respectively

Sample no. Photometry Flame AAS

�AR;i
�AC;i

1 0.5702 0.9665

2 0.1718 0.2444

3 0.3436 0.5616

4 0.4277 0.7100

5 0.6104 1.0407

6 0.2303 0.3659

7 0.4935 0.8045

8 0.6397 1.0947

9 0.5922 1.0204

10 0.1836 0.2377

11 0.3107 0.5009

12 0.5154 0.8922

13 0.3546 0.5818

14 0.3838 0.6358

15 0.6416 1.1487

16 0.3984 0.6628

17 0.1974 0.2984

18 0.5958 1.0137

19 0.4423 0.7843

20 0.2449 0.3861

21 0.1864 0.2714

(continued)
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The values of the measured absorbance Ai of 30 waste water samples are

given in Table 5.7.7-8. The analytical results of the waste water samples are

calculated with the regression parameters obtained by the matrix-free cali-

bration solutions given in Table 5.7.7-7. Do not forget to test the linearity of

the regression functions by an appropriate method.

Check the equivalence of the comparative method with the reference

method and decide whether flame AAS can be applied for the determination

of Cd in waste water.

Solution to Challenge 5.7.7-3

First, let us determine the parameters of the linear regression function and test

the linearity.

The regression parameters must be calculated by the mean values of the

absorbances measured with two replicates listed in Table 5.7.7-7. Because no

twofold determinations were carried out except twofold measurement of the

absorbance, the mean value must be calculated for each standard given in

Table 5.7.7-9. Thus, the degrees of freedom are dfc;R ¼ 4 and dfc;C ¼ 8 for

the reference and comparative methods, respectively.

The parameters of the linear regression function calculated by Excel

functions are given in Table 5.7.7-10.

Note that it is not necessary to test the homogeneity of the precision

because the precision of the comparative method expressed as the relative

standard deviation sr;C% ¼ 1:04 is smaller than that of the reference method

sr;R% ¼ 1:85:
The Mandel test for checking linearity could be applied but this test

requires at least seven calibration standards, which is not the case in the

reference method. Therefore, the test for linearity of the reference method

is carried out by checking the significance of the quadratic regression

(continued)

Table 5.7.7-8 (continued)

Sample no. Photometry Flame AAS

�AR;i
�AC;i

22 0.5373 0.9057

23 0.5629 0.9597

24 0.2998 0.5009

25 0.2157 0.3456

26 0.4423 0.6223

27 0.2815 0.4536

28 0.2669 0.4199

29 0.6543 1.1352

30 0.3984 0.6493
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coefficient a2 (see Sect. 5.3.6). The required parameters a2 and sa2 are

obtained by Excel function LINEST. The test value calculated by (5.3.6-2)

t̂ ¼ a2
sa2

����
���� ¼ 0:00766

0:01422
¼ 0:539 (5.7.7-28)

does not exceed the critical value tðP ¼ 95%; dfR ¼ 3Þ ¼ 3:182; and thus a2
cannot be distinguished from zero. The linearity of the regression function of

the reference method is confirmed.

With nc;C ¼ 10, the linearity of the regression function of the comparative

method can by checked by the Mandel test (see Sect. 5.3.4). The residual

standard deviation of the quadratic regression function calculated by Excel

(continued)

Table 5.7.7-9 Data sets for

the calculation of the

regression parameters of the

reference and comparative

methods, respectively

Reference method R – Photometry

Standard c in mg L�1 �Ai

1 0.3 0.1502

2 0.6 0.2428

3 0.9 0.3579

4 1.2 0.4777

5 1.5 0.5810

6 1.8 0.6908

Comparative method C – Flame AAS

1 0.2 0.1335

2 0.4 0.2783

3 0.6 0.4005

4 0.8 0.5419

5 1.0 0.6784

6 1.2 0.8140

7 1.4 0.9539

8 1.6 1.0664

9 1.8 1.2113

10 2.0 1.3597

Table 5.7.7-10 Parameters of the linear regression function of the reference and compar-

ative methods

Parameter Reference method R Comparative method C

Intercept a0 0.03294 0.00150

Slope a1 in L mg�1 0.36550 0.67480

Residual error sy:x 0.00709 0.00773

Mean value of c �x in mg L�1 1.05 1.10

Analytical error sx:0 in mg L�1 0.01940 0.01145

sr in% 1.85 1.04

df 4 8
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function LINEST is sy:x;2 ¼ 0:008247: The test value F̂ ¼ 0:0233 calculated

according to (5.3.4-1) is much smaller than the critical value FðP ¼ 99%;
df1 ¼ 1; df2 ¼ 7Þ ¼ 12:246, which means that the assumed linearity is con-

firmed. Thus, the regression parameters can be used to calculate the analytical

results of the waste water samples which are presented in Table 5.7.7-11.

Because of the condition xmax < 5 � xmin for the reference and comparative

methods the difference method must be applied for testing the equivalence of

both methods. The differencesDi ¼ xR;i � xC;i calculated according to (5.7.7-
19) are given in Table 5.7.7-11.

Next, the differences Di have to be checked for an outlier by the Grubbs

test. According to the requirements of EURO-Norm, the data sets may not

include more than one outlier. The test values are calculated for the lowest

and highest Di-values jDminj ¼ 0:04 and jDmaxj ¼ 0:20; respectively, using

(continued)

Table 5.7.7-11 Analytical results given in mg L�1 of the waste water samples and the

difference of each pair of values Di ¼ DR;i � DC;i

Sample Method R Method C Di

1 1.47 1.43 0.04

2 0.38 0.36 0.02

3 0.85 0.83 0.02

4 1.08 1.05 0.03

5 1.58 1.54 0.04

6 0.54 0.54 0.00

7 1.26 1.19 0.07

8 1.66 1.62 0.04

9 1.53 1.51 0.02

10 0.41 0.35 0.06

11 0.76 0.74 0.02

12 1.32 1.32 0.00

13 0.88 0.86 0.02

14 0.96 0.94 0.02

15 1.67 1.70 �0.03

16 1.00 0.98 0.02

17 0.45 0.44 0.01

18 1.54 1.50 0.04

19 1.12 1.16 �0.04

20 0.58 0.57 0.01

21 0.42 0.40 0.02

22 1.38 1.34 0.04

23 1.45 1.42 0.03

24 0.73 0.74 �0.01

25 0.50 0.51 �0.01

26 1.12 0.92 0.20

27 0.68 0.67 0.01

28 0.64 0.62 0.02

29 1.70 1.68 0.02

30 1.00 0.96 0.04
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(3.2.3-2) with �D ¼ 0:0256 and the standard deviation obtained by Excel

function LINEST sD ¼ 0:040612 giving r̂m;Dmin
¼ 0:355 and r̂m;Dmax

¼
4:295: The critical value is rmðP ¼ 95%; n ¼ 30Þ ¼ 2:745, which means

that the highest difference Dmax ¼ 0:20 obtained by sample number 26 is

detected as an outlier at the significance level P ¼ 95%: After the

rejection of this pair of values, no other outliers can be detected. There-

fore, the data set can be used for the t-test. The test value calculated

according to (5.7.7-24) with sD ¼ 0:02418 obtained with the outlier-free

data set is t̂ ¼ 4:356: The critical value tðP ¼ 99%; df ¼ 28Þ ¼ 2:763 is

smaller than the test value t̂; and thus the comparative method is not

equivalent to the reference method at the significance level P ¼ 99%:
The photometric determination of Cd in waste water cannot be substi-

tuted by flame AAS.

5.7.8 Standard Addition Method

Direct calibration cannot be used to determine an analyte in a sample if it is

confirmed that the sample matrix interferes with the determination. The question

is: what can be done if a significant error has been detected?

There are some possibilities for elimating the influence of the matrix, for

example:

– Separation of matrix components or the analyte by means of solid-phase extrac-

tion (SPE) [20]

– Using solid-phase micro-extraction (SPME) techniques [21]

– Application of headspace GC (HS-GC) [22] for the determination of volatile

organic compounds

However, a potential solution to this problem is to apply the standard addition
method [23].

In the standard addition method small known concentrations of the analyte to be

determined are added to aliquots of the unknown samples. These spiked samples, as

well as the unspiked, are measured by the same procedure.

In AQA there are some requirements for the application of the standard addition

method [13]:

– In order to minimize expense, at least four stocked samples should be prepared

by aliquot concentration steps up to the final stocked sample whose concentra-

tion is about double the content of the analyte. Therefore, the approximate

concentration of the analyte must be known or it must be determined by the

direct calibration method.

– In order to change the matrix effects, the stocked volume should be small in

comparison to the sample solution and the volume of the sample must be the

same for all stock solutions.
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– Linearity and homogeneity of variances must be present over the working range.

– The unspiked sample is “stocked” with water up to the same volume as the

stocked solutions.

– For the unstocked and stocked samples, the measurement values y0; y1 to y4 are
determined and the blank ybl is also measured.

A typical plot of the stocked concentration as a function of the measured

response is shown in Fig. 5.7.8-1 with the stock calibration function

ŷ ¼ ŷ0 þ a1;add � x: (5.7.8-1)

The least squares regression line is obtained in the usual way and the content of

the analyte x̂ in the sample is obtained by extrapolating the line to the abscissa

(y ¼ 0). The negative intercept on the concentration axis corresponds to � x̂
adjusted by the blank ybl:

The predicted value x̂ is calculated by (5.7.8-2):

x̂ ¼ ŷ0 � ybl
a1;add

: (5.7.8-2)

Because the concentration of the sample was changed by filling up steps with the

volumeVadd, the change in the concentration must be considered using the volume

factor

x̂ ¼ ŷ0 � ybl
a1;add

� Vflask

Vsample

: (5.7.8-3)

.ˆˆ xa1,addy0y ×+=

ˆˆ xa1,addy0y ×+=

R
es

po
ns

e 
y i

x̂ )ˆ(xCI

ŷ0

Concentration xadd

0

ybl

Fig. 5.7.8-1 Graphical

illustration of the estimation

of the predicted value x̂ with
its confidence interval CIðx̂Þ
by the standard addition

method
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The confidence interval calculated at ŷ0 is calculated by (5.7.8-4):

CIðx̂Þ ¼ sy:x;add
a1;add

� tðP; df ¼ n� 2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ ŷ0 � �yð Þ2
a21;add � SSxx

s
: (5.7.8-4)

Because the matrix can also have an effect on the precision of the analytical

result, one should check whether the predicted value x̂ differs from the concentra-

tion x̂ ¼ 0: This is checked by calculation of the test value xp [13]:

xp ¼ 2 � sy:x;add
a1;add

� tð �Pone�sided; df ¼ n� 2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ ðyp � �yÞ2
a21;add � SSxx

s
(5.7.8-5)

with

yp ¼ ŷ0 þ sy:x;add � tð �Pone�sided; dfÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ �x2

SSxx

s
: (5.7.8-6)

Note that the symbols are the same as those explained in Sect. 4.2. The subscript

index add refers to the standard addition procedure.

If xp < x̂; then the obtained value x̂ is different from the concentration x ¼ 0 at

the chosen significance level P. However, for xp>x̂ the calculated value x̂ cannot be
significantly distinguished from x ¼ 0:

Challenge 5.7.8-1

Let us return to the determination of Cd in waste water by flame AAS. After

confirming a systematic error, the standard addition method was chosen as an

alternative method.

The measured value obtained by a representative sample was y ¼ 0:4401.
The regression coefficients determined by the calibration methods are

a0 ¼ 0:00015; and a1 ¼ 0:6748 Lmg�1: Clearly, these values are not correct
because the matrix changed the regression coefficients, but they can be used

in order to choose the range of the stock solutions.

In order to apply the standard addition method, five stock samples were

prepared as follows:

80 mL sample solution was added to five 100 mL volumetric flasks. The

volumes Vadd of a stock solution given in Table 5.7.8-1 were then added, the

flasks were filled with water and the absorbance A was measured. The stock

solution was prepared by dissolving 6.52314 mg CdCl2 in 1 L water.

The constants are MCdCl2 ¼ 183:3 gmol�1; MCd ¼ 112:4 u

The value of the blank was determined as ybl ¼ 0:0042:
(continued)
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Calculate the analytical result with the confidence interval of the waste

water sample, construct the calibration function with the confidence intervals,

and check whether the analytical result differs from zero.

Solution to Challenge 5.7.8-1

The concentration of the stock solution cstock calculated according to (4.5-1a)
is cstock ¼ 4 mgL�1 Cd: The added masses and the added concentrations are

given in Table 5.7.8-2.

Calculation of the regression parameters:

The regression coefficients and the intermediate quantities used for the

calculation of the predicted value x̂ with the confidence interval CIðx̂Þ calcu-
lated by appropriate Excel functions are summarized in Table 5.7.8-3.

The predicted value x̂ calculated by (5.7.8-2) is x̂ ¼ 0:3862 mgL�1:
Consideration of the volume factor fV according to (5.7.8-10) yields the

concentration of the analyte in the sample, which is 0:4828 mgL�1:
(continued)

Table 5.7.8-1 Added volumes Vadd of the stock solution for the preparation of the five

stocked calibration solutions

Calibration solutions Vadd in mL yi ¼ Ai

ADD1 0 0.3529

ADD2 4 0.4953

ADD3 8 0.6487

ADD4 12 0.7854

ADD5 16 0.9308

Table 5.7.8-2 Calibration data for the standard addition analysis

Calibration solutions madd in mg cadd in mg L�1 yi ¼ Ai

ADD1 0 0 0.3529

ADD2 0.016 0.16 0.4953

ADD3 0.032 0.32 0.6487

ADD4 0.048 0.48 0.7854

ADD5 0.064 0.64 0.9308

Table 5.7.8-3 Parameters of the linear regression function and the Excel functions used

a0;add ¼ ŷ0 ¼ 0:35344 ¼ INTERCEPT(yi, xi) a1;add ¼ 0:90369 Lmg�1 ¼ SLOPE(yi, xi)

sy:x;add ¼ 0:00404 ¼ STEYX(yi, xi) sx:0;add ¼ 0:00472 mgL�1 (5.2.9)

SSxx ¼ 0:2560mg2 L�2 ¼ DEVSQ(xi) sr% ¼ 1:40 (5.2.10)

�x ¼ 0:320mgL�1 ¼ AVERAGE(xi) �y ¼ 0:6426 ¼ AVERAGE(yi)

n ¼ 5 df ¼ 3

tðP ¼ 95%; dfÞ ¼ 3:182 ¼ TINV(5%, 3) tone�sidedð �P ¼ 95%; dfÞ ¼ 2:353 ¼ TINV(10%, 3)
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fV ¼ Vflask

Vsample

¼ 100 mL

80 mL
¼ 1:25: (5.7.8-10)

The confidence interval calculated by (5.7.8-4) and adjusted by the volume

factor is CIðx̂Þ ¼ 0:020719 mgL�1:
The test value xp calculated according to (5.7.8-5) and (5.7.8-6) with

the intermediate yp ¼ 0:3640 and considering the volume factor is xp ¼
0:02635 mgL�1: The test value is smaller than the predicted value x̂ which

means that x̂ is significant different from zero. Therefore, the analytical result

of the waste water sample c ¼ 0:483� 0:021 mgL�1 is valid.

The calibration line is shown in Fig. 5.7.8-2.

5.8 Limit of Detection and Limit of Quantification

These validation parameters are required by all regulatory agencies and guidelines

but they are important only in the analysis of samples with low concentration of

analytes, i.e. for trace analysis methods or for the determination of byproducts in

substances. Three meaningful analytical limits can be specified [24–27]:

1. The critical measurement value yc, is the lowest signal that can be detected with
reasonable certainty in a given analytical procedure.

2. The limit of detection (detection limit) xLD is the lowest concentration of the

analyte that can reliably be detected with a specified level of significance.

3. The limit of quantification (limit of determination; quantitation limit) xLQ is

defined as the lowest concentration at which the measurement precision will be

satisfactory for quantitative determination.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

–0.7 –0.5 –0.3 –0.1 0.1 0.3 0.5 0.7

A

c  in mg L–1 

Fig. 5.7.8-2 Calibration line of the standard addition method for the determination of Cd

in waste water

206 5 Validation of Method Performance



The statistical fundamentals of yc and xLD are illustrated by Fig. 5.8-1, which

shows a three-dimensional representation of the relationship between measured

values and analytical values, characterized by a straight calibration line y ¼
a0 þ a1x; its two-sided confidence interval, and the probability density function

of the measured values pðyÞ in the z-direction [25, 26]. As Fig. 5.8-1 shows, there

are different definitions of the limit of detection xLD, which must be explained.

Firstly, let us consider the blank measurement. The blank is the measured

response of a sample which does not contain the analyte. The observations obtained

by a sufficiently large number of replicates will be normally distributed, which is

shown as the distribution A in Fig. 5.8-1. The critical value yc represents the

smallest measurement value that can be distinguished from that of the blank ybl at
a given significance level P

yc ¼ �ybl þ k sbl; (5.8-1)

where �ybl is the mean of repeated blank measurements, sbl the standard deviation

of the blank measurements, and k a constant specified by the user. For example, a

value of k ¼ 3 corresponds to a probability of a ¼ 0:0013 that a signal larger than

yc is due to a blank; thus an analyte is detected with the high probability

1� a ¼ 0:9987. Consequently, the probability of deciding that the analyte is

present when in fact it is absent, i.e. the false positive error a, is small. The a
error is the area marked in black at the tail of the probability density function in

Fig. 5.8-1 (A). In other words, the probability of measuring a blank signal which is

higher than yc is equal to a.

x(A) = 0 x(B) = xLD (DIN) x(C) = xLD (IUPAC)

xa1a0y +=

ucl

lcl

x

p(
y)

A

B

C

b

a

y

blya0 »
yc

Fig. 5.8-1 Three-dimensional representation of the calibration function y ¼ a0 þ a1 x with the

limits of its two-sided upper confidence limit (ucl) and lower confidence limit (lcl) and three

probability density functions pðyÞof measured values y belonging to the analytical values

xA(A),xB(B), and xC(C). The symbols are explained in the text

5.8 Limit of Detection and Limit of Quantification 207



However, if a signal is measured which is lower than yc it cannot be concluded
with the same significance that the analyte is not present. This is better illustrated in

Fig. 5.8-2 (B) which represents the distribution of an infinite number of repeated

measurements of a sample with a true concentration corresponding to an average

response to yc. As Fig. 5.8-2 shows, 50% of the signal observed for the analyte are

smaller than the limit concentration yc.
Thus, the statement that the analyte is absent if the measured response is smaller

than yc can be made only at the probability 50%. This is the so-called b error, which

is the probability of false negative decisions. Consequently, the risk of deciding that

the analyte is present when in fact it is absent, i.e. the a error, is small, whereas the

probability of deciding that the analyte is absent when in fact it is present, i.e. the b
error, is large. This is the situation if xB is defined as the limit of detection, defined

as “Nachweisgrenze” in the German DIN [26], using the response yc for the

calculation of the limit of detection.

In order to reduce the b error, distribution B in Fig. 5.8-2 must be shifted to a

larger response. If the distance between the average of the blank �xbl and that of the

shifted distribution is 2 � k � sbl, then the a and b errors are equal, which is the

situation in distribution C shown in Fig. 5.8-1 or better in Fig. 5.8-3.

The value xC is defined as the limit of detection according to ISO [27] and

IUPAC [28]. Consequently, the risk for both false positive (a) and false negative (b)
results is very small.

For k ¼ 3 and a ¼ b ¼ 0.0013, (5.8-1) yields for the response

yc ¼ �ybl þ 2 � ð3 sblÞ ¼ �ybl þ 6 sbl; (5.8-2)

which corresponds to the limit of detection.

p(
y)

bly cy

yab

A B

Fig. 5.8-2 Illustration of the

limit of detection according to

DIN [26]

p(
y)

y

CA

ab

ybl yc yC

Fig. 5.8-3 Illustration of the

limit of detection according to

ISO [27] and IUPAC [28]
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Note that the limit of detection according to ISO corresponds to the parameter

“Erfassungsgrenze” in the German DIN [26], which does not have an equivalent in

the ISO [27] and IUPAC[28] definitions.

It is essential to know which of the different definitions is used when document-

ing the limit of detection.

Two methods can be used in order to determine the critical value experimentally:

1. From replicates of the blank

yc ¼ �ybl þ sbl � tð �P; dfÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ 1

nr
;

r
(5.8-3)

where n is the number of the blanks, nr is the number of repetition measurements,

tð �P; dfÞ is the critical t-value at the chosen one-sided significance level �P; and the

degrees of freedom df ¼ n� 1.

2. From the calibration

yc ¼ a0 þ Da0 ¼ a0 þ sy:x � tð �P; dfÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ 1

nr
þ �x2

SSxx
;

s
(5.8-4)

where Da0 is the confidence interval of the intercept a0; sy:x is the calibration error,
�x is the mean value of the calibration standards, and SSxxis the sum of squares of the

x-values.
To estimate the limit of detection xLD the critical value has to be converted into a

concentration value

xLD ¼ D
Sens

; (5.8-5)

where D is the uncertainty, which is yc � a0 in the calibration method and yc � ybl
in the blank measurement method, and Sens is the sensitivity, which is equivalent to

the slope of the calibration line a1: Equations (5.8-1) and (5.8-5) give (5.8-6) with

k ¼ 3 using the limit of detection in the blank measurement method:

xLD ¼ k � sbl
Sens

: (5.8-6)

If the calibration method is used, the limit of detection can be calculated by (5.8-7)

xLD ¼ s0:x � tð �P; dfÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ �x2

SSxx
;

s
(5.8-7)
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in which so:x is the analytical error and n is the number of calibration standards, and

all other symbols are explained above.

It should be noted that official regulations [26] and commercial software

packages, for example SQS [29], often use (5.8-2) which corresponds to xB in

Fig. 5.8-1 for estimating the detection limit. We will adhere to this standard by

using the same equation in this book too. According to (5.8-2), the value of xLD
determined by DIN can be easily converted into the ISO definition by multiplying

by 2.

Additionally, the detection limit can be calculated from repeated measurements

of a peak on a noisy baseline. This so-called signal-to-noise (S/N) method can only

be applied to analytical procedures which exhibit baseline noise, e.g. chromatogra-

phy. Determination of the S/N ratio is performed by comparing measured signals

from samples with low concentrations of the analyte with those of blank samples

and establishing the minimum concentration at which the analyte can be reliably

detected; an S/N ratio between 3:1 and 2:1 is generally considered acceptable for

estimating the detection limit [27, 28]. The signal-to-noise method is illustrated in

Fig. 5.8-4.

It should be emphasized that the values of the detection limit determined by

various methods are not comparable and differences up to a factor of 10 are possible

[30]. Therefore, it must be specified which method has been used for the determi-

nation of the detection limit.

When using the calibration method, calibration standards with low concentra-

tions must be used to determine the limit of detection. However, there are some

limits on the concentration range of the calibration standards. The highest concen-

tration xn must be not greater than ten times the limit of detection [26]; this is

necessary to achieve homogeneity of variances. The method commonly used to

determine the homogeneity of the variances – comparing the variances of the data

sets for ten replicates of the lowest concentration standard and ten of the highest

concentration standard using an F-test (see Sect. 5.5) – is not applicable in this case

3 sn
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Fig. 5.8-4 The signal-to-

noise method for the

determination of the detection

limit of the analyte a
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since the variance measured near concentration x � 0 is very high. Because the

homogeneity of the variances cannot be measured experimentally, the calibration

standards must lie within a relatively narrow range of concentrations near the limit

of detection. If xn exceeds the value 10 � xLD, the highest calibration standard xn
must be rejected, but if more than two standards are rejected a new calibration set

with smaller concentrations is necessary.

In addition, the regression line must be tested for linearity and the absence of

outliers, which can be done by inspection of the residuals or by methods explained

above.

The limit of quantification yLQ (“Bestimmungsgrenze” in German) is the para-

meter with which the analyte can be determined quantitatively with a particular

user-specified precision. Therefore, in contrast to the detection limit, the limit of

quantification is a conventionally defined measure and depends on how precisely

the analyte has to be determined. The precision of the result at the quantification

limit is usually expressed in multiples k of the uncertainty yLQ=DyLQ ¼ k and is

specified by the user in advance.

For a given k, the limit of quantification xLQ is calculated according to (5.8-8)

xLQ ¼ k s0:x � tðP; dfÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

nc
þ k xLD � �xð Þ2

SSxx

s
; (5.8-8)

in which P is the two-sided significance level. In general, the factor k ¼ 3:03 is used
which corresponds to the uncertainty 33%.

Regulatory guidelines such as ICH [31] also recommend the determination of

the limit of quantification based on the standard deviation of the blank, which is

calculated according to (5.8-5) by (5.8-9):

xLQ ¼ 10 � sbl
Sens

: (5.8-9)

The factor k ¼ 10 in (5.8-1) is also recommended by IUPAC [28] for the

calculation of the limit of quantification according to the blank method.

A quick method for the evaluation of xLD is given in [26] using (5.8-10) for

the estimation of the limit of detection on the basis of the standard deviation of

the analytical method sx, 0. The factors Fn for various replicates n are listed in

Table 5.8-1.

xLD ¼ 1:2 � FnðPÞ � sx:0: (5.8-10)

Multiplication of the estimated value of xLD by ten provides the highest calibra-

tion standard for the direct determination of the detection limit as a starting point for

an appropriate choice of the calibration range.
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Challenge 5.8-1

(a) The limit of detection for the photometric determination of nitrite-N must

be determined based on the standard deviation of the blank. The mea-

surement of the magnitude of analytical background response was

performed by 18 replicates of solutions prepared with all solvents and

reagents which are used for the analytical method.

The values of the measured absorbance A are:

0.00035 0.00031 0.00024 0.00046 0.00037 0.00051

0.00034 0.00028 0.00042 0.00212 0.00033 0.00029

0.00041 0.00038 0.00029 0.00036 0.00021 0.00028

The sensitivity of the method was determined by calibration with the

results given in Table 5.8-2.

What is the limit of detection xLD in the photometric determination of

nitrite-N?

(b) The analytical method is to be validated for the determination of nitrite-N

in waste water. The lowest concentration cl which has to be determined is

assumed to be cl ¼ 0:4 mg L�1:

Check whether the limit of quantification estimated by this procedure

permits the use of photometric determination.

Table 5.8-1 Factors Fn for

the calculation of the limit of

detection at the significance

levels P ¼ 95% and P ¼ 99%
according to the quick

method for n repeated

measurements [26]

n FnðP ¼ 95%Þ FnðP ¼ 99%Þ
4 2.8 5.1

5 2.3 4.1

6 2.2 3.6

7 2.1 3.4

8 2.0 3.2

9 2.0 3.1

10 1.9 3.0

11 1.9 2.9

12 1.9 2.9

Table 5.8-2 Calibration data

of the photometric

determination of nitrite-N

Level i ci in mg L�1 Ai

1 0.017 0.05256

2 0.034 0.10952

3 0.049 0.16085

4 0.065 0.21024

5 0.081 0.26342

6 0.097 0.31862
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Solution to Challenge 5.8-1

(a) In order to calculate the standard deviation, the data must be checked for

normal distribution by the David test (Sect. 3.2.1) and for outliers by the

Dixon test (Sect. 3.2.3). The results are:

Test for normal distribution

Test value calculated by (3.2.1-1): q̂r ¼ 4:49
Lower critical value for P ¼ 95%; n ¼ 18 : 3.10

Upper critical value for P ¼ 95%; n ¼ 18 : 4.37

The test value is not included by the limit values. Strictly speaking, the

data cannot be assumed as normally distributed. But the difference

between the test and the upper limit values is only small.

Test for outliers
The following equation must be applied for n ¼ 18 in order to test if the

suspected value A ¼ 0:00212 is an outlier:

Q̂ ¼ x�1 � x3
x�1 � xk�2

����
���� ¼ 0:00212 � 0:00046

0:00212 � 0:0028
¼ 0:902: (5.8-11)

The critical value QðP ¼ 95%; n ¼ 18Þ ¼ 0:475 is smaller than the test

value Q̂, and therefore the measured value A ¼ 0:00212 must be rejected

from the data set. Further outliers cannot be identified.

Estimation of the limit of detection xLD
The mean value of the blank obtained by the outlier-free data set is

�xbl ¼ 0:000343 and its standard deviation is sbl ¼ 0:0000781: The criti-

cal value yc calculated by (5.8-1) with k ¼ 3 is yc ¼ 0:000577: The
conversion into concentration units is done using (5.8-6). The required

sensitivity is the slope a1 of the recovery function which is calculated by

the data set given in Table 5.8-2. The parameter a1 is obtained by Excel

function ¼SLOPE(yi, xi) to give a1 ¼ 3:30596 Lmg�1: Thus, the detec-
tion limit is xLD ¼ 0:0000709 mgL�1 ¼ 0:0709 mg L�1:

(b) The limit of quantification xLQ must be smaller than the threshold concen-

tration c ¼ 0:4 mg L�1: The limit of quantification obtained by (5.8-6)

with the factor k ¼ 10 and the other values given above is xLQ ¼
0:236 mgL�1: The limit of quantification is smaller than the threshold

concentration, and therefore the method may be used in routine analysis

according to the validation parameters “limit of quantification”.

Challenge 5.8-2

A laboratory must introduce the determination of phosphate in waste water,

for which photometric determination should be used according to DIN EN

(continued)
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ISO 6878 [33]. The method is based on the measurement of the absorbance at

l ¼ 710 nm of phosphorus molybdenum blue produced by the reduction of

phosphorus molybdenum heteropolyacid by ascorbic acid.

(a) The determination of the limit of detection was begun with calibration

data set 1, which was prepared as follows:

A stock solution 1 (SSL 1) was prepared by dilution of 5 mL of a

commercial solution with phosphate content 0:1 gL�1 into 100 mL.

The volumes of the stock solution VSSL,1 given in Table 5.8-3 were

pipetted into five 25 mL volumetric flasks, 2 mL molybdenum reagent and

1 mL 10% (m/V) ascorbic acid were added to each, the flasks were filled with

water and, after 20 min, the absorbance A was measured. The results are

presented in Table 5.8-3.

A second calibration data set was prepared with the same procedure using

a stock solution 2 (SSL 2) with phosphate content 0:5mgL�1. The prepara-

tion of the calibration standard solutions and the measured values of the

responses are given in Table 5.8-4.

What value does xLD have in the photometric determination of phosphorus?

Estimate the limit of detection by the quick method. Which highest

calibration standard should be used for the determination of xLD?

(b) Next, the analytical result (mean value with the confidence interval) of a

sample with small amounts of phosphate must be calculated from the

(continued)

Table 5.8-3 Calibration set 1 for the determination of the limit of detection for the

photometric determination of phosphorus

Standard VSSL;1 in mL A

1 1 0.03351

2 4 0.15657

3 8 0.28326

4 12 0.42251

5 16 0.58350

Table 5.8-4 Calibration set

2 for the determination of

the limit of detection for the

photometric determination

of phosphorus

Standard VSSL;2 in mL A

1 0.4 0.00134

2 0.6 0.00228

3 0.8 0.00305

4 1.0 0.00365

5 1.2 0.00419

6 1.4 0.00537

VSSL;2 is the volume of stock solution 2 which was

pipetted into 25 mL volumetric flasks, A is the measured

absorbance
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measurement of two replicates: A1 ¼ 0:02218 and A2 ¼ 0:02368: The
data set of the calibration is given in Table 5.8-5. Because the predicted

value �̂x must be greater than the limit of quantification, the value of xLQ
has to be determined using the data set of calibration standards given in

Table 5.8-4.

Determine the analytical result �̂x� D �̂x mgL�1 phosphate and check

whether the analytical result is greater than the limit of quantification for a

33% uncertainty according to the requirement

xLQ < �̂x� CIð �̂xÞ:

Solution to Challenge 5.8-2

(a) The concentration of the stock solution SSL 1 is

cSSL;1 ¼ 0:1 gL�1 � 5mL

100 mL
� 1; 000 ¼ 5 mgL�1: (5.8-12)

The concentrations of the calibration solutions calculated by

ci ¼ VSSL;1 mL � 5 mgL�1

25 mL
(5.8-13)

with the volumes of SSL 1 VSSL;1 given in Table 5.8-3 are listed in Table 5.8-6.

The regression parameters obtained by appropriate Excel functions are

presented in Table 5.8-7.

The detection limit calculated by (5.8-7) is xLD ¼ 0:177 mgL�1; but the
highest concentration level c5 ¼ 3:2 mgL�1 is greater than 10 � xLD ¼
1:77 mgL�1: Because the working range exceeds the required limit, the

determination must be repeated with a new calibration data set, which is

given in Table 5.8-4.

(continued)

Table 5.8-5 Calibration data

set for the photometric

determination of phosphorus

Standard ci in mgL�1 Ai

1 0.20 0.03986

2 0.25 0.04763

3 0.30 0.05897

4 0.35 0.06702

5 0.40 0.07505

6 0.45 0.08752

7 0.50 0.09487
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The concentrations calculated according to (5.8-13), but with the new

stock solution SSL 2 with cSSL;2 ¼ 0:5 mgL�1; are given in Table 5.8-8.

The regression parameters obtained by appropriate Excel functions are

summarized in Table 5.8-9.

The detection limit xLD ¼ 0:0031 mgL�1 can be accepted because the

highest concentration level c5 ¼ 0:028 mgL�1 is smaller than the limit value

10 � xLD ¼ 0:030 mgL�1:
The limit of detection estimated according to (5.8-10) with sx:0 ¼

0:000938 mg L�1 and the factor Fn¼6ðP ¼ 95%Þ ¼ 2:2 obtained by

Table 5.8-1 is xLD ¼ 0:0025 mg L�1, which is within the range of the

exact value. Thus, the highest calibration standard for the exact determi-

nation of xLD should be 0.025 mg L�1, which is in good agreement with the

standard used.

(b) The regression parameters obtained by appropriate Excel functions using

the data set in Table 5.8-5 are given in Table 5.8-10.

The predicted value x̂ and its confidence interval CIðx̂Þ calculated by

(4.2-15)–(4.2-17) using the measured mean value �̂A ¼ 0:02293 is 0:1120�
0:0204 mgL�1:

(continued)

Table 5.8-6 Calibration data

set 1 for the determination of

the limit of detection

Standard ci in mg L�1 Ai

1 0.2 0.03351

2 0.8 0.15657

3 1.6 0.28326

4 2.4 0.42251

5 3.2 0.58350

Table 5.8-7 Regression

parameters obtained from

calibration data set 1

a0 0.00132 a1 in Lmg�1 0.17960

sy;x 0.01049 s0:x in mgL�1 0.05838

�x in mgL�1 1.64 SSxx in mg�2 L�2 5.7920

n 5 df 3

sr% 3.56 tð �P ¼ 95%; dfÞ 2.353

Table 5.8-8 Calibration data

set 2 for the determination of

the limit of detection

Standard ci in mg L�1 Ai

1 0.008 0.00134

2 0.012 0.00228

3 0.016 0.00305

4 0.020 0.00365

5 0.024 0.00419

6 0.028 0.00537
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The limit of quantification calculated by (5.8-8) at 33% uncertainty

(k ¼ 3.03) is xLQ ¼ 0:0857 mgL�1: The lower value x̂lower ¼ 0:1120�
0:0204 mgL�1 ¼ 0:0917 mgL�1 is higher than the quantification limit,

which means that the analytical result is valid.

Challenge 5.8-3

The chromatogram covering the peak of the analyte As(III) with concentra-

tion c ¼ 0:8 mgL�1 obtained by HPLC-ICP-MS is given in Fig. 5.8-5.

Determine the limit of detection.

Table 5.8-10 Regression parameters obtained from the calibration data given in Table 5.8-5

a0 0.00205 a1 in Lmg�1 0.18635

sy;x in 0.00122 df 5

�x in mgL�1 0.35 SSxx in mg�2 L�2 0.07

s0:x in mgL�1 0.00657 sr in % 1.88

�y 0.06727 tðP ¼ 95%; dfÞ 2.571
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Fig. 5.8-5 Section of the HPLC-ICP-MS chromatogram of a solution with analyte con-

centration c ¼ 0:4 mg L�1As(III)

Table 5.8-9 Regression

parameters obtained from

calibration data set 2

a0 �0.000091 a1 in Lmg�1 0.189143

sy;x 0.000177 �x in mgL�1 0.018

SSxx in mg�2 L�2 0.00028 df 4

sx:0 in mg L�1 0.000938 sr in % 5.21

tðP ¼ 95%; dfÞ 2.776

tð �P ¼ 95%; dfÞ 2.132

5.8 Limit of Detection and Limit of Quantification 217



Solution to Challenge 5.8-3

The limit of detection is determined by the signal-to-noise procedure accord-

ing to (5.8-6) and (5.8-5).

Although in practice the value of S/N is given by the software package of

the equipment, the standard deviation may also be obtained by the graphical

method shown in Fig. 5.8-6.

The standard deviation of the noise obtained from the distance a in

Fig. 5.8-5 is 29 cps, therefore, the critical value (distance b) is 87 cps.

The sensitivity used for calculating the limit of detection according to

(5.8-5) is determined by the height c of the analyte peak, c ¼ 163 cps,

which corresponds to 0.8 mg L�1. Therefore, the limit of detection calculated

by the S/N method is xLD ¼ 0:43 mg L�1:

5.9 Robustness, Ruggedness

The robustness of an analytical method is, according to ICH [3], “a measure

of its capacity to remain unaffected by small, but deliberate variations in

method parameters and provides an indication of its reliability during normal

usage”.

The United States Pharmacopoeia [33] used the term ruggedness which is “the

degree of reproducibility of test results obtained by the analysis of the same sample

under a variety of conditions such as different laboratories, different analysis,

different instruments. . . Ruggedness is a measure of reproducibility of test results

under the variation in conditions normally expected from laboratory to laboratory
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Fig. 5.8-6 Standard deviation of the noise sn and the critical value 3sn represented as a

dashed line in the HPLC-ICP-MS chromatogram
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and analyst to analyst”. Thus, the ICH definition of robustness is related to intra-
laboratory influences whereas the ruggedness refers to inter-laboratory studies.

However, in general, ruggedness is also used for intra-laboratory studies.

Robustness is not given explicitly in the list of required validation parameters,

but it is recommended as part of method development to establish the critical

measurement parameters. It should show the reliability of an analysis with respect

to deliberate variations in method parameters [3]. The aim of the robustness test is

to find the method parameters that might lead to variations in the results when

measurements are carried out under (small) different conditions such as different

times or different laboratories.

Common critical parameters can be caused by sample preparation and by

measurement conditions. Thus, critical parameters of HPLC relate to the column

type (for example, RP-18 available from various producers; altering, etc.), mobile

phase (percent organic component in the RP method, pH, and additives), and

instrument parameters (dwell volume, flow rate, column temperature, etc.).

A check for ruggedness is made to verify that the method performance is not

affected by typical changes in normal experiments or, if influences on the para-

meters exist, which parameters are critical. If this is the case, a precautionary

statement needs to be included in the procedure to ensure that these parameters

are tightly controlled between experiments. The parameters used for testing

should reflect typical day-to-day variations. Guidance for robustness/ruggedness

tests is given in [34].

Principally, ruggedness can be tested by considering each effect separately, but

this procedure would require a large number of experiments [35, 36]. Therefore,

ruggedness is tested by using a factor design in which several parameters are

varied at the same time. Because the total number of experiments n ¼ 2k for a

two-level design strongly increases with the factor k, a fractional factor design

is used.

The fractional factor design according to Plackett–Burman considers only the

main effects and neglects all interactions between the effects. Plackett–Burman

designs are used for screening experiments because main effects are, in general,

heavily confounded with two-factor interactions.

The first step in the Plackett–Burman experimental design [36] is the choice of

the parameters (factors) to be studied. Each parameter is assigned to one of two

levels. The first level is identical with the “normal” parameters which are optimized

in the course of method development. The second-level parameters are different

from the first, which may be higher or lower.

An alternative approach is to take the extremes of the range over which the

normal parameters can possibly vary. The lower limit is indicated by “�” and the

upper one by “þ”. The experimental design for k factors, most simply obtained

from software packages, is ordered in a matrix. Note that the number of experi-

ments must be divisible by four.

To investigate the effect of a parameter, the difference D between the averages of

the results obtained with the parameter is calculated at both alternative levels or the

normal level and the alternative level, respectively. Next, the absolute values of the
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differences are ordered according to their size. The greater the value, the larger the

effect of this parameter. However, to decide whether the parameter indeed has an

effect, a statistical test is necessary.

The test value is the critical difference calculated by 5.9-1:

D̂crit ¼ s � tðP; dfÞffiffiffi
2

p : (5.9-1)

The expected precision of the method is given as the standard deviation

s obtained by previous experiments in the course of method development with

the degrees of freedom df. The effect of a parameter is statistically significant at

the significance level P if its difference D exceeds the test value D̂crit:
As example, let us suppose that we have developed a HPLC method for the

determination of the assay of a drug. The performance of the HPLC method

fulfils the conditions of separating the compounds by a sufficient resolution

to enable the determination of a correct assay. But the question is, do small

variations of the parameters, e.g. the pH of the mobile phase or the temperature of

the column, significantly diminish the performance of the method such that

correct analytical results cannot no longer be obtained. This question must be

answered by the test for robustness, for which the following steps should be

carried out:

l Choose the critical parameters which are to be tested (pH, additives, percentage

of the organic component of the mobile phase, flow rate, column temperature,

etc.)
l Specify the upper limit values (“þ” level) and the lower limit values (“�” level)
l Construct the array of a Plackett–Burman design, e.g. four factors and eight

experiments
l Carry out the experiments according to the design
l Calculate the factors having effects, e.g. the resolution of some peaks obtained

from the HPLC chromatogram
l Calculate the differences between the averages of the result obtained with the

parameter at both alternative levels or the normal level and the alternative level,

respectively
l Evaluate the effects statistically.

A test for robustness of a HPLC method is presented in the next Challenge.

Challenge 5.9-1

For the determination of assay and purity of tamoxiphen-dihydrogene-citrate

in tablets, a HPLC method was developed which sufficiently separates the

API Z-isomer (Z) from the byproducts E-isomer (E), bis-tamoxifen (B), and

des-methyl-tamoxiphen (D) under the conditions [37] given in Table 5.9-1.

(continued)
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A HPLC chromatogram obtained under the optimal conditions is shown in

Fig. 5.9-1.

The chosen limit values of the various parameters are given in Table 5.9-2

and the experimental design (obtained by the software package Statistica®) is
presented in Table 5.9-3.

The HPLC chromatograms obtained under the varied conditions are

shown in Fig. 5.9-2 and the resolutions Rs, the critical value for correct

results, are given in Table 5.9-4. The resolution of the pair of the API

(Z-tamoxifene) and the adjacent peak (bis-methyltamoxifene) Rs(Z/B)

(bold type) is the most important parameter for determining the assay of

the drug. Therefore, only this parameter will be considered in the following

discussion.

(continued)

Z

B

E
D

t in min

650.0

600.0

550.0

500.0

450.0

400.0

350.0

300.0

250.0

200.0

2.
0

2.
14

7
2.

67
7

3.
11

3

4.
67

0

4.
06

3
9.

59
0

5.
40

0

3.
0

4.
0

5.
0

6.
0

R
es

po
ns

e 
in

 m
V

Fig. 5.9-1 HPLC

chromatogram of the API Z-
tamoxifene (Z) and the

byproducts, E-tamoxifene

(E), bis-methyltamoxifene

(B), and des-
methyltamoxifene (D)

obtained under the optimized

(“normal”) experimental

condition given in

Table 5.9-1[37]

Table 5.9-1 Optimal conditions for the HPLC separation of Z-tamoxifen from its

byproducts

Column UltraSep ES Pharm RP8

Mobile phase Water/acetonitrile (ACN), 88% (v/v) ACN

pH of the mobile phase 7.3

Column temperature 35	C
Flow rate 1 mL min�1

5.9 Robustness, Ruggedness 221



Note that the first experiment, for example, was carried out under the

conditions pH ¼ 7.0, 86% (v/v) ACN, temperature ¼ 30	C, and flow rate ¼
0.8 mL min�1, the second experiment with pH ¼ 7.6, 86% (v/v) ACN,

temperature ¼ 30	C, and flow rate ¼ 1.2 mL min�1, and so on.

Evaluate the influence of the HPLC parameter chosen on the resolution of

the peaks of the pair of substances Z-isomer, which is the API, and its

adjacent peak bis-methyltamoxifene (B).

The values of the resolution Rs(Z/B) determined in previous experiments

are:

2.41 2.27 2.29 2.30 2.41 2.25 2.24 2.31 2.22

Table 5.9-3 Experimental design for four factors and eight experiments as well as the

normal and varied HPLC conditions

Experimental design

No. pH value % (v/v) ACN Temperature Flow rate

1 �1 �1 �1 �1

2 þ1 �1 �1 þ1

3 �1 þ1 �1 þ1

4 þ1 þ1 �1 �1

5 �1 �1 þ1 þ1

6 þ1 �1 þ1 �1

7 �1 þ1 þ1 �1

8 þ1 þ1 þ1 þ1

HPLC conditions

(�) Limit 7.0 86 30 0.8

Normal 7.3 88 35 1.0

(�) Limit 7.6 89 40 1.2

Table 5.9-2 Optimized (normal) parameters for the HPLC analysis of the API Z-tamox-

ifene and its byproducts as well as the changed lower (�) and upper (þ) limits

Chosen parameters Optimized (�) limit (þ) limit

pH value of the eluent 7.3 7.0 7.6

% (v/v) ACN of the mobile phase 88 86 89

Temperature of the column in 	C 35 30 40

Flow rate in mL min�1 1.0 0.8 1.2
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Solution to Challenge 5.9-1

The resolution of the pair of peaks Z-tamoxifen and the byproduct bis-
methyltamoxifene – Rs(Z/B) – is the critical parameter for determining

correct results in the assay of the API.

(continued)

Fig. 5.9-2 (continued)
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Z – Z-isomer, E – E-isomer, B – bis-methyltamoxifene, and D –

des-methyltamoxifene

The factor design, i.e. the changed parameters of the HPLC analysis, are

given in Table 5.9-3.

(continued)

Fig. 5.9-2 HPLC chromatograms obtained by the factor experiments according to the

experiments 1–8 given in Table 5.9-4
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The factors affecting Rs(Z/B) caused by pH are calculated according to the

factor design by (5.9-2),

DpH ¼ 1

4
ð3:4þ 0:98þ 4:4þ 1:3Þ � 1

4
ð2:96þ 0þ 3:28þ 0Þ

¼ 0:96 (5.9-2)

and those caused by the percentage ACN by (5.9-3):

DACN ¼ 1

4
ð0þ 0:98þ 0þ 1:3Þ � 1

4
ð2:96þ 3:4þ 3:28þ 4:4Þ

¼ �2:94: (5.9-3)

All factors influencing the resolution due to changing each parameter

calculated by the same procedure are listed in Table 5.9-5.

The standard deviation obtained with df ¼ 8 experiments is s ¼ 0:069 and
the statistical two-sided t-factor is tðP ¼ 95%; df ¼ 8Þ ¼ 2:306: Thus, the
critical difference calculated according to (5.9-1) is Dcrit ¼ 0:112:

As Table 5.9-5 shows, the (absolute) values of the differences in the

parameters pH, % (v/v) ACN of the mobile phase, and the temperature of

the column have a significant effect on the resolution Rs(Z/B), whereas the

flow rate does not have a significant effect.

(continued)

Table 5.9-5 Factors influencing the resolution Rs of adjacent pairs of substances

Parameter Rs(Z/B) Rs(B/E) Rs(E/D)

pH 0.96 �0.85 �0.70

% (v/v) ACN of the mobile phase �2.94 2.89 1.23

Temperature of the column 0.41 �0.65 0.13

Flow rate �0.09 0.78 �0.02

Table 5.9-4 Resolution Rs for adjacent pairs of substances obtained by the software

package of the HPLC instrument

Experiment no. Rs(Z/B) Rs(B/E) Rs(E/D)

1 2.96 2.19 1.43

2 3.40 0 0.95

3 0 4.33 2.32

4 0.98 3.69 2.18

5 3.28 0.23 1.71

6 4.4 0.72 0.49

7 0 3.78 3.07

8 1.30 2.81 2.12
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The composition of the mobile phase (given in % (v/v) ACN) and the

pH of the eluent have the greatest influence on the resolution of the critical

peak pair API and bis-methyltamoxifene (B). Thus, the composition as well

as the pH of the eluent must be carefully controlled during routine analysis.

5.10 Application of Method Validation

Now that all required validation parameters, except for “selectivity” which is a

topic of method development (see Chap. 6), have been explained, let us now apply

method validation to a problem of analytical practice.

Challenge 5.10-1

In an analytical laboratory, a method for the routine analysis of nitrite-N in

industrial waste water is to be introduced in order to monitor routinely the

limit value of L0 ¼ 0:163 mgL�1 N: For this purpose, the inexpensive pho-
tometric method for determination of nitrite-N in surface water was chosen,

for which there is a EURO-Norm DIN EN 26777 [4].

The principle of the method is based upon the fact that in acidic

conditions, nitrite ions bind aminobenzene-sulfamide equimolarly to form

diazocompounds. Coupling with N-(1-naphthyl-)-ethylene-diamine forms a

red dye with an absorption maximum lmax ¼ 540 nm,which is the wave-

length used for measuring the absorbance. All experimental conditions

conforming to the DIN [4] such as reagents, pH of the solution, and

equilibrium time have been previously validated and can, therefore, be

applied unchanged.

From pre-tests of waste water, a relative high iron content was determined

at an average of 4 mg L�1 Fe. As given in the EURO-Norm [4], this high iron

content could lead to interference in the method resulting in false analytical

results. Therefore, it should be determined whether the method validated for

surface water may be applied to the industrial waste water, i.e. whether the

matrix does causes a systematic error. A re-validation of the method is thus

carried out for the changed conditions.

The quality of the substances used for the preparation of the solutions

required for the determination of the regression parameters in iron-free

solutions, as well as tests on the homogeneity of variances and trueness, are

the same as given in DIN EN 26777 [4]. The reagent solution (RS) was

prepared by dissolving 20 g aminobenzene-sulfamide and 1 g N-(1-naphthyl-)-
ethylene-diamine dihydrochloride in a mixture of 250 mL water and 50 mL

phosphoric acid (r ¼ 1.71 g mL�1). The solution was then made up to 500 mL

with water.

(continued)

226 5 Validation of Method Performance



(a) The calibration solutions were prepared as follows: the volumes Vst of

stock solution 1 with cst;1 ¼ 0:22 mgL�1N given in Table 5.10-1 and

1 mL of the reagent solution (RS) described above were each pipetted

into nine 25 mL volumetric flasks. The flasks were then filled with water

and after 30 min the absorbance was measured at l ¼ 540 nm:

Determine the regression parameters using the data set given in

Table 5.10-1.

Check the linearity of the calibration function and check the suspect

residuals for outliers.

(b) Check the homogeneity of variances in the working range using the data

set given in Table 5.10-2. Remember that the calculation of standard

deviations requires data sets which must be normally distributed and free

of outliers.

(c) Does the iron-containing matrix cause a systematic error?

First, apply the test using the recovery function with simulated matrices.

All calibration solutions for the test using the recovery function were

prepared as given above, but each calibration solution was spiked by 1 mL

(continued)

Table 5.10-2 Response

values yi;jðAi;jÞ obtained by

solutions of calibration levels

1 and 9, respectively

Calibration level

i ¼ 1 i ¼ 9

y1;jðA1;jÞ y9;jðA9;jÞ
0.10418 0.49954

0.10457 0.49605

0.10463 0.49803

0.10455 0.49648

0.10482 0.49542

0.10447 0.49838

0.10469 0.50649

0.10371 0.49613

0.10489 0.49982

0.10448 0.49963

Table 5.10-1 Calibration

data for determination of the

regression parameters

Level i Vst in mL yiðAiÞ
1 4 0.10473

2 6 0.15284

3 8 0.20413

4 10 0.25017

5 12 0.30352

6 14 0.35414

7 16 0.40256

8 18 0.45325

9 20 0.49754
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of an iron-containing solution with cFe ¼ 125 mgL�1: Thus, the concentra-

tion of each iron-containing solution was cFe ¼ 5 mgL�1; somewhat higher

than the average iron content of the waste water.

The results are summarized in Table 5.10-3.

The calibration solutions for the test using the standard addition method
were prepared as follows: into each of eight 25 mL volumetric flasks was

pipetted 10 mL of the stock solution 2 with cst;2 ¼ 0:4 mgL�1; 1 mL of the

iron-containing stock solution with cFe ¼ 125 mgL�1; the volumes of the

stock solution 3 with cst;3 ¼ 0:155 mgL�1N given in Table 5.10-4, and 1 mL

reagent solution RS. The flasks were then filled up with water and after

30 min the absorbance was measured at l ¼ 540 nm:The results are given

in Table 5.10-4.

(d) Does the matrix significantly affect the precision of the analytical

method? Check it on the basis of the recovery function as well as by

the standard addition method.

(e) When the matrix significantly affects the regression coefficients, the

tested method cannot be applied. As an alternative to the photometric

method according to DIN EN, standard addition should be used. The

experimental conditions can also be applied to this procedure. In order to

validate the modified method, the linearity of the regression line must still

be checked, which can be performed using the data set for the trueness

test in c.

(continued)

Table 5.10-4 Data for

checking trueness by the

standard addition method

Level i Vst;2 in mL yiðAiÞ
1 0 0.2240

2 1 0.2452

3 2 0.2634

4 3 0.2801

5 4 0.2982

6 5 0.3146

7 6 0.3365

8 7 0.3558

Table 5.10-3 Data set for

checking trueness using the

recovery function

Level i Vst in mL yiðAiÞ
1 4 0.12538

2 6 0.18331

3 8 0.24404

4 10 0.30132

5 12 0.36426

6 14 0.42211

7 16 0.48745

8 18 0.54329

9 20 0.59301
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The standard addition method must be described by a standard operation

procedure (SOP), according to regulatory requirements for the creation of

SOPs valid for the analytical laboratory. One point of the SOP will concern

the “validation of the method” which must be checked by means of a suitable

test specified in the SOP. This test must be carried out routinely in order to

demonstrate that the method is still valid.

Let us assume the “validation of the method” is specified by the trueness

test as follows: a synthetic iron-containing solution with a known amount of

nitrite-N is analyzed by the standard addition method. The analytical result is

correct and, thus, the method is still valid if the ‘true value’ lies within the

range of the confidence interval of the predicted value x̂ in mgL�1 obtained

by the standard addition method.

Check the “validation of the method” using the following data: 18 mL

aliquots of a validation solution mval ¼ 0:07 mgL�1N which contains

5 mg L�1 Fe is pipetted into five 25 mL volumetric flasks. After addition

of the volumes of the stock solution 4 with cst;4 ¼ 0:20 mgL�1N given in

Table 5.10-5 and 1 mL reagent solution RS, the flasks are filled with water

and the absorbance is measured after 30 min. The measured mean value of

the absorbance of the blank is ybl ¼ 0:0004:

(f) Remember that the analytical method was introduced in order to monitor

threshold values of the waste water. The preparation of the spiked solu-

tions was carried out by the same procedure as given above. The volume

of each waste water sample is Vsample ¼ 20 mL and the concentration of

stock solution 5 is cst;5 ¼ 0:75 mgL�1 N:

The preparation of the spiked solution and the measured response is given

in Table 5.10-6. The absorbance of the blank measured using a solution which

was prepared only with the reagents is ybl ¼ 0:0006:
Check whether the limit value given above is exceeded.

Has the calibration range been properly chosen?

Table 5.10-6 Calibration data set for the determination of nitrite-N in a waste water

sample according to the standard addition method

Level 1 2 3 4 5

Vst in mL 0 1 2 3 4

yiðAiÞ 0.3555 0.4418 0.5173 0.6091 0.6978

Table 5.10-5 Data set for validation of the standard addition method

Level 1 2 3 4 5

Vst;val in mgL�1N 0 1.5 3.0 4.5 6.0

yiðAiÞ 0.1422 0.1767 0.2069 0.2436 0.2791
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Solution to Challenge 5.10-1

Note that all intermediate quantities and results are calculated by appropriate

Excel functions explained above.

(a) The concentration of the calibration standard solutions calculated accord-

ing to (4.5-2) as and the residuals calculated by (4.2-3) with the linear

regression coefficients a0 ¼ 0:005212 and a1 ¼ 2:815625 Lmg�1 are

listed in Table 5.10-7. The residuals ei are shown in Fig. 5.10-1. Further

regression parameters are: sa0 ¼ 0:001751; sa1 ¼ 0:015229 Lmg�1;

sy:x ¼ 0:0020762; sx:0 ¼ 0:000737 mgL�1; sr% ¼ 0:70:

Test of linearity
Linearity can be checked by the Mandel test or by the test of the signifi-

cance of the quadratic regression coefficient a2. Both methods are applied.

Mandel test

(continued)

Table 5.10-7 Data and residuals ei for the calibration of the photometric determination of

nitrite-N according to DIN EN 26777 0493 [4]

Level c in mgL�1 yiðAiÞ ŷi in mgL�1 1000 ei

1 0.0352 0.10473 0.10432 0.41

2 0.0528 0.15284 0.15388 �1.04

3 0.0704 0.20413 0.20343 0.70

4 0.0880 0.25017 0.25299 �2.82

5 0.1056 0.30352 0.30254 0.98

6 0.1232 0.35414 0.35210 2.04

7 0.1408 0.40256 0.40165 0.91

8 0.1584 0.45325 0.45121 2.04

9 0.1760 0.49754 0.50076 �3.22
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Fig. 5.10-1 Residual plot obtained by the calibration of the determination of nitrite-N

according to DIN EN 26777 [4]
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The test value F̂ calculated according to (5.3.4-1) using the residual error

of the linear regression model sy:x;1 ¼ 0:0020762 and the quadratic model

sy:x;2 ¼ 0:0021287 and the degrees of freedom df1 ¼ 7 and df2 ¼ 6; respec-

tively, is F̂ ¼ 0:659: The critical value FðP ¼ 99%; df1 ¼ 1; df2 ¼ 6Þ
¼ 13:745 is much greater than the test value F̂; and therefore the linearity

given by the randomized residuals around zero is confirmed.

Significance test of the quadratic regression coefficient a2
The regression coefficient of the second degree equation is a2 ¼

�0:317939 L2 mg�2 and its standard deviation is sa2 ¼ 0:391566L2 mg�2.

The test value calculated according to (5.3.6-2) is t̂ ¼ 0:812, which is smaller

than the critical value tðP ¼ 95%; df ¼ n� 3 ¼ 6Þ ¼ 2:447, and thus the

linearity is valid. The same result yields the confidence interval of the

quadratic regression parameter a2 calculated by (5.3.6-1). The value zero is

included in the range of CIða2Þ ¼ �0:31794� 0:95813, and thus a2 cannot
be distinguished from zero at the significance level P ¼ 95%:

Outlier test in the regression
Inspection of the residuals in Fig. 5.10-1 shows that the (absolute) greatest

value is obtained by level 9. The value y9 ¼ 0:49754 should be tested as to

whether it is an outlier in the regression.

First, let us apply the F-test. The test value is F̂ ¼ 7:423 calculated

according to (5.4-1) with the re-calculated residual standard deviation after

rejection of the x9, y9-values from the data set sy:x;OL ¼ 0:0014993; the

degrees of freedom dfOL ¼ 6 and the degrees of freedom df1 ¼ 7 of the

whole data set given above. The test value F̂ is compared with the critical

value FðP ¼ 99%; df1 ¼ 1; df2 ¼ n� 3 ¼ 6Þ ¼ 13:745: Because the critical
value is smaller than the test value, the suspect y9- value is not confirmed to be

an outlier and must be included in the data set again.

The t-test is used to check whether the suspect outlier value yOL ¼ y9
lies within the confidence interval CIðŷOLÞ; which is calculated by (5.4-2)

and (5.4-3) without the suspect x9, y9-values. The confidence interval

is calculated with a0;OL ¼ 0:0037162; a1;OL ¼ 2:83524Lmg�1; xOL ¼ x9 ¼
0:176 mgL�1; nOL ¼ 8; �xOL ¼ 0:0968 mgL�1; SSxx ¼ 0:0130099 mg�2L�2;
and tðPtwo�sided ¼ 99%;df ¼ 6Þ ¼ 3:707:

The test value yOL ¼ y9 ¼ 0:49754 is included within CIðŷOLÞ ¼
0:5027� 0:00705, i.e. the range 0.49567–0.50977, and therefore the tested

response is not confirmed to be an outlier in the regression.

(b) Both data sets are normally distributed as checked by the David test.

The test values are q̂r;1 ¼ 3:47 and q̂r;9 ¼ 3:44 calculated according to

(3.2.1-1) with xmax;1 ¼ 0:10489; xmin;1 ¼ 0:10371; xmax;9 ¼ 0:50649;
xmin;9 ¼ 0:49542; s1 ¼ 0:000340; and s9 ¼ 0:00322 for the lowest and

the highest calibration levels, respectively. The test values lie within the

(continued)
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critical lower (2.67) and upper (3.685) limits at the significance level

P ¼ 95%:

The highest value in the upper range y9;7 ¼ 0:50649 should be checked as

a suspected outlier. After ranking the data set, the test values must be

calculated for n ¼ 10 by (5.10-1):

Q̂ ¼ x�1 � x2
�� ��
x�1 � xn�1

�� �� ¼ 0:50649 � 0:49982

0:50649 � 0:4960
¼ 0:639: (5.10-1)

Because the critical value QðP ¼ 95%; n ¼ 10Þ ¼ 0:477 is smaller than Q̂;
the measured absorbance y9;7 ¼ 0:50649 must be rejected from the data set.

The test value F̂ ¼ 25:945 calculated by (4.3-1) with s1 ¼ s9 ¼ 0:001734
and s2 ¼ s1 ¼ 0:000340 exceeds the critical value FðP ¼ 95%; df1 ¼ 8;
df2 ¼ 9Þ ¼ 3:230; which means that the variances are inhomogeneous within

the working range.

Note that this result was to be expected for a range whose highest value

is about five times the lowest one. If the calibration method according to

DIN EN 26777 can be applied, weighted regression should be used.

(c) Test of trueness according to the recovery function explained in Sect. 5.7.5

The concentrations cm;i of the matrix solutions calculated with the regres-

sion coefficients obtained by the matrix-free solutions are listed in

Table 5.10-8. The regression parameters of the recovery function are

a0;m ¼ 0:000592mgL�1, sa0;m ¼ 0:001141mgL�1, a1;m ¼ 1:196674, and

sa1;m ¼ 0:009922. The recovery function is shown in Fig. 5.10-2.

The linearity of the recovery function is checked by the Mandel test using

the residual errors sy;x;m ¼ 0:001353 mgL�1; sx:y;m;2 ¼ 0:001311 mgL�1;
and the degrees of freedom dfm ¼ 7; and dfm;2 ¼ 6; where the index 2 refers
to the data calculated for the quadratic regression line. The test value

F̂ ¼ 1:454 is much smaller than the critical value FðP ¼ 99%; df1 ¼ 1;
df2 ¼ 6Þ ¼ 13:745; and thus the linearity of the regression function is valid.

(continued)

Table 5.10-8 Calibration

data for the determination of

the recovery function and the

predicted values x̂m;i ð¼ ĉm;iÞ
calculated by the regression

coefficients of the recovery

function

Level i ci in mgL�1 yiðAiÞ ĉm;i in mgL�1

1 0.0352 0.12538 0.04268

2 0.0528 0.18331 0.06325

3 0.0704 0.24404 0.08482

4 0.0880 0.30132 0.10517

5 0.1056 0.36426 0.12752

6 0.1232 0.42211 0.14807

7 0.1408 0.48745 0.17127

8 0.1584 0.54329 0.19110

9 0.1760 0.59301 0.20876
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Note that the check of the quadratic regression parameter a2 yields

the same results: t̂ ¼ 1:206; tðP ¼ 95%; df ¼ 6Þ ¼ 2:447; CIðP ¼ 95%;
df ¼ 6Þ ¼ �0:2907� 0:5900:

Check for proportional systematic error according to the recovery

function

The confidence interval of the slope of the recovery function

CIða1;mÞ ¼ 1:19667� 0:02346 calculated by (5.7.5-6) with the data given

above does not include the value 1, and therefore the matrix causes a

proportional systematic error at the significance level P ¼ 95%:
Check for constant systematic error

The confidence interval of the intercept of the recovery function

CIða0;mÞ ¼ 0:0005918� 0:0026973 mgL�1 calculated by (5.7.5-5) with the

data given above includes zero, and therefore the matrix does not cause a

constant systematic error at the significance level P ¼ 95%:
Check for proportional systematic error by the standard addition method

The spiked concentrations calculated from the concentration of the added

volumes of the stock solution given in Table 5.10-4 and the measured

calibration data are given in Table 5.10-9.

The parameters of the linear and quadratic regression functions of the

standard addition method and further data used for tests are summarized in

Table 5.10-10.

The test value calculated by (5.3.4-1) of the Mandel test is F̂ ¼ 0:417;
which does not exceed the critical value FðP ¼ 99%; df1 ¼ 1;
df2 ¼ 5Þ ¼ 16:258: Thus, the regression line of the standard addition

calibration is linear at the significance level P ¼ 99%:
(continued)
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The same result yields the significance checks of the regression parameter

a2. The test value t̂ ¼ 0:646 does not exceed the critical value

tðP ¼ 95%; df ¼ 5Þ ¼ 2:571; and the confidence interval of the quadratic

regression parameter CIða2Þ ¼ 2:29178� 9:122 cannot be distinguished

from zero at the significance level P ¼ 95%:
Testing the trueness is carried out by comparison of the slopes obtained by

the calibration method a1;c ¼ 2:815625 Lmg�1 and a1;sp ¼ 2:97773 Lmg�1:
A proportional systematic error is caused by the matrix if the test value t̂
calculated by (5.7.6-1) and (5.7.6-2) is greater than the critical value

tðP; dftot ¼ dfc þ dfstÞ at the chosen significance level P. Because the test

value t̂ ¼ 10:929 calculated with the data given in Table 5.10-10 is much

greater than the critical value tðP ¼ 95%; df ¼ 13Þ ¼ 2:160, the matrix is

confirmed to have a significant influence on the regression parameters,

resulting in false results.

(d) The tests of trueness presented above are only allowed when the iron-

containing matrix does not affect the precision of the method. This is

checked by an F-test.
(continued)

Table 5.10-9 Calculated

spiked concentrations csp and
measured responses yiðAiÞof
the standard addition method

for checking a proportional

systematic error

Level csp in mgL�1 yiðAiÞ
1 0 0.2240

2 0.0062 0.2452

3 0.0124 0.2634

4 0.0186 0.2801

5 0.0248 0.2982

6 0.0310 0.3146

7 0.0372 0.3365

8 0.0434 0.3558

Table 5.10-10 Parameters of the linear and quadratic regression functions of the standard

addition method, and further data used for tests of linearity by Mandel and by the signifi-

cance of the quadratic regression coefficient a2

Linear regression function

a0;sp 0.22511 a1;sp in Lmg�1 2.97773

sa0;sp 0.00108 sa1;sp in Lmg�1 0.04181

sy:x;sp 0.00168 sx:0;sp in mgL�1 0.00056

�x in mgL�1 0.0217 sr% 2.60

df 6 sp 0.030524

tðP ¼ 95%; df ¼ dfc þ dfsp ¼ 7þ 6 ¼ 13Þ 2.160

Quadratic regression line

a2;sp in L2 mg�2 in L2 mg�2 2.29178 sa2;sp in L2 mg�2 3.54862

sy:x;sp;2 0.001768 df 5
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The test value for the recovery method is F̂ ¼ 3:365 calculated by

(5.7.5-7) with sy:x;m ¼ 0:001353 mgL�1 and sx:0;c ¼ 0:000737 mgL�1: The
test value does not exceed the critical value FðP ¼ 99%; df1 ¼
df2 ¼ 7Þ ¼ 6:993, and thus the matrix does not affect the precision of the

analytical method.

The same result is obtained by the standard addition method but, because

the calibration error of the standard addition method sy:x;sp ¼ 0:00168 is

smaller than that of the calibration method sy:x;c ¼ 0:002076, the test value

must not be calculated.

(e) The regression parameters and further data for the calculation of the

confidence interval calculated with the calibration data set given in

Table 5.10-11 are listed in Table 5.10-12.

The predicted value x̂ and its confidence interval CIðx̂Þ calculated accord-

ing to (5.7.8-3) and (5.7.8-4) are:

x̂val ¼ 0:14156� 0:0004

2:839167 Lmg�1
� 25 mL

18 mL
¼ 0:069 mgL�1 (5.10-2)

and

CIðx̂valÞ ¼ 0:001916

2:839167 Lmg�1
� 3:182

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

5
þ ð0:14156� 0:2097Þ2
2:8391672 L2 mg�2 � 0:00144 mg2 L�2

s

� 25 mL

18 mL

¼ 0:004mgL�1: (5.10-3)

(continued)

Table 5.10-11 Calculated

spiked concentration csp;val
and the measured response yi
for checking the standard

addition method

Level csp;val in mgL�1 yiðAiÞ
1 0 0.1422

2 0.012 0.1767

3 0.024 0.2069

4 0.036 0.2436

5 0.048 0.2791

Table 5.10-12 Parameters of the linear regression of the standard addition method and

further data necessary for the calculation of the confidence interval

a0;val ¼ ŷ0;val 0.14156 a1;val in Lmg�1 2.839167

sy:x;val 0.001916 �yval 0.2097

SSxx;val in mg2 L�2 0.00144 tðP ¼ 95%; df ¼ 3Þ 3.182
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Thus, the true value mval ¼ 0:07 mgL�1 lies within the range of the

confidence interval 0.065–0.073 mg L�1, which means that the analytical

method is valid.

(f) The regression parameters calculated with the calibration data given in

Table 5.10-13 and further parameters necessary for the calculation of the

confidence interval are listed in Table 5.10-14. Note that the test of limit

values is a one-sided problem; therefore, the one-sided t-value must be

used in order to calculate the confidence interval.

The predicted value x̂ and its confidence interval CIðx̂Þ calculated by

(5.7.8-2) and (5.7.8-4) are

x̂a ¼ 0:124 mgL�1; (5.10-4)

CIðx̂aÞ ¼ 0:0050 mgL�1: (5.10-5)

Considering the volume factor

fV ¼ Vflask

Vsample

¼ 25 mL

20 mL
¼ 1:25 (5.10-6)

the concentration of the waste water sample is csample ¼ 0:1555�
0:0063 mgL�1 N: Thus, the upper analytical result is csampleþ
CIðcsampleÞ ¼ 0:162 mgL�1 N which does not exceed the threshold value

L0 ¼ 0:163 mgL�1:
(continued)

Table 5.10-13 Calculated

spiked concentrations for the

analysis csp;a and measured

responses yiðAiÞ by the

standard addition method

Level csp;a in mgL�1 yiðAiÞ
1 0 0.3555

2 0.03 0.4418

3 0.06 0.5173

4 0.09 0.6091

5 0.12 0.6978

Table 5.10-14 Parameters of the linear regression of the standard addition method and

further data necessary for calculation of the confidence interval

a0;a ¼ ŷ0;val 0.35392 a1;a in Lmg�1 2.839667

sy:x;a 0.004783 �ya 0.5243

SSxx;a in mg2 L�2 0.009 na 5

tone�sidedð �P ¼ 95%; dfÞ 2.353 dfa 3
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Note that using the confidence interval calculated by the two-sided t-factor

tðP ¼ 95; df ¼ 3Þ ¼ 3:182, the upper analytical result is x̂ ¼ 0:164 mgL�1,

resulting in a false decision as the limit value is exceeded.

The graphical representation of the determination of the predicted value

cstocked sample ¼ x̂a is shown in Fig. 5.10-3. Note that the dilution factor must

still be taken into account in the analytical result.
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Chapter 6

Aspects of Method Development

6.1 General Remarks

Chronologically, the selection and development of an appropriate analytical

method for a specific analytical purpose is the first stage in the validation of a

method which should be capable of producing results that are fit for a particular

purpose. However, method development is a wide field with specific investigations

for each method, and therefore in this book only some aspects of selected analytical

methods – in particular, applications of chromatography – will be given; for

detailed information see the corresponding literature, for example [1, 2].

In general, one of the chromatographic methods (GC, HPLC, IC) is chosen for

the analysis of organic compounds. The next stage is the planning and carrying out

of test experiments using starting conditions with the chosen phase system, e.g. the

combination of the stationary and mobile phases, the detector, and other parameters

such as column temperature, flow rate, etc. The purpose of these experiments is the

optimization of the chromatographic conditions for a sufficient separation of all

components of the sample which have to be determined, as demonstrated, for

example, by the HPLC chromatogram in Fig. 5.9-1 and the validity of some

performance parameters.

Such performance parameters, given for the simple chromatogram in Fig. 6.1-1,

are:

l Retention factor of the component i, k0i

The retention factor describes the migration rate of an analyte on a column:

k0i ¼
tr;i � tM

tM
: (6.1-1)

tr; i is the retention time of the component i of a solute which is taken as the

elapsed time between the time of injection of a solute and the time of elution of the

peak maximum of that solute, and tM is the time taken for the mobile phase to pass

through the column, also called dead time.

M. Reichenb€acher and J.W. Einax, Challenges in Analytical Quality Assurance,
DOI 10.1007/978-3-642-16595-5_6, # Springer-Verlag Berlin Heidelberg 2011
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l Selectivity factor a

The selectivity factor describes the separation of two peaks:

a ¼ k0B
k0A

: (6.1-2)

The selectivity factor must be greater than 1.0 in order to separate two com-

pounds, but whether the separation of two compounds is sufficient for a quantitative

determination of both compounds is not determined by the selectivity a. The
selectivity describes the separation based on the peak centres but does not

take into account peak widths.

l Peak symmetry

Peak shape is an important factor in obtaining correct counts of the peak areas by

means of correct integration.

The asymmetry factor As is calculated by (6.1-3)

As ¼ w5%

2d
; (6.1-3)

where d is the distance between the perpendicular dropped from the peak maximum

to the leading edge of the peak at 5% of the peak height and w5% is the width of the

peak at 5% of peak height.

Unless otherwise stated in the regulatory documents, the values of As should fall

between 0.8 and 1.6. Note that As ¼ 1:0 corresponds to ideal symmetry.

l Resolution Rs

The resolution of two compounds, A and B, is defined as [3]

Rs ¼ 1:18 � tr;B � tr;A
w0:5;A þ w0:5;B

; (6.1-4)

where w0:5;A and w0:5;B are the peak widths at half height of A and B, respectively.

R
es

po
ns

e

w0.5,B

w0.5,A

t in mintM tr,A tr,B

Fig. 6.1-1 Chromatogram of a sample with the components A and B
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Rsr1:2 is, in general, sufficient for quantitative analysis and baseline resolution

is achieved when Rsr1:5:
The resolution is determined by three terms, according to (6.1-5):

Rs ¼ 0:25 � ffiffiffiffi
N

p � 1þk0B
k0B

� �
� a�1

a

� �
I II III

; (6.1-5)

To obtain high resolution, these three terms must be optimized. An increase in N,
the number of theoretical plates (term I), by lengthening the column leads to an

increase in retention time (and, therefore, the analysis time!) and increased band

broadening – which is not desirable. Instead of increasing the number of plates, the

height equivalent of a theoretical plate can be reduced by reducing the size of the

stationary phase particles.

It is often found that separations can be considerably improved by controlling

the capacity factor k0 (term II). This can be achieved by changing the temperature

(in GC) or the composition of the mobile phase (in HPLC).

Optimization of the selectivity factor a (term III) is the best way to improve

separations. In general, k0 is optimized first and then a is increased, for example by

– Changing the mobile phase composition (percentage or change of the organic

component, pH, additives, for example)

– Changing the stationary phase (a different polarity of the column, for example)

– Changing the temperature of the column in HPLC or the temperature program in

GC.

Although the performance parameters are obtained by the software package of

the instrument, one should also be able to determine these parameters from a

chromatogram.

The validation of HPLC methods in pharmaceutical analysis according to

various regulatory requirements are compared in [4].

Challenge 6.1-1

Figure 6.1-2 shows a section of a GC chromatogram of the separation of some

aromatics using the column SPB 5 (df ¼ 0.25 mm, L ¼ 25 m). Determine the

selectivity factor a and the resolution RsðA=BÞ for the peak pair A/B as well

as the peak asymmetry As at the peak C. The dead time is tM ¼ 0:62 min:
Is the resolution sufficient for quantitative analysis of the components

A and B?

Solution to Challenge 6.1-1

The peak widths of A and B obtained using the scale 19 mm ¼ 0.1 min are

w0.5, A ¼ 0.02368 min and w0.5, B ¼ 0.02632 min (Fig. 6.1-3)

(continued)
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The results are summarized in Table 6.1-1.

Note that chromatographic methods are not stable in time, usually due to

alterations in the column, as shown in Fig. 6.1-4 by the two chromatograms of a

test mixture which were obtained with the same sample using the same column but

at different times.

Testing must therefore be used to confirm that the system will function correctly

whenever the method is applied. Chromatographic systems must have a system

suitability requirement which has to be specified in the course of the method

development. System suitability parameters are needed to ensure the quality of

separation. Acceptance criteria should be established based on data observed during

method development. Whenever the method is applied, it must be checked by a

t in min
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Fig. 6.1-2 Section of a GC chromatogram of aromatics
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so-called system suitability test (SST) to determine whether these parameters are

still met.

As an example, the suitability parameters given by the results obtained during

the method development of the determination of the assay of the Z-isomer of

20.20 20.40 20.60

t in min

20.14

20.25

R
es

p
o

n
se

A

A

C
C
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19 mm (0.1 min)

w0.5,A

w5%,C

d

w0.5,B
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20.54

20.30
20.30

B

Fig. 6.1-3 Delineated peak widths at half height (w0.5) and 5% height (w5%), respectively,

for the calculation of performance parameters of the chromatographic system

Table 6.1-1 Performance

parameters of the

chromatographic system

calculated by the parameters

given in Fig. 6.1-3

Parameter Equation Value

Retention factor k0A (6.1-1) 31.66

Retention factor k0B (6.1-1) 31.74

Selectivity factor a (6.1-2) 1.0025

Resolution RsðA=BÞ (6.1-4) 1.18

Asymmetry factor AsðCÞ (6.1-3) 1.10
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tamoxifene by HPLC, presented in Fig. 5.9-1, are summarized in Table 6.1-2. The

requirements of the SST are based on these data.

However, there is another important parameter, the peak purity, which describes
the co-elution of peaks. Is the peak area of the analyte generated by the analyte alone,

or do other components interfere with the peak? If the latter is the case, then false

peak areas are obtained which yield incorrect analytical results. The peak purity is

related to the validation parameters selectivity and specificity which are, because of

Table 6.1-2 Parameters of the HPLC chromatogram of Fig. 5.9-1 obtained under optimized

conditions by means of the SST software package of the instrument

RT in min Compounds k0 Plate in m�1 As a Rs

4.367 Z-isomer 2.485 32,556 1.56

5.030 Bis-tamoxifen 3.015 34,742 1.16 1.213 2.30

5.887 E-isomer 3.699 22,399 1.43 1.227 2.29

6.603 Desmethyl-tamoxifen 4.271 39,391 1.77 1.155 1.75

a

t in min

t in min
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Fig. 6.1-4 Chromatograms of a mixture of BTXE (benzene, toluene, ethyl benzene, p-, m- and o-
xylene) obtained with (a) a new SPB 5 column, L ¼ 20 m, and (b) the same column after about

three months’ use

246 6 Aspects of Method Development



their relevance to the trueness of analytical results, explicitly listed as validation

parameters, but these parameters must already be checked at the stage of method

development.

6.2 Selectivity and Specificity

Selectivity and specificity are measures that assess the reliability of measurements

in the presence of interferences. The selectivity refers to the extent to which

particular analyte(s) in a complex mixture can be detected without interferences

from the other components in the mixture. A method that is completely selective for
one individual analyte in the mixture is said to be specific for that substance.

There are some procedures to establishing the selectivity of the method; for

example:

1. Confirmation of the analyte identity and ability tomeasure the analyte in isolation

from the interferences by measurement of the sample and corresponding refer-

ence materials.

Let us return to the GC chromatogram of the analytes BTXE shown in

Fig. 6.1-4a. The retention times of peaks obtained by the CRS will be identical

to that of the mixture. But the injection of a solution of CRS (m-xylene) yields a
chromatogram with retention time identical to p-xylene using a unpolar column

SPB 5, whereas the ortho-isomer gives a chromatogram with greater retention

time. Thus, the comparison of the retention times is not fit for testing the

selectivity of p-xylene in GC under the conditions given in Fig. 6.1-2. All

other BTXE compounds can be detected with CRS.

2. Comparison of spectral data obtained at various positions of the peak with

those of the library of the instrument or with spectra obtained by CRS, for

example, spectral properties (selective UV-wavelength, fluorescence, IR

spectra), mass spectrometry (MS) including fragmentation, or selective reac-

tions (sensor).

Let us consider further the problem in Fig. 6.1-2. The mass spectra of the

three xylene isomers as well as ethyl benzene cannot be distinguished either

according to their molecular peaks or the fragmentations. MS of all four

compounds gives the same molecular ion peak, m/z ¼ 91 amu.

3. Changing the phase should always be included in the checks for selectivity.

This may be done by using another mobile phase (changing the organic compo-

nent or its proportion in the mobile phase, pH, additives) as demonstrated by

Fig. 6.2-1, applying another stationary phase, changing the temperature of the

column, etc.

Note that the selectivity of optical isomers can be checked only by optically

active phases.

Let us return to the problem of the separation of the isomers m- and p-xylene.
The change from the unpolar stationary phase, giving the chromatogram in
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Fig. 6.1-4a, to a strongly polar phase will cause the separation of the isomers m-
und p-xylene enabling us to estimate the peak purity. Now, the separation takes

place not only on the basis of the boiling points, which are nearly equal for both

isomers, but preferentially on the basis of the polarity, which is greater for the

m-isomer because of its dipole moment. Therefore, the retention time of m-
xylene will increase and it is thus separated from the analyte p-xylene if present.

4. Changing the detector in GC analysis, for example ECD instead of FID, can also

be used in order to check if the analyte peak has interferences superimposed on it.

Note that the estimation of peak symmetry, sometimes recommended in check-

ing the selectivity, can give rise to errors because the asymmetry can also be

caused by an unsuitable phase system: for example, separation of unpolar

compounds on a strongly polar solid phase.

Challenge 6.2-1

(a) Figure 6.2-2 shows a section of the HPLC chromatogram of a vitamin D3

assay and the diode array detection (DAD) spectra obtained at the

ascending and the descending positions of the analyte peak.

Estimate the selectivity of the peak at the retention time tr ¼ 5:302 min:
(continued)
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Fig. 6.2-1 HPLC

chromatograms of aromatics

obtained by two different

compositions of the mobile

phase: (a) methanol/water/

THF: 45/42/13% (v/v/v),

(b) methanol/water/THF:

50/42/8% (v/v/v)
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(b) A section of the SPME-GC chromatogram of a white wine is given in

Fig. 6.2-3, together with the mass spectra obtained at three positions,

marked by arrows, of the two peaks A and B. The symmetry of peak A is

As ¼ 1:05 whereas peak B shows a pronounced shoulder.

Estimate the selectivity of both peaks.

Solution to Challenge 6.2-1

(a) The spectra obtained at two different positions of the analyte peak are

identical, and therefore the peak at the retention time tr ¼ 5:302 min does

not have other interferences superimposed on it, which means that selec-

tivity is adequate. Furthermore, the maxima of both UV spectra coincide

with the known spectra of vitamin D3.

(b) The highly symmetrical peak A shows at its descending position a

significantly different mass spectrum than is obtained at the ascending

position. Thus, for example, the intense peaks at m/z ¼ 41 and 59 amu

disappear and new peaks arise (m/z ¼ 42, 55, 86 amu). It is obvious that

another compound is superimposed on the peak; therefore, the selectivity

is not adequate although it is a highly symmetrical peak.

The fairly unsymmetrical peak B, however, shows identical mass spectra

at all three positions with the base peak at m/z ¼ 60 amu, which is caused

by a McLafferty rearrangement of a aliphatic carboxylic acid. The asym-

metry of this peak is caused by the large difference between the polarity

(continued)
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Fig. 6.2-2 A section of the HPLC chromatogram of a vitamin D3 assay and the DAD

spectra obtained at the ascending and the descending positions of the analyte peak (marked

by arrows)
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Fig. 6.2-3 Section of the SPME-GC chromatogram using the nonpolar column SPB 5 (a)

together with the mass spectra obtained at the ascending (b), the maximum (c) and the

descending positions (d) of each peak A and B [6]
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of the analyte and the low polarity of the column which disturbs the

interactions between analyte and stationary phase along the column.

Now, after we have learned the most important stages of the development

of chromatographic methods, as well as the subsequent method validation

procedure, we will apply this knowledge to an example, the development

and validation of analysis by headspace gas chromatography.

6.3 Method Development of Headspace Gas Chromatography

Headspace gas chromatography (HS-GC) is one of the most important analytical

methods for the determination of organic compounds in liquid and solid samples

[5]. Examples of its application are:

– Liquid samples

Organic compounds in drinking or waste water

Trace components in beverages

Aromatics in exhausted mineral oil

Determination of the alcohol content in blood

– Soluble samples

Content of monomers in polymers

Residual solvents in pharmaceuticals

– Insoluble samples

Quality control of foodstuffs and semi-luxury foods

Volatile compounds in soil

After thermal equilibration of the sample in a tightly closed headspace vial, a

partial amount of the analyte in the headspace is transferred to the injection system

of the gas chromatograph. This procedure is called static headspace GC. Therefore,
headspace GC, in contrast to normal GC, is an indirect and a partial method;

indirect, because the analyte is not directly injected as in normal GC, and partial,
because only a small part of the sample in the headspace is transferred to the

injector.

Because the analytes are separated from the matrix, HS-GC is called a matrix-

free analytical method. An advantage of the HS-GCmethod is the omission of time-

consuming sample extraction steps, but there are some problems in the quantitative

analysis. Remember that only a part of the analyte, defined by Henry’s law, is

transferred into the headspace, only a small part of this amount is transferred to the

injector, only a part of this, determined by the split relation, finally arrives at

the column, and furthermore the peak area of the chromatogram is caused by the

detector response. Calibration is therefore required for quantitative analysis, which

can be performed, in general, without difficulty for liquid samples, for example by

means of the known standard addition method. But calibration for solid samples is
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not possible because, in general, no standards are available. However, before we

turn to quantitative determination by HS-GC let us examine factors which deter-

mine the sensitivity of HS-GC, an important parameter for its application in trace

analysis.

The sensitivity expressed as the peak area A of the chromatogram is determined

by the concentration c0; i of the analyte i in the sample, the partition constant K of

the analyte i and the phase relation b:

A ¼ Rf � c0; i
K þ b

(6.3-1)

with

K ¼ cli
cHSi

(6.3-2)

and

b ¼ VHS

Vl
: (6.3-3)

Rf is the response factor, cli,c
HS
i are the concentration of the analyte in the liquid

and the headspace, respectively, and Vl;VHS are the volumes of the liquid and the

headspace, respectively.

As the equations show, for highly volatile compounds having very small parti-

tion constants (close to zero at the temperature of the equilibration), the peak area is

mainly determined by the phase relation b: According to (6.3-3), the sensitivity

increases with the volume of the sample Vl, whereas for water-soluble compounds

the sensitivity is hardly influenced by the sample volume. Decreasing the constant

K by enhancement of the temperature of the equilibration is limited by the boiling

point of water; thus 80�C is, in general, the highest temperature.

A further enhancement in sensitivity can be achieved by salting the sample,

which diminishes the partition constant K: Finally, the sensitivity can be influenced
by the response factor Rf in (6.3-1) using a detector of a higher sensitivity, for

example ECD instead of FID.

Next in the method development of a HS-GC method is finding the optimal time
of the equilibration which should not be markedly greater than necessary to reach

equilibrium, because longer time can lead to loss of analytes by diffusion into the

septum. The optimal time has to be determined experimentally for all analytes.

Finally, the septa used as closure of the headspace flasks must be checked as to

whether they are appropriate. Testing whether parts of the analyte will diffuse into

the septa during the equilibration is made by repeated headspace analysis of the

septa used. The chromatogram must be free of peaks in the range of the analyte.

The development of the headspace conditions is finished after optimization of the

following parameters:
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– Equilibration temperature

– Equilibrium time

– Appropriate septa used for the headspace flasks

– The volume of the sample used for the headspace flasks

– The headspace volume which is transferred into the GC injector

– GC conditions (column, flow rate, detector, split rate)

Next, the validation steps can begin.

The precision of the injection must be determined with a test sample. This

is performed using replicates. Note that in contrast to the normal GC method,

the replicates must be carried out with each new prepared headspace sample. If

the relative standard deviation of the injection precision is greater than a given

limit, e.g. sr%r2, then it can be tested whether the internal standard method

will improve the injection precision. In this case, sr% is calculated by relative

peak areas obtained by the proportion of the peak areas of the analyte and

those of the standard added to each sample in the same amount. The internal

standard used should be chosen from the same class of compounds, it should

lie roughly in the middle of the chromatogram and it must not interfere with

other peaks.

After explaining the steps of method development, let us turn to the problem of

the quantitative analysis carried out by HS-GC methods.

Remember that in normal GC the peak area A is proportional to the analyte i
concentration c0:

A ¼ Rf � c0; i (6.3-4)

but in static HS-GC analysis the peak area is caused by the partial vapor pressure of

the component i:

A ¼ Rf0 � pi: (6.3-5)

According to Raoult’s law, the partial vapor pressure is given by the vapor

pressure of the pure component i p0i ; the mole fraction xi; and the activity coeffi-

cient gi:

pi ¼ p0i � xi � gi: (6.3-6)

The influences on the peak areas must be evaluated by calibration.

The method of calibration is preferably given by the estimation of the activity

coefficient g in (6.3-6) of the calibration solution sample relative to the sample.

Three cases may be distinguished using the activity coefficient:

1. The activity coefficients of the matrix of the sample and the calibration solutions

are equal, gsample ¼ gcalibration:
For example, the calibration standards are prepared with unused mineral oil

for the determination of aromatics in exhausted mineral oil.
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2. The activity coefficient of the calibration solution can be simulated,

gsample � gcalibration:
For example, the calibration standards used for the determination of aromatic

compounds in white wine are prepared using 10% (v/v) alcoholic solutions

instead of pure water.

3. The activity coefficient of the sample is unknown and it cannot be simulated,

gsample 6¼ gcalibration:
In this case, a matrix-independent method must be used for the calibration.

Calibration solutions for the determination of analytes in samples of cases 1 and

2 are prepared as in the examples above, and the quantitative analysis is carried out

as described in Chap. 5.

Let us turn to the samples of case 3, to which, for example, the solid samples

belong. If the solid sample can be dissolved in water or in an organic solvent, then

the determination of the analytes can be carried out analogously to samples of

case 2.

For example, the determination of styrene in polystyrene can be achieved by

dissolving the polymer in dimethyl-formamide (DMF), and the calibration solu-

tions can also be prepared by dissolving styrene in DMF. Apart from the fact that

the solvent DMF can damage the GC column, dissolving the sample will strongly

enhance the partition coefficient of styrene and, therefore, diminish the sensitivity

so that the analyte cannot be determined in the given concentration range.

A better analytical method for solid samples, and also for insoluble samples, is

multiple headspace extraction (MHE). After the extraction of the total amount of

the sample by multiple extraction steps n; the sum of peak areas
P

An is propor-

tional to the concentration of the analyte c0 in the sample:

X
An ¼ Rf � c0: (6.3-7)

The determination of the response factor Rf will be explained later. First, we will

learn how to determine the sum of peak areas
P

An:
The peak areas decrease exponentially with the number of extraction steps n,

which is shown in Fig. 6.3-1 for the example of MHE of benzene in a soil sample.

In general, the graph

lnA ¼ f ðnÞ (6.3-8)

yields a straight line as shown in Fig. 6.3-2.

If the linearity of the plot lnA ¼ f ðnÞ is confirmed (and only under this condi-

tion!), the sum of areas
P

An according to (6.3-9) can be derived:

X
An ¼ A1

1� e�k
; (6.3-9)
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with

k ¼ ln
A1

A2

; (6.3-10)

and

X
An ¼ A2

1

A1 � A2

: (6.3-11)

A1 and A2 are the peak areas of the first and second extraction step, respectively.

Thus, according to (6.3-11) the sum of areas
P

An is obtained by only two

extraction steps, provided the linearity of (6.3-8) was confirmed in the method

validation. If linearity is not present the MHE method cannot be applied at all.

Although the sum of areas can be obtained by two extraction steps, if more

accurate results are desirable the value of A1 should be determined by the intercept

of the function lnA ¼ f ðnÞ verified with more than two extraction steps. The

decisive quantity A1 required for the determination of the sum of areas according

to (6.3-11) is then confirmed by more than two values.

According to (6.3-9), if k is known, the determination of the sum of areas
P

An

can be reduced to one extraction. The constant k can be determined by samples with
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Fig. 6.3-2 The linear plot lnA ¼ f ðnÞ for the MHE given in Fig. 6.3-1
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known analyte content, provided that the matrix does not alter the thermal equilib-

rium. This must be checked if this simplification of MHE is applied, for example, in

the course of the quality control of batches all produced by the same method.

In order to calculate the analytical result c0 according to (6.3-7) the response

factor Rf must still be determined, which can be done in two ways:

1. The sum of areas is determined under the same HS and GC conditions using a

reference sample with known content of the analyte(s):

mi;sample ¼
P

An:i;sampleP
An;i;ref

� mref : (6.3-12)

The mass of the analyte is then calculated by (6.3-12) in which the index ref
refers to the reference sample.

2. Organic reference materials of solid samples are usually not available; the

response factor is then determined by injecting a known amount of the analyte

into the headspace vial and carrying out the analysis under the same headspace

and GC conditions. The headspace vial is filled with glass pearls so that the

headspace volumes of the sample and that of the calibration are not different.

The measured peak area relates to the amount of the analyte in the headspace.

The mass of the analyte in the samplemsample is obtained by the known massmcal

which was injected into the headspace, the sum of the peak areas of the sampleP
An;sample and the peak area of the calibration run Acal:

msample ¼
P

An;sample

Acal

� mcal: (6.3-13)

Instead of using MHE, liquid inhomogenous or highly viscous samples or solid

samples which do not provide clear homogeneous solutions can be analyzed by the

stock method explained in Sect. 5.7.6.

If the preparation of a spiked solution of water-insoluble organic compounds is

required, the analytes must be included bymeans of a water-soluble modifier such as

acetone, as described in Challenge 4.5-3. The analytical results can be obtained by a

calibration line according to (5.7.8-2) or with only one calibration solution whose

concentration is approximately that of the sample. Note that the so-called single
point method places the calibration line through the zero point, which is not correct.
But the error may be neglected if both the concentrations are almost the same.

If the single point method is used, the concentration of the sample csample is

calculated by (6.3-14) for the external method

csample ¼ Asample

Aspiked

� cspiked; (6.3-14)

where cspiked is the concentration of the spiked sample, and Asample and Aspiked are

the peak areas obtained from the headspace GC of the sample and spiked sample,

respectively.
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Of course, the internal standard method can also be applied.

If the headspace analysis is carried out by an HS autosampler, then the amount of

the headspace volume which is transferred to the injector of the gas chromatograph

is determined by the injection time, which is the duration of opening of the outlet

valve of the headspace vial. However, transfer of the headspace volumes can also

be done using a gastight syringe. The data given in the following Challenges were

obtained by the headspace autosampler HS 40 from Perkin-Elmer®.

Challenge 6.3-1

In the course of method development of HS-GC analysis of benzene in waste

water, the following tests were carried out using a test sample of 10 ppm (w/w)

benzene in water which was dissolved using the modifier acetone. The volume

of the headspace vials used was 21 mL closed by butyl rubber septa. The

sample volumes used are given in the following Challenges.

GC-conditions:

Carrier gas H2

Column SPB 5, 0.32 mm, 0.25 mm, 15 m

Split 10:1

(a) Determination of the equilibration time

The peak areas A obtained by various equilibration times at 80�C are

given in Table 6.3-1. The sample volumes were each 4 mL.

Which equilibrium time should be chosen for the headspace analysis of

benzene in water?

(b) Salting

To improve the sensitivity, the salting effect was tested using NaCl and

Na2SO4. Two grams of each salt were added to 5 mL sample solutions

prepared as given above. The equilibration conditions were 25 min at

80�C. The results are listed in Table 6.3-2.

Check whether salting with NaCl and Na2SO4, respectively, significantly

improves the sensitivity.

(continued)

Table 6.3-1 Determination

of the thermal equilibrium
t in min Peak area A in counts

1 36,820

3 105,342

6 158,562

12 197,384

20 208,967

25 210,655

30 210,393
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(c) Injection precision

The injection precision should be sr%b2: Check whether the required

precision is achieved by the external standard procedure or whether the

internal standard procedure must be applied on the basis of the results

given in Table 6.3-3. The test solution described above was spiked with

2 mL internal standard solution prepared using 50 mL n-octane in 1 mL

acetone. The headspace conditions are the same as given above.

Solution to Challenge 6.3-1

(a) As the function A ¼ f ðtÞ presented in Fig. 6.3-3 shows, thermal equilib-

rium is achieved after about 25 min. This time can be regarded as the

equilibrium time for the headspace analysis of benzene.

(b) The significance of the influence of salting on the sensitivity must be

checked by a mean value t-test according to (3.5-5). The intermediate

quantities and results of the tests for outliers, homogeneity of variances

and the t-test are summarized in Table 6.3-4.

The test values of Dixon’s test calculated by (3.2.3-1) with b ¼ 2 and

k ¼ n do not exceed the critical value QðP ¼ 95%; n ¼ 6Þ ¼ 0:560,
which means that no data need be rejected.

The precision is not significantly influenced by salting, which is

checked by the Cochran test. The test value Ĉ ¼ 0:6054 calculated accord-
ing (3.4-1) does not exceed the critical value CðP ¼ 95%; k ¼ 3;
df ¼ 5Þ ¼ 0:7071: Therefore, the mean value t-test can be carried out

(continued)

Table 6.3-2 The peak areas

A in counts obtained by

salting with NaCl and Na2SO4

and without salting

No salting NaCl Na2SO4

200,352 204,684 287,463

204,492 213,823 278,469

202,076 211,084 298,357

194,867 202,593 270,641

198,563 200,832 286,023

206,572 218,431 297,367

Table 6.3-3 Peak areas of

the benzene analyte Abz and

the internal standard AIS

obtained by six replicates

Abz AIS

22,200 24,995

21,507 24,114

26,889 25,138

21,895 24,726

23,793 26,524

22,456 25,273
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in order to decide whether salting will improve the sensitivity and which

of the salts tested should be used.

As Table 6.3-4 shows, the test value calculated for salting by NaCl

is smaller than the critical value tðP ¼ 99%; df ¼ 10Þ ¼ 3:169, and

(continued)
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Fig. 6.3-3 The function A ¼ f ðtÞ at 80�C for the headspace analysis of benzene

Table 6.3-4 Intermediate quantities and results of the significance test of salting estimated

by the peak areas of benzene Abz

Dixon outlier test

Without Salt NaCl Na2SO4

x�1 ¼ xmax 206,572 218,431 298,357

x2 204,492 213,823 297,367

Q̂xmax
0.141 0.262 0.036

x�1 ¼ xmin 191,867 200,832 270,641

x2 198,563 202,593 278,469

Q̂xmin
0.455 0.100 0.282

Cochran test for homogeneity of variances

s2A;bz 26,689,981 48,371,115 115,152,562

s2A;bz;max
115,152,562

P
s2A;bz 190,213,658

Ĉ 0.6054

t-test
sA;bz 5,166 6,955 10,731

�xA;bz 200,653.7 208,574.5 286,386.7

Comparison “without salt” and “salting”

NaCl Na2SO4

sp 6,126.22 sp 8,421.48

t̂NaCl 2.239 t̂Na2SO4
17.633
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therefore salting by NaCl does not improve the sensitivity at the signifi-

cance level P ¼ 99%: However, Na2SO4 has a significant effect, as the

comparison of test and critical values shows.

(c) As the relative peak areas Abz=AIS of the injection precision listed in

Table 6.3-5 show, the largest value, obtained by injection number three,

must be checked as an outlier. The test value calculated by the Dixon test

with x1 ¼ 1:06966; x2 ¼ 0:89704; and xn ¼ 0:88551 is Q̂xmax
¼ 0:937:

Because the test value exceeds the critical value QðP ¼ 95%;
n ¼ 6Þ ¼ 0:560, the peak areas of injection number 3 must be rejected.

The relative standard deviations of the injection precision calculated by

the outlier-free data sets are sr%Abz
¼ 3:89, which corresponds to the external

standard procedure, and sr%Abz=IS
¼ 0:50, which is the precision of the internal

standard procedure. Thus, the internal standard procedure fulfills the require-

ment sr%b2:
According to the results obtained by the checks on the method develop-

ment given in (a)–(c), the headspace analysis of benzene should be carried out

under the following conditions:

l Using the internal standard procedure with the internal standard n-octane
l The time for the equilibration at 80�C should be 25 min
l Salting with Na2SO4

Challenge 6.3-2

The validation of the headspace analysis of benzene in waste water must be

carried out for the working range 5–20 ppm (w/w). The preparation of the

calibration solution was made as described in Challenge 4.5-3 but 2 g Na2SO4

was added to each sample (V ¼ 10 mL) and each sample was spiked with

5 mL internal standard before the headspace vials were closed.

The calibration data obtained by the headspace analysis of benzene with

the optimized conditions are listed in Table 6.3-6.

(a) Check the regression function for linearity.

(b) Examine the calibration line for the presence of an outlier.

(c) Determine the calibration function and the relative standard deviation of

the method.

(continued)

Table 6.3-5 Relative peak

areas Abz=AIS of the injection

precision

Injection

number

Abz AIS Abz=AIS

1 22,200 24,995 0.88818

2 21,507 24,114 0.89189

3 26,889 25,138 1.06966

4 21,895 24,726 0.88551

5 23,793 26,524 0.89704

6 22,456 25,273 0.88854
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(d) The trueness of the headspace analysis is checked by the recovery rate of

two spiked waste water samples, with the results given in Table 6.3-7.

The concentration of the spiked sample is cspiked ¼ 5.5 ppm ðw=wÞ:
Check whether the result is true.

Remember that in order to evaluate the relative standard deviation for

trueness its upper and lower limit values must be calculated.

(e) A waste water sample analyzed by the validated HS-GC method, the

following peak areas are obtained from the chromatograms:

Abz ¼ 325,824 counts and AIS ¼ 220,835 counts

Calculate the predicted value x̂bz and its confidence interval CIðx̂Þ in
ppm (w/w).

Solution to Challenge 6.3-2

(a and c) Application of the internal standard procedure means that the

relative peak areas Abz=AIS are used for the calculation of the regression

parameters, which are given in Table 6.3-8.

The regression coefficients obtained by Excel functions are

a0 ¼ 0:223778 and a1 ¼ 0:0727623 ppm�1: The calibration line with

the confidence intervals is shown in Fig. 6.3-4. The linearity of the

regression function should be confirmed by visual inspection.

(continued)

Table 6.3-6 Calibration data of the headspace analysis of benzene using the internal

standard method

Level 1 2 3 4 5

cbz in ppm (w/w) 4.4 8.8 13.2 17.6 22.0

Abz in counts 133,983 191,693 277,492 366,251 456,295

AIS in counts 235,206 228,972 238,221 240,792 249,547

Table 6.3-7 Peak areas obtained by a test sample and a spiked sample

whose concentration is cspiked ¼ 5:5 ppm (w/w)

Analyte Sample Spiked sample

Abz in counts 324,583 242,149

AIS in counts 228,764 243,059

Table 6.3-8 Data set for the calculation of the regression parameters for the determination

of benzene by the HS-GC method

Level 1 2 3 4 5

cbz in ppm (w/w) 4.4 8.8 13.2 17.6 22.0

Abz/AIS 0.570 0.837 1.165 1.521 1.828
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The Mandel linearity test requires at least seven levels, and therefore the

significance of the quadratic regression coefficient a2 is used for testing

the linearity of the calibration function.

The test value t̂ ¼ 1:175 calculated by (5.3.6-2) with

a2 ¼ 0:00039976 and sa2 ¼ 0:00034011 obtained by Excel function

LINEST is smaller than the critical value tðP ¼ 95%; df ¼ 2Þ ¼ 4:303:
Thus, the null hypothesis H0: a2 ¼ 0 is valid, which means that the

calibration line is indeed linear.

(b) The outlier test according to (5.4-1) does not make sense because the

small data set gives a very high critical value FðP ¼ 99%;
df1 ¼ 1; df2 ¼ 2Þ ¼ 98:20: However, the inspection of Fig. 6.3-4 shows

that no measured y-values lies outside the confidence interval, and there-

fore an outlier is not present in the calibration line.

(d) The analytical results of the sample and the spiked sample calculated by

(6.3-14)

x̂ ¼ Abz=AIS � 0:223778

0:0727623 ppm�1
(6.3-14)

are x̂sample ¼ 10:6 ppm and x̂spiked sample ¼ 16:4 ppm, obtained with the

relative peak areas 0.9963 and 1.4189, respectively.

The recovery rate obtained according to (5.7.3-1) is Rr% ¼ 105:6:
The confidence interval CIðx̂ ¼ 16:4Þ ¼ �1:28 ppm, calculated

according to (4.2-17) with sy:x ¼ 0:02616; SSxx ¼ 193:6 ppm2;
�y ¼ 1:184; tðP ¼ 95%; df ¼ 3Þ ¼ 3:182; as well as the other values

given above. The lower limit is 15.1 ppm and 92.2%, respectively, and

the upper limit is 17.7 ppm and 107.8%, respectively. The experimentally

determined recovery rate lies within the range, which means that the

result is true.

(e) After checking linearity and trueness, the calibration function can be used

for the analysis.

(continued)
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Fig. 6.3-4 Calibration line with confidence intervals for the HC-GC determination of

benzene in water
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The predicted value calculated by (6.3-14) with the relative peak area

Abz=AIS ¼ 1:47542 is x̂ ¼ 17:2 ppm (w/w) and the confidence interval

calculated as described above is CIðx̂Þ ¼ 1:3 ppm (w/w) at the signifi-

cance level P ¼ 95%: Thus, the result is 17:2� 1:3 ppm (w/w) benzene:

Challenge 6.3-3

The MHE-GC method was chosen for the determination of benzene in soil

samples. The time of equilibration is 60 min at 85�C. The sample amount is

2 g. The peak areas obtained by the chromatograms of seven MHE replicates

are given in Table 6.3-9.

(a) Present the measured peak areas of benzene Abz as the function of the

extraction steps n Abz ¼ f ðnÞ as well as the function lnAbz ¼ f ðnÞ, and
confirm that the determination of the sum of areas according to (6.3-11) is

allowed.

(b) Calculate the sum of areas for the MHE of benzene.

(c) Determine the concentration of benzene in the soil sample in ppm (w/w)

by the following calibration:

A headspace flask of the same volume was filled with glass pearls so

that the headspace volume of the sample and that of the calibration were

the same. Then 10 mL of a benzene solution in acetone with concentration

1.0 mg mL�1 was injected into the headspace vial and the vial was

quickly closed. The peak area of benzene after HS-GC analysis under

the same conditions is Abz;cal ¼ 83; 294 counts:
(d) Because of the quadratic dependence of the sum of peak areas

P
An on

the peak area of the first extraction step A1 [see (6.3-11)], the error of the

analytical result is mainly determined by A1: For more precise results

the peak area for the first extraction step A�
1 has to be calculated from the

linear regression function with the whole data set obtained by MHE.

Calculate the concentration of benzene in the soil sample using the value

A�
1 and compare the result with that calculated using A1:

Table 6.3-9 Peak areas of

benzene Abz in counts

obtained by the MHE analysis

of benzene in a soil sample

Extraction step Abz in counts

1 2,786,634

2 1,333,514

3 838,188

4 428,373

5 238,250

6 130,675

7 70,378
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Solution to Challenge 6.3-3

(a) Figures 6.3-5 and 6.3-6 show the plot of the experimental decrease of the

peak areas of benzene Abz with the number of extraction steps in MHE-GC

and the linear plot of lnAbz ¼ f ðnÞ; respectively.
As the function lnAbz ¼ f ðnÞ shows, there is no indication of an outlier

in the regression line because no measured y-values lie outside of the

confidence interval, and therefore a check for outliers will not be done.

But the check for linearity is necessary because linearity is a precondition

for applying (6.3-11) to the calculation of the sum of peak areas. Linearity is

highly probable because the residuals of the function lnA ¼ f ðnÞ are

randomly distributed around zero, as Fig. 6.3-7 shows. However, a statisti-

cal test is still necessary. With seven levels, the Mandel test can be applied.

The test value calculated according to (5.3.4-1) is F̂ ¼ 0:023: The standard
(continued)
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deviations for the linear and quadratic regression functions sy:x;1 ¼ 0:05053
and sy:x;2 ¼ 0:05633; respectively, are obtained by Excel functions. The

test value is much smaller than the critical value F ¼ ðP ¼ 99%;
df1 ¼ 1; df2 ¼ 4Þ ¼ 21:198, and therefore quadratic regression is not a

better regression model.

(b and d) Because of the linearity of the regression function lnA ¼ f ðnÞ, the
sum of peak areas can be calculated according to (6.3-11):

X
An ¼ 2; 786; 6342

2; 786; 634� 1; 333; 514
¼ 5; 343; 901: (6.3-15)

The value of the first extraction step A�
1, which is the intercept of

the regression function lnA ¼ f ðnÞ, is lnA�
1 ¼ 15:4019 and

A�
1 ¼ 4; 886; 123; which differs from the value in (6.3-15) by 8.5%.

(c) Under the same conditions, 10 ng benzene was analyzed by the injection

of 10 mL of a benzene solution of concentration 1 mg mL�1, giving a peak

area of 83,294 counts. Therefore, 2 g of the soil sample contains 641.6 ng

benzene. The content of benzene is thus 321 ppb (w/w). Using the value

A�
1 for the calculation of the sum of areas, the sample content is 293 ppb

(w/w) benzene.

Challenge 6.3-4

According to (6.3-9), only one extraction step is required in order to deter-

mine the sum of peak areas
P

An if k is a constant for all samples. This can be

the case, for example, in the quality control of residual monomer in polymer

batches which were obtained by the same technological procedure. In the

method development, a set of representative batches are analyzed under the

same HS-GC conditions by replicates and k is calculated for all runs using

(6.3-10). If k is equivalent for all batches, (6.3-9) with only one extraction

step may be used in quality control for the determination of
P

An with the

(continued)
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mean value of the experimentally determined constant k. This procedure

would halve the analysis time!

To determine whether the simple (6.3-9) can be used for the determination

of the sum of peak areas, five representative polystyrene samples were

analyzed with six replicates each under the same HS-GC conditions. The k
values of the five polystyrene samples calculated according to (6.3-10) are

given in Table 6.3-10.

Is k equivalent in all batches, so that (6.3-9) can be applied in quality

control?

Solution to Challenge 6.3-4

Because nj replicate measurements are performed for each sample m,
ANOVA must be used to check whether k is a constant for all samples. The

ANOVA procedure has already been discussed in Sect. 3.6. The maximum

and the minimum values of k for each sample are checked for an outlier with

the Dixon test; see Sect. 3.2.3. The results are listed in Table 6.3-11. All test

(continued)

Table 6.3-10 Values of k calculated according to (6.3-10) of m ¼ 5 polystyrene samples

with ni ¼ 6 replicates

ni Samples m

1 2 3 4 5

1 0.4821 0.4645 0.4733 0.5003 0.4536

2 0.4654 0.4870 0.4793 0.4966 0.4693

3 0.4954 0.4735 0.4950 0.4794 0.4622

4 0.4918 0.4674 0.4621 0.4940 0.4694

5 0.4781 0.4693 0.4788 0.4683 0.4644

6 0.5025 0.4963 0.4838 0.4933 0.4599

Table 6.3-11 Intermediate quantities and results for the Dixon and Cochran tests

Samples m 1 2 3 4 5

Dixon outlier test according to (3.2.3-1), with b ¼ 2, k ¼ n
x� ¼ xmax 0.5025 0.4963 0.4950 0.5003 0.4694

x2 0.4954 0.4870 0.4838 0.4966 0.4693

Q̂max
0.1914 0.2933 0.3405 0.1139 0.0084

x� ¼ xmin x 0.4654 0.4645 0.4621 0.4683 0.4536

x2 0.4781 0.4674 0.4733 0.4794 0.4599

Q̂min
0.3421 0.0894 0.3405 0.3472 0.3978

Cochran test for homogeneity of variances according to (3.4-1)

s2j 0.000179 0.000158 0.000119 0.000149 0.000036

s2max
0.000179

P
s2i 0.000642 Ĉ 0.2795
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values for the maximum k values Q̂max;k and the minimum k values Q̂min;k are

smaller than the critical Q ðP ¼ 95%, n ¼ 6Þ ¼ 0:560.
Because no outlier could be detected, all groups have the same number of k

values, and therefore the Cochran test of homogeneity described in Sect. 3.4

is suitable for multiple comparison of variances. The test value Ĉ ¼ 0:2795 is
smaller than the critical value of Cðw2;P ¼ 95%; k ¼ 5; df ¼ 5Þ ¼ 0:5065;
so the variances of the k values are homogeneous.

The results of ANOVA for the MHE problem for m ¼ 5 samples with

nj ¼ 6 replicates are presented in Table 6.3-12.

�xj is the mean k value of each sample, ��x is the total of the mean k values,
SSbw and s2bw are the sum of squares and the variance, respectively, between
the k values, SSin and s

2
in are the sum of squares and the variance, respectively,

within the groups of the k values, and dfbw and dfin are degrees of freedom

between and within the groups of k values, respectively. The test value

F̂ ¼ 4:654 is higher than the critical F-value at the significance level

P ¼ 99%. This means that the k values are not homogeneous or, in other

words, k is not a constant for all samples. The simplification of the determi-

nation of the sum of peak areas cannot be applied.
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Chapter 7

Performance Verification of Analytical

Instruments and Tools: Selected Examples

7.1 General Remarks on Qualification and Performance

Verification of Laboratory Instruments

Besides the validity of the analytical methods, controlled by internal and external

tests, as well as proper training of the analysts, the reliability of all the instruments

used for experiments and measurements provides the fundamentals of analytical

quality assurance. There are therefore regulatory agency requirements for the

qualification, calibration, and verification of analytical instruments.

The requirements in EN ISO/IC 17025, the “General Requirements for the Com-

petence of Testing and Calibration Laboratories” are stated in its Sect. 4.5.2 [1]:

“Equipment and its software used for testing, calibration and sampling shall be

capable of achieving the accuracy required and shall comply with specifications

relevant to the tests and/or calibration concerned. Calibration programmes shall be

established for the key quantities or values of the instruments where these proper-

ties have a significant effect on the results.” Similar requirements are also stated in

ICH Guideline Q7 [2]. The life cycle of an instrument starts from planning to bring

a new instrument into the laboratory and ends with the decommissioning of the

instrument. It involves, in general, three phases [3–5]:

1. Prepurchase planning phase

2. Postpurchase phase

3. Routine operation phase

The last phase includes all activities which have to be performed by the users

(not by the instrument providers) to document that the instrument is fit-for-purpose.

If the instrument is qualified by the provider it can be used to generate analytical

data. A standard operation procedure (SOP) must be written for the new instrument

which must include, besides the important operational instructions, all activities for

the maintenance, calibration, and performance verification. These are described in

the following section for the example of an UV–Vis spectrometer and an HPLC

instrument.

Note that not only the analytical instruments (spectrometers, chromatographic instru-

ments, etc.) must be checked for performance verification and calibration, but all other

M. Reichenb€acher and J.W. Einax, Challenges in Analytical Quality Assurance,
DOI 10.1007/978-3-642-16595-5_7, # Springer-Verlag Berlin Heidelberg 2011
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measurement devices, such as volumetric flasks, thermometers, pH-meters, balances,

etc.must also be checked as fit-for-purpose. Thiswill be described for the example of the

balance. Note that the results must be documented in the so-called log-book.

7.2 UV–Vis Spectrophotometers

Because of its ease of use and speed of analysis, UV–Vis spectrophotometry is

often used for qualitative and quantitative analyses. Therefore, the user must

document on the basis of appropriate experiments that the UV–Vis spectrophotom-

eter is fit-for-purpose. The performance requirements of spectrophotometers vary

according to the nature of the measurements and the design of the instrument, e.g.

whether it is a scanning spectrometer with a single beam or double beam design or

whether it is a diode instrument.

The regulatory requirements for pharmaceutical analysis include tests for the

attributes wavelength accuracy, stray light, resolution, and photometric accuracy.
The following discussion focuses on these four parameters. Further characteristics,

such as noise, baseline flatness, and stability can usually be checked by the software

which is integrated in modern instruments [3–5].

The acceptance criteria are focused on the regulatory requirements in pharma-

ceutical analysis but they should be generally applicable for any spectrophotometric

analysis.

7.2.1 Wavelength Accuracy

Wavelength accuracy is defined as the deviation of the measured wavelength from

the “true” value of the absorption band. Wavelength deviations can cause errors in

qualitative and quantitative analysis. For example, confirmation of identity of a

pharmaceutical steroid can be determined by the established value lmax of the

absorption band, say lmax ¼ 265� 1 nm. If the value obtained by the spectrometer

is 267 nm, then the identity of the test sample is not confirmed.

In addition to the qualitative problem, wavelength deviation also affects quanti-

tative analysis. Usually, the absorbance is measured at the maximum of the

absorption band (lmax) because of the highest sensitivity and the lowest effect of

the measurand on the absorbance resulting from the natural slight shift in wave-

length at this location. But it is sometimes necessary to use a measurement

wavelength in the upslope or downslope of the absorption band. Then, a small

deviation in wavelength will cause a large effect on the absorbance, as shown for

the absorption band in Fig. 7.2.1-1.

Wavelength accuracy verification is checked by the comparison of the measured

wavelength obtained by a reference standard with the wavelength listed in the

certificate. There are many standards which can be used and all of these are

commercially available, for example emission lines of D2 or the mercury lamp,
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or a solution of 4% holmium oxide in 10% perchloric acid. The latter is presented in

Table 7.2.1-1.

The acceptance criteria are:

l The deviation of the measured values from the reference value may not

greater than �1 nm in the UV range (200–380 nm) and �3 nm in the visible

range.
l Three repeated scans of the same method should be within � 0.5 nm.

7.2.2 Stray Light

Stray light is false light caused by scattering or by higher-order diffraction of the

monochromator which decreases the absorbance and reduces the linearity of the

spectrophotometer.

Δl
ΔA ≈ 0

A
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ΔA

Wavelength l

Δl

Fig. 7.2.1-1 Effects of the

position (at lmax and at a steep

downslope of the absorption

profile, respectively) of the

wavelength shift Dl on the

absorbance A

Table 7.2.1-1 Reference

values of the wavelength of

a solution of holmium oxide

in perchloric acid

Spectral bandwidth

0.5 nm 1.0 nm 2.0 nm

lmaxin nm lmaxin nm lmaxin nm

241.01 241.13 241.08

249.79 249.87 249.98

278.13 278.10 278.03

287.01 287.18 287.47

333.34 333.44 333.40

345.52 345.47 345.49

361.33 361.31 361.16

385.50 385.66 385.86

416.09 416.28 416.62

467.80 467.83 467.94

485.27 485.29 485.33

536.54 536.64 536.97

640.49 640.52 640.84
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The relation between absorbance A and transmission T is given by the definition:

A ¼ � logðTÞ: (7.2.2-1)

The (pure) transmission T is the relation of the transmitted light intensity I and
the incident intensity I0:

T ¼ I

I0
: (7.2.2-2)

In the presence of stray light, the stray light intensity Is is included in (7.2.2-2),

and the transmission T* is given by:

T� ¼ I þ Is
I0 þ Is

: (7.2.2-3)

According to (7.2.2-3) the effect of stray light increases with the decrease in the

transmitted intensity. Therefore, the effect of stray light must be considered for

highly absorbent samples because it causes deviation of the linearity of the absor-

bance (see the results in Challenge 7.2-1). Besides being the minimum of the

relative error of the absorbance measurement as shown in Fig. 2.2.5-1, the stray

light effect is a further reason for the best range of the absorbance being 0.3–1.0.

The stray light can be estimated by various cut-off filter aqueous solutions: KCl

(12 g L�1) for the measurement wavelength 200 nm, NaI (10 g L�1) for 220 nm,

and NaNO2 (50 g L�1) for 340 nm. The cut-off filter solutions block the light at the

measuring wavelength, and thus the measured absorbance at the wavelengths given

above is caused by stray light.

The acceptance criterion is:
The values of the transmission measured in a 1 cm cell against water should be

less than 0.01 which means, according to (7.2.2-1), that the value of the absorbance

should be greater than 2.0.

7.2.3 Resolution

The resolution describes the separation of a peak pair. In spectrophotometry the

resolution is related to the spectral bandwidth: the smaller the spectral bandwidth

the higher the resolution. The resolution is determined by the slit width and the

dispersive power of the monochromator and by the number of diodes in the array in

the diode array instrument. Simple spectrometers, mostly used in routine analysis,

are equipped by a fixed slit width.

Insufficient resolution decreases the absorbance, as shown in Fig. 7.2.3-1 for the

absorption band of toluene around 269 nm measured with two different slit width of

the monochromator.
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The resolution of a UV–Vis spectrometer is estimated by the ratio of the

absorbances at lmax ¼ 269 nm and lmin ¼ 267 nm measured with a solution of

0.02% (v/v) toluene in n-hexane (UV-grade).
The acceptance criterion is:

The resolution is sufficient if the ratio is greater than 1.5.

7.2.4 Photometric Accuracy

Photometric accuracy concerns the measurement of the absorbance as the parame-

ter for quantitative analysis on the basis of the Lambert–Beer law. As long as there

is linearity over the range, the photometric accuracy is not critical but the photo-

metric accuracy is important, for example, for the determination of the extinction

coefficient as a specific parameter characterizing an analyte.

Photometric accuracy is determined by comparing the measured absorbance or

transmission of commercial standard filters or standard solutions with the specified

values of the standards.

Because certified glass filters are expensive and not stable over a long period, the

simple potassium dichromate method can be used to check the photo-

metric accuracy. The procedure given in the European Pharmacopeia [6] is as

follows:

l Potassium dichromate is dried to constant weight at 130�C.
l An accurately weighed sample mK2Cr2O7

in the range 5.7–6.3 mg is dissolved in

100 mL 0.01 N sulfuric acid.
l The absorption spectrum is measured in the range 220–380 nm against 0.01 N

sulfuric acid.
l The adjusted values Acor are calculated by (7.2.4-1) at the wavelengths 235, 257,

313, and 350 nm; see Fig. 7.2.4-1:

Acor ¼ mK2Cr2O7
in mg

6.006 mg
� Ameasured: (7.2.4-1)
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Fig. 7.2.3-1 Part of the

absorption band of toluene

measured with two various

slit widths; a: 0.5 nm, b: 4 nm
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The acceptance criterion is:

l The photometric accuracy is sufficient if the difference between the specified

absorbance given in Table 7.2.4-1 and the adjusted absorbance is within the

limit � 0.01.
l The relative standard deviation obtained by six replicates is sr%< 0:5%:

Challenge 7.2-1

The spectrophotometer SpecordM 500 (Carl Zeiss Jena®) used for the determi-

nation of the API acetylsalicylic acid in tablets must be checked for wavelength

accuracy, stray light, resolution, and photometric accuracy. Noise, baseline

flatness, and stability can be checked by the instrument software.

The following results are obtained:

(a) Wavelength accuracy
The wavelength accuracy was checked by the holmium perchlorate

method. Because the analyte absorbs in the UV range, the commercial

holmium perchlorate solution was measured only in the range

200–380 nm. The spectrum is shown in Fig. 7.2.4-2 and the values of

the test wavelength obtained by the instrument software are given in

Table 7.2.4-2 for all replicates.

(continued)
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Fig. 7.2.4-1 Absorption

spectrum of a solution of

potassium dichromate in

0.01 N sulfuric acid for the

determination of photometric

accuracy

Table 7.2.4-1 Reference

values for potassium

dichromate solution at

selected wavelengths

l in nm Aref a in L mol�1 cm�1

235 0.742 3.635

257 0.861 4.217

313 0.291 1.425

350 0.639 3.130
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Checkwhether thewavelength accuracy fulfills the regulatory requirements.

(b) Stray light
Stray light was estimated at a wavelength of 220 nm using the cut-off

filter solution NaI. The measured absorbance was A220nm ¼ 2:055:
1. Check whether the wavelength accuracy fulfills the regulatory

requirements.

2. Calculate the percentage deviation from pure transmission caused by

stray light for the absorbances 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and

examine the results.

3. Compile the graph Awith stray light ¼ f ðAwithout stray lightÞ in the absorbance
range 0–3.0 with a stray light transmission of 1% and show the

deviation from linearity.

(continued)
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Fig. 7.2.4-2 UV-Absorption

spectrum of a commercial

solution of holmium

perchlorate

Table 7.2.4-2 Values of the wavelengths of holmium perchlorate in the UV range

obtained by three replicates

Wavelength in nm

Reference values Measured values (obtained by the instrument software)

241.13 241.61 241.45 241.67

249.87 249.21 249.32 249.15

278.10 278.33 278.24 278.39

287.18 287.02 287.16 287.05

333.44 333.58 333.68 333.45

345.47 345.63 345.69 345.58

361.31 361.42 361.57 361.47
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(c) Resolution
The resolution was checked for slit width 1 nm. The absorption spectrum

of a 0.02% (v/v) solution of toluene in n-hexane is shown in Fig. 7.2.4-3

in the range 266–273 nm. Check whether the wavelength accuracy fulfills

the regulatory requirements.

(d) Photometric accuracy
The photometric accuracy was checked by the potassium dichromate

method as described above. The measured values of the absorbance at

235, 257, 313, and 350 nm with six replicates are listed in Table 7.2.4-3.

Check whether the wavelength accuracy fulfills the regulatory requirements.

(continued)

Solution to Challenge 7.2-1

(a) Intermediate quantities and results of the wavelength accuracy check are

given in Table 7.2.4-4:

lref is the reference value of the wavelength according to Table 7.2.4-2.

(continued)
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Fig. 7.2.4-3 Absorption

spectrum of toluene in

n-hexane

Table 7.2.4-3 Values of the absorbance of potassium dichromate at selected wavelengths

and the concentration of the potassium dichromate solutions

l in nm Concentration of potassium dichromate solutions in mg L�1

60.015 60.005 60.024 60.018 60.011 60.008

Measured absorbances with six replicates

1 2 3 4 5 6

235 0.7425 0.7408 0.7421 0.7456 0.7448 0.7467

257 0.8607 0.8632 0.8672 0.8645 0.8653 0.8639

313 0.2926 0.2916 0.2946 0.2922 0.2928 0.2948

350 0.6391 0.6412 0.6389 0.6395 0.6405 0.6401
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�lexp is the mean value of the observed wavelengths given in Table 7.2.4-2

obtained by three replicates.

jlref � �lexpj is the difference between the reference and the mean values

of the wavelengths, which is the first criterion of acceptance.

lmax � lmin is the difference between the greatest and the smallest

observed values of the wavelengths, which is the second criterion of

acceptance. Thus, the result is tested by both criteria of acceptance.

As Table 7.2.4-4 shows, both acceptance criteria are fulfilled by all

wavelengths checked.

(b) 1. The observed absorbance A ¼ 2:055 and the transmission T ¼ 0:0088
do not exceed the limit values of the acceptance Tlim ¼ 0:01 and

Alim ¼ 2:0; respectively, and therefore the acceptance criterion is

fulfilled.

2. The intermediate quantities and results are given in Table 7.2.4-5

calculated with stray light observed at 220 nm (Ts ¼ 0.0088). Accord-

ing to the results (bias in %), the working range chosen should not

exceed the absorbance 1.0.

3. The graph Awith stray light ¼ f ðAwithout stray lightÞ based on the value of

absorbance calculated by (7.2.2-1) and (7.2.2-3) is shown in

(continued)

Table 7.2.4-4 Intermediate quantities and results of the wavelength accuracy check

lref in nm �lexp in nm jlref � �lexpj
in nm

lmax in nm lmin in nm lmax � lmin

in nm

241.13 241.58 0.45 241.67 241.45 0.22

249.87 249.23 0.64 249.32 249.15 0.17

278.10 278.32 0.22 278.39 278.24 0.15

287.18 287.08 0.10 287.16 287.02 0.14

333.44 333.57 0.13 333.68 333.45 0.23

345.47 345.63 0.16 345.69 345.58 0.11

361.31 361.49 0.18 361.57 361.42 0.15

Table 7.2.4-5 Effect of stray light observed at 220 nm on the absorbance

A T ðT ¼ 10�AÞ T* (7.2.2-3) A* (7.2.2-1) Bias A� A� Bias in %

0.25 0.5623 0.5662 0.2471 0.0029 0.29

0.50 0.3162 0.3222 0.4919 0.0081 0.81

1.00 0.1000 0.1079 0.9671 0.0329 3.29

1.50 0.0316 0.0401 1.3971 0.1029 10.29

2.00 0.0100 0.0186 1.7294 0.2706 27.06

2.50 0.0032 0.0119 1.9256 0.5744 57.44

3.00 0.0010 0.0097 2.0121 0.9879 98.79
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Fig. 7.2.4-4. As the graph shows, the deviation as a consequence of

1% stray light is appreciably greater than the absorbance of about 1.0.

(c) The ratio of the observed absorbances at lmax ¼ 269 nm and lmin ¼ 267 nm

is 1.95 and thus greater than the acceptance value 1.5. The resolution can be

accepted.

(d) The adjusted absorbance values calculated by (7.2.4-1) and the interme-

diate quantities for the test value sr% are summarized in Table 7.2.4-6. As

the values for the relative standard deviation of the absorbances obtained

by six replicates do not exceed sr% ¼ 0:5 for each test wavelength, the

photometric accuracy can be accepted.
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Fig. 7.2.4-4 Deviation (dotted line) from linearity as a result of stray light intensity

Is ¼ 1%

Table 7.2.4-6 Intermediate quantities and results for checking the photometric accuracy

Adjusted absorbances at l ¼ 235 nm ðAref ¼ 0:742Þ
0.7419 0.7401 0.7417 0.7451 0.7442 0.7461
�A235 0.7432 jAref � �A235j 0.0012 s 0.0023

sr% 0.31 Result sr%observed < sr%ref

Adjusted absorbances at l ¼ 257 nm ðAref ¼ 0:861Þ
0.8601 0.8624 0.8667 0.8639 0.8646 0.8632
�A257 0.8635 jAref � �A257j 0.0025 s 0.0022

sr% 0.26 Result sr%observed < sr%ref

Adjusted absorbances at l ¼ 313 nm ðAref ¼ 0:291Þ
0.2924 0.2913 0.2944 0.2920 0.2926 0.2945
�A313 0.2929 jAref � �A313j 0.0019 s 0.0013

sr% 0.45 Result sr%observed < sr%ref

Adjusted absorbances at l ¼ 350 nm ðAref ¼ 0:639Þ
0.6386 0.6406 0.6385 0.6391 0.6400 0.6395
�A350 0.6394 jAref � �A350j 0.0004 s 0.0008

sr% 0.13 Result sr%observed < sr%ref
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7.3 HPLC Instruments

HPLC is one of the most important techniques used for the analysis of organic

compounds. Numerous analytical methods have been developed for pharmaceutical,

chemical, food, and environmental applications. In order to provide reliable results,

the performance of the HPLC system must be checked at specified intervals.

The performance of an HPLC system can be evaluated by examining the modules

of the instrument without the column (also called operational qualification) and by

holistic testing (also called performance qualification) which can be verified accord-

ing to the parameters of the system suitability test (SST) described in Sect. 6.1.

The performance verification of the HPLC system includes the following

modules:

1. Pump

Performance attributes of the pump are flow rate accuracy, gradient accuracy,

and pressure stability.

The flow rate accuracy can simply be checked by measuring the collected

volume of the mobile phase for a specified time at different flow rates. The

deviations should not exceed � 2% of the set flow rate.

The gradient accuracy crucial for proper chromatographic separation and

reproducibility can be indirectly checked for a binary system by monitoring

the absorbance change obtained by altering the composition of the mobile phase

according to a given program. Channel A, for example, is filled with a pure

solvent and channel B is filled with a solvent containing an UV-absorbing

substance, e.g. caffeine. The gradient accuracy and linearity is checked by the

step-like chromatogram obtained by the gradient program which changes from

100% A to 100% B. Details of the procedure are given in [3–5].

Pressure testing involves the checking for leaks within the pump system. It is

verified by testing the pressure decay after plugging the outlet of the pump with a

dead-nut. The general expectation of pressure decay is <520 kPa min�1.

2. Injector

The volume precision of the injector is critical if various amounts of standard

and sample solutions are to be injected. It can be checked by making at least six

replicate injections of a sample solution. The relative standard deviation should

not be greater than 1%.

The linearity of the injected volume by automated injectors is especially

important if various volumes have to be injected, for example during the

quantitative determination of impurities present in different concentrations.

The linearity is checked by making injections over a wide range, for example

5–100 mL. The relationship between the response and the injection volume is

checked for linearity by known methods (see Sect. 5.3).

A further check concerns the problem of carryoverwhich will affect the accurate
quantitative determination of the analyte, especiallywhen a dilute sample is injected

after a concentrated sample. The carryover can be checked by injecting a blank after

a highly concentrated test sample. The response of the test sample obtained in the
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blank expressed as the percentage of the response of the concentrated sample is a

measurand of the level of carryover, which should be smaller than 1%.

3. Detector

There are different detectors in HPLC, such as UV–Vis, diode array detector

(DAD), fluorescence detector, refractive detector (RI), mass-selective detector

(MSD), light scattering (ELSD) detector, electrochemical detector (EC), etc. Each

of them requires specific test procedureswhich cannot be describedwithin the scope

of this book. The UV–Vis detector is mostly used in routine analysis for AQA and

the checking of this detector for wavelength accuracy and linearity of response is

substantially to the same as the procedures given above. The linearity of the detector

important for quantitative analysis, for example, can be checked by filling the flow

cell with a series of test solutions of various concentration of the test sample.

4. Column temperature

The temperature of the HPLC column affects its efficiency because of the

dependence of the capacity factor k0 on temperature. Generally, the retention

time drops by 1–3% for each increase of 1�C. Maintenance of a constant and

accurate column temperature is important in order to achieve stable retention

time and resolution of the analytes, and can be achieved by a column heater. The

temperature accuracy of the column heater is evaluated by a calibrated ther-

mometer placed in the column heater. The deviation between the measured and

the set temperature should not be greater than �2�C.
5. Dead volume

The dead volume of the HPLC instrument is the volume between the injector

and the detector cell, and is measured without the column. The dead volume

affects the sharpness as well as the shape of the peak and, therefore, the

separation performance of the HPLC instrument. The higher the dead volume

the broader the peak, especially at early eluting peaks, and the smaller the

resolution of two adjacent peaks.

The dead volume Vd is estimated by the time t taken by a test substance (for

example, acetone) from the injector to the detector at the low rate _F

Vd ¼ _F � t: (7.3-1)

A dead volume Vd between 20 and 25 mL is a very acceptable value, but

Vd>70mL causes observable peak broadening whereas 25<Vd<70 can still be

accepted.

Challenge 7.3-1

(a) The flow rate accuracy of the pump of an isocratic HPLC instrument must

be tested.

The measured time for V ¼ 10 mL at the set flow rate _F ¼ 2 mLmin�1

is given below:

t in s 301 304 302 303 306 305

(continued)
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Check whether the flow rate fulfills the regulatory requirements.

(b) The injection precision of the automated injector of an HPLC instrument

was checked by the injection of 25 mL of the test solution 0.5% (m/V)

acetylsalicylic acid in the eluent H2O/MeOH.

The following HPLC parameters are applied:

Column ODS 1, 5 mm
Mobile phase H2O/MeOH (V + V ¼ 80 + 20)

Flow rate 1 mL min�1

Detection 272 nm

Column temperature 25�C

The peak areas A in counts obtained by six replicates are:

157,935 157,032 156,585 157,672 156,472 157,928

Estimate the injection precision of the automated injector.

(c) The performance of the UV detector of a HPLC instrument must be

estimated.

The detector cell was filled with a solution of phenanthrene in acetonitrile

and the values of lmax and lmin were scanned. The UV spectrum of phenan-

threne presented in Fig. 7.3-1 shows a sharp band at lmax ¼ 250 nm and

minima at lmin; 1 ¼ 225 nm and lmin; 2 ¼ 264 nm: The following scanned

values were obtained: lmax ¼ 251 nm, lmin; 1 ¼ 224 nm, lmin; 2 ¼ 266 nm

Evaluate the wavelength accuracy.

(d) The choice of an appropriate detection wavelength as well as the impor-

tance of wavelength accuracy is preferably set by the analytical problem.

Let us assume we have a mixture of the analytes phenanthrene and

azobenzene whose UV spectra are given in Fig. 7.3-1.

(continued)
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azobenzene (each 0.003 mol

L�1) in acetonitrile
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Which detection wavelength should be chosen for the following problem?

1. Determination of azobenzene only and vice versa.

2. Determination of both substances.

3. Determination of azobenzene in the presence of biphenyl with the high-

est sensitivity. Note that biphenyl does not absorb above l ¼ 310 nm:
4. Determination of phenanthrene with the highest sensitivity.

(e) The linearity was checked by measuring the response of solutions of

various concentrations of phenanthrene in acetonitrile in the detector cell

at 250 nm. The results are given in Table 7.3-1.

Evaluate the linearity of the UV detector.

(f) After the injection of 25 mL of a highly concentrated solution of phenan-

threne in acetonitrile (0.01 mol L�1) giving a peak area of

A ¼ 615; 819 counts at l ¼ 250 nm, the pure eluent was injected. The

blank value measured at l ¼ 250 nm was Abl ¼ 1852 counts:
Evaluate the carryover.

What problems can be caused by the carryover and how can they be

avoided?

(g) Evaluate the dead volume of a HPLC instrument on the basis of the

following data obtained with the test substance acetone:

Set flow rate: _F ¼ 0:1mLmin�1

Retention time tr measured by six replicates:

tr in s 35 32 34 38 35 33

(h) Which modules can be monitored by the relative standard deviation of

the retention time as well as the peak areas of a test substance?

Solution to Challenge 7.3-1

(a) The relative deviation between the measured mean value
�V ¼ 1:977mLmin�1 and the set flow rate _F ¼ 2mLmin�1 is 1.15%,

which does not exceed the acceptance limit of 2%.

(b) The volume precision of the injection obtained by the six replicates is

sV% ¼ 0:42 calculated with �A ¼ 157; 270:7 counts and s ¼ 663:24 counts:
This value is smaller than the limit value sV; lim% ¼ 1:0: Thus, the injection
precision is acceptable.

(c) The deviation of the obtained lmax- and lmin-values from the reference

values are within the limits of the acceptance criterion. The somewhat

greater deviation for the reference value lmin, 2 ¼ 264 nm may be caused

by the broader and flatter valley of the absorption band at this region.

(continued)

Table 7.3-1 Response values of solutions of phenanthrene in acetonitrile

c in mol L�1 0.001 0.0015 0.002 0.0025 0.003 0.0035

A 58,935 88,028 117,191 146,848 175,896 205,892
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(d) 1. With the wavelength l ¼ 342 nm, only azobenzene is detected

because phenanthrene does not absorb in this range.

There is no wavelength at which azobenzene does not absorb, but at

the detection wavelength l ¼ 250 nm there is a minimum of the

absorbance for azobenzene and the highest absorbance for phenan-

threne, and therefore this wavelength should be chosen. Note that

wavelength accuracy is necessary for this problem because of the

narrow absorption band of phenanthrene at 250 nm.

2. The absorbance in the range l � 290–300 nm is comparable for both

substances, and therefore a detection wavelength in this range yields

nearly the same sensitivity for both compounds. Wavelength accuracy

is not absolutely necessary for this problem.

3. An appropriate detection limit of azobenzene is l � 315 nm because

at this wavelength the by-product biphenyl does not absorb and

azobenzene has the highest sensitivity.

4. The highest sensitivity for the detection of phenanthrene is given at

l ¼ 250 nm.

(e) According to the plot of the response against the test concentrations

shown in Fig. 7.3-2, linearity is present, which is confirmed by the

statistical test of the significance of the quadratic regression term a2
(see Sect. 5.3).

The test value calculated by (5.3.6-2)

t̂ ¼ a2
sa2

¼ 289; 642; 857

131; 966; 110
¼ 2:195 (7.3-2)

does not exceed the critical value tðP ¼ 95%; df ¼ 3Þ ¼ 3:182; and

therefore the quadratic term is not significant.

The linearity is confirmed.

(f) The measured peak area of the blank is only 0.30% of the peak area

obtained by the injection of a highly concentrated solution. The effect of

carryover can be accepted.

Because of the carryover of small sample amounts from the previous to the

next injection, carryoverwill affect the results of quantitative determinations.

(continued)

200000

250000

0

50000

100000

150000

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035

A
 i
n 

co
un

ts

c in mol L–1

Fig. 7.3-2 Plot of response against concentration of the test sample phenanthrene in

acetonitrile

7.3 HPLC Instruments 283



To avoid contamination from the preceding sample injection, all parts of

the injector system that come into contact with the sample have to be

thoroughly cleaned after the injection.

(g) The dead volume calculated by (7.4-1) using the mean value of the

obtained retention times of the test sample acetone, �t ¼ 35 s, is:

Vd ¼ 0:1mLmin�1 � �t

60
min ¼ 0:058mL:

The dead volume Vd ¼ 58 mL can be accepted for most applications.

(h) The relative standard deviation of the retention time of a test substance

can control the accuracy of the pump (flow rate, gradient former) and the

column heater.

The relative standard deviation of the peak area controls the injection

system.

7.4 Balances

“Pharmaceutical testing and assay requires balances that vary in capacity, sensitivity,

and reproducibility. Unless otherwise specified, when substances are to be ‘accurately

weighed’ for assay the measurement uncertainty (random plus systematic error) of

the weighing device must not exceed 0.1% of the reading. Measurement uncertainty

is satisfactory if three times the standard deviation of not less than ten replicated

weighings, divided by the amount weighed, does not exceed 0.001” [7].

Requirements according to USP are:

l The measurement uncertainty U may not be greater than 0.1% of the minimal

sample quantity (SQmin):

U � SQmin � 0:1% (7.4-1)

or

U

SQmin

� 0:001: (7.4-2)

l The measurement values must lie within the significance level P ¼ 99%:

U ¼ 3 � s: (7.4-3)

l Therefore, the minimum sample quantity is determined by:

SQmin ¼ 3; 000 � s: (7.4-4)
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Challenge 7.4-1

(a) The standard deviation of a laboratory balance is specified by the manu-

facturer as s ¼ � 0:001 mg: For which minimal sample quantity SQmin

can this balance be used?

(b) After optimal siting of a balance (vibration-free site, no direct sunlight,

air-conditioned room) the following test parameters were read with a

15 mg weight:

0.015001 g 0.015000 g 0.015002 g 0.015001 g 0.014999 g

0.015000 g 0.015001 g 0.015002 g 0.014999 g 0.015001 g

Can this balance be used for weighing 10 mg according to the USP norm?

Solution to Challenge 7.4-1

(a) The minimal sample quantity is calculated by (7.4-3): SQmin ¼ 3; 000�
0:001 mg ¼ 3 mg:
According to USP the balance can be used for weighing the minimal

sample quantity of 3 mg.

(b) The standard deviation is s ¼ 0:000001075 g or s ¼ 0:001075 mg which

gives the values of the uncertaintyU ¼ 0:003225 mg calculated by (7.4-3).

The minimal sample quantity is SQmin ¼ 9:675 mg, calculated accord-

ing to (7.4-4). This value is smaller than 10 mg, and thus, the USP

requirement is fulfilled for this balance.
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Chapter 8

Control Charts in the Analytical Laboratory

8.1 Quality Control

Whereas the term “quality assurance” (QA) involves the overall measures taken by

the laboratory to regulate quality, “quality control” (QC) relates to the individual

measurements of samples. The two aspects of QC concern internal quality control,

the subject of this chapter, and proficiency testing, which is a form of the external
QC described in the next chapter.

Internal laboratory quality control provides evidence of reliability of analytical

results. Monitoring of analytical performance on an on-going basis is an important

element of quality management in the laboratory. It is documented during the stage

of method development and validation that the analytical method applied in routine

analysis is fit-for-purpose. But the question is whether the data routinely produced

by this method are still fit-for-purpose each time. This is accomplished by analysis

of reference materials or control samples under the same conditions, i.e. if, for

example, the test material is analyzed using two replicates then the QC material

must also be analyzed using two replicates. If there are no significant differences

according to tests of trueness and precision, the analytical method is still under

statistical control, which means the variation in the variable measured belongs to

the same distribution.

The required control material may be a certified reference material, an in-house

reference material which can be prepared by the laboratory for the purpose of QC,

or it can be excess test materials from earlier batches. There are some requirements

for QC materials: they must be stable and available in sufficient quantity, and they

should receive the same treatment as the samples.

The data obtained regularly from the QC materials are, in general, evaluated by

control charts. Control charts are extremely valuable in providing a means of

monitoring the total performance of the analyst, the instruments, and the test

procedure and can be utilized by any laboratory.

There are a number of different types of control charts but they all illustrate

changes over time. In the following, Shewhart charts and CuSum charts will be

described. For further information see references [1–4].

M. Reichenb€acher and J.W. Einax, Challenges in Analytical Quality Assurance,
DOI 10.1007/978-3-642-16595-5_8, # Springer-Verlag Berlin Heidelberg 2011
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8.2 Shewhart Charts

The general pattern of a Shewhart chart at the start of routine analysis constructed

by the parameters obtained in a pre-period is shown in Fig. 8.2-1. The central line of

the control chart is a mean value around which the measured values obtained by

observations vary at random. The mean value �x is the “true value” obtained by

measurements of an in-house reference material or given from certified reference

materials. Mostly, the assigned value is obtained in the pre-period, or the mean of

the most recent observations considered to be under control should be used as the

centre line. Measured values which lie on the central line are assumed to be

unbiased.

Using the mean m and the standard deviation s obtained, the upper and lower

action limit lines UAL and LAL and the upper and lower warning limit lines UWL

and LWL, respectively, are constructed, as in the following equations

Warning limit lines WL:

�x� 2 � D: (8.2-1)

Action limit lines AL:

�x� 3 � s: (8.2-2)

Note that the warning limit lines are also called control limit lines CL.

In practice, the standard deviation s will be unknown and will have to be

estimated from historical data.

On the assumption that the frequency distribution of the measured values

follows a normal distribution, the three-sigma limits include 99.7% of the area
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Fig. 8.2-1 The general pattern of a Shewhart chart and the curve of the normal distribution of the

analytical results obtained in the pre-period with the “true” value �x and the limits at the signifi-

cance levels P ¼ 95:5% and P ¼ 99:7%; respectively
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under a normal curve and the two-sigma lines include 95.5% of the values, as

Fig. 8.2-1 shows.

When single QC runs are carried out, the standard deviation s is estimated

directly from the standard deviation of single results in different runs, but when

the QC results are averaged by replicates per run, the standard deviation s must be

calculated from separate estimation of within- and between-run variances accord-

ing to the rules of ANOVA calculated by

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2bw þ s2in

nj

s
; (8.2-3)

where nj is the number of the replicates per run.

Finally, the data set used for construction of the control chart has to be inspected

to see whether extremely large or small values must be rejected as outliers, because

such values will distort the charts and make them less sensitive and, therefore, less

useful in detecting problems.

Data obtained by the observations are plotted in chronological order. By com-

paring current data to the limit lines, one can draw conclusions about whether the

process variation is consistent (in control) or is unpredictable (out of control):

affected by special causes of variation. If an out-of-control situation is detected,

the measurement process should be stopped, the causes of this variation must be

sought and eliminated or changed.

Besides the out-of-control rules given in [5], there are some additional rules

which are illustrated in Fig. 8.2-2:

1. One measured point lies out of the upper or the lower action line.

2. Nine consecutive measured points lie on one side of the central line.

3. Two consecutive measured points lie outside the warning line.

4. Nine consecutive measured points show an upward trend.

5. Nine consecutive measured points show a downward trend.
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Fig. 8.2-2 Presentation of some out-of-control situations
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A Shewhart control chart constructed according to Fig. 8.2-1 can be applied as:

l Mean control chart, preferably, for recognition of the precision or trends of an

analytical method.
l Blank control chart, for control of reagents and measurement instruments. Note

that blank control charts include not analytical results but measured values.
l Recovery control chart, for control of proportional systematic errors caused by

the matrix.

These charts are primarily used for detecting bias in an analytical system.

A special chart, the range chart, is applied for monitoring the analytical precision.

Analytical precision is concerned with variability between repeated measurements

of the same analyte, irrespective of presence or absence of bias. The range, i.e. the

difference between the largest and smallest values, obtained by replicate measure-

ments within each analytical run is used to control the stability of analytical

precision and it thus checks the homogeneity of variances.

The format of a range chart is shown in Fig. 8.2-3.

In order to construct the limits of the range charts, the ranges Ri of all sub-groups

must be determined according to

Ri ¼ xi;max � xi;min; (8.2-4)

for which the average range �R is calculated by (8.2-5)

R ¼
P

Ri

n
: (8.2-5)

The upper action limit line UAL and upper warning (or control) limit line UWL

are obtained by multiplying the average range by tabulated multipliers which are

given in Table 8.2-1 for various numbers of replicates nj.
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Fig. 8.2-3 Format of a range chart
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These multipliers DWL and DAL correspond to the two- and three-sigma level,

respectively:

Warning limit lines WL:

WL ¼ R � DWL (8.2-6)

Action limit lines AL:

AL ¼ R � DAL (8.2-7)

An out-of-control situation can be detected by the rules given above.

Challenge 8.2-1

The performance of a test method for the determination of copper in soil

samples by optical emission spectroscopy with inductively coupled plasma

(ICP-OES) was monitored by analyzing a quality control material without

replicates. The analytical results obtained in the pre-period are given in

Table 8.2-2.

The Cu-containing soil sample was used as “in-house reference material”

for quality control in routine analysis. The results for the first 35 control

measurements are summarized in Table 8.2-3.

(a) Construct a Shewhart mean value control chart with warning and action

limits equivalent to the 95.5% and 99.7% confidence limits on the basis of

the data set obtained in the pre-period.

(b) Check whether the method is under statistical control at each control

point in routine analysis.

Table 8.2-1 D-factors for the
calculation of the limits of

range charts for nj replicates
per run

nj DWL

P ¼ 95%
DAL

P ¼ 99:7%

2 2.809 3.267

3 2.176 2.575

4 1.935 2.282

5 1.804 2.115

6 1.721 2.004

7 1.662 1.924

8 1.617 1.864

9 1.583 1.816

10 1.555 1.777
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Solution to Challenge 8.2-1

(a) If the whole data set given in Table 8.2-2 is used for the determination of

the standard deviation s the following limits are calculated:

�x ¼ 24:24mg kg�1 s ¼ 1:3594mg kg�1 UAL ¼ 28:32mg kg�1

UWL ¼ 26:96mg kg�1 LWL ¼ 21:52mg kg�1 LAL ¼ 20:16mg kg�1

(continued)

Table 8.2-2 Analytical

results of Cu in a soil sample

determined in the pre-period

by ICP-OES obtained by

single observations

Observation

no.

cCu in
mg kg�1

Observation

no.

cCu in
mg kg�1

1 24.5 16 24.4

2 24.1 17 23.8

3 26.3 18 23.5

4 22.7 19 22.9

5 23.9 20 24.3

6 24.1 21 24.8

7 30.1 22 24.1

8 23.6 23 24.6

9 23.8 24 24.6

10 24.6 25 24.7

11 22.2 26 24.1

12 23.6 27 24.2

13 23.9 28 23.5

14 24.0 29 22.7

15 24.8 30 24.8

Table 8.2-3 Analytical

results of Cu determined by

ICP-OES in routine analysis

Observation

no.

cCu in
mg kg�1

Observation

no.

cCu in
mg kg�1

1 23.9 18 24.3

2 23.7 19 21.9

3 24.9 20 22.0

4 21.0 21 22.9

5 24.7 22 23.6

6 25.1 23 25.2

7 23.8 24 25.3

8 23.6 25 26.7

9 23.6 26 24.7

10 24.5 27 24.9

11 23.4 28 24.6

12 22.9 29 25.1

13 22.3 30 25.0

14 26.2 31 24.8

15 25.0 32 24.3

16 23.2 33 23.2

17 25.1 34 23.9
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The Shewhart mean value control chart constructed with these parameters

is shown in Fig. 8.2-4.

As Fig. 8.2-4 shows, no out-of-control situation can be detected. But are

the limits used for the construction of the Shewhart chart valid?

Inspection of the data set in Table 8.2-2 shows that the value of observation

no. 7 measured in the pre-period is unusually high, and therefore this valuemust

be detected as an outlier. The Grubbs test must be used because n ¼ 30:
The test value calculated according to (3.2.3-2) with xmax ¼ x� ¼ 30:1;

xmin ¼ 22:2; and s ¼ 1:3594 is r̂m ¼ 4:311 which is greater than the critical

value rmðP ¼ 95%; n ¼ 30Þ ¼ 2:745: Thus, the measured value for observa-

tion no. 7 must be rejected from the data set.

The recalculated limits on the basis of the outlier-free data set are:

�x ¼ 24:04mg kg�1 s ¼ 0:8033mg kg�1 UAL ¼ 26:45mg kg�1

UWL ¼ 25:64mg kg�1 LWL ¼ 22:43mg kg�1 LAL ¼ 21:63mg kg�1

The control chart presented in Fig. 8.2-5 shows three out-of-control situations:

1. The value of observation no. 4 lies outside the action limit.

2. Two successive observations (nos. 19 and 20) lie between the control and

the action limits.

3. The value of observation no. 25 lies outside the action limit.

This example demonstrates the importance of the evaluation of data used

for the determination of the control limits.

Clearly, the determination of the standard deviation used for the calcula-

tion of the control limits requires data sets which are normally distributed,

which can be checked by the David test. Strictly speaking, the test value

q̂r ¼ 5:81 lies outside from the upper value which is 5.26 at the significance

level P ¼ 99%, but the difference is only small.
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Fig. 8.2-4 Shewhart mean value control chart of the observations given in Table 8.2-3 with

the limits calculated by the whole data set from the pre-period listed in Table 8.2-2
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Challenge 8.2-2

Table 8.2-4 presents the results of the determination of the potency assay of a

control material of a pharmaceutical product obtained in the pre-period by

each three replicates, and the first nine results in routine analysis are given in

Table 8.2-5.

(a) Construct the corresponding chart for controlling the mean values! Deter-

mine whether the analytical system is under control!

(b) Construct the corresponding chart for controlling of the precision and

determine whether the homogeneity of variances is given!

(continued)

Table 8.2-4 Twelve sets

of three replicate potency

assay measurements

obtained from a control

material

Observation no. c in %

(w/w)

Observation no. c in %

(w/w)

1 80.37 7 80.99

80.95 80.51

80.81 80.83

2 81.05 8 80.92

80.74 80.85

80.99 80.91

3 80.85 9 80.87

81.09 80.64

80.96 80.58

4 81.12 10 80.88

81.05 80.99

80.92 80.81

5 81.05 11 80.96

80.91 80.81

81.18 81.04

6 80.83 12 80.95

80.63 81.41

80.97 81.09
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Fig. 8.2-5 Shewhart mean value control chart of the observations given in Table 8.2-3 with

the limits calculated by the outlier-free data set from the pre-period listed in Table 8.2-2
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Solution to Challenge 8.2-2

First, the mean values �xj of the i observations of the measured values in the

pre-period listed in Table 8.2-7 are checked for normal distribution and

outliers.

The test value calculated according to (3.2.1-1) q̂r ¼ 3:30 lies within the

critical limits of the David table for P ¼ 95% and n ¼ 12 which are 2.80 and

3.91, and therefore the data can be assumed to be normally distributed.

The intermediate quantities and results given in Table 8.2-6 show that the

data set is free of outliers by the Dixon test for n ¼ 12: Thus, the whole data
set can used to construct the appropriate control charts.

(a) Because replicates were performed, the standard deviation necessary for

the estimation of the control limits according to (8.2-1) and (8.2-2) must

be determined by the variance components s2bw and s2in according to

(8.2-3), which must be obtained by ANOVA. The intermediate quantities

and results of ANOVA are listed in Table 8.2-7.

The standard deviation required for the setup of the Shewhart mean

control chart is s ¼ 0:2580% (w/w) calculated according to (8.2-3)

using the variances given in Table 8.2-7. The limits of the mean

value control charts shown in Fig. 8.2-5 calculated by (8.2-1) and

(8.2-2) are:

(continued)

Table 8.2-5 The first nine

analytical results of three

replicates obtained by the

quality control in routine

analysis

Observation no. c in %

(w/w)

Observation no. c in %

(w/w)

1 80.82 6 80.97

80.26 81.01

80.65 81.13

2 80.27 7 81.65

81.00 81.75

81.05 81.97

3 80.99 8 80.53

80.88 80.77

81.11 80.97

4 80.28 9 81.02

80.02 81.01

80.57 81.03

5 80.65

80.62

80.78

Table 8.2-6 Intermediate quantities and results of the Dixon outlier test on the highest and

smallest mean value obtained during the pre-period

Test value x1 xb xk Q̂

xmax 81.15 81.03 80.71 0.273

xmin 80.70 80.78 81.05 0.229

The symbols refer to (3.2.3-1) for b ¼ 3 and k ¼ n–1. The critical value is

QðP ¼ 95%; n ¼ 12Þ ¼ 0:546:
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�x ¼ 80:90% (w/w)

UAL ¼ 81:68% (w/w) UWL ¼ 81:42% (w/w)

LWL ¼ 80:39% (w/w) LAL ¼ 80:13% (w/w)

Figure 8.2-6 shows the mean value charts for controlling the potency

assay of a pharmaceutical drug during routine analysis, constructed with

the limit values obtained in the pre-period and the mean values given in

Table 8.2-8. Inspection of Fig. 8.2-6 shows an out-of-control situation at

observation no. 7. After correction of the problem caused by the prepara-

tion of the sample, the analytical system is once more under control, as

shown by the measured value of the next observation.

(b) The range chart is based on the range values obtained in the pre-periodwhich

are given in Table 8.2-9. The limit values of the range chart calculated

according to (8.2-6) and (8.2-7) with the mean value �Ri ¼ 0:3042% (w/w),

and the D-factors from Table 8.2-1 for nj ¼ 3 (2.575 and 2.176, respec-

tively) are: UAL ¼ 0.783% (w/w) and UWL ¼ 0.662% (w/w).

The range chart is shown in Fig. 8.2-7 for the first nine observations in

routine analysis with the range values listed in Table 8.2-8. Observation

no. 2 shows an out-of-control situation, because the range value lies

outside the upper action line. After removal of the cause, e.g., exchanging

the HPLC injection syringe, the analytical system is again under control.

As the results of this Challenge show, the combination of a mean value

and a range chart is appropriate for checking large deviations of the

mean, the precision, and also trends in the analytical system.

(continued)

Table 8.2-7 Intermediate

quantities and results of

ANOVA

Observation no. �xj njð�xj � ��xÞ2 SSj

1 80.71 0.11181 0.18320

2 80.93 0.00167 0.05407

3 80.97 0.01214 0.02887

4 81.03 0.04834 0.02060

5 81.05 0.06187 0.03647

6 80.81 0.02598 0.05840

7 80.78 0.04792 0.11947

8 80.89 0.00028 0.00287

9 80.70 0.12779 0.04687

10 80.89 0.00028 0.01647

11 80.94 0.00339 0.02727

12 81.15 0.18294 0.11120
��x 80.90P

njð�xj � ��xÞ2
¼ SSbw

0.62443
P

SSj ¼ SSin 0.70573

ni 12 n j 3

dfbw ¼ ni � 1 11 dfin ¼ nj � ni � ni 24

s2bw 0.05677 s2in 0.02941
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Table 8.2-8 The values of the mean and the range of the results given in Table 8.2-5

Observation no. �xj xj;max xj;min Rj

1 80.58 80.82 80.26 0.56

2 80.77 81.05 80.27 0.78

3 80.99 81.11 80.88 0.23

4 80.29 80.57 80.02 0.55

5 80.68 80.78 80.62 0.16

6 81.04 81.13 80.97 0.16

7 81.79 81.97 81.65 0.32

8 80.76 80.97 80.53 0.44

9 81.02 81.03 81.01 0.02
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Fig. 8.2-6 Mean value charts for controlling the potency assay of a pharmaceutical drug

during routine analysis
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Fig. 8.2-7 Range charts for controlling the potency assay of a pharmaceutical drug during

routine analysis
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8.3 CuSum Charts

For a series of measurements x1, x2, . . . , xn the cumulative sum of differences
(CuSum) between the observed value and the target value m is determined using

C1 ¼ x1 � m

C2 ¼ ðx2 � mÞ þ ðx1 � mÞ ¼ C1 þ ðx2 � mÞ

and so on resulting in (8.3-1):

Ci ¼
X
j¼1;i

ðxj � mÞ: (8.3-1)

These values are displayed on a chart such as that in Fig. 8.3-1.

Both axes are converted to the same scale in units. The scale factorw determines the

scaling of the axes. It indicates which CuSum value represents a single unit on the y-
axis. In general,w is given in a multiple of the standard deviationw ¼ q � s determined

in the pre-period with 1 � q � 2. When the CuSum chart is constructed by mean

values obtained by n analysis, then the standard deviation of the mean sm is used:

sm ¼ sffiffiffi
n

p : (8.3-2)

A single unit on the x-axis corresponds to the difference between two observa-

tions, for example, one day. The scaling is determined by the scaling factor wwhich

corresponds the unit on the CuSum (y)-axis.

Table 8.2-9 Range values of

the data set of Table 8.2-4
Observation no. xmax xmin Ri

1 80.95 80.37 0.58

2 81.05 80.74 0.31

3 81.09 80.85 0.24

4 81.12 80.92 0.20

5 81.18 80.91 0.27

6 80.97 80.63 0.34

7 80.99 80.51 0.48

8 80.92 80.85 0.07

9 80.87 80.58 0.29

10 80.99 80.81 0.18

11 81.04 80.81 0.23

12 81.41 80.95 0.46
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CuSum charts cannot be interpreted using warning and action limits as in the

interpretation of Shewhart chart, but there are some possibilities for recognizing an

out-of-control situation:

l Visual estimation of the slope of the CuSum line. An out-of-control situation can

be shown by changes in the slope of the CuSum line.
l Numerical criteria.
l Use of software packages such as [6].
l Use of the V-mask as the decision criterion, which will be described below.

The dimension of the V-mask can be specified by two distinct parameters:

l y, half the angle formed by the V-mask arms.
l d the distance between the origin and the vertex, as shown in Fig. 8.3-2.

The vertical distance between the origin and the upper (or lower) V-mask arm

h corresponds to an interval of one unit on the horizontal axis.

The V-mask is laid over the CuSum chart in such a manner that the vertex

always points in the direction of the observations and the origin of the V-mask

(point l) is located at the most recently plotted point and overlays each point in

turn. Note that the horizontal line must always be kept parallel to the x-axis. An
out-of-control condition is signaled at an observation (or at time t) if one or more

of the points plotted up to time t crosses an arm of the V-mask. An upward shift

is signaled by points crossing the lower arm, and a downward shift by points

crossing the upper arm. The observation at which the shift occurred corresponds

to the observation at which a distinct change is observed in the slope of the

plotted points.

The parameters y and d can be calculated, for example, by the (8.3-3) and

(8.3-4) [2]:

Observation no. 

C
uS

um
1 unit

1 unit

Fig. 8.3-1 Pattern of a CuSum chart
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y ¼ arctan
D

2w

� �
(8.3-3)

d ¼ 2 � s2 � ln a
D2

; (8.3-4)

where D is the smallest deviation which can be recognized at a certain signifi-

cance given in multiples of the standard deviation; s is the standard deviation of

the target value or is determined by reference values of the pre-period; w is the

scaling factor w ¼ q � s, for example, w ¼ 2s; and a is the risk of error of the first

kind; a ¼ 0:0027 corresponds to the three-sigma control limit of the mean value

chart.

The CuSum chart is used to detect small changes between 0 and 0:5 s: For
larger shifts ð0:5� 2:5 sÞ; the simple Shewhart charts are just as good and easier

to use.

Challenge 8.3-1

In order to control whether the validated ion chromatographic (IC) method

for the determination of nitrite-N is fit-for-purpose in routine analysis, a

control sample with a content of c ¼ 12:25mgL�1 is analyzed under the

same conditions. The results are shown in Table 8.3-1.

(a) Construct a Shewhart chart with warning and action limits for P ¼ 95:5%
andP ¼ 99:7%; respectively, and checkwhether an out-of-control situation
can be detected.

(b) Construct a CuSum chart and check by a V-mask using the scaling factor

w ¼ 1s and the smallest deviation D ¼ 1:3 � s whether the method can be

considered to be under statistical control at P ¼ 99:7%: Compare the

result obtained by the Shewhart chart.

(continued)

d 
( θ•

h 

Fig. 8.3-2 Parameters of the

V-mask
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Solution to Challenge 8.3-1

(a) The standard deviation of the results given in Table 8.3-1 is

s ¼ 0:140mgL�1 and the mean value is �x ¼ 12:21mgL�1:
Warning limits (WL) calculated as m� 2 � s ¼ 12:21� 0:28mgL�1

are 12.49 mg L�1 and 11.93 mg L�1.

Action limits (AL) calculated as m� 3 � s ¼ 12:21� 0:42mgL�1 are

12.63 mg L�1 and 11.79 mg L�1.

The Shewhart chart is shown in Fig. 8.3-3.

According to the Shewhart chart, no out-of-control condition can be

detected. The measured value of observation no. 15 lies indeed outside

the lower warning line, but inside the action line. Because the next

measured value is again inside the warning line no out-of-control situa-

tion is present at observation no. 15.

(b) The CuSum-values calculated according to (8.3-1) are summarized in

Table 8.3-2 and the CuSum chart is shown in Fig. 8.3-4.

In order to check for an out-of-control situation, the V-mask must be

constructed using the parameters:

l Standard error of the mean sm ¼ 0:03133mgL�1; which is calculated
by (8.3-2) from the results given in Table 8.3-1.

l The scaling factor given as w ¼ 1 � s.
l The smallest deviation D ¼ 1:5 � s.

Calculation of the angle y :

y ¼ arctan
D

2w

� �
¼ arctan

1:5

2

� �
¼ 0:6435 (8.3-5)

y ¼ 36:87�:
(continued)

Table 8.3-1 Results of

controlling the IC method for

the determination of nitrite-N

in routine analysis using a

control sample with

c ¼ 12:25mgL�1

Observation

no.

c in
mg L�1

Observation

no.

c in
mg L�1

1 12.28 11 12.34

2 12.37 12 12.17

3 12.00 13 12.34

4 12.23 14 12.35

5 12.38 15 11.89

6 12.18 16 12.12

7 12.01 17 12.18

8 12.23 18 12.20

9 12.33 19 12.09

10 12.38 20 12.15
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Fig. 8.3-3 Shewhart chart constructed from data in Table 8.3-1
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Fig. 8.3-4 CuSum chart for the data given in Table 8.3-2

Table 8.3-2 Calculation of the cumulative sum (CuSum) for the data given in Table 8.3-1

Observation no. m� xi Ci Observation no. m� xi Ci

1 �0.03 �0.03 11 �0.09 0.02

2 �0.12 �0.15 12 0.08 0.10

3 0.25 0.10 13 �0.09 0.01

4 0.02 0.12 14 �0.10 �0.09

5 �0.13 �0.01 15 0.36 0.27

6 0.07 0.06 16 0.13 0.40

7 0.24 0.30 17 0.07 0.47

8 0.02 0.32 18 0.05 0.52

9 �0.08 0.24 19 0.16 0.68

10 �0.13 0.11 20 0.10 0.78
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Calculation of the distance d in the V-mask:

d ¼ �2 � s2
D2

� ln a ¼ �2

1:32
� ln 0:027 ¼ 4:25 units: (8.3-6)

The V-mask constructed with y ¼ 37� and d ¼ 4:3 units overlies observa-

tion no. 15. As Fig. 8.3-5 shows, observation no. 14 falls outside the lower

arm of the V-mask, indicating an upward shift which is manifest at observa-

tion point 15. Note that the Shewhart mean chart does not show any out-of-

control situation. This demonstrates the higher sensitivity of the CuSum chart

in comparison with the Shewhart mean value chart.

The relative merits of different chart types when applied to detect gross

errors, shifts in mean, and shifts in variability are summarized in Table 8.3-3.
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·

Fig. 8.3-5 CuSum chart for the data given in Table 8.3-2 with the V-mask overlying the

measured value obtained by observation no. 15

Table 8.3-3 Relative merits of different chart types when applied to detect changes in the

first column

Cause of change Chart type

Mean Range CuSum

Gross error þþþ þþ þ
Shifts in mean þþ þþþ
Shifts in variability þþþ
þ suitable, þþ very suitable, þþþ especially suitable for recognizing out-of-control

situations
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Chapter 9

Interlaboratory Studies

9.1 Purpose and Types of Interlaboratory Studies

In interlaboratory studies, which are usually organized by a reference laboratory

(“the organizer”), the participating laboratories receive part of a homogeneous bulk

material which must be analyzed according to a given protocol. The results

obtained are returned to the reference laboratory which evaluates the results and

gives feedback to the participating laboratories.

Interlaboratory studies are primarily performed for one of three reasons:

1. Validation of a measurement method (method performance studies).

Such studies are essential in order to compile DIN/CEN/ISO standards. Further-

more, the value of the precision obtained by the interlaboratory studies can be

used to estimate the measurement uncertainty (see Chap. 10). The organization,

accomplishment, and estimation of the results may be carried out according to

DIN ISO 5725-2 [1], DIN 38402-41 [2], and DIN 38402-42 [3]. Participation in

interlaboratory studies is by the laboratory’s own choice.

2. Validation of a reference materials (material certification studies).

A group of selected laboratories analyses, usually by different methods, a

homogeneous material in order to determine the most probable mean value of

the reference material with the smallest uncertainty. In general, interlaboratory

studies for the certification of reference materials are carried out and established

according to ISO Guide 35: 2006 [4]. There are statistical principles to assist in

the understanding of the associated uncertainty and to establish its metrological

traceability. Reference materials that undergo all the steps described in ISO

Guides are usually accompanied by a certificate and called certified reference

materials (CRM).

3. Assessing laboratory performance (proficiency studies).

A proficiency test scheme comprises the regular distribution to participating

laboratories for independent testing of test materials of which the true concentra-

tions are known or have been assigned in some way, often from the interlabora-

tory study itself. The choice of the analytical methods is left to the laboratory

itself. Proficiency testing shares two key objectives:

M. Reichenb€acher and J.W. Einax, Challenges in Analytical Quality Assurance,
DOI 10.1007/978-3-642-16595-5_9, # Springer-Verlag Berlin Heidelberg 2011
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(a) The provision of regular, objective, and independent assessments of the

accuracy (which involves trueness and precision) of analytical laboratory

results on routine test samples.

(b) The promotion of improvements in the quality (accuracy) of routine analy-

tical data. Proficiency testing is described in international guidelines and

standards such as ISO/IEC 17043:2010 [5] or DIN 38402-45:2003 [6].

Participation in proficiency testing is necessary for laboratories in the course of

their accreditation.

Note that the operational protocols for these three types of study are quite

different.

9.2 Method Performance Studies

In the following, we describe the interlaboratory method performance studies

according to DIN ISO 5725-2 [1] and DIN 38402-42 [3] for estimating objectively

the laboratory quality and the analytical method, respectively.

There should be at least eight participating laboratories, but 15 or more may be

better. In general, each laboratory analyzes the same samples with four replicates

using the same declared analytical method. The results are relayed to the organizer

of the interlaboratory study to evaluate the results by the stages given below.

The evaluation of the outlier-free data set is based on the random effect model of

ANOVA.

Note that the equations for the calculation of parameters are only given where

necessary. Most of them should be familiar from previous chapters:

l Stage 1: Calculation of the preliminary within-laboratory parameters, mean

value �x�i , and standard deviation s�i :
Note that the asterisk denotes that these parameters are preliminary data because

they may still contain outliers. This is also true for the following parameters.
l Stage 2: Preliminary rejection of type 1 outliers (outliers within the laboratory

data) checked by the Grubbs test.

Each laboratory is checked and the test value r̂m is compared with the critical

values at the two-sided significance level P ¼ 90%, which is equal to the one-

sided significance level P ¼ 95%: If r̂m is greater than rmðP ¼ 95%; nkÞ, the test
value is provisionally rejected from the data set.

l Stage 3: Recalculation of the mean values �xi and the standard deviation si of the
outlier-free data set of each laboratory i.

l Stage 4: Calculation of the parameters of the outlier-free laboratory mean

values �xi:
To evaluate type 2 outliers (outliers of the mean values �xi), the laboratories’

mean value �x�L of the means ��x as well as their standard deviation s��xL are

calculated.
l Stage 5: Rejection of type 2 outliers as in stage 2, using the Grubbs test.
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l Stage 6: Determination of the smallest �xminð Þ and the largest �xmaxÞð of the

laboratory means.
l Stage 7: Re-integration of outliers of type 1 x�OLik

which fulfill the condition

�xmin � x�OLik
� �xmax:

l Stage 8: Rejecting of type 3 outliers (outliers in laboratory precision) checked by

the Cochran test.

If the test value exceeds the critical value at the significance level P ¼ 99%, the

laboratory with maximal variance is rejected as an outlier. The test is repeated

until no more outliers can be found.
l Stage 9: Calculation of the following final parameters on the basis of the data set

free of outliers of types 1–3:

– Laboratory mean values �xi
– Standard deviation si
– Total number of the analytical values n
– Number of the remaining laboratories l
– Grand mean ��x
– Repeatability standard deviation sr according to ANOVA

sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
i¼1

SSxixi

n� l

vuuut
: (9.2-1)

– Coefficient of variation of repeatability CVr

CVr % ¼ sr
��x
� 100: (9.2-2)

– Reproducibility standard deviation sR

sR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2L þ s2r

q
: (9.2-3)

with the between-laboratory variance s2L

s2L ¼ s2b � s2r
��n

: (9.2-4)

The between-group variance s2b according to ANOVA

s2b ¼
Pl
i¼1

ni �xi � ��xð Þ2

l� 1
(9.2-5)

and
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��n ¼ 1

l� 1

Xl

i¼1

ni �
Pl
i¼1

n2i

Pl
i¼1

ni

2
6664

3
7775: (9.2-6)

Note that if the values of all ni are equal then (9.2-6) can be simplified to (9.2-7):

��n ¼ ni: (9.2-7)

– Coefficient of variation of reproducibility CVR

CVR % ¼ sR
��x
� 100: (9.2-8)

l Stage 10: Calculation of the recovery rate �

� % ¼ ��x

m
� 100: (9.2-9)

l Stage 11: Estimation of bias by a t-test.
The test value t̂ calculated by

t̂ ¼ ��x� mj j
sR

� ffiffiffi
n

p
(9.2-10)

is compared with the critical value tðP ¼ 99%; df ¼ n� 1Þ: If the test value is

greater than the critical value, a significant difference between the true value m (or

xref) and the grand mean ��x is detected. In this case, the analytical method should be

re-validated.
l Stage 12: Presentation of an overview of the whole parameter set obtained by the

interlaboratory study as a table with comments.

Challenge 9.2-1

An interlaboratory study was carried out for the determination of inorganic

anions in synthetic industrial water by the ion chromatographic method

according to DIN EN ISO 10304-1:2009-07 [7], in order to check the quality

of the method for a specific matrix and to obtain parameters for the calcula-

tion of the measurement uncertainty (see next Chapter). Nine laboratories

took part in the interlaboratory trial and four replicates should be carried out.

The results obtained for the analyte bromide is given in Table 9.2-1. The true
value is m ¼ 15:2 mgL�1:

(continued)
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Evaluate the interlaboratory study according to the procedure given in

DIN 38402-42 [3] and fill in Table 9.2-2 with the results obtained by the

interlaboratory study.

Solution to Challenge 9.2-1

The results of the interlaboratory study are evaluated according to the DIN-

procedure given above.

Stages 1 and 2: The intermediate quantities and results of the Grubbs test

for type 1 outliers are summarized in Table 9.2-3. The test values r̂m;i for each
laboratory are calculated by (3.2.3-2). The critical value is rmðP ¼ 95%;
nk ¼ 4Þ ¼ 1:463: As Table 9.2-3 shows, the lowest value of laboratory

8 (x8;4 ¼ 14:5 mgL�1) must be provisionally rejected as an outlier because

r̂m; xmin
¼ 1:480 exceeds the critical value.

Stages 3, 4, and 5: The intermediate quantities and results of the Grubbs

test for type 2 outliers calculated by

(continued)

Table 9.2-1 Data of the

analyte bromide in mg L�1

obtained by an interlaboratory

study

Laboratory Replicate

1 2 3 4

1 13.8 13.9 14.0 13.7

2 15.1 15.0 14.9 15.1

3 15.2 15.0 15.1 15.1

4 15.5 15.2 15.4 15.4

5 14.8 14.9 14.8 14.9

6 15.2 15.3 15.0 15.2

7 15.4 15.4 15.2 15.3

8 15.1 15.0 15.1 14.5

9 15.3 15.2 15.3 15.1

Table 9.2-2 Overview of the

symbols of all parameters for

the analyte bromide in
industrial water obtained by

an interlaboratory study

Number of laboratories l
Number of outlier-free individual analytical

values

n

Number of outliers nOL
Percentage of outlier values nOL%
Grand mean value ��x
True value m
Recovery rate �%
Reproducibility standard deviation sR
Coefficient of variation of the reproducibility CVR%

Repeatability standard deviation sr
Coefficient of variation of the repeatability CVr%

Degrees of freedom of the repeatability standard

deviation

dfsr
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r̂m ¼ �xi � �xLj j
s�xl

(9.2-11)

are given in Table 9.2-4.

As Table 9.2-4 shows, the data set of laboratory 1 must be rejected because

the mean value �x1 is confirmed as an outlier. The test value r̂m;�x1 ¼ 2:502 is

greater than the critical value rmðP ¼ 95%; l ¼ 9Þ ¼ 2:110:
Stage 6: The extreme mean values of the remaining means, after rejection

of type 2 outliers, are: �xmin ¼ 14:850 and �xmax ¼ 15:375:
Stage 7: Because x8;4 ¼ 14:5 < �xmin ¼ 14:85, the condition �xmin �

x�OLik
� �xmax is not fulfilled, and therefore the outlier x8;4 ¼ 14:5 cannot be

re-integrated into the data set.

Stage 8: The test value for the check on outliers of the laboratory precision

(type 3 outliers) is calculated by (9.2-12) using the data set which is free of

outliers of types 1 and 2:

Ĉ ¼ ðs�i;maxÞ2Pl�
i¼1

s2i

: (9.2-12)

(continued)

Table 9.2-4 Intermediate

quantities and results of the

Grubbs test for type 2 outliers

using the data set free of type

1 outliers

Lab �xi r̂m;�xi
1 13.850 2.502

2 15.025 0.056

3 15.100 0.220

4 15.375 0.819

5 14.850 0.325

6 15.175 0.383

7 15.325 0.710

8 15.067 0.147

9 15.225 0.492

�x�L 14.999

s��xL 0.45929

Table 9.2-3 Intermediate quantities and results of the Grubbs test for type 1 outliers

Laboratory Intermediate quantities Test values

�x s x�max x�min r̂m; xmax
r̂m; xmin

1 13.85 0.1291 14.0 13.7 1.162 1.162

2 15.025 0.0957 15.1 14.9 0.783 1.306

3 15.100 0.0816 15.2 15.0 1.225 1.225

4 15.375 0.1258 15.5 15.2 0.993 1.391

5 14.850 0.0577 14.9 14.8 0.866 0.866

6 15.175 0.1258 15.3 15.0 0.993 1.391

7 15.325 0.0957 15.4 15.2 0.783 1.306

8 14.925 0.2872 15.1 14.5 0.609 1.480

9 15.225 0.0957 15.3 15.1 0.783 1.306
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According to the results of the Cochran test given in Table 9.2-5, the

variances of the eight laboratories checked are homogeneous, because the

test value Ĉ does not exceed the critical value CðP ¼ 99%; nk ¼ 4;
l ¼ 8Þ ¼ 0:521: Thus, there are no outliers of type 3.

Stages 9 and 10: The intermediate quantities and results of the calculation

of the parameters of the interlaboratory study are listed in Table 9.2-6. Further

parameters are listed in the tables given above.

(continued)

Table 9.2-5 Intermediate

quantities and results of the

Cochran test for type 3

outliers

Laboratory �xi nk si
2

2 15.03 4 0.00917

3 15.10 4 0.00667

4 15.38 4 0.01583

5 14.85 4 0.00333

6 15.18 4 0.01583

7 15.33 4 0.00917

8 15.07 3 0.00333

9 15.23 4 0.00917Pl�
i¼1

s2i
0.07250 s2max 0.01583

Ĉ 0.218

Table 9.2-6 Intermediate quantities for the calculation of the parameters of the interlab-

oratory study

Lab si SSxixi ni �xi � ��xð Þ2
2 0.0957 0.0275 0.0554

3 0.0816 0.0200 0.0073

4 0.1258 0.0475 0.2158

5 0.0577 0.0100 0.3427

6 0.1258 0.0475 0.0042

7 0.0957 0.0275 0.1329

8 0.0577 0.0067 0.0173

9 0.0957 0.0275 0.0271

n 31 l 8
��x 15.143

Repeatability standard deviation sr and CVr%Pl
1¼1

SSxixi
0.2142 dfr ¼ n� l 23

sr 0.0965 CVr% 0.64

Reproducibility standard deviation sR and CVR%Pl
i¼1

ni
31 Pl

i¼1

n2i
121

��n 3.871 Pl
i¼1

nið�xi � ��xÞ2 0.8028

s2b 0.1147 s2L 0.0272

sR 0.1911 CVR% 1.26

Recovery rate �% 99.62
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Stage 11: The test value t̂ ¼ 1:669 calculated by (9.2-10) with the data

given in Table 9.2-6 does not exceed the critical value tðP ¼ 99%;
df ¼ n� 1Þ ¼ 2:750, which means that no bias can be detected. Re-valida-

tion of the analytical method is not necessary.

Stage 12: The overview of the results of the interlaboratory study for the

determination of the analyte bromide in industrial water according to DIN EN

ISO 10304-1:2009-07 is presented in Table 9.2-7.

9.3 Proficiency Testing

Scores are commonly used for proficiency testing. They have the advantages that

they are a simple way to compare laboratories with each other and that they can be

used to eliminate laboratories from accreditation if they do not perform sufficiently

well. The most common scoring is the z-score which is calculated by

z ¼ xi � xa
sp

; (9.3-1)

where xi are the results reported by the participating laboratories i, xa is the

assigned value for the test material, and sp is the standard deviation for proficiency

assessment.

Three types of laboratories can be distinguished by the absolute values of the

z-scores:

l jzj � 2 satisfactory performance
l 2 < jzj � 3 questionable performance
l jzj > 3 unsatisfactory performance

A laboratory should take corrective action [8] if

l The z-score shows a unsatisfactory performance (jzj > 3)

Table 9.2-7 Overview of the whole parameter set for the analyte bromide in industrial

water obtained by an interlaboratory study

Number of laboratories l 8

Number of outlier-free individual analytical values n 31

Number of outliers nOL 5

Percentage of outlier values nOL% 86.1

Grand mean value ��x in mg L�1 15.15

True value m in mg L�1 15.20

Recovery rate �% 99.62

Reproducibility standard deviation sR in mg L�1 0.911

Coefficient of variation of the reproducibility CVR% 1.26

Repeatability standard deviation sr in mg L�1 0.0965

Coefficient of variation of the repeatability CVr in % 0.64

Degrees of freedom of the repeatability standard deviation dfsr 23
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l Two consecutive questionable results are obtained for the same measurement

(2 < jzj � 3).

There are two critical steps in the organization of a proficiency testing scheme:

specifying

l The assigned value (xa)
l The standard deviation sp:

because both values determine the z-scores according to (9.3-1). There is a number

of possibilities for an appropriate choice of these parameters [9]: some of them are

given below:

Assigned value xa:

l xa is taken from a certified reference material (CRM).
l xa is a reference value determined by a single expert laboratory.
l xa is obtained from a consensus of expert laboratories which analyze the material

using suitable methods.
l xa is obtained from the results from all participants in the proficiency testing

round. The assigned value is then normally based on robust estimation, i.e. using

the median ~x.

Standard deviation sp

l sp is prescribed based on the fitness for purpose criterion; for example, sp is set
at 10% of the median value by the organizer.

l sp is based on the results from a reproducibility study (see the previous

chapter):

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2L þ

s2r
n

� �s
(9.3-2)

with

sL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2R � s2r

q
; (9.3-3)

where sR is the reproducibility standard deviation, sr is the repeatability stan-

dard deviation, and n is the number of replicates obtained from the collaborative

study.

l sp is obtained from participants’ results themselves using methods of robust

statistics such as the median absolute deviation (MAD) and MADE, respec-

tively. MAD is the median of absolute deviations from the data set median,

calculated by:

MAD ¼ median xi � ~xj ji¼1;2;...n

� �
: (9.3-4)
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For a normal deviation (9.3-5) is valid.

MADE � s
1:483

(9.3-5)

Thus, (9.3-6) is an estimate for the standard deviation,

MADE ¼ sp ¼ 1:483 �MAD (9.3-6)

compare the values for MADE and the standard deviation s in the following

example.

Example:
The given data set is:

3.5 3.2 3.6 2.9 3.7 3.1 3.4

Ranked data:

2.9 3.1 3.2 3.4 3.5 3.6 3.7

Median: ~x ¼ 3:4 Mean value; �x ¼ 3:34
Calculation von MAD according to (9.3-4) using the median ~x ¼ 3:4:

0.5 0.3 0.2 0 0.1 0.2 0.5

Ranked deviations:

0 0.1 0.2 0.2 0.3 0.3 0.5

MAD 0.2 MADE ¼ sp 0.297 s 0.288

For further details see also in [6].

Challenge 9.3-1

In order to check laboratory performance, a proficiency study was organized

for the determination of lead in flood sediment. The material was dried at

105�C, pre-sieved to grain size <2 mm, and then sieved to grain size

<100 mm. After homogenization and partition the material was send to the

21 participants. The results are listed in Table 9.3-1.

(a) Estimate the performance of the laboratories by means of the z-score
method using the median and adjusted median absolute deviation (MADE).

(b) How many of the laboratories would have their performance judged as

satisfactory, questionable performance and unsatisfactory, respectively?

(c) Show the plot of z-scores from the proficiency testing scheme for the

determination of lead.
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Solution to Challenge 9.3-1

(a) Because no other parameters are given for the calculation of the z-scores,
the assigned value xa and the standard deviation are obtained from a

robust estimation of the participants’ results. Using the parameters from

the robust statistics should be justified because of the obvious distribution

of the values in the range 141–207 mg kg�1.

Ranked data, MAD values and ranked MAD values from the results of the

proficiency test for the determination of lead are presented in Table 9.3-2.

(continued)

Table 9.3-2 Ranked data,

MAD values and ranked

MAD values from the results

of the proficiency test for the

determination of lead

Laboratory

no.

Ranked

data

MAD

Values Laboratory

no.

Ranked

values

8 141 22 10 0

5 143 20 2 1

16 152 11 7 1

18 153 10 3 2

12 154 9 6 2

13 154 9 21 2

1 155 8 4 3

11 155 8 20 3

9 156 7 15 5

2 162 1 17 5

10 163 0 9 7

7 164 1 1 8

3 165 2 11 8

6 165 2 12 9

21 165 2 13 9

4 166 3 18 10

20 166 3 16 11

15 168 5 5 20

17 168 5 19 21

19 184 21 8 22

14 207 44 14 44

Table 9.3-1 Results from a

proficiency testing round for

the determination of lead in

flood sediments

Laboratory

no.

cPb in
mg kg�1

Laboratory

no.

cPb in
mg kg�1

1 155 12 154

2 162 13 154

3 165 14 207

4 166 15 168

5 143 16 152

6 165 17 168

7 164 18 153

8 141 19 184

9 156 20 166

10 163 21 165

11 155
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Because n is odd, the median is ~xðnþ1Þ=2 ¼ 163 mg kg�1, which is similar

to the mean value �x ¼ 162:2 mg kg�1: The median absolute deviation

calculated by (9.3-4) is MAD ¼ 7 mg kg�1: Thus, the adjusted median

absolute deviation is MADE ¼ sp ¼ 10:38 mg kg�1 calculated accord-

ing to (9.3-6) which is used for sp.
The z-scores calculated by

z ¼ xi � ~x

sp
¼ xi � 163 mg kg�1

10.38 mg kg�1
(9.3-7)

are listed in Table 9.3-3.

(b) Estimation of the performance of the laboratories:

l Laboratory no. 14 is considered to have unsatisfactory performance,

with jzjr 3:
l Laboratories nos. 8 and 19 are considered to have questionable per-

formance, with 2< jzj � 3:
l The performance of all other laboratories is considered satisfactory,

because jzj � 2:

(c) The plot of z-scores from the proficiency testing scheme for the determi-

nation of lead in flood sediments is shown in Fig. 9.3-1.

Table 9.3-3 z-scores for the
participants from the

proficiency testing scheme for

the determination of lead in

flooding sediment

Laboratory no. z-score Laboratory no. z-score

8 �2.119 7 0.096

5 �1.927 3 0.193

16 �1.060 6 0.193

18 �0.963 21 0.193

12 �0.867 4 0.289

13 �0.867 20 0.289

1 �0.771 15 0.482

11 �0.771 17 0.482

9 �0.674 19 2.023

2 �0.096 14 4.239

10 0.000

–3

–2

–1

0

1

2

3

4

z-
sc

or
es

Laboratory no.

8 5 16 18 12 13 1 11 9 2 710 3 6 21 4 2
15 17

14

19

Fig. 9.3-1 Plot of z-scores from the proficiency testing scheme for the determination of

lead in flood sediments
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Chapter 10

Measurement Uncertainty

10.1 Purpose, Definitions, and Terminology

Analytical results obtained for customers are usually the basis for correct decisions:

for example, when looking at allowable concentration limits. But all measurements

are affected by a certain error. Which error should be used as the basis of the

decision?

In Fig. 10.1-1, two results with the same mean value are compared with the

allowable threshold value. According to result 1 calculated solely from results in

control samples, the threshold value is not exceeded, whereas result 2, obtained by

the expanded measurement uncertainty including all random and systematical

errors of the complete analytical method, clearly indicates the crossing of the

legal threshold value.

The measurement uncertainty gives information as to what size the measurement

error might have. The measurement uncertainty is therefore an important part of the

reported results in order to make correct decisions. Furthermore, knowledge of the

measurement uncertainty is important for the laboratory for its own quality control

and to improve the required quality.

Estimation of the measurement uncertainty is required by regulatory authorities.

Thus, the “General requirements for the competence of testing and calibration

laboratories” [1] states “A calibration laboratory . . . shall have and shall apply a

procedure to estimate the uncertainty of measurement for all calibrations and types

of calibrations,” and furthermore “When estimating the uncertainty, all uncertainty

components which are of importance in the given situation shall be taken into

account using appropriate methods of analysis.”

Now, what is measurement uncertainty?
Measurement uncertainty is defined in “ISO Guide to the Expression of Uncer-

tainty in Measurement” (the GUM) [2] as “A parameter associated with the result of

a measurement, that characterizes the dispersion of the values that could reasonably

be attributed to the measurand.”

There are some practical approaches for verifying the mathematical analytical

approach to GUM, in particular the EURACHEM/CITAC-Guide [3] and, especially

M. Reichenb€acher and J.W. Einax, Challenges in Analytical Quality Assurance,
DOI 10.1007/978-3-642-16595-5_10, # Springer-Verlag Berlin Heidelberg 2011
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recommended for environmental laboratories, the Nordtest Report procedure

TR 537 [4].

After explaining the required definitions, the EURACHEM/CITAC and Nordtest

procedures will be described.

When expressed as a standard deviation, an uncertainty is known as a standard
uncertainty, denoted as u. The uncertainty of the result can arise from many

possible sources which must all be separately treated in estimating the overall

uncertainty, which is termed combined standard uncertainty and denoted by uc(y)
for a measurement result y calculated according to the law of propagation of

uncertainty. In general, in analytical chemistry an expanded uncertainty U is used

which gives an interval within which the value of the measurand is believed to lie

with a defined level of significance level. U is obtained by multiplying uc(y) by a

coverage factor k which is based on the level of confidence desired. For an

approximate significance level P ¼ 95%, k is 2.
The GUM defines two different methods of estimating uncertainty.

l Type A:
Method of evaluation of uncertainty by the statistical analysis of a series of

repeated observations.
l Type B:

Method of evaluation of uncertainty by other means than the statistical analysis

of series.

Sources of Type B uncertainties can be, for example:

– Tolerances of the measuring devices given by the manufacturers

– Data obtained by certificates

– Data obtained by earlier measurements

– Data obtained on basis of judgments

The calculation of these kinds of uncertainty is given in the following chapters.

c 
in

 m
g 

L
–1

120

122

124

126

1 2

L0

Fig. 10.1-1 Comparison

of two analytical results

with the threshold value

L0 ¼ 124mgL�1. 1 – Result

obtained by control samples;

2 – result calculated with the

expanded uncertainty
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10.2 Steps in Measurement Uncertainty Estimation

Step 1: Specifying the measurand Write down clearly what is being measured,

including the relationship between the measurand and the input quantities upon

which it depends.

If sampling steps are to be included, estimation of uncertainties associated with

the sampling procedure must be considered. Furthermore, it must be decided

whether the measurand is a result of a so-called empirical or a non-empirical
method. In contrast to a non-empirical method, where the results obtained by

various methods should be independent of the method, in the case of an empirical

method the result depends on the method used. The latter is the case, for example, if

the method includes an extraction step, when the extracted analyte can depend on

the choice of extraction conditions.

Step 2: Identifying the relevant uncertainty sources A comprehensive list of

relevant sources of uncertainty can be assembled but the cause and effect diagram
(also called a fish-bone diagram) is a very convenient way of listing the uncertainty

sources, showing how they relate to each other and indicating their influence on

the result. Such cause and effect diagrams are used in the presentation of the

solutions to the Challenges. Figure 10.2-1 shows, for example, the cause and

effect diagram for the determination of the density of ethanol after combination

of similar effects (precision and temperature effects are grouped together) and can-

cellation (the bias of weighing is cancelled because of weighing by difference using

the same balance).

ρEthOH

Volume

m (gross) m (tare)Temperature

Calibration

Precision

Calibration Calibration

LinearityLinearity

Fig. 10.2-1 Cause and effect diagram for the determination of the density of ethanol (EtOH)
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Typical sources of uncertainty are, for example:

l Sampling
l Storage condition
l Instrument effects
l Reagent purity
l Measurement conditions
l Matrix effects and others.

Step 3: Quantifying uncertainty After uncertainty sources have been identified,

the next step is to quantify the uncertainty arising from theses sources. This can be

done by

l Evaluating of the uncertainty arising from each individual source as the basis for

the calculation of the combined uncertainty

or

l Determining directly the combined contribution to uncertainty from these

sources using method performance data.

The procedures which may be adopted depending on the data available and the

additional information required are described in detail in [3]. Note that not all listed

components of the uncertainty make a significant contribution to the combined uncer-

tainty; such contributions should be eliminated from further estimations. After elimi-

nation of non-significant contributions, simplification by grouping sources covered by

existing data, quantification of the grouped components, and quantification of the

remaining components, the components must be converted into standard deviations.

Step 4: Calculating combined uncertainty Before the combined uncertainty can be

calculated, all uncertainty contributions must be expressed as standard uncertain-

ties, that is, standard deviations. This can involve conversion from some other

measures of dispersion.

The Type A uncertainty component is evaluated experimentally from the disper-

sion of n repeated measurements. It is expressed as a standard deviation. For the

contribution to uncertainty from single measurements, the standard uncertainty is

simply the observed standard deviation s; for results subjected to averaging, the

standard deviation of the mean s�x is used:

u ¼ s�xffiffiffi
n

p : (10.2-1)

Example 1: The following five results given in % (w/w) are averaged to give the

mean of a related substance in a drug:

1.54 1.49 1.58 1.55 1.46 1.53

The mean is �x ¼ 1:53 % (w/w), and the standard deviation is s ¼ 0:043 %

(w/w): Because the results are averaged, the standard uncertainty in the mean value

is u ¼ 0:43%ffiffiffi
5

p ¼ 0:019 % (w/w):
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If only a single observation is made, the standard deviation is calculated from the

relative standard deviation sr obtained during validation:

u ¼ x � sr: (10.2-2)

However, Type B estimates of uncertainty are based on different information

which is converted to an estimated uncertainty u:

l Tolerance as x� a without specifying a level of confidence.

The formula used depends on the kind of distribution.

Assuming a rectangular distribution of width 2a; symmetrical about x, and all

values within the interval equally probable, the uncertainty is calculated by (10.2-3):

u ¼ affiffiffi
3

p :
(10.2-3)

Assuming that values close to x are more likely than near the bounds, the

triangular distribution should be used with the uncertainty

u ¼ affiffiffi
6

p : (10.2-4)

Example 2: A 10 mL grade A volumetric flask is certified within � 0:1mL:

The standard uncertainty is

u ¼ 0:1ffiffi
3

p ¼ 0:06mL, assuming rectangular distribution and

u ¼ 0:1ffiffi
6

p ¼ 0:04mL, assuming triangular distribution.

l Confidence interval as x� Dx with a significance level P%.

The uncertainty is calculated by

u ¼ Dx
t
; (10.2-5)

where t is the two-sided value of the t-factor for the level of significance P and

number of degrees of freedom.

Where the number of degrees of freedom for the confidence interval is not given,

the t-factor with infinite degrees of freedom is used, i.e. t ¼ 1:96 for P ¼ 95%.

Example 3: A specification states that a balance reading is within � 0:2mg with

P ¼ 95% significance.

The standard uncertainty is u ¼ 0:2
1:96 � 0:1mg:

l Expanded uncertainty as x� U

The standard uncertainty is calculated by

u ¼ U

k
; (10.2-6)
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where k is the coverage factor given. But if k is not given, k ¼ 2 should be used.

Thus, (10.2-6) is:

u ¼ U

2
: (10.2-7)

Calculation of the standard uncertainty from linear least squares calibration:
The standard uncertainty uðx̂; yÞ in a predicted value x̂ due to variability in y can

be estimated by

uðx̂Þ ¼ sy:x
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

na
þ 1

nc
þ �̂y� �y
� �2
a21 � SSxx

s
; (10.2-8)

in which the symbols are as explained in Sect. 4.2.1. For more information see [3].

The next stage is to calculate the combined standard uncertainty.

The general relationship between the combined standard uncertainty u(y) of a
value y and the uncertainty of the independent parameters x1, x2, . . . , xn on which it
depends is

uðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

c2i uðxiÞ2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX @y

@x

� �2

� uðxiÞ2
s

; (10.2-9)

where the sensitivity ci is the partial differential of y with respect to xi and u
(xi) denotes the uncertainty in y arising from the uncertainty in xi. The contribu-

tion of each variable is just the square of the associated uncertainty expressed

as a standard deviation multiplied by the square of the relevant sensitivity

coefficient which describes how the value of y varies with changes in the para-

meters x1, x2, . . . , xn.
For two independent input quantities x1 and x2, according to (10.2-9) the

combined uncertainty is calculated by (10.2-10):

u½ f ðx1; x2Þ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@f ðx1Þ
@x1

� uðx1Þ
� �2

þ @f ðx2Þ
@x2

� uðx2Þ
� �2s

: (10.2-10)

Note that the variables are not independent, and therefore the covariances

uðxi; xkÞ between xi and xk must be considered.

The covariance is related to the correlation coefficient rik and is calculated by

(10.2-12):

uðxi; xkÞ ¼ uðxiÞ � uðxkÞ � rik: (10.2-11)

According to the “law of propagation of uncertainty,” (10.2-9) leads to the two

simple rules for combining standard uncertainties:
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Rule 1: If variables are added or subtracted, y ¼ pþ q or y ¼ p� q, the combined

uncertainty is calculated by

uðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðpÞ2 þ uðqÞ2

q
: (10.2-12)

Rule 2: For a mathematical model involving only products or quotients, y ¼ p � q
and y ¼ p=q; respectively, their uncertainties combine as relative uncertainties:

uðyÞ
y

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðpÞ
p

� �2

þ uðqÞ
q

� �2
s

: (10.2-13)

The final stage is to multiply the combined standard uncertainty by the chosen

coverage factor k in order to obtain the expanded uncertainty U:

UðyÞ ¼ k � uðyÞ: (10.2-14)

The choice of the factor k is based on the level of significance. For most

purposes, k is taken as 2 for an approximate of significance level P ¼ 95%, but

the t-factor can also be used for exact requirements.

10.3 Spreadsheet Method for Uncertainty Calculation

The uncertainty can be calculated by the equations given above, but the calculation

can be simplified using spreadsheet software according to the procedure first

described by Kragten [5]. The procedure takes advantage of an approximate

numerical method, differentiation, and requires knowledge only of numerical

values of the parameters and their uncertainty, which is explained below.

Given the mathematical model

y ¼ f ðx;w; zÞ (10.3-1)

with the input quantities x, w, z and the output quantity y, according to (10.2-9) the

change of the output quantity in relation to one input quantity xmay be found by the

tangent to the function y ¼ f ðxÞ, as shown in Fig. 10.3-1 in which f(x) is the result
found for the nominal or observed value of the quantity xi and f ðxþ DxÞ the result
for the value plus its standard uncertainty.

The difference quotient (see Fig. 10.3-1) approximates the slope of the tangent.

In the limit Dx ! 0; the difference quotient converts to the differential quotient, the
slope of the tangent which corresponds to the standard uncertainty according to

(10.2-9).
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Using Dx as the value for the standard uncertainty uðxÞ of the input quantity x,
one obtains an approximate expression for the value of the standard uncertainty of

the model given in (10.3-1):

rs ¼ @f

@x
¼ f ðxþ uðxÞ;w; zÞ � f ðx;w; zÞ

uðxÞ (10.3-2)

@f

@x
� uðxÞ ¼ f ðxþ uðxÞ;w; zÞ � f ðx;w; zÞ: (10.3-3)

Equation (10.3-3) is the basis for the construction of a spreadsheet to cal-

culate combined uncertainty, which will verified by Excel for the model given

in (10.3-1).

Step 1: Enter the values of x, w, and z, in the formula for calculating y according to

(10.3-1), and the standard uncertainties of the input quantities in a spreadsheet as

shown in Fig. 10.3-2.

x

y

f(x)

x x+Dx

x

xxf
rs Δ

Δ+
=

)(

x

y
c

∂
∂

=

f(x+Δx)

Dx

Fig. 10.3-1 Graphical illustration of the standard uncertainty for the value x

x

w

z

Standard uncertainties of the input quantities

u(x) u(w) u(z)

y=f(x,w,z)

Fig. 10.3-2 Step 1 of

spreadsheet calculation of

combined uncertainty
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Step 2: Enter the input quantities plus their standard uncertainties in the diagonal of
the (n � n) matrix of the spreadsheet and complete the matrix by entering the input

quantities in the outer-diagonal positions (see Fig. 10.3-3).

Step 3: Copy the formula y for the input quantities into the positions on the right so
that the input quantities plus their uncertainties y0x, y

0
w, y

0
z are given in each column

of the row as shown by Fig. 10.3-4.

Step 4: In order to obtain the partial differentials according to (10.3-3) the input

quantity ymust again be subtracted. Therefore, the input quantity y is entered in the
next row and is copied into the columns to the right of it. After subtraction, the

partial differentials are given in the row as shown in Fig. 10.3-5.

Step 5: To obtain the combined standard uncertainty in y, the individual contribu-
tions are squared, added together and the square root is taken (see Fig. 10.3-6).

The result is given by:

uðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@y

@x
� uðxÞ

� �2

þ @y

@w
� uðwÞ

� �2

þ @y

@z
� uðzÞ

� �2
( )vuut : (10.3-4)

Note that the spreadsheet construction procedure can also be extended to cope

with the situation that any of the variables are correlated and correlated uncertainty

contributions must therefore be considered, as given in [3, 6].

y=f(x,w,z)

x

w

z

u(x) u(w) u(z)

x x

 ww

z z

x+u(x)

z+u(z)

w+u(w)

Fig. 10.3-3 Step 2 of

spreadsheet calculation of

combined uncertainty

y=f(x,w,z)

x

w

z

x x

 w 

z

w

z

x+u(x)

w+u(w)

z+u(z)

y+ yx́ y+ yw´ y+ yz´

u(x) u(w) u(z)

Fig. 10.3-4 Step 3 of

spreadsheet calculation of

combined uncertainty
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Additionally, the individual contributions to the combined uncertainty can be

represented by the graph formats available in Excel. Thus, one can easily and

quickly recognize the main sources of uncertainty and which contributions can be

rejected [3].

Challenge 10.3-1

Solve the following problems:

(a) To re-calibrate a 10 mL pipette, the volume of water ðr20�C ¼
0:998207 g cm�3Þ was measured by ten replicates giving the following

results in g:

99.85 99.82 99.81 99.82 99.72

99.84 99.80 99.85 99.83 99.81

What are the mean value and the standard uncertainty for a single

pipetting step?

(b) The data set for the calibration of the photometric determination of

nitrite-N is listed in Table 10.3-1.

The measured values of the absorbance A for a sample are:

0.4892 0.4886 0.4895

(continued)
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Fig. 10.3-6 Step 5 of

spreadsheet calculation of

combined uncertainty
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Fig. 10.3-5 Step 4 of

spreadsheet calculation of

combined uncertainty
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Calculate the predicted value x̂ and the standard uncertainty of the

sample.

(c) Table 10.3-2 shows the results obtained by a proficiency test of the

determination of benzo[a]pyrene in drinking water according to DIN 38

407 F18 [7].

What standard uncertainty and relative standard uncertainty can be

used in the own laboratory for the determination of benzo[a]pyrene?
(d) The specification for a 10 mL burette is quoted by the manufacturer as

� 0:02mL:
Calculate the standard uncertainty under the conditions of a rectangu-

lar and a triangular distribution.

(e) According to the calibration certificate for a balance, the measurement

uncertainty is � 0:0005 g with a significance level of P ¼ 95%:
Calculate the standard uncertainty.

(f) The standard deviation of repeated weighing of 0.1 g is calculated to be

0.00015 g.

Calculate the standard uncertainty.

Solution to Challenge 10.3-1

(a) Type A uncertainties, the standard uncertainty is expressed as the standard

deviation, which is calculated in the known manner: u(x) ¼ 0.0375 mg,

which gives, after conversion by the density, u(x) ¼ 0.04 mL and

uðxÞr% ¼ 0:04; respectively.

(b) The standard uncertainty of a predicted value is uðx̂Þ ¼ 0:0011mgL�1

calculated by (10.2-8) with a1 ¼ 2:6621 Lmg�1; sy:x ¼ 0:00412;
na ¼ 3, nc ¼ 6, SSxx ¼ 0:043750mg2 L�2; �y¼ 0:5207; and �̂y¼ 0:4891:
The predicted value is x̂¼ 0:163mgL�1 calculated according to (5.2-15)

with the intercept a0 ¼ 0:0548 and the slope given above.

(continued)

Table 10.3-1 Calibration data set for the photometric determination of nitrite-N

Standard 1 2 3 4 5 6

c (mg L�1) 0.05 0.10 0.15 0.20 0.25 0.30

Ai 0.1845 0.3197 0.4603 0.5895 0.7202 0.8501

Table 10.3-2 Data obtained in a proficiency test of benzo[a]pyrene in drinking water

xtrue in ng L�1 ��x in ng L�1 sr in % sbw in ng L�1 sin in ng L�1

24 19.05 79.4 4.921 2.340
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(c) The standard uncertainty used by this laboratory is equal the standard

deviation in the laboratory sin obtained by the interlaboratory test, which

is 2.340 ng L�1:

u ¼ 2:340 ngL�1; ur% ¼ 12.3.

(d) The Type B standard uncertainty calculated by (10.2-3) and (10.2-4) is:

u ¼ 0.012 mL (for a rectangular distribution) and

u ¼ 0.008 mL (for a triangular distribution).

(e) The uncertainty is calculated according to (10.2-5). Since the number of

degrees of freedom is unknown, the t-factor for large degrees of freedom
is used, which is 1.96.

The uncertainty is

u ¼ 0:0005 g

1:96
¼ 0:00026 g:

(f) Because the standard uncertainty is expressed as a standard deviation, no

conversion is necessary.

u ¼ 0.00015 g

Challenge 10.3-2

In a laboratory, a standard solution must be prepared based on an aqueous

solution of acetic acid with the concentration c ¼ 4% (w/w) prepared using

the following procedure:

40mL of a specified stock solution of c ¼ 100� 0:5% (v/v) is pipetted into

a 1 L volumetric flask using a class A 20 mL pipette and the flask is filled with

water. The difference between the laboratory temperature and the calibration

temperature of the pipette and volumetric flask is not more than � 2�C:
Calculate the expanded uncertainty U at the significance level P ¼ 95%.

The manufacturer’s calibration data of the volumetric flask and the pipette

and the standard deviation of the manual operations, obtained by earlier tests

in the laboratory, are given in Table 10.3-3. The coefficient of volume

expansion of water is 2.1 � 10�4 �C�1.

Table 10.3-3 Calibration

data of flask and pipette as

well as standard deviation of

the manual operations

Calibration data at 20�C
1 L volumetric flask � 4mL

20 mL class A pipette � 0:03mL

Standard deviation of the manual operations

1 L volumetric flask 1.5 mL

20 mL class A pipette 0.016 mL
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Solution to Challenge 10.3-2

Step 1: Specifying the measurand. The measurand is the concentration which

is calculated by

cHAc ¼ 2 � Vpip in mL � cstock
Vflask in mL

: (10.3-5)

Step 2: Identifying the relevant uncertainty sources. The relevant uncertainty
sources are shown in a cause and effect diagram (Fig. 10.3-7).

Step 3: Quantifying uncertainty

l Calculation of standard uncertainties from the manufacturer’s data accord-

ing to (10.2-3), assuming rectangular distribution:

u ¼ toleranceffiffiffi
3

p : (10.3-6)

Stock solution 0.29%

1 L flask 2.31 mL

20 mL pipette 0.017 mL

l Calculation of the relative standard uncertainty of the volume of the flask

and the pipette according to rule 1 using (10.2-12):

uðVÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2tolerance þ u2rep

q
; (10.3-7)

(continued)

cHAc

Temperature

Volume flask Volume pipette

Tolerance

Manual working

Tolerance

Manual working

Tolerance

Stock concentration

Fig. 10.3-7 Cause and effect

diagram for the preparation

of standard concentration
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urðVÞ ¼ uðVÞ
V

; (10.3-8)

uðVflaskÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2:31mL)

2 þ ð1:5mL)
2

q
¼ 2:75mL, (10.3-9)

urðVflaskÞ ¼ 2:75mL

1; 000mL
¼ 0:00275; (10.3-10)

uðVpipÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ðð0:017mL)

2 þ ð0:016mL)
2Þ

q
¼ 0:033mL: (10.3-11)

Note that the 20 mL pipette must be used twice.

urðVpipÞ ¼ 0:033mL

20mL
¼ 0:00165: (10.3-12)

l Calculation of the relative standard uncertainty of the stock solution,

assuming rectangular distribution (10.2-3):

uðcÞ ¼ 0:5%ðv=vÞffiffiffi
3

p ¼ 0:29%(v/v) (10.3-13)

urðcÞ ¼ 0:29%ðv=vÞ
100%(v/v)

¼ 0:0029: (10.3-14)

l Calculation of the relative uncertainty of the temperature

The influence of temperature on the volume is given by:

uðTÞ ¼ CIðVÞ
tðP ¼ 95%; df ¼ 1Þ : (10.3-15)

The confidence interval is calculated by

CIðVÞ ¼ y � DT � V ¼ 0:00021�C�1 � 2�C � 1; 000 mL

¼ 0:42 mL (10.3-16)

uðTÞ ¼ 0:42mL

1:96
¼ 0:21mL (10.3-17)

urðTÞ ¼ 0:21mL

1; 000mL
¼ 0:00021: (10.3-18)

(continued)
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Step 4: Calculating the combined uncertainty Because of the multiplicative

combination of the input quantities according to (10.3-5), rule 2 with (10.3-5)

has to be applied using the relative standard uncertainties of the components

given in (10.3-10), (10.3-12), (10.3-14), and (10.3-18):

urðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2r ðVflaskÞ þ u2r ðVpipÞ þ u2r ðcstockÞ þ u2r ðTÞ

q
(10.3-19)

urðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00272 þ 0:001652 þ 0:00292 þ 0:000212

p
¼ 0:0043: (10.3-20)

The combined standard uncertainty is

uðcÞ ¼ urðcÞ � c ¼ 0:0043 � 4% (v/v) ¼ 0:017% (v/v):

Result. The concentration of the acetic acid is c� uðcÞ ¼ 4� 0:02%(v/v):

Examples of the complex application including the complete analytical

method are extensive, but they are presented in the appendix of

EURACHEM [3].

10.4 Procedure of the Nordtest Report

The Nordtest handbook is written primarily for environmental testing laboratories

in the Nordic countries and supports implementation of the concept of measurement

uncertainty for their routine measurements, but it is also the basis of regulations in

other countries; see, for example, in [5]. The practical, understandable, and com-

mon method of measurement uncertainty calculations is mainly based on already

existing quality control and validation data, which means that additional determi-

nations are, in general, not necessary. By using existing and experimentally deter-

mined quality control and method validation data, the probability of including all
uncertainties will be maximized.

The model is a simplification of the model presented in ISO guide [4]:

y ¼ mþ ðdþ BÞ þ e (10.4-1)

where

– y is the measurement of the result

– m is the expected value for y
– d is the method bias

– B is the laboratory bias – the uncertainties for these are combined into ubias
– e is the random error under within-laboratory reproducibility conditions Rw

which is the intermediate measure between the repeatability limit r and the
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reproducibility limit R, where operator and/or equipment and/or time and/or

calibration can vary, but only in the same laboratory. An alternative name is

intermediate precision (see Chap. 5.2).

The flow chart for the calculation of the uncertainty, involving six defined steps,

should be followed in all cases:

Step 1. Specify measurand. For example, ammonia is measured in water by photo-

metric determination according to DIN EN ISO 11732 [8].

Step 2. Quantify the reproducibility within the laboratory uRw
. This can be

achieved by:

1. Stable control samples covering the whole analytical process: usually with one

sample each at low and high concentration levels

When a stable control sample is treated using the complete analytical process

and it has a matrix similar to the samples, the within-laboratory reproducibility

at a specific concentration level can be obtained by the mean value chart.

Example 4: The results of the control sample obtained by the two mean value charts

for the two working ranges 0.5–5 mg L�1 and 10–100 mg L�1 are given in

Table 10.4-1.

2. Stable synthetic control samples (standard samples).

When a synthetic control sample is used for quality control, and matrix of the

control sample is not the same as the natural samples, a mean value and a range
chart has to be kept.

The uncertainty is calculated by:

uRw
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2Rw;Standard

þ u2Rw;Range

q
; (10.4-2)

with

uRw;Standard ¼ smean value chart (10.4-3)

uRw;Range ¼
�R

1:128
ðfor two replicatesÞ: (10.4-4)

Table 10.4-1 Data from

mean value control charts
Parameter Range

0.5–5 mg L�1 10–100 mg L�1

True value m 2.5 mg L�1 45.0 mg L�1

Mean value �x 2.52 mg L�1 45.30 mg L�1

Standard deviation sRw
0.12 mg L�1 1.30 mg L�1

sr % 4.8 2.9
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Example 5: For the determination of ammonia, a mean value chart and a range chart

are kept for various matrices. The results obtained for the determination of ammo-

nia-N are:

– Mean value chart: m ¼ 300 mg L�1, s ¼ 3.0 mg L�1

– Range chart (for two replicates): �R% ¼ 5:5.

The uncertainty components calculated according to (10.4-3) and (10.4-4) are:

uRw;Standard% ¼ 3:0

300
� 100 ¼ 1:0 (10.4-5)

uRw;Range% ¼ 5:5%

1:128
¼ 4:88: (10.4-6)

Thus, the standard uncertainty of the reproducibility of the laboratory calculated

by (10.4-2) is uRw
% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4:882

p
¼ 4:98:

3. Unstable control samples

If the laboratory does not have access to stable control samples, e.g. for the

determination of sum parameters, the reproducibility can be estimated by the data

of the range chart (R-chart) obtained by the analysis of natural duplicate samples.

However, this only gives the within-day variation (repeatability) for sampling and

measurement, and there will also be a “long-term” uncertainty (the variation

between the series) which is hard to measure. Therefore, to estimate the total

within-laboratory reproducibility, the following approximation is used:

uRw
¼

ffiffiffi
2

p
� uRw;Range: (10.4-7)

Example 6: For the determination of oxygen in seawater, a R-chart is maintained over

a long period. The differences obtained by duplicate measurements of natural

samples used in the R-chart yield the value �R% ¼ 5:5: The uncertainty of the range

calculated by (10.4-4) is uRw;Range% ¼ 4:88 and, thus, the total standard uncertainty is

uRw
% ¼

ffiffiffi
2

p
� 4:88% ¼ 6:90: (10.4-8)

Step 3. Estimate the method and laboratory bias ubias. Note that sources of bias

should be eliminated if possible.
For estimation of the uncertainty of the method and the laboratory bias, two

components have to be estimated to obtain ubias :

l The laboratory variation RMSbias (root mean square) which is the bias (as %

difference from the nominal or certified value) and its deviation
l The uncertainty of the nominal/certified value ucref or urecovery(method

variation).
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The general formula for the calculation of the total systematical deviation ubias is:

ubias ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMS2bias þ u2cref

q
: (10.4-9)

In order to estimate ubias there are three possibilities:

1. Using certified reference material CRM.

Regular analysis of a CRM can be used to estimate the bias. The material should

be analyzed in at least five different analytical series, e.g. on five different days, and

the results used for a mean value chart.

If only one CRM is used, the laboratory deviation RMSbias required for (10.4-9)

can be estimated by

RMSbias ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias2 þ sbiasffiffiffi

n
p

� �2
s

; (10.4-10)

where bias is the relative difference between the nominal or certified value and the

laboratory mean value obtained by the mean value chart, and sbias is the standard

deviation of the bias also obtained by the mean value chart with n replicates.

Example 7: A certificate value is cref ¼ 11:5� 0:5mgL�1 with a 95% confidence

interval. The mean value and its standard deviation obtained by a mean value chart

are �x ¼ 11:9mgL�1 and sbias ¼ 0:27mgL�1, obtained by n ¼ 12.

What is the value of the total standard uncertainty of the bias ubias?
Steps of the solution:

– Converting the confidence interval to uncertainty ucref according to (10.2-5):

ucref ¼
0:5mgL�1

1:96
¼ 0:26mgL�1: (10.4-11)

– Converting the uncertainty to relative uncertainty:

ucref% ¼ 0:26mgL�1

11:5mgL�1
� 100 ¼ 2:26: (10.4-12)

– Relative standard deviation of the bias from the mean value chart:

sbias% ¼ 0:27mgL�1

11:9mgL�1
� 100 ¼ 2:27: (10.4-13)

– Calculation of bias:

bias% ¼ ð11:9� 11:5ÞmgL�1

11:5mgL�1
� 100 ¼ 3:48: (10.4-14)
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– Calculation of the total uncertainty ubias according to (10.4-9) and (10.4-10):

ubias% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias2 þ sbiasffiffiffi

n
p

� �2

þ u2cref

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:482 þ 2:27ffiffiffiffiffi

12
p

� �2

þ 2:262

s
¼ 4:2:

(10.4-15)

2. Interlaboratory comparison.

In this case the results from interlaboratory comparisons are used in the same

way as a reference material, i.e. estimating the bias. A laboratory should participate

at least six times within a reasonable time interval, for example 3 years, in order to

correctly evaluate the bias.

The procedure is similar to that for reference materials. But, because the certified

value of a CRM is normally better defined than a nominal or assigned value in an

interlaboratory comparison, the calculated uncertainty ucref can be too high and is

not valid for estimation of ubias:
3. Recovery tests.

Recovery tests, for example the recovery rate of a standard addition to a sample

in the validation process, can also be used to estimate the systematic error. In this

way, validation data can provide a valuable input to uncertainty estimation.

The recovery rate of spiked samples is determined with at least five samples. The

uncertainty is then given by two components:

l The bias RSMbias% as the difference from the value 100.
l The uncertainty of the spiking.

The total uncertainty ubias is calculated according to the following equations:

ubias ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMS2bias þ u2spike

q
; (10.4-16)

RMSbias ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðbiasiÞ2

n

s
; (10.4-17)

uspike ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2V þ u2c

q
; (10.4-18)

uV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2Vbias

þ u2Vrep

q
; (10.4-19)

uVbias
¼ max:deviationffiffiffi

3
p ; (10.4-20)

where

– RMSbias is the root mean square of the deviations obtained by n replicates

– uspike is the uncertainty of spiking
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– uV is the uncertainty of the spiked volume

– uc is the uncertainty of the spiked concentrations

– uVbias
is the systematic uncertainty of the stock volume

– uV rep is the random uncertainty of the stock volume.

Example 8: For the determination of ammonia-N, the component of ubias was

evaluated by recovery experiments.

1. Uncertainties in the manufacture’s data:

– Uncertainty of the concentration uc of the stock solution with the certified

confidence interval Dx ¼ �1:5% at the significance level P ¼ 95%:

uc ¼ 1:5%

1:96
¼ 0:77%: (10.4-21)

– Systematic uncertainty of the stock volume by the maximal deviation of 1%:

uVbias
¼ 1%ffiffiffi

3
p ¼ 0:58%: (10.4-22)

– Random uncertainty of the stock volume uVrep
¼ 0:5%.

2. Measurement of the stock solutions by six replicates gave deviations of 100%

recovery (biasi) in %:

5 3 2 4 1 4

3. Calculations:

– Uncertainty of the spiking according to (10.4-9)

uspike ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:76%Þ2 þ ð0:77%Þ2

q
¼ 1:1% (10.4-23)

with (10.4-10)

uV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:58%Þ2 þ ð0:5%Þ2

q
¼ 0:76%: (10.4-24)

– Root mean square of the biasi values

RMSbias% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5%Þ2 þ ð3%Þ2 þ ð2%Þ2 þ ð4%Þ2 þ ð1%Þ2 þ ð4%Þ2

6

s
¼ 3:44:

(10.4-25)
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– Total systematic uncertainty according to (10.4-16) using the intermediate

results of (10.4-23) and (10.4-26):

ubias% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3:44%Þ2 þ ð1:1%Þ2

q
¼ 3:61: (10.4-26)

Step 4. Calculate the combined uncertainty ucomb. The uncertainties obtained by the

reproducibility within the laboratory uRw
and the systematic bias ubias estimated in

steps 2 and 3, respectively, are summed to give the combined uncertainty, which is

calculated by:

ucomb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2Rw

þ u2bias

q
: (10.4-27)

Example 9: The combined uncertainty for the analytical determination of ammonia-

N calculated by (10.4-27) using the uncertainties calculated in examples 7 and 8 is

ucomb% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4:2%Þ2 þ ð3:61%Þ2

q
¼ 5:54: (10.4-28)

Step 5. Calculate the expanded uncertainty U(P). As described above the expanded
uncertainty is obtained by multiplying the combined uncertainty by the coverage

factor k. For the significance level P ¼ 95%, k ¼ 2:

U% ¼ 2 � ucomb: (10.4-29)

Example 10: The expanded uncertainty for the photometric determination of

ammonia-N calculated by the combined uncertainty of example 9 is:

U% ¼ 2 � 5:54 ¼ 11:1: (10.4-30)

Let us assume the mean value is �x ¼ 50mgL�1; the true value m then lies

within the boundaries 44.45 mg L�1 and 55.55 mg L�1 at a significance level

P ¼ 95%; with the corresponding risk of a ¼ 5% that the true value lies outside

these values.
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Challenge 10.4-1

In a laboratory, the concentration of sulfate in industrial water is determined

by the ion chromatographic method according to DIN EN ISO 10304-1 [9].

(a) Calculate the expanded uncertainty at the significance level P ¼ 95% using

the following data obtained by the method validation and by control charts.

The customer’s requirement for expanded uncertainty is �10%. Can

this limit be achieved?

In the course of method validation, the laboratory has taken part in

interlaboratory tests over the last 3 years, and the results are given in

Table 10.4-2.

The standard deviation obtained by the mean value control chart with
the nominal value 200 mg L�1 is s ¼ 2:2mgL�1:

The mean value �R obtained by a range control chart constructed with

data of stable synthetic control samples in various matrices is �R% ¼ 4:5:
(b) Let us assume that the allowable sulfate concentration of a specific

industrial water is 190 mg L�1. A control sample gives the mean value

�x ¼ 175mgL�1: Is the limit value exceeded?

(c) The pure analytical error obtained by the method validation is sr% ¼ 2:2:
Calculate the uncertainty solely on the basis of the analytical error and

decide whether the allowable limit value is exceeded.

Solution to Challenge 10.4-1

(a) The solution is presented according to the steps given in the Nordtest

documents

Step 1: Specify measurand. The measurand is sulfate which should be

determined in industrial water by DIN EN ISO 10304-1 [9].

Step 2: Quantify the reproducibility within the laboratory uRw
. The

reproducibility within the laboratory uRw
is estimated by the second

method given above: data obtained by control charts constructed using

(continued)

Table 10.4-2 Data of

interlaboratory studies for

the IC determination of

sulfate

Exercise Nominal

value xref
in mg L�1

Laboratory

result xi in
mg L�1

sR in

mg L�1
Participants

2006 75 77 7.1 26

258 253 20.1 42

2007 135 139 12.4 33

214 211 15.9 31

2008 186 190 20.4 35

98 100 8.8 38

340 10 Measurement Uncertainty



data of stable synthetic control samples in various matrices according to

(10.4-2) – (10.4-4).

uRw;Standard ¼ smean value chart ¼ 2:2mgL�1

200mgL�1
� 100% ¼ 1:1% (10.4-31)

uRw;Range% ¼
�R%

1:128
¼ 4:5

1:128
¼ 3:99 (10.4-32)

uRw
% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2Rw;Standard

þ u2Rw;Range

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:1Þ2 þ ð3:99Þ2

q
¼ 4:14: (10.4-33)

Step 3: Estimate the method and laboratory bias ubias: The estimation of

ubias is verified by data obtained by the interlaboratory comparison given

in Table 10.4-2. Intermediate quantities for calculation of the uncertainty

are shown in Table 10.4-3.

The components required for the estimation of the uncertainty ubias
according to (10.4-16) are calculated) using the data given in Table 10.4-3:

RMSbias% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðBiasÞ2

n

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
30:40

6

r
¼ 2:25: (10.4-34)

The uncertainty component from the nominal value ucref is calculated
according to the standard error of the mean using the mean value of the

reproducibility standard deviation �sR and the mean value of the number of

participants in the interlaboratory exercises �ninterlab:

ucref% ¼ �sRffiffiffiffiffiffiffiffiffiffiffiffiffi
�ninterlab

p ¼ 8:97ffiffiffiffiffi
34

p ¼ 1:53 (10.4-35)

(continued)

Table 10.4-3 Intermediate

quantities for calculation of

the uncertainty ubias

Exercise Participants Bias

in %

(Bias)2

in %2
sR in %

2006 26 2.67 7.11 9.47

42 1.94 3.76 7.79

2007 33 2.96 8.78 9.19

31 1.40 1.97 7.43

2008 35 2.15 4.62 10.97

38 2.04 4.16 8.98

Mean 34 8.97

Sum 30.40
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Now, the uncertainty of the bias ubias is calculated by (10.4-9) using the

results of (10.4-34) and (10.4-35):

ubias% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMS2bias þ u2cref

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2:25Þ2 þ ð1:53Þ2

q
¼ 2:72: (10.4-36)

Step 4: Calculate the combined uncertainty ucomb. The combined uncer-

tainty is calculated by (10.4-14):

ucomb% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2Rw

þ u2bias

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4:14Þ2 þ ð2:72Þ2

q
¼ 4:95: (10.4-37)

Step 5: Calculate the expanded uncertainty UðP ¼ 95%Þ. The expanded
uncertainty at the significance level P ¼ 95% calculated by (10.4-30) is:

U% ¼ 2 � ucomb ¼ 2 � 4:95 ¼ 9:9: (10.4-38)

The customer’s requirement for expanded uncertainty (�10%) can

thus be achieved.

(b) According to the results given in (10.4-38), the true value lies within the

boundaries �x� UðxÞ% which for the measured mean value is

�x ¼ 175� 17:3mgL�1: The upper value (192.3 mg L�1) lies above the

allowable limit value (190 mg L�1), and thus the limit is exceeded.

(c) The uncertainty calculated according to (10.2-2) is

uðx̂Þ ¼ RSD � x̂ ¼ 2:2 � 175mgL�1

100
¼ 3:9mgL�1: (10.4-39)

The upper limit of the analytical result is x̂þ uðx̂Þ ¼ 175 mgL�1þ
3:9mgL�1 ¼ 178:9mgL�1; which is smaller than the allowable limit

value. According to the result obtained by (10.4-39) the limit value is not
exceeded, a practical example of the situation demonstrated in Fig. 10.1-1.
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Appendix

Table A-1 Area of the standard normal variable z according to Fig. 2.2.1-3

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2518 0.2549

0.7 0.2580 0.2612 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2582

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3608 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

From Otto M (2007) Chemometrics. Wiley-VCH, Weinheim, p 304

M. Reichenb€acher and J.W. Einax, Challenges in Analytical Quality Assurance,
DOI 10.1007/978-3-642-16595-5, # Springer-Verlag Berlin Heidelberg 2011
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Table A-2 Limits of the one-sided and two-sided t-distribution tð �P; dfÞ and tðP; dfÞ, respectively
df �Pone�sided ¼ 95% P ¼ 95% �Pone�sided ¼ 99% P ¼ 99%

1 6.314 12.706 31.821 63.657

2 2.920 4.303 6.965 9.925

3 2.353 3.182 4.541 5.841

4 2.132 2.776 3.747 4.604

5 2.015 2.571 3.365 4.032

6 1.943 2.447 3.143 3.707

7 1.895 2.365 2.998 3.499

8 1.860 2.306 2.896 3.355

9 1.833 2.262 2.821 3.250

10 1.812 2.228 2.764 3.169

11 1.796 2.201 2.718 3.106

12 1.782 2.179 2.681 3.055

13 1.771 2.160 2.650 3.012

14 1.761 2.145 2.624 2.977

15 1.753 2.131 2.602 2.947

16 1.746 2.120 2.583 2.921

17 1.740 2.110 2.567 2.898

18 1.734 2.101 2.552 2.878

19 1.729 2.093 2.539 2.861

20 1.725 2.086 2.528 2.845

25 1.708 2.060 2.485 2.787

30 1.697 2.042 2.457 2.750

40 1.684 2.021 2.423 2.704

50 1.676 2.009 2.403 2.678

. . . . . . . . . . . .
1 1.645 1.960 2.327 2.576

From Excel function ¼ TINV(a, df)

Table A-3 Limits of the one-sided F-distribution for the significance level P ¼ 95%

df 1 2 3 4 5 6 7 8 9 10 12 20 1
1 161 199 216 225 230 234 237 239 241 242 244 6,209 254

2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 19.396 19.413 99.449 19.496

3 10.128 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.786 8.745 26.690 8.526

4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964 5.912 14.020 5.628

5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735 4.678 9.553 4.365

6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060 4.000 7.396 3.669

7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637 3.575 6.155 3.230

8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347 3.284 5.359 2.928

9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137 3.073 4.808 2.707

10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978 2.913 4.405 2.538

12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753 2.687 3.858 2.296

20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348 2.278 2.938 1.843

1 3.841 2.996 2.605 2.372 2.214 2.099 2.010 1.938 1.880 1.831 1.752 1.878 1.008

From Excel function ¼ FINV(5%, df1, df2)
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Table A-5 Chi-squared

distribution for different

degrees of freedom and

significance levels w2ðP; dfÞ

df P ¼ 90% P ¼ 95% P ¼ 99%

1 2.706 3.841 6.635

2 4.605 5.991 9.210

3 6.251 7.815 11.345

4 7.779 9.488 13.277

5 9.236 11.070 15.086

6 10.645 12.592 16.812

7 12.017 14.067 18.475

8 13.362 15.507 20.090

9 14.684 16.919 21.666

10 15.987 18.307 23.209

11 17.275 19.675 24.725

12 18.549 21.026 26.217

13 19.812 22.362 27.688

14 21.064 23.685 29.141

15 22.307 24.996 30.578

16 23.542 26.296 32.000

17 24.769 27.587 33.409

18 25.989 28.869 34.805

19 27.204 30.144 36.191

20 28.412 31.410 37.566

21 29.615 32.671 38.932

22 30.813 33.924 40.289

23 32.007 35.172 41.638

24 33.196 36.415 42.980

25 34.382 37.652 44.314

From Excel function ¼ CHIINV(a, df)

Table A-6 Significance table for testing outliers according to

Grubbs

df �P ¼ 95% �P ¼ 99%

3 1.153 1.155

4 1.463 1.492

5 1.672 1.749

6 1.822 1.944

7 1.938 2.097

8 2.032 2.221

9 2.110 2.323

10 2.176 2.410

11 2.234 2.485

12 2.285 2.550

13 2.331 2.607

14 2.371 2.659

15 2.409 2.705

16 2.443 2.747

17 2.475 2.785

18 2.504 2.821

19 2.532 2.854

20 2.557 2.884

21 2.580 2.912

22 2.603 2.939

23 2.624 2.963

(continued)
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Table A-6 (continued)

df �P ¼ 95% �P ¼ 99%

24 2.644 2.987

25 2.663 3.009

26 2.681 3.029

27 2.698 3.049

28 2.714 3.068

29 2.730 3.085

30 2.745 3.103

31 2.759 3.119

32 2.773 3.135

33 2.786 3.150

34 2.799 3.164

35 2.811 3.178

36 2.823 3.191

37 2.835 3.204

38 2.846 3.216

39 2.857 3.228

40 2.866 3.240

41 2.877 3.251

42 2.887 3.261

43 2.896 3.271

44 2.905 3.282

45 2.914 3.292

46 2.923 3.302

47 2.931 3.310

48 2.940 3.319

49 2.948 3.329

50 2.956 3.336

60 3.025 3.411

70 3.082 3.471

80 3.130 3.521

90 3.171 3.563

From DIN EN 53 804-1 (2002) Statistical evaluation – part 1:

Continuous characteristics. Beuth, Berlin

Funk W, Dammann V, Donnevert G. (2005) Qualit€atssicherung
in der Analytischen Chemie 2, Aufl., Wiley-VCH, Weinheim

Table A-7 Critical one-sided Q-values for testing outliers

according to Dixon

n P ¼ 95% P ¼ 99%

3 0.941 0.988

4 0.765 0.889

5 0.642 0.780

6 0.560 0.698

7 0.507 0.637

8 0.554 0.683

9 0.512 0.635

10 0.477 0.597

11 0.576 0.679

12 0.546 0.642

13 0.521 0.615

(continued)
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Table A-7 (continued)

n P ¼ 95% P ¼ 99%

14 0.546 0.641

15 0.525 0.616

16 0.507 0.595

17 0.490 0.577

18 0.475 0.561

19 0.462 0.547

20 0.450 0.535

21 0.440 0.524

22 0.430 0.514

23 0.421 0.505

24 0.413 0.497

25 0.406 0.489

26 0.399 0.482

27 0.393 0.475

28 0.387 0.469

29 0.381 0.463

From DIN EN 53 804-1 (2002) Statistical evaluation –part 1:

Continuous characteristics. Beuth, Berlin

n number of observations

Table A-8 Significance table for testing normal distribution according to David

n Lower limit Upper limit

P ¼ 95% P ¼ 99% P ¼ 95% P ¼ 99%

5 2.15 2.02 2.753 2.803

6 2.28 2.15 3.012 3.095

7 2.40 2.26 3.222 3.338

8 2.50 2.35 3.399 3.543

9 2.59 2.44 3.552 3.720

10 2.67 2.51 3.685 3.875

11 2.74 2.58 3.80 4.012

12 2.80 2.64 3.91 4.134

13 2.86 2.70 4.00 4.244

14 2.92 2.75 4.09 4.34

15 2.97 2.80 4.17 4.44

16 3.01 2.84 4.24 4.52

17 3.06 2.88 4.31 4.60

18 3.10 2.92 4.37 4.67

19 3.14 2.96 4.43 4.74

20 3.18 2.99 4.49 4.80

25 3.34 3.15 4.71 5.06

30 3.47 3.27 4.89 5.56

35 3.58 3.38 5.04 5.42

40 3.67 3.47 5.16 5.56

45 3.75 3.55 5.26 5.67

50 3.83 3.62 5.35 5.77

55 3.90 3.69 5.43 5.86

60 3.96 3.75 5.51 5.94

From Sachs L (1991) Angewandte Statistik: Anwendung statistischer Methoden, 7. Aufl. Springer,

Berlin

n – number of observations
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Table A-9 Critical C-values for testing homogeneity of variances at the significance level

P = 95% and P = 99% (given in italics) according to Cochran

Degrees of freedom df

k 1 2 3 4 5 6 7 8 9 10

2 0.9985

0.9999
0.9750

0.9950
0.9392

0.9794
0.9057

0.9582
0.8772

0.9373
0.8534

0.9172
0.8332

0.8988
0.8159

0.8823
0.8010

0.8674
0.7880

0.8539
3 0.9669

0.9933
0.8709

0.9423
0.7977

0.8831
0.7457

0.8335
0.7071

0.7933
0.6771

0.7606
0.6530

0.7335
0.6333

0.7107
0.6167

0.6912
0.6025

0.6743
4 0.9065

0.9676
0.7679

0.8643
0.6841

0.7814
0.6287

0.7212
0.5895

0.6761
0.5598

0.6410
0.5365

0.6129
0.5175

0.5897
0.5017

0.5702
0.4884

0.5536
5 0.8412

0.9279
0.6838

0.7885
0.5981

0.6957
0.5441

0.6329
0.5065

0.5875
0.4783

0.5531
0.4564

0.5259
0.4387

0.5037
0.4241

0.4854
0.4118

0.4697
6 0.7808

0.8828
0.6161

0.7218
0.5321

0.6258
0.4803

0.5635
0.4447

0.5195
0.4184

0.4866
0.3980

0.4608
0.3817

0.4401
0.3682

0.4229
0.3568

0.4084
7 0.7271

0.8376
0.5612

0.6644
0.4800

0.5685
0.4307

0.5080
0.3947

0.4659
0.3726

0.4347
0.3535

0.4105
0.3384

0.3911
0.3259

0.3751
0.3154

0.3616
8 0.6798

0.7945
0.5157

0.6152
0.4377

0.5209
0.3910

0.4627
0.3595

0.4226
0.3362

0.3932
0.3185

0.3704
0.3043

0.3522
0.2926

0.3373
0.2829

0.3248
9 0.6385

0.7544
0.4775

0.5727
0.4027

0.4810
0.3548

0.4251
0.3286

0.3870
0.3067

0.3592
0.2901

0.3378
0.2768

0.3207
0.2659

0.3067
0.2568

0.2950
10 0.6020

0.7175
0.4450

0.5358
0.3733

0.4469
0.3311

0.3934
0.3029

0.3572
0.2823

0.3308
0.2666

0.3106
0.2541

0.2945
0.2439

0.2813
0.2353

0.2704
12 0.5410

0.6528
0.3924

0.4751
0.3264

0.3919
0.2880

0.3428
0.2624

0.3099
0.2439

0.2861
0.2299

0.2680
0.2187

0.2535
0.2098

0.2419
0.2020

0.2320
15 0.4709

0.5747
0.3346

0.4069
0.2758

0.3317
0.2419

0.2882
0.2195

0.2593
0.2034

0.2386
0.1911

0.2228
0.1815

0.2104
0.1736

0.2002
0.1671

0.1918
20 0.3894

0.4799
0.2705

0.3297
0.2205

0.2654
0.1921

0.2288
0.1137

0.2048
0.1602

0.1877
0.1501

0.1748
0.1422

0.1646
0.1357

0.1567
0.1303

0.1501
24 0.3434

0.4247
0.2354

0.2871
0.1907

0.2295
0.1656

0.1970
0.1493

0.1759
0.1374

0.1608
0.1286

0.1495
0.1216

0.1406
0.1160

0.1338
0.1113

0.1283
30 0.2929

0.3632
0.1980

0.2412
0.1593

0.1913
0.1377

0.1653
0.1237

0.1454
0.1137

0.1327
0.1061

0.1232
0.1002

0.1157
0.0958

0.1100
0.0921

0.1054

From internet: http://www.watpon.com/table/cochran

k – number of the levels/samples, df – degrees of freedom of the replilcates in each level/sample
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Table A-10 Critical limits

for testing trends according to

Neumann

n P ¼ 95% P ¼ 99%

4 0.7805 0.6256

5 0.8204 0.5379

6 0.8902 0.5615

7 0.9359 0.6140

8 0.9825 0.6628

9 1.0244 0.7088

10 1.0623 0.7518

11 1.0965 0.7915

12 1.1276 0.8280

13 1.1558 0.8618

14 1.1816 0.8931

15 1.2053 0.9221

16 1.2272 0.9491

17 1.2473 0.9743

18 1.2660 0.9979

19 1.2834 1.0199

20 1.2996 1.0406

21 1.3148 1.0601

22 1.3290 1.0785

23 1.3425 1.0958

24 1.3552 1.1122

25 1.3671 1.1287

26 1.3785 1.1426

27 1.3892 1.1567

28 1.3994 1.1702

29 1.4091 1.1830

30 1.4183 1.1951

From Sachs L (1999) Angewandte Statistik: Anwendung statis-

tischer Methoden, 9. Aufl. Springer, Berlin

n number of observations
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Index

A

Accuracy, 8, 166

flow rate, 279

gradient, 279

photometric, 273

wavelength, 270

Action limit lines, 288

Analysis of variance see ANOVA

ANOVA, 67

computational scheme

one-way ANOVA, 68

two way-ANOVA, 69

models, 68

uses

certification of materials, 126

comparison of more than two means, 69

interlaboratory-study, 306

lack-of-fit test for linearity, 138

method performance study, 307

standard deviation in quality control, 289

Analytical error, 85

Analytical result, see also predicted value,

20, 85

Assigned value, 312, 313

B

Balance, requirements according to USP, 284

Bias, 7

Blank, blank method, 203, 207, 209

Blank control chart, 290

Box and whisker plot, 44

C

Calibration

conditions, 81

function

linear, 83

graph, 85

quadratic 103

simplified linear, 100

Certified reference material, 305

Chi-square, table of critical values, 348

Chromatogram, performance parameters, 241

Cochran test, 56, 307

table of critical values, 351

Coefficient of variation (CV), 307

Confidence interval, 19

and quality, 22

definition, 19

for mean values, 20

linear regression

intercept, 85

predicted value, 86

slope, 86

quadratic

predicted value, 105

simplified linear

predicted value, 101

slope, 100

Constant systematic errors, 166

check for, 175

Control charts, 287

and measurement uncertainty, 334

CuSum charts, 298

Shewhart charts, 288

out-of-control rules, 289

range chart, 290

Correlation analysis, 79

Correlation coefficient, 79

Covariance, 189

Critical value, 20, 207

table according to

Cochran test, 351

David test, 350

Dixon test, 349

Grubbs test, 348
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trend test, 352

table of

F-distribution, 346, 347
t- distribution, 346

w2 – distribution, 348

CuSum charts, see control charts

D

David test, see normal distribution

Dead volume, 280

Decision limit, 39

Degrees of freedom, 16

ANOVA, 68

linear regression, 86

simplified linear regression, 100

Design, ANOVA, 70

Detection, limit of, 206

calculation, 209, 210

by a quick method, 211

Distributions, 10

standardized normal, 11

t-, 11, 20
Dixon test, 43

table of critical value, 349

E

Error, 1

a- (Type I) 38, 39, 207, 208
b- (Type II) 39, 208
analytical, 85

calibration, 84

constant systematic error, 166, 175, 189

gross, 9

propagation of, 26

proportional systematic, 167, 176, 179, 188

random, 7, 10

systematic, 7, 190

Expanded uncertainty, 325

F

F-test
ANOVA, 69, 71

comparison of two standard deviations, 51

table of critical value

for P ¼ 95%, 346

for P ¼ 99%, 347

Factor, 70

Flow rate accuracy, 279

Frequency, 10

G

Gaussian

distribution, 11

law of error propagation, 26

ordinary least squares estimation, 83

Gradient accuracy, 279

Grubbs test, 43, 306

table of critical value, 348

H

Headspace gas chromatography (HS-GC)

method development, 251

multiple (MHE), 254

validation, 253

Histogram, 10

Homogeneity of variances, 155

ANOVA, 69

regression function, 155

test for, see F-test
HPLC instrument, performance

verification, 279

I

Independent variable, 81

Instrumental precision, 118

Interactive (ANOVA)

Intercept, 84

calculation, 84

standard deviation of, 85

Intermediate precision, 122

Interquartile range, 44

and box plot, 45

L

Least significant difference (LSD), 69

Least square estimation, 83

Least square regression, see linear regression
Limit of detection, see detection, limit of

Limit of quantification, see quantification,
limit of

Linear regression, 91

Linearity, 132, 279

and stray light, 272

of calibration lines, 132

of the injected volume, 279

test for

lack-of-fit test by ANOVA, 138

Mandel test, 136

quality coefficient, 132

significance of the quadratic

regression coefficient, 143

visual inspection, 134

Lower action limit LAL, 288

Lower warning limit LWL, 288

M

MAD, 44, 313

MADE, 313
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Mandel test, 136

Mean, mean value, 11, 12

comparison of, 59, 67

standard deviation of, 17

Mean absolute deviation, 44

Mean control chart, 290, 334

Mean squares (ANOVA), 140

Measurement uncertainty, 8, 319

cause and effect diagram, 321

combined uncertainty, 322

definition of, 320

expanded uncertainty, 320

identifying of uncertainty sources, 321

Nordtest procedure, 333

quantifying uncertainty, 322

spreadsheet method for calculation, 325

steps in specifying measurand, 321

type A/B, 320

Median, 12

Method development, 241

for chromatographic methods, 241

for headspace gas chromatography, 251

for MHE, 254

Method performance, 306

Multiple headspace extraction MHE, 254

N

Neumann test, see trend test by Neumann

Normal distribution, 10

rapid test for, 40

O

One-sided hypothesis test, 38

Outliers, 9

and box plot, 45

tests for

Dixon, 43

Hampel, 43

Grubbs, 43

Out-of-control situation, 289

P

Peak symmetry, 242

Pearson criterion, 20

Performance verification of

balances, 284

HPLC instruments, 279

column temperature, 280

detector, 280

injector, 279

pump, 279

UV-Vis spectrometers, 270

photometric accuracy, 273

resolution, 272

stray light, 271

wavelength accuracy, 270

Photometric accuracy, see accuracy,
photometric

Pooled standard deviation, 59

Precision, 7, 39, 118

and bias, 8

of the instrument, 119

of the analytical procedure, 121

limit values of the, 122

Predicted value, 86

error of, 86

Proficiency testing, 312

Propagation of uncertainty, law of, 324

Proportional systematic error, 167

check for, 176, 179

Q

Quadratic regression, 103

model, 103

parameters, calculation of, 103

Quality control, 22, 287

action/warning limits, 288

and confidence interval, 22

CuSum charts, 298

Shewhart charts, 288

Quantification, limit of, 208, 211

Quantiles, 51

Quartiles, 44

and box plots, 44

R

Random errors, 7, 10

Range, see working range a

Range chart, 290

Regression, see linear or quadratic regression
Relative standard deviation, 17

Repeatability, 121

Reproducibility, 122

Residuals, calculation of, 84

Resolution, 242, 272

Retention factor, 241

Ruggedness/robustness, 218

S

Selectivity factor, 242

Shewhart charts, 288

Significance level, 38

confidence interval for mean value, 38

Standard addition method, 202

Standard addition procedure for trueness

test, 196

Standard deviation, 16

calculation of, 12, 16, 17
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Standard deviation (cont.)
comparison of

two, 51

more than two, 56

of the slope, 86

of the intercept, 85

residual, 84, 100

Standard operation procedure SOP, 118

Standard uncertainty, 320, 322, 324

Stocked samples, 172, 179, 203

Stray light, 271

Sum of squares, calculation of, 16, 79, 104

T

t-Test, 59
Trend

test by Neumann, 40

Test statistics

Cochran test, see Cochran test

Grubbs outlier t-test, see Grubbs test
Dixon outlier test, see Dixon test

F-test, see F-test
t-test, see t-test

Tools, performance verification of, 269

Triangular distribution, 323

Trueness, tests for, 166

mean value t-test, 167
method comparison, 184

recovery rate, 169

recovery rate of stocked samples, 172

recovery function, 174

standard addition procedure, 179

True value, 8, 60, 167, 169

Two-tailed test a, 20, 38
Type I error, see error, a-/Type I
Type II error Type I error, see error, b-/Type II

U

Uncertainty see measurement uncertainty

Upper action limit UAL, 288, 290

Upper warning limit UWL, 288, 290

V

V-mask, 299

Validation of method performance, 117

guidelines for, 117

Validation parameters, 118

precision, 118

Variance, 11, 17

analysis of, see ANOVA
visual inspection of residuals, 135

W

Weighted linear least square regression, 160

Weighting factor, 160

Working range, 108

Z

Z-score, 312
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