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Preface

This volume gathers selected short papers presented at the international conference
Mathematical and Statistical Methods for Actuarial Sciences and Finance (MAF),
held at Universidad Carlos III de Madrid (Spain) on 4–6 April 2018.

The contributions highlight new ideas on mathematical and statistical methods in
actuarial sciences and finance. The interaction between mathematicians, statisticians
and econometricians working in insurance and finance is a very fruitful field that
yields unique theoretical models and practical applications, as well as new insights
in the discussion of problems of national and international interest.

The book covers a wide variety of subjects in actuarial science and financial
fields, all of which are treated in light of the cooperation between the three quan-
titative approaches. The topics are: actuarial models; analysis of high-frequency
financial data; behavioural finance; carbon and green finance; credit risk methods
and models; dynamic optimization in finance; financial econometrics; forecasting
of dynamical actuarial and financial phenomena; fund performance evaluation;
insurance portfolio risk analysis; interest rate models; longevity risk; machine
learning and soft computing in finance; management in insurance business; models
and methods for financial time series analysis; models for financial derivatives;
multivariate techniques for financial markets analysis; optimization in insurance;
pricing; probability in actuarial sciences, insurance and finance; real world finance;
risk management; solvency analysis; sovereign risk; static and dynamic portfolio
selection and management; and trading systems.

The MAF Conference was first held in Salerno in 2004 and is organized
biennially. Previous meetings were held in Salerno (2004, 2006, 2010, 2014), Venice
(2008, 2012) and Paris (2016).

Madrid, Spain Aurea Grané
February 2018 María Durbán
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The Effect of Rating Contingent
Guidelines and Regulation Around
Credit Rating News

Pilar Abad, Antonio Díaz, Ana Escribano, and M. Dolores Robles

Abstract This paper investigates the effect of rating-based portfolio restrictions
that many institutional investors face on the trading of their bond portfolios.
Particularly, we explore how credit rating downgrades affect to bondholders that
are subject to such rating-based constrains in the US corporate bond market.
We go beyond the well-documented investment grade (IG) threshold by analyzing
downgrades crossing boundaries usually used in investment policy guidelines.
We state that the informativeness of rating downgrades will be different according
to whether they imply crossing investment-policy thresholds or not. We analyze
corporate bond data from the TRACE dataset to test our main hypothesis and find a
clear response around the announcement date consistent with portfolio adjustments
made by institutions in their fulfillment of investment requirements for riskier assets.

Keywords Credit rating · Investment guidelines · Corporate bonds

1 Introduction

The vast majority of institutional investors are subject to credit rating restrictions,
either in their investment decisions or in the holding of deteriorated rating securities.
One example of regulatory restrictions based on ratings is the National Association
of Insurance Commissioners (NAIC)’s risk-based capital system for insurance com-
panies. This framework is based on the credit ratings provided by the most relevant
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credit rating agencies (CRAs), and establishes six credit quality designations of
bonds that correspond to different rating scales (from AAA to A, BBB, BB, B,
CCC, and below CCC). The system imposes higher capital requirements to those
investment portfolios that contain bonds rated in the lower credit quality categories.
Other example of non-regulatory restrictions can be found in the internal investment
procedures from some portfolio managers. They use a wide variety of rating-based
guidelines that potentially affect their portfolio investments decisions. In these
cases, the investment policy statements provide restrictions to the investment
process depending on the credit rating that bear the target assets.

The prior literature has focused in the analysis of the well-documented invest-
ment grade (IG) threshold, by analyzing the effects of credit rating changes (CRCs)
crossing the IG frontier on the investors’ portfolios subject to restrictions in the
holding of junk bonds. Some examples are the papers of [4] or [1], who analyze the
effects of fallen angels that may lead to the fire sales and/or price-pressure effects.

In this paper, we explore how credit rating downgrades (CRDs) crossing
boundaries usually used in investment policy guidelines affect to bondholders that
are subject to such investment constrains. We state that their responses to bond rating
adjustments that lead to jumps across rating thresholds, should be different than
those downgrades that do not involve them. We compare the effect of downgrades
with implications in the boundaries investment guidelines with their reaction to
other type of downgrades, such as downgrades across the IG threshold (fallen
angels) and downgrades without regulatory implications (“standard” downgrades).
In addition, we control for CRDs that cross any one of the buckets set on the NAIC’s
system.

We study a comprehensive sample of 2082 CRCs in the whole US corporate bond
market, using transaction data from the Trade Reporting and Compliance Engine
(TRACE) dataset and rating information from the Fixed Income Securities Database
(FISD) during the period from July 2002 to December 2014.

Our findings shows a clear effect around downgrades that could have implications
in the investment guidelines used by many portfolio managers. Accordingly, we
highlight a clear policy implication of our results. Moreover, our paper relates to
those strands of the literature that documents the forced-selling phenomenon and
price pressure effect on the corporate bond market (e.g., [1, 4]). Besides, to the
literature that studies the information content of CRCs (e.g., [6, 7]).

The flow of our paper is organized as follows: Sect. 2 introduces rating-based
regulation and the main hypotheses. Section 3 presents the data and the analysis
used. Section 4 shows the main results. Finally, Sect. 5 concludes.

2 Rating-Based Investment Guidelines

Most of the portfolio managers use a wide variety of rating-based guidelines that
potentially affect their portfolio investments and performance tracking. Among
other goals, these investment policy (IP) statements serve as a policy guide and
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provide discipline to the investment process. In this line, [3] observe that both a
threshold of A and the IG cut-off of BBB/Baa are usually used in the US fund
managers guidelines (80% and 88% respectively). Moreover, [5] list a number of
rating-based regulations beyond the IG cutoff. For instance, the AA/Aa rating has
been used in the mortgage-backed security market, the SEC Rule 2a-7 stated that
money market mutual funds are required to limit investments rated less than A+/A1,
or the Department of Labor instituted a regulation limiting pension fund investment
in asset-backed securities rated A or better. Similar guidelines are used by banks,
bondholders, and other fiduciary agents, although these thresholds have received
little attention.

Our main hypotheses is that all CRDs crossing boundaries usually used in IP
guidelines will carry rigged a stronger reaction than other downgrades that do not
involve any constraints. Most portfolio managers use a wide variety of rating-based
guidelines that potentially affect portfolio investments and performance tracking.
The credit deterioration of bonds included in their portfolios will induce them to
unwind positions to fulfill their investment guidelines, although they are not forced
to sell. This response should be stronger than the market reaction to CRDs that do
not involve any rating constraints, since the consequences of this lasts downgrades
are mainly of an economic risk nature.

3 Data and Analysis Implementation

We use two main sources of data. First, the TRACE database that collects data of
corporate bond transactions in the secondary market and includes, among others,
information about trading prices and volumes. Second, the FISD dataset that
includes information about the main features of the securities as well as rating
history information. After filtering and matching both datasets, we select only those
CRDs that correspond to straight bonds and that meet certain imposed criteria about
trading frequency. We end up with a sample of 2082 CRCs involving 1250 bonds
from 245 issuers, covering the period from July 2002 to December 2014.

To test the hypothesis in Sect. 2, we run different OLS regressions where the
dependent variable is either the abnormal value of the transaction price (PR), the
yield spread (YS), the trading volume (TV) or the number of trades (NT). We control
for jumps across NAIC’s buckets1 in addition to other features such as the final
rating, the jump size, the CRA, the negative watch-lists, the coupon or the age.

1NAIC is a dummy variable equal to 1 if the initial and the final rating are in different NAIC’s buckets and 0 else.
Around 70% of the CRCs do not imply a jump between NAIC’s buckets.
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4 Results

The main results are displayed in Table 1. The dependent variable in each model
is the abnormal value of the analyzed variable within the period of working days
[0,5], i.e. during 1 week after the announcement day.2 We can observe that when
controlling for rating-based constraints (Policy variable) the explanatory power of
the models increases since the adjusted R2 is larger in all models. Moreover, the
coefficients for this variable present the expected signs and are highly significant
in all models. As preliminary results, these findings suggests that trading activity
seems to be trigger by rating-based restrictions.

5 Concluding Remarks

Rating-based regulation and constraints seems to trigger abnormal trading activity
around CRCs in the US corporate bond market. According to our findings, we
highlight a clear policy implication of our results. A finer granularity both in the
rated-based contingent guidelines and in the NAIC’s capital requirement buckets
should mitigate market overreactions and fire sales among investors.

Acknowledgements This work was supported by the Spanish Ministerio de Ciencia y Tecnología
(ECO2015-68367-R and ECO2015-67305-P, ECO2014-59664-P) and Junta de Comunidades de
Castilla-La Mancha (PEII-2014-019-P). Any errors are solely the responsibility of the authors.
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Practical Problems with Tests
of Cointegration Rank with Strong
Persistence and Heavy-Tailed Errors

Niklas Ahlgren and Paul Catani

Abstract Financial time series have several distinguishing features which are of
concern in tests of cointegration. An example considered in this paper is testing the
approximate non-arbitrage relation between the credit default swap (CDS) price and
bond spread. We show that strong persistence and very high persistence in volatility
are stylised features of cointegrated systems of CDS prices and bond spreads. There
is empirical support that the distribution of the errors is heavy-tailed with infinite
fourth moment. Tests for cointegration have low power under such conditions. The
asymptotic and bootstrap tests are unreliable if the errors are heavy-tailed with
infinite fourth moment. Monte Carlo simulations indicate that the wild bootstrap
(WB) test may be justified with heavy-tailed errors which do not have finite fourth
moment. The tests are applied to CDS prices and bond spreads of US and European
investment-grade firms.

Keywords ARCH · Cointegration · Credit default swap · Heavy tails · Wild
bootstrap

1 Introduction

Financial time series have several distinguishing features which are of concern
in tests of cointegration. An example considered in this paper is the approximate
non-arbitrage relation between the credit default swap (CDS) price and bond
spread (see [1]). The paper investigates the power of asymptotic, bootstrap and
wild bootstrap (WB) tests of cointegration rank with strong persistence, very high
persistence in volatility and heavy-tailed errors. The tests are applied to CDS prices
and bond spreads of US and European investment-grade firms.

N. Ahlgren (�) · P. Catani
Hanken School of Economics, Helsinki, Finland
e-mail: niklas.ahlgren@hanken.fi; paul.catani@hanken.fi

© Springer International Publishing AG, part of Springer Nature 2018
M. Corazza et al. (eds.), Mathematical and Statistical Methods
for Actuarial Sciences and Finance, https://doi.org/10.1007/978-3-319-89824-7_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89824-7_2&domain=pdf
mailto:niklas.ahlgren@hanken.fi
mailto:paul.catani@hanken.fi
https://doi.org/10.1007/978-3-319-89824-7_2


8 N. Ahlgren and P. Catani

2 Power of Tests in the Heteroskedastic VAR Model
with Heavy-Tailed Errors

We consider the p-dimensional heteroskedastic cointegrated VAR model of Cava-
liere et al. [3]:

Δyt = αβ ′yt−1 +
k−1∑

i=1

Γ iΔyt−i + αρ ′Dt + φdt + εt , t = 1, . . . , T . (1)

The deterministic variables satisfy Dt = 1 and dt = 0. The errors {εt } are a mar-
tingale difference sequence with respect to the filtration Ft−1 = σ(εt−1, εt−2, . . .),
and satisfy (1) the global homoskedasticity condition

1

T

T∑

t=1

E(εtε′t |Ft−1)→ Σ, in probability, (2)

and (2) E ‖εt‖4 ≤ K <∞, where ‖·‖ denotes the norm.
The tests that we consider are the asymptotic Qr,T test [4], bootstrap Q∗Br,T test

and WB Q∗WB
r,T test of cointegration rank r . We use the bootstrap algorithms of

Cavaliere et al. [2, 3] which recursively generate bootstrap and WB observations.
Figure 1 shows the simulated power functions for p = 2 and T = 1000 in

the VAR(2) model. The nominal level is 5%. The data-generation process (DGP)
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Fig. 1 Simulated power functions for p = 2, T = 1000, CCC-GARCH(1, 1) errors with a11 =
a22 = 0.08, b11 = b22 = 0.9 and conditional correlation coefficient 0
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is a VAR(1) model with α = (−a, 0)′ and β = (1, 0)′. The model for the
errors is a constant conditional correlation generalised autoregressive conditional
heteroskedasticity (CCC-GARCH) model with ARCH parameters a11 = a22 =
0.08, GARCH parameters b11 = b22 = 0.9 and conditional correlation coefficient
0. The CCC-GARCH process is characterised by very high persistence in volatility
(aii+bii = 0.98, i = 1, 2); satisfies the stationarity condition (the largest eigenvalue
is 0.98); satisfies the fourth moment condition (the largest eigenvalue is 0.9732). The
simulated size (a = 0) of Q0,T is 6.8%, the simulated size of Q∗B0,T is 4.3% and the

simulated size of Q∗WB
0,T is 5.0%. The simulated powers when the largest stationary

root is 0.98 (a = −0.02) are 39.5%, 29.5% and 32.0%, respectively; when it is 0.97
are 71.9%, 59.8% and 64.5%, respectively; and when it is 0.95 are 98.6%, 96.7%
and 97.5%, respectively. Figure 2 shows the simulated power functions with ARCH
parameters a11 = 0.175, a22 = 0.35, GARCH parameters b11 = 0.824, b22 = 0.5
and conditional correlation coefficient 0. The CCC-GARCH process is characterised
by very high persistence in volatility in the first equation (a11 + b11 = 0.999),
moderate persistence in the second equation (a22 + b22 = 0.85) and large ARCH
parameters; satisfies the stationarity condition (the largest eigenvalue is 0.999); does
not satisfy the fourth moment condition (the largest eigenvalue is 1.0593). The
asymptotic Q0,T test and bootstrap Q∗B0,T test are oversized if the condition for the
existence of the fourth moment of the errors is not satisfied. The simulated size of the
former is 12.6% and the latter 9.2%. The violation does not have an effect on the size
of the WB Q∗WB

0,T test. The simulated size of Q∗WB
0,T is 5.0%. The simulated powers
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Fig. 2 Simulated power functions for p = 2, T = 1000, CCC-GARCH(1, 1) errors with a11 =
0.175, a22 = 0.35, b11 = 0.824, b22 = 0.5 and conditional correlation coefficient 0
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Table 1 WB tests of cointegration between the CDS prices and bond spreadsa

Q∗WB
0,T Q∗WB

1,T Q∗WB
0,T Q∗WB

1,T Q∗WB
0,T Q∗WB

1,T

Company 1.1.2010–31.8.2016 1.1.2010–1.5.2013 2.5.2013–31.8.2016

Bank of America 0.028 0.491 0.104 0.466 0.341 0.241

Barclays Bank 0.692 0.597 0.149 0.573 0.708 0.850

Citigroup 0.016 0.795 0.105 0.897 0.001 0.431

Deutsche Telekom 0.388 0.911 0.386 0.710 0.829 0.558

Goldman Sachs 0.039 0.770 0.140 0.637 0.189 0.460

Morgan Stanley 0.000 0.212 0.000 0.181 0.056 0.564

Telefonica 0.004 0.837 0.009 0.401 0.607 0.785

Vodafone 0.001 0.108 0.022 0.254 0.258 0.501
aThe table shows the p-values of the tests

of Q0,T , Q∗B0,T and Q∗WB
0,T when the largest stationary root is 0.98 are 46.6%, 37.7%

and 22.5%, respectively; when it is 0.97 are 72.9%, 63.4% and 45.6%, respectively;
and when it is 0.95 are 96.1%, 93.4% and 84.9%, respectively.

3 Empirical Results

The tests are applied to daily observations from 2010 to 2016 on the CDS price
and bond spread of US and European investment-grade firms. The empirical results
support strong persistence and very high persistence in volatility. Hill estimates for
the standardised residuals from the VAR models indicate that the distribution of the
errors has heavy tails with finite variance E|ε2

it | < ∞ but infinite fourth moment
E|ε4

it | = ∞, i = 1, 2. We therefore use the WB test. The WB tests reported in
Table 1 accept cointegration for most firms in the full sample period (T = 1739).
The evidence for cointegration is weak in sub-sample periods from 2010 to 2013
(T = 869) and 2013 to 2016 (T = 870).

4 Conclusions

Tests of cointegration rank have low power in cointegrated systems with strong
persistence and very high persistence in volatility. Obtaining high power requires
more than 1000 observations, or more than 4 years of daily observations. The
asymptotic and bootstrap tests are unreliable if the errors are heavy-tailed with
infinite fourth moment. Monte Carlo simulations indicate that the WB test may be
justified with heavy-tailed errors which do not have finite fourth moment.
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Inference in a Non-Homogeneous Vasicek
Type Model

Giuseppina Albano and Virginia Giorno

Abstract In the paper we propose a stochastic model, based on a Vasicek non-
homogeneous diffusion process, in which the trend coefficient and the volatility are
deterministic time-dependent functions. The stochastic inference based on discrete
sampling in time is established using a methodology based on the moments of the
stochastic process. In order to evaluate the goodness of the proposed methodology
a simulation study is discussed.

Keywords Non-homogeneous diffusion · Conditional moments · Estimation
procedure

1 Introduction and Background

Models based on stochastic diffusion processes are widely used in economic and
financial fields [4, 5, 8]. In particular, the Vasicek process seems to be appropriate to
describe no-arbitrage interest rates for which the long-run equilibrium value and the
volatility are generally dependent on time. It is solution of the following Stochastic
Differential Equation (SDE):

dY (t) = [−aY (t)+ b]dt + σdB(t), Y (0) = y0, (1)

where σ > 0 and a, b, y0 ∈ R. In (1) and throughout the paper B(t) is a standard
Wiener process. The model (1) with b = 0 was originally proposed by Ornstein and
Uhlenbeck (OU) in the physical context to describe the velocity of a particle moving
in a fluid under the influence of friction and then it was generalized by Vasicek to
model loan interest rates. For a > 0, Y (t) is a mean reverting process, i.e. it tends
to oscillate around some equilibrium state. Another interesting property of the OU
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process is that, contrary to the Brownian motion, it is a process with finite variance
for all t ≥ 0. In finance modeling σ can be interpreted as the volatility, b/a is the
long-run equilibrium value of Y (t) whereas a represents the speed of reversion. The
classical model (1) has been extended to the non-homogeneous case in which the
drift term depends on the time via certain deterministic functions [7].

In the present paper we propose a generalization of the model (1) in which the
drift term and the infinitesimal variance generally depend on time. This is the case of
dynamics of suitable economic quantities (as, for example, consumptions, emissions
of CO2, interest rate) that can be subject to the effect of time-dependent exogenous
factors, i.e. expectations concerning the future impact of monetary policies, and
expected trends in other macroeconomic variables. The problem of estimating the
unknown drift term and the volatility function of the model is of great interest in
many scientific fields both in theory and in practice. Whereas for the model (1)
the parameters estimation is easily obtained via the ML method, the problem of
estimating the general time depending trends of the generalized model is, to the
knowledge of the authors, not yet still solved. In [7], an ML estimation of the non-
linear trend coefficient is provided when it depends on suitable exogenous variables.
The aim of our paper is to develop a statistical methodology able to fit the time-
dependent drift and volatility functions in the general case, also when no exogenous
variables are observable.

The layout of the paper is the following. In Sect. 2 we introduce the model and
we give the main probabilistic characteristics of the process such as its transition
probability density, the trend functions and the conditional moments generating
function. Then, in Sect. 3 we focus on the stochastic inference based on discrete
sampling in time and we provide a methodology for fitting the unknown functions.
Finally, in Sect. 4, in order to evaluate the goodness of the proposed methodology, a
simulation study is discussed.

2 The Model

Let {X(t), t ∈ [t0, T ]} be a process defined in R described via the SDE:

dX(t) = [−aX(t)+ b(t)]dt + σ(t)dB(t), P[X(0) = x0] = 1 (2)

where a ∈ R, b(t) and σ(t) > 0 are continuous deterministic functions.
Equation (2) is able to describe no-arbitrage interest rates for which the long-
run equilibrium value and the volatility are generally dependent on time. The
transition probability density function (pdf) of X(t), f (x, t|x0, t0), is solution
of Kolmogorov and of Fokker-Plank equations and it satisfies the initial delta
condition, so f (x, t|y, τ ) is a normal pdf characterized by mean and variance

M(t|y, τ )=ye−a(t−τ ) +
∫ t

τ

b(θ)e−a(t−θ)dθ, V (t|τ ) =
∫ t

τ

σ 2(θ)e−2a(t−θ)dθ. (3)
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3 Fitting the Model

In this section we propose an estimation procedure for the unknown functions b(t)
and σ(t) in (2). Similar methods are also been proposed in different contexts and for
various models (cf. [1–3, 6, 9]). In the present study we assume that the parameter
a in (2) is known. We note that from (3) we obtain:

b(t) = dM(t | y, τ )
dt

+ aM(t | y, τ ), σ 2(t) = 2aV (t | τ )+ dV (t | τ )
dt

. (4)

Now let us consider a discrete sampling of the process (2) based on d sample paths
for the times tij , i = 1, . . . , d and j = 1, . . . , n, with ti1 = t1 (i = 1, . . . , d).
We observe the values {xij }i=1,...,d;j=1,...,n of the variables X(tij ) constituting the
sample for the inferential study. Starting from the Eq. (4) we suggest the following
procedure for the estimation of the functions b(t) and σ 2(t):

• From the data {xij }, i = 1, . . . , d, and j = 1, . . . , n we obtain the sample mean
μj and the sample variance νj :

μj = 1

d

d∑

i=1

xij , νj = 1

d − 1

d∑

i=1

(xij − μj )
2. (5)

• Recalling (4) and setting Δj = tj − tj−1 for j = 2, 3, . . . , n and b1 = σ 2
1 = 0,

we consider the following fitting points for b(t) and σ 2(t)

bj = μj − μj−1

Δj

+ aμj , σ 2
j = 2 a νj + νj − νj−1

Δj

. (6)

• Finally, by interpolating the points bj (j = 1, . . . , n) and σ 2
j (j = 1, . . . , n) we

obtain the functions b̂(t) and σ̂ 2(t) as estimators of b(t) and σ 2(t), respectively.

We point out that in (6) we use a simple approximation of the derivatives given
by the difference quotient, this choice can be satisfactory for Δj → 0. Moreover,
the interpolation can be substitute by other parametric or non parametric regression
methods.

4 A Simulation Study

In order to evaluate the goodness of the proposed procedure we present a simulation
study. We assume that the parameter a = 5 is known and then we consider two
cases: Case 1: b(t) = 0, σ (t) ≡ σ 2 = 0.01, and Case 2: b(t) = 0.1 sin(0.1 t),
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Fig. 1 Functions b(t) (left) and σ 2(t) (right) and their estimates are shown for the Case 1 (up) and
Case 2 (down)

σ(t) ≡ σ 2 = 0.01. For any cases we simulate 50 sample-paths of the process X(t)

with t0 = 0 and x0 = 0. The sample paths include 500 observations of the process
starting from t1 = t0 = 0 with ti − ti−1 = 1. The results obtained by using the
proposed procedure are shown in Fig. 1. We note explicitly that in the considered
cases the proposed procedure is able to capture the trend of the unknown functions.
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Small Sample Analysis in Diffusion
Processes: A Simulation Study

Giuseppina Albano, Michele La Rocca, and Cira Perna

Abstract In this paper we analyse small sample properties of the ML estimation
procedure in Vasicek and CIR models. In particular, we consider short time series,
with a length between 20 and 100, typically values observed in finance and insurance
contexts. We perform a simulation study in order to investigate which properties of
the parameter estimators remain still valid.

Keywords Vasicek process · CIR process · Boostrap resampling

1 Introduction

Diffusion processes are commonly used in a lot of fields ranking from economics
to biology, from genetics to engineering. In particular they are able to model
stochastic phenomena, such as dynamics of financial securities and short-term loan
rates (see, for example, [1] and [5]). Asymptotic properties of ML estimators
for the parameters of these models have been analysed in [6], in which also a
parametric bootstrap procedure to reduce the bias of the drift estimates has been
proposed. However, in many applications data are yearly or quarterly observed, so
in the estimation of the parameter the asymptotic condition means to observe the
phenomenon for a very long period and most likely such kinds of time series present
structural breaks.

In this paper we consider Vasicek and CIR models, mostly employed processes
in insurance for the valuation of life insurance contracts and in finance for modeling
short-term interest rates (see, for example, [2] and [3]). In particular, we consider
short time series, with a length between 20 and 100, tipically values observed
in these contexts. We perform a simulation study in order to investigate which
properties of the parameter estimator remain still valid.
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The paper is organized as follows. Section 2 briefly review the processes, the ML
estimators and the bootstrap procedure for reducing the bias of the drift estimates.
Section 3 shows a simulation experiment in which the bias and the RMSE are
evaluated for different sample sizes, and some concluding remarks, including some
guidelines for practitioners, are also given.

2 ML Estimation and Bootstrap Correction

A family of diffusion processes for the interest rates dynamics consists of the
following linear drift processes:

dXt = k(α −Xt)dt + σX
ρ
t dBt , (1)

where α, k and ψ are unknown parameters. Vasicek and CIR models are obtained
from (1) setting ρ = 0 and ρ = 1

2 respectively. Let θ = (k, α, σ ) be the vector
of the unknown parameters. The MLE for the Vasicek model can be obtained
explicitly [6]. Instead, for CIR process explicit expression of the MLEs for θ is
not attainable, so suitable approximations of its SDE can be used in order to obtain
a pseudo log-likelihood and a related pseudo-MLE [4]. Expansions to the bias and
variance of estimators for the Vasicek and CIR processes have been developed in
[6]. In particular, the bias expansion of estimators for the Vasicek and CIR process
reveals that the bias of the k estimator is of a larger order of magnitude than the
bias of estimators for the parameter α and the diffusion parameter σ 2. Moreover the
variances of the estimators for the two drift parameters k and α are of larger order
than that of the estimator of σ 2. This explains why estimation of k incurs more bias
than the other parameters and why the drift parameter (k and α) estimates are more
variable than that of the diffusion parameter σ 2. The problem increases when the
process has a lack of dynamics, which happens when k is small; in this case the
ML estimator for k can incur relative bias of more than 200% even when the time
series length is greater than 120. To this aim, a parametric bootstrap procedure for
bias correction for general diffusion processes can be adopted [6]. Both theoretical
and empirical analysis show that the proposed bias correction effectively reduces
the bias without inflating the variance. Precisely, let {x1, . . . , xn} be the time series
observed at equidistant time-points iδ, i = 1, . . . , n, and let θ̂ = (k̂, α̂, σ̂ 2) be
a mean square consistent estimator of θ = (k, α, σ 2). The bootstrap procedure
consists of the following steps:

1. Generate {X∗t }nt=1 with the same δ from dXt = k̂(α̂ −Xt)dt + σ̂X
ρ
t dBt ;

2. Obtain a new estimator θ̂∗ = (k̂∗, α̂∗, σ̂ 2∗) from the sample path by applying the
same estimation procedure as θ̂ ;

3. Repeat step 1 and 2 NB number of times and obtain θ̂∗,1, . . . , θ̂∗,NB ;

4. let ¯̂θ∗ = N−1
B

∑NB

b=1 θ̂
∗,b, the bootstrap estimator is θ̂B = 2θ̂ − ¯̂θ∗.
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3 Simulation Experiment and Results

In our simulation the parameters for Vasicek process are θ = (k, α, σ 2) =
(0.858, 0.0891, 0.00219) (Model V1), θ = (0.215, 0.0891, 0.0005) (Model V2),
θ = (0.140, 0.0891, 0.0003) (Model V3). For CIR process θ = (k, α, σ 2) =
(0.892, 0.09, 0.033) (Model C1), θ = (0.223, 0.09, 0.008) (Model C2), θ =
(0.148, 0.09, 0.005) (Model C3). In models V3 and C3 the autoregressive coeffi-
cient of the discrete time model is 0.99, so it is near to the unit root case. All the
simulations are based on 5000 simulations and 1999 bootstrap resamples. Further,
we choose δ = 1 that corresponds to yearly observations. The sample size n was
20, 30, 50, 100, 200. Figure 1 shows the relative bias of k̂ and its RMSE by using
bootstrap correction (on the left) and for ML estimator (on the right). We can
observe that the relative bias for ML estimator is very high for n = 20, 30 and
50, being greater that 200% for n = 20. The bootstrap correction is very efficient
in correct the bias but the increase in RMSE of the estimator is greater as much as
smaller is the bias in the ML estimator. Concerning the parameter α in the Vasicek
model, we observe that the bootstrap correction even performs a worse relative bias
and RMSE with respect to the MLE (Fig. 2). Analogous results are obtained for CIR
model, as shown in Figs. 3 and 4. Other simulations, not shown here for the sake of
brevity, lead us to conclude that, when n is small the bias in the estimators involved
in diffusion processes can be really strong, the relative bias till 200% for small
samples. Still, the relative bias is worse when the coefficients are near to the non
stationarity case. Moreover, the bootstrap procedure is enough efficient in correcting
the bias also for very small sample but the increase in RMSE of the estimator is
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Fig. 1 Vasicek model: relative bias (left) and RMSE (right) of k̂ by bootstrap and by MLE
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greater as much as smaller is the bias in the ML estimator. Also instability problems
in the estimations can occur when we are near the non stationarity case and when n is
small (20–30). Finally, for n = 20, 30, 50 the sample distribution of the estimators
are asymmetric, so we cannot use tests or confidence intervals based on Normal
distribution.
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Using Deepest Dependency Paths
to Enhance Life Expectancy Estimation

Irene Albarrán-Lozano, Pablo J. Alonso-González, and Aurea Grané

Abstract The aim of this work is to estimate life expectancy free of dependency
(LEFD) using categorical data and individual dependency trajectories that are
obtained using the whole medical history concerning the dependency situation
of each individual from birth up to 2008, contained in database EDAD 2008.
In particular, we estimate LEFD in several scenarios attending to age, gender,
proximity-group and dependency degree. Proximity-groups are established accord-
ing to an L2-type distance from the dependency trajectories to a central trend within
each age-gender group, using functional data techniques.

Keywords Cox Regression · Dependency · Disability · Functional data

1 Introduction

Dependency, that is, lack of autonomy in performing basic ADL can be seen as a
consequence of the process of gradual aging. In Europe in general and in Spain in
particular this phenomenon represents a problem with economic, political and social
implications. The prevalence of dependency in the population, as well as its intensity
and evolution over the course of a person’s life are issues of greatest importance that
should be addressed.

The aim of this work is to estimate life expectancy free of dependency (LEFD),
that is, the expected number of years that a person can live free of this contin-
gency based on mortality and morbidity conditions. The evolution of dependency
in the Spanish population is studied through a pseudo panel constructed from
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EDAD 2008 [1, 3], in the lack of longitudinal studies or the possibility to link
different cross-sectional surveys.

EDAD 2008 (Survey on Disability, Personal Autonomy and Dependency Situa-
tions 2008, undertaken by the Spanish Statistical Office—INE) is the most recent
Spanish survey about disability and was the first Spanish survey that used the
internationally accepted measures established by the ‘International classification
of functioning, disability and health’.1 It was also the first time that the survey
included information useful for studying the dependency phenomenon, such as
the average hours per week of special care received by the dependent person.
Moreover, EDAD 2008 contains, among many other variables, the ages at which
each person in the sample has suffered a change in his/her health condition related
to disability. Therefore, applying the Spanish legislation (Act 39/2006 and Royal
Decree 504/2007) it is possible to recover the individual historical event data and,
thus, to obtain the individual dependency evolution from birth up to 2008.

The sample selected for the present study is formed by 7446 individuals and
represents 2.35% of the Spanish population in 2008, that is more than 1 million
people (325,253 men and 773,079 women). Each individual in the sample has a
weight reflecting the population group that represents. These weights have been
taken into account in all the computations of this paper.

2 Methodology

The main contribution of this paper is the estimation of LEFD not only by gender
or dependency degree (I-moderate, II-severe, III-major), but also by partitioning the
individuals in homogeneous groups with a similar dependency evolution.

For all the analysis performed in this article the first age interval is [50, 60) and
the last one [90,∞). Moreover, we are particularly interested in those people with
a dependency score of zero at the age of 30, and from now on, they will be grouped
in ten age-gender intervals (five groups per gender) according to their current age at
2008.

For each one of these ten groups we compute the deepest curve in terms of
modified band depth [4] using the roahd package in R by Tarabelloni et al. [5]. As
an example, in Fig. 1 we depict the dependency trajectories with the corresponding
deepest curve for several age-gender groups, where we observe that at the same
age the first score value reached by these deepest curves is lower for women than
for men. The deepest curve of a sample in terms of modified band depth has been

1In 2001, the World Health Organization (WHO 2011) [6] established a framework for measuring
health and disability at both individual and population levels, which was known as the ‘Inter-
national classification of functioning (ICF), disability and health’. The ICF tries to establish a
consensus in its understanding, by establishing a difference between the basic activities of living
daily (ADL) and the instrumental ADL. The basic activities are defined as those activities which
are essential for an independent life.
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Fig. 1 Dependency trajectories for men and women with their corresponding deepest curves (in
bold red). (a) Men at 70. (b) Men at 90. (c) Women at 70. (d) Women at 90

proven to be an accurate and robust estimator of the central pattern of a sample of
curves in the time warping model [2].

Then, within each group we compute the L2-distance of each trajectory to the
corresponding deepest one multiplied by 1 (or −1) if the trajectory is most of the
time above (or below) the deepest curve. This yields a numerical summary for
each one of the trajectories, dj , that can be used to establish different patterns.
As we will see later, these patterns will exhibit quite different life expectancies. In
particular, negative values of dj correspond to trajectories below the deepest curve
and, therefore, to individuals with lower dependency scores than those of the central
trend of their age-gender groups. In fact, the best situations are expected for the left-
tail values of dj . On the other hand, positive values of dj correspond to trajectories
above the deepest curve and, hence, to individuals with higher dependency scores
than those of the central trend of their age-gender groups. In this case, the worst
situations are expected for large values of dj . Since each set of values {dj < 0} and
{dj ≥ 0} has a different meaning, we propose to compute the LEFD for the groups
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of individuals established by the quartiles in each set, yielding to eight groups for
each gender, that we call proximity-groups.

Once these proximity-groups are established, we use Cox regression model to
obtain the ‘survival’ probabilities (in fact, the staying free of dependency probability
at a given age given that a person is alive at that age). Marginal probabilities
are calculated by multiplying these estimates by survival probabilities given by
the Spanish disabled pensioners’ mortality table. Finally, we obtain the LEFD
for Spanish population within homogenous groups considering age, gender and
dependency degree. As far as we know, this is the first time that the dependency
evolution is used to estimate life expectancy.

3 Results

Table 1 contains the estimated LEFD for men and women at three particular ages
jointly with the LEFD calculated without taking into account the partition by
proximity-groups (rows global LEFD for men and global LEFD for women). We
may remind that these LEFD estimations are computed from survey EDAD 2008,
that contains only dependent people. Therefore, they must interpreted as the ’at
least’ expected numbers of years free of dependency. Nevertheless, the methodology
that we propose in this paper is not restricted to the database.

In Table 1 we observe that the variance of LEFD increases with age and tends to
decrease with dependency degree. In general, the variance is greater for women. We
also observe that the global LEFD by gender, calculated without taking into account
the partition by proximity-groups, is far from any of the LEFD values estimated by
proximity-groups.

In order to highlight these findings, in Fig. 2 we depict the evolution of LEFD
along age for two scenarios. For the one hand, the expected number of years for
people free of any dependency degree and, on the other hand, for people free of
major dependency degree. In each panel, the lower threshold corresponds to the
LEFD estimation for people in the worst dependency situation (Proximity-group
IV, {dj ≥ 0}), whereas the upper threshold reflects the LEFD estimation for people
in the best dependency situation (Proximity-group IV, {dj < 0}). Finally, the black
line corresponds to global LEFD estimation.

Figure 2 reinforces the conclusions derived from Table 1 and, additionally, we
observe that LEFD decreasing rate is higher (and more abrupt) for men than for
women. The huge difference between the global LFED and the two thresholds
may suggest that the global LEFD estimation is not be representative of the
Spanish dependent population, not even for those individuals within the most central
proximity-groups, that is, for those that are the nearest to the corresponding central
trend. From economic and demographic points of view, this is a relevant finding,
since the expected dependent population would demand care services (health care,
pensions and other services) that should be covered and related expenditures should
be financed.
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The Optimal Investment
and Consumption for Financial Markets
Generated by the Spread of Risky Assets
for the Power Utility

Sahar Albosaily and Serguei Pergamenshchikov

Abstract We consider a spread financial market. We construct the optimal con-
sumption/investment strategy for the power utility function. We study the Hamilton–
Jacobi–Bellman (HJB) equation by the Feynman–Kac (FK) representation. We
study the numeric approximation and we establish the convergence rate.

Keywords Optimality · Feynman–Kac mapping · Hamilton–Jacobi–Bellman
equation · Itô formula · Brownian motion · Ornstein–Uhlenbeck process ·
Stochastic processes · Financial market · Spread market

1 Market Model

Let (Ω,FT , (Ft )0≤t≤T ,P) be a standard filtered probability space with (Ft )0≤t≤T
adapted Wiener processes (Wt )0≤t≤T . Our financial market consists of one riskless
bond (Št )0≤t≤T and risky spread stocks (St )0≤t≤T governed by the following
equations:

{
dŠt = r Št dt , Š0 = 1 ,

dSt = − κSt dt + σ dWt , S0 > 0 .
(1)
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Here r > 0 is the interest rate, κ > 0 is the market constant parameter from R

and σ > 0 is the market volatility. We consider the wealth process corresponding to
the investment α = (αt )0≤t≤T and the consumption c = (ct )0≤t≤T strategies as the
following

dXυ
t = (rXυ

t − κ1αtSt ) dt + αtσ dWt − ct dt , (2)

where κ1 = κ + r > 0.

Definition 1 The financial strategy υ = (υt )0≤ t≤ T is called admissible if this
process is adapted and the Eq. (2) has a unique strong nonnegative solution.

We denote by V the set of all admissible financial strategies. For initial
endowment x > 0, admissible strategy υ in V and state process ςt = (Xυ

t , St ), we
introduce for 0 < γ < 1 the following cost function

J (ς, t, υ) : = Eς,t

(∫ T

t

c
γ
t dt + (Xυ

T )
γ

)
, (3)

where Eς,t is the conditional expectation with respect to ςt = ς = (x, s). We
set J (ς , υ) = J (ς , 0 , υ). Our goal is to maximize the cost function (3), i.e.
supυ∈V J (ς , υ) . To do this we use the dynamical programming method so, we
need to study the problem (3) for any 0 ≤ t ≤ T .

2 Stochastic Programming Method

Denoting by ςt = (Xt , St ), we can rewrite Eqs. (1) and (2) as,

dςt = a(ςt , υt ) dt + b(ςt , υt ) dWt ,

where

a(ς,u) =
(
rx − κ1αs − c

− κs

)
, b(ς,u) =

(
ασ

σ

)
and u = (α, c) .

We introduce the Hamilton function, for any

q =
(
q1

q2

)
, M =

(
M11 M12

M21 M22

)
, and 0 ≤ t ≤ T ,

we set,

H(ς, t, q,M) : = sup
u∈�

H0(ς, t, q,M,u), � ∈ R× R+,
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where H0(ς, t, q,M,u) : = a′(ς, t,u)q + tr[bb′(ς, t,u)M]/2 + cγ , where the
prime ′ here denotes the transposition. In order to find the solution to the value
function we need to solve the Hamilton–Jacobi–Bellman equation which is given by

⎧
⎨

⎩
zt (ς, t)+H(ς, t, ∂z(ς, t), ∂2z(ς, t)) = 0 , t ∈ [0, T ] ,
z(ς, T ) = xγ , ς ∈ R

2 ,

(4)

where

∂z(ς, t) =
(
zx

zs

)
and ∂2z(ς, t) =

(
zxx zxs

zsx zss

)
.

In this case the Hamilton-Jacobi-Bellman equation is in the following form

zt (ς, t)+ 1

2

(σ 2zxs − κ1szx)
2

σ 2|zxx | + σ 2zss

2
+ rxzx − κszs

+(1 − γ )
(zx
γ

) γ
γ − 1 = 0 , (5)

where z(ς, T ) = xγ . To study this equation we use the following form for the
solution

z(x, s, t) = xγ U(s, t) and U(s, t) = exp

{
s2

2
g(t)+ Y (s, t)

}
, (6)

for some function g(.) > 0, and
⎧
⎨

⎩
Yt (s, t) + 1

2σ
2Yss(s, t) + sg1(t)Ys (s, t)+ ΨY (s, t) = 0 ,

Y (s, T ) = 0 .

(7)

As we will see later, that the Eq. (7) has a solution in C2,0(R×[0, T ]) which can
be represented as a fixed point for the Feynman–Kac mapping

Y (s, t) = E
∫ T

t

ΨY (η
s,t
u , u) du = LY (s, t) . (8)

Using the solution of Eq. (6), we define the functions

α̌0
(
ς, t

) = κ1 s zx(ς, t)

σ 2zxx(ς, t)
− zxs(ς, t)

zxx(ς, t)
= β̌(s, t) x ,

č0(ς, t) =
(
zx(ς, t)

γ

) 1
γ − 1 = G(s, t) x , (9)

where β̌(s, t) = (
sg(t) + Ys(s, t) − κ1s/σ

2
)
/(1− γ ) .
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Now we set the following stochastic equation to define the optimal wealth
process, i.e., we set

dX∗t = a∗(t) X∗t dt + b∗(t) X∗t dWt , (10)

where a∗(t) = r − κ1 St β̌(St , t)− Ǧ(St , t) and b∗(t) = σ β̌(St , t) .

Using the stochastic differential equation (10) we define the optimal strategies:

α∗t = α̌0(ς
∗
t , t) and c∗t = č0(ς

∗
t , t) , (11)

where ς∗t = (X∗t , St ) , X∗t is defined in (10).

Remark 1 Note that the main difference in the Hamilton–Jacobi–Bellman equa-
tion (5) from the one in [2] is the last nonlinear term as we see we can not use the
solution method from [2].

3 Main Results

First we study the Hamilton–Jacobi–Bellman equation.

Theorem 1 There exists T0 > 0 such that for all 0 ≤ T ≤ T0, then Eq. (4) is the
solution defined by (6), where Y is the unique solution of (7) in X and is the fixed
point for the Feynman–Kac mapping, i.e., Y = LY .

Theorem 2 Assume that 0 ≤ T ≤ T0, Then the optimal value of J (t, ς, υ) is
given by

max
υ∈V

J (ς, t, υ) = J (ς, t, υ∗) = xγU(s, t) ,

where the optimal control υ∗ = (α∗, c∗) for all 0 ≤ t ≤ T is given in (9) with the
function Y defined in (8). The optimal wealth process (X∗t )0≤ t ≤ T is the solution
to(10).

Similarly to [1], we study the HJB equation through the FK representation.
Therefore, let us now define the approximation sequence (hn)n≥1, for h as h0 = 0,
and for n ≥ 1, as hn = Lhn− 1 . In the following theorems we show that the
approximation sequence goes to the fixed function h, i.e. h = Lh

Theorem 3 For some δ > 0, the approximation

||h − hn|| ≤ O(n− δn) as n→∞.

Remark 2 Note that the convergence rate is super geometrical.
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Now we define the approximation. We set

α∗n(ς t) = β̌n(s, t) x and c∗n(ς, t) = Gn(s, t) x

where β̌n(s, t) =
(
s g(t) + ∂hn(s, t)/∂s − κ1s/σ

2
)
/(1− γ ) .

Theorem 4 There exists δ > 0 such that as n→∞,

sup
ς,0≤t≤T

(∣∣α∗(ς, t) − α∗n(ς, t)
∣∣+ ∣∣c∗(ς, t) − c∗n(ς, t)

∣∣
)
≤ O(n− δn) .

Remark 3 As it is seen from Theorem 1 the approximation scheme for the
Hamilton–Jacobi–Bellman equation implies the approximation for the optimal
strategy with the some super geometrical rate. i.e. more rapid than any geometrical
ones.

Remark 4 Indeed the amount T0 can be calculated in explicit form.
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Combining Multivariate Volatility
Models

Alessandra Amendola, Manuela Braione, Vincenzo Candila,
and Giuseppe Storti

Abstract Forecasting conditional covariance matrices of returns involves a variety
of modeling options. First, the choice between models based on daily or intradaily
returns. Examples of the former are the Multivariate GARCH (MGARCH) models
while models fitted to Realized Covariance (RC) matrices are examples of the latter.
A second option, strictly related to the RC matrices, is given by the identification of
the frequency at which the intradaily returns are observed. A third option concerns
the proper estimation method able to guarantee unbiased parameter estimates even
for large (MGARCH) models. Thus, dealing with all these modeling options is
not always straightforward. A possible solution is the combination of volatility
forecasts. The aim of this work is to present a forecast combination strategy in which
the combined models are selected by the Model Confidence Set (MCS) procedure,
implemented under two economic loss functions (LFs).

Keywords Multivariate volatility · Model confidence set · Realized
covariances · Forecast combination

1 Introduction

Conditional covariance matrices of returns can be estimated by means of different
approaches. Among these, MGARCH models [6], based on daily returns, represent
one of most prominent example. Moreover, in more recent years the research has
also focused on the development of unbiased and efficient realized estimators of
conditional covariance matrices [5]. Specifications like the Conditional Autoregres-
sive Wishart (CAW) model [11] directly use RC measures to obtain covariance
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forecasts. When the focus is on the RC matrices, an additional issue arises: the
choice of the frequency at which the intradaily returns are observed. In fact,
practitioners dealing with RC models have to carefully choose the optimal intradaily
frequency, giving the best bias/variance trade-off [4, 17]. Finally, as regards the
estimation method, also the choice between Quasi Maximum Likelihood Estimator
(QMLE) or Composite QMLE (cQMLE) still represents an open issue [16].

Disentangling simultaneously all these issues could be seriously problematic.
A possible solution is the combination of volatility forecasts [3] coming from
different models, characterized by different estimation procedures and informa-
tion observed at different frequencies. Thus, this work aims at investigating the
profitability of a forecasting strategy based on the combination of multivariate
volatility models, under economic LFs. More in detail, the proposed combination
strategy relies on the MCS [13] procedure, through which several MGARCH and
RC-based models, estimated by QMLE or cQMLE, are assessed, with respect to
two (univariate) economic LFs and four different portfolio compositions. Models
entering the so-called training MCS are then averaged in order to obtain the
combined predictor. Subsequently, the so-called evaluation MCS assesses the
forecasting performances of MCS-based combined predictor with respect to those
of the whole model universe augmented with the simple equally weighted average
of forecasts from all the candidate models.

2 MCS Combination Strategy

Let r t be a k× 1 vector of daily-log returns for k assets at time t . Moreover, let Hi,t

be a (k× k) matrix for the volatility model i, with i = 1, . . . ,M . Thus, the matrices
Hi,t are the forecasts of the covariance matrix of r t conditionally on the information
set It−1, generated by each candidate model i.

Let HComb
t denote the combined predictor based on the available M candidate

models. The proposed combination rule defines the combined prediction HComb
t

as equally averaging all the models belonging to the training MCS. Let HAll
t , the

natural benchmark of HComb
t , denote the equally weighted combined predictor,

obtained by averaging Hi,t . Both HAll
t and HComb

t as well as all the model universe
are evaluated in the evaluation MCS. The MCS-based combination strategy is
carried out under two economic LFs: the Caporin [7] and Lopez [14] LFs. Both
LFs are univariate and belong to the Value-at-Risk (VaR) framework [2].

In order to fairly assess the predictive performances of HComb
t , HAll

t and
each single candidate models, we only consider portfolios with constant weights.
Namely, in addition to an Equally Weighted (EW) allocation strategy, we also
consider three alternative unequally weighted allocation strategies, labelled as R1,
R2 and R3, assigning different weights to the economic sectors composing our
dataset.
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3 Empirical Analysis

The performance of our proposed strategy is evaluated by analysing a portfolio of
k = 12 stocks listed on the New York Stock Exchange and M = 24 different
specifications, of which eight are MGARCH and sixteen are RC-based models.

Table 1 shows the frequency at which each specification enters the MCS over the
training period. Regardless of the economic LF adopted, under EW and R1 weights,
the BEKK specification almost always enters the MCS. Instead, under R2 and R3
portfolio configurations, the model included in the MCS with the highest frequency
is the DECO.

The results of the evaluation MCS are illustrated in Table 2, where for brevity,
only the MCS p-values of HComb

t and HAll
t are reported. First of all, we note that the

combined predictor always enters the MCS, independently of the considered vector
of weights. Secondly, and more importantly, our principal competitor HAll

t has a
substantially worse performance since it does not enter the MCS in four out of the
eight cases considered.

To conclude, for data and period under consideration, HComb
t always belongs to

the evaluation MCS, regardless of the LFs adopted or the portfolio composition.

Table 1 Frequency of models entering the training MCS

Weights EW R1 R2 R3 EW R1 R2 R3

Loss Caporin LF Lopez LF

CAW_5 0.000 0.077 0.115 0.115 0.192 0.077 0.077 0.077

CAW-C_5 0.000 0.000 0.000 0.077 0.077 0.077 0.000 0.077

RRM_5 0.000 0.000 0.000 0.000 0.000 0.038 0.000 0.038

RMC_5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CAW_10 0.000 0.115 0.115 0.115 0.269 0.192 0.038 0.077

CAW-C_10 0.000 0.000 0.000 0.077 0.385 0.077 0.000 0.077

RRM_10 0.000 0.000 0.000 0.000 0.192 0.000 0.000 0.000

RMC_10 0.000 0.000 0.000 0.000 0.231 0.000 0.000 0.000

CAW_15 0.000 0.115 0.115 0.115 0.500 0.192 0.038 0.077

CAW-C_15 0.000 0.038 0.000 0.038 0.269 0.077 0.000 0.038

RRM_15 0.000 0.000 0.000 0.000 0.038 0.000 0.000 0.000

RMC_15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CAW_30 0.000 0.115 0.000 0.077 0.231 0.192 0.000 0.038

CAW-C_30 0.000 0.038 0.000 0.000 0.077 0.077 0.038 0.000

RRM_30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RMC_30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

BEKK-C 0.000 0.000 0.000 0.000 0.538 0.423 0.000 0.077

(continued)
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Table 1 (continued)

Weights EW R1 R2 R3 EW R1 R2 R3

Loss Caporin LF Lopez LF

BEKK 0.923 0.846 0.423 0.462 1.000 1.000 0.500 0.538

cDCC-C 0.308 0.231 0.000 0.000 0.538 0.385 0.000 0.077

cDCC 0.308 0.231 0.000 0.000 0.538 0.385 0.000 0.077

DCC-HR 0.231 0.115 0.000 0.000 0.538 0.385 0.000 0.077

DECO 0.538 0.000 0.885 0.846 0.538 0.423 0.962 0.808
RM 0.000 0.000 0.000 0.000 0.231 0.192 0.000 0.000

MC 0.000 0.000 0.000 0.000 0.385 0.192 0.000 0.000

#(MCS) 2.308 1.923 1.654 1.923 6.769 4.385 1.654 2.154

Notes: A model’s label followed by “δ” means that model has been estimated using RC matrices
built from intradaily returns computed over an interval of length equal to δ = 5, 10, 15, 30 min.
A model’s label followed by “-C” means that model has been estimated by means of the cQMLE.
RRM and RMC stand for realized RiskMetrics [15] and realized Moving Covariance estimator.
Models based on daily log-returns are: the BEKK model [10], the corrected DCC (cDCC) [1],
the DCC [8] specification as proposed by Hafner and Reznikova [12] (DCC-HR), the Dynamic
Equicorrelation (DECO) of [9], the RiskMetrics (RM) and the Moving Covariance (MC) models.
#(MCS) is the size of the MCS obtained under a given loss function, on average. The significance
level of the tests of the MCS procedure is α = 0.25. The period under consideration ranges from
July 2, 1997 to July 18, 2008 for a total of 2744 trading days. Models entering the MCS with the
highest frequency are indicated in bold

Table 2 Evaluation MCS P -values

Weights EW R1 R2 R3 EW R1 R2 R3

Loss Caporin LF Lopez LF

HComb
t 1.000 1.000 0.447 0.398 1.000 0.930 0.253 1.000

HAll
t 0.948 0.935 0.156 0.148 0.725 0.702 0.014 0.123

Notes: The significance level of the tests of the MCS procedure is α = 0.25. Bold p-values denote
the statistically inclusion within the evaluation MCS
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Automatic Detection and Imputation
of Outliers in Electricity Price Time
Series

Ilaria Lucrezia Amerise

Abstract In high frequency time series of electricity prices, one frequently
observes a feature which is common for most electricity markets, namely sudden
extreme prices. The present study relates to a method for automatically determining
and replacing outliers. The core of our method is the construction of a reference time
series through the rolling decomposition into trend-cycle and seasonal components
of the original time series. Deviations of residuals above a given threshold indicate
anomalies which are replaced with a more reasonable alternative price.

Keywords Time series · Anomalies · Electricity markets

1 Introduction

Electricity prices time series are characterized by spikes, that is, significant peaks
and jumps. The “commonness” of aberrant prices, however, does not absolve us
from trying to use more effective albeit more invasive treatment of outliers. On the
one hand, even if the removal of legitimate data points in a time series could be
accepted as a permissible practice, the number of values that could be suspected of
being anomalous in the time series discussed in this study, is too large to justify
their exclusion. Electricity price peaks and/or jumps, in fact, need not be treated
as enemies, because they are very important for energy market participants. On the
other hand, the choice of the statistical method to employ should not be dependent
on such extremes unless they contain information that we cannot afford not to
consider.

The main purpose of this paper is to present a new method to detect and impute
outliers observed in time series of electricity prices. The essence of the procedure
is a rolling trigonometric-polynomial regression, which is used to build a reference
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time series (that is, a smoothed version of the investigated time series). The price at
the time point in which the difference between observed and reference time series
is, in absolute terms, greater than a prefixed threshold, is considered anomalous and
replaced with the corresponding price of the reference time series.

The paper is organized as follows. In Sect. 2, we present our basic method. The
case studies in Sect. 3 serve to exemplify how the method can be used as a data
preparation tool to ensure that statistical modeling is supported by valid data. In
particular, data for this article consist of historical data on hourly zonal prices traded
at the day ahead Italian energy market.

2 Time Series Outlier Detection and Imputation

Let us suppose that the time series electricity price (if necessary, log-transformed)
is generated from

Pt = x (t)+ y (t)+ et , t = 1, 2, · · · , n , (1)

where x(t) is the sum of orthogonal polynomials in t of degree 1, 2, · · · ,m1.

x (t) =
m1∑

j=1

βjgj (t) , with
n∑

t=1

gj (t) gi (t) = 0, i �= j . (2)

The term x (t) reflects the influence of events having a medium or long-term impact
on the time series level. The positive integer m1 is a tuning factor of the procedure.
The term y(t) expresses the seasonal fluctuations as a sum of harmonics

y (t) =
m2∑

j=1

m3,j∑

i=1

γj,i cos
(
iωj t

)+ δj,i sin
(
iωj t

)
, (3)

where m2 is the number of seasonal periods and m3,j , j = 1, 2, · · · ,m2 is the
number of harmonics for each seasonal period; ωj = 2π/sj is the first Fourier
coefficient, with sj being the number of seasons into the j -th periodic component.
Note that, because of collinearity one trigonometric term of the last harmonic
of each seasonality is omitted. We assume that the seasonalities are known and
specified. There are methods that allow uncovering of cycles in a time-series, but
lie beyond the scope of the present study. In this regard, we found very useful the
chi-square periodogram method proposed by [4].

Finally, et is a white noise process (i.e. mutually independent and identically
distributed random variables), which includes anything else in the time series and
t is the day of measurement. In the following, (1) will be referred to as the basic
model. This same approach has been followed by [3] in the function tsoutliers of the
R package forecast. However, the volatility and the length of the time series usually
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observed for the electricity prices is rather long, even in the cases of a separate
treatment for each hour of the day. We believe, therefore, that (1) is not suitable to
represent the entire time series and, consequently, an alternative method is needed.

In this study, the time series is subdivided into a set of overlapping time points.
Let ν be an odd integer that represents the number of sub-series into which the time
series is divided. The value of ν is also a tuning factor of our method. In the initial
step, the sub-series contains prices for day 1 through ν. The coefficients β, γ , δ

of the basic model are estimated by ordinary least squares (OLS) and the fitted
values within the range of the first sub-series are obtained. In the successive step, a
window of ν contiguous prices is moved along the time series, producing a sequence
containing prices for day 2 through day (ν+1). The basic model is fitted to the new
sub-series and another set of fitted values are obtained. The procedure is iterated
until the basic model achieves the last sub-series covering the time points (n− ν +
1), · · · , n. The Berliner Verfahren (Berlin procedure), discussed in [1] is based on
these premises.

At the end of the iterations, we have accumulated a variable number of fitted val-
ues for each observed price. The sequence of repetitions is as follows: 1, 2, · · · , ν−
1,ν, · · · , ν, where ν is replicated for n−2(ν−1) times, ν−1, ν−2, · · · , 1. Here we
use the median of the replicated fitted values to estimate the individual price of the
reference time series: P̂1, P̂2, · · · , P̂n. Let êt = Pt−P̂t , t = 1, 2, · · · , n be the time
series of the estimated residuals. These residuals are labelled as outliers if they lie
outside the range M−k ∗mad (̂et ) , M+k ∗mad (̂et ), where M is the median of the
residuals and mad() is the median of absolute deviations from the median. When
k = 1.4826 mad() is equal to standard deviation of a Gaussian distribution. The
filter becomes more tolerant as k increases, allowing more spikes and/or jumps to
be accepted as regular values. Decreasing k makes the filter more invasive, declaring
more prices to be local outliers and replacing them with the corresponding price in
the reference time series. Of course, k is another tuning factor.

3 Results and Discussion

The data for this article consist of historical data on hourly zonal price traded at the
day ahead Italian energy market. Because of transmission capacity constraints, Italy
is partitioned into six zones or macro-regions: North, Centre-North, Centre-South,
South, Sardinia, Sicily with a separate price for each zone. More details in [2].

Given the strong seasonalities present both in the intra-day and inter-day
dynamics and the large amount of data which is generally available, we propose
to treat each hour of the day as a separate time series and hence we will analyze 24
different daily time series, one for each hour of the day (and for each zone). The
time series analyzed goes from 1am on Monday, 07/01/2013 to 24pm on Sunday,
26/02/2017 and hence cover a total of 24 hourly prices in 1148 days for six zones.

To assess the potentiality of our procedure, we compare the results of the
routine tsoutliers with those obtained by the method proposed in this study, which
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we call diats (detection and imputation of anomalies in time series) defined by
ν = �2n/ log2(n)
 (plus one if the result is even), which for n = 1148, implies
ν = 227. The other tuning factor is m1 = 5 (we used a higher degree with
respect of the traditional third-degree polynomial model to take more into account
the oscillatory bevavior of the prices and, consequently, favor a better local fit.
Furthermore, m2 = 7, m3 = 4, k = 4.5. We apply the two routines to 24×6 = 144
daily time series of hourly zonal prices in Italy.

Our findings indicate that diats is broadly more aggressive than tsoutliers since
reject more prices in more than two-third of all time series. In fact, the average
number of rejections is 20/1148 for the former and 18/148 for the latter. The
two procedures replace the same prices with an average of 9/1148 time points.
Figure 1 illustrates the relationship by means of a scatter plot with loess regression
curves. We have ascertained that for time series of moderate length, the calculations
necessary to implement diats are heavier than with tsoutliers, but remain compatible
with the hardware resources generally available. Nonetheless, for big data time
series, it could be necessary to intervene on the window size and on the number of
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Fig. 1 Comparison between two methods for dealing with outliers
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values to be changed from one window to another. Finally, it must be observed that
the type of routine discussed in this study are far from perfect, but the experiments
performed on real and simulated data with Box-Jenkins sarimax processes, confirm
that, not only both diats and tsoutliers confer beneficial performance characteristics
to the models, but also limit the interferences, being based on a different approach.
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Bayesian Factorization Machines for Risk
Management and Robust Decision
Making

Pablo Angulo, Víctor Gallego, David Gómez-Ullate, and Pablo Suárez-García

Abstract When considering different allocations of the marketing budget of a firm,
some predictions, that correspond to scenarios similar to others observed in the past,
can be made with more confidence than others, that correspond to more innovative
strategies. Selecting a few relevant features of the predicted probability distribution
leads to a multi-objective optimization problem, and the Pareto front contains the
most interesting media plans. Using expected return and standard deviation we get
the familiar two moment decision model, but other problem specific additional
objectives can be incorporated. Factorization Machines, initially introduced for
recommendation systems, but later used also for regression, are a good choice for
incorporating interaction terms into the model, since they can effectively exploit the
sparse nature of typical datasets found in econometrics.

Keywords Data-driven decision making · Decision-support systems · Bayesian
regression · Factorization machines · Multi-objective optimization · Risk metrics

1 Introduction

In the marketing industry, a batch of advertising slots is bought on a yearly basis, as
this allows better pricing from the media retailer. Our problem is to assist a one-time
decision that involves distributing a fixed advertising budget over a 1 year period.
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On each week, advertising budget can go into several channels, such as TV, Radio
or Out-of-Home. A strategy is a choice of investment on each week and channel.

The decision should be based on historic data: a time series of N observations
yt ∈ R

R for time periods t = 1, ..., N , plus, for each time period, a set of
predictor variables xi

t that media specialists believe to be correlated with sales. For
one particular customer, a chain of fast food restaurants, yr

t are the total sales of
restaurant r = 1 . . . R in week t = 1 . . .N , and the predictor variables represent the
effect of climate, sport events, special holidays, socioeconomic indicators such as
unemployment or inflation, and of course the investments in advertisements during
that week. We split the predictor variables into two sets:

• the variables that we cannot control: weather, events, economic indicators, etc...
Some of them are real valued (unemployment, mean temperature, ...), while
others are binary (Christmas, Easter, major sport event, ...). The holiday type
and events variables are sparse, since most of them are zero at any given week.

• the variables that we control, i.e. the variables that specify an investment strategy.
All of them are real and positive.

We know the values of some of the predictor variables in the first set with certainty
(events and holidays variables), while for others we only have probabilistic forecasts
(weather and socioeconomic variables). We are allowed to fix the investment
strategy, given some constraints such as total budget.

In [2], we predict sales for the next week, as a function of investments, with the
knowledge of all previous weeks, and adapt the control variables each week. This
setup is now being used at media analytics company Annalect, who ordered this
study.

2 Prediction

We are given a set of N observations, {(x1, y1), ..., (xN , yN)}, where xt ∈ X is the
feature vector of the t-th week and yt ∈ R

R is the target: the sales yj
t at each of the

j = 1 . . . R restaurants and each time t = N + 1 . . . N + t .
Factorization Machines [6] use a quadratic function where the matrix for the

quadratic part has rank at most k:

g(x) := w0 +
p∑

i=1

wixi +
p∑

i=1

p∑

j=i+1

〈vi, vj 〉xixj (1)

• w0 is the global bias.
• wi captures the effect of the i-th feature.
• 〈vi , vj 〉 captures the interaction effect between features i and j , but using one

latent factor vi ∈ R
k per feature.
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FMs requires (k+1)p parameters, while the full-rank second order version needs
∼ p2/2. This is a critical aspect of FMs making it suitable for fitting small size
datasets that arise in many business contexts. Factorization machines in particular,
and factorization models in general, have been widely employed in tasks such as
recommender systems or ad click prediction [1, 4, 6], problems characterised by
the prevalence of outrageously big datasets. We show that these models may also
be helpful for other kind of datasets in which observations are scarce and there are
sparse blocks in the data matrix X.

We add another block of predictor variables: xr are binary, and there is one for
each restaurant r = 1 . . . R, so that exactly one of them takes the value 1 at any data
point. The model identifies each restaurant with its mean wi and its feature vector
vi ∈ R

k , and this forces the model to generalize.
In Bayesian Parametric Regression, the mean of the target variable is a deter-

ministic function of the predictor variables, but the function depends on a few
unknown parameters. We assume that the function belongs to the FM family and
the distribution is a normal with fixed variance (that we estimate later).

y = w0 +
p∑

i=1

wixi +
p∑

i=1

p∑

j=i
〈vi , vj 〉xixj + ε, ε ∼ N (0, σ 2) (2)

In other words, the likelihood of y conditioned to the model parameters is

p(y|w0, wi, vi) ∼ exp

⎛

⎝
(
y − w0 +∑p

i=1 wixi +∑p

i=1

∑p
j=i〈vi, vj 〉xixj

σ

)2
⎞

⎠

(3)

Since the parameters are unknown, we model our uncertainty about them with
a prior probability distribution, and Bayes theorem gives the posterior belief about
the model parameters. For fixed values of the predictor variables and the model
parameters, (2) gives the sales of the restaurants. We integrate our posterior
probability measure over the set of parameters and we also integrate over the
distributions of the predictor variables that we don’t known with certainty. If we
add the sales of all the restaurants, we get a probability distribution for a single real
number.

A straightforward application of Bayes theorem leads to untractable integrals,
so we use the Markov Chain Monte Carlo (MCMC) method [3, ch 12]. MCMC
replaces the probability measure by a representative sample that is obtained by
performing a random walk on the feature space X, but one that is modulated by
a multiple of the posterior density, which can be computed as the product of the
prior distribution and the likelihood.

The optimal decision problem relies heavily on our ability to make good forecasts
of the sales in the future, not only of its expectation but also of the variance and other
features of its probability distribution. With the aim of measuring the quality of our
predictions, we follow the standard procedure of splitting the data set into a training
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and a test set. The first one is used to learn the posterior probability distribution
whereas the test set is employed to estimate the performance of the model.

We can compare the posterior mean with the observed sales to get a first measure
of the quality of the predictions, but we must also calibrate our estimations of the
variance. For any week and restaurant in the test set, our prediction is a different
probability distribution, and we only get one sales value for each such distribution.
In order to solve this, we apply the probability integral transform, that takes any
probability measure into the uniform distribution in the interval [0, 1]. We get in
this way a sample that we can compare to the [0, 1]-uniform distribution, both for
measuring goodness-of-fit and for selecting hyperparameters.

3 Multiobjective Optimization

With this predictive model we consider a multiobjective optimization problem over
the control variables. The typical choice for multiobjective optimization function in
financial settings is maximizing expected sales while minimizing expected variance,
but other problem specific additional objectives can be incorporated.

For the chain of fast food restaurants, we added the “restaurants at risk” metric
(RAR). An innovative strategy might increase total sales by increasing sales in a
few big restaurants, but at the same time disappoint many restaurant owners, who
believe that the chosen strategy harms their restaurant in particular.

The RAR is the expected number of restaurants whose sales figure with the new
plan will be below the 5% quantile of the base plan. The RAR is not zero (but 5%!)
if the new plan is actually the same as the base plan.

In order to find the Pareto frontier, we use the technique of scalarization, in which
the different objectives are combined into a single function in different ways. There
are many alternative methods [5], but the simplest weighted sum method was good
enough: maximize a linear combination of the multiple objectives with different
weights, and vary the weights to get new points in the Pareto frontier.

In the end, the outcome of our model is a representative set of Pareto optimal
investment strategies for the set of objective functions. The human decision maker
can choose among this small set of concrete strategies, which is more convenient
than elicitation of the full utility function.

References

1. Freudenthaler, C., Schmidt-Thieme, L., Rendle, S.: Bayesian factorization machines. In: Work-
shop on Sparse Representation and Low-Rank Approximation. Neural Information Processing
Systems (NIPS), Granada (2011)

2. Gallego, V., Angulo, P., Suárez-Garcia, P., Gómez-Ullate, D.: Sales forecasting and risk
management under uncertainty in the media industry (2018). http://arxiv.org/abs/1801.03050

http://arxiv.org/abs/1801.03050


Bayesian Factorization Machines for Risk Management and Robust Decision Making 55

3. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data
Analysis, 3rd edn. CRC Press, Boca Raton (2014)

4. Juan, Y., Zhuang, Y., Chin, W.S., Lin, C.J.: Field-aware factorization machines for CTR
prediction. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 43–
50. ACM, New York (2016)

5. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering.
Struct. Multidiscip. Optim. (2004). https://doi.org/10.1007/s00158-003-0368-6

6. Rendle, S.: Factorization machines. In: Proceedings of the 2010 IEEE International Conference
on Data Mining, pp. 995–1000. IEEE Computer Society, Washington, D.C. (2010)

https://doi.org/10.1007/s00158-003-0368-6


Improving Lee-Carter Forecasting:
Methodology and Some Results

Giovanna Apicella, Michel M. Dacorogna, Emilia Di Lorenzo,
and Marilena Sibillo

Abstract The aim of the paper is to improve the Lee-Carter model performance
developing a methodology able to refine its predictive accuracy. Considering
relevant information the discrepancies between the real data and the Lee-Carter
outputs, we model a measure of the fitting errors as a Cox-Ingersoll-Ross process. A
new LC model is derived, called mLC. We apply the results over a fixed prediction
span and with respect to the mortality data relating to the Italian females aged 18 and
65, chosen as examples of the model application. Through the backtesting procedure
within a static framework, the model mLC proves itself to outperform the LC model.

Keywords Backtesting methods · Cox-Ingersoll-Ross process · Lee-Carter
model · Out-of-sample forecasting performance

1 Introduction and Literature

Longevity and its consequences are among the most crucial concerns for actuaries.
As stressed in [9], in a number of actuarial calculations, especially those regarding
pensions, life annuities and generally speaking the insurance product in case of life,
allowing for future mortality trends is required. In order to avoid underestimation
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of the relevant liabilities, the insurance company (or the pension plan) must
adopt an appropriate forecast of future mortality, which should account for the
most important features of past mortality trends. Furthermore, basing on what
experienced during the twentieth century, when longevity increased much more
consistently than it was expected to, it is very important to be able to catch the
speed of the mortality decreasing. Forecasting mortality is the subject matter for
an ongoing study among actuaries and demographers and, as a result, a number
of stochastic mortality projection models have been developed over time (cf. [4]).
According to [6], a “good” model should produce forecasts that perform well
out-of-sample when evaluated using appropriate forecast evaluation or backtesting
methods, as well as provide good fits to the historical data and plausible forecasts
ex ante.

This paper aims at providing a further insight into the methodological approach
for improving the predictive accuracy of the existing mortality projection models,
proposed in [1]. In this paper the basic idea is to dynamically model the fitting errors
of a survival function chosen as the baseline, by a Cox- Ingersoll-Ross process (cf.
[5]). This approach gives rise to a new version of the baseline, profiting by the
past errors information captured by the CIR multiplicative role. In the same paper,
in the particular case of the Cairns-Black-Dowd model (cf. [3]), the methodology
is developed and the survival model performance analyzed comparing it with the
modified one. The new version of the CBD model proves to be a parsimonious
model, providing better results, in terms of predictive accuracy, than the CBD
model itself. Aim of this paper is to test the attitude of the corrective methodology
developed in [1] in adjusting the forecasting performance of the Lee-Carter (LC)
mortality projection model (cf. [8] and [2]), in the case of the Italian females and
the time horizon [1906–2012]. Our data are taken from the HMD [7].

For brevity, after reviewing the mathematical framework and the empirical
methodology in Sect. 2, in Sect. 3 we show and remark on two graphical
comparisons, chosen as examples of applications, between the central projections
provided by the Lee-Carter model, both with and without our correction, plotted
against the realized death rates. In Sect. 4, conclusions are given.

2 Mathematical Framework and Empirical Methodology

In this Section, we recall the key idea illustrated in [1] and explain how, in the
modelling framework set out in this paper, “adjusted” projections can be obtained,
starting from the baseline provided by the Lee-Carter model. Our aim is to compare
the forecast of mortality against the realized one, by using a static backtesting
procedure. Accordingly, we split the sample of available reliable mortality data into
two fixed time intervals: the “lookback” window (cf. [6]), from 1906 up to 1977,
and the “lookforward” window, from 1978 up to 2012. We denote by x the age and
by t the calendar year when the age is measured.
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1. Over the lookback window, we consider the rv Yx,t , describing the following
measure of the fitting error of any selected mortality model:

Yx,t = Bx,t/μx,t (1)

where Bx,t is the observed central death rate and μx,t is the baseline provided
by the mortality model for describing the same rate. Throughout the lookback
window, we model Yx,t as a Cox-Ingersoll-Ross process and look at the optimal
parameters coming from its calibration over the same time horizon.

2. Over the lookforward window, we construct the “adjusted” projections B̃x,t , in a
multiplicative way, as follows:

B̃x,t = Ỹx,t μ̃x,t (2)

where μ̃x,t is the forecast coming from the mortality model (baseline) and Ỹx,t
is the “best estimate” of the correction factor Yx,t .

In the context of this paper, B̃x,t is the outcome of the “mLC” model. Such a
“new” model results from the combination of the deterministic forecasting output of
the Lee-Carter model and the stochastic correction CIR factor Yx,t , whose estimate,
over the prediction time span, is Ỹx,t .

3 Graphical Assessment of the Predictive Accuracy
of the “mLC” Model

In this Section, we perform a graphical analysis, for assessing the quality of the
forecasts and gaining insight into their dynamics. In Fig. 1, for providing meaningful
examples of application, we display, over the lookforward window [1978, 2012], for
ages 18 and 65: the realized death rates, Bẍ,t (the gray line); the LC projection of
death rates, ṁẍ,t (the continuous black line); the “mLC” projection of death rates,
m̆ẍ,t (the dotted black line). As to age 18 (graph on the left), the LC model steadily
predicts lower death rates than the realized ones, whereas this happens with the
mLC model only from 1988 on. Except for 1978, the mLC projection turns out to
be closer to the observed death rates than the LC projection; using the mLC model
enables us to reduce the Root Mean Square Error of the LC model itself by 33%. As
to age 65 (graph on the right), the mLC projection is almost indistinguishable from
the LC one; indeed, the CIR correction lets us earn only 0.2% in terms of predictive
accuracy. In this case, due to the very good fit of the LC model to the observed data
over the lookback period, the predicted long-term mean of the CIR process is very
close to 1; therefore, Ỹ65,t does not play any significant role in Eq. (2).
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Fig. 1 Age 18 and 65. Observed and forecasted death rates over the lookforward window [1978–
2012]. Gray line: observed death rates; continuous black line: LC central projection; dotted black
line: “mLC” central projection

4 Concluding Remarks

The aim of this paper is to investigate on the capability of the corrective methodol-
ogy proposed in [1] to increase the predictive accuracy of the LC model. Under
a static approach for backtesting both the LC and mLC model, our empirical
analyses, performed with respect to the Italian females aged 18 and 65, show that
the CIR correction factor, Y18,t , is able to drive the deterministic baseline towards
the realized phenomenon over the lookforward window, although with a moderate
speed, while Y65,t affects the baseline only very slightly. It is thus worth advancing
the research by deepening the role of the CIR factor as mortality model benchmark
and, also, by using dynamic out-of-sample validation methods, in order to see if the
parameters of the CIR process adapt to the changes in the underlying mortality data,
thus providing up-to-date information to exploit in the prediction phase.
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The Bank Tailored Integrated Rating

Daniela Arzu, Marcella Lucchetta, and Guido Massimiliano Mantovani

Abstract We develop a banks specific integrated rating, tailored incorporating the
various heterogeneity dimensions characterizing financial institutions (see Manto-
vani et al., Int Res J Appl Finance IV:458–489, 2013 and Mantovani et al., J Bus
Econ Finance 3:18–49, 2014 regarding the heterogeneity risk analysis in corporate
firms), named bank tailored integrated rating (BTIR). The approach is inherently
coherent with the challenging frontier of forecasting tail risk in financial markets
(De Nicolò and Lucchetta, J Appl Econ 32(1):159–170, 2017) since it considers
the downside risk in the theoretical framework. The innovation consists in using
the integrated rating (IR) with the pre-selection of the variables through a statistical
procedure that takes into account the characteristics of risk and greater heterogeneity
of the banks. A Vector Autoregressive Model (VAR) is only a first simple application
proposal.

Keywords Bank tailored integrated rating · Banks’ heterogeneity · Financial
cycle

1 Motivation and Methodology

The capital regulatory policies imposed on banking institutions, increasingly reveal
the need to consider the heterogeneity of regulated entities and, at the same time,
to avoid obvious errors above or under assessment of the risks inherent in the
various business models of modern banks. The corporate performance literature
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introduces the Lintner’s model [1] as an alternative approach to appraise firms
and their performance, through the companies’ asset-side capability management in
the long term. The analysis is useful to understand whether there is an appropriate
allocation of financial resources, in line with the goodness of the performance and
it is important to assess company pay-out and managerial rents as in Lambrecht
and Myers [2]. However, Leibowitz and Henriksson [3] noted that it is important to
consider a shortfall approach that looks more on a “confident equivalent”, rather
that the Lintner’s certainty equivalent, which is a minimum threshold that may
be overpassed, according to a certain confidence percentage. Determining either
the threshold and the confidence is up to the investor, even before choosing the
investment. Indeed, in banking analysis the downside risk is particularly important
since “tail risk” is considered an important component in financial market analysis
as underlined in De Nicolò and Lucchetta [4]. The cited current literature on risk
assessment concentrates on corporate firms and the “tail risk” analysis is mainly
oriented to macroeconomic risk measures. This paper fills these gaps and contributes
to the identification of a synthetic indicator of company performance and long-term
creditworthiness, which is also able to take into consideration the investor’s risk
aversion and the downside risk component: the “bank tailored integrated rating”
(BTIR). This need arises from studies on rating modelling in order to make easier
the implementation and use of the results within banking organizations. Indeed,
it must be ensured that the indicator has three characteristics: (i) scientifically
reliable and (ii) comprehensible to customers, finally (iii) consistent with the credit
policies adopted. The indicator is inspired by the Integrated Rating methodology
[5–7].

2 Stylized Mathematical Approach

In order to start, we have run a panel regression with components suitable for banks
and understand whether the main model might be thought for banks:

Yit = β0 + β1X1it + · · · + βnXnit + εi

Where Yit is a banks’ performance indicator and βs are banks’ health character-
istics (Appendix).

We hypothesized to transform the indicator, through a logistic transformation,
deriving from the logistic function, which is the better fitting methodology into the
whole model. The logistic transformation allows us to have an indicator included in
a range between 1 and −1 and a unit standardize and concave curvature. However,
it is possible to investigate to detect a multiplicative constant in the exponential
component, which changes the degree of curvature of the function, going to change
the degree of discrimination of the data set, compared to more extreme values.

f (x) = L

1+ e−k(x−x0)
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for all the real values of x with codomain [0, L > 0], with inflection point in x0 and
with slope k > 0.

The logistics transformation allows us not to overestimate xs that have a better
performance, than expectations and do not underestimate xs that are in line with
expectations. This effect can be regulated by a multiplicative constant in the
exponential component and allows to determine a degree of convexity/concavity
that can adapt to the needs. This proxies the differences in risks attitude of
the institutions. In conclusion, the bank specific integrate rating project, here
detailed, focus our research on the development of a mathematical/econometric
method that allows us to identify the best algorithm, to determine a correct
degree of convexity and concavity (and therefore, consequently, the correct degree
of risk aversion of the investor), which can be dynamic and adaptable, conse-
quently to heterogeneous banks. To take into account the characteristics of risk
and greater heterogeneity of the banks, we propose a challenge procedure that
employs a Vector Autoregressive Model (VAR) to preselect the relevant banks’
variables.

VAR of order p : yt = c +Φ1yt−1 + · · · +Φpyt−p + εt

Where yt is a banks’ performance indicator, ·i: (N*N) ∀i are the other banks’
health indicators.

We have chosen the model VAR because it is very simple to implement
the selection of important variables using a large number of variable vectors.
Furthermore, the VAR procedure makes it possible to recognize at system level
the components of systemic risk that would otherwise be ignored without such
a process. This further step allows us to design our “bank tailored integrated
rating” (BTIR). The approach is inherently coherent with the challenging frontier
of forecasting tail risk in financial markets.

3 Summaries and Future Developments

The current development of ever-increasing banking regulations requires the study
and the development of increasingly precise rating methods that take into account
the increasing heterogeneity of banks and the presence of systemic risk, in addition
to ongoing contagion relations between financial institutions. Also, the traditional
and simple capital regulatory policies imposed on banking institutions, increas-
ingly reveal the need to consider the heterogeneity of regulated entities and, at
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the same time, to avoid obvious errors above or under assessment of the risks
inherent in the various business models of modern banks. Our work considers
the extension of the integrated rating (IR) procedure, used primarily for non-
financial companies, developing the “bank tailored integrated rating” (BTIR). The
approach is inherently coherent with the challenging frontier of forecasting tail
risk in financial markets [4] since it considers the downside risk in the theoretical
framework. The innovation consists in using the integrated rating (IR) with the pre-
selection of the variables through a statistical procedure that takes into account
the characteristics of risk and greater heterogeneity of the banks. In this first
proposal, we use a simple VAR. However, our innovative procedure may include,
in the future, more sophisticated pre-selection of variables such as CoVARs.
This work requires testing whether a more sophisticated pre-selection model is
better than a traditional VAR. In fact, for simplicity, we believe that starting with
a simple methodology is the first step of research. Our BTIR makes possible
to adapt the rating procedures to all banks, even that showing very different
characteristics. In fact, the VAR allows to pre-select and to evaluate markets
with high systemic risk, avoiding errors due to general market conditions that
may differ from country to country. In conclusion, our BTIR opens the door
to a new research line to innovative ideas for the development of increasingly
accurate ratings for banks embedding the needs of macro- and micro-prudential
policies.

Appendix

Where Bank performance indicator is

Decomposed ROE = Pre − T ax Prof it

Op.Income
∗ T ot.Assets

Equity

∗Net Revenue

T ot.Assets
∗ Op.Income

Net Revenue

(i) is Asset Quality; (ii) Capital Ratios; (iii) Operations Ratios; (iv) Liquidity
Ratios; (v) Structure Ratio.
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Coefficients St. errors

Intercept 21.1780 ∗ ∗∗ 1.5268
i NPL/Gross loans −0.1550 ∗ ∗∗ 0.0353

NPL/Tot. assets 1.1367 ∗ ∗∗ 0.0707
NCO/Avg gross loans 0.2954 ∗ ∗∗ 0.0872
NCO/Net Inc. bef. Ln Lss Prov. −0.0028 ∗ ∗∗ 0.0008
Impaired loans/Equity −0.0789 ∗ ∗∗ 0.0038

ii Equity/Net loans −0.0625 ∗ ∗∗ 0.0176
Equity/Tot. liabilities 4.5427 ∗ ∗∗ 0.3062

iii Profit margin 0.1510 ∗ ∗∗ 0.0115
Net Int. Rev./Avg ass. −0.3912∗ 0.1613
Non Int. Exp. Avg Ass. 1.2895 ∗ ∗∗ 0.2909
Pre-Tax Op. Inc./Avg ass. 3.2931 ∗ ∗∗ 0.4963
ROA 6.9032 ∗ ∗∗ 0.5271
Cost to income −0.0355† 0.0196

iv Recurring earning power −1.3532∗ 0.6156
Net loans/Tot. assets −0.0544 ∗ ∗∗ 0.0107

v Solvency −6.8087 ∗ ∗∗ 0.4127

Total sum of squares: 90,259
Residual sum of squares: 6964.1
R-squared: 0.92284
Adj. R-squared: 0.92193
F-statistic: 1055.44 on 16 and 1345 DF, p-value: <2.22e-16
Signif. codes: ***0.001; **0.01; *0.05; †0.1
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A Single Factor Model for Constructing
Dynamic Life Tables

David Atance and Eliseo Navarro

Abstract The objective of this paper is to develop a single factor model to construct
dynamic life tables. The paper seeks to identify the mortality rate that best explains
the global behavior of life tables. Once this key rate is identified, we assume
that changes in mortality rates depend linearly on changes in the mortality rate
corresponding to the key rate. Next, we proceed to adjust the sensitivities of the
changes in mortality rates to changes in the key mortality rate, using non-parametric
methods. Assuming that this rate follows a specific ARIMA process it can be used
to forecast future mortality rates. The resulting model has a similar structure to
the well-known Lee-Carter model but with the advantage that their parameters and
variables can be easily identified. Finally, the forecasting ability of the model is
tested using out-of-sample data from Spanish experience. The results show that the
proposed Single Factor Model significantly outperforms the Lee-Carter model.

Keywords Dynamic life table · Key mortality rate · GLM · Forecasting

1 Single Factor Model

Inspired by literature developed to describe the behavior of the term structure of
interest rates and by similarities between life tables (where mortality rates are
assumed to depend on age) and the term structure of interest rates (where interest
rates depend on the term to maturity), in this paper, we seek to develop a tractable
model that can be used to build dynamic life tables. In a model proposed by Elton et
al. [3], it is assumed that changes in interest rates with different maturities linearly
depend on changes in some key interest rates identified as those that best explain the
whole behavior of the term structure of interest rates.
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In a similar way, the Single Factor Model assumes that the whole life table can
be explained by one mortality rate of a particular age, the “key” mortality rate.
Particularly, we suppose that:

� ln
(
q̂x,t

) = αx,x∗ + bx,x∗ ·
[� ln

(
q̂x∗,t

)]+ ε(x,x∗),t (1)

where:

• � ln
(
q̂x,t

)
is the variation in the logarithm of the crude1 mortality rate at age x

from year t-1 to year t.
• � ln

(
q̂x∗,t

)
is the change in the logarithm of the mortality rate at the key age x∗

from t-1 to t. This key age will be chosen to maximize the explanatory power of
the model.

• αx,x∗ is a constant term that captures the general tendency of a reduction
(increment) in mortality rates and is assumed to be independent of the behavior
of the key mortality rate q̂x∗,t . The value of this term may differ from one age to
another indicating a differential behavior in the reduction of mortality rates over
time.

• bx,x∗ is a parameter that describes the sensitivity of the logarithm of the mortality
rate at age x to changes in the logarithm of the key morality rate and captures
changes in the shape of the mortality curve over time.

• ε(x,x∗),t is a random error term with zero mean and constant variance σ 2
ε,(x,x∗).

We identified the mortality rate with the greatest explanatory power with respect
to the whole life table as the mortality rate that maximizes the objective function
ϕ (x∗) defined as:

max
x∗

ϕ
(
x∗

) = max
x∗

∑

x

R2
x,x∗ · var

(� ln
(
q̂x,t

))
(2)

1.1 Adjusting a Sensitivity Function to bx,x∗

Once the key age is determined, we can use linear regression techniques to obtain
estimates of the parameters αx,x∗ and bx,x∗ . The second step consists of finding a
function b∗(x), b∗(x) to describe the values of b̂x,x∗ with two constrains. First, the
function must be sufficiently smooth and second, b∗x∗ = 1.

We propose two different approaches to find the function b∗(x) . The first consists
of adjusting a parametric function, inspired by Díaz et al. [2]:

b̂x,x∗ = b∗ (x)+ ux = β1 · exp
[
−β2

(
x − x∗

)2
]
+ (1− β1)+ ux (3)

1The model could be implemented using graduated mortality rates. Eventually, we decided to use
crude mortality rates to avoid data manipulation.
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The second option, was to fit splines to describe the values of b̂x,x∗. In this case,
two important problems had to be addressed: the number of knots (we apply the
criterion proposed by McCulloch [6] and Shea [7]) and to determinate the position
of these knots (we select those that minimized the sum squared errors, testing all
integer numbers between the maximum and the minimum age considered).

1.2 Forecasting Mortality Rates

The final step in the process of constructing the dynamic life tables consists of
developing a methodology to forecast future mortality rates. According to Eq. (1),
if we substitute bx,x∗ for b∗(x) and rearrange the terms, we obtain:

ln
(
q̂x,t

) = ln
(
q̂x,t−1

)+ αx,x∗ + b∗(x) · [� ln
(
q̂x∗,t

)]+ ηx,t (4)

where:

• � ln
(
q̂x∗,t

)
; represents the change in the logarithm of the mortality rate corre-

sponding to the key age x∗ from t − 1 to t or, alternatively, the relative change in
the key mortality rate.

• ηx,t is an error term with mean zero and variance σ 2
η .

Employing an ARIMA time series to model the behavior of the key mortality
rate, and will allows us to forecast the others mortality rates.

2 Lee-Carter (1992) Model

One of the most popular models used to forecast future mortality rates and hence
construct dynamic mortality tables was developed and published in a seminal paper
by Lee and Carter [5]. This model suggests the adjustment of the central mortality
rate mx,t as an exponential function that depends on age x and time t . The classical
form of the Lee-Carter model is:

mx,t = exp
(
ax + bxkt + εx,t

)
(5)

Or equivalently:

ln
(
mx,t

) = ax + bx · kt + εx,t (6)

The similarities with our single-factor model are evident. We compared the SFM
with a version of the Lee-Carter model [1] where it is assumed that the probability
of deaths, qx,t follows a binomial distribution with a logit link and uses GLM to
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estimate the model parameters. So, instead of model (6), we assumed that:

ln

(
qx,t

1− qx,t

)
= ax + bx · kt + εx,t (7)

Predictions of future mortality rates in the Lee-Carter model are based on
the adjustment of a time series to the mortality index kt , following Box-Jenkins
methodology. In the original paper, Lee and Carter used an ARIMA(0,1,0). In this
paper we apply the auto.arima and forecast functions of the R package developed
by Hyndman [4] to determine the ARIMA model that best fits the data.

3 Comparison Between the Single Factor Model
and the Lee-Carter Model

Finally, we compared the Single Factor Model with the Lee-Carter model analyzing
the forecasting power of both models. They have been calibrated using data
corresponding to the Spanish experience over 1975–2006 period, employing the
2007–2015 period for out-of-sample testing. Ages covered in this study ranges from
18 to 89. Data was obtained from the Instituto Nacional de Estadística (INE, Spanish
Statistics National Institute).

The analysis of the out of sample forecasting errors clearly shows a better
performance of the SFM over the Lee-Carter model. The results indicate that the
SFM produces better results independently of the forecasting horizon employed,
although this outcome is much more pronounced in the short term. This better
performance of the SFM appears to be concentrated in the range of ages between
18 and 50–60 years old2 and, in the case of the male population, for people aged 67
and above too.

In summary, the SFM is a very simple and tractable model that is highly effective
in forecasting future mortality rates compared with other competing models.

Moreover, the SFM is highly flexible in capturing sudden changes in mortality
rates (for instance, the dramatic changes in mortality produced by the AIDS crisis)
and can be easily extended to a multifactorial framework.

Its tractability can make of this model a very useful tool for valuing life insurance
products and for measuring the risk (notably, longevity risk) inherent in such
products.

2Fifty in the case of the male population and sixty in the case of the female population.



A Single Factor Model for Constructing Dynamic Life Tables 73

References

1. Debón, A., Montes, F., Puig, E.: Modelling and forecasting mortality in Spain. Eur. J. Oper. Res.
189(3), 624–637 (2008)

2. Díaz, A., Merrick, J.J., Navarro, E.: Spanish treasury bond market liquidity and volatility pre-
and post-European monetary union. J. Bank. Financ. 30(4), 1309–1332 (2006)

3. Elton, E.J., Gruber, M.J., Michaely, R.: The structure of spot rates and immunization. J. Financ.
45(2), 629–642 (1990)

4. Hyndman, R.: Forecast: forecasting functions for time series. R package version 1.11 (2008)
5. Lee, R.D., Carter, L.R.: Modeling and forecasting US mortality. J. Am. Stat. Assoc. 87(419),

659–671 (1992)
6. McCulloch, J.H.: Measuring the term structure of interest rates. J. Bus. 44(1), 19–31 (1971)
7. Shea, G.S.: Pitfalls in smoothing interest rate term structure data: equilibrium models and spline

approximations. J. Financ. Quant. Anal. 19(3), 253–269 (1984)



Variable Annuities with State-Dependent
Fees

Anna Rita Bacinello and Ivan Zoccolan

Abstract In this paper we consider a variable annuity with guarantees at death
and maturity financed through the application of state-dependent fees. We define a
general valuation model for them, and propose to apply the LSMC approach in order
to analyse the interaction between fee rates, death/maturity guarantees, fee thresh-
olds and surrender penalties under alternative model assumptions and policyholder
behaviours. However, special care is needed in the numerical implementation of this
approach, due to the shape of the surrender region. We can stem the numerical errors
arising in the regression step by using suitable arrangements of the LSMC valuation
algorithm.
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1 Introduction

Variable annuities are very flexible life insurance contracts that can package
living and death benefits with a number of possible guarantees against financial
or biometric risks. Typically, a lump sum premium is paid at inception, and is
invested in well diversified mutual funds. This initial investment sets up a reference
portfolio (policy account) and all guarantees are financed by periodical proportional
deductions (fees) from this account.

Guarantees are often set in such a way that at least the lump sum premium is
totally recouped. Then, when the account value is high, the policyholder has an
incentive to surrender the contract, stopping to pay high fees for an out-of-the-
money guarantee. Conversely, when the account value is low, the policyholder
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pays a low fee for an in-the-money guarantee. Summing up, there is an unfair
misalignment between costs incurred by the insurer and premiums (fees) to cover
them, and a great incentive, for policyholders, to abandon their contracts when they
become uneconomical. To eliminate this misalignment and reduce the surrender
incentive insurers can adopt a threshold expense structure, or state-dependent fees,
according to which the fees, still proportional to the account value, are paid only if
this value is below a given threshold.

In this paper we consider a variable annuity which provides guarantees at
death and maturity financed through the application of a state-dependent fee
structure, as defined first in [3] and extensively analysed in [4] and [5]. We define
a general valuation model for such guarantees, along the lines of [2], and test
the application of Least Squares Monte Carlo methods (LSMC), that allow to
analyse numerically the interaction between fee rates, death/maturity guarantees,
fee thresholds and surrender penalties under alternative model assumptions and
policyholder behaviours. In particular, special care is needed when applying these
techniques, due to the shape of the surrender region. We can stem the numerical
errors arising in the regression step by using suitable arrangements of the LSMC
valuation algorithm based on a theoretical result.

The paper is structured as follows. In Sect. 2 we describe the structure of the
contract. In Sect. 3 we present our valuation framework. Section 4 is devoted to
a discussion of the problems encountered in the numerical implementation of the
model and the settlements to overcome them.

2 The Structure of the Contract

Consider a single premium variable annuity contract which provides guarantees at
death and maturity. We denote by P the single premium, 0 the time of issuance, T
the contract maturity, and assume that the death benefit is paid upon death within the
contract maturity. The single premium is invested in a well diversified mutual fund
with unit price process S, and the (net) value of the accumulated investments in
this fund is referred to as the policy account value. We denote by At this value
at time t . The cost of the guarantees is recouped through the application of a
proportional deduction from this account, at a rate denoted by ϕ (fee rate). However,
this deduction is assumed to be made only when the account value is below a given
threshold, denoted by β, i.e., we adopt a state-dependent fee structure. Of course, in
the degenerate case of β = ∞ (no barrier) we recover a constant fee structure.

Both death and maturity benefits contain a guarantee of the roll-up type, with the
same roll-up rate δ. The death benefit is given by bDτ = max{Aτ, P eδτ }, τ ≤ T , and
the survival benefit is bMT = max{AT , P eδT }, τ > T , where we have denoted by τ

the residual lifetime of the policyholder.
We assume that the contract can be surrendered at any time before maturity, if the

insured is alive, and that, in case of surrender at time λ < T ∧ τ , the policyholder
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receives a cash amount, called surrender value, given by bSλ = Aλ(1 − pλ), where
pλ is a penalty rate, possibly time dependent and such that 0 ≤ pλ < 1 for any λ.

3 Valuation Framework

A key-element in the valuation of the contract from the insurer’s point of view is
constituted by the behavioral risk. The policyholder, in fact, can choose among a set
of possible actions, such as partial or total withdrawal (i.e., surrender), selection of
new guarantees, switch between different reference funds, and so on. In particular,
in [2] the possible policyholder behaviours are classified, with respect to the aspect
concerning partial or total withdrawals, into three categories, characterized by an
increasing level of rationality: static, mixed and dynamic. Although in principle
partial withdrawals from the account value may be admitted also within the specific
contract analysed in this paper, the most relevant valuation approaches for it are the
first two, static and mixed.

3.1 The Static Approach

Under this approach it is assumed that the policyholder keeps her contract until its
natural termination, that is death or maturity, without making any partial or total
withdrawal from her policy account value.

The instantaneous evolution of the account value while the contract is still in
force can be formally described as follows:

dAt

At
= dSt

St
− ϕ1{At<β}dt,

where A0 = P and 1C denotes the indicator of the event C. Then, the return on
the account value is that of the reference fund, adjusted for fees that are applied,
according to the fixed rate ϕ, only when At is below the barrier β.

The contract value at time t < T , on the set {τ > t}, is thus given by

Vt = E

[
bDτ

B(t)

B(τ)
1{τ≤T } + bMT

B(t)

B(T )
1{τ>T }

∣∣∣∣Ft

]
,

where B(u) = e
∫ u

0 rvdv defines the bank account value accumulated with the risk-
free rate r , the expectation is taken under a given risk-neutral measure and the
filtration F

.= (Ft )t≥0 carries knowledge on all financial and biometric variables.
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3.2 The Mixed Approach

Under this approach it is assumed that, at any time of contract duration, the
policyholder chooses whether or not to exercise the surrender option, and her
decision is aimed at maximizing the current value of the contract payoff.

The instantaneous evolution of the account value is the same as in the static
approach, while the contract value at time t < T , on the set {τ > t, λ ≥ t}, is the
solution of the following optimal stopping problem: Vt = supλ∈Tt

Vt (λ), where

Vt(λ) = E

[
bDτ

B(t)

B(τ)
1{τ≤T∧λ} + bMT

B(t)

B(T )
1{τ>T , λ≥T } + bSλ

B(t)

B(λ)
1{λ<τ∧T }

∣∣∣∣Ft

]

is the contract value given the surrender time λ, and Tt is the set of stopping times
taking values in [t,+∞).

Note that the contract value Vt can also be expressed as Vt = max{V c
t , b

S
t }, with

V c
t denoting the continuation value, given by V c

t = supλ∈Tc
t
Vt (λ), where Tc

t is now
the set of stopping times taking values in (t,+∞).

In particular, in [5] it is proven, under the assumption of lognormality for the
price process S and deterministic mortality intensity, that surrender is never optimal
(i.e., the continuation value is higher than the surrender benefit) if the account value
is above the fee threshold. The intuition behind this result is clear: when At ≥ β the
guarantees at death and maturity are offered for free, hence there is no incentive for
the policyholder to surrender the contract. We are able to generalize this result, just
requiring that the discounted price process is a martingale (under the risk-neutral
measure) and financial related variables are independent of mortality (see [1]).

Finally, we note that the contract value under the mixed approach is not less than
the corresponding value under the static approach (American versus European-style
contract), and the difference between them is the surrender option value.

4 Numerical Implementation

The optimal stopping problem giving the contract value under the mixed approach
needs to be tackled numerically. In [4] it is claimed that the Least Squares Monte
Carlo techniques are unsuitable to solve it, due to the shape of the surrender region,
that is like a corridor (even very strict), thus implying too significant numerical
errors. Since we believe that the intrinsic flexibility of Monte Carlo methods is
a very important feature, we have tested their application to the solution of the
problem. Doing this, we have actually verified that a straightforward application of
them is a bit problematic, specially for relatively low levels of the fee, i.e., when very
likely the surrender incentive has been completely eliminated leading to a valueless
surrender option. In these cases, in fact, the contract value under the static approach
turns out to be higher than that under the mixed approach, contradicting the
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theoretical relation and confirming the claim by Bernard et al. [4]. Given this appears
to happen only for low levels of the fee, a possible explanation is that the regression
tends to underestimate the continuation value, thus inducing surrender even when
this is not the optimal decision. We have observed this behaviour by comparing the
residuals plots printed at each regression step for the cases of constant and state-
dependent fees. While in the constant case the residuals appeared to be balanced
between positive and negative values for all regression steps, in the state-dependent
case they tended to shift towards positive values in the last few steps. Since the
LSMC algorithm proceeds backward, this means that at the very first surrender
decision dates the real continuation values were generally much greater than the
predicted ones, leading to earlier and sub-optimal terminations of the contract.
Therefore, in the attempt to improve the regression, we have tried several methods,
such as changing type and number of basis functions, or using different regression
techniques, which however have not brought substantial enhancements. In contrast,
the theoretical result mentioned before, according to which the regression step can
be skipped when At ≥ β, has allowed us to significantly reduce the numerical error.

In the following tables we report some results for the contract value under the
mixed approach obtained with Monte Carlo simulation and alternative regression
techniques (Least Squares, LS; Generalized Linear Models, GLM; Ridge regres-
sion; the Lasso) without skipping the regression step, as well as those obtained
with LS by skipping this step (Adj LS), and the values under the static approach
(Static). Although, as previously mentioned, we advocate the use of Monte Carlo
methods for their flexibility, and hence for the absence of model constraints, in these
examples we show results under very simple assumptions, i.e., a constant interest
rate, a deterministic mortality intensity and a Geometric Brownian Motion (GBM)
for the assets evolution. This is because in this framework we have a benchmark,
that is the contract value obtained by using the PDE approach as described in [5].
We refer instead to [1] for a wide range of numerical results under alternative, and
rather complex, model assumptions.

In Table 1 we have tried to reproduce some results by MacKay et al. [5], that use
the PDE approach to compute the contract values and determine also the fair fee
rate, that is a fee rate making the contract value equal to the initial premium. More
in detail, we fix a fee rate exactly equal to the fair level reported in [5] for different
policyholder ages at inception. The contract parameters are as follows: P = 100,
T = 10, δ = 0, pt = 1 − e−0.008(10−t ), β = 150. Moreover, the risk-free rate is
r = 0.03, the assets volatility is σ = 0.165, and the mortality intensity follows a
Makeham law: μy = 10−4(1+ 3.5 · 1.075y). The number of simulations is 20,000.

Table 1 Contract values estimated with PDE and Monte Carlo methods

Age Fee PDE LS GLM Ridge Lasso Adj LS Static

50 0.0167 100.01 99.22 99.08 98.69 98.98 99.44 99.50

60 0.0179 100.00 99.26 99.17 99.09 98.99 100.04 99.83

70 0.0204 100.01 99.35 99.02 98.88 98.85 99.49 99.45
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Table 2 Contract values estimated with PDE and Monte Carlo methods

Fee PDE LS GLM Ridge Lasso Adj LS Static

2% 113.89 112.07 111.73 112.28 112.17 113.14 113.04

6% 101.82 101.05 101.06 101.11 100.97 101.51 101.39

7% 100.52 99.95 100.02 99.87 99.95 100.01 98.70

9% 99.08 98.27 98.27 98.18 98.19 98.40 95.35

In Table 2 we consider contracts with different fee rates, both under the fair
level (contract value higher than P ), for which the improvement obtained with the
LSMC adjustment is more remarkable, and over. We fix now T = 15, δ = 2%,
β = 134.98588, σ = 0.2, take a policyholder aged 50 years, a constant surrender
penalty of 2%, a Weibull mortality intensity μy = 10.002 · 88.14778−10.002y9.002,
and the same values as before for P , r and the number of simulations.
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Dynamic Policyholder Behavior
and Surrender Option Evaluation for
Life Insurance

Fabio Baione, Davide Biancalana, Paolo De Angelis, and Ivan Granito

Abstract Since 2016, Solvency II introduced in the insurance industry sector new
capital requirements rules for the evaluation of life insurance liabilities based on
VaR risk measure. This paper aims to analyze the effect of the dynamic policyholder
behavior on the evaluation of lapse risk of a portfolio of participating life insurance
policies.

Keywords Solvency 2 · Policyholder behavior · Life insurance · Surrender
option

1 Introduction

The policyholders’ behavior is a determining factor for the valuation of technical
provisions for a life insurance portfolio. This paper considers the problem of esti-
mating the lapse rates in a portfolio composed by different profiles of policyholders
when conditions in the financial market change over time. The aim is to analyze the
behavioral economy of policyholder related to financial risk drivers. The literature
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proposes different approaches and there are two different best practices in the
market:

– One-step model: A GLM Logit model is used to estimate the lapse rates based
on policyholder/contract features or individual risk factors (e.g. age, gender,
guarantee rate, etc.) and financial variables (e.g. return on investments, market
yield). In that case there could be a good data fitting, but outcome could not have
a full economic meaning.

– Two-step model: The first step coincides with the one-step model previously
depicted and it is performed to estimate lapse rates with respect to the policy-
holder/contract features. Afterwards, lapse rates derived in step one are corrected
by a multiplicative factor (hereafter term “correction factor” or “CF”) that
considers the difference between the rate of return of a benchmark financial asset
and the policy crediting rate; in the following this difference is named “market
spread”.

The advantage of the second approach is that it offers greater economic consis-
tency of the outcomes given by a set of constraints on the functional relationship
between lapse rates and the market spreads. As shown in the following, our
contribution is to provide a function for CF more reliable in terms of economic
meaning.

2 A Model for the Lapse Rate Estimation According
to Policyholder Behavior

In order to model the lapse rates according to a two-step model we consider as
basic model the one step model described above, based on the policyholder/contract
features. The second step consists on defining the CF as a double sigmoid function
dependent on the market spread. Considering the policyholder as an arbitrager,
he/she lapses the insurance contract to purchase a new more profitable contract.
The model proposed is based on a double sigmoid function [1] which, compared
to the other models in the literature, has a greater adaptability in cases where the
policyholder’s behavior is similar to that described in the following:

• if the spread is around zero, lapse rates do not depend on the market spread and
then no correction is applied to the basic model;

• if the spread becomes negative, as a consequence it is fair that lapse rates
decrease. When the positive difference between the policy crediting rate and the
benchmark rate of return is too large it is necessary to stop an ever-decreasing
withdrawals trend, by means of a floor (lower asymptote);

• if the spread becomes positive, as a consequence it is fair that lapse rates
increase. When the negative difference between the policy crediting rate and the
benchmark rate of return is too large it is necessary to stop an ever-increasing
withdrawals trend, by means of a cap (upper asymptote);
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Models proposed in the literature [2–6] describe the relationship between market
spread and lapse rate by means of increasing monotonous functions limited by two
asymptotes (higher and lower) with just one change of concavity.

Instead, the double sigmoid function is monotonous growing between two
asymptotes, but may have one or two concavity changes to better fit the data. From
a mathematical point of view the model is as follow.

2.1 Step 1

The expected lapse rate (r) of a single generic policyholder characterized by a set
of individual risk factors θ , is obtained by a logit GLM calibrated on the portfolio
data:

r = f (θ) (1)

where f (·) indicates the inverse of the link function of the GLM.

2.2 Step 2

The lapse rate calculated in the first step is corrected by a multiplicative factor
modelled with the double sigmoid function. Then it holds:

rt = f (θ) · q (�t ) (2)

where q(�t) is the CF dependent on the market spread at time t:

q (�t) = α + β·
[

tanh

(
�t − c1

w1

)
· δ + tanh

(
�t − c2

w2

)
· γ

]
(3)

δ, γ,w1, w2 > 0 (4)

where:
α = cap+f loor

2 ; β = cap−f loor
2·(δ+γ ) ; cap = ymax

f (θ)
; f loor = ymin

f (θ)

– ymax represents the upper asymptote as �t → + ∞ and is based on expert
judgment;

– ymin represents the lower asymptote as �t → − ∞ and is based on expert
judgment;

In general, the sigmoid function and the double-sigmoid function are expressed
by means of the hyperbolic tangent function or exponential function. Lipovetsky [7]
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derive the sigmoid function using exponential function and applying a particular
parameterization to better fit the data. The double-sigmoid function used in this
paper is based on an hyperbolic tangent function with a different parameterization
just to consider our specific needs. In the construction of the function we have
followed a procedure similar to [7] applied to our context.

We will provide a mathematical derivation of the function q(�t) and an applica-
tion to a portfolio of participating life insurance policies, representative of the Italian
insurance market.

3 Some Numerical Results

Figure 1 shows a comparison between the one-step and the two-step model, based
on a set of sampled dataset composed by monthly lapse rates.

As it can be noted, the two models provide very different results. The one and two
step model both show a lapse rate increasing with the market spread. Under the logit
model the absence of a functional constraint that imposes a horizontal asymptote,
provides a lapse rate that indefinitely increases. It means that increasing the market
spread the estimates become gradually less accurate from an economical point of
view. However the functional constraint provides estimates in this case less accurate
than the GLM ones in the statistical context of goodness of fitting.

Fig. 1 Lapse rate fitted: comparison between one and two step model
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Classification Ratemaking via Quantile
Regression and a Comparison
with Generalized Linear Models

Fabio Baione, Davide Biancalana, Paolo De Angelis, and Ivan Granito

Abstract In non-life insurance, it is important to develop a loaded premium for
individual risks, as the sum of a pure premium (expected value of loss) and a safety
loading or risk margin. In actuarial practice, this process is known as classification
ratemaking and is performed usually via Generalized Linear Model. The latter
permits an estimate of individual pure premium and safety loading both; however,
the goodness of the estimates are strongly related to the compliance of the model
assumption with the empirical distribution. In order to investigate the individual pure
premium, we introduce an alternative pricing model based on Quantile Regression,
to perform a working classification ratemaking with weaker assumptions and, then,
more performing for risk margin evaluation.

Keywords Quantile regression · Generalized linear model · Premium
principles · Risk margin · Ratemaking

1 Introduction

In the valuation of insurance risks it is standard practice to consider a margin
for adverse deviations compared to the expected value. This margin is commonly
defined as safety loading or risk margin. Risk margin is largely debated by both
practitioners and academic actuaries as there is not a single definition as well as
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a unique model for the relative estimation. Under the International Accounting
Standard Board (IASB) proposals, the risk margins should be “an explicit and
unbiased estimate of the risk margin that market participants require for bearing
risk”. This view is consistent with the one proposed in the financial reporting of
Solvency II [1]. Whatever be the field of application, the assessment of a risk margin
could be performed by means of a specific risk measure applied to a loss (or profit)
random variable (r.v.). The first use of a risk measure in actuarial science was the
development of premium calculation principles [2, 3] and were essentially based on
variability measures of the loss such as variance or standard deviation.

In order to investigate a premium principle based on a quantile risk measure,
we compare two multivariate regression models: the Generalized Linear Models [4]
(GLM) and the Quantile Regression [5] (QR). Our aim is to measure an individual
risk margin for each rating class defined by a set of rating factors. We implement
a quantile premium principle to this aim to be compliant with an approach widely
applied for solvency purposes. Firstly, we consider a traditional two-part model to
decompose the cost of claim between the event of the claim and its amount, if the
claim occurs. Secondly, we determine the risk margin of the claim’s severity per
insured by means of a binomial GLM for the frequency and a Gamma GLM for
the severity per claimant. As alternative to the latter model we also propose the
application of QR to estimate the severity of claims per insured in order to better
assess the risk margin value.

2 A Quantile Premium Principle Based on a Two-Part Model

2.1 The Two Part Model for the Individual Risk Model

We consider a non-life insurance portfolio of r insurance contracts. In an individual
risk model the loss of the i-th individual risk is modeled by means of the generic r.v.
Y(i) ∈ Y, i = 1, 2, . . . , r. The r.v.s Y(i) are assumed to be independent.

To predict the cost of a claim per insured, it is usual to decompose two-part
data: one part for the frequency, indicating whether a claim has occurred or, more
generally, the number of claims; another part for the severity, indicating the amount
of a claim.

This way of decompose [6] the loss is traditionally term as frequency-severity
model in actuarial literature, while in statistics is generally called two-part model
[7]. Hereafter, we focus in the following decomposition of the r.v. claim amount per
insured:

Y (i) = IN(i) ·
∼
Y
(i)

(1)
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where

• IN(i) ∼ Bernoulli (pi) is a indicator random variable indicating whether the i-th
insured has had at least one claim

•
∼
Y
(i)

=
(∑N(i)

j=1Z
(i)
j |N(i) > 0

)
is a strictly positive random variable representing

the total loss amount per claimant, independent from IN(i) . Z
(i)
j is a strictly

positive random variable representing the loss amount for j-th claim of the i-th
insured.

The cumulative density function (cdf) of Y(i) is expressed as:

FY(i) (y) = pi + (1− pi) · Pr

(∼
Y
(i)

< y

)
(2)

2.2 A Quantile Premium Principle Based on a Two-Part Model

In order to assess the pure premium based on the individual risk model previously
stated, it is usual to develop a separate analysis on the factors or explanatory vari-
ables that influence frequency and severity, due to the their independence and, then,
compute their combination to form the pure premium. In non-life actuarial practice,
this analysis is widely implemented through multivariate regression techniques such
as GLMs, assuming log links for response variables. The advantage of GLM is in
the ability to estimate the conditional expected value of the response variable [8],
while shows some drawbacks if used to analyze other moments of the probability
distribution. However, to extend the analysis to other distribution’s moments of Y(i),
we suggest as an alternative to GLM to adopt a fat-tailed regression model to assess
the conditional quantile of the severity component Ỹ (i) as QR. Therefore, the pure
premium approach we propose is defined by applying a functional π that assigns a
non-negative real number to random variables Y(i) representing uncertain pay-offs,
in our context the insurance losses, as follows:

PQ = π
(
Y (i)

)
= E

[
IN(i)

] ·Qθi

[
Y (i)

]
= E

[
IN(i)

] ·Q∼
θ i

[∼
Y
(i)
]

(3)

where θ i represents the probability level or security level adopted to calculate the
pure premium for the i-th risk assured.

Following Kudryavtsev [9], by setting FY(i)

(
Q∼

θ i

[∼
Y
(i)
])

= θi , by Eq. (2) we

have:

θi = pi + (1− pi) ·
∼
θ i ⇐⇒

∼
θ i = θi − pi

1− pi

. (4)
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The premium loading expressed as a percentage of the expected value, hereafter
named as risk margin function, is defined as follows:

ρ
(
Y (i)

)
= π

(
Y (i)

)

E
(
Y (i)

) . (5)

With reference to the estimate of the conditional quantile of the r.v. severity per

claimant, Q∼
θ i

[∼
Y
(i)
]

, we compare a Gamma GLM with unitary prior weights1 (i.e.

wi ≡ 1, i = 1, 2, . . . , r) and a QR approach.
The first approach leads to several drawbacks as the risk margin function (5) is

constant for each risk profile and the premium loading depends exclusively by the

expected value of Y(i): i.e. PGLM
Q = (1− pi) · ρ∼

θ
· E

(∼
Y
(i)
)

.

Instead, the latter approach based on QR leads the risk margin function to
be dependent to the risk profile characteristics contained in the row-vector of
independent covariates. So, compared to the solution provided with a Gamma GLM
the risk function in the QR framework proposed allows to better understand the
different variability of the risk profiles considered.

3 Simulation Study

In order to perform a comparison between the quantile approaches previously
described we implement the two-part model on three different simulated data set.
Data sets are characterized by the same total exposure r = 100,000. We consider
two rating factors (gender and age-class) each one with two levels (“Male” and
“Female”, “High” and “Low” respectively). Therefore the total exposure is split in
four risk classes, h = 1, 2, 3, 4. We assume that each risk class has a different
exposure but the same number of claimants, say 2500. Hence, we simulate 2500
claims for each h, with a total of 10,000 for each data set k. The main difference
between data sets is the assumption used for the cdf of each h-th risk class of the r.v.
total claim amount per claimants, in order to perform a sensitivity analysis among
risk-classes:

• the first data set (k = 1) is sampled by four Gamma with the same shape
parameter and different scale parameter; hence the “Coefficient of Variation
(CV)” is constant for each class;

• the second data set (k = 2) is sampled by four Gamma with the same mean and
different CV;

1Each insured has unitary exposure and belongs to a risk class defined by means of a set of rating
factors.
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Table 1 Estimates of pure premium and risk margin function with
∼
θh = 0.75

E(Y(h)) PQ ρ(Y(h))
Data Set h Exposure GLM GLM QR GLM (%) QR (%) θh (%)

k = 1 1 (MH) 7500 0.97 1.12 1.12 115.60 115.67 91.67
2 (FH) 22,500 0.77 0.89 0.90 115.60 115.98 97.22
3 (ML) 12,500 3.75 4.35 4.35 115.60 115.95 95.00
4 (FL) 57,500 2.53 2.92 2.94 115.60 116.26 98.91

k = 2 1 (MH) 7500 7.51 8.79 8.03 116.96 106.88 91.67
2 (FH) 22,500 2.21 2.58 2.47 116.96 112.19 97.22
3 (ML) 12,500 3.99 4.71 4.71 116.96 118.00 95.00
4 (FL) 57,500 0.99 1.16 1.23 116.96 123.85 98.91

k = 3 1 (MH) 7500 0.97 1.13 1.03 116.37 106.56 91.67
2 (FH) 22,500 0.76 0.89 0.86 116.37 111.87 97.22
3 (ML) 12,500 3.77 4.36 4.36 116.37 115.59 95.00
4 (FL) 57,500 2.51 2.92 3.05 116.37 121.34 98.91

• the latter data set (k= 3) is sampled by four Lognormal, with different parameter
for each risk class.

As shown in Table 1 if the sampling distribution are Gamma with same CVs
GLM and QR results are quite similar; if these strong assumption are relaxed GLM
gamma is not compliant to estimate an individual risk margin function because the
value is the same for each risk profile.
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An Empirical Analysis of the Lead Lag
Relationship Between CDS and Stock
Market

Laura Ballester, Rebeca Fernández, and Ana González-Urteaga

Abstract This paper complements the recent literature providing a thorough
research of the lead lag relationship between stock and sovereign CDS markets using
a rolling VAR framework. We find that the transmission channel between the credit
and stock market exist. This phenomenon is time varying, it seems to be related with
the economic cycle and in general, it’s more intense in US than in Europe.

1 Introduction

Following the collapse in September 2008 of Lehman Brothers, financial markets
experienced tremendous distortions and the importance of the study of risk man-
agement, especially sovereign credit risk, has increased. Since this moment and
in the context of the European debt crisis, credit spreads rose to unprecedented
levels and the literature has focused on the study of the relationships between credit
risk and stock markets. The significance of this interconnection has increased in
recent years as credit derivatives have been trading in all financial markets, being
the credit default swap (CDS hereafter) the most commonly used instrument for
transfer credit risk. The present paper follows this line of research. The literature
shows a tension when it comes to the question of whether the CDS market leads
the stock market or whether the stock market leads the CDS market. Initial studies
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have focused on corporate US data with mixed results. [1] provide evidence of
information flow from CDSs to equity, which is more significant for entities with
a greater number of bank relationships. However, more recently, [4] document the
opposite effect. On the other hand, according to [3] the link depends on the credit
quality of the underlying reference entity. Finally, [5] shows that the direction of
the relationship differ across industry sectors. As a result of the 2008 crisis there
is a growing strand of the literature. [6] focus on major US financial institutions
under stress, concluding that both markets become more integrated in times of stress
and that fast equity price changes lead furious CDS spread. In the wake of the
Eurozone sovereign debt crisis, [2] shows that during tranquil times stock market
leads transmission, but in financial crises there has been an inverse relationship.

2 Data and Methodology

This paper provides an exhaustive investigation of the interaction between stock
indices and credit markets using data for US and 14 developed European countries
during 2004–2016. As a novel contribution, we provide evidence of the time
variation of the lead lag relationship by a rolling framework, which enables us to
analyse the evolution of the effect over time covering both crisis and non-crisis
periods. Concretely, we estimate a rolling VAR(p) model with 250-observations
time window. For each estimation we save the obtained p-value for both the
conventional Granger-causality from CDS to stocks and from stocks to CDS. We
improve the conventional estimations, analysing whether the relationships vary
through time.

3 Results

To make easier the understanding of results, European countries are allocated into
different groups distinguishing between Eurozone and Non Eurozone, and within
Eurozone, between Euro-core and Euro-peripheral. Table 1 presents the causality
results for all the European countries and US for the full sample (FS), for pre-crisis
period (PC, Jan 2004–Jun 2007), the Global Financial Crisis (GFC, Jul 2007–Dec
2009) and the sovereign debt crisis (SDC, Jan 2010–Apr 2016). It presents the
percentage of windows where a variable causes the other at 5% of significance. For
European countries, we present the mean of the percentages in each case to obtain
the average results by monetary zone and for geographical zone inside Eurozone.1

1The idea is to contrast if there are significant differences segmenting Eurozone between countries
more affected by the SDC (Euro-peripheral countries) and the others (Euro-core countries).



An Empirical Analysis of the Lead Lag Relationship Between CDS and Stock Market 95

Table 1 Granger causality test: stock and CDS returns results

FS PC GFC SDC

Zone/Country − > < − − > < − − > < − − > < −
Austria 39.06% 4.48% 0.00% 0.00% 68.65% 2.75% 42.86% 6.96%

Belgium 27.07% 11.26% 0.91% 0.00% 45.11% 5.81% 30.34% 17.95%

France 24.81% 13.45% 0.00% 0.00% 11.31% 0.31% 33.76% 20.63%

Germany 26.79% 6.69% 0.00% 1.38% 39.91% 2.45% 32.23% 10.50%

Netherlands 26.60% 2.61% – – 50.00% 2.93% 18.32% 2.50%

Euro-core 28.87% 7.70% 0.23% 0.34% 43.00% 2.85% 31.50% 11.71%

Greece 22.33% 2.04% 0.00% 0.00% 61.62% 2.75% 6.55% 3.28%

Ireland 23.88% 14.06% – – 62.82% 0.00% 10.07% 19.05%

Italy 30.99% 16.67% 0.00% 0.00% 24.01% 35.63% 46.03% 15.69%

Portugal 39.07% 19.01% 2.95% 0.00% 25.54% 35.17% 58.67% 20.02%

Spain 27.99% 12.39% – – 51.81% 2.93% 19.54% 15.75%

Euro-peripheral 28.85% 12.83% 0.98% 0.00% 45.16% 15.29% 28.17% 14.76%

Eurozone 28.86% 10.27% 0.55% 0.20% 44.08% 9.07% 29.84% 13.23%

Denmark 10.74% 1.12% 0.00% 0.34% 19.42% 0.15% 9.22% 1.65%

Norway 13.02% 12.04% 0.00% 0.00% 7.49% 0.00% 20.45% 21.67%

Sweden 23.64% 10.44% 0.00% 0.00% 30.12% 0.46% 30.53% 18.62%

UK 27.46% 6.08% – – 97.03% 7.92% 14.59% 5.74%

Non Eurozone 18.71% 7.42% 0.00% 0.11% 38.52% 2.13% 18.70% 11.92%

Europe 25.96% 9.45% 0.39% 0.17% 42.49% 7.09% 26.65% 12.86%

US 44.80% 9.46% – – 53.85% 2.45% 43.22% 10.68%

− > and < − indicates that stocks leadership CDS and CDS leadership stocks, respectively

For the FS, we find a bidirectional relationship between stock and CDS markets
in Europe with a clear predominance of the stocks leading the CDS. Stock market
leads the process in Europe (25.96% vs 9.45%). Regarding Eurozone, the stock
market always leads the CDS market with a greater impact of Eurozone (28.86%)
with respect to Non Eurozone (18.71%). Inside Eurozone, both geographical zones
presents similar contribution. In US, we find a feedback transmission, largest from
stocks returns to CDS returns US (44.80% vs 9.46%). In addition, the information
transfer is more intense in US (44.80%) than in Europe (25.96%).

It should be pointed out that the contribution percentage varies significantly
over time. Before GFC, the causality relationship practically does not exist and
therefore we focus in the 2007–2016 results.2 This result is expected due to the
typically absence of assets correlations comovements in stable periods. During the
GFC, we find significant relationships with remarkable differences between US
and Europe. A clear feedback relationship that varies over in European countries
exists (around 40%), although stock returns leads CDS, with a maximum stock
contribution in 2009 (71.51%).3 We observe significate differences between crisis

2We don’t present results for 2004 and 2016 since we obtain few p-values results.
3Results by year are available upon request.
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subperiods as well as between European zones. In this period, the stock leadership
is strong in the majority of the European countries due to the US financial crisis
contagion to Europe, especially in Eurozone with respect to the Non Eurozone
countries (44.08% vs 38.52%). Within Eurozone, we observe a similar transmission
and magnitude direction in the Euro-peripheral countries (45.16%) and Euro-core
countries (43.00%).

During the SDC, the tendency changes in Europe. Stock returns continue leading
in Europe (26.65%), but not as evident as before (42.49%). A clear bidirectional
causality relationship exist. During this period the causality relationships were
weaken in Europe, perhaps due to the adjustments made by European countries,
although the stock market continue leading the price discovery effect, except in the
Euro-peripheral countries where the CDS market leads the stock market in 2010 and
2011. US results shows the same bidirectional causality relationship that we observe
in Europe with a highest transmission from stocks to CDS during the GFC and the
SDC (53.85% and 43.22%).

4 Conclusions

We could conclude that the transmission process between the credit and stock
market exists being the stock market who anticipates CDS returns. These results
are especially interesting to understand the dynamics of risk transmission and the
knowledge of price discovery process between markets should take into considera-
tion for portfolio management in order to match assets in optimal portfolios.
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Integration of Non-financial Criteria
in Equity Investment

Diana Barro

Abstract In recent years the awareness of social, environmental and governance
issues associated with investments have drawn relevant interest in the investment
industry. Investors are more careful in considering investments that comply with
their ethical and moral values, as well as with social impact. Hence, the ethical and
social responsibility of investments (SRI) is becoming more popular in the academic
literature due to the fact that socially responsible investment provide profitability
and social commitment together. In this contribution we discuss the main issues that
arise when integrating socially responsible criteria into a financial decision problem.

Keywords Socially responsible investments · Portfolio optimization · ESG

1 Introduction

In [5] the authors interestingly reported a relevant shift in the terminology used
to identify the non-financial goals of the investor moving from a widely used
‘ethical investment’, mainly based on religious beliefs and/or moral values, to a
wider concept of ‘socially responsible investment’ (SRI) in the last years. This
change reflects at least two different aspects. The first is a broadening of the
values carried by investors and their increased commitment in impact investing
and the second is a more positive versus negative perspective in the investment
process with preference given to inclusion of virtuous companies versus exclusion
of specific industries/companies. This new perspective poses new challenges to the
traditional way in which ethical dimension was paired with equity investment, see,
for example, [13].

There are many different contributions in the literature that analyse the trade-
off between the financial risk-return dimension and ethical or social dimension of
the investment, see, for example, [11, 12]. Results in Dupré et al. [7] suggested
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that strong social requirements had an impact on the financial performances. Many
studies compared the performances of conventional and socially responsible mutual
funds and found that there are no statistically significant differences (see, for exam-
ple, [2, 3, 15]). Different contributions have tried to find a way to incorporate these
preferences into the portfolio selection model. Integrating non-financial criteria into
financial decision models is non-trivial and it is usually tackled through a multi-step
selection procedure. Our analysis aims at showing that this approach may result in
suboptimal portfolio compositions when the trade-off between financial and non-
financial criteria is not properly discussed.

2 Including Non-financial Criteria

The general approach to the inclusion of SRI criteria, that encompasses many
different contributions in the literature, requires three main steps, each featuring
specific challenges. First, a preliminary step for the collection of information on
social responsibility behaviour of a company is necessary; second, the selection of a
subset of suitable companies through positive or negative screening; third, optimal
portfolio composition based on specific financial criteria.

The first step is crucial and recently an increasing number of data providers and
consulting firms made available ratings and evaluations with respect to different
dimensions of the SRI criteria. Unfortunately, the lack of a standard scoring
determines also a lack of robustness with reference to the studies on the performance
of socially responsible investment when compared with traditional investment.
Furthermore, we must remember that data are usually made available by companies
on a voluntary basis.

The second step consists in a reduction of the universe of admissible assets
on the basis of non-financial criteria, this may cause serious limitations to the
diversification potential of the investment and a worsening of the risk-adjusted
performance. Furthermore, investors are required to set a priori a desired level of
responsibility in order to discriminate acceptable versus non acceptable companies.
When the evaluation is carried out across different dimensions this is not trivial and
the definition of a proper measure becomes particularly relevant.

Finally, the third step is the portfolio selection based on financial criteria. Among
the different contributions in the literature we refer to [4, 8, 14].

Other contributions in the literature extend traditional selection approaches to
include further criteria (see, for example [10]). Doumpos et al. [6] discuss the
relevance of multi-criteria decision methods and present a review of the MCDM
approach for portfolio selection problems. For the extension of MCDM analysis to
the inclusion of ethical and socially responsible criteria we refer to [1, 9].

To overcome, at least partially, the main limitations associated with this multi-
step paradigm which separates the financial from the non-financial decision phases
we propose an approach to integrate financial and non-financial criteria in the
selection of a set of assets admissible for investment according to the preferences of
the investor.
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3 Constrained Tracking Error Approach

We propose a portfolio selection model in which the investor has a tracking
goal with respect to a reference portfolio (benchmark) and we model the socially
responsible level requirement for the portfolio as a constraint.

We assume a tracking goal can be expressed through a distance measure denoted
by Φ(yt , zt ) where yt is the managed portfolio and zt the reference benchmark.
Tracking error portfolio management problem allows to set performance and risk
profile references for the investment. The inclusion of a constraint on the dimension
of socially responsibility of the investment changes the risk-return profile of the
investment and the difference in terms of performance and risk can be easily
captured by the tracking error.

We assume that for each asset we can observe a score representing its socially
responsible level. The score can be either referred to a single dimension, like for
example social or environmental or governance, or it can be an composite index
representing a combination of different features. Under independence assumption,
portfolio sustainability level is computed as weighted average of the sustainability
levels of the assets included. We denote with αit the level of the score α for asset
i, i = 1, . . . ,M , at time t and the score for the portfolio, αyt can be computed as
the weighted average of the scores of the assets included in the portfolio where the
vector of weights is the portfolio composition αyt =∑M

i=1 witαit .
We denote with γ a social responsibility parameter which sets the minimum

desired responsibility level. With ᾱt we denote the social responsibility feature of
the benchmark portfolio at time t . The resulting constraints for the tracking error
problem can thus be written as αyt ≥ γ ᾱt .

The inclusion of a deterministic constraint corresponds to the strictest require-
ment and eventually collapse into a preliminary screening approach. The formula-
tion of a two-goals objective function is also possible and the definition of a proper
trade-off between tracking and socially responsible level has to be determined
according to the preferences of the investor.

In the proposed formulation the target level of the social responsibility score
for the portfolio has to be kept along the entire planning horizon and not only
reached at the end of the horizon. In this formulation of the problem the social
responsibility target is binding and the investor is willing to modify the risk-return
profile of the benchmark in order to achieve the desired goal. The choice of the
parameter γ > 0 determines the resulting tracking error but this formulation
does not allow to separately control for deviations in return and deviation in risk
profile from the benchmark. The inclusion of additional constraints may allow to
act specifically on the preferred dimension. We carried out some preliminary out-of-
sample tests on real market data using the Eurostoxx50 as benchmark and the ESG
disclosure score provided by Bloomberg for the stocks included in the Eurostoxx
50. The obtained results confirm previous findings in the literature, strong social
responsibility requirements can only be met sacrificing financial performance.
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4 Conclusion

In this contribution we briefly highlight the potential pitfalls associated with the
paradigm commonly adopted in the literature for the selection of ethical and/or
socially responsible investment and suggest a way to incorporate non-financial
criteria into a broadly applied approach to portfolio selection based on a tracking
error model.
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A Generalized Moving Average
Convergence/Divergence for Testing
Semi-strong Market Efficiency

Francesco Bartolucci, Alessandro Cardinali, and Fulvia Pennoni

Abstract We propose a generalized version of the moving average converge
divergence (MACD) indicator widely employed in the technical analysis and trading
of financial markets. By assuming a martingale model with drift for prices, as well as
for their transformed values, we propose a test statistic for the local drift and derive
its main theoretical properties. The semi-strong market efficiency hypothesis is
assessed through a bootstrap test. We conclude by applying the indicator to monitor
the crude oil prices over a 6 years period.

Keywords Martingales · Nonparametric bootstrap test · Trading strategies

1 Introduction

We aim to monitor financial asset price series by a generalized version of the moving
average convergence/divergence (MACD) trend indicator that is currently employed
as technical indicator in trading systems [7]. We use the proposed indicator to
test the semi-strong form of market efficiency as defined in his pioneer work by
Fama [6]. He states that the price sequence follows a martingale model when, on
the basis of the information available up to a given time, the expected returns are
equal to zero. If these are positive, a submartingale model results which implies
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that the trading rules based on the available information “could not have greater
expected profits then a policy of always buying-and-holding the security during the
future period. . . ”.

We consider a real valued sequence xt representing prices at time t = 1, 2, . . .
and, for some strictly increasing and differentiable real function g(·), we define
yt = g(xt ) as the g−transformed prices, and rt = yt − yt−1, with t = 2, 3, . . ., as
their first order difference. As notable examples of this framework, setting g(·) = 1
implies working with raw prices and their differences, and setting g(·) = log(xt )
implies working with log-prices and log-returns.

Consider an integer lag s < t , and let rt−s+1:t be the vector of observations rt−h
for h = 0, 1, . . . , s − 1. We define its probability space as (Ω,P,F) along with the
following two assumptions:

Assumption 1 rt−s+1:t is a (second-order) stationary vector with joint distribution
P s(ξ, θ), for some bounded ξ (mean) and θ (standard deviation);

Assumption 2 (rt−h − ξ)|Ft−h−1 is a martingale difference (MD) sequence.

According to the above assumptions, the sequence rt is unconditionally dis-
tributed as a locally stationary process (see [5]) with piecewise constant mean,
which becomes stationary (constant mean) in the time intervals t − s + 1, . . . , t ,
while the (possibly transformed) prices yt form a sub/super martingale. Therefore,
the test

Ho : ξ = 0 vs Ha : ξ �= 0 (1)

evaluates the absence of (local) drift in the time interval at issue, with the null
hypothesis Ho corresponding to the semi-strong efficient markets hypothesis [6].

2 The Proposed Indicator

We introduce a general definition of the moving average convergence/divergence
which is defined as

MACD∗t,sf = M∗
t,f −M∗

t,s,

where, in general, M∗
t,k =

∑k−1
h=0 a

∗
h,k yt−h is the weighted average based on k

values, with a∗h,k ≥ 0 for all h and
∑k−1

h=0 a
∗
h,k = 1. When s > f the statistic M∗

t,s

represents a smoother signal than M∗
t,f and their difference is usually adopted to

indicate upcoming trends in financial prices. In the following, for space limitations
we consider only the simple moving average of k observations MA

t,k with the weights
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determined as aAh,k = 1/k for h = 1, . . . , k. Therefore, the trend indicator is

MACDA
t,sf =

f−1∑

h=0

aAh,f yt−h −
s−1∑

h=0

aAh,s yt−h =
s−1∑

h=0

cAh,sf rt−h (2)

with s < f and

cAh,sf =

⎧
⎪⎨

⎪⎩

(h+ 1)

f
− (h+ 1)

s
= (h+ 1)(f − s)

sf
, for h = 0, . . . , f − 1

1− h+ 1

s
, for h = 0, . . . , s − 1.

(3)

In general, we show that assumptions 1 and 2 defined in Sect. 1 imply that

E(MACD∗t,sf ) = ξ A∗sf = μ∗sf ; V(MACD∗t,sf ) = θ2 B∗sf = (φ∗sf )2,

where A∗sf =
∑s−1

h=1 c
∗
h,sf andB∗sf =

∑s−1
h=1(c

∗
h,sf )

2 with θ > 0. Therefore, based on
(2) and (3) a martingale difference CLT (see [2]) implies the following convergence
in distribution for increasing values of s and f/s → 0

MACD∗t,sf − μ∗sf
φ∗sf

d−→ N(0, 1). (4)

3 Nonparametric Bootstrap Test

We derive out test statistics T∗t,sf noting that the sample standard deviation of returns

θ̂
p→ θ , which implies that from (4) under the null hypothesis in (1) we have

T∗t,sf =
MACD∗t,sf

φ̂∗sf

d→ N(0, 1),

where φ̂∗sf = θ̂
√
B∗sf . In principle our algorithm is similar to the Bootstat procedure

from [4], although here we focus on mean returns, see also [1]:

1. given the estimate ξ̂ we calculate T∗t,sf we use the centered returns r̂t = rt − ξ̂ , to
produce a large number of bootstrap samples (e.g. 500) for T∗t,sf that we denote
as T∗∗t,sf ;

2. we reject the null hypothesis if T∗t,sf < T∗∗
( α2 ),sf

or T∗t,sf > T∗∗
(1− α

2 ),sf
, where

T∗∗(x),sf is the 100xth percentile of the bootstrap distribution T∗∗t,sf .
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3.1 Simulations

Using simple moving averages as in (2) we set T∗t,sf = TA
t,sf . For ξ =

0.0, 0.2, 0.4, 0.6 we assess, respectively, the empirical size and power of our
test when the data are simulated from the following innovations: Gaussian i.i.d.,
Student−t (10) i.i.d., Gaussian Garch(1, 1), and Student−t (10) Garch(1, 1),
where the Garch(1, 1) model parameters (see [3]) are set to ω = 1e− 6, α1 = 0.1
and β1 = 0.8. We find that, for hypotheses (1), the empirical size and power of the
bootstrap test rapidly converges to the nominal levels. Its behaviour for large value
of s ≥ 30, 40 and small values of f ≤ 20 is much more reliable than the standard
test based on the asymptotic Gaussian distribution. This suggests that a long/short
equity trading strategy utilizing high-medium frequency data can be based on this
test, and in particular on the sign of TA

t,sf that we represent as sgn(TA
t,sf ), with active

positions only set/maintained under Ha from (1).

4 Empirical Test Results

We apply the proposed strategy based on the sgn(TA
t,sf ) trading rules: 1 open or

maintain a long position, 0 (under Ho) close any position eventually open or do not
open any, and −1 open or maintain a short position. Figure 1 shows the cumulative
returns according to the proposed strategy to daily crude oil prices with s = 30 and
f = 10. Data are 1469 daily quotes collected over the 6 year period 2010–2016. We

Fig. 1 Left vertical axis: asset prices (Bloomberg®). Right vertical axis: cumulative returns
according with the MACD trading strategy based on simple averages
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also applied our trading rule to daily quotes of SPY ETF, Eurodollar Forex and the
Nasdaq Index finding that the cumulative returns are higher that that we would gain
by using the standard Gaussian test.

References

1. Beran, R.: Simulated power functions. Ann. Stat. 14, 151–173 (1986)
2. Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995)
3. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econ. 31, 307–327

(1986)
4. Cardinali, A., Nason, G.P.: Costationarity of locally stationary time series. J. Time Ser. Econ.

2(2), 1–18, Article 1 (2010)
5. Dahlhaus, R.: Locally stationary processes. In: Handbook of Statistics, vol. 30, pp. 351–412.

Elsevier, Amsterdam (2012)
6. Fama, E.: Efficient capital markets: a review of theory and empirical work. J. Finance 25, 383–

417 (1970)
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Periodic Autoregressive Models
with Multiple Structural Changes
by Genetic Algorithms

Francesco Battaglia, Domenico Cucina, and Manuel Rizzo

Abstract We present a model and a computational procedure for dealing with
seasonality and regime changes in time series. In this work we are interested in
time series which in addition to trend display seasonality in mean, in autocorrelation
and in variance. These type of series appears in many areas, including hydrology,
meteorology, economics and finance. The seasonality is accounted for by subset
PAR modelling, for which each season follows a possibly different Autoregressive
model. Levels, trend, autoregressive parameters and residual variances are allowed
to change their values at fixed unknown times. The identification of number and
location of structural changes, as well as PAR lags indicators, is based on Genetic
Algorithms, which are suitable because of high dimensionality of the discrete search
space. An application to Italian industrial production index time series is also
proposed.

Keywords Time series · Seasonality · Nonstationarity

1 Model Description and Estimation

In this work we are interested in economic time series showing a trend and seasonal
fluctuations that are not very stable over time. This may be caused by economic
agents who have preferences, technologies, constraints, and expectations which are
not constant over the seasons [1]. In these kind of series it may happen that linear
seasonal adjustment filters, as in SARIMA models, are not likely to remove the
intrinsic seasonality. In that case the residuals from these models show patterns that
can be explained by the presence of dynamic periodicity [1]. Recently, economic
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models in which seasonally varying parameters are allowed attracted some attention
[2]. The present paper considersPAR models with linear piecewise trends, allowing
nonstationarity and seasonality simultaneously. There is empirical evidence of
the existence of discontinuities due to structural changes possibly originated by
policy changes [3]. Consequently, detecting the existence of structural changes and
estimating their number and locations in periodic time series is an important stage.
In this paper we propose an automatic procedure based on Genetic Algorithms
(GAs) for estimating number and locations of change points.

We refer to a seasonal time series of period s, observed s times a year for N

complete years (s = 12 for monthly data). This series is possibly divided in a
number of regimes up to M , specified by m = M − 1 change points τ1, . . . , τm
occurring at the end of the year τj − 1, and set τ0 = 1 and τM = N + 1. In order
to ensure reasonable estimates, it is required that each regime contains at least a
minimum number mrl of years, therefore τj ≥ τj−1 + mrl for any regime j . We
let Rj = {τj−1, τj−1 + 1, . . . , τj − 1}, j = 1, . . . ,M , so that if year n belongs to
set Rj then observation at time (n− 1)s+ k is in regime j , where k = 1, . . . , s. For
the observation in season k of year n the model is:

X(n−1)s+k = aj + bj [(n − 1)s + k] + μ
j
k + Y(n−1)s+k, n ∈ Rj , 1 ≤ k ≤ s, 1 ≤ j ≤ M

(1)

where process {Y(n−1)s+k} is a PAR given by:

Y(n−1)s+k =
p∑

i=1

φ
j
i (k)Y(n−1)s+k−i + ε(n−1)s+k, n ∈ Rj , 1 ≤ k ≤ s, 1 ≤ j ≤ M. (2)

Model (1) is a pure structural change model where the trend parameters aj

and bj depend only on the regime, whereas means μ
j
k are allowed to change

also with seasons. The parameters φ
j
i (k), i = 1, . . . , p, represent the PAR

coefficients during season k of the j -th regime, and some of them may be allowed
to be constrained to zero, in order to get more parsimonious subset models. The
innovations process {εt } in Eq. (2) corresponds to a periodic white noise, with
E(ε(n−1)s+k) = 0 and V ar(ε(n−1)s+k) = σ 2

j (k) > 0, n ∈ Rj .
Our model is characterized by both structural parameters: the changepoints

number m, their locations τ1, τ2, . . . , τm and PAR lags indicator, which specifies
presence or absence of PAR parameters; and by regression parameters: the trend
intercepts aj , the slopes bj , the seasonal means μ

j

k , the AR parameters φ
j

i (k)

and the innovation variances σ 2
j (k). These regression parameters, assuming that

structural parameters are given, can be estimated by Ordinary Least Squares.
Identification of this complex model requires only selection of structural param-

eters. We adopt a procedure based on a GA [4] for optimization. The GA is a
nature-inspired metaheuristic algorithm, for which a population of solutions evolves
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through iterations by use of so-called genetic operators, until a stopping rule is
reached. Out implementation optimizes structural parameters simultaneously by
considering an objective function based on NAIC criterion, introduced in [5] for
threshold models selection, given by:

g = [
M∑

j=1

s∑

k=1

nj,k log(σ̂ 2
j (k))+ 2

M∑

j=1

s∑

k=1

Pj,k]/(Ns),

where σ̂ 2
j (k) is the model residual variance of series in regime j and season k,

nj,k is related sample size, Pj,k is related number of parameters. Other options
of penalization could be adopted basing on identification criteria literature. The
GA objective function to be maximized, named fitness, is a scaled exponential
transformation of g given by f = exp{−g/β}, where β is a positive scaling
constant.

2 Application and Conclusions

The industrial production index is an important macroeconomic variable since
it can reflect business cycle behaviour and changing directions of an underlying
trend. Forecasts of this variable are used by many decision makers [1]. Given that
decisions sometimes concern time intervals shorter than 1 year, forecasts for the
monthly observed industrial production index can be useful. The time series of
industrial production index in Italy (Ateco category C) for months 1990.1–2016.12
is displayed in Fig. 1. From this figure it can be observed that the time series shows
trend and a non-stable seasonal patterns.

The GA procedure, when applied to the original data, segmented the series in two
regimes with one structural change at τ1 = 2009 and an opposite trend behaviour
(see Fig. 1). To examine the effectiveness of subset piecewise PAR models, we
compared their performance, in terms of fitness, with that of some other models
used for seasonal data. Four types of models were considered in this study and

1990 1995 2000 2005 2010 2015
40

60

80

100

120

140

Fig. 1 Italy Industrial Production Index series with estimated trend and changepoint at end 2008
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Table 1 Performance of
different models

Model Fitness Prediction MSE

Subset piecewise PAR(3) 0.799 20.22

Complete piecewise PAR(3) 0.789 26.64

Piecewise AR(3) 0.769 20.37

SARIMA(2, 0, 1) × (0, 1, 0)12 0.738 27.11

the corresponding fitness values are reported in the first column of Table 1. The
first two models are a complete and subset piecewise PAR, as described above.
The third model is a non-periodic AR(3) applied on data after removing the
break, the trend and the seasonal means. The fourth model is a more conventional
SARIMA(2, 0, 1)× (0, 1, 0)12 but estimated separately for each regime. The best
model, in terms of fitness, is the subset piecewise PAR, while the complete model
has a slightly smaller fitness. The non-periodic piecewise AR reaches an even
smaller fitness, while the SARIMA model is markedly less fit.

As far as diagnostic checking is concerned, the Box-Pierce statistics with 12 or
18 lags computed on residuals were not significant at level 0.01 for the piecewise
PAR(3) models, and largely significant for the other two models.

We computed also out-of-sample forecasts for the first 9 months of 2017. The
mean square prediction errors for the four models are reported in the second column
of Table 1. We may conclude that for the industrial production index dataset the
proposed procedure outperforms the other models both in terms of fitting and
forecasting.
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Mortality Projection Using Bayesian
Model Averaging

Andrés Gustavo Benchimol, Juan Miguel Marín Diazaraque, Irene Albarrán
Lozano, and Pablo Jesús Alonso-González

Abstract In this paper we propose Bayesian specifications of four of the most
widespread models used for mortality projection: Lee-Carter, Renshaw-Haberman,
Cairns-Blake-Dowd, and its extension including cohort effects. We introduce the
Bayesian model averaging in mortality projection in order to obtain an assembled
model considering model uncertainty. We work with Spanish mortality data from the
Human Mortality Database, and results suggest that applying this technique yields
projections with better properties than those obtained with the individual models
considered separately.

Keywords Bayesian model averaging · Cairns-Blake-Dowd model · Lee-Carter
model · Longevity · Model uncertainty · Mortality projection ·
Renshaw-Haberman model

1 Introduction

Human mortality has experienced considerable improvements since the second part
of the twentieth century and people have been living more than expected. This
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positive fact has a side effect, which is a threat to life annuities business and public
pensions systems. Thus, the need to resort to suitable models for projecting mortality
rates accurately has become crucial for all economic issues linked to the elderly.

When it comes to model selection, statisticians usually choose the ‘best’ model
among a set of models according to some criterion, discarding the remaining ones.
This practice ignores model uncertainty, which is transferred to the projections
leading to over–confident inferences. A proposal to get over this issue is to assemble
models according to some criteria. Thus, the final model turns out to be a mixture
that takes the whole set of candidates models into consideration, and it often leads
to better projections and more accurate inferences.

In this paper, we work with Bayesian specifications of four of the most
widespread models used for mortality projection and assemble them applying a
technique called Bayesian Model Averaging (BMA) by Hoeting et al. [4]. To the
best of our knowledge, the BMA had not been used in this field before.

2 The Bayesian Model Averaging (BMA)

In statistical practice, analysts usually choose a model and work as if data were
generated by the selected model, leading to inferences and decisions based on it,
without considering the uncertainty associated to the model selection.

Model assembling techniques solve the former issue while considering several
models simultaneously.

In particular, the Bayesian model averaging makes inferences based on a
weighted average over the model space. In this way, the model uncertainty is also
included in both predictions and parameter estimates (see [5] and [3]).

From a practical point of view, the posterior probability for each model can be
computed by a MCMC algorithm (see [2]) and the various projections are weighted
by the posterior probability in order to obtain the assembled model.

3 Mortality Projection Applying BMA

We worked with four of the most popular models for mortality projection. Let
qx(t) and mx(t) be the death probability and central death rate at age x in year t ,
respectively. Table 1 summarizes their specifications.

M1 was the first age-period model, introduced by Lee and Carter [6]. The
authors proposed a model for describing the change in mortality as a function of
a latent factor evolving throughout time. M2 by Renshaw and Haberman [9] is a
generalization of M1 including cohort effects. On the other hand, M5 by Cairns et
al. [1] is a two-latent factor model and M6 is its generalization including cohort
effects.
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The reason for working with these four models is that that M1 is the most
extended mortality model, while M3 is the most widespread alternative to M1
model, while M2 and M6 are their respective specifications including cohort
effects. It is worth mentioning that there are other widespread approaches based
on B-Splines and P-Splines to add smoothness. However, these type of models are
suitable for fitting mortality, but not so much for projections, and therefore they
were not considered in this proposal.

We worked with Spanish mortality data from the HumanMortality Database (see
www.mortality.org). We focused on male gender data, a timespan between calendar
years 1960 and 2009, and ages between 60 and 100 years old.

Table 1 Mortality projection
models

Model Specification

M1 log [mx(t)] = β
(1)
x + β

(2)
x κt

M2 log [mx(t)] = β
(1)
x + β

(2)
x κt + β

(3)
x γt−x

M5 logit [qx(t)] = κ
(1)
t + κ

(2)
t (x − x)

M6 logit [qx(t)] = κ
(1)
t + κ

(2)
t (x − x)+ γt−x

Fig. 1 95% prediction bands and actual mortality trajectories of mx(t)

www.mortality.org
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We first considered Bayesian specifications of the former models. We assumed
vaguely informative prior distributions for all the parameters of the four models. For
the sake of brevity we do not show the complete mathematical details.

Regarding the assembling process, it was assumed a discrete uniform distribution
on the four models weights as prior distribution.

The MCMC algorithm was programmed using Jags [7] by means of the
package R2jags [10] from the R project [8].

In order to validate the predictive performance of the assembled model, we
trained the model with data from 1960 to 1999 and obtained projections for the
central death rates mx(t) for the period 2000 to 2009 and compared them with the
actual rates.

For visualizing the results, Fig. 1 shows both the 95% prediction bands and
actual mortality trajectories for ages x = 60, 70, 80, 90 and 100. As it can be
seen, prediction bands generated by the methodology applied to the training sample
contain the actual mortality trajectories observed in the validation sample, which
was not the case for the models considered separately for this data set.

4 Final Remarks

We applied the Bayesian model averaging to some of the most extended parametric
mortality models in order to consider model uncertainty in mortality projection.
Although this model assembling methodology had been applied to different areas,
it is the first time that it is used in this field, to the best of our knowledge.

Under this methodology, the resulting projected central deaths rates were
accurate and it is proposed to be used by actuaries in life insurance companies and
public pension systems.
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Robust Time-Varying Undirected Graphs

Mauro Bernardi and Paola Stolfi

Abstract Undirected graphs are useful tools for the analysis of sparse and high-
dimensional data sets. In this setting the sparsity helps in reducing the complexity
of the model. However, sparse graphs are usually estimated under the Gaussian
paradigm thereby leading to estimates that are very sensitive to the presence of
outlying observations. In this paper we deal with sparse time-varying undirected
graphs, namely sparse graphs whose structure evolves over time. Our contribution
is to provide a robustification of these models, in particular we propose a robust
estimator which minimises the γ -divergence. We provide an algorithm for the
parameter estimation and we investigate the rate of convergence of the proposed
estimator.

Keywords Divergence · Kernel methods · Robust methods · Dynamic models ·
Graphical models

1 Introduction

Sparse methods refer to statistical approaches specifically tailored to deal with
estimation of large dimensional models with potentially many more features than
observations. Those problems have recently attracted lots of researchers and many
contributions have appeared in the literature mainly because of the relevance of
the applications in several different fields ranging from econometrics to physics
and biology. For an up to date and comprehensive accounting of those recent
developments see, e.g., [4]. Despite their practical relevance, most of the recent
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contributions have been confined under the restrictive assumption of independently
and identically distributed Gaussian observations, with only few exceptions: [2, 6,
7], and [1]. However, they do not deal with the potentially time-varying covariance
matrices that may originate from dependent data. This case has been investigated by
[8], where they introduce sparse time-varying undirected graphs, namely, graphs
whose structure changes smoothly over time. These models works well in high
dimensional setting, that is when lots of parameters need to be estimated and few
observations are available. A drawback, however, is their sensitivity to outliers due
to the penalised maximum likelihood procedure. The contribution of this paper is
to solve this issue by proposing a robustification of the sparse time-varying graphs
proposed by [8]. Specifically, following [5], we propose a robust estimator which
minimises the γ -divergence between the postulated and theoretical distribution.
Furthermore, we provide an algorithm to handle parameter estimation and we
investigate the rate of convergence of the covariance matrix and of its inverse.

2 Methodology

Following [8] we consider the dynamic model

Wt = Wt−1 + Zt, Zt ∼ N (0,Σt) , for t > 0.

W0 ∼ N (0,Σ0) .

The Lasso-penalised maximum likelihood in the non i.i.d. case is given at time t by

Σ̂n (t) = argminΣ�0

{
tr
(
Σ−1Ŝn (t)

)
+ ln|Σ| + λ|Σ−1|1

}
, (1)

where

Ŝn (t) =
∑

s rstZsZ
′
s∑

s rst
, (2)

is a weighted covariance matrix with weights rst = K (|s − t|/hn) given by a
symmetric nonnegative kernel over time. In order to get a robust alternative to the
estimator in Eq. (1) we follow the approach of [5] and we consider the γ -divergence
between the postulated and the true unknown distribution. More precisely, let

 γ (Z,Σ) = − 1

γ
ln

{
1

n

∑

s

f (Zs,Σ)γ

}
+ 1

1+ γ
ln

∫
f (Z,Σ)1+γ dZ, (3)

the negative γ -scoring function as implied by the γ -divergence. In the non i.i.d.
framework of [8] formalised in Eqs. (1)–(2) we get the following formula for the
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negative γ -likelihood function:

 γ (Z,Σ) =− 1

γ
ln

{
1

n

∑

s

exp
{−γ tr

(
Σ−1Ŝs

)}

(2π)
γ
2 |Σ| γ2

}

+ 1

1+ γ
ln

{∫
exp

{− (1+ γ ) tr
(
Σ−1ZtZ

′
t

)}

(2π)
1+γ

2 |Σ| 1+γ
2

dZt

}
.

(4)

Then the γ -Lasso maximum likelihood is therefore obtained by solving the
following minimisation problem:

Σ̂n (t) = arg min
Σ�0

 γ (Σ)+ λ|Σ−1|1, for t = 1, 2, . . . , n. (5)

3 Algorithm

Let ϑt =
(
vec (Σt )

′)′ be the vector of parameters at time t , and ϑ̂
(j)
t be an estimate

at the j -th iteration, then denote

ω
(j)
s =

f
(
Zs, ϑ̂

(j)
t

)γ

∑
k f

(
Zk, ϑ̂

(j)
t

)γ , x
(j)
s =

∑

k

f
(
Zk, ϑ̂

(j)
t

)γ f
(
Zs, ϑ̂

(j)
t

)γ

f
(
Zs, ϑ̂

(j)
t

)γ ,

in such a way that ω(j)
s x

(j)
s = f

(
Zs, ϑ̂

(j)
t

)γ
. Using the Jensen’s inequality to the

convex function y = − log (x), we get

 1 (ϑt ) ≤ −
∑

s

ω
(j)
s log (f (Zs, ϑ))+ κ =  ̃1 (ϑt ) , (6)

where κ is a constant term. Equation (6) is a weighted negative log-likelihood and
satisfies the properties of a majorisation function, i.e., then

 ̃γ ,λ (ϑt ) =  ̃1 (ϑt )+  2 (ϑt )+ λ|Σ−1|1 (7)

From the properties of  ̃1 it holds that  ̃γ ,λ is monotone decreasing. Following [5]
we proved that

 ̃1 (ϑt )+  2 (ϑt ) = 1

2
tr
(
Σ−1Ŝω

n (t)

)
− log |Σ|

(
1

2 (1+ γ )

)
+ κ̃, (8)
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where

Ŝω
n (t) =

∑
s ω

(j)
s rtsZtZ

′
t∑

s rts
, (9)

and κ̃ is a constant. Then to find the update ϑ
(j+1)
t we need to solve the following

nonconvex minimisation problem

ϑ̂
(j+1)
t = arg min

ϑt

1

2
tr
(
Σ−1Ŝω

n (t)

)
−

(
1

2 (1+ γ )

)
log |Σ| + λ|Σ−1|1, (10)

that correspond to graphical lasso, see [3]. We investigated the asymptotic property
of the proposed estimator and we get similar rate of convergence of the covariance
matrix and of its inverse to that presented in [8].

4 Simulation Study

In order to test the effectiveness of the proposed estimator we replicated the
simulation study in [8] by considering contaminated data. In particular we consider
a graph that evolves according to a type of Erdos–Rényi random graph model, we
start from a graph with 50 edges with certain weights, the vertex changes smoothly
and the weights smoothly decay to zero.
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Two-Sided Skew and Shape Dynamic
Conditional Score Models

Alberto Bernardi and Mauro Bernardi

Abstract In this paper we introduce a family of 2-Sided Skew and Shape distri-
butions that accounts for asymmetry in the tails decay. The proposed distributions
account for many of the stylised fact frequently observed in financial time series,
except for the time-varying nature of moments of any order. To this aim we extend
the model to a dynamic framework by means of the score updating mechanism. The
asymptotic theory of the proposed model is derived under mild conditions.

Keywords Dynamic models · Skew and shape distribution

1 Introduction

The financial econometrics literature offers several valid alternatives to model the
dynamic evolution of the conditional distribution of financial returns. In a fully
parametric setting, following the same arguments presented by Cox et al. [3], the
first issue is to choose between the alternative classes of observation driven and
parameter driven models. The former can be well represented by the GARCH-
type models introduced by Engle [5] and Bollerslev [2], while the latter is typically
associated with the class of latent factor models usually represented in state space
form; see, e.g., [7, 8]. Recently, the family of observation driven models has
been enlarged by the inclusion of the Dynamic Conditional Score (DCS) models,
introduced by Creal et al. [4] and Harvey [9]. GAS models are gaining a lot
of consideration in many fields of theoretical and applied time-series analysis,
because of their ability to use all the information coming from the entire conditional
distribution of the observed instead of just using proxies for past conditional
moments, as for GARCH-type models, see, e.g., [10]. Furthermore, an additional
advantage GAS models share with the whole family of observation driven models is
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the availability of a closed form expression for the likelihood function and the ease
of evaluation of the updating mechanism.

In this paper we introduce the family of 2-Sided Skew and Shape (2SSS) distribu-
tions extending the generating mechanism of [6] to account for an asymmetric tails
decay. We also provide analytical closed form expressions for the cumulative density
function, the moments up to the fourth-order, the score and the information matrix.
Then, we further extend the 2SSS distribution to a dynamic framework by adapting
the DCS mechanism. The asymptotic theory of the proposed model is derived under
mild conditions.

2 Two-Sided Skew and Shape Distribution

The 2-Sided Skew and Shape distribution (2SSS) is defined by generalised the skew-

ing mechanism introduced by [6]. Denote by f
(
x, λ, σf , ϑf

) = 1
σf

f
(
x−λ
σf

, ϑf

)

and g
(
x, λ, σg, ϑg

) = 1
σg
f
(
x−λ
σg

, ϑg

)
, the unnormalised kernels of two different

symmetric distributions, where λ ∈ R and σf , σg ∈ R
+ are location and scale

parameters, respectively, while ϑf and ϑg are parameters that are specific to the
two distributions. We define the 2SSS probability density function constructed of f
truncated to (−∞, λ) and g truncated to [λ,∞), as follows:

f̃ (x;λ,ψ, ν) ∝ 1

ξψ
f

(
x − λ

ξψ
, ϑf

)
1(−∞,λ) (x)+ ξ

ψ
g

(
ξ (x − λ)

ψ
, ϑg

)
1(−∞,λ) (x) ,

(1)

and the normalising constant that renders Eq. (1) a proper probability density
function is

Cϑf ,ϑg = F
(
0, 0, 1, ϑf

)+G
(
0, 0, 1, ϑg

)
, (2)

where capital letters denote the cumulative density functions.

Example 1 Let us consider the case where f is the kernel of the Student–t density
and g is the kernel of the Generalised Error distribution:

f (y;λ,ψ, ν) ∝
(

1+ (y − λ)2

νψ2

)− ν+1
2

1(−∞,∞) (y) (3)

g (y;λ,ψ, β) ∝ exp

⎧
⎨

⎩−
1

2

[
(y − λ)2

ψ2

] β
2

⎫
⎬

⎭1(−∞,∞) (y) , (4)
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then the normalised 2SSS distribution becomes

fY (y;λ,ψ, ν, β) = 2

C (ξ, β, ν)
√
ψ2

(
f (y;λ,ψξ, ν)1(−∞,λ) (y)

+ g

(
yt ;λ, ψ

ξ
, β

)
1(−∞,λ) (y)

)
, (5)

where C (ξ, β, ν) = Cf (ξ, ν)+ Cg (ξ, β) is the normalising constant, where

Cf (ξ, ν) = Γ
(
ν
2

)√
πνξ2

Γ
(
ν+1

2

) , Cg (ξ, β) =
2

1
β+1

Γ
(

1
β

)

βξ
.

3 2SSS Dynamic Conditional Score Model

The key feature of GAS models is that the updating mechanism of a time-varying
parameter is driven by the score of the conditional density, which becomes the
forcing variable for parameters’ dynamics.

Formally, we assume that, the random variable yt at time t = 1, 2, . . . , T , is con-
ditionally distributed according to the filtration Fi,t−1 = σ (y1, y2, . . . , yt−1) as:

yt |Ft−1 ∼ 2SSS #

(
yt ;μt, σ

2
t , ξ, ν, β

)
, (6)

where 2SSS (yt ; ·) denotes the Two sided Skew and Shape distribution defined
in Sect. 2 with time-varying scale σ 2

t ∈ R
+, and constant constant location μ ∈ R,

shape ν ∈ (4,+∞), β ∈ (1, 2) and skewness parameter ξ ∈ R
+. Moreover,

we parameterise the Two sided Skew and Shape distribution as in [1] in such a
way that the location μ and the scale σ 2

t coincide with the conditional mean and
variance, respectively, i.e., Et−1 [yt ] = μ and Vart−1 [yt ] = σ 2

t , where Et−1 [yt ]
is a shorthand to denote the expectation of yt conditional to the past information,
i.e., E [yt | Ft−1]. Consequently, the log-density of the Two sided Skew and Shape
distribution evaluated in yt becomes:

 t

(
yt ; σ 2

t ,ϑ
)
∝ −2 logC (ξ, β, ν)+ 1

2
logK2 (ξ, β, ν)− 1

2
log

(
σ 2

)

− ν + 1

2
log

[
1+ (yt − λ)2

νψ2ξ2

]
1(−∞,λ) (yt )− 1

2

[
(yt − λ)2 ξ2

ψ2

] β
2

1[λ,∞) (yt ) ,

(7)

where C (ξ, β, ν) and K (ξ, β, ν) are constants that depend upon the parameters
ξ , ν and β, while λ and ψ are functions of all the parameters and also upon the
time-varying parameter σ 2

t . For convenience, we collect the static parameters μ, ξ ,
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ν and β in the vector ϑ = (μ, ξ, ν, β)′ ∈ R× R
+ × (4,∞)× (1, 2). Furthermore,

we specify h : R → R
+ to be a mapping function, such that σ 2

t = h
(
σ̃ 2
t

)
, where

σ̃ 2
t ∈ R is the reparametrisation of σ 2

t according to the inverse mapping h−1 (·). A
convenient choice for the function h (·) is:

h
(
σ̃ 2
t

)
= σ 2

t = exp
(
σ̃ 2
t

)
. (8)

The DCS(1, 1) dynamic for σ̃ 2
t is then:

σ̃ 2
t+1 = ω + ϕs̃t + κσ̃ 2

t , (9)

where s̃t =J
(
σ̃ 2
t

)′ [
H

(
ϑ, σ 2

t

)]−α ∇σ 2

(
yt;ϑ, σ 2

t

)
is the score of the conditional

distribution of yt with respect to the reparametrised vector of parameters σ̃ 2
t .

References

1. Bauwens, L., Laurent, S.: A new class of multivariate skew densities, with application to
generalized autoregressive conditional heteroscedasticity models. J. Bus. Econ. Stat. 23(3),
346–354 (2005)

2. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Economet. 31(3),
307–327 (1986)

3. Cox, D.R., Gudmundsson, G., Lindgren, G., Bondesson, L., Harsaae, E., Laake, P., Juselius, K.,
Lauritzen, S.L.: Statistical analysis of time series: some recent developments [with discussion
and reply]. Scand. J. Stat. 8, 93–115 (1981)

4. Creal, D., Koopman, S.J., Lucas, A.: Generalized autoregressive score models with applica-
tions. J. Appl. Economet. 28(5), 777–795 (2013)

5. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of
united kingdom inflation. Econometrica 50(4), 987–1007 (1982)

6. Fernández, C., Steel, M.F.: On bayesian modeling of fat tails and skewness. J. Am. Stat. Assoc.
93(441), 359–371 (1998)

7. Harrison, J., West, M.: Bayesian Forecasting and Dynamic Models. Springer, Berlin (1999)
8. Harvey, A.C.: Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge

University Press, Cambridge (1990)
9. Harvey, A.C.: Dynamic Models for Volatility and Heavy Tails: With Applications to Financial

and Economic Time Series, vol. 52. Cambridge University Press, Cambridge (2013)
10. Koopman, S.J., Lucas, A., Scharth, M.: Predicting time-varying parameters with parameter-

driven and observation-driven models. Rev. Econ. Stat. 98(1), 97–110 (2015)



Sparse Networks Through Regularised
Regressions

Mauro Bernardi and Michele Costola

Abstract We propose a Bayesian approach to the problem of variable selection and
shrinkage in high dimensional sparse regression models where the regularisation
method is an extension of a previous LASSO. The model allows us to include a
large number of institutions which improves the identification of the relationship and
maintains at the same time the flexibility of the univariate framework. Furthermore,
we obtain a weighted directed network since the adjacency matrix is built “row by
row” using for each institutions the posterior inclusion probabilities of the other
institutions in the system.

Keywords Financial networks · Sparsity · Bayesian inference

1 Introduction

Models with High-dimensional data where the number of parameters is larger
than the size dimension represent one of the most prominent research field in
econometrics and statistics. The seminal paper of Tibshirani [3] introduced the least
absolute shrinkage and selection operator (LASSO), one of the most popular method
that can simultaneously perform parameters estimation and selection in regression
models. Then, scholars began to develop sparse estimators in high-dimensions.
Among the most important shrinkage methods proposed in the literature there are
the least angle regression (LARS) of Efron et al. [1], the adaptive LASSO of Zou
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[5] and the group LASSO of Yuan and Lin [4]. In this paper, we propose a Bayesian
approach to the problem of variable selection and shrinkage in high dimensional
causal sparse regression models where the regularisation method is an extension of
a previous LASSO in a Bayesian framework. The model allows us to extend the
pairwise Granger causality in the network estimation by including a large number
of institutions which improves the identification of the relationship and maintains at
the same time the flexibility of the univariate framework. Furthermore, we obtain a
weighted directed network since the adjacency matrix is built “row by row” using
for each institutions the posterior inclusion probabilities of the other institutions in
the network.

2 The Model

Let y = (y1, y2, . . . , yT )
′ be the vector of observations on the scalar response

variable Y , X = (
x′1, x′2, . . . , x′T

)′
be the (T × p) matrix of observations on the

p covariates, i.e., xj,t =
(
xj,1, xj,2, . . . , xj,p

)
while Z = (

z′1, z′2, . . . , z′T
)′ be the

(T × q) matrix of observations on predetermined variables which may include the
lagged values of the endogenous variable Y up to the p-th lag. We consider the
following regression model

π
(
y | X, μ,α,β, σ 2

ε

)
= N

(
y | ιT μ+ Zα + Xβ, σ 2

ε

)
, (1)

where ιT is the T × 1 vector of unit elements, μ ∈ R denotes the parameter
related to the intercept of the model, α = (

α1, α2, . . . , αq

)′ ∈ R
q and β =(

β1, β2, . . . , βp

)′ ∈ R
p are vectors of regression parameters and σ 2

ε ∈ R
+ is

the scale parameter. Hereafter, we distinguish between the vector of predetermined
variable z and that of covariates X because of the role they play within the context
of Granger causality we consider. Specifically, in what follows, we assume that the
parameters corresponding to the predetermined variable cannot be excluded from
the regression while those corresponding to the covariates can also be excluded.

2.1 Spike-and-Slab EM

Using standard notation, let γ be the p-vector where γj = 1 if the j -th covariate Xj

is included as explanatory variable in the regression model and γj = 0, otherwise.
Assuming that γj ∼ Ber (ω), the prior distribution for βj , j = 1, 2, . . . , p can be
written as the mixture

π
(
βj | τ, σε, ω

) = (1− ω) δ0
(
βj

)+ ωDE
(
βj | τ, σε

)
, (2)
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where δ0
(
βj

)
is a point mass at zero and DE denotes the doubly-exponential

distribution with probability density function

DE (x | τ, σε) = τ

σε
exp

{
−τ |x|

σε

}
1(−∞,∞) (x) , (3)

where τ ∈ R
+ acts as the shrinkage parameter in the Lasso framework and σε is the

scale parameter. The regression model defined in Eq. (1) with the spike and slab  1
prior defined in Eq. (2) becomes

π
(
y | X, μ,α,β, σ 2

ε

)
= N

(
y | ιT μ+ Zα + Xβ, σ 2

ε

)
(4)

π (μ | τ, σε) = DE (μ | τ, σε) (5)

π (α | τ, σε) =
q∏

j=1

DE
(
αj | τ, σε

)
(6)

π (β | τ, σε, ω) =
p∏

j=1

[
(1− ω) δ0

(
βj

)+ ωDE
(
βj | τ, σε

) ]
. (7)

It is worth noting that the prior distributions in Eqs. (5)–(7) allow the corresponding
parameters to be always included into the model specification. The definition
of the model is completed by the specification of the prior on the remaining
parameters

(
σ 2
ε , τ, ω

)
. The scale parameter σε and the shrinkage parameter τ , as

well as the prior inclusion probability ω are parameters that have to be estimated.
Common choices for the prior on those parameters are: σ 2

ε ∼ IG
(
σ 2
ε | λσ , ησ

)
,

τ ∼ G (τ | λτ , ητ ) and ω ∼ Be (ω | λω, ηω). where (λσ , ησ , λτ , ητ , λω, ηω) are
prior hyperparameters. Hereafter, ϑ = (

μ,α,β, σ 2
ε , τ, ω

)
collects all the unknown

parameters that should be estimated.
The EM algorithm consists of two major steps, one for expectation (E-step)

and one for maximisation (M-step), see [2]. At the (m+ 1)-th iteration the EM
algorithm proceeds as follows:

(i) E-step: computes the conditional expectation of the complete-data log-
likelihood given the observed data {yt , zt , xt }Tt=1 and the m-th iteration
parameters updates ϑ (m)

Q
(
ϑ,ϑ (m)

)
= Eϑ (m)

[
logLc (ϑ) | {yt , zt , xt }Tt=1

]
; (8)

(ii) M-step: choose ϑ(m+1) by maximising (8) with respect to ϑ

ϑ(m+1) = arg max
ϑ

Q
(
ϑ,ϑ (m)

)
. (9)
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3 Application to Network Analysis

We can define a network as a set of nodes Vt = {1, 2, . . . , nt } and directed
edges between nodes. The network can be represented through an nt -dimensional
adjacency matrix At , with the element aijt = 1 if there is an edge from i directed
to j with i, j ∈ Vt and 0 otherwise. The matrix At represents the weighted network
estimated by using the proposed model where the linkages are estimated by the
inclusion probability above a given threshold c,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 p1,2 · · · p1,j p1,nt
...

. . . · · · · · · ...
... · · · . . . · ...

pi,1 · · · · · · . . . pi,nt

pnt ,1 · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

The aim to the analysis is to show that our methodology avoid the over- and mis-
identification of the linkages of the pairwise approach. As the reference measure for
comparison, we consider the density of the network in each period dt , defined as

dt = 1

2nt (nt − 1)

nt∑

i=1

nt∑

j=1

aijt . (11)

t = 1, . . . , T . When (dt − dt−1) > 0, there is an increase of system interconnected-
ness.
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Approximate EM Algorithm for Sparse
Estimation of Multivariate
Location–Scale Mixture of Normals

Mauro Bernardi and Paola Stolfi

Abstract Parameter estimation of distributions with intractable density, such as the
Elliptical Stable, often involves high-dimensional integrals requiring numerical inte-
gration or approximation. This paper introduces a novel Expectation–Maximisation
algorithm for fitting such models that exploits the fast Fourier integration for
computing the expectation step. As a further contribution we show that by slightly
modifying the objective function, the proposed algorithm also handle sparse estima-
tion of non-Gaussian models. The method is subsequently applied to the problem of
selecting the asset within a sparse non-Gaussian portfolio optimisation framework.

Keywords Sparse estimation · Multivariate heavy-tailed distributions ·
Expectation maximisation · Portfolio optimisation

1 Introduction

The maximum likelihood paradigm for model-based parameter estimation requires
that the likelihood function will be analytically available for any value of the param-
eter space. However, sometimes, finding maximum likelihood estimates appears
to be a very hard computational task, either because of the model complexity
or because the probability density function is not analytically available. In this
paper, we consider multivariate non-Gaussian models, whilst they do not admit
a closed form expression for the likelihood function, whose probability density
function can be expressed as location–scale mixtures of tractable distributions.
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Indeed, it is often the case that the location–scale latent factor has lower dimension
than that of the observed vector, thereby allowing a scalable inferential algorithm.
Sub-Gaussian models, such as the Elliptical Stable and the Tempered Stable
distributions, are examples where our approach can be effectively applied. We
propose an Expectation–Maximisation [1] algorithm where the expectation step,
i.e., the expected value of the complete-data log-likelihood with respect to the full
conditional distribution of the latent factor given the observed data is computed
by numerical integration. The advantages of such approach are twofold. First, it
delivers a scalable EM algorithm whenever the dimension of the latent factor is
lower than that of the observed variable. Second, it often provides the way of getting
closed form expressions for the subsequent maximisation step.

As an additional contribution of our work, we handle sparse estimation of large-
dimensional non-Gaussian models by adding the  1 lasso penalty to the M-step
showing that penalised maximisation problem correspond to the graphical lasso.
This is a very interesting property in large-dimensional setting because sparse
estimators reduce the complexity of the model.

As regards applications to real data, we consider the well-known portfolio opti-
misation problem, introduced by Markowitz [3], under the Value-at-Risk constraint.
The original the mean–variance approach relies on quite restrictive conditions
about the underlying DGP that are relaxed here by assuming that returns follow
a multivariate Stable distribution.

2 Multivariate Model Specifications

The parameter estimation method that we propose can be applied to a general
random vector Y ∈ R

m such that Y ∼ f (·, ϑ) where f can be represented as a
location scale mixture of skew elliptical distribution. Without loss of generality here
we consider a particular family, the elliptical stable distributions (ESD), in order to
make the presentation of the method as clear as possible.

A random vector Y ∈ R
m is elliptically distributed if Y =d ξ + RΓU where

ξ ∈ R
m is a vector of location parameters, Γ is a matrix such that Ω = Γ Γ ′

is a m × m full rank matrix of scale parameters, U ∈ R
m is a random vector

uniformly distributed in the unit sphere S
m−1 = {

U ∈ R
m : U′U = 1

}
and R is

a non-negative random variable stochastically independent of U, called generating
variate of Y. If R = √

Z1
√
Z2 where Z1 ∼ χ2

m and Z2 ∼ S α
2
(ξ, ω, δ) is a

positive Stable distributed random variable with characteristic exponent equal to α
2

for α ∈ (0, 2], location ξ = 0 and scale parameterω = 1, stochastically independent
of χ2

m, then the random vector Y has Elliptical Stable distribution, denoted as
Y ∼ ESDm (α, ξ,Ω). See [6] for more details on the positive Stable distribution
and [5] for the recent developments on multivariate elliptically contoured stable
distributions. Except for few cases, α = 2 (Gaussian), α = 1 (Cauchy) and α = 1

2
(Lévy), the density function cannot be represented in closed form.
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3 Parameters Estimation via FFT–EM Algorithm

The multivariate y ∼ ESDd (y, ξ,Ω, α) admits the following representation:

p (y | ξ,Ω, α) = C

∫

R+
ζ λ−1exp

{−δyζ
}
h (ζ, α) dζ, (1)

where h (ζ, α) is the probability density function of the random variable ζ ∼
S α

2
(0, ω̄α, 1), λ = d

2 + 1, δy = 1
2 (y− ξ)′Ω−1 (y− ξ) and C = 1

(2π)
d
2 |Ω| 12

.

Equation (1) integrates a Gamma distribution with respect to a totally skewed Stable
distribution, therefore it can be numerically evaluated using the fast Fourier trans-
form method. Augmenting the observations {yt , t = 1, 2, . . . , T } with the latent
variables {ζt , t = 1, 2, . . . , T } gives the following complete-data log-likelihood:

logLc (ξ) ∝ −d

2

T∑

t=1

log (ζt )− T

2
log |Ω | − 1

2

T∑

t=1

ζtε
′
tΩ

−1εt , (2)

where εt = (yt − ξ) and Ξ = (ξ,Ω, α) denotes the vector of parameters.
The EM algorithm consists of two major steps, one for expectation (E-step)

and one for maximization (M-step), see [4]. At the (m+ 1)-th iteration the EM
algorithm proceeds as follows:

E-step: at iteration (m+ 1), the E-step requires the computation of the so-called
Q-function, which calculates the conditional expectation of the complete-data
log-likelihood given the observations and the current parameter estimates ξ(m)

Q
(
ξ, ξ (m)

)
∝ −d

2

T∑

t=1

̂log (ζt )− T

2
log |Ω | − 1

2

T∑

t=1

ζ̂t tr
(
Ω−1εtε

′
t

)
, (3)

where the conditional expectations ζ̂
(m)
t and ̂log (ζt )

(m)
denote the current

estimate of the conditional expectation of ζt and log (ζt ) given the observation at
time T , y1:T , and it is computed using the fast Fourier transform method.

M-step: at iteration (m+ 1), the M-step maximizes the functionQ
(
ξ, ξ (m)

)
with

respect to ξ to determine the next set of parameters ξ(m+1).

In order to introduce sparsity we prove that the Q function can be factorised as

Q (Ω,Y) ∝ −T

2
log |Ω | − 1

2
tr
(
S
ζ̂
Ω−1

)
, (4)
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with S
ζ̂
= ỸỸ′, where Ỹ =

[
y1−ξ
ζ1

y2−ξ
ζ2

. . .
yT−ξ
ζT

]
, is the d × T matrix of

observations yt−ξ
ζt

, t = 1, 2, . . . , T stacked by row. Then by adding the  1 penalty

Q (Ω,Y) ∝ −T

2
log |Ω | − 1

2
tr
(
S
ζ̂
Ω−1

)
− λ|Ω−1|1 (5)

the maximisation problem in the M-step correspond to the graphical lasso, see [2].

4 Portfolio Application

We consider a portfolio allocation problem, where, at each time t = 1, 2, . . . , T , the
investor’s wealth allocation is based on the choice of the vector of optimal portfolio
weights wt > 0 by minimising the following objective function

arg minwt −Et

(
w′tYt+1

)− κVaRλ
t

(
w′tYt+1

)
, s.t. w′t1 = 1, (6)

where Yt ∼ ESD (α, ξ,Ω), Et

(
w′tYt+1

)
and VaRλ

t

(
w′tYt+1

)
denote the portfo-

lio’s expected return and the portfolio Value-at-Risk at level λ ∈ (0, 1) evaluated at
time t for the period (t, t + 1], respectively. Here, κ ≥ 0 denotes the investor’s risk
aversion parameter: the larger κ , the higher is the penalisation for the risk profile
of the selected portfolio. The empirical application is structured as follows. We
consider a basket of weekly returns of seventeen MSCI European indexes. For each
week we estimate the ESD parameters using a rolling windows; for each window, we
solve Eq. (6) for the vector of optimal allocations wt , where the portfolio expected
returns and VaR are calculated exploiting the closure property with respect of the
linear combination of the ESD. The VaR confidence level is fixed at λ = 0.99 and
several levels of investors’ risk aversion are considered. We forecast the one-step
ahead conditional returns’ distribution over the whole sample period. The sequence
of predictive distributions delivered by the competing models, are then used to build
the mean–VaR optimal portfolios.

References

1. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data using
the em algorithm (with discussion). J. R. Stat. Soc. B 39, 1–39 (1977)

2. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical
lasso. Biostatistics 9(3), 432–441 (2008)

3. Markowitz, H.M.: Portfolio selection. J. Financ. 7, 77–91 (1952)
4. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions, vol. 382. Wiley, Hoboken

(2007)
5. Nolan, J.P.: Multivariate elliptically contoured stable distributions: theory and estimation.

Comput. Stat. 28(5), 2067–2089 (2013)
6. Samorodnitsky, G., Taqqu, M.S.: Stable non-Gaussian random processes. In: Stochastic

Modeling. Chapman & Hall, New York (1994). Stochastic models with infinite variance



An Extension of Multidimensional
Scaling to Several Distance Matrices,
and Its Application to the Italian Banking
Sector

Alessandro Berti and Nicola Loperfido

Abstract Multidimensional scaling is an exploratory statistical technique which is
widely used for detecting structures in multivariate data. Unfortunately, it relies on
a single distance matrix. We propose an extension of multidimensional scaling to
several distance matrices which is particularly useful when the latter are roughly
proportional to each other. We apply the proposed method to several balance sheet
ratios collected from Italian banks. The main empirical finding is that the two major
banks are very different from each other and from smaller banks, which are clustered
together. It contributes to the current debate on dimension as stabililizer of the
banking system.

Keywords Balance sheet ratio · Bank · Multidimensional scaling

1 Introduction

Human vision is naturally apt at detecting patterns from interpoint distances.
Unfortunately, this gift is limited to Euclidean distances between points on the
line, in the plane and in the space. Multidimensional scaling (MDS) overcomes
these difficulties by approximating the interpoint distances with Euclidean distances
between numbers, pairs of numbers or triplets of numbers. It is particularly useful
when it leads to a reliable graph whose axes are interpretable and where points hint
for a clear structure. A detailed description of multidimensional scaling, together
with its potential applications, may be found in [4].

A major limitation of MDS is its reliance on the chosen distance matrix. Different
distances might lead to different MDS results. For example, some points might
resemble a cluster in a MDS graph while being very distant from each other
in a MDS graph based on a different distance matrix, albeit computed from the
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same data. The problem would not arise with proportional distance matrices, since
they give the same information about the data points configuration. Similarly, the
problem would be eased if the distance matrices were roughly proportional to each
other. We therefore propose to replace several distance matrices which are believed
to satisfactorily represent distances between units with a single distance matrix
which is as proportional as possible to all of them.

2 Method

Assume that distance between units are adequately summarized by the distance
matrices Δ1, . . . , Δk. We shall now describe an algorithm for finding another
distance matrix which is as close as possible, in the squared norm sense, to matrices
proportional to the given distance matrices. We shall make extensive use of the vec

operator, which vectorizes the matrix A by stacking its columns on top of each other,
so as to obtain the vector vec(A) (see, for example, [7, p. 200]).

First, obtain the matrix Ξ by lining side by side the vectorized distance matrices
Δ1, . . . , Δk. Second, compute the first singular value λ of Ξ , and the associated
right and left singular vectors v and u. Third, assess the approximation by the ratio
λ/ ‖Ξ‖. Fourth, matricize the left singular vector u into Δ, so that u satisfies the
identity u = vec (Δ). Fifth, use the matrix Δ for the MDS analysis. The following
theorem shows that the algorithm leads to an optimal choice of the approximating
matrix, and also that it is a valid distance matrix.

Proposition 1 LetΔ1, . . . ,Δk be n×n distance matrices with positive off-diagonal
elements and let Ξ be a matrix whose i-th column is the vectorized Δi , for i =
1, . . ., k. Then the first right singular vector v of Ξ might be taken to be positive
and the first left singular vector of Ξ is proportional to a valid, vectorized
distance matrix Δ. Also, the sum ‖Δ1 − c1D‖2 + . . . + ‖Δk − ckD‖2, where
c = (c1, . . . , ck)

T ∈ R
k and D = DT ∈ R

n × R
n attains its minimum only

when c andD are proportional to v andΔ, respectively.

Proof We shall prove the theorem for distance matrices only, the proof for similarity
and dissimilarity matrices being very similar. Let λ ∈ R+ and u ∈ R

n2
be the first

singular value of Ξ and the associated left singular vector. First, consider the prod-
uct ΞT Ξ = c1c

T
1 + . . .+cn2cT

n2 , where ci is the i-th column of ΞT . By assumption,
Δ1, . . . , Δk are n× n distance matrices with positive off-diagonal elements, so that
all the above summands are positive matrices, but the first, the (n+ 1)-th, . . . , and
the n2-th, which are null matrices. Hence ΞTΞ is a matrix with strictly positive
elements. By the Perron-Frobenius theorem [7, p. 473] λ is strictly greater than any
other singular value of Ξ , and all elements of u have the same sign, which might
be taken to be positive without loss of generality. We shall now prove that the first
left singular vector u of Ξ is a vectorized, valid distance matrix. First, let δij,h be
the element in the i-th row and in the j -th column of the h-th distance matrix, for
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i, j = 1, . . ., n and h = 1, . . ., k. Second, let c = (c1, . . . , ck)
T = λ−1v. Third,

let ξi = vec (Δi) be the i-th column of the matrix Ξ = {
ξij

}
. Finally, let δij

be the element in the i-th row and in the j -th column of the matrix Δ, where
u = vec (Δ). Since (λ, v, u) is the first singular triple of Ξ , we have Ξv = λu,
that is u = c1ξ1 + . . .+ ckξk . The vector u is a conical combination of vectorized,
symmetric matrices with null diagonal elements and positive off-diagonal elements.
Hence the same holds true for u. Since Δh is a distance matrix, we have δij,h ≤
δiw,h + δwj,h ξah = δij,h that is ξph ≤ ξqh + ξrh, where p = (j − 1) n + i,
q = (w − 1) n + i, r = (j − 1) n + w. Then up = c1ξp1 + . . . + ckξpk ≤
c1

(
ξq1 + ξr1

) + . . . + ck
(
ξqk + ξrk

) = uq + ur , that is δij ≤ δiw + δwj . Since
any triple

(
δij , δiw, δwj

)
in Δ satisfies the triangle inequality, Δ is a valid distance

matrix. The above statements remain valid if the word “distance” is replaced with
either “dissimilarity” or “similarity”.

3 Analysis

We shall now apply the proposed method to several 2016 balance sheet ratios
collected from the twelve largest Italian banks, and interpret the results within the
current debate on dimension as stabililizer of the banking system.

The 2008 world financial crisis motivated the regulator to strengthen the capital
requirements in order to preserve the stability of the credit system. Political choices
have been implemented in the Basel 3 agreements, several EU directives and
their application on a national level, as for example the Circ.285 of 2013 of the
Bank of Italy. However, the consequent incentive to concentration of the banking
system raised some controversial issues in the academic literature. Beck [2], using
data from 69 countries, concluded that crises are less likely in more concentrated
banking systems. On the other hand, [1, 3] concluded that the quality of the bank
performance is independent of its dimension.

We shall consider the 12 major Italian banks. The banks are Unicredit SpA,
Intesa SanPaolo SpA, Credem, Credito Valtellinese, BPER, Credito Cooperativo
Ravennate e Imolese, BCC di Roma, Cassa Rurale di Rovereto, BCC di Chianti
Fiorentino, Banca popolare Valconca, Banca Popolare di Ragusa, Banca popolare
di Bari.

The 2016 balance sheet ratios are: ratio of operating income to total equity and
liabilities, operating income, total equity and liabilities, funding, equity, ratio of net
interest margin to total equity and liabilities, net interest margin, total equity and
liabilities, ratio of net commission margin to operating income, net commission
margin, operating income, cost-to-income ratio, operating costs, operating income,
common equity tier ratio, non-performing loans ratio, non-performing loans, total
loans, non-performing loans coverage ratio, write-downs, gross impaired loans,
number of employees, total equity and liabilities-to-employees ratio.

We chose to measure the distances between units with the Euclidean, Manhattan
and Chess distance. The matrix obtained with the proposed method is quite
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Fig. 1 Scatterplot of the first two MDS scores

proportional to the Euclidean, Manhattan and Chess distance matrices. The approx-
imation error, defined as before, is smaller than 1%. The first MDS score is highly
correlated with bank deposits (99.5%), which is a proxy for size. The second
score is highly correlated with the coverage ratio (99.8%), which is a proxy for
stability. Hence, the first (second) score measures the relevance of size (stability)
in explaining the difference between entities. The scatterplot in Fig. 1 clearly shows
that the two major banks are very different from each other and from smaller banks,
which are clustered together. More precisely, Unicredit and Intesa San Paolo are
the only banks in the fourth and the first quadrant, while all other banks lie in the
second quadrant. The third quadrant is empty. This empirical finding hints that large
banks might have very different stability requirements. Thus, reducing the problem
of financial stability to a dimensional problem might lead to oversimplification.
We also used skewness-based projection pursuit to detect interesting data features,
as proposed in [5, 6], obtaining similar results (not shown here due to space
constraints).
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Disagreement in Signed Financial
Networks

Monica Billio, Roberto Casarin, Michele Costola, and Lorenzo Frattarolo

Abstract We extend the study of rate of convergence to consensus of autonomous
agents on an interaction network. In particular, we introduce antagonistic interac-
tions and thus a signed network. This will allow to include the, previously discarded,
sign information, in the analysis of disagreement on statistical financial networks.

Keywords Consensus dynamics · Financial networks · Predictability ·
Connectedness

1 Introduction

Given the threat to financial stability and the real economy, quantifying systemic
risk is now investigated by scholars as well as policy makers. More recently,
graph theoretic measures and in particular convergence of autonomous agents on
the network to a consensus have been involved in the systemic risk measurement
such as early warning indicator for banking crises [1]. In this paper, we propose
a generalization of disagreement index introduced in [1]. Building on the lifting
approach in [6], we are able to apply results in [1] to the lifted dynamics extending
their scope to signed networks. This allows to consider a more general consensus
dynamics and disagreement with antagonism.
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2 Disagreement in Unsigned Directed Network

The relationship between the eigenvalues of the directed Laplacian (Diplacian),
introduced in [7], and the rate of convergence of autonomous agents on the
network to a consensus was studied in [1]. The application of those techniques to
financial networks could be understood as measuring persistence of disagreement
that is “magnified when major events occur in financial markets” according to
[2]. Our approach considers a limited communication network [8] among agents,
approximated by statistical causality relationship between stocks returns as already
done in [1].

Consider a graph with adjacency matrix A and elements aij and with out-degree
diagonal matrix D with non zero elements dout

i = ∑n
j=1 aij . We introduce the

following discrete time autonomous agent system:

xit = xit−1 + 1

2dout
i

n∑

j=1

aij
(
xjt−1 − xit−1

)
(1)

Similar systems, introduced by [4], are building blocks in models of belief evolution
of bounded rational agents, with a persuasion bias [5].

The model written has the vectorial form :

xt = 1

2
In + 1

2

(
In −D−1 (D − A)

)
xt−1 = PLxt−1

Where xt = (xit , . . . , xnt ) is the state vector of the agents, P = D−1A is the
transition probability matrix of the Markov chain associated with random walks on
G, where the probability of transitioning from vertex i to vertex j , pij = aij /d

out
i

of a random walk starting at i and PL = (In − P) corresponds to the transition
matrix of the lazy random walk introduced in [3].

If the graph is strongly connected, PL is irreducible and aperiodic, according
well known results, the system converge to a consensus with group decision value
ϕ′x0. The group decision is conserved by the dynamics:

ϕ′xt = ϕ′PLxt−1ϕ
′xt−1 = α.

We define the disagreement vector and its law of motion

ξ t = xt − α1

ξ t = PLξ t−1

The disagreement dynamics allows us to study the convergence rate in this directed
unsigned case to this decision value. We exploit the theoretical results on lazy
random walks on strongly connected directed graphs due to [3] and [7]. In particular
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in [7] the Diplacian ' and its decomposition of in symmetric and asymmetric part
is introduced

' = ϕ1/2 (I − P) ϕ−1/2, ' = L+�, L = ' + '′

2
, � = ' − '′

2
.

According to theorem 3 in [1] speed of convergence is expressed in terms of
λ2 the second smallest eigenvalue of L and of the second largest singular value
σn−1 (In − L) of In−L and the largest singular value σn (�) of the skew-symmetric
part of the diplacian �, as in the following equation:

‖ξt‖ ≤ exp

{
1

2

[
log

(
max (ϕ)

min (ϕ)

)
+ log (μ) t

]}
‖ξ0‖

μ = 3

4
− λ2

2
+ (σn−1 (In − L)+ σn (�))2

4
.

3 The Lifted Dynamics and Disagreement in Signed
Networks

In the previous section the aij ’s were non negative. In view of an application to
a network, based on a vector autoregression (VAR) or similar methodology, this
could result in neglecting an important source of information coming from the
coefficients sign. The signed framework that correspond to antagonistic interactions
among agents can be transformed in the unsigned one by a clever lifting trick
introduced in [6]. Consider a signed network aij ∈ R and define bij = max

(
0, aij

)
,

cij = max
(
0,−aij

)
, d |out |i = ∑n

j=1

∣∣aij
∣∣. We study the following dynamics with

antagonistic interactions

xit = xit−1 + 1

2d |out |i

n∑

j=1

∣∣aij
∣∣ (sign

(
aij

)
xjt−1 − xit−1

)

= xit−1 + 1

2d |out |i

n∑

j=1

bij
(
xjt−1 − xit−1

)+ 1

2d |out |i

n∑

j=1

cij
(−xjt−1 − xit−1

)

or

xit − xit−1 = 1

2d |out |i

n∑

j=1

bij
(
xjt−1 − xit−1

)+ 1

2d |out |i

n∑

j=1

cij
(−xjt−1 − xit−1

)
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If we call yit = −xit we obtain an analogous law of motion for yit

yit − yit−1 = 1

2d |out |i

n∑

j=1

cij
(
yjt−1 − yit−1

)+ 1

2d |out |i

n∑

j=1

bij
(−yjt−1 − yit−1

)

The joint dynamics can be written

[
xt
yt

]
= 1

2

[
In 0
0 In

]
− 1

2

[(
D|out |

)−1
0

0
(
D|out |

)−1

][
B C

C B

] [
xt−1

yt−1

]
= PL

[
xt−1

yt−1

]

Analogously to [6] x′t is a solution of (2) if and only if zt is a solution of the
“classical” discrete time consensus system (2). If the solution exist then applying the
same methodology as the unsigned case, by defining the lifted transition probability

P =
[(

D|out |
)−1

0

0
(
D|out |

)−1

][
B C

C B

]
, (2)

the corresponding decision vector and Laplacians we can use (2) to bound the
speed of convergence of the lifted dynamics and thus a upper bound for consensus
dynamics on a signed directed network.

As discussed for the unsigned case in [1], those results could be readily applied
to build a disagreement index that includes the sign information and understand its
role in the measurement of systemic risk.
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Bayesian Tensor Binary Regression

Monica Billio, Roberto Casarin, and Matteo Iacopini

Abstract In this paper we present a binary regression model with tensor coeffi-
cients and present a Bayesian model for inference, able to recover different levels
of sparsity of the tensor coefficient. We exploit the CONDECOMP/PARAFAC
(CP) representation for the tensor of coefficients in order to reduce the number of
parameters and adopt a suitable hierarchical shrinkage prior for inducing sparsity.
We propose a MCMC procedure with data augmentation for carrying out the
estimation and test the performance of the sampler in small simulated examples.

Keywords Tensor binary regression · Sparsity · Bayesian inference ·
Binary matrices · Hierarchical shrinkage prior

1 Bayesian Markov Switching Binary Tensor Regression
Model

Define a tensor as a generalisation of a matrix into a D-dimensional space, for a
remarkable survey on this subject, see [4]. We model each entry of an observed
binary matrix Xt via a zero-inflated logit (see [3]), using a vector of common
covariates zt as regressors (see [1] for greater details):

xij,t |ρt , gij (t) ∼ ρδ{0}(xij,t )+ (1− ρ)δ{dij,t }(xij,t ) (1)

dij,t = 1R+(x
∗
ij,t ) (2)
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x∗ij,t = z′tgij + εij,t εij,t
iid∼ Logistic(0, 1) . (3)

By collecting together all the vectors gij in a third order tensor G ∈ R
I×J×Q we

can rewrite Eq. (3) as:

X∗t = G ×4 zt + Et . (4)

The symbol ×n stands for the mode-n product between a tensor and a vector, as
defined in [4]. Notice that this model admits a representation as a factor model and
a SUR model (see [1]). In order to provide a significant reduction of the number
of parameters, we assume a CONDECOM/PARAFAC (CP) decomposition of the
tensor of coefficients (more details in [4] and [1]), as follows:

G =
R∑

r=1

G (r) =
R∑

r=1

γ
(r)
1 ◦ γ

(r)
2 ◦ γ

(r)
3 , (5)

where the vectors γ
(r)
j ∈ R

dj , j = 1, 2, 3 are called marginals of the CP
representation and R is the CP-rank of the tensor. We assume R known and fixed.
This decomposition permits a significant reduction of the number of parameters of
the coefficient tensor (from exponential to linear growth in terms of the size of the
matrix X∗).

2 Bayesian Inference

We follow the Bayesian approach for inference and the CP representation for the
coefficient tensor allows to reduce the problem of specifying a prior distribution on
a multi-dimensional tensor, for which few possibilities are available in the literature,
to the standard multivariate case. We assume a Beta prior for the mixing probability
and a hierarchical global-local shrinkage prior on the marginals of the PARAFAC
decomposition (similarly to [2]):

π(ρ) ∼ Be(aρ, bρ) (6)

π(γ
(r)
j |W,φ, τ ) ∼ Ndj (0, τφrwj,rIdj ) ∀ r ∀ j (7)

π(wj,r |λ) ∼ E xp(λ2/2) ∀ j ∀ r (8)

π(τ) ∼ G a(aτ , bτ ) π(φ) ∼ D ir(αφ) π(λ) ∼ G a(aλ, bλ) . (9)

We use the Pólya-Gamma data augmentation (see [5]) to derive the complete data
likelihood of the model is given in the following, while the details of the Gibbs
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sampler along with the analytical derivation of the full conditionals are given in [1].

L(X,D,Ω|θ) =
T∏

t=1

I∏

i=1

J∏

j=1

ρdij,t · δ{0}(xij,t )dij,t
(

1− ρ

2

)1−dij,t
(10)

· exp
{
−ωij,t

2
(z′tgij )2 + κij,t (z′tgij )

}
· p(ωij,t ) .

3 Simulation and Application

We simulated a dataset of T = 100 couples {Xt , zt }t of size I = J = 20 and
Q = 3, respectively. All marginals have been simulated from their prior, while we
have chosen a mixing probability ρ = 0.8.

We initialised the marginals of each tensor G via simulated annealing and run
the MCMC algorithm for N = 2000 iterations. As an indicator of the goodness
of fit of the estimated parameters, we computed the Frobenious norm between
the original tensor and the one reconstructed via the posterior of the marginals.
The outcome is shown in Fig.1, which reports the posterior distribution and the
trace plot. The matricised version of the absolute distance between the estimated
and the true tensor (average over iterations) is plotted in Fig. 2. Finally, Fig. 3
shows the posterior distribution and trace plot for the mixing probability. Overall,
the estimation procedure performs well in recovering the true value of the main
parameters of the model within a reasonable computing time. Mayor details are
reported in [1].

We apply the model to US data on land air temperature anomalies, registered
for T = 120 months on a regularly spaced grid of size 61 × 22, assuming L = 2.
We use a constant and the global temperature as covariates. The results are reported
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Fig. 1 Quadratic norm of the estimated tensor of coefficients: posterior distribution (left) and trace
plot (right)
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Fig. 4 Estimated coefficient tensor in state 1 (sparse, left) and state 2 (dense, right)

in Fig. 4, which shows the estimated coefficient tensor in matricized form, for each
regime. We find substantial evidence of different effects of the covariates on the
probability of an anomaly between the two regimes. In the sparse regime global
temperature has heterogeneous effects, whereas in the dense regime both covariates
have significant impact with geographical regularities.
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4 Conclusions

We presented a statistical framework for modelling of a time series of binary
matrices, where the parameters are grouped together into a third order tensor. We
specified a zero-inflated logit model for the probability of each entry and adopted
the PARAFAC decomposition on the tensor of logit regression coefficients for
parsimony. Efficient Bayesian estimation via Gibbs sampler with multiple data
augmentation steps has been carried out, showing good performance on small
simulated datasets and on real data.
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Bayesian Tensor Regression Models

Monica Billio, Roberto Casarin, and Matteo Iacopini

Abstract In this paper we introduce the literature on regression models with tensor
variables and present a Bayesian linear model for inference, under the assumption
of sparsity of the tensor coefficient. We exploit the CONDECOMP/PARAFAC
(CP) representation for the tensor of coefficients in order to reduce the number of
parameters and adopt a suitable hierarchical shrinkage prior for inducing sparsity.
We propose a MCMC procedure via Gibbs sampler for carrying out the estimation,
discussing the issues related to the initialisation of the vectors of parameters
involved in the CP representation.

Keywords Tensor regression · Sparsity · Bayesian inference · Hierarchical
shrinkage prior

1 Bayesian Tensor Regression Model

Define a tensor as a generalisation of a matrix into a D-dimensional space, namely:
X ∈ R

d1×...×dD , where D is the order of the tensor and dj is the length of
dimension j . Matrices, vectors and scalars are particular cases of tensor variables,
of order 2, 1 and 0, respectively. The common operations defined on matrices and
vectors in linear algebra can be applied also to tensors via generalisations of their
definition. For a remarkable survey on this subject, see [3].

The general tensor linear regression model (see [1] for greater details) we present
here can manage covariates and response variables in the form of vectors, matrices
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or tensors. It is given by:

Yt = A +B ×D+1 vec (Xt )+ C ×D+1 zt +D ×n Wt + Et , Et
iid∼ Nd1,...,dD (0, *1, . . . , *D)

(1)

where the tensor response and errors are given by Yt , Et ∈ R
d1×...×dD ; while

the covariates are Xt ∈ R
dX

1 ×...×dX
M , Wt ∈ R

dn×dW
2 and zt ∈ R

dz . The
coefficients are: A ∈ R

d1×...×dD , B ∈ R
d1×...×dD×p , C ∈ R

d1×...×dD×dz ,
D ∈ R

d1×...×dn−1×dW
2 ×dn+1...×dD where p = ∏

i d
X
i . The symbol ×n stands for

the mode-n product between a tensor and a vector, as defined in [3]. This model
extends several well-known econometric linear models, among which univariate and
multivariate regression, VAR, SUR and Panel VAR models and matrix regression
model (see [1] for formal proofs).

We focus on the particular case where both the regressor and the response
variables are square matrices of size k × k and the error term is assumed to be
distributed according to a matrix normal distribution:

Yt = B ×3 vec (Xt)+ Et Et
iid∼ Nk,k(0,*c,*r). (2)

To significantly reduce the number of parameters we assume a CONDE-
COM/PARAFAC (CP) representation (more details in [3]) for the tensor. Let the
vectors β

(r)
j ∈ R

dj , j = 1, . . . ,D, also called marginals of the CP representation,
and R be the CP-rank of the tensor (assumed known and constant), then:

B =
R∑

r=1

B(r) =
R∑

r=1

β
(r)
1 ◦ . . . ◦ β

(r)
D , (3)

2 Bayesian Inference

We follow the Bayesian approach for inference, thus we need to specify a prior
distribution for all the parameters of the model. The adoption of the CP represen-
tation for the tensor of coefficients is crucial from this point of view, as it allows
to reduce the problem of specifying a prior distribution on a multi-dimensional
tensor, for which very few possibilities are available in the literature, to the standard
multivariate case. Building from [2], we define a prior for each of the CP marginals
of the tensor coefficient B by means of the following hierarchy:

π(β
(r)
j |W,φ, τ ) ∼ Ndj (0, τφrWj,r ) ∀ r ∀ j (4)

π(wp,j,r ) ∼ E xp(λ2
j,r/2) ∀ r ∀ j ∀p (5)

π(τ) ∼ G a(aτ , bτ ) π(φ) ∼ D ir(αφ) π(λl) ∼ G a(aλ, bλ) ∀ j ∀ r . (6)
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We complete the prior specification by assuming two Inverse Wishart prior for the
covariance matrix of the rows of error term (fixing the other to the identity for
identification). Given a sample (Y,X) = {Yt ,Xt }Tt=1 and defining xt := vec (Xt ),
the likelihood function of the model (2) is given by (see [1] for details of the Gibbs
sampler):

L (Y,X|θ) =
T∏

t=1

(2π)−
k2
2 |*2|− k

2 |*1|− k
2 (7)

× exp

{
−1

2
*−1

c (Yt −B ×3 xt )′*−1
1 (Yt −B ×3 xt )

}
.

3 Simulation and Application

We performed a stimulation study by drawing a sample of T = 100 couples
{Yt ,Xt }t of square matrices of size 10. The regressor is built by entry-wise
independent AR(1) processes and the errors have been assumed normal with unitary
variance.

We initialised the marginals of the tensor B by simulated annealing and run the
Gibbs sampler for N = 30,000 iterations. Figure 1 shows the estimated coefficient
tensor and the absolute value of the estimation error, in matricized form. Figures 2
and 3, respectively, plot the L2 norm between the original and the estimated tensor
and the mean of the vectorised version of the estimated tensor, as indicators of the
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Fig. 1 Left: estimated tensor, averaged over all iterations (stacked representation). Right: estima-
tion error (absolute value), averaged over all iterations (stacked representation)
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Fig. 3 Left: trace plot of the mean of the vectorised tensor of regression coefficients vec(B̂)

(orange) and true value (red). Right: corresponding autocorrelation function

goodness of fit. The plots suggest good performance of the proposed sampler in
recovering the true value of the parameter. See [1] for more details on the results.

We apply the model to the study of T = 12 yearly average temperatures,
registered on a 10×10 regular grid (latitude-longitude) in US, with Xt = Yt−1. The
results are in Fig. 4. The estimated coefficient tensor (104 entries) is rather sparse,
with some regular patterns indicating that the temperature depends on its past and
on the neighbouring locations. The covariance matrices indicate that there is higher
dependence along the longitudinal axis than along the latitude.
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Fig. 4 Mode-3 matricization of the estimated coefficient tensor (left); estimated error covariance
matrices: *1 (left) and *2 (right)

4 Conclusions

We propose a matrix linear regression model (a reduced form of a tensor regression)
which extends standard econometric models and allows each entry of the covariate
to exert a different effect on each entry of the response. The initialisation has been
carried out via an efficient implementation of simulated annealing. The accuracy
of the model has been successfully tested both on a synthetic and a real dataset,
allowing the efficient estimate of large coefficient tensor.
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Bayesian Nonparametric Sparse Vector
Autoregressive Models

Monica Billio, Roberto Casarin, and Luca Rossini

Abstract Seemingly unrelated regression (SUR) models are useful in studying
the interactions among economic variables. In a high dimensional setting, these
models require a large number of parameters to be estimated and suffer of inferential
problems. To avoid overparametrization issues, we propose a hierarchical Dirichlet
process prior (DPP) for SUR models, which allows shrinkage of coefficients toward
multiple locations. We propose a two-stage hierarchical prior distribution, where
the first stage of the hierarchy consists in a lasso conditionally independent prior
of the Normal-Gamma family for the coefficients. The second stage is given by a
random mixture distribution, which allows for parameter parsimony through two
components: the first is a random Dirac point-mass distribution, which induces
sparsity in the coefficients; the second is a DPP, which allows for clustering of the
coefficients.

Keywords Bayesian nonparametrics · Bayesian model selection · Shrinkage ·
Large vector autoregression

1 Introduction

In the last decade, high dimensional models and large datasets have increased
their importance in economics (e.g., see [8]). The use of large dataset has been
proved to improve the forecasts in large macroeconomic and financial models (see,
[1, 3, 5, 9]). For analyzing and better forecasting them, SUR/VAR models have
been introduced [11, 12], where the error terms are independent across time, but
may have cross-equation contemporaneous correlations. SUR/VAR models require
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estimation of large number of parameters with few observations. In order to avoid
overparametrization, overfitting and dimensionality issues, Bayesian inference and
suitable classes of prior distributions have been proposed.

In this paper, a novel Bayesian nonparametric hierarchical prior for multivariate
time series is proposed, which allows shrinkage of the SUR/VAR coefficients
to multiple locations using a Normal-Gamma distribution with location, scale
and shape parameters unknown. In our sparse SUR/VAR (sSUR/sVAR), some
SUR/VAR coefficients shrink to zero, due to the shrinking properties of the lasso-
type distribution at the first stage of our hierarchical prior, thus improving efficiency
of parameters estimation, prediction accuracy and interpretation of the temporal
dependence structure in the time series. We use a Bayesian Lasso prior, which allows
us to reformulate the SUR/VAR model as a penalized regression problem, in order
to determine which SUR/VAR coefficients shrink to zero (see [7, 10]).

As regards to the second stage of the hierarchy, we use a random mixture
distribution of the Normal-Gamma hyperparameters, which allows for parameter
parsimony through two components. The first component is a random Dirac
point-mass distribution, which induces shrinkage for SUR coefficients; the second
component is a Dirichlet process hyperprior, which allows for clustering of the
SUR/VAR coefficients.

The structure of the paper is as follows. Section 2 introduces the vector
autoregressive model. Section 3 describes briefly the Bayesian nonparametric
sparse model. Section 4 presents some simulation results for different dimensions.
Section 5 concludes.

2 The Vector Autoregressive model

Let yt = (y′1,t , . . . , y′N,t )
′ ∈ R

m be a vector-valued time series. We consider a VAR
model of order p (VAR(p)) as

yt = b+
p∑

i=1

Biyt−i + εt , (1)

for t = 1, . . . , T , where yt = (y1,t , . . . , ym,t )
′, b = (b1, . . . , bm)

′ and Bi is a
(m × m) matrix of coefficients. We assume that εt = (ε1,t , . . . , εm,t )

′ follows a
independent and identically distributed Gaussian distribution Nm(0,Σ) with mean
0 and covariance matrix Σ .

The VAR(p) in (1) can be rewritten in a stacked regression form:

yt = (Im ⊗ x′t )β + εt , (2)

where xt = (1, y ′t−1, . . . , y
′
t−p)′ is the vector of predetermined variables, β =

vec(B), where B = (b, B1, . . . , Bp), ⊗ is the Kronecker product and vec the
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column-wise vectorization operator that stacks the columns of a matrix in a column
vector.

3 Bayesian Nonparametric Sparse VAR

In this paper we define a hierarchical prior distribution which induces sparsity on
the vector of coefficients β. In order to regularize (2) we incorporate a penalty using
a lasso prior f (β) = ∏r

j=1 N G (βj |0, γ , τ ), where N G (β|μ, γ, τ ) denotes the
normal-gamma distribution with location parameter μ, shape parameter γ > 0 and
scale parameter τ > 0. The normal-gamma distribution induces shrinkage toward
the prior mean of μ, but we can extend the lasso model specification by introducing a
mixture prior with separate location parameter μ∗j , separate shape parameter γ ∗j and
separate scale parameter τ ∗j such that: f (β) = ∏r

j=1 N G (βj |μ∗j , γ ∗j , τ ∗j ). In our
paper, we favor the sparsity of the parameters through the use of carefully tailored
hyperprior and we use a nonparametric Dirichlet process prior (DPP), which reduces
the overfitting problem and the curse of dimensionality by allowing for parameters
clustering due to the concentration parameter and the base measure choice.

In our case we define θ∗ = (μ∗, γ ∗, τ ∗) as the parameters of the Normal-Gamma
distribution, and assume a prior Ql for θ∗lj , that is

βj
ind∼ N G (βj |μ∗j , γ ∗j , τ ∗j ), (3)

θ∗lj |Ql
i.i.d.∼ Ql, (4)

for j = 1, . . . , rl and l = 1, . . . , N .
Following a construction of the hierarchical prior similar to the one proposed in

[4] we define the vector of random measures

Q1(dθ1) = π1P0(dθ1)+ (1− π1)P1(dθ1),

... (5)

QN(dθN) = πNP0(dθN)+ (1− πN)PN(dθN),

with the same sparse component P0 in each equation and with the following
hierarchical construction as previously explained,

P0(dθ) ∼ δ{(0,γ0,τ0)}(d(μ, γ, τ )),

Pl(dθ)
i.i.d.∼ DP(α̃,G0), l = 1, . . . , N, (6)

πl
i.i.d.∼ Be(πl |1, αl), l = 1, . . . , N,
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(γ0, τ0) ∼ g(γ0, τ0|ν0, p0, s0, n0),

G0 ∼ N (μ|c, d)× g(γ, τ |ν1, p1, s1, n1)

where δ{ψ0}(ψ) denotes the Dirac measure indicating that the random vector ψ

has a degenerate distribution with mass at the location ψ0, and g(γ0, τ0) is the
conjugate joint prior distribution (see [6]). We apply the Gibbs sampler and the
hyperparameters given in [2] for the posterior approximation.

4 Simulation Results

The nonparametric prior presented in Sect. 3 allows for shrinking the SUR coeffi-
cients. In order to assess the goodness of the prior we performed a simulation study
of our Bayesian nonparametric sparse model. We consider different datasets with
sample size T = 100 from the VAR model of order 1:

yt = Byt−1 + εt , εt
i.i.d∼ Nm(0,Σ) t = 1, . . . , 100,

where the dimension of yt and of the square matrix of coefficients B can take
different values: m = 20 (small dimension), m = 40 (medium dimension) and
m = 80 (large dimension). Furthermore, we choose different settings of the matrix
B, focusing on a block-diagonal structure with random entries of the blocks:

• the block-diagonal matrix B = diag{B1, . . . , Bm/4} ∈M(m,m) is generated with
blocks Bj (j = 1, . . . ,m/4) of (4× 4) matrices on the main diagonal:

Bj =
⎛
⎜⎝
b11,j . . . b14,j
...

...
...

b41,j . . . b44,j

⎞
⎟⎠ ,

where the elements are randomly taken from an uniform distribution
U (−1.4, 1.4) and then checked for the weak stationarity condition of the VAR;

• the random matrix B is a (80× 80) matrix with 150 elements randomly chosen
from an uniform distribution U (−1.4, 1.4) and then checked for the weak
stationarity condition of the VAR.

Figure 1 exhibits the posterior mean of Δ, which shows us the allocation of
the coefficients between the two random measures P0 and Pl . In particular, we
have that the white color indicates if the coefficient δij is equal to zero (i.e. sparse
component), while the black one if the δij is equal to one, for nonsparse components.
The definition of the pairwise posterior probabilities and of the co-clustering matrix
for the atom locations μ allows us to built the weighted networks (see Fig. 2), where
the blue edges represent negative weights, while the red ones represent the positive
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Fig. 1 Posterior mean of the matrix of δ for m = 40 (a) and for m = 80 (b) with random element

(a) (b)

Fig. 2 Weighted network for m = 40 (a) and for m = 80 (b) with random elements, where the
blue edges means negative weights and red ones represent positive weights

weights. In each coloured graph the nodes represent the n variables of the VAR
model, and a clockwise-oriented edge between two nodes i and j represents a non-
null coefficient for the variable yj,t−1 in the i-th equation of the VAR.
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5 Conclusions

This paper proposes a novel Bayesian nonparametric prior for SUR models, which
allows for shrinking SUR coefficients toward multiple locations and for identifying
groups of coefficients. We introduce a two-stage hierarchical distribution, which
consists in a hierarchical Dirichlet process on the parameters of the Normal-
Gamma distribution. The proposed hierarchical prior is used to proposed a Bayesian
nonparametric model for SUR models. We provide an efficient Monte Carlo
Markov Chain algorithm for the posterior computations and the effectiveness of
this algorithm is assessed in simulation exercises. The simulation studies illustrate
the good performance of our model with different sample sizes for B and yt .
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Logistic Classification for New
Policyholders Taking into Account
Prediction Error

Eva Boj and Teresa Costa

Abstract An expression of the mean squared error, MSE, of prediction for new
observations when using logistic regression is showed. First, MSE is approximated
by the sum of the process variance and of the estimation variance. The estimation
variance can be estimated by applying the delta method and/or by using bootstrap
methodology. When using bootstrap, e.g. bootstrap residuals, it is possible to obtain
an estimation of the distribution for each predicted value. Confidence intervals can
be calculated taking into account the bootstrapped distributions of the predicted new
values to help us in the knowledge of their randomness. The general formulas of
prediction error (the square root of MSE of prediction), PE, in the cases of the power
family of error distributions and of the power family of link functions for generalized
linear models were obtained in previous works. Now, the expression of the MSE
of prediction for the generalized linear model with Binomial error distribution and
logit link function, the logistic regression, is obtained. Its calculus and usefulness are
illustrated with real data to solve the problem of Credit Scoring, where policyholders
are classified into defaulters and non-defaulters.

Keywords Logistic regression · Mean squared error · Estimation variance ·
Delta method · Bootstrapping residuals · Credit risk

1 Introduction

The main objective is to estimate prediction error (PE) for new observations in
logistic regression. PE is the square root of mean squared error (MSE), which
can be approximated by the sum of two components: the process variance and
the estimation variance. The estimation variance can be estimated by applying the
delta method and/or by using bootstrap methodology. General formulas of PE for
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generalized linear models (GLM) with error distributions and link functions in the
power families were deduced in previous works (see [1, 3] and [4]). In the current
study the expressions of MSE for the GLM with Binomial error distribution and
logit link function, the logistic regression, are obtained.

In credit risk, the observed data are binary, and logistic regression is applied
to estimate the probability of default, μi = p̂i . A credit scoring model classifies
obligors into defaulters and non-defaulters. If the probability of default is over
a cut-off, usually 0.5, then the individual is classified as bad risk; otherwise the
individual is classified as good risk. The classification of the model and the current
classification can be compared in a contingency table and error rates can be
measured taking into account misclassification. To validate scoring models there
are measures to evaluate both discrimination and calibration. The discrimination
is the model’s ability to separate between defaulters and non-defaulters and the
calibration is the model’s ability to estimate the probabilities of default. The Brier’s
score (BS), also known as the mean squared error, is a measure of accuracy and thus
quantifies the deviation of forecasts probabilities and observed binary outcomes. In
addition, some papers suggest the decomposition of the BS in the calibration, the
discrimination and other components (see, e.g., [16] and [11]). These measures are
calculated using only the actual data. Sometimes, the data are used twice, both to
fit the model and to check its accuracy. In the proposed formulations, the idea is to
compute the MSE for new cases different from those of observed data. In particular,
the aim is the classification of new policyholders taking into account the information
given by the PE.

2 Mean Squared Error for New Observations

Assume a GLM (see [13]). Let Ω = (Ω1, . . . ,Ωn) be a population of n individuals,
let Y : (Y1, . . . , Yn)

T be the random response variable, and (y1, . . . , yn)
T be the

observed response variable of size n× 1,let (w1, . . . , wn)
T be (a priori) weights of

individuals of size n× 1, let
(
F1, . . . , Fp

)
be the set of p observed predictors of the

linear predictor η, let a link function η = g (μ), and let the mean and the variance
of Y :

μ = E [y] and V ar [y] = (
φ
/
w
)
V (μ) .

MSE of prediction, E
[(
y − μ̂

)2
]
, is the difference between the probability of

defaults forecasted and the actual default or non-default outcome for each obligor
that is observed. Because yn+1 is a priori unknown for new observations, an

estimation of the MSE is required. The aim then is to calculate E
[(
yn+1 − μ̂n+1

)2
]
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for i = n + 1. As it is showed in, e.g., [1, 3, 8, 12, 14] and [4], MSE can be
approximated with the sum of the process variance and of the estimation variance:

E
[(
yi − μ̂i

)2
] ∼= E

[
(yi − E [yi])2

]
+E

[(
μ̂i − E

[
μ̂i

])2
]
= V ar [yi]+V ar

[
μ̂i

]
.

Using the delta method (see [10, 14] and [15]), the estimation variance can be

derived from V ar
[
μ̂i

] ∼=
∣∣∣ ∂μi

∂ηi

∣∣∣
2
V ar [ηi ] , and then MSE is:

E
[(
yi − ŷi

)2
] ∼= (

φ
/
wi

)
V (μi)+

∣∣∣∣
∂μi

∂ηi

∣∣∣∣
2

V ar [ηi] .

If bootstrap methodology, e.g., bootstrapping based on Pearson residuals is
applied (see [6] and [7]), an alternative approximation formula of the estimation

variance can be used and then MSE is: E
[(
yi − ŷi

)2
] ∼= (

φ
/
wi

)
V (μi) +

V ar
[
μ̂boot
i

]
.

In logistic regression (see, e.g., [13] or [9]) Y ∼ Binomial(π), V (μi) =
μi (1− μi) and φ = 1, and the process variance is V ar [μi] =

(
1
/
wi

)
μi (1− μi) .

And the canonical link is the logit, ηi = logit (μi) = log
(

μi

1+μi

)
, and

μi = exp(ηi)
1+exp(ηi)

. Developing the previous formulas of MSE in the case of logistic
regression the two following approximations are obtained:

• Delta method: E
[(
yi − ŷi

)2
] ∼= (

1
/
wi

)
μi (1− μi)+ (μi (1− μi))

2 V ar [ηi] .

• Bootstrap methodology: E
[(
yi − ŷi

)2
] ∼= (

1
/
wi

)
μi (1− μi)+ V ar

[
μ̂boot
i

]
.

3 Application: Credit Scoring

To illustrate the interpretability and the usefulness of PE when using logistic
regression, the formulas are applied to solve the credit scoring problem. A real
German data set1 is analyzed. The data consist of 700 examples of creditworthy
applicants and 300 examples where credit should not be extended. For each
applicant, 24 predictors or risk factors describe credit history, account balances, loan
purpose, loan amount, employment status, age and job among others. Risk factors
are grouped in four classes and there are 10 continuous variables, 8 qualitative
variables and 6 binary variables. In the literature and in previous works different
methodologies have been applied to German data (see [2, 17] and [5]). For logistic
regression the stats function in glm package of R is used to fit the model and
forecast the default probabilities.

1http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data).

http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
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Fig. 1 Predictive distribution of PE for individual 1, a non-defaulter or good risk, y = 0, assuming
that it doesn’t belong to the portfolio (i.e., it is a new random case). Descriptive statistics of the
predictive distribution are: mean = 0.07041644; standard deviation = 0.01995177 and coefficient
of variation = 28.33397%

The previous formulas for a new individual are applied. Assume that individual
1 (a non-defaulter, good risk) doesn’t belong to the portfolio (i.e., it is a new
random case), and it must be classified. The estimated probability of default is
p̂(1) = 0.03376495. PE using the delta method is ˆPE1 = 0.1814338. Confidence
intervals including a 5% of the PE can be constructed: [0.02467884, 0.04285106].
In the case of bootstrap, PE is ˆPE1 = 0.1817222 and confidence intervals can
be constructed with the 5th and 95th quantiles of the predictive distribution (see
the histogram in Fig. 1 above): [0.04179172, 0.10677569]. It can be observed that,
when including PE, all values in the confidence intervals are lower than the cut-off
point of 0.5. That is, as a result individual 1 is classified in both cases as non-
defaulter or good risk. Therefore, by analyzing the particular cases, the decision
maker may choose to grant the credit or not to an applicant.
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Conditional Quantile-Located VaR

Giovanni Bonaccolto, Massimiliano Caporin, and Sandra Paterlini

Abstract The Conditional Value-at-Risk (CoVaR) has been proposed by Adrian
and Brunnermeier (Am Econ Rev 106:1705–1741, 2016) to measure the impact
of a company in distress on the Value-at-Risk (VaR) of the financial system. We
propose an extension of the CoVaR, that is, the Conditional Quantile-Located VaR
(QL-CoVaR), that better deals with tail events, when spillover effects impact the
stability of the entire system. In fact, the QL-CoVaR is estimated by assuming that
the financial system and the individual companies simultaneously lie in the left tails
of their distributions.

Keywords CoVaR · Systemic risk · Regression quantiles

1 Methods

We first introduce the Conditional Value-at-Risk (CoVaR) proposed by Adrian and
Brunnermeier [1]. Then, we provide the details about the Conditional Quantile-
Located Value-at-Risk (QL-CoVaR). Let yt and xi,t be the returns of the financial
system and of the i-th financial company at time t , respectively, for i = 1, . . . , N
and t = 1, . . . , T . Let Qτ (xi,t |It−1) denotes the τ -th quantile of xi,t , for τ ∈ (0, 1),
conditional to the information set It−1, where It−1 = (yt−1, xi,t−1,mt−1) with
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mt−1 being a control variable at time t − 1. Similarly, Qθ(yt |It−1, xi,t ) is the
θ -th quantile of yt conditional to the information set available at t − 1 as well as
to the return of the i-th company observed at time t , for θ ∈ (0, 1). For simplicity,
we set Qτ(xi,t |It−1) ≡ Qτ (xi,t ) and Qθ(yt |It−1, xi,t ) ≡ Q

(i)
θ (yt ); θ and τ take

low values, typically in the interval (0, 0.05). The CoVaR introduced by Adrian and
Brunnermeier [1] is then estimated from the quantile regression models (see [4]):

Qτ(xi,t ) = α(i)
τ + β(i)

τ mt−1, (1)

Q
(i)
θ (yt) = δ

(i)
θ + λ

(i)
θ xi,t + γ

(i)
θ mt−1. (2)

Let Q̂τ (xi,τ ) = α̂
(i)
τ + β̂

(i)
τ mt−1 be the estimated τ -th quantile of xi,t , it is

possible to compute the CoVaR at the distress and at the median state of the
conditioning company, respectively, as follows:

CoVaR(i)
t,θ,τ = δ̂

(i)
θ + λ̂

(i)
θ Q̂τ (xi,t )+ γ̂

(i)
θ mt−1, (3)

CoVaR(i)
t,θ,1/2 = δ̂

(i)
θ + λ̂

(i)
θ Q̂1/2(xi,t )+ γ̂

(i)
θ mt−1, (4)

and compute the ΔCoVaR to quantify the marginal contribution of the i-th company
to the systemic risk (see [1]). Note that CoV aR

(i)
t,θ,1/2 is always parameterized to the

median state of the i-th conditioning company. Hence, we can omit the level 1/2 as
subscript of the ΔCoVaR measure as follows:

ΔCoVaR(i)
t,θ,τ = CoVaR(i)

t,θ,τ − CoVaR(i)
t,θ,1/2 = λ̂

(i)
θ

[
Q̂τ (xi,t )− Q̂1/2(xi,t )

]
. (5)

For simplicity, we set θ = τ and, then, ΔCoVaR(i)
t,θ,τ ≡ ΔCoVaR(i)

t,τ . It is impor-
tant to highlight that the parameters in (2) and the coefficients in (3) are functions of
θ only, neglecting the role of τ . Therefore, the estimation process behind (3) depends
on xi,t and not on Qτ (xi,t ). In contrast, we estimate the parameters in (2) assuming
that the financial system and the i-th company simultaneously lie in the left tails of
their distributions. We then take into account the impact exerted by xi,t—in the
neighbourhood of its τ -th quantile—on Q̂

(i)
θ (yt ). This allows us to increase the

distress degree in the connections between the individual companies and the system
to make our risk measure more sensitive to extreme events. The model we propose
is defined as follows:

Q
(i)
θ,τ (yt ) = δ

(i)
θ,τ + λ

(i)
θ,τ xi,t + γ

(i)
θ,τmt−1, (6)

where the parameters have both θ and τ as subscripts, as they depend on the
quantiles levels of both yt and xi,t .
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In fact, the unknown parameters in (6) are estimated from the following
minimization problem:

arg min
δ
(i)
θ,τ ,λ

(i)
θ,τ ,γ

(i)
θ,τ

T∑

t=1

ρθ

[
yt − δ

(i)
θ,τ − λ

(i)
θ,τ xi,t − γ

(i)
θ,τmt−1

]
K

(
F̂t |t−1(xi,t )− τ

h

)
, (7)

where ρθ (e) = e(θ − 1{e<0}) is the asymmetric loss function used in the quantile
regression method by Koenker and Bassett [4]; 1{·} is an indicator function, taking
the value of 1 if the condition in {·} is satisfied, the value of 0 otherwise; K(·) is the
kernel function, with bandwidth h, whereas F̂t |t−1(xi,t ) is the empirical conditional
quantile of xi,t . Sim and Zhou [5] used a similar approach to estimate the relations
in quantiles between oil prices and stock returns.

In contrast to [5], we estimate F̂t |t−1(xi,t ) dynamically using a rolling window
procedure. For each window, we estimate a large set of xi,t quantiles in the
support τ ∈ (0, 1) from the quantile regression model (1), using the method
proposed by Bondell et al. [2] to ensure the monotonicity of the multiple quantiles
for τ ∈ (0, 1). Then, we linearly interpolate the set of quantiles to obtain the
conditional distribution of xi,t at time t , denoted as F̂ (xi,t |mt−1). Finally, we recover
F̂t |t−1(xi,t ), as the probability level, extrapolated from F̂ (xi,t |mt−1), corresponding
to the realization xi,t . From the method described above, we then compute the QL-
CoVaR at the τ -th level: QL-CoVaR(i)

t,θ,τ = δ̂
(i)
θ,τ + λ̂

(i)
θ,τ Q̂τ (xi,t ) + γ̂

(i)
θ,τmt−1, where

Q̂τ (xi,t ) = α̂
(i)
τ + β̂

(i)
τ mt−1, and define the ΔQL-CoVaR as:

ΔQL-CoVaR(i)
t,τ = QL-CoVaR(i)

t,θ,τ − QL-CoVaR(i)
t,θ,1/2 = δ̂

(i)
θ,τ − δ̂

(i)
θ,1/2

+ λ̂
(i)
θ,τ

[
Q̂τ (xi,t )− Q̂1/2(xi,t )

]+ (̂λ
(i)
θ,τ − λ̂

(i)
θ,1/2)Q̂1/2(xi,t )

+ (γ̂
(i)
θ,τ − γ̂

(i)
θ,1/2)mt−1. (8)

It is important to highlight that ΔQL-CoVaR(i)
t,τ includes more components than

ΔCoVaR(i)
t,τ in (5), as the coefficients in (8) also depend on the state of the i-th

company. We then have further information about the relationships between the
financial system and the individual companies when we focus on the left tails of
their distributions. We compute the standard errors of the ΔCoVaR and the ΔQL-
CoVaR coefficients using the bootstrap approach (see, e.g., [3]).

2 Empirical Results

We implement the methods discussed in Sect. 1 on the daily returns of 1155
U.S. financial institutions (952 banks and 203 insurance companies) in the period
between October 10, 2000 and July 31, 2015, for a total of 3864 days.1

1The data are recovered from Thomson Reuters Datastream.
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We note that some of the companies enter the dataset after October 10, 2000,
whereas others exit before July 31, 2015. We estimate the models described
in Sect. 1 for each of the financial companies for which we have at least 200
observations, resulting in 1030 companies. We also build an index providing the
return of the financial system (yt ) from the returns of the 1155 financial institutions
included in our dataset, weighted by their market values. As for mt , we use the
first principal component of variables that are related to bond, equity and real
estate markets: (i) the CBOE Volatility Index (VIX); (ii) the liquidity spread (LS),
computed as the difference between the three-month collateral repo rate and the
three-month bill rate; (iii) the change in the three-month Treasury bill rate (TB); (iv)
the change in the slope of the yield curve (YC), computed as the spread between the
ten-year Treasury rate and the three-month bill rate; (v) the change in the credit
spread between BAA-rated bonds and the Treasury rate (CS), both with the 10
years maturity; (vi) the daily equity market return (EM); (vii) the excess return of
the real estate sector over the market return (RE).2 In particular, we checked that
the first principal component (mt ) of the variables listed above explains 96.50% of
the variability in the data. We estimate the CoVaR and the QL-CoVaR using two
quantile levels—θ = τ = 0.01 and θ = τ = 0.05. As for the estimation of the QL-
CoVaR parameters, we use the Gaussian kernel as F(·), with h = {0.10, 0.15, 0.20}.

By analyzing the CoVaR parameters, we checked that positive returns of the
individual companies have a positive impact on the VaR of the financial system,
as λ

(i)
θ takes, on average, positive values. Likewise, the average impact exerted

by the companies to both QL-CoVaR (i)
τ and QL-CoVaR(i)

1/2 is positive, but greater

with respect to the standard CoVaR (the medians of both λ̂
(i)
θ,τ and λ̂

(i)
θ,0.5 are greater

than the median of λ̂(i)θ ).3 Therefore, the relationships between the system and the
companies become stronger by focusing on particular regions of the xi,t support, i.e.
when xi,t is in a neighbourhood of a distress state. On average, we observe larger
values for λ̂ (i)

θ,τ at θ = 0.01 than at θ = 0.05, whereas the opposite holds for λ̂ (i)
θ,0.5.

λ̂
(i)
θ,τ measures the relation between xi,t and yt , when the companies and the system

simultaneously lie in the left tail of their distributions. The fact that λ̂ (i)
θ,τ increases

as θ and τ simultaneously decrease means that the co-movements between the
financial system and the companies become stronger when moving leftwards along
the left tails of their distributions. Consequently, the risk of contagion increases by
accentuating the distress degree in the connections between the financial system
and the companies. For both CoVaR and QL-CoVaR, the coefficient measuring the
impact of the individual companies—λ—is statistically significant at the 5% level
for the majority of companies.

2The control variables listed in (i)—(v) are taken from Thomson Reuters Datastream, whereas EM
and RE are recovered from the industry portfolios built by Kenneth R. French, available at http://
mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
3Figures and tables reporting empirical results, that we omit here for the sake of space, are available
upon request.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Probability of Default Modeling:
A Machine Learning Approach

Stefano Bonini and Giuliana Caivano

Abstract Default prediction through probability of default modeling has attracted
lots of research interests in the past literature and recent studies have shown that
Artificial Intelligence (AI) methods achieved better performance than traditional
statistical methods. This paper empirically investigates the results of applying
different machine learning techniques through the overall estimation process to
reduce the running time, maximize—in the first stage—the predictive power and
contribute of each variable to the estimation of PDs. In the second stage, we have
identified the best multivariate combination of drivers by comparing the results of
a set of supervised machine learning algorithm. In the last development stage, we
have applied an unsupervised machine learning to calibrate parameters and ranked
the customers within an ordinal n-class scale obtained through the application of
an unsupervised learning classification technique. Finally, we have verified the
calibration goodness through classical calibration test (e.g. binomial tests). The
study has been done on big data sample with more than 800,000 Retail customers
of a European Bank under ECB Supervision, with 10 years of historical information
and more than 600 variables to be analyzed for each customer.

Keywords Quantitative finance · Risk management · Credit risk · Machine
learning · Big data

1 Introduction

The last 12 months have been characterized by a technological evolution and
a “digital” wave offering new opportunities for the improvement of operational
practices and the adoption of more advanced methodological approaches in different
fields of research. In a context of growing competition and falling of profit margins,
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Machine Learning can play a vital role in both technology and business, by enabling
financial institutions to maximize the value of their own data. In the field of Credit
Risk modeling, there is an extensive literature finding out a massive use of traditional
statistical techniques in Probability of Default modeling. There are also lots of
studies focused on the adoption of Machine Learning techniques in modeling credit
risk parameters, highlighting different methodologies for estimating probability of
default: artificial neural networks (as in [1]), discriminant analysis in [2], cluster
analysis in [3], logistic regression (as in in [4–6]), support vector machines in [4, 7],
classification trees in [8], random forests (in [9, 10]). Some of these have shown the
advantages of using machine learning systems in credit scoring problems, and how
they can achieve superior performance to the traditional techniques, e.g. Logistic
Regression (as in [11, 12]). The emergence of these methods in open source libraries
(such as R or Weka) and in proprietary software solutions (e.g. SAS) has made them
widely available to the general population and to the lenders themselves.

Other studies provide benchmarks of machine learning classifiers on credit
scoring datasets, but they are generally focused on rank ability, through the Gini
score or AUROC, rather than on calibration. Despite the enormous volume of
the related literature, our understanding is that the existing models that estimate
probabilities of default (PD) need further development and more applications. In
this context, our study wants to contribute to the understanding of these techniques
and to demonstrate their effective contribute (compared to the traditional statistical
methods) not only in ranking population but on the overall PD estimation process
(variable selection, multivariate analysis and rating scale definition). As results
section will show, the application of machine learning techniques ensures an
improvement of modeling power not only in terms of ranking power (as already
highlighted by the existing literature) but also in terms of running time and
calibration power.

2 Methodology

We have divided the development process in three different stages: variable selec-
tion, multivariate analysis and rating scale definition applying different machine
learning techniques for each stage:

a) Variable selection: Logistic regression;
b) Multivariate model: simulation with Classification trees, Neural Networks,

Random Forests;
c) Parameters calibration and rating class: k-means cluster analysis.
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2.1 Data Used

In this study, we have data for around 800,000 individual customers from January
2006 to December 2016 and more than 600 variables coming from three data main
data sources information:

• Credit Bureau: we have built around 270 information variables (e.g. number
of reporting entities, amount of expired installment, External Score, number of
existing contracts, Total Expired Amount, Overdrawn amount etc.);

• Sociodemographic: we have built around 160 variables (e.g. Annual Income,
Housing situation, Marital status, Activity Sector, Profession, Negative Notes,
Banking Seniority etc.);

• Product (transaction level): we have defined 190 indicators as, e.g., Loan
duration, Mortgage degree, Interest rate type, Funding Purpose, Product Type,
Installment/Income etc.

2.2 Main Results

For variable selection, in line with the literature analyzed, we have performed
a traditional logistic regression combined with an automated algorithm able to
automatically apply to each variable a set of predefined constraints (Accuracy ratio
higher than 10%, percentage of missing variables lower than 15% and coherence
of coefficient sign with the expected trend between the variable and the default
probability). Starting from the long list of 600 variables, we have identified a short
list of 60 variables in a very reduced running time.

In order to identify the best multivariate combination, a benchmark analysis has
been performed on the short list of variables comparing different machine learning
techniques in terms of Accuracy Ratio (AR) and Correct Classification Rate (CCR),
as shown in the Table 1:

Table 1 Machine learning
techniques benchmark results

Machine learning techniques AR (%) CCR (%)

Classification tree 62 83
Random forest 65 84
Neural networks 56 81
Logistic regression 44 78
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Starting from the ranking produced by classification tree model (comparable to
random forest in terms of predictive power but much more interpretable from an
economic point of view), we have finally calibrated the scores and clustered the
customers into a final 7-class rating scale as the result of the application of k-means
clustering (used for dividing a population with more than 800,000 observations
into 50 clusters) and an automated algorithm able to test around 2 mln of possible
7-class scales for identifying the more predictive one in terms of calibration power
(measured through binomial test).

3 Conclusion

The goal of this paper was to provide the evidences deriving from the application
of different machine learning techniques to the different steps of a Probability
of Default model estimation. Through the definition of an automated algorithm
for variable selection process combining logistic regression with some economic
constraints, we have identified a short list of 60 variables (from the initial 600
indicators) with a very limited running time. We have then identified different
machine learning techniques for defining the best multivariate model, choosing the
classification tree because of its higher predictive power but also its higher economic
interpretability if compared e.g. to random forest. Finally, starting from the ranking
score defined by classification tree, we have identified the best 7-class rating scale
maximizing the calibration power of the model (measured by the pass of binomial
test on all the scales) in line with the current regulation framework.
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Risk/Return Analysis on Credit
Exposure: Do Small Banks Really Apply
a Pricing Risk-Based on Their Loans?

Stefano Bonini and Giuliana Caivano

Abstract In the current economic scenario, an efficient and effective credit under-
writing based on a pricing adjusted to the internal credit risk policies is a pillar
for the existence of the banks. Despite the recent Regulator’s indications and the
advanced methodologies available, small banks prefer to adopt less structured for
assessing the risk profile of their portfolio. Our study empirically analyzes a Small
Bank portfolio of 16,216 loans (Retail and Corporate) underwritten in the last 5
years (2013–2017) and try to investigate the nature of the link between borrower
credit worthiness and the effective price applied to the loans. The study finds out
that the link between borrower credit worthiness and the price applied is opposite to
what expected (the higher credit quality, the lower interest rate applied to loans).

Keywords Risk management · Credit risk · Pricing · Strategic policies · Credit
underwriting · Credit policies · Financial crisis

1 Introduction

The financial crisis of 2007, the following actions of Regulator on regulatory
framework, the structural decrease of interest rates and the European Central Bank
(ECB) expansive monetary policy caused an impact on financial institutions both
in terms of a deep reduction of banks profitability and a change in their business
model. Consequently, in 2016 the cost-to-income ratio of the leading European
banks has been mainly leaded by direct and indirect remuneration payments. These
data highlight how the banking system is trying to readapt its strategic choices to
the changed market conditions, supporting a very onerous framework of fixed costs
but, at the same time, continuing credit underwriting. In this context, an efficient
and effective credit underwriting based on a pricing adjusted to the internal credit
risk policies is a pillar for the existence of the banks.
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Despite the recent Regulator’s indications and the advanced methodologies
available, small banks struggle to equip themselves with complex systems for
risk measurement and choose to adopt less structured methods which are anyway
capable of providing an adequate risk assessment. The relation between borrower
creditworthiness and pricing of loans has been investigated by few studies (mainly
referred to past years, 2004–2011). Most of them highlights the existence of a neg-
ative correlation between credit quality and pricing of loans (the higher is the credit
quality of the borrower, the lower is the final interest rate applied by lender). These
studies are almost concentrated on US Market (as in [1] and related in particular on
mortgage (as in [2, 3]) and household’s portfolios of commercial banks (as in [4–6]).

This study provides an added value to the existing literature enlarging the
empirical evidences on European Market and focusing on different portfolios
(Retail and Corporate) and different products (Mortgages, Personal Loans, Cash
and Self-liquidating), taking also into account the presence of credit risk mitigatory
instruments.

The outcomes of our analysis highlight the presence of some differences and
incoherence between borrower credit worthiness and the price applied, mainly due
to a misalignment between strategic choices and risk management, actually the
bank in order to gain new clients is underpricing its loans and then not completely
remunerate the risk taken.

2 Methodology

As a first research step, we have adopted an empirical approach based on a
descriptive analysis with the aim of preliminarily verify the traditional idea that the
riskier is the client, the higher is the loan price, performing also some data mining
in order to have a consistent data base to be analysed.

2.1 Data Used

In this study, we have 5-years data from 01/01/2012 to 31/12/2016 for a total of
16,216 observations with general counterparties information and internal perfor-
mance data: turnover and total budget, industry sector, industry branch, exposure
practice number, number of the lending decision process practice, amount of the
credit, expiration date, date of credit underwriting, description of the destination
of the loan, type of interest rate (fixed or variable), presence and type of collateral
(mortgage loan, personal guarantees, etc.) and Rating computed internally.

In order to carry out a risk-adjusted analysis, we decided to divide the portfolio
in three classes by client type: Corporates (companies, small enterprises and
professionals), Public Entities (Public institutions or associations) and Individuals
(physical subjects).
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Moreover, the clients were divide by type of product and collateral:
Installment—Unsecured, Installment—Mortgage Secured, Installment—Personal
Guarantees, Cash—Unsecured, Cash—Secured, Self-Liquidating—Unsecured,
Self-Liquidating—Secured.

Each portfolio has been analyzed by the six rating classes internally used: from
the lower to the higher risk level.

2.2 Results

Starting from the data, a quantitative analysis by counterparty and product has been
performed. The results are shown in the following graphs.

For all the products Individuals and Corporate have been analyzed, on the other
hand, due to its nature, public institutions have not been analyzed only for some
products.

3 Conclusion

The paper analyses the credit portfolio of a medium European bank that is not using
Validated Advanced Internal Rating Based (AIRB) models to evaluate and price the
credit worthiness of its clients. According to the analysis it has been shown that the
price is mainly uncorrelated with the risk rating classes and is generally common
for each type of product and collateral.

Actually, analyzing Figs. 1, 2, 3, 4, 5 and 6 it is possible to observe that the
relationships risk/price are often almost linear between class 1 and class 6.

The analysis has shown that there are distortions between the client risk and
effective price applied, which can be motivated only by commercial policies that

Fig. 1 Installment—Unsecured



182 S. Bonini and G. Caivano

Fig. 2 Installment—Mortgage Secured

Fig. 3 Installment—Personal Guarantees

are not in line with the risk management best practices and are probably caused by
many critical issues regarding the correct measurement of client credit worthiness,
as well as by an inadequate remuneration policy during the pricing phase.

These empirical evidences suggest that if the banks do not have well developed
risk management analytical instruments, they will continue to adopt a commercial
strategy to acquire new clients from other banks with aggressive pricing policy
without any risk profile adjustment.
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Fig. 4 Cash—Secured

Fig. 5 Cash—Unsecured
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Fig. 6 Self-Liquidating—Secured
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Life Insurers’ Asset-Liability
Dependency and Low-Interest Rate
Environment

Nicola Borri, Rosaria Cerrone, Rosa Cocozza, and Domenico Curcio

Abstract In this paper we study the relationships between life insurers’ assets
and liabilities and investigate how it evolved during the most recent years of
unprecedented low interest rates. We use a canonical correlation analysis to measure
the relationships among, and between, asset and liability accounts for the main EU
life insurers in the years 2007, 2011 and 2015. We find strong and substantial
evidence that assets and liabilities have become more independent over time.
We argue that the declining trend of market interest rates has contributed to the
generalized reduction in the linkage between the asset side and the liability side of
EU life insurers, leaving them more exposed to ALM-related risks relative to the
period before the financial crisis.

Keywords Insurance companies · Interest rates · Asset-liability management ·
Canonical correlation analysis
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1 Introduction

This paper studies the effects of the declining and extremely low market interest
rates on the asset and liability management (ALM) strategies of the main EU
life insurers over the period 2007–2015. We examine the internal structure of the
ALM–related decisions and use the canonical correlation analysis, introduced by
Hotelling [4], to detect the relationships between life insurers’ assets and liabilities
and to investigate the evolution of these relationships during the recent past. We find
evidence that insurers’ assets and liabilities have indeed become more independent
over time. We argue that the downward trend and the low level of market interest
rates have contributed to the generalized reduction in the linkage between the
asset and the liability sides of EU life insurers, leaving insurance companies more
exposed to ALM-related risks.

The mean-variance approach provides a simple explanation of financial inter-
mediation, where securities positively held can be considered as assets and those
negatively held as liabilities. Pyle [5] and Francis [3] use a mean-variance model
to study the optimal balance sheet structure of financial intermediaries. Stowe
[7] applies a similar framework to life insurers. Consistently, we use canonical
correlations to explicitly incorporate in our analysis dependencies between assets
and liabilities. Simonson et al. [6] and DeYoung and Yom [2] use canonical
correlation analysis to study US banks’ asset-liability hedging decisions. Within the
insurance literature, Stowe and Watson [8] argue that life insurers solve a portfolio
optimization problem when structuring their assets and liabilities and highlight
several significant cross-balance sheet relationships for a cross-section of 194 US
large life insurers.

The remainder of this paper is organised as follows: Sect. 2 describes the data
and methodology; Sect. 3 presents the empirical results; and Sect. 4 concludes.

2 Data and Methodology

We analyze a representative sample of 24 EU life insurers between 2007 and 2015,
using year-end data from companies’ balance sheets taken by the OSIRIS database
[9]. We focus on three separate cross sections of data in 2007, 2011 and 2015, where
each set of annual calculations is independent from the others. Examining the data
in 4-year intervals gives us sufficient time between observations for asset-liability
relationships to react (or to not react) to changes of market interest rates. In order to
consider stable balance sheets, we include in our sample only companies that have
been in the database for at least 10 years.

Canonical correlation is a multivariate analysis technique that we use to examine
the relationships between the asset and liability/capital accounts of an insurers’
balance sheet, respectively denoted by the matrices X and Y . The number of rows
of each matrix represents the n insurers of our sample, while the number of columns
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indicates the different categories of asset (q1) and liability (q2) taken into account
and expressed as a proportion of total assets. The canonical correlation methodology
attempts to find linear combinations of X and Y so that the correlation between them
is as high as possible. The linear combinations of X and Y are denoted, respectively,
by ui and vi :

ui = Xai vi = Ybi i = 1, . . . , p with p = min(q1, q2)

where ai and bi are vectors to be estimated and have dimension, respectively,
(q1 × 1) and (q2 × 1). We refer to the scalars that form the vectors as canonical
coefficients, to the linear combinations of X and Y as canonical variables, and to the
correlations between the canonical variables as canonical correlation coefficients.
Since canonical correlation coefficients represent the variance shared by linear
combinations of assets and liabilities, and not the variance shared by the original
asset and liability accounts, a high correlation between only one asset variable
and only one liability variable might lead to a very large canonical correlation
coefficient. In order to address this issue and further investigate the links between
asset and liability accounts, we calculate the redundancy coefficients that provide a
measure of the average ability of asset (liability) variables, taken as a set, to explain
variation in liability (asset) variables taken one at a time.

3 Empirical Results

We summarize our results in Table 1. Asset and liability variables exhibit a relatively
high degree of collective dependence, even if we observe a declining trend in the
strength of the asset-liability relationship from 2007 to 2015 (i.e., the number of
statistically significant canonical correlations goes from 5 in 2007 to 2 in 2015).

Table 1 Canonical correlations

2007 2011 2015

Roots Correlation F-stat Correlation F-stat Correlation F-stat

1 through 5 0.99∗∗∗ 10.59 0.99∗∗∗ 5.95 0.99∗∗∗ 7.57

2 through 5 0.93∗∗∗ 4.26 0.89∗∗∗ 2.60 0.94∗∗∗ 3.16

3 through 5 0.83∗∗∗ 2.90 0.79∗ 1.75 0.77 1.42

4 through 5 0.65∗∗∗ 2.18 0.53 0.89 0.44 0.57

5 through 5 0.55∗ 0.06 0.00 0.00

Notes: This table reports the values of the canonical correlation coefficients. The F-statistic
tests whether there is any association between the p pairs of canonical variables. Note: ∗∗∗,
∗ = significance level of 1% and 10%, respectively, using Bartlett’s Chi-square test [1]
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Then, we calculate the proportion of variance coefficients and the redundancy
coefficients.1 In 2007, about 55.2% (60.5%) of the variation in the actual assets
(liabilities) data is explained by the asset (liability) canonical variables in the first
three loadings whereas, in 2015, 50.3% (66.7%) of the variation in the actual
assets (liabilities) is explained by the asset (liability) canonical variables in the
first loading. All else equal, the relationships among the various asset and liability
accounts seem to become less complex over time, since we observe a reduction
in the number of significant loadings and, accordingly, an increase in the share
of the variance explained by the first loadings. As to the redundancy coefficients,
in 2007, the liability canonical variables explain 51.45% of the variation in the
asset variables, while the asset canonical variables explain 67.4% of the variation
in the liability variables. Those figures drop to 34.2% and 57%, respectively, in
2015. Furthermore, also the number of significant canonical loadings decrease from
3 in 2007 to 2 in 2015. We interpret these results as follows. First, causation
runs more strongly from assets to liabilities than from liabilities to assets (i.e.,
insurers are pools of deposits looking for investing opportunities). Second, despite
the relatively large size of the redundancy coefficients, the importance of the first
loadings suggests that a relatively small number of relationships among individual
asset and liability accounts drives the strong canonical correlations.2

4 Conclusions

The declining trend and the low level of market interest rates might have contributed
to the generalized reduction in the linkage between the asset and liability side of EU
life insurers, and have made them more exposed to ALM-related risks than they
were in the period before the financial crisis broke out. Further investigation on the
relations between insurer assets and liabilities is crucial from both a regulatory and
supervisory perspective, since it might help to define qualitative and quantitative
measures of liquidity requirements more consistent with insurers’ behaviour during
both benign market conditions and stressed financial markets.

1Details on the calculations of the proportion of variance coefficients and the redundancy
coefficients are available upon request.
2For robustness, and following [2], we also investigate whether asset-liability dependency changes
with insurers’ size. Specifically, we repeat the analysis on two subsamples containing life insurers
from the first and bottom quartile of the average size distribution and find that results are
qualitatively unchanged.
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Modelling the Australian Electricity Spot
Prices: A VAR-BEKK Approach

Manuela Braione and Davide De Gaetano

Abstract This paper investigates the transmission of spot electricity prices and
price volatility among the five Australian regional electricity markets. In particular,
VAR(k)-BEKK(p, q) models with optimized lag lengths and different distributional
assumptions are analysed. Empirical results suggest that a VAR(3)-BEKK(1,2)
under Student-t assumption can better describe the complex dynamics between the
markets.

Keywords Spot electricity prices · Mean and volatility spillovers · Multivariate
volatility

1 Introduction and Motivation

This paper investigates the transmission of spot electricity prices and price volatility
across the Australian regional electricity markets in New South Wales, Queensland,
South Australia, Tasmania and Victoria. Being a highly volatile and significantly
more spike-prone market than many comparable systems (see [4]), it has represented
a topic of great interest in the past decade. Nevertheless, only a limited number of
studies concentrated on the analysis of the market dynamics using a multivariate
approach. In this respect, pioneer work has been carried out by [5] who proposed a
joint approach consisting in a VAR(1) model for the conditional mean of the series
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and a symmetric BEKK(1,1)1 model for the dynamics of the conditional covariance
matrix of the residuals. They found positive own-mean spillovers in only a small
number of markets with the absence of mean spillovers among the others, along
with significant ARCH and GARCH effects across markets. Recently, there have
been significantly changes in the structure of the National Electricity Market (NEM)
which is currently experiencing one of the most challenging periods in the energy
sector history (see [1]). As such, the market has been dramatically volatile, calling
for a better understanding of its new interactions. To this aim, we estimate a VAR(k)
model coupled with a bunch of unrestricted BEKK(p, q) specifications under both
normal and Student-t assumptions to find the preferred one to better capture the
occurred changed market conditions.

2 Methods and Results

The data consists of daily spot electricity prices running over the period February
8, 2013 to November 30, 2017. The price series are obtained from the Australian
Energy Market Operator and are calculated as daily arithmetic means over the 48
intra-day trading intervals. Similarly to [5], both the null hypotheses of normality
and of non-stationarity can be rejected for all price series. In order to model the
dynamics of the markets, we employ a two step procedure. First, the conditional
mean process is modeled through a VAR(k) model accommodating a dummy
variable γt to capture the day-of-the-week effect2. The augmented VAR(k) model
is written as

P t = α +
k∑

i=1

AiP t−i + γtΓ + εt , (1)

with α being the (n × 1) vector of long-term drift coefficients, A the (n × n)

matrix whose elements measure the own and cross-mean spillovers, Γ the (n × 1)
vector of dummy coefficients and εt the n−dimensional white noise process. The
optimal model according to the BIC is a VAR(3), reported in Table 1. It highlights
a deep net of connections among markets with significant own- and cross-mean
spillovers. Moreover, all the constant terms are significant and, similar to [3],
weekend and public holidays effects are significant and negative in all five markets
indicating that Saturday, Sunday and public holiday electricity prices are lower
than weekday prices. In the second step, a set of full BEKK(p,q) models with
lag order values ranging from (1,1) to (2,2) are fitted to the obtained standardized

1For a deep understanding of the BEKK-type specifications refer to [2].
2The dummy γt assumes value one if day t is a public holiday or a weekend and value zero
otherwise.
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residuals, under both normal and Student-t distribution assumptions. The model is
written as:

Ht = BB ′ +
p∑

i=1

Ciεt−iε′t−iC′i +
q∑

j=1

GjHt−jG′j , (2)

where Ci (i = 1, . . . , p), Gj (j = 1, . . . , q) are unrestricted square matrices and
B is a triangular matrix to ensure positive definiteness of Ht .

From Table 2 it emerges that for each lag order (p, q), the inclusion of
the Student-t assumption significantly increases the value of the maximized log-
likelihood function, indicative for a much better fit. Moreover, the largest eigen-
values of the matrices ψ = |∑max(p,q)

j=1 (Cj ⊗ Cj) + (Gj ⊗ Gj)|, obtained for
the Student-t class of models, are all less than one and smaller than under the
normal assumption, thus suggesting that allowing for heavy-tails has significant
effects on the dynamic structure of the BEKK. As emerges, the BIC-preferred
specification is the Student-t BEKK(1,2). Empirical estimates and standard errors
are summarized in Table 3. The estimates for the variance equation show significant
ARCH coefficients along the main diagonal of the C1 matrix, suggesting that
volatility is persistent in all markets. In particular, VIC has the most persis-
tent ARCH effect of 0.6032. The off diagonal elements of C1 evidence some
significant spillover ARCH effects as well. In particular, the volatility of SA
is positively affected by past shocks in the NSW and VIC markets, while is
negatively affected by past shocks in the (NSW, SA) and (SA, VIC) markets.
The main diagonal coefficients of the G1 and G2 matrices indicate that there
are statistically significant own-GARCH effects only at lag one, except in the
TAS market where the total effect is of 0.5932 + 0.3732. Regarding spillover
GARCH effects, these are mainly seen for the NSW market, which directly
influences the volatility of QLD (0.0422+0.0932), SA (0.2212) and TAS (0.0932+
0.1102), thus being the main volatility transmitter within the national industry.
On the other hand, it is found that while SA and TAS only take volatility
without transmitting it, VIC only responds to its own past volatility changes
(0.4842).

Overall, the VAR(3)-BEKK(1,2) model uncovers a number of significant inter-
actions among the five markets, including spillovers from surprise price changes in
one market to the volatility of another market. Thanks to the long span data set and
the powerful model structure, we are able to not only detect these effects, but also
estimate their magnitude.
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Cyber Risk Management: A New
Challenge for Actuarial Mathematics

Maria Francesca Carfora, Fabio Martinelli, Francesco Mercaldo,
Albina Orlando, and Artsiom Yautsiukhin

Abstract A specific kind of insurance that is emerging within the domain of
cyber-systems is that of cyber-insurance. It allows for transferring the residual
risk associated with network and computer incidents to a third party. Insurance
companies are increasingly offering such policies, in particular in the USA, but
also in Europe. The emerging trends in cyber insurance raise a number of unique
challenges and force actuaries to reconsider how to think about underwriting,
pricing and aggregation risk. Aim of this contribution is to offer a review of the
recent literature on cyber risk management in the actuarial field. Moreover, basing
on the most significant results in IT domain, we outline possible synergies between
the two lines of research.

Keywords Risk management · Cyber risk · Cyber insurance

1 Introduction

The Internet evolution is one of the greatest innovations of the twentieth century
and has changed lives of individuals and business organizations. As a consequence,
cyber risk has emerged as one of the top challenges faced by companies worldwide.
Executives and security professionals are accepting that it is not a matter of if but a
matter of when their organization will be hit by a cyber-attack. Companies have to
include cyber risk in their risk management framework, depicting their risk profile,
assessing their risk appetite and looking for corresponding risk transfer solutions.
Cyber-security insurance is designed to mitigate losses from a variety of cyber
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incidents, including data breaches, data theft, business interruption and network
damage. In general, immense difficulties emerge to insure cyber risk, especially
due to the lack of data and modelling approaches, the risk of changes and the
accumulation risks. Scientific interest on this topic is growing, but despite the
increasing relevance for businesses, at present research on cyber risk is still limited.
Many papers can be found in the IT domain, but relatively little research has been
done in the actuarial, business and economic literature. Considering that cyber crime
damage costs are expected to hit six trillion annually by 2021,1 it is plausible that
there is an increasing demand for methodologies with the aim to quantify the risk
of cyber attacks exposure by industrial and public companies. This new scenario
calls for bridging the gap between actuarial, economic and IT domain in order to
address this increasing demand. Aim of the paper is to outline the peculiarities of
cyber insurance and to show the main recent results in actuarial literature. Finally
the interdisciplinarity of the topic is stressed together with the suggestion to look at
the results in IT domain.

2 Peculiarities of Cyber Insurance

The main issues related to cyber insurance can be summarized as follows [6]:

• Evolution of information system: the information system of an organisation may
easily change and new technologies appear, modifying the landscape of cyber
risks;

• Information asymmetry: there are many obstacles for an insurer to get reliable
information about the risk exposure of an insured and it is difficult to know if
this exposure will be maintained during the whole period of policy operation;

• Evolution of attacks: it is very hard to determine the rate of occurrences and, as
a consequence, the assessment of risk exposure;

• Interdependence of security: security level of an information system may depend
on security of others;

• Impact determination: damage for cyber risks is very hard to estimate in advance
because of the intangible nature of information assets. Moreover reputation cost,
which accounts for a large portion of the whole damage, is very difficult to
estimate;

• Lack of statistical data: data lie at the center of any actuarial project, but data are
very limited in this field. Companies often do not want to reveal breaches, since
they cause secondary damage , e.g. to reputation.

• Premium estimation: unlike traditional insurance policies, cybersecurity insur-
ance has no standard scoring systems or actuarial tables for rate making.
Moreover geographical similarities and monoculture make the task very hard.

1https://www.csoonline.com/article/3153707/security/top-5-cybersecurity-facts-figures-and-
statistics-for-2017.html.

https://www.csoonline.com/article /3153707/security/top-5-cybersecurity-facts-figures-and-statistics-for-2017.html
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2.1 Some Recent Results in Economic and Actuarial Literature

A very interesting contribution is given in [2] where the authors aim to provide an
overview of the main research topics in the emerging fields of cyber risk and cyber
risk insurance. The results illustrate the immense difficulties to insure cyber risk
and various ways to overcome the insurability limitations are discussed. The authors
illustrate where research stands currently and outline directions for the future.

Regarding modelling and pricing cybersecurity risk, in [5] the authors propose
a model consisting of three components: epidemic models, loss functions and
premium strategies. A simulation approach is proposed to compute the premium
for the cybersecurity risk for practical use. Herath and Herath [3] develop a cyber-
insurance model using the emerging copula methodology. This approach is the first
in the information security literature to integrate standard elements of insurance risk,
with the robust copula methodology to determine cyber insurance premiums.

As regards the lack of data, Eling and Loperfido [1] link what has been done in
information technology field with the current discussion on goodness of fit, pricing
and risk measurement in actuarial domain. They analyze the data breach information
taken from “chronology of Data Breaches” provided by the Privacy Rights Clearing
house and use multidimensional scaling and goodness-of-fit tests, to analyze the
distribution of data breach information. They illustrate the usefulness of their results
in two applications on risk measurement and pricing.

3 Information Technology for Cyber Insurance

Considering the cyber nature of the attacks that are targeting cyber physical
or network infrastructure, a normal consequence is that the computer science
community started to develop methodologies in order to provide defense mechanism
to IT systems.

As a matter of fact, while computer scientist in last years proposed techniques in
order to mitigate cyber attacks, there is a lack knowledge about the quantification
of these attacks in financial terms. Cyber-insurance is currently considered just
an option for industrial and public companies but it represents the increasingly
important way for businesses of all sizes to manage the threat of cybercrime.
However, less than 10% of UK companies actually take out specific protection.
Incredibly, cyber-insurance cover has been around 10 years but, it seems, that
companies do not have confidence in the types of products or services currently
being offered [4]. A recent paper in computer science literature [6] summarizes
the basic knowledge about cyber insurance so far from both market and scientific
perspectives. The survey discusses the issues which make this type of insurance
unique and show how different technologies are affected by these issues. Among the
peculiarities of cyber-insurance there is coverage specification. It is hard to specify
what an insured wants to be covered from and what an insurer is willing to cover
precisely.
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For many insurers and brokers, the technicalities of information security and the
details of how to deal with a data breach remain a mystery. We think that a good
starting point is to determine the costs or expenses the company needs covering
and the types of incidents that cyber-insurance wants cover for. Considering the
peculiarity and the repercussions of different attacks, we think that each kind of
threat should be managed by different insurance policies. Furthermore we observe
that different companies can exhibit a different risk level connected to the same
type of threat. In few words, we are proposing to insurance companies to create
ad hoc policies in order to support the effective spread of cyber insurance. The
insurer should gain the trust of the company discussing the possible threats to
which the company is exposed to, being able to propose ad-hoc policies for
different companies and, basing on a preliminary analysis of the current company
infrastructure, highlighting the vulnerabilities.

We aim to create a virtuous circle between companies that benefit from cyber
insurance ad-hoc policies, insurers that will stipulate policies against cyber attacks
and computer scientist, that will be able to adopt their proposed methodologies in
the real-world.

Acknowledgements This work has been partially supported by H2020 EU-funded projects NeCS
and C3ISP and EIT-Digital Project HII and PRIN “Governing Adaptive and Unplanned Systems
of Systems” and the EU project CyberSure 734815.
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Predicting the Volatility
of Cryptocurrency Time-Series

Leopoldo Catania, Stefano Grassi, and Francesco Ravazzolo

Abstract Cryptocurrencies have recently gained a lot of interest from investors,
central banks and governments worldwide. The lack of any form of political
regulation and their market far from being “efficient”, require new forms of reg-
ulation in the near future. From an econometric viewpoint, the process underlying
the evolution of the cryptocurrencies’ volatility has been found to exhibit at the
same time differences and similarities with other financial time-series, e.g. foreign
exchanges returns. This short note focuses on predicting the conditional volatility
of the four most traded cryptocurrencies: Bitcoin, Ethereum, Litecoin and Ripple.
We investigate the effect of accounting for long memory in the volatility process as
well as its asymmetric reaction to past values of the series to predict: 1 day, 1 and 2
weeks volatility levels.

Keywords Cryptocurrencies · Score-driven models · Volatility forecast

1 The Volatility of Cryptocurrencies

Many of the stylized facts that characterize usual financial time-series also apply to
cryptocurrencies. For instance, similar to equity prices, cryptocurrencies exhibit: (1)
time-varying volatility, (2) extreme observations, and (3) an asymmetric reaction of
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the volatility process to the sign of past observations (i.e., leverage effect). However,
standard dynamic volatility models like the Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) model of Bollerslev [3] do not perform accurately
and [4] show that they are outperformed by more refined alternatives like the Score
Driven model with conditional Generalized Hyperbolic Skew Student’s t (GHSKT)
innovations. The specification of the conditional distribution of the aforementioned
Score Driven volatility model, GHSKT, is important since it characterises the
filter for the conditional volatility, see [5] and [7]. For instance, [4] find that the
robust volatility filter implied by the Score Driven–GHSKT model is of primary
importance in describing the stochastic evolution of cryptocurrencies. Indeed, in
their analysis involving 289 cryptocurrencies, GARCH is never preferred according
to likelihood criteria.

The aim of this short note is to extend results of Catania and Grassi [4] to the
important tasks of predicting future volatility levels of the four most representative
cryptocurrencies: Bitcoin, Ethereum, Litecoin and Ripple. Those cryptocurrencies
are the most important in terms of diffusion and market capitalization. At the
time of writing market capitalization in USD dollars is 185.5 billion for Bitcoin,
44.3 billion dollars for Ethereum, 9.7 billion dollars for Ripple and 5.5 billion
dollars for Litecoin. All together, these cryptocurrencies represent the 73% of
the total cryptocurrency market value. See [4] for a detailed description of those
cryptocurrencies.

Since volatility is unobserved and realized volatility measures are not available,
in our forecasting analysis we proxy future volatility levels with the square of the
realized log-returns. Squared returns are known to be a poor volatility proxy, and
poor volatility proxies are known to affect forecast comparison, see [1]. To lower
the influence of a volatility proxy on our results, model comparison is performed
using the Quasi-Like (QLIKE) loss function which, as discussed by Patton et al.
[8], is robust to this choice of volatility proxy. Specifically, let σ̂j,t+h|t be the h-step
ahead volatility prediction made by model j at time t , and let rt+h the log returns at
time t + h, the QLIKE loss is defined as:

QLIKE(̂σ 2
j,t+h|t , σ 2∗

j,t+h|t ) = log
(
σ̂ 2
j,t+h|t

)
+ σ̂ 2

j,t+h|t
σ 2∗
j,t+h|t

(1)

where σ 2∗
j,t+h|t = r2

t+h is the volatility proxy. QLIKE values associated to each
model are computed recursively over a forecast horizon of length H . Values are then
averaged and models with lower average values are preferred. In order to statistically
assess the differences among alternative models, we employ the Model Confidence
Set procedure of Hansen et al. [6] using the R package MCS detailed in [2].
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2 Forecast Analysis and Model Comparison

The set of models we consider includes the GARCH model of Bollerslev [3]
(M1), the Score Driven–GHSKT model (M2) along with three extensions with:
(1) leverage (M3), (2) time-varying skewness (M4), and (3) fractional integration
in the volatility process (M5), see [4] for a detailed specification of these models.
It is worth noting that, the volatility filter of the Score Driven–GHSKT model
also depends from the shape and skewness parameters of the GHSKT conditional
distribution. This way, volatility predictions delivered by model M4 will be affected
by the specification of time-varying skewness coefficients.

The data we consider are percentage log differences of the daily cryptocurrencies
closing values. The Bitcoin and Litecoin series start the 29th of April, 2013, while
Ethereum and Ripple series start the 8th and the 5th August, 2013, respectively. All
series end the 1st of December, 2017.1 Bitcoin and Litecoin have 1678 observations
while Ethereum and Ripple have 847 and 1’580, respectively.2 The full sample is
equally divided in two parts: (1) the in-sample period where models’ parameters
are estimated the first time and, (2) the out-of-sample period where predictions are
made. The length of the out-of-sample period is 839 for Bitcoin and Litecoin, and
424 and 790 for Ethereum and Ripple, respectively. Models’ parameters are updated
each time a new observation becomes available using an expanding window until the
end of the sample. We select three forecast horizons: (1) 1 day (h = 1), (2) 1 week
(h = 7) and, 2 weeks (h = 14).

Table 1 reports the average QLIKE values for all cryptocurrencies and forecast
horizons. Results are reported relative to the GARCH model, M1, acting as a
benchmark. That is, values lower than one indicate outperformance with respect
to M1 and viceversa. Gray cells indicate those models that belong to the Superior
Set of Models delivered by the Model Confidence Set procedure with confidence
level 10%.

Results indicate that M1 is generally outperformed by the more refined Score
Driven–GHSKT model, M2. Gains increase when the forecast horizon growths.
We find that for Bitcoin, M2 reports better results than its extensions M3, M4
and M5. This result confirms the findings of Catania and Grassi [4] in their in-
sample models comparison. Results for Ethereum show that many models belong
to SSM indicating that all models perform similar in predicting future volatility
levels. This result might be influenced by the low number of observations available
for Ethereum. Results for Ripple and Litecoin are very clear: M5 is preferred for
Ripple and M3 for Litecoin. That is, long memory is an important feature for the
prediction of the Ripple’s volatility, and the inclusion of an asymmetric reaction of
the volatility process is of primary importance for Litecoin.

1Note that the cryptocurrency market trades 24 h a day, all days. Here with closing value we mean
the price at (UTC) midnight.
2All series are available from https://coinmarketcap.com.

https://coinmarketcap.com
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Table 1 Average QLIKE values for all cryptocurrencies and forecast horizons h = 1, 7, 14

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Bitcoin Ethereum

h = 1 1.00 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00

h = 7 1.00 0.97 0.97 0.99 0.98 1.00 0.97 0.98 0.98 1.00

h = 14 1.00 0.97 0.97 0.99 1.02 1.00 1.00 1.00 1.00 1.04

Ripple Litecoin

h = 1 1.00 0.97 0.97 0.99 0.96 1.00 1.00 1.00 1.02 1.02

h = 7 1.00 0.98 0.98 1.01 0.97 1.00 0.98 0.97 0.99 0.98

h = 14 1.00 0.99 0.99 1.02 0.98 1.00 0.94 0.94 0.97 0.94

Results are reported for the five models the GARCH model of Bollerslev [3], M1, the Score
Driven–GHSKT model detailed in [4], M2, and its three extensions including: (1) leverage (M3),
(2) time-varying skewness (M4), and (3) fractional integration in the volatility process (M5),
see [4]. Results are reported relative to M1. Values lower than one indicate outperformance with
respect to M1 and viceversa. Gray cells indicate those models that belong to the Superior Set of
Models delivered by the Model Confidence Set procedure with confidence level 10%

3 Conclusion

This short paper focuses on predicting the conditional volatility of the four most
traded cryptocurrencies: Bitcoin, Ethereum, Litecoin and Ripple. We investigate
the effect of accounting for long memory in the volatility process as well as its
asymmetric reaction to past values of the series to predict volatility levels. Our
findings indicate that more sophisticated volatility models that include leverage
and time-varying skewness can improve volatility predictions at different forecast
horizons from 1% to 6% compared to more standard alternatives. Applications in
portfolio optimizations, hedging and pricing of derivative securities, where volatility
modelling is of primary importance, can benefit from these findings.
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A Generalized Error Distribution-Based
Method for Conditional Value-at-Risk
Evaluation

Roy Cerqueti, Massimiliano Giacalone, and Demetrio Panarello

Abstract One of the most important issues in finance is to correctly measure the
risk profile of a portfolio, which is fundamental to take optimal decisions on the cap-
ital allocation. In this paper, we deal with the evaluation of portfolio’s Conditional
Value-at-Risk (CVaR) using a modified Gaussian Copula, where the correlation
coefficient is replaced by a generalization of it, obtained as the correlation parameter
of a bivariate Generalized Error Distribution (G.E.D.). We present an algorithm
with the aim of verifying the performance of the G.E.D. method over the classical
RiskMetrics one, resulting in higher performance of the G.E.D. method.

Keywords Portfolio theory · Gaussian Copula · Generalized Correlation
Coefficient

1 Introduction

Value-at-Risk (VaR) has become a standard measurement tool in financial risk
management due to its simplicity. However, it is an unstable and numerically
difficult to use method when the losses do not follow a Gaussian distribution [7],
which is usually the case in the analysis of financial data. Conditional VaR (CVaR,
see Rockafellar and Uryasev [14]; Acerbi and Tasche [1, 10]) has been proposed
by literature as an alternative to VaR [3]. For a better calculation of the risk, one of
the proposals (e.g. [11]) is to model the interdependence of the returns by means
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of Copula functions (see [12]). In this context, the problem can be split into two
separate parts: first, to identify the marginal distributions of the returns of the
single assets; second, to identify the specific copula which is more appropriate for
representing the dependence structure of the returns (see [15]).

In Sect. 2, we introduce the quantitative ingredients of the study, with the main
definitions. The proposed methodological setting for calculating the Conditional
Value-at-Risk of a generic portfolio is presented in Sect. 3. Finally, in Sect. 4 some
conclusive remarks are given.

2 The Generalized Error Distribution and the G.E.D. Copula

The Generalized Error Distribution (G.E.D.) family was introduced by Subbotin
[16] and has been employed by various authors with different names and parame-
terizations (see e.g. [2, 4–6, 13]). A parameterization of the G.E.D. density function
for a random variable X is:

f (x;μ, σp, p) = 1

2σpp1/(p)'(1 + 1/p)
exp(− 1

p
|x − μ

σp
|p) for −∞ < x <∞

(1)

where μ = E(X) is the location parameter, σp = [E|X − μ|p]1/p > 0 is the scale
parameter, p > 0 is the shape parameter and ' is the Euler Gamma function.

The density of a generic G.E.D. distribution is unimodal, symmetric and, for
p > 1, bell-shaped. As particular cases we obtain the Laplace distribution (p = 1),
the Normal (p = 2) and the Uniform (p→∞); for values of 1 < p < 2 we obtain
leptokurtic densities and for values of p > 2 we obtain platykurtic densities. Thus,
the G.E.D. represents a generalization of a large set of distributions, allowing for a
better description of financial data.

A bivariate copula is a function C : [0, 1]2 → [0, 1] whose main interest in the
field of probability is that it associates univariate marginal distributions to their joint
ones [15]. We are here interested in the bivariate Gaussian Copula, which is defined
as:

C(u, v|ρ) =
∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
1

2π
√
(1− ρ2)

exp{−(r
2 − 2ρrs + s2)

2(1− ρ2)
}drds,

(2)

where Φ−1 is the inverse of Gaussian distribution function, (u, v) uniform indepen-
dent random variables generated from (X,Y) random variables, and ρ ∈ [−1, 1]
is a parameter representing the Pearson’s correlation coefficient associated to the
bivariate normal. The G.E.D. Copula for a generic random vector (X, Y ) is obtained
by replacing the parameter ρ by the Generalized Correlation Coefficient ρp ∈
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[−1, 1], introduced by Taguchi [17] and estimated as follows:

ρp = codisp(p)(X, Y )

σp(X)σp(Y )
, with − 1 ≤ ρp ≤ 1, (3)

where

|codisp(p)(X, Y )|p = |E[(Y−μY )|X−μX |p−1sign(X−μX)]|·|E[(X−μX)|Y−μY |p−1sign(Y−μY )]|,

σp(X) = [E|X − μX |p]1/p, σp(Y ) = [E|Y − μY |p]1/p

and μX and μY are the expected values of X and Y , respectively. The parameters
μ,p and σp could be estimated e.g. by using the Lpmin method [8, 9].

3 The Methodology

We here discuss theoretically how to compute the CVaR in a G.E.D. framework.
Real world applications on financial data are available upon request.
We start from two sets of consecutive observations of the returns of two assets,
assumed to be empirically distributed according to a G.E.D.:

X = {x1, . . . , xn}, Y = {y1, . . . , yn}.

For what concerns the stochastic dependence between X and Y , we propose a
G.E.D. copula model.

The fundamental steps in the algorithm for the computation of the CVaR of a
portfolio consisting of (α, β) are as follows:

0. we fix a portfolio (α, β), with α + β = 1;
1. estimation of the parameters μ,p, σp in (1) for the two series of returns X

and Y . In accord to the notation used above, we will denote the parameters as
μX,pX, σp,X and μY , pY , σp,Y ;

2. estimation of the ρp parameter of the G.E.D. copula by using formula (3), with
p = αpX + βpY ;

3. generation of couples (x, y), which are the realization of the double stochastic
variable (X, Y ) having G.E.D. marginals of item 1. and stochastic dependence
described by the G.E.D. copula with ρp of item 2.;

4. construction of the realizations of the returns of portfolio P = αX + βY and of
its empirical distribution;

5. computation of the Value-at-Risk of P at a confidence level (1− c)%;
6. computation of the Conditional Value-at-Risk of P at a confidence level (1−c)%.

The algorithm above is repeated for all the considered portfolios, given by α =
0.01 : 0.01 : 0.99 and β = 1− α.
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4 Conclusions

The present paper is part of market risk calculation methods, whose purpose is to
support risk managers’ decision making processes. Among the different methods
proposed in the literature for calculating Value-at-Risk, we took the well-known
RiskMetrics into account. We introduced the new G.E.D. method and proposed the
G.E.D. Copula as a generalization of the Gaussian Copula. Moreover, we introduced
the Generalized Correlation Coefficient of norm p that, for the p = 2 case, equals
the classic Bravais-Pearson correlation coefficient. We then presented an algorithm
with the aim of verifying the performance of the new method over the classical
RiskMetrics one. The problem of whether CVaR-G.E.D. can constitute a valid
generalization of CVaR-R.M. is still debatable, and an empirical analysis would
provide more insights on this relevant topic.
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Risk-Return Optimization for Life
Insurance Portfolios

Riccardo Cesari and Vieri Mosco

Abstract Two Fong-Vasicek immunization results are discussed and applied in
relation to life insurance fixed income portfolios. Firstly, we analyzed the con-
tribution of Fong-Vasicek (J. Finance 39(5):1541–1546, 1984) providing a lower
bound on the “shortfall” of an immunized asset portfolio in the face of an arbitrary
shock to the term structure of interest rates. A “passive” strategy minimizing
immunization (i.e., reinvestment) risk emerges, such that the exposure to an arbitrary
variation of the shape of the term structure is minimized with respect to the “M-
squared” risk measure representing the cash-flows dispersion around the duration
matching target. Secondly, Fong and Vasicek (Financ. Anal. J. 39(5):73–78, 1983)
risk-return approach is generalized in a model which seeks for only a partial risk
minimization in exchange for more return potential. The empirical application hints
at a perspective of “active” management, highlighting which segregated funds can
be re-positioned along the efficient frontier, at a chosen level of the firm’s risk
appetite.
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1 Introduction: The Life Insurance Matching Strategy
and Movements of the Term Structure

Life insurance companies sell guarantees through a maturity matching between
assets and liabilities. This matching and more generally the integrated management
of assets and liabilities (ALM) has essentially the aim to cope with the interest rate
risk, i.e. the risk of an asymmetric impact of interest rate movements to the asset
and the liability side of the balance sheet. Depending on their asset and liability
composition, insurance companies will be differently affected by future levels and
shapes (slope and curvature) of interest rates. The duration mismatch gives an
approximate measure of this exposure.

2 Passive Strategy: Minimizing the “Immunization Risk”

According to Fong and Vasicek [1], the investment horizon (holding period) might
be considered a strategic horizon with respect to which to guarantee some target
return, R0, fixed ex-ante at time 0. A lower bound for the ex post return is obtained
by showing that the ex post portfolio value has a minimum percentage change
(maximum shortfall) given by

�A0(H)

A0(H)
≥ −1

2
M2

0 ·maxτ
{
�′0 (τ )

}
(1)

where M2
0 is a variance of times to payment, around asset duration D, and can

be regarded as a risk measure for the imperfect immunization provided by the
duration-matching strategy; max

{
�′0 (τ )

}
is the maximum change of the slope

of the current term structure across maturities. More precisely, given forward
(instantaneous) rates rFW (0, τ ), for a given maturity τ their time change Δ0(τ ) is
calculated as their difference rFW (0+, τ ) − rFW (0, τ ), providing a shift function,
whose derivative with respect to maturity �′0 (τ ) expresses the “slope” of term
structure of shifts1; while for M2—representing the variance of times to payment
around duration D, i.e.2 M2 =∑m

j=1

(
sj −H

)2 · wj—a decomposition holds such

that M2(H) =M2(D) + (D − H)2.
According to the Fong and Vasicek result, M2

0 is a risk measure in that it captures
the exposure to any arbitrary movement of the discount curve. It suffices, therefore,
to minimize M2

0 in order to reduce such exposure and this prudential strategy might
be regarded as a “passive” management.

Let us consider the case of two portfolios, the “bullet” and the “barbell”. A “bul-
let” portfolio is composed by low-coupon securities with maturities close to duration

1Empirically approximated, over one year, as Δ0(τ ) − Δ0(τ − 1).
2Weighted in terms of present values of asset cash-flows.
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D so that M2 is close to zero (its minimum). Viceversa, a “barbell” portfolio is a set
of very short and very long securities with large M2 even if it has the same duration
D. In fact, this twist affects both “reinvested income” and “capital gain” because
short term rates have become lower, producing lower coupon from reinvested
income whilst long term rates are now higher, producing higher capital losses real-
ized at the horizon. This will produce a shortfall of the portfolio value with respect
to the target value (a negative twist will produce the opposite). This means that both
M2 and the risk of the “barbell” portfolio are greater than those of the “bullet”.

3 Active Strategy: The Risk-Return Tradeoff Optimization

Following Fong and Vasicek [2], a more general approach in terms of risk-return
optimization problem (analogous to Markowitz’s mean-variance analysis) could be
set.

Let R0 be the current annual ex-ante return over the horizon H. By definition:

(1+ R0(H))H ≥ �A0(H)

A0(H)
(2)

After an instantaneous non-constant shift of the term structure we have:

�R0(H) ∼= 1

H

�A0(H)

A0(H)
∼= 1

H
M2

0 (H) ·�S0(H) (3)

where

�S0(H) ≡ 1

2

[
�2

0(H)−�′0(H)
]
� 0 (4)

is a special function of the term structure shift from time 0 to time 0+ and maturity
H. Note that this function is the sum of a “shift in level” component (“convexity
effect”), always positive, �2

0, and a “slope of shift” component (“risk effect”) of
ambiguous sign. In case of adverse shift (�2

0 < �′0, �S0 < 0) the realized return
will be under the target value.

The portfolio risk can be measured by the volatility (standard deviation) of
�R0(H) and it is proportional to M2

0 , its dispersion measure3.

3As explained by Fong and Vasicek [2]: ”A portfolio with half the value of M2 than another
portfolio can be expected to produce half the dispersion of realized returns around the target value
when submitted to a variety of interest rate scenarios than the other portfolio”.
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Fig. 1 Efficient frontiers for immunized portfolios at different horizons

Summing up (or integrating) all the shape changes between 0 and H − 1 we
have4:

RH(H)− R0(H) = 1

H

∑H−1

t=0
�Rt(H) ∼= 1

H

∑H−1

t=0
M2

t (H ) ·�St (H) (5)

4As noted by Fong and Vasicek [1]: “the return differential can be thought of as the result of a
large number of independent interest rate changes” and “assuming that the subsequent values of
change in the slope of the yield curve” have “a common variance, the effects of the individual rate
shocks can be integrated over the total horizon, subject to a function describing how M2 changes
with the remaining time to horizon”.
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where M2
t (H ) scales in time according to M2

t (H ) = M2
t (H ) · (H−t

H

)3
while

M2
t (H ) is assumed to scale linearly in time as �St(H) ∼= �S0(D) · (H−t

D

)
.

Given a set of K different bonds the return is a linear combination of K random
variable,

∑K
i=1wi

(
RiH − Ri0

)
and, these formulas are applied in the computa-

tion of the mean vector and covariance matrix of the global return, μi,H =
E

[
Ri.H (H)− Ri,0(H)

]
and σij = E

[
Ri.H (H)− Ri,0(H),Rj.H (H)− Rj,0(H)

]
,

i = 1, . . . , K.
Note that, in practice, in financial markets, cash flows can be typically bought and

sold only in pre-defined “bundles” (the coupon bonds) so that optimal management
must be set in terms of available bond portfolios.

As in the classical Markowitz approach, the active strategy is to find the portfolio
{wi, 1 ≤ i ≤ K} minimizing the portfolio variance w

′
*w, for a given ex ante

differential return m and the given horizon H:

minwi

√
w′*w (6)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
1≤i≤Kwi · μi,H = m∑

1≤i≤Kwi ·Di,0 = H (duration consraint)∑
1≤i≤Kwi = 1 (budget constraint)

wi ≥ 0, (no short selling)

By varying m, then, the efficient frontier m(σ ) can be traced, for a given H.
As an example, the following frontiers have been obtained by simplifying the

Government bond market into four bond benchmarks with maturity 3, 5, 10 and 20
years respectively and by calculating the efficient frontiers with horizon (average
duration) H = 7.5 and H = 10 (see Fig. 1).

4 Conclusions and Further Developments

Following the seminal work by Fong and Vasicek [1–3], it is possible to actively
manage the “immunization risk” of a duration-matching bond portfolio of an
insurance company. This risk is proportional to a measure (M2) of the dispersion of
the cash flow dates. The empirical application shows how distant the actual portfolio
is from optimality on an “efficient frontier”, according to the firm’s risk appetite.
Extensions are manifold. At the empirical level, a larger set of bond maturities
could be taken into account. Theoretically, one can attempt to consider a multiple-
liability framework. Moreover, an explicit stochastic dynamics can be assumed for
the shocks to the forward rates, to be exploited in the calculation of moments.
Finally, a three-dimensional frontier (risk, return and horizon) could be implemented
as a more general approach.
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When Is Utilitarian Welfare Higher
Under Insurance Risk Pooling?

Indradeb Chatterjee, Angus S. Macdonald, Pradip Tapadar,
and R. Guy Thomas

Abstract This paper focuses on the effects of bans on insurance risk classification
on utilitarian social welfare. We consider two regimes: full risk classification, where
insurers charge the actuarially fair premium for each risk, and pooling, where risk
classification is banned and for institutional or regulatory reasons, insurers do not
attempt to separate risk classes, but charge a common premium for all risks. For the
case of iso-elastic insurance demand, we derive sufficient conditions on higher and
lower risks’ demand elasticities which ensure that utilitarian social welfare is higher
under pooling than under full risk classification. Empirical evidence suggests that
these conditions may be realistic for some insurance markets.

Keywords Social welfare · Elasticity of demand · Risk pooling

1 Outline of Our Approach

We consider two alternative regimes: full risk classification, where insurers charge
the actuarially fair premium for each risk, and pooling, where risk classification
is banned and insurers charge a common premium for all risks. Pooling implies
a redistribution from lower risks towards higher risks. The outcome in terms of
utilitarian social welfare depends on how we evaluate the trade-off between the
utility gains and losses of the two types.

Such evaluations are typically made with models which assume that all indi-
viduals share a common utility function. Given an offered premium, individuals
with the same probabilities of loss (i.e. individuals from the same risk-group) then
all make the same purchasing decision. However, this does not correspond well to
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the observable reality of many insurance markets, where individuals with similar
probabilities of loss often appear to make different decisions, and many individuals
do not purchase insurance at all.

To reproduce observable reality, we instead introduce heterogeneity of utility
functions (not necessarily all risk-averse) across individuals from any given risk-
group. Individual utility functions then determine individual purchasing decisions,
which (when aggregated) determine the insurance demand curve, and hence the
equilibrium price of insurance when all risks are pooled.

Our measure of social welfare is expected utility given the distributions of loss
probabilities and preferences in society, but evaluated behind a hypothetical ‘veil of
ignorance’ which screens off knowledge of what position in society one occupies.

2 Model Set-Up

2.1 Insurance Demand from the Individual Viewpoint

Suppose that an individual has wealth W and risks losing an amount L with
probability μ. The individual’s utility of wealth is given by u(·), where u′(·) > 0.
The individual is offered insurance against the potential loss amount L at premium
π (per unit of loss), i.e. for a payment of π L. He will purchase insurance if:

u(W − π L) > (1− μ) u(W)+ μu(W − L). (1)

Since certainty-equivalent decisions do not depend on the origin and scale of a utility
function, standardising u(W) = 1 and u(W − L) = 0, simplifies the decision rule
to:

u(W − π L) > (1− μ). (2)

Assuming small premiums (such that the second and higher-order terms in the
Taylor series of expansion of u(W − πL) are negligible), we can then write:

u(W − π L) ≈ u(W)− π Lu′(W) = 1− π Lu′(W), as u(W) = 1 (3)

and hence the decision rule becomes:

γ < v. (4)

where γ = Lu′(W) is the risk preferences index and v = μ/π is risk-premium
ratio.
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2.2 Insurance Demand from the Insurer’s Viewpoint

From an insurer’s perspective, it cannot observe individual utility functions; it
observes only the proportion of each risk-group who choose to buy insurance. We
call this a (proportional) demand function and define it as:

d(π) = P [ γ < v] . (5)

It can be shown that if the underlying random variable ' from which individual
realisations of γ are generated has a particular distribution,1 this implies the iso-
elastic demand function:

d(π) = τ
(μ
π

)λ
(6)

where λ is the constant elasticity of demand and τ is the fair-premium demand.

2.3 Market Equilibrium and Social Welfare

We assume a market with n risk-groups, where competition between insurers leads
to zero expected profits in equilibrium. We define a risk classification regime as
a vector of premiums (π1, π2, . . . , πn) charged to the risk-groups. Social welfare,
S(π), under that regime is the expected utility of an individual selected at random
from the population.2 For the special case of iso-elastic demand, it can be shown
that:

S(π) =
n∑

i=1

pi τi
1

(λi + 1)

(
μi

πi

)λi+1

πi +K (7)

where K is a constant, and the premium regime π satisfies the equilibrium
condition:

n∑

i=1

pi τi

(
μi

πi

)λ

(πi − μi) = 0. (8)

1Specifically, a generalised form of the Kumaraswamy [2] distribution. Similarly, any other
distribution for γ will imply its own corresponding demand function.
2Social welfare at the ‘end points’ W and W −L is standardised to u(W) = 1 and u(W −L) = 0
as in Eq. (2); this is necessary to avoid the possibility of a ‘utility monster’ dominating social
welfare [1, 3].
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3 Results for Iso-Elastic Demand

Result 3.1 Suppose there are n risk-groups with risks μ1 < μ2 < · · · < μn and
the same iso-elastic demand elasticity λ > 0. Then λ ≤ 1 ⇒ S(π0) ≥ S(μ).

Result 3.1 says that if the common demand elasticity for all risk-groups is less
than 1, pooling gives higher social welfare than full risk classification.

Result 3.1 assumes constant iso-elastic demand elasticity for all individuals.
However, for most goods and services, we expect demand elasticity to rise with
price, because of the income effect on demand: at higher prices, the good forms a
larger part of the consumer’s total budget constraint, and so the effect of a small
percentage change in its price might be larger. For insurance this suggests that
demand elasticity for higher risks might be higher. This motivates the following
Result 3.2:

Result 3.2 Suppose there are n risk-groups with risks μ1 < μ2 < · · · <

μn with iso-elastic demand elasticities λ1, λ2, . . . , λn respectively. Define λlo =
max {λi : μi ≤ π0} and λhi = min {λi : μi > π0} where π0 is the pooled equilib-
rium premium. If λi < 1 for all i = 1, 2, . . . , n and λlo ≤ λhi , then S(π0) ≥ S(μ).

Roughly speaking, Result 3.2 says that if all higher risk-groups’ (iso-elastic)
demand elasticities are higher than all lower risk-groups’ (iso-elastic) demand
elasticities, and all demand elasticities are less than 1, then social welfare is higher
under pooling than under full risk classification.

For the two risk-groups case, Result 3.2 references the green triangle in Fig. 1.
The two axes represent demand elasticities for lower and higher risk-groups, λ1

0
.0

0
.5

1
.0

1
.5

0.0 0.5 1.0 1.5

λ1

λ 2

S(π0) > S(μ) everywhere to left of boundary curve

S(π0) < S(μ) everywhere to right of boundary curve

S(π0) > S(μ)guaranteed in shaded area

for all population structures

S(π0) > S(μ)guaranteed in shaded area

for all population structures

Fig. 1 Social welfare is higher under pooling to the left of the curve (guaranteed for any
population structure in green triangle)
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and λ2. Social welfare under pooling is higher than under full risk classification
everywhere on the left of the boundary curve, and lower everywhere on the right.
The exact position of the boundary curve depends on the population structure and
relative risks; the curve shown is for μ2/μ1 = 4 and 80% of the population are
low risks. The sufficient conditions in Result 3.2 specify that in the shaded triangle
where λ1 ≤ λ2 < 1, social welfare under pooling is always higher than that under
full risk classification, irrespective of the population structure and relative risks.

4 Discussion

The conditions in the above results encompass many plausible combinations of
higher and lower risks’ demand elasticities. The conditions are stringent because
they are sufficient for any population structures and relative risks, but they are not
necessary (as shown by the white areas to the left of the boundary in Fig. 1).

A condition common to both results is that all demand elasticities should be
less than 1. Most relevant empirical estimates found in literature are of magnitude
significantly less than 1. Whilst the various contexts in which these estimates were
made may not correspond closely to the set-up in this paper, it is at least suggestive
of the possibility that insurance demand elasticities may typically be less than 1.
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The Value of Information for Optimal
Portfolio Management

Katia Colaneri, Stefano Herzel, and Marco Nicolosi

Abstract We study the value of information for a manager who invests in a stock
market to optimize the utility of her future wealth. We consider an incomplete
financial market model with a mean reverting market price of risk that cannot
be directly observed by the manager. The available information is represented by
the filtration generated by the stock price process. We solve the classical Merton
problem for an incomplete market under partial information by means of filtering
techniques and the martingale approach.

Keywords Utility maximization · Merton model · Partial information ·
Martingale approach

1 Introduction

What is the value of information for a portfolio manager who invests in the stock
market to optimize the utility of her future wealth? We study this problem in a
market with a mean reverting market price of risk X and where returns of stocks are
random but predictable. The process X cannot be directly observed by the manager,
and it is driven by different risk factors from those that directly affect stock prices.
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The objective of the manager is to maximize the utility of her wealth at a given time
T . In a nutshell, what we consider is the classical Merton problem for an incomplete
market with partial information.

An important part of the current research is concerned with the fact that
expected returns and risk premia vary over time but are somewhat predictable,
see [1] for a nice review. Following this path we consider asset dynamics with a
mean-reverting market price of risk, thus extending a model proposed by Wachter
[5] to a setting with partial information and market incompleteness. By applying
the martingale approach, proposed by Cox and Huang [2] and suitably adapted to
the case of incomplete markets by He and Pearson [3], we solve the problem in
case of perfect information. In case of imperfect information, we apply filtering
techniques to transform our problem into an equivalent optimization problem under
full information. Due to the particular problem structure we can derive solutions in
closed form in both cases. In the present short communication we limit ourselves to
provide a summary of the main results that will be published in a full paper.

2 The Model

We consider a market model with N risky assets and a money market account having
constant, risk-free, interest rate r . Trading is continuous in time from t = 0 to a finite
time horizon T . The N-dimensional risky assets’ prices process follows

dSt = diag(St )
(
μtdt + σtdZ

S
t

)
, S0 = s ∈ R

+, (1)

where diag(S) is a N×N diagonal matrix whose diagonal is equal to the vector S =
{St }t∈[0,T ] and ZS = {ZS

t }t∈[0,T ] is a N-dimensional Brownian motion. Throughout
the paper we always consider column vectors and use the symbol ·′ to denote the
transpose. Let FS = {F S

t , 0 ≤ t ≤ T } be the natural filtration of S. The vector
μ = {μt }t∈[0,T ] and the matrix σ = {σt }t∈[0,T ] are processes satisfying standard
regularity conditions (see, e.g., [4]) in order to have existence and uniqueness of
the solution to Eq. (1). We also assume that σ is invertible and adapted to F

S . The
process μ is defined by

μt − r1 = σtXt , t ∈ [0, T ],

where 1 is a N-vector of 1’s and X = {Xt }t∈[0,T ] is the N-vector of the market
prices of risk whose dynamics is given by

dXt = −λX(Xt − X̄)dt + σXdZ
X
t , X0 = x ∈ R.

The strictly positive N-dimensional diagonal matrix λX provides the strength of
attraction toward X̄, that is the long term expected level for X, and σX is a N-
dimensional square matrix that parameterizes the covariance of the market prices
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of risk. The process ZX = {ZX
t }t∈[0,T ] is a N dimensional Brownian motion,

correlated with ZS . The full information is given by filtration F = {Ft , 0 ≤ t ≤ T }
generated by Brownian motions ZX and ZS . We assume throughout the sequel
that filtrations F and F

S satisfy the usual hypotheses of completeness and right
continuity.

A portfolio manager dynamically allocates the fund’s wealth through a self-
financing strategy. Let θt be the N-dimensional vector representing the ratios of
the wealth W = {Wt }t∈[0,T ] invested in the risky assets at time t , the rate of return
of the strategy follows

dWt

Wt

= (r + θ ′t σtXt )dt + θ ′t σt dZS
t . (2)

We consider a manager, with preferences described by a utility function u, who
consumes all her wealth at time T and hence her optimization problem is

max
θ

E[u(WT )], (3)

subject to the self-financing constraint, starting from a wealth W0. In particular, in
the sequel, we assume u to be a power utility function of the form

u(x) = 1

1− γ
x1−γ , γ �= 1.

3 The Full Information Case

We first consider the case where the manager can observe the market price of risk,
that is the available information to the manager is given by filtration F. Since the
number of risk factors exceeds the number of securities, the market is incomplete.

According to [3], we apply a suitably adapted version of the martingale approach.
Precisely, in the martingale approach the optimal final wealth W∗

T is obtained by
solving the static problem

max
WT

E[u(WT )],

subject to the constraint

W0 = E[ξTWT |F0],
where ξ is the state price density that must be chosen in order to penalize unfeasible
strategies, see [3]. The solution is given by

W∗
T =

W0

E[ξ1− 1
γ

T |F0]
ξ
− 1

γ

T .
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The optimal wealth at any time t in [0, T ] is then given by

W∗
t =

W0

E[ξ1− 1
γ

T |F0]
1

ξt
E[ξ1− 1

γ

T |Ft ].

4 The Partial Information Case

Now we assume that the agent can only observe the prices process S and not
the market prices of risk X. This implies that the available information is carried
by filtration F

S . The problem to be solved is to maximize expected utility from
terminal wealth over a set of self-financing portfolio strategies that are F

S-adapted.
In this case we face an optimization problem under partial information. The
standard procedure is to transform this problem into an equivalent optimization
problem under full information by means of filtering. In other words, we replace
unobservable quantities by their filtered estimates. By expressing the dynamics of
stock price and filtered market price of risk in the observation filtration, we get that
all state processes are driven by the Innovation process which is a N-dimensional
Brownian motion with respect to filtration F

S . Therefore the market model under
partial information turns out to be complete and we can solve the optimization
problem following the classical martingale approach.

5 Conclusion

After defining the dynamics of the assets price process and of the unobservable
market price of risk process X, we study the corresponding filtering problem and
solve a utility maximization problem under partial information. Then, we consider
the same problem, this time assuming that the manager directly observes X. The
difference of the certainty equivalents of the two optimal utilities is the maximum
price that the agent with partial information would be willing to pay for the full
information. Hence it represents the value of the information for the manager. In
our setting, such a quantity can be expressed in closed form. The formula for the
value of information can be used to provide direct answers to questions like: A
more risk-averse manager is willing to pay more or less to get full information? The
value of information is higher or lower when the market gets closer to be a complete
one? What is the impact on the value of the information of the uncertainty on the
market price of risk? We refer to the full paper for the explicit formula and some
applications.
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Risk and Uncertainty for Flexible
Retirement Schemes

Mariarosaria Coppola, Maria Russolillo, and Rosaria Simone

Abstract Nowadays, we are witnessing a wide and spread need to create flexible
retirement schemes for facing global ageing and the prolonging working lives.
Many countries have set up Social Security Systems, which link retirement age
and/or pension benefits to life expectancy. In this context, we consider an indexing
mechanism based on the expected residual life expectancy to adjust the retirement
age and keep a constant Expected Pension Period Duration (EPPD). The analysis
assesses the impact of different stochastic mortality models on the indexation
by forecasting mortality paths based on extrapolative methods. Nevertheless, so
far, in recent literature less attention has been given to the uncertainty issue
related to model selection, although having appropriate estimates for the risk in
mortality projections. With respect to the state of art, our proposal considers model-
assembling techniques in order to balance fitting performances and uncertainty
related to model selection, as well as uncertainty of parameters estimation.

The indexation mechanism obtained by joining the retirement age up with the
expected life span is tested in actuarial terms by assessing the implied reduction
of costs also when assuming worst and best scenarios. The analysis concerns the
Italian population and outlines gender differences.

Keywords Longevity risk · Mortality projections · Uncertainty · Model
averaging · Retirement scheme
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1 Motivation

The present work is tailored to study uncertainty in model fitting and selection with
an application to the mainstream topic of longevity risk. In this setting, the problem
of controlling for uncertainty of estimation and prediction is analyzed on a proposal
for a flexible retirement scheme involving the indexation of the retirement age. The
advanced lag mechanism is matched with life expectancy to keep a constant pension
period duration and thus to control costs for National Social Security Systems. In
an era where the ageing of population is a matter of serious concern for several
countries, forecasts of mortality and related policy actions should be carefully
managed. For this reason, a major importance has to be recognized to the model
selection phase when assessing both the fitting performances and the predictive
abilities of the candidate models. The discussion will rely on the Italian mortality
experience and gender differences in risk and uncertainty of the proposed retirement
scheme will be emphasized.

2 The Italian Mortality Experience

Data have been taken from the Human Mortality database and we shall focus on
cohorts 1952–2012: indeed, those born in 1952 turned 65 in 2017, the historical
benchmark for retirement age. For the forecasts, extrapolative methods have been
applied by choosing the best fitting ARIMA process for the cohort effects when
pertinent. We have considered the stochastic mortality models belonging to the
Generalized Age Period Cohort Family. According to the AIC measure reported
in Table 1, the M7 model is the best performing one for both male and female
populations. However, we notice not negligible differences in the rank of the
performances: for females, in particular with respect to the LC model.

3 Dealing with Model Uncertainty

We have restricted the analysis to the subset of models in the GAPC family with
closer AIC value [1]. After this first step in the model selection, models have been
assembled via the AIC weights [1] reported in Table 1. The LC model is maintained

Table 1 AIC and AIC
weights for best fitting
models

Women Men
Model AIC AIC weights AIC AIC weights

LC 32894.02 0.225 43041.60 0.194
RH 26349.78 0.256 26610.66 0.267
M7 25313.47 0.262 25793.43 0.271
PLAT 26220.45 0.257 26440.79 0.268
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Fig. 1 Comparison between forecasted central death rates and model assembled death rates for
aged 65 in 2012

as a benchmark. In this respect, for both women and men cohorts the RH, M7 and
PLAT models are the competitors whose predictive abilities is worth to combine.
This approach is particularly suitable and advisable for women since the best fitting
model (M7) forecasts a steep increase in mortality trends around 2015–2020 as
shown in Fig. 1. This appears to be justifiable on the basis on recent studies on
the different impact that lung cancers, lower practice medical care because of the
economic crises, and slower increase in longevity observed for women than for men.
Models have been assembled via a weighted sum of fitted central death rates and
projections: to that purpose, the AIC weights have been chosen to assess the relative
convenience of each of the candidate models in order to perform a comparative
analysis with classical model selection techniques.

4 A Flexible Retirement Scheme

We propose an indexing mechanism for retirement age [4] based on the period
life expectancy at age 65 for selected cohorts and for selected mortality model M
belonging to the GAPC family [2]. We consider cohorts of males/females born from
1952 to 2012, setting the cohort 1952 as benchmark [3]. We follow an age-period
approach in the sense that life expectancy is considered as a function of the age
and the calendar year [5]. Specifically, let us consider an individual belonging to
the cohort C, aged x0 on the first of January of year t0, when the expected lifetime
according to a given stochastic mortality model M is equal to e

(M)
x0,C

. Let us suppose
that the pension system we refer to foresees that x0 is the fixed retirement age for all
subsequent cohorts. The individual aged x0 receives a constant monthly payment B
as long as he/she survives. We can say that e(M)

x0,C
represents the Expected Pension



234 M. Coppola et al.

Period Duration according to model M (EPPD(M)), that is the expected number of
years during which pension payments are due. Then, for a fixed mortality model
M and for each of the selected cohorts C, we determine the age at which life
expectancy equals the EPPD(M). Specifically, we evaluate e(M)

x0+j,C for increasing age
span j = 1,2 . . . ., and we index the retirement age x0 by shifting it by the minimal
amount s(M)

C to reach the EPPD(M), that is:

s
(M)
C = min

{
j : e(M)

x0+j,C ≤ EPPD(M)
}
.

Then, for each cohort (x-axis) the forward shift in retirement age derived
from the application of the indexation mechanism is plotted for each of the
best fitting models and for the assembled one (dotted line). We notice that
this technique has a more prominent impact for the female population (right),
because it allows to balance the increasing indexation foreseen by the LC, RH
and PLAT model, with the decay implied by the M7 model. Indeed, the latter
forecasts an increase in mortality rates for women cohorts 2000–2010 and thus,
accordingly, the indexation procedure accounts for such reduced longevity risk
by decreasing the forward shift for retirement age with respect to older cohorts.

5 Conclusion and Further Developments

The paper is devoted to assess the impact of different stochastic mortality models
with respect to the proposed indexation of retirement age. A model-assembling
technique based on the AIC weights is then considered in order to balance fitting
performances and uncertainty related to model selection both for female and male
population.



Risk and Uncertainty for Flexible Retirement Schemes 235

References

1. Benchimol, A.G., et al.: Model uncertainty approach in mortality projection with model
assembling methodologies. Working papers. Statistics and econometrics. WS Universidad
Carlos III de Madrid Departamento de Estadística DES (2016)

2. Villegas, A.R., Kaishev, V., Millossovich, P.: StMoMo: an R package for stochastic mor-
tality modelling. Under review or revision 38 pages. http://openaccess.city.ac.uk/16834/1/
StMoMoVignette.pdf (2016)

3. Coppola, M., Russolillo, M., Simone, R.: The impact of mortality projection models in case
of flexible retirement schemes. Book of abstract 17th Applied Stochastic Models and Data
Analysis International Conference with Demographics Workshop. ISBN: 978-618-5180-22-5.
http://www.asmda.es/ (2017)

4. Bisetti, E., Favero, C.A.: Measuring the impact of longevity risk on pension systems: the case
of Italy. N. Am. Actuar. J. 18(1), 87–104 (2014)

5. Denuit, M., Haberman, S., Renshaw, A.E.: Longevity-contingent deferred life annuities. J.
Pension Econ. Financ. 14(3), 315–327 (2015)

http://openaccess.city.ac.uk/16834/1/StMoMoVignette.pdf
http://www.asmda.es/


Comparing Possibilistic Portfolios
to Probabilistic Ones

Marco Corazza and Carla Nardelli

Abstract In this paper, we compare mean-variance portfolios based on the standard
probabilistic representation of the stock returns to mean-variance portfolios built by
using stock returns represented as possibilistic numbers. With reference to the latter,
in this note we focus our attention on the definitions recently proposed in literature
for modeling portfolio selection problems. In particular, first we investigate some
theoretical properties of the possibilistic portfolios and compare them to the
equivalent ones of the probabilistic portfolios, then, given the assets composing
the Italian stock index FTSE MIB, we empirically compare the performances of
the possibilistic portfolios to those of the probabilistic one. The results show that,
generally, the probabilistic approach is more flexible than the possibilistic one in
solving portfolio selection problems.

Keywords Trapezoidal fuzzy number · Possibilistic portfolio · Probabilistic
portfolio · Variance-covariance matrix · FTSE MIB

1 Introduction

In general terms, portfolio selection consists in sharing a starting capital among
various stocks whose future performances are unknown, this in order to optimize
some risk-return profile of the portfolio itself. Given the uncertainty of the future
stock returns, a crucial role is played by the measurement of the risk associated
to such stock returns. The classical approach represents the future stock returns in
terms of random variables. Alongside to this approach, other alternative ways have
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been proposed. One of the most successful is the representation of the stock returns
in terms of trapezoidal fuzzy numbers, also called possibilistic numbers.

In this contribution, we compare mean-variance portfolios based on the standard
probabilistic representation of the stock returns to mean-variance portfolios built
by using stock returns represented as possibilistic numbers. There exists only a
definition for the probabilistic mean and only one for the probabilistic variance,1

whereas there exist several definitions of possibilistic mean and of possibilistic
variance. With reference to the latter, in this note we focus our attention on the
definitions recently proposed in literature for modeling portfolio selection problems:
the lower possibilistic mean and variance [3], the upper possibilistic mean and
variance [3], and the possibilistic mean and variance à la Zhang-Zhang-Xiao [4],
hereinafter referred to as ZZX possibilistic mean and variance.

In order to present these different possibilistic means and variances, we before
need to provide the definition of trapezoidal fuzzy number [1]. A fuzzy number A =
(a, b, α, β) is called trapezoidal with tolerance interval [a, b], in which a, b ∈ R,
with left width α > 0 and with right width β > 0 if its membership function has the
following form:

A(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1− a − t

α
if a − α < t ≤ a

1 if a < t ≤ b

1− t − b

β
if b < t ≤ b + β

0 otherwise

.

Now, on the basis of this definition, it is possible to obtain the listed possibilistic
means and variances by calculating simple integrals. In particular, given two
possibilistic numbers A1 = (a1, b1, α1, β1) and A2 = (a2, b2, α2, β2), with regards
to the lower possibilistic mean, variance and covariance, one has respectively:

M∗(A1) = a1 − α1

3
, V ar∗(A1) = 1

18
α2

1 , Covar∗(A1, A2) = 1

18
α1α2.

Then, given the same possibilistic numbers, concerning the upper possibilistic mean,
variance and covariance, one has respectively:

M∗(A1) = b1 + β1

3
, V ar∗(A1) = 1

18
β2

1 , Covar∗(A1, A2) = 1

18
β1β2.

1From here on, with the term “variance” we imply also the term “covariance”.
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Finally, given again the possibilistic numbers A1 and A2, with reference to the ZZX
possibilistic mean, variance and covariance, one has respectively:

M(A1) = a1 + b1

2
+ β1 − α1

6
, V ar(A1) = 1

4
(b1 − a1)

2+ 1

24
(α1 + β1)

2+ 1

6
(b1 − a1)

·(α1 + β1), Covar(A1, A2) = 1

4
(b1 − a1)(b2 − a2)+ 1

24
(α1 + β1)(α2 + β2)

+ 1

12
(b1 − a1)(α2 + β2)+ 1

12
(b2 − a2)(α1 + β1).

The remainder of this note is organized as follows. In the next section, we
investigate some theoretical properties of the possibilistic portfolios and compare
them to the equivalent ones of the probabilistic portfolios. In Sect. 3, given
the real assets which are components of the Italian stock index FTSE MIB, we
empirically compare the performances of the possibilistic portfolios to those of the
probabilistic ones.

2 The Theoretical Comparison

As well known, in portfolio selection problems, an important role is played by the
variance-covariance matrix. Therefore, the knowledge of its features is basic for
dealing with such problems. In this regard, we present the statements of two new
theoretical results concerning the possibilistic variance-covariance matrices.

Theorem 1 Let A1, . . . , AN be N ≥ 2 trapezoidal fuzzy numbers.2 Both the lower
possibilistic variance-covariance matrix and the upper possibilistic variance-co-
variance matrix have rank 1.

Theorem 2 Let A1, . . . , AN be N ≥ 2 trapezoidal fuzzy numbers. The ZZX
possibilistic variance-covariance matrix has rank 1 or 2, depending on the values
of ai, bi, αi and βi , with i = 1, . . . , N .

The idea underlying both these theorems is based on the fact that all the considered
variance-covariance matrices depend only on ai , bi , αi and βi , with i = 1, . . . , N .
By suitably exploiting this feature, it is possible to prove the theorems.

Given such results, it is trivial to prove that the lower and upper possibilistic
variance-covariance matrices cannot be used in the basic models of portfolio
selections (like, for instance, that considered in [2]). In fact, their solutions require
the inverse of such matrices. Furthermore, for the same reasons, it is equally trivial
to prove that the ZZX possibilistic variance-covariance matrix cannot be used in the
basic models of portfolio selections for which N > 2.

2In our framework, we can imagine such possibilistic numbers as stock returns.
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Under this point of view, the probabilistic approach is more flexible than the
possibilistic one as it is able to solve portfolio selection problems that the latter can
not deal with.

3 The Empirical Comparison

In this second step, we empirically compare a possibilistic-based portfolio selection
model to the probabilistic-based version of the same model on the basis of their
respective performances when applied to a real stock market.

In particular, as concerns the portfolio selection problem, we consider the
following one:

min
x

x′V x s.t.
{
x′r = π, x′e = 1, xi ≥ 0 ∀ i = 1, . . . , N

}
,

where x = (xi, . . . , xN) is the vector of the unknown decision variables, that is
the vector of the percentages of capital to invest in the various assets, V is the
variance-covariance matrix, r is the vector of the expected rates of return, π is the
desired expected rate of the return of the portfolio, and e is a vector of ones.
Note that, given the above theoretical results, we are obliged to use a portfolio
selection model whose solution does not require the inverse of the variance-
covariance matrix.

Regarding the data, we consider the returns of the assets which are components
of the Italian stock index FTSE MIB from January 1, 2006 to April 28, 2017. We
use the first half of these returns to calculate the possibilistic and the probabilistic
versions both of the vectors of the expected rates of return and of the variance-
covariance matrices. Then, we use the second half of these returns to calculate
the futures performances of both the approaches. Note that, with reference to
the representation of the stock returns in terms of trapezoidal fuzzy numbers,
we randomly generate the latter in order to taken into account different financial
views about the future behaviors of the stock returns themselves (of course, the
probabilistic representation of the stock returns is always the same). We repeat
this procedure 100 times. In Fig. 1, we report as example both the probabilistic
representation of the returns of the stock Buzzi Unicem S.p.A. and one of the
randomly generated possibilistic representation of the same returns.

The performances of the two approaches are similar. Therefore, under this point
of view, it is not possible to detect a “winner” approach, while, we recall, the
probabilistic approach is more flexible from the theoretical standpoint.
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Fig. 1 In the upper figure we show the probabilistic representation of the stock Buzzi Unicem
S.p.A. expressed in terms of absolute frequencies, and in the lower figure we show the possibilistic
representation of the same returns
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Some Critical Insights on the Unbiased
Efficient Frontier à la Bodnar&Bodnar

Marco Corazza and Claudio Pizzi

Abstract In a couple of recent papers, Bodnar and Bodnar have tackled the
estimation problem of the efficient frontier of a risky asset portfolio. The authors
prove that the sample estimator of such a frontier is biased and provide, under proper
but questionable hypotheses, an analytical expression for its unbiased estimator.
In this contribution, first, we study the behavior of the unbiased estimator of the
efficient frontier when the length of the return time series tends to infinity, then,
we investigate a “strange” behavior of the unbiased estimator in correspondence
of particular combinations of the means of the returns of the assets and of their
variances and covariances with respect to the number of the assets and the length of
the associated time series of returns; finally, we analyze the operational effectiveness
of the proposed unbiased estimator by a bootstrap-based approach.

Keywords Efficient frontier · Unbiased estimator · Asymptotic and “strange”
behaviors · Bootstrap estimator

1 Introduction

In a couple of recent papers of Bodnar and Bodnar on the estimation of the efficient
frontier of a portfolio of risky assets [1, 2], the Authors prove that the sample
estimator of such a frontier is biased and provide, under proper but questionable
hypotheses, an analytical expression for its unbiased estimator. Furthermore, they
highlight that the sample estimator of the efficient frontier is overoptimistic, in
the sense that the latter systematically underestimates the variance of each efficient
portfolio.
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In this contribution: first, we study the behavior of the unbiased estimator of the
efficient frontier when the length of the return time series tends to infinity; then, we
investigate a “strange” behavior of the same unbiased estimator in correspondence
of particular combinations of the means of the returns of the assets and of their
variances and covariances with respect to the number of the assets and the length of
the associated time series of returns; finally, we analyze the operational effectiveness
of the proposed unbiased estimator by a bootstrap-based approach.

The remainder of this note is organized as follows. In the next section, we
synthetically present the model of O. Bodnar and T. Bodnar. In Sect. 3, we provide
our main results.

2 Unbiased Estimator of the Efficient Frontier

The unbiased estimator of the efficient frontier proposed by Bodnar and Bodnar [2]
is based on the following hypotheses:

1. All the considered K > 2 assets are risky;
2. The returns of these assets are serial independent;
3. The returns of these assets are normally distributed;
4. Indicated by N the length of the return time series, N > K .

Note that, without entering into detailed discussion, there exists an extensive
literature following which the hypotheses (2) and (3) do not appear particularly
realistic.

Given these hypotheses, the Authors prove that the following sample estimator
of the efficient frontier is biased:

BEF :=
(
R − R̂GMV

)2 − ŝ
(
V − V̂GMV

)2 = 0

where

R is the expected return of the portfolio,
R̂GMV is the sample estimate of the expected return of the global minimum variance

portfolio,
ŝ = μ̂

′
R̂μ̂, in which: μ̂ is the vector of the sample estimates of the expected rates

of return of the assets; R̂ = Σ̂
−1 −

(
Σ̂
−1

1′1Σ̂−1)/(
1′Σ̂−1

1
)

, where Σ̂ is

the matrix of the sample estimates of the variances and of the covariances of the
rates of return, and 1 is a vector of ones,

V is the variance of the return of the portfolio,
V̂GMV is the sample estimate of the variance of the return of the global minimum

variance portfolio.
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Then, under the same conditions, the Authors provide the following expression
for the unbiased estimator of the efficient frontier:

UEF :=
(
R − R̂GMV

)2 − A · V̂GMV −
(
B · ŝ − C

) (
V −D · V̂GMV

)2 = 0

where

A = [(n− 2)(n− 1)]/[(n− k)(n− k + 1)n] ,
B = (n− k − 1)

/[(n− k)(n− 1)] ,
C = (k − 1) /n ,
D = [(n− k − 2)(n− 1)]/[(n− k)(n− k + 1)] .

Finally, the Authors present an empirical application in which they consider time
series of monthly returns from the equity markets of ten developed countries. Note
that for these monthly returns, the above hypotheses (2) and (3) seem acceptable.

3 Our Main Results

With respect to the framework described above, in this section we present our main
results.

3.1 The Asymptotic Behavior of the Biased Estimator

First, we study the behavior of the unbiased estimator of the efficient frontier when
the length of the return time series tends to infinity. In this regard, we present the
statement of our following theoretical result.

Theorem 1 limN→+∞ BEF = UEF.

From practical purpose, this result ensures the convergence of the biased efficient
frontier to the unbiased one when the length of the return time series is large enough.

3.2 The “Strange” Behavior of the Unbiased Estimator

The unbiased estimator of the efficient frontier is characterized by a “strange”
behavior in correspondence of particular combinations of the means of the returns
of the assets and of their variances and covariances with respect to the number of
the assets and the length of the associated time series of returns. In fact, in these
cases, the estimator of the efficient frontier develops toward North-West instead of
towards North-East, as usual (and theoretically correct). In particular, this “strange”
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Fig. 1 Example of the “strange” behavior of the unbiased estimator of the efficient frontier. As
usual, the x-axis stands for the variance of the return of the portfolio and the y-axis stands for the
expected return of the portfolio

behavior appears when N " 0 and the returns are daily. In Fig. 1 we give a graphical
exemplification of such an occurrence: the North-East efficient frontier and the
North-West one are both generated by the same stocks but using different subsets of
the original return time series.

Also in this regard, we present the statement of our following theoretical result.

Theorem 2 The unbiased estimator of the efficient frontier develops towards
North-West when

ŝ <
(n− 1)(k − 1)

n(n− k − 1)
(∗)

3.3 The Operational Effectiveness of the Unbiased Estimator

In conclusion, an important question rises: is the proposed unbiased estimator of
efficient frontier operationally effective?

In order to give an answer to this question, given a set of real assets which
are components of the Italian stock index FTSE MIB, we perform two empirical
analysis.

– The first one concerns the determination of the confidence interval of the sample
estimate of the efficient frontier through a bootstrap approach (see [3]) by using
100 resampling. In particular, for preserving the autocorrelation structure of the
return time series we adopt the block bootstrap (see [4]). We obtain that the
unbiased estimate of the efficient frontier is not statistically different with respect
to the sample estimate of the same efficient.
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– The second empirical analysis, similar to the previous one, is based on 100 sim-
ulated portfolio with different distributional properties and different combination
of means, variances and covariances of the returns of the assets. By doing so,
we obtain interesting results. In fact, different distributional properties produce
different results. In case of the normal probability distribution, in the 69% of
the simulations the unbiased estimate of the efficient frontier and the sample
estimate of the same frontier are statistically equal, while in case of the Student’s
t probability distribution only the 28% are. Furthermore, repeating this analysis
by removing the serial independence in the return time series, the percentage in
case of normal probability distribution and of Student’s t one are similar (54%
and 58%, respectively).
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Numerical Solution of the Regularized
Portfolio Selection Problem

Stefania Corsaro, Valentina De Simone, Zelda Marino, and Francesca Perla

Abstract We investigate the use of Bregman iteration method for the solution of
the portfolio selection problem, both in the single and in the multi-period case. Our
starting point is the classical Markowitz mean-variance model, properly extended
to deal with the multi-period case. The constrained optimization problem at the
core of the model is typically ill-conditioned, due to correlation between assets. We
consider l1-regularization techniques to stabilize the solution process, since this has
also relevant financial interpretations.

Keywords Portfolio optimization · l1 Regularization · Bregman iteration

1 Introduction

In this work we discuss the numerical solution of the portfolio selection problem.
Our starting point is the classical Markowitz mean-variance framework, in which
one aims at the construction of an investment portfolio that exposes investor to
minimum risk providing him a fixed expected return. A common strategy to estimate
Markowitz model parameters is to use historical data as predictive of the future
behaviour of asset returns. This typically leads to ill-conditioned numerical prob-
lems. We then consider l1 regularization techniques; the single-period regularized
model was introduced in [3], where a l1-penalty term is added to the objective
function of the optimization problem at the core of the model. This has also nice
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financial interpretations, both in terms of transaction costs and control of short-
positions. We then extend the regularized model to the multi-period case. Our model
satisfies time consistency, a fundamental requirement in this framework. Different
definitions of time consistency can be found in literature, either related to dynamic
risk measures or investment policies [5]; this concept deals with the consistency
over time of decisions taken with the support of evolving available information. We
discuss the numerical solution in both cases. We develop iterative algorithms based
on Bregman iteration method, that converts the constrained problem into a short
sequence of unconstrained ones. The presence of the l1-term makes the solution of
the involved optimization sub-problem not trivial, thus we apply ad hoc methods to
deal with non-smoothness [1].

In Sect. 2 we describe the regularized portfolio selection model; in Sect. 3 we
describe Bregman iteration method.

2 Regularized Portfolio Selection Model

Let n be the number of traded assets. We assume self-financing investment
strategies, both in the single and in the multi-period case. We start by describing
the static mean-variance problem. We suppose that one unit of capital is available
and define

w = (w1, w2, . . . , wn)
T

the portfolio weight vector, where wi is the amount invested in the i-th security.
We furthermore denote with

r = (r1, r2, . . . , rn)
T

the vector of expected asset returns. Regularized portfolio selection is formulated as
the following quadratic constrained optimization problem:

minw wT *w+ τ‖w‖1

s.t.
wT 1n = 1,
wT r = ρ

where 1n is the column vector of ones of dimension n, ρ is the fixed expected
portfolio return, and * is the covariance matrix of returns. The first constraint is
a budget constraint which establishes that all the available capital is invested. The
second one fixes the expected return.

Let us now turn to the dynamic case and consider m dates, which define m − 1
periods of investment. Decisions are assumed at time ti , i = 1, . . . ,m−1; decision
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taken at time ti is kept in the period [ti , ti+1). Portfolio weights and asset returns
are now stored in matrices W ∈ #n×m, R ∈ #n×(m−1), in which the i-th columns
wi , ri contain, respectively, the weight vector at time ti and the expected return
vector in the period [ti , ti+1). Regularized portfolio selection is formulated as the
following constrained optimization problem:

min
W

m∑

i=1

[
wT

i *iwi + τ‖wi‖1

]

s.t.

wT
1 1n = 1 (1)

wT
i 1n = (1+ ri−1)

Twi−1, i = 2, . . . ,m (2)

wT
n 1n = xterm (3)

where xterm is the expected wealth provided by the overall investment and *i is the
covariance matrix estimated in the i-th period. As in the one-period case, constraint
(1) is the budget constraint, constraint (2) means that the investment strategy is self-
financing, thus, at the end of each period the wealth is given by the revaluation
of the previous one. Finally, constraint (3) fixes the investment target. We adopt
a separable formulation for the risk measure, so, following [4], we show that our
approach is time consistent.

3 Bregman Iteration for Portfolio Selection

Regularized portfolio selection can be in general formulated as the constrained
nonlinear optimization problem:

minwE(w)

s.t.
Aw = b,

(4)

where, defined M = m+ 1, N = m ·n, the functional E(w) : #N −→ # is strictly
convex and non-smooth due to the presence of the l1-penalty term and A ∈ #M×N
is the matrix form of the constraints and b ∈ #M . Bregman iteration can be used
to reduce (4) in a short sequence of unconstrained problems by using the Bregman
distance associated with E [2].

The Bregman distance associated with a proper convex functional E(w) at point
v is defined as:

D
p
E(w, v) = E(w)− E(v)− < p,w− v >,
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where p ∈ ∂E(v) is a subgradient in the subdifferential of E at point v and < ., . >

denotes the canonical inner product in RN . First of all, the constrained problem (4)
is converted into the unconstrained one:

minw E(w)+ λ
2 ‖Aw− b‖2

2 (5)

for a fixed λ > 0. Then, at each Bregman iteration E(w) is replaced by the Bregman
distance so a sub-problem in the form of (5) is solved according to the following
iterative scheme:

{
wk+1 = argminwD

pk
E (w,wk)+ λ

2 ‖Aw− b‖2
2,

pk+1 = pk − λAT (Awk+1 − b) ∈ ∂E(wk+1).
(6)

Under suitable hypotheses the convergence of the sequence {wk} to the solution
of the constrained problem (4) is guaranteed in a finite number of steps [6]. Since
there is generally no explicit expression for the solution of the sub-minimization
problem involved in (6), at each iteration the solution is computed inexactly using
an iterative solver. At this purpose, we focus on first order methods, which are
gradient-based that converge rather slowly; however, for large problem dimensions,
usually a fast lower-precision solution is favoured. In particular, we use the
Fast Proximal Gradient method with backtracking stepsize rule (FISTA) [1], an
accelerated variant of Forward Backward algorithm, suitable for minimizing convex
objective functions given by summation of smooth and non-smooth terms. We test
our algorithms on real market data, and validate our approach observing the out-of-
sample performances of optimal portfolios.
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Forecasting the Equity Risk Premium
in the European Monetary Union

David Cortés-Sánchez and Pilar Soriano-Felipe

Abstract This article examines the performance of several variables that could
be good predictors of the equity risk premium in the European Monetary Union
for a period that spans from 2000 to 2015. In-sample, technical indicators display
predictive power, matching or exceeding that of traditional economic forecasting
variables. We also find consistent results in the fact that combining information from
technical and economic variables improves equity risk premium forecasts, compared
to using these variables alone. Nevertheless, out-of-sample exercises do not confirm
in-sample results. Economic predictors show stronger out-of-sample forecasting
ability than technical indicators, and apart from volume rules, technical indicators do
not show forecasting power. Overall, only a few economic and technical predictors
display forecasting power in-sample and out-of-sample, and provide economic value
for a risk-averse investor.

Keywords Equity risk premium · Economic variables · Technical indicators ·
Principal components analysis · In-sample forecasts · Out-of-sample forecasts ·
Asset allocation

1 Introduction

Forecasting stock returns is one of the most popular themes to both academics
and practitioners in finance. The existing literature has studied many types of
variables and proposed multiple econometric models trying to see if there is sig-
nificant evidence of returns predictability. It is generally accepted among financial
economist, that stock returns contain a significant predictable component in-sample.
For example Rozeff [1], Campbell and Shiller [2] or Cochrane [3] find evidence
in favor of return predictability using the dividend yield. Nonetheless, when we
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review economic literature that focus on out-of-sample forecasting ability, there
is not such consensus among economists. Bossaerts and Hillion [4], and Welch
and Goyal [5] show that a long list of predictors from the literature are unable
to perform consistently better out-of-sample than a simple forecast based on the
historical average.

In this paper, as suggested by Neely et al. [6], we investigate the capacity of
multiple economic variables and technical indicators to forecast the equity risk
premium. We evaluate the same variables and econometric models, but for a
European data set.

2 In-Sample Analysis

The conventional framework for analyzing the equity risk premium predictability is
based on simple linear regressions. The idea is to run a predictive linear regression
of realized excess of returns on lagged explanatory variables.

rt+1 = αi + βiXt + εt+1 (1)

Where the equity risk premium, rt + 1, is the return on a broad stock market index
in excess of a risk free asset from period t to t + 1, xt is the predictor, and εt + 1 is a
zero mean disturbance.

We replicate Neely et al. [6] paper but for the European Monetary Union (EMU),
to see if we can get similar results as they obtained for the United States. In this
regard, we use the same variables,1 and we work with 12 economic variables, and 14
technical indicators. Data spans from January 2000 to September 2015, frequency
is monthly, and to calculate the equity return, we selected a popular stock market
index, the MSCI EMU index.

Adding more predictors could incorporate relevant information and improve
regression forecasting accuracy. Hence we also estimate multivariate predictive
regressions, but instead of using all the predictor variables, we use principal
components analysis to summarize all relevant information of our predictors into
few principal components. To calculate these components we work with three sets
of variables: FECO, calculates principal components for all economic predictors,
FTECH for all the technical indicators, and FALL takes into account all predictive
variables.

1Economic Variables include: Dividend-Price ratio, Dividend-Yield ratio, Earnings-Price ratio,
Payout ratio, Book-to-Market ratio, Euribor 3M rate, 10Y Euro Swap rate, Term Spread, Default
Yield Spread, Default Return Spread, Inflation rate and Equity Risk Premium Volatility. Technical
Indicators include: Moving Averages rules, Momentum rules and Volume rules.
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3 Out-of-Sample Analysis

As a robustness check, we run out-of-sample forecasting tests to check if in-sample
results are also valid out-of-sample. To calculate out-of-sample forecasts, we divide
the whole period of data into two subperiods.

To analyze out-of-sample stock return predictability, the accuracy of the pro-
posed predictive regressions forecasts is compared to the historical mean average.
Moreover, the Mean Squared Forecast Error (MSFE) is calculated to evaluate
forecast accuracy, and we analyze forecasts in terms of the Campbell and Thomson
[7] out-of-sample R-squared (R2

OS), which compares the MSFE of regressions
constructed with selected predictors to the MSFE of the benchmark.

R2
os = 1− MSFEr

MSFEb

(2)

Where MSFEr is the mean squared forecast error of the predictive regression,
and MSFEb is the mean squared forecast error of the benchmark. If R2

OS > 0, then
the predictive regression forecast relative to historical average is more accurate. But,
if R2

OS < 0, then the opposite happens.

4 Asset Allocation

As a final exercise, we measure if there is any economic value in the out-of-sample
predictions for a risk-averse investor that has a quadratic utility function. We max-
imize investors’ utility function using a simple asset allocation model that, either
invests in equity assets, or in the risk-free asset. If predictive regressions improve
investors’ utility relative to the benchmark predictions, then those predictors create
economic value for this investor.

5 Summary of Most Important Results

Table 1 summarizes all the results obtained in previous sections.
First, there are six variables that show ability to forecast monthly equity risk

premiums in-sample and out-sample, and moreover produce utility gains for a
risk-averse invertor. Three of these predictors are economic, the long and short
interest rates (EUR3M, SWAP10), and the book market value (BM). The other three
predictors are technical, and are on-balance volume indicators OBV212, OBV39
and OBV312. These results are similar to those found by Neely et al. [6].

Second, this exercise also finds evidence that multivariate analysis using PCA
gathers relevant information of economic and technical predictors, shows predictive



256 D. Cortés-Sánchez and P. Soriano-Felipe

Table 1 Summary of in-sample, out-of-sample and asset allocation results

Predictor In-sample Out-of-sample A.A. performance
t-stat R2 (%) MSFE-Adj R2OS (%) Relative gain (%) Sharpe

DP 0.17 0.02 0.96 0.36 0.00 0.00
DY 0.31 0.07 1.52* 0.89 0.00 0.00
EP 0.17 0.02 1.95** 0.48 0.00 0.00
DE 0.48 0.12 0.76 1.08 −0.34 −0.26
RVOL −0.21 0.03 −0.85 −0.67 0.00 0.00
BM 2.27** 2.80 2.54*** 8.04 0.85 0.25
EUR3M −3.58*** 6.49 1.6* −2.88 0.84 0.15
SWAP10Y −2.97*** 4.04 1.55** −9.96 0.64 0.14
TMS 2.32*** 3.26 0.19 −0.90 0.62 0.21
DFY −1.55 1.78 1.37* 4.01 −0.40 −0.01
DFR −1.26 1.39 1.57* 4.78 −0.19 −0.01
INF −2.97*** 5.44 1.03 −22.65 −1.75 0.09
MA1MA9 2.52*** 4.25 0.46 −7.00 −0.49 0.03
MA1MA12 2.52*** 4.44 1.45 −0.15 1.09 0.10
MA2MA9 2.31*** 3.65 1.07 −1.34 0.23 0.06
MA2MA12 2.04*** 2.90 0.99 −1.36 −0.07 0.04
MA3MA9 2.23*** 3.44 0.59 −9.56 −0.19 0.03
MA3MA12 1.83*** 2.34 1.55 1.69 0.24 0.05
MOM9 2.25*** 3.58 0.7 −1.60 −0.33 0.03
MOM12 1.46 1.46 1.51 2.07 −0.23 0.00
OBV19 1.85*** 2.24 0.22 −2.02 −0.72 −0.01
OBV112 2.78*** 4.80 0.75 −1.55 −0.29 0.05
OBV29 2.93*** 5.24 1.68 2.11 3.52 0.21
OBV212 3.07*** 5.97 2.32* 5.85 4.58 0.23
OBV39 3.05*** 5.66 2.03* 4.56 4.19 0.22
OBV312 3.34*** 7.09 2.99** 9.55 6.26 0.28
FECO 5.15*** 7.75 1.46* −4.39 0.51 0.14
FTECH 5.56*** 5.77 1.33 −1.09 2.62 0.16
FALL 6.22*** 9.19 1.74* −0.25 2.22 0.14

R2 is the simple R2 obtained from ols estimation and R2OS is the Campbell and Thompson [7] R2
Relative gain id the difference between the CER generated by a predictor and the CER of the
benchmark
*, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. Based on two-tail
wild bootstrapped p-values for in-sample estimations and on Clark and West [8] MSFE-adj for
out-of-sample predictions

power, and creates economic value for risk-averse investors. In most of the cases,
multivariate predictive regressions using principal components outperform forecast
based on individual predictors. This is also line with results obtained by Neely et al.
[6].

Third, technical indicators display stronger forecasting ability in-sample, but
this result is not confirmed out-of-sample, where economic variables show a better
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performance than technical indicators. This is also confirmed by the asset allocation
exercise, where most of the trend-following rules produce more trading and higher
transaction costs, but underperform the historical average benchmark. This third
point clearly contradicts Neely et al. [6] findings that monthly equity risk premium
forecast based on technical indicators outperform forecasts based on economic
variables.

Fourth, within the economic variables, macroeconomic variables perform better
than valuation ratios for short term forecasting and portfolio rebalancing. Further
studies using longer forecasting periods might turn around this result and improve
valuation ratios forecasting power.
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Statistical Learning Algorithms
to Forecast the Equity Risk Premium
in the European Union

David Cortés-Sánchez and Pilar Soriano-Felipe

Abstract With the explosion of “Big Data”, the application of statistical learning
models has become popular in multiple scientific areas as well as in marketing,
finance or other business disciplines. Nonetheless, there is not yet an abundant liter-
ature that covers the application of these learning algorithms to forecast the equity
risk premium. In this paper we investigate whether Classification and Regression
Trees (CART) algorithms and several ensemble methods, such as bagging, random
forests and boosting, improve traditional parametric models to forecast the equity
risk premium. In particular, we work with European Monetary Union data for a
period that spans from the EMU foundation at the beginning of 2000 to half of
2017.

The paper first compares monthly out-of-sample forecasting ability of multiple
economic and technical variables using linear regression models and regression
trees techniques. To check the out-of-sample accuracy, predictive regressions are
compared to a popular benchmark in the literature: the historical mean average.
Forecasts performance is analyzed in terms of the Campbell and Thompson R-
squared (R2

OS), which compares the MSFE of regressions constructed with selected
predictors, against the MSFE of the benchmark.

Keywords CART models · Ensemble techniques · Equity risk premium forecast

1 Introduction

Forecasting stock returns is one of the most popular themes to both academics and
practitioners in finance. The existing literature has studied many types of variables
and proposed multiple econometric models trying to see if there is significant
evidence of returns predictability. A big part of the literature that tries to find out-of-
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sample evidence of the equity risk premium predictability has focused on parametric
models, mainly simple linear regressions models, and little attention has been given
to statistical learning algorithms.

In this paper we focus our attention on regression trees that were introduced
by Breiman et al. [1]. We selected these algorithms because they are simple to
implement and to interpret, they are not subject to specific model assumptions
and they can deal with multiple explicative variables giving consistent results.
Nonetheless, prediction results given by regression trees are quite unstable. A
solution to this problem of instability is to apply ensemble methods that create
multiple trees through bootstrapping techniques, or any other iteration process, and
ensemble all results obtained.

2 Methodology

2.1 CART Models

CART is a non-parametric modeling technique that fixes a set of rules upon the
explanatory variables to classify the explained variable into categories. It looks at
the variables in the data set, determines which are most important, and results in a
tree of decisions that best partition the data. The principal idea behind a decision tree
is to recursively partition the space into smaller sub-spaces where similar response
values are grouped. After the partition is completed, a constant value of the response
variable is predicted within each area.

The basic steps to construct a classification or regression tree are:

1. Start with and empty tree
2. Select a feature to split the data. Tree-structured classifiers are constructed by

making repetitive splits of space X, so that a hierarchical structure is formed. The
process follows a top-down approach and it is applied at every node and for every
k explicative variables. It is known as “top-down greedy recursive partitioning”.
It begins at the top of the tree, includes all the data, and then successively splits
the predictor space. Each split is indicated via two new branches further down on
the tree. It is considered “greedy” because at each step the best split is made at
that particular step, without any consideration of whether those choices remain
optimal in future stages.

3. Stop splitting and decide which nodes are terminal. Node splitting would
continue recursively until some stop condition is reached and the grown tree
has the right complexity. There are several stop criteria, but one of the best
approaches was proposed by Breiman et al. [1] and consists to let the tree grow
to saturation and then prune it back.
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2.2 Ensemble Models

CART models show a high degree of instability to small changes in the learning
data. A solution to this problem is given by ensemble methods that generate multiple
training samples, get separate predictions for each sample, and somehow aggregate
those multiple predictions. The most common types of ensembles used with trees
are Bagging, Random Forest and Boosting. All these techniques are applied in the
paper.

3 The Model

We used a regression tree model with the following form:

ERP t =
M∑

m=1

cmx

n∏

i=1

I (xi ∈ Rm) (1)

Where ERPt is the Equity Risk Premium in moment t; Cm are constants; I(.) is
an indicator function returning 1 if its argument is true and 0 otherwise; Xi is the
lagged predictor variable I; and R1 . . .Rm represent a partition of the feature space.

3.1 The Data

Our empirical analysis is conducted for the European Monetary Union with a
monthly dataset, and covering a period that goes from June 2000 to July 2017. Data
is also divided into two groups: the training set that is used to build initial trees, and
the test set, which checks if forecasted results perform well out of sample. Three
training sets were tested: June 2000–December 2012, June 2000–December 2013
and June 2000–December 2014.

Table 1 show all predictors used in the algorithms. These variables were
measured in levels, 1 month changes, and 3 months and 6 months z-scores. Z-scores
are normalized variables calculated as the value in a particular date minus its mean
divided by its standard deviation. This gives a total of 104 explicative variables that
are loaded into the algorithm.
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3.2 Out-of-Sample Predictions

To analyze out-of-sample stock return predictability, the accuracy of the proposed
predictive regressions forecasts is compared to the historical mean average. More-
over, the Mean Squared Forecast Error (MSFE) is calculated to evaluate forecast
accuracy, and we analyze forecasts in terms of the Campbell and Thomson [2] out-
of-sample R-squared (R2

OS), which compares the MSFE of regressions constructed
with selected predictors to the MSFE of the benchmark. If R2

OS > 0, then the
predictive regression forecast relative to historical average is more accurate. But,
if R2

OS < 0, then the opposite happens.

4 Results

Table 2 illustrates the most interesting results. The first one is that regression trees
techniques do not always outperform simple linear regression models. In most of
the cases, ensemble regression trees show a better performance than simple linear
regressions, but in the case of the OECD leading indicator in 1 month changes
(OECD_1MCHG), for all the out-of-sample periods tested, linear regression showed
higher forecasting ability. For instance, for the out-of-sample period 2015–2017 the
R2

OS was 19.1% for the OECD_1MCHG and 17.1% for the boosting algorithm.
Nonetheless, ensemble regression trees outperformed the other 103 regressions built
with the rest of predictor variables.

Another interesting result is that, among regression trees, boosting was the
best performer algorithm. In all periods, the rank between regression trees models
was the same, and all the models except the not-pruned regression tree beat the
benchmark. Best forecasting ability was achieved by boosting methods, followed
by random forest, bagging and pruned trees. Not pruned regression trees displayed
lower forecasting ability that its benchmark, having negative R2

OS in all periods.
This confirms that letting trees to grow tends to overfit the learning sample, fitting
non-systematic changes of the data, and leading to poor out-of-sample forecast.
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Evaluating Variable Annuities with
GMWB When Exogenous Factors
Influence the Policy-Holder Withdrawals

Massimo Costabile, Ivar Massabó, and Emilio Russo

Abstract We propose a model for evaluating variable annuities with guaranteed
minimum withdrawal benefits in which a rational policy-holder, who would with-
draw the optimal amounts maximizing the current policy value only with respect to
the endogenous variables of the evaluation problem, acts in a more realistic context
where her/his choices may be influenced by exogenous variables that may lead to
withdraw sub-optimal amounts. The model is based on a trinomial approximation
of the personal sub-account dynamics that, despite the presence of a downward
jump due to the payed withdrawal at each anniversary of the contract, guarantees
the reconnecting property. A backward induction scheme is used to compute the
insurance fair fee paid for the guarantee.

Keywords Variable annuity · Guaranteed minimum withdrawal benefits ·
Trinomial tree

1 The Framework

We consider a single premium variable annuity (VA) with GMWB issued at time 0
and maturing at time T with withdrawals allowed at each contract anniversary th =
h, with h = 1, . . . , T , versus an initial investment W0 in a fund. As a consequence,
such a contract may be described introducing two accounts for the policy-holder:
a personal sub-account invested in a well diversified reference fund made up of
risky assets, whose value at a generic time t ∈ [0, T ] is denoted by W(t), and a
guarantee account, having value At at the same time t . The initial investment W0
forms the initial balance of both the accounts, i.e., W(0) = W0, and A0 = W0, as
each withdrawal reduces both the accounts. The personal sub-account presents the
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following dynamics under the risk-neutral probability measure,

dW(t) = (r − α)W(t)dt + σW(t)dB(t) with th ≤ t < th+1, (1)

where r is the constant instantaneous risk-free rate of return, α captures the
insurance fee for the GMWB guarantee, σ is the return volatility, and B(t) is a
standard Brownian motion. At each withdrawal epoch th, the policy holder may
withdraw an arbitrary amount ωh ≤ W(t−h ), so that the sub-account value decreases
as W(th) = max(W(t−h ) − ωh, 0), and the guarantee account balance, that remains
constant when th−1 ≤ t < th at level At = Ath−1 since no withdrawal is allowed
between two consecutive anniversaries, assumes value Ath = max(Ath−1 − ωh, 0).
For instance, at the first anniversary t1 = 1, the sub-account has value W(t−1 )

generated by (1), while the guarantee account has value At−1
= W0. The policy-

holder may decide to withdraw a generic amount ω1, with G ≤ ω1 ≤ W(t−1 ),
where G = W0/T , which will be penalized only for the part exceeding G with a
contractual fixed penalty ϕ. Hence, she/he receives

f (ω1) = G+ (1− ϕ)(ω1 −G), (2)

while both the sub-account and the guarantee account decrease by ω1 assuming
value W(t1) = max(W(t−1 )− ω1, 0), and At1 = max(At−1

− ω1, 0), respectively.

2 The Evaluation Model

The novelty of our approach consists on the fact that the choice of the withdrawn
amountωh may be driven not only by an endogenous financial valuation, but also by
an exogenous variable that influences the policy-holder’s decisions. The role of such
variable is to model the possible exogenous factors that may lead the policy-holder
to make sub-optimal choices of the withdrawn amounts in place of the optimal ones.
To capture this effect on the holder decisions, we denote by ωF

h the financially driven
withdrawn amount (i.e., endogenous within the evaluation problem), and by ωI

h the
amount needed by the policy-holder whenever a certain exogenous event happens.
We suppose that ωI

h is a realization of a random variable with a given distribution
function (then specified in Sect. 3 to make numerical experiments), so that the
policy-holder withdraws ωI

h with probability pI , while she/he withdraws ωF
h with

probability 1 − pI . Here, pI = 1 − e−ι(·) represents the probability characterizing
the external factor and ι(·) is the hazard rate function.

The model is based on a trinomial approximation of the sub-account dynam-
ics (1) to evaluate VA with GMWB and, consequently, the fair fee α paid for
the GMWB guarantee, even in presence of some exogenous factors affecting
the policy-holder choices of the withdrawn amounts at each contract anniversary.
At first, a trinomial approximation of the stochastic differential equation (1) is
established when a fixed amount is withdrawn at each contract anniversary, as in the
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static approach. The previous approximation scheme is then adapted to handle the
possibility for the policy-holder to withdraw an arbitrary amount, as in the dynamic
approach. In this case, we assign to each sub-account value, in correspondence of the
policy anniversaries, the additional role of keeping information concerning the total
withdrawn amount up to that epoch. Finally, an exogenous variable is introduced to
show its influence on the choice of the withdrawal amounts when we compute the
policy value at inception proceeding backward on the tree and, in particular, the fee
α in (1) charged for the GMWB guarantee.

3 Numerical Results

We test the pricing model by showing some numerical experiments where we
compute the fee α for the GMWB guarantee. At first, to assess the goodness of
the proposed model, we compare the values of α computed by the proposed model
with the ones reported in the paper of Yang and Dai [1].

W0 = 100, r = 0.0325, n = 1000

T = 25 T = 20

Static, ϕ = 1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4

Trin. 0.004599 0.010182 0.015675 0.006607 0.014147 0.021599

YD 0.0046 0.0102 0.0157 0.0066 0.0142 0.0216

T = 25 T = 20

Static with surrender, ϕ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4

Trin. 0.004599 0.015796 0.039517 0.006607 0.022359 0.052297

YD 0.0046 0.0158 0.0395 0.0066 0.0224 0.0523

To provide an analysis of the performance of the proposed model embedding the
effect of the exogenous variable, we consider a policy having time to maturity 10
years with parameters W0 = 100, r = 0.05, and σ = 0.4. In this case, the static
model obtained by imposing ϕ = 1 and ι(·) = 0 provides a fee for the GMWB
guarantee α = 0.0344. Imposing the penalty ϕ = 0.01, the static model with
surrender option provides a value for the fee equal to α = 0.1043. To show the effect
of the exogenous variable on the fee for the GMWB characterizing the considered
policy, we consider a Weibull distribution having cumulative distribution function

F(x) = 1− e−(
x
θ )

κ

(3)

where x > 0, θ > 0, and κ > 0. To generate numerical results, we choose the
hazard rate as a decreasing function of the sub-account value, that is

ι(W(i, j)) = ρ
W0

W(i, j)
, (4)
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where ρ is a positive constant and W0 is the policy minimum guaranteed global
amount. In the figure, we provide a comparison of the α values when the penalty
ϕ ∈ [0.01, 1]. To do this, we consider for ρ in (4) three different levels 0.05, 0.1, and
0.2, while the Weibull parameters are set to θ = 20 and κ = 0.5. The effect of the
exogenous variable on the values for α is more evident when increasing the ρ-level,
that is sub-optimal amounts are more probable to be withdrawn. Indeed, the greater
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is the probability that sub-optimal amounts are withdrawn, the smaller is the present
policy value and, consequently, smaller is the fee α for the GMWB guarantee.
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A Continuous Time Model for Bitcoin
Price Dynamics

Alessandra Cretarola, Gianna Figà-Talamanca, and Marco Patacca

Abstract This chapter illustrates a continuous time model for the dynamics of
Bitcoin price, which depends on an attention or sentiment factor. The model is
proven arbitrage-free under mild conditions and a quasi-closed pricing formula for
European style derivatives is provided.

Keywords Bitcoin · Sentiment · Option pricing

1 Introduction

Bitcoin has been introduced by Satoshi Nakamoto (a pseudonym) in 2009 as a peer-
to-peer payment system based on the blockchain technology, a decentralized ledger
which does not rely on any central authority. Indeed, Bitcoin has shown a high
volatile behavior and it is claimed to be a speculative asset rather than a currency,
see [5]. Besides, Bitcoin price is known to be affected by market sentiment and it
is believed that over-confidence about the underlying technology might boost in a
pricing bubble, see, among others [1–3]. It is also worth noticing that a standardized
market has started within the Chicago Option Exchange (CBOE) for Bitcoin futures,
opening the path to other derivatives. In this paper we build on the above literature
and on the new interest in Bitcoin derivatives to develop a bivariate model in
continuous time to describe the Bitcoin price dynamics depending on the behavior
of a second stochastic factor, which represents confidence/sentiment in the Bitcoin
system. We also take into account a delay between the confidence factor and its
effect on the Bitcoin price. The model is proven to be arbitrage-free under mild
conditions and, based on risk-neutral evaluation, a quasi-closed formula is derived
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for European style derivatives on the Bitcoin. A short numerical exercise is finally
provided to assess the pricing formula sensitivity with respect to model parameters.

2 The Model

Consider the probability space (Ω,F ,P) with a filtration F = {Ft , 0 ≤ t ≤ T }
satisfying classical assumptions of right-continuity and completeness, where T > 0
is a fixed time horizon; in addition, we assume that F = FT . We denote by S =
{St , 0 ≤ t ≤ T } the Bitcoin price process and we assume that the Bitcoin price
dynamics is described by the following equation:

dSt = μSPt−τ Stdt + σS
√
Pt−τ StdWt, S0 = s0 ∈ R+, (1)

where μS ∈ R\{0}, σS ∈ R+, τ ∈ R+ represent model parameters; W = {Wt, 0 ≤
t ≤ T } is a standard F-Brownian motion on (Ω,F ,P) and P = {Pt , 0 ≤ t ≤ T }
is a stochastic factor, representing confidence/sentiment about the Bitcoin system,
whose dynamics is given by:

dPt = μPPtdt + σP PtdZt, Pt = φ(t), t ∈ [−L, 0]. (2)

Here, μP ∈ R \ {0}, σP ∈ R+, Z = {Zt, 0 ≤ t ≤ T } is a standard F-Brownian
motion on (Ω,F ,P), independent of W ; φ : [−L, 0] → [0,+∞) is a continuous
and deterministic initial function. In (2) we assume that the confidence factor P

affects explicitly the Bitcoin price St up to a certain preceding time t − τ but
requiring P to be observed in [−L, 0] makes the bivariate model jointly feasible.
Let us define the integrated confidence process Xτ = {Xτ

t , 0 ≤ t ≤ T } as:

Xτ
t :=

∫ t

0
Pu−τ du =

∫ 0

−τ
φ(u)du+

∫ t−τ

0
Pudu = Xτ

τ +
∫ t−τ

0
Pudu, 0 ≤ t ≤ T .

Note that, Xτ
t turns out to be deterministic for t ∈ [0, τ ].

3 Risk Neutral Measure and Option Pricing

Let us assume the existence of a riskless asset, with value process B = {Bt , t ∈
[0, T ]} given by

Bt = exp

(∫ t

0
r(s)ds

)
, t ∈ [0, T ],

where r : [0, T ] → R is a bounded, deterministic function representing the
instantaneous risk-free interest rate.
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Theorem 1 In the market model outlined in Sect. 2, the followings hold:

(i) the bivariate stochastic delayed differential equation

{
dSt = μSPt−τ Stdt + σS

√
Pt−τStdWt, S0 = s0 ∈ R+,

dPt = μPPtdt + σP PtdZt, Pt = φ(t), t ∈ [−L, 0],

has a continuous, F-adapted, unique solution (S, P ) = {(St , Pt ), 0 ≤ t ≤ T }
given by

St = s0 exp

((
μS − σ 2

S

2

)∫ t

0
Pu−τ du+ σS

∫ t

0

√
Pu−τdWu

)
, t ∈ [0, T ],

Pt = φ(0) exp

((
μP − σ 2

P

2

)
t + σPZt

)
, t ∈ [0, T ].

(ii) Let φ(t) > 0, for every t ∈ [−L, 0]. Then, there exists an equivalent
martingale measure Q for S defined on (Ω,FT ), with the following density

dQ
dP

∣∣∣∣
FT

=: LQ
T , P− a.s.,

whereLQ
T is the terminal value of the (F,P)-martingaleLQ={LQ

t , 0 ≤ t ≤ T }
given by

L
Q
t := E

(
−

∫ ·

0

μSPs−τ − r(s)

σS
√
Ps−τ

dWs −
∫ ·

0
γsdZs

)

t

, t ∈ [0, T ],

for a suitable F-progressively measurable process γ = {γt, 0 ≤ t ≤ T },
representing the market price of risk for the confidence factor. Here, E refers
to the Doléans-Dade exponential.

(iii) If we further assume γ = 0 (minimal martingale measure) then the risk-neutral
price Ct at time t of a European Call option written on the Bitcoin, expiring in
T and with strike price K , is given by the formula

Ct =
∫ +∞

0
CBS(t, St , x)fXτ

t,T
(x)dx, (3)
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where fXτ
t,T

(x) denotes the density function of Xτ
t,T , for each t ∈ [0, T ) and

CBS(t, s, x) := sN (d1(t, s, x))−K exp

(
−

∫ t

0
r(u)du

)
N (d2(t, s, x)),

with

d1(t, s, x) = log
(
s
K

)+ ∫ t

0 r(u)du+ σ 2
S

2 x

σS
√
x

and d2(t, s, x) = d1(t, s, x) − σS
√
x; N denotes the standard Gaussian

cumulative distribution function.

Due to space constraints the proof is available upon request.

4 A Numerical Example

By applying the approximation in [4] in order to derive fXτ
t,T

(x), we are able to
compute Call prices in (3) in closed form. In Table 1, Call option prices are reported
in the case where S0 = 450, r = 0.01, μP = 0.03, σP = 0.35, σS = 0.04,
T = 3 months, τ= 1 week (5 working days) for different values of the confidence
P0 (rows) and strike prices (columns). As expected, Call option prices are increasing
with respect to confidence in the market and decreasing with respect to strike prices.

In Table 2, Call option prices are summed up, for initial confidence value
P0 = 100, by letting the expiration date T and the information lag τ vary. Again as
expected, for Plain Vanilla Calls the price increases with time to maturity.

Increasing the delay reduces option prices; of course, the spread is inversely
related to the time to maturity of the option.

Table 1 Call option prices
against different strikes K

and for different values of the
confidence P0

K 400 425 450 475 500

P0 = 10 51.24 28.35 11.46 3.09 0.54

P0 = 100 64.12 48.05 34.94 24.69 16.97

P0 = 1000 128.68 117.75 107.77 98.66 90.35

Table 2 Call option prices against different Strikes K and for different values of T and τ

K 400 425 450 475 500

T =1 month, τ=1 week 52.85 33.09 18.27 8.81 3.71

T =1 month, τ=2 weeks 51.58 30.62 15.18 6.13 2.00

T =3 months, τ=1 week 64.12 48.05 34.94 24.69 16.97

T =3 months, τ=2 weeks 62.95 46.65 33.42 23.18 15.60
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Forecasting the Volatility of Electricity
Prices by Robust Estimation: An
Application to the Italian Market

Lisa Crosato, Luigi Grossi, and Fany Nan

Abstract Volatility of electricity prices has been often estimated through GARCH-
type models which can be strongly affected by the presence of extreme observations.
Although the presence of spikes is a well-known stylized effect observed on
electricity markets, robust volatility estimators have not been applied so far. In this
paper we try to fill this gap by suggesting a robust procedure to the study of the
dynamics of electricity prices. The conditional mean of de-trended and seasonally
adjusted prices is modeled through a robust estimator of SETAR processes based on
a polynomial weighting function while a robust GARCH is used for the conditional
variance. The robust GARCH estimator relies on the extension of the forward search
by Crosato and Grossi. The robust SETAR-GARCH model is applied to the Italian
day-ahead electricity market using data in the period spanning from 2013 to 2015.
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SETAR models
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1 Introduction

In this paper we introduce a doubly robust approach to modelling the volatility of
electricity spot prices, minimizing the misleading effects of the extreme jumps that
characterize this particular kind of data on the predictions. The purpose of this paper
is twice: first, it is possible to enhance the prediction from point to intervals with
associated probability levels, second, we can detect possible extreme prices which
are commonly observed in electricity markets. Although many papers have applied
quite sophisticated time series models to prices and demand time series of electricity
and gas, very few have considered the strong influence of jumps on estimates and
the need to move to robust estimators [4]. Thus, the big differences between our
paper and the previous literature related to jumps in electricity prices are twofold:
(1) we don’t focus on the prediction of jumps; (2) we apply robust estimators which
are not strongly influenced by the jumps. In this way we improve the prediction
of normal prices which represent the majority of data. Our approach could then be
integrated with other methods dealing with jumps forecasting.

Our methodology is applied separately to the hourly time series of Italian day-
ahead electricity price data from January 1st, 2013 to December 31th, 2015. In the
first step, we apply a threshold autoregressive model (SETAR) to the time series
of logarithmic prices. In the second step the weighted forward search estimator
(WFSE) for GARCH(1,1) models is applied to the residuals extracted from the first
step in order to estimate and forecast volatility. The weighted forward search is
a modification of the Forward Search intending to correct the effects of extreme
observations on the estimates of GARCH(1,1) models. Differently from the original
Forward Search, at each step of the search estimation involves all observations
which are weighted according to their degree of outlyingness.

2 A Robust SETARModel for Electricity Prices

It is well-known that the series of electricity prices have long-run behaviour
and annual dynamics, which change according with the load period. A common
characteristic of price time series is the weekly periodic component (of period 7),
suggested by the spectra that show three peaks at the frequencies 1/7, 2/7 and 3/7,
and a very persistent autocorrelation function.

We assume that the dynamics of log prices can be represented by a nonstationary
level component Ltj , accounting for level changes and/or long-term behaviour, and
a residual stationary component ptj , formally:

logPtj = Ltj + ptj . (1)

To estimate Ltj we use the wavelets approach [3]. We consider the Daubechies
least asymmetric wavelet family, LA(8), and the coefficients were estimated via
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the maximal overlap discrete wavelet transform (MODWT) method (for details, see
Percival and Walden [5]).

The detrended prices pt will then be modeled by a two-regime Self-Exciting
Threshold AutoRegressive model SETAR(7,1) which is specified as

pt =
{
xtβ1 + εt , if pt−1 ≤ γ and xtβ2 + εt if pt−1 > γ

(2)

for t = 1, . . . , N , where pt−1 is the threshold variable and γ is the threshold value.
The relation between pt−1 and γ states if pt is observed in regime 1 or 2. βj

is the parameter vector for regime j = 1, 2 containing 7 coefficients to account
for weekly periodicity. xt is the t-th row of the (N × 7) matrix X comprising 7
lagged variables of pt (and eventually a constant). Errors εt are assumed to follow
an iid(0, σε) distribution.

Parameters can be estimated by sequential conditional least squares. In the case
of robust two-regime SETAR model, for a fixed threshold γ the GM estimate of the
autoregressive parameters can be obtained by applying the iterative weighted least
squares:

β̂
(n+1)
j =

(
X′jW(n)Xj

)−1
X′jW(n)pj (3)

where β̂
(n+1)
j is the GM estimate for the parameter vector in regime j = 1, 2

after the n-th iteration from an initial estimate β̂
(0)
j , and W(n) is a weight diagonal

matrix, those elements depend on a weighting function w(β̂
(n)

j , σ̂
(n)
ε,j ) bounded

between 0 and 1. The GM weights are presented in Schweppe’s form w(β̂j , σ̂ε,j ) =
ψ(rt )/rt with standardized residuals rt = (pt − xt β̂j )/(σ̂ε,jw(xt )) and w(xt ) =
ψ(d(xt )α)/d(xt )α . d(xt ) = |xt − mp,j |/σ̂p,j is the Mahalanobis distance and α is
a constant usually set equal to 2 to obtain robustness of standard errors. The weight
function is the Polynomial ψ function as in Grossi and Nan [2]. The threshold γ is
estimated by minimizing the objective function

∑N
t=1 w(β̂, σ̂ε)(pt − xt β̂)2 over the

set Γ of allowable threshold values.

3 Robust Volatility Estimation Through the Forward Search

Now we apply the weighted forward search (WFS) estimator to derive robust
prediction intervals for the volatility of electricity prices, starting from the residuals
of the SETAR model estimated in Sect. 1. Let εt denote an observed time series
of heteroscedastic residuals. For electricity prices εt = pt − p̂t where p̂t is the
price fitted by the robust SETAR model. We proceed now by estimating a standard
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GARCH(1,1) model on residuals εt , so that εt |Ft−1 ∼ N
(
0, σ 2

t

)
and

σ 2
t = α0 + α1ε

2
t−1 + βσ 2

t−1 (4)

with α0 > 0, α1 ≥ 0, β ≥ 0, α1 + β < 1.
The WFS (see Crosato and Grossi [1], for details) starts with the selection of a

small subset of observations showing the minimum median of squared residuals.
Then, at each step of the search, MLE estimation is carried out on all observations
weighted to account for their degree of outlyingness so that the estimation pattern
along the search is not influenced by the presence of spikes. All units, a part from
the first b, are ranked according to their squared standardized residuals with respect
to the model estimated at the previous step of the search. Proceeding along the
search, an increasing number of units are given weight 1 while the remaining
are downweighted by the corresponding value of the complementary cumulative
distribution function of the squared standardized residuals defined on the whole
sample. The weights range from approximately 0 to 1 so that outliers will be
heavily downweighted until the end of the search while the closer the weight to
1 the stronger is the degree of agreement of the observation with the estimated
GARCH. This way the temporal structure of the time series is respected, filling the
time gaps created by the forward search ordering but on the same time observations
are ordered consistently with the GARCH model estimated until the last steps when
all observations enter with their original value.

A plus of the WFS approach is that outliers are identified automatically through
a test reducing the arbitrariness in declaring a given observation as outlier. Once
outliers have been identified the forward plots of coefficient estimates are cut
automatically and WFS GARCH estimates are obtained.

The outliers identified through the WFS test vary from a minimum of 29 (hour
21) to a maximum of 59 (hours 8 and 9). A few outliers characterize many hours of
the same day, as is the case of the 21st and 27th of April, 2013 for 14 h as well as
mot days of June 2013. Spikes in 2014 characterize mainly the months of February,
March and April. Outliers for 2015, hours 14 and 16, are highlighted by red circles
in Fig. 1.
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Fig. 1 Forecasted conditional confidence intervals of volatility for hourly electricity prices in Italy
(from 13 to 18, January to December 2015) obtained by MLE (light blue) and WFS (dotted red)
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Using the MLE and WFS estimated coefficients and applying Eq. (4) for the
conditional variance recursively, we then obtain the forecasted price volatility and
the corresponding 95% confidence intervals (see Fig. 1). As can be seen, the WFS
intervals (dotted red) are tighter around the realized volatility than the MLE ones
(light blue). The gain in prediction is evident in the aftermath of a spike or a drop,
for instance in April and May. Note that the correction provided by the WFS works
also for smallest jumps, as in July and December.
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“Money Purchase” Pensions: Contract
Proposals and Risk Analysis

Valeria D’Amato, Emilia Di Lorenzo, Marilena Sibillo, and Roberto Tizzano

Abstract The Authors propose a personal pension product, consisting of a
non-traditional profit sharing life insurance contract where the insured is allowed to
share the profit of the pension’s invested funds all along the contract duration, that
is from the issue time till the insured’s death. In its concrete realization, the idea
comes true as a sequence of premiums characterized by a level cap, followed by the
sequence of benefits characterized by a level floor. The two embedded options are
inserted in the basic structure of a pension annuity. Due to the negligibility of the
pooling effect in such kind of portfolios, the impact of the accidental demographic
risk source is investigated.

Keywords Personal pension product · Participating benefits · Demographic risk

1 Personal Pension Products

The growth and the consolidation of the third pillar of retirement, posit a significant
challenge to the combination of long-term savings and long-term investments. The
varied world of the Personal Pensions basically consists of open funds or Private
Personal Pensions (PPP), the latter being individual plans built up by insurance
contracts, people may join as a consequence of discretionary choices.

Those who enter this kind of contracts contribute to the accumulation of an
individually accounted private pension fund to complement the pension income
provided by a basic public and/or occupational pension scheme, in order to meet
the need of future adequacy of income at old age.
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Currently, a striking variety of life insurance contracts, investment funds, pension
insurances confuse the prospective users, often discouraged by high costs and
contract complexity. On the other hand, providers have to cope with the impact
of long-term financial risks, as well as continuous and systematic demographic
changes. It is no accident that in 2016 the Organisation for Economic Cooperation
and Development (OECD), the International Organisation of Pension Supervisors
(IOPS) and the World Bank [6] decided to collect and disclose a global database
of private pensions. It is precisely the PPP socio-economic centrality (cf. [5]) that
brought them to the forefront of scientific debate, as reflected by the variety of
contributions in recent actuarial literature (see for instance [2]). Personal pension
schemes with the investment risk and the longevity risk sharing were proposed by
Di Lorenzo et al. [4] and D’Amato et al. [3]. In this paper we develop the contract we
proposed in [3], placing it in the portfolio logic: due to the number of homogeneous
policies most likely not sufficiently high, the insurer could not appeal to the pooling
effect for managing the accidental deviations of the number of deaths from the
forecasted ones. Due to this reason, we investigate the impact of the accidental
demographic risk source on a portfolio of such policies.

2 Variable Annuities with Participating Benefits: Notations
and Recalls

In the following we will develop the proposal of a life annuities with participating
benefits, under the hypotheses that the installments are increased by a percentage of
the period financial result of a pension fund, when it reaches a predefined value at
least, that can be withdrawn by the insureds even before reaching the retirement age.
Aim of the study is the quantification of the impact of the accidental demographic
risk source on a portfolio of such contracts, that we will develop in the next section.

As we explained in [3], the implementation of the model proposed therein
requires the insurer to disclose an appropriate set of audited financial statements
for each and every managed pension fund, in order to determine the insureds’
participation in the income of the fund, that may be linked to the Cash Net Profit
(CNP) of the fund, that is the cash part of its accrual income, resulting from the
(segregated) income statement of the fund for each financial year. Since the CNP is
equivalent to an increase in the net financial assets of the fund, its distribution to the
insureds will not impair the investment base upon which the insureds future income
(annuities) are determined. By definition, CNP will never be larger than the accrual
income from which it is derived even though the net cash flow of operation is larger.
It goes without saying that if the accrual income is negative, that is if the pension
fund income statement discloses a loss, no distribution is possible at all.
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Each contract consists of a variable annuity with deferment period T , with annual
installments due at the end of each year s (s ≥ T ), each one given by the sum of a
predefined installment bt and the participation in the fund CNP provided this being
positive. The annual premiums P , due at the beginning of each year until the time τ ,
τ < T , are allocated into the pension fund, which yields a variable annual interest
rate. Since the contract provides for the insureds’ participation in the fund annual
financial profit also during the deferment period, the participation amount, if due,
is subtracted from the constant premium. In summary, the contract incorporates an
embedded option involving the insureds’ participation in the fund annual financial
profit CNP, where such profit is positive. So, denoting by rt the CNP rate at time
t , ρ the participation rate and i the first order financial technical base, by virtue
of the above exposed contract guidelines, the benefit stream b̃t is the following, as
explained in [3]:

b̃t =
{

[ρ(rt − i)+
∑t−1

j=0 Pj (1+ i)h−j−1]1(1≤t<T |K(x)≥t )
[bt + ρ(rt − i)+

∑t−1
j=0 Pj (1+ i)h−j−1]1(T≤t |K(x)≥t )

(1)

in which b0 = 0 and the indicator functions take the values 1 or 0 if the event at
subscript happens or not, respectively; K(x) is the random curtate future lifetime of
an annuitant aged x at the issue time; (rt − i)+ is the maximum between (rt − i)

and 0.
On the other hand, the premiums’ level cap P due at time t (t = 0, 1, . . . , τ − 1)

is given by:

∑

t≥τ
E[(b̃t tpxv(0, t)] =

τ−1∑

t=0

E[(P − b̃t )tpxv(0, t)]. (2)

where v(0, t) is the stochastic value in t = 0 of a monetary unit in t .

3 The Demographic Risk Filters

The demographic variability may cause significant consequences on the contract,
because of the long run time perspective There are two main aspects to be
considered: the unexpected changes as well the systematic movements (that is
the systematic improvements of life expectancy), which is particularly significant
in light of the Solvency II directives, in order to guarantee the sustainability
performance, mostly when the longevity risk cannot be hedged or marked to market
(see [1]).

At any rate, the proposed contract’s innovative character entails, in a more
realistic sense, providers’ consideration of small-sized portfolios (in terms of policy
ranges). The definition of mortality unexpected changes’ impact, in this context, is
particularly meaningful. In the following we consider a homogeneous portfolio of
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Table 1 ADR (100 contracts, age 45 at issue)

Time 2017 2022 2027 2032 2037 2042 2047 2052 2057

ADR 0 0.01417 0.025201 0.03854 2.7540 3.6107 4.6595 5.1009 4.9914

contracts issued to N(x) lives aged x at issue, denoting by Sf the survival function

used to infer the survival probabilities; we define ADR =
[
Var

[
N(x + t)b̃t |Sf

)
]
]0.5

the measure of the risk of the accidental deviations in the life durations.
In order to give a numerical exemplification, we consider a portfolio of 100 single

pension annuity policies, issued on policyholders aged x = 45 in 2017, with the
minimum benefits of 1 paid at the end of each year in the case of life, after the
deferment period of 20 years. The premiums are paid during the whole deferment
period. The participation rate is ρ = 0.8 and the guaranteed interest rate is 0.01.
The profit of the invested fund is modeled as in [3] by means of a Vasicek process,
whose parameters are estimated on Federal Reserve Economic Data by means of
a 30-year swap rate percent (sampled daily), from 2011-10-31 to 2016-10-28. The
demographic technical base is modeled by a Lee Carter process on the American
Male data from 1933:2007, age 0:100 (Human Mortality Database). The first order
financial technical base is i = 0.02.

Table 1 shows how the risk measure expressed by the ADR varies with t .
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What If Two Different Interest Rates
Datasets Allow for Describing the Same
Financial Product?

Valeria D’Amato, Antonio Díaz, Emilia Di Lorenzo, Eliseo Navarro,
and Marilena Sibillo

Abstract The chance to choose among more than one dataset for representing
and describing the movements in the financial market of the same financial entity
has noteworthy effects on the practical quantifications. The case we consider in
the paper concerns two datasets, different and deemed to be equivalent between
them, referred to risk free interest rates. In light of the volatility term structure
discrepancies between the two databases and of some closed formulas for stochas-
tically describing the behavior of the financial valuation discrepancies by means
of the Vasicek interest rate process, we show two relevant practical evidences. The
application concerns the pricing of two derivative cases. The aim is to quantify how
much the use of one dataset rather than the other impacts on the final result.
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1 Introduction

Our research starts from the observation that the relationship between specified
financial instruments and datasets describing their behavior could not be bijective.
In particular we will deepen the case of the government debt market of United States
Treasury: two different interest rate structures can be downloaded from the websites
of the US Department of the Treasury (DoT from here onwards) and of the Federal
Reserve Board (FRB from here onwards). The two datasets refer to the same yield of
the same financial instrument and are considered to be equivalent. The discrepancies
between the two datasets are due to the model and numerical techniques used to
estimate the zero coupon rates (e.g. [1, 2]) and to the fact that each provider use as
input different prices or yields (cf. [3]).

What we want to investigate in this paper is if and how much the choice of one
of the two datasets impact on the pricing valuation of derivatives characterized for
being strongly affected by the evolution in time of the interest rates: the Interest Rate
Swap and the Swaption. The analysis will be developed in a stochastic framework.

Basing on D’Amato et al. [3], in Sect. 2 we concisely report some results
concerning the Volatility Term Structure analysis developed on the FRB and DoT
datasets and the main characteristics of the stochastic process representing the
difference between the risk free bond prices got by both datasets, in the Vasicek
process environment. In Sect. 3 we price an Interest Rate Swap and a Swaption
basing on each of the two datasets.

2 Discrepancies in the Datasets: Impact on the Volatility
Term Structure and on the Interest Rate Projections

The FRB dataset is estimated using a weighted version of the Svensson’s method
from end-of-day prices of all of the outstanding off-the-run bonds. Among other
securities, it excludes from the estimation all Treasury bills and the on-the-run and
“first-off-the-run” issues of bonds and notes. The DoT dataset is computed from
a quasi-cubic Hermite spline function that passes exactly through the yields for
the chosen securities. It uses the market yields to maturity for the most recently
auctioned bills (4-, 13-, 26-, and 52-weeks), six maturities of just-issued bonds
and notes (2-, 3-, 5-, 7-, 10-, and 30-years), and the composite rate in the 20-
year maturity range. We show statistically and economically significant differences
between estimates of the volatility term structure depending on the interest rate data
set used in our own yield curve estimates. These differences are observed mainly in
the short-term, but also in the long-term volatility.

The projection of the interest rate term structure is the essential tool when one
has to price interest rate sensitive financial products. As the two datasets DoT and
FRB differ each other from the point of view of their stochastic behavior can be
well highlighted observing the characteristics of the stochastic process chosen for
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Table 1 3-Month time-series evaluation—Vasicek parameters %

αi β i σ i r0

Vasicek (dataset DoT) 4.0065 2.5605 43.2157 0.45
Vasicek (dataset FRB) 1.8286 2.4805 41.7105 0.45
Vasicek (difference D) 2.1779 2.6277 1.5052 0.00

describing the future evolution in time. To this aim we will choose one of the most
popular interest rate stochastic model, suitable to design the trend of the risk free
interest rate able to assume also negative values, the Vasicek process [4]. Its well
known SDE is:

dri (s) = αi (βi − ri ) ds+ σidWs i = A,B (1)

in which βi is the long term mean, towards which the process is continuously pulled
with the force αi, σi is the diffusion coefficient, A is DoT and B is FRB. Recalling
D’Amato et al. [3], it is possible to prove that the stochastic process rD(s) arising
from the difference between the two Vasicek processes rA(s) and rB(s) is Vasicek
with parameters:

βD = αAβA − αBβB

αA − αB
αD = αA − αB σD = σA − σB (2)

We performed the model calibration by maximum likelihood estimation on 3-
months interest rates of both datasets. In this way we found the set values for which
the observed sample was most likely, according to Remillard [5], as implemented in
SMFI5 R package. The parameter estimations is reported in Table 1 (cf. [3]). The
main influence of the change in the dataset concerns the α parameter, pointing out
the stronger attraction power of the dataset A towards the long term mean.

3 Pricing Derivatives: Two Applicative Cases

In this section we consider the impact of the different projections of the interest rates
on a financial interest rate swap (IRS) and a swaption. Firstly we take into account
an IRS with remaining time to maturity of 10-years, where the periodic payments
have been forecasted on the basis of a Vasicek model. We price the derivative, i.e.
we calculate the fair fixed rate on the basis of the equilibrium principle, by setting
the value of the IRS equal to zero at inception. This is accomplished when the
present value of the floating and fixed expected cash flow streams equal each other.
In particular the fair fixed rate k can be expressed as the following formula:

$1 = [kα0B (t0, t1)+ kα1B (t0, t2)+ · · · + kαn−2B (t0, tn−1)]+ B (t0, tn) (3)
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where the floating leg at inception is equal to $1, αi, i= 0, 1, . . , n− 1 is the accrual
factor for each period based on a specified accrual method and B(t0, ti), i = 1, 2,
. . , n is the present value of $1 at i-time.

Solving by k the Eq. (3), the IRS fixed rate can be obtained as

k = 1− B (t0, tn)

α0β (t0, t1)+ α1β (t0, t2)+ · · · + αn−2B (t0, tn−1)
(4)

so that it is indifferent between investing in the floating versus investing in a fixed
rate bond that pays k.

Results show that the issuer (fixed-rate payer) will be willing to pay k= 0.020 per
dollar for a 10-year IRS in order to obtain a floating stream, in DoT environment. In
the FRB context the issuer will not willing to issue the derivative due to the different
projections (k = −0.056). Both of them are calculated on the basis of the Vasicek
model. The glaring evidence of the numerical results points out the impact of the
discrepancies of the two datasets.

Furthermore we investigate the effect of interest rate projections in the swaption
pricing. The swaption is an option contract on a swap, typically an IRS. The buyer
of a payer swaption can be enter into a swap contract where he becomes the fixed-
rate payer and the floating-rate receiver. The buyer of a receiver swaption enters into
a swap contract where he will receive the fixed rate and pay the floating rate.

We consider a European payer swaption which gives the holder the right to enter
into an IRS at the expiration date. We find that this derivative price meaningfully
changes depending on the provider of the data used for representing the future
evolution of interest rates. We quote the contract by the well-known Black’s formula
[6], a variant of the Black and Scholes option pricing model.

Let us assume the following notations: T, expiration date of swaption, δ,risk-free
interest rate, Φ Gaussian distribution function, σF , volatility of forward swap rate,
iS, strike rate, iF , market swap rate (at par) at time T, N, notional capital.

Let t1 < t2 < . . . < tn represent the coupon dates for the swap and t0 = T. The
swap begins on the expiration date T of the swaption and ends at time tn.

The cash flow made to the buyer of a payer swaption at time T amounts to

n∑

i=1

Ne−δ(ti−T ) (iF − iS) (ti − ti−1) (5)

if iF > iS and 0 otherwise. According to the Black model, the price of this option at
time 0 is expressed by the following formula:

Ne−δti (ti − ti−1) [iFΦ (d1)− iSΦ (d2)] (6)

where d1 =
ln

iF
iS
+ 1

2σ
2
F T

σF
√
T

and d2 = d1− σF
√
T .
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In this numerical application, we set the input parameters as follows: Strike Rate
is 0.0620, Forward Swap Rate Continuous Compounding is 0.0600, Volatility of
Forward Swap Rate is 0.20, Notional Principal is 100, Number of Payments per
year is 2, and Option Maturity is 5.

We compute the price of the European Swaption based on the different datasets.
It can be noticed the mispricing between the different datasets where we quoted a
swaption by the above formula on a notional of 100 million. In particular, ceteris
paribus, the FRB Black valuation (3.00) shows a higher swaption price than that
one based on the DoT data (2.66).

As we saw earlier, the numerical results presented in this section emphasized that
discrepancies of the datasets used for calibrating the interest rate structure lead to
discrepant financial valuations and measures.
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An Integrated Approach to Explore
the Complexity of Interest Rates Network
Structure

Maria Elena De Giuli, Marco Neffelli, and Marina Resta

Abstract We represent the relationships among interest rates of the same term
structure using an integrated approach, which combines quantile regression and
graphs. First, the correlation matrix estimated via the quantile regression (QR) is
used to explore the inner links among interest rates with different maturity. This lets
us possible to check for quantile cointegration among short and long-term interest
rates and to assess the Expectations Hypothesis of the term structure. Second, we use
these inner links to build the Minimum Spanning Tree (MST) and we investigate the
topological role of maturities as centres of a network, in an application focusing on
the European interest rates term structure in the period 2006–2017. To validate our
choice, we compare the MST built upon the quantile regression to the one based on
the sample correlation matrix. The results highlight that the QR exalts the prominent
role of short-term interest rates; moreover, the connections among interest rates of
the same term structure seem being better captured and described by our procedure
rather than by the methodology relying on the estimation of the sample correlation
matrix.

Keywords Quantile regression · Graph theory · Minimum spanning tree ·
European term structure

1 Introduction

The European interest rate term structure is a tool of paramount relevance, used
by the European Central Bank to take important policy decisions and by European
governments as a measure of market participants’ expectations about current and
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future state of the economy. In an econometric perspective, modelling the European
interest rate term structure is a bit tricky: reconstructing its dynamics, in fact, relies
on a set of non-stationary and leptokurtic time series, each of those corresponding
to a different maturity. We address the problem following the stream proposed in
[1], with interest rates as the nodes of a network. Nodes connections have been
variously modeled in literature: [2] offers a great review for stochastics models; [3]
does the same but for parametric models. However, two issues generally arise related
to: (i) the trade-off between sampling and model error; (ii) unanswered questions
regarding the relationships among short, medium and long-term interest rates. With
respect to the first point, we propose an integrated approach, which combines
quantile regression (QR) and graphs. QR can cope with stylized facts of interest
rates, e.g. leptokurtic and heavy tailed distribution, hence capturing the relationships
at different quantiles of the error distribution better than conventional models.
Moreover, this enables us to fully answer to (ii), as following [4, 5] we jointly run the
CUSUM test for quantile cointegration, thus assessing the Expectations Hypothesis
of the term structure [6]. We then use the correlation matrix extracted from the
quantile regression to calculate the Minimum Spanning Tree (MST), which offers a
visual and immediate tool for representing complex systems [7].

The paper is structured as follows: Sect. 2 describes the mathematical back-
ground, Sect. 3 contains the empirical application on the European interest rates
term structure in the period 2006–2017; Sect. 4 concludes.

2 Mathematical Background

We are going to illustrate an integrated approach combining the visual power of
networks to the explicative power of the quantile regression. In detail, our procedure
consists of two steps:

1. we derive the correlation matrix among variables in the input space through the
quantile regression;

2. we employ the matrix obtained in Step 1 for building the MST.

In the following rows, we give some insights about the quantile regression, only.
The use of graphs to represent financial systems is in fact widely documented in
literature: for a deeper insight, the interested reader can refer to [8].

2.1 Quantile Regression

Following [9], we build the quantile cointegration model from the long-run equilib-
rium equation:

yt = αt + β t
′xt + ut (1)
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where the scalar yt and the m-dimensions vector xt are I(1) variables, ut is the zero
mean stationary error term and αt ∈ R, β t ∈ R

m are time-varying parameters. In
our application yt represents the shortest term interest rate, while xt is the vector
containing the values of remaining short/medium/long term interest rates. In contrast
to the Least Squares technique, that estimates the conditional expected value of yt,
quantile regression expresses the τ -th quantile of yt conditional on the information
set Ft in period t,

Q̂yt (τ |Ft ) = α̂ (τ )+ β̂ t (τ )
′xt + F−1

u (τ ) (2)

where Fu(·) is the cumulative distribution function for the error term ut , the residual
weights are computed as: ψτ (u)= τ − 1{u < 0}, and the residual series is given by:
uτ,t = yt − α̂ (τ )− β̂ t (τ )

′xt .
The stability of the parameters is verified by the CUSUM test, as discussed in [4]

to which we refer for further information and a more complete review. This lets us
possible to investigate the stability of the equilibrium relationships across different
quantiles of the distribution of the response variable.

3 A Practical Application

Our dataset is built upon 24 interest rates time series making the EU term structure,
namely: EONIA, EU futures contracts with 1 week (W1), 1–12-month maturities
(M1–M12), and EU Swap with 2–15, 20, 25 and 30-year maturities (Y2–Y30),
respectively. We used daily data, for an overall number of 3059 observations from
January 2006 to December 2017. According to their maturity, the selected interest
rates can be grouped into short, medium and long-term rates, as described in Table
1 in the online appendix.1 In order to analyse the inner relations among groups,
we preliminary run the quantile cointegration CUSUM test. Here we are mainly
interested in checking whether cointegration exists among interest rates at short
and medium/long terms. To such aim, we selected the EONIA to represent short-
term interest rates, and the 3-year and the 11-year swap contracts raw time series
to characterize medium and long terms rates, respectively. These three time series
are non-stationary, while their first-difference is; thus, they are drawn from I(1)
processes. We then run the CUSUM test with a cross-estimation setting, checking
for nine quantiles (from τ = 0.1 to τ = 0.9), assuming the presence of cointegration
as null hypothesis H0. The results (given in Table 2 of the online appendix) highlight
a larger consensus for the presence of cointegration: the test, in fact, generally does
not reject the H0 hypothesis, thus emphasizing the presence of common trends

1Due to the limited number of pages, results are not reported here, but they are freely available
in the authors’ Researchgate page, together with other additional material. Please refer to the
following URL: https://www.researchgate.net/profile/Marina_Resta

https://www.researchgate.net/profile/Marina_Resta
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Fig. 1 MSTs built from our dataset; CV-MST on the left; QR-MST on the right

among short, medium and long interest rates. This, in turn, allows us to confirm
the Expectation Hypothesis, which links short, medium and long-term interest rates
with the expectations of market participants. Going back to the original dataset,
we then run a comprehensive estimation of the quantile regression on interest
rates changes: log-changes cannot be implemented due to the presence of negative
interest rates. Again, the estimation was performed for nine quantiles. Results are
listed in Table 3, in the online appendix, where we show the values of β for interest
rates at various maturity. We adopted the notational convention of indicating the
rates in terms of their maturity. Values in Table 3 are the starting point for building
the adjacency matrix for the MST. Furthermore, we compared this MST (since
now denoted by QR-MST) to its counterpart built on the sample correlation matrix
(since now on: CV-MST), as given in Fig. 1. The structure of the two networks is
sensitively different from the topological viewpoint; the CV-MST seems offering
less information than the QR-MST, which, on the other hand, highlights strongest
connections among various interest rates, as well as the central role of EONIA
interest rates.

4 Conclusion

We discuss an integrated approach for evaluating the inner links among maturities,
which lets also possible answering to crucial questions regarding the relationships
among short, medium and long-term interest rates. In our example on the European
term structure, we assess the presence of cointegration, confirming the Expectation
Hypothesis, through the quantile cointegration CUSUM test. Moreover, combining
this information in a graph, we highlighted the prominent role of short interest rates
in the interest rates network, and we provided a network representation based on
the quantile regression, which seems being more robust than the one relying on the
estimation of the sample correlation matrix.
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Estimating Regulatory Capital
Requirements for Reverse Mortgages:
An International Comparison

Iván de la Fuente, Eliseo Navarro, and Gregorio Serna

Abstract In this paper, we estimate the value of the no-negative-equity guarantee
(NNEG) embedded in reverse mortgage contracts and develop a method for
calculating regulatory capital requirements according to Basel II and III. We employ
a Monte Carlo simulation method that assumes an ARMA-EGARCH process
for house prices in four European countries: France, Germany, Spain and the
United Kingdom. The results show different estimated values for the NNEG among
countries. Specifically, the value of the NNEG tends to be related to the level of the
interest rates, the rental yield and house price volatility in each country, as well as
the age of the borrower. Different values for value-at-risk and the expected shortfall
among countries are also found, which depend on the volatility of each country’s
house price series.

Keywords Reverse mortgages · Option pricing · No-negative-equity guarantee ·
Mortality modeling · House price modeling · Regulatory capital requirements

1 Paper Summary

During recent years, there have been many papers addressing the problems of
pricing and hedging the no-negative-equity guarantee (NNEG) embedded in reverse
mortgages. However, despite the extensive literature on reverse mortgage pricing,
there are few papers focused on regulatory capital requirements calculation for
reverse mortgage providers. Therefore, this paper addresses this gap in the literature
by developing a method for measuring risk and calculating the regulatory capital
requirements for lump-sum reverse mortgage providers, based on value-at-risk and
the expected shortfall according to Basel II and Basel III, respectively, using data
from four European countries: France, Germany, Spain and the United Kingdom.
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To do so, several data sets must be combined. Specifically, the proxy for the
risk-free rate will be the 10-year zero-coupon government bond rate (average rate
from the year 2014, obtained from Eurostat). The proxy for the rental yield rate has
been obtained from the Global Property Guide 2014, which estimates the annual
rental yield rate for each country as the average annual rental yield rate in the main
cities of the country. In the case of mortality rates, the information used in this paper
comes from the Human Mortality Database, which includes detailed information
about demographic variables from 38 countries. Due to data availability at the time
of data set creation, mortality data from 1990 to 2012 have been employed for all
the countries considered in this study. Finally, the house price data used in this
study comes from the International House Price Database, which is developed by
the Federal Reserve Bank of Dallas. This database contains quarterly information
since 1975. Specifically, we have employed the House Price Index from the first
quarter of 1975 until the fourth quarter of 2014 (160 quarterly observations). This
House Price Index is an appraisal-based property index. To solve this problem, the
classical unsmoothing method proposed by Geltner [2] and Fisher et al.[1] has been
applied.

Before estimating the value-at-risk and expected shortfall, we have estimated
the value of the NNEG embedded in reverse mortgage contracts for the European
countries considered. In this paper, the value of the NNEG has been estimated
by means of the method proposed by Li et al. [3]. These authors propose an
ARMA-EGARCH model for house price index returns. The results indicate that
the value of the NNEG shows great differences among countries. These differences
are explained by differences in interest rate levels, house price volatility and the
rental yield level. These results also show important implications from the reverse
mortgage provider’s point of view. Specifically, we obtain large differences in
the value of the NNEG if we consider the German government bond rate as the
appropriate risk-free rate for all countries instead of each country’s respective
government bond rate. Using the German risk-free rate for all Eurozone countries,
the reverse mortgage provider faces a higher NNEG value in the case of Spain, one
of the countries that suffered much in the crisis. Moreover, in all cases it is found that
reverse mortgage providers face a higher NNEG value for the female population, for
higher roll-up rates and for relatively young borrowers. Specifically, the value of the
NNEG is extremely high for borrowers under 80 years in all countries considered,
making the reverse mortgage a non-viable product for those ages.

Consider a financial institution with an initial portfolio of reverse mortgages
granted to a population of N0 = 1000 men aged 70 years. This financial institution
faces two different types of risk, mortality risk and house price risk. Therefore,
to calculate one-year VaR and ES, it must simulate both the number of survivors
and the house price in one year. The number of survivors is simulated assuming
that the number of deaths follows a binomial distribution B(N0, qx), where qx
is the probability of death for this male population, whereas the house price is
simulated using the ARMA-EGARCH process with the parameters estimated
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previously. We assume that all deaths occur at mid-year and that there is a delay
of 6 months from the home exit until the sale of the property. Consequently, the
reverse mortgage provider receives an intermediate cash flow after one year due
the sale of the properties owned by borrowers that died during the year. In the
estimations presented below, we assume that the amount advanced by the reverse
mortgage provider is Y0 = 30, 000 euros (pounds in the case of the U.K.) in all
cases and that the roll-up rate is 4%.

The initial value of this portfolio of reverse mortgages, from the point of view of
the reverse mortgage provider, is N0 ·(Y0−NNEG0), where NNEG0 is the put option
price estimated based on an initial house price of S0 = 111,000 euros (pounds). The
next step is to simulate a pair (N1, S1) for the number of survivors and the house
price in one year’s time. Then, based on S1, we estimate the option price after one
year (NNEG1). Therefore, the value of this reverse mortgage portfolio after one year
for this specific pair (N1, S1) is as follows:

N1 · (Y1 − NNEG1)+ (N0 −N1) · [Y1 −max (Y1 − S1; 0)] (1)

In the above expression, the second term accounts for the intermediate cash
flows.

The process is repeated 10,000 times, so we obtain a distribution for the value
of the reverse mortgage portfolio after one year. In the case of VaR, from this
distribution we take the 99.9th percentile, whereas in the case of the ES, we compute
the average of all the values below the 97.5th percentile. Finally, we calculate the
loss with respect to the initial portfolio value as the present value of the portfolio
after one year (the 99.9th percentile or the average of all values below the 97.5th
percentile for VaR of ES respectively) minus its initial value.

The results are presented in the table below (Table 1). It is quite striking to
observe the relatively high values shown by France and Germany (with losses
between 14% and 18%). The U.K. exhibits much more moderate losses, approxi-
mately 6%. Finally, the low values shown by Spain (around −3%) are due to the
low volatility of house price returns observed during the last part of the sample. We
must keep in mind that in estimating the VaR or the ES, we are dealing with the
probability of sharp decreases in house prices. Specifically, a very high volatility
increases the probability of house prices reaching very low values, increasing the
VaR and the ES and vice versa.

Table 1 VaR and ES estimations

France Germany Spain United Kingdom

99.9% VaR −16.15% −13.98% −0.63% −5.99%

97.5% ES −16.47% −17.57% −2.70% −6.09%

The table shows the value of the one year 99.9% VaR and 97.5% ES for a standard reverse mortgage
portfolio, for all countries under study
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In this sense, it is important to note that these results are in accordance with
the values estimated previously. Specifically, the highest value of the volatility is
found in the case of Germany, followed by France, the U.K. and Spain. These results
explain the relatively high values obtained for the VaR and the ES in the cases
of Germany and France and the relatively low values obtained for the U.K. and
Spain.

Finally, it is important to note that another application of the method shown
above for calculating regulatory capital requirements is that the value of the roll-
up mortgage rate (u) can be determined so that the VaR (or ES) reaches a certain
threshold.
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A Basic Social Pension for Everyone?

Joseba Iñaki De La Peña and Noemí Peña-Miguel

Abstract The paper proposes a general basic pension system backed by a mixed
financing model. A “basic social pension” (BSP) brings together all different aids
given by different administration bodies, in a single scheme would do away with
the inconsistencies and shortfalls observed in many current schemes, which result
in disparities in the degree of protection received by different segments of the
population. Such minimum basic social coverage would need to be backed up by a
financing structure capable of guaranteeing its viability and sustainability over time
in financial and social terms. It needs to reach most of the population and cover
their basic necessities. Setting up a level of social protection sufficient to cover
basic necessities would of course entail increasing the level of social assistance
provided by the social security system, and this in turn would mean redefining
the amounts payable through contributions. This redefinition has implications for
sources of financing: public funding from taxation to cover the social assistance
part and contributions from employers and workers to fund the contributory part.

Keywords Sustainable benefits · Minimum pension benefit · Pensions · Social
security

1 Introduction

The idea of basic pensions is not new. Some researchers have put forward the idea
of single universal benefit payments with amounts that vary in line with factors such
as place of residence, age and family circumstances [1–3].
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2 One Basic Social Pension and One Funding Model

BSP as a single financial allowance paid each year to each individual that is
sufficient to meet the minimum requirements for survival in line with basic needs
for subsistence, family situation and place of residence.

The basic needs for subsistence—food, clothing and footwear, accommodation
and public transport [4]—are hard for people who live below the poverty line
to obtain [5]. [6] detail the regression factors in the sample used in the Spanish
EPF 2010 household budget survey, which quantifies the aggregate and individual
benefits payable to 22,203 respondents (Table 1):

Technically, the funding model is based on financial actuarial equivalence [7–
10]. If it entails financing the BSP not just from contributions but also from the tax
revenue currently earmarked for the aids that it is to replace. Being,

S(τ ): Sum of pensionable earnings of contributing workers for period τ

Kn: Percentage of contribution.
δ(τ ): Strength of interest.
B(τ ): Pension spending function at time τ

Kn ·
∫ tn+1

tn

S (τ ) · e−
∫ tn+1
tn

δ(τ )·dτ · dτ =
∫ tn+1

tn

B (τ ) · e−
∫ tn+1
tn

δ(τ )·dτ · dτ

If,
∫ tn+1
tn

S (τ ) · e−
∫ tn+1
tn

δ(τ )·dτ · dτ : This indicates the total wages of contributing work-
ers updated to the start of the interval [tn, tn+1].

Table 1 First quantile regression by category

Age 49.71∗ (128.078)
Age squared −0.27∗ (−72.2)
Number of descendents −648.87∗ (−681.21)
Town

(10,000; 50,000) 508.35∗ (256.7)
More than 50,000 214.60∗ (96.58)
Head of household (HH)

Unemployed −273.09∗ (−89.94)
Retired 216.11∗ (73.17)
Other 86.37∗ (21.71)
Constant 1107.64∗ (105.36)
Income 0.12∗ (2662.4)
Gender 459.26∗ (248.29)

T-statistics are in parentheses. Regional dummies are also included
Source: [6]
* represents significance at 1% level



A Basic Social Pension for Everyone? 307

The initial population to be covered at the start of
the period l(tn), breaking down the wage function
S(τ ) into two factors (s(τ ) or the average wage at
time τ and the number of people in work la(tn))

∫ tn+1
tn

B (τ ) · e−
∫ tn+1
tn

δ(τ )·dτ · dτ : This indicates the total pension spending updated
to the start of the interval [tn, tn+1]. The spending
function B(τ ) is also broken down into two factors
(PM(τ ) or the average pension received at time τ

and the group of beneficiaries lb(tn))
BSP(τ ): Sum of social pension benefits in period τ

AE(τ ): Sum of state contributions for period τ.

We have,

Kn ·
∫ tn+1

tn

Labour market︷ ︸︸ ︷
s (τ )︸︷︷︸

Productivity

· la (tn)

l (tn)︸ ︷︷ ︸

Employment

· e−
∫ tn+1
tn

δ(τ )·dτ · dτ

+

T ax f actor︷ ︸︸ ︷∫ tn+1

tn

AE (τ) · e−
∫ tn+1
tn

δ(τ )·dτ · dτ

=
∫ tn+1

tn

Inst itut ional f actor︷ ︸︸ ︷

BSP (τ)︸ ︷︷ ︸
Generosity

of the system

· lb (tn)

l (tn)︸ ︷︷ ︸
Coverage

of the system

· e−
∫ tn+1
tn

δ(τ )·dτ · dτ

3 Application

The cost of providing a basic social pension to part of the population (those without
wage earnings)—BSP2010—is (Table 2):
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Table 2 2010 state contributions to be replaced by the BSP, in millions of Euros

Item Contribution

Regional guaranteed minimum income (RMI) schemes (100%) 766.73
Non contributory pension schemes, LISMI (social integration and job
placement for the disabled), SOVI (statutory old-age and invalidity cover)
and other subsidies (100%)

13,828.12

Contribution-based pensions (35%) 37,033.06
Unemployment: contributory level (85%) 20,931.25
Non contributory pension quota (100%) 142.57
State contributions2010 72,701.73

Source: [12]

The labour market factor is obtained from the Spanish Wage Structure Survey
[11]:

By applying the above factors, the proportion of the total wage bill accounted
for by this benefit in Spain in 2010 could be obtained. The resulting under a mixed
financing model only 0.44% of the total wage bill is needed.

4 Conclusions

Although figures are based on a year that was in the middle of a huge recession, the
BSP is based on basic needs for subsistence for people with low salaries. Thus, the
changes by the crisis should be insignificant in basic consumption patterns. So, one
immediate consequence of this proposal may be the restructuring of the first level,
i.e. the contributory pillar. On becoming pension beneficiaries all citizens would
receive BSP adjusted to their own personal characteristics (place of residence, age,
dependents, etc.). If their welfare contributions over their years at work add up to a
contribution-based benefit lower than the BSP then they receive the BSP. However
if the sum is higher than the BSP they also receive an additional amount in line with
the contributions paid (Fig. 1):
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Fig. 1 Layout of the social welfare pillars and their levels of coverage. Source: Own work
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A Copula-Based Quantile Model

Giovanni De Luca, Giorgia Rivieccio, and Stefania Corsaro

Abstract A copula-based quantile model is built. The estimates are compared to
the estimates obtained using the multivariate CAViaR model, which extends the
univariate version of the model. The comparison is firstly made in terms of Kupiec
and Christoffersen test. Moreover, a further comparison is made using two loss
functions that evaluate the distances between the losses and the VaR measures
in presence of a violation. The results show that the copula approach is highly
competitive providing, in particular, estimated quantiles which generally imply a
lower value for the two loss functions.

Keywords Value-at-Risk · Copula function · Loss function

1 Introduction

Risk management has typically focused on the Value-at-Risk (VaR) as the main
risk measure. This value is financially interpreted as the worst loss expected over
a given period of time with a given probability. From a statistical point view, VaR
is a quantile of the losses distribution, that is an unobservable quantity that can
be estimated once the distribution of the losses is known. The most traditional
technique is the estimation of a dynamic VaR as a byproduct of a heteroskedastic
model, e.g. a GARCH model. A second approach stresses the possibility of
estimating directly the dynamics of the quantile: instead of considering a time-
varying variance which leads to a time-varying quantile, the dynamics is estimated
directly on the quantiles. Engle and Manganelli [3] proposed the CAViaR model,
with a specified quantile a time t depending mainly on its own lagged values and on
a function of past returns. Recently, the univariate approach has been extended to
take into account possible spillovers over VaRs [6] in a bivariate formulation.
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In this paper the quantiles obtained by the bivariate CAViaR model are compared
to the quantiles estimated exploiting a copula as joint function of some univariate
quantiles.

2 Modelling and Data

Let Yt be the random variable denoting the daily return at time t , and qt (θ) the
corresponding quantile at θ (with 0 < θ < 1). In the CAViaR model by Engle and
Manganelli [3] the dynamics of the quantiles is the following:

qt (θ) = β0 + β1qt−1(θ)+ β2f (yt−1).

In a multivariate context, [6] have proposed a framework which can be conve-
niently thought of as a Vector Autoregressive (VAR) extension to quantile models.
The aim is to analyze possible spillovers on the VaRs. A simple version of the
proposed structure in a bivariate case relates the conditional quantiles of the random
variables Y1t and Y2t according to a VAR structure:

q1t (θ) = b10 + b11q1t−1(θ)+ b12q2t−1(θ)

q2t (θ) = b20 + b21q1t−1(θ)+ b22q2t−1(θ)

The off-diagonal coefficients b12 and b21 represent the measure of tail codependence
between the two random variables. If b12 = b21 = 0 the model reduces to two
independent univariate CAViaR models.

An alternative approach is based on the copula functions. The idea is that of find-
ing a copula function that could provide a flexible representation of the relationship
among q1t (or q2t ), q1t−1 and q2t−1. For asset 1, the conditional estimates are given
by q̂

cop
1t (θ) = E(q1t |q1t−1, q2t−1) evaluated using the conditional copula function

C(F1t |F1t−1, F2t−1) (1)

where Fit is the estimated distribution function of the i-th asset θ -quantile at time t .
Because of the unobservable nature of quantiles, initial estimates are required

to let the procedure start. Starting from the quantile estimates provided by the
univariate CAViaR models, q̂U

it (θ), i = 1, 2, the idea is to update these initial
estimates considering the conditional dynamics of the remaining time series. Crucial
points are the identification of satisfactory marginal distribution to obtain Fit and the
choice of the copula function in (1).
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Data sample includes daily returns (from January 2008 to February 2014, for a
total of 1584 observations) of 20 assets included in Eurostoxx50.1 Each quantile
(θ = 0.05) dynamics is analyzed in relation to the quantile of an equally weighted
average of all assets in portfolio, denoted as qP t . In particular, we have estimated
the time-varying quantiles qCOP

it (i = 1, . . . , 20) specified in Eq. (1), and compared
them with the time-varying quantiles computed according to the multivariate
CAViaR model (qMCAV

it ). For the estimation of qCOP
it , the initial quantile estimates

are provided by the univariate CAViaR model with f (yt−1) = |yt−1|. To identify
the marginal distributions of q̂U

it we have chosen a mixture of three log-normal
distributions, that is a fairly general assumption.

Then, a mixture of copula functions has been used for applying (1). The reason of
such a choice is given by the need to ensure asymmetric tail dependence. In fact, the
popular Student’s t copula has the limit of symmetric tail dependence coefficients,
while it is easy to check that the association between estimated quantiles of
each asset and estimated quantile of the portfolio is greater in the lower tail. So,
the Student’s t copula has been mixed with a copula function which allows for
a different degree of association in the two tails. The selected mixture is then
composed by a Clayton copula, which presents only lower tail dependence, and
a Student’s t copula with weights, respectively, p e 1− p, that is

CM = pCC + (1− p)CT .

As a result, the lower tail dependence coefficient is given by

λML = pλ
CC

L + (1− p)λ
CT

L

and the upper tail dependence coefficient is

λMU = (1− p)λ
CT

U .

In order to evaluate the estimated quantiles, we have used the unconditional
coverage test (see [4]) and the conditional coverage test (see[2]). Figure 1 (left)
reports the empirical coverage of q̂MCAV

it and q̂
cop
it together with the critical values

denoting the acceptance region. The former estimates present an empirical coverage
very close to the nominal one, the latter being generally a bit more far. However, for
all the assets, both the estimates pass the conditional and unconditional coverage
tests.

1AIRBUS, ALLIANZ, AXA, BANCO SANTANDER, BASF, BAYER, BNP PARIBAS, DAIM-
LER, DEUTSCHE POST, DEUTSCHE TELEKOM, ENI, L’OREAL, LVMH, PHILIPS,
SIEMENS, SOCIETE GEN, TELEFONICA, TOTAL, UNILEVER, VOLKSWAGEN.
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Fig. 1 Proportion of violations (left), average values of LM,t (middle) and LA,t (right) for the 20
assets. Solid and dashed lines refer, respectively, to q̂MCAV

it and q̂
cop

it

Moreover, we have considered two loss functions:

1. the Magnitude Loss Function [5] that takes into account the distance between the
loss and a VaR measures (i.e. a quantile) in presence of a violation,

LM,t =
{

1+ (yt − V aRt)
2 if yt < V aRt

0 if yt ≥ V aRt

2. an asymmetric version due to [1] depending on P = exp(R)(R > 0)+1·(R ≤ 0)
where R = (θ̂ − 0.05)/0.05, and θ̂ is the empirical coverage,

LA,t =
{

1+ P(yt − V aRt)
2 if yt < V aRt

0 if yt ≥ V aRt

The results show that the averages of LMt and LA,t are smaller for the copula-
based quantiles, respectively, in 17 and 18 cases out 20 (see Fig. 1).

3 Conclusions

We have explored a flexible copula approach to obtain quantile estimates to be com-
pared with the quantiles provided by the bivariate CAViaR model. The application of
the copula-based model to 20 asset returns of Eurostoxx50 emphasizes in most cases
the better performance of the novel quantiles in terms of the distance assessment
between a loss and a VaR measure.
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International Longevity Risk Pooling

Clemente De Rosa, Elisa Luciano, and Luca Regis

Abstract This paper studies the problem of an insurance company that has to
decide whether to expand her portfolio of policies selling contracts written on a
foreign population. We quantify diversification across populations and cohorts using
a parsimonious continuous-time model for longevity risk. We present a calibrated
example, based on annuity portfolios of UK and Italian males aged 65–75. We show
that diversification gains, evaluated as the reduction in the portfolio risk margin
following the international expansion, can be non-negligible.

Keywords Longevity risk · International expansion of insurance companies ·
Longevity risk pooling

1 Motivation and Related Literature

In the last 20 years, insurance companies have been expanding internationally, via
subsidiaries operating in different countries or via cross-border mergers and acqui-
sitions.1 Reinsurance companies have always been more geographically diversified
than insurance companies [3], because their portfolios are more easily disconnected

1In Europe, for instance, the creation of a common regulation framework in the middle of the
Nineties gave rise to a wave of international expansions and M&A operations.
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from the geographical localization of their branches. As a result, the largest insurers
and reinsurers in most cases concentrate the bulk of their activities in foreign
countries. Evidence is provided for instance in [5].

The connection between internationalization and profitability has been the
subject of some recent studies, while the link between internationalization and risk
or capital requirement reduction has been very little explored. This paper addresses a
typical diversification gain from internationalization of life insurance or reinsurance
companies, namely longevity-risk pooling across populations. We consider the
situation of an insurer who is facing the choice of expanding her portfolio of
liabilities (for simplicity, an annuity portfolio held by policyholders of different
ages) either in her domestic market or in a foreign one. We want to determine the
impact of the expansion in terms of regulatory risk margin for Solvency II purposes.

Why is international diversification of life insurance portfolios beneficial?
Because, even if—in expectation—longevity has been steadily increasing on a
worldwide scale, longevity risk of different populations may differ. By longevity
risk we mean the amount of unexpected decrease in mortality rates, that may be
non-perfectly correlated across countries. Pooling portfolios of policies written
on the lives of different populations allows to diversify longevity risk. To model
and calibrate longevity risk of different cohorts and nations, we make use of a
novel model developed in [4]. We consider a domestic and a foreign market, and
heterogeneous cohorts in each market. We apply the model to estimate the joint
dynamics of the mortality rates of UK and Italian males aged between 65 and 75,
estimating the whole correlation matrix across the eleven cohorts of the two different
populations.

Based on the model, we measure the risk effects of an international expansion
through the risk margin reduction. Reminiscent of the Solvency II regulation
framework, we compute the risk margin of a life insurance portfolio as its value-
at-risk (VaR). The difference between the risk margin of a life insurer who expands
its portfolio domestically and, all others equal, diversifies it internationally, provides
us with a (dollar-based) measure of the diversification benefits. Our application, that
considers a UK-based annuity provider, shows that the risk margin can reduce up to
3% as a proportion of the actuarial value, in the case of a foreign expansion.

2 Pooling Metrics and Impact

We consider an insurer, based in the UK, who, at time t , has a portfolio Π0 with
actuarial (best estimate) value AVΠ0(t). She wants to increase the size of her annuity
portfolio and needs to choose between two possible strategies. The first one is just
to sell new contracts to her Domestic population. In this case, we denote with n′i
the number of new contracts sold to people aged xi , with Ni(t) the actuarial value
of each annuity, with ΠD the portfolio composed of just these new annuities, and
with Π1 the total portfolio of old and new contracts. The actuarial value of the new



International Longevity Risk Pooling 319

portfolio is

AVΠD(t) =
m∑

i=1

n′iNi(t), (1)

and

AVΠ1(t) = AVΠ0(t)+ AVΠD(t). (2)

The total value of the portfolio Π1 is the sum of this actuarial value and the risk
margin RMΠ1(t), computed as the discounted VaR of the total portfolio at a given
confidence level α ∈ (0, 1):

Π1(t) = AVΠ1(t)+ RMΠ1(t) = AVΠ0(t)+ AVΠD(t)+ RMΠ1(t), (3)

where

RMΠ1(t) = D(t, t + T ) · V aRα

(
AVΠ1(t + T )− Et [AVΠ1(t + T )]) =

= D(t, t + T ) · inf {l ∈ R
+ : P(AVΠ1(t + T )

− Et [AVΠ1(t + T )] > l) < 1− α},

where P(·) is the probability of the event in brackets, Et the time-t expected value
operator and D(t, t + T ) is the discount factor from t + T to t .

The second possible strategy is to acquire a new portfolio of annuities ΠF ,
written on a Foreign population, namely the Italian one. To compare the two
strategies, we simply assume that for each age xi the number of annuities written
on people aged xi in the foreign population is still n′i . The actuarial value of this
portfolio is

AVΠF (t) =
m∑

i=1

n′iNF
i (t), (4)

and

AVΠ2(t) = AVΠ0(t)+ AVΠF (t). (5)

Moreover,

Π2(t) = AVΠ2(t)+ RMΠ2(t) = AVΠ0(t)+ AVΠF (t)+ RMΠ2(t). (6)

Table 1 presents the actuarial value, risk margin with α = 99.5% and T =
15 years, total value and risk margin as a percentage of the actuarial value for
different portfolios (%RM), which obtain from an initial portfolio Π0 of 1100
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Table 1 Effects of geographical diversification (r = 0%)

Portfolio AV RM Π %RM �

Π0 1.9097 × 104 2.1318 × 103 2.1228 × 104 11.16% –

ΠF 2.0093 × 104 1.9060 × 103 2.1999 × 104 9.49% 1.67%

Π1 3.8193 × 104 4.2636 × 103 4.2457 × 104 11.16% 0

Π2 3.9189 × 104 4.0378 × 103 4.3227 × 104 10.30% 0.86%

Π3 5.9282 × 104 5.9437 × 103 6.5226 × 104 10.03% 1.13%

Π1
opt 4.1675 × 104 3.6480 × 103 4.5323 × 104 8.75% 2.41%

Π2
opt 4.2400 × 104 3.4234 × 103 4.5824 × 104 8.07% 3.09%

Π0 is a portfolio of 1100 policies sold to UK insureds; ΠF is composed of 1100 policies sold
to Italian insureds; Π1 = 2 Π0; Π2 = Π0 + ΠF ; Π3 = Π0 + 2ΠF ; Π1

opt couples Π0 with

1100 policies sold to 66 year-old UK males; Π2
opt couples Π0 with 1100 policies sold to 66 year-

old Italian males. � = −(%RM(Π0) − %RM(Πi)) is the percentage risk margin reduction of
portfolio Πi relative to Π0

UK insureds (100 for each age from age 65 to age 75). Diversification benefits
are evaluated as the percentage risk margin reduction, �, of portfolio i relative to
Π0, � = −(%RM(Πi) − %RM(Π0)). The different alternatives imply selling
additional policies, and must be compared using their percentage (not absolute)
risk margin as a pooling or riskiness metrics. Results are taken from the paper [4],
which details also the estimation of the underlying mortality model and calibrates
the correlation structure across ages and populations. The portfolios ΠF , Π1 and
Π2 are as described above. Π3 = Π0 + 2ΠF represents a more aggressive
foreign expansion obtained by doubling the size of the Italian expansion. We also
consider the cases Π1

opt and Π2
opt , in which the domestic and foreign expansions are

performed optimizing the mix of the newly added contracts, targeting the cohorts
that lead to the maximally diversified portfolios, without and with geographical
diversification respectively. Based on the correlation matrices estimated in [4], they
are obtained by selling 1100 contracts to the UK and Italian 66 years old males,
respectively. Π2

opt is the most diversified portfolio, as its percentage risk margin
is minimal (8.07%). From the table, we can appreciate the gains deriving from
international diversification according to our metrics �. It amounts to 0.86% in
the case of a sub-optimal expansion, and reaches 3.09% for an optimized foreign
expansion.

3 Conclusions

In this short paper we established a metrics to compute the diversification benefits
of an international expansion by a life insurer and provided a calibrated example.
In practice, such benefits may happen to be counterbalanced by the costs of
the foreign portfolio acquisition process. These costs, that are—say—the costs
of opening a foreign affiliate, or the fees for an M&A operation, etc., may be
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substantial. As an alternative to a physical expansion, the insurer may obtain the
same diversification benefit operating on the longevity derivatives market (see [2]
for instance). In particular, the insurer can expand internationally by receiving
a fixed periodical fee and paying the survivorship of the foreign cohorts. Thus,
the risk margin reduction benefits of a foreign expansion can be replicated by
selling protection through a longevity swap. Even in this case, however, the costs
of structuring the agreement and coping with informational asymmetries [1], can
reduce the diversification gains. The final balance can be decided only case by case.
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Abstract The change in the economic and sociodemographic context, framed by a
continuous increase in longevity, the consequences of the economic crisis as well as
the lack of adequate adjustments of the Social Security retirement pension systems
everywhere, entail risks for workers and for the Social Security itself. Against the
background of the change in agents’ behaviors throughout the life cycle and the
presence of an adverse selection problem in the annuities market, we describe in
this paper a ‘two-steps mixed pension system’ that tries to solve the pressure that
increasing longevity is putting on conventional pension schemes to provide adequate
and sustainable pensions for all. In our proposal, Social Security, preceded by a
term-annuities scheme, is ‘reinvented’ to continue to ensure retirees’ incomes from
their ‘grand age’ onwards.
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1 Introduction

Economic and demographic change, characterized by a continuous increase in
longevity, the impact of the economic crisis, the digital transformation as well
as the lack of adequate adjustments in the Social Security (SS, in what follows)
retirement pension systems everywhere, entail risks for workers and for SS itself.
Many reforms of public pension systems have been carried out in recent years,
either changing system’s parameters or adopting structural changes. Some reforms
have aimed at increasing capitalization components in the determination of the final
pension through a life annuity to complement the public retirement pension as a
significant second retirement income.

The conventional mixed pension systems are based on a two-pillar structure
with a first pillar being the conventional SS, pay-as-you-go scheme that provides
a public retirement pension which is complemented with a life annuity, generated
by a fully funded, employers’ sponsored scheme. Both benefits are received during
the entire retirement period in a simultaneous and complementary way. This type of
conventional complementary system has several problems. The first is that annuities
entail a severe problem of adverse selection (see [1–4]) and thus they become unduly
expensive. On the other hand, the kind of longevity insurance, offered by SS, has
barely changed the retirement age since it was created, when life expectancy at birth
was around 40 years, and around 10 years at age 65.

2 The Two-Steps Mixed System

The many pensions reforms proposed and implemented till now have not solved the
problems of long-term sustainability and adequacy of retirement pension systems
and some alternatives are truly needed. Within the line of research we describe
here, several papers have been presented both by the authors [2, 3] and by other
researchers [5, 7]. This literature is proposing the ‘reinvention’ of SS through a
mixed system implemented in two steps. In the first step a term annuity offered
by a fully funded (compulsory but private) scheme would cover retirees between
the established legal retirement age and what we call the ‘grand age’. This grand
age could be equivalent today to what age 65 meant one century ago (around age
80 today, see [3]), but could also be lower. After this grand age, the retiree would
obtain a SS annuity (pay-as-you-go based if needed) sustainable and adequate [2,
3, 6, 7]. Term annuities from insurance companies are much more efficient than
life annuities while SS life annuities are the best longevity insurance ever invented.
Insuring retired workers after grand age is what SS precisely did more than one
hundred years ago.

Figure 1 shows the contributions that a typical individual would make to and the
retirement income that he or she would receive both in the standard mixed model
and in the two-steps mixed model. For this illustration a contribution rate of 15%
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Fig. 1 (Illustrative figures). Source: Own computations

of wages to the SS scheme (Notional Defined Contribution variety or NDC, in what
follows) and a 5% rate to the funded scheme have been assumed. Initial working
age is 25 years, the contributions career is not interrupted, the retirement age is
65 years and the grand age has been set at 75 years, with a maximum survival age
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of 100 years. PEM-2000 mortality tables have been used. A nominal interest rate of
3%, a notional rate of 1% and a wage revaluation of 1.5% per year have also been
assumed for the computations.

This way of presenting the sequence of contributions and benefits combined in
time, is what allows us to talk about the ‘reinvention’ of SS [3]. The two-steps mixed
system solves the vital algebra’s inconsistency problem mentioned above since the
pension funded by PAYG is paid from grand age until death; which means that
the number of years the scheme must pay benefits to any retiree is far lower than
under the current system. On the other hand, the fully funded scheme term annuities,
payable since retirement until grand age, are marketed more efficiently than a life
annuity, since the former are significantly cheaper on unit terms as they must not
be insured against significant longevity but in a small part of this risk. This product
is thus more interesting both for workers and for insurance companies, and could
eventually lead to a significant expansion of annuities markets everywhere in a more
natural way.

3 Aggregate Perspective

Figure 2 shows the system’s flows of income and expenses for the base year 2017
and for 2050. For each of the panels, on the left side, the standard mixed system’s
income and expenses are shown where those for the two-steps mixed system are
shown in the right side of the panels. Income flows are the same for both systems
as contribution rates are the same but, concerning expenditure flows, the two-steps
system is cheaper to run, since retirees do not receive SS income until they are
75 years old (the grand age), although system’s expenses from 75 years on are higher
since the retirement income generated in the NDC scheme are higher than in the
standard PAYG one.

The graph also shows how the financial problems of the standard PAYG scheme
are exacerbated in 2050, as pensions expenses are higher and income is lower, due
respectively, to increased longevity and a reduced workforce. The NDC scheme in
the two-steps mixed system generates savings since inception year and increasingly
so until 2050, that are accumulated over time.

4 Concluding Comments on Transition Possibilities

The two-steps system we propose means a radical reform of the standard mixed
system that will bring advantages both for the individuals and for the two schemes
that make up the whole system. In both cases a fully funded, quasi-mandatory
private scheme must be part of the pension system to provide, one way or another,
adequate total retirement income since ordinary retirement age (that can be adapted
or made optional to a degree) until death. For a smooth transition, it would be
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advisable to establish an age line between those who remain in the standard
system and those who can pass to the two-steps system. Precise computations
of the system’s implicit debt would be necessary to determine that dividing age
line. If the transition is made from a standard complementary system, in which
individuals have accumulated retirement savings during their labor lives, the new
NDC SS branch could start generating savings since inception until retirees reach
their corresponding grand ages. This could allow the scheme to cope with the
large implicit SS debt accumulated by historical PAYG systems everywhere. These
savings could also be used to encourage, through tax deductions and/or allowances,
voluntary transitions to the new two-steps mixed system. Other tax incentives
can stimulate the accumulation of retirement savings during labor life, either in
final savings products or in other assets such as housing, to be converted into a
term annuities to be received between the legal retirement age and the grand age,
also helping the transition towards a two-steps mixed system of the kind we are
proposing here.
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The Influence of Dynamic Risk Aversion
in the Optimal Portfolio Context

Antonio Díaz and Carlos Esparcia

Abstract Despite the influence of risk aversion in the optimal portfolio context,
there are not many studies which have explicitly estimated the risk aversion
parameter. Instead of that, researchers almost always choose random fixed values
to reflect the common levels of risk aversion. However, the above could generate
optimal portfolios, which do not reflect the actual investor’s attitude towards risk.
Otherwise, as it is well known, an individual is more or less risk averse according
to the economic and political circumstances. Given the above, we model the risk
aversion attitude so that it changes over time, in order to take into account the
variability in agents’ expectations. Therefore, the aim of this paper is to shed
light on the choice of the risk aversion parameter that correctly represents the
investors’ behaviour. For that purpose, we build optimal portfolios for different
types of investment profiles in order to compare whether it is better to use a
constant risk aversion parameter or a dynamic one. In particular, our proposal is
based on estimating the time-varying risk aversion parameter as a derivation of the
market risk premium. For that purpose, we implement several statistical univariate
and multivariate models. Specifically, we use conditional variance and correlation
models, such as GARCH (1, 1), GARCH-M (1, 1) and DCC-GARCH.

Keywords Optimal portfolio · Time-varying risk aversion · Market risk
premium · GARCH models

1 Introduction

In accordance with the mean-variance approach, we can partially order the set of
investment opportunities, reducing the choice of investors to those portfolios located
on the efficient frontier. However, with this approach, the investors cannot compare
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which alternatives are dominant among themselves; therefore, they are not allowed
to select the investment portfolio that best meets their economic objectives. To find
this portfolio, we must use a different criterion, incorporating the individual risk
attitude. Although these preferences are very complex (they depend on, for instance,
the age, gender, education level, and income of the individual), to make their
implementation easier, they are represented by a single parameter that summarizes
the personal level of risk aversion, the risk aversion parameter.

In uncertainty contexts, it is possible to represent the preferences of economic
agents from their expected utility. In short, it is suggested that financial theory has
developed utility functions to assess how good an investment is. In this context, the
second derivative of the utility function (concavity) reflects the risk aversion level
of an individual, but it is necessary to adjust this measure by the first derivative to
ensure that it does not change under linear transformations. In general, we assume
that investors are risk-averse. For that reason, in this work, we only focus on the
analysis of two increasing and concave utility functions, such as the quadratic and
CARA specifications.

In spite of playing a key role in the optimal portfolio construction, there are
few studies that have explicitly estimated the risk aversion of an investor. Instead,
they choose random values to reflect the common levels of risk aversion. The
equity literature on risk aversion developed based on the review proposed by Arrow
[1], who affirmed that the risk aversion parameter should be approximately 1.
Otherwise, in the equity context, several studies have been published that differ in
their estimations of risk aversion. For instance, Mehra and Prescott [2] argued that
this parameter should be greater than 10. Moreover, Ghysels et al. [3] affirmed the
risk attitude should be between 1.5 and 2, on average, while Guo and Whitelaw [4]
established the mentioned parameter of 4.93.

However, common sense tells us that the use of fixed arbitrary values for this
parameter could yield optimal portfolios that do not reflect the actual investor’s
attitude towards risk. An individual is more or less risk averse according to the
economic and political circumstances. For instance, we are currently in a period
in which even the most adventurous investor has had to reduce his optimistic
expectations. Given that, it seems reasonable to model the risk aversion parameter
so that it changes over time, to consider the variability in the agents’ expectations.
In this context, there are some studies in the financial literature that refer to time-
varying risk aversion. For instance, Kim [5] proposes a consistent indicator of
conditional risk aversion in consumption-based CAPM. Other studies have differed
widely in their estimates of time-varying risk aversion, such as Dionne [6], who aims
to extend the concept of orders of conditional risk aversion to orders of conditional
dependent risk aversion. However, our motivation follows the framework proposed
by Frankel [7] and revised by Giovannini and Jorion [8] and Cotter and Hanly [9],
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which is based on estimating the risk aversion parameter as a derivation of the
CRRA.1

According to the last paragraphs, the aim of this paper is to reveal the optimal
parameter choice that provides a better representation of the investors’ attitude
towards risk. In particular, our proposal is based on estimating the time-varying
risk aversion parameter as a derivation of the mentioned CRRA and strongly related
to the market risk premium context. For that purpose, we build a well-diversified
portfolio through the selection of ten risky equities traded on the Eurostoxx-
50 index. From here, we introduce the time-varying modeling of probability
distribution moments, to consider the optimal portfolios changing over time. To
reach the above aim, and focusing on the optimal portfolio problem, we propose the
application of conditional variance and correlation schemes such as GARCH (1, 1)
and DCC-GARCH.

Otherwise, we estimate the CRRA from the market risk premium, which depends
on the mean and variance of the market.2 This estimation allows us to obtain the
risk aversion attitude of an investor in a single number. However, in this research we
are more interested in the time-varying risk aversion, not in a constant parameter.
Thus, we model the market mean and variance through conditional models such as
the GARCH (1, 1)-M specification. Further, we aim to assess whether it is better
to work with a constant or changing risk aversion parameter. For that purpose,
we build optimal portfolios for different types of investment profiles, a conditional
one associated with the CRRA, Model A, and one based on constant risk aversion,
Model B. Note that we assess the portfolios for different time frames, ones related
to calm periods and others related to economic recession.

2 Main Results and Findings: The Certainty-Equivalent

In this section, we show a well-known performance measure to assess our portfolio
management. Figure 1 shows the Certainty-Equivalent. Then, analysing the perfor-
mance results from Fig. 1, we have tested that the highest risk premium offered
to exchange our portfolio, is the one showed by Model A (dynamic risk aversion),
since it is the one that usually offers us the greatest relationship over time. We obtain
evidence that portfolios with better performances based on Certainty-Equivalent
ratio are those ones associated to the time-varying risk aversion attitude, while
those with a constant risk aversion parameter (Model B), have a negative risk-return
relationship and a very unstable trend throughout the whole studied period (calm
and stress).

1This term refers to the changes in relative risk aversion, which is a way to express the risk aversion
attitude of an investor through his utility function.
2Note that we use the daily closing prices of EuroStoxx-50 Index as market portfolio and the
3-month German Treasury Bills as risk free rate.
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Fig. 1 We plot the monthly evolution of the Certainty-Equivalent for both studied models
(dynamic and constant risk aversion). This performance measure is expressed in annual terms.
Note that we generate different kind of time-varying portfolios for two sample periods. Top
graph represents a calm period, which runs from 01/01/2004 to 31/12/2007. Moreover, the second
timeframe is a more stressed one (located at the bottom) and comes from 01/09/2008 to 31/08/2012

In addition, we implement a mean-difference test (parametric test) for two
independent samples, that is to say, we compare whether the differences between
the averaged ratios of the dynamic and constant models are significant or not.
Then, if we had to invest some money in a risky portfolio, we would choose the
one associated with Model A. However, according to the results obtained in the
mentioned test, we find that there are few differences between the different selected
models. In fact, if we prefer a less complex method (by calculating the conditional
risk aversion attitude through different mathematical equations), we can select the
constant risk aversion scheme. As we have mentioned before, this is because the
differences between the best model (Model A, based on time-varying risk aversion)
and the worst one (Model B, based on a constant risk attitude parameter) are not
significant.
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Socially Responsible Investment, Should
You Bother?

Antonio Díaz and Gloria Garrido

Abstract Companies included on a sustainability index meet several criteria based
on an assessment of their economic, environmental and social practices. Each of
these companies satisfies a different number of criteria and these standards can be
quite different in quality and rigor. In this sense, RobecoSAM provides a Corporate
Sustainability Assessment of the companies included in the Dow Jones Sustainable
Index. The three proposed classes (Gold, Silver and Bronze) can be considered as
social responsible (SR) ratings. Therefore, we examine the financial performance
of portfolios composed of stocks according to these ratings. We assume that highly
conscious SR investors could base their portfolio decision-making process on these
SR ratings. From an extensive dataset, our results show that SR investments not only
have no cost for investors but also outperform the market. Additionally, there are no
significant differences among SR portfolios depending on the SR rating.

Keywords Socially responsible investment · Investment screening · Dow Jones
sustainable index

1 Introduction

Socially Responsible Investment (henceforth SRI) is an increasing finance trend,
covering a great part of the upcoming literature, but, indeed, it has shaped how
finance has developed over the past years, and probably how it will continue to
do so.

SRI consists of selecting or excluding through investment screens based on
environmental, social, or corporate governance criteria. Furthermore, engagement
with local communities and shareholder activism is considered as out-standing
criteria [1]. There are different ways of selecting SRI from the whole bunch of
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assets available in the market, investors can use negative, positive sustainability,
or a combination between “sustainability” and shareholder activism [2].

The literature on the subject is focused on examining the performance of global
SRI indices compared to conventional investments, the performance of companies
grouped as homogenous because they are included in an ethical index or other SR
benchmarks compared to conventional investments, and the performance of mutual
funds or Ethical Investment Funds. Consensus has not been achieved.

The aim of this paper is to examine the role of corporate sustainable ratings
as portfolio decision-making criterion for highly conscious SR investors. Some
international investment companies have carried out sustainability assessments to
build up SRI indices. This is the case of RobecoSAM, company which builds up
the Dow Jones Sustainable Index (henceforth DJSI) and classifies SR companies
in different levels or ratings based on the Corporate Sustainability Assessment
(henceforth CSA). We assume that highly conscious SR investors could base
their investment strategies on the three categories or CSA levels (Gold, Silver,
and Bronze). In addition, we study is that SRI can be as good as conventional
investments in terms of the financial performance, for which, an empirical analysis
that measures financial performance of a different degree of sustainable companies
versus non-sustainable companies has been carried out. This study contributes to
the existing literature using a large sample period, reliable data to rank companies’
socially responsible performance and a wider range of performance measures. From
the empirical analysis, we can conclude that SRI not only are not a cost for investors
but also they outperform the market, having better performance than traditional
diversified portfolios.

2 Relationship Between Socially Responsible Performance
and Financial Performance

A branch of the literature on SRI is focused on examining the performance of global
SRI indices compared to conventional investments, the performance of companies
grouped as homogenous because they are included in an ethical index or other SR
benchmarks compared to conventional investments, and the performance of mutual
funds compared to EIFs. Consensus has not been reached either in the data base used
neither the methodology. While some use liquidity ratios, other use risk-adjusted
performance measures.

This study goes beyond this literature by examining portfolios that contain
individual companies, but while distinguishing among different degrees of corporate
sustainability involvement. Some authors [3–6] examine the performance of the own
DJSI or the alternative FTSE4Good Indices or use being included in those indices
as homogeneous Corporate Sustainability Performance (CSP). Other recent papers
analyse companies that follows or publicly maintain that they use SBP [7–9]. We
try to improve the methodology previously used by considering different degrees of
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CSR. We use the CSA, interpreted like a sort of CSR ratings, to examine separately
the performance of portfolios of companies included in each category: Gold, Silver,
and Bronze.

3 Portfolios Composition and Data Sample

Based on the yearly classification of the CSA provided by RobecoSAM, we look
for companies also included in the Euro Stoxx 50, i.e., we match both datasets.
We select manually companies that have been classified in one of the three main
categories (Gold, Silver and Bronze) from The Sustainability Yearbook 2016, then
the companies from the Eurozone need to be extracted from the list.1

The study has been carried out so that the investor can build up different value-
weighted portfolios depending on its SRI demand, i.e., depending on the “socially
responsible ratings”. The portfolios would be Gold (3 stocks), Silver (9 stocks),
Bronze (19 stocks), and Market portfolios. The last portfolio is the stock market
portfolio Euro Stoxx 50, and is the benchmark or market portfolio, since it includes
all the companies that are in each portfolio and the 50 leader companies of the euro
zone.

The time horizon of this analysis is 15 years (January 2002–December 2016),
calculating the weekly rates of return of each of the different portfolios. According
to the volatility given by the VIX Index, the sample period has been divided into
three different subperiods: pre-crisis and calm period (January 2002–June 2007),
the financial crisis or market stress (includes the sovereign debt crisis in PIGS
countries) (July 2007–June 2012), and bailout and economical overcome (July
2012–December 2016).

4 Empirical Analysis

In this section, we compute different risk-adjusted performance measures to our SRI
portfolios constructed from three different levels of exigency of social responsibil-
ity: only Gold stocks, Gold and Silver stocks, and Gold, Silver, and Bronze stocks.
From weekly discrete rates of returns, we compute basic statistical metrics and the
performance measures to test the hypotheses previously exposed.

Both sets of performance measures show that the three sustainable portfolios
outperform the market for the whole period (January 2002–December 2016).
Summarizing results obtained by our analysis of the risk-adjusted performance

1The stock prices have been obtained from Yahoo Finance, the market capitalization of each
company has been obtained from ElEconomista website. As a risk-free asset, we use the daily
series of the 1-week Euribor obtained from the European Money Markets Institute (EMMI).
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measures, the three portfolios could be sorted into a clear order according to the
values of all the performance indices: first the Silver portfolio, second the Bronze,
and third the Gold.

We now try to check if this apparent result is statistically significant for the full
sample period and for each particular subsample. This analysis makes sense from a
statistical point of view and thus portfolios can be compared between each other to
state which one is superior to the other. Using 6-month non-overlapping windows
during the period 2002–2016, we test the equality of mean, and two non-parametric
tests, the sign test (binomial test) and the Wilcoxon signed-ranked test to test the
null hypothesis of equality of median, and the Levene statistic.

This analysis shows that the only statistically significant difference between
portfolios appear in the case of the Sharpe ratio. For the full sample period, the Gold
portfolio systematically performs below the Silver and above the Bronze portfolios.
For the rest of the analysed performance measures, their mean, median, and variance
are statistically similar. No differences are observed from the performance analysis
based on these measures of the three portfolios constructed with different CSA
categories.

5 Conclusion

This study delivers a new point of view to the existing literature. We examine
whether investing in SRI has a cost in terms of lower rates of return or underper-
formance. Literature has not come to an agreement about the relationship between
being socially responsible and financial performance, this study aims to fill the gap.
The empirical background of this study, as far as we know, is the first analysis within
which different portfolios are constructed depending on a ranking that classify SRI
in different levels. These “socially responsible ratings” consider the number and
quality of the SBP that the companies meet. This fact added to the long sample
period analysed, which covers large periods of calm and turmoil, and the reliable
data used to measure the companies’ SR performance, obtained from one of the
most reliable databases in the world, gives a new outlook to the literature.

This study has been mainly developed with the aim of checking a relevant
hypothesis: the performance of the portfolio is different depending on the “socially
responsible rating” achieved. For which, it can be concluded that there are not
significant differences between portfolios depending on their “socially responsible
ratings”, then SRI is not a cost for investors, even, they can outperform the market.
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Measuring Financial Risk Co-movement
in Commodity Markets

Gema Fernández-Avilés, Jose-María Montero, and Lidia Sanchis-Marco

Abstract Commodities play a more and more central role in financial markets.
There are currently around fifty major commodity markets where more than a
hundred hard and soft primary commodities are traded. Financialization has made
purchasing index funds one of the most popular ways to invest on commodities.
Consequently, understanding the dynamics of commodity indexes and whether or
not they co-move becomes crucial for investors, especially in distress periods,
where risk sharply increases. In this short paper, we analyze the downside risk co-
movement of a number of primary commodity indexes in a distress period known
as the 2007–2008 oil and food crisis. For this purpose, we use the expected shortfall
and multidimensional scaling as a technique to produce low-dimensional financial
risk maps.

Keywords Commodity market returns · Financial propagation · Financial maps ·
Multidimensional scaling

1 Introduction

There are currently about 50 major commodity markets where around one hundred
of hard and soft commodities are traded. Today’s commodity markets can be
considered as mature and highly developed institutions, playing a very important
role in the modern economy [11]. In this article we focus on one of the open
questions in these markets: the co-movement in commodity prices, and more
specifically the co-movement in commodity indexes. However, we do not focus on
co-movement in mean and/or volatility, as usual in the literature on the topic. We go
beyond this point and deal with co-movement in tail or downside risk, which is more
interesting for agents participating in commodity markets. Co-movement (also spill-
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over processes and contagion) has been usually studied for returns and, less usually,
for volatility. However, there exist only a few number of research studies on co-
movement in the tail of the returns distribution [1, 9]. We contribute to this stream
of literature by analyzing the tail risk co-movement in commodity markets. To this
purpose, we first estimate the expected shortfall (ES) as a downside risk measure.
Then, ES is used as the input of a multidimensional scaling (MDS) procedure to
constructing financial downside risk maps. One of the major advantages of this ES-
MDS combined procedure is that it provides the representation of the objects under
study (in our case ES commodity time series) as points in a map, so that highly
correlated objects will be close each other in such a map and objects with a low
correlation will be represented with very distant points in the map. To the best of
our knowledge, this is the first study attempting to create financial risk maps using
MDS. It is of note that this is a very easy-to-interpret technique whose results can
serve as an input for further spatial (or spatio-temporal) statistical analysis of tail
risk (geostatistics, spatial econometrics, local modelling, point patterns analysis,
etc.). In this short article, we deal with nine major world commodity indexes from
the sectors: energy, metals minerals, Beverages, Fats and Oils, Fertilizers, Grains,
Food, Row materials, and Timber.1

The remainder of the paper is organized as follows. Section 2 addresses
methodological questions. Specifically, Sect. 2.1 states the downside risk measure
considered and Sect. 2.2 describes our approach to creating financial downside risk
maps using MDS. Section 3 presents the main results obtained. Finally, Sect. 4
concludes.

2 Methodology

2.1 Selecting a Downside Risk Measure

In order to create financial downside risk maps for commodity markets, we first
have to choose an optimal measure of downside risk. We use ES because it is a
coherent risk measure and takes into account extreme negative returns. Moreover,
ES is comonotonic additive, robust and elicitable (see [4]). In addition, the Basel
Committee [3] has also confirmed that ES will replace Value at Risk (VaR) for
regulatory capital purposes in the trading book. ES was introduced by Artzner et
al. [2]. We use the parametric GJR-GARCH(p,r,q) with t-student distribution in the
updating process of ES volatility estimates. Technical details can be seen in [10].

1The indices composition is detailed in http://pubdocs.worldbank.org/en/752911517610537957/
CMO-Pink-Sheet-February-2018.pdf.
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2.2 Constructing Financial Downside Risk Maps with MDS

Financial downside risk maps are constructed applying MDS to the ES series of the
commodity indexes. The MDS approach has the advantage of reproducing the main
features of the data in the form of maps that not only lead themselves to intuitive
interpretation but also provide the set of financial risk distances. The main aim
of MDS is to discover structures in multidimensional data. Based on a proximity
matrix, typically derived from variables measured on objects as input entity, these
dissimilarities are mapped on a low-dimensional spatial representation [7]. More in
detail, given a matrix of measured or perceived similarities among various items (in
our study, ES commodity indexes time series), MDS plots the items on a map (a
financial risk map) such that those which are perceived to be similar are placed near
one another. Technical details can be seen in [5, 6] and [8].

3 Main Results

Figure 1 shows, in Panel (a), the financial downside risk map of the nine commodity
indexes considered in the analysis during the global oil and food crisis in 2007–
2008. As can be seen, Energy is the most risky commodity index and do not co-move
with any other index; it exhibits a specific dynamics. The second most risky index
is Fat and oils, related with oil crisis as soybean was used as biofuel. It is also
far from co-moving with any other index. Beverage and Timber exhibit a certain
co-movement. Metals and minerals, Raw materials, Grains, Food and Fertilizers,
the least risky indexes, show the highest degree of co-movement. Panel (b) shows
the Shepard plot, which depicts a good distribution of points around the 45◦-line.
Moreover, the Kruskals stress-1 indicates a god fit (0.0092).
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4 Conclusions

In this short paper we study whether or not the downside risk of a num-
ber of major commodity indexes co-move. We use a combined expected
shortfall/multidimensional scaling approach which provides intuitive and easy-
to-interpret low dimensional downside risk maps. During the 2007–2008 global oil
and food crisis, the distress period under study, Metals and minerals, Raw materials,
Grains, Food, and Fertilizers, the least risky indexes, exhibit a high degree of
downside risk co-movement, whereas Energy, the riskiest index, shows a particular
dynamics that has nothing to do with the dynamics exhibited by the rest of indexes.
Fat and oils, the second most risky index, is also far from co-moving with the other
indexes, and Beverage and Timber exhibit a certain co-movement, but not of the
intensity of the co-movement in Metals and minerals, Raw materials, Grains, Food,
and Fertilizers.
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Helping Long Term Care Coverage
via Differential on Mortality?

María Cristina Fernández-Ramos, Joseba Iñaki De La Peña,
Ana Teresa Herrera, Iván Iturricastillo, and Noemí Peña-Miguel

Abstract This paper seeks to help draw up a flexible design for pensions for depen-
dents that can help reduce the costs of their situation while precisely increasing
the amounts that they receive. The way is a system for the automatic adjustment
of pension benefits taking into account the dependency level of the beneficiary.
Thus, pension benefits increase in the new state as the cost of care increases. To
that end we propose a model with a benefit correction factor that includes a specific
mortality rate for dependents, thus enabling us to adapt benefits to the profile of
each beneficiary. Special attention is paid to mortality rates among dependents
as the determinant for the correction factor. This new model has many practical
implications, as it can be implemented without much difficulty and indeed at no
additional cost. This enables coverage to be universal in private capitalization-type
pension plans. However, it does increase the cost of social security systems funded
on a pay-as-you-go basis.

Keywords Elderly · Pension evaluation · Sustainability factor · Pension
schemes

1 Long Term Care as a Coverage

In the field of private insurance, a distinction is drawn between natural coverage and
long-term care [1, 2], with problems of dependency being alleviated with products
suited to demand. The combination of different benefits [3] simplifies matters and
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includes an important aspect of retirement pensions, which is usually dealt, with
separately: an acknowledgement of the potential need for dependency care, resulting
in higher benefits being paid when the beneficiary is dependent. This approach is
proposed by [4] and [5] as a combination of retirement income and higher income
on becoming dependent.

2 Differential on Mortality

We assume that when the beneficiary becomes a high-level dependent at age x the
amount of the benefit is automatically increased by a percentage λdx , which helps
to pay for dependency care services. This factor λdx is applied when a beneficiary
becomes a dependent then only the probability of death while classed as dependent
remains to be determined. The probabilities of suffering from high-level dependency
have been determined in various studies [6], on the basis of which life expectancy
figures for individuals in the severest states of dependency have been calculated.

On that basis, [7] determine the probabilities of death among high-level in
Spain. They find that the gap between excess mortality and general mortality rates
decreases from age 96 onwards. To reflect this effect they include a mixed correction
factor: an additive modification, and a multiplicative correction:

dq
m

x =
{

qm
x + δ

1+γ xi−x ∀xi < 95

qm
x · (1+ β)+ δ

1+γ xi−x ∀xi ≥ 95

δ: Maximum value to be incorporated in line with the age at which figures
converge asymptotically.

γ : Slope factor.
xi: Age at the point of inflection where the curve changes from convex to concave.
β: Multiplicative correction factor applied to general mortality.

Once the probability of death of severe and high-level dependents is known, the
correction factor to be applied is the following:

λdx =
∑w

h=x h−xpm
x∑w

h=x h−xdpm
x

= emx
demx

∑w
h=x h−xpm

x : Sum of probabilities of being alive from age x to h years more.∑w
h=x h−xdpm

x : Sum of probabilities of a dependent to be alive from age x to
x+h.
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3 An Application to Spain

Based on PERM/F-2000P dynamic tables for Spain fitted to HID 98-01 statistics
for France with the values obtained by [7] for δ, γ , β & xi with an ordinary least
squares procedure for the gross values for high-level dependency estimated for
Spain (Table 1):

The mortality rates obtained for high-level dependents are markedly higher than
general mortality rates from age 35 onwards (Figs. 1, 2 and 3).

The application of these calculations to high-level dependents in line with their
year of birth shows pension increases of practically threefold in all cases. At younger
ages the correction factor has values of just over one, in sharp contrast with the
values found from retirement age onwards.

Table 1 Excess mortality
factors for dependents

Factors Men Women

δ 0.245 0.165
γ 1.135 1.09
xi 62.50 58.61
β 0.1142 0.0962

Source: [7]

Fig. 1 Mortality among dependents and general mortality rates per age and gender
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Fig. 2 Correction factor with actuarial income for dependency broken down by age and generation
(men). Source: Own work

Fig. 3 Correction factor with actuarial income for dependency broken down by age and generation
(women). Source: Own work
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4 Conclusions

The model has many practical implications, and can be implemented with little
difficulty and no additional cost, in capitalization-based private pension schemes.
However, if this factor were to be included in a public, defined-benefit system such
as the pay-as-you-go social security system it would lead to a direct increase in
cost equivalent to the amount of the increase in benefits. Contributions would not
increase, so initially a deficit would result.

Finally, public and private dependency coverage schemes alike seek to help meet
the costs that dependency entails for individuals, but without necessarily providing
all the resources needed to meet demands for coverage. Individuals are provided
with a set of measures that can meet their needs as dependents in full: services, use
of residence and financial benefits, thus providing higher levels of satisfaction and
better monitoring of dependents.
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Tuning a Deep Learning Network
for Solvency II: Preliminary Results

Ugo Fiore, Zelda Marino, Luca Passalacqua, Francesca Perla,
Salvatore Scognamiglio, and Paolo Zanetti

Abstract Under the Solvency II Directive, insurance and reinsurance undertakings
are required to perform continuous monitoring of risks and market consistent
valuation of assets and liabilities. Solvency II application is particularly demanding,
both theoretically and under the computational point of view. At present, any
technique able to improve on accuracy or to reduce computing time is highly
desirable. This works reports initial results on the design of a Deep Learning
Network, aimed to reduce computing time by avoiding the standard full nested
Monte Carlo approach.

Keywords Solvency II · Deep learning · Monte Carlo · Profit insurance policies

1 Introduction

The European Union 2009/138 Directive, better known as Solvency II [1], requires
insurance and reinsurance undertakings to hold eligible own funds covering the
Solvency Capital Requirement (SCR), defined as the Value-at-Risk of the basic
own funds subject to a confidence level of 99.5% over a one-year period. The SCR
shall be calculated, either in accordance with the so-called standard formula—as
detailed in the Directive—or using an internal model (IM), subject to approval by
supervisory authorities. Within the IM approach, the SCR shall be derived from
the probability distribution forecast (PDF) of the net asset value (NAV), i.e. of the
difference between the value of the assets and that of the liabilities, generated by the
internal model itself. In practice, internal models are multi-dimensional stochastic
models that allow the evaluation of asset and liabilities at the end of the one-
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year horizon. From the algorithmic point of view, they are based on a two-step
procedure. The first step is the generation of the value of the relevant risk drivers
(e.g. interest rates and mortality rates) over the one-year time horizon; this is usually
performed by Monte Carlo simulation over a fixed time grid, using a discretised
version of the stochastic differential equations describing the dynamics of the risk
factors. The second step is the evaluation of asset and liabilities, conditional of the
trajectory followed by the risk drivers. Depending on the complexity of the contracts
involved, the evaluation may be performed by mean of theoretically derived closed
form expressions or using a numerical procedure (unavoidable for contracts with
embedded American style options, whose evaluation would require the solution of
free-boundary problems). Thus, when the chosen numerical procedure is Monte
Carlo, the evaluation of SCR involves Nested Monte Carlo (NMC) simulations.
Since, to achieve the desired accuracy, the number of simulations of both steps must
be large, the computational cost is very high. To avoid simulation in the second step,
an effective closed form expression must be found, using a reduced size NMC for
calibration.

At present, different techniques have been proposed in the literature [3, 6, 7], out
of which Least-squares Monte Carlo based on orthogonal polynomial expansion
seems the most promising; however the question is still debated [2]. Machine
learning (ML) techniques appear to be viable alternatives, since the dependence
(target function) of the value of asset and liabilities on the risk drivers is unknown,
and supervised learning can be carried out on training sets produced by NMC.

Among ML techniques, Deep Learning Networks (DLNs) are a powerful and
flexible technique which has proven its effectiveness in several research areas. A
DLN is a multilayer Artificial Neural Network. The units of a neural network are
associated to a nonlinear activation function applied on a linear combination of
the inputs to produce the output. Learning refers to updating the parameters of
such linear combinations so that a given loss function is minimized. A particularly
relevant property of neural networks is that they are known to be universal
approximators. A single-layer feed-forward neural network can approximate any
continuous function. In DLNs, multiple layers are composed together, so that they
can efficiently approximate the value of assets and liabilities as function of risk
drivers. The first layer is associated with input, while the units in each subsequent
layer act on a combination of the outputs of all units in the preceding layer.
The resulting (deep) chain of transformations can model complex structure in its
inputs more compactly than a shallow network can do. The expressive power of
DLNs is counterbalanced by the extensive tuning needed to achieve an acceptable
performance. Hyperparameters to be tuned include the number of layers, number of
units in each layer, their activation function, in addition to other characteristics that
influence the behavior of the learning algorithm.

In this work, initial results are presented on the tuning of the hyperparameters
of a DLN to compute the value of the liabilities for profit sharing life insurance
policies with minimum guarantees. In these contracts—widely diffused in Italy—
benefits credited to the policyholder are indexed to the annual return of a specified



Tuning a DLN on Solvency II: Preliminary Results 353

investment portfolio, called the segregated fund. A profit sharing policy is a
“complex” structured contract, with the segregated fund return as underlying.1

2 Numerical Set-Up

As in the literature there is no unanimous point of view on the best combination of
hyperparameters, fine tuning of a DLN is still a demanding task. As expected, the
DLN performance was found to depend significantly on the hyperparameters. The
analysis considered the segregated fund of an Italian insurance company with seven
risk drivers, including interest rate, equity, inflation, and exchange rate risk. The
NMC sample produced by the IM is composed of 10,000 simulations, out of which
6667 used for training, while the remaining 3333 were reserved for validation. The
effect of the following hyperparameters was analyzed: number of hidden layers,
activation function, learning rate (how quickly a network updates its weights to
adapt to training data), and number of nodes in each layer. To compare different
configurations, the performance metric used is the Normalized RMSE (NRMSE),
i.e., the RMSE divided by the range of the response variable. To understand the
role of each hyperparameter in the DLN performance, one hyperparameter at a time
was changed. Better performances were observed when input data were normalised.
Standardization and rescaling were also tested, with rescaling achieving the best
performance. All tests were performed with the MXNet package2 of R.

3 Results

DLNs with one, two, and three hidden layers were tested, concluding that a DLN
with two hidden layers offers the best performance. As per the number of nodes in
the hidden layers, different number of units in the two hidden layers and different
learning rates were tested. In most cases, performance improvement was observed
with learning rates around 0.2. Determining an adequate number of hidden layer
units has always been a complex question in neural networks. Empirical rules that
have been proposed in the literature are: 2/3 of the nodes in the input layer [5];
twice the number of nodes in the input layer [9]; a number between the input and
the output layer nodes [4]; log2 S, where S is the number of training samples [10].
The performance of the DLN was tested following the previous rules and with all
the numbers from 2 to twice the number of input layer units. In Fig. 1 (left), the
NRMSE is reported for the analyzed combinations of the number of units in the

1For an exhaustive analysis of the basic principles and methodological approach for a valuation
system of profit sharing policies with minimum guarantees the reader may refer to [8].
2https://mxnet.apache.org/.

https://mxnet.apache.org/
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Fig. 1 Performance with (left) various numbers of units per layer and (right) for different learning
rates

two hidden layers, with the learning rate fixed at 0.2 (white boxes indicate outliers).
It can be seen that the performance is almost stable on good values for numerous
combinations (with the top-right quadrant seemingly offering the best scenario),
but strong and sudden variations are visible. The absolute minimum (though by
a very slight margin) was observed, however, for nine nodes in the first layer
and eight in the second. This evidence shows that none of the previous rules-of-
thumb is always true. Figure 1 (right) shows in detail the DLN performance as the
learning rate changes, when the number of hidden units is kept fixed at the best
configuration as specified above. A learning rate equal to 0.18 is the best value.
The last hyperparameter considered is the activation function of nodes. For all the
configurations that were previously evaluated, the best performance was obtained
with the Rectified Linear Unit (ReLU) activation function. Plans for further study
include the refinement of the analysis and the realization of large-scale tests on an
High Performance Computing system.
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Exploratory Projection Pursuit
for Multivariate Financial Data

Cinzia Franceschini

Abstract Projection pursuit is a multivariate statistical technique aimed at finding
interesting low-dimensional data projections. It deals with three major challenges of
multivariate analysis: the curse of dimensionality, the presence of irrelevant features
and the limitations of visual perception. In particular, kurtosis-based projection
pursuit looks for interesting data features by means of data projections with either
minimal or maximal kurtosis. Its applications include independent component
analysis, cluster analysis, discriminant analysis, multivariate normality testing and
outliers detection. To the best of the author’s knowledge, this paper constitutes the
first application of kurtosis-based projection pursuit to the exploratory analysis of
multivariate financial time series.

Keywords Projection pursuit · Kurtosis · Financial data

1 Introduction

According to [6], “Projection pursuit is a technique for locating projections from
high to low-dimensional space that reveal interesting non-linear features of a
data set, such as clustering and outliers. The two key components of projection
pursuit are the chosen measure of interesting features (the projection index) and its
algorithm.”

Projection pursuit deals with three major challenges of multivariate analysis:
the curse of dimensionality, the presence of irrelevant features, and the limitations
of visual perception. Projection pursuit is particularly useful when data are high-
dimensional, data features are unclear, and the approach is exploratory.

The absolute value of the fourth standardized cumulant is a valid projection
pursuit index, according to the criteria stated in [5], and leads to kurtosis-based
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projection pursuit. Its statistical applications include multivariate normality testing
[8, 12, 14], cluster and outlier detection [15–17], independent component analysis
[7, 13]. The prominent role of kurtosis as a projection pursuit index is emphasized
by several authors, as for example [1, 3, 4, 19, 20]. To the best of the author’s
knowledge, this paper constitutes the first application of kurtosis-based projection
pursuit to multivariate financial time series.

2 Results

This section examines a large dataset in order to illustrate the potential of the
proposed method for visualizing clusters. Each observation is the closing price of an
European financial market, as recorded by MSCI Barra. The included countries are
Austria, Belgium, Denmark, Finland, France, Germany, Greece, England, Ireland,
Italy, Norway, Holland, Portugal, Spain, Sweden, Switzerland. The first and last
closing prices were recorded during 24/06/2003 and 23/06/2008, respectively. Data
are arranged in a matrix where each row represents a day and each column a country.
Hence the size of the data matrix is 1305× 16.

All variables are platykurtic: their kurtosis, as measured by the fourth standard-
ized moment, is never greater than 2.3 and it exceeds 2 for Finland and England
only. As remarked by several authors [17, 18] kurtosis is likely to be small in the
presence of two well-separated clusters with similar size and small variances. The
same happens when three clusters are presents and the clusters in the extremes are of
similar size. However, visual inspection of the histograms is not conclusive with
respect to the cluster structure. Some of them (as Finland, England, and Spain)
suggest the presence of two clusters, while three or more clusters appear to be
present in others (like Austria, Belgium, and Denmark).

More insight into the cluster structure of the data might be gained by the proposed
method. We shall denote by MIN and MAX the projections of the data onto the
directions approximating those with minimal and maximal kurtosis, respectively.
Both projections were computed with the algorithm whose starting value and
iteration step are described in [2] and [10], respectively. The histogram of MIN
(Fig. 1) is markedly bimodal, thus suggesting the presence of two clusters. On the
other hand, the histogram of MAX (Fig. 2) has a very long left tail, often associated
with the presence of outliers. The apparent contradiction disappears when plotting
MIN against MAX. The resulting scatterplot (Fig. 3) clearly reveals the presence
of three clusters forming a tree-like structure. More precisely, the upper end of the
cluster which is more dispersed along the vertical axis overlaps with the lower end of
the cluster of a more spherical shape, which in turn is very close to the left side of the
remaining cluster. The example encourages the joint use of data projections which
either minimize or maximize kurtosis, as proposed by Peña and Prieto [16, 17].
Further research in this area might consider projections maximizing skewness, as in
[9, 11].



Exploratory Projection Pursuit for Multivariate Financial Data 359

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

Fig. 1 Histogram of the most platykurtic projection

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2
0

100

200

300

400

500

600

700

800

Fig. 2 Histogram of the most leptokurtic projection



360 C. Franceschini

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Fig. 3 Scatterplot of the most platykurtic (horizontal axis) and leptokurtic (vertical axis)
projection

References

1. Daszykowski, M.: From projection pursuit to other unsupervised chemometric techniques. J.
Chemom. 21, 270–279 (2007)

2. Franceschini, C., Loperfido, N.: An algorithm for finding projections with extreme kurtosis.
In: Perna, C., Pratesi, M., Ruiz-Gazen, A. (eds.) Studies in Theoretical and Applied Statistics:
SIS2016-48th Meeting of the Italian Statistical Society, Salerno 8-10 June 2016. Springer,
Cham (2018)

3. Hou, S., Wentzell, P.D.: Fast and simple methods for the optimization of kurtosis used as a
projection pursuit index. Anal. Chim. Acta 704, 1–15 (2011)

4. Huang, Y., Cheng, C.R., Wang, T.H.: Influence analysis of nongaussianity by applying
projection pursuit. Stat. Probab. Lett. 77, 1515–1521 (2007)

5. Huber, P.: Projection pursuit (with discussion). Ann. Stat. 13, 435–475 (1985)
6. Hui, G., Lindsay, B.G.: Projection pursuit via white noise matrices. Sankhya B 72, 123–153

(2010)
7. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York

(2001)
8. Kuriki, S., Takemura, A.: The tube method for the moment index in projection pursuit. J. Stat.

Plann. Inference 138, 2749–2762 (2010)
9. Loperfido, N.: Skewness and the linear discriminant function. Stat. Probab. Lett. 83, 93–99

(2013)
10. Loperfido, N.: A new kurtosis matrix, with statistical applications. Linear Algebra Appl. 512,

1–17 (2017)
11. Loperfido, N.: Skewness-based projection pursuit: a computational approach. Comput. Stat.

Data Anal. 120, 42–57 (2018)
12. Malkovich, J.F., Afifi, A.A.: On tests for multivariate normality. J. Am. Stat. Assoc. 68, 176–

179 (1973)
13. Miettinen, J., Taskinen, S., Nordhausen, K., Oja, H.: Fourth moments and independent

component analysis. Stat. Sci. 30, 372–390 (2015)



Exploratory Projection Pursuit for Multivariate Financial Data 361

14. Naito, K.: A generalized projection pursuit procedure and its significance level. Hiroshima
Math. J. 27, 513–554 (1997)

15. Peña, D., Prieto, F.J.: The kurtosis coefficient and the linear discriminant function. Stat. Probab.
Lett. 49, 257–261 (2000)

16. Peña, D., Prieto, F.J.: Cluster identification using projections. J. Am. Stat. Assoc. 96, 1433–
1445 (2001)

17. Peña, D., Prieto, F.J.: Multivariate outlier detection and robust covariance estimation (with
discussion). Technometrics 43, 286–310 (2001)

18. Peña, D., Prieto, F.J.: Combining random and specific directions for outlier detection and robust
estimation of high-dimensional multivariate data. J. Comput. Graph. Stat. 16, 228–254 (2007)

19. Rubinshtein, E., Anuj Srivastava, A.: Optimal linear projections for enhancing desired data
statistics. Stat. Comput. 20, 267–282 (2010)

20. Ruiz-Gazen, A., Marie-Sainte, S.L., Berro, A.: Detecting multivariate outliers using projection
pursuit with particle swarm optimization. In: Proceedings of COMPSTAT 2010, pp. 89–98
(2010)



The Rearrangement Algorithm
of Puccetti and Rüschendorf: Proving
the Convergence

Marcello Galeotti, Giovanni Rabitti, and Emanuele Vannucci

Abstract In 2012 Puccetti and Rüschendorf [J. Comp. Appl. Math., 236 (2012)]
proposed a new algorithm to compute the upper Value-at-Risk (VaR), at a given
level of confidence, of a portfolio of risky positions, whose mutual dependence
is unknown. The algorithm was called Rearrangement, as it consists precisely in
rearranging the columns of a matrix, whose entries are quantiles of the marginal
distributions. In the following years the algorithm has performed quite well in
several practical situations, but the convergence has remained an open problem.
In the present paper we show that the rearrangement algorithm converges, once
the deterministic procedure has been precisely defined and an initial optimality
condition is satisfied.

Keywords Value-at-Risk · Rearrangement · Ordered matrices

1 Introduction

The Rearrangement Algorithm comes from two apparently distant problems:

1. a numerical problem (see, e.g., [2]): given an n× d matrix with positive entries,
rearrange its columns as to minimize the variance of the row-sum vector;
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2. a financial and probabilistic problem: let L = (L1, . . . , Ld) be a portfolio of
risky positions (L1, . . . , Ld are losses), whose marginal distributions are known,
but their dependence is not. Given a confidence level α, 0 < α < 1, find the
highest VaRα(L) of the total loss L = L1 + . . .+ Ld .

In order to see the connection between the two problems, consider the partition of
the interval [α, 1] into n equal subintervals and, calling Fj (x) the marginal of the
loss Lj , pose, for i = 1, . . . , n,

aij = F−1
j

(
α + (i − 1)(1− α)

n

)

and

bij = F−1
j

(
α + i(1− α)

n

)
.

Hence, we construct two n × d matrices A and B. Since the VaR is not sub-
additive, the highest VaRα(L), say VaRα(L), is generally higher than

∑d
j=1 a1j .

Thus, rearrange A and B into new matrices A∗ and B∗ so as to minimize the
variances of the row-sum vectors, say X and Y . Then one can prove that

SX ≤ VaRα(L) ≤ SY

where SX and SY denote, respectively, the minimal entries of X and Y .

2 The Rearrangement Algorithm

The key-step in the algorithm is the following. For the minimal variance of X (and
Y ) to be attained, the rearranged matrix A∗ (B∗) must be “ordered”, i.e. each column
must be oppositely ordered to the sum of the others (see [2]).

Hence an algorithm procedure can be designed:

1. from a partition of [α, 1] into n subintervals, proceed to a partition of 2n
subintervals, e.g. by dividing each subinterval into two halves;

2. write the new corresponding matrices A and B;
3. rearrange them into ordered matrices;
4. calculate the corresponding SX and SY , and so on.

Therefore, one expects that eventually

SX, SY −→ VaRα(L).
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Given a matrix A or B as above, the ordered matrices which can be drawn from it
may be, when d > 2, several, so that we are not sure whether the one we find first
is “optimal” (i.e., it is the one whose row-sum vector attains the minimal variance).
Consider a very simple example:

B1 =
(

2 2 2
4 4 4

)
so as B∗1 =

(
2 2 4
4 4 2

)

Now add to the ordered B∗1 two new rows corresponding to intermediate values 1,
3. Then

B2 =

⎛

⎜⎜⎝

1 1 3
2 2 4
3 3 1
4 4 2

⎞

⎟⎟⎠

Rearrange B2 starting from the first column

B
′
2 =

⎛

⎜⎜⎝

4 1 3
3 3 1
2 2 4
1 4 2

⎞

⎟⎟⎠ −→ Y
′ =

⎛

⎜⎜⎝

8
7
8
7

⎞

⎟⎟⎠

Rearrange B2, instead, from the third column

B
′′
2 =

⎛
⎜⎜⎝

1 1 4
2 2 3
3 3 1
4 4 1

⎞
⎟⎟⎠ −→ Y

′′ =

⎛
⎜⎜⎝

6
7
8
9

⎞
⎟⎟⎠

Both B
′
2 and B

′′
2 are ordered, but

Variance (Y
′
) < Variance (Y

′′
)

while

S
Y
′ = 7 > S

Y
′′ = 6.

In [1], Embrechts, Puccetti and Rüschendorf proposed, then, to rearrange randomly
the columns of A and B at each step before looking for ordered matrices. This way,
though, the algorithm is no more deterministic.
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3 Proof of Convergence

The road we explored was a different one. Let us start from an n × d matrix with
positive entries, say B, where d > 2 (the case d = 2 is trivial). Let O(B) be the
set of the ordered rearrangements of B. Then we introduce a topological structure
in O(B). We can call it a “norm”, h. If B∗ ∈ O(B) and Y ∗ is the corresponding
row-sum vector, define

h(B∗) := Variance (Y ∗).

Then we prove the following Lemma.

Lemma 1 We call B∗ critical if one of the vectors Y ∗j , Y ∗−j , Y ∗ has two equal
entries (where Y ∗j is the j-th column, Y ∗ is the sum of the columns, Y ∗−j is the sum
of all the columns except the j-th one). If (up to an exchange of rows and columns)
B∗1 �= B∗2 ∈ O(B) are not critical, then

h(B∗1 ) �= h(B∗2 ).

The next step has to do with the construction of paths, that is of a flow, when B

depends, in a suitable way, on a continuous parameter ε ∈ [0, 1]. Namely, we
consider a map

F : [ε, B∗(0)] −→ B∗(ε)

where B∗(0) ∈ O
(
B(0)

)
and B∗(ε) ∈ O

(
B(ε)

)
. Such map is proved to have the

following property.

Lemma 2 Assume B∗1 = F(0) is not critical and consider F(1) = B∗1 (1). Then
the curve joining h

(
B∗1 (0)

)
and h

(
B∗1 (1)

)
is the graph of a continuous function

φ(ε). Moreover, if h
(
B∗1 (0)

)
is minimal in O

(
B(0)

)
, then h

(
B∗1 (1)

)
is minimal in

O
(
B(1)

)
.

The main theorem follows.

Theorem 1 Suppose, at the m-step of the rearrangement algorithm, the n × d

ordered matrix B∗m is not critical. Assume B∗m is optimal (i.e. h(B∗m) is minimal
in O

(
Bm

)
). Then add n new rows, in the way we suggested above, and rearrange

column-by-column the new 2n × d matrix so as to find an ordered matrix B∗m+1.
Then, independently from what column you started first in the rearrangement,B∗m+1
is optimal.

A critical matrix B∗m can be modified, as slightly as we want, into a not critical one,
and in the end the convergence can still be granted.
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Example 1 Modify

B∗1 =
(

2 2 4
4 4 2

)
into B̄∗1 =

(
2+ σ 2+ σ 4

4 4 2

)

where σ > 0 is as small as we want. Adding the above new values 1, 3, whatever
column we start from in the rearrangement, we obtain

B∗2 =

⎛
⎜⎜⎝

1 2+ σ 4
2+ σ 4 1

3 3 2
4 1 3

⎞
⎟⎟⎠ −→ Y2 =

⎛
⎜⎜⎝

7+ σ

7+ σ

8
8

⎞
⎟⎟⎠
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Automatic Balancing Mechanisms
in Practice: What Lessons for Pension
Policy Makers?

Frederic Gannon, Florence Legros, and Vincent Touzé

Abstract Despite numerous reforms and the introduction of automatic or semi-
automatic adjustment mechanisms, pension system future solvency is not guar-
anteed. Then, setting up an automatic balancing mechanism can offer several
advantages. This article proposes to detail the specific properties of various adjust-
ment rules prevailing in different countries to see to what extent their understanding
may be helpful to determine public choices ensuring sustainable retirement systems.
Several of such adjustment rules are possible. Three rules will get our attention.
The American case is radical. The prohibition to resort to public debt, the so-called
“fiscal cliff”, forces the balance by a drastic reduction of pensions whenever the
reserve fund is exhausted. The underlying idea is that this socially unacceptable
perspective will force the parliament to take measures to restore solvency. The
Swedish approach relies on an adjustment through the general level of pensions
to guarantee a notional asset/liability ratio. A huge reserve fund smooths the shock
associated with the aging of the population. The Canadian approach is based on
an “inadequate rate provision” which increases the contribution rate and a pension
freeze as long as the federal and provincial finance ministers do not reach an
agreement.
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1 Introduction

Pension system solvency has become one of policymakers’ core issues in aging
developed countries. Many of these have opted for parametric reforms either
by adopting precociously announced mechanisms of automatic adjustment or by
discretionarily changing, in crisis mode, pension rules and/or contribution rates.
But, in practice, these measures do not always guarantee solvency over the long
term. This is the reason why some countries have explicitly or implicitly adopted
an additional automatic balancing mechanism (ABM). Sweden is unanimously
considered as a pioneer and a leader in this matter, with its ABM launched at the
dawn of the twenty-first century. Other countries use alternative solvency rules. We
focus on only two of these, namely the United States and Canada to evidence their
differences and complementarities.

2 The US Social Security Fiscal Cliff: Automatic and Rough
Adjustment Through Pension Benefits

In 1983, the U.S. government launched a radical long-run reform mainly by
increasing the payroll taxes and raising the full pension age. This reform prevented
a pending Social Security crisis. Moreover, it has guaranteed an intertemporal
balanced budget for about half a century. Nevertheless, as stressed by Aaron [1],
the weakness of this reform is that it “virtually guaranteed the return of deficits
and a funding gap, and the need for further legislation to close it”. In other words,
solvency is not guaranteed permanently.

It has to be reminded that the U.S. Social Security trust funds are not allowed to
borrow. This financial and legal constraint is a strong incentive to plan surpluses to
compensate anticipated deficits, acting as a credible restoring force.

The case of U.S. Social Security budgetary rule is interesting since it must
comply with a rule that prohibits debt. Should the reserve fund be exhausted, then
the adjustment would be immediate and rough due to bankruptcy of the pension
scheme. Social Security can only pay out pensions at the height of its revenue,
which, de facto, implies a sharp decline in pensions. The underlying idea is that
this socially unacceptable perspective will force the parliament to take measures
to restore solvency. The prudential objective of the Social Security Trustees is
straightforward, warranting a minimal reserve fund to smooth out the adjustments
and to let lawmakers enough time to change the program.

From a prospective point of view, the Social Security Act requires that the Board
of Trustees of the Federal Old-Age and Survivors Insurance (OASI) and Disability
Insurance (DI) Trust Funds submits to the Congress an annual report on the actuarial
and financial state of the PAYG. This report allows a thorough analysis of solvency
over a 75-year time horizon and, notably, provides an estimation of the critical
year when the system reaches bankruptcy. The last report published in July 2017
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Fig. 1 Application of three types of ABM to US Social Security with 75-year solvency horizon.
Source: All computations are based on data from US Social Security administration and are
available upon request. Each ABM satisfies the balance between discounted sum of receipts plus
the initial reserve fund and discounted sum of expenditures

estimates that in 2033, if no corrective governmental measures have been taken, an
automatic and brutal adjustment would induce an immediate pension slash which
would increase from 22% in 2033 to 26% in 2091 (see Fig 1).

3 The Swedish NDC Experiment: Reinforcing Automatic
Adjustment Mechanisms by Introducing an Explicit ABM

Sweden is considered as a major pioneer, since it adopted Notional Defined
Contributions (NDC) plans in 1994. This led the Swedish government to introduce
actuarial rules to compute individual pensions, which rely on regular and fair
revisions of the conversion coefficients for annuities comparable to an automatic
adjustment mechanism. The challenge of the increase in life expectancy is clearly
taken into account by inserting an explicit conversion rate in the actuarial formula
used to calculate pensions. They are actuarially neutral, varying by cohort and age
at which the individual retires.

To reinforce the robustness of the system, an Automatic Balance Mechanism
(ABM) was launched in 2001 [2].
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Sweden is only interested in working generations alive now, their current
accumulated pension rights and future contributions they will pay in. Sweden has
adopted a full adjustment mechanism where a global index on pension benefits is
used to guarantee each year an intertemporal budget balance. The latter is computed
as the equality between the discounted sum of current and future payroll taxes paid
by the current workers and the implicit liabilities net of the reserve fund.

However, the Swedish model suffers a major flaw. When the 2008 economic and
financial crisis resulted in both a capital loss—due to more than 23% decrease in
its equity assets—of the reserve fund and a reduction in the growth of revenue,
the Swedish capital ratio fell below its critical value. Hence, in order to return to
balance, the amount of pensions was reduced.

To partially compensate the fall of pensioners’ income, the Swedish government
reduced taxes levied on pensions. In addition, the pension plan decided to spread
the adjustment over 3 years, so as to smooth the necessary decrease in pension
benefits. The adjustment rules have been modified in a discretionary manner.
Another interpretation is that the pension system is still in control and that the
Great Recession has raised a financial emergency which had not—or rather could
not have—been anticipated.

An application of this Swedish-type ABM to the US Social Security would lead
to an immediate and permanent 18% pension decrease (see Fig. 1).

4 Canada’s Second Pillar: An Automatic Adjustment
Through Contribution Scattered by the Absence
of Political Choice

In Canada, the second pillar is made up of two mandatory partially funded plans:
Canadian Pension Plan (CPP) and Quebec Pension Plan (QPP). Statutory periodic
reviews of the CPP are scheduled from once every 5 years to once every 3 years,
when financial status of the CPP is analyzed. Recommendations are made as to
whether benefit or contribution rates, or both, should be changed. One of the main
sources of information for the reviews is the actuarial report on the CPP by the chief
actuary. Best-estimate assumptions are made without any provisions for adverse
deviations, to avoid bias with respect to either current or future generations. As to
the CPP reports, they are reviewed by an independent panel of Canadian actuaries.

The financial sustainability and intergenerational equity of the pension plan
are closely monitored. Recent changes to the CPP aim at a better intergen-
erational fairness. One of these changes consisted in restoring CPP pension
adjustment factors to their actuarially fair value, which implied both subsidiarizing
early benefit uptake and penalizing late benefit uptake (after age 65). Canada’s
“self-adjustment mechanism” stipulates the simultaneous increase in contribution
rate and the temporary freezing of the current pension benefit indexation.
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Whenever, in the current actuarial valuation, legal contribution rate is lower than
the minimum contribution rate to guarantee solvency and no agreement can be
reached between federal and provincial finance ministers to increase or maintain
the legislated rate, the ABM applying to the CPP lays down the following. For a
3-year period, contribution rate is increased by half the difference between the two
rates, and pension benefits are frozen until the next actuarial review. This procedure
is called “insufficient rates provisions” (Ménard and Billig [3]) which, in the case
of CPP, plays as an ABM. Sakamoto [4] stresses that one of the advantages of
this ABM specific to CPP is to “make policymakers conscious of intergenerational
fairness”. But, on the other hand, since it is activated only when the federal and
province finance ministers do not reach an agreement, “it is unlikely that (it) will be
activated” in practice.

As for the US Social Security, a permanent and partial pension freezing (inflation
minus 1% indexing) would induce a slash ranging from 0.9% in 2019 to 14.2%
slash in 2095 and would necessitate a permanent 8% contribution rate increase
(see Fig. 1).
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Empirical Evidence from the Three-Way
LC Model

Giuseppe Giordano, Steven Haberman, and Maria Russolillo

Abstract The three-way Lee-Carter (LC) model was proposed as an extension of
the original LC model when a three-mode data structure is available. It provides
an alternative for modelling mortality differentials. This variant of the LC model
adds a subpopulation parameter that deals with different drifts in mortality. Making
use of several tools of exploratory data analysis, it allows giving a new perspective
to the demographic analysis supporting the analytical results with a geometrical
interpretation and a graphical representation. When facing with a three-way data
structure, several choices on data pre-treatment will affect the whole data modelling.
The first step of three-way mortality data investigation should be addressed by
exploring the different source of variations and highlighting the significant ones.
In this contribution, we consider the three-way LC model investigated by means of
a three-way analysis of variance with fixed effects, where the three main effects,
the three two-way interactions and one three-way interaction are analyzed. Aim
of the paper is to highlight the technical-applicative infrastructure behind the
methodology.

Keywords Anova · Three-way Lee-Carter model · Cross validation

1 Introduction

In the last few years, in the actuarial literature has been shown an increasing
interest in population dynamics categorized by similar socio-economic conditions
and by geographical proximity. Over time, it has been noticed that mortality rates
and indices such as life expectancy frequently differ across sub-populations, given
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by gender, geographic area or socio-economic variables (e.g. occupation, level
of education, income). These discrepancies, in particular those related to socio-
economic conditions, pose significant challenges for planning pension systems
and managing longevity risk in pension funds and annuity portfolios as well as
for planning public policies for facing social disparities. In this framework, we
consider a multiple population extension of the Lee-Carter (LC) model [1], the
three-way LC model [2], proposed as an extension of the original LC model when
a three-mode data structure is available. In particular, it provides an alternative for
modelling mortality differentials, when socio-economic differences are taken into
account. This alternative of the LC model contemplates a subpopulation parameter
that deals with different drifts in mortality. Aim of the paper is to highlight the
technical-applicative infrastructure behind the methodology. With this aim in mind,
we consider England mortality data for socio-economic subpopulations defined
using a deprivation index. We consider a first dataset (splitted into training set and
test set) based on the idea of a validation process and a further data set to run an
extensive empirical test. The results will be presented also from a standpoint of
basic methodological issues and choices dealing with the proposed method.

2 The Three-Way Lee-Carter Model

In this section, we describe a multipopulation extension of the LC model which pro-
vides an alternative for modelling mortality differentials by adding a subpopulation
parameter that deals with trend differences in mortality [4, 5]. This model proposes
a parametric representation of the central death rate mxtp in year t for people aged x
in subpopulation p, as follows:

ln
(
mxtp

) = αx.p + βxκtγp + εxtp

where αx. p measures the age-subpopulation-specific pattern of mortality, βx and κ t
have the same interpretation as in the LC model, and γ p is a new term capturing
the variability in the improvement rates of the subpopulations. To make easier
the interpretation of mortality differentials we can consider the following re-
parametrisation [3]:

ln
(
mxtp

) = αx + αx.p + βxκtγp + εxtp

The three-way Lee-Carter offers a parsimonious and clear way of assessing
mortality discrepancies and allows to simultaneous modelling mortality in a group
of subpopulations.
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3 The Analysis and Interpretation of the 3-Way LCModel

We discuss the three-way LC model in view of a fictitious case study.
First we consider the variability attached to three ways, let them be the traditional

Age and Years and let us supposed to consider different Countries as the third way.
Furthermore, we may consider the variability induced by the paired interactions
between the three ways. Finally, the three way interaction could give information on
which countries have specific trends (along years) in each age-group.

This kind of analysis is recommended to assess the source of variation in the
mortality data before to extract rank-one components. In case of a three way data
structure, this is much more important because of several choices on data pre-
treatment that will affect the whole data modelling.

The three-way LC model should be investigated through a three-way analysis of
variance with fixed effects, where each cell is given by the mortality rate in a given
year of a specific age-group for a country.

We can thus analyse the three main effects, the 3 two-way interactions and the
three-way interaction.

4 The Advantage of Introducing a Third Way in the Analysis

Roughly speaking, the advantage to introduce a third way in the analysis of
a traditional years per age-class mortality data is much more clear if we can
hypothesize that the decomposition along the third way bring information.

We can distinguish three cases: i) the different countries show homogeneous
mortality patterns; ii) the different countries have large differences in their trend
patterns and, iii) there exist groups of countries with homogeneous trends within
the same group and showing different trend among groups.

In the first case, since the mortality data are similar, it is possible to aggregate the
different mortality experiences. On the other hand, a factorial decomposition will
furnish a single component that will explain much of the inherent variability.

In the second case, any data aggregation is awkward, and any solution could lead
to unreliable results. In this case a factorial decomposition will give a poor synthesis
on the first component.

The third case is of more interest from our point of view. In this case, we may
argue that a unique synthesis is not reliable, but several synthesis are possible and
they can be explored by the analytic tools of our exploratory approach.

Furthermore, the presence of different patterns should be indicated by a signifi-
cant source of variation along the country way. Indeed, the first step of a mortality
data investigation should be addressed by exploring the different source of variations
and highlighting the significant ones.



378 G. Giordano et al.

The basic condition to analyse a mortality data structure is that there exists
evidence of both a Years and Age-group effect. Moreover, we will explore the main
effect of Country together with any two-way interactions.

The Age-group and Countries interaction could allow to explore the relative
patterns of mortality rates for each specific Country in any Age-group and,
conversely, which age-group is affected by a relative high (low) mortality rate for
each Country.

The Years and Age-group two-way interaction represents the trends of the
various age-group across the Years. Plotting Years versus Age-groups gives the
classical representation before extrapolating the pooled time series.

The Years by Countries interaction shows how the trends vary with respect to
each specific country, so exploring which years have relative high (low) mortality
rates for any country and which country shows a relative high (low) impact in each
specific year.

5 The Factorial Representations

In the framework of exploratory factorial methods, all this information will be
displayed through the factorial representations. These plots gives an immediate
overview by comparing and interpreting distance among points and their relative
position on the factorial plan. The centre of the plot represents the average mortality
rate for each variables (either Age-group or Country).

A year-point located at the origin has an average mortality rate for all age-
group (respectively for all countries). Regarding the data structure, we consider the
Countries and Age-groups as variables represented by vectors, while Years play the
role of units and are represented by dots. According to the classical interpretation,
angles between two vectors reflect the underlying correlation between the variables.
For instance, countries whose vectors are collinear show similar trends along
the years. Years-points relatively close have comparable mortality rates across
countries. Similar interpretation for Age-groups can be derived.

Three-mode principal component analysis is an extension of ordinary principal
component analysis to three-way data. Instead of two sets of coordinates for rows
(Years) and columns (age-groups), there are now three sets of coordinates for
components), one for each way, each with its own number of components. In
addition, a set of parameters, the core array, indicates the importance of a particular
combination of the components of each way. The interpretation of a three-mode
component analysis of the three-way interaction requires the joint examination i)
of the factorial plot (in this context generally called a joint plot) containing the
relationships between the age-group and the Country and ii) the coefficients of
the time components, which contain information on the changes over time in the
relationships between age and Countries. Supposing that a time component show an
increasing linear trend, a positive value (inner product) in the joint plot corresponds
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to a linear increase in the interaction over the ages and a negative value a linear
decrease over the ages.

This component will be the starting point for further analysis and for forecasts.
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Variable Selection in Estimating Bank
Default

Francesco Giordano, Marcella Niglio, and Marialuisa Restaino

Abstract The crisis of the first decade of the 21st century has definitely changed
the approaches used to analyze data originated from financial markets. This break
and the growing availability of information have lead to revise the methodologies
traditionally used to model and evaluate phenomena related to financial institutions.
In this context we focus the attention on the estimation of bank defaults: a
large literature has been proposed to model the binary dependent variable that
characterizes this empirical domain and promising results have been obtained from
the application of regression methods based on the extreme value theory. In this
context we consider, as dependent variable, a strongly asymmetric binary variable
whose probabilistic structure can be related to the Generalized Extreme Value
(GEV) distribution. Further we propose to select the independent variables through
proper penalty procedures and appropriate data screenings that could be of great
interest in presence of large datasets.

Keywords Rare events · Variable selection · Banks failure prediction · GEV
models

1 Introduction

Due to the last financial crisis, the failure risk prediction has attracted new attention,
and the importance of having reliable statistical models able to provide early warn-
ing indicators of crisis and to identify the most likely predictors of banking failure is
increased. In this context since there are some important challenges to be addressed,
we propose a novel predictive method able to overcome two relevant drawbacks.

First, the number of banks’ failures is usually very small, and the use of a
logit model with symmetric link function may not be appropriate because of its
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symmetry around 0.5, which implies that the probability of default approaches zero
at the same rate as it approaches one. Moreover the default probability will be
underestimated. In order to overcome these limits, in line with other contributions
[2, 9, among the others], we suggest to concentrate the estimation efforts on the
tail of the distribution, adopting an asymmetric link function that lets the predicted
default probability to approach one slower than it approaches zero. In more detail,
we use the inverse of the distribution function of a generalized extreme value
(GEV) random variable as link function in a generalized linear model with Bernoulli
response variable.

Second, the number of predictors of banking failures could be very high and
therefore it is crucial to identify a optimal subset of variables. The most used
methods for selecting the best set of possible predictors do not take into account
that some of the variables have a strong linear correlation among themselves
(multicollinearity), due to the fact that numerator and denominator of some ratios
are based on the same variables [1]. To overcome this limit, in our contribution we
propose the use of an appropriate screening procedure for GEV regression models
that is applicable in presence of large datasets (when the number of covariates is
larger than the number of units) with independent and dependent predictors.

2 Statistical Model

Let Y be a response variable that describes a binary rare events, such that a random
sample from Y has a small number of ones and let X be the (n × p) matrix of
predictors. Since a symmetric link function (that traditionally characterizes logit
models) can lead to biased estimates of defaults probability, an asymmetric link
function is preferable. In [2] the quantile function of the GEV distribution has been
suggested as link function, such that its distribution function is given by

F(X) = exp

{
−

[
1+ τ

(
x − μ

σ

)]− 1
τ

}
(1)

which is defined on Sx = {x : (1 + τ (x − μ)/σ) > 0}, with −∞ < μ < ∞
and σ > 0. The parameter τ is the shape parameter, μ and σ are the location and
scale parameters, respectively. For different values of τ different distributions can
be obtained: if τ > 0, we have Fréchet-type distribution; if τ < 0, we have Weibull-
type distribution and if τ → 0, the Gumbel-type distribution is obtained.

Then the GEV distribution function is used as response curve, so that the
probability of default for each unit i (i = 1, . . . , n) is given by

π(xi) = P(Yi = 1|xi ) = exp
{
−[1+ τ (β

′
xi )]− 1

τ

}
(2)

provided that 1+ τ (β ′xi ) > 0.
More details on the GEV distributions can be found in [8] and [3].
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3 Screening for High Dimensional GEV Models

A feature of data related to bank default is the high dimension: the dimensionality of
the p covariates can be definitely greater than the number of units n. In this context
an essential challenge is the selection of the more relevant covariates that have to be
properly chosen among hundreds or thousands of predictors.

This problem, not contemplated in the previous cited literature, has been
differently faced (among the others see the review article [5]). In this domain we
focus the attention on the Sure Independence Screening (SIS) introduced in [4],
which is based on a quite sample idea that appear to be very powerful in variable
selection.

The use of SIS in presence of generalized linear models has been largely
investigated in [6] and [7] but its extension to GEV regressions has not yet examined.

The idea behind the SIS is here shortly summarized, referring the technical
details to the cited literature. Following [6] and generalizing their approach to the
GEV regression with response curve (2), we fit p marginal models (one for each
predictor) such that the marginal log-likelihood  (β0+βjXj , Y ) is maximized with
respect to β0 and βj , for j = 1, 2, . . . , p, and we select the set of variables Xj such
that |β̂j | ≥ γ , with γ a predefined threshold value. In practice, the relevance for Y
of the Xj variable is related to the magnitude of its marginal coefficient.

To evaluate the SIS performance in presence of GEV regressions (SIS-GEV) and
to compare the performances with the logistic case, we have made a simulation
study where we have considered n = 200 units, two different values for the number
of predictors, p = {400, 600} and shape parameter τ = −0.15. We have further
considered two scenarios:

S1. the p covariates are independent standard Gaussian random variables whereas
the vector β is β0 = 0, βj = 0.35, for j = 1, 2, 3 and βj = 0, for j > 3;

S2. the p variables are generated considering: X1 and X2 are two independent
Gaussian random variables, X3, . . . , X12 are marginally standard Gaussian
with corr(Xi,Xj ) = 0.3 in the first case (S2-C1) and corr(Xi,Xj ) = 0.5
in the second case (S2-C2), with i �= j , whereas the remaining Xj variables,
for j > 12, are independent standard Gaussian random variables. The vector β
is β0 = 0, β1 = 1.3, β2 = 1, β3 = 1.3 and βj = 0, for j > 3.

In S1 and S2 the Y data are finally generated using the GEV model with two fixed
percentage of ones: α = 5% and α = 2.5%.

For all scenarios we have made 200 Monte Carlo replications and at each iteration
we have evaluated if the relevant variables (X1,X2,X3 in our case) are selected
from the SIS-GEV. Following [7], at each iteration we have selected d ≈ n/(4 logn)

variables (that in practice allows to define the threshold γ ) and we have evaluated
the proportion of times in which one, two or all three relevant variables are selected
from the SIS-GEV procedure. The results are presented in Table 1. It can be
noted the better performance of the GEV model with respect to the logistic case
in scenario S1, where the independence among variables and the small values of
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Table 1 Proportions of inclusion of one (1 var.), two (2 var.) or three (3 var.) relevant covariates,
among the d = 10 variables selected from the SIS procedure, when the estimated model is a GEV
regression or a logit

α = 5% α = 2.5%

S1 d = 10, β = (0.35, 0.35, 0.35)

p GEV LOGIT GEV LOGIT

1 var. 2 var. 3 var. 1 var. 2 var. 3 var. 1 var. 2 var. 3 var. 1 var. 2 var. 3 var.

400 0.000 0.095 0.905 0.000 0.130 0.870 0.035 0.455 0.510 0.010 0.605 0.355

600 0.005 0.095 0.900 0.005 0.135 0.860 0.120 0.505 0.375 0.040 0.610 0.335

S2-C1 d = 10, β = (1.3, 1, 1.3), ρ = 0.3

p GEV LOGIT GEV LOGIT

1 var. 2 var. 3 var. 1 var. 2 var. 3 var. 1 var. 2 var. 3 var. 1 var. 2 var. 3 var.

400 0.000 0.095 0.905 0.000 0.075 0.925 0.025 0.405 0.570 0.015 0.440 0.545

600 0.000 0.105 0.895 0.000 0.140 0.860 0.050 0.460 0.490 0.025 0.500 0.475

S2-C2 d = 10, β = (1.3, 1, 1.3), ρ = 0.5

p GEV LOGIT GEV LOGIT

1 var. 2 var. 3 var. 1 var. 2 var. 3 var. 1 var. 2 var. 3 var. 1 var. 2 var. 3 var.

400 0.000 0.200 0.800 0.000 0.170 0.830 0.010 0.395 0.595 0.015 0.495 0.490

600 0.000 0.210 0.790 0.000 0.295 0.705 0.020 0.500 0.480 0.010 0.490 0.500

α = 5% and α = 2.5% are the percentage of ones in Y

the βj , j = 1, 2, 3 makes the screening in the logit case more difficult. From
the two cases of scenario S2, called S2-C1 and S2-C2, it can be noted that as the
correlation among variables grows, and even correspondingly the βj coefficients,
the SIS variable selection based on the GEV regression performs quite always better
than the corresponding logit model. This result is more pronounced in the S2-C2
case where the dependence from X3 and other non relevant (but all correlated)
variables makes more difficult the selection.

References

1. Amendola, A., Giordano, F., Parrella, M.L., Restaino, M.: Variable selection in high-
dimensional regression: a nonparametric procedure for business failure prediction. Appl. Stoch.
Mod. Bus. Ind. 33, 355–368 (2017)

2. Calabrese, R., Osmetti, S.A.: Modelling sme loan defaults as rare events: the generalized
extreme value regression model. J. Appl. Stat. 40(6), 1172–1188 (2013)

3. Coles, S.: An Introduction to Statistical Modeling of Extreme Values. Springer, London (2001)
4. Fan, J., Lv, J.: Sure independence screening for ultrahigh dimensional feature space. J. Roy.

Statist. Soc. B 70(5), 849–911 (2008)
5. Fan, J., Lv, J.: A selective overview of variable selection in high dimensional feature space. Stat.

Sin. 20, 101–148 (2010)
6. Fan, J., Song, R.: Sure independence screening in generalized linear models with NP-

dimensionality. Ann. Stat. 38(6), 3567–3601 (2010)



Variable Selection in Estimating Bank Default 385

7. Fan, J., Samworth, R., Wu, Y.: Ultrahigh dimensional feature selection: beyond the linear model.
J. Mach. Learn. Res. 10, 2013–2038 (2009)

8. Kotz, S., Nadarajah, S.: Extreme Value Distributions. Theory and Applications. Imperial College
Press, London (2000)

9. Wang, X., Dey, D.K.: Generalized extreme value regression for binary response data: an
application to b2b electronic payments system adoption. Ann. Appl. Stat. 4(4), 2000–2023
(2010)



Multiple Testing for Different Structures
of Spatial Dynamic Panel Data Models

Francesco Giordano, Massimo Pacella, and Maria Lucia Parrella

Abstract In the econometric field, spatio-temporal data is often modeled by spatial
dynamic panel data models (SDPD). In the last decade, several versions of the
SDPD model have been proposed, based on different assumptions on the spatial
parameters and different properties of the estimators. In particular, the classic
version of the model assumes that the spatial parameters are homogeneous over
location. Another version, proposed recently and called generalized SDPD, assumes
that the spatial parameters are adaptive over location. In this work we propose
a strategy for testing the particular structure of the spatial dynamic panel data
model, by means of a multiple testing procedure that allows to choose between
the generalized version of the model and some specific versions derived from the
general one by imposing particular constraints on the parameters. The multiple test
is made using the Bonferroni technique and the distribution of the multiple test
statistic is derived by a residual bootstrap resampling procedure.

Keywords Spatio-temporal models · Model testing · Bootstrap

1 The SDPD Models

Consider a multivariate stationary process {yt} of order p generating the observa-
tions at time t from p different locations. The following model

yt = D(l0)Wyt +D(l1)yt−1 +D(l2)Wyt−1 + εt , (1)

has been proposed by [1] as a generalized version of the spatial dynamic panel data
model of [2]. The errors εt are serially uncorrelated, they have zero mean value and
may show cross-sectional correlation and heteroscedasticity, which means that εt
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have a full variance/covariance matrix �ε; the spatial matrix W is a weight matrix
with zero main diagonal; the matrices D(lj ) are diagonal, for j = 0, 1, 2, with main
diagonal equal to vectors lj = (λj1, . . . , λjp), respectively. Model (1) guarantees
adaptivity by means of its 3p parameters λji , i = 1, . . . , p and j = 0, 1, 2, and it is
characterized by the sum of three terms: the spatial component, driven by matrix W
and the vector parameter l0; the dynamic component, driven by l1; and the spatial–
dynamic component, driven by W and l2.

Starting from the general model in (1), denoted as generalized SDPD model,
we derive different models as special cases by considering some constraints on the
parameters. The most used among these is the classic SDPD of [2], with only three
parameters, where the spatial coefficients are constant among locations

yt = λ0Wyt + λ1yt−1 + λ2Wyt−1 + ε′t , (2)

and the errors are homoscedastic and uncorrelated. We call this model constant
SDPD. Other special cases of the model can be derived from the generalized SDPD
by testing the significance of specific λji coefficients.

2 A Strategy for Testing the Particular Structure of SDPD
Models

In the sequel, we assume that y1, · · · , yT are T observations from a stationary
process defined by (1) or (2). We assume that the process has mean zero and denote
with �j = Cov(yt , yt−j ) = E(yty′t−j ) the autocovariance matrix of the process at
lag j , where the prime subscript denotes the transpose operator.

The estimators of the parameters for the generalized SDPD model (1) have
been proposed and analyzed by Dou et al. [1]. Denote such estimators with
(λ̂0i , λ̂1i , λ̂2i )

′, where the index i = 1, . . . , p indicates the specific location. For
the sake of brevity, we do not report the details of such estimators here.

In order to test the structure of the SDPD model, we define the test statistics

D̂ji =
√
n
(
λ̂j i − λ̄j

)
, i = 1, . . . , p, and j = 0, 1, 2. (3)

In the (3), we are comparing the estimator under the generalized model, λ̂j i , with
the estimator under the standard model with constant coefficients, which is evaluated
by λ̄j = 1

p

∑p

k=1 λ̂jk , the mean value of the estimates over different locations, for
j = 0, 1, 2. Note that large values of the statistics in the (3) denote a preference for
the generalized SDPD model. Instead, when the true model has constant parameters,
as in the SDPD model of [2], the statistics in (3) are expected to be around zero. In
order to give an empirical evidence of this, Fig. 1 shows the estimated density (based

on N = 250 replications of the model) of the statistic D̂ji = √n
(
λ̂j i − λ̄j

)
, for
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Fig. 1 Estimated densities (based on N = 250 replications of the model) of the statistic in (3), for
j = 2, i = 1 and dimension p = 50, with different time series lengths (denoted by the line width,
as indicated in the legend). The left side refers to the case generated under the Null hypothesis
of true constant SDPD model. The right side refers to the case generated under the alternative
hypothesis of true generalized SDPD model

j = 2, i = 1 and dimension p = 50, with different time series lengths (going from
T = 100 to T = 1000 and denoted by the line width, as indicated in the legend).
The left side of the figure refers to a case where the true model is the constant SDPD
model, with constant parameters, therefore this is a case generated under the Null
hypothesis. In such a case, as expected, the distribution of the statistic is centered
around zero. The right side of the figure refers to a case where the true model is a
generalized SDPD, with non-constant parameters, therefore this is a case generated
under the alternative hypothesis. In the last case, as expected, the statistic D̂ji is
far away from zero. Moreover, as required for consistency, the value of the statistic
increases for increasing time series length. Similar results can be shown for other
values of i, j and p.

3 Bootstrap Scheme for the Multiple Testing Procedure

Figure 1 shows that the statistics in (3) can be used as building blocks of a testing
procedure in order to identify the specific structure of the spatial dynamic model and
to classify it between the two categories of constant SDPD and generalized SDPD.
The hypotheses we need to test are

Hi : Dji = 0, vs H ′
i : Dji �= 0 for i = 1, . . . , p, (4)

where j denotes the specific spatial parameter, j = 0, 1, 2. Test (4) has a multiple
testing structure and the problem then becomes how to decide which hypotheses
to reject, taking into account the multitude of tests. If many hypotheses are tested
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jointly, some are bound to appear as significant by chance alone, even if in reality
they are not relevant. To prevent us from declaring true null hypotheses to be false,
we seek control (at least asymptotically) of the familywise error rate (FWE), which
is the probability of making at least one false rejection. The most familiar scheme for
controlling the FWE is the well known Bonferroni method: for each null hypothesis
Hi , individualp-values pis are computed and the hypothesisHi is rejected at global
level α if pi ≤ α/m.

In order to derive the individual p-values pis, we use a resampling procedure
based on the residual bootstrap approach, to approximate the distribution of the test
statistics D̂ji . This procedure runs as follows.

1. First obtain the bootstrap errors {ε∗t } by drawing B = 999 replicates indepen-
dently from the residuals ε̂t = yt − ŷt , where ŷt = λ̄0Wyt + λ̄1yt−1+ λ̄2Wyt−1.

2. Generate the bootstrap series, under the Null hypothesis, as

ŷ∗t = (Ip − λ̄0W)−1(λ̄1Ip + λ̄2W)y∗t−1 + ε∗t .

3. Compute the bootstrap statistics D̂∗ji =
√
n
(
λ̂∗ji − λ̄∗j

)
, as in (3), with λ̂∗ji and λ̄∗j

estimated from the bootstrap data ŷ∗t .
4. For a given i = 1, . . . , p, the individualp-value pi for testing Hi is defined as the

probability P( |D∗ji | > |D̂ji |
∣∣∣ y1, ..., yT ), which is approximated by the relative

frequency of the event (|D∗ji | > |D̂ji |) over the 999 bootstrap replications.

The size of the test (with nominal size α = 0.1) and the power have been evaluated
empirically for different values of p and T and reported in the following table.

Under the Null for j = 0 for j = 1 for j = 2

(=size) T = 100 500 1000 100 500 1000 100 500 1000

p = 10 0.124 0.1 0.072 0.184 0.144 0.148 0.136 0.112 0.108

p = 50 0.024 0.12 0.092 0.156 0.144 0.172 0.144 0.164 0.24

p = 100 0.888 0.2 0.204 0.82 0.216 0.244 0.884 0.128 0.136

Under the Alternative for j = 0 for j = 1 for j = 2

(=power) T = 100 500 1000 100 500 1000 100 500 1000

p = 10 0.204 1 1 1 1 1 0.988 1 1

p = 50 0.056 0.108 0.148 1 1 1 1 1 1

p = 100 0.44 0.968 1 1 1 1 1 1 1
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Loss Data Analysis with Maximum
Entropy

Erika Gomes-Gonçalves, Henryk Gzyl, and Silvia Mayoral

Abstract We present some results of the application of maximum entropy methods
to determine the probability density of compound random variables. This problem
is very important in the banking and insurance business, but also appears in system
reliability and in operations research.

The mathematical tool consists of inverting Laplace transforms of positive
compound random variables using the maximum entropy method. This method
needs a very small number of (real) values of the Laplace transform, is robust, works
with small data sets, and it can be extended to include errors in the data as well as
data specified up to intervals.

In symbols, the basic typical problem consist in determining the density fS
of a compound random variable like S = ∑N

n=1 Xn, or that of a sum of such
random variables. There, N is an integer random variable and Xn is a sequence
of positive, continuous random variables, independent among themselves and of N .
Our methodology can be applied to determine the probability density of the total
loss S and that of the individual losses.

Keywords Loss distributions · Sample dependence · Maximum entropy
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1 Introduction

Estimate the correct density distribution fS of a positive compound random variable
S, is quite important in several fields. For example, in insurance, risk management
operations research, reliability engineering, etc. There are situations in which
models may not be trustworthy because we have little data, like in the case of very
large disasters or large operational or credit risk losses. To begin with a motivational
example, consider the need of calculating a (re)insurance premium like

π(S) = E
[
min

(
M, (S − d)+

)]
. (1)

It should be clear that when d is large (a high percentile) and M is greater than d by
a couple of variances, compute π(S) using empirical data may be quite unreliable.

To go around this difficulty we need a method to estimate probability densities
from empirical data (or from models in the best of cases), that:

1. Produces densities from small data sets.
2. Is robust, that is, small variations in the data set produce small variations on the

reconstructed density.
3. Needs a small “statistics” obtained from the data set.
4. Is easy to implement and fast to execute.
5. It can accommodate for measurement errors or data given up to intervals.

It is the object of this note to present some examples that illustrate these features
in the maximum entropy procedure.

This note is organized as follows. In Sect. 2 we very briefly describe the
mathematical problem that we solve and how the input to the maximum entropy
procedure is computed. Then, in Sect. 3 we present two examples. One in which the
power of the maxent is implicit. There we display the densities obtained from data
of different sample sizes and we see how the densities tend to the “true” density as
the sample becomes large. After that, we compute risk premiums according to (1)
and plot the results in a box plot to display their sample variability.

We direct the reader to the volume [1], in which full detail about theoretical and
numerical matters supporting the examples is presented in full detail, as well as a
much larger bibliography.

2 The Standard Method of Maximum Entropy (SME)

The SME method is a variational procedure to obtain a numerical solution to the
problem of finding a probability density f when we know the values of μ(α) related
to f by:

∫ ∞

0
e−αksf (s)ds =

∫ 1

0
yαkg(y)dy = μ(αk), k = 1, . . . ,K; (2)
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Actually, a variation on the procedure allows us to tackle the following problem:
Determine a density f and estimate possible measurement errors εi such that

∫ ∞

0
e−αksf (s)ds + εk =

∫ 1

0
yαkg(y)dy + εk ∈ [ak, bk], k = 1, . . . ,K; (3)

where the intervals [ak, bk] are part of the available information. Clearly, g(y) is
obtained from f (s) after the change of variables y = e−s , which can be reversed
after g(y) is obtained numerically.

In most cases we do not have models to obtain the μ(α) from, and we have to
content ourselves with estimating the moments from the data by

∫ ∞

0
e−αksf (s)ds = μ(αk) = 1

M

M∑

t=1

e−αkSt (4)

where k = 1, . . .K , t = 1, 2, . . . ,M , and M denotes the number of non-zero data
points in the data collected over some given period of time. These moments are the
“statistics” mentioned in item (3) of the wish list mentioned above.

3 Examples

To begin with consider an example in which the reconstructed densities reflect the
sample variance. Consider the following figure.

To obtain Fig. 1 we generated a large sample (5000 data points) corresponding to
aggregating various sources of risk with different frequencies and different types of
individual losses. Using this large sample we obtain the true density (the dark line
in the various panels). And then we generated smaller samples. Here we present the
densities obtained from samples of sizes M = 10, 20, 50, 100, 500, 1000, obtained
by re-sampling (200 times) from the original sample. The gray clouds are the plotted
curves of the densities. As it is to be expected, the clouds shrink as the size of the
sample increases.

Once we have these densities, we can examine the sample variability of quantities
of interest, like risk measures, risk premia, and so on. In particular, consider the box
plot of the (re)insurance premia given by (1) computed with each of these densities.
Clearly the variability of the premia decreases as the quality of the estimate (Fig. 2).

3.1 Notes and Comments

To conclude we mention that the maxent approach provides good reconstructions
using a very small amount of information, which consists of:

1. Possibly a small sample of data points. Consider for example the top panel in
Fig. 1.
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Fig. 1 SME reconstructions with different sample sizes. (a) M = 10, (b) M = 20, (c) M = 50, (d)
M = 100, (e) M = 500, (f) M = 1000

Fig. 2 Sample variability of stop-loss premia

2. Small number of generalized moments (“statistics”). In our case this consists of
the knowledge of the Laplace transform at K = 8 real values of its transform’s
parameter, or according to (2), 8 fractional moments. Why this is so is explained
in chapter 10 of [1].

Not only that, when all that we have is total loss data, and we know that it is data
of a compound random variable, in a two step procedure, we can first determine the



Loss Data Analysis with Maximum Entropy 395

probability density of the total losses, and invoking the maxent procedure, we can
also determine the density of the individual losses.
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Real-World Versus Risk-Neutral
Measures in the Estimation of an Interest
Rate Model with Stochastic Volatility

Lourdes Gómez-Valle and Julia Martínez-Rodríguez

Abstract In this paper, we consider a jump-diffusion two-factor model which
stochastic volatility to obtain the yield curves efficiently. As this is a jump-diffusion
model, the estimation of the market prices of risk is not possible unless a closed
form solution is known for the model. Then, we obtain some results that allow us
to estimate all the risk-neutral functions, which are necessary to obtain the yield
curves, directly from data in the markets. As the market prices of risk are included
in the risk-neutral functions, they can also be obtained. Finally, we use US Treasury
Bill data, a nonparametric approach, numerical differentiation and Monte Carlo
simulation approach to obtain the yield curves. Then, we show the advantages of
considering the volatility as second stochastic factor and our approach in an interest
rate model.

Keywords Interest rates · Stochastic volatility · Jump-diffusion · Stochastic
processes · Nonparametric · Estimation · Numerical differentiation

1 Introduction

Traditionally, the financial literature assumes that interest rates move continuously
and they are modelled as diffusion processes, as in [3, 11] and so on. However, more
recent studies have showed that interest rates contained unexpected discontinuous
changes, see for example [4, 9]. Jumps in interest rates are, probably, due to different
market phenomena such as surprises or shocks in foreign exchange markets.
Moreover, when pricing and hedging financial derivatives jump-diffusion models
are very important, since ignoring jumps can produce hedging and pricing risks,
see [10].

L. Gómez-Valle (�) · J. Martínez-Rodríguez
Departamento de Economa Aplicada and IMUVA, Valladolid, Spain
e-mail: lourdes@eco.uva.es; julia@eco.uva.es

© Springer International Publishing AG, part of Springer Nature 2018
M. Corazza et al. (eds.), Mathematical and Statistical Methods
for Actuarial Sciences and Finance, https://doi.org/10.1007/978-3-319-89824-7_71

397

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89824-7_71&domain=pdf
mailto:lourdes@eco.uva.es
mailto:julia@eco.uva.es
https://doi.org/10.1007/978-3-319-89824-7_71


398 L. Gómez-Valle and J. Martínez-Rodríguez

It is widely known that one-factor interest rate models are very attractive for
practitioners because its simplicity and computational convenience. However, these
models have also unrealistic properties. First, they cannot generate all the yield
curve shapes and changes that we can find in the markets. Second, the changes over
infinitesimal periods of any two interest-rate dependent variables will be perfectly
correlated. Finally, as [8] shows, none of their analyzed one-factor models captures
the interest rate dynamics adequately. Therefore, we consider that at least two
factors are necessary to model the term structure of interest rates. In fact, the number
of factor must be a compromise between numerical efficient implementation and the
capability of the model to fit data.

The main goal of this paper is twofold. We consider that the volatility is an
important stochastic factor which can help to obtain the yield curves accurately.
Then we show some results to estimate all the functions of this model even when a
closed form solution is not known.

The rest of the paper is organized as follows. Section 2 shows a two-factor interest
rate jump-diffusion model. In Sect. 3, we propose some results in order to estimate
all the functions of the model efficiently. Finally, in Sect. 4 we show the supremacy
of considering the volatility as stochastic and the estimation of the whole functions
of the model directly from data in the market using interest rate data from US
Federal Reserve.

2 The Valuation Model

Define (0,F , {Ft }t≥0,P) as a complete filtered probability space which satisfies
the usual conditions where {Ft }t≥0 is a filtration, see [1, 2].

In this paper, we consider an interest rate model with two factors: the instanta-
neous interest rate (r) and the volatility (V ). We assume that under the risk-neutral
measure the interest rate follows a jump-diffusion process and the volatility a
diffusion process as follows,

r(t) = r(0)+
∫ t

0
μQ
r (r(z), V (z)) dz+

∫ t

0
V (z)dWQ

r (z)+
∫ t

0
dJ̃Q(z), (1)

V (t) = V (0)+
∫ t

0
μQ
V (r(z), V (z)) dz+

∫ t

0
σV (r(z), V (z))dWQ

V (z), (2)

where μQ
r = μr − V θWr , μQ

V = μV − σV θ
WV , with μr and μV the drifts of the

interest rate and volatility processes under the Physical measure respectively, WQ
r

and WQ
V are the Wiener processes under Q-measure and [WQ

r ,WQ
V ](t) = ρt . The

market prices of risk associated to Wr and WV Wiener processes are θWr (r, V )

and θWV (r, V ), respectively. Finally, J̃Q(t) = ∑NQ(t)
i=1 Yi − λQtEQ

Y [Y1] is the
compensated compound Poisson process under Q-measure and the intensity of
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the Poisson process NQ(t) is λQ(r, V ). Furthermore, Y1, Y2, . . . is a sequence of
identically distributed random variables with a normal distribution N(0, σ 2

Y ).
A zero-coupon bond price at time t with maturity at time T , t ≤ T ,

under the above assumptions, can be expressed as P(t, r, V ; T ). It verifies that
P(T , r, V ; T ) = 1 at maturity and it can be expressed by

P(t, r, V ; T ) = EQ[e −
∫ T
t r(u) du|r(t) = r, V (t) = V ]. (3)

Moreover, the yield curve can be obtained as

R(t, r, V ; T ) = − ln(P (t, r, V ; T ))

T − t
. (4)

3 Results and Approximations

In the spirit of studies such as [5–7] in one-factor interest rate models, which
provide some relations to estimate the risk-neutral functions directly from data in the
markets, we propose a novel approach to estimate the whole functions of a two factor
jump-diffusion term structure model directly from market data, although a closed-
form solution for the zero-coupon bond prices is not known. As we estimate directly
the risk-neutral functions from interest rate data, the market prices of risk has not to
be arbitrary specified. Moreover, this approach can be applied to parametric as well
as nonparametric models.

We prove that if P(t, r, V ; T ) is the price of a zero-coupon bond and r and V

follow the joint stochastic processes given by (1)–(2), then:

∂R

∂T
|T=t = 1

2

(
μQ
r + λQEQ[Y1]

)
(t),

∂(r2P)

∂T
|T=t =

(
−r3 + 4r

∂R

∂T
|T=t + V 2 + λQEQ[Y 2

1 ]
)
(t),

∂(r3P)

∂T
|T=t =

(
−r4 + 2r2 ∂R

∂T
|T=t + 3r(V 2 + λQEQ[Y 2

1 ])λQEQ[Y 3
1 ]
)
(t),

∂(r4P)

∂T
|T=t =

(
− r5 + 8r3 ∂R

∂T
|T=t + 6r2(V 2 + λQEQ[Y 2

1 ])+ 4rλQEQ[Y 3
1 ]

+λQEQ[Y 4
1 ]
)
(t),

∂(V P)

∂T
|T=t =

(
μQ
V − rV

)
(t),
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The derivatives above should be assumed as right derivatives when T ∈ (τi)i≥1,
that is, when T is a jump time.

4 Empirical Application

In order to implement our approach, we take interest rate data from the Federal
Reserve in USA from January 1997 to February 2017. We use data till December
2016, a nonparametric method (the Nadaraya-Watson estimator) and numerical
differentiation to estimate all the functions of the two-factor model with the results
in Sect. 3. Then, we obtain zero-coupon bond prices with maturities: 6 months, 1, 2,
5, and 7 years; and the yield curves from January to February 2017.

Our empirical results show that the jump-diffusion two-factor model in Sect. 2
estimated with our approach is more accurate than a one-factor jump-diffusion
model. The Root Mean Square Error with the two-factor model is 1.0742e−3 but
it is 3.3675e−3 with the one-factor model. Finally, we also find that meanwhile
the one-factor model, in general, underprices the yield curves our two-factor model
slightly overprices. This fact should be taken into account by practitioners in the
markets for pricing and hedging interest rate derivatives.
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Extensions of Fama and French Models

María de la O González and Francisco Jareño

Abstract This short paper proposes extensions of Fama and French models and
compares their explanatory power. In concrete, it tests fluctuations in US sector
returns between November 1989 and February 2014. In addition, this paper
estimates the models using the quantile regression approach. In short, the most
complete model shows the highest explanatory power and the extreme quantiles
(tau = 0.1) show the best results.

Keywords Risk factors · Interest rates · Stock returns

1 Introduction and Methodology

1.1 Aim

This research compares different factor models in explaining variations in US sector
returns between November 1989 and February 2014 using the quantile regression
approach.

The models proposed in this study are based on the Fama and French [1] three-
factor model and the Fama and French [2] five-factor model.

1.2 Methodology

As commented previously, this short paper extends the Fama and French [1] models,
adding explanatory variables, such as nominal interest rates and its components, real
interest and expected inflation rates [3–7]. Furthermore, it includes the Carhart [8]
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risk factor for momentum (MOM) and for momentum reversal (LTREV) and the
Pastor and Stambaugh [9] traded liquidity factor (LIQV).

The most complete models are the following:
Extension of the Fama and French [1] three-factor model

Rjt − RFt = aj + bj · (RMt − RFt )+ djr ·�rt + ojπ ·�EORT
t

(
πt,t+1

)

+sj · SMBt + hj ·HMLt +mj ·MOMt + vj · LTREV t

+lj · LIQV t + ejt

(1)

where Rjt is the stock (sector) j return in month t, RFt is the riskfree return, RMt is
the return on the value-weight market portfolio, �rt represents unexpected changes
in real interest rates, �Et

ORT (π t,t+1) shows shocks in the expected inflation rate
(orthogonalized), SMBt is the return on a diversified portfolio of small stocks minus
the return on a diversified portfolio of big stocks, HMLt is the difference between the
returns on diversified portfolios of high and low B/M stocks, MOMt is the average
return on the two high prior return portfolios minus the average return on the two
low prior return portfolios, LTREVt is the average return on the two low prior return
portfolios minus the average return on the two high prior return portfolios, LIQVt

is the value-weighted return on the 10-1 portfolio from a sort on historical liquidity
betas and, finally, ejt is the error term.

Extension of the Fama and French [2] five-factor model

Rjt − RFt = aj + bj · (RMt − RFt )+ djr ·�rt + ojπ ·�EORT
t

(
πt,t+1

)

+sj · SMBt + hj ·HMLt + rj · RMWt + cj · CMAt

+mj ·MOMt + vj · LTREV t + lj · LIQV t + ejt

(2)

where RMWt is the difference between the returns on diversified portfolios of stocks
with robust and weak profitability, and CMAt is the difference between the returns
on diversified portfolios of the stocks of low and high investment firms.

2 Main Results and Concluding Remarks

This paper shows that the most complete model, based on the Fama and French
[2] five-factor model, that breaks down nominal interest rates into real interest and
expected inflation rates and also aggregates the three risk factors is the model with
the highest explanatory power (with a mean Adj. R2 about 50%).

Moreover, this research points out that the extreme quantile 0.1 of the return
distribution (Table 1) shows better results in all the factor models in comparison
with the rest of quantiles (for example, tau = 0.9, in Table 2).
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Table 1 Explanatory power of models at quantile 0.1

Models Min. Adj. R2 Max. Adj. R2 Mean Adj. R2

Ext. F-F 3 factor 0.2472 0.6577 0.4631
Ext. F-F 5 factor 0.2745 0.6611 0.4881

Table 2 Explanatory power of models at quantile 0.9

Models Min. Adj. R2 Max. Adj. R2 Mean Adj. R2

Ext. F-F 3 factor 0.1131 0.5953 0.3660
Ext. F-F 5 factor 0.1440 0.6066 0.3997
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The Islamic Financial Industry:
Performance of Islamic vs. Conventional
Sector Portfolios

María de la OGonzález, Francisco Jareño, and Camalea El Haddouti

Abstract This paper studies the basic principles of the Islamic financial system to
know the positive aspects that make it more solid and stable than the conventional
financial system during financial crises. On the other hand, this research carries out a
comparison between conventional and Islamic sectoral portfolios for the period from
January 1996 to December 2015, through the use of different performance mea-
sures. Specifically, the performance measures used in this paper include Jensen’s,
Treynor’s, Sharpe’s and Sortino’s classical performance ratios and two of the most
recent and accurate performance measures that take into account the four statistical
moments of the probability distribution function, the Omega’s ratio and the MPPM
statistic. In addition, for robustness, this paper analyses whether the performance
results of conventional and Islamic sector portfolios depend on the state of the
economy, by splitting the whole sample period into three sub-periods: pre-crisis,
crisis and post-crisis. So, this paper would determine which types of portfolios offer
better performance depending on the economic cycle. The main results confirm that,
in general, the best performing sector is Health Care, while the worst performing
sector is Financials. Furthermore, Islamic portfolios provide higher returns than
conventional portfolios during the full period as well as the three sub-periods.

Keywords Islamic financial system · Islamic principles · Performance
measurement

1 Introduction

Islamic banking emerges to help Muslim clients to obtain funding for their economic
activities while they are faithful to their religious beliefs due to the fact that it
is based on Sharia or Islamic law that regulates human behavior. Moreover, the
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adaptation of contracts to Islamic principles allows Islamic portfolios to be less
affected by periods of economic recession, since the risks assumed by them are
lower than those of conventional portfolios.

On the other hand, some recent studies about Islamic stocks use classical
performance measures, remarking the great utility of these ratios for the analysis and
comparison of portfolios. Umar [1] uses the Sharpe ratio, concluding that Islamic
stocks are preferred for a short period of time, whereas conventional stocks are
preferred for a long period of time. Jawadi et al. [2] use the Sharpe, Treynor and
Jensen ratios and they conclude that the conventional indexes perform better than
the Islamic ones in the period before the financial crisis, but they perform worse
during the financial crisis. Thus, the state of the economy may be a key factor to
analyze the portfolio performance.

Therefore, one of the main purposes of this paper is to compare conventional
and Islamic sector portfolios by using not only classical but also recent performance
measures such as the Omega ratio and the MPPM statistic [3, 4].

2 Performance

Specifically, the classical performance measures studied in this paper are the well-
known Jensen’s [5] alpha ratio, Treynor’s [6] reward to volatility ratio and Sharpe’s
[7] reward to variability ratio.

The fourth performance measure proposed in this paper is the Sortino ratio,
developed by Sortino and van der Meer [8]. This ratio is a modification to the Sharpe
ratio that just penalizes those returns falling below a threshold return.

The fifth performance measure is the Omega ratio, developed by Keating and
Shadwick [9] as an alternative to classical performance measures. This reliable risk
indicator takes into consideration the four statistical moments of the probability
distribution function (mean, variance, skewness and kurtosis), instead of just the
first and second moments of the distribution (mean and variance).

Op = E
[
Max

(
E

(
rp

)− τ, 0
)]

E
[
Max

(
τ − E

(
rp

)
, 0

)] (1)

where E(rp) is the return of the portfolio and τ is the threshold of the expected
return.

The sixth performance measure is the Manipulation Proof Performance Measure
(MPPM) developed by Ingersoll et al. [10] to avoid that portfolio managers could
manipulate their portfolios, either deliberately or otherwise, in order to score well
on the previous static performance measures even though the manager has no
private information [3, 4]. Moreover, the MPPM does not rely on any distributional
assumption and so, this measure takes into account the four statistical moments of
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the probability distribution function (mean, variance, skewness and kurtosis).

MPPM(A) =
⎡

⎣ 1

(1− A)�t
ln

⎛

⎝ 1

T

T∑

t=1

[
(1+ rt )(
1+ rf t

)
](1−A)

⎞

⎠

⎤

⎦ (2)

where the parameter A is the measure of relative risk aversion that, like Ingersoll
et al. [10], we use a A value of 3. Meanwhile, Δt is the time length between
observations, T is the number of observations, rt is the return of the selected
portfolio at time t, rft is the risk-free interest rate at time t.

In general, the higher the ratios the better the risk-adjusted returns and so, the
better the portfolio.

3 Main Results and Concluding Remarks

The performance measures of conventional and Islamic sector portfolios have been
calculated in the whole sample period (January 1996–December 2015) and in
three sub-periods: pre-crisis sub-period (January 1996–June 2007), crisis sub-period
(July 2007–December 2010) and post-financial crisis sub-period (January 2011–
December 2015).

Table 1 summarizes the values of the MPPM statistic for conventional and
Islamic sector portfolios.

In detail, the values of the MPPM statistic, for the best performing sector, Health
Care, is −1.148 for the conventional portfolio and −1.150 for the Islamic portfolio
in the full period, while the MPPM value of this sector for conventional and Islamic
portfolios, respectively, is −1.801 and −1.802 in the pre-crisis sub-period,−0.494
and −0.490 in the crisis sub-period and 0.116 and 0.110 in the post-crisis sub-
period.

On the other hand, the values of MPPM for the worst performing sector,
Financials, is −1.240 for the conventional portfolio and −1.265 for the Islamic
portfolio in the total period, while this performance measure for Financials in the
conventional and Islamic market is, respectively, −1.814 and −1.918 in the pre-
crisis sub-period, −0.844 and −0.630 in the crisis sub-period and, finally, −0.003
and 0.036 in the post-crisis sub-period.

Therefore, the best performance according to the MPPM statistic both for the
best performing sector, Health Care, and for the worst performing sector, Financials,
corresponds to the post-crisis sub-period both in conventional and in Islamic
markets.

Furthermore, Islamic sector portfolios perform better than conventional sector
portfolios not only for the whole sample period but also for the three sub-periods.
This could be due to the fact that the low level of uncertainty and speculation
in Islamic finance and the prohibition of interest rates that negatively affect the
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economic evolution would justify the greater profitability obtained by the Islamic
sectors, even along the crisis sub-period.
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Do Google Trends Help to Forecast
Sovereign Risk in Europe?

Marcos González-Fernández and Carmen González-Velasco

Abstract The aim of this paper is to analyze whether internet activity, as measured
through Google data, influences the evolution of sovereign bond yields. For this
purpose, we focus on ten European countries. We run VAR models and Granger
causality tests between the Google Search Volume Index (GSVI) and sovereign
risk. The VAR models and the causality tests for five core and five peripheral
countries suggest that in the latter, especially Greece, Google data have had the
highest positive impact on sovereign yields.

Keywords Google trends · Sovereign risk · Europe

1 Introduction

It is well known that over the past few years, Europe has faced a critical sovereign
debt crisis that has had a great impact on sovereign bond yields and risk premiums,
especially for peripheral countries, such as Greece, Ireland, Italy, Portugal and
Spain. This sovereign debt crisis has been widely analyzed in the literature due to its
great impact in financial markets and in the economic situation of most of European
countries. With this paper which, to the best of our knowledge, is pioneering work
in this line of research, along with the paper by Dergiades et al. [1] we attempt to
determine whether internet activity is a useful tool to forecast changes in sovereign
yields. If it is, it will represent a valuable tool that acts as a signal for ups and downs
in yields and is helpful for financial market participants. To achieve this objective,
we use Google data to analyze the impact of internet activity on sovereign bond
yields.

For the purpose of our paper, we analyze 10 European countries using monthly
data for the period between January 2004 and October 2017. We run vector
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autoregressive models (VAR) and Granger causality, distinguishing between core
and peripheral countries, to test the ability of Google data to predict yields. As a
summary of the panel data results, we can state that VAR models indicate that this
positive relationship is more intense for peripheral countries, especially Greece.

2 Background Literature

The use of internet search activity data, and especially Google data, is relatively
recent in the literature, and the interest in this topic among both academics and
professionals has been growing over the past decade. In economics and finance,
there also multiple cases in which Google data have been used as a proxy in recent
years [2–5], inter alia.

In relation to the aim of this paper, only a few papers analyze the impact of
Google data on sovereign risk. To the best of our knowledge, only two papers in the
literature address this subject. The first of them, Rose and Spiegel [6], analyzes
dollar illiquidity during the global financial crisis. They use Google data for a
selection of keywords related to the financial crisis, such as crisis, financial or
recession and check whether it can be used as a proxy for default risk to include
in their model. The second paper that addresses this issue is the one by Dergiades et
al. [1]. They analyze the impact of Google searches on financial markets focusing
on Europe’s peripheral countries.

Following this line of research, our paper aims to contribute to the lack of
literature in this area. We use a larger sample and a longer period: between 2004 and
2017. Our findings aim to provide more information about the importance of internet
information in predicting sovereign risk and consequently about the usefulness of
that tool to anticipate such a crisis.

3 Data

We use 10 year-sovereign bond yields obtained from Eurostat to proxy sovereign
risk obtained from Eurostat database. They are calculated as monthly averages
referred to central government bond yields on the secondary market. We have
gathered the data for five core countries: Austria, Belgium, France Germany and
Netherlands; and five peripheral countries: Greece, Ireland, Italy, Portugal and
Spain. The other main variable in our analysis is the data related to Google
searches. First, we have to select the keywords. Following Da et al. [7], we begin
by downloading general terms such as “European debt crisis” and “sovereign
risk”, and we also download the top search terms provided by Google related to
those keywords. We remove terms with too few observations and keep only those
keywords with representative values throughout the time period. We select debt
crisis as the most representative keywords for the aim of our analysis.
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Subsequently we have downloaded Google data from Google trends tool (https://
www.google.com/trends). It is worth noting that Google Trends does not provide
the total number of searches for keywords; rather, it provides an index that ranges
from 0 to 100, which is usually called Google Search Volume Index (GSVI
hereinafter). To build this index, Google starts by dividing the number of searches
for a given keyword into the total number of searches for a given time unit (daily,
weekly or monthly). Thereby, a ratio is obtained that is subsequently normalized by
multiplying it by a scaling factor F= 100/r*, where r* is the fraction of highest value
[1]. Thus, the numbers start at 0 on January 2004, and subsequent values denote
changes from the search on that date, 100 being the point at which the number of
queries has achieved the top search intensity.

4 Results

In Table 1 the Granger causality tests for the bivariate models between GSVI for the
keywords debt crisis and sovereign yields are summarized.

Table 1 Granger causality tests for (GSVI) and sovereign bond yields

Country Null hypothesis Lags F-statistic p-value β coefficients

Austria GSVI→ yields 3 3.242 0.023** −0.0018
Yields→ GSVI 3 1.746 0.159 0.1632

Belgium GSVI→ yields 3 1.406 0.243 −0.0012
Yields→ GSVI 3 0.978 0.404 0.2936

France GSVI→ yields 3 3.236 0.023** −0.0009
Yields→ GSVI 3 2.099 0.102 0.1819

Germany GSVI→ yields 3 3.491 0.017** −0.0013
Yields→ GSVI 3 1.435 0.234 0.1340

Netherlands GSVI→ yields 3 3.145 0.026** −0.0016
Yields→ GSVI 3 1.190 0.315 0.1782

Greece GSVI→ yields 9 26.98 0.000*** 0.0741
Yields→ GSVI 9 2.367 0.016** 1.2234

Ireland GSVI→ yields 6 9.227 0.000*** −0.0067
Yields→ GSVI 6 4.949 0.000*** 0.8900

Italy GSVI→ yields 3 2.283 0.081* 0.0005
Yields→ GSVI 3 1.221 0.304 0.2737

Portugal GSVI→ yields 4 3.782 0.006*** 0.0035
Yields→ GSVI 4 7.248 0.000*** 1.2197

Spain GSVI→ yields 3 1.076 0.360 0.0002
Yields→ GSVI 3 1.064 0.365 0.4805

The table shows Granger causality tests for the bivariate VAR models between sovereign bond
yields and the keywords debt crisis. The time horizon is January 2004–October 2017. The number
of lags has been selected according to Akaike’s criterion. The last column indicates the cumulative
value of the coefficients in the VAR model for the lags specified
***1%; **5%; *10%

https://www.google.com/trends
https://www.google.com/trends
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We focus first on peripheral countries and observe causality between GSVI and
sovereign yields for all countries but Spain. Moreover, the GSVI causes yields, but
a surge in the yields causes GSVI. Therefore, an increase in sovereign bond yields
increases internet attention related to debt crisis. The cumulative effect is positive
for peripheral countries, with the exception of Ireland. This indicates that a surge in
GSVI in the previous months leads to a surge in bond yields in peripheral countries
in the contemporaneous observation for the yields.

In core countries, we also find causality between GSVI and sovereign yields.
Nevertheless, this causality is not reciprocal, since it works only in one direction
that is; GSVI causes sovereign yields in four of the core countries. However, the
cumulative effect here is negative in all of them. This indicates that an increase
in internet attention in the previous months, measured through GSVI, leads to a
decline in sovereign bond yields in month t. According to our results, it seems
that internet attention causes a surge in yields in peripheral countries but a decline
in the core countries. The reason for this different behavior can be found in the
flight-to-liquidity hypothesis [8, 9]. When internet attention related to the debt crisis
increases, as measured through GSVI, it leads to a surge in yields in peripheral
countries, especially Greece. Thus, investors move their assets to safer and more
liquid countries, such as Germany [9], and that generates a decline in the yields of
core countries as they become safe havens.

5 Conclusions

In this paper, we attempt to determine empirically whether internet activity,
measured through Google data, matters for the evolution of sovereign bond yields in
Europe. We demonstrate that in core countries, yields are negatively influenced by
the Google searches, whereas in peripheral countries, this negative impact does not
appear, but a positive impact does. This may be because a surge in investors’ concern
about the sovereign debt crisis, which leads to an increase in internet attention,
generates first a surge in the yields from countries more affected by the crisis and
then a subsequent decline in core countries. This result confirms the existence of a
flight to quality from peripheral to core sovereign bonds.
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The Contribution of Usage-Based Data
Analytics to Benchmark
Semi-autonomous Vehicle Insurance

Montserrat Guillen and Ana M. Pérez-Marín

Abstract Semi-autonomous vehicles will have a significant impact for the auto-
mobile insurance industry. We analyze telematics information and present methods
for Usage-Based-Insurance to identify the effect of driving patters on the risk
of accident. These results can be used as a starting point and a benchmark for
addressing risk quantification and safety for semi-autonomous vehicles. Automatic
speed control devices, which allow the driver to keep the vehicle at a predetermined
constant speed and can ensure that the speed limit is not violated, could be
considered a first example of semi-autonomy. We show scenarios for a reduction
of speed limit violations and the consequent decrease in the expected number
of accident claims. If semi-autonomous vehicles would completely eliminate the
excess of speed, the expected number of accident claims could be reduced to almost
one third its initial value in the average conditions of our data. We also note that an
advantage of automatic speed control is that the driver does not need to look at the
speedometer which may contribute to safer driving.

Keywords Telematics · Poisson model · Predictive modelling · Pricing

1 Introduction

Semi-autonomous vehicles are capable of sensing their environment and navigating
without human input. One of the first examples of partial autonomous driving is an
automatic speed control device that can be activated by the driver and then keeps
the vehicle at a predetermined constant speed. The result is that this device ensures
that the speed limit is not going to be violated. This paper is about the effect of
speed reduction on the risk of accidents. We pre-sent a real case study where the
impact of speed control is evaluated in different scenarios by using a pay-how-you-
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drive (PHYD) insurance database provided by a Spanish company. The effect of
speed reduction on the expected number of accidents is found significant. Based on
these data we also see that there are other factors that can also influence accident
risk, but they are not discussed here. We only provide a reference for the role of
speed reduction that can be taken as a reference and a baseline for the analysis of
automated control on road safety. A recent article [9] provides a fast overview of
usage-base-insurance (UBI) schemes and concludes that there is evidence that UBI
implementation implies lower insurance costs for less risky and less exposed drivers.
The authors claim that monitoring the performance of drivers and giving feedback
is a motivation for some drivers to improve their skills. There are several authors, in
quite some other recent articles, that advocate for the introduction of telematics in
insurance. The results in [4] indicate that information on driving behavior (how-you-
drive) can improve the risk selection process. Moreover, another approach described
in [8] estimates aggregate claims losses for factors that can either be controlled by
the driver or by the vehicle. The authors then show that automated features that
remove driver error and reduce accident risks could imply a reduction of up to
90% of the costs. They largely base their conclusions on scenario analysis. Our
contribution is centered on the role of speed control and it is based on the premise
that automated procedures can reduce and eventually eliminate the violation of
speed limits on the road. Based on real data we then calculate the reduction in the
frequency of accidents and its impact on safety. We finish our presentation with a
summary of the conclusions.

2 Data and Methods

The sample consists of 9614 drivers who had a PHYD insurance policy in force
during 2010, the whole year. We model the total number of claims at fault from
these drivers and show its association with the total distance traveled during
the year in kilometers (km, mean = 13,063.71, standard deviation(sd) = 7715.80),
percentage of kilometers traveled at speeds above the mandatory limits (speed,
mean = 9.14, sd = 8.76), the percentage of kilometers traveled on urban roads (urban,
mean = 26.29, sd = 14.18) and the age of the driver (age, mean = 24.78, sd = 2.82).
The average number of claims per policy is 0.10, with a driver having had at most
3 claims. In Fig. 1 we have grouped the observations in subsets according to the
percent distance driven above the speed limit. We see that the mean number of
claims in-crease when the percent distance driven above the speed limit increases.
There were some outliers in the original sample, which were removed here. We also
limit our observation plot to the range from 0% to 20%. There is also some more
variability when the percent is large, compare to lower values. This is due to the
size of the groups. Since the average distance in the whole sample is 9.14%, we
note that the median is 6.14%, which means that half of the drivers never driver
more than 6.14% of the total distance driven in 1 year, above the speed limits. A
classical Poisson model is fitted giving an excellent goodness-of-fit. The results are
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Fig. 1 The expected frequency of claims as a function of the percentage of kilometers traveled
at speeds above the limit. The dots represent the average frequency of claims when the insureds
are grouped according to their speed violations by intervals of 0.5%. The line represents the fitted
claim frequency as a function of the percentage of kilometers traveled at speeds above the limit

available from the authors upon request and are not presented here for the sake
of brevity. Similar analyses can be found in several papers [1–3, 6, 7]. They all
show that telematics information can substantially complement classical insurance
risk factors. They also show that one crucial driving characteristic that significantly
influences the risk of an accident is the percent distance driven above the speed limit.
Note that in this paper we consider that all claims are reported so that the risk of an
accident and the risk of a claim are equivalent (see [5]).

3 Speed Reduction and Safety

We have compared what happens if there is a change in the average number of kilo-
meters driven above the speed limits. Table 1 shows how the expected number of
claims changes per 1000 drivers. The rows indicate the initial state and the columns
the final state. Thus, the last row of the first column means that an insurer would
expect 87 less claims for 1000 drivers that exceed their speed limit 20% of the
distance driven if they reduced this speed limit violation to zero.
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Table 1 Scenarios of the
number of claims reduction
per 1000 drivers

0 1 5 10 15 20

0 0.0 50.1 68.5 77.5 83.1 87.3

1 −50.1 0.0 18.4 27.4 33.0 37.1

5 −68.5 −18.4 0.0 9.0 14.6 18.7

10 −77.5 −27.4 −9.0 0.0 5.6 9.7

15 −83.1 −33.0 −14.6 −5.6 0.0 4.1

20 −87.3 −37.1 −18.7 −9.7 −4.1 0.0

Row values indicate the initial distance (%) and column
values are the final distance (%) driven with excess speed

4 Conclusions

Our real data have allowed to producing some scenarios for a reduction of speed
limit violations and its impact on the decrease in the expected number of accident
claims. The reduction in the number of claims per 1000 drivers is substantial and it is
larger obviously if the initial state refers to a set of drivers that has a high percent of
distance driven above the speed limit, compared to those that have a smaller initial
value. If semi-autonomous vehicles could completely eliminate the possibility that
drivers could exceed speed limits, or reduce this to a minimum, then the expected
number of accident claims would be reduced. The benefits of this reduction would
translate to a reduction in the number of victims on the road and an increase of
overall safety.
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Some Empirical Evidence on the Need
of More Advanced Approaches
in Mortality Modeling

Asmerilda Hitaj, Lorenzo Mercuri, and Edit Rroji

Abstract Recent literature on mortality modeling suggests to include in the
dynamics of mortality rates the effect of time, age, the interaction of the latter two
terms and finally a term for possible shocks that introduce additional uncertainty. We
consider for our analysis models that use Legendre polynomials, for the inclusion
of age and cohort effects, and investigate the dynamics of the residuals that we get
from fitted models. Obviously, we expect the effect of shocks to be included in the
residual term of the basic model.

The main finding here is that there is persistence in the residual term but the
autocorrelation structure does not display a negative exponential behavior. This
empirical result suggests that the inclusion of the additional shock term requires
an appropriate model that displays a more flexible autocorrelation structure than the
Ornstein-Uhlenbeck employed in existing models.

Keywords Legendre polynomials · Mortality shocks · Autocorrelation

1 Mortality Models Based on Legendre Polynomials

We review in this section the model proposed in [5] and its extensions available in
literature. The force of mortality, μ(x, t) for age x in calendar year t is modeled as:

μ(x, t) = exp

⎡

⎣β0 +
s∑

j=1

βjLj (x
′)+

r∑

i=1

αit
′i +

r̄∑

i=1

s̄∑

j=1

γijLj (x
′)t ′i

⎤

⎦ (1)
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where x ∈ [x1, x2], t ∈ [y1, y2], s̄ ≤ s, r̄ ≤ r and Li(x
′) are the Legendre

polynomials whose elements are computed, for n ≥ 1 as:

L0(x) = 1; L1(x) = x; (n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn+1(x). (2)

The quantities x ′ and t ′ are the transformed ages and the transformed calendar years
that map x and t onto the interval [−1, 1] following the rule:

x ′ = 2x −max(x)−min(x)

max(x)−min(x)
t ′ = 2t −max(t)−min(t)

max(t)−min(t)
. (3)

The force of mortality given in (1) depends on three terms:

1.
∑s

j=1 βjLj (x
′) which captures the age effect,

2.
∑r

i=1 αi t
′i that captures the time effect

3.
∑r̄

i=1
∑s̄

j=1 γijLj (x
′)t ′i that captures the interaction between age and time

effects.

In [2] an additional autoregressive term with gaussian innovations is added while
[1] considers other type of innovations. In order to get the generalized approach
proposed in [1] we should denote with D(x, t) the number of deaths for people
aged x in the calendar year t assumed to be a Poisson response variable with mean:

E [D(x, t)] = r(x, t)μ(x, t) (4)

where r(x, t) is the central exposure to risk that refers to the number of people alive
aged x in the middle of the calendar year t . The main assumption states that:

E [D(x, t) |Yt ′ ] = r(x, t) exp

⎡

⎣β0 +
s∑

j=1

βjLj (x
′)+

r∑

i=1

αi t
′i +

r̄∑

i=1

s̄∑

j=1

γijLj (x
′)t ′i + Yt ′

⎤

⎦ ,

(5)

Yt ′ is assumed to be a mean-reverting process whose dynamics is the solution of the
SDE:

{
dYt ′ = −aYt ′dt ′ + dZt ′ for t ′ > −1
Y−1 = 0,

(6)

where a is an unknown constant and (Zt ′ : t ′ ≥ −1) is a Lévy process with
initial value Z−1 = 0. Ahmadi and Gaillardetz [1] consider the class of Tempered
α- Stable subordinators among positive Lévy processes. In particular, they obtain
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closed form formulas in the case where Yt ′ is a Variance Gamma Ornstein-
Uhlenbeck solution of Eq. (6) where (Zt ′ : t ′ ≥ −1) is a Variance Gamma process.
It seems now obvious that the extensions of model in (1) in [2] and [1] are both based
on the idea that the additional term has an exponentially decaying autocorrelation
structure associated to the choice of an Ornstein-Uhlenbeck process.

2 Empirical Investigation

We want to investigate empirically the soundness of the choice of the Ornstein-
Uhlenbeck for the additional term that should be added to model (1) in order to
capture mortality shocks. For our analysis we employ data from USA that we
downloaded from the Human Mortality Database website [4]. In particular we
consider the male tables for the number of deaths and exposure to risk. Data are
collected yearly for t = 1947, . . . , 2000. We consider ages from 65 to 100 since for
this range modeling of future mortality rates is crucial for the pricing of life products
that refer to the post-retirement period.

We recall that mxt is the central death rate whose empirical estimator is
m̂xt = d(x,t)

rc(x,t)
. We will assume throughout the paper that μ(xt) ∼= mxt and

consider a constant mortality rate over a calendar year for each fixed age x. The
estimation procedure is based on the maximization of the quasi-likelihood function
as described in [5] while the selection model is obtained using the Likelihood Ratio
Test (LR-Test).

First we report in Table 1 the fitted parameters and then for each fixed age x we
get the sequence Ŷt = logμ(xt)− log μ̂(xt) from the fitted mortality rates μ̂(xt).

The time series of residual terms for ages 65, 66, 67 and 68 are plotted in
Fig. 1. For all considered ages, the residuals seem to move together and thus we are
comfortable with the idea that the shock term depends only on time as suggested
in the models in [2] and [1]. In Fig. 2 we observe that the autocorrelation structure
suggests persistence but it does not display an exponential decay behavior. This
finding suggests that the Ornstein-Uhlenbeck considered in [2] and [1] is not suitable
for the description of the term that captures the shock dynamics. Non-monotonocity
in the autocorrelation function paves the way to the use of models that can reproduce
more flexibility. For example, as shown in [3], CARMA models are able to deal with
this kind of autocorrelation structure.
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Fig. 1 Time series of residual term Yt in the dynamics of μ(x, t) for ages 65, 66, 67 and 68
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Fig. 2 Autocorrelation function for the residual terms of μ(x, t) for ages 65, 66, 67 and 68
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Could Machine Learning Predict the
Conversion in Motor Business?

Lorenzo Invernizzi and Vittorio Magatti

Abstract The aim of the paper is to estimate the Conversion Rate by means of three
Machine Learning (ML) algorithms: Classification and Regression Tree (CART),
Random Forest (RF) and Gradient Boosted Tree (BOOST). The Generalized Linear
Model (GLM), benchmark model in the framework, is used as frame of reference.

The RF model has the highest Recall, while the BOOST is the most precise
model. The RF is able to outperform the GLM benchmark model in terms of Log
Loss error, Precision, Recall and F Score.

Variable Importance and Strength index, computed from the ML models and the
GLM respectively, describe how the different algorithms are coherent on choosing
the most relevant features.

Keywords Machine learning · Conversion rate · Generalized linear model ·
CART · Random forest · Gradient boosting · Motor insurance

1 Introduction

The Conversion Rate is defined as the ratio between insurance policies and quote
request. A good prediction of it produces at least two main advantages for an
Insurer:

• Increase in Competitiveness: this is especially important when the underwriting
cycle shows a softening period;
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• Effective price changes: a Company could identify rate changes or dedicated
discounts coherently with the estimated conversion and profitability calculated
for each potential client, both needed to develop a pricing optimisation tool.

The short paper starts with the description of the data set, then the ML models, the
calibration techniques and results & conclusions are presented.

2 Description of the Data Set

The selected perimeter is the Motor Third Party Liability (MTPL) for cars. It is
based on a real data set provided by Zurich Insurance Company Ltd. The train set
is composed by 205’439 quote requests and the 1.325% of them are converted into
policies, while the test set consists of 51’739 quote requests with a probability of
conversion of 1.289%.

For each quote request 26 features are considered. These are the most common
features known in the insurance market to affect client’s choices. Among them there
are: premium range, age of the client, power-to-weight ratio, Bonus Malus class,
engine power, vehicle age, years of car possession, age of vehicle when bought,
client’s occupation, guide style, age patent qualification, housing density, horse
powers, Italian region, number of non insured years, marital status, fuel source
and title study.

3 Machine Learning Models

Below the models under analysis are introduced, highlighting their main properties.

3.1 Generalized Linear Model (GLM)

The GLM represents the state of the art algorithm extensively used to predict
the conversion rate. The Binomial family distribution is considered as the error
distribution, in association with its canonical Logit link function. See Chapter 2
of [5] for a thorough discussion of the statistical model.

3.2 Classification and Regression Tree (CART)

Let {Ai}i be a partition of the 26 dimensional space of the features, the CART is
defined as a linear combination of indicator functions

CART(x) =
∑

i

ci1{x ∈ Ai} (1)
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that is equivalent to the tree structure. The model fits by minimizing a specified loss
function and is able to capture non-linear and complex relationships. In contrast
there is a high risk of overfitting. See Section 9.2 of [4] for more details.

3.3 Random Forest (RF)

The Random Forest consists of an average of K CART models

RF(x) =
∑

k CARTk(x)

K
(2)

where each CART is estimated by means of two random effects: Bootstrapping
(∼70%) and Feature Bagging (∼$√26%). Both hyperparameters, important in pre-
venting overfitting, are subject to fine tuning. See [1] for a complete argumentation.

3.4 Gradient Boosted Tree (BOOST)

The Gradient Boosted Tree is defined as a linear combination of CART models

BOOST(x) = sigmoid
(∑

k

αkCARTk(x)
)

(3)

where the sigmoid function is used to map the combination of CARTs into [0, 1].
The model is estimated using the Gradient Boosting Algorithm. See [2] for more
details.

4 Models Calibration

The fine tuning of the hyperparameters is the most crucial aspect for obtaining
accurate predictions on the test set.

The GLM is estimated using the Emblem Software through a stepwise procedure
consisting of: correlation analysis, χ2 tests, Forward Stepwise Regression, intro-
duction of Custom Factors, Variates, Interactions and test of time consistency. The
Iterative Weighted Least Squares Algorithm is the fitting algorithm.

The CART, RF and BOOST are estimated using the h2o Library, interface in R.
The stratified 5 cross-validation technique is exploit to tune the number of trees

K for the RF and BOOST. The RF implements the stratified bootstrapping. The
BOOST uses the tuned learn_rate= 0.01.



434 L. Invernizzi and V. Magatti

To reduce the observed overfitting of the BOOST, the Bootstrapping (as in RF)
is introduced (see [3]), obtaining no improvements. While the introduction of the
Feature Bagging results in a higher precision on the test set, maintaining the same
level of recall. Hence it is considered in the BOOST.

The CART , performing poorly, is not considered in the analysis of the results.

5 Analysis of Results

All models are estimated varying the depth of trees from 1 to 111 and the optimal
depth is chosen by maximizing the F Score, maintaining a good trade-off between
Precision and Recall.

Figures 1 and 2 show Precision and Recall varying the depth. The optimal depths
for RF and BOOST are 10 and 6 respectively. Table 1 compares the measures of
comparison of the selected models. RF is the model with the highest recall, while
BOOST is the most precise. RF is able to outperform the GLM benchmark model.

Being BOOST iteratively fit on residuals, the optimal one is composed of a linear
combination of many shallow trees.

Defined the Strength Index for each feature (GLM) as the normalized weighted
average of the βs coefficients, and the Variable Importance (see [1]), all models
choose the premium range and the age of the client as the most predictive features.
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Fig. 1 BOOST is the most precise model as expected, the precision increases as the depth, making
the model hard to tune due to overfitting problems. RF beats GLM for depths greater than 6

1Due to computational machine limits. From the results we conclude that it is sufficient.
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Fig. 2 RF is the model with the highest recall. BOOST performs poorly, in contrast to a high value
of precision. Hence BOOST is a more conservative model than RF and GLM

Table 1 Performance of the selected models on test set

Model Depth Log Loss Error Accuracy (%) Precision (%) Recall (%) F Score (%)

GLM n.d. 0.0137 95.6 9.8 28.8 14.6

RF 10 0.0135 94.8 10.6 41.0 16.8

BOOST 6 0.0135 97.8 15.9 15.6 15.7
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European Insurers: Interest Rate Risk
Management

Francisco Jareño, Marta Tolentino, María de la O González,
and María Ángeles Medina

Abstract This paper studies the interest rate risk of some relevant European insur-
ers during the period 2003–2015, using the Quantile Regression (QR) methodology
and including the state of the economy. The results show that, in general, the
European insurers’ returns have a statistically significant sensitivity to interest rates,
although there are relevant differences between the different companies analyzed,
the different subperiods and between quantiles. Thus, the sensitivity of the European
insurers to movements in the European interest rates tends to be more pronounced
in extreme market conditions (with upward or downward fluctuations).

Keywords Interest rate risk management · European insurers · Stock market

1 Introduction and Methodology

1.1 Aim

This research focuses on analysing the sensitivity and behaviour of some some
relevant European insurers to changes in benchmark interest rates. The methodology
used is the Quantile Regression (QR) approach and the period analysed covers from
2003 to 2015. In addition, this research analyzes this sensitivity, decomposing the
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entire period into different subsamples depending on the economic cycle, which
allows to obtain better results according to the nature of the methodology used (QR).

1.2 Data and Methodology

This paper uses the stock prices of eight insurance companies listed on different
stock markets in the Eurozone: Spain, Germany, France, Italy, the Netherlands and
Switzerland. The sample period ranges from January 2003 to December 2015. The
data have been obtained from the website “investing.com” using the closing prices
to calculate the monthly stock returns as the relative change in the closing price for
the first trading day observed for each month between two consecutive months.

In turn, the market portfolio is approached through the EuroStoxx 50 index as
it is the benchmark in the Eurozone.1 The series of the monthly market returns has
been obtained as the weighted arithmetic average of the monthly stock returns of the
member companies. In order to measure the sensitivity of the insurance companies’
returns to changes in interest rates, the 10-year German bond yields are used as
proxy variables.2 Germany has been chosen as the reference country since it is
considered the strongest, largest and most stable economy in the Eurozone. It has
been decided to use a long-term interest rate, since stock prices are usually linked to
the forecasts of the level of long-term interest rates and therefore company returns
tend to be more sensitive to changes in long-term interest rates than to changes in
short-term rates [2].

The main features of the European insurers are shown in Table 1:

Table 1 Main features of the European insurers

Country Year founded Area 2016 Premium volume

Generali Italy 1831 Life and non-life 63.837a

Swiss Re Switzerland 1863 Life and non-life 17.768a

Catalana occidente Spain 1864 Life and non-life 4.235a

Munich Re Germany 1880 Life and non-life 48.900a

Allianz Germany 1890 Life and non-life 76.331a

Mapfre Spain 1933 Life and non-life 22.813a

AXA France 1982 Life and non-life 94.220a

Aegon Holland 1983 Life 23.453a

Source: Own preparation
aData expressed in millions of euros

1Munich Re, Axa and Allianz are included in the EuroStoxx 50 index, but they represent a low
percentage of the index.
2According to Sevillano and Jareño [1], this paper tries to study the impact of this international
factor. Another option would be to include the risk premium for non-German companies.

http://investing.com
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The Quantile Regression methodology (QR) is used in this research. This
approach was introduced by Koenker and Basset [3] as an alternative method of
classical OLS estimation [4]. The QR approach is an estimation method based on the
minimization of absolute deviations weighted with asymmetric weights that are not
affected by extreme data. The QR methodology is used when the main objective of
the study focuses on the estimation of different percentiles (quantiles) of a particular
sample, since this technique allows to estimate different quantile functions of the
conditional distribution. Each quantile function characterizes a particular point of
the conditional distribution, so that by combining different quantile regressions a
more complete distribution of the underlying conditional distribution is obtained [5].

The estimation of the parameters in the case of the Quantile Regression is carried
out through the minimization of the absolute deviations weighted with asymmetric
weights:

[∑
i:yi≥x ′iβi

θ
∣∣yi − x ′iβ

∣∣+
∑

yi<x ′iβi
(1− θ)

∣∣yi − x ′iβ
∣∣
]

(1)

According to Jareño [6], González et al. [7] and Jareño et al. [8], among others,
this research applies the two-factor model introduced by Stone [9]. Therefore, two
explanatory factors are included: (1) the stock market return, and (2) changes in
interest rates.

The two-factor asset pricing model consists of adding an interest rate change
factor as an additional explanatory variable to the CAPM (Capital Asset Pricing
Model). Therefore, the proposed version in this paper of the Stone two-factor model
would be as follows:

Rit = αi + β1Rmt + β2Rt + εit (2)

where Rit is the return of insurer i in time t, Rmt is the stock market return in t, Rt

shows changes in interest rates, and, finally, εit is a random error.
The inclusion of the market portfolio is to control macroeconomic factors that

impact on stock prices and correlate with changes in interest rates. The coefficient
associated with the stock market return, β1, measures the sensitivity of corporate
returns to general changes in the stock market return and, therefore, is an indicator
of market risk. In turn, the coefficient of changes in interest rates, β2, reflects the
sensitivity of insurers’ returns to fluctuations in interest rates beyond that contained
in the market return. Therefore, it can be interpreted as a measure of the exposure to
interest rates [2].
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2 Main Results and Concluding Remarks

The results show that, in general, the European insurers’ returns have a statistically
significant sensitivity to interest rates, although there are relevant differences
between the different companies analyzed, the different subperiods and between
quantiles.

The company that shows the highest sensitivity to interest rate changes in all
periods is Munich Re (from Germany). However, the sign of the coefficients is
different for the two subperiods analyzed. In the period of economic expansion
(2003–2007) the coefficients are positive, unlike in the whole period (2003–2017)
and in the crisis period (2008–2017), which means that variations in European
interest rates result in a negative effect on this company returns.

In the whole sample period the coefficients of three out of the eight companies
analyzed (Allian, Munich RE and Swiss Re) have negative signs in all the quantiles
studied. At this stage, most of the coefficients that are statistically significant are
found at the ends of the distribution, especially at the lowest quantiles (0.1 and 0.2),
related to crisis periods.

In the first crisis subperiod, companies that show statistically significant sen-
sitivity to changes in European interest rates (Allianz, Axa, Mapfre and Aegon)
are characterized by showing positive coefficients in the last quantiles of the
distribution, which shows that the effect of changes in this risk factor is more intense
in good stock market performance scenarios [8].

In the second subperiod coefficients that show a statistically significant sensi-
tivity are found mainly in the lowest quantiles of the distribution. The coefficients
that are significant in the highest quantiles have a negative sign, indicating that an
increase in interest rates would lead to a decrease in the European insurer returns
and would show the significant impact that the crisis has had in this sector.

In general, for the different companies analyzed in the insurance sector, the
sensitivity to movements in the European interest rates tends to be more intense in
extreme market conditions, that is, when the stock market is experiencing significant
upward or downward fluctuations. This relevant result has been detected due to
the use of the Quantile Regression (QR) methodology, which helps reveal the
relationships between the European interest rates and the European insurer returns
that could not have been detected using more traditional techniques such as the OLS
methodology [8].
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Estimation and Prediction
for the Modulated Power Law Process

Alicja Jokiel-Rokita and Ryszard Magiera

Abstract The modulated power law process has been proposed by Lakey and
Rigdon in 1992 as a compromise between the non-homogeneous Poisson process
and the renewal process model. It is useful in analyzing duration dependence in
economic and financial cycles. In this paper we consider a problem of estimation
and prediction for the modulated power law process. Using the estimating functions
approach we propose new estimators of the parameters of the modulated power
law process. The estimators proposed we apply to construct predictors of the
next event time. We also present algorithms for effective calculating the values of
estimators and predictors proposed. In the simulation study conducted we compare
the accuracy of the estimators proposed with the maximum likelihood ones and
examine the precision of predictors presented. The results obtained we apply in
analysing a real data set of U.S. stock market cycles.

Keywords Inhomogeneous gamma process · Maximum likelihood estimation ·
Estimating equation · Stock market cycle

1 Introduction

The modulated power law process (MPLP) has been proposed in [3] as a com-
promise between the non-homogeneous Poisson process and the renewal process
model. A definition of the MPLP is the following. Suppose that events (shocks)
occur according to the non-homogeneous Poisson process (NHPP) with power
law intensity λ(t) = αβtβ−1, where α > 0, β > 0, t ≥ 0, and suppose that
a system failure occurs not at every shock but at every κ th shock, where (for
now) κ is a positive integer. Let Ti be the time of the ith failure, i = 1, 2, . . . .
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The observed sequence {Ti, i = 1, 2, . . .} of occurrence times T1, T2, . . . forms
a point process which is called the MPLP. It will be denoted by MPLP(α, β, κ). The
MPLP(α, β, κ) is also defined for any positive value of κ . Namely, if the random
variables Wi = αT

β
i − αT

β
i−1, i = 1, 2, . . . , where T0 = 0, are independent

and identically gamma distributed with unknown shape parameter κ and unit scale
parameter, then the sequence {Ti, i = 1, 2, . . .} forms the MPLP(α, β, κ).

The MPLP is often used to model failure data from repairable systems, when
both renewal type behaviour and time trend are present. It is also useful in analyzing
duration dependence in economic and financial cycles (see for example [4] and [5]).

In this paper we consider a problem of estimation and prediction for the MPLP.
We propose a new method of estimation of the MPLP parameters and prediction of
the next event time. The results obtained we apply in analysing a real data set of
U.S. stock market cycles.

2 Estimation of the MPLP Parameters

If we observe the MPLP up to nth event time, then the log-likelihood function of
the process is

l(α, β, κ | t1, . . . , tn) = −n log['(κ)] + nκ log(α)+ n log(β)− αtβn

+(β − 1)
n∑

i=1

log(ti)+ (κ − 1)
n∑

i=1

log(tβi − t
β

i−1).

The likelihood equations in the model considered are

⎧
⎪⎨

⎪⎩

∂l/∂α = nκ/α − t
β
n = 0,

∂l/∂β = n/β + S(t)+ (κ − 1)W(t, β)− αt
β
n log(tn) = 0,

∂l/∂κ = −nψ(κ)+ n log(α)+ V (t, β) = 0,

(1)

where ψ(·) = '′(·)/'(·) is the di-gamma function, S(t) =∑n
i=1 log(ti ),

W(t, β) =
n∑

i=2

t
β
i log(ti)− t

β
i−1 log(ti−1)

t
β
i − t

β
i−1

+ log(t1), V (t, β) =
n∑

i=1

log(tβi − t
β
i−1).

The ML estimation of the MPLP parameters was considered in [2], where the
authors noted that the numerical evaluation of the ML estimators requires the use of
a complex iterative procedure based on a combined use of the Nelder-Mead simplex
algorithm for approximating the location of the maximum and the Newton-Raphson
method that, from a very accurate starting point, converges to the ML solution.
Instead of, we have the following proposition.
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Proposition 1 The ML estimates α̂ML, β̂ML, κ̂ML of the MPLP parameters α, β,
κ, respectively, are

α̂ML = nκ̂ML

t
β̂ML
n

,

κ̂ML = W(t, β̂ML)− S(t)− n/β̂

W(t, β̂ML)− n log(tn)
=: κN(t, β̂ML)

κD(t, β̂ML)
=: κ(t, β̂ML),

and β̂ML is a solution to the equation

−nψ(κ(t, β))+ n log
[nκ(t, β)

t
β
n

]
+ V (t, β) = 0. (2)

Remark 1 It can be shown that a solution to Eq. (2) for which κ̂ML is positive, lies
in the interval (β0,∞), where β0 is the unique solution to the equation κD(t, β) = 0
with respect to β. Moreover, β0 < −n/∑n

i=1 log(ti/tn) =: βstart , which is a good
starting point for searching a solution to Eq. (2).

Although Proposition 1 and Remark 1 give an efficient and reliable algorithm for
finding the MLEs, we also propose an alternative method of estimation of the MPLP
parameters based on some properties of the MPLP. Namely, it is known from [1]
that the random variables Ui = Λ(Ti)/Λ(Tn), where Λ(t) = αtβ , are distributed
according to the beta distribution Be(κi, κ(n− i)), and are independent of Tn. Thus
E(Ui) = i/n and Var(Ui) = i(n − i)/n2(nκ + 1). We then propose estimating
(α, β, κ) by (α̂EE, β̂EE, κ̂EE), where β̂EE is a solution to the equation

n−1∑

i=1

[(
ti

tn

)β

− i

n

]
1

i(n− i)
=

n−1∑

i=1

[(
ti

tn

)β 1

i(n− i)

]
−

n−1∑

i=1

1

n(n− i)
= 0,

κ̂EE is a solution to the equation

log(κ)− ψ(κ)+ log(n)− log
(
t β̂EE
n

)
+ 1

n

n∑

i=1

log
(
t
β̂EE

i − t
β̂EE

i−1

)
= 0,

and α̂EE = nκ̂EE/t
β̂EE
n .

In the simulation study conducted we have compared the accuracy of the estima-
tors proposed with the maximum likelihood ones. For each chosen combination of
the parametersα, β, κ, the M = 1000 samples of the MPLP(α, β, κ) were generated
up to a fixed number n = 30 of jumps was reached. In most cases considered, the
estimated mean squared error (MSE) of the estimator β̂EE was smaller than the
MSE of β̂ML. The MSEs of κ̂ML and κ̂EE were almost the same. On the other hand,
the MSEs of α̂EE were always bigger than MSEs of α̂ML.
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3 Prediction of the Next Failure Time

Let us assume that we observe the MPLP up to nth failure and we are interested in
predicting the next event time Tn+1.

Lemma 1 The conditional expectation of Tn+1 given T1 = t1, . . . , Tn = tn is the
following

E(Tn+1 | T1 = t1, . . . , Tn = tn) = E(Tn+1 | Tn = tn) = E(Z + tβn )
1/β,

where the random variable Z has the gamma G (κ, 1/α) distribution.

On the basis of Lemma 1, we propose predicting the next event time by

T̂ ML
n+1 =

1

M

M∑

i=1

YML
i or T̂ EE

n+1 =
1

M

M∑

i=1

YEE
i ,

where YML
i = (ZML

i + t
β̂ML
n )1/β̂ML, YEE

i = (ZEE
i + t

β̂EE
n )1/β̂EE , ZML

i and
ZEE
i , i = 1, . . . ,M, are random variables generated from G (κ̂ML, 1/α̂ML) and

G (κ̂EE, 1/α̂EE) distribution, respectively, and M is the number of Monte Carlo
repetitions. Estimative prediction limits for the event time Tn+1 can be obtained by
computing appropriate sample quantiles of (YML

1 , . . . , YML
M ) or (YEE

1 , . . . , YEE
M )

for M sufficiently large.

4 Application to Some Real Data Set

In [5] the authors showed that the Weibull renewal process model, often used in
analysis of duration dependence of financial cycles, does not fit data from U.S. stock
market cycles (1985 through 2000). As a solution, they proposed to fit the MPLP
that relies on less restrictive assumptions, and which measures both the long term
properties of bull and bear markets, as well as the short term effect, such as duration
dependence. In Table 1 we present the results of our analysis of data from [5].

The predicted 95%-intervals for the next failure times based on the ML and EE
estimators for the Bull data are (841.86,906.739) and (842.272,915.792), respec-
tively. For the Bear data the corresponding predicted intervals are (476.219,507.079)

Table 1 The ML and EE estimates of α, β, κ and the predicted next failure times T̂ ML
n+1 and T̂ EE

n+1
in the MPLP(α, β, κ) for the U.S. stock market data

α̂ML β̂ML κ̂ML α̂EE β̂EE κ̂EE Tn Tn+1 T̂ ML
n+1 T̂ EE

n+1

Bull 0.2044 0.9140 3.2318 0.3649 0.8269 3.1877 835 909 865.789 869.203

Bear 0.1365 1.0654 3.1506 0.0635 1.1817 3.0055 473 478 487.477 486.068
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and (475.773,504.237). Using the EE method the next failure time is predicted more
accurate than by the ML method.
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The Level of Mortality in Insured
Populations

Josep Lledó, Jose M. Pavía, and Francisco G. Morillas

Abstract In the actuarial field, life tables are used in reserving and pricing
processes. They are commonly built from aggregate data and incorporate margins
as a prudent measure to ensure the insurance company’s viability. Solvency II
requires insurance companies to calculate technical provisions using best-estimate
assumptions for future experience (mortality, expenses, lapses, etc) to separate (i)
the risk-free component from (ii) adverse deviation of claims. Nowadays, however,
the methods used by insurance companies (in most countries, included Spain) do
not guarantee that these components can be separated. Many companies build their
own tables from general insured population life tables, assuming certain restrictive
hypotheses. In this paper, we develop a new cohort-based estimator to build life
tables based on individual company experience. We apply it to a real database and
find that the proposed methodology improves classical approaches. The described
procedure is of application in those countries covered by the Solvency II and IFRS
17 regulatory frameworks.
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1 Introduction

In the actuarial field, the study of mortality and longevity is always a topic of great
interest. Estimates on the incidence of mortality, studied by way of a life table, are
used by insurance companies for reserving and pricing processes, which have an
impact on the long-term profitability of insurers, conditioning their survival.

In recent years, the insurance sector has suffered significant regulatory changes.
Solvency II imposes the separation of two basic components in the calculation of
technical provisions: the best-estimate (BE) [1, pp. 25–50] and the risk margin (RM)
[1, pp. 54–67]. The new international accounting standards (IFRS 17 [2]), effective
as of 2020, will establish that the operating hypotheses (mortality, longevity,
expenses, . . . ) used to calculate the technical provisions should be constructed on
the basis of individual experience and will aim to reflect the risks of the insurance
portfolios.

At present, however, as far as the authors are aware, more than 50% of the
Spanish insurance market uses life tables that do not reflect their own risk structures
and do not adapt to their own experience. A large number of insurance companies
use as a BE life table a percentage or factor (fac). This implies that the calculations
are made jointly, for the entire portfolio, regardless of age.

The aim of this paper is twofold. On the one hand, we detail the current estimators
and describe their limitations and risks. On the other hand, we propose to introduce
the company’s own experience into the process, adapting the cohort estimator
proposed in Lledó et al. [3]. The estimator is compared with the classical methods
through the calculation of the technical provisions for a product of annuities.

2 Mortality: Current and Future. Solvency II and IFRS 17

Under Solvency II, the calculation of technical provisions is based on separating the
mortality risk into two parts: BE and RM. [4] postulates that BE can be analysed
through four components: (i) the level of mortality, LM; (ii) the trend mortality, TM;
(iii) the volatility, VM; and (iv) the calamity, KM. That is, under Solvency II and
IFRS 17, the study of mortality requires a static analysis of death and an adequate
estimation of the trend. Unlike the RM, the result of the BE technical provision
is strongly conditioned by the mortality table and the study group. Therefore, an
adequate risk management would entail having an individual mortality table for
each company. This would be built on the basis of its own experience given that,
although the life insurance products marketed by the different companies are similar,
mortality and composition of each insurance portfolio differ between companies.

However, for the calculation of the LM component of a BE life table it is common
to use as BE probability of death a percentage (fac) of the corresponding value the
general life table: qBE

x,t = fact ∗ qT
x . The value fact usually depends on the levels of
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information available, using: the ratio between the observed and expected deaths,

fac =
∑ω

x dr
x∑ω

x qT
x ∗ lrx

; (E1)

or the capitals at risk,1

fac = SAdea
x /SA

exp
x . (E2)

Methods (E1) and (E2) provide estimates that have limitations to be considered
as BE life tables. Among these: (i) to assume that the mortality rate of the insured
population has the same “age-for-age” behaviour as in the base table, (ii) do not
reflect the effects of certain commercial policies; or (iii) to be insensitive to increases
in deaths or exits in short periods for certain ages. Its use entails a risk. It could
imply an underestimation (overestimation) of the probabilities of death, with the
corresponding impact on a greater (lower) allowance for, e.g., technical provisions.

3 Methodology and Data

To overcome the above limitations, we follow the path marked by [3, 5] and develop
a new cohort estimator that allows us to obtain the raw probabilities of death, qx,
of an insured population. Specifically, according to the Laplace rule, we compare
the number of deaths registered in years t and t + 1 (for a given cohort) with
the (corrected) number of exposed to risk of that cohort that reach the exact age
x throughout the year t. In particular, we propose the estimator given by Eq. (E3).

qx =
Dt

x:t−x +Dt+1
x:t−x

ltx −W
t,t+1
x:t−x +

∑Wt
x:t−x

j=1 wt
x:j +

∑Wt+1
x:t−x

j=1 wt+1
x:j +

∑NBt
x:t−x

j=1 nbt
x,j
+∑NBt+1

x:t−x
j=1 nbt+1

x,j

(E3)

The numerator contains the number of people who die in the years t and t + 1

with age x of the cohort born in the year t − x (Dt
x:t−x +Dt+1

x:t−x
)

. The denominator

the insured population belonging to the cohort born in the year t − x exposed to
the risk of dying, ltx , adjusted for entries and exits (for causes other than death)
in the portfolio. To ltx , which represents the number of people reaching the exact
age x over the year t within the portfolio, must be added (subtracted) the time

1Where: dr
x denotes the number of deceased at age x, of the insurance company r; qT

x is the
probability in the base life table (PERMF 2000P) that a person of age x does not reach the age
x + 1; lrx is the total of persons exposed to risk at the start of the period t for each age x in the
insurance company r; and, SAdea

x and SA
exp
x are the sums insured at age x of the deceased and

exposed to risk, respectively [4].
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that the newly insured (the withdrawals) are at risk (no longer at risk) of dying.
This can be achieved by: (i) adding the number of years that the new insurance

policies contribute with age x, from the generation born in t− x,
∑NBt

x:t−x
j=1 nbtx:j and

∑NBt+1
x:t−x

j=1 nbt+1
x:j ; (ii) subtracting the total policies that have been surrendered with

age x, in year t of the generation born in t − x, Wt,t+1
x:t−x ; and (iii) adding the time that

these policies contribute to the population at risk
∑Wt

x:t−x
j=1 wt

x:j and
∑Wt+1

x:t−x
j=1 wt+1

x:j .
To compare the estimator E3 with E1 and E2, we used the microdata belonging

to 2015 (n = 329,011) and 2016 (n = 325,831) of an insured population aged 65
or over corresponding to a portfolio of annuities sold through the bancassurance
channel of a life-savings insurance company. The inflows and outflows of said
insurance portfolio (new business, surrenders and deaths) have also been considered.
We have smoothed the empirical estimates using a nonparametric Gaussian kernel
with bandwidth 2.

4 Results and Conclusions

The mortality tables have been calculated by gender. For ages from 65 to 100 years,
Fig. 1 shows the comparison between the probabilities of death of the base table
and the estimators E1, E3 and E3-graduated. As expected, for both genders, the
estimate E1 is parallel to the base table. The E3 and E3-graduated estimators show
a behaviour not linked to the base table. They follow the pattern of deaths in the
portfolio. In general, the probabilities of death of the portfolio are lower than those
of the E1 estimator for ages 65–80. A different behaviour is observed after 85 years.

Insurance companies must periodically calculate and set up the mathematical
reserve in order to meet future obligations to their insured clients. Depending on
the table used, the provisions made may be different. Figure 2 shows the values of
the mathematical provisions obtained for an annual annuity of 5000 euros using the
E1 and E3-graduated estimators. The provisions tend to diverge 10 years after the
sale of the product, the differences being greater for men than for women. The lower
mortality visible in Fig. 1 for ages between 65 and 80 years results in a lower level of
provision for the E3-graduated estimator. The greatest discrepancies in relative and
absolute terms occur between 10 and 25 years from the beginning of the annuity.

The previous results have important implications, since a modification of the
life table in the levels obtained could affect a significant proportion of insurance
companies, with considerable economic effects. According to ICEA data, in 2015
Spanish insurers had a total of 69,959,911 million euros in book value liabilities.

The presented methodology is characterized by its simplicity and could be used
internally in national and international insurance companies. Also, unlike current
methodologies, it allows the construction of a mortality table without implicit
security surcharges: an indispensable criterion under Solvency II and IFRS17.
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Fig. 1 Estimates of the logarithms of the probabilities of death with estimators E1, E3 and
graduation of E3. Left panel: men 2015. Right panel: women 2015

Fig. 2 Best-estimate provision of an annual annuity of 5000 euros using E1 (continuous line) and
the graduation of E3 (dashed line). On the right-hand scale, the relative discrepancies between

estimates are shown (dotted line):
∣∣∣qE1

x − qgrad E3
x

∣∣∣ /qgrad E3
x . Left panel: men. Right panel: women
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Kurtosis Maximization for Outlier
Detection in GARCHModels

Nicola Loperfido

Abstract Outlier detection in financial time series is made difficult by serial
dependence, volatility clustering and heavy tails. We address these problems by
filtering financial data with projections achieving maximal kurtosis. This method,
also known as kurtosis-based projection pursuit, proved to be useful for outlier
detection but its use has been hampered by computational difficulties. This paper
shows that in GARCH models projections maximizing kurtosis admit a simple
analytical representation which greatly eases their computation. The method is
illustrated with a simple GARCH model.

Keywords GARCH model · Kurtosis · Projection pursuit

1 Introduction

Outliers can be informally defined as observations which appears to be inconsistent
with the bulk of the data [1]. They often appear in financial time series [7, 8],
hampering both estimation and forecasting [5]. Moreover, outliers are more difficult
to detect in time series than in independent data, since a single outlier affects
subsequent observations [4].

Univariate kurtosis (i.e. the fourth standardized moment) has many merits in
univariate outlier detection [3, 10]. In multivariate analysis, the problem has been
satisfactorily addressed by means of projections with maximal kurtosis [6, 15].
Unfortunately, in the general case, they are computationally demanding [6, 9, 16].

Outlier detection has been successfully pursued by means of skewness-based
projection pursuit, which looks for maximally skewed data projections [11, 12, 14].
However, it is useless for GARCH models [2], where both returns and innovations
are assumed to be symmetric.
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In this paper, we propose to detect outliers in a financial time series by filtering
it with projections achieving maximal kurtosis, which can be easily computed when
the data come from a GARCH process. More precisely, let Rt be the log-return at
time t , and let rt = (Rt−k, . . . , Rt , . . . , Rt+k)T , where k = (d − 1)/2, be a random
vector belonging to the GARCH process {Rt t ∈ Z} satisfyingE

(
R4
t

)
< +∞. Also,

let λ ◦ λ = (
λ2

1, . . . , λ
2
d

)T
be the dominant eigenvector of E

[
(rt ◦ rt ) (rt ◦ rt )T

]
,

where “◦” denotes the Hadamard (or elementwise) product. We shall prove that
λT rt achieves maximal kurtosis among all linear combinations of rt . Hence in
GARCH models the problem of kurtosis maximization, which in the general case
is equivalent to the maximization of a fourth-order polynomial in several variables
[9], is reduced to a much simpler eigenvalue problem.

2 Main Result

Generalized AutoRegressive Conditional heteroskedasticity (GARCH) models
are often used to describe financial time series. A GARCH process is
{Rt = Ztσt , t ∈ Z}, where {Zt } is a white noise process with independent normal
components and {σt } is another process whose squared t-th component is

σ 2
t = α0 +

q∑

i=1

αiZ
2
t−i +

p∑

j=1

βjσ
2
t−j ; (1)

with α0 > 0, αi ≥ 0, βj ≥ 0 for i = 1, . . ., q and j = 1, . . ., p. The
following theorem highlights a connection between GARCH processes and kurtosis
maximization.

Theorem 1 Let r = (
Rt1, . . . , Rtd

)T
be a realization of the GARCH process

{Rt t ∈ Z}, where t1, . . . , td are integers satisfying t1 ≤ . . . ≤ td andE
(
R4
ti

)
< +∞

for i = 1, . . ., d . Then the kurtosis of cT r is greater than the kurtosis of any
component of r, provided that cT r is not proportional to any of them. Also, λT r
achieves maximal kurtosis among all linear projections of r iff λ ◦ λ is a dominant
eigenvector of Q = E

[
(r ◦ r) (r ◦ r)T ].

Proof For the sake of simplicity, and without loss of generality, we can assume that
ti = i for i = 1, . . ., d , so that r = (R1, . . . , Rd)

T . The linear combination cT r is
proportional to a component of r if and only if all components of c but one equal
zero. In order to rule out this case, and without loss of generality, we can assume that
c differs from any d-dimensional versor. We shall first recall some basic properties
of GARCH processes. First, the components of r are centered and uncorrelated:
E(Ri) = E(RiRj ) = 0, for i �= j and i, j = 1, . . . , d . Also, being a GARCH
process stationary, all components of r have identical second and fourth moments:
E(R2

i ) = γ and E(R4
i ) = κ , for i = 1, . . . , d . Without loss of generality we can
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assume that γ = 1, so that r is a standardized random vector and κ is the kurtosis
of Ri (that is its fourth standardized moment). The fourth moment of the projection
cT r is

E

[(
cT r

)4
]
=

d∑

i=1

d∑

j=1

d∑

h=1

d∑

k=1

cicj chckE
(
RiRjRhRk

)
. (2)

Loperfido [13] showed that the following identities hold for a GARCH process:
E

(
RiRjRhRk

) = E
(
R2
i RjRh

) = E
(
R3
i Rj

) = 0 whenever i, j , h, k differ from
each other, for i, j, h, k = 1, . . . , d . Hence the above identity might be simplified
into the following one:

E

[(
cT r

)4
]
= κ

d∑

i=1

c4
i + 3

∑

i �=j
c2
i c

2
jE

(
R2
i R

2
j

)
. (3)

The kurtosis E
[(
cT r

)4
]/(

cT c
)2

of the linear projection cT r is greater than the

kurtosis κ of any element of r if and only if the following inequality holds:

κ

d∑

i=1

c4
i + 3

∑

i �=j
c2
i c

2
jE

(
R2
i R

2
j

)
> κ

(
cT c

)2
. (4)

A little algebra shows that the above inequality is equivalent to the following one:

2
∑

i �=j
c2
i c

2
jE

(
R2
i R

2
j

)
+

∑

i �=j
c2
i c

2
j

[
E

(
R2
i R

2
j

)
− 1

]
> 0. (5)

The first summand in the left-hand side of the above inequality is always pos-
itive since c is not a null vector. The second summand is never negative since

E
(
R2
i R

2
j

)
− 1 = cov

(
R2
i , R

2
j

)
and the covariance in a GARCH model is never

negative. We have therefore proved that the kurtosis of cT r is greater than the
kurtosis of any component of x.

Without loss of generality we can assume that c is a unit-norm vector, so that the

kurtosis of cT r is E
[(
cT r

)4
]
= (c ◦ c)T M (c ◦ c), where c ◦ c = (

c2
1, . . . , c

2
d

)T

and the matrix M = {
mij

}
is defined as follows: mii = E

(
R4
i

)
and mij =

3E
(
R2
i R

2
j

)
for i �= j and i, j = 1, . . . , d . Then the d-dimensional real vector

λ which maximizes the kurtosis of a linear projection of r satisfies λ ◦ λ = δ,
where δ is the dominant eigenvector of M. The matrices M and Q are related:
Q = (1/3) (M+ 2κId), where Id is the d−dimensional identity matrix. Hence they
have the same eigenvectors and that the dominant eigenvector of Q is proportional
to λ ◦ λ. &'
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We shall now illustrate the proposed method with the GARCH(0,1) model Rt =
σtZt , where σ 2

t = α0 + β1σ
2
t−1, α0 > 0, 0 < β1 < 1 and {Zt t ∈ Z} is a

normal white noise process. Stationarity of the process implies that E
(
R4
t+1

) =
E

(
R4
t

) = E
(
R4
t−1

) = ψ and E
(
R2
t R

2
t+1

) = E
(
R2
t R

2
t−1

) = ω, where the scalars

ψ and ω satisfy the constraints 0 < ω < ψ/
√

2. A simple algebra also shows that
E

(
R2
t+1R

2
t−1

) = 0. Hence the matrix Q is

⎛

⎜⎝
E

(
R4
t

)
E

(
R2
t a

2
t+1

)
E

(
R2
t R

2
t+2

)

E
(
R2
t R

2
t+1

)
E

(
R4
t+1

)
E

(
R2
t+1R

2
t+2

)

E
(
R2
t R

2
t+2

)
E

(
R2
t+1R

2
t+2

)
E

(
R4
t+2

)

⎞

⎟⎠ =
⎛

⎝
ψ ω 0
ω ψ ω

0 ω ψ

⎞

⎠ , (6)

whose dominant eigenvector is
(

1,
√

2, 1
)T

.

Hence the linear projections of (Rt+1, Rt , Rt−1)
T with maximal kurtosis are

proportional to either Rt+1 + 4
√

2Rt + Rt−1, Rt+1 + 4
√

2Rt − Rt−1, Rt+1 −
4
√

2Rt − Rt−1 or Rt+1 − 4
√

2Rt + Rt−1. In the third linear combination subsequent
filtered data are uncorrelated. More formally, let Xt = Rt+1 − 4

√
2Rt − Rt−1 and

Xt−1 = Rt − 4
√

2Rt−1 − Rt−2. The covariance between Xt and Xt−1 is then zero,
as it follows from uncorrelatedness between Rt+1, Rt , Rt−1, Rt−2 and the identity
E

(
R2
t

) = E
(
R2
t−1

)
.
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Google Searches for Portfolio
Management: A Risk and Return
Analysis

Mario Maggi and Pierpaolo Uberti

Abstract Google search data has proven to be useful in portfolio management. The
basic idea is that high search volumes are related to bad news and risk increase.
This paper shows additional evidence about the use of Google search volumes
in risk management, for the Standard & Poor Industrial index components, from
2004 to 2017. To overcome the (time-series and cross-section) limitations Google
imposes on the data download, a re-normalization procedure is presented, to obtain a
multivariate sample of volumes which preserve their relative magnitude. The results
indicate that the volumes’ normalization and the starting portfolio are decisive for
the portfolio performances. Correctly normalized Google search volumes yield poor
results. This may lead to revise the interpretation of the search volume: it can be
considered a risk indicator, but when used in a equally risk contribution portfolio,
no evidence of the improvement of the risk-return performances is found.

Keywords Online searches · Google Trends · Portfolio management

1 Introduction

In the recent years the increasing availability of web data fueled a wave of studies
which analyzed the relations between web searches and many aspects of the
social sciences. Since [2, 8] who first used the Google search volumes to forecast
the influenza diffusion, the information contents of the Google queries has been
analyzed also for other phenomena. In particular, some studies focused on the
relations between web searches and financial data (for example, see [3, 5, 6]). In
fact, as [1] showed, there is evidence of the information flow from media to the
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financial market. The information content of the Google search volumes has been
documented, among others, by [3, 5, 6]. Recently, different works explored the
possibility of exploiting the forecasting power of web data to set up asset allocation
and trading strategies. For instance, in [4, 9] the Google data are used with the aim
of improving the return or the risk-return combination of a financial portfolio.

This paper deepens the analysis by [4] of the contribution of Google data to the
asset allocation performances. We focus on the need to obtain a multivariate series
of search volumes whose sizes are proportional to the (undisclosed) real volumes.
The application of re-normalized series yields different results with respect to [4].
The use of the Google search volumes as risk indicator can reduce the standard
deviation of the portfolio return, rather than improve the risk-return performances.

2 Google Trends

Google collects data about every query users type on its web search engine and
decided to disclose a part of these data through its service Google Trends.1 Data
about the Google search volumes are available from January 2004. The region
and time window may be customized and multiple series can be downloaded in
csv format. The data Google allows to download are not the raw volumes, but
a normalized index (the Google Index, GI in the following) taking integer values
between 0 and 100. The maximum volume attained on the selected window is set to
100; all the other data are normalized accordingly and rounded to the nearest integer.
This way the dynamic properties are retained, but the absolute size of the volume is
lost.

We remark that this rounding may lead to a strong information loss when the
series’ volumes have a large difference in the overall size: the resolution of the
smallest series is reduced. As an example, we downloaded the series of the queries
“Italy” only and the couple “Italy” and “United States” (monthly, from 2004 to
present). “Italy” has a GI ranging from 32 to 100, instead when downloaded together
with “United States”, “Italy” ranges from 3 to 9 (only 7 different values), with a clear
loss of information about the dynamics of the smallest series.

Google imposes other limitations on the disclosed data, for instance: (1) the
possibility to download up to 5 multiple series; (2) the longest the time window,
the lowest the frequency of the data (monthly over 5 years, weekly from 3 months
to 5 years, daily from 7 to 270 days, and so on).

In order to obtain a multivariate sample of weekly data from 2004 to 2017, we
follow a re-normalization procedure. First we downloaded all the series as unique
queries for three periods, each period not longer than 5 years (obtaining weekly
data). The three series overlap at the extreme dates. Then, we concatenate the series
matching the values for the overlapping weeks. We do not round the results. Once

1See https://trends.google.com/trends/.

https://trends.google.com/trends/
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the univariate series have been composed, to obtain a multivariate sample which
preserves the relative size of the search volumes, we downloaded multiple series. We
include in each search up to 5 series with comparable size, to limit the information
loss due to the rounding. Each query must belong to (at least) 2 different multiple
series, to allow a cross normalization, similar to the one operated along time. Again,
we do not round the results.

3 Asset Allocation Based on Google Search Volumes

Following [4], we use the GIs data to find the weights of a (long only) portfolio
composed by the Standard and Poor Industrial index (SPI) stocks. The basic idea
is that the search volume is related to bad news, so it is a risk indicator: when the
interest on a given stock increases, many people look for information to trade; there
is evidence of the relation between web searches and trading volumes [3, 5]; an
increase in trading, produces a possible increase in the price volatility.

For this reason, it is possible to extend to search volumes the equal risk
contribution (ERC) rule, proposed by [7] to manage the risk. Let Vi,t be the GI
and wi,t be the portfolio weight for stock i, at time t . The ERC rule, yields the
portfolio weights

wi,t =
V −αi,t∑N
j=1 V

−α
j,t

, (1)

where α controls for the relevance given to Vi,t : for α = 0, the portfolio is uniform,
wi = 1

N
, i = 1, . . . , N ; for α > 0, wi decreases with Vi,t , underweighting stocks

with large GIs; for α < 0, wi increases with Vi,t , overweighting stocks with large
GIs.

Starting from an initial portfolio wi,0, a recursive version of (1) can be obtained
applying the updating rule

wi,t = wi,t−1e
−αgi,t

∑N
j=1 wj,t−1e

−αgj,t , t ≥ 1, (2)

where gi,t = lnVi,t − lnVi,t−1 is the log-rate of variation of the Google search
volumes (remark that gi,t is scale free). This way we can explicitly control for the
starting portfolio: (1) and (2) are equivalent for the same wi,0.

We set up portfolios applying (1) and (2) on the stocks listed on the SPI, from
July 2004 to July 2017 (GI query = “Company Name”). The value of α ranges from
-2 to 2 to vary the strength and the sign of the GIs contribition.

Figure 1 shows the averages, standard deviations and Sharpe ratios for portfolio
returns based on the GIs. Remark that without the re-normalization (solid lines)
the average return increases, the standard deviation decreases and the Sharpe ratio
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Fig. 1 Returns’s average, standard deviation and Sharpe ratio of the portfolios composed through
(1) and (2), for α ∈ [−2, 2]: univariate GIs (solid); normalized GIs (short dashed); rule (2) starting
from the uniform portfolio (long dashed)

increases with α; that is the stronger GIs are used as risk indicator, the better the
portfolio performances. This result is in line with [4], who downloaded the GIs 5 by
5, without (we suppose) an overall cross normalization. Moreover, the normalized
GIs and the case of uniform starting portfolio produce opposite results, suggesting
that a negative α could work better.

Remark that the normalized GIs produce a very unbalanced portfolio (the weigts’
Gini coefficient is 0.98). Moreover, we conjecture that the results obtained in the
non normalized case may depend on chance. Therefore, we run a Monte Carlo
experiment, using the GIs to update a random initial portfolio with the rule (2).
We find that in α = 0: the average return is decreasing 80.2% of times, the standard
deviation is decreasing 75.4% of times, the Sharpe ratio is decreasing 77.2% of
times. We conclude that if the GI is used as a risk measure, there is no evidence
supporting the improvement of risk-return performances, unless GIs are used with
the opposite meaning, i.e. α < 0, so the risk is decreasing with GI.
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The Challenges of Wealth and Its
Intergenerational Transmission
in an Aging Society

André Masson

Abstract Since the beginning of the 1980s, our developed societies face an excep-
tional process of “patrimonialization” which is problematic in terms of unequal
wealth concentration and potentially inefficient allocation of capital. This process
results notably in an increasing wealth concentration by the elderly. Even if decline
in mortality at old age is not the sole reason of this process, it has significantly
contributed to worsen its effects. Considering various tax and social remedies, our
study leads to sustain the Taxfinh (Tax Family Inheritance) program, an inheritance
tax reform which aims to favor both gifts (to family members or of professional
assets) and charitable bequests, property consumption (real estate), or long-term
productive investment of elderly savings.

Keywords Rising life expectancy · Wealth inequality · Wealth transfer taxation

1 Introduction

Since the beginning of the 1980s, our developed societies face a process of
‘patrimonialization’, that appears both new, massive and particularly harmful for
economic growth, equality of opportunities and equity between generations. Due
notably but not only to the decline of mortality at old age, this process results in
an increasing and unequal weight of wealth relatively to income, an “unproductive
over-accumulation” by the elderly, a coming-back of inheritance and bequest,
received though later and later, and young households strongly constrained in their
property projects.

How to remedy such a damaging wealth situation? A brief survey of possible
social and tax reforms will confirm that it is not an easy task. The most promising
route would be a selective and progressive rise in inheritance taxation, while
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multiplying or facilitating the ways to sidestep the surtax introduced. More than
any other reform, this new program Taxfinh (Tax Family Inheritance) seems to be
the appropriate answer while avoiding the present unpopularity of standard wealth
transfer taxation.

2 A Present Wealth Situation Which Is Both Massive
and Noxious

The historical process of patrimonialization is a multi-faceted process, which takes
place since the late 1970s and concerns more or less all developed societies. It can
be divided, for simplicity sake in four components [1].

(1) The first one concerns the growing weight (relatively to income) and inequality
of wealth and capital in our societies [2].

(2) The age-distribution of wealth has considerably changed, with a rising con-
centration of wealth in the hands of the elderly, who seem to “over-save” for
their old age, at least in relative terms. Moreover, savings of the elderly mainly
represent a potentially unproductive low-risk store of value, invested in cash
savings, life insurance and retirement savings, and residential housing [3].

(3) Consequently, the relative weight of inheritance, which had considerably
decreased during the ‘The Glorious Thirty’, has increased sizably in Europe
[2]. On the other hand, inheritance is received later and later in full property
(usufructs and bare property) —e.g. at an average age of almost 60 in France—
due to rising longevity but also higher rights of inheritance given to the
surviving spouse.

(4) Finally, young households, facing mass unemployment and precarious jobs in
a number of countries and receiving inheritance far too late, are often strongly
constrained in their property projects: home purchase, starting up a business,
saving for retirement or for bequests. High housing prices and rents in big towns
explain that most of them will begin to save for retirement only at mature age.

This massive and general wealth situation appears detrimental to: (i) economic
growth, with an increasing mass of inert wealth held by the elderly; (ii) equality of
opportunity, with an increasing gap between ‘heirs’ and ‘non heirs’, when success
in life and well-being depends more and more on (received) wealth; and (iii)
intergenerational equity or balance, at the expense of young generations.
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3 ‘Patrimonialization’ Due to Rising Longevity and Other
Changes

Along with the so-called liberal turn of the 1980s, a series of more or less
concomitant changes, with complex interactions, have shaped this process of
patrimonialization: population aging in general, and the rise of life expectancy at old
age in particular, but also slowdown of economic growth; globalization of more and
more financial and mobile capital; new technologies and the emerging knowledge
economy, etc.

Component (1) has been summed up rather bluntly by Piketty as “capital is
back”—after the two World Wars and the catch-up economy of The Glorious Thirty
in Europe. The slowdown of growth, the mobility of globalized capital entailing an
international race to the bottom in capital taxation, as well as primitive accumulation
in new technologies contribute to explain the re-concentration of wealth. But the
high ratios of wealth to GDP are due for an important part to (latent) capital gains
on housing.

Wealth is a stock with a long memory: the main driving force of the relative over-
accumulation (2) of the elderly in Europe is the succession of high post WW2 past
growth during The Glorious Thirty, with often high inflation easing home mortgage
reimbursements, followed by low growth of the thirty ‘jinxed’ years (1978–2007,
say) and the Great Recession since 2008, with low inflation but rising housing
prices.

These changes are also assumed to be responsible for the emergence of a post-
Fordist labor regime and the decline of life employment, making life more difficult
for young workers in a number of countries (4), but also for older workers.

In this setting, the decline of mortality at old age is first responsible for the
postponement of inheritance. Together with low economic growth penalizing labor
income, population aging also explains the increasing weight of social transfers to
the elderly (public pension, health and long-term care).

Under low economic growth, the main consequence of the decline of mortality at
old age is finally the historical recovery of the risk of longevity understood broadly,
i.e. the risk of becoming old and destitute with fragile or degraded health. Up
to 1980 or so, this risk declined with the rise of the welfare state. It rises again
for three main reasons: (i) more old days to secure and the rising risk of long-
term care needs with uncertain costs; (ii) lower (in real terms, net of taxes) and
more uncertain future pensions (and also health insurance), due to the problematic
financial sustainability of the welfare state, and the difficulty to work longer at
old age; (iii) more problematic family care owing to the increasing geographical
distance from children (and more individualistic behavior of the latter). These new
risks of longevity can only raise (rightly or wrongly) the desire of homeownership,
especially in younger generations (“at least, we have a roof”), and may contribute to
explain the unproductive over-accumulation by the elderly, driven by precautionary
motives against old-age unpredictable needs.
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4 Possible Tax or Social Remedies: The Taxfinh Program

How to remedy a present damaging wealth situation, how to reduce inequality of
opportunity, allocate (elderly) households savings to productive investment, and
make wealth circulate more rapidly towards needy younger generations?

Possible solutions, driven by different political or ideological motivations, are
studied in more details in Masson [1]. One is a neo-liberal revolution, advocating
a sizeable reduction of compulsory levies and public spending, achieved notably
by lower social transfers to the elderly and incentives to work longer; savings
of less-taxed young households will be encouraged. This scenario requires yet a
tough and hazardous transition and would increase income and wealth inequalities.
On the contrary, to preserve the ‘European social model’, Piketty [2] advocates a
progressive annual tax on (individual, total, net) wealth, bringing tax revenue in the
order of 2% of GDP. Main objections against such a wealth tax are capital mobility
and tax emigration without international tax cooperation, and capital heterogeneity
in rates of return, but also between rent-wealth and productive investment, or
between inherited and self-accumulated wealth. Aware of these objections, current
economic arguments in the European Commission advocate higher taxation of
‘immovable property’, especially residential housing, namely a shift from housing
transaction tax to recurrent property tax—the latter being assumed to be the most
growth-friendly and the least sensitive to capital mobility. This policy raises again
many objections: it would be inegalitarian in a number of countries where the rich
hold but a limited fraction of their wealth in housing, would require a periodic and
difficult reevaluation of land and housing property, and the tax may be confiscatory,
etc. [4].

A more appropriate but partial measure would be to make the ‘third age’ (from
the legal retirement age) contribute to the financing of the needs of the ‘fourth age’
through the introduction of a compulsory (preferably public) and inclusive long-
term care insurance. The tax base could then also include the stock of wealth owned.

Complementary to that measure, the most promising route would be a targeted
increase in wealth transfer taxation [1, 5]. The Taxfinh program would hence
combine two inseparable components:

– a heavier and more progressive taxation of ‘family inheritances’ only (for the 10–
15% richest families): the relative tax advantage of inter vivos gifts or charitable
transfers would come from a disincentive to post-mortem bequests to one’s
offspring;

– providing more numerous and easier means to sidestep this ‘inheritance surtax’
by encouraging parents to give early enough, consume or invest their wealth
at old age, i.e. favoring reactions that would reduce the noxious effects of
patrimonialization.



The Challenges of Wealth and Its Intergenerational Transmission in an Aging Society 471

In France, reasonable tax hikes on post-mortem bequests could thus make the
effective average tax rate on total wealth transfers roughly double, from 5 to 10%,
under the assumption of unchanged bequest behavior; (additional) tax revenue could
be earmarked for financing opportunity enhancing programs to the young.

Giving part of one’s wealth to children sufficiently early before death (e.g. 10
years before, to avoid gifts being reintegrated into the estate) would allow to avoid
the surtax. In addition, more freedom to bequeath should be introduced in countries
such as France not only for making charitable bequests, but also for the inter vivos
transmission of family business.

Families should be given new or increased possibilities to run down or consume
their (housing) wealth at retirement, especially through new forms of reverse
mortgage or ‘viager’ sales allowing home owners remaining in their home until
death.

Investing in long-term and risky assets, conducive to economic growth, should
benefit from tax exemptions or reliefs, provided that the asset is kept in the family
for a long period (e.g. 25 years) by parents or beneficiary children. Such assets
should be invested in dedicated funds (for financing infrastructures and productive
capital, new energies and numerical transition, innovations and startups, etc.) and
run by long-term (socially) responsible investors.

The implementation of the program should be gradual but credible, to have an
immediate impact on first Baby-boomers, encouraged to prepare the transfer of their
property soon enough: it would be fair as far as the surtax would be only paid
by those who ‘deserve’ it, being too short-sighted or ‘selfish’ on family or social
grounds.
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Bivariate Functional Archetypoid
Analysis: An Application to Financial
Time Series

Jesús Moliner and Irene Epifanio

Abstract Archetype Analysis (AA) is a statistical technique that describes indi-
viduals of a sample as a convex combination of certain number of elements called
archetypes, which in turn, are convex combinations of the individuals in the sample.
For it’s part, Archetypoid Analysis (ADA) tries to represent each individual as a
convex combination of a certain number of extreme subjects called archetypoids.
It is possible to extend these techniques to functional data. This work presents an
application of Functional Archetypoids Analysis (FADA) to financial time series.
At the best of our knowledge, this is the first time FADA is applied in this field. The
starting time series consists of daily equity prices of the S&P 500 stocks. From
it, measures of volatility and profitability are generated in order to characterize
listed companies. These variables are converted into functional data through a
Fourier basis expansion function and bivariate FADA is applied. By representing
subjects through extreme cases, this analysis facilitates the understanding of both
the composition and the relationships between listed companies. Finally, a cluster
methodology based on a similarity parameter is presented. Therefore, the suitability
of this technique for this kind of time series is shown, as well as the robustness of
the conclusions drawn.

Keywords Functional data analysis · Archetypal analysis · Stock time series

1 Introduction

Given a set of financial time series, the objective of this work is to find a represen-
tative set of them that allows to understand and to describe the entire set. Therefore,

J. Moliner
Department of Mathematics, Universitat Jaume I, Castelló de la Plana, Spain
e-mail: jmoliner@uji.es

I. Epifanio (�)
Department of Mathematics-IMAC, Universitat Jaume I, Castelló de la Plana, Spain
e-mail: epifanio@uji.es

© Springer International Publishing AG, part of Springer Nature 2018
M. Corazza et al. (eds.), Mathematical and Statistical Methods
for Actuarial Sciences and Finance, https://doi.org/10.1007/978-3-319-89824-7_84

473

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89824-7_84&domain=pdf
mailto:jmoliner@uji.es
mailto:epifanio@uji.es
https://doi.org/10.1007/978-3-319-89824-7_84


474 J. Moliner and I. Epifanio

the aim is to find a set of archetypal time series. Archetype Analysis (AA) [1] is an
unsupervised data mining technique that allows not only discover patterns but also
to reduce the dimensionality of the data set. AA describes individuals of a sample
as a convex combination of certain number of elements called archetypes, which in
turn, are convex combinations of the individuals in the sample. However, archetypes
are not real individuals. Likewise, Archetypoid Analysis (ADA) represents each
individual as a convex combination of extreme individuals called archetypoids [6].
These multivariate techniques were extended to functional data [2, 5].

Financial time series can been as functions and functional data techniques [4] are
employed. Section 2 describes our data. In Sect. 3 the methodology is introduced,
and results are analyzed in Sect. 4. Finally, some conclusions are given in Sect. 5.

2 Data

The starting time series consists of daily equity prices of the S&P 500 stocks. From
them, measures of volatility and profitability are generated in order to characterize
listed companies. A total of 496 companies are considered, each of them is
characterized by two time series, returns and beta coefficients, in a 250 day time
window. These series are approximated as functions with 11 Fourier basis. See [3]
for details.

3 Methodology

3.1 AA and ADA for (Standard) Multivariate Data

Let X be an n × m matrix with n observations and m variables. The objective of
AA is to find k archetypes, i.e. a k × m matrix Z, in such a way that data can be
approximated by mixtures of the archetypes. To obtain the archetypes, AA computes
two matrices α and β which minimize following the residual sum of squares (RSS):

RSS =
n∑

i=1

‖xi −
k∑

j=1

αij zj‖2 =
n∑

i=1

‖xi −
k∑

j=1

αij

n∑

l=1

βjlxl‖2, (1)

under the constraints

1.
k∑

j=1

αij = 1 with αij ≥ 0 for i = 1, . . . , n and

2.
n∑

l=1

βjl = 1 with βjl ≥ 0 for j = 1, . . . , k.
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Archetypes are not necessarily actual observations. This would happen if only
one βjl is equal to 1 in constraint (2) for each j . In ADA, the previous constraint
(2) is changed by the following one, so the continuous optimization problem of AA
transforms into a mixed-integer optimization problem:

2.
n∑

l=1

βjl = 1 with βjl ∈ {0, 1} and j = 1, . . . , k.

3.2 AA and ADA for Functional Data

In the functional context, the values of the m variables in the standard multivariate
context are replaced by function values with a continuous index t . Similarly,
summations are replaced by integration to define the inner product.

In our problem, two functions characterized each company, so Functional
Archetypoids Analysis (FADA) for bivariate functions must be considered. Let fi(t)
= (xi(t), yi(t)) be a bivariate function. Its squared norm is ‖fi‖2 = ∫ b

a xi(t)
2dt +∫ b

a
yi(t)

2dt . Let bxi and byi be the vectors of length m of the coefficients for xi and
yi respectively for the basis functions Bh. Therefore, FADA is defined by

RSS =
n∑

i=1

‖fi −
k∑

j=1

αij zj‖2 =
n∑

i=1

‖fi −
k∑

j=1

αij

n∑

l=1

βjlfl‖2 =

n∑

i=1

‖xi −
k∑

j=1

αij

n∑

l=1

βjlxl‖2 +
n∑

i=1

‖yi −
k∑

j=1

αij

n∑

l=1

βjlyl‖2 =

n∑

i=1

ax′iWaxi +
n∑

i=1

ay′iWayi ,

(2)

where ax′i = bx′i −
∑k

j=1 αij

∑n
l=1 βjlbx′l and ay′i = by′i −

∑k
j=1 αij

∑n
l=1 βjlby′l ,

with the corresponding constraints for α and β. See [2] for computational details.

4 Results

FADA has been applied to our data set with k = 5. Range Resources Corp. (RRC)
(Energy), Lincoln National Corp.(LNC) (Financial), eBay (EBAY) (Technology),
NetApp (NTAP) (Technology), Consolidated Edison, Inc (ED) (Utilities) are the
archetypoids obtained. Their economic sectors appear in brackets. ED is a company
that, in comparison with the rest of the archetypoids, presents low and constant
values for both returns and beta values. On the other hand, NTAP presents high
returns at the beginning and at the end of the time series, while its volatility
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decreases over time. LNC presents a typical financial company profile, with
moderate profitability and volatility during the first three quarters of the time series.
Once the crisis broke out in 2007, volatility shot up to unprecedented levels while
profitability plummeted. Regarding volatilities, EBAY presents just the opposite
profile, with great beta values in the first years that stabilize over time. As regards
the returns, this company has a moderate profitability level compared to the other
archetypoids, but with slightly higher oscillations at the first half of the time
series. Finally, RRC is characterized by having bell-shaped functions, that is, with
relatively low values at the extremes of the temporal domain and higher values at
the centre.

It is also possible to compare the taxonomy of companies obtained by this method
with the structure by sectors managed by market analysts through the matrix α. See
[3] for detailed explanations about these results.

5 Conclusions

FADA has been applied to the time series of stock quotes in the S&P500 from
2000 to 2013. The objective was to show an unsupervised method (AA and ADA
for functions) that lies somewhere between Principal Component Analysis (PCA)
and clustering methods, in the sense that its modeling flexibility is higher than
clustering methods and its factors are very easy to interpret, unlike PCA. At the
best of our knowledge, this is the first time FADA is applied to financial time
series. Furthermore, we have applied FADA for two time series for company
simultaneously.
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A Note on the Shape of the Probability
Weighting Function

Martina Nardon and Paolo Pianca

Abstract The focus of this contribution is on the transformation of objective
probability, which in Prospect Theory is commonly referred as probability weight-
ing. Empirical evidence suggests a typical inverse-S shaped function: decision
makers tend to overweight small probabilities, and underweight medium and high
probabilities; moreover, the probability weighting function is initially concave
and then convex. We apply different parametric weighting functions proposed in
the literature to the evaluation of derivative contracts and to insurance premium
principles.

Keywords Cumulative prospect theory · Probability weighting function ·
Premium principles

1 Introduction

Cumulative Prospect Theory (CPT) has been proposed in [7] as an alternative to
Expected Utility to explain actual behaviors. Formally, CPT relies on two key
transformations: the value function v, which replaces the utility function for the
evaluation of outcomes, and a distortion function for objective probabilities w,
which models probabilistic risk behavior. Risk attitudes are derived from the shapes
of these functions as well as their interaction. The focus of this contribution is on the
transformation of objective probability, which is commonly referred as probability
weighting or probability distortion.

A weighting function w is a strictly increasing function which maps the proba-
bility interval [0, 1] into [0, 1], with w(0) = 0 and w(1) = 1. Evidence suggests a
typical inverse-S shape: small probabilities are overweighted, w(p) > p, whereas
medium and high probabilities are underweighted, w(p) < p. The curvature of the
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Fig. 1 Instances of the two parameter probability weighting function proposed by [1], with
different elevation (left) and curvature (right)

weighting function is related to the risk attitude towards probabilities; the function
is initially concave (probabilistic risk seeking or optimism) for probabilities in the
interval (0, p∗), and then convex (probabilistic risk aversion or pessimism) in the
interval (p∗, 1), for a certain value of p∗. A linear weighting function describes
probabilistic risk neutrality or objective sensitivity towards probabilities, which
characterizes Expected Utility. Empirical findings indicate that the intersection
(elevation) between the weighting function and the 45 degrees line, w(p) = p, is
for p in the interval (0.3, 0.4). Figure 1 shows instances with different elevation and
curvature of the two parameter constant relative sensitivity probability weighting
function proposed by [1].

Different parametric forms for the weighting function with the above mentioned
features have been proposed in the literature, and their parameters have been
estimated in many empirical studies. Some forms are derived axiomatically or are
based on psychological factors. Single parameter and two (or more) parameter
weighting functions have been suggested; some functions have linear, polynomial or
other forms, and there is also some interest for discontinuous weighting functions.
Two commonly applied weighting functions are those proposed by Tversky and
Kahneman [7] w(p) = pγ

(pγ+(1−p)γ )1/γ , with w(0) = 0 and w(1) = 1, and γ > 0

(with some constraint in order to have an increasing function); and Prelec [5]
w(p) = e−δ(− lnp)γ , with w(0) = 0 and w(1) = 1, 0 < δ < 1, γ > 0. When
γ < 1, one obtains the inverse-S shape.

The choice of the probability weighting function should be driven by the
following motivations: its empirical properties, intuitive and empirically testable
preference conditions, nonlinear behavior of the probability weighting function.
Moreover, a parametric probability weighting function should be parsimonious
(remaining consistent with the properties suggested by empirical evidence), in
particular when we consider different parameters for the weighting of probability
of gains and losses.
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We analyze some applications in finance to the evaluation of derivative contracts
(see [4]) and in insurance to premium principles, briefly discussed in the next
section.

2 An Application to Premium Calculation

Let u denote the utility function, and W be the initial wealth; the utility indifference
price P is the premium from the insurer’s viewpoint which satisfies (if it exists) the
condition:

u(W) = E[u(W + P −X)], (1)

where X is the possible loss, modeled with a non-negative continuous random
variable. The premium P makes indifferent the insurance company about accepting
the risky position and not selling the insurance policy.

Differently from Expected Utility, in Prospect Theory individuals are risk averse
when considering gains and risk-seeking with respect to losses; moreover, they are
more sensitive to losses than to gains of comparable magnitude (loss aversion). The
final result W + P − X in (1) could be positive or negative. Results are evaluated
considering potential gains and losses relative to a reference point, rather than in
terms of final wealth, hence assuming zero as reference point (the status quo),
the relative result P − X will be considered. Decision weights are differences in
transformed cumulative probabilities of gains or losses.

We consider the cumulative prospect value for a continuous random variable [2]:

V =
∫ 0

−∞
2−[F(x)] f (x) v−(x) dx +

∫ +∞

0
2+[1− F(x)] f (x) v+(x) dx, (2)

where 2 = dw(p)
dp

is the derivative of the weighting function w, F is the cumulative
distribution function and f is the probability density function of the outcomes.

Condition (1) under continuous CPT becomes (see also [3]):

0 =
∫ 0

−∞
2−[F(x)] f (x) v−(P − x) dx +

∫ +∞
0

2+[1−F(x)] f (x) v+(P − x) dx. (3)

We also assume that decision makers are not indifferent among frames of cash
flows: the framing of alternatives exerts a crucial effect on actual choices. People
may keep different mental accounts for different types of outcomes, and when
combining these accounts to obtain overall result, typically they do not simply sum
up all monetary amounts, but intentionally use hedonic framing [6] such that the
combination of the outcomes appears more favorable and increases their utility.
Outcomes are aggregated or segregated depending on what leads to the highest
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possible prospect value: multiple gains are preferred to be segregated (narrow
framing), losses are preferred to be integrated with other losses (or large gains) in
order to ease the pain of the loss. Mixed outcomes would be integrated in order to
cancel out losses when there is a net gain or a small loss; for large losses and a small
gain, they usually are segregated in order to preserve the silver lining. This is due to
the shape of the value function in Prospect Theory, characterized by risk-seeking or
risk aversion, diminishing sensitivity and loss aversion.

If we segregate the cashed premium from the possible loss, condition (3)
becomes

0 = v+(P )+
∫ 0

−∞
2−[F(x)] f (x) v−(−x) dx. (4)

A usual choice for the value function is

{
v− = −λ(−x)b x < 0
v+ = xa x ≥ 0; (5)

which leads to the following result:

P =
(
λ

∫ +∞

0
2−[F(x)]f (x) xb dx

)1/a

. (6)

Alternative functional forms both for the value function and the probability
weighting function, embedded in CPT framework (3), yield a different model
with potentially different implications for choice behavior. In particular, when the
weighting function has an inverse-S shape, very low probability of extreme events
are overweighted. We apply different probability weighting functions and study the
effects on the premium calculation. In particular, two parameters allow for separate
control of curvature and elevation, and the constant relative sensitivity probability
weighting function proposed by [1], which models distinctly these two features, is
of particular interest.
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Disability Pensions in Spain: A Factor
to Compensate Lifetime Losses

Patricia Peinado

Abstract Among the different instruments used by the welfare state to protect
vulnerable population, there are the disability pensions. These pensions appear as
key elements to protect disable people in the absence or breaks in their labour
careers. The Spanish pay-as-you-go social security system is a good example of
disability pension provision. In Spain, a safety-net combines means-tested and non-
means-tested elements to guarantee a certain level of income to individuals with
a given degree of disability. In this chapter attention is focused on the second
type of component; that is to say, the pensions entitled to the people who having
contributing for a certain period of time, have later in life, caused a disability
pension. The pension entitled in this later case is computed according to the labour
profile of the individual and, consequently, linked to her or his past contributions
to the social security system. However, the method used to compute the main
component of the pension leaves the beneficiaries of a disability pension in a
disadvantageous situation compared to the beneficiaries of a regular pension. This
paper discusses this loss and defines a factor to compensate that loss.

Keywords Disability pensions · Spain · Actualisation factor

1 Pension Systems: The Case of Spain

A pension system is expected to (i) provide retirees with a minimum secure income;
(ii) provide a reasonable replacement rate during retirement; (iii) give the possibility
to complement retirement income with private savings [1, 2]. These three objectives
are concreted in the well known three “tiers” or “pillars”.
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In the case of Spain, the pension system may be defined as an unfunded pay-
as-you-go social security system in which the final income drawn by retirees is the
result of adding a means-tested minimum-income component (first pillar), a non-
means-tested defined benefit component (second pillar) and private savings (third
pillar). In the Spanish system, the second component represents 72% of the income
drawn during retirement1 while the private component amounts 5% of that income.2

As a consequence, studying this second component is paramount to understand the
income level enjoyed by retired population. This chapter focus attention on this
non-means-tested major component of Spanish pension beneficiaries to analyse the
income differences existing between standard pensioners and the individuals who
have been entitled a pension for disability reasons.

2 The Main Component of Spanish Pensions: Public
Non-means-tested Benefit

In order to compute the public non-means-tested component of the pension, the
Spanish pension system foresees different situations. On the one hand, there are
the rules for the people who had the possibility to develop a complete working
career, which we could address as beneficiaries of a standard pension or standard
pensioners. Standard pensioners make monthly contributions to the system during
their working lives. The contributions, which are linked to their wages, are recorded
by the social security administration together with the number of years contributed.
By the age of retirement, work-profiles are used to compute the “effective pension”,
being this equal to the product of the “regulatory base” times the “coefficient”
applied. The regulatory base is a weighted average of the wages or contributions
made during the last 15–25 years prior to retirement while the coefficient assigns
a percentage of the regulatory base according to the number of years contributed.
Once the effective pension is entitled, the benefit is yearly actualised.3

On the other hand, there are the rules for the people who, being disable, did
not have the chance to develop a regular working life. These are the beneficiaries
of a disability pension for a permanent disability reason.4 Four main types of
permanent disabilities may be distinguished: (i) partial disability; (ii) total disability;
(iii) absolute disability; and (iv) severe disability.5

1Share of gross household income for households of 65 of older people [2].
2Share of gross household income for households of 65 of older people [2].
3For further information on the rules governing the Spanish pension system see [3].
4There is also the partial disability. Whether the breaks in labour career have an effect on labour
income and pension is an interesting discussion that relies beyond the scope of this chapter.
5Based on [3].
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In all these cases, the Spanish social security administration defines an individual
compensation as a function of the regulatory base of the individual. In this case only
the last 10 years of contributions or a shorter period of the labour career is used.
Under partial disability, the individual receives a fixed economic compensation
equal to a 24-month payment of the regulatory base. In the cases of total, absolute
or severe disability, a pension benefit is assigned to the individual. These last three
cases constitute the group of beneficiaries of a disability pension in the present
chapter. In order to compute this pension benefit the regulatory base is multiplied
by a coefficient defined according to the type of disability and other personal
circumstances. In the case of total disability, the coefficient is equal to 55%.6 For
absolute disability, the coefficient is equal to 100%. Finally, individuals with severe
disability are entitled the corresponding total or absolute disability pension plus a
complement that varies according to the specificities of the individual. After being
entitled, as in the case of standard pensions, the benefits are actualised according to
the factor yearly defined by the government.

3 Underlying Differences Between the Beneficiaries
of a Regular Pension and the Beneficiaries of a Disability
Pension

From the explanation above, it may be drawn that the Spanish pension system is
design to address the specificities of the different types of individuals. However,
these rules do not completely address the income differences between regular and
disable pensioners.

As explained along the chapter, the regulatory base of each pensioner is com-
puted according to the contributions made; that is to say, reflects the wages earned by
individuals during their labour careers. Moreover, under the hypothesis that wages
are a function of the productivity of workers, the computed regulatory base would
provide information on the average value of worker’s productivity during the last
years of labour career before retirement. Additionally, from a life cycle perspective,
as shown by empirical evidence on labour economics, productivity is expected to
increase along the working life of individuals. That is to say, wages are lower at
the beginning of the labour career and higher as the worker gets older and closer
to the legal retirement age. As a consequence, on the light of the method used to
compute the pension, it is expected for the regulatory base to be higher the closer
it is computed to the legal retirement age of the individual and, accordingly, we
expect the value of the regulatory base of a regular pensioner to be higher than that
of a disable pensioner due to the fact that for the standard pensioner, it is computed
at a more productive stage of the working career (later in life).

6This coefficient may be increased to 75% for those workers older than 55 for whom it is
considered difficult to have access to another new job.
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The question that remains is whether empirical evidence supports this hypothesis
and, if this was the case, whether the difference between the regulatory bases of
regular pensioners and disable pensioners could be estimated. On this direction,
Peinado [4, 5] gives an estimate of the disability elasticity of real pension; that is
to say, the elasticity of the real regulatory base with respect to the number of years
of disability using the Spanish Continued Survey of Working Lives. According to
the results an additional year of disability is expected to decrease the regulatory
base of pensioners a 1.5%. This implies that, as an example, a disable pensioner that
caused the disability pension by the age of 55 has associated a regulatory base 15–18
percentage points lower than the one she or he would have shown, would not she or
he been disable.7 In other words, and following with the hypothesis at the beginning
of the section, each year of disability is expected to generate an average productivity
loss of 1.5 percentage points, which is not compensated by the system, leaving the
beneficiary of a disability pension in a disadvantageous position compared to the
beneficiary of a standard pension. Moreover, the sooner the disable individual starts
to perceive a disability pension, the higher it is the income loss.

4 A Simple Actualisation Factor to Compensate Differences
Between the Beneficiaries of a Regular Pension
and the Beneficiaries of a Disability Pension

Results shed light on the existence of a situation that leaves in a disadvantageous
position to the beneficiaries of a disability pension. As explained, the Spanish Social
security system addresses the existence of different situations among different
pensioners; however, there is no mechanism to compensate the losses in productivity
that disable people have to accept after being declared disable and being entitled a
disability pension.

Including a specific actualisation factor for the beneficiaries of a disability
pension would address this problem. The factor could consist of increasing grad-
ually the regulatory base of the pension of the disable individual according to
productivity changes (by applying an average 1.5% increase per year of disability
according to the results) each year prior to the legal age of retirement. Ideally, the
policy that could be implemented may be summarised as follows: actualise all the
regulatory bases of current beneficiaries of a disability pension by applying the
yearly actualisation factor times the number of years of disability prior to retirement
age and, from that moment on, every year actualise all the pensions drawn by disable

7For those retiring at the age of 65 it would be 15 percentage points lower while under the new
legal retirement age of 67 the value of the loss would be equal to 18 percentage points.
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people who have not yet reached the legal retirement age according to the changes in
productivity registered in the economy or the corresponding estimated factor. This
measure, would not only compensate the losses for disable people, but would also
imply a clear step ahead to achieve non-discrimination for disability reasons.
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AMinimum Pension for Older People via
Expenses Rate

Noemí Peña-Miguel, María Cristina Fernández-Ramos,
and Joseba Iñaki De La Peña

Abstract For 2050, 21.8% of the world population will overcome 60 years, 16%
the 65 years old and 4.4% 80 years, due partly, to the reduction of the rates of
fecundity and mortality. This fact will provoke problems in the costs of public and
private systems of long term care coverage.

As the elderly population increases, the expenses increase as well in health and
geriatrics services. These ones imply costly technologies and sectorial inflation and
is another reason to provoke problems in the cost of public and private systems
of long term care coverage. To face them, the pensioners have principally their
own pensions and savings. This paper proposes to develop the methodology to
determine minimal pensions under the presumption of supporting the expense in
vital consumption and to adapt it to the situation of severe or great dependent. A
review of the literature is carried out to present the methodology used as well as the
results of the application for Spain.

Keywords Sustainable benefits · Minimum pension benefit · Social security

1 Introduction

Ageing causes problems into social security [1, 2] not only in health assistance
[3–6] as well in older care [7, 8]. The aging of the population produces technologies
more expensive and the increase of the prices of this sector is higher than over other
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sectors [9]. Thus, the real problem to solve is how to finance care and healthcare
systems. For that aim, this paper proposes a measure of the level of minimum public
pension for older people via expenses rate. It develops the methodology to measure
it under the presumption of supporting the expense in vital consumption.

2 Long Term Care Problem: Consume Paths

Pensions will face the change in the consumption patterns (Fig. 1) and the
consumption patterns must be [10, 11] the focus to inform about the pension
coverage [12]. If so, they would be a good tool for defining public policies that
eliminate the risk of poverty as World Bank proposes [13], European Commission
[14] or ILO [15].

Following the necessity-based and family approaches, [16] defines a minimum
pension—MP—as a single pension based on minimum level of expenses in goods
necessary for living: food; clothing and shoes; housing and public transport. Those
are difficult for people under poverty line. So, this MP for a household “h” should
be,

MPh;t = MPn;t · nh;t +
s∑

j=1

DMP j ;t · nj ;t

where

MPh;t: Minimum pension of the household “h” at year “t”.
MPn;t: Constant minimum pension for each individual at year “t”.
nh;t: Number of individuals in household “h” in year “t“.
DMPj; t: Differential of minimum pension for factor “j”, at year “t”.
nj; t: Number of individuals in the household with factor “j” for year “t”.

nh; t and nj; t could be equal or different depending on the number of individuals
affected by the factor.

WORKER PENSIONER
- Variability of salary
- Saving

-No social cotization
-Less taxes

-Less expenses
-No mortage
- No children
-No savings

- Different consume

- Debts
- Mortgage
- Children

- CONSUME
- Labor Expenses

Fig. 1 Different circumstances before and after retiring. Source: Own work
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This pension represents a substitution rate TSx at age x, over the real pension
RPx ,

T Sx = MPx

RPx

Nevertheless, the expense is higher when the pensioner is older due to the
sanitary and health requirements. So, the ratio must contemplate the different
evolution of these expenses. Let’s,

ISSx : Sustainable replacement rate at age x.
VAMPx : Actuarial value of the minimum pension at age x.
VARPx : Actuarial value of the true pension at age x.
β: Long term care’s expected increase.
α: Public pensions ‘expected increase.
pm
x : Probability that a person of age x is alive one year more.

v: Discount factor.

ISSx = VAMPx

VARPx

=
∑w

h=x MPx · βh−x · h−xpm
x · vh−x∑w

h=x RP x · αh−x · h−xpm
x · vh−x

This measure reports how much the real cost of life is: if it is lower than the unit,
the pensioner will have enough incomes from public resources.

3 An Application to Spain

Following the necessity-based and family approaches, [16] calculates the MP on the
basis of an expense in vital goods for the pensioners in the year 2010. As average is
bigger, so TSx is less than one (Fig. 2).

The paper takes the Spanish population mortality table (PE2000NP), and positive
differential in expenses β > α, interest rate at long term of 2%, and changing
inflation from 0% to 2% and health increasing from 0.5% to 4%. With this technical

10.000 €

15.000 €

20.000 €

63 68 73 78 83
Social Security Average Pension Minimum Pension

Fig. 2 Social Security average pension and minimum pension in 2010, at different ages
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Fig. 3 ISS according to the age of the beneficiary and the lever of β

basis, Fig. 3 illustrates the evolution of ISS ratio: as the pensioner lives more, the
value of the pension is not enough to face to Long Term’s expenses Care.

4 Conclusion

One of the real challenges posed by the silver economy is to maintain and improve
the quality of life of the elderly. In the public sector, this challenge would be possible
only if public expenditure on active and healthy ageing is considered an investment
and not only a cost. The Sustainable replacement rate is the measure, which takes
into account the real public funds as income of the beneficiary of the pension and
the cost of the ageing. This indicator permits to detect the needs of the older people
taking into account their life expectancy. Achieving these objectives would require
pro-active public policies designed to enable strategic investments and spending
designed to foster active ageing, good health, social inclusion and independence
[16].
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A Comparative Analysis of Neuro Fuzzy
Inference Systems for Mortality
Prediction

Gabriella Piscopo

Abstract Recently, Neural network (NN) and fuzzy inference system (FIS) have
been introduced in the context of mortality data. In this paper we implement
an Integrated Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) for
longevity predictions. It is an adaptive intelligent system where the learning process
is updated thanks to a preliminary clusterization of the training data. We compare
the results with other neuro fuzzy inference systems, like the Adaptive Neuro Fuzzy
System (ANFIS) and with the classical approaches used in the mortality context. An
application to the Italian population is presented.

Keywords AR · ANFIS · DENFIS · ECM · Lee Carter model · Mortality
projections

1 Introduction

In the context of mortality projection, stochastic models are very popular. The
most used is the Lee-Carter (LC) model [1], whose main statistical tools are the
least square estimation through the Singular Value Decomposition of the matrix
of the log age specific mortality rate and the Box and Jenkins modelling and
forecasting for time series. In order to capture structural changes in mortality
patterns, many extensions have been proposed. Recently, Neural Network (NN)
and Fuzzy Inference System (FIS) have been introduced for mortality prediction by
Atsalaki et al. [2, 8]. They implement an Adaptive Neuro-Fuzzy Inference System
(ANFIS) model based on a first order Takagi Sugeno (TS) type FIS [9]. They
show that the ANFIS produces better results than the AR and ARIMA models
for mortality projections. Piscopo [3, 4] proposes an Integrated Dynamic Evolving
Neuro-Fuzzy Inference System (DENFIS) for longevity predictions. DENFIS is
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introduced by Kasabov et al. [5] for adaptive learning of dynamic time series
predictions. It is an adaptive intelligent system where the learning process is updated
thanks to a preliminary clusterization of the training data. The Evolving Clustering
Method (ECM) is used to subdivide the input set and determine the position of each
data in the input set. [5] show that DENFIS effectively describes complex data and
outperforms some existing methods.

In this paper we show a comparative analysis of the performance of different FIS
for mortality projections. In particular, we compare the results obtained applying
the AR-DENF to the Italian mortality data with the classical LC and with other two
FIS, the ANFIS and the Hybrid fuzzy system (HYFIS) [6].

The paper is organized as follow: in Sect. 2 we present the dynamic evolving
neuro fuzzy procedure; in Sect. 3 we briefly describe the LC; in Sect. 4 we show
a comparative application to Italian mortality dataset; final remarks are offered in
Sect. 5.

2 Adaptive Neuro Fuzzy Systems

The Dynamic Evolving Neuro Fuzzy System is an adaptive learning fuzzy system
for dynamic time series prediction. It differs from the ANFIS [7] because the fuzzy
rules and parameters are dynamically updated as new informations come in the
system; both use a TS architecture to implement learning and adaptation. DENFIS
is introduced by Kasabov et al. [5] for adaptive learning of dynamic time series
predictions. It is an adaptive intelligent system where the learning process is updated
thanks to a preliminary clusterization of the training data. The Evolving Clustering
Method (ECM) is used to subdivide the input set and determine the position of each
data in the input set.

We refer to Piscopo [4] for a description of the Algorithm.

3 The Lee Carter Model

In order to model the mortality separately for each i population without considering
dependence between groups, the widely used Lee Carter Model (LC) [1] describes
the mortality rates at age x and time t as follows:

mxt,i = exp
(
αx,i + βx,ikt,i + uxt,i

)
(1)
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The model is fitted to historical data through the Singular Value Decomposition
of the matrix of the observed mortality rates. The estimated time varying parameter
is modelled as a stochastic process; standard Box and Jenkins methodology are used
to identify an appropriate ARIMA model according which kt, i are projected.

4 Application to Mortality Dataset

In this work we apply AR-DENFIS to mortality forecasts and compare the results
with the classical approach of LC and with ANFIS and HYFIS.

In order to define the number of inputs of the DENFIS in the mortality dataset,
we firstly apply an AR scheme. The data used are taken from the Human Mortality
Database. We work on the mortality rates mt for the Italian males aged 50, collected
from t = 1940 up to t = 2012. The data, considered by single calendar year, are
split into training dataset from 1940 up to 1993 and test dataset from 1994 up to
2012. The AR is fitted to the whole time series and the order equal to 2 is chosen
minimizing the Akaike Information Criterion; consequently, in our DENFIS we
introduce two input variable x1 and x2 (mortality 1 and 2 years before) and one
output y (mortality one step ahead).

Firstly, we implement the DENFIS on the training dataset, setting the value of
Dthr equal to 0.1, the maximum number of iteration equal to 10, the parameter d
equal to 2, the step size of the gradient descent equal to 0.01. Once the DENFIS
is created, the mortality rate is projected on the testing period and the results are
compared with the realized mortality.

In the second step of our application, we implement the ANFIS and the HYFIS
on the same training and testing dataset.

Finally, we implement the LC. We fit the model on the male population aged
between 0 and 100, considering years between 1940 and 1993; the parameter kt is
derived; a random walk model is fitted on the serie of kt and is projected from 1994
up 2012 through a Monte Carlo simulation with n = 1000 paths. Finally the value
of projected mortality rates for male aged 50 are derived using Eq. (1).

The MSE of the LC, DENFIS, ANFIS and HYFIS are compared. The results are
shown in Tables 1 and 2.
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Table 1 The mortality rates realized vs projected through LC and FIS

T Realized DENFIS ANFIS HYFIS LC

1994 0.00461 0.004458675 0.006748497 0.004606545 0.005083814
1995 0.00413 0.004593811 0.006911526 0.004609010 0.005004209
1996 0.00409 0.004354364 0.007093047 0.004600910 0.004934666
1997 0.00388 0.004143083 0.006623053 0.00460027 0.004868312
1998 0.00390 0.004003856 0.006627108 0.004598407 0.004802357
1999 0.00371 0.003933489 0.006408018 0.004598407 0.004728343
2000 0.00359 0.003829500 0.006473568 0.004597862 0.004659374
2001 0.00359 0.003684567 0.006307787 0.004597807 0.004591524
2002 0.00316 0.003637632 0.006182709 0.004597716 0.004525431
2003 0.00334 0.003384584 0.006315005 0.004597448 0.004462271
2004 0.00312 0.002780000 0.005812602 0.004597438 0.004403274
2005 0.00305 0.002780000 0.006064491 0.004597418 0.004347287
2006 0.00297 0.002780000 0.005859077 0.004597408 0.004286747
2007 0.00304 0.002780000 0.005814189 0.004597408 0.004222623
2008 0.00294 0.002780000 0.005709545 0.004597397 0.004164231
2009 0.00292 0.002780000 0.005814263 0.004597397 0.004100000
2010 0.00278 0.002780000 0.005719193 0.004597391 0.004049956
2011 0.00288 0.002780000 0.005748325 0.004597391 0.003990748
2012 0.00286 0.002780000 0.005572785 0.004597390 0.003937622

Table 2 RMSE in the DENFIS, ANFIS, HYFIS, LC

MSE DENFIS ANFIS HYFIS LC
5.726724e-08 7.890026e-06 1.7606e-06 1.219046e-06

5 Conclusions

In this paper we have applied an integrated AR-DENFIS procedure to forecasts
mortality and have compared the results with the standard LC and with other
two fuzzy system, the ANFIS and the HYFIS. The results show that the DENFIS
produces the lower mean square error and projected mortality rates more similar
to the realized trend. We attribute this improvements to the structural features of
the ANFIS: the dynamic clusterization and learning algorithm at the basis of the
DENFIS allow to capture better the complexity of the mortality trend.
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Financial Networks and Mechanisms
of Business Capture in Southern Italy
over the First Global Wave (1812–1913):
A Network Analysis Approach

Maria Carmela Schisani, Maria Prosperina Vitale, and Giancarlo Ragozini

Abstract The present contribution aims at analyzing the economic relationships
that international actors set up around the business opportunities progressively
offered by the metropolitan area of Naples over Italian political Unification in order
to uncover how and in what hands power was vested. From a unique and original
database, data are gathered on the whole amount of enterprises and companies
operating in the city. Time varying two-mode networks are defined through the
relations among economic agents and institutions and then analyzed by means of
exploratory network analysis tools.

Keywords International financial relations · Temporal two-mode networks ·
Southern Italy

1 Introduction

Networks—at different levels (transport, communication, finance, etc.)—have been
recognized as a key driving force in the rise and expansion of global waves
over the time [1]. During the nineteenth century the rise of a cohesive and
politically organized global financial elite and its ability to build, and capitalize
on, relationships were crucial in allowing capital to move from core financial
centers towards peripheral countries, this way exploiting investment opportunities
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in trade and sovereign bonds as well as in industrialization, technology transfers
and infrastructure development (FDI, transport networks, networked cities, etc.).

Before and after Italian political unification (1861), the peripheral area of
Southern Italy was a crossroad of international capital flows. It became the hub of a
complex network of relations within a space beyond its geographical and economic
borders, being embedded in a wider process of integration into the “space of flows"
of the developing global capitalism. In this context local actors played a role in
fostering these dynamics of integration, as vehicles through which international
capital flows found their way to and rooted in Southern Italy.

The present paper aims at analyzing the economic relationships that international
actors set up around the business opportunities progressively offered by this
peripheral area. It wants to explore how the networks of actors and of business
and financial entities reorganized over Italian political unification. Network analysis
tools are used in order to analyze the collected data describing temporal two-mode
networks in which the actors are the subjects and the events are the business and
the financial units. After basic notions about the theoretical and the methodological
framework and the details about the data collection process, some first preliminary
network results are here reported.

2 The South of Italy in the 1st Global Wave: Context
and Data

The present work focuses on the metropolitan area of Naples in the 60-year period
between 1830 and 1890. Naples, up until 1861 the capital city of the Bourbon
kingdom of the Two Sicilies, was the biggest Italian city in terms of inhabitants
(484,026) and, even after Unification, it remained the most important political,
economic and financial centre of the entire South of Italy [2]. Indeed, the thirty-
year period before 1861 almost entirely corresponds to the long reign of Ferdinand
II Bourbon (1830–1859), during which the beginning of railway construction (i.e.
1839 the first Italian railway, Napoli-Portici) along with other infrastructure works
(gas lighting) attracted foreign capitalists, in addition to the long-lasting presence of
the Rothschilds in Naples. On the other hand, the thirty-year period after Italy’s
Unification was marked by massive foreign investment, thanks to the profitable
opportunities opened up by broad-ranging urban planning projects (i.e., railways,
harbor, public utilities, etc.) [4, 7], on the wave of the modernizing economic
policies embraced by the Italian liberal governments, firstly aimed at fostering
national market integration through infrastructure investments.

Data about the economic actors and firms, and their relationships, have been
directly collected from original archival sources [7]. The collected data are stored
in a unique and original database containing the whole amount of enterprises and
companies operating in Naples between 1812 and 1913 (source: IFESMez www.
ifesmez@unina.it). The present paper is based on data coming from this database.

www.ifesmez@unina.it
www.ifesmez@unina.it
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A large amount of information and different kind of networks can be derived from
this database [5].

3 The Evolution of the Role of the Economic Actors
in Naples: A Network Approach

Given the database, time-varying two-mode networks representing the relationships
among economic agents and institutions over the decades have been derived.
Formally, a time-varying two-mode network can be represented by a set of K

two-mode networks {Gk}k=1,...,K . The k index refers to different time points or
occasions [6]. Each network Gk consists of two sets of relationally connected units,
and can be represented by a triple Gk (V1k, V2k,Rk) composed of two disjoint
sets of nodes—V1k and V2k of cardinality Nk and Jk, respectively—and one set
of edges or arcs, Rk ⊆ V1k × V2k. By definition, V1k ∩ V2l = ∅,∀k. In our
case, the sets V1k = {a1k, a2k, . . . , aNk } are the sets of Nk economic actors in
the time occasions, whereas V2k = {e1k, e2k, . . . , eJk } represents the set of Jk
economic institutions in which the actors are involved in each time occasion. The
edge rijk = (ai, ejk), rijk ∈ Rk is an ordered couple and indicates whether or
not an actor aik plays one, or more then one, role in the economic institution ejk .
Actors’ and institutions’ attributes that can help in explaining the relational pattern
are present in the database.

In this first phase of the analysis, two valued two-mode networks are obtained
by collapsing the first three and the second three decades in two time occasions:
the value associated to each tie represents how many times and how many different
roles an economic actors played in a given firm. In the network 1830–1860, there
are 2714 economic actors belonging to 612 institutions for 5091 total links. The
61% of the actors presents degree equal to 1, and the 90% a degree less or equal to
3. This implies that the 90% of actors are occasionally partners or shareholders of
some firms during these 30 years; only 31 actors have a degree greater or equal than
10 (the maximun degree is 22). The degree distribution suggests the presence of
strong core-periphery structure. In Fig. 1a the two-mode network of these 31 actors
with the corresponding firms shows the presence of two communities connected by
one firm. As for the second 30 years (1860–1890), the network’s size increases with
more dense connections. 19070 actors and 1600 firms are present in the network
connected by 28969 total links. Also in this period there is an high percentage of
actors (95%) with a degree less or equal than 3 links in the 30 years. In this period,
121 actors have a degree greater or equal than 10, and the maximum degree rises to
45. Thus, also in this case there is a strong core-periphery structure. In the two-mode
network of these 121 actors (Fig. 1b) only one large component, divided in almost
three communities, is present.
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Fig. 1 Bipartite graphs for the two-mode networks: years 1830–1860 (a), years 1860–1890 (b).
Node’s size: weighted actor degree and event size; Node’s color: orange= actors, grey= consulate,
light blue= parliament, blue= society, white= state, yellow= government, black= others. Tie’s size:
number of actors affiliated with the same entity

4 A First Discussion

During the nineteenth century, European (and global) economy was fast transform-
ing so did the underlying structural interdependencies of the countries across the
cores and peripheries and a marked reconfiguration of power served to reshape
main features of business international order. The case study of Naples well
exemplifies these changing dynamics, from the point of view of a peripheral area.
The two thirty-year business networks here analyzed, capture the shifting inter-
dependencies and power relations between the local business context and foreign
actors (agents and firms) featuring some of the effects of the progressive changes
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in both international banking technology (i.e. since the mid 1850s, Rothschilds
vs Pereires/Crédit Mobilier [3]) and Italian political balances (1861). The two
analyzed networks account for increasingly dense sets of interconnections between
local business environment and foreign agents when the fading-out of Rothschilds
financial control (1863) brought other international Pereire-orbiting businessmen
and firms to occupy a key position in the local corporate network). The pre-Unitarian
network structure (the peripheral position of the Crédit Mobilier) predicts the post-
Unitarian one, signaling in advance the early international interest in Southern Italy
as a strategic area for realizing the ambitious Saint-Simonian French infrastructure
project (railway, ports, etc.) of the Systéme de la Mediterranée (Chevalier 1832).
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Modeling High-Frequency Price Data
with Bounded-Delay Hawkes Processes

Ali Caner Türkmen and Ali Taylan Cemgil

Abstract Hawkes processes are a recent theme in the modeling of discrete financial
events such as price jumps, trades and limit orders, basing the analysis on a contin-
uous time formalism. We propose to simplify computation in Hawkes processes
via a bounded delay density. We derive an Expectation-Maximization algorithm
for maximum likelihood estimation, and perform experiments on high-frequency
interbank currency exchange data. We find that while simplifying computation, the
proposed model results in better generalization.

Keywords Hawkes processes · Self-exciting process · High-frequency trading

1 Introduction

Detecting and predicting excitatory dynamics, how events occur stochastically
while triggering each other, in (marked) point processes is a well-studied problem
that recently features prominently in quantitative finance. Especially with data
availability at the level of the order book and the surge in high-frequency
trading, such analysis is now a more familiar element in modeling financial market
phenomena, and is applied to price jumps, trades and limit order submissions among
other discrete events [1].

Hawkes process [5] (HP) is a general form for multivariate mutually exciting
point processes. Originating in seismic event modeling, it has found a range of
applications including those in financial markets.
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Department of Computer Engineering, Boğaziçi University, Bebek, Istanbul, Turkey
e-mail: caner.turkmen@boun.edu.tr; taylan.cemgil@boun.edu.tr

© Springer International Publishing AG, part of Springer Nature 2018
M. Corazza et al. (eds.), Mathematical and Statistical Methods
for Actuarial Sciences and Finance, https://doi.org/10.1007/978-3-319-89824-7_90

507

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89824-7_90&domain=pdf
mailto:caner.turkmen@boun.edu.tr
mailto:taylan.cemgil@boun.edu.tr
https://doi.org/10.1007/978-3-319-89824-7_90


508 A. C. Türkmen and A. T. Cemgil

In this work, we propose a simplification for parameter estimation by invoking a
specific instantiation of HP. Namely, we place an upper bound, assumed to be known
a priori, on the time where events are allowed to trigger others—reminiscent of
other fixed-lag techniques in finance. We demonstrate that this form both simplifies
computation and is better suited to modeling currency market price jumps.

2 Beta Delay Hawkes Model

A multivariate HP is a set of counting processes {Nk(t)}Kk=1 with intensity functions

λk(t) = λ
(0)
k (t)+

∑

k′

∫
dNk′(t

′)φ(k,k′)(t − t ′) (1)

That is, the intensity is equal to a base intensity, plus an “excitation” from
previous discrete events in the process. We further constrain that φ(k,k′)(τ ) = 0
for τ < 0, φ(k,k′)(τ ) ≥ 0 for all k, k′. That is, the effects of prior events are causal,
and additive (i.e. excitatory).

Concretely, assume we model sequences of financial events, e.g. limit orders,
for different stocks. Here, k, k′ index different stocks. λ(0)k (t) is interpreted as the
background arrival rate of limit orders for stock k, and φ(k′,k)(τ ) as the added
intensity caused by the order flow in stock k′ to stock k. This excitatory effect is
assumed to decay, as time delay τ , increases.

Often a factorized kernel is assumed, with φ(k,k′)(x) = ϕk,k′gk(x) where we
require the delay density to have

∫∞
0 gk(x)dx = 1 for all k. Elements ϕk,k′ are

interpretable as the magnitude of causality from sequence k to sequence k′. gk(x)
models the probability density of any event causing an event of type k after x

time units. Common choices for gk(x) include both exponential and power-law tail
densities, e.g. gk(x) = αk exp(−βkx) or gk(x) = αkt

βk .
The key problem in delay densities with semi-infinite support is that, in the

general case, exact computation of the likelihood has to account for O(N2)

causality relationships between events. Computation is simpler for exponential
delay, however this form is unable to capture a realistic representation of how
interactions occur.

In financial applications, one can choose to bound the maximum delay in
which an event is assumed to cause further events. Imposing such a bound has
several benefits. First, lower delay bounds can lead to significant improvements in
computation time - crucial for high-frequency applications. Second, by means of
more flexible densities in a bounded interval, it can focus inference on the shape
of the delay density improving explanatory power. Finally, it may be natural to
impose bounds in the application domain, as is common with fixed-lag indicators
in quantitative finance.
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Table 1 Wall-clock times to
parameter estimation, number
of EM iterations until
convergence, and perplexity
values for both training and
test data

Perplexity

tmax (ms) Time (s) # Iter. Train Test

100 135 32 43.87 37.20

1000 1075 69 38.85 32.87
10000 17296 104 39.56 33.46

Better models lead to lower perplexity
Bold figures indicate best performance

In this work, we change the delay density with a non-standard Beta density and
assuming that the upper bound of the delay distribution, tmax , is known and the first

shape parameter is fixed to 1. We take gk(x) = B[0,tmax](1, βk) = βk(tmax−x)βk−1

t
βk
max

,

where 0 ≤ x ≤ tmax . Hence we assume that if a previous event is to cause future
events, they will occur in the next tmax units of time. The parameters βk determine
the shape of the tail of the bounded density.

We perform maximum likelihood parameter estimation via a Expectation Max-
imization (EM) algorithm [9], similar to [11]. Expectation-maximization is a well-
known alternative to gradient descent methods for maximum-likelihood estimation,
often offering enhanced stability and speed of convergence.

The algorithm is computationally favorable since a time delay bound is imposed,
and only a limited number of causality relationships have to be accounted for in the
expectation (E) step. Computation time scales linearly with respect to the total time
frame of the data, T .

HPs have been applied towards modeling price jumps [4, 7], trades [3], order
flows [2, 6, 8, 12] and intensity bursts related to exogenous discrete events [10] in
the backdrop of equity, currency and futures exchanges of varying scale. See Bacry
et al. [1] for an extensive review of HPs and applications in finance. EM algorithms
similar to ours were developed in [11, 13]. A bounded logistic-normal delay density
appears in [7], however the focus is on Bayesian inference with graph priors and no
treatment of the effects of bounded delays is offered.

3 Experiments

We use tick-level price data of 11 currency pairs in the TrueFX1 database. The
database aggregates bid/ask quotes for pairs quoted in interbank exchanges. We
model midprice (simple average of best bid and ask quotes) jumps, taking price
increases and decreases as separate event sequences, for each currency pair. The
data set contains a total of over 36 million price events in millisecond resolution.

1www.truefx.com.

www.truefx.com
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Fig. 1 Self-excitation and interaction behavior of exchange rate shifts, explored through the kernel
matrix ϕ. Currency pairs in the study are given along axes

We posit that limiting the time horizon for interactions will lead to significant
improvements in calculation time while having no major impact on model perfor-
mance.

We learn parameters for three settings, with tmax , the maximum delay allowed,
set to 100, 1000, and 10,000 ms respectively. We assume homogenous base intensi-
ties λk(t). Results, along with computation times, are presented in Table 1. Model
performance is given in perplexity, defined as exp(− 1

N
logp(D |�)). We measure

perplexity on the training set of May 2017, and the held out test data set of June
2017. An implementation of the algorithm is made available online.2

Despite substantially longer time required for parameter estimation, extending
the time frame for interactions has little benefit to the explanatory power. In fact,
we find that it increases perplexity compared to looking for interactions only in a 1 s
time frame, as a 10 s upper bound consistently results in higher perplexity in both
training and test data sets.

Allowing longer time frames has the net effect of confounding our understanding
of interactions among price-related events. This is intuitive from the perspective of
the high-frequency trading domain, where information is consumed in very short
time frames.

Relationships between assets are also recoverable under bounded delays. We
present learned kernel matrices in Fig. 1 similar to [2]. Strong self-excitation
behavior, both trend-following and mean-reverting, are observed along the diagonal.
Interestingly, the trend following tendency appears stronger, contrary to findings in
other markets. This may be a result of the fact that the momentum behavior in
interbank markets are likely large order liquidations, and no market takers act
in short time frames to trigger mean reversals. Meanwhile, strong off-diagonal
elements are confirmed as shared currencies underlying the interacting pairs.

2http://github.com/canerturkmen/fasthawkes.

http://github.com/canerturkmen/fasthawkes
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4 Conclusion

We introduced a bounded-delay HP model and an efficient parameter estimation
algorithm. We demonstrate that imposing an upper bound on the expected delays
of interactions between events results in efficient computation while preserving, or
improving, explanatory power.

As immediate next steps, we will include a comparison with the standard
exponential-decay Hawkes model. We will also explore whether the model and
algorithm are able to deliver significant benefits in more realistic application
scenarios; such as trading strategy development, optimal liquidation and price
impact modeling.
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Abstract In this contribution we study the problem of retrieving a risk neutral
probability (RNP) in an incomplete market, with the aim of pricing non-traded
assets and hedging their risk. The pricing issue has been often addressed in the
literature finding an RNP with maximum entropy by means of the minimization of
the Kullback-Leibler divergence. Under this approach, the efficient market hypothe-
sis is modelled by means of the maximum entropy RNP. This methodology consists
of three steps: firstly simulating a finite number of market states of some underlying
stochastic model, secondly choosing a set of assets—called benchmarks—with
characteristics close to the given one, and thirdly calculating an RNP by means
of the minimization of its divergence from the maximum entropy distribution over
the simulated finite sample market states, i.e. from the uniform distribution. This
maximum entropy RNP must exactly price the benchmarks by their quoted prices.
Here we proceed in a different way consisting of the minimization of a different
divergence resulting in the total variation distance. This is done by means of a
two steps linear goal programming method. The calculation of the super-replicating
portfolios (not supplied by the Kullback-Leibler approach) would then be derived
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1 Introduction

In this contribution we study the problem of retrieving a risk neutral probability
(RNP) in an incomplete market, with the aim of pricing non-traded assets and
hedging their risk. The pricing issue has been often addressed in the literature
finding an RNP with maximum entropy by means of the minimization of the
Kullback-Leibler divergence. So in this way the efficient market hypothesis is
assumed and modelled by means of the maximum entropy RNP. This can be done in
three steps: firstly simulating a finite number of market states from some underlying
stochastic model, secondly choosing a set of assets—called benchmarks—with
characteristics close to the given one, and thirdly calculating an RNP by means
of the minimization of its divergence from the maximum entropy distribution over
the simulated finite sample market states, i.e from the uniform distribution. This
maximum entropy RNP must exactly price the benchmarks by their quoted prices.

Here we proceed in a different way consisting of the minimization of a different
divergence resulting in the total variation distance. This is done by means of a linear
goal programming method that calculates the minimal divergence value and returns
an asset price belonging to the free arbitrage price interval defined between the
buyer’s and seller’s prices. Different prices belonging to this interval are targeted
by means of constraining the divergence being greater than its minimal value
previously calculated. In a fourth step we tackle with the calculation of the super-
replicating portfolios, derived as solutions of dual linear programs. These dual linear
programs return the super-replicating portfolios for the asset, because in the optimal
value of the dual objective the asset price returned by the primal is factored into
the amounts of benchmarks composing the super-replicating portfolio plus an extra
amount depending of the divergence value fixed in the primal.

The knowledge of the RNP constitutes, in the frame of Arrow-Debreu economy
model and the Fundamental Pricing Theorem (for instance in [11] and [2], an
interesting tool in areas such as valuing derivatives-hedging risk, see [3], portfolio
management or the study of market risk aversion, see [10]. The history of the meth-
ods for risk neutral probabilities retrieval begins in [6], and the approach following
the entropy maximization has been studied in [4, 5, 7, 15, 16]. The method of
minimizing the Kullback-Leibler divergence has been applied in [1, 3, 8, 9, 14, 17].
Finally, linear programming is used in [13], and [12] to define in an incomplete
market the buyer’s and seller’s prices and the free arbitrage interval of prices existing
between them. In Sect. 2 we introduce the basic notation and in Sect. 2 we develop
the goal programming methodology.

2 Notations and Preliminaries

We define a market model over one period with I = {1, 2, . . . , N} benchmarks
and J = {1, 2, . . . ,M} states. The benchmarks cash-flows are given in a matrix
G = (

gij
)
, their respective prices in a vector c ∈ R

N. A portfolio of benchmarks
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is defined through w ∈ R
N with cash flows and price given respectively by

wTG•j , j ∈ J and wT c = ∑N
i=1 ciwi . We assume a frictionless market and the

no arbitrage hypothesis . As a result of this last (see for instance [2]) there exist
an RNP q ∈ [0, 1]M such that any asset with cash-flow e ∈ R

M can be valued
through its q-expectation discounted at the risk free interest r : c = 1

1+r Eq{e}.
In an incomplete market where rank(G) < M , the RNP is not unique so many
asset values can be calculated. Nevertheless, it is still possible to find an interval(
cmin
e , cmax

e
)

where the price should lie for the non-arbitrage condition still being
fulfilled. Those bounds are found as solution to two linear programs that can be
found in [13] and [12]. A general divergence of a probability q from the uniform
distribution over the finite sample space J can be written as

Dψ(q|p) =
∑

j

ψ

(
qj

pj

)
qj (1)

for any convex function ψ (see [1, 2] ). Now taking ψ(x) = x log(x) we get the
Kullback-Leibler divergence, while taking ψ(x) = |x−1| we get the total variation
distance, so we can finally write

Dψ(q|p) =
∑

j

| qj
pj

− 1| =
∑

j

(
qj − pj

)
. (2)

This is the objective function we have to minimize.

3 The Goal Programming Method

We now resume the process of pricing an illiquid asset by means of the minimization
of that objective function.

Step 1: Simulating the market states. We choose some stochastic model and simu-
late it to obtain the M states forming the sample space J . For instance we could
choose a model taking into account the extreme values phenomenon.

Step 2: Calibration of the RNP to the benchmark prices: For any market state j ∈ J

we define the deviation variables y−j , y+j . The following linear program must be
solved to minimize the total variation distance (2):

min
x=(q,y+,y−)

∑

j

(
y−j + y+j

)
, s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qj − pj + y−j − y+j = 0, j ∈ J
∑

j qjgij − ci = 0, i ∈ I
∑

j

(
y−j − y+j

)
= 0

qj , y
−
j , y+j ≥ 0, j ∈ J
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Once the last step is solved, we take note of the calibrated RNP π and the minimal
divergence Dmin ≥ 0

(
π, y+∗, y−∗

)
/Dmin =

∑

j

(
y−∗j + y+∗j

)

Step 3: Asset valuing corresponding to a given divergence value: Now given an
asset with cash-flow e ∈ R

M, and fixing D ≥ Dmin, we solve:

min
x=(q,y+,y−)

primal(x) =
∑

j

qj ej , s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

qj − pj + y−j − y+j = 0, j ∈ J
∑

j

(
y−j + y+j

)
= D

∑
j qjgij − ci = 0, i ∈ I

∑
j

(
y−j − y+j

)
= 0

qj , y
−
j , y+j ≥ 0, j ∈ J

This could also be done with an identical linear program though maximizing the
objective. Both LP would furnish two different RNP π∗ and π∗ that would be the
same in case we choose D = Dmin, when the two optimal values, i.e. the asset
prices, would be the same.

Step 4: Calculating the super-replicating portfolios For a chosen divergence value
D ≥ Dmin in the previous step, consider that minimization (maximization) LP.
Then we can write down its dual. For that sake we consider the dual variables
corresponding to the prior uniform probabilities wT

q ∈ R
M, the divergence level

wM+1 ∈ R, the benchmarks portfolio wT
B ∈ R

N and, finally, the probability
constraint (the fourth one) wM+N+2 ∈ R, so we finally have:

wT =
(
wT

q ,wM+1,wT
B,wM+N+2

)
.

Then the dual LP reads in matrix notation as:

max
w

(min)d(w) = wT

⎛

⎜⎜⎝

p
D

cM×1

0

⎞

⎟⎟⎠ ,

s.t. :
(
wT

q ,wM+1,wT
B,wM+N+2

)
⎛
⎜⎜⎝

IM×M IM×M −IM×M
01×M 11×M 11×M
GN×M 0N×M 0N×M
01×M 11×M −11×M

⎞
⎟⎟⎠

≤ (≥) (e1×M, 01×M, 01×M) .
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When valuing at the minimum divergence level (i.e. setting D = Dmin), strong
duality holds returning an optimal primal value (asset price) factored by the
amounts of benchmarks composing the super-replicating portfolio plus an extra
amount depending of the divergence value fixed in the primal and the prior
uniform distribution p:

d(w∗) = w∗Tq p+w∗M+1D
min + w∗TB cM×1 = e1×Mπ = primal(x∗).

In the last formula we see how the optimal dual variables w∗Tq ,w∗M+1,w
∗T
B

measure the sensibility of the asset value with respect to variations in the
benchmarks prices, the prior probabilities and the divergence from its minimal
value Dmin.

4 Conclusions

We have given a summary of how we could value a non-traded asset and find
its super-replicating portfolios by means of a linear goal programming method
minimizing a divergence of the RNP from the maximum entropy distribution on the
sample space, reducing to the total variation distance. Obtaining its solutions allows
to attain all the values belonging to the interval of free arbitrage values between
the seller’s and the buyer’s prices. If the divergence is set to its minimum Dmin,
we can measure the sensibility of the asset value with respect to changes of the
benchmarks prices and the divergence value, because the dual factors the price by
these components.
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