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Our earth is the only place where we can live
in harmony, peace, and cooperation for the
betterment of humanity. It is the duty of each
individual to try with utmost ambition to care
for the earth environmental issues so that a
sustainable future can be handed over to new
generations. This is possible only through the
scientific principles, where the earth systems
and sciences are the major branches.
This book is dedicated to those who care for
such a balance by logical, rational, scientific,
and ethical considerations for the sake of
other living creatures’ rights.
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Preface

Earth systems and sciences cover a vast amount of disciplines that are effective in

the daily life of human beings. Among these are the atmospheric sciences, meteo-

rology, hydrogeology, hydrology, petroleum geology, engineering geology, geo-

physics, and marine and planary systems. Their subtopics such as floods,

groundwater and surface water resources, droughts, rock fractures, and earthquakes

have basic measurements in the form of records of their past events and need to

have suitable models for their spatio-temporal predictions. There are various

software for the solution of problems related to earth systems and sciences

concerning the environment, but unfortunately they are ready-made models, most

often without any basic information. It is the main purpose of this book to present

the basic knowledge and information about the evolution of earth sciences events

on rational, logical, and at places scientific and philosophical features so that the

reader can grasp the underlying principles in a simple and applicable manner. The

book also directs the reader to proper basic references for further reading and

enlarging the background information. I have gained almost all of the field,

laboratory and theoretical as well actual applications, during my stay at the Faculty

of Earth Sciences, Hydrogeology Department, King Abdulaziz University (KAU),

and the Saudi Geological Survey (SGS), which are in Jeddah, Kingdom of Saudi

Arabia. Additionally, especially on the atmospheric sciences, meteorology and

surface water resources aspects are developed at Istanbul Technical University

(İTÜ), Turkey.

It is well sought to adapt spatial modeling and simulation methodologies in

actual earth sciences problem solutions for exploring the inherent variability such

as in fracture frequencies, spacing, rock quality designation, grain size distribution,

groundwater exploration and quality variations, and many similar random behav-

iors of the rock and porous medium. The book includes many innovative spatial

modeling methodologies with actual application examples from real-life problems.

Most of such innovative approaches appear for the first time in this book with the

necessary interpretations and recommendations of their use in real life.
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The second print of the book indicates the need for spatial modeling in earth

sciences. The book has an additional chapter and also some recent methodological

procedures in some chapters, which cannot be found in the first print. I wish that the

content will be beneficial to anyone interested in spatial earth system modeling and

simulation.

Throughout the first and this second edition preparation process, my wife Fatma

Hanim has encouraged me to think that such a work will be beneficial to all humans

in the world and those who are interested in the topics of this book. I appreciate the

encouragement by Springer Publishing Company for the second printing of

this book.

Istanbul, Turkey Zekai Sen

18 May 2016
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Chapter 1

Introduction

Abstract Earth science events have spatial, temporal and spatio-temporal vari-

abilities depending on the scale and the purpose of the assessments. Various earth

sciences branches such as hydrogeology, engineering geology, petroleum geology,

geophysics, and related topics have, in general, spatio-temporal variabilities that

need for effective modeling techniques for proper estimation and planning the

future events in each branch according to scientific principles. Determinism and

especially uncertainty techniques are frequently used in the description and model-

ing these events conveniently through simple and rather complicated computer

software. However, the basic principles in any software require simple and effec-

tive mathematical, probabilistic, statistical, stochastic and recently fuzzy method-

ologies or their combination for an objective solution of the problem based on field

or laboratory data. This chapter provides comparetive and simple explanation of

each one of these approaches.

Keywords Earth sciences • Model • Randomness • Probability • Random field •

Statistics • Stochastic • Variability

1.1 General

There has been a good deal of discussion and curiosity about the natural

event occurrences during the last century. These discussions have included com-

parisons between uncertainty in earth and atmospheric sciences and uncertainty

in physics which has, inevitably it seems, led to the question of determinism

and indeterminism in nature (Leopold and Langbein 1963; Krauskopf 1968;

Mann 1970).

At the very core of scientific theories lies the notion of “cause” and “effect”

relationship in an absolute certainty in scientific studies. One of the modern

philosophers of science, Popper (1957), stated that “to give a causal explanation

of a certain specific event means deducing a statement describing this event from

two kinds of premises: from some universal laws, and from some singular or

specific statements which we may call the specific initial conditions.” According

to him there must be a very special kind of connection between the premises and the

conclusions of a causal explanation, and it must be deductive. In this manner, the

© Springer International Publishing Switzerland 2016
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conclusion follows necessarily from the premises. Prior to any mathematical

formulation, the premises and the conclusion consist of verbal (linguistic) state-

ments. It is necessary to justify at every step of deductive argument by citing a

logical rule that is concerned with the relationship among statements. On the other

hand, the concept of “law” lies at the heart of deductive explanation and, therefore,

at the heart of the certainty of our knowledge about specific events.

Recently, the scientific evolution of the methodologies has shown that the more

the researchers try to clarify the boundaries of their domain of interest, the more

they become blurred with other domains of research. For instance, as the hydroge-

ologist tries to model the groundwater pollution as one of the modern nuisances of

humanity as far as the water resources are concerned, they need information about

the geological environment of the aquifers, meteorological and atmospheric con-

ditions for the groundwater recharge, and social and human settlement environ-

mental issues for the pollution sources. Hence, many common philosophies, logical

basic deductions, methodologies, and approaches become common to different

disciplines, and the data processing is among the most important topics which

include the same methodologies applicable to diversity of disciplines. The way

that earth, environmental, and atmospheric scientists frame their questions varies

enormously, but the solution algorithms may include the same or at least similar

procedures. Some of the common questions that may be asked by various research

groups are summarized as follows. Most of these questions have been explained by

Johnston (1989).

Any natural phenomenon or its similitude occurs extensively over a region, and

therefore, its recordings or observations at different locations pose some questions

such as, for instance, are there relationships between phenomena in various loca-

tions? In such a question, the time is as if it is frozen and the phenomenon

concerned is investigated over the area and its behavioral occurrence between the

locations. An answer to this question may be provided descriptively in linguistic,

subjective, and vague terms which may be understood even by nonspecialists in the

discipline. However, their quantification necessitates objective methodologies

which are one of the purposes of the context in this book. Another question that

may be stated right at the beginning of the research in the earth, environmental, and

atmospheric sciences is: are places different in terms of the phenomena present

there? Such questions are the source of many people’s interest in the subject.

Our minds are preconditioned on the Euclidian geometry, and consequently

ordinary human beings are bound to think in 3D spaces as length, width, and

depth in addition to the time as the fourth dimension. Hence, all the scientific

formulations, differential equations, and others include space and time variabilities.

All the earth, environmental, and atmospheric variables vary along these four

dimensions. If their changes along the time are not considered, then it is said to

be frozen in time, and therefore a steady situation remains along the time axis but

variable in concern has variations along the space. A good example for such a

change can be considered as geological events which do not change with human life

time span. Iron content of a rock mass varies rather randomly from one point to

another within the rock and hence spatial variation is considered. Another example
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is the measurement of rainfall amounts at many irregularly located meteorology

stations spread over an area, i.e., simultaneous measurement of rainfall amounts;

again the time is frozen and the spatial variation is sought.

On the other hand, there are timewise variations which are referred to as the

temporal variations in the natural phenomenon. For such a variation, it suffices to

measure the event at a given location which is the case in any meteorology station.

Depending on the time evolution of the event whether it is continuous or not, time

series records can be obtained. A time series is the systematic measurement of any

natural event along the time axis at regular time intervals. Depending on this time

interval, time series is called as hourly, daily, weekly, monthly, or yearly time

series. Contrary to time variations, it is not possible to consider space series where

the records are kept at regular distances except in very specific cases. For example,

if water samples along a river are taken at every 1 km, then the measurements

provide a distance series in the regularity sense. In fact, distance series are very

limited as if there are no such data sequences. On the other hand, depending on the

interest of event, there are series which include time data, but they are not time

series due to irregularity or randomness in the time intervals between successive

occurrences of the same event. Flood and drought occurrences in hydrology

correspond to such cases. One cannot know the duration of floods or droughts.

Likewise, in meteorology the occurrence of precipitation or any dangerous levels of

concentrations of air pollutants all do not have time series characteristics.

Any natural event evolves in the 4D human visualization domains, and conse-

quently its records should involve the characteristics of both time and space

variabilities. Any record that has this property is referred to as the spatiotemporal

variation.

Mathematical, statistical, probabilistic, stochastic, and alike procedures are

applicable only in the case of spatial or temporal variability in natural or artificial

phenomena. It is not possible to consider any approach of earth sciences phenom-

ena without the variability property, which is encountered everywhere almost

explicitly but at times and places also implicitly. Explicit variability is the main

source of reasoning, but implicit variability leads to thousands of imagination with

different geometrical shapes on which one is then able to ponder and generate ideas

and conclusions. It is possible to sum up that the variability is one of the funda-

mental ingredients of philosophic thinking, which can be separated into different

rational components by mental restrictions based on the logic. Almost all social,

physical, economical, and natural events in small scales and phenomena in large

scales include variability at different levels (micro, meso, or macro) and types

(geometry, kinematics, and dynamics). Hence, the very word “variability” deserves

detailed qualitative understanding for the construction of our future quantitative

models.

Proper understanding of earth sciences phenomenon is itself incomplete, rather

vague, and cannot provide a unique or precise answer. However, in the case of data

availability, the statistical methods support the phenomenon understanding and

deducing meaningful and rational results. These methods suggest the way to weight

the available data so as to compute best estimates and predictions with acceptable
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error limits. Unfortunately statistics and use of its methods are taken as cookbook

procedures without fundamental rational background in problem solving. There are

many software programs available to use, but the results cannot be interpreted in a

meaningful, plausible, and rational manner for the service of practical applications

or further researches.

It is, therefore, the purpose of this book to provide fundamentals, logical basis,

and insights into spatial statistical techniques that are frequently used in engineer-

ing applications and scientific research works. In this manner prior to cookbook

procedure applications and software use, the professional can give his expert view

about the phenomenon concerned and the treatment alternatives of the available

data. The major problems in the spatial analysis are the point estimation from a set

of data sampling points where the measurements are not found, areal average

calculations and contour mapping of the regionalized variables. The main purpose

of this chapter is to lay out the basic spatial variability ingredients, their simple

conceptual grasp and models.

1.2 Earth Sciences Phenomena

The phenomenologic occurrences in earth sciences are natural events, and their

prediction and control need scientific methodological approaches under the domain

of uncertainty and risk conceptions in cases of design for mitigation against their

dangerous consequences and inflictions on the society at large. The common

features of these phenomena in general are their rather random behaviors in

amounts, occurrence time and location, duration, intensity, and spatial coverages.

Although future average behaviors are taken as a basis in any design, it is

recommended in this book that risk concept at 5 or 10% must be taken into

consideration and accordingly the necessary design structures must be implemented

for reduction of dangerous occurrences and impacts. The necessary scientific

algorithms, models, procedures, programs, seminars, and methodologies and if

possible a comprehensive software must be prepared for effective, speedy, and

timely precautions. Earth sciences hazards must be assessed logically, conceptu-

ally, and numerically by an efficient monitoring system and following data treat-

ments. In various chapters of this book, different methodological data-processing

procedures are presented with factual data applications.

Earth sciences deal with spatial and temporal behaviors of natural phenomena at

every scale for the purpose of predicting the future replicas of the similar phenom-

ena which help to make significant decisions in planning, management, operation,

and maintenance of natural occurrences related to social, environmental, and

engineering activities. Since any of these phenomena cannot be accounted by

measurements which involve uncertain behaviors, their analysis, control, and

prediction need to use uncertainty techniques for significant achievements for

future characteristic estimations. Many natural phenomena cannot be monitored

at desired instances of time and locations in space, and such restrictive time and
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location limitations bring additional irregularity in the measurements. Conse-

quently, the analyst, in addition to uncertain temporal and spatial occurrences,

has the problem of sampling the natural phenomenon at irregular sites and times.

For instance, floods, earthquakes, car accidents, illnesses, and fracture occurrences

are all among the irregularly distributed temporal and spatial events. Uncertainty

and irregularity are the common properties of natural phenomenon measurements

in earth and atmospheric researches, but the analytical solutions through numerical

approximations all require regularly available initial and boundary conditions that

cannot be obtained by lying regular measurement sites or time instances. In an

uncertain environment, any cause will be associated with different effects each with

different levels of possibilities. Herein, possibility means some preference index for

the occurrence of each effect. The greater the possibility index, the more frequent

the event occurrence.

Geology, hydrology, and meteorology are the sciences of lithosphere, hydro-

sphere, and atmosphere that consist of different rock, water, and air layers, their

occurrences, distribution, physical and chemical genesis, mechanical properties,

and structural constitutions and interrelationships. It is also one of the significant

subjects of these phenomena to deal with historical evolution of rock, water, and

atmosphere types and masses concerning their positions, movement, and internal

contents. These features indicate the wide content of earth sciences studies. Unfor-

tunately, these phenomena cannot be simulated under laboratory conditions, and

therefore, field observations and measurements are the basic information sources of

information.

In large scales, geological, hydrological, and meteorological compositions are

very anisotropic and heterogeneous; in small scales, their homogeneity and isotropy

increase but the practical representatively decreases. It is therefore necessary to

study them in rather medium scales that can be assumable as homogeneous and

isotropic. In any phenomenon study, the general procedure is to have its behavioral

features and properties at small locations and by correlation to generalize to larger

scales. Unfortunately, most often the description of earth sciences phenomena

provides linguistic and verbal qualitative interpretations that are most often sub-

jective and depend on the common consensus. The more the contribution to such

consensus of experts, the better are the conclusions and interpretations, but even

then it is not possible to estimate or derive general conclusions on an objective

basis. It is, therefore, necessary to try and increase the effect of quantitative

approaches and methodologies in earth sciences, especially by the use of personal

computers, which help to minimize the calculation procedures and time require-

ments by software. However, software programs are attractive in appearance and

usage, but without fundamental handling of procedures and methodologies, the

results from these programs cannot be done properly with useful interpretations and

satisfactory calculations that are acceptable by common expertise. This is one of the

very sensitive issues that are mostly missing in software program training or ready

software uses.

It is advised in this book that without knowing the fundamentals of earth

sciences procedure, methodology, or data processing, one must avoid the use of

1.2 Earth Sciences Phenomena 5



software programs. Otherwise, mechanical learning of software from colleagues

and friends or during tutorials with missing fundamentals does not lead the user to

write proper reports or even to discuss the results of software with somebody expert

in the area who may not know software use.

Phenomena in earth sciences are of multitude types, and each needs at times

special interpretation, but whatever the differences, there is one common basis,

which is the data processing. Hence, any earth sciences equipped with proper data-

processing technique with fundamentals can help others and make significant

contributions to open literature, which is of great need for such interpretations.

Besides, whatever the techniques and technological level reached, these phenom-

ena show especially spatial (length, area, volume) differences at many scales, areas,

locations, and depths, and consequently, development of any technique cannot

cover the whole of these variations simultaneously, and there is always an empty

space for further interpretations and researches. It is possible to consider the earth

sciences all over the world in two categories, namely, conventionalists that are

more descriptive working group with linguistic and verbal interpretations, and

conclusions with very basic and simple calculations. The second group includes

those who are well equipped with advanced quantitative techniques starting with

simple probabilistic, statistical, stochastic, and deterministic mathematical models

and calculation principles. The latter group might be very addicted to quantitative

approaches with little linguistic, verbal, i.e., qualitative interpretations. The view

taken in this book remains in between where the earth scientist should not ignore the

verbal and linguistic descriptive information or conclusions, but he also looks for

quantitative interpretation techniques to support the views and arrive at general

conclusions. Unfortunately, most often earth scientists are within these two

extremes and sometimes cannot understand each other although the same phenom-

ena are considered. Both views are necessary but not exclusively. The best conclu-

sions are possible with a good combination of two views. However, the priority is

always with the linguistic and verbal descriptions, because in scientific training,

these are the first stones of learning and their logical combinations rationalistically

constitute quantitative descriptions. Even during the quantitative studies, the inter-

pretations are based on descriptive, qualitative, linguistic, and verbal statements. It

is well known in scientific arena that the basic information is in the forms of logical

sentences, postulates, definitions, or theorems, and in earth sciences, even specula-

tions might be proposed prior to quantitative studies, and the objectivity increases

with shifting toward quantitative interpretations.

Any geological phenomenon can be viewed initially without detailed informa-

tion to have the following general characteristics:

1. It does not change with time or at least within the lifetime of human, and

therefore, geological variations have spatial characters, and these variations

can be presented in the best possible way by convenient maps. For example,

geological description leads to lithological variation of different rock types. In

this simplest classification of rocks, the researcher is not able to look for

different possibilities or ore reserves, water sources, oil field possibilities, etc.
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Oil reserves cannot be in igneous or metamorphic rock units, and therefore,

he/she has to restrict the attention on the areas of sedimentary rocks. It is possible

to look for regions of groundwater, which is in connection with atmosphere, i.e.,

the rainfall leads to direct infiltration. This information implies shallow ground-

water possibilities, and consequently quaternary sediments (wadi alluviums of

present epoch geological activity) can be delimited from such a map.

2. Geological units are neither uniform nor isotropic nor heterogeneous in hori-

zontal and vertical extends. A first glance on any geological map indicates

obviously that in any direction (NS, EW, etc.) the geological variation is not

constant. There is the succession of different rock types and subunits along the

vertical direction than is referred to as stratigraphic along which neither the

thickness of each unit nor the slope is constant. It is possible to conclude from

these two points that the spatial geometry of geological phenomena is not

definite, and furthermore, its description is not possible with Euclidean geometry

which is based on lines, planes, and volumes of regular shapes. However, in

practical calculations, the geometric dimensions are simplified so as to use

Euclidean representations and make simple calculations. Otherwise, just the

geometry can be intangible, hindering calculations. This indicates that in calcu-

lations besides other earth sciences quantities that will be mentioned later in this

book, initially geometry causes approximations in the calculations, and in any

calculation, geometry is involved. One can conclude from this statement that

even if the other spatial variations are constant, approximation in geometry gives

rise to approximate results. It is very convenient to mention here that the only

definite Euclidean geometry exists at rock crystalline elements. However, their

accumulation leads to irregular geometry that is not expressible by classical

geometry.

3. Rock materials are not isotropic and heterogeneous even at small scales of few

centimeters except at crystalline or atomic levels. Hence, the compositional

variation within the geometrical boundaries differs from one point to another,

which makes the quantitative appreciation almost impossible. In order to

alleviate the situation mentally, researchers visualize an ideal world by simpli-

fications leading to the features as isotropic and homogeneous.

4. Isotropy implies uniformity along any direction, i.e., directional property con-

stancy. The homogeneity means constancy of any property at each point. These

properties can be satisfied in artificial material produced by man, but natural

material such as rocks and any natural phenomenon in hydrology and meteorol-

ogy cannot have these properties in the absolute sense. However, provided that

the directional or pointwise variations are not very appreciably different from

each other, then the geological medium can be considered as homogeneous and

isotropic on the average. In this last sentence, the word “average” is the most

widely used parameter in quantitative descriptions, but there are many other

averages that are used in the earth sciences evaluations. If there is not any

specification with this world, then it will imply arithmetic average. Arithmetic

average does not attach any weight or priority to any point or direction, i.e., it is

an equal-weight average.
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5. It can be concluded from the previous points that spatial variations cannot be

deterministic in the sense of isotropy and homogeneity, and therefore, they can

be considered as nondeterministic which implies uncertainty, and in turn it

means that the spatial assessments and calculations cannot be adopted as the

final crisp value. At this stage, rather than well-founded deterministic mathe-

matical rules of calculation and evaluation, it is possible to deal with spatial

assessments and evaluations by uncertainty calculations, which are probability,

statistical, and stochastic processes.

6. Apart from the geometry and material features, the earth sciences event media

also includes in a nondeterministic way tectonic effects such as fissures, frac-

tures, faults, folds, or chemical solution cavities, which appear rather randomly.

It is a scientific truth that the earth sciences phenomena cannot be studied with

deterministic methodologies for meaningful and useful interpretations or appli-

cations. The nondeterministic, i.e., uncertainty, techniques such as probability,

statistical, and stochastic methodologies are more suitable for the reflection of

any spatial behavior.

1.3 Variability

Variability in earth sciences implies irregularities, randomness, and uncertainty,

which cannot be predicted with certainty, and always there is a certain level of

error involved such as practically acceptable �5% or �10% levels. These levels

are also considered as risk amounts in any earth sciences design such as in

engineering geology, hydrogeology, and geophysical event evaluation and atmo-

spheric, hydrologic, and environmental scientific and engineering projects. The

natural phenomena includes variability with uncertainty component.

Variability is a word that reflects different connotations that are commonly used

in everyday life, but unfortunately without noticing its epistemological content. For

instance, this word implies inequality, irregularity, heterogeneity, fluctuations,

randomness, statistical variability, probability, stochasticity, and chaos. Since sci-

ence is concerned with materialistic world, variability property can be in time or

space (points, lines, areas, and volumes). Uncertainty is concerned with the hap-

hazard variations in nature.

Earth, environmental, and atmospheric phenomena evolve with time and space,

and their appreciation as to the occurrence, magnitude, and location is possible by

observations and still better by measurements along the time or space reference

systems. The basic information about the phenomenon is obtained from the mea-

surements. Any measurement can be considered as the trace of the phenomenon at a

given time and location. Hence, any measurement should be specified by time and

location, but its magnitude is not at the hand of the researcher. Initial observance of

the phenomenon leads to nonnumerical form of descriptive data that cannot be

evaluated with uncertainty.
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The worth of data in earth sciences and geology is very high since most of the

interpretations and decisions are based on their qualitative and quantitative infor-

mation contents. This information is hidden in representative field samples which

are analyzed for extraction of numerical or descriptive characteristics. These

characteristics are referred to as data. Data collection in earth sciences is difficult

and expensive and requires special care for accurately representing the geological

phenomenon. After all, various parameters necessary for the description and

modeling of the geological event, such as bearing capacity, fracture frequency,

aperture, orientation, effective strength, porosity, hydraulic conductivity, chemical

contents, etc., are hidden within each sample, but they individually represent a

specific point in space and time. Hence, it is possible to attach with data temporal

and three spatial reference systems as shown in Fig. 1.1.

In geological sciences and applications, the concerned phenomenon can be

examined and assessed through the collection of field data and accordingly mean-

ingful solutions can be proposed. It is, therefore, necessary to make the best use of

available data from different points. Geological data are collected either directly in

the field or field samples are transferred to laboratories in order to make necessary

analysis and measurements. For instance, in hydrogeology domain among field

measurements are the groundwater table elevations, pH, and total dissolved solu-

tion (TDS) readings, whereas some of the laboratory measurements are chemical

elements in parts per million (ppm), etc. There are also office calculations that yield

also hydrogeological data such as hydraulic conductivity, transmissivity, and stor-

age coefficients. In the meantime, many other data sources from soil surveys,

topographic measurements, geological prospection, remote sensing evaluations,
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and others may also support data for the investigation concerned. The common

property of these measurements and calculations of laboratory analysis is that they

include uncertainty attached at a particular time and sampling point only. Hence,

the first question is how to deal with rather uncertain (randomly) varying data. At

times, the data is random, sometimes, chaotic, and still in other cases irregular or

very regular. These changes can be categorized into two broad classes as systematic

and unsystematic. Systematic data yields mathematically depictable variations with

time, space, or both. For instance, as the depth increases, so does the temperature

and this variation is an example of systematic variation. Especially, if there is only

one type of geological formation, this systematic variation becomes more pro-

nounced. Otherwise, on the basis of rather systematic variation on the average,

there are unsystematic deviations which might be irregular or random. Systematic

and unsystematic data components are shown in Fig. 1.2.

In many studies, the systematic changes (seasonality and trend) are referred to as

the deterministic components, which are due to systematic natural (geography,

astronomy, climatology) factors that are explainable to a certain extent. On the

other hand, unsystematic variations are unexplainable or have random parts that

need more probabilistic and statistical treatments.

There has been a good deal of discussion and curiosity about the natural

event occurrences during the last century. These discussions have included com-

parisons between uncertainty in earth and atmospheric sciences and uncertainty

in physics, which has, inevitably it seems, led to the question of determinism

and indeterminism in nature (Leopold and Langbein 1963; Krauskopf 1968;

Mann 1970).

At the very core of scientific theories lies the notion of “cause” and “effect”

relationships in an absolute certainty in scientific studies. One of the modern

philosophers of science, Popper (1957), stated that

to give a causal explanation of a certain specific event means deducing a statement

describing this event from two kinds of premises: from some universal laws and from

some singular or specific statements which we may call the specific initial conditions

According to him there must be a very special kind of connections between the

premises and the conclusions of a causal explanation, and it must be deductive. In

this manner, the conclusion follows necessarily from the premises. Prior to any
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Fig. 1.2 Systematic (trend, seasonality) and unsystematic (random) components
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mathematical formulation, the premises and the conclusion consist of verbal (lin-

guistic) statements (Ross 1995; Şen 2010). It is necessary to justify at every step of

deductive argument by citing a logical rule that is concerned with the relationship

among causes and results. On the other hand, the concept of “law” lies at the heart

of deductive explanation and, therefore, at the heart of the certainty of our knowl-

edge about specific events.

Recently, the scientific evolution of the methodologies has shown that the more

the researchers try to clarify the boundaries of their domain of interest, the more

they become blurred with other domains of research. For instance, as the hydroge-

ologist tries to model the groundwater pollution as one of the modern nuisances of

humanity, as far as the water resources are concerned, they need information about

the geological environment of the aquifers, meteorological and atmospheric con-

ditions for the groundwater recharge, and social and human settlement environ-

mental issues for the pollution sources. Hence, many common philosophies, logical

basic deductions, methodologies, and approaches become common to different

disciplines, and uncertainty data processing is among the most important topics,

which include the same methodologies applicable to diversity of disciplines. The

way that earth, environmental, and atmospheric scientists frame their questions

varies enormously, but the solution algorithms may include the same or at least

similar procedures.

Any natural phenomenon or its similitude occurs extensively over a region, and

therefore, its recordings (measurements) or observations at different locations

pose some questions such as, for instance, are there relationships between phe-

nomena in various locations? In such a question, the time is as if it is frozen, and

the phenomenon concerned is investigated over the area and its behavioral

occurrence between the locations. Frozen time considerations of any earth sci-

ences events expose the spatial variability of the phenomenon concerned. An

answer to this question may be provided descriptively in linguistic, subjective,

and vague terms, which may be understood even by nonspecialists in the disci-

pline. However, their quantification necessitates objective methodologies, which

are one of the purposes of the context in this book. Another question that may be

stated right at the beginning of the research in the earth, environmental, and

atmospheric sciences is that are places different in terms of the phenomena

present there? Such questions provide interest to researchers in the subject of

spatial variability.

On the other hand, there are timewise variations, which are referred to as the

temporal variations in natural phenomena. For such a variation, it suffices to

measure the event at a given location, which is the case in any meteorology station

or groundwater and petroleum well.

Any natural event evolves in the 4D human visualization domains, and conse-

quently, its records should involve the characteristics of both time and space

variabilities. Any record that has this property is referred to as to have spatiotem-

poral variation.

1.3 Variability 11



1.3.1 Temporal

Most of the natural phenomena and events take place with time, and hence, they

leave time traces that are recordable by convenient instruments. Astronomic

events have systematic time variations in regular diurnal, monthly, seasonal,

and annual time steps, and these recorded traces appear in the form of time series

or a set of time measurements. Depending on the time evolution of the event

whether it is continuous or not, time series records can be obtained. A time series

is the systematic measurement of any natural event along the time axis at regular

time intervals. Depending on this time interval, time series is called as hourly,

daily, weekly, monthly, or yearly time series. It is not possible to consider space

series at regular distances and the records are kept at irregular locations except in

very specific cases. For example, if water samples along a river are taken at every

1 km, then the measurements provide a distance series in the regularity sense.

Such series are very limited as if there are no such data sequences in practical

works.

On the other hand, depending on the interest of event, there are series along time

axis but they are not time series due to irregularity or randomness in the time

intervals between successive occurrences of the same event. Flood and drought

occurrences in hydrology correspond to such cases. One cannot know the duration

of floods or droughts. Likewise, in meteorology the occurrence instances of pre-

cipitation or any dangerous levels of concentrations such as air pollutants do not

have regular time series characteristics.

1.3.2 Point

In earth sciences, records at a set of locations concerning any variable provide

information of variability at the fixed point. For instance, at a single point, one can

measure different variables, say, for instance, in the engineering geological studies,

one can obtain the porosity, specific yield, failure resistance, friction angle, grain

sizes, and alike measurements. In hydrogeology, taken water sample from a well

may have different anions (Ca, Mg, K, Na) and cations (Cl, SO4, CO3, HCO3), all of

which provide specification of water quality collectively at a point. Point records

are very important for regional and spatial assessments of earth sciences variable so

as to obtain information about the behavior of the same variable at unmeasured

sites. The soil specification as for the porosity, shear strength, Atterberg limits

(shrinkage plastic and liquid), water content, compression strength, etc. is also

among the point measurements that are useful in many geological, engineering,

scientific, and agricultural activities.
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1.3.3 Regional

Regional studies end up in the form of various 2D maps that provide pointwise

information at any desired location. These can be produced from irregularly

scattered point records in a region as contour lines that show equal value variables,

polynomials that partition the region into a set of equal value regions or in the

computer at a set of pixels. For the map construction over a region, there are

different methodologies to convert the irregularly scattered records to a set of

regular grid points, which are the basis prior to any application of the mapping

procedures. Among the mapping procedures, there are different approaches such as

the inverse distance, inverse distance square, regional geometric functions, and

Kriging methodologies as explained in Chaps. 6 and 7.

1.3.4 Spatial

This is the main topic of the book and it is the three-dimensional, 3D, representation

of the earth sciences phenomena. Such representations are valid for fence diagrams

in geophysical prospection of the geological formations in any study area. This is

the 3D representation of the contour maps or they can be obtained from digital

elevation model (DEM) data for any region in the form of geomorphological

(topographic) maps.

1.4 Determinism

This is not valid in natural earth sciences phenomena, because it denies the

uncertainty involvement in natural earth sciences events where variability, irregu-

larity, haphazardness, uncertainty, chaos, and any other type of uncertainty ingre-

dient take place. Astronomic events are rather deterministic, but their effects on the

earth sciences phenomena such as geology, earthquake, hydrology, meteorology,

hydrogeology, and tsunami are all probabilistic or stochastic.

Deterministic phenomena are those in which outcomes of the individual events

are predictable with complete certainty under any given set of circumstances, if the

required initial conditions are known. In all the physical and astronomical sciences,

traditionally deterministic nature of the phenomena is assumed. It is, therefore,

necessary in the use of such approaches the validity of the assumption sets and

initial conditions. In a way, with idealization concepts, assumptions, and simplifi-

cations, deterministic scientific researches yield conclusions in the forms of algo-

rithms, procedures, or mathematical formulations which should be used with

caution for restrictive circumstances. The very essence of determinism is the

idealization and assumptions so that uncertain phenomenon becomes graspable
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and conceivable to work with the available physical concepts and mathematical

procedures. In a way, idealization and assumption sets render uncertain phenome-

non into conceptually certain situation by trashing out the uncertainty components.

A significant question that may be asked at this point is that, is there not any benefit

from the deterministic approaches in the earth and atmospheric studies where the

events are uncertain? The answer to this question is affirmative, because in spite of

the simplifying assumptions and idealizations, the skeleton of the uncertain phe-

nomenon is captured by the deterministic methods.

1.5 Uncertainty

Mann (1970) stated that the inability to predict specific events may stem from

the fact that nature is intrinsically random. He defined random and randomness

in a statistical sense to describe any phenomenon, which is unpredictable with

some degree of uncertainty. On the other hand, deterministic phenomenon is

predictable under a set of initial and boundary conditions. In general, the earth

sciences events are considered as random. Consequently, randomness has been

suggested as the ultimate and the most profound physical concept in earth

sciences. In an intrinsically random phenomenon, exact predictions are rather

impossible.

Uncertainty is introduced into any problem through the variation inherent in

nature, through man’s lack of understanding of all the causes and effects in physical
systems and in practice through insufficient data. Even with a long history of data,

one cannot predict the natural phenomenon except within an error band. As a result

of uncertainties, the future can never be predicted completely by researchers.

Consequently, the researcher must consider the uncertainty methods for the assess-

ment of the occurrences and amounts of particular events and then try to determine

their likelihood of occurrences.

The uncertainty in the geologic knowledge arises out of the conviction that earth

generalizations are immensely complicated interactions of abstract, and often

universal, physical laws. Earth sciences generalizations always contain the assump-

tions of boundary and initial conditions. In a way, the uncertainty in the predictions

arises from the ignorance of the researcher to know the initial and boundary

conditions in exactness. They cannot control these conditions with certainty. On

the assumptions of physical theory, earth and atmospherically significant configu-

rations are regarded as highly complex. This is true whether or not the “world” is

deterministic. Physical laws, which are not formulated as universal statements, may

impose uncertainty directly upon earth sciences events as in the case of inferences

based on the principles of radioactive disintegration.

There has been a good deal of discussion and curiosity about the natural

event occurrences during the last century. These discussions have included
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comparisons between uncertainty in earth and atmospheric sciences and uncertainty

in physics which has, inevitably it seems, led to the question of determinism and

indeterminism in nature (Leopold and Langbein 1963; Krauskopf 1968;

Mann 1970).

The uses of uncertainty techniques such as the probability, statistical, and

stochastic methods in earth sciences have increased rapidly since the 1960s, and

most of the researchers, as students and teachers, seek more training in these

disciplines for dealing with uncertainty in a better quantitative way. In many

professional journals, book and technical reports in the earth sciences studies

include significant parts on the uncertainty techniques in dealing with uncertain

natural phenomena. And yet relatively few scientists and engineers in these disci-

plines have a strong background in school mathematics, and the question is then

how can they obtain sufficient knowledge of uncertainty methods including prob-

ability, statistical, and stochastic processes in describing natural phenomena and in

appreciating the arguments which they must read and then digest for successful

applications in making predictions and interpretations.

1.5.1 Probabilistic

The causality means that a result will proceed mechanistically from specific initial

conditions and a triggering action or event (in the form of cause and effect through

an environment). The causes of drilling a well are associated with two outcomes as

wet and dry each with the same possibility index. The possibility of each drill to end

up in “wet” phase is one-half and “dry” is also the same. Probability does not

characterize a relationship among events, as does a statistical relationship, but

rather a relationship among statements. In the probability approach, a probable

inference will include as one of its premises a frequency hypothesis and an assertion

that if conditions of a specified kind are realized, then conditions of another kind

will be realized with a certain frequency in the long run. Herein, the conclusion

cannot follow deductively from the premises, or the truth of the premises does not

guarantee the truth of the conclusion. Hence, any probable inference is not simply

an inference that yields an uncertain conclusion, but one that permits a certain

degree of probability or rational credibility to be assigned to the conclusion. Since

the earth sciences data have uncertainties, they appear according to probabilistic

principles. In practical terms, probability is a percent value that is commonly used

between people almost every day. Among the probabilistic questions are the oil

hit possibilities by a drill, earthquake occurrence rate within a given duration,

fracture percentage along a scanline on the rock outcrop, relative frequency of

rainfall, etc. None of these questions can be answered with certainty, but through

the probabilistic principles. It is, therefore, very significant that earth scientist

should have some background about the probabilistic concepts.

One of the most frequently used concepts in the probability calculations is the

event. It is defined as the collection of uncertain outcomes in the forms of sets, class,
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or groups. Events might be elementary or compound depending on the decompo-

sition. A compound event can be decomposed into at least two events, whereas an

elementary event cannot be decomposed. For instance, if one things on the rainy

and non-rainy days sequence then yesterday was non-rainy corresponds to an

elementary event, but non-rainy days in the last 10 days is a compound event. In

general, what is defined as elementary or compound depends on the problem under

consideration and the purpose for which an analysis is being conducted. Occurrence

of precipitation in any day may include different events such as the rainfall or snow

or hail, and therefore, it is a compound event composed of these elementary events.

If one says that the rainfall occurs or does not occur, these are complementary but

elementary events. It is also possible to be interested in the amount of rainfall in

addition to its occurrence; this is then a compound event with two parts, namely, the

occurrence and the amount. For example, the flood disaster is a compound event

that damage human life and/or property. In the probability calculations, the

researcher prefers to decompose a compound event into underlying elementary

events.

Although the probability is equivalent to daily usage of percentages, the problem

in practice is how to define this percentage. For the probability definition, it is

necessary to have different categories for the same data. In any probability study,

the basic question is what is the percentage of data belonging to a given category?

The answer to this question is explained in Chap. 2.

1.5.2 Statistical

Statistics is concerned with a set of parameters of a given data set and also any

model in the form of mathematical expressions and their parameter values. Statis-

tics is the branch of mathematics, where reliable and significant relationships are

sought among different causative variables and the consequent variable.

Random and randomness are the two terms that are used in a statistical sense to

describe any phenomenon, which is unpredictable with any degree of certainty for a

specific event. An illuminating definition of random is provided by famous statis-

tician Parzen (1960) as

A random (or chance) phenomenon is an empirical phenomenon characterized by the

property that its observation under a given set of circumstances does not always lead to

the same observed outcome (so that there is no deterministic regularity) but rather to

different outcomes in such a way that there is a statistical regularity.

The statistical regularity implies group and subgroup behaviors of a large

number of observations so that the predictions can be made for each group more

accurately than the individual predictions. For instance, provided that a long

sequence of temperature observations is available at a location, it is then possible

to say more confidently that the weather will be warm or cool or cold or hot
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tomorrow than specifying exactly by predicting the degree of centigrade. As will be

explained in later sections, the statistical regularities are a result of some astronom-

ical, natural, environmental, and social effects. The global climate change discus-

sions are based on the fossil fuel pollution of the lower atmospheric layers due to

anthropogenic activities. The climate change effect is expressed by different

researchers and even common men, but the intensity of such a change cannot be

determined with certainty over the coming time epochs. Statistical regularity

implies further complete unpredictability for single or individual events.

1.5.3 Stochastic

Stochastic processes are related to internal structure and behavior and natural or

artificial events after probabilistic and statistical feature identifications. It is

concerned with the serial dependence of a single time series or cross-dependence

between any two time series. A detailed account of time series analysis and

prediction is given in a classical book by Davis (1986) and Box and Jenkins

(1970). Any natural, social, and economic records taken at a set of regular time

or space intervals with uncertainty component are subject of stochastic processes

for identification of the underlying generation mechanism and then for simulation

and at times projections over future times or extrapolation on unmeasured spatial

domains (Davis, J.C. 1986. Statistics and Data Analysis in Geology. John Wiley

and Sons).

These are hybrid models in the sense that both statistical and probabilistic

features of the historical data sequence are incorporated in the synthetic sequence

generation. They have explicit mathematical expressions where the variable pre-

diction at any time is considered as a function of some previous time measurements

in a deterministic manner with a random component. Hence, it is possible to write

all the stochastic processes mathematically as follows.

Xt ¼ f D Xt�1,Xt�2,Xt�3, . . .Xt�kð Þ þ f R εt, εt�1, εt�2, . . . εt�mð Þ ð1:1Þ

where the first term shows the deterministic component and the second term is for

the random components. In the deterministic part the number of previous data

points, m, is referred to as the deterministic lag. The second function on the right-

hand side is the random component with random lag as m. In general, this second

term is also referred to as the error term. It is possible to suggest different stochastic

models from the implicit function in Eq. 1.1. In practice, almost all the classical

stochastic processes have the explicit form of this last expression through linear

term summations as will be explained in the following.
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1.5.4 Fuzzy

The concept of “fuzzy sets” was introduced by Zadeh (1974) who pioneered the

development of fuzzy logic instead of Aristotelian logic of two possibilities only.

Unfortunately, this concept was not welcome into the literature since many uncer-

tainty techniques such as the probability theory, statistical, and stochastic processes

were commonly employed at that time but fuzzy logic has been developing since

then and now being used especially in Japan for automatic control for commercially

available products such as washing machines, cameras, and robotics. Many text-

books provide basic information on the concepts and operational fuzzy algorithms

(Kaufmann and Gupta (1988, 1991), Klir and Folger (1988), Klir and Yuan (1995),

Ross (1995), and Şen (2010)). The key idea in the fuzzy logic is the allowance of

partial belonging of any object to different subsets of the universal set instead of

belonging to a single set completely. Partial belonging to a set can be described

numerically by a membership function which assumes numbers between 0 and 1.0

inclusive. For instance, Fig. 1.3 shows typical membership functions for small,

medium, and large class sizes in a universe, U. Hence, these verbal assignments are

the fuzzy subsets of the universal set.

Fuzzy membership functions may be in many forms but in practical applications

simple straight-line functions are preferable like triangles and trapeziums. Espe-

cially, triangular functions with equal base widths are the simplest possible ones.

For instance, Figure 1.3 shows the whole universe, U, space, which is subdivided

into threesubsets with verbal attachments “small”, “medium”, and “large”.

In this figure, set values with less than 2 are definitely “small”; those between

2 and 6 are “medium”; and values more than 6 are definitely large. However,

intermediate values such as 2.2 and 3.5 are in between, that is, partially belong to

subsets “small” and “medium.” In fuzzy terminology, 2.2 has membership degree

of 0.90 in “small” and 0.35 in “medium” but 0.0 in “large.”

The main purpose of this approach is to replace “crisp” and “hard” objectives in

many problem solving procedures by fuzzy ones. Unlike the usual constrain where,

say, the variable in Fig. 1.3 must not exceed 2, a fuzzy constrain takes the form as

“small” “medium” “large”
1.0

0.0
0 2 4 6

0.90

0.35

Membership
degree

U

Fig. 1.3 Fuzzy set and membership degree

18 1 Introduction



saying that the same variable should preferably be less than 2 and certainly should

not exceed 4. This is tantamount in fuzzy sets term that the values less than 2 have

membership of 1.0 but values greater than 4 have membership of 0.0 and values

between 2 and 6 would have membership between 1.0 and 0.0. In order to make the

subsequent calculations easy, usually the membership function is adopted as linear

in practical applications. The objective then can be formulated as maximizing the

minimum membership value, which has the effect of balancing the degree to which

the objective is attained with degrees to which the constraints have to be relaxed

from their optimal values.

1.5.5 Chaotic Uncertainty

The most important affair in any scientific study is the future prediction of the

phenomenon concerned after the establishment of a reliable model. Although the

prediction is concerned with the future unknown states, the establishment stage

depends entirely on the past observations as numerical records of the system

variables. In any study, the principal step is to identify the suitable model and

modify it so as to represent the past observation sequences and general behaviors as

closely as possible. Not all the developed models are successful in the practical

applications. In many areas of scientific predictions and especially in the meteo-

rology domain, the researchers are still far behind the identification of a suitable

model. It is possible by physical principles in addition to various simplifying

assumptions to describe many systems of empirical phenomenon by ordinary and

partial differential equations, but their application, for instance, for prediction

purposes requires the measurements and identification of initial and boundary

conditions in space as well as time. Unfortunately, in most of the cases, the research

is not furnished with reasonably sufficient data. In the cases of either the availability

of unrealistic model or paucity of data, it is necessary to resort to some other simple

but effective approaches. In many cases, the derivation of the partial differential

equations for the representation of the concerned system is straightforward, but its

implications are hindered due to either the incompatibility of the data with this

model or the lack of sufficient data.

In many applications rather than the partial differential equations and basic

physical principles, a simple but purpose-serving model is identified directly from

the data. For instance, Yule (1927) has proposed such simple models by taking into

account the sequential structural behavior of the available data. His purpose has

been to treat the data on the basis of the stochastic process principles as a time

series. Such a series was then regarded as one of the possible realizations among

many other possibilities which are not known to the researcher. Recently, chaotic

behaviors of dynamic systems also exhibited random-like behaviors which are

rather different from the classical randomness in the stochastic processes. Hence,

a question emerges as to how to distinguish between a chaotic and stochastic

behavior. Although the chaotic behavior shows a fundamentally long-term pattern
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in the form of strange attractors, it also suggests short-term prediction possibility.

Any data in the form of time series might look like a random sequence, but it may

include hidden short-term consistencies with few degrees of freedom. For instance,

although fluid flows represent chaotic behaviors along the time axis, but when

confined to time-independent state-space representation, it indicates an attractor of

lower dimensions. In the case of such a strange attractor existence, its time

evolution results in a time series, which hides the chaotic remnants. It is the main

purpose of the chaos theory and methodology to try and identify such remnant

chaotic behaviors in the time series by considering sequential correlation dimension

values that are completely time independent. The classical serial correlation func-

tion assesses the time series in the time domain, but the serial correlation dimension

investigates the given time series in the phase domain independent of the time.

A dynamic system is identified by a phase-space diagram whose trajectories

define its evolution starting from an initial state. In order to enter this trajectory, it is

necessary to know the initial state rather precisely. Different initial states even the

ones that are of minute difference from each other enter the strange attractor and

after the tremendous successive steps cover the whole strange attractor by chaotic

transitions. Hence, another digression from the classical time series is that in the

time series, the successive time steps are equal to each other but in the chaotic

behaviors the steps are random but successive points remain on the same attractor.

In the chaotic behaviors, it is not sufficient to identify the strange attractor

completely, but for predictions what is necessary is the modeling of successive

jumps that will remain on the attractor. The trajectories approach to a sub-space

within the whole geometric pattern, and hence, the strange attractor can be captured

independently from the initial conditions. Otherwise, the behaviors are not chaotic

but stochastic with no attractor. In short strange attractors are made up of the points

that cover a small percentage of the phase space but stochastic or completely

random behaviors cover the whole phase space uniformly. Sub-coverage implies

that the dimension of the chaotic time series is less than the embedding dimension

of the phase space. The systems with strange attractors are dissipative in that the

energy is not conserved.

If a system is deterministic, then its attractors have integer dimensions and they

provide reliable long-term predictions. However, if the dynamic system is very

sensitive to initial conditions, then its attractor has fractal dimension and therefore it

is called as the strange attractor. For systems with strange attractors, long-term

predictions are not reliable at all. Such chaotic dynamic systems should be

exploited for short-term predictions with reliable mathematical tools by

Grassberger and Procaccia (1983a, b). Detailed account of the chaotic dynamic

systems is outside the scope of this book.
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1.6 Random Field (RF)

Earth sciences events evolve by time but they have a regional nature and cover

extensive irregular areas. Their monitoring, data collection, and assessment require

special probabilistic, statistical, and stochastic approaches. One of the most well-

known methodologies is the geostatistical procedures, where the regional variabil-

ity is related to the distance along a preferred direction. Regional phenomenon can

be identified by studying the spatial patterns at a set of sites (points). They are often

based on single-site event definitions where the areal aspect is included by studying

the spatial pattern of point values. The irregular measurement points are overlain by

a mesh at which grid points, the assessment, and modeling fundamentals can be

activated. Such a set of measurement points and grid is given in Fig. 1.4.

Earth sciences variables evolve discretely or continuously in space and time.

Each of these variables can be sampled at a single site in space at a given time

instant or interval. Such a space-time distribution is referred to as a spatiotemporal

variability, and they cannot be predicted with certainty, and therefore, they are

assumed random, and hence, it is necessary to study a new class of fields, namely,

random fields (RFs), which are defined mathematically by a quadruple function ξ(x,
y, z, t), at the site with coordinates x, y, and z and time instant, t.

In general, RF is a generalization of a stochastic process, for which the random

function of the coordinates (x, y, z, t) must be understood at each spatiotemporal

point (x, y, z, t) as having a random value ξ(x, y, z, t) that cannot be predicted

exactly, but these values are subject to a certain probability distribution function

(PDF). Hence, the complete description of a RF can be represented by finite-

dimensional PDFs of the field at different locations. However, in practice, rather

than the PDFs, statistical moments (parameters) are found useful in their assess-

ments. In general, a RF has three types of moments (Şen 1980a):

(i) Space moments, which are the time products of the values of the field at

different points at a fixed time

(ii) Time moments, which are the mean product of the values of the field at

different times at a fixed point

Drought coverage area

D

x

y

W

Fig. 1.4 Regional

modeling set up
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(iii) Space-time moments, which are the mean products from the values of the field

at different points and times

A RF is homogeneous, if its PDF is invariant with respect to a shift in the system

of points. Additionally, the RF is also statistically isotropic if the PDFs are invariant

with respect to an arbitrary rotation of the system of points such as a solid body and

to a mirror reflection of this system with respect to the arbitrary plane passing

through the origin of the coordinate system. This implies that the statistical

moments depend upon the configuration of the system of points for which they

are formed, but not upon the position of the system in space. In case of homoge-

neous and isotropic RF, the correlation function depends only on the distance

between the two points, which join them but not on the orientation of the line

(Yevjevich and Karplus 1974; Şen 1980b, 2009).

For regional earth sciences event analysis, the space components of the field are

assumed to remain in a certain area. Furthermore, in practice, information about the

RF can be sampled at a finite number of sites within the drainage basin. With fixed

coordinates of sites relative to a reference system, the sample hydrological phe-

nomena constitute a multivariate stochastic process.

It is a generalization of a stochastic process such that the process parameters are

not fixed values but can take a multitude of values. Their values are scattered in 2D

or 3D space, and the values are spatially correlated in some way or another. In

general, the closer the locations, the closer are the values.
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Chapter 2

Sampling and Deterministic Modeling
Methods

Abstract Prior to any earth sciences modeling, the basic data quality, reliability,

and sufficiency are the basic questions that must be grasped by the specialists in

the earth sciences domain so that she/he can continue for better description and

modeling of the phenomenon concerned. For this purpose, field, laboratory, or

satellite observations and measurements are basic foundation lines toward a

successful problem solution. Sampling categorization of the data and the proper-

ties is important in any data treatment work, especially in earth sciences domain.

The internal structure of data set as dependent of independent, the sample length,

and their random distribution behavior by means of a theoretical probability

distribution function are to be evaluated objectively in any study. In earth sci-

ences, often irregularly located spatial data are available, and therefore, the

representative area or (area of influence) should be defined for each measurement

location. For this purpose, this chapter presents different spatial methodologies

including regionalization, inverse distance methods, triangularization,

polygonizations, areal coverage probability, regional extreme value probabilities,

and spatio-temporal modeling.

Keywords Droughts • Observation • Measurement • Numerical data • Sampling •

Small sample • Triangularization • Polygonization • Percentage polygon

2.1 General

Scientific and engineering solutions can be given about any earth sciences phe-

nomena through relevant spatial modeling techniques provided that representa-

tive data are available. However, in many cases, it is difficult and expensive to

collect the field data, and therefore, it is necessary to make the best use of

available linguistic information, knowledge, and numerical data to estimate the

spatial (regional) behavior of the event with relevant parameter estimations and

suitable models. Available data provide numerical information at a set of finite

points, but the professional must fill in the gaps using information, knowledge,

and understanding about the phenomena with expert views. Data are the

treasure of knowledge and information leading to meaningful interpretations.

Z. Sen, Spatial Modeling Principles in Earth Sciences,
DOI 10.1007/978-3-319-41758-5_2
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Observations are also potential source of information, which provides linguistic

rational and logical expressions in the form of premises. Data imply numerical

measurements using different instruments either in the field or laboratory. Obser-

vations are not numerical but rather verbal data that assist to describe and identify

the phenomenon concerned.

The development of data estimation methods can be traced back to Gauss

(1809), who suggested the technique of deterministic least-squares approach and

employed it in a relatively simple orbit measurement problem. The next significant

contribution to the extensive subject of estimation theory occurred more than

100 years later when Fisher (1912), working with PDF, introduced the approach

of maximum likelihood estimation. However, Wiener (1942, 1949) set forth a

procedure for the frequency domain design of statistically optimal filters. The

technique addressed the continuous-time problem in terms of correlation functions

and the continuous filter impulse response. Moreover, the Wiener solution does not

lend itself very well to the corresponding discrete data problem, nor it is easily

extended to more complicated time-variable, multiple-input/output problems. It

was limited to statistically stationary processes and provided optimal estimates

only in the steady-state regime. In the same time period, Kolmogorov (1941) treated

the discrete-time problem.

In this chapter, observation and data types are explained, and their preliminary

simple logical treatments for useful spatial information deductions are presented

and applied through examples.

2.2 Observations

They provide information on the phenomenon through sense organs, which

cannot provide numerical measurements but their expressions are linguistic

(verbal) descriptions. In any study, the collection of such information is unavoid-

able, and they are very precious in the construction of conceptions and models for

the control of the phenomenon concerned. Observations may be expressed rather

subjectively by different persons but experts may deduce the best set of verbal

information. Depending on the personal experience and background, an observa-

tion may instigate different conceptualization and impression on each person. In a

way observations provide subjective information about the behavior of the phe-

nomenon concerned. In some branches of scientific applications, observational

descriptions are the only source of data that help for future predictions. Even

though observations may be achieved through some instruments as long as their

description remains in verbal terms, they are not numerical data. Observations

were very significant in the early developments of the scientific and technological

developments especially before the seventeenth century, but they became

more important in modern times including linguistic implications and logical

deductions explaining the fundamentals of any natural or man-made event

(Zadeh 1965). For instance, in general, geological description of rocks can be
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made by field observations, and concise linguistic categorizations are then

planned for others to understand again linguistically. It is important to stress at

this point that linguistic expressions of observations help to categorize the event.

Although such a categorization set forward crisp and mutually exclusive classes

according to classical Aristotelian logic, recently, fuzzy logic classification

including mutually inclusive classes is suggested by Zadeh (1973) and it is most

frequently used in every discipline in an increasing rate. In many disciplines

observations are extremely important such as in geological sciences, medicine,

social studies, physiology, military movements, economics, social sciences,

meteorology, engineering, etc. At times they are more valuable than numerical

data, but unfortunately, their role is almost forgotten due to recent mechanical and

software programs that work with numerical data.

Example 2.1 What type of observational information can be obtained when one

takes hand specimen from a rock? Even a nonspecialist in geology tries to deduce

the following basic linguistic information based on his/her observation and inspec-

tion of the specimen through a combined use of his/her sense organs.

1. Shape: Regular, irregular, round, spiky, elongated, flat, etc. This information can

be supported for detailed knowledge with addition of adjectives, such as

“rather,” “quite,” “extremely,” “moderately,” and so on. Note that these words

imply fuzzy information.

2. Color: Any color can be attached to whole specimen or different colors for

different parts. Detailed information can be provided again by fuzzy adjectives

such as “open,” “dark,” “gray,” etc.

3. Texture: The words for the expression of this feature are “porous,” “fissured,”

“fractured,” “sandy,” “gravelly,” “silty,” etc.

4. Taste: The previous descriptions are through the eye but the tongue can also

provide information as “saline,” “sour,” “sweet,” “brackish,” and so on.

5. Weight: It is possible to judge approximate weight of the specimen and have

description feelings as “light,” “heavy,” “medium,” “very heavy,” and

“floatable,” and likewise other descriptions can also be specified.

6. Hardness: The relative hardness of two minerals is defined by scratching each

with the other and seeing which one is gouged. It is defined by an arbitrary scale

of ten standard minerals, arranged in Mohr’s scale of hardness and subjectively

numbered in scale based on degrees of increasing hardness from 1 to 10. The

hardness scale provides guidance for the classification of the hand specimen

according to Table 2.1, where the verbal information is converted to a scale

through numbers.

Complicated events cannot be quantified through numbers and this leaves the

only way of verbal description as a result of visual observations. It is possible to

prepare such informational scales according to expert views.

Example 2.2 Earthquake effect on structures can be described according to

Table 2.2 guidance, which is given by Mercalli (1912). The following is an

abbreviated description of the 12 scales of Modified Mercalli Intensity.
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It is important to notice that the linguistic descriptions and scales are neither time

nor space dependent but they have event basis. The reference to any system is not

required apart from the logical rules.

Table 2.1 Mohr’s scale of
hardness

Hardness scale Mineral Example

1 Talc Hydrated magnesium silicate

2 Gypsum Hydrated calcium sulfate

3 Calcite Calcium carbonate

4 Fluorspar Calcium fluoride

5 Apatite Calcium phosphate

6 Feldspar Alkali silicate

7 Quartz Silicate

8 Topaz Aluminum silicate

9 Corundum Alumina

10 Diamond Carbon

Table 2.2 Mercalli earthquake intensity scales

Scales Description

I Not felt except by a very few under especially favorable conditions

II Felt only by a few persons at rest, especially on upper floors of buildings. Delicately

suspended objects may swing

III Felt quite noticeably by persons indoors, especially on upper floors of buildings. Many

people do not recognize it as an earthquake. Standing motor cars may rock slightly.

Vibration similar to the passing of a truck. Duration estimated

IV Felt indoors by many, outdoors by few during the day. At night, some awakened.

Dishes, windows, doors disturbed; walls make cracking sound. Sensation like heavy

truck striking building. Standing motor cars rocked noticeably

V Felt by nearly everyone; many awakened. Some dishes, windows broken. Unstable

objects overturned. Pendulum clocks may stop

VI Felt by all, many frightened. Some heavy furniture moved; a few instances of fallen

plaster. Damage slight

VII Damage negligible in buildings of good design and construction; slight to moderate in

well-built ordinary structures; considerable damage in poorly built or badly designed

structures; some chimneys broken

VIII Damage slight in specially designed structures; considerable damage in ordinary

substantial buildings with partial collapse. Damage great in poorly built structures. Fall

of chimneys, factory stacks, columns, monuments, walls. Heavy furniture overturned

IX Damage considerable in specially designed structures; well-designed frame structures

thrown out of plumb. Damage great in substantial buildings, with partial collapse.

Buildings shifted off foundations

X Some well-built wooden structures destroyed; most masonry and frame structures

destroyed with foundations. Rail bent

XI Few, if any (masonry) structures remain standing. Bridges destroyed. Rails bent greatly

XII Damage total. Lines of sight and level are distorted. Objects thrown into the air
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2.3 Sampling

The very significant prospect of sampling is the distribution of measurement sites

within the study area. Depending on the prevailing conditions, sometimes the

scatter of sampling points is already set up due to previous human activities such

as water well locations, oil drillings, settlement areas, roads, etc. However, in

detailed studies at smaller scales, the researchers have to lay down the set of points

so as to sample the concerned phenomenon in a representative manner. There are

different techniques in deciding about the position of the sampling points. If

nothing is known beforehand, then it may seem logical to select the sampling

points at nodes or centers of a suitable mesh over the study area. This is the most

uniform sampling procedure as shown in Fig. 2.1.

These sampling patterns can be divided into three different categories as the

regular, random, and aggregated or clustered. Figure 2.1a, b is of regular

sampling procedures. In Fig. 2.1c, d, the randomness is in small scales and the

random pattern remains within the subareal regular grids. In Fig. 2.1b although

each one of the subarea is sampled, in Fig. 2.1d, only randomly chosen subareas

are sampled. In Fig. 2.1a, the maximum distance between the two neighboring

points cannot be greater than the twice of the subareal diagonal length. In

Fig. 2.1c, the distance is of several times the main diagonal length of the

subarea. Large-scale random sampling patterns are given in Fig. 2.1e, where

there is no restriction on the distance between the sampling points. In Fig. 2.1f,

there are three clusters of the spatial sampling each with random sampling

patterns. Such categorized samplings are possible depending on the areal occur-

rence of the phenomenon studied. For instance, if ore, water, or oil deposits are

intact from each other at three neighboring areas, then the cluster sampling

patterns arise.

Another feature of spatial sampling points is its uniformity concerning the

frequency of occurrence per area. If the density defined in this manner is equal in

each subarea, then the spatial sampling is uniform; otherwise, it is nonuniform. This

definition implies that the regular sampling points in Fig. 2.1a, b in addition to

small-scale random pattern in Fig. 2.1c are all uniform, because there is one point

per subarea.

Uniformity gains significance if there are many sampling points within each

subarea. In geological or meteorological studies, subareas are quadrangles between

two successive longitudes and latitudes. For instance, such a situation is shown in

Fig. 2.2 where each quadrangle has random number of random sampling points.

Hence, the question is whether the sampling point distribution is uniform or not.

The pixels present a regular mesh over a region, which is conceptually similar to

numerical solution of analytical models. The difference is that in the case of pixels,

the measurements (brightness values) are known, but this is not the case in

numerical analysis, where the values either at the center of each cell or the values

at each node are necessary for calculation.
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A set of point data from a region on interested event such as the elevations at

25 different sites can be presented in three columns, two of which are location

descriptions and the third column includes the regional variable, which is elevation

in this case (see Table 2.3). This table is an example for triple values as mentioned

before.

In this table, the scatter of sample points can be obtained from the second and

third columns, which appear as in Fig. 2.3. The first appearance indicates that the

sampling points are irregularly distributed in the study area. However, it is not

possible to say whether their distribution is random or there is a systematic

correlation. This question will be answered in Chap. 3.

This may not be a representative sampling set for the study area because there

are no sampling points in the upper right and lower left parts of the area.

Although the spatial data is understood as the sampling of a variable with respect

to longitudes and latitudes, it is also possible to consider another two variables

instead of longitude and latitude. For instance, similar to Table 2.3 in Table 2.4,

calcium, magnesium, and chloride variables are given in three columns. These

values are taken at a single point in space at a set of time instances.

In this case, there are three alternatives for data treatment purposes. The follow-

ing similar questions can be asked:

1. Does one want the change of chloride with respect to calcium and sodium?

2. Does one want the change of calcium with respect to chloride and sodium?

3. Does one want the change of sodium with respect to calcium and chloride?
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Of course, each one of these cases presents different scatter diagrams as

presented in Fig. 2.4. In each case, the third variable plays the role of elevation as

in the preparation of topographic maps.

In each case, the triplicate {e, n, z} has {e, n}, {e, z}, and (n, z} alternatives,

which are referred to as scatter diagrams.

Table 2.3 Elevation data

Points Easting Northing

Elevation

(m) Points Easting Northing

Elevation

(m)

1 53,4371.3 2,449,324 60 14 569,732.8 2,353,515 750

2 589,853.8 2,362,837 116 15 620,966.6 2,362,115 570

3 539,568.8 2,432,734 570 16 612,983.4 2,391,577 110

4 605,430.4 2,359,240 228 17 596,556.5 2,397,926 700

5 626,244 2,350,163 710 18 619,828.7 2,399,006 60

6 619,177.6 2,370,404 60 19 527,607.4 2,385,670 710

7 570,437.2 2,454,979 520 20 658,855.3 2,376,279 1,240

8 560,157.4 2,447,557 280 21 520,716.1 2,377,359 540

9 563,857.7 2,453,414 11 22 655,595.2 2,355,951 280

10 615,788.4 2,361,155 660 23 646,632.6 2,390,925 125

11 543,309.8 2,427,824 720 24 650,305.8 2,366,972 90

12 572,452.4 2,389,806 910 25 641,826.4 2,348,446 350

13 604,572 2,358,312 11
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x 105
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Fig. 2.3 Irregular sample points scatter
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Table 2.4 Calcium, sodium, and chloride measurements

Point

Calcium

(ppm)

Sodium

(ppm)

Chloride

(ppm) Point

Calcium

(ppm)

Sodium

(ppm)

Chloride

(ppm)

1 135.01 20.76 134.48 16 80.57 45.14 165.41

2 63.11 57.34 194.97 17 133.55 55.47 141.99

3 100.68 42.25 183.24 18 131.69 41.44 126.73

4 88.60 66.59 156.74 19 81.03 35.23 164.19

5 129.13 43.30 182.70 20 129.37 29.48 153.20

6 116.21 40.93 159.03 21 45.79 29.67 179.22

7 85.65 62.31 111.30 22 75.29 54.11 203.53

8 41.85 46.26 103.46 23 121.32 35.14 138.39

9 122.14 30.13 111.18 24 40.99 47.08 192.02

10 84.47 53.61 140.11 25 53.89 27.54 85.94

11 101.54 61.91 169.07 26 60.28 54.89 206.96

12 119.19 20.98 106.39 27 59.87 38.92 100.72

13 132.18 54.06 185.77 28 100.38 63.00 97.85

14 113.82 38.97 145.21 29 67.22 62.68 191.36

15 57.63 61.59 115.56 30 59.88 49.68 170.60
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Fig. 2.4 Sample points scatter diagrams (a) Calcium-sodium, (b) Calcium-chloride, (c) Chloride-
sodium
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2.4 Numerical Data

Evolution of any event takes place both in time and space, but depending on the

practical purposes, they can be viewed either temporally or spatially or spatio-

temporally. Accordingly, instruments yield numerical data based on either time or

space reference system. In this book, only spatial data interpretations and treatment

processes are presented. It is assumed herein that the spatial phenomena cover

continuously the whole study area. Since the most elemental part of space is a point

in earth sciences, the basic sampling locations are points, which may be scattered in

the study area either regularly or irregularly. Theoretically, there is infinite number

of points but the sampling of all points is not conceivable practically. There are two

ways of sampling for conceivable studies. These are:

1. Point sampling: The size of points is considered as dimensionless or infinitesi-

mally small with no practically considerable influence area. This is referred to as

sink or source in classical analytical solutions (see Fig. 2.5).

2. Pixel sampling: The size of each point is appreciable, and therefore the whole

study area is covered with a mesh of very small squares (see Fig. 2.6).

In general, any point or pixel has a system of longitudes and latitudes. Hence, the

whole earth surface is covered by quadrangles, which may be regarded as large-

scale pixels. In practice, for Cartesian distance, area, and volume calculation

purposes, longitudes and latitudes are converted to “northing” and “southing”

values with respect to an initial reference point (see Figs. 2.5 and 2.66). This

means that the elements of spatial point data include triple variables, namely,

easting, e; northing, n; and the spatial variable measured at this location, say,

z. In short we can show the point data as a triple {e, n, z}. Likewise, in addition

to these triple values, any pixel includes its resolution size, r, which can be

represented by a quadruple {e, n, z, r}. Even though the pixel size is small, one

can practically calculate the number of pixels that is necessary to cover a

given area.

Example 2.3 If a study region has an area of 45 km2 and the pixel dimension is

100� 100 m2, what is the number of pixels for the representation of the whole

Study area boundary

• Point

Northing

Easting0

Fig. 2.5 Point sampling in an area
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region? The number can be calculated as 45� 106/104¼ 4500 pixels. This simple

calculation indicates that each pixel has an area of influence defined by its square

area. However, it is not possible to make the same calculation for point data, since a

point does not have an area of influence by itself. However, it is possible to define

the area of influence for each point based on a set of neighboring points as will be

explained later in this chapter.

Irregularity is not necessarily related to randomness and has its own connotation

in earth and atmospheric sciences. A very brief distinction between these two terms

is that although randomness is inherent in the behavior of natural events out of

human control, irregularity implies human implications in the measurement and

description or definition of natural events. For instance, the locations of meteoro-

logy stations or groundwater wells are irregularly scattered in the area or space and

consequently they do not comply by any regular or random pattern. Once the

irregularity is established, then it does not change with time and space easily until

there are other additional inferences by human. Another good distinction in the

earth and atmospheric sciences between the regularity and irregularity can be

considered in the solution of differential equations by numerical techniques. Finite

element method requires a definite and regular mesh to be laid over the solution

domain of interest (study area) with regular mesh. Boundary and initial conditions

must be defined at regular set of nodes. Various types of regularity are shown in

Fig. 2.7. In practical studies measurements as initial conditions are available at a set

of irregularly scattered station locations and hence there is not a desirable match

between these locations and consequent regular nodes.

Many irregularities appear in practical applications and there is beauty even in

the irregularity of the measurement points. Random sampling may be regarded as

another type of irregular sampling procedure. All the meteorology station locations,

water or oil well sites, soil-sampling points, etc. have irregular patterns in character.

The transfer of knowledge from irregular points to regular nodes will be dealt with

in detail later in this chapter and other chapters. Without such a knowledge and

information transfer, none of the numerical solution models such as Kriging in earth

sciences and especially general circulation models (GCM) in atmospheric sciences

and others alike can be successfully applicable for practical solutions.

Study area boundary

Pixel

Northing

Easting0

Fig. 2.6 Pixel sampling in an area
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In theoretical and practical studies, randomness is accounted by the statistical

and especially probabilistic methods, whereas irregularity does not need uncer-

tainty methodology for their treatment but for the treatment of random events

measured at these irregular points.

2.5 Number of Data

In this book spatial data will imply at the minimum the existence of three points

within the study area, because they represent a spatial form as the simplest plain

trend. However, it must not be understood that only triplets are necessary for spatial

modeling. The practical question is how many data are necessary for spatial data

modeling. There is not an easy answer to such a question. The ready answers as

appear in open literature such as 12 or 30 data points are not logical but they may

a b

c d

Fig. 2.7 Different regularities (a) rectangular; (b) triangular; (c) pentagonal, (d) radial
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provide vague and practical solutions depending on the circumstances. If the

purpose is to check whether the data confirms with the normal probability distri-

bution, then 12 data are enough. On the other hand, 30 is a number which is based

on empirical observations that in the representation of average meteorological

phenomenon, it is adopted by the World Meteorological Organization (WMO) as

a normal period. Unfortunately, neither of these numbers can be adopted in

practical applications without looking at the behavior of the concerned phenome-

non features, properties, and environmental conditions. In order to have answer in a

more realistic manner, the following points must be taken into consideration:

1. If the phenomenon is spatially homogeneous in a deterministic manner, then the

number of sample will be as small as possible. In fact, in the case of perfectly

homogeneous spatial distribution, only one sample point is enough. This is a

very theoretical situation and difficult to come across in earth sciences studies.

Logically, in such a case, there is no spatial variation, and therefore the variance

of the spatial variation is equal to zero. This implies that the smaller the standard

deviation, the smaller the representative sample size. Numerical expression of

this situation can be achieved by standard deviation, similarity, or correlation

coefficients (Şen 2002). The more the correlation coefficient (close to either +

1, i.e., completely positively proportional or �1 as the negatively inverse), the

smaller will be the data number. Finally, the more the similarity coefficient

(equal to 1), the smaller will be the data number.

2. If the regional phenomenon is randomly homogeneous (heterogeneous), it is then

necessary to take as much data sample (measurement) as possible. However, there

must be an upper limit for the data number, which may be decided not only on the

basis of statistical criterion but at times more significantly on the cost of samples

and on sampling occasions such as in rare events (floods, droughts, etc.).

3. Areal coverage of the samples must also be decided by taking into consideration

the effective area of influence of each sample, which will be explained in Chap. 3

in detail.

2.5.1 Small Sample Length of Independent Models

In general, statistical parameters from finite length records are biased estimations of

population (very long samples) counterparts. If population values (expectations) are

not equal to the parameter estimations then there is a bias effect are biased effect.

This is due to the lack of complete information, and consequently, the parameter

will be under- or overestimated with respect to its population value. In practice, the

true population parameters, which are independent of sample length, are not known,

but it is possible to estimate them from available finite length records. As a rule of

thumb, it is necessary to have at least 30 values in order to have normal parameter

estimations. However, a 30-year period cannot be equally valid for all random or

regionalized variables (ReV). It is very much a function of the correlation structure.
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In short, the more the persistence (correlation), the smaller is the necessary data

number. In practical applications, it is of great interest to know the number of data

to have a stable value on the average. This is equivalent to saying that the variance

of the average parameter estimation must be constant. From this point, Cramer

(1946) showed theoretically for the normal independent ReV that the variance,

VI xð Þ, of the arithmetic averages for sample length n is

VI xð Þ ¼ σ2

n
ð2:1Þ

where σ2 is the unknown population variance and n is the number of data. This is

also due to the central limit theorem that the average of random samples accords in

normal PDF with mean equal to the average of the data, x, and the variance of the

averages is given as in Eq. 2.1. The square root of this expression is referred to as

the standard error, e, of estimate of arithmetic mean. If the original data come from

an independent ReV process with population mean, μ, and standard deviation, σ,
then the finite sample averages will have the same arithmetic mean with variance as

in Eq. 2.1. This means that the sample average is an unbiased estimate of the

arithmetic mean with a standard error as

e ¼ σffiffiffi
n

p ð2:2Þ

which decreases with the square root of the sample length. ReV are sampled over

various space (or time) intervals. It is necessary to take 10 (90) % standard error

(reliability, significance) level corresponding to standard deviate, x90, value from a

standard Gaussian distribution as shown in Fig. 2.8. This level separates the whole

area under the standard normal PDF into two parts as reliability and risk regions

(Şen 1998a).

It is possible to obtain a practical chart between three variables in Eq. 2.2, which

gives the relationship between the data number depending on the reliability level as

in Fig. 2.9.

Example 2.4 In an extensive area, there is an unconfined groundwater aquifer in

rather homogenous sandstone. The field tests indicated that the radius of influence

of each well is 650 m. So how many samples must be drilled such that there will not

be interference between the adjacent wells in a total region of 5 km2? For the

numerical answer, it is necessary first to calculate the area of influence for each well

as 3.14(650)2¼ 1326650 m2¼ 1.3266 km2. Now the number of wells can be found

as 5=1:3266 ¼ 3:769� 4 wells.

Example 2.5 In a region n¼ 10, well samples of electric conductivity (EC) in

μmhos/cm are recorded as given in Table 2.5. If the purpose is to find the number of

representative data for the average value, it is more than enough or more data is

necessary.
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The arithmetic average and the standard deviation of the data values are

863.1 μmhos/cm and 114.82 μmhos/cm, respectively. The samples are assumed

to have spatial independence. Find the number of data for e¼ 10%.

Since the standard deviation for the given example is 114.82 ppm, the number of

representative data can be found as about 100 with 10% standard error according

to Fig. 2.9.

2.5.2 Small Sample Length of Dependent Models

The smaller the sampling interval (distance), the more is the correlation between

nearby observations, and consequently the simple result in Eq. 2.2 cannot be applied

directly to averages of dependent series. The physical phenomena within the earth

sciences (as atmosphere) that give rise to such features are nonlinear dynamic

systems with limited predictabilities. Therefore, it is not convenient to have a very

persistent process in their systematic modeling, but rather lower-order processes

seem more convenient without any mathematical complications. For instance, Schu-

bert et al. (1992) proposed a first-orderMarkov process to provide a general picture of

the persistence-based model behaviors compared to the general circulation model

(GCM) in atmospheric sciences. First-order Markov processes have short memory of

the correlation function, and therefore, they are not sufficient in the GCM. The same

authors then attempted to improve the situation upon the statistical model by fitting

low-order univariate autoregressive integrated moving average (ARIMA) models to

the control run of the GCM. Detailed information concerning these models is

available from Box and Jenkins (1976) as a natural extension of the first-order

Markov model and they are useful in modeling atmospheric behaviors (Chu and

Karz 1985). In addition to finite sample length, the autocorrelation structure of the

process causes further source of bias (Kendall 1954; Quenouille 1956).

In order to model persistence within earth sciences ReV, herein, the ARIMA

(1,0,1) model is considered. It is the mixture of separate stochastic processes including

autoregressive and moving average models. The numbers in the argument as (1,0,1)

imply that this type of ARIMA model is composed of first-order autoregressive

(Markov) and first-order moving average processes with zero-order difference

between successive values. Generally, the model is written mathematically as follows:

xi ¼ ϕxi�1 � θεi�1 þ εi ð2:3Þ

where ϕ and θ are the autoregressive and moving average parameters, respectively,

and εi is a zero-mean independent (white noise) random variable. The

Table 2.5 EC samples

Data number 1 2 3 4 5 6 7 8 9 10

EC 770 1020 997 790 750 760 765 850 1029 900
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autocorrelation structure of the same process is presented in terms of the model

parameters as (Box and Jenkins 1976)

ρ ¼ 0

ρ1 ¼
ϕ� θð Þ 1� ϕθð Þ
1þ θ2 � 2ϕθ
� �

ρi ¼ ϕρi�1 i � 2ð Þ

ð2:4Þ

These expressions reduce to the white noise case when ϕ and θ are equal to zero, to
first-order Markov process case if θ¼ 0 and ϕ¼ ρ, and, finally, to the moving

average process for ϕ¼ 0. For this model, the variance of time averages can be

calculated by using model parameters which are the fundamental quantities related

to some statistical parameters that can be estimated from available data. In order to

illustrate this point, let us consider data smoothened using a simple arithmetic

average of length m less than record length n. Hence, the arithmetic average for

such a subsample length n is

Xn ¼ 1

n

Xn
i¼1

Xi ð2:5Þ

By taking first the square and then the expectation operator on both sides leads after

some algebra to

V Xn

� � ¼ 1

n2

Xn
i¼1

E X2
i

� �þXn
i¼1

Xn
j¼1

E XiXj

� �" #
� μ2 ð2:6Þ

Of course, it is assumed E Xið Þ ¼ μ. It is well known from mathematical statistics

that for identically distributed random variables, E X2
i

� � ¼ E S2
� �þ μ2 and E XiXj

� �
¼ E S2

� �
ρ i�jj j þ μ2 and their substitution into the last expression yield

VA Xn

� � ¼ E S2
� �
n2

nþ 2
Xn
i¼1

n� ið Þρi
" #

ð2:7Þ

The substitution of ARIMA (1,0,1) autocorrelation structure from Eq. 2.4 leads to

VA Xn

� � ¼ E S2
� �
n2

nþ 2ρ1
1� ϕð Þ2 1� ϕð Þ � 1� ϕnð Þ½ �

( )
ð2:8Þ

This expression provides a common basis for the change calculations by giving the

variance of the PDF of the ReV means for finite lengths, i.e., subsamples, from a

complete data set. For large samples (n> 30), the distribution of means converges

to a normal PDF due to the well-known central limit theorem in statistics. Square
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root of Eq. 2.8 is equal to the standard deviation of such a normal PDF. Conse-

quently, it can be used for determining whether the small sample mean value in a

given REV is significantly different from its long-term mean value, μ, supposedly
calculated from the whole record. For this purpose, the executions of the following

steps are necessary:

1. Identify the underlying stochastic or ReV model for the given earth sciences

phenomenon.

2. Find the theoretical variance of the averages by substituting the necessary model

parameters into Eq. 2.8.

3. Consider the population PDF of the given data averages as a normal PDF with

mean, μ, and standard deviation σA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VA Xn

� �q
.

4. Find the standard deviate, t, for means calculated from a given length, m, as

t ¼ Xn � μ

σA
: ð2:9Þ

5. Accept a certain level of significance, αs, and find the corresponding confidence

limit, �tc, from the standard normal PDF table given in any statistics book

(Davis 2002).

6. If t � tcj j, then the conclusion is that only sampling errors cause random

variability and there is no long-term persistence variability (change); otherwise,

the earth sciences data are affected from systematic changes due to some

atmospheric and/or environmental reasons.

For the first-order Markov process similar expressions to Eq. 2.8 can be obtained

provided that ϕ is substituted by ρ1, which leads to,

VA Xn

� � ¼ E S2
� �
n2

nþ 2ρ1
1� ρ1ð Þ2 1� ρ1ð Þ � 1� ρn

1

� �� �( )
ð2:10Þ

This expression reduces to Eq. 2.1 for ρ1 ¼ 0, which corresponds to the case of

independent model as explained in the previous section.

Generally, even for very small samples (n< 30), one can use Chebyshev

inequality which states that the probability of single value, say σA, selected at

random to deviate from μ of the PDF more than �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VA Xn

� �q
is less than or equal

to 1/K2, and it can be expressed in mathematical form as

P σA � μj j � K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VA Xn

� �q� �
� 1=K2 ð2:11Þ

This inequality yields upper and lower limits on the probability of a deviation of a

given magnitude from the mean value. Hence, it is possible to find confidence

intervals on either side of the average value.
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Example 2.6 Let us calculate 95% confidence (reliability) limits for an ARIMA

(1, 0, 1) model with model parameters ϕ¼ 0.6 and θ¼ 0.3 for a finite length data,

n¼ 15. First of all, from Eq. 2.4 one can find that ρ1¼ 0.34, the substitution of

which with other relevant values into Eq. 2.8 gives
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VA Xn

� �q
¼ 0:40σ. Confidence

level of 95% implies that 1=K2 ¼ 0:95 or K ¼ 1:026 and accordingly

K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VA Xn

� �q
¼ 0:41σ. Consequently, the confidence interval limits are μ� 0:41σ.

Finally, if the calculated square root of variance of a finite data averages with n¼ 15

lies outside of these limits, then there is trend with the possibility of ReV change. Of

course, for any desired small sample size, confidence interval limits can be calcu-

lated easily according to aforementioned procedure.

On the other hand, for the moving average case, ϕ¼ 0, and hence from Eq. 2.4,

ρ1 ¼ �θ= 1þ θ2
� �

and its substitution into Eq. 2.8 leads to

VA Xn

� � ¼ σ2

n2
n� 2 n� 1ð Þθ

1þ θ2

� �
ð2:12Þ

It is important to notice when this expression becomes identical to Eq. 2.1. On the

other hand, the well-known statistical estimate of small sample variance, S2, is
given as

S2 ¼ 1

n� 1

Xn
i¼1

Xi � X
� �2 ð2:13Þ

The existence of n–1 rather than n in the denominator of Eq. 2.13 is because of

obtaining unbiased variance estimate for independent processes. Indeed, taking the

expectation of both sides leads toE S2
� � ¼ σ2. This indicates with no hesitation that

it is possible to substitute σ2 in Eq. 2.1 by its sample estimate for independent ReV.

However, as will be shown in the following sequel, this is not true for dependent

processes. It has already been shown by Şen (1974) that for dependent processes,

E S2
� � ¼ σ2 1� 2

n n� 1ð Þ
Xn
i¼1

n� ið Þρi
" #

ð2:14Þ

where ρi represents lag-i autocorrelation coefficient. This last expression shows that
there is bias effect not only due to the finite sample length, n, but more significantly

autocorrelation structure of the ReV. Substitution of Eq. 2.4 into Eq. 2.14 leads after

some algebraic manipulations to

E S2
� � ¼ σ2 1� 2ρ1

n n� 1ð Þ
n 1� ϕð Þ � 1� ϕnð Þ

1� ϕð Þ2
" #( )

ð2:15Þ
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This expression proves that there is always an underestimation of the population

variance from a given finite data set, the amount of bias which depends on the finite

sample length, and the model parameters which govern the dependence structure. In

order to obtain an unbiased estimate of the population variance, the sample estimate

of the variance must be divided by the curly bracket term in Eq. 2.15 as explained in

detail by Şen (1974).

A common point of the equations derived above is their asymptotic con-

vergence to a common value (σ2/n) as the finite size of data n increases. In

order to define objectively a characteristic sample length for convergence, a

certain level of relative error percentage αr will be adopted and it is defined

generally as

αr ¼ 100
σ2 � E S2

� �
σ2

Hence, substitution of Eq. 2.15 into this expression leads to the most general form

of the relative error for the ARIMA (1,0,1) model as

αr ¼ 2ρ1
n n� 1ð Þ

n 1� ϕð Þ � 1� ϕnð Þ
1� ϕð Þ2

" #
� 100 ð2:16Þ

Based on this expression, the change of relative error, αr, with the sample

length n for a set of ρ1 values is presented as charts in terms of ϕ values in

Fig. 2.10.
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Fig. 2.10 Variance of average estimate relative error change with sample length (ρ1¼ 0.1).
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A close inspection shows an exponential decrease in all the charts with sample

length. Increase in ρ1 implies increase in the relative error percentage for a given

sample length. In these figures the Markov model case corresponds to the curves

where ρ1¼ϕ. These charts are useful tools in finding equivalent independent model

length for a given dependent model length provided that the relative error percent-

age is given. For instance, when 10% error level is acceptable in the first-order

Markov model small data mean variance estimation with ρ1¼ 0.3, then it is possible

to find from chart in Fig. 2.10 that after at least eight samples, the ReV will not have

dependence structure. However, for the same error level and dependence coeffi-

cient, an ARIMA (1,0,1) model requires at least 11, 16, and 48 samples for ϕ¼ 0.5,

0.7, and 0.9, respectively.

These charts can also be used as indicators whether there is a trend in a given

ReV. For example, if the underlying generating mechanism is identified through

using procedures of Box and Jenkins (1976) as an ARIMA (1, 0, 1) model with

ρ1¼ 0.5 and ϕ¼ 0.7, then the error percentage is calculated from Eq. 2.16. If this

error percentage is greater than the theoretically calculated counterpart, then there

is a possibility of trend.

Another relative error for measuring any deviation from the independent model

with no long-term systematic features can be defined by considering Eqs. 2.1 and

2.8 as

β ¼ 100
VA Xn

� �� VI Xn

� �
VA Xn

� �
This expression provides information about the necessary sample length concerning

the variance of climatic subsample averages. It is possible to write this expression

explicitly in terms of model parameters from Eqs. 2.1 and 2.8 as

β ¼ 100 1� 1

nþ 2ρ1
1�θð Þ2 1� θð Þ � 1� θnð Þ½ �

8<
:

9=
; ð2:17Þ

Finally, if the variance of short data and the variance of subsample averages are

calculated for the same sample length, then the relationship between these two

types of relative errors can be found from Eqs. 2.16 and 2.17 as

β ¼ 100 1� 1

1þ n�1
100

αr

" #
ð2:18Þ

which implies that β is equal to zero only when αr approaches to zero. Otherwise,

for any given αr, there is an implied β-type error. The graphical representation of

Eq. 2.18 is given in Fig. 2.11. If any pair of αr, β, and n values is known, then the

third one can be determined from this chart easily.
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2.6 Regional Representation

Decision-making about which model to use for spatial estimation should be based

on some simple criteria as the number of data points, variability range, arithmetic

average, standard deviation, geometrical configuration of sampling points, dis-

tances, and in general distance-regional variability. Classical parameters as the

arithmetic average, standard deviation, skewness coefficient, etc. in terms of sum-

mary statistics can be readily known by the reader, and therefore, they will not be

elaborated in this book (see Davis 2002).

2.6.1 Variability Range

In spatial analysis, the purpose is to estimate ReV at any desired point within the

study area using the measurements at a set of sampling points. Such a task will

depend not only on the internal variability at a fixed site of the variable but more

significantly on the regional scatter of sampling points and number of points.

Provided that the internal variability range does not differ more than 5% between

the maximum and the minimum data values, then one can depend on either the

arithmetic average or more specifically on the mode (the most frequently appearing

data value) as the sole representative for whole region. This method depends on any

number of data without data number specification. If the maximum and the

2
0

10

20

30

20 40
n

a
r = 0.3

f = 0.9

0.70.50.30.1

60 80

Fig. 2.11 Variance of climatic series average estimate relative error change with sample length

(ρ1¼ 0.3)
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minimum ReV values are ZM and Zm, respectively, then the range of data variability
is defined as

RZ ¼ ZM � Zm ð2:19Þ

The maximum percentage error can be defined as follows:

em ¼ 100
RZ

ZM
ð2:20Þ

If em� 5, then the regional representative value can be taken as the arithmetic

average, Z, at any point. This needs no detailed spatial modeling and it shows that

the phenomenon is not complex within the area and its behavior is more or less

homogeneous.

In order to be on a better side instead of arithmetic value, the mode, MZ, value

can be adopted. The mode is the most frequently occurring data value within the

whole record.

Whatever the case is, the regionalized variable is represented by a constant

value, and therefore, there will be deviations from this constant level, which are

the errors that could not be accounted by the constant value. Mathematically, it is

possible to suggest a procedure where the sum of square deviations (SSD) is the

minimum. Hence, if the constant level of n data values Zi i ¼ 1, 2, . . . , nð Þ is

indicated by ZC, then the SSD becomes

SSD ¼
Xn
i¼1

Zi � ZCð Þ2 ð2:21Þ

which on expansion becomes

SSD ¼
Xn
i¼1

Z2
i � 2ZC

Xn
i¼1

Zi þ nZ2
C ð2:22Þ

Since the minimum value is sought, the derivative of this last expression with

respect to ZC leads to

∂ SSDð Þ
∂ZC

¼ �2
Xn
i¼1

Zi þ 2nZC ð2:23Þ

If this is set equal to zero, then the result becomes

ZC ¼ 1

n

Xn
i¼1

Zi ð2:24Þ
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which is equal to the arithmetic average, Z. This proves that irrespective of any

practical requirement, the use of arithmetic average as a representative value for the

regionalized variable is a mathematical necessity. Further interpretation of Eq. 2.24

can be given after its explicit form as

ZC ¼ 1

n
Z1 þ 1

n
Z2 þ 1

n
Z3 þ . . .þ 1

n
Zn1 ð2:25Þ

which means that the arithmetic average is the summation of point data value

multiplied by a factor (1/n as weighting factor), which may have different

interpretations:

1. The factors may be considered as weights for each data point, and therefore, they

may represent some specific feature of the data point apart from the data point

value. For instance, weight may be the influence area of the point or some

important coefficient such as the relationship of this data value with available

points. In this latter case, the factors may be the function of correlation between

data point pairs in addition to distances. In Eq. 2.25, the factors are the same,

which implies the isotropic behavior of the regionalized phenomenon that is not

the case in natural events, and therefore, each factor is expected to be different

than others.

2. In Eq. 2.25 equivalence of factors as 1/n reminds one that if there are n data

points provided that they have equally likely future occurrence chances, the

probability of occurrence for each data value is p¼ 1/n. This corresponds to

random field case where the occurrences are completely independent from each

other, i.e., there is no regional correlation within the regionalized variable.

However, in actual situations these probabilities of occurrences are not equal.

3. Another significant point from Eq. 2.25 is that the summation of the factors or

probabilities is always equal to 1. Furthermore, the factors are in percentages.

4. Finally, each factor is distance independent, whereas in any natural phenome-

non, there are regional dependences, which may be simply expressed as inverse

distance or inverse distance square weightings without natural consideration (see

Sect. 2.6.2).

If the word “weight” is used instead of aforementioned factor or probability, then

the arithmetic average expression in Eq. 2.25 can be written for more general uses

as the weighted average as

ZC ¼
Xn
i¼1

αiZi ð2:26Þ

where αi’s are the weightings. Considering the percentage property of the

weightings, this last expression can be written in its most explicit form as follows.
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ZC ¼
Xn
i¼1

Wi

WT

	 

Zi ð2:27Þ

where Wi is the weight attached to ith data point andWT represents the total weight

as the summation of all weights:

WT ¼ W1 þW2 þ . . .þWn ð2:28Þ

with n number of data points. The weights assigned to the estimation points are

adjusted to sum to 1.0. A weighting process provides a function, which shows the

change of influence with distance in an inversely proportional functional form. The

closer are the estimation and measurement points the more is the weighting factor.

This inverse distance-squared weighting function is then scaled so that it extends

from one to zero over this distance. Equation 2.26 is in the form of linear multiple

regression, and it furnishes the basis of all the linear estimation models in spatial

analysis as will be explained in this book.

Logically, the use of mode value is preferable because it is the most frequently

occurring data value within the given set of data points. The basis of mode is

probabilistic rather than mathematical and it has the most likely probability of

occurrence. A decision is to be made between the arithmetic average and the mode

value in practical applications. If the PDF of the regionalized variable is symmetric,

then the two concepts fall on each other. Otherwise, the use of mode must be

preferable, but mathematically its calculation is not easy, and therefore, in any

statistical or mathematical modeling, invariably arithmetic average is used. The

reader should keep in mind that it yields the minimum error but does not abide with

the most frequently occurring data value. The arithmetic average value renders the

mathematical procedures into a tractable form.

2.6.2 Inverse Distance Models

As mentioned in the previous section, the general regional estimation procedure is

given in Eqs. 2.26 and 2.27. In these expressions, the most important part is the

attachment of weights. Once the weights are known, the remaining is simple

calculation of the desired value at the point of estimation. Rational and logical

procedure is straightforward, and one can conclude that as the distance, d, between

two sites increases, their effect on each other becomes meager, and hence, if only

the distance is considered without the regional variability feature of the phenom-

enon concerned, then the first rational approach suggests that the weights can be

taken as inverse distances, 1/d. However, in such an approach, very small distances

yield big weights and at zero distance it is not defined. Another path of thought is
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the gravitational force between two heavenly bodies where the attraction force is

inversely proportional with the square of distance, 1/d2. It is even possible to

generalize the inverse distance methodology as 1/dα, where α is a power parameter

assuming values greater than 1. The explicit expression used for the estimation, Ẑj
at point j according to IDP, is given as

Ẑ j ¼

XN
i¼1

1

d α
ij

Zi

XN
i¼1

1

d α
ij

ð2:29Þ

where dij is the effective separation distance between grid node j and the neighbor-

ing points i, Zi’s are the neighboring point ReV values, and α is the weighting

(smoothing) power. It is possible to derive special features from this general

expression which are well known in the literature. The last equation becomes

equal to inverse distance and inverse square distance for α¼ 1 and α¼ 2, respec-

tively. The slopes at the points used in the estimation procedure are weighted

according to the distances between the estimation node and other points. Various

inverse distance functions are presented in Fig. 2.12.

Weighting is assigned to data through the use of a weighting power that controls

how the weighting factors drop off as distance from a grid node increases. The

greater the weighting power, the less effect points far from the grid node have

during interpolation. As the power increases, the grid node value approaches the

value of the nearest point. For a smaller power, the weights are more evenly
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Fig. 2.12 Various inverse distance models
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distributed among the neighboring data points. Normally, inverse distance function

behaves as an exact interpolator but still does not take into consideration the

inherent ReV variability in the phenomenon concerned. In calculating a grid

node, the weights assigned to the data points are fractions and the sum of all the

weights is equal to 1.0 (Eq. 2.28). When a particular observation is coincident with

a grid node, the distance between that observation and the grid node is 0.0, and that

observation is given a weight of 1.0, while all other observations are given weights

of 0.0. Thus, the grid node is assigned the value of the coincident observation. Here

α is a mechanism for buffering this behavior. When one assigns a nonzero smooth-

ing parameter, no point is given an overwhelming weight so that no point is given a

weighting factor equal to 1.0.

One of the characteristics of inverse distance function is the generation of

“bull’s-eyes” surrounding the position of observations within the gridded area.

One can assign a smoothing parameter during inverse distance function to reduce

the “bull’s-eye” effect by smoothing the interpolated grid. Inverse distance function

is a very fast method for gridding. With less than 500 points, one can use all data

search types and gridding proceeds rapidly.

2.7 Subareal Partition

The whole study area may be partitioned into regular or irregular subareas each

with the same feature; hence the regional changes are considered as partially

homogeneous within each subarea. For instance, in Figs. 2.3 and 2.4 although the

subareas are in the form of regular quadrangles, sample points are located within

these subareas in a systematic or random manner. In this section, instead of points

subareas are considered in the modeling of ReV variability.

2.7.1 Triangularization

The number of data points is also important in deciding which spatial prediction

model must be adopted. No need to say that spatial variability is describable by at

least three data points, which give the shape of a triangle, and therefore, in the early

approaches before the advent of computers, triangularization method was preferred

due to its simplicity. If there are n data points, it is possible to obtain n – 2 adjacent
triangles. For instance, five sampling points (A, B, C, D, and E) in Fig. 2.13 yield to

three triangles. Each corner is a measurement station. The ReV within each triangle

may be represented as the arithmetic average of the data values at three apices. In

this manner rather than the use of arithmetic average over all the study area, it is

partitioned into triangular subareas, where the arithmetic averages are used. In this

manner, the amount of the error in the global arithmetic average usage is reduced

significantly.
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The problem in triangularization is that one point record enters more than one

subarea. The question is, is it not better to define an influence area for each subarea

separately? So that the whole study region is divided into a set of subareas with

influence of the data point.

In practice, given the scarcity of gauges and the spatial variability of ReV, for

instance, in the case of precipitation, many storms completely miss several gauges

within a drainage area. Therefore, two basic tasks must be performed, namely, the

assessment of the representativeness of point rainfall and picture derivations of

spatial patterns which reflect reality. Summer (1988) states, “In the ideal world, it

should be possible to track and then model, mathematically or statistically the

passage of a storm across an area with a great degree of accuracy and precision.

In reality, this is very difficult, and one must be content with generalized spatial

models of storm structure relating intensity or depth to storm area.” Kriging and

stochastic methods for the areal average estimation (AAE) based on the spatial

correlation coefficient are summarized by Bras and Rodriguez-Iturbe (1985). How-

ever, the use of these methods needs recordings at many stations for the results to be

reliable. Tabios and Salas (1985) compared several AAE methods with rainfall

variability and concluded that a geostatistical method (ordinary and universal)

(Kriging, Chap. 4) with spatial correlation structure is superior to Thiessen poly-

gons, polynomial interpretation, and inverse distance weighting. Hevesi

et al. (1992) suggested the use of multivariate geostatistical techniques for areal

precipitation estimation in mountainous terrain. Reliable estimates by these tech-

niques are particularly difficult when the areal coverage of stations is sparse or

when precipitation characteristics vary greatly with locations. Such situations

frequently occur in arid regions due to sporadic and haphazard meteorological

occurrences. On the other hand, Kedem et al. (1990) have shown by considering

satellite images and simple probability models that the higher the rainfall, the

smaller the affected area over large regions. All these methods require high-speed

computers, and they are not as practical as conventional procedures such as the

arithmetic average, Thiessen polygons, or isohyetal map techniques which do not

require much data (Chow 1964).

An alternative AAE calculation method is presented by Akin (1971). It is

assumed that the precipitation over the subarea varies linearly between the
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Fig. 2.13 Triangularization

52 2 Sampling and Deterministic Modeling Methods

http://dx.doi.org/10.1007/978-3-319-41758-5_4


three-corner (triangular) gauge points. Thus at any point (x, y) interior to the nth
subarea, the precipitation height Hn(x, y) is expressed as

Hn x; yð Þ ¼ αn þ βnxþ γny ð2:30Þ

where αn, βn, and γn are constants related to the gauge measurements at the corners.

It is possible to write three simultaneous equations one for each apex (i, j, k) as

Hi x; yð Þ ¼ αn þ βnxi þ γnyi
Hj x; yð Þ ¼ αn þ βnxj þ γnyj
Hk x; yð Þ ¼ αn þ βnxk þ γnyk

ð2:31Þ

The solution of constants from these equations in terms of known quantities leads to

αn ¼ aiHi þ ajHj þ akHk

� �
=2An

βn ¼ biHi þ bjHj þ bkHk

� �
=2An

γn ¼ ciHi þ cjHj þ ckHk

� �
=2An

ð2:32Þ

where

ai ¼ xjyk � xkyj
bi ¼ yj � yk
ci ¼ xk � xj

ð2:33Þ

Following a cyclic permutation of (i, j, k), the subarea An can be calculated as

follows:

An ¼ ai þ aj þ ak
� �

=2 ð2:34Þ

The differential volume of rainfall at any point within the subarea is defined as

dQ ¼ H x; yð ÞdA ð2:35Þ

so that the total volume of rainfall associated with the subarea becomes theoreti-

cally as

Qn ¼
Z Z

αn þ βnxn þ γnyn½ �dxdy ð2:36Þ

where the substitution of the above relevant expressions leads after some algebra,

finally, to the volume of rainfall for the nth subareas as

Qn ¼ An αn þ βn xi þ xj þ xk
� �

=3þ γn yi þ yj þ yk

� �
=3

h i
ð2:37Þ
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In the case of m triangular subareas, the total rainfall volume becomes

Q ¼
Xm
n¼1

Qn ð2:38Þ

and the corresponding total area is

A ¼
Xm
n¼1

An ð2:39Þ

Finally, the ratio of Eqs. 2.38 and 2.39 gives the AAE height over m subareas as

H ¼ Q

A

By means of this procedure, the AAE area and volume are easily calculated if the

gauge locations and rainfall amounts are known.

The development is analogous to some elementary concepts used in finite

element analysis techniques. Consider a region of interest with station locations

and amounts that are plotted on a map, then a series of straight lines are drawn

arbitrarily to connect every gauge points with the adjacent gauges. Straight lines are

drawn in anticlockwise direction as shown in Fig. 2.14. These straight lines should

produce a series of triangles “not necessary to have the same shape.”

Each triangle area is known as subarea and the corners of the triangles are shown

by [i, j, k]. Precipitation values at the corners are denoted as

Hi, Hj,Hk i, j, k ¼ 1, 2, . . . , nð Þ, where n is the number of subareas.

Triangularization of all the stations for the northern part of Libya is shown in

Fig. 2.15. On the other hand, Table 2.6 shows subareas for this study.

Fig. 2.14 Notations used for a triangular subarea
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Convenient software is developed to calculate the subareas, associated AAR

depths, and volumes falling on each subarea as well as the total area of interest. The

results are shown for monthly AARs in Table 2.7, while the seasonal AAR depths

and volumes are presented in Table 2.8.

These values are computed by developed software over the study area as a

summation of 37 subareas already shown in Fig. 2.15 and Table 2.8.

2.8 Polygonizations

The idea is to surround each data point with a polygonal area of influence so that the

number of points will be equal to the number of subareas. In the case of n data

points, there will be n area of influence.

Fig. 2.15 Triangular meshes for northern Libya
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Table 2.6 Values of i, j, and k for each subarea

Subareal number i j k Subareal number i j k

1 1 2 3 20 15 16 29

2 3 4 5 21 16 17 29

3 3 5 1 22 17 18 29

4 5 6 1 23 18 26 29

5 6 7 1 24 18 27 26

6 7 8 20 25 18 18 27

7 7 8 20 26 19 20 27

8 9 10 20 27 19 1 7

9 10 21 20 28 19 7 20

10 20 11 21 29 20 21 25

11 11 12 21 30 21 22 28

12 12 22 21 31 22 23 28

13 12 13 22 32 15 25 24

14 13 23 22 33 28 23 25

15 13 24 23 34 26 25 29

16 13 14 24 35 26 28 25

17 14 25 24 36 27 28 26

18 14 15 25 37 20 28 27

19 15 29 25

Table 2.7 Monthly averages of rainfall depths and volumes

Months Average depth (mm) Average volume (�106 m3)

Jan 28.2 97.400

Feb 12.7 64.889

Mar 16.2 47.684

Apr 4.4 16.564

May 5.5 19.980

Jun 0.41 1.600

Jul 0.03 0.160

Aug 0.17 0.800

Sep 2.9 9.060

Oct 7.13 23.230

Nov 15.7 39.600

Dec 28.9 112.10

Table 2.8 Seasonal averages of rainfall depths and volumes

Season Average depth (mm) Average volume (�106 m3)

Winter 72.800 274.389

Spring 26.100 84.228

Summer 0.613 2.560

Autumn 25.700 71.890
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2.8.1 Delaney, Varoni, and Thiessen Polygons

These polygonal methods are all related to each other with simple differences but

the basic logic is the same. Different names are used in different disciplines for the

same method. According to these polygon methods, the study area can be

partitioned into a set of convex polygons each containing only one measurement

point such that every point within a given polygon is closer to the measurement

point than any other measurement points. Each polygon defines the area of influ-

ence around the measurement point (Fig. 2.16). Each one of these polygons is also

called as Thiessen polygon whose boundaries define the area that is closer to each

point relative to all other points.

They are geometrically defined by the perpendicular bisectors of the lines

between all points. A Voronoi diagram is sometimes also known as a Dirichlet

(1850) tessellation with cells that are Dirichlet regions, Thiessen or Voronoi poly-

gons (Dirichlet 1850; Voronoi 1907; Thiessen 1912). On the other hand, the

Delaunay triangulation and Voronoi diagram in 2D space are dual to each other

in the graph theoretical sense. Voronoi diagrams are named after a Russian math-

ematician who defined and studied the general n-dimensional case in 1908. Voronoi

diagrams that are used in geophysics and meteorology to analyze spatially distrib-

uted data (such as rainfall measurements) are called Thiessen polygons. In clima-

tology, Voronoi diagrams are used to calculate the rainfall of an area, based on a

series of point measurements. In this usage, they are generally referred to as

Thiessen polygons.

Fig. 2.16 Polygonizations
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The Thiessen method is quick to apply because once the sub-polygons are fixed

with a set of observation points, they remain the same all the time. The only change

occurs artificially when additional observation points are added to the available set

of measurement points. It is based on the hypothesis that for each point in the area,

the best estimate of ReV is the measurement physically closest to that point. This

concept is implemented by drawing perpendicular bisectors to straight lines

connecting each two measurement stations, which yields with the consideration

of the watershed boundary a set of closed areas known as Thiessen polygons. Based

on the given measurement stations, the sub-polygons are obtained according to the

following steps:

1. Connect each station to each nearby station with a straight line. These lines

cannot cross and should connect only the nearest stations. The end product is

several triangles.

2. Each side of the triangles is then bisected with a perpendicular line, thus forming

polygons around each station.

3. Using an appropriate method, calculate the total area, A, and subareas

represented by each polygon (A1,A2, . . .,An). The number of subareas is equal

to the number of measurement locations (Eq. 2.28).

4. Calculate the areal average estimation (AAE) of ReV as ZC according to the

weighted average formulation in Eq. 2.27. In this equation, Wi’s correspond to

subarea at measurement location i with measurement Zi andWT is the total area.

Example 2.7 Consider the measurement locations A, B, C, and D as shown in

Fig. 2.17. Let the precipitation values be as 3.5 mm, 2.9 mm, 5.8 mm, and 4.2 mm,

respectively. Draw the Thiessen sub-polygons and calculate the areal average ReV

value. The total area is given as A¼ 50 km2, and after the polygon partitioning each

sub-polygon area is calculated as AA¼ 12 km2, BA¼ 17 km2, CA¼ 13 km2, and

DA¼ 8 km2.

D

A

C

B
Fig. 2.17 Thiessen

polygons
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Using Eq. 2.27, the Thiessen areal average of ReV estimation for the entire area

becomes

ZC ¼ 12� 3:5þ 17� 2:9þ 13� 5:8þ 8� 4:2

50
¼ 4:174 mm

In contrast, the simple arithmetic average of precipitations is 4.1 inches. Differ-

ences between arithmetic and Thiessen averages increase for nonuniform ReV

when the Thiessen areas differ widely. In the above given example, since the

ReV measurements are close to each other, the AAE of ReV is close to the

arithmetic average. However, if the ReV values at the same measurement locations

are 2.5 mm, 15.3 mm, 8.5 mm, and 22.9 mm, then the AAE ReV value becomes as

ZC ¼ 12� 2:5þ 17� 15:3þ 13� 8:5þ 8� 22:9

50
¼ 11:675 mm

which indicates significant difference from the arithmetic average.

Unfortunately, the most commonly used Thiessen (1912) polygon method for AAE

calculations does not consider areal precipitation amounts recorded at individual

stations in the partition of the whole catchment area into smaller polygonal subareas.

Therefore, once the polygons are obtained on the basis station location configuration,

they remain the same as long as the measurement locations do not change or there are

no additional stations. However, it is logically plausible to expect that the subareas

should change in response to the spatial variation of the phenomenon concerned. In

other words, the partition should be based not only on the measurement location

network configuration but also on the ReV measurements at each location.

2.8.2 Percentage-Weighted Polygon (PWP) Method

It is a new, simple, practical, and objective AAE method for determining the areal

average of the spatial event based on a sparse and/or irregular network of measure-

ment locations (Şen 1998b). This method takes into account ReV measurement

percentage weightings for each station and also has geometrical advantages, i.e., a

better representation of the ReV on the study area compared to the conventional

Thiessen polygon method. For instance, ReV data such as precipitation show a

considerable spatial variation over any region as explained by Huff and Neill

(1957), Stout (1960), Jackson (1972), and Summer (1988). Wilson and Atwater

(1972) suggested that this variation is due to differences in the type and scale of

precipitation-producing models, which are strongly influenced by local or regional

factors such as topography and wind direction. The AAE of the ReV over an area is

most conveniently determined from a well-sited network of measurement locations,

which show the local variations of ReV. For most areas, each measurement station

is assumed to represent a very considerable area around it. However, this is a
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restrictive and frequently invalid assumption because of the spatial variation of

ReV, especially for short distances (durations), such as during severe storms

(Summer 1988). There is no guarantee that point measurements provide reliable

estimation for immediate surrounding areas. Relief often leads to large variations in

ReV over relatively short distances. In the case of say precipitation, if upward

motion of air occurs uniformly over thousands of square kilometers, the associated

precipitation has usually light or moderate intensity and may continue for a long

time. On the other hand, convective storms accompanied by compensating down-

drafts (as best illustrated by the thunderstorm) may be extremely intense but their

areal extent and local duration are comparatively limited. In practice, given the

scarcity of gauges and the spatial variability of ReV, many stations may completely

miss measurement. Therefore, two basic tasks must be performed:

1. Assess the representativeness of point measurement.

2. Derive pictures of spatial patterns, which reflect reality.

After deciding on the triangles, the following procedure is necessary for dividing

the study area into polygons leading to the percentage weighting method. If the

precipitation values at three apices of a triangle are A, B, and C, then their

respective percentages are

pA ¼ 100A= Aþ Bþ Cð Þ ð2:40Þ
pB ¼ 100B= Aþ Bþ Cð Þ ð2:41Þ

and

pC ¼ 100C= Aþ Bþ Cð Þ; ð2:42Þ

respectively. Hence, it is possible to find the three-variable percentage data of

constant sums for each triangle. A 2D plot of three variables can be shown on a

triangular graph paper as one point (see Fig. 2.18). Such papers are very common

tools in earth sciences (Koch and Link 1971).

0

100

10
0 100

00

Fig. 2.18 The triangular

coordinate paper
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In order to demonstrate the method more explicitly, the following step-by-step

algorithm is provided which can be computerized:

1. Draw lines between each adjacent pair of precipitation stations. Hence, a set of

triangles is obtained that cover the study area.

2. For each triangle calculate the precipitation percentage at its apices according

to Eqs. 2.40, 2.41 and 2.42. Consider in each station that each apex has the

value of 100 percentages with zero percentage on the opposite side.

3. Consider bisector, which connects an apex to the midpoint of the opposite side,

and graduate it into 100 equal pieces.

4. By making use of one precipitation percentage calculated in step 2, mark it

along the convenient bisector starting from the opposite side toward the apex.

5. Draw a parallel line from this marked point in step 4 to the side opposite to the

apex considered with its precipitation percentage.

6. Repeat steps 4 and 5 for the next precipitation percentage and find similar

parallel line this time to another opposite side.

7. The intersection of these two lines defines the key point for the triangle

considered.

8. In order to check the correctness of this key point, repeat steps 4 and 5 for the

remaining third precipitation percentage value. If the parallel line to the side

crosses through the aforementioned key point, then the procedure of finding the

key point for the triangle is complete. Otherwise, there is a mistake either in

precipitation percentage calculations or in the location of marked points along

the bisectors in steps 3 through 6 inclusive.

9. Return to step 2 and repeat the process for the triangles constructed in step 1. In

this manner each triangle will have its key point. The location of this point

within the triangle depends on the percentages of recorded precipitation

amounts at the three adjacent apices. The greater the precipitation percentage

for an apex, the closer the point will lie to this apex. It is not necessary that the

triangles resulting from a given set of stations in a network should be exactly

equilateral. However, in the Thiessen method for an obtuse-angle triangle, the

intersection of the three perpendicular bisectors occurs outside the

triangular area.

10. Key points at adjacent triangles are connected with each other to form polygons

each including a single precipitation station.

11. The boundaries of polygons around the basin perimeter are defined by drawing

a perpendicular to the sides of triangles from the key points. Now, the division

of the whole basin area into subareas is complete.

The triangular or polygon methods are preferred in practice when there are

several data points about 8–10.

Example 2.8 A simple example of plotting on a triangular coordinate paper is

presented in Fig. 2.19 for an obtuse-angle triangle.

If the precipitation amounts at three apices are A¼ 12.5 cm, B¼ 20.1 cm, and

C¼ 7.4 cm, then the corresponding percentages from Eqs. 2.40, 2.41 and 2.42 are
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pA¼ 31, pB¼ 50, and pC¼ 19. In Fig. 2.19, point D on the A-A0 bisector corre-
sponds to 31% of the A-A0 length starting from A0 which lies on the B-C side of the

triangle representing zero percentage. A parallel line to side B–C is drawn from

point D. Likewise, the next percentage is considered for the precipitation amount at

apex B. The bisector B-B0 is drawn starting from point B0 on the side A–C toward

B. On the bisector, point E corresponding to 50% is depicted. A parallel line from

this point to the side AC is drawn. Finally, the intersection of these two parallels at

point F defines the “key point” for triangle ABC. The following steps are necessary

for the implementation of the PWP:

1. Three adjacent stations are considered such as in Fig. 2.19 where each apex is

coded by its longitude (XA, XB, and XC), latitude (YA, YB, and YC), and precip-

itation value (ZA, ZB, and ZC).
2. The slopes (mAB, mBC, and mCA) of triangle sides are calculated by making use

of the apices’ coordinates.
3. Determine the straight-line equations perpendicular to each of the sides but

crossing from the opposite apex by analytical formulations. First of all, the

coordinates of the projection point such as A0, and B0 of each apex on the

opposite side must be calculated. For instance, the coordinates X
0
A and Y

0
A of

point A0 can be expressed in terms of known quantities as

X0
A ¼ 1

m2
BC þ 1

m2
BC XBð Þ þ mBC YA � YBð Þ þ XA

� � ð2:43Þ

Y0
A ¼ 1

mBC
XA � X0

A

� �þ YA ð2:44Þ

where

mBC ¼ YB � YC

XB � XC
ð2:45Þ

A

F

B

E
D

C

Bisectors

Parallel to BC

Parallel to AC

A'

B'

Fig. 2.19 Subdivision of triangular area
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Similarly, the coordinates XB
0 and YB

0 of point B0 on AC side are

X0
B ¼ 1

m2
CA þ 1

m2
CA XCð Þ þ mCA YB � YCð Þ þ XB

� � ð2:46Þ

Y0
B ¼ 1

mCA
XB � X0

B

� �þ YB ð2:47Þ

where

mCA ¼ YC � YA

XC � XA
ð2:48Þ

4. The precipitation amounts (ZA, ZB, and ZC) are used in order to find points along
the perpendiculars starting from the side toward the apex which divide each one

in proportions λ1, λ2, and λ3. By use of these ratios and the previous known

quantities, the coordinates of points A00, B00, and C00 are determined. For

instance, the coordinates XA
00 and YA

00 are defined as

X
00
A ¼ X0

A þ λ1 XA � X0
A

� � ð2:49Þ
Y

00
A ¼ Y0

A þ λ2 YA � Y0
A

� � ð2:50Þ

5. On the other hand, from the precipitation measurements at the three apices of

any triangle, the total precipitation T value becomes

T ¼ ZA þ ZB þ ZC

which can be written in terms of percentages as

ZA=T þ ZB=T þ ZC=T ¼ 1:0

or

λ1 þ λ2 þ λ3 ¼ 1:0

Hence, lambda values are defined as the percentage of precipitation amounts at

the three apices of a triangle. Similarly, the coordinates of point B00 can be

written with the relevant notations as

X
00
B ¼ X0

B þ λ2 XB � X0
B

� � ð2:51Þ
Y

00
B ¼ Y0

B þ λ2 YB � Y0
B

� � ð2:52Þ
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where

λ2 ¼ ZB

ZA þ ZB þ ZC
ð2:53Þ

6. The straight lines are drawn that pass through point A00 and parallel to the BC

side of the triangle and similarly parallel to AC crossing through B00. Let these
parallel lines be D1 and D2. The equations of these lines are given as follows:

D1 ¼ mBCX þ Y
00
A00 � mBCX

00
A00

� �
ð2:54Þ

D2 ¼ mCAX þ Y
00
B00 � mCAX

00
B00

� �
ð2:55Þ

7. The intersection point of lines D1 and D2 is referred to as the “key point,” MK,

for triangle ABC. The coordinates of this key point (XK, YK) can be found by

simultaneous solution of Eqs. 2.54 and 2.55.

8. Previous steps are repeated for each triangle representing the subarea within the

whole catchment.

9. Adjacent key points are connected with each other hence constituting polygons

each enclosing a single meteorology station. The key point coordinates become

Xk ¼ 1

mCA � mBC
mCAX

00
B � mBCX

00
A

� �
� Y

00
B � Y

00
A

� �h i
ð2:56Þ

Yk ¼ mBC Xk � X
00
A

� �
þ Y

00
A ð2:57Þ

10. The area of each polygon is calculated by one of the available convenient

mathematical methods.

11. Multiplication of each polygon area by its representative station precipitation

value gives the volume of water that is gathered over this polygonal subarea.

12. Summation of these volumes for all the relevant polygons that cover the whole

catchment area gives the total water volume that falls over the catchment area.

13. Division of this total water volume by the total catchment area yields the AAE

value for the catchment.

In general, the comparison of the Thiessen and PWP methods indicates the

following significant points:

1. If triangulation of stations produces obtuse triangles, then the Thiessen method

gives bisector intersections that fall outside the triangle area. However, in the PWP

method, all the key points lie within the triangle itself. In this way the common

effect of precipitation amounts at triangle apices falls within the triangle domain.

2. In the Thiessen method, the station lies within the subareal polygon at almost

equal distances from the sides. This implies that almost equal weights are given

to precipitation amounts in the separation of polygons. On the contrary, the PWP

method produces polygon sides closer to the station depending on the relative
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magnitude of precipitation amounts between adjacent stations. This implies that

in the PWP method, the center of recorded precipitation amounts at three

neighboring stations (not the geometrical center of station locations) plays the

most significant role in the areal partition calculations.

3. The size of any closed polygon for a station in the PWPmethod is always smaller

than the corresponding Thiessen method. Hence, more refined partition of the

catchment area into subareas is obtained. This implies that more refined AAE

values result by use of the PWP method. In fact, in the PWP method, the biggest

precipitation record station results in the smallest subarea.

4. Variations in the precipitation amounts, due to some different storms, change the

polygonal partition in the PWP method, whereas Thiessen polygons remain

the same.

Example 2.9 The implementation of PWP method was applied first to spatial

precipitation data given by Wiesner (1970) and Bruce and Clark (1966) as in

Fig. 2.20, where the geometric configuration of precipitation stations is given for

the same data according to the Thiessen and PWP methods. In order to assess the

reliability of these methods, the average sum of square deviations (ASSD) from the

AAE value is calculated for each method as

ASSD ¼ 1

n

Xn
i¼1

Pi � AAEð Þ2 ð2:58Þ

Fig. 2.20 Precipitation data. a Wiesner, b Bruce and Clark

2.8 Polygonizations 65



where n is the number of stations. The results for various methods are shown in

Table 2.9.

The PWP method yields smaller AAE and ASSD values than the Thiessen

method.

As mentioned earlier, with the Thiessen method, the obtuse triangle BDF, a

perpendicular bisector intersection appears to the left of BF line (see Fig. 2.20a). By

considering precipitation amounts at stations B and F, it is not possible to expect a

value of about 4 inches. On the other hand, in the PWP method, there is no such

confusion. Wiesner (1970) has shown after completion of an isohyetal map for the

same precipitation data that the storm peak occurs within a small area around

station D in Fig. 2.20a. This is also confirmed by the PWP method as shown in

Fig. 2.20a. Again, in the same figure, the Thiessen method yields only one closed

polygon, whereas PWP provides three such polygons. Extensions of Thiessen

boundary polygons between the pairs of stations F and I and E and I suffer from

the same drawbacks in that it is not possible to have precipitation values greater

than 1.8 inches between F and I and more than 2.83 inches between E and I. Similar

general interpretations are valid also for Fig. 2.20b where there are two odd

bisectors’ intersection points which lie outside the triangles resulting from the

application of the Thiessen method. These lie to the left of line AF and below

line FE. Comparatively, even in this figure, the closed polygon from the PWP

method is smaller in size than the Thiessen case. The PWPmethod can be applied to

local or regional scales due to the following reasons:

1. The assumption that convective, intense precipitation is comparatively limited in

areal extent and duration is valid for small or regional scales. Thinking in larger

space and time scales (e.g., global and monthly), there are also broader areas

with intense precipitation, such as the large-scale convergence zones (ITCZ and

SPCZ) and the monsoon regions.

2. The limited areal extent and duration of intense convective precipitation com-

pared to stratiform, light precipitation are generally compensated by the fact that

many storms might be missed by the rain gauge network (see “Introduction”

section). So if the rain gauge network is nearly equally distributed, there is not

any reason to compensate for this a second time by reducing the areal weight of

heavier precipitation, unless there is not really an indication that intense precip-

itation is overrepresented due to the spatial distribution of the rain gauges in the

network. This might be the case in arid regions, because there are almost no

stations in desert regions However, in mountainous areas precipitation is often

Table 2.9 AAE of precipitation

Method

Wiesner data Bruce and Clark data

AAE (inches) ASSD (inches2) AAE (inches) ASSD (inches2)

Thiessen 2.67 1.34 3.10 2.54

PWP 2.45 1.15 2.50 2.37
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underestimated, because most rain gauge stations are located in valleys and do

not catch very well the heavy precipitation on the slopes or mountain peaks.

3. The proposed PWP method is very convenient in areas where the precipitation

stations are irregularly located.

Example 2.10 In order to determine the AAE of rainfall from ten different

meteorology stations, the PWP method is applied together with the other conven-

tional methods (arithmetic mean, Thiessen polygon, isohyetal map technique)

to the Southeastern Anatolia Region of Turkey (Bayraktar et al. 2005). Total

monthly rainfall values of these stations in 1993 are used and presented in

Table 2.10.

1/500 000 scaled maps are used to draw the subareas, which are measured with a

planimetry. For each method, AAR values are calculated with the help of Eq. 2.27.

Application map of Thiessen method and areal values of Thiessen polygons are

merely given in Fig. 2.21, because the key points remain the same as long as the

meteorology stations do not change. Monthly isohyetal maps are prepared for

January, April, July, and October as in Fig. 2.22.

For the same months, rainfall values and subareas are given in Fig. 2.23a–d. In

the PWP method, which is the main purpose of this study, values of rainfall and

percentage weightings are calculated for each of the three adjacent stations consti-

tuting sub-triangles.

During the application, PWP rainfall values are calculated by considering

Eqs. 2.40, 2.41 and 2.42 are used for determination of subareas. PWP method

calculations and subareal values are given in Fig. 2.23a–d. For the comparison of

different methods, all results are presented collectively in Table 2.11.

As can be seen from this application, the PWP method yields more reliable

results and smaller AAE values depending on the regional variability of the

rainfall amounts over the catchment area. For instance, in July, rainfall values

have many regional variations. This is due to the semiarid characteristics of the

study area and frequent occurrence of convective rainfalls, which are not

expected to cover large areas. It is noted that in July, Başkale station surrounding

Table 2.10 Total monthly rainfall values of stations (mm)

Stations Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Silvan 104 116 116 84 61 6 0 1 1 19 69 116

Siirt 115 107 111 106 66 9 1 0 5 48 86 102

Ahlat 64 67 79 84 62 23 9 4 15 50 68 53

Bitlis 180 156 141 107 65 19 5 3 14 58 97 130

Van 42 35 46 58 41 17 6 3 12 44 49 83

Şırnak 136 121 143 141 64 5 2 1 6 33 83 123

Başkale 47 43 69 102 100 42 20 9 16 39 43 38

Nusaybin 92 62 63 63 40 1 1 0 1 16 43 79

Şemdinli 106 155 151 195 56 9 3 4 5 77 119 97

Hakkari 102 105 125 146 57 15 3 1 10 26 76 91
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appears as the most rainfall reception area, which is represented by a subarea of

1545 km2 in the Thiessen method and by a subarea of 3140 km2 and 519 km2 in

the arithmetic mean and the isohyetal map technique, respectively. On the other

hand, it is represented by a subarea of 153 km2 when PWP method is considered.

Hence, the representation of the most rainfall intercepting meteorology station

with the smallest subarea gives rise to a smaller value of AAE for the catchment

area during convective storms. The monthly AAEs of the catchment area in this

month according to isohyetal map, Thiessen polygon, and arithmetic mean

techniques are estimated as 44%, 41%, and 54%, respectively. They are smaller

than the PWP method AAE value. The areal rainfall variability in October is

comparatively less than July because of the north polar maritime air mass

penetration into the study area which gives rise to frontal rainfall occurrences.

It is well known that the frontal rainfalls have more extensive areal coverage than

the convective rainfall types and consequently the percentages are smaller in the

PWP method calculations. This is tantamount to saying that percentage calcula-

tions from the three adjacent stations are not very different as they are in the

convective rainfall events. It is timely to state that similar effects can be expected

from the orographic rainfall occurrences to the convective rainfall types in

mountainous areas. Such distinctions cannot be considered in the Thiessen

approach, where the subareas are determined according to the geometric config-

uration of the station locations without the consideration of actually recorded

rainfall amounts at these stations. For example, in October, the AAE calculations

by using the PWP method yielded 13%, 15%, and 18% smaller values than other

three conventional methods. This is due to the lesser areal variability of rainfall in

this month than in July. Furthermore, the AAE rainfall amounts by use of the

isohyet, Thiessen and PWP methods are 12 %, 14 % and 14 %, respectively.

Fig. 2.21 Application map of Thiessen method (January, April, July, October 1993)
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As the frontal and more homogeneous type of rainfalls are recorded during a

specific period, then it is expected that the results of the PWP and Thiessen

polygon methodologies will approach to each other, provided that there are

approximate rainfall records at each meteorology station. However, in practice

the use of PWP method is recommended. In fact, whatever the circumstances are,

it is preferable to adopt PWP method since it yields almost the same result as the

Thiessen method if the conditions are satisfied as the homogeneous type of

rainfalls.

2.9 Areal Coverage Probability

A rigorous probabilistic methodology is developed on the basis of random field

concept for determining various probability of precipitation (PoP) areal coverage

probability (ACP) over a region. The necessary analytical formulations are derived

with the restrictive assumption that the precipitation occurrences at different sites

and times are independent from each other. However, the regional heterogeneity in

precipitation occurrence is exemplified by either nonidentical probability of pre-

cipitation values or nonuniform threshold levels. Finally, extreme value probabil-

ities of precipitation coverage area are formulated in their most general forms. The

probability statements derived are helpful in predicting the regional probable

potential future precipitation or drought coverage areas. The drought basic time

unit can be adopted as hour, day, week, month, or year in addition to unit area for

spatial analysis. If the basic unit is day, then each day can be labeled as “rainy” and

“non-rainy” and accordingly the calculations are performed (Şen 2008). Similarly,

in the case of regular division of an area into a set of subareas as in Fig. 2.24b, each

subunit may have either a “dry” or “wet” spell. For instance, in Fig. 2.24a, b, there

are six and nine time and subarea units, respectively.

If “dry” units are shown by black and “wet” units by white colors, then in

Fig. 2.25, there are four and five time and subareal dry units, respectively.

As the number of basic unit increases, then the “dry,” D, and “wet,” W, time and

spatial features start to become clearer as in Fig. 2.26.

In this section precipitation phenomenon is modeled as a random field where

timewise probabilities at a fixed site are referred to as the PoP and spatial

Table 2.11 AAE value for each method (mm)

Method January April July October Annual

Percentage weighting polygon 89.22 92.70 2.32 33.75 54.49

Isohyetal map 102.72 102.72 4.12 38.96 62.13

Thiessen polygon 106.30 104.30 3.94 39.74 63.57

The arithmetic average 98.76 108.49 5.00 40.97 63.31
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probabilities for a fixed time instant are ACP. The areal probability is, in fact, the

fraction of the area hit by rainfall. It does not provide a means for depicting

which of the subareas is going to be hit with precipitation event. However, it

simply represents the estimate of what the fractional coverage will
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be. Furthermore, it is clearly a conditional probability being conditioned by

whether at least one precipitation event actually occurs in the subarea during a

certain time interval.

The PoP at any desired threshold value, x0, such as standard 0.01 inches is

equivalent to the exceedance probability of this value. If the PDF of precipitation at

site i is denoted by fi(X), then the PoP, pi, at this site is

pi ¼
Z1
x0

f i Xð ÞdX

If the forecast area is thought in terms of n sample sites, then the average areal

probability p can be defined formally as

p ¼ 1

n

Xn
i¼1

pi ð2:59Þ

In the special case where the point probability is uniform over the forecast area, p is
equal to the common value of PoP. Note that since p is a lumped value, it does not,

in general, contain detailed information provided by the set of individual point

probabilities. However, if for some reason some of the subareas vary in size, then

each probability value must be percentage area weighted. It should be noted that the

areas associated with subareas need to be small enough that a single probability

value can be applied to each one.

2.9.1 Theoretical Treatment

In the most general case, none of the sites have equal PoPs which implies that the

random field is heterogeneous. It is quite likely that probabilities might vary from

place to place even within a single area. In practice, in addition to the spatial

correlation variations, the following three situations give rise to heterogeneous and

anisotropic random fields. These are:

1. Identical PDFs of precipitation at different sites but nonuniform threshold levels

2. Nonidentical PDF of precipitation at sites but uniform threshold level

3. Nonidentical PDFs at sites and nonuniform threshold levels

Let the PoP and its complementary probability at jth site within a region of n

sites be given by pj and qj, j ¼ 1, 2, : . . . , nð Þ, respectively. They are pointwise

mutually exclusive and complementary, i.e., pj þ qj ¼ 1. The ACP, P(A ¼ i)
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including i sites, can be evaluated through enumeration technique after the appli-

cation of summation and multiplication rules of probability theory. Hence,

P A ¼ ið Þ ¼ 1

i!

Xn
j1¼1

pj1
Xn
j2¼j1

pj2 : :
Xn
ji

pji

Yn
k¼1

qk

j2 6¼ j1 ji 6¼ ji�1 k 6¼ ji

ð2:60Þ

or succinctly

P A ¼ ið Þ ¼ 1

i!

Xn
j1¼1

pj1
Xn
j2¼j1

pj2� � �
Xn
ji

pji

Yn
k¼1

qk

j2 6¼ j1 ji 6¼ ji�1k 6¼ ji

ð2:61Þ

P A ¼ ið Þ ¼ 1

i!

Yn
k1¼1

Xn
jk1¼1

pjk1

0
@

1
A Yn

k2¼1

qk2

jk1 6¼ jm k2 6¼ jm
m ¼ 1, 2, : : : jkm�1

ð2:62Þ

where the multiplication of i summations in the brackets includes all the possible

combinations of i precipitation occurrences at n sites, whereas the last multiplica-

tion term corresponds to possible no-precipitation combinations. For identical

PoPs, the term in brackets simplifies to n(n�1)..(n–i+ 1)pi and the last multiplica-

tion to qn–i; hence, Eq. 2.62 reduces to

P A ¼ ið Þ ¼ n
i

	 

pi qn�i ð2:63Þ

which is actually the binomial distribution with two-stage Bernoulli trials

(Feller 1957).

This is the well-known binomial distribution with mean np and variance npq.

The probability, pA, that all the sites, hence area, are covered by precipitation at an

instant can be found from Eq. 2.62 as

pA ¼
Yn
i¼1

pi ð2:64Þ

Comparison of Eqs. 2.59 and 2.64 yields

p > pA ð2:65Þ

and accordingly

min p1, p2, :: . . . , pnð Þ < p < max p1, p2, :: . . . , pnð Þ ð2:66Þ
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The conditional probability of partial area, given a group of randomly or

systematically selected k precipitation occurrences or nonoccurrences, is of great

interest in the practical applications. The joint probability that any k1 of n sites have
significant precipitation occurrences can be defined by virtue of independence and

hence multiplication rule of the probability theory as

P X1 > x0,X2 > x0, . . . ,Xk1 > x0ð Þ ¼ pk1 ð2:67Þ

Assuming that any one of the sites is equally likely to experience a precipitation, the

conditional probability that only a certain group of i sites has precipitation can be

written as

P X1 > x0,X2 > x0, . . . ,Xk1 > x0=A ¼ ið Þ ¼ i

n

	 
k1

By definition the joint probability becomes

P X1 > x0,X2 > x0, . . . ,Xk1 > x0,A ¼ ið Þ ¼ i

n

	 
k1

P A ¼ ið Þ

The conditional ACP of precipitation can then be obtained after dividing this last

expression by Eq. 2.67 which leads to

P A ¼ i=X1 > x0,X2 > x0, . . . ,Xk1 > x0ð Þ ¼ i

np

	 
k1

P A ¼ ið Þ ð2:68Þ

Hence, in order to obtain the most general case of heterogeneous PoP’s conditional
areal coverage, it is necessary to substitute Eq. 2.62 into Eq. 2.68. On the other

hand, for homogeneously distributed PoPs, Eq. 2.68 takes its explicit form by

substitution of Eq. 2.63:

P A ¼ i=X1 > x0,X2 > x0, . . . ,Xk1 > x0ð Þ ¼ i

np

	 
k1

P A ¼ ið Þ ð2:69Þ

Since some initial information is given with certainty, the conditional probability in

Eq. 2.69 has more information content than the original unconditional distribution

in Eq. 2.63. This fact can be objectively shown by considering the variances of

PDFs in Eqs. (2.63) and (2.69) which are npq and (n–1)pq, respectively. Hence, the
conditional variance is smaller; therefore, conditional ACP is more certain. How-

ever, the unconditional areal precipitation coverage expectation from Eq. 2.63 is

equal to np, whereas the conditional coverage area expectation is greater and can be

obtained from Eq. 2.68 as np + q.
Similarly, the conditional ACP of precipitation given that a group of k2 sites

have no precipitation can be found for homogeneous PoPs as
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P A ¼ i=X1 < x0,X2 < x0, . . . ,Xk2 < x0,ð Þ ¼ n� i

nq

	 

n
i

	 

qipn�1 ð2:70Þ

Finally, the conditional ACP of precipitation given that a group of k1 sites has

precipitation and another group of k2 sites has no precipitation is obtained as

P A ¼ i=X1 > x0,X2 > x0, . . . ,Xk1 > x0,Xk1þ1
> x0,Xk1þ2 < x0, . . .Xk2 < x0,

� � ¼
i

nq

	 

n� i

np

	 

n
i

	 

qipn�1

ð2:71Þ

The probability expressions in Eqs. 2.68, 2.69, 2.70 and 2.71 can be effectively

employed to study regional precipitation occurrence patterns.

2.9.2 Extreme Value Probabilities

In practice, it is also important to know the probability of maximum and minimum

areal coverage of precipitation. The probability of maximum areal coverage, AM, of

precipitation can be found provided that the precipitation coverage area evolution

along the time axis is assumed to be independent from each other. In general, for m

time instances, the probability of maximum areal coverage of precipitation to be

less than or equal to an integer value, i, can be written as

P AM � ið Þ ¼ P A � ið Þ½ �m ð2:72Þ

where P(A � i) can be evaluated, in general, from Eq. 2.62 for heterogeneous PoPs

by employing

P A � ið Þ ¼
Xi
j¼0

P A ¼ jð Þ

The substitution of which into Eq. 2.72 leads to

P AM � ið Þ ¼
Xi
j¼1

P A ¼ jð Þ
 !" #m

However, it is a well-known fact that P AM ¼ ið Þ ¼ P AM � ið Þ � P AM � i� 1ð Þ,
and therefore, one can obtain consequently that

P AM ¼ ið Þ ¼
Xi
j¼0

n
j

	 

pjqn�j

" #m
�

Xi�1

j¼0

n
j

	 

pjqn�j

" #m
ð2:73Þ
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It is then possible to rewrite Eq. 2.73 for homogeneous PoPs from Eq. 2.63

explicitly as

P AM ¼ ið Þ ¼
Xi
j¼0

n
j

	 

pjqn�j

" #m
�

Xi�1

j¼0

n
j

	 

pjqn�j

" #m

Hence, the probability P AM ¼ nð Þ that the whole area is covered by precipitation

can be obtained from Eq. 2.70 as

P AM ¼ nð Þ ¼ 1� 1� pnð Þm ð2:74Þ

One can interpret from this expression that for small regions, the number of sites is

also small, in which case the probability in Eq. 2.74 is not zero, and there is a chance

for the whole area to be covered by precipitation. Similarly, the probability of

minimum areal coverage, Am, of precipitation can be written for homogeneous

PoPs as

P Am ¼ ið Þ ¼
Xn
j¼i

n
j

	 

pjqn�j

" #m
�

Xn
j¼iþ1

n
j

	 

pjqn�j

" #m
ð2:75Þ

2.10 Spatio-Temporal Drought Theory and Analysis

Let an agricultural land be divided intommutually exclusive subareas each with the

same spatial and temporal drought chance. The Bernoulli distribution theory can be

employed to find the extent of drought area, Ad, during a time interval, Δt. The
probability of n1 subareas stricken by drought can be written according to Bernoulli
distribution as (Feller 1957)

PΔt Ad ¼ n1ð Þ ¼ m
n1

	 

pn1r q

m�n1
r pr þ qr ¼ 1:0 ð2:76Þ

This implies that out of m possible drought-prone subareas, n1 have deficit and

hence the areal coverage of drought is equal to n1 or in percentages n1/m. For the
subsequent time Δt interval, there are (m–n1) drought-prone subareas. Assuming

that the evolution of possible deficit and surplus spells along the time axis is

independent over mutually exclusive subareas, similar to the concept in Eq. 2.76,

it is possible to write for the second time interval that

P2Δt Ad ¼ n2ð Þ ¼
Xn2
n1¼0

m
n1

	 

m� n1
n2 � n1

	 

pn1r p

n2�n1
r qm�n1

r qm�n2
r ð2:77Þ
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where n2 is the total number of drought-affected subareas during the second time

interval. By considering Eq. 2.76, this expression can be rewritten succinctly in the

form of recurrence relationship as

P2Δt Ad ¼ n2ð Þ ¼
Xn2
n1¼0

PΔt Ad ¼ n1ð ÞP Ad ¼ n2 � n1ð Þ ð2:78Þ

where P Ad ¼ n2 � n1ð Þ is the probability of additional n2 � n1ð Þ subareas to be

affected by deficit during the second time interval out of remaining (m–n1) potential
subareas from the previous time interval. With the same logic, extension of Eq. 2.78 for

any successive time interval, i, furnishes all the required drought area probabilities as

PiΔt Ad ¼ nið Þ ¼
Xni
ni�1¼0

P i�1ð ÞΔt Ad ¼ ni�1ð ÞP Ad ¼ ni � ni�1ð Þ ð2:79Þ

For i¼ 1, this expression reduces to its simplest case which does not consider time

variability of drought occurrences as presented by Şen (1980) and experimentally

on digital computers by Tase (1976). Furthermore, the probability of agricultural

drought area to be equal to or less than a specific number of subareas j can be

evaluated from Eq. 2.79 according to

PiΔt Ad � jð Þ ¼
Xj
k¼0

PiΔt Ad ¼ kð Þ ð2:80Þ

The probability of having, n
0
1, deficit subareas given that there are n1 deficit sub-

areas at the beginning of the same time interval within the whole region can be

expressed as

PΔt Ad ¼ n01 Ad ¼ n1j� � ¼ m
n1

	 

n1

n1 � n01

	 

pn1r p

n1�n0
1

t qm�n
r q

n0
1

t

or, shortly,

PΔt Ad ¼ n01 Ad ¼ n1j� � ¼ PΔt Ad ¼ n1ð Þ n1
n1 � n01

	 

p
n1�n0

1
t q

n0
1
t ð2:81Þ

It should be noted that always n1 � n01 and the difference, j ¼ n1 � n01 gives the

number of transitions. On the basis of Eq. 2.81, a general equation for the marginal

probability of observing n
0
1 deficit spells at the end of the same time interval, after

simple algebra, becomes

PΔt Ad ¼ n01
� � ¼ Xm¼n0i

k¼0

PiΔt Ad ¼ k þ n0i
� � k ¼ n0i

k

	 

pk
t q

n0i
t ð2:82Þ

78 2 Sampling and Deterministic Modeling Methods



Hence, the regional agricultural drought occurrences during the second time inter-

val follow similarly to this last expression, and generally, for the ith step, it takes the
following form:

PiΔt Ad ¼ n0i
� � ¼ Xm¼n0i

k¼0

PiΔt Ad ¼ k þ n0i
� � k þ n0i

k

	 

pk
t q

n0i
t ð2:83Þ

Its validity has been verified using digital computers. The PDFs of areal agricultural

droughts for this model are shown in Fig. 2.27 with parameters m ¼ 10, pr ¼ 0:3,
pt ¼ 0:2 and i ¼ 1,2,3,4 and 5.

The probability functions exhibit almost symmetrical forms irrespective of time

intervals although they have very small positive skewness.

Another version of the multi-seasonal model is interesting when the number of

continuously deficit subareas appears along the whole observation period. In such a

case, the probability of drought area in the first time interval can be calculated from

Eq. 2.76. At the end of the second time interval, the probability of j subareas with
two successive deficits given that already n1 subareas had SMC deficit in the

previous interval can be expressed as

P2Δt Ad ¼ j Ad ¼ n1jð Þ ¼ PΔt Ad ¼ n1ð Þ n1
j

	 

pj
t q

n1�j
t ð2:84Þ

This expression yields the probability of having n1 subareas to have deficit out of

which j subareas are hit by two deficits, i.e., there are n1 � jð Þ subareas with one

deficit. Hence, the marginal probability of continuous deficit subarea numbers is

P2Δt Ad ¼ jð Þ ¼
Xm�j

k¼0

PΔt Ad ¼ k þ jð Þ k þ j
j

	 

pj
t q

k
t
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Fig. 2.27 Probability of drought area for multi-seasonal model (m¼ 10; pr¼ 0.3; pt¼ 0.2)
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In general, for the ith time interval, it is possible to write

PiΔt Ad ¼ jð Þ ¼
Xm�j

k¼0

P i�1ð ÞΔt Ad ¼ k þ jð Þ k þ j
j

	 

pj
t q

k
t ð2:85Þ

The numerical solutions of this expression are presented in Fig. 2.28 for

m ¼ 10, pr ¼ 0:3 and pt ¼ 0:5:. The probability distribution function is positively
skewed.

2.10.1 Drought Parameters

The global assessment of model performances can be achieved on the basis of

drought parameters such as averages, i.e., expectations and variances, but for

drought predictions, the PDF expressions as derived above are significant. The

expected, i.e., average number of deficits, Ei(Ad), over a region of m subareas

during time interval, iΔt, is defined as

Ei Adð Þ ¼
Xm
k¼0

kPiΔt Ad ¼ kð Þ ð2:86Þ

Similarly, the variance, Vi(Ad), of drought-affected area is given by definition as

Vi Adð Þ ¼
Xm
k¼0

k2PiΔt Ad ¼ kð Þ � E2
i Adð Þ ð2:87Þ
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Fig. 2.28 Drought area probability for multi-seasonal model m ¼ 10; pr ¼ 0:3; pt ¼ 0:5ð Þ
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Substitution of Eq. 2.79 into Eq. 2.86 leads to drought-stricken average area within

the whole region as

Ei Adð Þ ¼ mpr
Xi�1

k¼0

qk
r ð2:88Þ

or, succinctly,

Ei Adð Þ ¼ m 1� qi
r

� � ð2:89Þ

Furthermore, the percentage of agricultural drought-stricken area, Pi
A, can be

calculated by dividing both sides by the total number of subareas, m, leading to

Pi
A ¼ 1� qi

r

� � ð2:90Þ

Figure 2.29 shows the change of drought-stricken area percentage with the number

of deficit subareas, i, for given deficit probability, qr.
For regional drought variations in the first time interval (i¼ 1), from Eq. 2.90,

P1
A ¼ pr. On the other hand, for the whole area to be covered by drought theoret-

ically, i !c 1, and therefore, P1
A ¼ 1. It is obvious that the temporal agricultural

drought percentage for a region of m subareas at any time, i, is pr � Pi
A � 1.
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Fig. 2.29 Drought percentage areal coverage
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As the probability of deficit spell in a region increases, the average drought area

attains to its maximum value in relatively shorter time as can be written from Eq. 2.90:

i ¼ Ln 1� Pi
A

� �
=Ln 1� prð Þ ð2:91Þ

Hence, this expression provides the opportunity to estimate average time period that

is required for a certain percentage of the region to be covered by drought.

Figure 2.30 indicates the change of i with pr, which is the surplus probability.

Furthermore, in practical applications the probability of deficit can be approx-

imated empirically as 1/m or preferably as 1/(m + 1). The substitution of these

conditions into Eq. 2.91 gives

i¼Ln 1� Pi
A

� �
= Ln m= mþ 1ð Þð½ � ð2:92Þ

This expression confirms that regional drought durations are affected mainly by its

size rather than its shape as was claimed by Tase and Yevjevich (1978).

The next significant regional drought parameter is the variance which is a

measure of drought variability. In general, the smaller the variance, the smaller is

the areal drought coverage percentage. The variance of the regional persistence

model can be found from Eq. 2.76 and 2.79 after some algebra as

Vi Adð Þ ¼ m 1� qt
r

� �
qt
r ð2:93Þ
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Similarly, it is better in practice to standardize this variance by dividing both sides

by the total area, m, which gives percentage variance, Pi;T
V , in the case of i subarea

coverage after T time duration:

Pi,TV ¼ 1� qi
r

� �
qT
r ð2:94Þ

Furthermore, consideration of Eq. 2.90 together with this last expression yields the

relationship between percentages of average and variance drought coverage as

Pi,T
V ¼ Pi

Aq
T
r ð2:95Þ

Figure 2.31 shows the change of regional drought variance percentage with i deficit
affected number of subareas at different times for a given deficit probability,

qr¼ 0.7.

Another application of spatio-temporal agricultural drought occurrence is pos-

sible by considering spatial deficit probability, qr, and temporal surplus probability,

pt. It is rather cumbersome to find a concise expression for the expectation of this

case at all times. However, for the first time interval,

E1 Adð Þ ¼ m 1� qrð Þ 1� ptð Þ ð2:96Þ

which exposes explicitly the contribution of the regional and temporal dry spell

effects on the average areal drought. Figure 2.32 shows drought spatial and tem-

poral average variations for given probabilities.

Finally, from the variance of the drought area coverage by simple spatio-

temporal model considerations, it is possible to derive for the first time interval that

V1 Adð Þ ¼ E1 Adð Þ qr þ ptprð Þ ð2:97Þ

The numerical solution of this expression is given for various combinations of pr
and pt in Fig. 2.33.

As a result the PDFs of regional and temporal agricultural droughts are derived

for independent dry and wet spell occurrences. Two basically different probabilistic

models are proposed for regional drought modeling. Regional drought parameter

variations are assessed graphically. The following conclusions are valid for regional

and temporal drought occurrences:

1. Drought occurrences are dependent on the regional and temporal dry and wet

spell probabilities as well as size of the region considered.

2. Drought area distribution within a region without considering temporal proba-

bilities becomes negatively skewed as its size increases. Initially, it can be

approximated by a normal distribution. For multi-seasonal model the same

distribution has an approximate normal PDF provided that continuous drought

duration is not considered. Otherwise, it is positively skewed.

3. Drought probabilities over a region are more affected by its size.
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2.11 Spatio-Temporal Modeling

Conceptual definition of dry and wet spells implies probabilistic chance combina-

tions of recurrent events. For instance, dry (wet) spell can be expressed in terms of

deficit (surplus) period of basic time intervals. In probability, statistical, and

stochastic approaches, the stationary is taken as a fundamental assumption. There-

fore, these formulations cannot be reliable in cases of nonstationary.

In regional behavior of the spells, homogeneity or heterogeneity of the areal

extent comes into view. If each subarea of the drought (flood)-stricken region has

the same chance of being dry or wet, then such an event has homogeneous features;

otherwise, heterogeneity must be considered in the modeling. From a climatic

viewpoint, dry and wet spells have frequent quasi-cyclical events, and such peri-

odicities are usually difficult to preserve in models, lack suitable explanations, and
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have rather low predictive utility. For reliable modeling heterogeneity has been

considered in this paper.

Floods and especially droughts are extensive regional covers in continental

scales. They strike not only one country but several countries or subareas (sites)

within the same country in different proportions. In literature, almost all the

theoretical studies are confined to temporal assessment with few studies concerning

areal coverage.

In order to model the coverage of occurrence patterns, the study area can be

divided into characteristically distinctive and mutual exclusive subareas on the

basis of prevailing rainfall considerations. It is not necessary that each subarea

should be equal in size. It is accepted generally that severe dry and wet spells arise

as a result of apparent chance variations of the atmospheric circulation. For

instance, dry spells are initiated always by a shortage of precipitation and many

of the traditional approaches to drought definition concentration on rainfall analysis

only (Smith 2001). Simple assessment of drought severity depends largely on the

magnitude and regional extent of precipitation deficiencies from mean climatic

conditions. Precipitation is the most easily available data than any other effective

variables. For the sake of simplicity, the precipitation will be considered as the main

variable, which gives rise to regional and temporal variations of wet and dry spells.

Figure 2.34 indicates subareas along the time axis. At initial time instant, there are

n1 dry spells, but after one time step, Δt, there are n0
1 dry spells (Şen 2014).

In regional studies, clustering of dry spells in a region is referred to as drought

area; otherwise, wet area is valid. In this section, two different regional models are

explained. The first model relies on regional dry and wet areal spell probabilities, pr
and qr, respectively. Mutually exclusiveness implies that pr þ qr ¼ 1:0. This model

assumes that once a subarea of usable land is hit by a dry spell, it remains under this

state in the subsequent time instances. Hence, as time passes, the number of dry

spell hit subareas steadily increases until the whole region is covered by drought.

Such a regional model has been referred to as regional persistence model by Şen

(1980). The application of this model is convenient for arid and semiarid regions

where long drought periods exist.

The second model takes into account the regional as well as temporal occurrence

probabilities of wet and dry spells. The probabilities of temporal precipitation

deficit (dry) pt and surplus (wet) qt occurrences are mutually exclusive,

pt þ qt ¼ 1:0. In this model, in an already drought-stricken area, subareas are

subject to temporal drought effects (dry or wet spells) in the next time interval.

This model is referred to as multi-seasonal model, because it can be applied for a

duration which may include several dry and wet periods.

Let the area be divided into m mutually exclusive subareas each with the same

spatial (homogeneous) and temporal (stationary) drought chances. The Bernoulli

distribution theory yields extend of dry area, Ad, during any time interval, Δt.
The probability of n1 subareas stricken by drought out of m subareas is given as

(Feller 1957)
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PΔt Ad ¼ n1 mjð Þ ¼ m
n1

	 

pn1qm�n1 pþ q ¼ 1:0 ð2:98Þ

By considering explanations given for Fig. 2.5 in case of heterogeneous subareal

probabilities, the general form of Eq. 2.98 is derived in this paper as

PΔt Ad ¼ n1jmð Þ ¼ 1

n1!

Xm
j1¼1

Xm
j2¼1

. . . . . .
Xm
jn1¼1

prj1prj2 :: . . . prjk

Ym
jk¼1

qrjk

j2 6¼ j1 jn1 6¼ jk jk 6¼ jl

k ¼ 1, 2, . . . : :n1 � 1 l ¼ 1, 2, . . . ::n1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n1�fold

|fflfflffl{zfflfflffl}
m�n1ð Þ�fold

ð2:99Þ

Δt

pr + qr = 1

pt + qt = 1

m sub-areas

n1 dry sub-areas

'
1n dry sub-areas

Dry

Wet

Fig. 2.34 Spatio-temporal wet and dry patter grid
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where prji is the regional probability of dry spell hit of subarea, ji. Herein, indices i
take its value according to arrangements beneath the summation and multiplication

signs.

The n1-fold summation terms imply the exhaustive alternatives of dry periods

and (m-n)-fold multiplication term is for collective wet spells at the remaining

subareas. In case of homogeneous areal probability at each site, Eq. 2.99 reduces to

Eq. 2.98. In order to verify the validity of Eq. 2.99, simple calculation procedure is

shown in the following two examples.

Example 2.11 The composition of Eq. 2.99 for m¼ 4 and n1¼ 2, for which

Eq. 2.99 reduces to

PΔt Ad ¼ 2 4jð Þ ¼ 1

2!

X4
j1¼1

X4
j2¼1

prj1prj2

Y4
j3¼1

qrj3

j2 6¼ j1 j4 6¼ jl, j2

Table 2.12 presents in detail all the necessary steps for the calculation of the final

probability from this last expression with similar calculations from Eq. 2.98 in a

comparative manner.

The summation of the terms in column V gives the right-hand side of the

previous expression except 1/2! factor. Hence, the formulation can be written

explicitly as

PΔt Ad ¼ 2 4jð Þ

¼ 1

2!

Pr1Pr2qr3qr4 þ pr1pr3qr2qr4 þ pr1pr4qr2qr3 þ pr2pr1qr3qr4 þ pr2pr3qr1qr4
þpr2pr4qr1qr3 þ pr3pr1qr2qr4 þ pr3pr2qr1qr4 þ pr3pr4qr1q3 þ pr4pr1qr2qr3
þpr4pr2qr1qr3 þ pr4pr3qr1qr2

0
@

1
A

In case of homogeneous point probabilities, this detailed expression reduces to

the following simple form:

PΔt Ad ¼ 2 4jð Þ ¼ 1

1:2
4� 3� p2q2
� � ¼ 12

2
p2q2

On the other hand, Eq. 2.98 yields

PΔt Ad ¼ 2 4jð Þ ¼ 4

2

	 

p2q4�2 ¼ 6p2q2

Hence, Eqs. 2.98 and 2.99 yield the same result in both cases, homogeneous and

heterogeneous subareal probabilities.

Example 2.12 Now let us consider the case of m¼ 6 and n1¼ 4. According to

Eq. 2.99, the corresponding formulation becomes
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PΔt Ad ¼ 4 6jð Þ ¼ 1

4!

X6
j1¼1

X6
j2¼1

X6
j3¼1

X6
j4¼1

prj1prj2prj3prj4

Y6
j5¼1

qrj5

j2 6¼ j1 j3 6¼ j1, j2 j4 6¼ j1, j2, j3 j5 6¼ jl, j2, j3, j4

which has all the terms explicitly as

PΔt Ad ¼ 4 6jð Þ ¼ 1

1:2:3:4
6� 5� 4� 3� p4q2
� � ¼ 15p4q2

On the other hand, Eq. 2.98 yields

PΔt Ad ¼ 4
��6� � ¼ 6

4

	 

p4q2 ¼ 15p4q2

It is possible to try similar calculations with different sets of p, m, and n and the

two formulations yield exactly the same results. This way is referred to induction

methodology in the mathematical literature and hence the validity of Eq. 2.98 is

confirmed.

The application of the presented methodology is presented for six precipitation

stations on the northwestern part of Turkey as shown in Fig. 2.35 within the

metropolitan boundaries of Istanbul City. These stations are distributed three and

three on the European and Asian continental parts of the city. The records at each

one of these stations are available from 1930 to 2010. In the area there are two

different types of climate patterns. In the northern parts near the Black Sea where

the mountainous areas extend, direct effect of the North Atlantic polar and maritime

air movements are effective. In the southern art along the Marmara Sea, a rather

temperate climate prevails with intrusions from the Mediterranean type of modified

climate.

Table 2.13 indicates the location, averages, standard deviations, and regional as

well as temporal dry and wet spell probabilities. Next to the international station

numbers in the first column, the local station numbers are given in the parenthesis.

In the dry and wet spell probability calculations, the annual averages are taken as

threshold level.

Figure 2.36 is the template similar to the one in Fig. 2.33, where each subarea

(site) is shown representatively by a square.

The regional and temporal dry spell probabilities are given in Fig. 2.37 for Δt
time period and the same repetition will continue for many time periods in the

future.

In order to carry out the numerical calculations, the author wrote a simple

computer program. Input values are pr and pt and number of subareas, which is

n¼ 6 in this case. Table 2.2 provides pr and pt values for these six stations in

Istanbul. Figure 2.38 is the result of the program, which shows the change of areal

drought coverage versus the cumulative probability of coverage area. It is observed
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that after the third year, the cumulative probability curve becomes a steady-state

indication that in Istanbul Region, the average drought duration is about 3 years.

This is in concurrence with the historical drought duration average which is referred

to as 2.5–3 years (Şen 2010).

Detailed calculations are shown in Table 2.14 for the cases between 1Δt and 2Δt
instances with marginal probabilities on the last column and row. Herein, subarea

numbers 0 and 6 represent none of the subareas is under dry conditions, i.e., the

whole region is covered by wet spell, whereas 6 indicates that the whole region is

under dry conditions. The values on the last row indicate the drought-hit area

probability after one time interval, which is 1 year in this work. One can calculate

the cumulative probability for any given condition. Each cell value in this table

shows conditional probability that if any subarea at the first instance is dry, then it is

also dry in the next time instant. For instance, the probability that subarea 5 is dry

given that the subarea 4 was dry initially is equal to 0.0526. If one is interested in

the probability that subarea 1 is dry irrespective of initial subareas, he/she will end

up with 0.0065.

Table 2.14 can also provide information to questions such as “if a given number

of subareas are under dry conditions initially, what is the probability that more than

this number will be under dry conditions?” Say, if three subareas are dry initially,

what is the probability that five subareas will be under dry condition after one time

interval? The answer can be found after fixing subarea 2 column in this table and by
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Fig. 2.35 Istanbul area meteorology station
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adding all the conditional probabilities in this column up to 5, inclusive. Hence, the

answer is 0.2024. The reader can enumerate similar questions and find the

corresponding answers from the same table.

The entrance of the last row probabilities into the same computer program

provides the next successive probability expositions as in Table 2.15. The last

row in this table yields the curve in Fig. 2.38 that corresponds to 3Δt.
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Fig. 2.38 Areal coverage versus cumulative probability of drought relationships

Table 2.14 Subareal probabilities between two successive time intervals

Subareas at

2Δt time

instant

Subareas at 1Δt time instant

Marginal

probability0 1 2 3 4 5 6

0 0 0.0002 0.0006 0.001 0.0008 0.0003 0 0.0029

1 0.0002 0.0019 0.0063 0.0099 0.0079 0.0031 0.0005 0.0298

2 0.0008 0.0079 0.0265 0.0415 0.0329 0.0128 0.002 0.1244

3 0.0018 0.0173 0.0578 0.0905 0.0718 0.028 0.0043 0.2715

4 0.0021 0.0206 0.0689 0.1079 0.0856 0.0334 0.0051 0.3236

5 0.0013 0.0127 0.0423 0.0663 0.0526 0.0205 0.0031 0.1988

6 0.0003 0.0031 0.0104 0.0163 0.0129 0.005 0.0008 0.0488

Marginal

probability

0.0065 0.0637 0.2128 0.3334 0.2645 0.1031 0.0158 1.0000
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Chapter 3

Point and Temporal Uncertainty Modeling

Abstract In earth sciences, there are regular data sets as time series and irregular

data sets in the forms of uncontrollable variable measurements such as floods,

droughts, earthquake occurrences, volcanic eruptions, stratigraphic thicknesses,

fractures, fissures, or ore content. The uncertainty features in both data sets require

probabilistic and statistical data processing techniques, which are the main topics of

this chapter. For this purpose, prior to any methodology, the empirical frequency

definition of various types is given, and their connections with the probability

theory are explained with examples. Subsequently, probabilistic and statistical

prediction modeling tools are presented for independent and dependent processes.

Keywords Regular and irregular data • Point modeling • Frequency • Histogram •

Temporal modeling • Dependent and independent processes

3.1 General

Our minds are preconditioned on the Euclidian geometry, and consequently, ordi-

nary human beings are bound to think in 3D spaces as length, width, and depth, but

additionally the fourth dimension is time. Hence, the scientific formulations, dif-

ferential equations, and others include space and time variability. All the earth,

environmental, and atmospheric events vary along the four dimensions. If their

changes along the time are not considered, then it is said to be frozen in time, and

therefore, an instantaneous situation remains along the time axis but the variable

has special variation in space. A good example for such a change can be considered

as geological events, which do not change with human life time span. Iron, gold,

magnesium, petroleum, and water contents of a rock mass vary rather randomly

from point to another within the rock. Another example is the measurement of

rainfall amounts at many irregularly located meteorology stations spread over an

area, i.e., simultaneous measurement of rainfall amounts; again the time is frozen

and the spatial variations are in view. Similar situation is valid for measurements

taken from a set of oil or water wells.

Any natural event evolves in the 4D space-time media within the human

visualization domain. Any record that has this property is referred to as the

spatio-temporal variation.

Z. Sen, Spatial Modeling Principles in Earth Sciences,
DOI 10.1007/978-3-319-41758-5_3
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On the other hand, there are timewise variations, which are referred to as the

temporal variations in the natural phenomenon, and their records appear as a time

series. For such a variation, it suffices to measure the event at a given location,

which is the case at oil and water well or meteorology station cases. A time series is

the systematic measurement of any natural event along the time axis at regular time

intervals. Depending on this time interval, time series is called as hourly, daily,

weekly, monthly, or annual time series.

Contrary to time variations, it is not possible to consider space series, because

the records are not kept at regular distances except in very specific cases. For

example, if water samples along a river are taken at every 1 km, then the

measurements provide an equal-distance series in the regularity sense. In fact,

distance series are very limited as if there are no such data sequences in practice.

On the other hand, depending on the interest of event, there are series as time

records but they are not time series due to irregularity or randomness in the time

intervals between successive occurrences. Flood and drought occurrences in

hydrology, earthquake, landslide, tsunami, and volcanic eruptions correspond to

such cases. One cannot know the duration between any two successive occur-

rences of these events. Likewise, in meteorology the occurrence of precipitation

or any dangerous levels of concentrations of air pollutants do not have time series

characteristics.

Since the earth sciences data have uncertainties, they appear according to

probabilistic or chaotic principles. In practical terms, probability is a percent

value that is commonly used among people almost every day. Among the probabi-

listic questions is the oil hit possibility by a drill (wet or dry), earthquake occurrence

rate (frequency) within time duration, fracture percentage along a scanline on an

outcrop, relative frequency of rainfall occurrence, etc. None of these questions can

be answered with certainty, but through the probabilistic, statistical, or stochastic

principles. It is, therefore, very significant that earth scientist data treatment should

be based on these principle concepts.

One of the most frequently used concepts in the probability calculations is the

occurrence of an event. It is defined as the collection of uncertain outcomes in the

forms of sets, classes, categories, clusters, or groups. Events might be elementary or

compound depending on the decomposition. A compound event can be decomposed

into at least two events, whereas an elementary event cannot be decomposed.

For instance, if one considers a sequence of rainy and non-rainy days, non-rainy

yesterday corresponds to a single elementary event, but non-rainy days, say, in

the last 10 days, represent a compound event, because there may be 1, 2, 3, . . ., or
10 non-rainy days. In general, what is defined as elementary or compound event

depends on the problem under consideration. Occurrence of precipitation in any day

may include different events such as rainfall or snow or hail, and therefore, it is a

compound event composed of these elementary events. If one says that the rainfall

occurs or does not occur, these are mutually exclusive complementary elementary

events. It is also possible to be interested in the amount of rainfall in addition to its

occurrence; this is then a compound event with two parts, namely, the occurrence and

the amount. For example, the flood disaster is a compound event since it must occur
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with some damages on human life and/or property. In the probability calculations,

it is preferred to decompose a compound event to underlying elementary events.

3.2 Regular Data Set

In practical studies, regular data are measurements at regular time, or space

(distance, area, or volume) intervals, and most often time series are available almost

in any discipline and abundantly in the earth sciences. In general, these data types

are measured under controllable conditions, and the person in charge can decide

about time or space intervals. In earth sciences, the following are among the regular

data sets:

1. Hydrometeorology: Daily, monthly, or annual records of meteorological vari-

ables, such as rainfall, evaporation, and relative humidity.

2. Engineering geology: Scanline measurements and fracture spacing specification

for rock quality designation calculations.

3. Geophysics: Electrical resistivity or seismic reflection measurements for sub-

surface geological prospecting.

4. Remote sensing: Pixel sizes are all in regular form so as to make the necessary

interpretations and modeling studies.

5. Earth sciences modeling: Numerical solution of relevant differential equations

by finite element approach, where the data are considered at the nodes of a mesh.

6. Earthquake: Seismogram measurements in the form of time series at a set of

regular time intervals.

7. Hydrogeology: Groundwater quality monitoring at regular time intervals.

3.3 Irregular Data Set

Generally, these are the measurements of uncontrollable variables such as floods,

droughts, earthquake occurrences, volcanic eruptions, stratigraphic thicknesses,

fractures, fissures, ore content, etc. Among the irregular data sets, one can cite the

following points in the earth sciences domain:

1. Flood occurrence times and also their magnitudes provide uncontrollable and

irregular data.

2. Droughts are creeping phenomenon and one cannot know its duration and areal

extends.

3. Earthquake epicenter locations and their depths vary from one to the next

earthquake and, hence, appear in the form of irregular data.

4. Water or oil well locations are irregularly distributed in a potential area, and

therefore, any measurement taken from each well appears in the form of

spatially irregular data.
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5. Pumping (pressure) test in water (oil) wells provides irregular data at a set of

time instances, which are rather frequent at early times but with time passage

they become rarer.

6. Fracture spacing measurements along a scanline for rock quality designation

(RQD) assessments.

7. Temporal and spatial number of particulate matter or dust in a given volume

over a certain study area.

3.4 Point Data Set Modeling

These are the set of measurements at a fixed location, and therefore, they reflect the

temporal behavior of the concerned event at the point. The well logs are also

reflections of stratigraphy at a given point. Since earth sciences events include

uncertainties, they are in the form of most often regular and rarely irregular data

types. Either type of data can be treated according to well-known frequency dia-

grams or their standard form of histograms leading to theoretical probability

distribution functions.

3.4.1 Empirical Frequency Distribution Function

The question of any set of data without any preference attachment to any one of

them can be searched whether it originates from a single phenomenon or more. This

is referred to as the population belongingness in the statistical terms. In case of a

single population origin, the shape of the distribution should have one of the

standard forms known in the statistical literature (Davis 1986).

3.4.2 Relative Frequency Definition

For categorization as mentioned in the previous subsection, certain data values or

design quantities must be considered. For instance, if a sequence of data Xi (i¼ 1,

2, . . ., n) and a design level X0 are given, then the classical frequency calculations

can be done easily. The significance of the design value is for categorization of the

given data into two parts, namely, those data values greater than the design value,

(Xi>X0) and others that are smaller. If the number of greater data values is nG, then
relative frequency, fG, can be calculated as

f G ¼ nG
n

ð3:1Þ
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Likewise, the relative frequency of the other data category being smaller than the

design value can be written as

f S ¼
nS
n

ð3:2Þ

This definition is equivalent to the empirical probability of the categories. It is

obvious that the summation of these two relative frequencies is equal to 1, because

by definition, fG+ fS¼ 1.

3.4.3 Classical Definition

This definition is based on the conceptual evolution of the phenomenon, and the

percentage or relative frequency or probability can be defined even without data

availability. Herein, again different categories of phenomenon outcomes are taken

into consideration. For instance, the question of what is the relative frequency

(probability) of major rock types (igneous, sedimentary, and weathered) in a

given study area can be answered by considering the categories on a geology

map, and the relative frequencies of igneous, fI, sedimentary, fS, and weathered,

fw, rocks are calculated. Again the summation of these three relative frequencies

add to 1 as

f I þ f S þ f W ¼ 1:0 ð3:3Þ

In general, the frequency definition of probability approaches the classical defini-

tion for very large data numbers.

3.4.4 Subjective Definition

The relative frequency (probability) is regarded as the degree of belief or quantified

judgment of an individual expert about the occurrence of different phenomologic

parts. It is possible for an expert weather forecaster, who has been working on the

weather prediction in an area for many years, that she/he can attach meaningful

percentages to the rainfall occurrences for the next few days. Hence, two individ-

uals can have different subjective probabilities (relative frequencies) for an event

without either being necessarily wrong. However, the probability suggestions of

these two individuals are close to each other. However, their suggestions depend on

their long experiences about the phenomenon concerned. Subjective relative fre-

quency (probability) does not mean that an individual is free to choose any number

and call it probability. The subjective values must be consistent and confined within

0–1 range, inclusive.
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In any data processing, the number of data that falls within a subinterval in the data

variation range is very important, since it leads to the percentage, probability, or

relative frequency of the data. In practice, the data range is divided into a number of

adjacent non-overlapping equal class lengths, and the number of data in each class is

evaluated from the given data. The following steps are necessary for such evaluations:

1. The total number of data, n, in a given time series or data series helps to decide

about the number of classes. The larger the data, the more is the class numbers.

2. If the range is divided into two equal classes, the numbers of data that fall into

these two categories, which are referred to herein as the frequency, and, in

general, are not equal. In skewed frequency distribution functions, these two

numbers are different from each other. If the frequencies in each class are n1 and
n2 (n1 6¼ n2), then it is necessary that n1 + n2¼ n.

3. If the data range, R, which is the difference between the maximum, Xmax, and

minimum, Xmin, data values, is divided into m classes, then the length, L, of each
class can be calculated as

L ¼ Xmax � Xmin

m
¼ R

m
ð3:4Þ

The sum of frequencies in each one of these classes is equal to the total number of data:

n1 þ n2 þ . . . . . .þ nm ¼ n ð3:5Þ

If each class is represented by its mid-class value, then there will be m mid-class

values as Xj ( j¼ 1, 2, . . ., m), with corresponding frequency values, nj ( j¼ 1, 2, . . .,
m). If these are plotted versus to each other on a graph as in Fig. 3.1, it is named as

the frequency distribution diagram in data-processing affairs. In this evaluation, the

key question is how to choose the number of classes, m. In practice, it is necessary

that 5<m< 15. If the data number is between 10 and 20, the class number is

adopted as 5, and for each 10 data number increase, m is increased by 1. For

instance, if n¼ 55, then according to this rule, m¼ 9. Frequency distribution

diagram is defined as the change of frequencies within the subclass midranges. It

provides visually the change of frequency within the data values. The midpoints of

each class are shown in Fig. 3.1.

Depending on the data behavior, there are different frequency diagrams in

practical applications. In Fig. 3.2, nine of them are shown.

Logically, any data set can be thought initially and simply as comprising three

different subsets, namely, “low,” “medium,” and “high.” The frequency is the

number of data in each subset. The subset can be a group, class, category, or cluster

of similar property data. This means that there is a relationship between the

categories and the number of data that falls within them. In general, as shown in

Fig. 3.2, there are nine alternatives on the basis of three categories.

The frequency distribution functions in Fig. 3.2 can be generalized by increas-

ing the number of categories. Based on the understanding on three subsets, the

reader can then generalize the frequency functions according to his/her problem
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and data at hand. Inspection of the frequency diagrams in Fig. 3.2 leads to the

following main points:

1. Some of the frequency distribution functions are symmetrical, and they imply

that the extreme “low” and “high” value occurrences are the same. Additionally,

statistical parameters, arithmetic average, mode, and median are equal to each

other in addition to skewness coefficient which is equal to zero or they may be

practically different from each other at �5% error limits.

2. Another set of frequency distribution functions are nonsymmetric, which means

that they are skewed with a positive (right skewed) or negative (left skewed)

with a skewness coefficient significantly different than zero.

3. Some of the frequency distribution functions have continuously increasing or

decreasing forms, which imply that either the frequency of categories is

“low”< “medium”< “high” or “high”> “medium”> “low.” In statistical con-

text, either mode<median<mean or mode>median>mode depending on the

right or the left skewness values, respectively.

Figure 3.3 includes different frequency distribution functions that are frequently

used in the practical applications.

Frequency functions show the change of frequencies within the subclass mid-

points. It provides visually the change of frequency within the data structure. In

Fig. 3.3e almost all class frequencies are equal and it is referred to as the uniform

frequency function. It implies completely random variation of the phenomenon

concerned. On the other hand, in Fig. 3.3f, there are two maximum frequencies,

which imply that the data originate from two distinctive phenomena. In Fig. 3.3b,

the frequency function is almost symmetrical, and this shows that the three
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parameters are equal, mode¼median¼mean. The frequency functions in

Fig. 3.3c, d are skewed to the right and left, respectively. In these two cases,

mode<median<mean and mode>median>mean, respectively.

3.4.5 Empirical Cumulative Distribution Function

If the relative frequencies in Fig. 3.3 are added cumulatively, then the cumulative

frequency diagram (CFD) is obtained as shown in Fig. 3.4.

The CFD does not decrease but increases always. If the same cumulative

procedure is applied to frequency diagrams in Fig. 3.3, then similar cumulative

frequency will emerge for each case. The benefits from the CFD are as follows:

1. The final value at the end of each CFD is equal to the number of data, n, as

already given in Eq. 3.5.

2. Any value on the vertical axis that corresponds to data value on the horizontal

axis in a CFD is the number of data that are smaller than the adopted data on the

horizontal axis.

3. It is possible to find the number of data that falls within any desired data range.

4. The data value on the horizontal axis that corresponds to n/2 on the vertical axis

is the median value of the data.

It is possible to bring the vertical axis in any frequency or cumulative frequency

diagram into a data number independent form, after dividing the frequency numbers

by the total number of data as

n1
n
þ n2

n
þ : : : :þ nm

n
¼ 1 ð3:6Þ

If each term on the left-hand side is defined as the relative frequency, fj ( j¼ 1,

2, . . ., m), then this last expression becomes

f 1 þ f 2 þ . . .þ f m ¼ 1 ð3:7Þ

n1

n1+n2

n1+n2+n3

n = n1+n2+n3+ . . . + nmn

Xmin Xmax

Cumulative frequency

Data values

Fig. 3.4 Cumulative

frequency diagrams
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The relative frequencies are also percentages or the probability values. Therefore,

their values are confined between 0 and 1. Similarly, the CFD can be converted into

a data number independent case, and it is then called as the cumulative relative

frequency diagram as show in Fig. 3.5.

This distribution function is the accumulation of the empirical relative fre-

quency function. According to the categorizations in the previous subsection

starting from the “low” category, the frequencies in the next category

(“medium”) are added, and finally, the “high” category frequencies are also

added. Since in each category there is a certain number of data, and the frequency

is equivalent to this number, the summation at the end reaches to the number, n,
of data in the original set. For instance, if the data number (frequency) in each

category “low,” “medium,” and “high” are nl, nm, and nh, respectively, then the

final number in an empirical cumulative distribution function can be expressed as

follows:

nl þ nm þ nh ¼ n

The empirical cumulative distribution function has only one shape compared to

the empirical probability distribution functions as in Fig. 3.6.

3.4.6 Histogram and Theoretical Probability Distribution
Function

Although the probability is equivalent to daily usage of percentages, the problem

in practice is how to define this percentage. For the probability definition, it is

necessary to have different categories for the same data. In any probability study,
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f1+f2+ . . . + f5

f1+f2+ . . . + f5+f6
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Data values

Cumulative relative frequency
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Fig. 3.5 Cumulative relative frequency diagrams
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the basic question is what is the percentage of data that belong to a given

category? The answer to this question can be given through the three subsections

depending on the data availability, conceptual model, enumeration, and personal

belief about the phenomenon. Any compound probability statement can be

obtained from these basic probability definitions. The conceptual understanding

of these probability statements provides logical relationship derivations among

them. Such relationships are possible in the case of at least two different events

or phenomena.

3.4.6.1 Joint Probability

Basic probability definitions are concerned with one phenomenon; however, in

practice, most often there are two or more events. The mutual consideration of

these phenomena leads to some joint probability definitions. If the two events are

shown as Xi (i¼ 1, 2, . . ., nA) and Yj ( j¼ 1, 2, . . ., nB), their joint probability, pXY,
can be defined in the light of the basic probability definitions. However, for the

probability definition, categorization level for each event is required as X0, and

Y0, respectively. Hence, each event can be categorized into two categories as

(Xi>X0) and (Xi>X0) and similarly (Yi> Y0) and (Yi> Y0). On the basis of these
four basic categories, four joint categories can be constituted as [(Xi>X0),

(Yi> Y0)], [(Xi>X0), (Yi< Y0)], [(Xi<X0), (Yi> Y0)], and [(Xi<X0), (Yi< Y0)].
Each pair represents a joint category from two different events, and hence, there

are four different types of joint categories and probability questions. For

instance, what is the joint probability of, say, [(Xi>X0), (Yi< Y0)] event? The

answer can be given according to the classical probability distribution function

definition. If nXY is the number of joint events then the joint probability definition

can be given as follows (Feller 1967)

p Xið iX0½ Þ; Yi Y0h Þð � ¼
nXYx

nX þ nY
ð3:8Þ

Cumulative frequency

Data

n

Fig. 3.6 Empirical

cumulative distribution

functions
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3.4.6.2 Conditional Probability

Its definition also requires two different sequences as in the joint probability case.

However, the question is different, as what is the probability of a categorization in

one of the events given a categorization in the other event. With the notations in the

previous subsection, what is the probability of [(Xi>X0) and (Yi<Y0)] given that

(Yi< Y0)? This is the ratio of [(Xi>X0) and (Yi< Y0)] event number to another

event, (Yi< Y0), number. In [(Xi>X0) and (Yi< Y0)] statement, the number is the

simultaneous occurrence of events (Xi>X0) and (Yi< Y0), which can be shown as

n Xið iX0½ Þ and Yi Y0h Þð �. If the number of (Yi< Y0) event is n Yi Y0h Þð , then the conditional

probability is defined as

p Xið iX½ Þ= Yi Y0h Þð �½ � ¼
n Xið iX0½ Þand Yi Y0h Þð �

n Yi Y0h Þð
ð3:9Þ

3.4.6.3 Marginal Probability

This is also based at least on two events, and the question is what percentage of a

category of an event occurs by considering the other event completely. This is

tantamount to saying that the marginal probability of (Xi>X0) category occurs

during the whole event of Y irrespective of its categories. Hence, notationally this

marginal probability can be written as

p Xið iXoÞ=Y ¼ n Xið i0Þ
nY

ð3:10Þ

3.4.6.4 Normal (Gaussian) Test

In the measurements of many uncertain events, the data had shown PDF that accords

by a normal (Gaussian) distribution. Others can be transformed into a normal form by

the application of various transformations (square root, logarithmic, etc.), if neces-

sary. Many significance tests in data processing are achieved through the normal PDF

application. Therefore, one should know the following properties of a normal PDF:

1. If the relative frequency distribution shows a symmetrical form, then the data are

said to come from a possible normal PDF. In this case skewness coefficient is

almost equal to zero.

2. In a normal PDF, there is only a single peak (mode) value, which is approxi-

mately equal to the median and the arithmetic average values.

3. A normal PDF can be represented by two parameters only, namely, the arith-

metic average and the standard deviation.

4. Majority of the data are close to the maximum frequency band around the

symmetry axis. Toward the right and left, the relative frequency of the data

decreases continuously.
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5. Theoretically, the area under a normal PDF, as in all PDFs, is equal to 1.

6. There are two extreme regions as tails on the right and left. These tails extend to

� 1 and + 1, but in practical works, the smallest and the biggest values are

finite. Mathematically, a normal distribution function is given as

f Xð Þ ¼ 1ffiffiffiffiffiffi
2π

p exp �1

2

X � μ

σ

� �2
" #

ð3:11Þ

where μ and σ2 are the arithmetic average and the variance of the data. The

geometrical exposition of this expression is given in Fig. 3.7, where μ and σ are

the arithmetic average and standard deviation parameters, respectively.

Since the area calculations from this expression are mathematically impossible,

the areas are calculated by numerical techniques and given in Table 3.1. The areas

in this table are from –1 up to the variable value, x. The subtraction of these areas
from 1 leads to significance level values. By means of this table, if the significance

level is given, then the corresponding area can be found.

In order to use this table, it is necessary that after the data confirmation with the

normal distribution, the data values must be standardized according to the following

expression:

x ¼ X � μ

σ
ð3:12Þ

where X is the given data and x is the standard data. The arithmetic average is equal

to 0 and variance to 1. For a normal distribution test, the following steps must be

executed:
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1. The data sequence must be standardized by the use of its arithmetic average and

standard deviation value. This standard variate is referred to as the test quantity.

Standardization gives rise to dimensionless data values such that they have zero

mean and unit variance. The standard normal PDF has the following form with

no explicit parameter values:

f xð Þ ¼ 1ffiffiffiffiffiffi
2π

p e�
1
2
x2 ð3:13Þ

2. It is necessary to decide about the confidence interval. For this purpose, the

significance level may be taken as 5% or in some approximate works as 10%.

3.4.7 Cumulative Probability Distribution Function

Any PDF integrated from the lower limit to the upper one leads to similar curves in

the form of S shape, which varies between zero and one (see Fig. 3.6). In practical

studies, zero and one correspond to impossible or completely deterministic events,

respectively. Hence, their consideration in the earth sciences is out of question. All

other values exclusively between zero and one are valid in any discipline that

evolves temporally or spatially randomly. Some of the cumulative distribution

functions, CDFs, corresponding to the PDFs in Fig. 3.7 are given in Fig. 3.8.

The CDF curve provides information of non-exceedance probability from the

vertical axis for a given data value on the horizontal axis. In this way, it is also

possible to know exceedance probability value also, because it is the complemen-

tary of the non-exceedance probability value. In practical terms, the probability of

non-exceedance is numerically equivalent to safety or reliability measure, whereas
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the exceedance probability value reflects the risk quantity. The PDF or CDF pro-

vides the simplest modeling in any uncertainty event involvement. In the probabi-

listic modeling, the occurrence mechanism of the phenomenon is assumed

completely independent. Such models are very important in many projects and

engineering designs against natural or artificial uncontrollable events such as

storms, floods, droughts, and earthquakes.

3.4.8 Prediction Methods

As already mentioned in the previous subsection, probability models are equivalents

of independent event predictionmodels by considering a predesigned risk or reliability

level. The following items suffice for the application of probability prediction models:

1. Data may be temporal or spatial and also regular or irregular.

2. Data sequence is ordered in ascending order from the smallest to the biggest;

hence, each data has its location within the number of given data size, say, n.
3. Obtain scatter diagram of the ordered data as in Fig. 3.9.

4. The location in the ordered sequence is referred to as the rank of the data, say it is

denoted by m.
5. Ask the question, what is the percentage (relative frequency, probability) of data

that is smaller than any data value? The answer is the number of data less than

the data considered divided by the original data size.
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3.4 Point Data Set Modeling 113



6. Since the rank, m, of each data indicates the number of data less than or equal to

this data value, then the probability of non-exceedance, Pn, (safety, reliability)

can be calculated as

Pn ¼ m

n
m ¼ 1, 2, . . . , nð Þ ð3:14Þ

As mentioned earlier certain events cannot enter the probability calculations, and

therefore, when m¼ n, then Pn¼ 1, which is not acceptable, because this definition

does not leave room for future probable occurrences. In order to alleviate this

situation, Eq. 3.14 modifies as follows:

Pn ¼ m

nþ 1
m ¼ 1, 2, : : : , nð Þ ð3:15Þ

This final definition excludes all deterministic cases out and whatever the data size

Pn can never reach 1.

6. Pn can never reach 1; big data sizes leave lesser uncertainty domain, which is

plausible, because the more the data, the better is the information about the

phenomenon and the better is the possibility to make reliable predictions.

7. The exceedance probability, Pe, (risk) based on the available data can be

calculated empirically as the subtraction of the non-exceedance probability

from 1, which gives

Pe ¼ 1� m

nþ 1
¼ n� mð Þ þ 1

nþ 1
m ¼ 1, 2, . . . , nð Þ ð3:16Þ

This expression leaves room left for the uncertainty as 1/(n+ 1), and it

approaches to zero for n!1, which is never possible in practical earth sciences

events. This is the reason why nature is bound to break records.

8. After all these discussions, one can write simply that

Pn þ Pe ¼ 1 ð3:17Þ

9. The discussions so far are based on the data availability, and the scatter diagram

is shown in Fig. 3.9. In order to generalize the scatter diagram to possible

population of available data, it is necessary to fit a theoretical PDF. The

theoretical PDF is taken as a two-parameter gamma function, and the final result

is given in Fig. 3.9. On the same, figure the shape α and scale β parameter values

are also given. This figure is based on 100 earthquake magnitude data from

different locations in Turkey (see Table 3.2).

It is possible to make prediction from this figure for the non-exceedance (safety,

reliability) probability corresponding to earthquake magnitude 6.8 from the vertical

axis as p6.8¼ 0.785.

Further information about the spatial modeling on the earthquake events can be

obtained from a paper by Şen.
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Table 3.2 Turkish earthquake data

Easting Northing Magnitude Easting Northing Magnitude

40.30 38.40 5.10 40.80 33.20 7.60

38.00 27.00 6.00 39.90 29.26 6.00

39.00 39.00 6.30 39.31 26.70 6.80

40.50 42.70 6.20 37.11 35.70 6.00

38.00 26.50 6.00 38.41 43.76 4.90

40.18 38.10 6.75 38.30 32.20 5.60

42.50 26.40 5.90 39.33 41.10 5.90

41.00 34.00 6.20 38.56 26.21 6.60

36.00 30.00 6.25 39.40 40.90 6.70

40.65 27.20 7.75 37.11 35.69 6.00

40.60 27.10 6.40 40.60 33.60 7.00

40.10 26.80 6.90 39.99 41.50 6.00

38.00 30.00 6.90 40.01 27.49 7.20

40.27 36.38 7.10 40.94 33.13 6.00

39.26 26.71 7.00 34.80 32.50 6.30

35.50 34.00 5.80 37.65 27.26 7.00

39.70 42.80 5.30 39.82 30.51 6.00

39.96 41.94 6.80 36.43 28.63 6.80

38.55 30.78 5.90 36.42 28.68 7.10

41.33 43.41 6.00 36.22 28.87 5.90

38.00 30.50 5.90 40.58 31.00 7.00

37.03 29.43 6.10 40.61 30.85 6.20

35.84 29.50 7.00 40.63 30.93 6.00

36.54 27.33 7.30 36.94 28.58 5.90

40.94 43.88 6.00 39.16 41.53 5.00

38.10 27.10 6.50 36.70 28.49 6.60

40.50 26.50 6.10 35.45 33.44 6.00

40.20 37.90 6.10 39.96 44.13 5.30

37.98 44.48 7.60 37.96 29.14 5.50

37.97 45.00 6.30 40.71 29.09 6.20

39.72 39.24 5.60 37.33 29.82 4.40

36.77 27.29 6.70 38.06 38.35 5.50

38.20 29.70 6.00 40.10 40.90 4.60

39.00 41.00 5.90 40.20 28.20 6.60

40.67 27.44 6.40 37.85 29.32 5.70

40.60 27.49 6.30 39.20 41.60 5.50

39.50 43.00 6.00 39.19 41.48 6.80

39.53 33.95 6.60 39.42 40.98 6.20

39.00 26.90 6.60 40.67 30.69 7.20

39.70 40.40 5.90 39.50 40.40 5.60

39.80 39.38 8.00 39.20 44.30 5.30

39.66 35.83 6.25 41.79 32.31 6.60

(continued)
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3.5 Temporal Data Set Modeling

Earth sciences branches data can be modeled temporally and spatially depending on

the purpose of the study or spatio-temporal models can also be developed. In each one

of these models, temporal or spatial dependences must be taken into consideration. If

data are available at regular time instances, then time series models play the best role.

3.5.1 Time Series Analysis

In earth sciences, variable measurements show randomness and they cannot be

predicted from the previous data values with certainty. This is the main problem in

modeling as to which value to adopt in the final design. In the beginning of the

twentieth century, Hazen (1924) has suggested the use of the following procedure

without the availability of any computer and even calculator. His method is random

drawing of pieces of paper mixed in a sack. If the past records of an event are

denoted as a sequence, X1, X2, . . ., Xn, it is possible to calculate its various statistical

parameters such as the arithmetic average, standard deviation, serial correlation

coefficient, empirical frequency distribution, histogram, etc. This sequence is the

naturally ordered record of measurements, and the statistical parameters are depen-

dent on the whole data, and they are valid for the record number, n. These historical

data series can be used for the construction of simple future prediction values

according to the following steps:

(a) Historical data record: There may be regular daily, monthly, or annual records of

past variable measurements or irregular data values. Let the number of records

be n.
(b) Each one of these measurements is written separately on equal size pieces of

paper. They are folded and then put into a sack.

Table 3.2 (continued)

Easting Northing Magnitude Easting Northing Magnitude

39.70 35.40 5.90 36.18 29.20 6.00

37.07 28.21 6.20 38.59 28.45 6.40

38.47 43.30 6.00 39.18 29.49 7.10

39.86 39.37 5.90 37.59 29.76 5.90

37.13 28.06 6.10 38.83 40.52 6.70

40.80 27.80 6.00 38.47 40.72 6.70

39.03 27.74 5.90 37.70 28.89 5.00

39.35 28.06 6.20 39.12 44.03 7.30

40.82 34.44 5.50 36.40 31.75 5.90

40.75 34.75 5.90 39.24 25.28 7.20

40.66 36.35 7.00 40.32 27.22 6.10

40.80 30.60 6.25 40.14 24.77 7.00

41.00 34.00 7.60 40.33 42.18 6.90
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(c) These pieces of paper are drawn one after each other, and hence a new time

series is constructed of the same duration with the same data values but at

random times.

(d) After each drawing, the papers are either returned to the sack or not. In the former

case, it is possible to generate sequences as long as desired. However, in the latter,

the maximum length of the synthetic data can be equal to the length of the original

data. After the completion of generation, whole papers are returned back into the

sack, and likewise another sequence of random numbers can be generated.

After the completion of such a generation procedure, the input sequences are

treated for the assessment of decision or design quantity. For instance, if the

sequences are water discharge values, the necessary decision can be reached

provided that the demand level is known. It is possible to decide about the water

sufficiency or insufficiency over time durations. In the cases of insufficiency,

additional water is withdrawn from other water storages.

The sequences obtained by this deterministic-uncertain method can be referred

to as time series variable synthetic sequences, because data values are the same as in

the measurement series. All these synthetic sequences have the following points in

common:

1. Each synthetic sequence has the same arithmetic average as the original

sequence.

2. Each synthetic sequence has the same variance and the standard deviation as the

original sequence.

3. Other statistical parameters (mode, median, skewness, kurtosis, etc.) are also the

same in addition to the relative frequencies, hence, the probability distribution

function of the data variable.

4. The major assumption in such a withdrawal system is that each one of the

generated sequence is regarded as independent from others. Each one of the

generated sequence has its own serial correlation coefficients that are different

from each other. The general procedural task of this deterministic-uncertain

methodology is shown in Fig. 3.10.

3.5.1.1 Independent Process

If the successive observations are independent, then there are two simple and

complementary events and their probabilities, namely, the probability of occur-

rence, p ¼ P x > Qð Þ, and nonoccurrence, q ¼ 1� p ¼ P x � Qð Þ, from which it is

possible to evaluate various probabilities of any compound event of the phenom-

enon considered. In an independent process case, the safety, S, can be defined as the
multiplication of n probability of non-exceedance, where n is the time series

duration considered. In general, S is given as a compound event, and in terms of

the simple event probabilities, it becomes

S ¼ qn ð3:18Þ

3.5 Temporal Data Set Modeling 117



The corresponding risk, R, is the complementary probability as

R ¼ 1� qn ð3:19aÞ

Equation 3.18 yields to a set of curves as in Fig. 3.11. This graph is very useful in

practical applications of systems design in calculating the probability of

nonoccurrence of design variate, D, given the level of safety and the expected

life, n, of the project.
For instance, if the planner is interested in designing his project for n¼ 10 years

with 90% safety, that is to say, in the long run the project will not fail 90% of the

time, then from Fig. 3.11, q¼ 0.98 is obtained; hence, the probability of occurrence

is p¼ 0.02. The planner may be able to find the magnitude of design variate by

adopting a suitable PDF to data at hand with p¼ 0.02. For example, if the adopted

PDF is normal, then the standard design variate corresponding to p¼ 0.02 is

xffi 2.0537, whereas the actual design variate can be found as

Sack
Discharge 

Historical record Historical data value 
withdrawals (random 

time series)
Synthetic series 

Fig. 3.10 Deterministic-uncertain method sequences
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Q ¼ μþ xσ ð3:19bÞ

where μ and σ are the mean and standard deviation of the available time series.

Thus, the resulting design variate is safe at 99% level.

On the other hand, if the expected life of the project is to be confined, say, to

20 years with q¼ 0.99, then the safety can be found from Fig. 3.11 as 80%. Hence,

as expected, project life increases as safety of the design decreases. This is logical,

since as the project life increases, the probability for exceedance of design variate

also increases.

Sometimes, it is desirable to know the safety of an already existing engineering

structure. For instance, if the structure has been designed originally for an expected

life of n¼ 30 years with q¼ 0.99, after its completion, the calculated safety will be

73.9%. If the design value has not been exceeded, say for 20 years, then the safety

of the same structure for the remaining 10 years will be 90.0% which is consider-

ably greater than the original safety. An important conclusion is that as the number

of years without any hazard increases, the safety of structure will improve reducing

the risk.

Probabilistic Modeling

In the design of any hydraulic structure such as dams, the lifetime is adopted for the

maximum flood occurrence as 25 years, 50 years, 100 years, 500 years, or

1000 years. In the flood calculation by the probability method, there are two

different approaches. The first one is theoretical, whereas the second approach is

empirical. In the empirical approach, the floods are assumed to originate from the

same population in an independent manner. For this purpose, the maximum floods

of each year must be recorded. In order to attach probability value to each flood

discharge, the historical flood records must be ranked in the ascending order. If

there are n years, in such a ranking, there will be n measurements ordered in

ascending sequence. Starting from the smallest flood discharge, the ranks are

attached to each one in ascending order as 1, 2, 3, . . ., n. Hence, the smallest

flood discharge has its rank as 1 and the greatest one as n. By considering the

number of measurements and the order, each flood discharge can be given a certain

probability value according to the Weibull formulation as

Pn Q > QTð Þ ¼ m

nþ 1
ð3:20Þ

According to this formulation, the probability of exceedance is big for small

discharges and vice versa. The probability of exceedance is also referred to as the

risk level. In Fig. 3.12 the relationship is given between the exceedance probability

and the time series record values.

After the fitting of a straight line to the scatter of points on the risk-rank

coordinate system, it provides the ability to extend the straight line along the big
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and small discharge domains, and hence one can estimate the risk for any given

design discharge and vice versa.

Flood frequency analysis is the name of this procedure in assessing the flood

estimations in engineering projects. There are different theoretical probability

distribution functions for such an assessment as Gumbel, gamma, lognormal,

Pearson, and other functions.

Statistical Modeling

Statistics is concerned with a set of parameters of a given data set and also any

model in the form of mathematical expressions and their parameter values. Statis-

tics is the branch of mathematics, where reliable and significant relationships are

sought among different causative and the consequent variables. As for the statistical

uncertainties of parameters are concerned, they appear either as random variations

or in the biased forms of the statistical parameters. Model parameters such as the

intercept and slope values of any simple regression line are determined depending

on a given sample of finite length. As the sample length increases, the reliability in

the parameter estimations also increases.

This procedure is more developed than the previous one, and instead of using the

same data values in synthetic sequence generation, the relative frequency distribu-

tion of the measured data is adopted. This histogram is then fitted with the most

convenient theoretical PDF. This time the data are not drawn from the sack with

historical data, but the synthetic sequence values are drawn from the theoretical

PDF. This approach yields synthetic sequences that have in the long run almost the
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same statistical parameters but it also brings the contribution of the extreme values

into the generation procedure which is not possible with the deterministic-

uncertainty method (Fig. 3.10). The fitting of a theoretical PDF to the relative

histogram of the data can be achieved through the Chi-square test (Benjamin and

Cornell 1970). The statistical synthetic time series generation basic steps are shown

collectively in Fig. 3.13.

It is considered that the sequence of class intervals is the same at each time

instant as shown in Fig. 3.13, but there are transition probabilities or relative

frequencies also from one class interval at, say, t instant to t+ 1 instant. Hence, if

there is m classes intervals, there will be m class interval relative frequencies, which

are referred to herein as the state probabilities. Furthermore, there are mxm

interclass interval transition probabilities, i.e., relative joint frequencies. Hence

instead of the statistical parameters, the state and transition probabilities are used

in the modeling of a given time series. These models are known in the literature as

the Markov chain models. Their application requires the following steps:

(a) The histogram of the time series variable is obtained.

(b) Histogram implies that the state variables in each class interval are already

calculated.

(c) The calculation of transition relative frequencies requires consideration of two

successive time instances. As stated before, m intervals imply mxm transition

probabilities, which can be considered in the form of a matrix, where rows are

for time instant t and columns for t – 1. Such a matrix is called as the transition

probability matrix. The transition from state, say, si at time t, to state, sj at time

t�s, is the same as the transition from state sj at time t – 1 to si at time t, and the
transition matrix will have a diagonal symmetric form. Hence, m m� 1ð Þ=2
transition probabilities are necessary for the construction of the transition

probability matrix. The transition probabilities along the major diagonal are

all equal to 1, because they represent the transition from a state to itself. The

state and its transition matrix provide the basis of future phenomenon predic-

tion. This procedure is presented schematically in Fig. 3.14.

Frequency

Random generators 
(Probability and 

stochastic processes)

Discharge 

Historical records

Synthetic series

Fig. 3.13 Basic stages in the statistical generation procedure
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If the number of states is equal to n, then the transition probability matrix

appears in the following form:

PT ¼

p11 p12 p13 p14 : : : : : p1n
p21 p22 p23 p24 : : : : : p2n
p31 p32 p33 p34 : : : : : p3n
p41 p42 p43 p44 : : : : : p4n
: : : : : : : : : :
: : : : : : : : : :
: : : : : : : : : :
: : : : : : : : : :
: : : : : : : : : :
pn1 pn2 pn3 pn4 : : : : : pnn

2
666666666666664

3
777777777777775

3.5.1.2 Dependent Processes

The general form of these processes has a deterministic functional form, fD(.), in
addition to the random function, fR(.), as follows:

Xt ¼ f D Xt�1,Xt�2,Xt�3, : :Xt�kð Þ þ f R εtð Þ ð3:21Þ

If the implicit deterministic function is explicitly written in the linear term sum-

mation form, Eq. 3.21 takes the following form:

Xt ¼ a1Xt�1 þ a2Xt�2 þ a3Xt�3, þ . . .þ akXt�k þ εt ð3:22Þ

where ai (i¼ 1, 2, . . ., k) are the model parameters. Since the current value is a

linear function of k previous values, this is referred to as lag-k Markov process. Its

t t + 1

si

sj

Fig. 3.14 State and

transition probabilities
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simplest form appears when k¼ 1, and this is the lag-1 or first-order Markov

process as

Xt ¼ a1Xt�1 þ εt ð3:23Þ

This is a single parameter model, which can be written in terms of given data

statistical parameters of arithmetic mean, μ, standard deviation, σ, and the serial

correlation function, ρ, as

Xt � μð Þ ¼ Xt�1 � μð Þ þ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
εt ð3:24Þ

After the division of both sides by standard deviation, the model takes the standard

form as,

xt ¼ xt�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
εt ð3:25Þ

Herein, xt, xt-1, and ε1 have zero arithmetic average and unit variance; and ε1 has
independent (serial correlation zero) normal PDF variable. The serial correlation

coefficient is estimated according to the Pearson correlation coefficient definition

(Benjamin and Cornell 1970).

Markov processes are also known as autoregressive (AR) models because the

deterministic part is in the form additive summations with parameters that can be

calculated through the regression procedure.

3.5.1.3 Autoregressive Integrated Moving-Average (ARIMA)

Processes

These have both the deterministic and error terms together. Its difference from the

Markov processes is that the error term is not only a single value but should have at

least two error terms. Hence, these models are a transition between the Markov and

moving-average models. Another property of the ARIMA processes is that they are

used for successive differences of the measured historical data.

Besides, the ARIMA (1,0,1) processes are capable for representing long memory

effects in natural phenomenon. In general, two subsequent values, Zi and Zi-1, of the
phenomena concerned are related recursively to each other as

Zi ¼ ϕZi�1 þ εi � θεi�1 ð3:26Þ

in which ϕ and θ are model parameters and εi0s are random variables with Gaussian

distribution. Notice that for ϕ¼ 0 Eq. 3.26 yields MA process, and when θ¼ 0, it

reduces to an AR process which is commonly known as a first-order Markov

process, and, finally, if ϕ¼ θ¼ 0, then the resulting process is purely random

which is usually referred to as white noise, i.e., IP. In the case of AR process,

ϕ¼ ρ1 where ρ1 is the lag-one autocorrelation coefficient of this process. A

common property in all of these processes is that they are stationary. Last but not
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least, when ϕ¼ 1 and θ¼ 0 Eq. 3.26 leads to random increments, Zi�Zi-1¼ εi,
which is known as either random walk or Brownian motion process. As stated by

Jenkins and Watt (1968), this process is nonstationary in both the mean and the

variance.

The autocorrelation structure of ARIMA (1,0,1) process is given in terms of ϕ
and θ by Box and Jenkins (1970) explicitly as

ρ0 ¼ 1

ρ1 ¼
ϕ� θð Þ 1� ϕθð Þ
1þ θ2 � 2ϕθ

ρi ¼ ϕρi�1 i > 1ð Þ
ð3:27Þ

in which ρ0 and ρi are the lag-zero and lag-i autocorrelation coefficients.

3.5.1.4 Moving-Average Processes

If the deterministic part in Eq. 3.21 is not considered, then the explicit form of the

stochastic process will be as

Xt ¼ f R εt, εt�1, εt�2, . . . εt�mð Þ ð3:28Þ

This is the general form and again its explicit expression can be thought as a linear

formulation as

Xt ¼ b1εt þ b2εt�1 þ b3εt�2, . . . bmεt�m ð3:29Þ

which means that the data value is composed of independent random error term

combination at different previous times. The parameters bi (i¼ 1, 2, . . ., m) show
the contribution of each error on the data value. In general, this is an mth order

moving-average stochastic model. Its simplest form is a first-order moving-average

stochastic process which is referred to as the independent process or white noise

stochastic process which can be expressed as

Xt ¼ b1εt ð3:30Þ

3.6 Empirical Correlation Function

Correlation coefficients are useful in the determination of the relationship strength

between two time series. In a time series, the successive values might affect each

other with significant dependence. For instance, an event of today might be affected

at least partially yesterday’s event occurrence. In general, high rainfall values
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follow high values, and low values follow low values. This statement indicates that,

so far as the event occurrences and successive values are concerned, there are

successive relationships to a certain extent. Even a nonspecialist can feel such

dependences through experience.

In mathematics, when two variables are related with each other, their variation

on a Cartesian coordinate system does not appear as a horizontal or vertical line, but

rather a line with a linear trend and slope or as a curve with many tangential slopes.

The simplest form of dependence is of the linear type, which is used in the statistical

or stochastic modeling works. For instance, ρ in Eq. 3.25 is of this linear type.

If there is one time series such as X1, X2, . . ., Xn, then two time series can be

generated from it so that they can be plotted against each other on a Cartesian

system. In order to achieve this, the original time series is shifted, say for instance

lag-one, and the two concurrent series are obtained as follows:

X1,X2,X3, ::::::::::,Xn

X2,X3,X4, ::::::::,Xn�1

In each series there are n� 1 corresponding points. The scatter diagram of these two

time series gives rise to n – 1 point on the Cartesian coordinate system as shown in

Fig. 3.15.

If straight line appears through the points, then it is possible to conclude that

there is dependence between the two time series, otherwise they are independent.

The most suitable straight line matched through these scatter points gives the

dependence measurement as its trend slope. The more the deviation of the slope

from 45�, the smaller is the dependence. In Fig. 3.16 an independent scatter diagram

is shown.

It is possible to make test with the correlation coefficient. In the statistical

literature, this is known as Wald-Wolfowitz test. In this nonparametric test, stan-

dard data series is used and for this purpose, first of all, the average, μ, and the

standard deviation, σ, of the given time series are calculated, and then the given

time series is standardized according to Eq. 3.12. Subsequently the Pearson corre-

lation coefficient, ρ, is calculated according to the following formulation:

ρ ¼ 1

n� 1

Xn�1

i¼1

xixiþ1 ð3:31Þ

The correlation coefficient takes values between �1 and +1. The closer the coef-

ficient to zero, the more random, i.e., independent, is the internal structure of the

time series; otherwise, close values to +1 imply positively strong or �1 negatively

strong correlations. Positive (negative) correlation means direct (inverse) propor-

tionality. In the case of positive dependence, high (low) values follow high (low)

values, whereas in the case of negative dependence, high (low) values follow low

(high) values. The dependence that is calculated through Eq. 3.31 is the serial

correlation or autocorrelation coefficient. Similar to lag-one, lag-two or more lags
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can also be calculated simply for a given time series. Hence, in general lag-k

(in practice, care must be taken such that k � n/3) can be calculated similar to

Eq. 3.31 as

ρk ¼
1

n� k

Xn�k

i¼1

xixi�k ð3:32Þ

The qualitative linguistic interpretations of the numerical correlation coefficient

values are presented in Table 3.3.
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Fig. 3.15 Dependence scatter diagrams. (a) Directly proportional. (b) Inversely proportional
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The empirical serial correlation coefficient is regarded as distributed according

to a normal (Gaussian) PDF by Anderson (1942) with zero mean and variance equal

to the inverse of (n�1). Hence, with these parameters, the significance of the

empirical correlation coefficient can be tested by a single-tail normal PDF.
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Table 3.3 Correlation coefficient numerical and linguistic interpretations

Numerical value intervals Linguistic interpretations

ρ¼�1.0 Perfect negative dependence

�1.0< ρ<�0.9 Strong negative dependence

�0.9< ρ<�0.7 Quite negative dependence

�0.7< ρ<�0.5 Weak negative dependence

�0.5< ρ<�0.3 Very weak negative dependence

�0.3< ρ<�0.1 Insignificant negative dependence

ρ¼ 0.0 Complete independence

0.1< ρ< 0.3 Insignificant positive dependence

0.3< ρ< 0.5 Very weak positive dependence

0.5< ρ< 0.7 Weak positive dependence

0.7< ρ< 0.9 Strong positive dependence

ρ¼ 1.0 Perfect positive dependence
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Chapter 4

Classical Spatial Variation Models

Abstract Men have tried to model spatial behavior of the natural phenomena since

a long time with initiative simple models such as the weighting functions, which are

supposed to represent regional dependence structure of the phenomenon concerned.

Unfortunately, commonly employed weighting functions are not actual data depen-

dent, and hence they are applicable invariably in each spatial prediction, which is

not convenient since each spatial phenomenon will have its own spatial dependence

function. Spatial data distribution can be uniform, randomly uniform, homoge-

neous, isotropic, clustering, etc. which should be tested by a convenient test as

described in the text. Besides, statistically it is also possible to depict the spatial

variation through trend surface fit methods by using least squares technique. Finally

in this chapter, adaptive least squares techniques are suggested in the form of

Kalman filter for spatial estimation.

Keywords Cluster sampling • Data group • Geometric weights • Kalman filter •

Nearest neighbor • Random field • Spatial pattern • Trend surface • Uniformity test

4.1 General

The spatial nature of earth sciences phenomena expelled the researchers to explore

spatial statistical procedures, whereas the classical statistics remained at the service

as usual. In general, any phenomenon with spatial variations is referred to as the

ReV by Matheron (1963). ReV fall between the random fields where the spatial

variations have independence and the deterministic variability depending on the

spatial correlation value. The most significant methodologies of the spatial analysis

is Kriging, which is discussed in Chap. 5, but prior to their development, earth

scientists were using different empirical and geometrical rational approaches in

assessing the ReV. Hence, in this chapter these rather preliminary and simple but

effective methods will be discussed with their drawbacks. The trend surface

analysis that is an offshoot of statistical regression Kriging is related to time series

analysis, and contouring is an extension of interpolation procedures.
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4.2 Spatiotemporal Characteristics

Our minds are preconditioned on the Euclidean geometry, and consequently,

ordinary human beings are bound to think in 3D space as length, width, and

depth in addition to the time as the fourth dimension. Hence, all the scientific

formulations including differential equations and others include space and time

variability. Earth, environmental, and atmospheric variables vary along these four

dimensions. If their changes along the time are not considered, then it is frozen in

time, and therefore, a steady situation remains along the time axis but ReV in

concern has variations in the space. A good example for such a change can be

considered as geological events, which do not change appreciably during human

lifetime. For instance, iron content of a rock mass varies rather randomly from a

point to another within the rock mass, and hence spatial variation is considered.

Another example is the measurement of rainfall amounts at many irregularly

located meteorology stations spread over an area, i.e., simultaneous measurement

of rainfall amounts, and again the time is kept constant and the spatial variations are

sought.

On the other hand, there are time variations, which are referred to as the temporal

variations in the natural phenomenon. For such a variation, it suffices to measure

the event at a given location, which is the case in any meteorology station or in

groundwater wells. Depending on the time evolution of the event whether it is

continuous or not, time series records can be obtained. A time series is the

systematic measurement of any natural event along the time axis at regular time

intervals. Depending on this time interval, time series is called as hourly, daily,

weekly, monthly, or yearly time series.

Contrary to time variations, it is not possible to consider space series where the

records are kept at regular distances except in very specific cases. For example, if

water samples along a river are taken at every 1 km, then the measurements provide

a distance series in regularity sense. In fact, distance series are very limited as if

there are no such data sequences in practical studies. On the other hand, depending

on the interest of event, they appear as time series data but they are not time series

due to irregularity or randomness in the time intervals between successive occur-

rences of the same event. Flood and drought occurrences in hydrology correspond

to such cases. One cannot know the duration of floods or droughts. Likewise, in

meteorology the precipitation occurrence or any dangerous levels of air pollutant

concentrations do not have time series characteristics.

Any natural event evolves in the 4D human visualization domain, and conse-

quently its records should involve the characteristics of both time and space

variability. Record with this property is said to have spatiotemporal variation. It

is the main purpose of this chapter to present the classical methodologies for spatial

data treatment regional estimations and interpretations based on simple but effec-

tive methodologies.
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4.3 Spatial Pattern Search

Human is biased toward regular pattern geometries, appearances, and presentation

rather than irregular or random features. Although at the first instance he/she can

distinguish visually between the regular and irregular patterns in the space, he/she

may not know their quantitative assessment methodologies at the time. For

instance, every day the pattern of clouds is different than the previous days, and

the most regular ones are either overcast situation or cloudless patterns. However,

in between there are millions of different irregular patterns that cannot be distin-

guished simply from each other in fine scales. It is, therefore, necessary to sample

such situations at a set of irregular measurement sites and then use quantitative

methodologies for the identification of a set of parameters or a spatial map for each

case, which can be then compared and classified into different categories.

Usually the pattern is invisible such as the oil, gold and groundwater resources,

and sub-surface geological features but based on the sampling and thereafter the

data treatment with objective methodologies as well as personal expertise and

intuition, the general spatial features may be depicted in the form of maps.

The worth of data in earth sciences and geology is very high since most of the

interpretations and decisions are based on their qualitative and quantitative infor-

mation contents. This information is hidden in representative field samples, which

are analyzed for extraction of numerical or descriptive characteristics, which are

referred to as data. Data collection in earth sciences is difficult and expensive and

requires special care for accurately representing the geological phenomenon. After

all, various parameters necessary for the description and modeling of the geological

event, such as bearing capacity, fracture frequency, aperture, orientation, effective

strength, porosity, hydraulic conductivity, chemical contents, etc., are hidden

within each sample, but they represent a specific point in the space and time.

Hence, it is possible to attach with data temporal and three spatial reference systems

as shown in Fig. 4.1.

In geological sciences and applications, the concerned phenomenon can be

examined and assessed through the collection of field data, and accordingly

meaningful solutions can be proposed. It is, therefore, necessary to make the

best use of available data from different points. Geological data are collected

either directly in the field or field samples are transferred to laboratories in order

to make necessary analyses and measurements. For instance, in hydrogeology

domain, among the field measurements are the groundwater table elevations, pH,

and total dissolved solution (TDS) readings, whereas some of the laboratory

measurements are chemical elements in parts per million (ppm). There are also

office calculations that yield hydrogeological data such as hydraulic conductiv-

ity, transmissivity, and storage coefficients. In the mean time, many other data

sources from soil surveys, topographic measurements, geological prospection,

remote sensing evaluations, and others may also support data for further inves-

tigation. The common property of these measurements and calculations of lab-

oratory analysis is that they include uncertainty attached at a particular time and
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sampling point. Hence, the first question is how to deal with rather uncertainly

(randomly) varying data. At times, the data is random, sometimes chaotic, and

still in other cases irregular or very regular. These changes can be categorized

into two broad classes as systematic and unsystematic. Systematic data yields

mathematically depictable variations with time, space, or both. For instance, as

the depth increases, so does the temperature, and this is an example for system-

atic variation. Especially, if there is only one type of geological formation, then

systematic variation becomes more pronounced. Otherwise, on the basis of rather

systematic variation on the average, there are unsystematic deviations, which

might be irregular or random. Systematic and unsystematic data components are

shown in Fig. 4.2.

Explainable deterministic components are due to systematic natural geography,

astronomy and climatology factors, but unsystematic unexplainable variations have

random parts that need special treatment.

It is obvious that the spatial patterns or arrangements of individual sampling

locations in any study area have different patterns. The problem is to visualize

qualitatively and quantitatively the change of a ReV over these points and then over

the area. Appreciation of some differences between the set records of concerned

variable at a set of measurement stations is the first step prior to any formal model

application. It helps in the final modeling stage if the variation feature of the ReV

variable is deduced first with simple but effective methods. In order to achieve such

a preliminary work, the following steps become helpful:
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Fig. 4.1 Data variation by
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1. Data Collection: Since the sampling locations are considered on a plane, their

locations can be described by abscissas, X, and ordinates, Y. This procedure is

referred to finding the easting and northing from the longitudes and latitudes.

Although it is not possible to meet always in the practical studies, it is preferable

that the spatial distribution of sampling sites should be rather evenly distributed

over the study area and if possible constitutes points of a regular grid. The first

descriptive exposition of sampling sites may be their location distribution, but

without its relationship to the ReV, it does not mean much in spatial analysis.

The sampling locations may already have been fixed for the researchers such as

the existing well locations (water or oil), meteorology stations, urban areas, etc.

If the distribution of a variable Z with respect to easting and northing is given as

in Table 4.1, then its frequency distribution can be calculated for various classes

and presented in Fig. 4.3.

It is obvious from this figure that as the number of classes increases, the

categories change both in class limits and in frequency values.

On the other hand, it is possible to see the scatter of these data as in Fig. 4.4. If

the ReV is denoted in general as Z, then the points in this scatter diagram can be

grouped depending on some criterion as follows with respective symbols.

These symbols help to make two types of interpretations, namely, interclass

and smaller or less than a given class limits two mutually exclusive but collec-

tively exhaustive groups. According to the attached symbols, one can deduce the

following interpretations:

(a) The majority of small ReV are gathered at high easting but low northing

regions. Two exceptional clusters of the same type appear at low easting and

northing regions and also in high easting but medium and high northing

regions. In short, there are three clusters of small ReV. Each cluster has its

special dependence feature different than others. The frequency of low ReV

occurrences falls within this type of data.

(b) The ReV variability with values between 189 and 536 takes place also at

high easting and low northing region with the most concentrated cluster of

ReV less than 189. In fact these two groups can be assumed as one cluster in

larger scale as ReV values less than 536.

(c) The ReV values that lie between 536 and 936 are scattered almost all over

the sampling area but they do not fall within the major sampling area where

easting is high and northing is low. This group of sampling points has the

maximum ReV variability over the region in an independent manner. In

Time

Data

Random

Systematic

Fig. 4.2 Systematic and unsystematic components
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other words, although ReV less than 189 have high regional variability, but

at least they are fathered in three cluster.

(d) Those ReV values between 536 and 1310 show a single cluster within the

medium easting and northing region without intermixing with other classes.

They show a directional extension along the northeast-southwest trend in

Fig. 4.4.

(e) The high values of ReV more than 1310 are gathered at medium easting but

high northing region of the sampling area.

(f) If the symbols are followed from the smallest to moderate and then to the

biggest ReV values in Fig. 4.4, it is clear that there is an increasing trend

from low northing sampling locations toward high northing direction. In the

middle northing region along the easting direction, there is a hill with low

values at low and high easting regions.

The above interpretations of the ReV data scatter based on the sampling loca-

tions yield clues that become very useful in actual modeling scheme. So far only

Table 4.1 Easting, northing, and ReV

Easting Northing ReV (m) Easting Northing ReV (m)

40.78 30.42 31 41.25 29.02 30

40.52 30.3 100 41.73 27.23 232

39.72 40.05 1631 41.10 29.06 114

37.00 35.33 20 40.60 43.08 1775

41.17 29.04 130 41.40 27.35 46

40.73 31.60 742 37.93 41.95 896

39.62 27.92 120 41.18 29.62 31

40.18 29.07 100 42.03 35.17 32

40.32 27.97 58 40.98 27.48 4

40.15 29.98 539 40.65 29.27 4

38.40 42.12 1578 39.83 34.82 1298

40.13 26.40 3 38.50 43.5 1671

41.17 27.8 183 38.75 30.53 1034

40.55 34.97 776 38.78 35.48 1053

37.88 40.18 677 37.75 30.55 997

39.58 28.63 639 37.97 32.55 1032

39.60 27.02 21 37.20 28.35 646

39.92 41.27 1869 41.28 36.33 4

41.67 26.57 51 36.70 30.73 50

39.78 30.57 789 40.92 38.4 38

40.98 28.80 36 41.37 33.77 799

40.20 25.90 72 39.75 37.02 1285

40.97 29.08 33 39.73 39.5 1156

40.93 26.40 10 41.17 29.05 56

40.78 29.93 76 39.93 44.03 858

40.90 29.18 28 38.43 38.08 862
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linguistic interpretations are deduced, and they are the basic ingredients or rules

in fuzzy logic system modeling (Zadeh 1968; Şen 2004).

It is important to notice from the qualitative information that distinctive

features are depicted by considering the differences or dissimilarities between

the scatter points and attached ReV values at each point. The first difference

implies the distances between the sampling points and the second is the differ-

ence between the ReV values at two sites. Hence, in any quantitative study, these

two differences should be taken into consideration. These differences are con-

sidered independently from each other but there may be regional dependence

between them. For instance, visualization of a trend in step f implies such a

regional dependence. As will be explained in Chap. 5, the relationship between

the distance of two sampling points and the difference in their ReV values can be

depicted by semivariogram (SV) concept.

2. Univariate Data Description: It is necessary and helpful to explore the uni-, bi-, and

multivariate statistical properties of the ReV data irrespective of sampling point

locations. The second step in geostatistics (or, for that matter, any statistical

0 20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

0

5

10

15

20

25

a b

c d

30

ReV in meters

Fr
eq

ue
nc

y

0 20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

0

5

10

15

20

25

30

Rev in meters

Fr
eq

ue
nc

y

0 20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

0

5

10

15

20

25

30

Rev in meters

Fr
eq

ue
nc

y

0 20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

0

5

10

15

20

25

30

ReV in meters

Fr
eq

ue
nc

y

Fig. 4.3 Relative frequency diagram of ReV with (a) 5 class; (b) 6 class; (c) 7 class; (d) 8 class
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analysis) is to describe the data using univariate (and if possible, bivariate or

multivariate) descriptive statistics. Among the univariate descriptive statistics are

the arithmetic mean, median, mode, standard deviation, skewness, kurtosis, etc.

These parameters can be obtained either from the frequency diagram (as in

Fig. 3.3) or through the classical mathematical expression of the parameters

(Koch and Link 1971). Often used parameters are presented in Table 4.2 for the

ReV data in Table 4.1.

In spatial analysis, one should note that there is only one univariate parameter

value for any given ReV variable. As will be explained later in more detail, the

univariate parameter values do not change with direction in the sampling area.

Whatever the direction, although, the projection of sampling point sequence and

distances will change but the univariate statistical parameters will remain the same.

This explains why the univariate parameters cannot be useful in the spatial

dependence search directly. The spatial variation can be measured by considering

comparatively the properties of at least two ReV values at two distinctive sampling

locations.

3. Bivariate Data Description: This can be achieved by considering at least two

sampling points simultaneously by comparing their ReV values. It can be

achieved simply either by considering a direction or without any direction. In

order to familiarize the reader with each one of these approaches, six ReV values
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with their easting and northing values are considered from Table 4.1 and

presented in Table 4.3. The scatter of sampling points in this case is given in

Fig. 4.5.

On the basis of the data in this table, the spatial relationship between the distance

and ReV values can be thought in three categories, namely, punctual, directional,

and global assessments.

In the directional case, all the sampling points are projected onto desired number

of directions, and the ReV values are considered not at the sampling points but at

the projection points. In this manner, 2D sampling point scatter is transformed into

1D samplings as shown in Fig. 4.6.

A close inspection of these figures indicates that the sequence of sampling points

and the distances between two successive points differ from each case. This is the

first indication that depending on the sequential properties, the spatial variations

show different appearances. The directions correspond to cross sections of 3D ReV

along these directions. In order to confirm this situation, Fig. 4.7 presents the

variation of ReV values with distance along the direction. It is obvious that although

Table 4.2 Univariate

statistical parameters
Parameter Value

Minimum 3

Mode 4

Median 125

Arithmetic mean 506.05

Maximum 1869

Standard deviation 571.11

Skewness 0.89

Kurtosis 0.41

Table 4.3 Representative

ReV values
Easting (m) Northing (m) ReV (m)

40.78 30.42 31

40.52 30.3 100

41.17 29.04 130

39.62 27.92 120

40.18 29.07 100

40.32 27.97 58

Parameters Value

Minimum 31

Mode 100

Median 100

Arithmetic average 89.83333

Maximum 130

Standard deviation 37.96007

Skewness 37.96007

Kurtosis 0.363526
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the univariate statistical parameters remain as they are in Table 4.3 whatever the

direction, they expose different patterns.

Comparison of these three cross sections shows different patterns. Especially, in

section C-C, points 4 and 5 fall on the same directional point, and in this case the

representative ReV value is taken as the average of the two values. The directional

graphs show the change of ReV with distance, but the distances among the points

are irregular. Had it been that they are regular, then the classical time series analysis

could be applied for their statistical analysis. In practice, it is time-consuming to

rely on such directions, and the question is whether there is an easy statistical way to

inherent the common features of all the directions and then to express the regional

variability by a mathematical formulation, which helps to make ready calculations

provided that the spatial data of ReV is available. This can be achieved by SV or

covariogram analysis (Chap. 5).

4.4 Simple Uniformity Test

In the case of sampling point scatter as in Fig. 3.4, it is necessary to decide whether

the points in each subquadrangle (subarea) arranged in a manner have more or less

the same uniformity. In the case of uniformity, there is no superiority among

subareas, and each subarea has the same likelihood of sampling point occurrences.

If there are n sampling points over the whole area and the number of subareas is k,
then the expected average uniform sampling number, UE, for each subarea is

UE ¼ n

k
ð4:1Þ
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This indicates the average number of sampling points per subarea. However, the

actual sampling point count, Ci, (i¼ 1, 2, . . ., k) in ith subarea is different from each

other and in general from the uniform sampling number. It is possible to check the

uniformity by the chi-square test as

χ2 ¼
Xk
i¼1

Ci � UEð Þ2
UE

ð4:2Þ

The chi-square distribution has ν¼ k�2� of freedom, and one can find from the

chi-square distribution tables in any statistical text book (Benjamin and Cornell

1970) the critical chi-square value, χ2cr , that corresponds to this degree of freedom.

If χ2 � χ2cr, then the distribution of the points in each subarea over the whole area is
uniform.
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Example 4.1 The positions of many earthquake measurement stations are given in

Fig. 4.8, and it has been divided into nine equal subareas. The question is whether

the spatial scatter of station locations is uniformly distributed in the area or not.

Table 4.4 indicates the number of stations in each subarea where the station

locations on the boundary are considered as belonging to the right and upper

subareas.

According to Eq. 4.1, expected average uniform number of stations in each

subarea is 75/9¼ 8.33, which can be taken as a round number equal to 8. The

application of Eq. 4.4 leads to χ2 ¼ 14. Since the degree of freedom is ν¼ 9�2¼ 7,

the critical χ2cr value at 5% significance level appears as 14.2 (i.e., χ2 � χ2cr ), and
hence the distribution of the points is almost uniform.

4.5 Random Field

If the distribution of sampling points in the study area is not uniform, then one starts

to suspect whether they constitute a random field or not. The random field is the

collection of many randomly scattered points in an area where there is no spatial

correlation between the points. If the points are completely random without any

spatial (regional) dependence, then the only way of their spatial treatment is the

probability axioms.
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Let us consider the whole study area, A, with m sampling locations. If they are

random, then the probability of one sampling point occurrence can be expressed as

a percentage

λ ¼ m

A
ð4:3Þ

which lies between 0 and 1 exclusive. Now the total area is considered in terms of

very small subareas where the number of subareas, n, is much larger than the

number of sampling point, m, (n>>m). This means that m/n goes to zero as the

number of subareas increases. Each one of the n subareas can be considered as a

pixel (see Fig. 2.2), which is very small, compared to total area. This makes it

possible to consider that each pixel is almost equal to the influence area of one

sampling point. It is, therefore, impossible to have two sampling points within each

pixel. Hence, the area of influence for each sampling point can be calculated as

a ¼ A

n
ð4:4Þ

which is the pixel area. Since each sampling point has the occurrence probability of

λ per area, then in the influence area, the probability of sampling occurrence

becomes

po ¼ λa ¼ λ
A

n
ð4:5Þ

Accordingly, the probability of nonoccurrence of the sampling point in a pixel can

be obtained simply as

pn ¼ 1� p0 ¼ 1� λ
A

n
ð4:6Þ

Table 4.4 Subareal stations Subareal no. Station number

1 7

2 15

3 8

4 7

5 6

6 12

7 4

8 5

9 12

Total 75
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If the question is to find k sampling sites in n pixels, then in the remaining n�k
pixels, there will not be any sampling point. Since the spatial sampling point

occurrences and nonoccurrences are independent from each other, the production

operation of the probability theory gives the probability of k sampling point

occurrence according to Binomial PDF as

pk ¼ n
k

� �
poð Þk pnð Þn�k ¼ n

k

� �
λ
A

n

� �k

1� λ
A

n

� �n�k

ð4:7Þ

After this line, the remaining is the application of pure mathematical principles, and

as n goes to very large numbers (mathematically positive infinity), then Eq. 4.7

takes its new shape as

pk ¼ e�λA λAð Þk
k!

ð4:8Þ

which has the name of Poisson distribution in common statistics. This equation

requires only the rate of sampling points, λ, (Eq. 4.3); sampling point number, k;
and the area of the concerned region. The combined value λA indicates the mean

number of stations per quadrant. All these values are practically observable or

calculateable, and, therefore, it is possible to calculate pk from Eq. 4.8. If for a given

confidence interval (90% or 95%) the critical probability value, pcr is found from

the Poisson distribution tables in any textbook on statistics (Benjamin and Cornell

1970) and if pk< pcr then the sampling points are randomly distributed in the area.

However, in earth sciences the distribution of sampling points is exactly neither

random nor uniform.

Example 4.2 It is now time to search for the spatial random character of the same

example given in the previous section. As shown in Fig. 4.9, the whole area is

divided into 9� 9¼ 81 quadrants.

The mean number of stations in each quadrant is λA¼ 75/81¼ 0.926. The first

column in Table 4.5 shows the number of quadrants with 1, 2, 3, etc. stations. The

probability of occurrence calculations is given in the second column.

According to Eq. 4.2, one can calculate that χ2 ¼ 1:064. Since there are five

categories, the degree of freedom is ν¼ 5�2¼ 3. The critical value of χ2 for ν¼ 3

and the significance level of 5% is 7.81. The test statistics is less than this critical

value, and so the hypothesis of randomness is acceptable.

The mean number of stations per quadrant λA and its variance can be estimated as

s2 ¼

XT
i¼1

rı � m=Tð Þ2

T � 1
ð4:9Þ
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where ri is the number of stations per quadrant and T is the number of quadrants. It

is well known that in Poisson distribution the arithmetic average is equal to

variance, and by using this rule, it is possible to make further interpretations. For

instance, if the arithmetic average is greater (smaller) than the variance, the scatter

of stations is more uniform (clustered) than random. If the two parameters are equal

to each other, the scatter of stations accords with a complete random behavior.

However, at this stage it must be kept in mind that some sampling differences occur

between these two parameters, and in practice it is not possible to have them equal

in an exact manner.
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Fig. 4.9 Quadrants and station locations

Table 4.5 Applied and theoretical numbers of quadrants

Number of stations Eq. 3.8 calculations

Number of quadrants

Theoretical Actual

0 0.3961 32 31

1 0.3668 30 29

2 0.1698 14 14

3 0.0524 4 6

4 0.0121 1 1

Total 0.9972 81 81
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4.6 Cluster Sampling

Due to stratification of many earth sciences events, the sampling procedure also

shows grouping pattern in different non-overlapping clusters (classes) as in Fig. 3.3.

In the modeling of cluster sampling, there are two stages. First is the modeling of

cluster centers and then the second is the modeling of sampling points within each

cluster relative to its center. The first is inter-cluster modeling and the second in

within cluster modeling. As stated in many publications, the negative exponential

distribution can be used to model the occurrence of clustered points in space in a

manner equivalent to the use of the Poisson model to represent random field points.

The cluster point distribution is modeled according to the Poisson distribution and

the points in each cluster by the logarithmic distribution. Hence, the negative

exponential distribution function provides the occurrence of k sampling point

probability as (Davis 2002)

Pk ¼ nþ k � 1

k

� �
po

1þ po

� �k
1

1þ po

� �n

ð4:10Þ

where k is the number of sampling points, po is the probability of event occurrence

at a sampling site, and n is the degree of clustering of the occurrences. If n is large

the clustering is less spelled and the sampling point distribution is close to random

field distribution of the points. However, as n approaches to zero, the clustering

pattern becomes more pronounced over the area. The density of sampling points is

λ ¼ npo ð4:11Þ

The following mathematical approximation is considered for solving Eq. 4.10.

P0 ¼ 1

1þ poð Þn ; ð4:12Þ

and the following recursive formula

Pk ¼
nþ k � 1ð Þ 1

po
þ po

� �
k

Pk�1 ð4:13Þ

helps to calculate the subsequent probabilities. The clustering parameter can be

calculated as

n ¼
m
T

� �2
s2 � m

T

ð4:14Þ

where s2 is the variance in the number of occurrences per tract, which is defined as
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λA ¼ m

T

or

T ¼ m

λA
ð4:15Þ

Likewise, the probability of occurrence can be calculated as

p0 ¼
λ

n
¼

m
T

n

Example 4.3 The same example given in the previous section can be adopted for

the application of cluster test. It is already calculated that λA¼ 0.926. The variance,

s2, in the number of occurrences per quadrangle (subarea) is 0.897. With these

values at hand, the clustering effect from Eq. 4.14 becomes n¼ 27.74. Hence, from

Eq. 4.12 p0¼ 0.0323, and it is possible to calculate from Eq. 4.13 the probability

that a given quadrant will have 1, 2, 3, etc. stations as shown in Table 4.6.

In order to test the theoretical values with the actual correspondences, it is

necessary to apply chi-square test which yields χ2 ¼ 1:249. Since there are five

categories, the degree of freedom is ν¼ 5–2¼ 3. The critical value of χ2 for ν¼ 3

and the significance level of 5% is 7.81. The test statistics is less than this critical

value, and so the hypothesis of randomness is acceptable.

4.7 Nearest Neighbor Analysis

Rather than considering quadrangles in the subdivision of the total area into sub-

areas and then to make calculations on the basis of the sampling points within the

subarea, it is preferable to consider the neighbor points next to each other. Logi-

cally, if there are n sampling points within a total area, A, then the size of each equal
subarea, a, is simply calculated according to Eq. 4.4. This area is supposed to

Table 4.6 Negative

exponential distribution

expected number of quadrants

with r stations

Number of stations Probability

Number of quadrants

Theoretical Actual

1 0.4140 33.5 31

2 0.3593 29.1 29

3 0.1616 13.1 14

4 0.0501 4.0 6

5 0.0120 1.0 1

Total 1.0020 81.0 81
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include two nearest points on the average. It is considered as a square, and therefore

the side length, L, of the square is the square root of the area

L ¼ ffiffiffi
a

p ð4:16Þ

Hence, the mean distance between two points is

dT ¼ 1

2
L ð4:17Þ

The variance of the average distance between two points can be calculated ratio-

nally as

σ2T ¼ 4� πð Þ
4πn2

A ð4:18Þ

In the derivations of Eqs. 4.17 and 4.18, the area is assumed without boundary, i.e.,

very extensive. However, this is not the situation in practice, and, therefore, these

statistical parameters are without areal extent restrictions, and hence they provide

underestimations. If the constants are worked and the standard error of estimate is

calculated, the result becomes

sTe ¼ 0:26136ffiffiffiffi
a
n2

p ð4:19Þ

If the number of sampling points is more than six, then the distribution of the

average distance between nearest neighbors comply with a normal PDF. The mean

and the variance of this PDF are given by Eqs. 4.17 and 4.19, respectively. Hence,

for decision the standardized normal PDF value, x, can be obtained as

x ¼ d � dT
sTe

ð4:20Þ

As mentioned earlier, the theoretical Eqs. 4.17 and 4.18 are in underestimations,

and, therefore, a correction factor less than one must be imported. Many researchers

suggested different adjustments but the one given by Donnelly (1978) found

frequent use. According to his extensive numerical simulation studies, the theoret-

ical mean distance and its variance can be expressed as (Davis 2002)

dT � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

n
þ 0:514þ 0:412ffiffiffi

n
p

� �
P

n

s
ð4:21Þ

and
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σ2T � 0:0070
A

n2
þ 0:035P

ffiffiffi
A

p

n2:5
ð4:22Þ

where P is the perimeter of the regular map. The ratio, Rd, of the expected and

observed mean nearest-neighbor distances can be used to indicate the spatial pattern

as

Rd ¼ d

dT
ð4:23Þ

This ratio approaches to zero where all the sampling points are very close to each

other with almost negligible average distance. Another extreme point appears as Rd

approaches one, where the random field scatter of sampling points takes place.

When the mean distance to the nearest neighbor is maximized, then Rd takes its

maximum value as 2.15. Figure 4.10 indicates the sampling point distribution with

different distance ratio indices.

The distance ratio indices for Fig. 4.8a–f are equal to 2.15, 1.95, 1.20, 0.89, 0.31,

and 0.11, respectively.

4.8 Search Algorithms

One of the critical differences between various local-fit algorithms for interpolating

to a regular grid is the way in which “nearest neighbors” are defined and found.

Some may depend on the number of nearest points and others adopt a radius of

influence and depend on the points within this area of influence (Chap. 2). Some

search techniques (such as the optimum interpolation technique) may be superior to

others in certain situations especially concerning the data point arrangement. There

are a variety of search procedures that may be selected by the user. The simplest

method finds the n nearest neighboring data points, in a Euclidean distance sense,

regardless of their irregular distribution around the estimation node, which is fast

and satisfactory if observations are distributed in a comparatively uniform manner,

but provides poor estimates if the data are closely spaced along widely separated

traverses.

One of the objections to a simple nearest-neighbor search is that all the nearest

points may lie, for instance, in a narrow wedge on one side of the grid node

(Fig. 4.11). Hence, the estimation is essentially unconstrained, except in one

direction. It is possible to avoid such a situation by restricting the search in some

way, which ensures that the points are equitably distributed about the estimation

point.

The simplest method introduces a measure of radial search as a quadrant. Some

minimum number of points must be taken from each of the four quadrants around

the estimation point. An elaboration on the quadrant search is an octant search,
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which introduces a further constraint on the radial distribution of the points used in

the estimation procedure. A specified number of control points must be found in

each of the 45o segments surrounding the estimation point. These constrained

search procedures require finding and testing more neighboring points than in a
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Fig. 4.10 Nearest-neighbor ratio statistics
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simple search, which increases the time consumption. It is also possible to consider

all points within a radius R of the estimation point. Estimates made using the other

search procedures are based on a fixed number of points collected at variable

distances from the grid node. This search algorithm uses a variable number of

points within a fixed distance of the estimation point.

Any constraints on the search for the nearest points, such as a quadrant or octant

requirement, will obviously expand the size of the neighborhood around the

estimation point. This occurs because some nearby control points are likely to be

passed over in favor of more distant points in order to satisfy the requirement that

only a few points may be taken from a single sector. Unfortunately, the autocorre-

lation of a surface decreases with increasing distance, so more remote points are

less closely related to the estimation point. This means the estimate may be poorer

than if a simple nearest-neighbor search procedure is used.

4.8.1 Geometric Weighting Functions

Operational objective analysis procedures are suggested for interpolating in a

practical way information from unevenly distributed observations to a uniformly

distributed set of grid points.

The earliest studies were started by Gilchrist and Cressman (1954) who reduced

the domain of polynomial fitting to small areas surrounding each node with a

parabola. Bergthhorsson and D€o€os (1955) proposed the basis of successive correc-

tion methods which did not rely only on interpretation to obtain grid point values

but also a preliminary guess field is initially specified at the grid points. Cressman

(1959) developed a number of further correction versions based on reported data

falling within a specified distance R from each grid point. The value of R is

decreased with successive scans, and the resulting field of the latest scan is taken

as the new approximation. Barnes (1964) summarized the development of a con-

vergent weighted-averaging analysis scheme which can be used to obtain any

desired amount of detail in the analysis of a set of randomly spaced data. The

Fig. 4.11 Regular directional nearest point systems, (a) quadrant, (b) octant
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scheme is based on the supposition that the 2D distribution of an atmospheric

variable can be represented by the summation of an infinite number of independent

waves, i.e., Fourier integral representation. A comparison of existing objective

methods up to 1979 for sparse data is provided by Goodin et al. (1979). Their

study indicated that fitting a second-degree polynomial to each subregion triangular

in the plane with each data point weighted according to its distance from the

subregion provides a compromise between accuracy and computational cost.

Koch et al. (1983) presented an extension of the Barnes method which is designed

for an interactive computer scheme. Such a scheme allows real-time assessment

both of the quality of the resulting analyses and of the impact of satellite-derived

data upon various meteorological data sets. Both Cressman and Barnes methods

include power parameter and radius of influence values which are rather subjec-

tively determined in the current meteorological practice.

In any optimum analysis technique, the main idea is that the estimation at any

point is considered as a weighted average of the measured values at irregular sites.

Hence, if there are i¼ 1, 2, . . ., n measurement sites with records Zi then the

estimated site solar irradiation, ZC, can be calculated according to Eq. 2.27,

which is most commonly used in different disciplines because of its explicit

expression as the weighted average. Weighting functions proposed by Cressman

(1959), Gandin (1963), and Barnes (1964) also appear as sole functions of the

distances between the sites only. Unfortunately, none of the weighting functions are

event dependent, but they are suggested on the basis of the logical and geometrical

conceptualizations of site configuration. Various geometrical weighting functions

are shown in Fig. 4.12.

The weighting functions that are prepared on a rational and logical basis without

consideration of regional data have the following major drawbacks:

(a) They do not take into consideration the natural variability of the regional

variability features. For instance, in meteorology, Cressman (1959) weightings

are given as

W ri,Eð Þ ¼
R2 � r2i,E
R2 þ r2i,E

for ri,E � R

0 for ri,E � R

8<
: ð4:24Þ

where W(ri,E) corresponds to Wi in Eq. 2.27, di,E is the distance between

estimation point and other points, and R is the radius of influence, which is

determined subjectively by personal experience.

(b) Although weighting functions are considered universally applicable all over the

world, they may show unreliable variability for small areas. For instance, within

the same study area, neighboring sites may have quite different weighting

functions.

(c) Geometric weighting functions cannot reflect the morphology, i.e., the regional

variability of the phenomenon. They can only be considered as practical first

approximation tools.
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A generalized form of the Cressman model with an extra exponent parameter α
is suggested as

W ri,Eð Þ ¼
R2�r2i,E
R2þr2i,E

� �α

for ri,E � R

0 for ri,E � R

8<
: ð4:25Þ

The inclusion of α has alleviated the aforesaid drawbacks to some extent but its

determination still presents difficulties in practical applications. Another form of

geometrical weighting function was proposed by Sasaki (1960) and Barnes (1964)

as

W ri,Eð Þ ¼ exp �4
ri,E
R

� �2
	 


ð4:26Þ

In reality, it is expected that weighting functions should reflect the spatial

dependence behavior of the phenomenon. To this end, regional covariance and

SV functions are among the early alternatives for the weighting functions that take

into account the spatial correlation of the phenomenon considered. The former

method requires a set of assumptions such as the Gaussian distribution of the

0

W = 1

W = exp [–4(    )2]r
R

W = R2 – r2

R2 + r2

0

1.0

1r
R

W = R2 – r2 4

R2 + r2

Fig. 4.12 Weighting functions
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regionalized variable. The latter technique, semivariogram (SV), does not always

yield a clear pattern of regional correlation structure (Şen 1989).

4.9 Trend Surface Analysis

The main purpose of trend surface analysis is to summarize data that are numerous

to grasp readily by eye from the list of numbers. A spatial trend is a systematic

change usually in a geographical (longitude and latitude) direction in the ReV. The

trend surface analysis is also called a “global interpolator” because it uses all data.

Most interpolators (called “local interpolators”) use only a sample of points to

estimate the value at each grid node location. It fits the entire surface with a

polynomial equation by the ordinary least squares method. Once trend surfaces

were the only basic tool as maps for communication in earth sciences. In trend

analysis, the statistical model coefficients are estimated, and the equation is

presented as a contour map. Trend surface presentation in the form of contour

maps is the same as the preparation of topographic maps, where the spatial

dependence is not considered explicitly. The mathematical model of the trend

surface is ready in the form of polynomial equation which relates the geographic

variables x and y to the ReV, z, as

z ¼ a0 þ a1xþ a2yþ a3x
2 þ a4xyþ a5y

2 ð4:27Þ

where ai’s are the model coefficients to be estimated from available data recorded at

a set of geographical points within the study area. Although there are many

statistical models, this model is appropriate for a smooth concave and convex

surface. The locations of local maximum and minimum can be obtained from

Eq. 4.27 by taking partial derivative with respect to x and y, which yields

∂z
∂x

¼ a1 þ 2a3xþ a4y

and

∂z
∂y

¼ a2 þ a4yþ 2a5y

When these derivatives are set equal to zero, the solution for the extreme points

becomes

xe ¼ a2a4 � 2a1a5
4a3a5 � a24

and
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ye ¼
a1a4 � 2a2a3
4a3a5 � a24

Different interpretations can be made of an extreme case depending on the analysis.

Among the possibilities are that the extreme point may be a structural high, low, or

inflection point.

In any trend surface analysis, the only limit on the number of coefficients is that

one cannot have more than the number of sample points. It is good for approxi-

mating the general form of the surface. Estimates of individual values are not very

good (including at sample points). The interpolated surface will always have the

same value as the sample value where there are sample points and assigns each

point to be interpolated that same value as the nearest sample point. It gives a

stairstep shape to the surface discontinuities.

Trend surface analysis is a popular numerical technique in trying to explore the

3D features of any phenomena based on the geographical coordinates, but due to a

set of restrictive assumptions, they cannot be regarded as successful at the time.

Hence, it is frequently misused, and consequently the conclusions based on such

uses may also be in great error. Majority of problems arise from the measurement

site distribution, lack of real data fit, extensive computational requirements, and at

times inappropriate applications. In general, trend surface fitting methodologies are

multivariate statistical model fitting to a set of regional measurement data with

restrictive assumptions. A uniform density of data points is important in many types

of analysis, including trend surface methods.

Trend analysis separates the ReV into two complementary components, namely,

regional nature of deterministic variations and local fluctuations around the regional

component. The regional and local components are dependent on the scale of the

ReV. In any trend analysis, there are three variables:

1. The basic variables are the geographical coordinates, which give the exact

locations of the sampling points in the study area. For trend analysis the

longitude and latitude are converted to easting and northing values with respect

to a common reference point. In trend analysis the choice of the reference point

does not make any difference in further calculations.

2. The trend component is the regional representation of the event rather determin-

istic manner, which has the form

ẑ ¼ a0 þ a1xþ a2yþ a3x
2 þ a4xyþ a5y

2 ð4:28Þ

where x and y are some function or combination of the geographical coordinates

of the sample locations. This expression yields the trend component as z
^
i at the ith

location of the ReV. Although there are nonlinear terms, this equation is called

linear because the terms are added together.

3. The trend coefficients are chosen such that the squared deviations of measure-

ments from the trend surface are minimized. The sum of the squares from the
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trend surface is equivalent to the variance of the ReV. The multiple linear

regressions are also defined similarly, and therefore the trend analysis is similar

to the multivariate analysis in the classical statistics.

4.9.1 Trend Model Parameter Estimations

It is possible to obtain the coefficient estimations in Eq. 4.27 through the application

of regression methodology with the criterion of least squares analysis. This is a very

formal way of deriving the coefficient estimation expressions in terms of the data

values. However, in this book a more practical expression is obtained by successive

independent variable term multiplication and average taking procedure. The pro-

cedure says the following steps.

1. Consider the main Eq. 4.27 and then take the arithmetic average of both sides

which leads to

z ¼ a0 þ a1xþ a2yþ a3x2 þ a4xy þ a5y2 ð4:29Þ

This is the first estimation expression where all the arithmetic averages can be

obtained from an available data set. Since there are six coefficients as unknowns,

it is necessary to obtain five more expressions.

2. Multiply both sides of the main equation by the first term variable on the right-

hand side and then take the arithmetic averages. This procedure yields finally

zx ¼ a0xþ a1x2 þ a2yx þ a3x3 þ a4x2y þ a5xy2 ð4:30Þ

3. Apply the same procedure as in the previous step but this time by multiplying

both sides by the second independent variable, i.e., y, which gives

zy ¼ a0yþ a1xy þ a2y2x þ a3yx2 þ a4xy2 þ a5y3 ð4:31Þ

4. Multiply both sides by x2 and then take the arithmetic average of both sides,

which leads to

zx2 ¼ a0x2 þ a1x3 þ a2x2y þ a3x4 þ a4x3y þ a5x2y2 ð4:32Þ

5. This time the independent variable is xy, and accordingly its use under the light

of the aforementioned procedure results in

xyz ¼ a0xy þ a1x2y þ a2xy2 þ a3x3y þ a4x2y2 þ a5xy3 ð4:33Þ
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Finally, considering the last independent term variable as y2, the same rule yields

the following expression:

y2z ¼ a0y2 þ a1y2x þ a2y3 þ a3y2x2 þ a4xy3 þ a5y4 ð4:34Þ

Hence, the necessary equations are obtained for the trend surface model coefficient

estimation. In matrix notation these equations can be written explicitly as

a0
a1
a2
a3
a4
a5

2
6666664

3
7777775
¼

1 x y x2 xy y2

x x2 xy x3 x2 y xy2

y xy y2 x2y xy2 y3

x2 x3 x2y x4 x3y x2y2

xy x2y xy2 x3y x2y2 xy3

y2 xy2 y3 x2y2 xy3 y4

2
6666664

3
7777775

�1
z
xz
yz
x2z
xyz
y2z

2
6666664

3
7777775

The right-hand side of this last expression includes various averages that are

calculable from a given set of data, and, therefore, the parameter estimation is

possible after the inverse of square matrix. This matrix is symmetrical around the

main diagonal. It is also possible to construct the titles of calculation table by

considering these averages as in Table 4.7 the following table titles.

The arithmetic average of each column gives the elements of each matrix on the

right-hand side of Eqs. 4.31, 4.32, 4.33, 4.34, 4.35, 4.36, and 4.37.

Example 4.4 A set of earthquake records are given for some part of Turkey, and

the magnitude is required to be related to easting (x) and northing (y) coordinates
for the prediction of Richter magnitude. The first three columns of Table 4.8 give

the easting, northing, and earthquake magnitude values, respectively. For the sake

of argument, simple linear trend surface equation is adopted as

z ¼ aþ bxþ cy ð4:35Þ

where a, b, and c are the trend surface parameters. According to the steps given

above, the rest of the table is prepared accordingly.

There are three unknowns and it is necessary to obtain three equations in the

light of practical trend surface calculations. By considering the last row of averages

from Table 4.8, one can write the necessary equations simply as

6:38 ¼ aþ 39:12bþ 33:30c
249:64 ¼ 39:12aþ 1533:62bþ 1306:02c
211:97 ¼ 33:30aþ 1306:02bþ 1150:11c

The simultaneous solution of these equations yields a¼ 5.63, b¼ 0.0314, and

c¼�0.0143, and hence the final linear trend surface expression is given as

z ¼ 5:56þ 0:0314x� 0:0143y

156 4 Classical Spatial Variation Models



T
a
b
le

4
.7

T
re
n
d
su
rf
ac
e
ca
lc
u
la
ti
o
n
ta
b
le

x
y

z
x
2

x
z

x
y

y
z

y
2

x
3

x
2
y

x
2
z

x
y
z

y
2
z

x
y
2

y
3

x
4

x
3
y

x
2
y
2

x
y
3

y
4

4.9 Trend Surface Analysis 157



T
a
b
le

4
.8

E
ar
th
q
u
ak
e
d
at
a
an
d
tr
en
d
ca
lc
u
la
ti
o
n
s

N
u
m
b
er

x
y

z
x
z

x
2

x
y

y
z

y
2

1
4
0
.3

3
8
.4

5
.1

2
0
5
.5
3

1
6
2
4
.0
9

1
5
4
7
.5
2

1
9
5
.8
4

1
4
7
4
.5
6

2
3
8

2
7

6
2
2
8

1
4
4
4

1
0
2
6

1
6
2

7
2
9

3
3
9

3
9

6
.3

2
4
5
.7

1
5
2
1

1
5
2
1

2
4
5
.7

1
5
2
1

4
4
0
.5

4
2
.7

6
.2

2
5
1
.1

1
6
4
0
.2
5

1
7
2
9
.3
5

2
6
4
.7
4

1
8
2
3
.2
9

5
3
8

2
6
.5

6
2
2
8

1
4
4
4

1
0
0
7

1
5
9

7
0
2
.2
5

6
4
0
.1
8

3
8
.1

6
.7
5

2
7
1
.2
1
5

1
6
1
4
.4
3
2

1
5
3
0
.8
5
8

2
5
7
.1
7
5

1
4
5
1
.6
1

7
4
2
.5

2
6
.4

5
.9

2
5
0
.7
5

1
8
0
6
.2
5

1
1
2
2

1
5
5
.7
6

6
9
6
.9
6

8
4
1

3
4

6
.2

2
5
4
.2

1
6
8
1

1
3
9
4

2
1
0
.8

1
1
5
6

9
3
6

3
0

6
.2
5

2
2
5

1
2
9
6

1
0
8
0

1
8
7
.5

9
0
0

1
0

4
0
.6
5

2
7
.2

7
.7
5

3
1
5
.0
3
7
5

1
6
5
2
.4
2
3

1
1
0
5
.6
8

2
1
0
.8

7
3
9
.8
4

1
1

4
0
.6

2
7
.1

6
.4

2
5
9
.8
4

1
6
4
8
.3
6

1
1
0
0
.2
6

1
7
3
.4
4

7
3
4
.4
1

1
2

4
0
.1

2
6
.8

6
.9

2
7
6
.6
9

1
6
0
8
.0
1

1
0
7
4
.6
8

1
8
4
.9
2

7
1
8
.2
4

1
3

3
8

3
0

6
.9

2
6
2
.2

1
4
4
4

1
1
4
0

2
0
7

9
0
0

1
4

4
0
.2
7

3
6
.3
8

7
.1

2
8
5
.9
1
7

1
6
2
1
.6
7
3

1
4
6
5
.0
2
3

2
5
8
.2
9
8

1
3
2
3
.5
0
4

1
5

3
9
.2
6

2
6
.7
1

7
2
7
4
.8
2

1
5
4
1
.3
4
8

1
0
4
8
.6
3
5

1
8
6
.9
7

7
1
3
.4
2
4
1

1
6

3
5
.5

3
4

5
.8

2
0
5
.9

1
2
6
0
.2
5

1
2
0
7

1
9
7
.2

1
1
5
6

1
7

3
9
.7

4
2
.8

5
.3

2
1
0
.4
1

1
5
7
6
.0
9

1
6
9
9
.1
6

2
2
6
.8
4

1
8
3
1
.8
4

1
8

3
9
.9
6

4
1
.9
4

6
.8

2
7
1
.7
2
8

1
5
9
6
.8
0
2

1
6
7
5
.9
2
2

2
8
5
.1
9
2

1
7
5
8
.9
6
4

1
9

3
8
.5
5

3
0
.7
8

5
.9

2
2
7
.4
4
5

1
4
8
6
.1
0
3

1
1
8
6
.5
6
9

1
8
1
.6
0
2

9
4
7
.4
0
8
4

2
0

4
1
.3
3

4
3
.4
1

6
2
4
7
.9
8

1
7
0
8
.1
6
9

1
7
9
4
.1
3
5

2
6
0
.4
6

1
8
8
4
.4
2
8

2
1

3
8

3
0
.5

5
.9

2
2
4
.2

1
4
4
4

1
1
5
9

1
7
9
.9
5

9
3
0
.2
5

2
2

3
7
.0
3

2
9
.4
3

6
.1

2
2
5
.8
8
3

1
3
7
1
.2
2
1

1
0
8
9
.7
9
3

1
7
9
.5
2
3

8
6
6
.1
2
4
9

2
3

3
5
.8
4

2
9
.5

7
2
5
0
.8
8

1
2
8
4
.5
0
6

1
0
5
7
.2
8

2
0
6
.5

8
7
0
.2
5

2
4

3
6
.5
4

2
7
.3
3

7
.3

2
6
6
.7
4
2

1
3
3
5
.1
7
2

9
9
8
.6
3
8
2

1
9
9
.5
0
9

7
4
6
.9
2
8
9

2
5

4
0
.9
4

4
3
.8
8

6
2
4
5
.6
4

1
6
7
6
.0
8
4

1
7
9
6
.4
4
7

2
6
3
.2
8

1
9
2
5
.4
5
4

2
6

3
8
.1

2
7
.1

6
.5

2
4
7
.6
5

1
4
5
1
.6
1

1
0
3
2
.5
1

1
7
6
.1
5

7
3
4
.4
1

2
7

4
0
.5

2
6
.5

6
.1

2
4
7
.0
5

1
6
4
0
.2
5

1
0
7
3
.2
5

1
6
1
.6
5

7
0
2
.2
5

2
8

4
0
.2

3
7
.9

6
.1

2
4
5
.2
2

1
6
1
6
.0
4

1
5
2
3
.5
8

2
3
1
.1
9

1
4
3
6
.4
1

2
9

3
7
.9
8

4
4
.4
8

7
.6

2
8
8
.6
4
8

1
4
4
2
.4
8

1
6
8
9
.3
5

3
3
8
.0
4
8

1
9
7
8
.4
7

A
v
er
ag
es

3
9
.1
2
1
7
2

3
3
.3
0
4
8
3

6
.3
8
4
4
8
3

2
4
9
.6
3
3
6

1
5
3
3
.6
4
2

1
3
0
6
.0
2
2

2
1
1
.9
6
6
8

1
1
5
0
.1
1
3

158 4 Classical Spatial Variation Models



4.10 Multisite Kalman Filter (KF) Methodology

Trend surface analysis depends on continuous and regular mathematical surfaces,

which does not consider individual features in any site separately, but globally fits

the model to available spatial data at fixed time. It is necessary to repeat the same

procedure for any subsequent time interval independently from the previous step. It

is, therefore, necessary to adopt a spatial model, which digests the spatial data at a

given time and then updated the model output with the new recordings at the same

locations in the region. It is possible to achieve such a task through Kalman filter

(KF) procedure. KF is an optimal state estimation process applied to a dynamic

system that involves random perturbations. The atmosphere can be regarded as an

uncertain dynamical system (Kalman 1960; Dee 1991). More precisely, KF gives a

linear, equitable, and minimum error variance recursive algorithm to optimally

estimate the unknown state of a dynamic system from noisy data taken at contin-

uous or discrete real-time intervals. The KF supplies a measure of the accuracy of

an analysis in the form of its error covariance (Kalman and Bucy 1961). Therefore,

it allows the impact of different observation sets to be compared.

KF is the most general approach to statistical estimation and prediction. It has

been shown by Harrison and Stevens (1975) that all forecasting methods are special

cases of KF. This filter can deal with changes in the model, the parameters, and the

variances. The difficulty with KF is that many technical questions have not yet been

answered satisfactorily. The approach itself has grown out of engineering practices.

Consequently, many statisticians and operation researchers know little about it, or

find it difficult to understand, because it is most often described in state-space

notation. Furthermore, many practical difficulties still exist as the initial estimates

for parameters, variances, covariance, and the transition matrix. As shown in

Fig. 4.13, the discrete KF is an iterative procedure containing several elements

which are described in the next sections.

The filter is supplied with initial information, including the prior estimate of

initial parameters, which is based on all the knowledge about the process, and the

error covariance associated with it, and these are used to calculate a Kalman gain.

The error between the parameter estimation and the measured data is determined

and multiplied by Kalman gain to update the parameter estimate and estimation

error. The updated error and parameters are used as inputs to a model, in order to

predict the projected error and parameters at the next time instance. The first

derivation of the KF recursive equations is the “filter” equation. The equations

used in the discrete KF are given in detailed by Brown and Hwang (1992). Latif

(1999) has performed multisite KF development and application for Turkish pre-

cipitation in detail.

The objective of this section is to investigate and develop a KF model approach

to multisite precipitation modeling and prediction in addition to the assessment of

associated errors. In order to have an online prediction operation, it is desirable to

be able to deal with a multitude of rainfall events. The precipitation predictor

should not be fixed with time and space, but adapt itself to the evolving
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meteorological conditions. Any stochastic model is associated with various uncer-

tainties. KF consists of combining two independent estimates to form a weighted

estimate or prediction. One estimate can be a prior prediction or an estimate based

on prior knowledge and the other a prediction based on new information (new data).

The purpose of the KF is to combine these two pieces of information to obtain an

improved estimate.

4.10.1 1D KF

Suppose that there is a random variable, Xk, whose values should be estimated at a

set of certain times t0, t1, t2, . . ., tn and that Xk�1 satisfies the following dynamic

system equation:

Xk ¼ φ Xk�1 þWk�1 ð4:36Þ

In this expression, φ is a known parameter relating Xk to Xk�1, andWk�1 is a pure

independent random number with zero mean Wk�1 ¼ 0 and the variance equals to

Q. Let the measurement, Zk, at time k is given as

 Enter prior estimate and the error
covariance matrix associated with it.

Update estimate
with measurement

Compute error
covariance for

updated estimate.

Project ahead the
prior estimate and

the error covariance
matrix associated

with it.

Compute Kalman
gain. 

Fig. 4.13 KF iterative procedure
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Zk ¼ HkXk þ Vk ð4:37Þ

where Vk is another white noisy with zero mean and variance, R and H, is

measurement parameter.

In order to improve the prior estimate X̂ k=k�1, the noisy measurement at time k,

Zk is used as

X̂ k=k ¼ X̂ k=k�1 þ Kk Zk � HkX̂ k=k�1

� � ð4:38Þ

where X̂ k=k is updated estimate and Kk is the Kalman gain. Notice that

Zk � HkX̂ k=k�1

� �
is just the error in estimating Zk. For deciding on the value of

K, the variance of the error be computed as

E Xk � X̂ k=k

� �2h i
¼ E Xk � X̂ k=k�1 � Kk Zk � HkX̂ k=k�1

� �� �2h i
¼ E 1� KkHkð Þ Xk � X̂ k=k�1

� �þ KkVk

� �2
¼ Pk=k�1 1� KkHkð Þ2 þ R K2

k

ð4:39Þ

where the cross product terms drop out because Vk is assumed to be uncorrelated

with Xk and X̂ k=k�1. So, the variance of updated estimation error is given by

Pk=k ¼ Pk=k�1 1� KkHkð Þ2 þ R K2
k ð4:40Þ

If it is necessary to minimize the estimation error, then minimization of Pk/k is

required by differentiating Pk/k with respect to Kk and setting the derivatives equal

to zero. A little algebra shows that the optimal Kk is obtained as

K ¼ H Pk=k�1 Pk=k�1 Kkð Þ2 þ R
h i�1

ð4:41Þ

In these calculations, Xk is a column matrix with many components. Then Eqs. 4.35,

4.36, 4.37, 4.38, 4.39, 4.40, and 4.41 become matrix equations, and the simplicity as

well as the intuitive logic of the KF becomes obscured. The covariance matrices for

Wk�1 and Vk vectors are given by

E WkW
T
i

� � ¼ Qk, i ¼ k
0, i 6¼ k


 �

E VkV
T
i

� � ¼ Rk, i ¼ k
0, i 6¼ k


 �
:

E WkV
T
i

� � ¼ 0, for all k and i :

where subscript T denotes transpose of the vector.
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These equations fall into two groups, time and measurement update equations.

The time update equations are responsible for projecting forward (in time) the

current state and error covariance estimates to obtain the a priori estimates for the

next time step. The measurement update equations are responsible for incorporating

a new measurement into the a priori estimate to obtain an improved estimate. The

time update equations can also be thought of as predictor equations, while the

measurement update equations can be thought of as corrector equations. Indeed the

final estimation algorithm resembles that of a predictor algorithm for solving

numerical problems as shown in Fig. 4.14.

The specific equations for the time updates are as follows.

X̂ kþ1=k ¼ Φkþ1kX̂ k=k ð4:42Þ

and

Pkþ1=k ¼ Φkþ1kPk=kΦ
T
kþ1k þ Qk ð4:43Þ

On the other hand, the measurement update (corrector) equations are as follows.

Kk ¼ Pk=k�1H
T
k HkPk=k�1H

T
k þ Rk

� ��1 ð4:44Þ
X̂ k=k ¼ X̂ k=k�1 þ Kk Zk � HkX̂ k=k�1

� � ð4:45Þ

and

Pk=k ¼ Pk=k�1 � KkHkPk=k�1 ð4:46Þ

Measurement Update
("Corrector")

Time Update
("Predictor")

Fig. 4.14 The ongoing

discrete KF cycle
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It is possible to summarize KF estimation execution steps under the light of

previous derivations as follows:

1. Enter prior estimate X̂ k=k�1 which is based on all our knowledge about the

process prior to time tk�1 and also suggest the error covariance matrix associated

with it Pk/k�1.

2. Compute the Kalman gain as Kk ¼ Pk=k�1H
T
k HkPk=k�1H

T
k þ Rk

� ��1
.

3. Update estimate with measurement Zk as X̂ k=k ¼ X̂ k=k�1 þ Kk Zk � HkX̂ k=k�1

� �
.

4. Compute error covariance for updated estimate as Pk=k ¼ Pk=k�1 � KkHkPk=k�1.

5. Project ahead the updated estimate X̂ k=k and the error covariance matrix

associated with it Pk/k, to use it as a prior estimation for the next time step X̂ kþ1=k

¼ Φkþ1kX̂ k=k and finally Pkþ1=k ¼ Φkþ1kPk=kΦT
kþ1k þ Qk.

Once the loop is entered as shown in Fig. 3.12, then it can be continued as much

as necessary. Initially, when the model parameters are only rough estimates, the

gain matrix ensures that the measurement data is highly influential in estimating the

state parameters. Then, as confidence in the accuracy of the parameters grows with

each iteration, the gain matrix values decrease, causing the influence of the mea-

surement data in updating the parameters and associated error to reduce.

4.10.2 KF Application

To investigate and develop a KF model approach to multisite precipitation model-

ing, 30-year records (1956–1985) of annual rainfall for the 52 stations are used. As

shown in Fig. 4.15, these stations are distributed over an area approximately

covering all of Turkey with more concentration in the northwestern part.
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Fig. 4.15 Distribution of rainfall stations over turkey
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The study area lies between latitudes 36�:700N and 42�:030N and longitude

25�:900E and 44�:030E, extended over an area of about 780,576 km2. The geo-

graphic locations (latitude, longitude, and elevation in meter above mean sea level)

of precipitation stations are represented in Table 4.9.

Precipitation is characterized by variability in space and time. In addition, there

are many factors affecting the magnitude and distribution of precipitation, elevation

of station above mean sea level, various air mass movement, moisture, temperature,

pressure, and topography. The magnitude and distribution of precipitation vary

from place to place and from time to time, even in small areas. The application of

multisite KF model as developed in this section approach to multisite precipitation

modeling which illustrates some interesting points in the annual precipitation

pattern.

Figure 4.16 provides the observed and estimated annual rainfall values at

Adapazarı from 1956 to 1984.

It is to be noticed from this figure that the observed and estimated values follow

each other closely, which indicates that KF provides an efficient method for

modeling of annual rainfall. Some statistical parameters of annual observed and

estimated rainfall values during the time period (1956–1985) are summarized in

Table 4.10.

From another point of view, Fig. 4.16 provides the observed and estimated

annual rainfall values at 52 selected stations in Turkey for 1985. From Fig. 4.17

and Table 4.10, again as noticed before, in the case of one station (Adapazarı), the

observed and estimated values follow each other closely, which indicates that KF

provides an efficient method for modeling of annual rainfall in both time and space

dimension.

Contour maps of observed and estimated annual rainfall for 1956–1985 and

percentage errors of estimated annual rainfall are presented in Figs. 4.18 and 4.19,

respectively. In Fig. 4.18 dashed lines indicate estimated annual average precipita-

tion contours.

According to the areal values of observed and estimated annual rainfalls, the

multisite KF method has a slight tendency toward underestimation. Standard

deviation of estimated value is smaller than that of observed one (Fig. 4.20). Its

mean has less variability and, therefore, more smoothed than observed values.

Furthermore, Fig. 4.17 proves that the estimated values of annual rainfall at most

of the sites in the study area are close to the observed values, especially in the part

where more stations are available such as in the northwestern part of Turkey. The

percentage error of estimated values vary from �6 in station number 52 (underes-

timation) to 6 in station number 49 (overestimation) with overall average about

0.121%.

The magnitude and distribution of precipitation vary from place to place and

from time to time even in small areas. Describing and predicting the precipitation

variability in space and/or time are fundamental requirements for a wide variety of

human activities and water project designs. In this paper, a KF technique has been

developed for the prediction of annual precipitation amounts at a multiple site. In
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Table 4.9 Station locations and elevation above mean sea level

No.

Station

no. Station name

Latitude

(N)

Longitude

(E)

Elevation

(meter)

01 068 Adapazarı 40�: 78
0

30�: 42
0

31

02 662 Ali Fuat Paşa –

Adapazarı

40�: 52
0

30�: 30
0

100

03 102 A�grı 39�: 72
0

40�: 05
0

1631

04 350 Adana 37�: 00
0

35�:33
0

20

05 620 Bahçek€oy – İstanbul 41�: 17
0

29�: 05
0

130

06 070 Bolu 40�: 73
0

31�: 60
0

742

07 150 Balıkesir 39�: 62
0

27�: 92
0

120

08 116 Bursa 40�: 18
0

29�: 07
0

100

09 115 Bandırma – Balıkesir 40�: 32
0

27�: 97
0

58

10 122 Bilecık 40�: 15
0

29�: 98
0

539

11 164 Bitlis 38�: 40
0

42�: 12
0

1578

12 112 Çanakkale 40�: 13
0

26�: 40
0

3

13 054 Çorlu – Tekirda�g 41�: 17
0

27�: 80
0

183

14 084 Çorum 40�: 55
0

34�: 97
0

776

15 280 Diyarbakır 37�: 88
0

40�: 18
0

677

16 651 Dursunbey – Balıkesir 39�: 58
0

28�: 63
0

639

17 653 Edremit – Balıkesir 39�: 60
0

27�: 02
0

21

18 096 Erzurum 39�: 92
0

41�: 27
0

1869

19 050 Edirne 41�: 67
0

26�: 57
0

51

20 124 Eskişehir 39�: 78
0

30�: 57
0

789

21 058 Florya – İstanbul 40�: 98
0

28�: 80
0

36

22 673 G€okçeada – Çanakkale 40�: 20
0

25�: 90
0

72

23 062 G€oztepe – İstanbul 40�: 97
0

29�: 08
0

33

24 674 İpsala – Edirne 40�: 93
0

26�: 40
0

10

25 010 İzmit 40�: 78
0

29�: 93
0

76

26 063 Kartal – İstanbul 40�: 90
0

29�: 18
0

28

27 059 Kumk€oy – İstanbul 41�: 25
0

29�: 02
0

30

28 601 Kırklareli 41�: 73
0

27�: 23
0

232

29 011 Kandilli 41�: 10
0

29�: 06
0

114

30 098 Kars 40�: 60
0

43�: 08
0

1775

31 052 Luleburgaz – Kirklareli 41�: 40
0

27�: 35
0

46

32 210 Siirt 37�: 93
0

41�: 95
0

896

33 020 Şile – İstanbul 41�: 18
0

29�: 62
0

31

34 026 Sinop 42�: 03
0

35�: 17
0

32

35 056 Tekirda�g 40�: 98
0

27�: 48
0

4

36 118 Yalova – İstanbul 40�: 65
0

29�: 27
0

4

37 132 Yozgat 39�: 83
0

34�: 82
0

1298

38 170 Van 38�: 50
0

43�: 50
0

1671

39 190 Afyon 38�: 75
0

30�: 53
0

1034

40 195 Kayseri – Erkilet 38�: 78
0

35�: 48
0

1053

41 240 Isparta 37�: 75
0

30�: 55
0

997

(continued)
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Table 4.9 (continued)

No.

Station

no. Station name

Latitude

(N)

Longitude

(E)

Elevation

(meter)

42 244 Konya 37�: 97
0

32�: 55
0

1032

43 292 Mu�gla 37�: 20
0

28�: 35
0

646

44 030 Samsun 41�: 28
0

36�: 33
0

4

45 300 Antalya 36�: 70
0

30�: 73
0

50

46 034 Giresun 40�: 92
0

38�: 40
0

38

47 074 Kastamonu 41�: 37
0

33�: 77
0

799

48 090 Sivas 39�: 75
0

37�: 02
0

1285

49 092 Erzincan 39�: 73
0

39�: 50
0

1156

50 061 Sarıyer – İstanbul 41�: 17
0

29�: 05
0

56

51 100 I�gdır 39�: 93
0

44�: 03
0

858

52 200 Malatya – Erhav 38�: 43
0

38�: 08
0

0862
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Fig. 4.16 Observed and estimated annual rainfall values at Adapazarı from 1956 to 1984
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this meaner the precipitation amount at any year and stations is predicted by

considering all the available station interrelationships.

Once a model has been selected, then KF processing requires specification of

initial state vector, error covariance matrix associated with this initial state vector,

system noise covariance, measurement noise covariance, state transition matrix,

and connection matrix. Most of this information should be based on physical

understanding and all the previous knowledge about the process prior to tk�1. If

little historical information is available to specify the above matrices, then KF may

be started with very little objective information and adapted as data becomes

available. However, the less the initial information, greater diagonal elements

should be selected in the covariance matrices. In this manner, the algorithm will

have flexibility to adjust itself to sensible values in a relatively short space of time.

The average amount of rainfall values at the selected stations are used as the

elements of initial state vector. Sufficiently great diagonal elements of error covari-

ance matrix are needed with initial state vector provided in the initial moment. Then

the prediction error covariance steadily decreases with time and arrives at a stable

value after some steps, indicating the efficiency of the prediction algorithm.
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Fig. 4.17 Observed and estimated annual rainfall values at selected stations in Turkey for 1985
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Fig. 4.18 Contour map of observed and estimated annual precipitation 1960–1985
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Fig. 4.18 (continued)
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Fig. 4.19 Contour map of percentage error of estimated annual rainfall 1960–1985
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Fig. 4.19 (continued)
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After the initial state descriptions are read as first step, then the Kalman gain

matrix for the one-step prediction can be computed, with necessary assumptions, as

the connection matrix is unity, i.e., all stations are reporting their observations. The

diagonal elements of measurement noise covariance matrix are taken smaller than

those of the system covariance matrix because the observed values are relatively

noise-free compared with the errors which result from the system.

Initially, when the model parameters are only rough estimates, with little

objective information, the Kalman gain matrix ensures that the measurement data

is highly influential in estimating the state parameters. Then, as confidence in the

accuracy of the parameters grows with each iteration, the gain matrix values

decrease, causing the influence of the measurement data in updating the parameters

and associated error.

With the assumption of an initial estimate, the measurement is used to improve

the initial estimate by a linear blending of the noisy measurement and the prior

estimate. The covariance matrix associated with the updated estimate is computed

by using the error covariance matrix associated with initial state vector, connection,

and Kalman gain matrices.
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Fig. 4.20 Standard deviation of observed and estimated areal rainfall values for 1956–1985
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The updated estimates can be projected ahead via the transition matrix, where

the contribution of system error can be ignored, because it has zero mean. However,

the estimate of transition matrix may be difficult, but the system is quite robust to

the transition matrix values, and that they can, therefore, be set to fixed values. They

have a minimal effect on the results. However, for simplicity transition matrix is

assumed to be unity.

It is recommended that one must depend on his/her expert judgement for initial

error covariance and system noise covariance matrices’ values, so that the updated

error covariance matrix values can be computed, and for the system noise covari-

ance matrix, one can use his judgment to select appropriate values. He can then

examine the actual operation of the filter and adjust these values online if the

situation changes at a later time. Similar to the covariance of initial values, KF is

started with large diagonal elements in the system noise covariance matrix.

The projected ahead estimation and the error covariance matrix are used as

initial estimation for the next time step. Once the multisite KF loop is entered, then

it can be continued as much as necessary.

It is to be noticed that for one station the observed and estimated values follow

each other closely, which indicates that KF provides an efficient method for

modeling of annual rainfall. The observed and estimated annual rainfall values at

52 selected stations in Turkey for 1985 follow each other closely, which indicates

that KF provides an efficient method for modeling of annual rainfall in both time

and space dimensions.

The estimated values of annual rainfall at most of the sites in the study area are

close to the observed values, especially in the part where more stations are available

such as in the northwestern part of Turkey. The percentage error of estimated values

vary from �6 (underestimation) to 6 (overestimation) with overall average about

0.121%.
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Chapter 5

Spatial Dependence Measures

Abstract Rather than geometrical weighting functions as in Chap. 2, it is prefer-

able to obtain spatial dependence function from a set of measurement points. Prior

to such a functional derivation, it is necessary to examine the isotropy and homo-

geneity of the spatial data directionally and pointwise features of the regionalized

variable (ReV). The basics of semivariogram (SV) with its different components

such as sill, nugget, and radius of influence are presented in descriptive and

application manners. Similar to SV, cumulative SV (CSV) and point CSV

(PCSV) concepts are explained with applications to groundwater quality data. It

is emphasized that PCSV helps to depict the spatial behavior features around any

sampling point by taking into consideration the contribution from the surrounding

measurement points. It is shown that for each location of measurement, it is

possible to obtain the radius of influence, if necessary along any direction, and

their regional contour maps provide the radius of influence at non-measurement

locations. Once the radius of influence is known, then it is possible to depict which

nearby measurement locations should be taken into consideration in the calculation

of unknown data value. The validity of any method can be decided on the basis of

cross-validation error minimization. A new concept of spatial dependence function

(SDF) is developed without need that the regional data has normal (Gaussian)

probability distribution. The application of SDF is presented for earthquake and

precipitation data from Turkey.

Keywords Cumulative semivariogram • Homogeneity • Isotropy • Nugget • Point

cumulative semivariogram • Range • Spatial correlation • Sample semivariogram •

Sill • Spatial dependence function

5.1 General

Uncertainty within earth sciences data and geological maps is rarely analyzed or

discussed. This is undoubtedly due, in part, to the difficulty of analyzing large sets

of paper files. The increasing use of computers for storing, retrieving, and serving

large data sets has made it easier to systematically analyze these data and prepara-

tion of maps and models from them.

Z. Sen, Spatial Modeling Principles in Earth Sciences,
DOI 10.1007/978-3-319-41758-5_5
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General error theory can be a useful method for characterizing the uncertainty

within spatial data. For most data, errors can be due to inaccuracies in record

keeping, description, identification of behavior and location, generalization, and

correlation. While analysis by error theory can be employed to evaluate the

uncertainty within the data used in mapping, other methods can be used to more

fully evaluate the uncertainty within specific maps. As already mentioned in

Chap. 2, the area of influence method was developed to use three map character-

istics (longitude, latitude, elevation) for estimating uncertainty within maps of earth

sciences. This method uses the spatial distribution of data points, the probability of

misidentification of the targeted unit, and the size of the targeted geological feature

to calculate the probability that additional, unidentified targets can exist. Insight

gained from the use of error theory and the area of influence methods can be used to

describe the uncertainty included in spatial maps.

Earth scientists need maps based even on few samples for extensive decisions in

executing certain projects. It is, therefore, necessary for him/her to be able to

visualize the subject through limited amount of data preliminarily, which can

then be expanded to more effective directions with the coming of additional data.

Although there is ready software for mapping but if the user is not familiar with

some basic principles of the methodology implemented, then the conclusions may

be at bias at the minimum. At the early stages of any study, maps are needed for

efficient spatial relationships without any involved mathematical formulations. In

general, maps relate three variables (triplets as mentioned in Chap. 2) two of which

are the longitude and latitude (geographical coordinates) of the sample points, and

therefore, they show the spatial variability of the third variable. However, in this

chapter, imaginary maps of three different earth sciences variables are also

presented for better logical arguments, interpretations, and conclusions. Maps

help to perceive large-scale spatial relationships easily on a small piece of paper.

Maps are based on the point data measurements, the distances between the

points, and the density of points. Since most natural phenomenon is of continuous

type, maps are representations of finite number of measurement sites and their

continuous surface expressions. Hence, the more and better scattered the measure-

ment points within the study area, the better is the map representation of the natural

phenomenon. The most common ones are the topographic maps with continuous

contour lines of elevations that are derived from a set of discrete location surveys.

In the drawing of maps, not only the measurements but also the artistic talent and

skills of the expert are also taken into consideration. Hence, in many early maps,

subjective biases have entered the domain of mapping, but recently more objective

mapping methodologies are developed and the objectivity is more enhanced.

The reliability of contour maps is directly dependent on the total density of the

sampling points as well as on their uniform distribution (Chap. 3). However, in

practice the uniformity of the sampling points is seldom encountered and the maps

are prepared by avoiding this point. For instance, numerical, statistical, or proba-

bilistic versions of weather prediction methods are based on data available from

irregularly distributed sites within synoptic regions. The very success of such
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prediction methods significantly depends on the production of regularly gridded

data at nodes of a mesh laid over the region concerned. Hence, in any spatial

prediction study, the following two steps are important:

1. That measured data at practically convenient but irregular sites must be trans-

ferred to regularly selected grid points.

2. The use of these grid point estimates in a convenient modeling scheme through

digital computers.

5.2 Isotropy, Anisotropy, and Homogeneity

In operational regional interpolation systems, many simplifying assumptions are

made about the nature of the correlation, and it is represented by an analytic

function of the distance. This assumption implies that the ReV is statistically

homogeneous and isotropic. Gustafsson (1981) has defined the statistical homoge-

neity properties and isotropy of meteorological fields in reference to the covariance.

A ReV is homogeneous and second-order stationary, if the covariance is indepen-

dent of a translation of the two positions. This means that the covariance depends

only on the difference between the positional vectors, i.e., distance. Homogeneity in

reference to the covariance implies that the variance is constant. A ReV is isotropic

in reference to the covariance, if the covariance is independent of a rotation in the

field around the center point on the line between two positions.

For any practical application of the spatial modeling, it is necessary to construct

a model for the spatial correlation to be used in the scheme. To simplify the

construction of these correlation models, it is an advantage, if the homogeneity

and isotropy conditions are fulfilled. Much work has gone into proper choice of

correlation functions of ReV. One simplifying assumption is that the correlations

are assumed to be isotropic and homogeneous, which make them dependent only on

distance as stated by Thiebaux and Pedder (1987) and Daley (1991). For instance,

the real atmosphere is anything but homogeneous and isotropic, and hence it is

assumed that the deviations from the first-guess (climatological mean) field are

homogeneous and isotropic. These assumptions are made in most, if not all,

interpolation analysis schemes (Bergman 1979; Lorenc 1981; Rutherford 1976;

Schlatter 1975). Also homogeneity and isotropy were assumed by Gandin (1963),

Eddy (1964), and Kruger (1969a, b) for most meteorological fields.

Natural phenomena physical processes have preferred orientations. For example,

at the mouth of a river, the coarse material settles out fastest, while the finer

material takes longer to settle. Thus, the closer one is to the shoreline, the coarser

the sediments, while the further from the shoreline, the finer the sediments. When

interpolating at a point, an observation 100 m away but in a direction parallel to the

shoreline is more likely to be similar to the value at the interpolation point than is an

equidistant observation in a direction perpendicular to the shoreline. Anisotropy

takes these trends in the data into account during the gridding process.
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Usually, points closer to the grid node are given more weight than points farther

from the grid node. If, as in the example above, the points in one direction have

more similarity than points in another direction, it is advantageous to give points in

a specific direction more weight in determining the value of a grid node. The

relative weighting is defined by the anisotropy ratio. The underlying physical

process producing the data and the sample spacing of the data are important in

the decision of whether or not to reset the default anisotropy settings.

Anisotropy is also useful when data sets have fundamentally different units

along different dimensions. For example, consider plotting a flood profile along a

river. The x coordinates are locations, measured in km along the river channel. The

t coordinates are time, measured in days. The Z(x, t) values are river depth as a

function of location and time. Clearly in this case, the x and t coordinates would not
be plotted on a common scale, because one is distance and the other is time

(Fig. 5.1). One unit of x does not equal one unit of t. While the resulting map can

be displayed with changes in scaling, it may be necessary to apply anisotropy as

well.

Another example of anisotropy might be employed for an isotherm map (equal

temperature lines, contour map) of average daily temperature over a region.

Although the x and y coordinates (as Easting, say x, and Northing, say y) are

measured using the same units, the temperature tends to be very similar. Along

north-south lines (y lines), the temperature tends to change more quickly (getting

colder as one heads toward the north) (see Fig. 5.2). In this case, in gridding the

data, it would be advantageous to give more weights to data along the east-west axis

than along the north-south axis. When interpolating a grid node, observations that

lie in an east-west direction are given greater weight than observations lying an

equivalent distance in the north-south direction.

In the most general case, anisotropy can be visualized as an ellipse. The ellipse is

specified by the lengths of its two orthogonal axes (major and minor) and by an

orientation angle, θ. The orientation angle is defined as the counterclockwise angle

between the positive x, and, for instance, minor axis (see Fig. 5.3). Since the ellipse

Z(x, t)

x

t

Fig. 5.1 Spatio-temporal

depth variations
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is defined in this manner, an ellipse can be defined with more than one set of

parameters.

For most of the gridding methods, the relative lengths of the axes are more

important than the actual length of the axes. The relative lengths are expressed as a

ratio in the anisotropy group. The ratio is defined as major axis divided by minor

axis. If it is equal to 1, then the ellipse takes the form of a circle. The angle is the

counterclockwise angle between the positive x axes and minor axis. The small

picture in the anisotropy group displays a graphic of the ellipse to help describe the

ellipse. An anisotropy ratio less than 2 is considered mild, while an anisotropy ratio

greater than 4 is considered severe. Typically, when the anisotropy ratio is greater

than 3, its effect is clearly visible on grid-based maps. The angle is the preferred

orientation (direction) of the major axis in degrees.

An example where an anisotropy ratio is appropriate is an oceanographic survey

to determine water temperature at varying depths. Assume the data are collected

every 1000 m along a survey line and temperatures are taken every 10 m in depth at

each sample location. With this type of data set in mind, consider the problem of

Fig. 5.2 Average annual temperature of Turkey

X, Eastingθ

Y, Northing
Minor axis

Major axis

Fig. 5.3 Anisotropy ratio

and angle
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creating a grid file. When computing the weights to assign to the data points, closer

data points get greater weights than points farther away. A temperature at 10 m in

depth at one location is similar to a sample at 10 m in depth at another location,

although the sample locations are 1000s of meters apart. Temperatures might vary

greatly with depth, but not as much between sample locations.

5.3 Spatial Dependence Function (SDF)

The first step is referred to as the objective analysis and the second one is the spatial

modeling phase. For sure, a sound objective analysis is primary prerequisite of

successful modeling. For instance, meteorologists strive for effective interpolation

in order to enhance their mesoscale analysis and forecasts. Objective analysis

studies of meteorological variables started with the work by Panofsky (1949). He

attempted to produce contour lines of upper-wind movements by fitting third-order

polynomials and employing least-squares method to the observations at irregular

sites. The least-squares method leads to predicted field variables, which depend

strongly on distribution of data points when a suitable polynomial is fitted to full

grid. Optimum analysis procedures are introduced to meteorology by Eliassen

(1954) and Gandin (1963). These techniques employ historical data about the

structure of the atmosphere to determine the weights to be applied to the observa-

tions. Here, the implied assumption is that the observations are spatially correlated.

Consequently, observations that are close to each other are highly correlated; hence,

as the observations get farther apart, the spatial dependence decreases. It is a logical

consequence to expect regional dependence function as in Fig. 5.4 assuming that at

zero distance, the dependence is equal to 1, and then onward there is a continuous

decrease or decreasing fluctuations depending on the ReV behavior.

In this figure, there are three spatial dependence functions (SDFs) as A, B, and

C. Logically, A and B indicate rather homogeneous and isotropic regional behavior

of ReV, whereas C has local differences at various distances. However, all of them

decrease down to zero SDF value. The distance between the origin and the point

where the SDF is almost equal to zero shows the radius of influence as R1 or R2.

Provided that the ReV behavior is isotropic (independent of direction), then the

radius of area can be calculated as a circle around each station with radius equal to

Distance
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the radius of influence. These are subjective and expert views about the spatial

dependence structure of any ReV. Their objective counterparts can be obtained

from a set of spatial data as will be explained later in this chapter. The spatial

predictions are then made by considering a spatial model with a domain equal to the

radius of area. For instance, Gilchrist and Cressman (1954) reduced the domain of

polynomial fitting to small areas surrounding each node with a parabola.

Bergthorsson and D€o€os (1955) proposed the basis of successive correction

methods, which did not rely only on interpretation to obtain grid point values but

also a preliminary guess field is initially specified at the grid points (Chap. 5).

Cressman (1959) developed a number of further correction versions based on

reported data falling within a specified distance R from each grid point. The

value of R is decreased with successive scans (1500 km, 750 km, 500 km, etc.)

and the resulting field of the latest scan is taken as the new approximation. Barnes

(1964) summarized the development of a convergent weighted-averaging analysis

scheme which can be used to obtain any desired amount of detail in the analysis of a

set of randomly spaced data. The scheme is based on the supposition that the 2D

distribution of a ReV can be represented by the summation of an infinite number of

independent waves, i.e., Fourier integral representation. A comparison of existing

objective methods up to 1979 for sparse data is provided by Goodin et al. (1979).

Their study indicated that fitting a second-degree polynomial to each subregion

triangular in the plane with each data point weighted according to its distance from

the subregion provides a compromise between accuracy and computational cost.

Koch et al. (1983) presented an extension of the Barnes method which is designed

for an interactive computer scheme. Such a scheme allows real-time assessment

both of the quality of the resulting analyses and of the impact of satellite-derived

data upon various earth sciences data sets. However, all of the aforementioned

objective methods have the following common drawbacks:

1. They are rather mechanical without any physical foundation but rely on the

regional configuration of irregular sites. Any change in site configuration leads

to different results although the same ReV is sampled.

2. They do not take into consideration the spatial covariance or correlation struc-

ture within the ReV concerned.

3. They have constant radius of influence without any directional variations.

Hence, spatial anisotropy of observed fields is ignored. Although some aniso-

tropic distance function formulations have been proposed by Inman (1970) and

Shenfield and Bayer (1974), all of them are developed with no explicit quantitative

reference to the anisotropy of observed field structure of the ReV.

According to Thiebaux and Pedder (1987) assessment of the work done by

Bergthorsson and D€o€os, “the most obvious disadvantage of simple inverse

distance-weighing schemes is that they fail to take into account the spatial distri-

bution of observations relative to each other.” Two observations at equidistant from

a grid point are given the same weight regardless of relative values at measurement

sites. This may lead to large operational biases in grid point data when some

observations are much closer together than others within the area of influence.
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Especially after the 1980s, many researchers are concentrated on the spatial

covariance and correlation structures of the ReV. Lorenc (1981) has developed a

methodology whereby first of all the grid points in a subregion are analyzed

simultaneously using the same set of observations and then subareas are combined

to produce the whole study area analysis. Some papers are concerned with the

determination of unknown parameters of the other covariance functions or SDFs

which provide required weightings for ReV data assimilation. Along this line, the

idea proposed by Bratseth (1986) depends on the interpretation of the ReV covari-

ances into the objective analysis. His analysis caused a recent resurgence of the

successive correction method in which the optimal analysis solution is approached.

His method uses the correlation function for the forecast errors to derive weights

that are reduced in regions of higher data density. Later, Sashegyi (1960) employed

his methodology for the numerical analysis of data collected during the Genesis of

Atlantic Lows Experiment (GALE). Practical conclusions of Bratseth’s approach
have been reported by Franke (1988) and Seaman (1988).

On the other hand, Buzzi et al. (1991) described a simple and economic method

for reducing the errors that can result from the irregular distribution of data points

during an objective analysis. They have demonstrated that a simple iterative

method cannot improve only analysis accuracy but also results in an actual fre-

quency response that approximates closely the predicted weight-generating func-

tion. They have shown that in the case of heterogeneous spatial sampling, a Barnes

analysis could produce an unrealistic interpolation of the sampled field even when

this is reasonably well resolved by error-free observations. Iteration of a single

correction algorithm led to the method of successive correction (Daley 1991). The

method of successive correction has been applied as a means to tune adaptively, the

a posteriori weights. Objective analysis schemes are practical attempts to minimize

the variance estimation (Thiebaux and Pedder 1987).

Pedder (1993) provided a suitable formation for successive correction scheme

based on a multiple iteration using a constant influence scale that provides more

effective approach to estimate ReV from scattered observations than the more

conventional Barnes method which usually involves varying the influence scale

between the iterations. Recently, Dee (1995) has presented a simple scheme for

online estimation of covariance parameters in statistical data assimilation systems.

The basis of the methodology is a maximum likelihood approach in which estimates

are obtained through a single batch of simultaneous observations. Simple and

adaptive Kalman filtering techniques are used for explicit calculation of forecast

error covariance (Chap. 3). However, the computational cost of the scheme is

rather high.

Field measurements of ReV such as ore grades, chemical constitutions in

groundwater, fracture spacing, porosity, permeability, aquifer thickness, and dip

and strike of a structure are dependent on the relative positions of measurement

points within the study area. Measurements of a given variable at a set of points

provide some insight into the spatial variability. This variability determines the

ReV behavior as well as its predictability. In general, the larger the variability, the

more heterogeneous is the ReV environment, and as a result, the number of
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measurements required to model, to simulate, to estimate, and to predict the ReV is

expected to be large. Large variability implies also that the degree of dependence

might be rather small even for data whose locations are close to each other. A

logical interpretation of such a situation may be that either the region was subjected

to natural phenomena such as tectonics, volcanism, deposition, erosion, recharge,

climate change, etc., or later to some other human activities as pollution, ground-

water abstraction, mining, etc.

However, many types of ReV are known to be spatially related in that the closer

their positions, the greater is their dependence. For instance, spatial dependence is

especially pronounced in hydrogeological data due to groundwater flow as a result

of the hydrological cycle, which homogenizes the distribution of chemical constit-

uents within the heterogeneous mineral distribution in geological formations.

The factors of ReV are sampled at irregular measurement points within an area

at regular or irregular time intervals. No doubt, these factors show continuous

variations with respect to other variables such as temperature, distance, etc. Fur-

thermore, temporal and spatial ReV evolution are controlled by temporal and

spatial correlation structures within the ReV itself. As long as the factors are

sampled at regular time intervals, the whole theory of time series is sufficient in

their temporal modeling, simulation, and prediction. The problem is with their

spatial constructions and the transfer of information available at irregular sites to

regular grid nodes or to any desired point. Provided that the structure of spatial

dependence of the ReV concerned is depicted effectively, then any future study,

such as the numerical predictions based on these sites, will be successful. In order to

achieve such a task, it is necessary and sufficient to derive the change of spatial

correlation for the ReV data with distance.

In order to quantify the degree of variability within spatial data, variance

techniques can be used in addition to classical autocorrelation methods (Box and

Jenkins 1976). However, these methods are not helpful directly to account for the

spatial dependence or for the variability in terms of sample positions. The draw-

backs are due to either non-normal (asymmetric) distribution of data or irregularity

of sampling positions. However, the semivariogram (SV) technique, developed by

Matheron (1965, 1971) and used by many researchers (Clark 1979; Cooley 1979;

David 1977; Myers et al. 1982; Journel 1985; Aboufirassi and Marino 1984;

Hoeksema and Kitandis 1984; Carr et al. 1985) in diverse fields such as geology,

mining, hydrology, earthquake prediction, groundwater, etc., can be used to char-

acterize spatial variability and hence the SDF. The SV is a prerequisite for best

linear unbiased prediction of ReV through the use of Kriging techniques (Krige

1982; Journel and Huijbregts 1978; David 1977).

5.4 Spatial Correlation Function (SCF)

By definition, SCF, ρij between i and j, takes values between �1 and +1 and can be

calculated from available historical data as
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ρij ¼
Zo
i � Zi

� �
Zo
j � Zj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zo
i � Zi

� �2

Zo
j � Zj

� �2
r ð5:1Þ

where over bars indicate time averages over a long sequence of past observations,

Zoi and Z
o
j represent observed precipitation amounts at these stations, and, finally, Zi

and Zj are the climatological mean of precipitations. Furthermore, ρij is thought as
attached with the horizontal distance Di,j between stations and j. Consequently, if
there are n stations, then there will be m ¼ n(n�1)/2 pairs of distances and

corresponding correlation coefficients. Their plot results in a scatter diagram

which indicates the SCF pattern for the regional rainfall amounts considered as a

random field. Figure 5.5 presents such scatter diagrams of empirical SCFs

concerning monthly rainfall amounts (Şen and Habib 2001). At a first glance, it is

obvious from this figure that there are great scatters at any given distance in the

correlation coefficients, and unfortunately, one cannot identify easily a functional

trend. The scatter can be averaged out by computing mean correlation coefficient

over relatively short distance intervals (Thiebaux and Pedder 1987). The following

significant points can be deduced from these SCFs:

1. Each monthly average SCF shows a monotonically decreasing trend.

2. Due to averaging procedure within the first 15 km interval, it may appear in

Figs. 5.5 and 5.6 that the correlation coefficient at lag zero is not equal to +1 as

expected. Monthly average SCFs for data considered are given in Fig. 5.6.

Herein, averaging is taken over successive 30 km intervals. This discrepancy

is entirely due to the averaging scheme rather than a physical reality. Hence, this

is not a physically plausible result but unavoidable consequence of the averaging

procedure.

3. The more the averaging correlation coefficient within the first 30 km, the more

strongly related spatial correlation appears between the measurement sites.

5.4.1 Correlation Coefficient Drawback

Although the cross-correlation function definition can give a direct indication of the

dependence of variations from the mean at any two sites, it suffers from the

following drawbacks:

1. Autocorrelation and cross-correlation formulations require symmetrical (nor-

mal, Gaussian) PDF of data for reliable calculations. It is well established in

the literature that most of the earth sciences data PDFs accord rarely with

normal (Gaussian) PDF but better with Weibull, gamma, or logarithmic PDFs

(Benjamin and Cornell 1970; Şen 2002).
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2. Since the cross correlation (as the autocorrelation) is valid for symmetrically

distributed ReV (and random variables, RVs), the available data must be

transformed into normal PDF prior to application of these methods.

3. In the spatial calculation of the cross correlation, it is necessary to have a

sequence of measurements with time at each site, which is not the case in

many earth sciences problems where there are only one measurement at

each site.

4. The correlation function measures the variation around the arithmetic average

values of the measurements at individual sites. However, in the spatial variabil-

ity calculations, a measure of relative variability between two sites is necessary.

5. Especially for the last two points, the SV (Matheron 1965) or cumulative SV

(CSV) (Sen 1989) concepts are developed, and their modifications as the point

CSV (PCSV) are presented and used for the regional assessment of earth

sciences data.

For instance, Barros and Estevan (1983) presented a method for evaluating wind

power potential from a 3-month long wind record at a site and data from a regional

network of wind systems. Their key assumption was that “wind speed has some

degree of spatial correlation” which is a logical conclusion, but they failed to

present an effective method for the objective calculation of the spatial variability

except by employing cross- and autocorrelation techniques. Their statement does

not provide an objective measure of spatial correlation. Skibin (1984) raised the

following questions:

1. What is “a reasonable spatial correlation”? Are the correlation coefficients

between the weekly averages of wind speed a good measure of it? Answers to

these questions are necessary by any objective method. For instance, PCSV

technique can be employed for this purpose.

2. Do the weekly averages represent the actual ones?

3. How applicable to the siting of wind generators are the results obtained by the

use of spatial correlation coefficients?

In deciding about the effectiveness of the wind speed measurement at a site

around its vicinity, the topographic and climatic conditions must be taken into

consideration. The smaller the area of influence, the more homogeneous oro-

graphic, weather, and climatologic features are, and, consequently, the simplest is

the model. However, large areas more than 1000 km in radius around any site may

contain different climates with different troughs and ridges and high- and

low-pressure areas with varying intensities. Furthermore, in heterogeneous regions

with varying surface properties (such as land-sea-lake-river interfaces) and variable

roughness parameters, the local wind profile and wind potential can be affected

significantly. The wind energy potential and the groundwater availability are highly

sensitive to height variations of hills, valleys, and plains (Şen 1995). The reasons

for wind speed variations are not only of orographical origin but also of different

flow regimes (i.e., anabatic-katabatic influences compared with hilltop conditions,

upwind compared with leeside sites, flow separation effects). All these effects will
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lose their influence further away from the siting point. It can be expected that a

smaller distance from the site corresponds to a larger correlation. Here again it is

obvious that the spatial dependence decreases with distance as in Fig. 5.5 (corre-

lation property). Barros and Estevan (1983) noticed that a small region had higher

correlation coefficients between the sites. On the contrary, the spatial independence

increases with the distance (SV property).

Barchet and Davis (1983) have stated that better estimates are obtained when the

radius of influence is about 200 km from the site. However, this information is

region dependent, and there is a need to develop an objective technique whereby the

radius of influence can be estimated from a given set of sites.

5.5 Semivariogram (SV) Regional Dependence Measure

The regional correlation coefficient calculation requires a set of assumptions which

are not taken into consideration in practical applications (Şen 2008). First of all,

calculation of spatial correlation coefficient requires time series records at each site.

This is not possible in many earth sciences studies such as in ore grading, soil

properties, hydrogeological parameters, etc. Rather than a time series availability at

each site, there is only one record, say ore grade record at a set of sites, and

therefore it is not possible to calculate spatial correlation function. However, the

only way to depict the spatial correlation from a set of single records at a set of

locations is through the SV methodology.

5.5.1 SV Philosophy

The very basic definition of the SV says that it is the half-square difference variation

of the ReV by distance. ReV theory does not use the autocorrelation, but instead

uses a related property called the SV to express the degree of relationship between

measurement points in a region. The SV is defined simply as half-square (variance)

of the differences between all possible point pairs spaced a constant distance, d,
apart. The SV at a distance d¼ 0 should be zero, because there are no differences

(variance) between points that are compared to themselves. The magnitude of the

SV between points depends on the distance between the points. The smaller the

distance, the smaller is the SV and at larger distances SV value is larger. The SV is a

practical measure of average spatial changes. The underlying principle is that, on

the average, two observations closer together are more similar than two observa-

tions farther apart. This is a general statement where the directional changes are not

considered. The plot of the SV values as a function of distance from a point is

referred to as a SV. However, as points are compared to increasingly distant points,

the SV increases.
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The simplest and most common form of ReV is a triplet, and therefore it is

illuminating first to consider the surface in 3D, and then according to the SV

definition, it is possible to infer its shape intuitively by mental experiment:

1. Continuously deterministic uniform spatial data: If the ReV is a deterministic

horizontal surface of homogeneous, isotropic, and uniform data as in Fig. 5.7,

then the average half-square difference of such data is zero at every distance as

in Fig. 5.8.

2. Discontinuously deterministic partially uniform spatial data: The continuity in

Fig. 5.7 is disrupted by a discontinuous feature (cliff, fault, facies change,

boundary, etc.) as in Fig. 5.9.

The average square difference at various distances leads to an SV with a

discontinuity at the origin (see Fig. 5.10), the amount of which is equal to the

square difference between higher, ZH(x, y), and lower, ZL(x, y), data values as

γ dð Þ ¼ ZH x, yð Þ � ZL x, yð Þ½ �2 ð5:2Þ

The resulting SV is expected to take the shape as in Fig. 5.10, where there is a

nonzero value at the origin. Such a jump at the origin indicates discontinuity

embeddings in the spatial event and it is referred to as “sill” in geostatistical

literature.

Z(x,y)

x

y

0

Fig. 5.7 Homogeneous,

isotropic, and uniform ReV

d

γ (d)

0

Fig. 5.8 Perfectly

homogeneous and isotropic

ReV SV
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3. Continuously deterministic spatially linear trend data: If the ReV is a linear

surface along the x axis as in Fig. 5.11, then the SV along the x axis by definition
has a quadratic form without any decrease (Fig. 5.12).

This SV does not have any horizontal portion, and at large distances, the slope

increases in an extreme manner.

4. Discontinuously deterministic spatially linear trend data: If the trend surface in

Fig. 5.11 has a discontinuity (Fig. 5.13), then the SV shape appears as in

Fig. 5.14, where there is a jump at the origin, which is referred to as nugget

effect in SV terminology.

5. Completely independent spatial data: If the ReV is completely random with no

spatial correlation as in Fig. 5.15, then the SV will be equal to the variance, σ2, of
the ReV at all distances as in Fig. 5.16. A decision can be made about the

continuity (or discontinuity) and smoothness of the ReV by visual inspection

from the sample SV. If at small distances the sample SV does not indicate

passage from the origin (nugget effect), then the ReV includes discontinuities,

where there is no regional dependence in the ReV at all. Its SV appears as a

horizontal straight line similar to SV in Fig. 5.10.

Z(x, y)

x

y

ZL(x, y)

ZH(x, y)

[ZH(x, y) – ZL(x, y)]

0

Fig. 5.9 Discontinuous surface

d

γ (d)

[ZH(x, y) – ZL(x, y)]2

0

Fig. 5.10 Completely

random ReV SV
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Z(x,y)

x

y

0

Fig. 5.11 Continuous

linear trend

d

γ (d)

0

Fig. 5.12 Linear trend

surface SV in x direction

Z(x,y)

x

y

0

Fig. 5.13 Discontinuous trend surface
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The SV in this spatial random event case is equivalent to the expectation of

Eq. 5.2, which after expansion and expectation E(.) operation application on both

sides leads to

E γ dð Þ½ � ¼ E Z2
H x, yð Þ� �� 2E ZH x, yð ÞZL x, yð Þ½ � þ E Z2

L x, yð Þ� �
Since the ReV is assumed as spatially independent with zero mean (expectation),

the second term of this expression is equal to zero and the other terms are equal to

the variance, σ2, of the spatial event. Finally, this last expression yields

E γ dð Þ½ � ¼ 2σ2. In order to have the SV expectation equal to the variance in practical

applications, it is defined as the half-square difference instead of square difference

γ (d)

0
nugget

d

Fig. 5.14 Discontinuous

trend surface SV in x

direction

Fig. 5.15 Independent spatial data

d

γ (d)

σ2

0

Fig. 5.16 Completely

random ReV SV
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as in Eq. 5.2. Consequently, the SV of an independent ReV appears as having a sill

value similar to Fig. 5.10 but this time the sill value is equal to the spatial variance

of the ReV.

5.5.2 SV Definition

The SV is the basic geostatistical tool for visualizing, interpreting, modeling, and

exploiting the regional dependence in a ReV. It is well known that even though the

measurement sites are irregularly distributed, one can find central statistical param-

eters such as mean, median, mode, variance, skewness, etc., but they do not yield

any detailed information about the phenomenon concerned. The greater the vari-

ance the greater is the variability, but unfortunately this is a global interpretation

without detailed useful information. The structural variability in any phenomenon

within an area can best be measured by comparing the relative change between two

sites. For instance, if any two sites, distant d apart, have measured concentration

values Zi and Zi+d, then the relative variability can simply be written as (Zi �Zi+d).
However, similar to Taylor (1915) theory concerning turbulence, the square differ-

ence, Zi � Ziþdð Þ2, represents this relative change in the best possible way. This

square difference has appeared first in the Russian literature as the “structure

function” of ReV. It subsumes the assumption that the smaller the distance, d, the
smaller will be the structure function. Large variability implies that the degree of

dependence among earth sciences records might be rather small even for sites close

to each other.

In order to quantify the degree of spatial variability, variance and correlation

techniques have been frequently used in the literature. However, these methods

cannot account correctly for the spatial dependence due to either non-normal PDFs

and/or irregularity of sampling positions.

The classical SV technique has been proposed by Matheron (1965) to eliminate

the aforementioned drawbacks. Mathematically, it is defined as a version of

Eq. 5.26 by considering all of the available sites within the study area as (Matheron

1965; Clark 1979)

γ dð Þ ¼ 1

2nd

Xnd
k¼1

Zi � Ziþdð Þ2 ð5:3Þ

where k is the counter of the distance which can be expanded by considering the

regional arithmetic average, Z, of the ReV as follows:

γ dð Þ ¼ 1

2

Xnd
k¼1

Zi � Z
� �� Ziþd � Z

� �� �2
¼ Zi � Z

� �2 � 2 Zi � Z
� �

Ziþd � Z
� �þ Ziþd � Z

� �2h i
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The elegancy of this formulation is that the ReV PDF is not important in obtaining

the SV, and furthermore, it is effective for regular data points. It is to be recalled,

herein, that the classical variogram, autocorrelation, and autorun techniques (Şen

1978) all require equally spaced data values. Due to the irregularly spaced point

sources, the use of classical techniques is highly questionable, except that these

techniques might provide biased approximate results only. The SV technique,

although suitable for irregularly spaced data, has practical difficulties as summa-

rized by Sen (1989). Among such difficulties is the grouping of distance data into

classes of equal or variable lengths for SV construction, but the result appears in an

inconsistent pattern and does not have a nondecreasing form as expected in theory.

As the name implies a SV, γ(d ), is a measure of spatial dependence of a ReV.

Due to independence any cross multiplication of Zi and Zj will be equal to zero

on the average, and hence this is equivalent to regional variance, σ2, as explained in
the previous section. Figure 5.16 shows this mental experiment SV as a horizontal

straight line. Hence, at every distance, the SV is dominated by sill value only.

Expert reasoning of SV models in the previous figures helps to elaborate some

fundamental and further points as follows:

1. If the ReV is continuous without any discontinuity, then the SV should start from

the origin, which means that at zero distance, SV is also zero (Figs. 5.8 and 5.12).

2. If there is any discontinuity within the ReV, then at zero distance, a nonzero

value of the SV appears as in Figs. 5.10, 5.14, and 5.16.

3. If there is an extensive spatial dependence, then the SV has increasing values at

large distances (Figs. 5.12 and 5.14).

4. When the spatial dependence is not existent, then the SV has a constant nonzero

value equal to the regional variance of the ReV at all distances as in Fig. 5.16.

5. Under the light of all what have been explained so far, it is logically and

rationally obvious that in the case of spatial dependence structure in ReV, the

SV should start from zero at zero distance and then will reach the regional

variance value as a constant at large distances. The SV increases as the distance

increases until at a certain distance away from a point, it equals the variance

around the average value of the ReV and will therefore no longer increase,

causing a flat (stabilization) region to occur on the SV, which is called as a sill

(Fig. 5.17). The horizontal stabilization level of sample SV is referred to as its

sill. The distance at which the horizontal SV portion starts is named as the

range, R, radius of influence or dependence length after which there is no spatial

(regional) dependence between data points. Only within this range, locations are

related to each other, and hence all measurement locations in this region are the

nearest neighbors that must be considered in the estimation process. This implies

that the ReV has a limited areal extend over which the spatial dependence

decreases or independence increases in the SV sense as in Fig. 5.17.

The classical SV is used to quantify and model spatial correlations. It reflects

the idea that closer points have more regional dependence than distant points. In

general, spatial prediction is a methodology that embeds the spatial dependence

in the model structure,
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6. At some distance, called the range, the SV will become approximately equal to

the variance of the ReV itself (see Fig. 5.17). This is the greatest distance over

which the value at a point on the surface is related to the value at another point.

The range defines the maximum neighborhood over which control points should

be selected to estimate a grid node, to take advantage of the statistical correlation

among the observations. In the circumstance where the grid node and the

observations are spaced so that all distances exceed the range, Kriging produces

the same estimate as classical statistics, which is equal to the mean value.

7. However, most often natural data may have preferred orientations, and as a

result, ReV values may change more along the same distance in one direction

than another (Fig. 5.3). Hence, in addition to distance, the SV becomes a

function of direction (Fig. 5.18).

It is possible to view the general of SV as a 3D function as the change of SV

value, γ(θ,d ), with respect to direction, θ, and separation distance, d. Of course, θ
and d are the independent variables. In general, specification of any SV requires

the following information:

(a) Sill (regional variance)

(b) Range (radius of influence)

(c) Nugget (zero distance jump)

(d) Directional values of these parameters

γ (d)

Nugget effect

Sill (regional variance)

Range (radius of influence)

Scale

d0

Fig. 5.17 Classical global

SV and elements

d

γ (d)
a b

0 d

γ (d)

0

Fig. 5.18 Classical directional SV, (a) major axis, (b) minor axis
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The last point is helpful for the identification of regional isotropy or anisotropy.

For the Kriging application, the convenient composition of these parameters must

be identified through a theoretical SV. Whether a given sample SV is stationary or

not can be decided from its behavior at large distances. If the large distance portion

of the SV approaches a horizontal line, then it is stationary, which means intuitively

that there are rather small fluctuations with almost the same variance at every corner

of the region.

If the SV is generated from paired points selected just based on distance (with no

directional component), then it is called isotropic (iso means the same; tropic refers

to direction) or omnidirectional. In this case, the lag-distance measure is a scalar

and the SV represents the average of all pairs of data without regard to their

orientation or direction. A standardized SV is created by dividing each SV value

by the overall sample variance, which allows SVs from different data sets on the

same entity for facilitating the mutual comparison.

On the other hand, SVs from points that are paired based on direction and

distance are called anisotropic (meaning not isotropic). In this case, the lag measure

is a vector. The SVs in this case are calculated for data that are in a particular

direction as explained in Sect. 4.3. The regularity and continuity of the ReV of a

natural phenomenon are represented by the behavior of SV near the origin. In SV

models with sill (Fig. 5.17), the horizontal distance between the origin and the end

of SV reflects the zone where the spatial dependence and the influence of one value

on the other occur, and beyond this distance, the ReV Z(x) and Z(x + d) are

independent from each other. Furthermore, SVs, which increase at least as rapidly

as d2 for large distances d, indicate the presence of drift (trend), i.e., nonstationary
mathematical expectation. Plot of SV graphs for different directions gives valuable

information about continuity and homogeneity. If SV depends on distance d only, it

is said to be isotropic, but if it depends on distance as well as direction, it is said to

be anisotropic. A properly fitted theoretical SV model allows linear estimation

calculations that reflect the spatial extent and orientation of spatial dependence in

the ReV to be mapped. Details on these points can be found in standard textbooks

on geostatistics (Davis 1986; Clark 1979).

There are also indicator SVs which are calculated from data that have been

transformed to a binary form (1 or 0), indicating the presence or absence of some

variable or values that are above some threshold. In the calculation of sample SVs,

the following rules of thumb must be considered:

1. Each distance lag (d) class must be represented by at least 30–50 pairs of points.

2. The SV should only be plotted out to about half the width of the sampling space

in any direction.

Characterizing spatial correlation across the site through experimental SV can

often be the most time-consuming step in a geostatistical analysis. This is partic-

ularly true if the data are heterogeneous or limited in number. Without a rationale

for identifying the major direction of anisotropy, the following steps might be

useful in narrowing the focus of the exercise:
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1. Begin with an omnidirectional SV with a bandwidth large enough to encompass

all data points on the site. In practice, maximum lag distance can be taken as one

third of the maximum distance between the data points.

2. Select the number of lags and lag distances sufficient to span a significant portion

of the entire site, and choose the lag tolerance to be very close in value to the lag

distance itself.

3. Calculate the SV. In most cases, data become less correlated as the distance

between them increases. Under these circumstances, the SV values should

produce a monotonic increasing function, which approaches a maximal value

called the sill. In practice, this may not be the case with SV values that may

begin high or jump around as distance increases.

4. Adjust the number of lags and lag tolerances until, generally, a monotonic

increasing trend is seen in the SV values. If this cannot be achieved, it may be

that a geostatistical approach is not viable or that more complicated trends are

occurring than can be modeled. If a visual inspection of the data or knowledge

about the dispersion of contamination indicates a direction of correlation, it may

be more appropriate to first test this direction.

5. Assuming the omnidirectional SV is reasonable, add another direction to the plot

with a smaller tolerance. You may have to adjust the bandwidth and angle

tolerance to produce a reasonable SV plot.

6. If the second direction rises slower to the sill or rises to a lower sill, then this is

the major direction of anisotropy.

7. If neither direction produces significantly lower spatial correlation, it may be

reasonable to assume an isotropic correlation structure.

8. Add a cone structure with direction equal to the major direction plus 90�, and
model the SV results in this direction.

9. If the data are isotropic, choose the omnidirectional SV as the major direction.

5.5.3 SV Limitations

The SV model mathematically specifies the spatial variability of the data set, and

after its identification, the spatial interpolation weights, which are applied to data

points during the grid node calculations, are direct functions of the Kriging model

(Chap. 5). In order to determine the estimation value, all measurements within the

SV range are assigned weights depending on the distance of neighboring point

using the SV. These weights and measurements are then used to calculate the

estimation value through Kriging modeling. Useful and definite discussions on

the practicalities and limitations of the classicaltheoretical function, which is called

SV have been given by Sen (1989) as follows:

1. The classical SV, γ(d ), for any distance, d, is defined as the half-square differ-

ence of two measurements separated by this distance. As d varies from zero to

the maximum possible distance within the study area, the relationship of the

half-square difference to the separation distance emerges as a theoretical
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function, which is called the SV. The sample SV is an estimate of this theoretical

function calculated from a finite number, n, of samples. The sample SV can be

estimated reliably for small distances when the distribution of sampling points

within the region is regular. As the distance increases, the number of data pairs

for calculation of SV decreases, which implies less reliable estimation at large

distances.

2. In various disciplines of the earth sciences, the sampling positions are irregularly

distributed in the region, and therefore, an unbiased estimate of SV is not

possible. Some distances occur more frequently than others and accordingly

their SV estimates are more reliable than others. Hence, a heterogeneous reli-

ability dominates the sample SV. Consequently, the sample SV may have ups

and downs even at small distances. Such a situation gives rise to inconsistencies

and/or experimental fluctuations with the classical SV models which are, by

definition, nondecreasing functions, i.e., a continuous increase with distance is

their main property. In order to give a consistent form to the sample SV, different

researchers have used different subjective procedures:

(a) Journel and Huijbregts (1978) advised grouping of data into distance classes

of equal length in order to construct a sample SV. However, the grouping of

data pairs into classes causes a smoothing of the sample SV relative to the

underlying theoretical SV. If a number of distances fall within a certain

class, then the average of half-square differences within this class is taken as

the representative half-square difference for the mid-class point. The effect

of outliers is partially damped, but not completely smoothed out by the

averaging operation.

(b) To reduce the variability in the sample SV, Myers et al. (1982) grouped the

observed distances between samples into variable length classes. The class

size is determined such that a constant number of sample pairs fall in each

class. The mean values of distances and half-square differences are used for

the classes as a representative point of sample SV. Even this procedure

resulted in an inconsistent pattern of sample SV (Myers et al. 1982) for

some choices of the number, m, of pairs falling within each class. However,

it was observed by Myers et al. that choosing m¼ 1000 gave a discernible

shape. The choice of constant number of pairs is subjective, and in addition,

the averaging procedures smooth out the variability within the experimental

SV. As a result the sample SV provides a distorted view of the variable in

that it does not provide, for instance, higher-frequency (short wavelength)

variations. However, such short wavelength variations, if they exist, are so

small that they can be safely ignored.

The above procedures have two basic common properties, namely, predetermi-

nation of a constant number of pairs or distinctive class lengths and the arithmetic

averaging procedure for half-square differences as well as the distances. The former

needs a decision, which in most cases is subjective, whereas the latter can lead to

unrepresentative SV values. In classical statistics, only in the case of symmetrically

distributed data, the mean value is the best estimation; otherwise, the median
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becomes superior. Moreover, the mean value is sensitive to outliers. The following

points are important in the interpretation of any sample SV:

1. The SV has the lowest value at the smallest lag distances (d ) and increases with

distance, leveling off at the sill, which is equivalent to the overall regional

variance of the available sample data. It is the total vertical scale of the SV

(nugget effect + sum of all component scales). However, linear, logarithmic, and

power SVs do not have a sill.

2. The range is the average distance (lag) within which the samples remain

spatially dependent and it corresponds to the distance at which the SV values

level off. Some SV models do not have a length parameter; e.g., the linear model

has a slope instead,

3. The nugget is the SV value at which the model appears to intercept the ordinate.

It quantifies the sampling and assaying errors and the short-scale variability (i.e.,

spatial variation that occurs at distance closer than the sample spacing). It

represents two often co-occurring sources of variability:

(a) All unaccounted for spatial variability at distances smaller than the smallest

sampling distance.

(b) Experimental error is often referred to as human nugget. According to

Liebhold et al. (1993), interpretations made from SVs depend on the size

of the nugget because the difference between the nugget and the sill (if there

is one) represents the proportion of the total sample variance that can be

modeled as spatial variability.

5.6 Sample SV

In practice, one is unlikely to get SVs that look like the one shown in Fig. 5.17.

Instead, patterns such as those in Fig. 5.19 are more common.

Important practical information in the interpretation and application of any

sample SV is to consider only about d/3 of the horizontal distance axis values

from the origin as reliable.

A digression is taken in this book as for the calculation of sample SVs. Instead of

easting- and northing-based SVs, it is also possible to construct SVs based on triple

variables. In the following, different triple values are assessed for the SV shapes and

interpretations. For instance, in Fig. 5.20, the chloride change with respect to

calcium and sodium is shown in 3D and various sample SVs along different

directions are presented in Fig. 5.21.

This figure indicates that the change of chloride data with respective indepen-

dent variables (magnesium and calcium) is of clumped type without leveling effect.

It is possible to consider Fig. 5.20 as having two parts, namely, an almost linear

trend and fluctuations (drift) around it. In such a case, a neighborhood definition and

weight assignments become impossible. Therefore, the ReV is divided into two

parts, the residual and the drift. The drift is the weighted average of points within
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the neighborhood around the estimation value. The residual is the difference

between the ReV and the drift.

The residual is a stationary ReV in itself and hence allows construction of a

SV. However, once again the problem of not being able to define a neighborhood

arises. Therefore, an arbitrary neighborhood is chosen from which a drift can be

calculated. The calculation includes the points within the assumed neighborhood

and a corresponding coefficient for each point, which will be explained in more

detail in the Kriging section. The only variable left in the calculation is the SV;

however, no SVs exist from which to obtain the SV. Therefore, a reasonable SV is

assumed and compared to the resultant residual SV. If the two are the same, then the

assumptions made about the neighborhood and SV are correct, and regional esti-

mation can be made. If they differ, then another SV must be used until they become

the same. It is possible to identify from a SV the optimum distance after which

regional dependence is zero or constant. By definition the SV is half the variance of

the difference between all possible points at a constant distance apart. The existence

of underlying trend implies the expectation of sample SV similar to ideal case as in

Fig. 5.12.

Zero and 30o directional SVs in Fig. 5.21a, b have such a trend, whereas other

directional sample SVs along 60o and 90o have more or less random type provided

that only d/3 of the distance axis variables (0–15) are considered.

It is obvious that practically, there is no nugget effect in these sample SVs, which

is rather obvious from Fig. 5.20 where the trend surface does not have discontinuity

d0

γ (d)

d0

γ (d)

d0

γ (d)

d0

γ (d)

a b

c d

Fig. 5.19 Common forms of sample SVs, (a) random, (b) uniform, (c) clumped with leveling, (d)
clumped without leveling
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as in Fig. 5.12. Similarly, 3D representation of bicarbonate variation with calcium

and magnesium is presented in Fig. 5.22 with a global (without different directions)

sample SV in Fig. 5.23.

Visual inspection of Fig. 5.22 indicates that a trend surface is embedded in the

ReV. This trend surface is almost horizontal with a very small angle and accord-

ingly its global sample SV in Fig. 5.23 has almost horizontal sector within d/3.
Total dissolved solids (TDS) measurement is an indicator of the water quality

variation with respect to calcium and magnesium and its variation is presented in

Fig. 5.24 with corresponding global SV in Fig. 5.25.

5.7 Theoretical SV

A useful discussion on the computation of the SV in one or two dimensions has

been given by Clark (1979) and Ludwig and Reynolds (1988). The SV as computed

from the data will tend to be rather lumpy, and the more irregular the data, the less

regular it will appear. Whatever the extend of lumpiness, the graph of γ(d ) may

Fig. 5.20 Triple surface of chloride
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often be linked to one or other of a small number of theoretical (ideal) and simple

curves that relate γ(d ) to d, which are referred to as the theoretical SVs. These

theoretical curves are models of SV which have been defined on theoretical and

sample basis. The fitting of the theoretical SV curve, from a set of functions to the

experimentally available one derived from real data, has been developed into the art

of “structural analysis” discussed in detail by a number of researchers (Journel and

Huijbregts 1978; Myers et al. 1982; Ludwig and Reynolds 1988). The main

theoretical SV types are linear, spherical, exponential, Gaussian, or cubic types as

will be explained later in detail. These functions express rather well qualitatively

characteristics of ReV and act as a quantified summary of the structural informa-

tion, which is then channeled into the estimation procedures of the natural (geo-

logical, hydrological, meteorological, atmospheric, etc.) phenomena.

In order to apply Kriging modeling to a ReV, the first step is to obtain sample SV

from the available data and then to match this sample SV to a theoretically suitable

mathematical function. It describes the relationship between the difference of

0 5 10 15 20 25 30 35 40

Distance

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Column C: Cl
Direction: 90.0 Tolerance: 10.0

0 5 10 15 20 25 30 35 40

Distance

0

1000

2000

3000

4000

5000

6000

7000

Column C: Cl
Direction: 60.0 Tolerance: 10.0

0 5 10 15 20 25 30 35 40

Distance

0

500

1000

1500

2000

2500

3000

3500

4000

S
em

iv
ar

io
gr

am
S

em
iv

ar
io

gr
am

S
em

iv
ar

io
gr

am
S

em
iv

ar
io

gr
am

Column C: Cl
Direction: 0.0 Tolerance: 10.0

0 5 10 15 20 25 30 35 40

Distance

0

1000

2000

3000

4000

5000

6000

7000

8000

Column C: Cl
Direction: 30.0 Tolerance: 10.0

R
el

ia
bi

lit
y 

ra
ng

e

R
el

ia
bi

lit
y 

ra
ng

e
R

el
ia

bi
lit

y 
ra

ng
e

R
el

ia
bi

lit
y 

ra
ng

e

Fig. 5.21 Chloride sample SVs
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values and distance with a mathematical function. Several different types of

functions can be used, each with a different form to the distance function. In

addition to its shape or form, the SV model is described by three parameters,

namely, nugget, sill, and range. Nugget shows how much variance is observed at

a distance of zero. It shows up because there may be variation at distances shorter

Fig. 5.22 Triple surface of chloride
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Fig. 5.24 Triple surface of total dissolved solids
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Fig. 5.25 Total dissolved solids SV
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than the sample spacing or because there are errors in the measurements. It

corresponds to discontinuity feature existence in the ReV. The sill shows how

much variation is observed when the SV levels off at large distances. Most SVs

become constant at large distances provided that the ReV has spatial dependence

without any systematic trend component. Once it is far enough away, there is no

relationship in the ReV between the distances of two points. The range shows how

far one has to cover distance before the SV levels off to the sill. At distances less

than the range, a ReV will be said to be spatially dependent, and beyond the range

distance, the ReV has no effect and there is no spatial dependence. Finally, if the

directional SVs are very different, one may need to specify an anisotropy param-

eter. For instance, the NS SV may be different from the EW SV (there is a different

range, sill, nugget value, and rather different shape).

The development of an appropriate SV model for a data set requires the

understanding and application of advanced statistical concepts and tools, which is

the science of SV modeling. In addition, the development of an appropriate SV

model for a data set requires knowledge of the tricks, traps, pitfalls, and approxi-

mations inherent in fitting a theoretical SV model to real-world data, which is the art

of SV modeling. Skills with the science and the art are both necessary for success.

The development of an appropriate SV model requires numerous correct deci-

sions. These decisions can only be properly addressed with an intimate knowledge

of the data at hand and a competent understanding of the data genesis (i.e., the

underlying processes from which the data are drawn).

Several SV models have been developed to describe the various underlying

spatial patterns in data. Examples of isotropic models including spherical, expo-

nential, linear, power, and Gaussian models are used as input in the Kriging ReV

estimation process (Chap. 5).

5.7.1 Simple Nugget SV

This corresponds to a random field with no regional dependence structure at all. In

such a case, the ReV is represented by its variance, σ2, only. Its mathematical form

is given as

γ dð Þ ¼ σ2 for d > 1

0 for d ¼ 0

	
ð5:4Þ

The random field that this SV represents is not continuous (Fig. 5.15). No matter

what the distance is (small or large), each ReV is completely independent and

different from others. In this case, the spatial analysis methodology is the proba-

bility principles only (Fig. 5.16). The special case of this nugget SV occurs when

there is not any spatial variability but a uniform ReV value at each point (see

Figs. 5.7 and 5.8). The mathematical model is then γ(d ) ¼ 0 for all d values.
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5.7.2 Linear SV

If the ReV does not have any discontinuity, then its simplest model is given as

γ dð Þ ¼ βd ð5:5Þ

where β is the only model parameter with its meaning of the slope of the straight

line (see Fig. 5.26).

A more general form of theoretical linear SV is the mixture of nugget and the

linear SVs. It postulates a linear relationship between the cumulative half-square

difference and the distance as

γc dð Þ ¼ αþ βd ð5:6Þ

in which α corresponds to nugget effect and β is the slope of the theoretical SV as in

Fig. 5.27.

The unknowns α and β can be solved from a sample SV either by substitution of

two most characteristic points that should be preserved in the theoretical SV or

through a least-squares regression line fitting. The first approach is rather subjective

but may represent expert in a better way. On the other hand, according to theory, the

expected value of the sample variance is the average value of the SV between all

possible pairs of sample locations, which yields one equation (Barnes 1991). The

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Distance, d

S
em

iv
ar

io
gr

am
, g

(d
)

b = 5

b = 3

b = 1

b = 0.5

b = 0.3

Fig. 5.26 Linear SV model

208 5 Spatial Dependence Measures



second equation is generated by equating the experimental SV for nearest neighbors

to the modeled SV. Thus, it is possible to write

γs dð Þ ¼ αþ βd

γn dð Þ ¼ αþ βdn

where dn ¼ average distance to the nearest neighbor, d ¼ average inter-sample

separation distance, γn(d )¼ one half the average square difference between nearest

neighbors, and γs(d ) ¼ sample variance. By solving the two equations for the two

unknown parameters and checking for unreasonable values, one can get the final

formulae used in the Kriging technology:

α ¼ max
dγn dð Þ � dnγs dð Þ

d � dn
, 0


 �

and

β ¼ max
γs dð Þ � γn dð Þ

d � dn
, 0


 �
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5.7.3 Exponential SV

The mathematical expression of theoretical exponential SV model is given as

(Cressie 1993)

γ dð Þ ¼ α 1� e�βd
� � ð5:7Þ

where the two model parameters are α >0 and β >0. This model is used commonly

in hydrological studies. Figure 5.28 shows exponential models with different

variance values and β¼ 1. It does not have a nugget value, hence represent

continuous ReV, which are stationary, because at large distances, exponential SV

approaches a horizontal asymptote.

5.7.4 Gaussian SV

Its general expression is given in the following mathematical form (Pannatier

1996):

γ dð Þ ¼ α 1� e�βd2
� �

ð5:8Þ
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where α >0 and β >0 are the two parameters, and according to their values, it takes

different forms. Figure 5.29 shows a set of Gaussian SV with different α values and

β¼ 1. Since at large distances there is a horizontal portion, the representative ReV

is also stationary.

For the initial portion, i.e., at small distances, the Gaussian model appears as

proportional to d2, which implies that the ReV is smooth enough to be differentia-

ble, i.e., the slope of SV tends to a well-defined limit as the distance between the

two points.

5.7.5 Quadratic SV

Its mathematical expression is given by Alfaro (1980) as

γ dð Þ ¼ αd 2� dð Þ d < 1

α d � 1

	
ð5:9Þ

where the single model parameter α >0. Its shape is given in Fig. 5.30 for different

α values. As it increases the sill value decreases, which means that the fluctuations

become smaller. It represents stationary ReV with non-differentiable properties.
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5.7.6 Rational Quadratic SV

Cressie (1991) provided this SV for use with the following expression:

γ dð Þ ¼ α
d2

1þ d2

� 

ð5:10Þ

where α >0 is the model parameter. It has similar behavior to Gaussian model at

small distances which implies that the ReV is differentiable and rather continuous.

An increase in α parameter value causes increase in the sill level, which further

shows that the fluctuations in the ReV from its average level become bigger (see

Fig. 5.31).

5.7.7 Power SV

Its general form is presented by Pannatier (1996) as

γ dð Þ ¼ α dmj j ð5:11Þ
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where α >0 and 0< m<2 are model parameters. Convex and concave forms result,

respectively, in 0<m<1 and 1<m<2 as in Fig. 5.32. Besides, it reduces to a linear

model (Eq. 5.5) for m¼ 1. Depending on whether m> 1 (m< 1), the SV represents

a differentiable (non-differentiable) ReV. Additionally, none of the theoretical SVs

approach to a sill value, and therefore, the represented ReV does not have stationary

property. These SVs describe the same appearance of realizations at every scale,

and therefore, they are referred to as self-similar ReV. This is because they appear

as a straight line on a double-logarithmic paper with different slopes.

The main difference of this model from the others is that it has a nonzero value

for zero distance, i.e., it has a nugget effect. The forms of different cumulative SVs

resulting from Eq. 5.11 are shown in Fig. 5.32.

5.7.8 Wave (Hole Effect) SV

Cressie (1991) gave the general mathematical expression of this model as

γ dð Þ ¼ α 1� sin d

d

� 

ð5:12Þ
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where again α>0 is the model parameter (see Fig. 5.33). This model describes ReV

with excursions above the mean which tend to be compensated by excursions below

the mean. It exhibits linear behavior at small distances which implies that the

corresponding ReV are continuous but not differentiable. They are less smooth

than the realization of a random field.
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5.7.9 Spherical SV

Pannatier (1996) presented the general expression as

γ dð Þ ¼ αd 1:5� 0:5d2
� �

d < 1

α d � 1

	 �
ð5:13aÞ

with model parameter α >0. At small distances it is proportional with distance and

therefore its representative ReV is non-differentiable but continuous. At large

distance the existence of horizontal level (sill) implies that the ReV is stationary.

Its shapes are presented in Fig. 5.34.

5.7.10 Logarithmic SV

It is a single parameter model with mathematical expression as

γ dð Þ ¼ αlnd d > 0 ð5:13bÞ

It appears as a straight line on a semilogarithmic paper (logarithmic distances) and

α represents the slope of this line. Various logarithmic SVs are presented in
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Fig. 5.35. Since there is no sill, the corresponding ReV is nonstationary. It can be

used only for integrals over finite volumes and cannot be used directly with point

data values of the ReV (Kitanidis 1997).

5.8 Cumulative Semivariogram (CSV)

The CSV method proposed by Sen (1989) as an alternative to the classical SV

technique of Matheron (1965) has various advantages over any conventional

procedure in depicting the regional variability, and hence spatial dependence

structure CSV is defined similar to the SV; the only difference is that successive

cumulative summations are adopted. CSV has the same advantages of the SV and it

provides an objective way in construction of spatial variable regional dependence

behavior. Furthermore, standardization of CSV provides a basis in identifying

regional stationary stochastic models (Şen 1992). The CSV is a graph that shows

the variation of successive half-square difference summations with distance. Hence,

a nondecreasing CSV function is obtained which exhibits various significant clues

about the regional behavior of the ReV. The CSV provides a measure of spatial

dependence. The CSV can be obtained from a given set of ReV data by executing

the following steps:
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1. Calculate the distance di,j, (i 6¼ j ¼ 1, 2, . . ., m) between every possible pair of

sparse measurement sites. For instance, if the number of sample sites is n, then

there are m ¼ n(n�1)/2 distance values.

2. For each distance, di,j, calculate the corresponding half-square differences, Di,j,

of the ReV data. For instance, if the ReV has values of Zi and Zj at two distinct

sites at distance di,j apart, then the half-square difference is

Di, j ¼ 1

2
Zi � Zj

� �2 ð5:14aÞ

3. Take the successive summation of the half-square differences starting from the

smallest distance to the largest in order. This procedure will yield a

nondecreasing function as

γ di, j
� � ¼ Xm

i¼1

Xm
i¼1

Di, j ð5:14bÞ

where γ(di,j) represents CSV value at distance di,j.
4. Plot γ(di,j) values versus the corresponding distance di,j. The result will appear

similar to the representative CSV functions as in Fig. 5.36. The sample CSV

functions are free of subjectivity because no a priori selection of distance classes

is involved in contrast to the analysis as suggested by Perrie and Toulany (1989)

in which the distance axis is divided into subjective intervals, and subsequently,

averages are taken within individual intervals which are regarded as the repre-

sentative value for this interval.
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In his discussion on the practical difficulties of classical SV, Şen (1989) has

noticed the reliability of SV estimations at small distances with regular distribution

of sampling points within the region. However, in various disciplines of geological

sciences, the sampling positions are irregularly distributed in the region (such as in

the earthquake epicenters) where some distances occur more frequently than others;

thus, a heterogeneous reliability dominates the sample SV. In order to overcome

these shortcomings, he developed CSV technique on the basis of the ReV theory.

This technique possesses all of the objective properties of the classical SVs and in

addition it helps to identify the hidden and local dependencies within a region. It is

defined as the successive summation of half-square differences, which are ranked

according to the ascending order of distances extracted from all possible pairs of

sample locations within a region. Mathematically, CSV is expressed as

γc dkð Þ ¼
Xk
i¼1

d di
� �

k ¼ 1, 2, . . . ,mð Þ ð5:15Þ

where γc(dk) is the value of the kth ordered distance CSV value and superscript

i indicates the rank. The procedure of sample CSV calculations and its model form

and equations have been given by Şen (1989) as in Fig. II.12. These models are

counterpart to those of classical SV models, but with different interpretations of the

model parameters. The attributes and advantages of CSV can be summarized as

follows:

1. The CSV is a nondecreasing function; however, there may be local flat portions,

implying constancy of the regionalized variables at certain distance, i.e., the

same values have been observed at two locations h apart.

2. The slope of the theoretical CSV at any distance is an indicator of the depen-

dence between pairs of regionalized variables separated by that distance.

3. The sample CSV reflects even smaller dependencies between data pairs, which

are not possible to detect with classical SV due to the averaging procedure.

4. The sample CSV is straightforward in applications and free of subjectivity

because there is no need for a priori selection of distance classes. In fact, the

real distances are employed in the construction of the sample CSV rather than

class midpoint distance.

5. The CSV model may be used for irregularly distributed sample positions within

the study region.

6. The underlying model for any regionalized variable can be detected by plotting

the cumulative half-square differences versus distances on arithmetic-

semilogarithmic or double logarithmic. Appearance of sample CSV points on

any one of these papers as a straight line confirms the type of model. Such an

opportunity is missing in the samples of classical SV.

7. Model parameter estimates are obtained from slope and intercept values of the

straight line.
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8. Any classical SV model has a theoretical CSV counterpart which can be

obtained through an integration operation.

9. These characteristics and advantages make the CSV attractive for practical

applications.

5.8.1 Sample CSV

The CSV proposed in the previous section is applied to the transmissivity, total

dissolved solids, and piezometric level records in theWasia sandstone aquifer in the

eastern part of the Kingdom of Saudi Arabia (Şen 1989). A complete

hydrogeological study of this area has been performed recently by Subyani (1987).

GAMA3 software developed for computing the classical SV by Journel and

Huijbregts (1978) has been applied to groundwater variables such as transmissivity,

piezometric level, and total dissolved solids from the Wasia sandstone aquifer. The

resulting sample SV and sample CSV plots are presented in Figs. 5.37, 5.38, and

5.39. It is clear from these figures that the half-square difference points are scattered

in such a way that it is not possible to distinguish a clear pattern in the sample SVs,

which suffer from fluctuations even at small distances. Comparisons of the sample

SVs in these figures with the sample CSVs indicate that the latter are more orderly

and have distinctive nondecreasing patterns.
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A sample CSV often yields more or less a straight line for large distances, which

corresponds to the sill concept in the classical SV. Furthermore, the sample CSV

starts as a curve with different curvatures over some distance domain before it

becomes almost a straight line. The length of the distance domain over which the

sample CSV occurs as a curve is a counterpart of the range in the classical SV. Hence,

it is straightforward to determine the range from the sample CSV. The piezometric

level sample CSV in Fig. 5.39 shows an initial range portion, which has zero half-

square differences for about 10 km. Such a portion implies physically that the

piezometric level does not change significantly within distances less than 60 km.

In fact, the Wasia aquifer has remained free of any tectonic movements, it is

extensive, and the recharge is negligible, but it is discharged by local well groups

which are situated at large distances from each other (Powers et al. 1966).

5.8.2 Theoretical CSV Models

In order to be able to apply Kriging estimation techniques to a ReV, a functional

relationship must be established between the distance and the measure of regional

dependence which, herein, is the CSV. These models must be nondecreasing
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functions. Although numerous functions have this property, in practice restricting

them to a few simple ones is desirable. By considering the basic definitions of both

the classical and CSVs, they may be related through an integration as

γc dð Þ ¼
Zd

0

γ uð Þdu ð5:16Þ

or through differentiation as

γ dð Þ ¼ dγc uð Þ
du

����
u¼d

ð5:17Þ

Therefore, a CSV counterpart may be found for any given classical SV using

Eq. 5.16. Furthermore, Eq. 5.17 indicates that the theoretical classical SV value

at any distance is equal to the slope of the theoretical CSV at the same distance. In

the following, models which have been used previously for SVs by many

researchers will be assessed from the CSV point of view.

5.8.2.1 Linear Model

The linear CSV model signifies that the phenomenon has regional independence

and it evolves in accords with an independent (white noise) process. Hence, in an
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objective analysis of such a phenomenon, one needs to know only the mean and

standard deviation, and consequently, the prediction of any grid point value can be

withdrawn from an independent process because the radius of influence is equal to

zero. This is the most extreme case, which rarely happens in earth sciences

domains. This model postulates a linear relationship between the cumulative half-

square difference and the distance as

γc dð Þ ¼ αþ βd ð5:18Þ

in which α and β are the model parameters (Fig. 5.40a). The sample CSV of the

regionalized variable that abides by this model will appear as a straight line on

arithmetic paper.

In fact, α is the intercept on the CSV axis and β is the slope of this straight line.

This slope corresponds to the sill value in the classical SV which represents a pure

nugget effect (Sen 1989). Furthermore, β represents exactly the variance of the

underlying random field. Hence, the smaller the slope of the straight line, the smaller

the random fluctuation in the ReV. If the slope is equal to zero, theoretically, this

indicates a complete deterministic uniform variation in the ReV. The sample CSV

scatter diagram and the fitted regression line to pH values based on the measurements

at 71 sample locations gave the form in Fig. 5.41. The study area is Umm Er

Radhuma Limestone aquifer in the eastern province of the Kingdom of Saudi Arabia.
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γc dð Þ ¼ �0:213þ 1:144d

from which the parameter estimates are α¼�0.213 and β¼ 1.144. The

hydrochemical data were presented by Sen and Al-Dakheel (1985) for major anions

and cations.

5.8.2.2 Power Model

This is a two-parameter model which yields a set of different shapes for the

theoretical CSV (Fig. 5.40b). The mathematical expression for this model is

γc dð Þ ¼ αdβ ð5:19Þ

in which α is the scale parameter and β is the shape parameter. Because 0< β<2 for

a theoretical SV from a power family (Journel and Huijbregts,1978, p. 165),

parameter β for the theoretical CSV in Eq. 5.19 is restricted to the range 1< β
<3. The derivative of Eq. 5.19 yields also a power form for the classical

SV. Obviously, the use of a double-logarithmic paper facilitates parameter estima-

tion. Sulfate concentrations in the Umm Er Radhuma aquifer groundwater show on

a double-logarithmic paper a more or less straight-line pattern (Fig. 5.42).

The mathematical expression of this straight line by the regression technique can

be found as

logγc dð Þ ¼ 0:46þ 0:841d
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Hence, parameter estimates are log α¼ 0.46 or α¼�2.88 and β¼ 0.84. The original

form of this model prior to transformation can be written as γc(d)¼ 2.88d0.84.

5.8.2.3 Exponential CSV

The general form of this CSV can be written as

γc dð Þ ¼ αeβd ð5:20Þ

where α and β are scale and shape parameters, respectively. The main difference of

this model from the others is that it has a nonzero value for zero distance, i.e., it has

a nugget effect. Forms of different CSVs resulting from Eq. 5.20 are shown

(Fig. 5.40c). The sample CSV can be checked for concordance with this model

by plotting logγc(d ) vs. d on semilogarithmic paper. If the sample points appear as a

straight line, the exponential model is the generating mechanism of the regional

variability within the regionalized variable. The slope of this line directly yields an

estimate of β, whereas the intercept on the γc(d) axis leads to an estimate of β. This
model does not have a unique classical SV which has appeared in the geostatistical

literature. The sample CSV for bicarbonate concentrations in the Umm Er Radhuma

aquifer appears as a straight line on semilogarithmic paper (Fig. 5.43). The appear-

ance of this straight line implies that the convenient model for bicarbonate concen-

trations for this aquifer is of exponential type. The regression line of this scatter

diagram is

logγc dð Þ ¼ �0:86þ 0:079d;
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and, correspondingly, the model parameter estimates are logγc(d )¼�0.86 or

α¼ 0.14 and β¼ 0.079. Hence the original form of the model can be written as

γc dð Þ ¼ 0:14e0:079d.

5.8.2.4 Logarithmic CSV

The mathematical expression of this model can be written as

γc dð Þ ¼ αþ βlogd ford > 1

0 ford < 1

	
ð5:21Þ

in which α and β are two model parameters. This model differs from the exponential

one in that it has an intercept on the distance axis similar to the sample CSV for

piezometric level (Fig. 5.39). Different forms of the logarithmic models are

presented (Fig. 5.40d). The model can be depicted from a sample CSV plotted on

semilogarithmic paper as γc(d ) vs. log d. If the sample points appear as a straight

line, the validity of the logarithmic model is confirmed. The slope of this straight

line is equal to β, and the cumulative half-square difference corresponding to d¼ 1

yields the estimate of a. Such a model is similar to what is referred to in the classical

SV terminology as the De Wijsian model (DeWijs 1972).

Other models for the CSV can be constructed from classical CSV models

through Eq. 5.16. For instance, the exponential model of the classical SV, which is
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γ dð Þ ¼ α 1� e�βd
� �

; ð5:22Þ

corresponds to a CSV model, which is

γc dð Þ ¼ α d � 1

β
e�βd


 �
ð5:23Þ

in which α and β are model parameters. A close inspection of Eq. 5.23 indicates that

for large distances, (1/β)exp(�βd) � 0; consequently, at large distances this model

appears as a straight line (on arithmetic paper) whose slope is an estimate of α. In
addition, this model has an intercept value, γc(0), which is equal to α/β. Provided
that α is known from the slope at large distances, this ratio yields the estimate of β.
These α and β values are the parameters of the classical exponential SV model. This

last example shows that the CSV method may help to estimate the parameters of the

classical SV by simple graphical procedures.

5.8.2.5 Gaussian CSV

The Gaussian classical SV corresponds to the CSV model:

γc dð Þ ¼ α d �
ffiffiffiffiffi
2π

β

s
ϕ d; βð Þ

" #
ð5:24Þ

where ϕ(d, β) is the area under the normal probability density function (with zero

mean and variance 1/β) from 0 to d. Obviously, α can be estimated as the slope of

this straight line. That is,

ϕ d; βð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

2π

Zd

0

exp � d2β

2

� 

dd

vuuut ð5:25Þ

Last but not the least, it is also possible to have different types of CSV models

along different directions for the same earth sciences phenomenon. In such a

situation, there is structural heterogeneity within the phenomenon.

Various theoretical CSV models are fitted to the sample CSV by simple least-

squares technique. A weighted or generalized least-squares approach would prob-

ably be preferable because the sample CSV values are correlated and do not have

equal variance. Future researches should be directed toward how to implement a

weighted or generalized least-squares approach in particular, what should the

weights be, and how strong are the correlations between neighboring CSV values?
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5.9 Point Cumulative Semivariogram (PCSV)

The PCSV function is proposed by Şen and Habib (1998) as the CSV calculated for

a single point (site). The PCSV identifies the spatial variability of earth sciences

ReV around a single site rather than the whole region. It presents the regional effect

of all the sites within the study area on a particular site. Consequently, the number

of PCSVs is equal to the number of available sites. Each PCSV provides a basis for

nearby station variability interpretations, and their mutual comparisons at different

sites lead to invaluable information for describing the heterogeneity of the ReV in

an area. The treatment of available spatial data at n sites according to the following

steps leads to a sample PCSV for a particular site:

1. Calculate the arithmetic average, Z, and standard deviation, Zs, from the avail-

able data. Standardize the data according to the following formulation:

zi ¼ Zi � Z

ZS
ð5:26Þ

2. Calculate distances between the desired site and the remaining sites. If there are

m sites, the number of distances is n – 1, di (i¼ 1, 2, . ., n–1).
3. For each pair calculate the square differences as (zc–zi)

2 where zc and zi are the
ReV at the concerned and ith sites, respectively. Consequently, there are (n – 1)
square differences.

4. Rank the distances in ascending order and plot distances di versus corresponding
successive cumulative sums of half-square differences. Hence, a nondecreasing

function is obtained similar to Fig. 5.36, which is named as the sample PCSV for

the desired site.

All these steps imply that the PCSV, γ(dc), for site C can be expressed as

γ dcð Þ ¼ 1

2

Xm�1

i¼1

zD � zið Þ2 ð5:27Þ

5. Application of these steps in turn for each site leads to n sample PCSVs of ReV.

These sample PCSVs are potential information sources in describing the ReV

characteristics around each site. Among these characteristics are the radius of

influence, spatial dependence, and structural behavior of the regionalized variable

near the site such as the nugget (sudden changes) and sill effects and heterogeneity

as will be explained in the following section.

Example 5.1

The PCSV proposed in the previous section is applied to seismic data from Turkey

(Erdik et al. 1985). Conventional probabilistic procedures are used to construct the

seismic hazard maps for Turkey. Seismic hazard is defined as the probability

occurrence of ground motion due to an earthquake of a particular site capable of
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causing significant loss of value through damage or destruction at a given site

within a definite time period. The PCSV technique is applied to all sites; some of

the sample PCSVs are presented in Fig. 5.44, and after grouping, the major sample

trends of PCSV appeared as shown in Fig. 5.45. Consideration of these figures

individually or comparatively leads to the following significant interpretations

which can be implemented in any future seismic hazard mapping models of Turkey

(Şen 1997):

1. Individual seismic PCSVs have a rather different appearance from each other

which indicates that the regional seismic distribution in Turkey is heteroge-

neous. It is a necessary and sufficient requirement for areal heterogeneity that

the sample PCSV should exhibit different patterns within the limits of

sampling error at different sites. A first glance through the whole sample

PCSVs gave the impression that in general, there are ten distinctive categories

of them within Turkey. These categories are labeled alphabetically from A to

J as shown in Fig. 5.45. Each of these categories has different features, which

reflect the seismic record behavior around the station concerned. For instance,

those sample PCSVs, which are in category F (see Fig. 5.45), have an initial

part with convex curvature (at small distances), and then either single or

multiple broken straight lines follow at large distances. On the other hand, in

category D sample PCSVs do not have any curvature but many broken

straight lines and have an intercept on the horizontal distance axis. An

abundance of broken straight lines indicates the heterogeneity involved

around the station concerned at different distances.

In category B, the sample PCSVs expose a single straight line indicating that

there are rather homogeneous areas of influence around these stations.

The stations within each category can be regarded as homogeneous collectively

and hence it is clear that the whole study area has about ten distinct homogeneity

regions of seismic variation. Further useful interpretations about the sample PCSVs

can be listed as follows:

2. Some of the sample PCSVs do not pass through the origin. This is tantamount

to saying that the seismic occurrences at these sites cannot be considered as

regionally smooth processes, but rather the seismic event is under the control of

some local and/or regional geological factors. This further implies that in the

spatial seismic occurrences, uniform conditions do not prevail but rather

complex combination of multitude tectonic events. Last but not the least, if

the sample PCSV has an intercept on the vertical axis, it implies the existence

of a nugget effect in the regional variability at the site concerned (Fig. 5.45J).

3. Some of the sample PCSVs have intercepts, R0, on the horizontal (distance)

axis (see categories C, F, and I). This means that at distances less than R0, the

sample PCSV value is equal to zero; hence, from Eq. 5.27, Zc ffi Zi implying

structural control within the regional seismic event. Furthermore, in general,

big seismic values follow big seismic values and small ones follow small
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Fig. 5.44 PCSVs of seismic events in Turkey
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seismic values, i.e., there are isolated islands of high or low seismic locations

around the site.

4. That each sample PCSV fluctuates about a straight line for large distances. The

existence of straight-line portions in the PCSV implies that seismic activities at

large distances are independent from each other. This is equivalent to the

regional sill property in the classical SV but PCSV provides information

about the sill at individual sites (see Fig. 5.45J). These portions correspond

to horizontal segments at large distances in classical SV as defined by
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Fig. 5.45 Seismic PCSV categories in Turkey
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Matheron (1965). Furthermore, this is the only range where the classical

formulations keep their validity.

5. A group of sample PCSVs passes through the origin (see category in figures A,

B, D, E, G, and H). Such a property on the PCSV diagram implies the

continuity of seismic effects from the site outward. Continuity means that

there are no nugget effects or discontinuities within the regional seismic

variable at the site concerned.

6. Some of the sample PCSVs has “curvature portions” for a moderate range of

distances (categories E and G). In fact, such a range corresponds to the distance

scale as defined in the turbulent flow by Taylor (1915). After this range, the

PCSVs converge to straight lines (Sen 1989). The initial curvature implies that

the seismic at these sites has regional dependencies, which weaken toward the

end of curvature distance range (Sen 1989). Since curvatures are convex, there

is positive regional structural dependence (Şen 1992). Furthermore, the curva-

ture implies that the seismic has areal structural dependence.

7. In some of the sample PCSVs, there is no curvature part at all (categories B and

F). Such a situation is valid in cases where the regional seismic distributions

arise predominantly due to the activities of external factors only. Furthermore,

there is no structural correlation, i.e., seismic phenomena evolve randomly over

the region concerned.

8. As suggested by Şen (1992), the sample CSVs help to identify the underlying

generating mechanism of regional phenomenon. Likewise, the sample PCSVs

provide clues about the seismicity-generating mechanism around the site

concerned. For instance, if the sample PCSV passes through the origin and

has a straight-line portions only, then the regional phenomenon concerned

complies with independent (white noise) process with no regional dependence

at all. However, when the sample PCSV is in the form of straight line but does

not pass through the origin, then a moving average process is the underlying

generating mechanism of the regional variability (Şen 1992). The PCSVs in

category F have such a property, and therefore, it is possible to conclude that

moving average mechanisms are dominant at these sites.

9. In the case of a single straight line following a curved initial portion, the slope

of long-distance straight-line portion is related to the regional standard devia-

tion of the underlying precipitation-generating mechanism.

10. As mentioned above the PCSV is an indicator of cumulative similarity of the

seismic variation at a station with other stations. Practically, if the two PCSV at

different sites follow the same pattern within the limits of sampling errors, then

they are said to be similar. Such a similarity implies heterogeneity to exist

between two sites. They may be partially similar to each other at some

distances if the PCSV values at the same distances are close to each other

again within the limits of an acceptable sampling error. In practice, in order to

appreciate the distances over which the seismic records measured at different

sites are similar to each other, it is helpful to look at the regional map for fixed

PCSV levels. Herein, for the sake of discussion, two PCSV levels at 10 and

20 are considered for construction of such a regional similarity map. Table 5.1
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Table 5.1 Similarity measures at fixed level of PCSV

Fixed PCSV levels

Station number 10 20

1 180 305

2 300 1110

3 440 940

4 405 1295

5 300 1110

6 295 550

7 500 800

8 540 760

9 595 1120

12 370 600

13 180 435

14 280 435

20 470 1310

21 325 520

22 460 1065

23 220 500

24 200 280

30 580 1460

31 250 500

32 400 1070

33 305 880

34 350 1035

40 360 975

41 95 115

42 450 735

43 405 900

50 370 1165

51 220 470

52 430 650

53 280 420

60 115 295

61 300 420

62 320 1025

63 400 1205

70 705 1050

71 210 395

72 300 750

73 275 700

80 300 205

81 405 1110

82 620 800

(continued)
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shows the distances obtained from the PCSV graphs at 10 and 20 PCSV values.

Obviously, it is possible to prepare similar maps for any desired study area.

The relevant similarity maps are shown in Figs. 5.46 and 5.47. For a fixed PCSV

level, the smaller the distance, the more the seismic activity effect at the site, and

the smaller the regional dependence, i.e., the location of the site has relatively

intense seismic occurrences than the other sites or the regions. For instance, in

Fig. 5.46, the map shows intense seismic occurrences in the eastern part of Turkey

surrounded by the 120 contour lines. The next most intensive seismic variations are

observed in the central, northeast, and western portions of the country where

contour lines of 280 occur. However, the least sensitive locations are in the southern

parts with similarity contours of about 600.

On the other hand, at the higher level of similarity as presented in Fig. 5.47, the

study area seems more heterogeneous but major distinctive regional zones as in

Fig. 5.46 remain the same.

Principles of PCSV have been explained and applied to seismic data in Turkey.

This type of PCSVs provides detailed information about a regional variable at and

near the measurement sites as well as among the sites. The main purpose of the CSV

technique is to check the heterogeneity of the regionalized variable. If the empirical

point CSVs at different sites have similar patterns within a certain error band such

as 5–10%, then the regionalized variable is homogeneous and otherwise heteroge-

neity exists. The point CS concept brings an additional new concept which provides

an opportunity to make spatial variability interpretations at each site rather than

regionally. Interpretations of relevant PCSV at any site provide useful information

concerning the smoothness, structural control, regional dependence, continuity, and

radius of influence. The PCSV methodology proposed in this paper is applied to the

scattered seismic variation over Turkey. Finally, a similarity map is obtained which

provides a basis for the regional heterogeneity assessments.

Table 5.1 (continued)

Fixed PCSV levels

Station number 10 20

83 215 500

91 200 645

92 200 500

93 320 1135

100 200 280

101 325 580

102 220 620

103 230 680

104 320 195

105 110 290

106 500 645
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Fig. 5.46 Similarity map at ten PCSV value
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Fig. 5.47 Similarity map at 20 PCSV value
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5.10 Spatial Dependence Function (SDF)

As already mentioned calculation of a sample CSV (or PCSV) leads to a

nondecreasing function with distance. It is said in Sect. 2.2 that all the classical

weighting functions appear as a nonincreasing function with distance. It is, there-

fore, logical to execute the following steps in order to obtain a valid and standard

weighting function from the sample CSV similar to the classical weighting

functions:

1. Depict on the sample CSV the maximum distance, RM, and corresponding

sample CSV value, VM. RM corresponds to the distance between the two farthest

station locations in any study area (see Fig. 5.36).

2. Divide all the distances (CSV values) by RM (by VM), and the result appears as a

scaled form of the sample CSV within limits of zero and one on both axes. This

shows the change of dimensionless CSV with dimensionless distance,

3. Subtraction of the dimensionless CSV values from the maximum value of one

appears as a nonincreasing function of the dimensionless distance as shown in

Fig. 5.48 which has a similar pattern to all the classical weighting functions as

explained in the previous section. This function is referred to as the standard

dependence function (SDF).
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Fig. 5.48 A representative SDF
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Example 5.2

In order to explain the experimental CSV and thereof derived SDFs, the monthly

rainfall amounts at a set of stations are considered, each with at least 30 years of

records in the northwestern part of Turkey (Şen 1997). Some of the CSVs are

presented in Fig. 5.49 with corresponding classical and calculated SDF values in

Fig. 5.50.

It is possible to conclude from Fig. 5.49 that:

1. They all reach almost horizontal CSV value at large distances which means that

after a certain distance, there is no regional effect of one station on other

stations’ rainfall amount. This distance corresponds to R in Eqs. 3.24–3.26.

2. Initially, all the CSVs have an intercept on the horizontal distance axis at about

5 km. This corresponds to almost the smallest distance between the stations.

Fig. 5.49 Monthly CSVs
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3. The smallest and the greatest CSV values at large distances occur during July

and October, respectively, which are the transition months in this region from

the Black Sea to the Mediterranean Sea climate in July and vice versa in

October.

On the other hand, Fig. 5.50 includes the geometric weighting functions already

given in Fig. 3.31 for the sake of comparison. The following interpretations and

conclusions can be drawn from these figures for each month:

1. In January the experimental CSV weighting function does not conform by any of

the classical models. Initially, at small distances, it is above all the models and

then becomes closer to exponential model but only up to about 0.30 dimension-

less distances, deviating from it thereafter.

Fig. 5.50 Monthly weighting functions
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2. In February perhaps initial portion confirms with the exponential model but later

becomes closer to the power model.

3. March experimental CSV follows the power law of the weighting functions at

almost every distance.

4. Similar pattern to March repeats itself in April, but in May although initially

there is a portion abiding with the power model, then it converts to exponential

model. In June, the experimental CSV weighting function comes even closer to

the exponential weighting function.

5. During September very small and big distances come closer to the ratio and

power models, respectively, but for moderate distance, it has an exponential

form. So the mixture of three models appears as a hybrid model in representing

the regional variability. Such a phenomenon cannot be estimated only by

considering one of the classically available models. In the remaining months,

similar interpretations are valid.

These discussions indicate that classical geometric weighting models do not

have full justification for the whole of the meteorological phenomenon but they are

good first approximations. They cannot be valid for the whole regional variability in

any study area.

Example 5.3 For the implementation of the SDF and spatial estimation method-

ology, the iron (Fe) percentage (%) concentration data set is used by Clark (1979,

page 95, Table 5) and is adopted. Although there are 50 sampling points, in order to

make comparison with fuzzy clustering results by Pham (1997), only 21 sites are

given in Table 5.2, because he considered only 21 sampling points from Clark’s
table. Figure 5.51 shows the locations of the sites within the study area.

It is obvious that there is a rather uniform distribution of these sites in a

representative manner over the whole study area.

The CSV is given in Fig. 5.52. The maximum CSV corresponding to 350 m is

4250 and accordingly the SDF is obtained and the results are presented in Fig. 5.53.

Similar to all the regional estimation procedures, weighted average formulation

as in Eq. 2.27 is used together with the weights obtained from SDF in Fig. 5.53.

In order to assess the validity of the proposed weighted average procedure, a

cross-validation technique is used. According to this a data value at one site is

supposed to be unknown and is removed from the data set. This removed value is

then estimated with the remaining set of data and by using the SDF together with

Eq. 2.27. This procedure is repeated for all the sites knowing that a data removed for

estimation at its location is put again in the set for the estimation at another location.

There are two procedures in the estimation of the site Fe % concentrations. In the

first one, all the other sites are considered for their simultaneously contributions,

and, therefore in the estimation of any site’s Fe % concentration, all the distances

from this site to others (n�1 sites) are measured from the map in Fig. 5.51.

Subsequently, these distances are entered into Fig. 5.53 on the horizontal axis and

the corresponding RDF weights are found from the vertical axis for each distance.

In this manner, all the sites are treated equally by the same procedure, and hence,
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instead of measured values, their estimations through the SDF and the cross-

validation procedure are calculated. Column (3) in Table 5.2 shows estimated

Fe % concentrations, and their corresponding relative errors are calculated as the

Table 5.2 Measured and

estimated Fe %

concentrations and errors

Sample no. Measured Estimate Relative error (%)

(1) (2) (3) (4)

1 35.5 32.85 7.45

2 29.4 32.78 11.51

3 36.8 33.72 8.36

4 33.7 34.15 1.32

5 35.3 33.33 5.58

6 32.5 32.56 0.19

7 30.6 33.88 10.73

8 30.1 33.52 11.37

9 40.1 33.76 15.81

10 31.6 33.84 7.10

11 34.8 33.32 4.24

12 28.6 32.76 14.55

13 41.5 33.48 19.32

14 33.2 33.51 0.92

15 34.3 33.56 2.31

16 31.0 33.82 9.09

17 29.6 32.50 9.78

18 40.4 33.70 16.59

19 28.5 34.08 19.59

20 24.4 34.55 41.62

21 39.5 32.91 16.69

Average 33.40 33.46 11.15
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ratio of the absolute difference between the measured and estimated values divided

by the measured value multiplied by 100, which is shown in column (4):

Relative Error ¼ 100*
measured� estimatedj j

measured

It is obvious that for almost half of the sites, the relative error is more than 10%,

which indicates the unsuitability of the so far proposed procedure. For extreme

Fe % concentration sites, the relative errors are very high. However, the averages of

measured and estimated values are very close together with 2% relative error. On

this basis, it may be concluded that the proposed procedure yields reasonable values

on the average but fails to estimate individual site values. This procedure takes into
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account the contribution of all the sites in the estimation and disregards the concept

of the radius of influence.

In order to assess visually the correspondence between the measured and

estimated values, Fe % concentrations are presented in Fig. 5.54a against the site

number sequence along the horizontal axis. Unfortunately, consideration of all the

sites in this regional estimation procedure by using Eq. 2.27 and SDF function for

weight calculation yields to average estimations which do not represent the high

and low points satisfactorily as obvious from Fig. 5.54a. On the other hand,

Table 5.3 shows also the results by the inverse distance square and four fuzzy

clustral procedures as suggested by Pham (1997). The comparisons of average
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relative errors in the last row of this table indicate that the SDF method has the least

relative error percentage. It is even better than the five-cluster case which has been

stated as the best solution by Pham (1997).

In order to improve the representativeness of the Fe % concentration regional-

ized variable estimations at sites, herein, an adaptive new technique is suggested,

which does not only estimate the regional value at a site but also provides the

number of the nearest sites that should be considered in the best possible regional

estimation. Accordingly, the radius of influence is defined as the distance between

the estimation site and the far distant site within the adjacent sites that are consid-

ered in the regional estimation procedure. The following steps are necessary for the

application of this adaptive procedure:

(a) Take any site for cross-validation and apply Eq. 2.27 by considering the nearest

site only. Such a selection is redundant and corresponds to the assumption that,

Table 5.3 Fe % concentration estimations by different techniques

Sample no. RDF

Inverse square

distance Fuzzy clustering

(1) (2) (3)

(4)

Three Four Five Six

1 32.85 33.44 34.16 34.19 34.83 33.10

2 32.78 31.92 33.28 32.39 31.76 33.20

3 33.72 30.87 34.04 30.50 31.28 31.00

4 34.15 30.77 33.96 33.60 30.23 31.15

5 33.33 36.67 33.11 33.53 35.75 35.23

6 32.56 35.61 33.46 33.11 34.10 34.69

7 33.88 33.24 33.97 33.60 33.00 33.22

8 33.52 35.47 33.63 33.22 33.95 37.46

9 33.76 32.62 33.88 32.83 34.23 34.44

10 33.84 33.24 33.38 33.28 33.12 32.38

11 33.32 36.66 33.84 33.04 34.02 34.29

12 32.76 30.50 33.61 32.19 31.63 31.69

13 33.48 29.85 33.93 33.93 31.32 30.17

14 33.51 34.60 34.11 33.82 30.95 32.20

15 33.51 37.35 33.23 32.96 33.54 34.68

16 33.82 33.24 34.34 33.78 33.78 34.06

17 32.50 34.67 33.05 33.25 38.10 35.17

18 33.70 34.04 34.93 34.37 34.47 35.73

19 34.08 34.12 33.78 33.21 34.68 34.98

20 34.55 32.29 31.87 32.06 32.48 32.13

21 32.91 34.06 33.16 33.18 32.74 31.98

Averages 33.45 33.58 33.65 33.14 33.33 33.49

Average rela-
tive errors (%)

11.15 12.66 12.55 12.65 12.01 12.61
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if the nearest site measurement is considered only, then the regional estimation

will be equal to the same value. This means that in such a calculation, the radius

of influence is the minimum and equal to the distance between the estimation

and the nearest sites.

(b) Consider now two of the nearest sites to the estimation site and apply the RDF

weighting method according to Eq. 2.27. Consideration of two sites will

increase the radius of influence as the distance between the estimation and the

next nearest site and the estimation value will assume the weighted value of the

two nearest sites. Since the weights and measurements are positive numbers,

the estimated value will be between the measurements at the two nearest sites.

There will be a squared estimation error as the square of the difference between

measured and estimated values.

(c) Repeat the same procedure now with three nearest stations and calculate the

square error likewise. Subsequently, it is possible to continue with 4, 5,. . .,
(n�1) nearest sites consequently and for each case to calculate the

corresponding square error. The first one with the least square error yields the

number of nearest sites for the best regional Fe % concentration estimation. The

distance of the farthest site in such a situation corresponds to the radius of

influence. As an example, herein, only site 14 calculations are presented in

detail in Table 5.4. It is obvious that when Eq. 2.27 is applied by considering

11 nearest sites, the estimation error square becomes the least with the radius of

influence equal to 127.47 m.

Table 5.4 Detailed

calculation steps for site

14 regional estimation

Number of nearest sites Estimation Square error

(1) (2) (3)

2 31.94 1.58

3 29.46 13.96

4 30.75 6.00

5 32.42 0.60

6 32.21 0.97

7 32.38 0.67

8 32.82 0.14

9 32.59 0.37

10 32.72 0.23

11 33.21 0.00

12 33.12 0.01

13 33.48 0.08

14 33.80 0.36

15 33.69 0.24

16 33.63 0.18

17 33.57 0.13

18 33.55 0.12

19 33.48 0.08

20 33.51 0.09
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Application of the above adaptive procedure to Fe % concentrations results in

the estimation values, the number of the nearest sites with the minimum squared

error, and the radius of influence, which are presented in Table 5.5. Notice that this

table includes the complete list of samples as given by Clark (1979, page

95, Table 5.5). This table yields the following points:

1. The adaptive estimation procedure gives average iron-ore concentration value

similar to average measurements with 2.31% error. Hence, similar to all the

previous methods adaptive estimation also gives reasonable average values,

2. Comparison of average relative error in Table 5.4 with average relative errors in

Table 5.4 shows clearly that the adaptive method with 4.74% error is the best

among all approaches and the reduction in the relative error implies that devi-

ations from average level are taken into account effectively. Figure 5.49b pre-

sents the adaptive estimations together with the measured values for Pham

(1997) data set. If Figs. 5.49a and b are compared, it is then obvious that

deviations are better accounted by the adaptive method,

3. The adaptive approach provides the radius of influence for each station as shown

in the last column of Table 5.5. The average radius of influence is about 88.5 m

with maximum and minimum values of about 223 m and 13 m, respectively.

By making use of the radius of influence from Table 5.5, it is possible to

construct equal radii regional map as shown in Fig. 5.55.

From this map, one can know the relevant radius of influence for any desired

point within the study area. Once this radius is determined, then a circle with the

center at the prediction point is drawn. The measurement sites within this circle are

taken into consideration in the application of Eq. 2.27 for regional estimation

through the SDF weights.

After having completed the cross-validation procedure and the map of the radius

of influence, it is now time to present spatial interpolation procedure with RDF

usage as follows:

1. Select any number, say 15, of spatially scattered points within the study area as

shown in Fig. 5.51. These sites are locations without measurements. For the sake

of argument, they are selected rather arbitrarily with easting and northing

coordinates as shown in Table 5.6.

2. The radius of influence of each site is determined from the map in Fig. 5.55 and

written in the fourth column of Table 5.6.

3. Consideration of the radius of influence for each site defines the number of

measurement sites within this radius that are basis for the Fe % concentration

estimation through Eq. 2.27 at this site. Hence, the measurement sites that will

be considered in the spatial interpretation of the Fe % concentration at the site

are identified.

4. Subsequently, distances between the interpolation site and the effective mea-

surement sites are calculated.

5. The entrance of these distances on the horizontal axis in the SDF (Fig. 5.49b)

yields the weights on the vertical axis.
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Table 5.5 Estimations and radius of influence

Easting Northing % Fe Estimation

Relative

error (%)

Number of

nearest sites

Radius of

influence (m)

(1) (2) (3) (4) (5) (6) (7)

0 170 34.30 32.15 6.27 3 13.25

10 40 35.50 33.10 6.76 10 199.06

15 135 28.60 30.50 6.64 3 41.23

55 145 29.40 29.10 1.02 2 41.23

125 20 41.50 38.65 6.87 2 58.31

175 50 36.80 36.91 0.30 5 69.46

120 180 33.40 31.52 5.63 6 73.16

160 175 36.00 33.27 7.58 5 97.84

240 184 30.20 31.30 3.64 4 86.17

260 115 33.20 33.21 0.03 11 127.47

235 15 33.70 33.84 0.42 3 69.46

365 60 34.30 34.26 0.12 4 94.34

285 110 35.30 35.83 1.50 3 47.17

345 115 31.00 33.17 7.00 8 127.47

335 170 27.40 28.12 2.63 6 65.13

325 195 33.90 34.75 2.51 6 123.10

350 235 37.60 38.02 1.12 5 73.10

290 230 39.90 41.15 3.13 4 68.17

10 390 27.20 29.12 7.06 3 55.64

85 380 34.20 32.75 4.24 3 112.51

50 270 30.20 31.60 4.64 6 78.32

200 280 30.40 31.06 2.17 4 85.76

400 355 39.90 41.73 4.59 5 67.23

360 335 40.00 42.16 5.40 5 72.15

335 310 40.60 41.18 1.43 4 83.72

5 195 33.90 34.73 2.45 3 198.12

20 105 32.50 32.50 0.00 9 164.50

25 155 29.60 30.14 1.82 3 50.25

50 40 30.60 33.82 10.52 14 222.99

155 15 40.40 39.50 2.23 3 52.50

145 125 30.10 31.63 5.08 3 92.19

130 185 35.30 33.18 6.01 3 187.15

175 185 41.40 39.17 5.39 3 59.37

220 90 28.50 28.82 1.12 2 51.48

205 0 40.10 37.96 5.34 4 82.46

265 65 24.40 32.34 32.54 3 51.48

390 65 31.60 32.73 3.58 2 67.29

325 105 39.50 33.89 14.20 4 60.21

310 150 34.80 34.77 0.09 4 61.03

385 165 29.90 28.16 5.82 5 97.25

325 220 37.80 36.08 4.55 6 75.34

(continued)
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Table 5.5 (continued)

Easting Northing % Fe Estimation

Relative

error (%)

Number of

nearest sites

Radius of

influence (m)

(1) (2) (3) (4) (5) (6) (7)

375 215 29.80 26.18 12.15 5 56.76

200 230 37.40 35.83 4.20 4 82.63

55 375 27.40 28.17 2.81 3 62.75

395 245 36.50 35.08 3.89 5 192.50

165 355 40.80 39.15 4.04 5 55.25

270 285 32.90 34.75 5.62 4 155.50

365 340 40.00 40.80 2.00 5 86.13

330 320 44.10 45.83 3.92 5 69.12

330 290 41.40 37.16 10.24 4 60.73

Averages 34.50 34.42 4.74 5 88.51
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6. Substitution of all the relevant values into Eq. 2.27 provides the Fe % concen-

tration value estimations at each site, which are shown in the last column of

Table 5.6.

7. In order to check the reliability of the estimations, the question is now whether

these spatial estimations will yield almost the same SDF or not. For this purpose,

the SDF calculation steps are applied to data in Table 5.6.

8. Figure 5.56 indicates the resulting SDF for the measured and estimated Fe %

concentrations. The maximum relative difference between these two SDFs is
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Fig. 5.56 Measured and estimated SDFs

Table 5.6 Regional interpolation

Site no. Easting Northing Radius of influence (m) Estimation Fe (%)

(1) (2) (3) (4) (4)

1 36 136 63 30.02

2 27 90 172 32.71

3 86 116 97 30.13

4 45 29 200 33.81

5 95 47 118 34.88

6 186 23 68 38.49

7 218 58 50 32.63

8 222 129 95 31.77

9 268 98 80 32.35

10 327 134 93 33.47

11 272 43 58 28.99

12 340 40 80 32.30

13 331 65 77 32.78

14 327 87 70 33.08

15 368 96 103 34.37
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less than 5% which confirms the practical validity of the SDF adaptive estima-

tion procedure methodology as proposed in this paper.

It is now time to compare all the methods with the measured data on a Cartesian

coordinate system with the measured values on the horizontal axes and the model

outputs on the vertical axes as in Figs. 5.57 and 5.58.
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Fig. 5.57 Comparative model verifications
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Erdik M, Doyuran V, Akkaş N, Gülkan P (1985) A probabilistic assessment of the seismic hazard

in Turkey. Tectonophysics 117(3/4):295–330

Franke R (1988) Statistical interpretation by iteration. Mon Weather Rev 116:961–963

Gandin LS (1963) Objective analysis of meteorological fields. Hydromet Press, 242 pp

Gilchrist B, Cressman GP (1954) An experiment in objective analysis. Tellus 6:309–318

Goodin WR, McRea GJ, Seinfeld JH (1979) A comparison of interpolation methods for sparse

data: application to wind and concentration fields. J Appl Meteorol 18:761–771

Gustafsson N (1981) A review of methods for objective analysis. In: Dynamic meteorology, data

assimilation methods. Springer-Verlag. pp 17–76

Hoeksema RJ, Kitandis PK (1984) An application of the geostatistical approach to the inverse

problem in two dimensional groundwater modeling. Water Resour Res 20(7):1003–1020

Inman RL (1970) Operational objective analysis schemes at the National Severe Storms Forecast

Center. U.S. National Severe Storms Laboratory Tech. Circular 10, Norman, OK, 50 pp

Journel AJ (1985) The deterministic side of geostatistics. Math Geol 17(1):1–15

Journel AG, Huijbregts CI (1978) Mining geostatistics. Academic, London, p 710

Kitanidis PK (1997) Introduction to geostatistics: applications in hydrogeology. Cambridge

University Press, Cambridge, 249 pp

Koch SE, DesJardins M, Kocin PJ (1983) An iterative Barnes objective map analysis scheme for

use with satellite and conventional data. J Appl Meteorol 22:1487–1503

Krige DG (1982) Geostatistical case studies of the advantages of log-normal, De Wijsian Kriging

with mean for a base metal mine and a gold mine. Math Geol 14(6):547–555

Kruger HB (1969a) General and special approaches to the problem of objective analysis of

meteorological variable. Q J Roy Meteorol Soc 95(403):21–39

Kruger HB (1969b) Objective analysis of pressure height data for the tropics. MonWeather Rev 94

(4):237–257

Lorenc AC (1981) A global three-dimensional multivariate statistical interpolation scheme. Mon

Weather Rev 109:701–721

Liebhold AM, Rossi RE, Kemp WP (1993) Geostatistics and geographic information systems in

applied insect ecology. Annu Rev Entomol 38:303–327

Ludwig JA, Reynolds JF (1988) Statistical ecology: a primer on methods and computing. Wiley,

New York, 337p

Matheron G (1965) Les variables regionalises et leur estimation. Masson et Cie., Paris, 306p

Matheron G (1971) The theory of regionalized variables and its applications. Ecole de Mines,

Fontainbleau

Myers DE, Begovich CL, Butz TR, Kane VE (1982) Variogram models for regional groundwater

geochemical data. Math Geol 14(6):629–644

Pannatier Y (1996) VARIOWIN - Software for spatial data analysis in 2D. Springer Verlag, New

York, p 91 p. ISBN 0-387-94679-9

References 251



Panofsky HA (1949) Objective weather map analysis. J Meteor 6:386–392

Pedder MA (1993) Interpolation and filtering of spatial observations using successive correlations

and Gaussian filters. Mon Weather Rev 121:2889–2902

Perrie W, Toulany B (1989) Correlations of sea level pressure field for objective analysis. Mon

Weather Rev 117:1965–1974

Pham TD (1997) Grade estimation using fuzzy-set algorithms. Math Geol 29(2):291–305

Powers RW, Ramirez LF, Redmond CD, Elberg EL (1966) Geology of the Arabian Peninsula.

Sedimentary geology of Saudi Arabia. U.S. Geol. Survey, Prof Paper 560-D, New York, pp

1–47

Rutherford ID (1976) An operational three-dimensional multivariate statistical objective analysis

scheme. Proceedings of the JOC Study Group, Conference on four-dimensional Data Assim-

ilation, Paris, November 17–21,1975. The GARP Programme on Numerical Experimentation,

Report No. 11, January 1976

Sashegyi Y (1960) An objective analysis for determining initial conditional for the primitive

equations. Tech Rep:60–16T

Schlatter TW (1975) Some experiments with a multivariate statistical objective analysis scheme.

Mon Weather Rev 103:246–257

Seaman RS (1988) Some real data tests of the interpolation accuracy of Bratseth’s successive

correction method. Tellus 40A:173–176
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Chapter 6

Spatial Modeling

Abstract In general, spatial variability is concerned with different values for any

property, which is measured at a set of irregularly distributed geographic locations

in an area. The aim is to construct a regional model on the basis of measurement

locations with records and then to use this model for regional estimations at any

desired point within the area.

Earth sciences phenomenon varies both in time and space; and its sampling is

based on measurement stations’ configuration. In many practical applications,

measured data are seldom available at the point of interest, and consequently the

only way to transfer the solar irradiation data from the measurement sites to the

estimation point is through regional interpolation techniques using powerful

models. The spatial variability is measured in the most common way through the

recorded solar irradiation time series at individual points. The square differences

between each pairs of spatial variable location values help to construct the spatial

autocorrelation function as representative of regional dependence function.

Spatial variability is the main feature of regionalized variables, which are very

common in the physical sciences. In practical applications, the spatial variation

rates of the phenomenon concerned are of great significance in fields such as in

solar engineering, agriculture, remote sensing, and other earth and planetary sci-

ences. A set of measurement stations during a fixed time interval (hour, day, month,

etc.) provides records of the regionalized variable at irregular sites, and there are

few methodologies to deal with this type of scattered data. There are various

difficulties in making spatial estimations originating not only from the regionalized

random behavior but also from the irregular site configuration.

Optimum interpolation modeling technique is presented for spatio-temporal

prediction of regionalized variable (ReV) with application to precipitation data

from Turkey. Kriging method is explained with simple basic concepts and graphics,

and then various Kriging application methodologies are explained for the spatial

data modeling. The distinctions between simple, ordinary, universal, and block

Kriging alternatives are presented in detail. Finally, triple diagram mapping meth-

odology for spatial modeling is presented with applications at five different climate

locations.

Z. Sen, Spatial Modeling Principles in Earth Sciences,
DOI 10.1007/978-3-319-41758-5_6

253© Springer International Publishing Switzerland 2016



Keywords Spatial estimation • Optimum interpolation • Spatial correlation
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6.1 General

Modeling is a procedure that helps researchers, planners, politicians, and many

experts alike to make future predictions in time or spatial estimations in a region. It

is an interactive procedure where the natural event records (data), modeler’s expert
view, and prediction (estimation) stages work parallel at times and places in a serial

manner for the best conclusions and numerical result. During a modeling proce-

dure, three different worlds are entered in a sequential manner. These are real world

affairs, interpretation in conceptual world, and mathematical formulation stage in

symbolic world. The real world can be grasped by visual observations, experiments,

and numerical sampling. It is, therefore, very useful to make field trips to the study

area and have verbal (linguistic) information directly from the local authorities and

settlers about the phenomenon and its ReV behaviors. This very first stage includes

verbal and numerical data collection. Verbal information can be in the form of

logical premises which relate the concerned output variable to various input

effective factors. The second stage consists of simple assumptions for the simpli-

fication of the phenomenon investigation which is very complex especially in the

earth sciences. Among such simplifications procedures are the isotropy, homoge-

neity, uniformity, and geometrical shape (rectangle, cylindrical, circular, etc.) in

addition to a set of necessary assumptions. Depending on the type of the problem, it

is possible first to try and apply conventional methods such as scatter plots between

input and output variables so as to acquire insight about the internal behavior of the

phenomenon, basic histograms, and simple regressions, which may provide some

further illuminations about the internal generating mechanism of the ReV func-

tionality. After such basic and simple information, more representative formula-

tions for the modeling are sought and questioned by updating basic assumptions and

simplifications. Once a satisfaction is felt, then the formulation is applied with the

data available and then the prediction (estimation) is achieved, which must be

checked against the observation values (cross-validation). Whatever is the com-

plexity, suitability, and verifiability of the model, there is always a difference

between the model output and the measurements. This is the model error and

then the model must be trained according to the desired error level. For instance,

if the relative error is not less than desired level, say 5%, then the existing model

must be updated either by releasing the basic assumptions or by changing the model

formulation structure. Hence, the validation of the model is reiterated according to

the previous sequence, and this procedure is repeated until the desired level of error

or less is reached. This is tantamount to saying that the model is verified with

available numerical and verbal information and finally it is ready for temporal
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and/or spatial predictions (estimations) at locations where the data measurements

are not available.

The first spatial model is performed by Student (1907) who summed up the

number of the particles per unit area instead of the analysis of the spatial positions

of the particles in a liquid. He divided the 1 mm2 area of a hemocytometer into

400 equal squares and counted the yeast cells. Later, Fisher (1935) used the spatial

analysis in agricultural area. Yates (1938) searched about the influence of spatial

correlation at the randomization process, where completely random regionalized

variables are considered for the modeling purposes.

This chapter is concerned with the spatial prediction of the ReV, and two of the

most important procedures, namely, the optimum interpolation and Kriging models,

are presented in detail.

6.2 Spatial Estimation of ReV

The spatial interpolation of earth sciences data aims at estimating the ReV value at a

given site based on the nearby observation (measurements) sites (Fig. 6.1). Most

often the input variables are longitudes and latitudes (easting and northing), and the

ReV is one of the earth sciences variables, i.e., triplicate as mentioned in Chap. 2.

This is a problem of operational earth sciences that is regularly encountered in

the spatial estimation procedures. 2D statistically optimum interpolation models are

useful in the analysis and modeling ReV, where spatial dependence functions

(SDF) are used for depicting the radius of influence in the case of isotropic ReV

or area of influence for anisotropic ReV variability (Chaps. 2 and 4). One of the

fundamental, effective, and objective analyses is the transformation of

Measurement sites

Grid sites

Radius of influence

Estimation site

Fig. 6.1 Elements in a spatial estimation
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measurements from irregularly distributed sites to regular gridded networks for use

in the numerical prediction schemes or mapping methodology through spatial

models such as the Kriging methodology, which assigns a spatial estimation

value to any point without measurement through a suitable estimation procedure.

Hence, in practice, there are twofold purposes in describing the spatial variability in

earth sciences ReV by objective analysis:

1. A regular grid of nodes serves as the initial data for numerical forecast models or

mapping methodologies.

2. Coordinates of a rather great number of isoline points help to construct equal-

value lines (contour lines) such as isohyetal maps.

In any spatial prediction, the problems are with spatial (areal and elevation)

modeling and with the transfer of information from available irregular measure-

ment sites to regular grid nodes or to any desired point of interest. In general, ReV at

any location bears some relationship to nearby locations. The strength of the

relationship normally decreases as the distance between the location increases

(Chap. 4, Sect. 4.10). There are various spatial data modeling techniques for data

interpolation from measurement sites to any desired point as follows (Schlatter

1988):

1. Surface fitting methods: The first objective analysis method in meteorology was

the surface fitting type devised by Panofsky (1949). In this method, the analysis

value is represented as a continuous mathematical function, which fits irregu-

larly scattered measurements. Among these methods are the polynomial inter-

polation (Panofsky 1949), orthogonal polynomials (Dixon 1969, 1976), splines

(Fritsch 1971), and, finally, spectral approaches (Flattery 1970).

2. Empirical linear interpolations: The value of any variable at a particular location

is estimated as a weighted sum of observations. Among such interpolation

techniques are the iterative successive correction methods (Cressman 1959;

Barnes 1964), which are already explained in Chaps. 2 and 4.

3. Statistical objective analysis: These are estimation methods at any desired point

where spatial correlation (dependence) structure determines the weights appli-

cable to each observation. The major approaches in this category are the optimal

interpolation (Gandin 1963), the covariance models for atmospheric variable

(Buell 1958), adaptive filtering (Kalman 1960; Şen 1980, 1983), and, recently,

the CSV method (Şen 1997).

4. Variational techniques: These include more mathematical abstractions than

other methods, and two of them are the incorporation of dynamic constraints

(Sasaki 1958) and the fitting models to data at different times (Ledimet and

Talagrand 1986).

5. Geostatistical approaches: These models are based on the classical SV and

Kriging techniques (Matheron 1963; Clark 1979; Journel and Huijbregts 1978).

Various alternatives of SV are presented by different authors (see Chap. 4).

6. Objective modeling: The analysis of ReV produces the optimum solution in the

sense that the interpolation error is minimized on the average. This method
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allows for the extraction of as much useful information as possible from the

measurements. The problems associated with optimum interpolation analysis

can be summarized as follows:

(a) It requires knowledge of covariance, which is often not known, and thus its

estimate is necessary from the available data. Establishing such an estimate

is often fraught with difficulty as a host of local factors are involved.

(b) Essentially, one must determine the priority about which station measure-

ments are significantly correlated with the value at the point of estimation

(interpolation), i.e., one must determine a region of influence around the

interpolation point as in Fig. 6.1.

6.3 Optimum Interpolation Model (OIM)

A technique commonly used for meteorological analysis is the “optimal interpola-

tion model” (OIM), which is very similar to Kriging method except that some prior

knowledge of climatological (obtained from a 6 or 12 h numerical forecast)

background field are assumed. Apparently, the optimum interpolation method

was suggested first by Eliassen (1954). However, Gandin (1963) developed the

method over a number of years, and his name is associated with it in the

literature. Eddy (1964) was also one of the early developers of this method.

Detailed literature review on this subject is given by Şen and Habib (2001).

In any numerical analysis technique, the main idea is that estimation at any point

is considered as a weighted average of the measured values at irregular sites. Hence,

if there are Zo
i i ¼ 1, . . . , nð Þ observation stations with the number of prediction site

k, then the general prediction in the form of weighted average formula becomes

similar to Eq. 2.27 as

Z a
k ¼

Xn
i¼1

WiZ
o
iXn

i¼1

Wi

ð6:1Þ

where Zak is the estimate value and Wi’s show the weightings between the ith site

and the grid point k (Fig. 6.1). In the literature, all weighting functions that are

proposed by various researchers appear as functions of the distance between the

sites only. The major drawbacks of such weighting functions are already presented

in Chap. 2.

OIM assumes that analyses of data are represented by first-guess data plus

corrections, which are linear combinations of differences between the first-guess

and observed data. The coefficients of linear combination are determined statisti-

cally so as to minimize expected square error of data. The coefficients of linear
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combination are expressed by error covariance matrices of observed and forecast

data (estimated data), when forecast data are used as “first guess.” Thus, the

covariance matrix has a great influence on the final estimation. It is assumed that

measurements are spatially correlated and such correlations are calculated as in

Chap. 4 (Figs. 4.5 and 4.6). This implies that measurements are close together in

clusters, i.e., highly correlated and that as they get farther apart they become

independent similar to what has been explained in the SV definition in Chap. 4.

Although the method presented here is a fully 2D version of optimum interpolation,

similar approach is applicable to 3D or to multivariate problems. In all OIM, the

following points should be kept in mind:

1. One of the significant advantages in the use of OIM is the ability to estimate a

variability at any site from observations at adjacent sites.

2. The interpolation weights depend on the statistical structure of the ReV mea-

sured as a sequence of time series and not on the individual measurement values

at a given time.

3. The expected analysis errors are produced as a function of the distribution and

accuracy of the data.

4. It is more expensive computationally than other commonly used methods. The

method is computer intensive as the number of computations and amount of

computer storage are concerned.

5. The correlation (dependence) models require a long history of first-guess field

for accurate determination of empirical coefficients.

6. The statistical error functions are estimates, not exact values.

Furthermore, the basic assumptions that are embedded in any OIM can be

summarized as follows:

1. The measurements have a spatial dependence, which implies that as long as they

are close together, the spatial dependence is high; otherwise, they become more

independent.

2. There is no dependence (no correlation) between the measurements and the

first-guess field errors.

3. OIM as described here may be applied to any scalar field when the correlation

and error patterns for that field are known.

4. The field to be analyzed is statistically homogeneous and isotropic.

Consider any grid point, k, with n observations, Zo
i i ¼ 1, . . . , nð Þ around it,

which will be used to calculate the analyzed value, Zak , at this grid point. The main

idea is that Zak is determined as the sum of a first-guess value, Z
g
k , at grid point k plus

a linear combination of the deviations of the observed values from the first-guess

values (Zo
i � Z

g
i ) (see Fig. 6.2). This is to say that

Za
k ¼ Zg

k þ
Xn
i¼1

Wi Z
o
i � Zg

i

� � ð6:2Þ
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where n is the number of stations (in other words, it may also be considered as the

number of influencing stations). The Wi’s are the interpolation weights as intui-

tively mentioned above one would expect the Wi’s to be positive and decrease

monotonically with increasing distance from the grid point, k.

Assume that the true value, ZTk , can be subtracted from both sides of the above

equation. Usually, the true value is not known, but some knowledge may be known

about its statistical parameters, and that will prove useful in the following method.

With these considerations, Eq. 6.2 becomes

ZT
k � Z a

k

� � ¼ ZT
k � Zg

k

� ��Xn
i¼1

Wi Z
o
i � Zg

i

� � ð6:3Þ

The values of the guess fields at each observation location may be determined by

using bilinear interpolation. The difference between each observation and

corresponding guess values may be computed as

Zo
i � Z

g
i ¼ Zo

i � ZT
i

� �þ ZT
i � Z

g
i

� � ¼ eZi þ Ẑ i ð6:4Þ

where the deviation of the true value ZTi from the first-guess value at observed

station is Ẑi (guess error at station i), the deviation of true value from the first guess

at grid point is Ẑk (guess error at grid k), and, finally, eZi denotes deviation of true

value from the observed value at station i (the observational errors at station i),
which can be written as

Grid point

Zi
g

Zi
o

Zk
g

Zi
T

Zk
a

Zk
T

Measurement site

ΔX

ΔY

Fig. 6.2 Location of grid point and measurement site
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Ẑ i ¼ ZT
i � Z

g
i

� �
Ẑ k ¼ ZT

k � Zg
k

� �
eZi ¼ Zo

i � ZT
i

� �
9>=>; ð6:5Þ

By substituting Eqs. 6.4 and 6.5 into Eq. 6.3, one can obtain

ZT
k � Za

k

� � ¼ Ẑ k �
Xn
i¼1

Wi
eZi þ Ẑ i

� �
ð6:6Þ

Furthermore, the interpolation weights Wi are obtained by condition that the mean

square error (MSE) of interpolation is the minimum, which corresponds to the

method of least squares. This condition can be expressed as

E ¼ ZT
k � Za

k

� �2
¼ Minimum ð6:7Þ

where the over bar denotes an ensemble average in the case of a large grid point

number. Insertion of Eq. 6.6 into Eq. 6.7 and evaluation of the square term lead to

E ¼ Ẑ k �
Xn
i¼1

Wi
eZi þ Ẑ i

� �( )2

¼ Ẑ
2

k þ
Xn
i¼1

Xn
j¼1

WiWj
eZi þ Ẑ i

� � eZj þ Ẑ j

� �
�2
Xn
i¼1

Wi Ẑ k
eZi þ Ẑ kẐ i

� �
¼ Ẑ

2

k þ
Xn
i¼1

Xn
j¼1

WiWj
eZi
eZj þ eZiẐ j þ Ẑ i

eZj þ Ẑ iẐ j

� �
�2
Xn
i¼1

Wi Ẑ k
eZi þ Ẑ kẐ i

� �
ð6:8Þ

where i ¼ 1, : : :, , n and j ¼ 1, ::, , n. By assuming that there is no dependence

(no correlation) between the observational and the first-guess field errors, one can

obtain

eZiẐ j ¼ Ẑ i
eZj ¼ Ẑ k

eZi ¼ 0 ð6:9Þ

Consideration of these equations renders Eq. 6.8 to a simplified form as

E ¼ Ẑ
2

k þ
Xn
i¼1

Xn
j¼1

WiWj
eZi
eZj þ Ẑ iẐ j

� �
� 2
Xn
i¼1

Wi Ẑ kẐ i

� �
ð6:10Þ
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which can be rewritten as follows:

E ¼ γkk þ
Xn
i¼1

Xn
j¼1

WiWj γij þ eγ ij� �� 2
Xn
i¼1

Wiγik ð6:11Þ

The elements in this last expression are defined as

γkk ¼ ZT
k � Zg

k

� �2 ð6:12Þ

which represents the variance of the guess error at the grid point k, and

γij ¼ ZT
i � Zg

i

� �
ZT
j � Z g

j

� �
ð6:13Þ

is the covariance of the guess error at location, i, and with guess error variance at

location, j, as

γki ¼ ZT
k � Zg

k

� �
ZT
i � Zg

i

� � ð6:14Þ

which is the guess error covariance at the grid point k with the guess error at

location i

eγ ij ¼ Zo
i � ZT

i

� �
Zo
j � ZT

j

� �
ð6:15Þ

This is the covariance of the observation error at the location i with the observation

error at station j.
The statistical interpolation is a minimum variance estimation procedure and

attempts to minimize the expected analysis error variance. The problem is to find

the weights Wi that minimize the variance. Hence, differentiating Eq. 6.11 with

respect to each of the weights Wi and equating the result to zero after necessary

algebraic manipulations lead succinctly to

Xn
i¼1

Wi γij þ eγ ij� � ¼ γkj ð6:16Þ

Interpolation of Eq. 6.2 using weights from Eq. 6.16 is called “optimum interpola-

tion.” However, these weights are optimal only if the observation and first-guess

error covariance are correct. On the other hand, if the assumed observation and first-

guess error covariance are not correct, then Eq. 6.7 is not minimized strictly. In this

case, the interpolation weights in Eq. 6.10 are not optimal and it is called statistical

interpolation.
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Multiplication of Eq. 6.16 by Wj and summation for j ¼ 1, . . . , n lead to

Xn
i¼1

Xn
j¼1

γij þ eγ ij� �
WiWj ¼

Xn
j¼1

Wjγkj ð6:17Þ

Finally, subtraction of this expression from Eq. 6.11 gives the minimum interpola-

tion error as

E ¼ γkk �
Xn
i¼1

Wiγik ð6:18Þ

6.3.1 Data and Application

The region of application is Turkey with stations as shown in Fig. 6.3. The grid for

this analysis is on a polar stereographic projection oriented along the 35�E longi-

tude line (Habib 1999). There are 16 columns and 8 rows in the array, for a total of

128 grid points.

The data employed in this study is the mean monthly precipitation records

collected from the statistics published by Turkish State Meteorological Office.

Fifty-two stations for 30-year period from 1960 to 1990 are selected with monthly

rainfall measurements.

The spatial scatter distribution of these measurement sites is given in Fig. 6.4,

which shows an irregular pattern. In general, the transfer of information from the

measurement sites to grid points is necessary for any type of modeling as numerical

solution or mapping the ReV. Here each site monthly time series, which may also
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be monthly average groundwater levels, groundwater quality values (calcium,

magnesium, sodium, potassium, sulfate, bicarbonate, chloride, nitrate, total

dissolved solids, electric conductivity, etc.), and alike.

In practical applications of the optimum interpolation such as the analysis of

rainfall, one uses the climatological mean as the first-guess value. Hence, the

following expression is considered for the interpolation point value (Habib 1999).

Za
k ¼ Zk þ

Xn
i¼1

Wi Z
o
i � Zi

� � ð6:19Þ

where Zak and Z0i are the calculated and observed rainfall values corresponding to

the arithmetic averages of Zk and Zi, respectively, at interpolation point k and

observation stations, i ¼ 1, 2, ::, , n; and Wi’s are the interpolation weights. In order

to calculate these weights, the interpolation formula can be obtained by multiplying

both sides of Eq. 6.19 by (Z0j – Zj) and taking the expectation, leading to

Xn
i¼1

Wiρij ¼ ρkj ð6:20Þ

where ρij is the spatial correlation coefficients between stations i and j and ρkj
between stations j and k. This equation is valid in the case when E(Zk) ¼ E(Zk

a),

which implies unbiased estimator. In short, interpolation weights,Wi, are dependent

on the statistical structure of the spatial correlation function (SCF) of the rainfall

records at irregular sites. Once the SCFs are obtained from the available data, then
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Fig. 6.4 Spatial distributions of the data points
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the value of ρkj can be read from this function depending on the distance between k

and j, and consequently, the only unknowns in Eq. 6.20 are the weights which can

be calculated from the set of n linear equations. The correlation functions are

presented in the previous chapter (Figs. 4.5 and 4.6). The expected analysis error,

εkj, at grid point k that results from the introduction by using information at location

j can be expressed as (Habib 1999)

εk ¼ 1�
Xn
i¼1

Wiρki ¼ 1� ρkj ð6:21Þ

Most often in practice, 0 < ρkj < 1 and therefore 0 � εkj �1. It is obvious that the

expected error does not depend directly on the observed values but again on the

spatial statistical structure of the rainfall amounts. Under the light of the aforemen-

tioned discussion, the following OIM steps are necessary for practical applications:

1. Specify the geographical locations (longitude and latitude) of interpolation

points.

2. Specify the estimation locations.

3. Compute a first-guess field value (climatologic means, i.e., arithmetic aver-

ages) for each station locations.

4. Compute the background error correlations, which correspond to the differ-

ences between observed and average values.

5. Find a suitable model for the background error SCF.

6. Select the measurement sites that will influence the interpolation point.

7. Solve the system in Eq. 6.20 and obtain the interpolation weights.

8. Compute the interpolation point value by using Eq. 6.19.

9. Calculate the expected analysis error at the interpolation point by using

Eq. 6.21.

10. Repeat steps (5–8) for all desired interpolation points. Figure 6.5 shows the

necessary steps in the execution of a regional modeling procedure according to

OIM approach.

6.3.1.1 Spatial Correlation Function (SCF)

Although there are several models to represent the correlation by continuous

functions, the basic modeling form is adapted as “the negative exponential” for

all monthly spatial correlation types. The full correlation array is reduced to

distance-interval-averaged values (Fig. 4.6). Hence, most of the heterogeneity is

averaged out in the computed lag correlation and computation time is greatly

reduced. In general, the negative exponential model has the following mathematical

expression:

R dð Þ ¼ aþ be�d=c ð6:22Þ
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where R(d ) represents the theoretical SCF and d is considered as the distance

between ith and jth stations; a, b, and c are the model parameters. These parameters

are determined by fitting a mathematical function to the array of computed corre-

lation versus corresponding distances between measurement sites. Each one of the

monthly average SCF is fitted to this model by employing the ordinary least squares

regression approach. The resulting parameter values for each month are presented

in Table 6.1 in addition to the overall monthly average parameter values.

All the monthly spatial correlation functions (SCF) for, say, Sivas station (see

Fig. 6.3) are confined between January and July as one can see from Fig. 6.6. It is

also clear from this figure that summer months have less SCF values than winter

months.

This is due to the fact that in this region cyclonic rainfall types are dominant in

winter, whereas convectional type of rather local rainfall occurs in summer season.

Of course, orographic rainfall effects play more effective role in winter season than

summer. However, it is not possible to identify this type of rainfall from the SCFs.

In Fig. 6.6, one can note that the maximum continuity appears in winter months.

This is due to the fact that in this region frontal rainfall types are dominant in winter,

whereas convectional type of rather local rainfall occurs in summer season.

At large distances, February has strong persistent SCF, which implies that in this

month there are cyclonic rainfall types because they cover large areas. Similar

trends are also observed in April and May. On the other hand, comparatively

steeper SCFs indicate convectional rainfall types, which appear over rather smaller

area during summer months.

It is possible to show the variation of SDF for any measurement station as the

center of concentric contour. The extreme and average SCFs are shown for Sivas

City as given in Fig. 6.7.

The benefit from these figures is that at any given month of the year and a given

correlation level, say 0.050, it is possible to determine the influence area around the

Table 6.1 Spatial correlation

model parameters
Month a b c

January �0.15553 0.90883 1352.15221

February 0.27266 0.55969 270.50807

March 0.00000 0.85671 575.8087

April 0.12362 0.71309 255.97296

May 0.06599 0.78690 220.55975

June �0.06992 0.62878 506.51055

July 0.11930 0.65853 131.18509

August �0.08718 0.61655 653.76575

September �0.29293 0.95016 909.51275

October 0.11815 0.65535 370.6699

November �0.33159 0.82909 1707.53125

December 0.03030 0.51511 636.63236

Average �0.01650 0.72650 623.2176
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station. On the average, the minimum correlation value for 200 km (other distances

have similar interpretations) appears in July, and the maximum correlation value is

in January. It is also clear from this figure that summer months have less spatial

correlation values than winter months. Table 6.2 shows the values of the percentage

of the variance of observational error which has a minimum of 14.32 in March and a

maximum of 50.46 in November. Similarly, the correlation of the observed values

varies between a minimum of 0.4975 in November and a maximum of 0.8567 in

March.

It is possible to find the correlation ρ(d ) of the true (first-guess) values of the

meteorological variables at distance d as

ρ dð Þ ¼ R dð Þ
R 0ð Þ ð6:23Þ

where R(d) and R(0) are the correlations of the observed values at d and at zero

distances, respectively. This equation is used to calculate the correlation of the
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Table 6.2 Some pertinent

statistics
Month R(0) Percentage of σ2e
January 0.7533 24.67

February 0.8323 16.76

March 0.8567 14.32

April 0.8367 16.32

May 0.8528 14.71

June 0.5588 44.11

July 0.7775 22.24

August 0.5293 47.06

September 0.6572 34.27

October 0.7735 22.65

November 0.4975 50.25

December 0.5454 45.46

Average 0.7059 29.40
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first-guess (true) values of the ReV. The negative exponential model in Eq. 6.22 at

zero distance can be defined as

R 0ð Þ ¼ aþ b ð6:24Þ

and, finally, by substituting Eqs. 6.22 and 3.24 into Eq. 6.23, it is possible to obtain

ρ dð Þ ¼ aþ be�d=c
� �

aþ b
ð6:25Þ

This expression can be used for the indirect evaluation of the correlation of the first-

guess (true) values of the ReV by means of extrapolating the correlation of the

observed values at zero distance d¼ 0, as shown in Fig. 6.8 or by using Eq. 6.23 or

Eq. 6.25 for finding the correlation of the true values.

6.3.1.2 Expected Error

The expected analysis error is a by-product of the OIM analysis procedure as

already stated in Eq. 6.18. It is computed at each analysis point and is a function

of the amount, quality, and distribution of the data near each point. If no data are
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Fig. 6.8 Estimation of zero intercept value
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present, the expected error remains unchanged from its initial value. The calcula-

tion and modeling of errors result in an analysis that is not necessarily optimum

(Lorenc 1981). The expected error is thus a measure of what the analyzer “thinks”

the error is (Schlatter and Branstator 1987).

Figure 6.9 includes maps of the expected error of rainfall calculated from

Eq. 6.18 for whole months at Sivas station. It is obvious that there are a number

of areas where expected error changes quite rapidly. For instance, there is a bull’s-
eye feature in all months, which is enclosed by the minimum expected error. There

is also a similar area of less circular contours surrounding the region at the north

center of the study area.

At the first glance, it is possible to depict that contours are less densely occurring

over terrestrial area during September–February winter period. However, the con-

tours are very dense fromMarch to October. The reason for such a digression is due

to the fact that the rainfall occurrences are comparatively more sporadic (i.e.,

regionally random) during March–October duration. This is also because of the

convective rainfall occurrences appearing almost independently from each other.

However, areal continuity of winter rainfall is a signature of cyclonic weather

movements. Such continuity results in comparatively very small expected error

amounts, say, for instance, in January (Fig. 6.9) where errors vary between 0.05 and

0.15 over Anatolia within Turkey. On the contrary, in July (Fig. 6.9), error band

varies between 0.20 and 0.70. Table 6.3 shows the relation between expected mean

square error (MSE) and months.

One can note that the maximum expected error appears in summer months (e.g.,

in July, 0.3480) because the rainfall has more discontinuous ReV as explained

above. On the other hand, the minimum expected error is in winter months (e.g., in

January, 0.0193) because the rainfall in this season is really extensive and more

continuous.

6.3.1.3 Data Search and Selection Procedure

In order to find the weights Wi, the inversion of the correlation (covariance) matrix

must be computed at each grid point. The size of the correlation matrix is directly

related to the number of the observations permitted to influence each grid point. The

choice of a search strategy that controls the stations which are included in the

interpolation procedure is an important consideration in any approach to OIMs.

The most common approach in choosing the stations that contribute to the

interpolation is to define a search neighborhood within which all available stations

will be used. Herein, a simple search strategy is adapted using all station within a

circular search neighborhood with a limited radius of influence.

Meleshko and Prigodich (1964) have shown that the interpolation error reaches a

minimum at about six to eight measurements and shows no further improvement

with the inclusion of more sites. In order to fix this idea with the data at hand, the

change of expected MSE is plotted versus number of neighboring station for each

month. However, it appeared that such graphs are very similar to each other. It is
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objectively seen from Fig. 6.10 that on the average the number of influencing

stations does not change significantly above four sites. For more station numbers,

the expected error mean square remains on almost the same minimum level.

6.3.1.4 Cross-Validation of the Model

The accuracy of the OIM is investigated with the help of numerical experiments

from the surrounding sites and in comparison to the interpolated values with the

Table 6.3 Monthly expected

errors
Month MSE

January 0.0193

February 0.0935

March 0.0834

April 0.1700

May 0.2500

June 0.1000

July 0.3480

August 0.1200

September 0.0657

October 0.0994

November 0.0238

December 0.0463

Average 0.1141
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measurements (Gandin 1965). Similarly, cross-validation techniques allow com-

parison of estimation and true values using only the information available in the

measurements (Isaaks and Srivastava 1989). In a cross-validation technique, the

interpolation method is tested at the measurement site, and the measurement value

at a particular station is discarded temporarily from the surrounding sites. Once the

estimate is calculated, it is possible to compare it with the measurement value that is

initially removed from the station. This procedure is repeated for all available sites,

with comparison of observed, interpolated, and actual values by using simple

statistical parameters such as the means and standard deviations. The statistical

parameters of the comparison between various estimation methods and of the true

values are summarized in Table 6.4 for January 1984.

In general, the difference between the average estimate from the OIM and the

true average reflects a tendency toward overestimation or underestimation. How-

ever, in this case, the analysis method has a slight tendency toward overestimation

as seen from Table 6.4. The estimations have less variability than measurements.

However, this reduced variability of analysis values is often referred to as smooth-

ing. Therefore, the measurements are less smoothed than the analysis values. A

scatter plot of measurements versus estimations provides additional evidence on

how well an estimation method has been performed. Figure 6.11 shows scatter plot

of measurements versus estimations for January 1984, which indicates that there is

a good relationship between estimations and measurements especially for less than

200 mm. This is also supported by the root MSE, which is 29.9, and the mean

percentage error is �9.07%. Furthermore, the square of the correlation which is a

measure of the variance explained by the model is equal to 0.76.

In order to see the correspondence matching between measurements and esti-

mations as well as monthly rainfall amounts, the monthly statistical parameter

variations are presented in Figs. 6.12 and 6.13. It is seen that on the basis of

averages, measurements and estimations are very close to each other with less

than 1% error. Although there are more discrepancies for monthly standard devi-

ations, generally 2.5% but high errors appear in November and December.

Table 6.4 Univariate

statistics of optimum

interpolation analysis

Parameters Observation Estimation

n 52 52

Mean 76.6 74.70

Minimum 5 0

Maximum 361 266.9

Range 356 267

Variance 3407.60 2905.61

Std. dev. 58.37 53.90
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6.4 Geostatistical Analysis

It is a branch of applied statistics with the original purpose of spatial data processing

for estimating changes in ReV. However, the principles have been applied to a

variety of areas in geology and other scientific disciplines. A unique aspect of

geostatistics is the use of ReV, which are variables that fall between random and

completely deterministic behaviors (Chap. 1). ReV describe phenomena with

geographical distribution (e.g., elevation of ground surface) and exhibits spatial

continuity, which is not always possible to sample at every location. Therefore,

unknown values must be estimated from data taken at specific locations. The size,

shape, orientation, and spatial arrangement of the sample locations are termed as

the support and influence the capability to predict the unknown samples. If any of

these characteristics change, then the unknown values also change. The sampling

and estimation of ReV are done, so that a pattern of variation in the phenomenon

under investigation can be mapped such as a contour map for a geographical region.

In addition to spatial and temporal variation in nature, spatial and temporal depen-

dence or continuity also occurs. Geostatistics include a set of statistical procedures

that can be used to analyze and model spatial relationships in nature. The spatial

variation is somewhat similar to the time variation in some properties, time

observations are dependent and occur in equally spaced time intervals in 1D,

whereas the spatial observations are dependent and occur in 2D or 3D, and the
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distance between points are not necessarily equal intervals as they are in time

variations. In earth sciences, most of the natural phenomena behave simultaneously

in space and time as soil moisture content, water level, and precipitation data may

consist of long time series at various locations. The spatiotemporal variation of the

natural phenomena implies a significant amount of uncertainty. Moreover, this

variation is, in general, nonhomogeneous in space and nonstationary in time.

Matheron (1963) was the first to use the term “geostatistics” which was defined

by him as “the application of the formalism of random function to the reconnais-

sance and estimation of natural phenomena.” The basis of the method is the ReV

theory and concepts of this theory can be split into two main successive steps:

1. Establish the theoretical basis for expressing the structural properties of a natural

phenomenon in a useful mathematical form as SV or CSV.

2. Provide a particular means for solving various problems of estimation such as

the Kriging methodology, which guarantees a solution to the estimation problem

(Kriging) and deals with the ReV by using the probabilistic theory of random

function.

By now, however, there are number of excellent books on the subject including

both introductory (Clark 1979) and advanced aspects (David 1977; Journal and

Hujibregts 1978). The classical parametric and nonparametric geostatistics are

introduced recently for application in the field of earthquake ground motion eval-

uation (Glass 1978; Carr and Glass 1984, 1985; Carr et al. 1985).

Almost all variables encountered in the earth sciences can be regarded as ReV.

For seismic zonation, this is an ideal one in describing earthquake ground motions.

Each observation of ground motion can be considered simply as a unique realiza-

tion of a Rev, which adequately represents local random behavior tempered by

global attenuation. Furthermore, provided that a valid SV can be developed,

Kriging is well suited for the estimation process to result in data regionalization.

6.4.1 Kriging Technique

Geostatistics, which is also referred as ReV, was basically developed for statistical

study of the natural phenomena in mining field including other spatial phenomena

in earth sciences (Matheron 1963; Davis 1986). The natural phenomena that have

spatial distribution vary from one place to another with apparent continuity struc-

ture. The first step in geostatistics is to study and determine the spatial structure and

dependence from measurement characteristics of the natural phenomena (Chap. 4).

The spatial structure can be established by SV, CSV, or PCSV as convenient. Using

the underlining generation structure, it is possible to estimate the characteristics at

unsampled locations and extend findings of the regional behavior in natural phe-

nomena through Kriging techniques.

In any geostatistical modeling, there are two stages as the estimation of SV (CSV

or PCSV) from a given set of regionalized data for extraction of spatial dependence
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and then Kriging methodology, which provides estimates for locations where no

data are available. The SV is the source of information used in Kriging to achieve

optimal weighting functions for mapping. Kriging uses theoretical SV in calculat-

ing estimates at a set of grid nodes. These Kriging estimates are best linear unbiased

estimator (BLUE) of the ReV at a set of locations, provided that the surface is

stationary and the correct form of the theoretical SV has been determined (Chap. 4).

In many disciplines such as petroleum exploration, mining, and groundwater and

water pollution, analysis data are available at a set of predetermined spatial

locations (water and oil wells, meteorology stations, etc.). The purpose is to make

regional estimation at any location based on the available data at these locations. It

is necessary to have often maps based on a regular grid, and the estimations are used

to produce 2D contour maps or 3D surface plots. In theory, only Kriging method of

grid generation can produce better estimates (in the sense of being unbiased and

having minimum error). In practice, the effectiveness of the technique depends on

the correct specification of several parameters that describe the SV and the model of

the drift (regional trend). However, because Kriging is robust, even with a naive

selection of parameters, it will do no worse than conventional grid estimation

procedures (Chap. 2).

The price that must be paid for optimality in estimation is computational

complexity compared to techniques presented in Chap. 3. A large set of simulta-

neous equations must be solved for every grid node estimated by Kriging. There-

fore, computer run times will be significantly longer if a map is produced by

Kriging rather than by conventional gridding. Kriging can be computationally

very intense but increasingly available in software packages, and it is the best

method for many purposes. In addition, an extensive prior study of the data must be

made to test for stationarity, determine the form of the SV, set the neighborhood

size, and select the proper order of the drift, if it ever exists. These properties are not

independent, and because the system is underdetermined, trial-and-error experi-

mentation may be necessary to determine the best combination. For this reason, to

warrant the additional costs of analysis and processing, Kriging probably should be

applied in those instances where the best possible estimates of the surface are

essential, the data are of reasonably good quality, and estimates of the error are

needed.

6.4.1.1 Intrinsic Property

Mathematically speaking, let x be a point in space and Z(x) the value of the function
at point x. It is usually highly variable and noncontinuous and therefore cannot be

estimated directly. Thus, the structure with variation will be studied by examining

its increment. The basic idea of the theory is to consider the function Z(x) as one
realization of random function from the exhaustive ensemble. This is tantamount to

assuming a well-defined and unique sequence of numerical values into a realization

of random process. Only one realization of that process is available, and the

problem is to find the characteristics of the ReV in order to make the estimation
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of unknown points possible. Obviously, it is not rigorously possible to infer the

probability law of any random function from its single realization because it has

limited finite number of sample points. Thus, many realizations Z1(x), Z2(x), . . .,
Zk(x) of the ReV are required for identifying the probability law. In order to render

the situation into a practically tractable one, the assumptions of spatial homogeneity

and stationarity are needed. A ReV is said to be strictly stationary if any conven-

tional statistical properties of the medium, such as the mean, variance, covariance,

etc., do not change with distance. This assumption is seldom encountered in natural

phenomena. Therefore, a ReV is to be first-order stationary when the random

variable has the same mean value irrespective of location. However, in the linear

geostatistics, it will be enough to assume first of all that the weak or second-order

stationarity exists. The second-order stationarity assumption consists of the two

following conditions:

1. The arithmetic average, m (expected value for any term), value of the ReV is the

same all over the area

E Z xð Þ½ � ¼ m ð6:26Þ

Or, equivalently,

E Z xð Þ � Z xþ dð Þ½ � ¼ 0 ð6:27Þ

2. The spatial covariance of the ReV is the same all over the field of interest

Cov Z xð Þ � m½ � Z xþ dð Þ � m½ �f g ¼ Cov dð Þ ð6:28Þ

where d is the distance separating between two sites at locations x and x + d.

If it is assumed that for every d this spatial covariance is independent of the

location, then the second-order stationarity is valid. By holding the full second-

order stationarity, the covariance Cov(d) approaches the variance σ2Z of the random
variable as d ! 0

Cov 0ð Þ ¼ Z xð Þ � m½ � Z xð Þ � m½ �f g ¼ E Z xð Þ � m½ �2
n o

¼ Var Z xð Þ½ � ¼ σ2Z

A second-order stationarity is, however, really justifiable, and a weaker assump-

tion may be adopted instead. The mean value, m, is always unknown and may not

be constant, so that the variance and covariance cannot be computed directly. It is,

therefore, beneficial to define an alternative statistic, which does not require the

mean value. For instance, successive difference as in Eq. 6.27 may be zero but its

square is not essentially zero. Considering these characteristics, a consistent set of

assumptions weaker than second-order stationarity have been made and called by
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Matheron (1963) as the “intrinsic hypothesis” which subsumes the following

expressions:

Var Z xð Þ � Z xþ dð Þ½ � ¼ E Z xð Þ � Z xþ dð Þ � E Z xð Þ � Z xþ dð Þ½ �2
n o

Consideration of Eq. 6.27 leads to

Var Z xð Þ � Z xþ dð Þ½ � ¼ E Z xð Þ � Z xþ dð Þ½ �2 ¼ 2γ dð Þ ð6:29Þ

where 2γ(d ) is the variogram and γ(d) is the SV or half-variogram. It should be

noted that second-order stationarity implies the intrinsic hypothesis but the con-

verse is not true.

In addition, under the hypothesis of second-order stationarity, the covariance and

SV are two equivalent tools that characterize the autocorrelation between two

variables Z(x+d ) and Z(x) separated by d as

γ dð Þ ¼ Cov 0ð Þ � Cov dð Þ ð6:30Þ

The validity of this expression is true especially if the ReV has a Gaussian (normal)

PDF. Estimation of the SV is preferable to estimation of the covariance because the

experimental SV does not require a prior estimate of the population mean. Besides,

SV calculation requires a set of measurements with no time variation. Under the

same condition, the relationship between the model autocovariance, ρ(d ), and SV is

γ dð Þ ¼ σ2Z 1� ρ dð Þ½ � ð6:31Þ

6.5 Geostatistical Estimator (Kriging)

After successful matching of theoretical SV model, one can use Kriging to estimate

what weights should be applied to each surrounding point to estimate the value of

the ReV at an unknown location (e.g., a grid node, see Fig. 6.1). Kriging calculates

the weighted average of neighboring values and assigns it to each grid node.

Kriging can also calculate the error variance for each estimated value, which

means that it is possible to know what the most likely value is at each location

and how likely that it is to be the actual value. In its most basic form, Kriging does

not work where there is a trend in the field (high values on one end and low on

another). Universal Kriging addresses this limitation by first calculating a trend

surface and then using Kriging to estimate the values of the difference between the

real surface and the trend surface (called residuals). The problem of local estimation

appears in finding the best estimator of the mean ReV value over a limited domain.
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The use of Kriging estimations is advantageous because it is not limited to a simple

point estimation of the region magnitude (Delhomme 1978; Marsily 1986).

Kriging is the name given to a local estimation technique. Provided that the basic

assumptions of no trend and a model for the SV (or CSV) are known or determined

in some way from the data, then the Kriging produces always the best linear

unbiased estimator (BLUE) of the unknown ReV characteristics. In the case of

nonstationarity, several non-bias conditions are required, and this leads to the

technique known as “universal Kriging” or unbiased Kriging of order, say,

n. When groups of variables are correlated, the co-Kriging technique can be used

to estimate any ReV (e.g., response spectra) from the data available on all the

correlated variables (e.g., peak acceleration, velocity, and displacement in addition

to the response spectra). Other classes of estimators are also used in practice, for

instance, nonlinear estimator can be built by prior transformation of the data.

Disjunctive Kriging (Matheron 1971), Lognormal Kriging (Krige 1951), and indi-

cator Kriging (Journal 1983) are examples of nonlinear estimators. All Kriging

techniques are based on the simple linear models as

ZE ¼ λ1x1 þ λ2x2 þ . . .þ λnxn ð6:32Þ

where ZE is the estimator of the true value at location E, and λi are the weights

allocated to each observation such that

Xn
i¼1

λi ¼ 1 ð6:33Þ

The technique minimizes estimation variables by solving a set of Kriging equations,

which include covariance between the point or volume to be estimated and the

sample points and covariance between each pair of sample points. The calculated

weights after the solution of the equation system depend on various factors such as

the size and shape of volume estimation, the distance and direction of each sample,

the distances between sample locations and the SV or CSV.

The equations and their full derivation as well as attributes and advantages of

Kriging can be found in numerous publications such as Matheron (1971), David

(1977), Journel and Huijbregts (1978), and Clark (1979). The following points are

some of the characteristics and advantages of Kriging technique:

1. If one has a model for the SV (or CSV), he/she can produce the minimum

variance using the Kriging technique.

2. If the proper models are used for the SV (or CSV) and the system is set up

correctly, then there is always a unique solution to the Kriging system.

3. If one has regular sampling, and hence the same sampling set up at many

different positions within the region, it is not necessary to recalculate the

Kriging system each time.
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4. Kriging is not limited to a single point estimation of the given magnitude Z but

can also be used:

(a) To estimate the mean value, Z, on a given block, e.g., on the mesh of model

or a sub-domain of any shape of watershed

(b) To obtain the estimation variance of magnitude Z, i.e., roughly the confi-

dence interval of this estimation

(c) To locate the best situation for a new measurement point, e.g., by minimiz-

ing the overall uncertainty in the field under consideration

5. Kriging is advantageous because it considers the following points explicitly:

(a) The number of spatial configuration of observation points within the study

region

(b) The position of the data points within the region of interest

(c) The distance between the data points with respect to area of interest

(d) The spectral continuity of the interpolated variable

For instance, in an earthquake ground motion study, Kriging can be used for

evaluating the earthquake ground motion hazard within the region of interest and

for estimating the tripartite earthquake response spectra at a site of interest. It is

already stated that potential errors in the data collection may lead to nugget effect

(Chap. 4), which becomes evident especially from the sample SV, and its existence

causes smoothing operation through the Kriging and less confidence in individual

data points versus the overall trend of the data. It has the same unit as the SV. There

are two components that give rise to nugget effect, namely, variances due to error,

σe2, and separation, σs2. The latter variance is a measure of variation that occurs at

separation distances of less than the typical nearest neighbor sample spacing. The

more the random fluctuation of the same data at a given location is, the greater the

error variance and the lesser the prediction reliability. Consequently, Kriging tends

to smooth the surface, and therefore, it is not a perfect estimator.

6.5.1 Kriging Methodologies and Advantages

Once the degree of spatial dependence has been established, then the SV can be

used to interpolate values for points not measured through the process of Kriging,

which is an interpolation method that uses the sample (empirical, experimental) SV

to weight sample points based on their locations in space relative to the point value

that is to be estimated. Therefore, a first step in Kriging is to fit a theoretical

function to the SV model that describes the theoretical SV. Kriging has many

things in common with traditional point interpolation methods such as inverse

distance (or square) weighting, triangulation, polygonization, methodologies, etc.
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which are explained in Chap. 2. The result of Kriging is an interpolated surface map

of ReV. There are several types of Kriging methodology:

1. Ordinary Kriging: It is similar to multiple linear regression and interpolates’
values based on point estimates.

2. Indicator Kriging: It is used to estimate indicator variables. Indicator Kriging is

simply an ordinary Kriging performed on the indicator-transformed data.

3. Punctual Kriging: Both ordinary and indicator Kriging methodologies are forms

of punctual Kriging because they are used to estimate values for exact points

within the sampling unit. Punctual Kriging is the most common method used in

earth sciences. It helps to estimate the value at a point from a set of nearby

sample values using Kriging. The kriged estimate for a point will usually be

quite similar to the kriged estimate for a relatively small block centered on the

point, but the computed Kriging standard deviation will be higher. When a

kriged point happens to coincide with a sample location, the kriged estimate will

equal the sample value.

4. Block Kriging: Its interpolations are based on values in a particular finite area. It

is a more accurate and intensive computation that uses point estimates within a

block to derive an average estimate for the block.

5. Co-Kriging is a modification of ordinary Kriging that relies on the fact that many

phenomena are multivariate and that the primary variable of interest is

undersampled. Co-Kriging estimation is done by minimizing the variance of

the estimation error using the cross-correlation (dependence) between several

variables. Estimates are derived for both the primary and secondary variables.

The co-Kriging technique is a modification of the simpler technique of Kriging.

It is used to merge two variables or more. Estimation of co-Kriging contains a

primary variable of interest and one or more secondary variables. Improvement

in the interpolation of one variable by using other variables is important (David

1977; Journel and Huijbregts 1978; Myers 1982). There are two steps in

co-Kriging estimation:

(a) Evaluation of the cross-correlation (or co-SVs) between variables to obtain

information about continuity and dependencies

(b) Construction of contour maps for the primary variable

Seo (1998) used linear co-Kriging to interpret rainfall data from a set of rain

gages and radar information. He concludes that the consistency of the improve-

ment by gage-radar estimation makes co-Kriging an attractive tool in rainfall

estimation. Martinez (1996) applied co-Kriging to improve the accuracy of

evapotranspiration estimation over a regular grid by including the effects of

topography.

Among other spatial estimation techniques, Kriging methodology has the fol-

lowing advantages:

1. It yields best linear unbiased estimator (BLUE) for the ReV modeling in earth

sciences.
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2. It is best because it minimizes the error variance in the estimate, unbiased

because the weights sum to 1, and linear because it is a simple weighted

average.

3. Also uses a weighted average method to calculate the value at unsampled

locations (Eq. 2.27).

4. Weights are determined by considering the representative sample, and then the

theoretical SV (or CSV) and the estimation problem are solved by using matrix

algebra.

In the application of Kriging algorithm, there are four successive essential steps

as follows:

1. When computing the interpolation weights, the algorithm considers the spacing

between the point of estimation and the data sites. The algorithm considers also

the inter-data spacing, which allows for de-clustering.

2. When computing the interpolation weights, the algorithm considers the inherent

length scale of the data. For example, there are regions where the topography

varies much more slowly than some other regions. If two points’ elevations at
the same distance are considered in these two different topographies, then in the

slowly changing regional elevation case, it would be reasonable to assume a

linear variation between these two observations, while in the other region, such

an assumed linear variation would be unrealistic. The algorithm adjusts the

interpolation weights accordingly.

3. When computing the interpolation weights, the algorithm considers the inherent

trustworthiness of the data. If the data measurements are exceedingly precise

and accurate, the interpolated surface goes through each and every observed

value. If the data measurements are suspected, the interpolated surface may not

go through an observed value, especially if a particular value is in stark

disagreement with neighboring observed values. This is an issue of data

repeatability.

4. Natural phenomena are created by physical processes, which have often pre-

ferred orientations. For example, at the mouth of a river, the coarse material

settles out fastest, while the finer material takes longer to settle. Thus, the closer

one is to the shoreline, the coarser the sediments, while the further from the

shoreline, the finer the sediments. When computing the interpolation weights,

the algorithm incorporates this natural anisotropy. When interpolating at a

point, an observation 100 m away but in a direction parallel to the shoreline

is more likely to be similar to the value at the interpolation point than is an

equidistant observation in a direction perpendicular to the shoreline.

The last three items incorporate something about the underlying process from

which the observations are taken. The length scale, data repeatability, and anisot-

ropy are not a function of the data locations. These enter into the Kriging algorithm

via the SV (or CSV). The length scale is given by the SV range (or slope), the data

repeatability is specified by the nugget effect, and the anisotropy is given by the

anisotropy (Chap. 4).
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6.6 Simple Kriging (SK)

This Kriging method has straightforward mathematical derivations based on the

following three basic assumptions:

1. The spatial sampling points are representatives of the ReV at a set of given

locations with measurement values.

2. The ReV is considered as a second-order random field variable with mean,

variance, and SV.

3. The mean of ReV is known, which limits the application of this Kriging

modeling alternative severely.

In practical applications, there are many cases where the areal mean of the ReV

is known, and hence direct application of the simple Kriging methodology becomes

attractive. Especially in the case of second-order stationarity (mean and variance

constancy), the whole ReV samples can be standardized according to classical

statistical standardization formulation, and hence the standardized ReV has zero

mean and unit variance. Let a set of measurement locations scattered irregularly

over the study area as in Fig. 6.14, where there are n measurement and one

estimation sites.

The regional variability of the ReV is recognized by a suitable regional depen-

dence (covariance or SV) function between each pair of the measuring sites.

Kriging estimation is considered as the weighted average of the measurement

values on the estimation point with distant-dependent weighting values, λi. The
Kriging estimation, ZE is a linear weighted average of the surrounding measure-

ments Zi (i¼ 1, 2, . . ., n) as follows:

ZE ¼ Z þ
Xn
i¼1

λi Zi � Z
� � ð6:34Þ
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Fig. 6.14 ReV sample sites and estimation site
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where Z indicates the regional constant mean value of the ReV. If there are n

neighboring sites for the estimation calculation, then there will be n2 elements in the

covariance (or SV) matrix with the variances on the main diagonal. Due to the

diagonal symmetry, the number of different elements in the matrix is equal to n(n –
1)/2 as follows:

C ¼

var z1ð Þ cov z1; z2ð Þ : : : cov z1; znð Þ
cov z2; z1ð Þ var z2ð Þ : : : cov z2; znð Þ

: : : : : :
: : : : : :
: : : : : :

cov zn; z1ð Þ cov zn; z2ð Þ : : : var znð Þ

26666664

37777775 ð6:35Þ

In this matrix, each element is dependent also on the distance difference (relative

distance) between the two sites. It is obvious that Cov zi, zj
� � ¼ Cov zj, zi

� �
and

furthermore Cov zi, zið Þ ¼ σ2i which is the variance at site i. However, if the ReV is

standardized with constant regional mean, Z, and variance, σ2Z then Cov zi, zið Þ ¼ 1,

and the covariance corresponds to dependence (correlation) coefficient as

ρ z1, z2ð Þ ¼ cov z1, z2ð Þ. For standardized ReV, Eq. 6.35 takes the following form:

ρ ¼

1 ρ z1; z2ð Þ : : : ρ z1; znð Þ
ρ z2; z1ð Þ 1 : : : ρ z2; znð Þ

: : : : : :
: : : : : :
: : : : :1 :

ρ zn; z1ð Þ ρ zn; z2ð Þ : : : 1

26666664

37777775 ð6:36Þ

This is the regional correlation matrix for ReV. Similar to this matrix, one can write

also the distance matrix,D, between these n sites with zero distances along the main

diagonal as follows:

D ¼

0 dis z1; z2ð Þ : : : dis z1; znð Þ
dis z2; z1ð Þ 0 : : : dis z2; znð Þ

: : : : : :
: : : : : :
: : 0 :

dis zn; z1ð Þ dis zn; z2ð Þ : : : 0

26666664

37777775 ð6:37Þ

This matrix is also symmetrical with respect to the main diagonal. Hence, both the

covariance and distance matrices provide information in the form of say upper

triangular matrices. The plot of distance matrix values on the horizontal axis versus

corresponding regional correlation coefficients from the correlation matrix provides

a general shape as in Fig. 6.15, which may be referred to as the regional dependence

(correlation) function. Logically, as the distance increases, the correlation
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coefficient between the ReV values decreases, and therefore, Fig. 6.15 has a

decreasing trend with distance, and theoretically this function should be asymptotic

to the horizontal axis. Consideration of Eq. 6.31 with unit variance yields the

corresponding SVs in the same figure.

The general expression in Eq. 6.34 for the simple Kriging can be rewritten for a

standardized ReV as

zE ¼
Xn
i¼1

λizi ð6:38Þ

Here there are n unknowns and accordingly n equations are necessary for the

simultaneous solution. For this purpose, both sides of Eq. 6.38 are multiplied by

each measurement ReV variable, and then the averages (expectations) are taken.

The resultant set of equations becomes

Xn
i¼1

λiρ zi; z1ð Þ ¼ ρ zE; z1ð Þ
Xn
i¼1

λiρ zi; z2ð Þ ¼ ρ zE; z2ð Þ
Xn
i¼1

λiρ zi; zkð Þ ¼ ρ zE; zkð Þ

ð6:39Þ

In order to bring this set of simultaneous equations into a matrix form, the following

additional succinct vector definitions are necessary. The unknown column vector is

Λ ¼

λ1
λ2
:
:
λn

266664
377775 ð6:40Þ

1.0

0.0 Distance

g (d), r(d)

r(d)
g (d)

Fig. 6.15 Covariance-distance graph
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Finally, the right-hand side of Eq. 6.39 represents the known part, say, column

vector, B, which is defined as

B ¼

ρ zE; z1ð Þ
ρ zE; z2ð Þ
:
:

ρ zE; znð Þ

266664
377775 ð6:41Þ

With these notations at hand, Eq. 6.39 can be written shortly as

CΛ ¼ B

or the inversion operation gives the solution implicitly as

Λ ¼ C�1B ð6:42Þ

After the determination of the weighting values, λi from this last expression, their

substitution into Eq. 6.38 leads to the estimation of the standard ReV, which is then

converted to nonstandard (original) ReV as

ZE ¼ Z þ σ2EzE ð6:43Þ

where ZE is an (n�1) matrix of the measured ReV values with zero mean and unit

variance.

The simple Kriging procedure can also be applied by considering the relation-

ship between the SV and the covariance function as given in Eq. 6.31. However, the

application of this transition between the covariance and the corresponding SV will

be reliable only in the case of the normally distributed ReV. Otherwise, the results

obtained from the use of the covariance will be biased. The reader can see the

difference by applying the simple Kriging once with the covariance and then the SV

functions of the same set ReV measurements. The simple Kriging is equivalent to

multiple regression procedures where the covariance is used for the parameter

estimation.

All that has been explained in this section is based on the covariance function for

the depiction of spatial dependence. Since there is a relationship between the

covariance and SV functions in the case of standardized ReV according to

Eq. 6.31 as ρ dð Þ ¼ 1� γ dð Þ, then the replacement of the covariance terms in all

the equations of this section provides an alternative spatial modeling of ReV based

on SV. The variance of the estimation in case of covariance use is

σ2E ¼ 1� B0Λ ð6:44Þ

When the SV is used for the spatial modeling, the same estimation variance

becomes as

σ2E ¼ B0Λ ð6:45Þ

6.6 Simple Kriging (SK) 287



The critic of the simple Kriging is that it depends on the statistical property of the

covariance (or SV) function preservation in the final estimations. In other words,

the spatial estimation is achieved in such a way that the overall spatial dependence

function (SDF) of the ReV is preserved throughout the procedure. Unfortunately,

neither the cross-validation nor the unbiasedness procedures are applied explicitly

in the simple Kriging procedure.

Example 6.1 The earthquake magnitude measurements at five stations (Z1, Z2, Z3,
Z4 and Z5) are presented in Table 6.5 with their positions in Fig. 6.16. The spatial

estimation, ZE, is obtained from these measurements.

The distance matrix between each pair of data is calculated with the following

results:

D ¼

0

0:534689 0

0:349005 0:326195 0

0:664208 0:185368 0:370756 0

0:483628 1:015764 0:772863 1:129264 0

266664
377775

On the other hand, the distances between the estimation site, ZE, and measure-

ment sites are as follows:

1 2 3 4 5

E 0.297151 0.284038 0.092392 0.374746 0.754616

Provided that the ReV is standardized, the corresponding half-square difference

(i.e., SV) matrix can be obtained by substituting Eq. 6.31 with σ2Z ¼ 1 into Eq. 6.36,

which leads to

Γ ¼

0 1� γ z1; z2ð Þ : : : 1� γ z1; znð Þ
1� γ z2; z1ð Þ 0 : : : 1� γ z2; znð Þ

: : : : : :
: : : : : :
: : : : : :

1� γ zn; z1ð Þ 1� γ zn; z2ð Þ : : : 0

26666664

37777775 ð6:46Þ

Table 6.5 Spatial data ReV Easting (km) Northing (km) Magnitude

Z1 24.47950 40.40017 1.87

Z2 24.48400 39.86550 1.92

Z3 24.68783 40.12017 2.2

Z4 24.63183 39.75367 2.15

Z5 24.54383 40.87950 2.07

ZE 24.59567 40.12667 2.65
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There are two different ways to calculate the SV values in practical works either

from a given small sample as in Table 6.6 without knowing the basic structure of the

sample SV or after defining the structural form of the sample SV from a large number

of data, which is preferred to bemore than 30 data values. The former approach yields

to a matrix that represents half-square differences and according to Eq. 6.46 the

subtraction from 1 results in Table 6.5.

Γ ¼

0

1 -0:00125 0

1 -0:05445 1� 0:03920 0

1 -0:03920 1� 0:02645 1� 0:00125 0

1 -0:02000 1� 0:01125 1� 0:00845 1� 0:00320

266664
377775

Likewise, Eq. 4.41 can be written by considering Eq. 6.31 as

B ¼

1� γ zE; z1ð Þ
1� γ zE; z2ð Þ

:
:

1� γ zE; znð Þ

266664
377775 ð6:47Þ
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Fig. 6.16 Spatial scatter of data locations
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It is not possible to estimate the SV values in this vector because the earthquake

value at prediction location is not known. Therefore, it is necessary to know the

global SV that would depend on many location records, and it is assumed herein

that from a priori structural analysis had produced the sample SV model as a linear

model as

γ dð Þ ¼ 0:015þ 0:1d

Now one can calculate the SV value from the distances between the estimation

point and other surrounding points in Fig. 6.16, which leads to

B ¼

1� 0:0447151
1� 0:0434038
1� 0:0242392
1� 0:0524746
1� 0:0904616

266664
377775

Of course it is now possible to calculate the matrix in Eq. 6.46 according to the

distance matrix above by using large sample SV equation which leads to

Γ ¼

0

1-0:0684689 0

1-0:0499005 1� 0:0476195 0

1-0:0814208 1� 0:0335368 1� 0:0520756 0

1-0:0633628 1� 0:1165764 1� 0:0922863 1� 0:279264

266664
377775

The final solution can be found by taking inverse of this Γ, which appears as

follows:

Γ�1 �

�0:7747 0:3017 0:2867 0:2763 0:2058
0:3017 �0:7773 0:2822 0:2041 0:2866
0:2867 0:2822 �0:7600 0:2391 0:2558
0:2763 0:2041 0:2391 �0:9102 0:4471
0:2058 0:2866 0:2558 0:4471 �0:9829

266664
377775

Hence, application of Eq. 6.42 leads to the final weight values as

Λ ¼

0:2801
0:2668
0:2641
0:2387
0:2526

266664
377775

It is now possible to calculate the prediction value from Eq. 6.32, which gives

ZE¼ 2.65.
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6.7 Ordinary Kriging (OK)

This procedure has the two assumptions of the simple Kriging with conflict of the

third one, which is assumed to be constant regionally but unknown. Hence, it is not

possible to apply the standardization procedure to the ReV measurements because

the mean value is unknown. Similar expression to Eq. 6.34 can be written but with

the consideration of unknown regional mean, m, value as

ZE ¼ mþ
Xn
i¼1

λi Zi � mð Þ ð6:48Þ

Comparison of this with Eq. 6.34 indicates that rather than the standardized ReV

variables, nonstandardized ReV are used. If both sides of this last expression are

arithmetically averaged, one can then obtain

m ¼ mþ m
Xn
i¼1

λi � m ¼ 0

which yields the restrictive condition, as has already been given by Eq. 6.33. Hence,

the first rule in the ordinary Kriging is that the summation of all the weights ought to

be equal to 1. It indicates that the Kriging weights are independent of the ReV

average. This is referred to as the unbiasedness principle in the Kriging literature. It

is possible to write Eq. 6.48 as

ZE ¼ m 1�
Xn
i¼1

λi

 !
þ
Xn
i¼1

λiZi ð6:49Þ

where the parenthesis in the first term on the right-hand side is equal to zero by

definition. Equation 6.33 is a condition to the main estimation expression in

Eq. 6.48, which can be rewritten with the estimation error term, εE as

ZE � mð Þ ¼
Xn
i¼1

λiZi � mð Þ þ εE

In the following, this estimation error variance will be minimized. Let us leave the

estimation error as a subject

εE ¼ ZE � mð Þ �
Xn
i¼1

λiZi � mð Þ
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It is known by definition that the error estimation overall arithmetic average, εE, is
equal to zero. The square of both sides can be obtained as

ε2E ¼ ZE � mð Þ2 � 2
Xn
i¼1

λiZi � mð Þ ZE � mð Þ þ
Xn
i¼1

λiZi � mð Þ
" #2

or more explicitly

ε2E ¼ ZE � mð Þ2 � 2
Xn
i¼1

λiZi � mð Þ ZE � mð Þ þ
Xn
j¼1

Xn
i¼1

λjZj � m
� �

λiZi � mð Þ

If the estimation is made n times, then the average error estimate square (variance)

will be obtained as

1

n

Xn
l¼1

ε2E
� �

l

¼ 1

n

Xn
l¼1

ZE � mð Þ2 � 2
1

n

Xn
l¼1

Xn
i¼1

λiZi � mð Þ ZE � mð Þ

þ1

n

Xn
l¼1

Xn
j¼1

Xn
i¼1

λjZj � m
� �

λiZi � mð Þ

or

1

n

Xn
l¼1

ε2E
� �

l

¼ 1

n

Xn
l¼1

ZE � mð Þ2
" #

� 2
Xn
i¼1

1

n

Xn
l¼1

λiZi � mð Þl XE � mð Þl
" #

þ
Xn
j¼1

Xn
i¼1

1

n

Xn
l¼1

λjZj � m
� �

λiZi � mð Þð Þ
" #

The first average in the big brackets on the right-hand side is equal to the estimation

variance, σ2E; the second term average is equivalent to estimation-measurement

covariance, Cov (ZE, Zi); and the last term is the covariance between two mea-

surements, Cov (Zi, Zj). In fact, the average terms based on n values are equivalent

to their respective expectations as n goes to infinity theoretically. The last expres-

sion can be written with these new covariance values as

ε2E l ¼ σ2E � 2
Xn
i¼1

Cov ZE; Zið Þ þ
Xn
j¼1

Xn
i¼1

Cov Zi; Zj

� � ð6:50Þ

This expression must be minimized with the condition in Eq. 6.33, and therefore,

the minimization equation can be written with the Lagrange multiplier, μ, as

ε2E l ¼ σ2E � 2
Xn
i¼1

Cov ZE; Zið Þ þ
Xn
j¼1

Xn
i¼1

Cov Zi; Zj

� �þ μ
Xn
i¼1

λi ð6:51Þ
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This can be written in the matrix and vector form after the definition of the

following quantities:

C ¼

cov z1; z1ð Þ cov z1; z2ð Þ : : : cov z1; znð Þ 1

cov z2; z1ð Þ cov z2; z2ð Þ : : : cov z2; znð Þ 1

: : : : : : :
: : : : : : :
: : : : : : :

cov zn; z1ð Þ cov zn; z2ð Þ : : : cov zn; znð Þ 1

1 1 1 0

2666666664

3777777775
ð6:52Þ

which can be written based on the SV formulation alternatively as

Λ ¼

λ1
λ2
:
:
λn
μ

26666664

37777775 ð6:53Þ

and finally

B ¼

cov zE; z1ð Þ
cov zE; z2ð Þ

:
:

cov zE; znð Þ
1

26666664

37777775 ð6:54Þ

The measurement vector that includes n nearest values is given as

M ¼

Z1

Z2

:
:
Zn

0

26666664

37777775 ð6:55Þ

With these notations, the first ordinary Kriging weights may be estimated by using

either the covariance or SV values from

Λ ¼ C�1B ð6:56Þ
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The ordinary Kriging estimate of the regionalized variable at location E can be

obtained as

ZE ¼ MTΛ ¼ MTC�1B ð6:57Þ

Finally, the ordinary Kriging estimation variance is

σ2E ¼ BTΛ ¼ BTC�1B ð6:58Þ

The estimate and estimation error depend on the weights chosen. Ideally,

Kriging tries to choose the optimal weights that produce the minimum estimation

error. In order to derive the necessary equations for Kriging, extensive calculus use

is required, which is not included here; however, information about the derivation

can be found in various textbooks such as by Clark (1979) and Olea (1975). Optimal

weights produce unbiased estimates and have a minimum estimation variance,

which are obtained by solving a set of simultaneous equations. In the case of SV,

the corresponding expressions to Eqs. 6.52, 6.53, and 6.54 are respectively.

γ z1; z1ð Þ γ z1; z2ð Þ : : : γ z1; znð Þ 1

γ z2; z1ð Þ γ z2; z2ð Þ : : : γ z2; znð Þ 1

: : : : : : :
: : : : : : :
: : : : : : :

γ zn; z1ð Þ γ zn; z2ð Þ : : : γ zn; znð Þ 1

1 1 1 0

2666666664

3777777775
ð6:59Þ

Λ ¼

λ1
λ2
:
:
λn
�μ

26666664

37777775 ð6:60Þ

B ¼

γ zE; z1ð Þ
γ zE; z2ð Þ

:
:

γ zE; znð Þ
1

26666664

37777775 ð6:61Þ

Example 6.2 Ordinary Kriging methodology is demonstrated by considering

groundwater levels at five sites as given in Table 6.6 with easting, northing, and

groundwater level elevation values. The graphical locations are shown in Fig. 6.17.
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The distances between each pair are given as in the following matrix:

D ¼

0

3:512834 0

2:236068 4:338202 0

1:860108 2:154066 2:19545 0

1:529706 5:035871 2:731300 3:310589 0

266664
377775

The distances between the estimation point, ZE, and others are given as

1 2 3 4 5

E 0.8 3.535534 1.456022 1.529706 1.860107524

Table 6.6 Well coordinates and groundwater levels

Well location Easting (km) Northing (km) Elevation (m)

Z1 4.2 3.0 89

Z2 3.7 6.5 75

Z3 1.8 2.6 98

Z4 2.9 4.5 81

Z5 4.3 1.5 105

ZE 3.2 3.0 91.27
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Fig. 6.17 Sample geographical locations
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After calculations, the half-square difference matrix appears as follows:

γ dð Þ ¼

0

332112:5 0

313632:0 264:5 0

327240:5 18:0 144:5 0

308112:5 450:0 24:5 288:0 0

266664
377775

For large sample sizes, the structure of the SV is determined as a linear

function as

γ dð Þ ¼ 0:3þ 3:8d

and accordingly the SV matrix turns out to be as

Γ ¼

0 13:68 8:78 7:37 6:11 1

13:68 0 16:78 8:47 19:93 1

8:78 16:78 08:86 10:68 1

7:37 8:47 8:86 0 12:88 1

6:11 19:93 10:68 12:88 0 1

1 1 1 1 1 0

26666664

37777775
The inverse of this matrix becomes

Γ�1 ¼

�0:1489 0:0122 0:0159 0:0465 0:0742 �0:1032
0:0122 �0:0603 �0:0016 0:0524 �0:0027 0:4696
0:0159 �0:0016 �0:0788 0:0393 0:0252 0:2699
0:0465 0:0524 0:0393 �0:1317 �0:0065 �0:0512
0:0742 �0:0027 0:0252 �0:0065 �0:0902 0:4149
�0:1032 0:4696 0:2699 �0:0512 0:4149 �10:9519

26666664

37777775
Likewise from Eq. 6.61 realizing the distances between the estimation site and

other sites as given above, it is possible to obtain

B ¼

3:34
13:74
5:83
6:11
7:37
1

26666664

37777775
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It is possible to find from Eq. 6.56 the lambda values as

λ ¼

0:4916
�0:0275
0:2676
0:2004
0:0679
�0:5255

26666664

37777775
One can evaluate the estimation value from Eq. 6.57 which leads to ZE¼ 91.27 m.

The Kriging estimation variance is the weighted sum of the SV for the distance

from the points to the estimation location which can be calculated from Eq. 6.58

leading to σ2E ¼ 4:02m2. This implies that the standard error of estimation is

σE ¼ 2:00 m.

It is possible to make such calculations with estimation and its estimation

variance at every point. For this purpose, it is useful to make cross-validation by

considering each measurement as if it does not exist, and Kriging methodology

gives the estimation and error variance. Hence, one can construct two maps for the

Kriging estimates as a best guess of the mapped variable configuration and an error

map showing the confidence envelope that surrounds this estimation. All these are

based on the measurement and estimation sites’ configuration and distances

between measurements used in the estimation process and on the degree of spatial

continuity of the ReV as expressed by the spatial covariance and preferably SV

models.

6.8 Universal Kriging (UK)

Unfortunately, the ordinary Kriging cannot be used unless the ReV has a constant

mean although it is not known. The successive differences canceal the regional

mean in the SV calculations, which means that in the case of symmetric variation,

the regional abrupt change is shown in Fig. 6.9 and trends in Fig. 6.11. It is,

therefore, necessary to develop another ReV estimation procedure that should

take into consideration these systematic mean variations. The universal Kriging

considers first-order stationary ReV as consisting of two components, namely, the

regional drift and the residuals. The drift is the long-term average (expectation)

value of the ReV within the estimation site neighborhood. It slowly varies and it is

the nonstationary component of the local region. On the other hand, the residuals

are the differences between the measurements and the corresponding drift values. If

the drift is removed from the ReV, then the residuals can be modeled by the
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ordinary Kriging principles. Hence, in the procedural structure of the universal

Kriging, there are three steps:

1. Removal of the drift values from the measurements of the ReV

2. Application of the ordinary Kriging to establish the residuals at

non-measurement points

3. Addition of these residual values to the original drift values

The difference between the trend surface as defined in Chap. 3 Sect. 3.10 and the

drift covers the partial local area, whereas the trend surface extends over all the ReV

variability domain. The underlying drift component can be removed from the

original measurements of the concerned ReV through different methodologies.

Among these are linear and nonlinear trend surface fitting, 2D Fourier analysis,

etc. These methodologies depict the drift component, and its subtraction from the

original measurements leaves the residuals with almost zero arithmetic average.

Under the statistical theory which includes universal Kriging, a single-valued,

continuous, mappable property is called a ReV and is considered to consist of

two parts, a drift, or expected value, and a residual, or deviation from the drift. The

drift may be modeled by a local polynomial function within a neighborhood that is

analogous to a local trend surface. If the drift is removed, the residual surface can be

regarded as first-order stationary in a statistical sense. Hence, again the simple or

ordinary Kriging models can be used for the residual data set. After the estimation

of residuals again the summation with the convenient drift values, the original ReV

can be estimated.

Apart from this rather complicated and piecewise application, it is also possible

to develop universal Kriging equations including another condition of drift in the

derivations with another Lagrange multiplier. Hence, the original measurements

can be used directly in the calculations. For example, similar set of equations can be

derived for the universal Kriging to Eqs. 6.57, 6.58 and 6.59 and Eq. 6.53 as

C ¼

γ z1; z1ð Þ λ z1; z2ð Þ : : : γ z1; zkð Þ 1 L1,1 L2,1
γ xz2, z1ð Þ γ z2; z2ð Þ : : : γ z2; zkð Þ 1 L1,2 L2,2

: : : : : : : : :
: : : : : : : : :
: : : : : : : : :

γ zk; z1ð Þ γ zk; z2ð Þ : : : λ zk; zkð Þ 1 L1,1 L2,1
1 1 : : : 1 0 0 0

L1,1 L1,2 : : : L1,k 0 0 0

L2,1 L2,2 : : : L21,k 0 0 0

26666666666664

37777777777775
ð6:62Þ
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Λ ¼

λ1
λ2
:
:
λk
μ0
μ1
μ3

266666666664

377777777775
and finally

B ¼

γ zE; z1ð Þ
γ zE; z2ð Þ

:
:

γ zE; zkð Þ
1

L1,k
L2,k

266666666664

377777777775
ð6:63Þ

respectively. Herein zi represents a vector of the coordinates of point I, while L1,i

(L2,i) is the scalar value representing the location of this point along coordinate axis
horizontal (vertical) or 1 (2), for instance, east-west (north-south) direction. The

vector of universal Kriging weight Λ is found by Eq. 6.56 except that W and B are

given by Eqs. 6.62 and 5.64. The measurement vector that includes k nearest values
is given as

M ¼

Z1

Z2

:
:
Zk

0

0

0

266666666664

377777777775
ð6:64Þ

In this vector, there are (k + d + 1) elements, where the last d+ 1 elements that

correspond to the Lagrange multipliers are zero.

Universal Kriging is a procedure that can be used to estimate values of a surface

at the nodes of a regular grid from irregularly spaced data points. If the surface is

second-order stationary or can be made stationary by some transformation, the

spatial autocorrelation will express the degree of dependence between all locations

on the surface and most particularly between observations and grid nodes.
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Example 6.3 The problem given in Example 6.2 can be extended for the applica-

tion of Universal Kriging. By making use of Table 6.6, the numerical form of the

coefficients matrix can be obtained similar to the previous example but with

additional location values as

Γ ¼

0 13:68 8:78 7:37 6:11 1 4:2 3:0
13:68 0 16:78 8:47 19:93 1 3:7 6:5
8:78 16:78 0 8:86 10:68 1 1:8 2:6
7:37 8:47 8:86 0 12:88 1 2:9 4:5
6:11 19:93 10:68 12:88 0 1 4:3 1:5
1 1 1 1 1 0 0 0

4:2 3:7 1:8 2:9 4:3 0 0 0

3:0 6:5 2:6 4:5 1:5 0 0 0

266666666664

377777777775
The inverse of this 8� 8 matrix can be obtained as

Γ�1 ¼

�0:1248 0:0212 �0:0192 0:0342 0:0887 �0:9626 0:2474 0:0031
0:0212 �0:0328 �0:0222 0:0552 �0:0184 �0:5517 0:0815 0:1934
�0:0192 �0:0222 �0:0252 0:0559 0:0108 1:7447 �0:3575 �0:0652
0:0342 0:0522 0:0559 �0:1246 �0:0177 0:2611 �0:1285 0:0333
0:0887 �0:0184 0:0108 �0:0177 �0:0634 0:5085 0:1571 �0:1646
�0:9626 �0:5517 1:7447 0:2611 0:5085 40:1311 �8:5379 �5:6915
0:2474 0:0815 �0:3575 �0:1285 0:1571 �8:5379 2:5455 �0:0474
0:0031 0:1934 �0:0652 0:0333 �0:1646 �6:6915 �0:0474 1:5258

266666666664

377777777775
On the other hand, the elements of the right-hand side vector in Eq. 6.39 become as

follows:

B ¼

3:34
13:74
5:83
6:11
7:37
1

3:2
3:0

266666666664

377777777775

300 6 Spatial Modeling



The universal Kriging weight vector can be found after the necessary algebraic

calculations according to Eq. 6.56 as

Λ ¼

0:4625
�0:0362
0:3094
0:2157
0:0486
0:4546
�0:2998
0:0123

266666666664

377777777775
Finally, after all these calculations, the estimation value can be obtained from

Eq. 6.57 as ZE¼ 91.34 m.

One can notice that for the given example, there is no major difference between

the ordinary and universal Kriging methodologies. Ordinary Kriging, however, in

common with other weighted-averaging methods, does not extrapolate well beyond

the convex hull of the control points. That is, most estimated values will lie on the

slopes of the surface, and the highest and lowest points on the surface usually will

be defined by estimation (control) points.

6.9 Block Kriging (BK)

All the abovementioned Kriging methods (simple, ordinary, and universal) can be

considered as punctual Kriging methodologies because their estimations are

obtained at the support of individual sites. In the block Kriging, however, line,

areal, or volume supports are considered, and a single estimation value is obtained

that is representative for the whole support. This Kriging procedure also starts to

work on a set of ReV measurement values, but its final product is valid for a certain

domain in 1, 2, or 3 dimensions according to the type of problem. For instance, in

ore grade reserve, pollution concentration, etc., estimations 3D shapes are consid-

ered. Rainfall maps and the hydrographs are of 2D.

The early versions of Kriging techniques were all concerned with the block

Kriging since the ore reserves and grade degrees were the major concentrations for

research in the domain of geology. In fact, the most commonly used block Kriging

is similar to the ordinary Kriging with the interpretation of known vector, B,

elements which are taken as the average of the spatial covariance or SV values

within the interest of block domain, A. Actually the elements of vector Bn represent
the covariances or SVs between the observations and A, integrated over the domain

of 2D or 3D.

The major problem prior to the block Kriging application is the determination of

block sizes. Each smaller subarea or sub-volume is represented by the geographical

coordinates of its center point, and spatial covariance or SV is determined between
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an observation, Zi, and each of the center points within a block. Then all of these

covariance or SV is averaged in order to determine the point-to-block spatial

covariance, cov(A, Zi), or SV, γ(A, Xi) between block A and observation. If

possible, the subdivisions of blocks should be regular and should be the same. It

has been suggested by Isaaks and Srivastava (1989) that 4� 4¼ 16 and

4� 4� 4¼ 64 subdivisions that are adequate for the area and volume blocks. The

fundamentals of block Kriging are presented in a simple manner by Olea (1999). It

is commonly the counterpart of ordinary Kriging, and a set of normal equations

must be solved similar to Eq. 6.59. In this new formulation, the spatial dependence

function (SDF) either in the form of covariance or SV (or CSV) does not represent

the relationship between two points, but they are the averages of the spatial

covariance or SV (or CSV) between the point observations, Zi, and all possible

points within an area, A.
Figure 6.18 shows the line and areal blocks and measurement point i. In

Fig. 6.18a, the line is drawn into four pieces and the distances between the center

of each piece and the measurement point I as d1,i, d2,i, d3,i, and d4,i. Likewise, in

Fig. 6.18b, there are 16 subareas in a given block with distances d1,i, d2,i, . . ., d16,i.
Provided that the distances are known, their corresponding SV values can be

obtained from a given theoretical SV function. The arithmetic averages of the

relevant SV values give the representative SV value for line or areal block.

Furthermore, now the block is considered as a point with this average SV value,

and then accordingly one of the convenient Kriging techniques as mentioned above

can be applied suitably.

6.10 Triple Diagram Model (TDM)

Since gradual (trend) or abrupt (shifts) climatic change questions have gained

particular attention in recent years, most of the researches on lake level changes

are concerned with meteorological factors of temperature and precipitation data.

1 2 3 4

d1,i d2,i d3,i d4,i

i

a b

d1,i

d16,i

i

Fig. 6.18 Block pieces (a) line, (b) area
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Along this line of research, Hubert et al. (1989), Vannitsem and Demaree (1991),

and Sneyers (1992) used statistical methods to show that temperature, pressure, and

flow series in Africa and Europe have altered several times during the present

century. On the other hand, as stated by Slivitzky and Mathier (1993), most of the

modeling of levels and flow series on the Great Lakes has assumed stationarity of

time series using either Markov or ARIMA (AutoRegressive Moving Average)

processes presented by Box and Jenkins (1976). These models may work on lags of

one, two, three, or more, but they consider the linear structure in the lake level

fluctuations. Since lake level fluctuations do not have stationarity property, classical

models such as Markov and ARIMA processes cannot stimulate lake levels reli-

ably. Multivariate models using monthly lake level variable failed to adequately

reproduce the statistical properties and persistence of basin supplies (Loucks 1989;

Iruine and Eberthardt 1992). On the other hand, spectral analysis of water levels

pointed to the possibility of significant trends in lake level hydrological variables

(Privalsky 1990). Almost all these scientific studies relied significantly on the

presence of an autocorrelation coefficient as an indicator of long-term persistence

in lake level time series. However, many researchers have shown that shifts in

average lake level might introduce unrealistic and spurious autocorrelations. This is

the main reason why the classical stochastic and statistical models often fail to

reproduce the statistical properties. However, Mathier et al. (1992) were able to

reproduce adequately the statistical properties of a shifting-mean model. In the

following sequel, a version of the Kriging methodology is adopted and used for the

lake level estimations. For this purpose, the world’s largest soda lake, Lake Van on
the Anatolian High Plateau in eastern Turkey (38.5 N and 43 E), is adopted for

application (Fig. 6.19). Lake Van area has very severe winters with frequent

temperatures below 0 �C. Most of the precipitation falls during winter season in

Fig. 6.19 Location map
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the form of snow, and toward the end of spring, heavy rainfalls occur. High runoff

rates occur in spring during snowmelt, and more than 80% of annual discharge

reaches the lake during this period. The summer period (July to September) is warm

and dry with average temperatures of 20 �C. Diurnal temperature variations are

about 20 �C.
Human beings can visualize at the maximum 3D variations. The best configu-

ration and interpretation of such variations can be achieved in 3D Cartesian

coordinate systems through contour maps. Generally, maps are regarded as the

variation of a variable by location variables that are either longitudes and latitudes

or eastings and northings (Isaaks and Srivastava 1989; Cressie 1993; Kitanidis

1997). Hence, it is possible to estimate the concerned (mapped) variable value for a

given pair of location variables. Since one wants to predict the current lake level

from previous records, it is suggested that two previous records replace the two

location variables. In this manner, it is possible to map the current values of a

variable based on two previous values of the same variable. The first step in any

Kriging methodology prior to mapping is to determine the sample SV which guides

for the theoretical model that will be employed in the classical Kriging modeling.

For this purpose, the scatter of SV values versus distance is obtained for lag-one,

lag-two, and lag-three. In order to depict the general trend of the scatter diagram,

the distance range is divided into nine intervals, and the average of the SV values

that fall within each interval is considered as the representative SV value within the

midpoint distance of that interval as suggested by Myers et al. (1982). Different

theoretical SV models such as linear, power, spherical, and Gaussian types are tried

for the best fit, and at the end, the Gaussian SV is seen to have the best match with

the sample SV trend (see Fig. 6.20). The Gaussian model is the most suitable in all

lags, and the properties of fitted Gaussian SV model are presented in Table 6.7.

Such a mapping technique is referred to as triple diagram method (TDM) (Şen

2008). Such maps are based on three consecutive lake levels. TDMs help to make

interpretations in spite of extremely scattered points. Although Davis (1986) has

suggested for mapping the application of various simple regional techniques such

as inverse distance, inverse distance square, etc. which consider the geometrical

configuration of the scatter points only without the use of a third variable, herein,

preparation of the TDM is based on classical Kriging technique.

The construction of a TDM requires three variables, two of which are referred to

as independent variables (predictors), and they constitute the basic scatter diagram.

The third is the dependent variable, which has its measured values attached to each

scatter point. The equal-value lines are constructed by the Kriging methodology

concepts explained in earlier sections of this chapter.

Lake Van water level records are used for the implementation of the Kriging

methodology so as to obtain triple diagrams that give the common behavior of three

variables, which are taken consequently from the historical time series data. The

first two variables represent the two past lake levels and the third one indicates the

present lake levels. Hence, the model has three parts, namely, observations

(recorded time series) as input, triple diagram as response, and the output as

prediction. It is possible to consider lags between the successive data at one, two,
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three, etc. intervals. Such an approach is very similar to a second-order Markov

process, which can be expressed as

Hi ¼ αHi�1 þ βHi�2 þ εi ð6:65Þ

where Hi, Hi�1, and Hi�2 are the three consecutive lake levels; α and β are model

parameters; and finally, εi is the error term. The application of such a model

requires prior to any prediction procedure the parameter estimations from the
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Fig. 6.20 Empirical and theoretical SV for three lags

Table 6.7 Theoretical Gaussian SV parameters

Lag Nugget (cm2) Sill (cm2) Range (cm) Correlation coefficient

1 70.0 6250 213.20 0.977

2 270.0 5555.0 586.80 0.990

3 250.0 4327.0 136.0 0.977
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available data. Furthermore, its application is possible under the light of a set of

assumptions, which includes linearity, normality (Gaussian distribution of the

residuals, i.e., εi’s), variance constancy, ergodicity, and independence of residuals.

The triple diagram replaces Eq. 6.65 without any restriction in the form of map.

Such a map presents the appearance of natural relationship between three consec-

utive time values of the same variable.

In order to apply the triple diagram approach, it is necessary to divide the data

into training and testing parts. Herein, the last 24 months (2 years) are left for the

test (prediction), whereas all other data values are employed for training, which is

the TDM as in Fig. 6.21.

Fig. 6.21 Lake level TDMs (a) lag-one, (b) lag-two, (c) lag-three
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Prior to any prediction, it is possible to draw the following interpretations from

these figures:

1. In the case of lag-one, there is a strong relationship between Hi–1 and Hi–2 with

increasing contour values of Hi along almost 45� line (see Fig. 6.21a). The small

Hi values are concentrated at small Hi–1 and Hi–2 values; this implies the

clustering of small values of the three consecutive lake levels. Similarly, high

lake level values of the three consecutive levels also constitute high values

cluster. This means that small values follow small values and high values follow

high values, which indicates positive correlations. Local variations in the con-

tour lines appear at either low (high) Hi–1 or high (low) Hi–2 values. Conse-

quently, better predictions can be expected within a certain band around the 45�

line (Fig. 6.22). It is possible to deduce the following set of logical rules from

Fig. 6.21b:

IF Hi�1 is low and Hi�2 is low, THEN Hi is low.

IF Hi�1 is medium low and Hi�2 is medium, THEN Hi is medium.

IF Hi�1 is high and Hi�2 is high, THEN Hi is high.

These rules can be used for fuzzy logic inference system as suggested by Zadeh

(1968).

2. In Fig. 6.21b, the variations in the contour lines become very distinctive and

rather haphazard compared to Fig. 6.21a. This implies that, with the increment in

the lag value, present time lake level prediction will have more relative error.

There is also a distinctive 450 line but with comparatively narrower band of

certainty around it.

3. Finally, at lag-three case (Fig. 6.21c), the contour pattern takes even more

haphazard variation. This implies increase in the relative error of predictions.

Şen et al. (1999, 2000) identified suitable models and estimates for lake level

fluctuations and their parameters for trend, periodic, and stochastic parts. A
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Fig. 6.22 Lag-one model verification
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second-order Markov model is found suitable for the stochastic part. As explained

before, TDM of lake levels can replace the second-order Markov process. In this

manner, it is not necessary to use first- and second-order autocorrelation coeffi-

cients, in order to take into account more persistence. In order to make predictions

for the last 24 months that are not used in the triple diagram constructions in

Fig. 6.21, it is necessary to enter Hi�1 and Hi�1 for each month on vertical and

horizontal axes, respectively. The prediction value of Hi can be either read from this

map approximately or calculated by using Kriging prediction equations. The

prediction results are shown in Table 6.8 with corresponding relative error amounts.

Individual errors are slightly greater than 10%, but the overall prediction relative

error percentage is about 4.83%.

Figure 6.3 indicates the observed and predicted Hi values. It is obvious that they

follow each other very closely and on the average observed and predicted lake level

series have almost the same statistical parameters.

The triple diagram model depicts even the increasing trend, which is not possible

directly with the second-order Markov process. During the prediction procedure,

there is no special treatment of trend, but even so, it is modeled successfully.

Table 6.8 Lag-one lake level

prediction (cm)
Hi�2 Hi�1 Hi Prediction Relative error (%)

119 112 110 109.32 0.62

107 111 114 118.40 3.72

125 130 125 134.87 7.32

130 125 118 128.43 8.12

125 118 105 118.60 11.47

120 138 142 145.50 2.41

138 142 138 139.53 1.10

142 138 131 134.16 2.35

138 131 117 131.64 11.12

127 141 151 144.08 4.58

141 151 151 146.85 2.75

151 151 144 144.46 0.32

137 140 144 138.76 3.64

140 144 159 140.22 11.81

144 159 182 157.03 13.72

199 202 195 203.62 4.23

202 195 185 191.33 3.31

195 185 177 182.29 2.90

189 193 202 202.01 0.00

193 202 221 209.94 5.00

202 221 245 229.48 6.34

262 254 244 252.90 3.52

254 244 239 243.16 1.71

244 239 241 231.89 3.78

Average 4.83
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However, in any stochastic or statistical modeling, it is first necessary to make trend

analysis and separate it from the original data. In order to further show the

verification of the triple diagram approach for lake level predictions in Figs. 6.22

and 6.23 the test data are plotted along with the predictions. It is obvious that

observation and prediction traces follow each other closely, which indicates the

reliability of the triple diagram method.

6.11 Regional Rainfall Pattern Description

The mean annual and seasonal rainfall records in the southwest of Saudi Arabia are

adapted from reports published by the Hydrology Division, Ministry of Agriculture

and Water in Saudi Arabia, and Al-Jerash (1985). Rainfall records at 63 stations

from 1971 to 1990 are selected for the Kriging application (Fig. 6.24). These

stations are chosen based on four criteria (Subyani 2004, 2005):

1. They represent the best spatial coverage of the region.

2. They maximize the same monthly rainfall records.
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Fig. 6.23 Observed and predicted lake levels (a) lag-one, (b) lag-two, (c) lag-three
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3. They have continuous monthly rainfall.

4. They reflect the wide variety of environments within the study area literally

from coast (Tihamah) and mountains and to leeside of the mountains (desert).

Descriptive statistics for the 63 stations are listed in Table 6.9 for these three

regions. All together 25 stations are located within the coast, 24 within mountains,

and 14 stations within the leeside.

Problems in the data, such as non-normality, trend, and outliers, should be fixed

before developing any kind of model. Normality of the sample data distribution is

known to improve the results from Kriging. Transformation is very important to

make the data more symmetric, linear, and constant in variance. Since annual and
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Fig. 6.24 Topographic map in southwest Saudi Arabia
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seasonal rainfall data are considered, it is pragmatic to find one transformation

which works reasonably well for all. The Box-Cox transformation is widely used

and can be easily managed, so that the skewness of transformed data Z(x,t) becomes

close to zero (Salas 1993).

However, rainfall histogram in arid regions, as stated by Hevesi et al. (1992),

behaves as lognormal distribution. Hence, the transformation as Y ¼ lnZ(x) is

applied for determining approximately normal annual and seasonal data. It is

accepted as normally distributed, if the computed Kolmogorov-Smirnov statistic

(Dmax) is less than the corresponding critical value. The critical value for the 5%

level of significance is D0.05¼ 0.171, which is greater than Dmax of transformed

data. Thus the null hypothesis of the transformed data normality cannot be rejected

at 0.05 level of significant. Further investigation can be done by visually observing

the normal probability plots, and most of the data lie on a straight line for the

transformed rainfall values. In addition, the skewness coefficients are reduced close

to zero (Subyani 2005). Table 6.10 shows the statistics and normality test for

original and transformed annual and seasonal data.

The back-transformed value, i.e., exp Y(x), is a biased predictor. However, the

unbiased expression for the Kriging estimates Z(x) is given by Aboufirassi and

Mari~no (1984), Gilbert (1985), and Deutsch and Journel (1992). As

Z∗ xð Þ ¼ exp Y* xð Þ þ σ2y=2
n o

ð6:66Þ

Table 6.9 Data set grouped into three regions

Region

Number of

stations

Winter

(mm)

Spring

(mm)

Summer

(mm)

Fall

(mm)

Annual

(mm)

Coast

(Tihamah)

25 141a 199 238 152 684

13b 6 5 3 55

53.5c 51.4 58.6 53.7 217.2

33.4d 51.3 58.2 40.5 160.3

Mountains 24 169 264 148 69 527

20 80 16 10 150

78.5 155.3 57.1 30.8 321.8

47 53.5 35.4 18.8 120.4

Leeside (desert) 14 28 99 30 37 150

7 29 3 3 44

17.4 64.4 11.9 9.6 103.3

6.6 17.8 8.22 8.3 27.7
aSample maximum
bSample minimum
cSample mean
dSample standard deviation
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whereZ∗ xð Þ is the original data in millimeters and Y*(x) is the natural logarithm and

σ2y is the lognormal Kriging variance. The estimation variance is given as

σ2Z∗ ¼ Z∗ð Þ2 exp σ2y

� �
� 1

h i
ð6:67Þ

These two last expressions are used for constructing the rainfall isohyetals and their

variances. Figure 6.25 shows the sample and fitted SV for the natural log of average

annual rainfall (LnAAR). An isotropic spherical model with no nugget but with a

sill equal to the sample variance of 0.48 and a range of 110 km is selected as the best

representation of the spatial structure.

Table 6.10 Descriptive statistics and normality test for annual and seasonal data

Season Mean (mm) Median (mm) St. dev. (mm) Skewness CV (%) K�S (Dm)

Annual 232 178 151 0.8 0.65 0.18

Winter 55.0 41.0 43.1 1.15 0.78 0.20

Spring 94.0 81.0 68.0 0.72 0.72 0.14

Summer 47.6 32.0 47.3 1.84 0.99 0.17

Fall 35.2 21.0 33.2 1.44 0.95 0.19

Ln-annual 5.22 5.18 0.7 �0.7 0.13 0.10

Ln-winter 3.71 3.71 0.79 �0.051 0.21 0.07

Ln-spring 4.21 4.39 0.92 �0.65 0.22 0.11

Ln-

summer

3.38 3.46 1.06 �0.24 0.31 0.08

Ln-fall 3.1 3.04 1.02 �0.15 0.33 0.08
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Fig. 6.25 Experimental and fitted SV model for Ln-annual rainfall
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Cross-validation is applied to check whether the spherical model is adequate to

describe the spatial correlation of the annual rainfall. For diagnostic check, the

mean estimation error (MEE) and the root-mean-square errors (RMSE) for LnAAR

are 0.067 and 0.94, respectively, which suggest the validity of the spherical model.

Similar tests are performed for seasonal values and the results are shown in

Table 6.11.

Figure 6.26 presents the sample and theoretical SVs and their parameters for

winter, spring, summer, and fall seasons. In winter, the sample SV model is fitted

with the small nugget as 0.05. The sill is 0.67 and the practical range of dependency,

i.e., radius of influence, is 70 km (Fig. 6.26a).

In spring sample, SV behaved as an exponential model with nugget of 0.1. The

sill is 0.95 with a practical range of dependency equal to 90 km (Fig. 6.26b). In the

summer and fall, the sample SV behaves as a spherical model. The sill for these two

seasons is around 1.00, and the ranges of correlation are within 140 km and 110 m,

respectively (see Fig. 6.26c, d).

Table 6.11 SV cross-

validation
Season Model N MEE RMSE

Ln-annual Spherical 60 0.067 0.94

Ln-winter Exponential 60 0.027 0.84

Ln-spring Exponential 61 0.08 0.71

Ln-summer Spherical 62 0.07 0.91

Ln-fall Spherical 62 0.04 1.08
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Fig. 6.26 Experimental and fitted SV models for Ln-seasonal rainfall
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Kriging estimates are computed for the average annual and seasonal rainfall

amounts. The sample SV represents the continuity structure quite well. The cross-

validation supports selection of models and their parameters. For Kriging estima-

tion and variance, the back-transformed values are applied.

The kriged isohyets for annual rainfall show a rapid increase in average from the

Red Sea shoreline up to the mountains and a gradual decrease to the north and east

parts of the study area (Fig. 6.27a).
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Orographic effects are produced toward the mountain area with the maximum

kriged estimate exceeding 350 mm/year. In the east and northeast parts of the study

area, Kriging estimates are around 100 mm/year. In the northern part with a

moderate elevation reaching more than 1000 m, Kriging estimates also exceed
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100 mm/year. This figure reflects the topographic variation similar to Fig. 6.24 with

annual rainfall that generally increases with elevation.

Kriging variances indicate similar behavior to the average annual rainfall esti-

mates. Small values near the clusters of stations in the mountain area (Fig. 6.27b)

indicate high estimation accuracy whereas large values in the north, east, and

northeast, hence low estimation accuracy areas owing to the scarcity of sample

locations. Generally, high estimation variances appear at areas of lacking data.

During December–February months most of the time rainfall occurrences are

associated with moist and cold northerly Mediterranean origin air, which is coupled

with the local Red Sea convergence zone effect leading to orographic rainfall

occurrences. Figure 6.28a shows that the Kriging estimates exceed 120 mm in the

middle and northern section of the mountainous areas.

However, they do not exceed 30 mm in the south of Tihamah, because there is no

Mediterranean or Red Sea effect, and the elevation is not high enough for oro-

graphic rainfall occurrence. On the other hand, the southern part of the study area

receives less than 100 mm of rainfall due to the absence of monsoons. The plateau

area (east and northeast parts of the study area) receives less than 20 mm, because it

is located in the shadow (leeside) area. Kriging estimation variance map has a

similar trend throughout the study area as shown in Fig. 6.28b.

In spring (March–May), the whole region comes under the influence of southeast

monsoon air stream flow, the Red Sea convergence zone, and Mediterranean

depression, which distribute the rainfall in all regions. The Kriging estimates give

more detailed information about the rainfall distribution as shown in Fig. 6.29a.

Rainfall in this figure increases gradually from the Red Sea coast (40 mm) to the

mountain where the highest amount of rainfall falls (more than 160 mm) and

decreases to the plateau area, which receives about 100 mm. Generally, the

southwest region of the Arabian Peninsula receives the highest amount of rainfall

during the spring season compared to other seasons. This high amount of rainfall is

a result of increasing African-Mediterranean interaction effect, where rainfall

occurs orographically in the mountains, and southeast monsoon effect where the

plateau and eastern slope receive more rainfall than the Red Sea coast. Kriging

variances show an increase in estimation accuracy as shown in Fig. 6.29b.

In summer (June–August), the southwest monsoon flow from the Indian Ocean

and the Arabian Sea is the predominant factor, which increases the rainfall along

the Scarp mountains and low elevation areas in the south of the study area. Kriging

estimates for summer season exceed 120 mm in the mountains and 160 mm in the

foothills near the Yemen border at the southwestern corner of the Arabian Peninsula

(Fig. 6.30a).

Rainfall decreases toward the northern part of the study area due to its distance

from the monsoon effect, even though this area has a high elevation. Moreover, the

Kriging variances show no change in estimation accuracy in the foothills and

mountains, but there are changes in the plateau area as shown in Fig. 6.30b.
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In fall (September–November), the local diurnal circulation and the southern air

stream weaken. In other words, it is a transition period from summer to winter, and,

in general, the area receives little amount of rainfall. The Kriging estimation in the

foothills and the mountains in the southern part of the study area shows that they

receive higher amount of rainfall than the northern areas, similar to the fall

monsoon flow effects as shown in Fig. 6.31a. The Kriging variances show an
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increase in estimation accuracy in the northern part of the study area, whereas there

is no clear change in the southern part as shown in Fig. 6.31b.

Generally, rainfall is predominant in the northern mountain areas during winter

as a result of the Mediterranean effect, and it is widespread in all regions during

spring because of the local diurnal circulation effects. Orographic conditions are

clear in winter and spring seasons. This orographic factor is also clear for the
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appearance of the nugget effect in the exponential models in both winter and spring

seasons. During summer, rainfall moves toward the south due to the monsoon flow

effect with its southwesterly wind. However, during fall, as a transition season, the

area becomes under the influence of monsoon as well as the local diurnal circula-

tions. Figure 6.32 illustrates these spatio-seasonal variations of rainfall in the

southwest of Saudi Arabia.
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The Kriging estimation variances are also investigated concerning the spatial

and temporal variation of rainfall in the study area for these four seasons. In space

variation, the small value or high estimation accuracy of Kriging variances occurs

in the mountainous areas in all seasons. Toward the east, north, and northeast of the

study area, there is a consistent increase in variances implying low estimation
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accuracy. In time variation, Kriging variance increases from winter to fall. These

variations in space and time are due to several factors such as:

1. Clusters of stations in the mountain areas reflect higher estimation accuracy.

0 100000 200000 300000 400000
0

100000

200000

300000

400000

500000

600000
a

R
E

D
S

E
A

0.0 100 Km

NTaif

Bishah

Abha

YEMEN
Jizan

Najran

L ith

20

20

10

Fig. 6.30 Isohyetal map of Kriging for summer rainfall (mm)

6.11 Regional Rainfall Pattern Description 321



2. Scarcity of stations in north, east, and northeast areas reflects lower estimation

accuracy.

3. High variability in summer and fall rainfall gives rise to low accuracy estima-

tion compared with the somewhat lower variability in rainfall during winter and

spring seasons.
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The description of the rainfall variability in space and/or in time is among the

fundamental requirements for a wide variety of human activities and water

resources project design, management, and operation. Geostatistical methods are

applied to develop new maps for the prediction of rainfall over different seasons.

The assigned objectives of this study are to predict the magnitude and variation of
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the rainfall in space as well as during different time periods. These techniques are

applied to rainfall data gathered from meteorology station network covering the

southwest region of the Arabian Peninsula. Rainfall in this area is characterized by

high variation in spatial and temporal distributions.
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Fig. 6.32 Spatiotemporal Kriging maps for rainfall in southwest Saudi Arabia
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Chapter 7

Spatial Simulation

Abstract Earth sciences phenomena are heterogeneous, anisotropic, non-uniform,

and random especially in their spatial behaviors, and their exhaustive sampling is

not possible, and the only scientific way for the regional and global assessment of

these phenomena is through suitable mathematical modeling techniques. The main

purpose is to deduce from limited and small samples the general characteristics and

finally the generating mechanism of the phenomenon. Development in computer

sciences enhanced time-consuming simulation studies, which developed into a

feasible and practical tool to reveal nonlinear and nonequilibrium evolution of an

earth sciences phenomenon based on the fundamental laws governing the nature.

Nonlinearity and causality of a natural phenomenon are demonstrated to be con-

sistently explained by simulations based on fundamental laws. Simulation method-

ology is timely born with practically usable starts of digital computers during

1950s. Simulation studies are essential because the existing analytical methods

are not sufficiently powerful to prove the validity of the fundamental laws for

naturally occurring phenomena, but simulation could do this effectively. Spatial

pattern simulations in 1-, 2-, and 3D space are explained through autoregressive

models, which are based on the spatial correlation function. Rock masses are

fractured into different sizes, and they are intact from each other due to fracturing.

Different simulation techniques are presented for dependent (persistent) and inde-

pendent fracture patterns, which are exemplified in the field by scanline measure-

ments. Along this line, rock quality designation (RQD) quantification is furnished

through various simulation models, and final products are presented in terms of

various charts that can be used in practical applications. Porous medium is very

significant for water, oil, and gas storages, and therefore, its spatial behavior is

significant for effective assessments, planning, operation, and management.

Autorun spatial modeling technique is developed and applied for the simulation

of porous medium. Finally, the application of the cumulative semivariogram

technique is presented for intact length simulation in rock masses.

Keywords Autoregressive models • Autorun • Simulation • Fracture network •

Rock quality designation • Intact length • Persistence • Markov process • ARIMA

process • Multi-directional simulation
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7.1 General

Spatial simulation models of geological phenomenon such as ore grades, ground-

water level elevations, porosity, chemical compositions of different lithological

units, and fracture spacing are bound to be increasingly important, due to their

ability to model the underlying generating mechanism of these phenomena. The

first approximations in quantifying the geological phenomena were rather deter-

ministic, and they did not take into account any factor of chance in their descrip-

tions. In fact, the variability in these phenomena was known to geologists for many

decades, but due to the deterministic training, the solutions sought were also

deterministic. For instance, at most the arithmetical average of the data concerned

is calculated, and then this value is treated as the best estimator of the phenomena.

This way of calculation gave rise to overestimations, which consequently made the

geologists aware of the fact that the variability within the data should definitely be

taken into consideration (Krige 1951). This awareness led geologists to consider the

frequency distribution functions of any spatial variable. Hence, a new trend of

statistical methods in analyzing the geological data is started (Krumbein 1970;

Agterberg 1975). It is a mere application of the statistical methods to process

geologic data.

Later, it is recognized that in addition to variability inherent in the data, the

interdependence either within the data themselves or with other variables is very

important due to the continuity of spatial variables. In order to account for the

dependence, either the correlation techniques (Matern 1960; Switzer 1965) or SVs

are employed (Matheron 1965).

As a consequence of the aforementioned developments, the geologists started to

think about a convenient model to simulate the spatial variables so as to be able to

control them in the case of any change as well as in assessing the risks associated

with the data. Of course, developments of digital computers had a great impact on

this trend since without computers any simulation study is very tedious, needs great

patience, and rather time-consuming, i.e., not practical.

Although simulation studies in other branches of science like engineering and

economics have started long time ago, the simulation of geological phenomena is

postponed. This is due to the fact that in other disciplines, simulation is needed only

along one axis, for instance, time axis. Therefore, the simulation of 1D variable is

extensively available in the literature (Box and Jenkins 1970).

General simulation models are possible for generation of anisotropic as well as

isotropic synthetic patterns in 1D, 2D, or 3D, which have significance for the

purpose of modeling geologic properties such as ore grades, reservoir porosity,

mineral distribution, fracture spacing, aperture, orientation, etc. General procedures

for such simulations by the autoregressive processes (including Markov processes)

are given for the model parameter estimation and synthetic pattern generation. The

model works on the square net basis and generates sequential pattern first along any

desired direction for 1D simulation, and then 2D patterns are constructed with

reference to two orthogonal 1D sequences. Applications to synthetic 2D pattern are
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shown for isotropic cases with different model parameters. The extension of model

to 3D space is readily available.

Because any geological phenomenon occurs in space, in general, it has to be

simulated in 3D space. The first of spatial simulation models is proposed by Cliff

and Ord (1973) who took into consideration an overall spatial correlation coeffi-

cient, a set of physical constants, and a random component all within a linear model

concept. Later, Journel (1974) proposed a turning-band method whereby 2D or 3D

geological variables are projected onto equally spaced lines, and then 1D simula-

tions along these lines are transformed into 3D variables. On the other hand, Sharp

and Aroian (1985) have presented herringbone method of simulation for 2D and 3D

geological variables. However, as explained by Şen (1989a, b), there are some

practical problems with their model.

7.2 3D Autoregressive Model

The general form of the simulation model for 3D is similar to autoregressive models

(Markov processes), which can be given as

xi, j,k ¼ αxi�1, j,k þ βxi, j�1,k þ γxi, j,k�1 þ εi, j,k ð7:1Þ

where xi,j,k is the spatial variable at a point with coordinates i, j, and kwith respect to
a reference point as in Fig. 7.1.

Herein, α, β, and γ are the model parameters and εi,j,k, is a random component

with zero mean and variance, σ2ε , and it is independent from xi-1,j,k, xi,j-1,k, and xi,j,k-1.
This model has four parameters, namely, α, β, γ, and σε2, to be determined from an

available set of data. In Eq. 7.1, the geologic variable, xi,j,k, is a standard variable

with zero mean and unit variance. This does not cause any loss of generality in
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simulation studies since after the simulation of standard variables, the final form of

them can be found as

Xi, j,k ¼ μi, j,k þ σi, j,k�i, j,k ð7:2Þ

in which Xi,j,k is the spatial variable at position (i, j, k) with mean, μi,j,k, and standard
deviation, σi,j,k. Standardization procedure renders the original variable into a

second-order stationary variable (Sen 1979a, b). Any simulation model has three

major stages in arriving at its final goal. These are:

1. Given a set of observations xi,j,k (i, j ,k¼ 1, 2, . . ., n), how to express model

parameters as functions of data? This is referred to as parameter estimation

stage.

2. How to check the validity of model for given data? This is the identification

stage, which is achieved by calculating the residuals as

εi, j,k ¼ xi, j,k � αxi�1, j,k � βxi, j�1,k � γxi, j,k�1 ð7:3Þ

If the model is valid, then the sequence of εi,j,k should have an independent

(completely independent) structure. This stage is referred to as the diagnostic

checking for model suitability.

3. Usage of the suitable model to generate equally likely synthetic sets of data

which are statistically indistinguishable from the original data, i.e., they should

have the same distribution functions and average statistical parameters. This

corresponds to the simulation of the underlying geological phenomenon. In real-

time estimations, this is equivalent to prediction stage.

7.2.1 Parameter Estimation

The model parameters must be estimated from available data such that the simu-

lated variables yield statistically indistinguishable parameters in the long run. One

of the basic requirements in any simulation is to derive meaningful relationships

between the model and the statistical parameters of the available data. The number

of model parameters should be equal to the number of statistical parameters, and

accordingly Eq. 7.1 allows preservation of four statistical parameters. The expec-

tations (arithmetic averages) provide obsolete information because of the standard-

ization procedure as E xi, j,k
� � ¼ E xi�1, j,k

� � ¼ E xi, j�1,k

� � ¼ E xi, j,k�1

� � ¼ 0; and

E εi, j,k
� � ¼ 0. Further low-order statistical parameters are the spatial variance and

three lag-one autocorrelation coefficients each along i, j, and k axes. For the
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variance, the multiplication of both sides in Eq. 7.1 by xi,j,k and then taking

expectations leads to

E x2i, j,k

� �
¼ αE xi�1, j,kxi, j,k

� �þ βE xi, j�1,kxi, j,k
� �þ γE xi, j,k�1xi, j,k

� �
þ E εi, j,kxi, j,k

� � ð7:4Þ

where E x2i, j,k

� �
¼ 1, E xi�1, j,kxi, j,k

� � ¼ ρi 1ð Þ, E xi, j�1,kxi, j,k
� � ¼ ρj 1ð Þ and

E xi, j,k�1xi, j,k
� � ¼ ρk 1ð Þ. Because εi,j,k is dependent on xi,j,k only, one can write

E εi, j,kxi, j,k
� � ¼ E ε2i, j,k

� �
¼ σ2ε ; the substitution of these last expressions into

Eq. 7.4 yields

αρi 1ð Þ þ βρj 1ð Þ þ γρk 1ð Þ þ σ2ε ¼ 1 ð7:5Þ

in which ρi(1), ρj(1), and ρk(1) are the lag-one autocorrelation coefficients along

the i, j, and k axes, respectively. It is obvious that Eq. 7.4 reduces to Sharp and

Aroian (1985) simulation expression if α ¼ β ¼ γ¼φ
00
and with their notations

ρi 1ð Þ ¼ ρ100, ρj 1ð Þ ¼ ρ010, ρk 1ð Þ ¼ ρ001 and σ
2
ε ¼ σ2ε . Multiplication of both sides in

Eq. 7.1 by xi�1,j,k, xi,j�1,k, and xi,j,k�1, respectively, and taking expectations leads to

three additional equations as

ρi 1ð Þ ¼ αþ βρ0k þ γρ0j ð7:6Þ
ρj 1ð Þ ¼ αρ0k þ β þ γρ0j ð7:7Þ
ρk 1ð Þ ¼ αρ0j þ βρ0i þ γ ð7:8Þ

in which E xi�1, j,kxi, j�1,k

� � ¼ ρ0k, E xi�1, j,kxi, j,k�1

� � ¼ ρ0j and E xi, j,k�1xi, j�1,k

� � ¼ ρ0i,

where ρ
0
k, ρ

0
j and ρ

0
i indicate the lag-one cross-correlation coefficients on the k¼ j¼

i¼ constant planes, respectively. Furthermore, because εi,j,k is independent of xi-i,j,k,
xi,j-1,k, and xi,j,k-1, hence, E εi, j,kxi�1, j,k

� � ¼ 0, E εi, j,kxi, j�1,k

� � ¼ 0 and

E εi, j,kxi, j,k�1

� � ¼ 0. A sketch has been presented in Fig. 7.2 to show the auto-

and cross correlations.

The four unknown model parameters can be obtained as a result of simultaneous

solution of Eqs. 7.5, 7.6, 7.7, and 7.8. It is possible to arrange these equations in

matrix form explicitly as

ρi 1ð Þ ρj 1ð Þ ρk 1ð Þ 1

1 ρ0k ρ0j 0

ρ0k 1 ρ0i 0

ρ0j ρ0i 1 0

2
664

3
775

α
β
λ
o2ε

2
664

3
775 ¼

1

ρi 1ð Þ
ρj 1ð Þ
ρk 1ð Þ

2
664

3
775 ð7:9Þ

or implicitly
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AX ¼ C ð7:10Þ

where A is (4� 4) matrix of coefficients with its elements estimated from a given

set of data; hence, it is known and dependent on the available data only; X is the

unknown vector and includes the model parameters only; and, finally, C is the

vector of lag-one autocorrelations. The solution of Eq. 7.8 requires matrix inversion

of A after which the solution can be written as

X ¼ A�1C ð7:11Þ

It is necessary that A is a positive semi-definite matrix. Alternatively, a point worth

to notice is that Eqs. 7.6, 7.7, and 7.8 include three unknowns (α, β, and γ) and, after
their simultaneous solution, the substitution of these model parameters into Eq. 7.5

yields σε
2. The matrix notation of these three equations is

1 ρk ρk
ρ0k 1 ρ0i
ρ0j ρ0i 1

2
4

3
5 α

β
γ

2
4
3
5 ¼

ρi 1ð Þ
ρj 1ð Þ
ρk 1ð Þ

2
4

3
5 ð7:12Þ

in which the coefficient matrix is symmetric and positive semi-definite. Application

of Cramer’s rule leads to the following results:

α ¼
ρi 1ð Þ þ ρ0kρ

0
i � ρ0j

� �
ρk 1ð Þ þ ρ0jρ

0
i � ρ0k

� �
ρj 1ð Þ � ρ02j ρi 1ð Þ

1� ρ
02
i þ ρ

02
j þ ρ

02
k

� �
þ 2ρ0iρ

0
jρ

0
k

ð7:13Þ

Autocorrelation

ρi(1) = ρj(1) = ρk(1) = ρ
ρi = ρj = ρk = ρd

ρ

ρ

ρ

Crosscorrelation

jj

ii

kk

Fig. 7.2 Auto- and cross correlation representations in anisotropy model
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β ¼
ρj 1ð Þ þ ρ0iρ

0
j � ρ0k

� �
ρi 1ð Þ þ ρ0jρ

0
k � ρ0i

� �
ρk 1ð Þ � ρ02j ρj 1ð Þ

1� ρ
02
i þ ρ

02
j þ ρ

02
k

� �
þ 2ρ0iρ

0
jρ

02
k

ð7:14Þ

and

γ ¼
ρk 1ð Þ þ ρ0jρ

0
k � ρ0i

� �
ρj 1ð Þ þ ρ0kρ

0
i � ρ0j

� �
ρi 1ð Þ � ρ02k ρk 1ð Þ

1� ρ
02
i þ ρ

02
j þ ρ

02
k

� �
þ 2ρ0iρ

0
jρ

0
k

ð7:15Þ

It is clear from Eqs. 7.13, 7.14, and 7.15 that the model parameters (α, β, and γ)
are functions of the correlation structure of the geological phenomenon concerned.

There are three autocorrelation and three cross-correlation coefficients to be esti-

mated from the data. Hence, the total number of statistical parameters including the

average value and the variance to be extracted from the data is equal to eight

provided that the geological phenomenon considered is homogeneous.

7.2.2 2D Uniform Model Parameters

In a homogeneous geological phenomenon, the mean and standard deviation values

of the samples are independent of spatial variations. Such a phenomenon is said to

be second-order stationary. In addition, if it is also isotropic, then the autocorrela-

tions and cross correlations are equal to each other among themselves. This is

tantamount to saying that ρi 1ð Þ ¼ ρj 1ð Þ ¼ ρk 1ð Þ ¼ ρ and ρ0i ¼ ρ0j ¼ ρ0k ¼ ρd where ρ

and ρd are isotropic serial and diagonal correlation coefficients. In other words,

these correlations do not depend on axial directions as shown in Fig. 7.3. Further-

more, in an isotropic medium, the autocorrelations along any direction is dependent

only on the variability along this direction. Hence, the dimensions of cubic blocks

in spatial simulation become significant. For the sake of simplicity with no loss of

generality, herein, the dimensions are assumed as units. Hence, the isotropic

Anisotropic Isotropic

j j

i

( i + 8ρ2 – 1)1/2

ρ

ρ

ρi

ρj

ρd

ρd

i

Fig. 7.3 Auto- and cross correlation representations in isotropic model
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autocorrelation, ρ, in Fig. 7.3 should be interpreted as the correlation between the

adjacent corner values of the phenomenon on a square mesh.

In 2D simulation this value will reduce into a square unit as shown in Fig. 7.4.

The model parameter estimations are found from Eqs. 7.13 and 7.14 by substitut-

ing the isotropic medium auto- and cross correlations, i.e.,ρ0k ¼ ρk 1ð Þ ¼ 0, ρi1 ¼ ρj
1ð Þ ¼ ρ and ρ0i ¼ ρ0j ¼ ρd

α ¼ ρ

1þ ρd
ð7:16Þ

and β has identical value to α. With this the 2D model mathematical expression

becomes

xi, j ¼ α xi�1, j þ xi, j�1

� �þ εi, j ð7:17Þ

The main problem in a 2D isotropic simulation is to satisfy the equality of cross

diagonal correlations. This has been treated by Şen (1989a, b), and, with the current

notations, the diagonal correlation coefficient should have the following form:

ρd ¼
l1þ 8ρ2 � 1

2
ð7:18Þ

Fig. 7.4 2D isotropic model parameter
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The variance of the independent random variable, εi,j, can be found from Eq. 7.9

with necessary substitutions as

σ2ε ¼ 1:0� 2ρ2

1þ ρdð Þ ð7:19Þ

Different interpretations of Eqs. 7.16, 7.17, 7.18, and 7.19 indicate already

known facts in the simulation literature as follows:

1. If the diagonal correlation is unity (ρd¼ 1), then Eqs. 7.16 and 7.19 reduce to the

1D case for which α ¼ ρ and σ2ε ¼ 1� ρ2. These correspond to the properties of
lag-one Markov process.

2. For zero autocorrelation (ρ¼ 0), it is possible to see that α ¼ β¼ 0, ρd¼ 0, and

σ2ε ¼ 1. These properties imply independent random variable with zero mean

and unit variance.

For the square net with dimensions (n� n), the generation procedure requires

first the generation of n normally distributed independent random variables ε1,j
( j¼ 1, 2, . . ., n) with zero mean and variance equal to (1� ρ2). Subsequently, these
variables are converted into an autocorrelated row sequence by means of the first-

order Markov process as

x1, j ¼ αx1, j�1 þ ε1, j j ¼ 1, 2, . . . , nð Þ ð7:20Þ

The first column sequence is also generated in the same way except that the

initial (n�1) normally distributed independent variables with zero mean and var-

iance equal to (1�ρ2) are generated. It is important that the first row value, ε1,1, is
used as the initial value for column Markov model which is expressed as

xi, 1 ¼ αxi�1,1 þ εi, 1 i ¼ 2, 3, . . . , nð Þ ð7:21Þ

in which x1,1 is taken equal to ε1,1. Then the remainder rows (or columns) are

generated through the use of 2D model as

xi, j ¼ α xi�1, j þ xi, j�1

� �þ εi, j i, j ¼ 2, 3, . . . , nð Þ ð7:22Þ

Prior to the generation of related 2D isotropic variables, it is necessary to generate

an array of (n� 1) � (n� 1) independent normal variables, εi,k, (i, j¼ 2, 3, . . ., n)
with zero mean but variance σε

2 given in Eq. 7.19. These independent variables are

converted into autoregressive variables through Eq. 7.22 by taking into consider-

ation the two previously generated 1D sequences. The simulation in 2D can be

completed either row by row or column-wise.

The generation procedure is applied with different autocorrelation coefficients,

and the sample plots are presented in Fig. 7.5. The points in these figures indicate

generated variables that have values greater than the mean value, which is taken as
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zero. Correspondingly, blanks are the locations of variables less than the mean

value. The visual inspection of these figures indicates that they are isotropic which

means to say that there is no preferential direction or stratification along any

direction.

Fig. 7.5 2D isotropic pattern for (a) ρ¼ 0.1; (b) ρ¼ 0.2; (c) ρ¼ 0.3; (d) ρ¼ 0.4; (e) ρ¼ 0.5

338 7 Spatial Simulation



7.2.3 Extension to 3D

The simulation procedure extension into 3D space is achieved by the execution of

the following three stages:

1. 1D variables are generated along orthogonal i, j, and k directions according to

lag-one Markov process. The most important point at this stage is that these three

orthogonal direction sequences have a common original random variable which

is ε1,1,1.
2. Three layers are generated from the three unidirectional sequences in the

previous stage according to the 2D generation scheme through similar equations

to Eq. 7.22.

3. 3D isotropic simulation model parameters can be found from Eqs. 7.13, 7.14,

and 7.15 by considering that ρi(1) ¼ ρj(1) ¼ ρk(1) ¼ ρ and ρ0i ¼ ρ0j ¼ ρ0k ¼ ρd
which leads to the same value of model parameters α ¼ β ¼ γ as

α ¼ ρ ρd � 1ð Þ
2ρ0d � ρd � 1

ð7:23Þ

Hence, the 3D isotropic simulation model takes the form

xi, j,k ¼ α xi�1, j,k þ xi, j�1,k þ xi, j,k�1

� �þ εi, j,k ð7:24Þ

The substitution of the parameters into Eq. 7.5 leads after some algebra to the

variance of 3D independent variables as

σ2ε ¼ 1� 3ρ2 ρd � 1ð Þ
2ρ2d � ρd � 1

ð7:25Þ

Hence, to complete 3D simulation first, normal independent array (n� 1) � (n� 1)

is generated with zero mean and variance σ2ε as given in Eq. 7.25. These variables

are combined together with the layer autocorrelated variables in the previous stage

through Eq. 7.24 parallel to any one of the (i, j), (i, k), and ( j, k) layer, and the

procedure is repeated likewise until the desired domain is covered.

7.3 Rock Quality Designation (RQD) Simulation

A number of workers have devised various approaches that attempt to standardize

and quantify descriptions of rock masses which are dissected by sets of disconti-

nuities. The very first work was due to Terzaghi (1946) who was mainly concerned

with the rock defects and loads on tunnel supports. Later, Deere (1963), Coates

(1964), Barton et al. (1974), Bieniawski (1974), Goodman (1976), Şen and Kazi
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(1984), Şen (1984, 1989a, b), Ege (1987), and many others proposed either statis-

tical or empirical or analytical methodologies or modifications of existing ones in

order to describe the discontinuities quantitatively. All of the aforementioned

studies sought average values for discontinuities, and their probabilistic descrip-

tions were not mentioned at all. It is the main purpose of this section to seek the

PDF for some of the basic rock quality descriptions.

7.3.1 Independent Intact Lengths

Three important geometric properties of discontinuities that are of common interest

to engineering geologists are their density (spacing frequency), size (trace length

area), and orientation (strike dip direction cosines). The measure that is adopted

herein is the spacing between two successive discontinuities, which is referred to as

intact length. The intact lengths along any scanline may be measured by the

separation of the intersections of discontinuities with sample lines in different

directions on the same rock outcrop as shown schematically in Fig. 7.6.

Although there exist several descriptions of rock masses proposed by the

International Society for Rock Mechanics (1978), the discontinuity spacing, i.e.,

intact lengths, deserves special attention and detailed study for effective assessment

of rock quality. A simple mean for indicating the rock quality is proposed by Deere

(1964) as rock quality designation (RQD). It is, in fact, the ratio of total intact

lengths each of which is greater than a predesignated threshold value to the total

length of scanline. Due to its relative simplicity, RQD has been used extensively in

Discontinuities
Scanline

Intact lengths

Fig. 7.6 Scanline survey of discontinuities
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the rock classification for engineering purposes. Directly RQD or its slight modi-

fications have been employed in a variety of engineering applications. For instance,

Piteau (1970) has used RQD for rock slope stability, Barton et al. (1974) in the

design of tunnel support, Louis and Pernot (1972) in dam foundation analysis of

permeability and Cording and Mahar (1978) in underground chamber design in

rocks, and Bieniawski (1974) and Kulhawy (1978) in estimating strength of rock

materials.

Most of the researchers so far in the literature have concentrated in the scanline

measurement evaluations analytically (Hudson and Priest 1979; Priest and Hudson

1976, 1981; Şen and Kazi 1984; Şen 1984; Kazi and Şen 1985) or empirically

(Cruden 1977; Wallis and King 1980) or simulation on digital computers by

Goodman and Smith (1980) and Şen (1990a). In order to alleviate some drawbacks

in RQD, Şen (1990a) has proposed the concept of rock quality percentage (RQP)

and rock quality risk (RQR).

Although the quality of rock based on these measurements can be done by visual

inspection, any quantitative method is always better in unifying different opinions

about the same rock mass. Therefore, the method of rock quality designation (RQD)

was adopted by Deere (1964, 1968) and is expressed as

RQD ¼ 100

L

Xn
i¼1

Li ð7:26Þ

where the summation term includes all intact lengths Li (i¼ 1, 2, . . ., n) of sound
rock between discontinuities that are 0.1 m (0.3 ft) or more apart, and L is the total

length of the scanline considered. It is obvious from the defintion of RQD that its

values range between 0 and 100. Furthermore, Deere classified any rock based on

the RQD value as in Table 7.1.

Initial analytical expressions for RQD based on negative exponentially distrib-

uted intact lengths are presented by Priest and Hudson (1976) for very long

scanline. The effects of finite length scanline on RQD value are described by Şen

and Kazi (1984). Further analytical studies are presented by Şen (1984) for different

intact probability distributions such as uniform normal lognormal and gamma

PDFs. However, to the author’s knowledge, there has appeared no work on RQD

simulation based on the PDFs.

Table 7.1 RQD

classification
RQD value Classification

RQD <25 Very poor

25 < RQD <50 Poor

50 < RQD <75 Fair

75 < RQD <90 Good

90 < RQD <100 Excellent
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Although relatively uncomplcatd and fast procedure, RQD has limited

applications in the rock mass quality description, which is due to the following

drawbacks:

1. It does not reveal anything about the intact length properties which are shorter

than 0.1 m.

2. Two or more scanline measurements with intact lengths (i.e., equally spaced

discontinuities) longer than 0.1 m would have all RQD of 100%.

3. It provides directional rock qualities but fails to give a global quality description

for the whole rock mass. For instance, RQDs of 67 and 92 percentages along the

north-south and west-east directions, respectively, describe the same rock mass

as fair and excellent quality. Hence, a dilemma arises as to the global rock

quality description.

4. As already noticed by Şen (1990a), RQD does not provide answers to questions

such as in what percentages does each rock quality (excellent good fair poor and

very poor) occur within the same rock mass or what is the probability (risk) that

the RQD value will be less than any given RQD value.

The only way to avoid these problems is to obtain the PDF of RQD itself on the

basis of given intact length PDF. Such a task is very difficult by analytical means,

and therefore Monte Carlo simulation technique is adopted in this paper for

reaching the desired goal.

The value of RQD along any scanline is calculated from Eq. 7.26 for the intact

lengths, which are longer than a certain threshold value t. In any rock mass, the

intact lengths x are random variables, which have a certain PDF. In addition the

number n of fractures is also an integer-valued random variable. Consequently, in a

statistical context, RQD can be regarded as the random summation of random

variables that are truncated at the threshold value. The PDF of intact lengths can

be obtained empirically in the field from intact length measurements along very

long scanline. However, determining the PDF of the RQD requires many scanlines

with different directions and at different places which is quite tedious and not

practical. Therefore, the question arises on how to determine the RQD distribution

function from the basic PDF of the intact lengths. It has been already shown by Şen

(1990a) that an analytical derivation of the RQD distribution function is almost

impossible, and, therefore, the only way to obtain it is by numerical methods using

Monte Carlo techniques.

Simulation of stochastic variables is rather similar to the numerical solution

methods in mathematics. That is to say, provided that the underlying properties of a

phenomenon are known, then simulation gives a way of reaching the desired goal

numerically. The desired goal here is the RQD distribution. For such a simulation

study, the following steps must be considered:

1. Determine the underlying PDFs of the intact lengths within a rock mass. In

previous studies, this PDF has been taken to be either negative exponential or

lognormal PDF, which have the mathematical forms:
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f xð Þ ¼ λe�λx 0 � x � 1ð Þ ð7:27Þ

and

f xð Þ ¼ 1

x
ffiffiffiffiffi
2π

p
σLnx

exp �1

2

1

σLnx
Ln

x

mx

� �	 
� �
0 < x < 1ð Þ; ð7:28Þ

respectively, where λ is the average number of discontinuities,mx is the mean of

the intact lengths, and σLnx is the standard deviation of logarithmic intact lengths.

Equation 7.27 has been used in most evaluations of RQD. The logarithmic

distribution has not been used as often. The latter has more flexibility in

representing the intact lengths because it takes into account the standard devi-

ation of intact lengths independently of their mean value.

In the simulation study herein, first uniformly distributed random variables u

with a range from zero to one are generated, and then they are transformed into

negative exponentially distributed intact lengths with parameter λ by

s ¼ �2:3

λ
logu ¼ �1

λ
Lnu ð7:29Þ

However, for the logarithmic distributions, first the uniformly distributed

pairs of variables (u1 and u2) are transformed into a normally distributed random

variable pairs (s1 and s2) with a procedure already presented by Hammersely and

Handscomb (1964) as

s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 logu1

p
cos 2πu2ð Þ ð7:30Þ

s21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 logu1

p
sın 2πu2ð Þ ð7:31Þ

Herein, u and u are uniformly distributed random variables within the range of

0–1. The values of s are then transformed into logarithmically distributed intact

lengths x using.

x ¼ e�x ð7:32Þ

in which s represent s1 or s2. In this study, 1,000,000 identically distributed intact
lengths were generated separately with negative exponential or lognormal PDFs.

2. These intact lengths are classified into two groups depending on whether they are

greater or smaller than a threshold value t. In the RQD definition as given by

Eq. 7.26, the summation of x’s over the scanline length is calculated. The

scanline length is in fact equal to the summation of the whole intact lengths

provided that it starts and stops at discontinuity.

3. The RQDs for a set of predetermined numbers are identified.

4. The relative and cumulative frequency distribution functions for RQD values

from (3) are calculated.
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The cumulative PDF of RQD values resulting from negative exponentially

distributed intact lengths with a set of average fracture number is presented in

Fig. 7.7 for five different threshold values.

On the same figure, classification of RQD values is also shown. There is a

similarity between the grain size distribution of granular rocks and these graphs

which show the rock quality distribution of the fractured hard rocks. Field experi-

ences show that any fractured rock is heterogeneous, and accordingly more than

Fig. 7.7 RQD chart for negative exponential PDF with (a) t¼ 0.05; (b) t¼ 0.15; (c) t¼ 0.20
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one type of rock quality exists within the same rock mass. The percent ages of these

different qualities can be found quantitatively from Fig. 7.7. Inspection of this

figure leads to the following significant conclusions:

1. The smaller the average number of discontinuities, the smaller is the range

which indicates the uniformity of the rock quality. For instance, whatever the

threshold value, the rock has excellent quality provided that the average number

of discontinuities is equal to unity.

2. As the average number of discontinuities increases, the rock becomes heteroge-

neous. For instance, in Fig. 7.7, when the threshold value is 0.05, the curve that

represents 20 average intact lengths has three different qualities, namely, excel-

lent, good, and fair portions. It is clear from the same curve that the majority of

values are in the “good” quality zone, whereas other qualities are less likely to

occur.

3. An increase in the average number of discontinuities leads to deteriorating rock

qualities as shown in Fig. 7.8.

4. As the threshold value decreases, the rock quality increases (see Fig. 7.8). On the

other hand, for a given threshold value, the deterioration rate in the rock quality

is higher at small discontinuity numbers. For instance, at 0.20 truncation level,

the reduction in the rock quality is almost 12% between discontinuity numbers

2 and 4 whereas 3% from 18 to 20.
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Fig. 7.8 RQD threshold value discontinuity number chart (negative exponential PDF)
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In additon, the PDF of the RQD for a set of discontnuity numbers at different

threshold values appears in the negative exponential distribution forms as in

Fig. 7.9.

One of the most striking properties of these PDFs is that irrespective of the

discontinuity number and threshold value, they are invariably symmetric. The
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positions of the maximum points on any one of these curves along the RQD axis

shows the most likely rock quality within the rock mass.

Due to the aforementioned symmetry, the average rock quality description value

coincides with the most likely rock quality value. This point indicates that the

average RQD value is equal to the maximum likelihood estimation of the averages

resulting from these PDFs. This value corresponds with the classical RQD value as

defined by Deere. Besides the mean mode and the median values of the rock quality

description are equal to each other. This last statement suggests that the PDF of

RQD within a rock mass can be approximated by a normal distribution as

f rð Þ ¼ 1ffiffiffiffiffi
2π

p
σ
exp �1

2

r � μ

σ

� �2	 

ð7:33Þ

in which r is a dummy variable representing RQD and μ and σ are the population

mean and standard deviation of RQD, respectively. For the negative exponential

distribution, Şen and Kazi (1984) have shown already that the RQD has the same

mean and standard deviation value which are expressible as

μ ¼ σ ¼ 100 1þ λtð Þe�λt ð7:34Þ

Finally, the cumulative PDFs of RQD for the underlying intact length distribution

as the lognormal PDF are given in Fig. 7.10.

All of the conclusions for the negative exponential PDFs are equally valid for

these curves. In addition, comparisons of various graphs in Fig. 7.10 indicate

different standard deviations, and an increase in the intact length standard deviation

improves the rock quality designation. In other words, the less uniform the fracture

spacing, the stronger the rock mass. The following significant conclusions can be

drawn from this study:

1. Any rock mass might have different rock qualities at the same time in different

directions.

2. Rock quality deteriorates with the increase of the average number of disconti-

nuities for any intact length distribution but an increase in the standard deviation

of lognormal PDF of intact lengths leads to improvements in the rock quality

designations.

3. The PDFs of RQD are unimodal in any case but symmetrical for the negative

exponentially distributed intact lengths.

4. Any dominant type of rock quality has almost the same maximum frequency,

confined within 0.20–0.25 for threshold levels more than or equal to 0.10 m.

7.3.2 Dependent Intact Lengths

All of the aforementioned studies have a common point in that they give an RQD

estimation without consideration of the intact length correlation. However, it is a

fact that even on the same outcrop of the rock, there might be correlated intact
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lengths along scanline taken at various orientations (Eissa and Şen 1991). Although

RQD calculations, according to Deere’s (1964) definition directly from the scanline

measurements, implicitly account for the intact length correlation, unfortunately,

the analytical formulations do account for this correlation neither implicitly nor
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explicitly. Accordingly, for correlated intact lengths, the existing analytical results

are in error. It is obvious then that the comparison of analytical and empirical RQD

estimations is possible accurately only for the cases of independent intact lengths.

Otherwise, such a comparison is meaningless.

An important factor in the analysis of rock quality assessments from disconti-

nuity measurements along a scanline is the correlation of the intact lengths. The

autorun model and first-order autorun coefficient are proposed as a method of

objectively quantifying intact length correlation structure and discontinuity occur-

rences within a rock mass (Şen 1978, 1984).

Any straight line through the rock mass encounters random number of discon-

tinuities. An intact length is defined as the length of scanline or drill core between

two successive discontinuities. In general, if there are n+ 1 discontinuity, the

number of intact lengths is n provided that the start and end of the scanline are at

discontinuities. A first step in rock mass classification is to consider two types of

intact lengths, namely, those whose lengths are greater than a predesignated

threshold value or otherwise (Eq. 7.26).

For the sake of convenience, alternative intact lengths will be grouped into two

sets as elements ai (i¼ 1, 2, . . ., k) in set A and bj ( j¼ 1, 2, . . ., l) in set B, where k

and l are the number of intact lengths in each set. It is obvious that k + l¼ nwhich is
the total number of intact lengths. Furthermore, in an alternate sequence, either k ¼
l�1 or l¼ k�1; however, practically one may assume with no loss of generality that

k ¼ l ¼ n/2. In short, the intact lengths along a scanline will be an alternative

combination of elements from two sets, namely, A ¼ {a1, a2, . . ., ak} and B ¼ {b1,
b2, . . ., bl} as shown in Fig. 7.11a. In such a combination, the correlation structure
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Fig. 7.11 Alternative intact length concepts
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of sequence a1, b1, a2, b2, . . .. , an/2, bn/2 (see Fig. 7.11b) is utmost importance in

addition to various statistical descriptions of intact lengths.

Besides, it may well be that the intact lengths in set A have different PDF than

B. However, this point lies outside the scope of this paper. Of course, assumption of

uncorrelated intact lengths simplifies the analytical derivation of RQD but at a

sacrifice of precision. Due to such an assumption, there is no term representing the

correlation of intact lengths in any RQD formulations that are available so far in the

literature. The major elements that effect the RQD calculations are in detail as

follows:

1. The Number of Discontinuities: As mentioned earlier, practically, half of this

number will be attached to intact lengths of set A and the second half to set B.

2. Intact Length PDF: It has been assumed in the majority of RQD studies as

negative exponential type (Priest and Hudson 1976, 1981). However, the log-

normal (Roulean and Gale 1985) or uniform and gamma PDFs (Şen 1984) are

also employed to a certain extend.

3. Correlation Structure: Any significant correlation affects not only the disconti-

nuity occurrences but also the intact lengths. This element is ignored invariably

in any of the previous RQD studies in the literature. However, only some indirect

procedures have been proposed for accounting the intact length correlation

(Higgs 1984; Şen 1991).

4. Threshold Value: It is a fixed value as 0.1 m or 4 in. below which the intact

lengths are not considered in the RQD calculations.

The first two elements are stochastic variables and in nature they are both

serially and crossly correlated. Hence, the probabilistic laws of these stochastic

parts lead to meaningful analytical expressions for RQD only after the consider-

ation of correlation structure. For instance, logically any increase in the correlation

will imply the occurrence of longer intact lengths along a scanline than the case

where the intact lengths are independent. It also implies that the number of

discontinuities decreases with increasing correlation. Hence, in general, the exis-

tence of relatively longer intact lengths (or lesser number of discontinuities) along a

scanline implies improvement in its quality. Consequently, the key in the analytical

RQD formulation for correlated intact lengths is the expression of correlation by an

objective measure which is adopted herein conveniently as the autorun coefficient.

7.3.2.1 Correlation Measurement

The main question is whether the intact lengths along any direction are serially

correlated or not. As was mentioned above, different authors have shown that the

intact lengths are distributed according to various distributions among which the

normal PDF has the least significant role. On the contrary, the classical correlation

techniques (auto- and cross correlation) are valid for normally distributed variables

only. Although by suitable transformations intact lengths may be rendered into

normally distributed variables, but such transformations distorts the original
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correlation function significantly (Şen 1978, 1979a, b). However, the autorun

analysis is robust to any PDF or transformation and yields unbiased as well as

consistent estimates of correlation. In general, lag-k autorun coefficient is defined

by Şen (1978) as follows

rk ¼ 2nk
n� k

ð7:35Þ

in which nk is the number of overlapping successive the same type of events lag-k

apart and n is the number of unit intact lengths. From the definition, it is obvious

that 0< rk <1. In the case of purely independent observations, whatever the

underlying PDF, Eq. 7.41 becomes equal to 0.5. Therefore, 0.5 shows the fact

that the two observations separated by lag-k are independent from each other. On

the other hand, if the observations are perfectly correlated, then rk ¼ 1.0.

The autorun coefficient application is very suitable for binary type of data;

therefore, prior to its application, the variable concerned such as the intact length

must be rendered into a binary form. For such a purpose the analogy suggested by

Priest and Hudson (1976) as an unbiased coin tossing sequence of heads and tails

will be adopted herein for alternating intact lengths, where a head represents a unit

length of intact rock of type A and a tail represents a unit length of type B. With

such an analogy, the scanline in Fig. 7.11b can be considered as a sequence of heads

and tails (see Fig. 7.11c). The following significant points emerge in such an

analogy:

1. The succession of uninterrupted sequence of heads (tails) represents intact

lengths of type A (B).

2. Each appearance of alternate successive events, i.e., head-tail or tail-head

succession, corresponds to a discontinuity. It is obvious that two successive

head-head or tail-tail events represent two units from overall intact lengths.

These explanations indicate the suitability of lag-one autorun coefficient, r, in
quantifying the intact length correlation structure.

3. The percentages of heads (tails) along a scanline are equal to the probability of

type A (B) intact length. Let these probabilities be denoted by p and q, respec-
tively, then obviously p + q ¼ 1. In terms of total length, LA(LB) for set A
(B) intact lengths, the probability can be expressed as p ¼ LA=L q ¼ LB=Lð Þ.
Assuming uncorrelated intact lengths, Priest and Hudson (1976) have presented

the analytical formulation of expected RQD as

E RQDð Þ ¼ 100 1þ λtð Þe�λt ð7:36Þ

in which λ is the average number of discontinuities. The discontinuities are also

assumed to have Poisson PDF with λ as its sole parameter. Eq. 7.36 should be used

only after the confirmation that the intact lengths are independent.
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For instance, a scanline composed of 18, 4, 5, and 3 cm intact lengths can be

represented on the basis of 1 cm as an intact unit length by analogy to coin

tossing as

HHHHHHHHHHHHHHHHHHTTTTHHHHHTTT

In such a sequence, the probability of an intact length unit of type A (or H) is p¼ 23/

30¼ 0.77, and the probability of type B (or T) is q¼ 7/30¼ 0.23, with p + q ¼
1. These probability values do not tell us whether the intact lengths are independent

or not. However, the first autorun coefficient becomes r¼ 19/29¼ 0.66, and since it

is bigger than 0.5, there is a positive correlation between intact lengths. This

implies, in general, that long intact lengths follow long intact lengths and short

ones follow short intact lengths.

7.3.2.2 RQD Formulation and Discussion

Mathematical modeling of a scanline can be achieved by considering either the

occurrence of discontinuity numbers or intact lengths, both of which are

interdependent random variables. Modeling only one of them is sufficient because

it implies the properties of the other. For instance, whatever the PDF, there is only

one unique relationship between the expected intact length, E(x), and the expected

number of discontinuities, E(n), along any scanline as

E nð Þ ¼ L

E xð Þ ð7:37Þ

in which L is the scanline length. On the other hand, RQD as appears in Eq. 7.26 is

equivalent to the summation of random number of random variables, and first by

taking the expectations of both sides and then by considering Eq. 7.37, one can

write

E RQDð Þ ¼ 100

L
E nð ÞE x∗ð Þ ¼ 100

E x∗ð Þ
E xð Þ ð7:38Þ

in which E(x*) is the expectation of intact lengths greater than a threshold value, t.
Due to the fact that E(x*) < E(x), the ratio of expectations in the expression always
assumes a value between 0 and 100. The expectations on the right-hand side of

Eq. 7.38 can be found provided that the PDF of random variables concerned are

known.

It can be shown similar to autorun modeling (Şen 1985) that the PDFs of

k successive heads and tails are of geometric distribution types as

P nh ¼ kð Þ ¼ 1� r1ð Þrk�1
1 ð7:39Þ
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and

P nt ¼ kð Þ ¼ p

q
1� r1ð Þ 1� p

q
1� r1ð Þ

	 
k�1

; ð7:40Þ

respectively, where nh is the number of uninterrupted successive heads and nt
successive tails. It is worthy to notice that for r ¼ p these equations give the

independent intact length case as available in the literature (Priest and Hudson

1976). Furthermore, expectations of intact lengths in sets A and B can be obtained

from Eqs. 7.39 and 7.40, respectively, as

E nhð Þ ¼ 1

1� r1
ð7:41Þ

and

E ntð Þ ¼ q

p 1� r1ð Þ ð7:42Þ

As mentioned above, the number of set A intact lengths is one less or more than

set B intact lengths. In other words, practically they may be assumed as equals, and

therefore, each type of intact length has its probability of occurrence equal to 0.5.

With this information, the overall expectation of intact lengths, E(x), without
distinction between sets A and B can be seen to be E xð Þ ¼ 0:5E nhð Þ þ 0:5E ntð Þ
which yields by consideration of Eqs. 7.41 and 7.42 to

E xð Þ ¼ 1

2p 1� r1ð Þ ð7:43Þ

or from Eq. 7.37 one can find the expected number of discontinuities as

E nð Þ ¼ 2Lp 1� r1ð Þ ð7:44Þ

In order to verify the validity of this expression, extensive computer simulations

have been carried out through the Monte Carlo techniques, and the results are

shown in Fig. 7.12. It is obvious that a very good agreement has been observed

between the simulation and analytical formulation.

Finally, the average number of discontinuities, λr1 ¼ E xð Þ=L, per unit length
becomes

λr1 ¼ 2p 1� r1ð Þ ð7:45Þ
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where the subscript signifies the correlatedness of the intact lengths. The probabil-

ity, P(k), of k discontinuity occurrences along a scanline of length x at an average

rate of λr1 becomes according to the Poisson process as

P kð Þ ¼ e�2xp 1�r1ð Þ 2xp 1� r1ð Þ½ �k�1

k�y
ð7:46Þ

Since the interest lies in the discontinuity spacing PDF, by considering the distance,

d, from one discontinuity to the following, one can write that

P d < xð Þ ¼ 1� P k ¼ 0ð Þ, and, hence, substitution of Eq. 7.45 leads to cumulative

PDF as

P d � xð Þ ¼ 1� e�2xp 1�r1ð Þ

By taking its derivative with respect to x, the PDF, f(x), of intact lengths can be

derived as

f xð Þ ¼ 2p 1� r1ð Þe�2xp 1�r1ð Þ
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Subsequently, the expectation of intact lengths that are more than t can be found

according to

E x∗ð Þ ¼
Z1
t

xf xð Þdx

which leads after the substitution of Eq. 7.46 to

E x∗ð Þ ¼ 1þ 2p 1� r1ð Þt
2p 1� r1ð Þ e�2p 1�r1ð Þt ð7:47Þ

Finally, the substitution of Eqs. 7.43 and 7.47 into Eq. 7.38 leads to

E RQDð Þ ¼ 100 1þ 2p 1� r1ð Þt½ �e�2p 1�r1ð Þt ð7:48Þ

For independent intact lengths, r1¼ 0.5, and the occurrences of unit intact lengths

comply with the binomial distribution which leads to geometric intact length

distribution with E(x)¼ 1/p or λ ¼ p¼ 0.5, and, therefore, Eq. 7.48 becomes

identical to what was suggested by Priest and Hudson (1976) as in Eq. 7.41.

Under the light of the aforementioned discussions, one can rewrite Eq. 7.48 as

E RQDð Þ ¼ 100 1þ λ 1� r1ð Þt½ �e�2λ 1�r1ð Þt ð7:49Þ

The validity of this formula is checked with extensive Monte Carlo simulation

technique by using autorun model for generating correlated intact lengths as

proposed by Şen (1985). First of all estimates of average intact lengths of sets A

and B are calculated as

nA ¼ 1

mA

Xk
i¼1

nAð Þi ð7:50Þ

and

nB ¼ 1

mB

Xl
i¼1

nBð Þi; ð7:51Þ

respectively. Herein, mA and mB are the number of intact lengths; (nA)i and (nB)i are
ith intact length in sets A and B, respectively. The geometric PDF parameter which

is the first-order autorun coefficient can be estimated from Eq. 6.41 as

rA ¼ nA � 1ð Þ=nA ð7:52Þ
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Similarly, the geometric PDF parameter, rB, for set B intact lengths turns out to be

rB ¼ nB � 1ð Þ=nB ð7:53Þ

Hence, it is possible to generate geometrically distributed and integer-valued

alternate lengths, y, with parameters rA and rB, respectively, on a digital computer

through

y ¼ 1þ log εð Þ=log r1ð Þ ð7:54Þ

in which ε is the uniformly distributed random variable between 0 and 1 and r1 is
the geometric distribution parameter which assumes either the value of rA or rB as

required. The simulation results are presented in Fig. 7.13 together with the

analytical solutions, and they show a very good agreement.

The following significant points can be drawn from this figure:

1. The formulation provided by Priest and Hudson (1976) for E(RQD) yields

underestimated results if the intact lengths are positively correlated which is

the case in most of the natural rocks as will be presented in the application

section of this section.

2. Increase in the correlation structure gives rise to increase in the E(RQD) values.

3. Relatively better RQD values are obtained for the same number of discontinu-

ities but correlated intact lengths.

Fig. 7.13 RQD – average number of discontinuity – autorun coefficient chart
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4. The difference between the dependent and independent intact length RQD

values is relatively less significant at small λ values than big λ’s. In fact, at

5% relative error level, the correlated intact lengths do not lead to significantly

different RQD values provided that λ< 3 and 10% error level when λ< 10. In

Fig. 6.3 upper and lower confidence limits at 5% and 10% significance levels

are shown around the Priest and Hudson independent intact length solution. It is

obvious that for small average number of discontinuities, their solution gives

confident RQD estimates even though the intact lengths are dependent. How-

ever, for big average number of discontinuities, the significance of intact length

correlation becomes very pronounced in the RQD estimations.

7.3.2.3 Applications

The applications of the methodology developed herein are carried out for the field

data from various parts of the world. The first field data are recorded along the

exposed outcrop surfaces of granitic rocks in the western part of the Kingdom of

Saudi Arabia. Extensive geological field survey by Otaibi (1990) showed that the

area consists of one rock unit which is granite of light pink color on fresh surface

and dark brown on weathered surface, medium to coarse grained, and equigranular.

This area was selected since it has a good combination of well-exposed bedrock and

relatively simple fracture pattern. Three sets of fracture orientations can be seen

distinctively in this area. Each one of the fracture set is measured by the scanline

perpendicular to the fracture traces. The fracture measurements are carried out at

three sites. These sites are selected such that they give rather random characteriza-

tion of the fracture geometry, i.e., they are quite independent from each other. In

order to be able to apply the methodology developed herein, the relevant values are

calculated and presented in Table 7.2.

It is obvious that the use of independent intact length RQD formulation does not

yield significant deviations from the dependent intact length case. This is due to two

major reasons. First of all since the average number of discontinuities is all less than

3 and, therefore, as already explained in the previous section, even if the intact

Table 7.2 Intact length characteristics (Saudi Arabia)

Site Scanline λ (1/m) p q

r1 E(RQD)

Error (%)Eq. 6.3 Eq. 6.16

1 x 1.56 0.52 0.48 0.51 98 98 0.0

y 2.56 0.54 0.46 0.51 97 97 0.0

z 1.04 0.62 0.38 0.63 99 99 0.0

x 2.75 0.53 0.47 0.51 97 97 0.0

2 y 1.83 0.59 0.41 0.57 98 99 1.0

z 1.98 0.63 0.37 0.61 98 99 1.0

x 1.78 0.48 0.52 0.47 98 98 0.0

3 y 1.80 0.54 0.46 0.52 98 99 1.0

z 1.56 0.57 0.63 0.55 99 99 0.0
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lengths are strongly correlated, there will not be practically significant difference,

i.e., the relative error will be less than 5%. In addition to this major reason, the

autorun coefficients are rather close to 0.5 which also confirms the approximation in

the results of E(RQD) calculations either by the use of Eqs. 7.36 or 7.47.

The second set of data for the implementation of the methodology are extracted

from a previous study by Ryckes (1984) on modes of failure and stability of rock

slopes in Tytherington Quarry which is located halfway between Thornbury and

Tytherington for about 16 km north of Bristol in the county of Avon, England. The

Paleozoic rocks of the lower coal series in the area are affected by many movements

in the past which led to faults, folds, and unconformities each of which led to

different patterns of intact lengths. Due to these different mechanisms, it is not

possible to expect that these intact lengths have independent correlation structure.

In order to depict the regional discontinuity pattern in this area, three scanlines were

set up at different directions. The bedding plane orientation is almost horizontal for

the first scanline which will be referred to SL1. The second scanline SL2 has a

direction of 20� toward the southwest, whereas the third, SL3, has an intermediate

inclination to the former. The necessary parameters as well as the E(RQD) calcu-
lations are presented in Table 7.3.

The major difference between Tables 7.2 and 7.3 is that the average disconti-

nuity numbers of scanlines in Table 7.2 are far bigger than Saudi Arabia measure-

ments; however, the autorun coefficients in Table 7.3 are invariably less than 0.5

indicating that there are negatively correlated intact lengths. Consequently, Priest

and Hudson (1981, Eq. 6.3), gives overestimation.

7.4 RQD and Correlated Intact Length Simulation

Generally in open rock mechanics, literature persistence implies the areal extent or

size of a discontinuity within a plane (Brown 1981). It can be quantified crudely by

observing the discontinuity trace lengths on the surface of exposures. However, the

type of persistence herein is related to the sequential occurrences of intact lengths

which may constitute obvious clusters. Within the contest of this paper, persistence

can be defined as the tendency of short intact lengths to follow short intact lengths

and long intact lengths to follow long intact lengths. Priest and Hudson (1976) say

Table 7.3 Intact length characteristics (England)

Scanline λ (1/m) p q

r1 E(RQD)

Error (%)Eq. 6.3 Eq. 6.16

SL1 6.46 0.46 0.54 0.40 86 81 6

SL2 10.01 0.57 0.43 0.48 74 72 3

SL3 6.52 0.50 0.50 0.43 86 83 4
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that a high frequency of low spacing values occurs within clusters and a low

frequency of high spacing values occurs between clusters.

The simple way of expressing persistence in a sequence of observations is

through either the classical serial correlation coefficient or autorun function Şen

(1978). Although the former requires the measurements to be normally distributed,

the latter is robust and applicable in any distribution case. However, for normally

distributed intact lengths, both give exactly the same result. In fact in such a

situation, the autorun coefficient r is convertible to the correlation coefficient ρ
by ρ ¼ sinπ(r – 0.5). As a consequence only for the normally distributed intact

lengths one can use interchangeably the autorun and autocorrelation terminologies.

In the following sequel, the intact length persistence is quantified with the help

of autorun coefficient rk for lag-k defined as in Eq. 7.35. In order to apply this

formulation to a scanline, the following steps must be executed on any scanline as

presented in Fig. 7.14:

1. By considering the threshold value equal to 0.1 m (or 4 in) as proposed by Deere

(1964), the effective intact lengths are assigned uniform value of +1 and

defective lengths as 0 (see Fig. 7.14b). In fact the resulting modified scanline

has zone of square waves which are separated by zero-valued intervals.

2. Divide the scanline into fixed length of finite intervals Δs as shown in Fig. 7.14c
where the intervals of fixed lengths are adopted as +1 cm which is convenient for

any practical purpose. The number of such intervals along the scanline is

denoted by n.
The ratio of numbers n within the effective intervals along the scanline to the

total interval number n is equivalent to the estimate of RQD, i.e., RQD ¼
100 (n1/n).

e
a

b

c

1

0

1

0

Δs Δs Δs Δs Δs

d e d e ed

Fig. 7.14 Scanline and models (a) effective, (b) defective, (c) model interval
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3. Find the number n of overlapping pairs of 1 and estimate r from Eq. 3.36 for

different lags from a sequence of r1, r2, r3, r4 . . ..

The plot of autorun coefficient versus lag value gives rise to graphs that represent

the persistence existing in the original intact sequence. A very significant result at

this point is that if practically all of the autorun are equal to zero, then the intact

lengths originate from an independent random process, and hence the calculation of

RQD as defined by Deere is reliable; otherwise, persistence appears implying

clusters in intact lengths and unreliability in RQD calculations.

The applications of the abovementioned persistence procedure to actual data are

achieved with considering field measurements from South England near Bristol

(Ryckes 1984) and measurements from the western province of Saudi Arabia

collected by authors.

The Paleozoic rocks of the lower coal series in the area are affected by various

earth movements in the past which led to faults, folds, and unconformities. The

location of intact length measurement sites are on the axis of a syncline which

inclines toward the south. The bedding plane orientation is almost horizontal for the

first scanline (SL1). The second scanline (SL2) has a direction of 20� toward

southwest, and the third scanline (SL3) has an intermediate inclination to the

former. Further detailed information on these scanline measurements can be

found in Ryckes (1984). The fourth scanline (SL4) was an illustrative example

adopted from Brady and Brown (1985). However, the fifth scanline (SL5) is a

representative scanline measurement in crystalline dioritic rocks in the southwest of

Saudi Arabia.

Three scanline measurements from England lead to the autorun functions as

shown in Fig. 7.15, and for the illustrative example and the Saudi Arabia scanline

measurements, autorun functions are given in Fig. 7.15d, e.

A common property in all these figures is that the first autorun coefficient has the

greatest value among other lags, and there appears an exponential or power type of

decrease with increasing lag value. It is clear that the classical RQD calculations

without considering persistence, i.e., assuming that rk ¼ 0 for all lag-k, are errone-
ous and should be rectified accordingly. Logically the same RQD value may

correspond to different persistence levels or vice versa.

The RQD and persistence values for different scanlines considered herein are

shown in Table 7.4.

A striking conflict appears from this table so far, and the rock qualities on RQD

and persistence basis are concerned. For the fourth scanline, the same quality

conclusion is arrived but other scanlines are in conflict to some extent. Hence, a

dilemma arises as to which one is chosen for decision making. The view taken in

this research is that persistence-based qualities should be preferred over the

RQD-based descriptions since the former takes into consideration not only the

mean and variance of intact lengths but also their correlation structure, i.e., clus-

tering effects.
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7.4.1 Proposed Models of Persistence

Provided that the autorun functions are available, the question arises as to what type

of dependent process represents best the intact length occurrences within a rock

mass. A straightforward answer to this question can be given provided that the

autocorrelation structures of different theoretical stochastic processes are known

beforehand. For this purpose three stochastic processes will be described herein,

namely, the independent random process, the lag-one Markov process, and the

autoregressive integrated moving-average process (ARIMA) (1, 1).

Table 7.4 Scanline rock qualities

Scanline RQD (%) Quality Persistence Quality

SL1 88 Very good 0.68 Fair

SL2 74 Fair 0.82 Very good

SL3 86 Very good 0.73 Fair

SL4 89 Very good 0.78 Very good

SL5 86 Very good 0.70 Fair
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Fig. 7.15 Autorun function for (a) SL1, (b) SL2, (c) SL3, (d) SL4, (e) SL5
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The Independent Process

It does not have any autorun function, i.e., all of the autocorrelation coefficients at

each lag except lag-zero are equal to zero as shown in Fig. 7.16a. It is the easiest and

simplest stochastic process employed in representing a natural phenomenon. Two

parameters, namely, the mean and standard deviation, are enough to describe the

phenomenon completely. In fact all of the RQD, rock quality risk (RQR), rock

quality percentage (RQP), etc. have been based on the understanding that the

phenomenon has an independent structure (Şen 1990a). Since there have been so

many studies in the past concerning this process, its repetition is avoided herein.
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Fig. 7.16 Autocorrelation structure of different processes (a) independent process, (b) Markov

process, and (c) ARIMA (1, 1) process
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7.4.1.1 First-Order Markov Process

In general, geologic variables possess dependent structure especially when they are

at close intervals from each other. The simplest way of representing any depen-

dence is through autoregressive processes such as the lag-one Markov process (Şen

1974). The mathematical form of this process can be written as

lı ¼ μþ li�1 � μð Þ þ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
εi ð7:55Þ

in which μ, σ, and ρ are the mean standard deviation and the first-order serial

correlation coefficient, respectively, of intact lengths li and finally εi is a normal

random shock with zero mean and unit variance. The autocorrelation structure of

this process is given as

ρ0 ¼ 1

ρi ¼ ρi
ð7:56Þ

which has been presented for different ρ values in Fig. 7.16b.

7.4.1.2 ARIMA (1, 1) Process

It is used in order to represent more persistently dependent processes which are

noticed during intact length analysis in this study. These processes were prepared

first by Box and Jenkins (1970) with the following expression:

lı ¼ μþ ϕ li�1 � μð Þ þ εi � θεi�1 ð7:57Þ

in which ϕ and θ are model parameters and εi is again normal random process with

zero mean and unit variance. The autocorrelation structure of this model is given as

ρ0 ¼ 1

ρ1 ¼
1� ϕθð Þ ϕ� θð Þ
1þ θ2 � 1ϕθ
� �

ρk ¼ ϕρk�1 for k � 2ð Þ

ð7:58Þ

which is drawn for the same set of parameters in Fig. 7.16c. Comparisons of graphs

in Fig. 7.16 indicate that only ARIMA (1, 1) processes lead to significantly more

persistent correlations at large lags than other processes.
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7.4.2 Simulation of Intact Lengths

The purpose of this section is to derive the relationship between RQD and the first-

order autorun correlation coefficient as a representative of persistence. As already

mentioned above, since the autorun functions in Fig. 7.15 indicate persistence

structure in the intact length occurrences, they cannot be represented by classical

processes such as the negative exponential distribution which is based on the

assumption that the intact lengths are generated from an independent process.

This implies autocorrelation structure as in Fig. 7.16a. It is obvious from

Fig. 7.15 that all of the scanlines considered in this study have autorun functions

with significant persistences. In order to be able to simulate these persistent

patterns, the intact lengths are considered to be normally distributed so that the

autorun functions can be considered as equivalents to the autocorrelation functions

which are necessary ingredients for simulation by use of the Markov and ARIMA

(1, 1) processes.

Hence the first step in the simulation is to find the best stochastic model that fits

the experimental autocorrelation functions. Therefore, the experimental autocorre-

lation functions that are already given in Fig. 7.15 are compared with a set of

theoretical autocorrelation structures as obtained from Eqs. 7.50 and 7.57 for

Markov and ARIMA (1, 1) models, respectively, by considering different param-

eter sets. In fact the identification of model parameters such as ρ, ϕ, and θ is made

by visual comparison of experimental and theoretical autocorrelation functions as

presented in Fig. 7.17.

It is obvious that for the Markov process, there appears to be only one theoretical

autocorrelation function based on the first-order autocorrelation coefficient,

whereas ARIMA (1, 1) process has different functions for the same correlation

coefficient depending on the values of ϕ and θ. In deciding on the best fit, only the

first one third of the experimental autocorrelation must be considered as reliable.

On this basis, it appeared that only SL2 had a very good match with the Markov

process and the others accord by the ARIMA (1, 1) process but with different set of

parameters. Table 7.5 exhibits the model types and parameter values for each

scanline.

It is obvious from this table that the least persistent scanline on the basis of

autocorrelation function is SL2. However, positive ϕ�1 values for the other

scanlines indicate that the rock quality is comparatively better than SL1.

After the availability of the model parameters from Table 7.5, it is possible to

generate synthetic scanlines by using the appropriate model on digital computers.

The benefit from such a simulation is to gain detailed insight into the possibilities of

the fracture distribution within the rock mass. In fact simulation results in as many

scanlines as required which are statistically indistinguishable from each other.

This is tantamount to saying that along each synthetic scanline, the occurrence of

intact lengths will be definitely different but in the long run they will have the same

statistical parameters such as the mean and variance as well as the same
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Table 7.5 Models and parameters

Scanline no. Model

Parameters

ρ ϕ θ μ σ

SL1 ARIMA (1, 1) 0.68 0.85 0.333 13.77 14.78

SL2 Markov 0.82 – – 9.98 10.13

SL3 ARIMA (1, 1) 0.73 0.80 0.152 15.33 14.05

SL4 ARIMA (1, 1) 0.78 0.82 0.103 19.78 17.34

SL5 ARIMA (1, 1) 0.70 0.80 0.200 14.38 9.49

Fig. 7.17 Experimental and theoretical autocorrelation function for (a) SL1, (b) SL2, (c) SL3, (d)
SL4, (e) SL5
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autocorrelation structure. In order to explore the relationship between the persis-

tence and RQD, the following set of different simulations are undertaken:

1. Irrespective of the scanlines considered in this paper, first of all the relationship

between the RQD and persistence parameters (ρ, ϕ, and θ) is sought for standard
intact lengths, i.e., the mean and variance of intact lengths are assumed to be zero

and one, respectively. Hence, the generated synthetic scanlines are not affected

by any other parameter except the persistence. However, these relationships are

obtained for different threshold values as 0.05, 0.10, and 0.15 m. The resulting

standard curves for the Markov process are presented in Fig. 7.18.

2. It is obvious that in the Markov process case, the RQD is proportionally related

to the persistence (in this case ρ) but the relationship is nonlinear. RQD is not

sensitive to changes in ρ for small ρ values for instant in the case of threshold

0.10 m when ρ< 0.5. However, for ρ> 0.5 the sensitivity increases enormously,

and therefore the classical RQD calculations may not be reliable especially when

0.5< ρ< 1.0 provided that the underlying generating mechanism of intact

lengths is of Markovian type. On the other hand, Fig. 6.9 also indicates that

the rock quality improves if a low threshold value such as 0.05 m is adopted for

the basic RQD definition. On the other hand, the comparison of three curves in

the same figure shows that the rock quality improvement from threshold value

0.15 to 0.10 m is less than the transition from 0.10 to 0.05 m.

The same type of simulation but for the ARIMA (1, 1) model leads to standard

RQD-persistence relationship as in Figs. 7.19 and 7.20 which present only two

samples from an infinite numbers of such relationships.
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The first comparison of Figs. 7.19 and 7.20 with Fig. 7.18 shows that the ARIMA

(1, 1) process implies better rock quality for the same threshold value. This is

indeed the logically expected result from the previous discussions. On the other

hand, the sensitivity of RQD to persistence parameter changes decreased signifi-

cantly for ρ> 0.5 but increased for ρ< 0.5. In other words, the curvature of the
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curves is very small compared with the Markov process to the extent that even in

the same cases such threshold values of 0.05 m, the RQD-persistence relationship

appears as a straight line. Furthermore, comparison of Fig. 7.19 with Fig. 7.20

indicates that increase in the ϕ value means improvement in the rock quality which

is due to the fact that large ϕ values imply longer intact lengths.

2. In order to see the effects of genuine parameters, i.e., mean and variance of the

scanlines, a second set of simulation with the same models is performed on

digital computers. Some of the representative results for SL1, SL2, and SL3 are

presented in Fig. 7.21. A general conclusion from these figures is that the mean

and standard deviation of the intact lengths are not sufficient in calculating RQD

values. For instance, consideration of Fig. 7.21 leads to the conclusion that the

least RQD value as almost 20 will appear provided that the intact lengths along

SL1 occur independently (ρ¼ 0). However, in addition to these two basic
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parameters, the value of ϕ plays a dominant role by causing increment in the

RQD value. Similar statements are valid for other scanlines. Besides comparison

of Fig. 7.21 with Figs. 7.19 and 7.20 shows that as the mean and standard

deviation values increase, the sensitivity of persistence parameter decreases. It

is logical to conclude that the longer and less variable are the intact lengths, the

more reliable is the classical RQD calculation according to Deere (1964)

original definition.

The main theme of this study was to emphasize that in practical studies the RQD

calculations are not reliable without the consideration of intact length correlation

structure. It is a well-known fact that the classical RQD evaluations are based on the

mean value percentage of the intact lengths that are greater than a threshold value

only. However, under the light of the simulation study performed in this paper, the

following important points are worth to notice:

1. The persistence structure of intact lengths gives rise to additional rock quality

increments.

2. There exists a proportional relationship between the RQD and the persistence

parameter which is adopted as the first-order autocorrelation coefficient in this

study.

3. It is possible to identify the underlying generating mechanism of the intact

lengths by comparing the experimental and theoretical autocorrelation functions

of stochastic processes such as the Markov or ARIMA (1, 1) processes.

7.5 Autorun Simulation of Porous Material

Any porous medium will have either a solid or a void at each point in space.

Quantitatively solid point is represented by �1 and a void point by +1. Figure 7.22

indicates voids as white squares and solids as black patches, and such a spatial

distribution of digitized numbers is a bivariate random field or ReV.

Hence, ReV function, ξ(x), is a two-valued random variable in space as (Şen

1990b)

ξ xð Þ ¼ þ1 if x2A
�1 if x2Ac

�
ð7:59Þ

+1

f(s)

s
–1

Fig. 7.22 Schematic representation of a line characteristic function
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where 2 means “belongs to” A and Ac are the sets of voids and solids, respectively,

within a porous medium bulk volume, V. These two sets are mutually exclusive and

complementary, so it follows that

A [ Ac ¼ V ð7:60Þ

and

A \ Ac ¼ Φ ð7:61Þ

where [ and \ are union and intersection of sets, respectively, and Φ is the empty

set. The expression “random function of coordinate” must be understood in the

sense that at each point of the 3D space, the value ξ(x) is a random variable, and,

consequently, it cannot be predicted exactly. The values of ξ(x) are subject to a

certain PDF. If the PDF is invariant with respect to a shift of the system of points,

then the ReV and corresponding porous medium are homogeneous. The same ReV

is statistically homogeneous and isotropic when the PDFs are invariant with respect

to an arbitrary rotation of the system points (such as a solid body) and to a mirror

reflection of the system with respect to an arbitrary plane passing through the origin

of the coordinate system. In other words, the statistical moments depend upon the

configuration of the grain-void system for which they are formed, but not upon the

position of the system in space. In practical terms the porous medium is isotropic if

the properties of any point are the same in all directions from that point. The

medium is of heterogeneous composition if its nature or properties of isotropy or

anisotropy vary from one point to another in the medium. If the porous medium is

statistically homogeneous and isotropic, then the moments do not depend on any

preferred direction within the medium.

7.5.1 Line Characteristic Function of Porous Medium

Any internal property of porous medium can be quantified by an arbitrary sampling

line which passes through a rock in any direction. Each point on this line corre-

sponds to either a void or a solid, and the sample line characteristic function, f(s),
can be defined similarly Eq. 7.59 as

f sð Þ ¼ þ1 if s2A
�1 if s2Ac

�
ð7:62Þ

where s is the distance along the sampling line from any arbitrary origin. The

graphical representation of f(s) forms a square wave as it passes alternately from

void to grain (Fig. 7.22). This function represents one of the possible realizations of

the ensemble of the porous medium. It reflects the size distribution of solids and

voids, their orientation, and packing within the sandstone. In practice, f(s) may be
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determined by preparing a high-contrast photographic image of a thin section

whose pores have been filled with epoxy (Minoura and Coley 1971).

In order to treat f(s) with classical time series techniques, such as

autocovariance, spectral, autorun analysis, and so forth, it must be defined as

random variable set at n points equally spaced Δs apart along the sampling line.

Hence, nΔs is equal to the sampling line length. The ordered set of f(s) values at 0 ¼
1, 2, . . ., 1, is called a stochastic process. If the PDF is the same for all I, the

stochastic process is said to be weakly stationary. In addition, strict stationarity

implies that all of the possible joint PDFs are functions of the distance between

pairs. However, in practice, strictly stationary processes are not usually encoun-

tered. Non-stationarities in sedimentary rock units may arise from the presence of

distinctive layering or gradual grading. In general, sedimentary units are considered

as stochastically stationary if the pattern of variation in a property is similar in each

sampled area of a bed.

7.5.2 Autorun Analysis of Sandstone

The autorun function is especially capable of investigating the sequential properties

of random series when only two distinct values exist. Due to its distribution-free

behavior, computational simplicity, and robustness to various transformations, it is

more flexible than the classical autocorrelation function (Şen 1978). In general, the

autorun function is defined for discrete processes as a conditional probability

r kΔsð Þ ¼ P f kΔsð Þ > m=f Δsð Þ > m½ � ð7:63Þ

where k is referred to as the lag and m as the truncation level, taken in most cases as

the median value. From the definition it is obvious that values of the autorun

function vary between 0 and +1 for any lag-k. Let p be the probability of +1 in a

characteristic function (see Eq. 7.62) of infinite length. For a line characteristic

function, the truncation level can be taken as any value between +1 and – 1, exclu-

sively. For independent processes, all of the autorun values at different lags are

equal to p. However, for any process, the following autorun function properties are

valid:

r 0ð Þ ¼ þ1

0 < r kΔsð Þ < þ1

r 1ð Þ ¼ p

9=
; ð7:64Þ

The small sample estimate of the lag-k autorun coefficient from finite length

characteristic functions can be obtained similar to Eq. 7.35 as

r kΔsð Þ ¼ 2nk
n� k

ð7:65Þ
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where nk shows the number of overlapping successive + 1 pairs at a distance of kΔs
apart and n is the number of equally spaced points in the porous medium line

characteristic function. In the case of independent process, r kΔsð Þ ¼ p for any lag

(see Fig. 7.23). If l � r kΔsð Þ > p, then on the average, the points lag-k apart fall on
void space; otherwise, when p > r kΔsð Þ � p, they fall on grain space.

The former situation indicates positive dependence and sometimes is referred to

as persistence. It implies physically that grain points and void points follow void

points. Şen (1978) has shown the analytical relationship between the autorun and

autocorrelation coefficients for p¼ 0.5 as

r kΔsð Þ ¼ 1

2
þ 1

π
arcsinρkΔs ð7:66Þ

where ρkΔs is the lag-k autocorrelation coefficient. Assuming a first-order Markov

process where ρkΔs ¼ ρ k
Δs, this last expression gives autorun functions as shown in

Fig. 7.24. It is obvious that for this case 0 � ρkΔs � þ1 corresponds to

0:5 � ρkΔs � þ1. Figure 7.24a–d represent persistence, and the autorun function

converges 0.5 asymptotically. These continuous decreases indicate the stationary

nature of the underlying sample characteristic function. On the other hand, negative

dependence is characterized by autorun functions similar to Fig. 7.24e–h. In

Fig. 7.24, rk implies r(kΔs) and r(Δs).
The autorun coefficient is robust and is not dependent on any particular distri-

bution function. Furthermore, it is very convenient for binary random variables.

The physical interpretation of the autocovariance function may be difficult or

impossible to make (Jenkins and Watt 1968). Contrarily, the autorun function has

physical meaning as conditional probabilities and is usually simple to interpret. The

asymptotic value of the autorun function corresponds to the porosity of the porous

medium. However, in practice autorun coefficients for relatively large lags esti-

mated from Eq. 7.65 yield the approximate porosity.

Another very important physical parameter that is directly related to the autorun

function is the specific surface, σ. The specific surface is defined as the ratio of the

total surface, S0, of solids (or voids) to the bulk volume of the porous medium

concerned. Hence, generally

σ ¼ S0

V
ð7:67Þ

k

0.5

rk

Fig. 7.23 Autorun function of an independent process r kΔsð Þ ¼ 0:5, p ¼ 0:5½ �
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Knowledge of the specific surface is important in cases of adsorption of materials

from the fluid flowing through the porous medium. It is also important also in the

design of sand and gravel filter columns. In hydrogeology it is related to the specific

retention of water in sandstone. The finer the grains, the greater will be the specific

retention and specific surface.

Fig. 7.24 Autorun function of the dependent process for different r(kΔs) values and p¼ 0.5
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The random variable, η(x), identifying this surface can be obtained from the

basic ReV as

η xð Þ ¼ lim
Δs!0

ξ xð Þξ xþ Δsð Þ ¼ þ1 for x2Sc

�1 for x2S

�
ð7:68Þ

where S is the set of points in the porous medium resting on the grain surface and Sc

is the complementary set including the remaining points. Hence, – 1 is important in

the definition of grain surface. In fact, points on S physically correspond to

“crossings” from a grain to a void or vice versa, that is, grain boundaries. Along

any sampling line, these crossings occur as random points after each square wave.

In the statistical literature, these points are referred to as the zero crossing (Mood

1940). The total number of such crossings in a continuous sequence has been given

originally by Rice (1945). An approximate but practical calculation to total cross

numbers, T, in any discrete process has been given by Şen (1980) in terms of the

first-order autorun coefficient (k¼ 1), as

T ¼ 2n 1� r Δsð Þ½ �p ð7:69Þ

Here T represents points of solid surface along any sampling line provided that the

porous medium is isotropic and homogeneous. Hence, the estimate of specific

surface σ
^
along such a line can be determined after dividing Eq. 7.69 by the length

of this line nΔs

σ̂ ¼ 2
1� r Δsð Þ

Δs
p

or more conveniently

σ̂ ¼ 2
r 0ð Þ � r Δsð Þ

Δs
p ð7:70Þ

It is important to notice at this stage that the ration in Eq. 7.60 is the slope of the

autorun function at the origin. A similar relationship has been obtained with the

autocorrelation function slope at the origin by Watson (1975). The population

(asymptotic) value of the specific surface can be found from Eq. 7.70 as Δs!0

which leads to

σ ¼ �2r0 0ð Þp ð7:71Þ

where r0(0) is the derivative (slope) of the autorun function at the origin. For

independent processes r0(0)) ¼ –1 and for completely dependent processes r0(0))
0. It is therefore expected theoretically that the specific surface is isotropic and

homogeneous materials may take any positive value. Since processes in earth

sciences fall between the two aforementioned extremes, their specific surface
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values fall between zero and infinity. It has been shown by Cramer (1938) that the

specific surface of sandstones varies in the range of 150–320 cm�1. The finer the

sandstone, the greater the number of crossings on any sampling line, and, therefore,

the slope of the autorun function will be greater, leading to greater specific surfaces.

It thus becomes very obvious that fine materials will exhibit much greater specific

surface than coarse materials. Some fine materials contain an enormous grain

surface area per unit volume. The generalization of Eq. 7.71 for any preferred

direction, say α, within the anisotropic porous medium is possible after dividing it

by the surface area of the sphere with unit radius. Hence, Eq. 7.71 becomes

σ ¼ � 1

2π

Z
r0α 0ð Þpαdα ð7:72Þ

where r
0
α(0) and pα are the derivative of the autorun function at the origin and the

porosity along this preferred sampling line, respectively. The numerical calculation

of Eq. 7.72 can be achieved by taking various thin sections on different directions.

7.5.3 Autorun Modeling of Porous Media

Since the porous medium has been regarded as a realization of a stochastic process,

it is necessary to develop a model for generating pore structure that is more

representative than those based deterministically on assemblages of spheres or

tubes. However, the spherical beads and capillary tube models are assumed for

analytical purposes in solving for fluid flow on the scale of a few pores. Therefore,

they are not convenient for generating the stochastic characteristics of the porous

medium. A simulation model of the grain-void size distribution can be achieved

through the autorun technique. Although such a model does not give, on the

average, new information about the medium, it helps to generate all of the possible

line characteristic function realizations of the medium. A simulation model of the

grain-void size distribution can be achieved through the autorun technique.

Although such a model does not give, on the average, new information about the

medium, it helps to generate all of the possible line characteristics of the medium.

The first simulation model in this direction has been proposed by Roach (1968) for

independent processes.

However, in general the porous medium composition of voids and solids

has dependent structure. This is tantamount to having clusters of voids and/or

solids; that is as a general tendency voids follow voids and solids follow solids.

The first autorun coefficient, r(Δs), provides a criterion to decide whether the

porous medium composition has dependent composition; that is, occurrence

of any void or solid does not affect others. In cases of r(Δs) being significantly

different from the porosit, clustering exists. When r(Δs) > p a positive
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dependence exists, which means physically that the clustering of voids is predom-

inant. On the contrary, for r(Δs) < p, clustering of solids is effective.

The probability of having at least two successive voids is r(Δs), of having three

successive voids is r2(Δs), and in general having at least j successive voids is

P nν � jð Þ ¼ r Δsð Þ½ �j�1 ð7:73Þ

It has been shown by Feller (1967) that

P nν ¼ jð Þ ¼ P nν � jð Þ � P nν � jþ 1ð Þ ð7:74Þ

Hence, substitution of Eqs. 7.73 and 7.74 yields the probability of having

j uninterrupted successive voids on an infinite sampling line as

P nν ¼ jð Þ ¼ 1� r Δsð Þ½ � r Δsð Þ½ �j�1 ð7:75Þ

It indicates that void lengths are geometrically distributed with parameter r(Δs).
The expectation of void length in an infinite characteristic function can be found

from Eq. 7.75 as

E nνð Þ ¼ 1

1� r Δsð Þ ð7:76Þ

For independent processes, p ¼ r(Δs); this equation gives E nυð Þ ¼ 1= 1� pð Þ,
which has been presented by Feller (1967). The purpose of a simulation model is

to generate statistically indistinguishable synthetic characteristic functions from the

observed line characteristic function. In other words, on the average, statistical

parameters such as the mean and variance must be preserved in the synthetic

characteristic functions. It is possible to generate geometrically distributed void

lengths, υ, with parameter r(Δs) as

ν ¼ 1þ logξ

logr Δsð Þ ð7:77Þ

where υ is an integer-valued random variable and ξ is a uniformly distributed

random variable between 0 and +1. The solid lengths, g, can be generated similar

to Eq. 19 as

g ¼ 1þ logξ

logrg Δsð Þ ð7:78Þ

where rg(Δs) is the first autorun coefficient calculated from the line characteristics

after its multiplication by –1.

Since the void and solid lengths occur alternatively on a sampling line, the initial

length can either be selected randomly or according to the final length type on the
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observed sampling line, and then void and solid lengths are arranged in sequence.

However, whichever way is adopted does not make any difference in the final

product.

The aforementioned modeling technique for the porous media based on the

autorun model has been implemented on a digital computer for parameters

p¼ 0.5; r(Δs) ¼ rg(Δs) ¼ 0.5, 0.7, and 0.9. Very long sequences of synthetic line

characteristic functions (10,000 points) have been generated, but three samples with

length of 125 points each are presented in Figs. 7.25a, 7.26a, and 7.27a, together

with their sample autorun functions in Figs. 7.25b, 7.26b, and 7.27b, respectively.

Figure 7.25a represents the independent structure of void-solid occurrences

resulting from the autorun model, whereas Figs. 7.26a and 7.27a are samples of

dependent structure.

It is clear that on the average the lengths of voids or grains are shorter in

Fig. 7.25a than in others; in addition Fig. 7.25a is richer in the number of crossings

than others. As the autorun coefficient increases, these lengths, as well as the

number of crossings, increase. Line characteristic functions in Figs. 7.25a, 7.26a,

and 7.27a are possible realizations of fine, medium, and coarse-grained sandstones,

respectively.

On the other hand, generalization of the stochastic model proposed by Roach

(1968) for finite sampling lines can be achieved by the autorun coefficient so as to

cover dependent porous medium configuration. For this purpose, the following

Fig. 7.25 Synthetic line characteristic function r kΔsð Þ ¼ 0:5, p ¼ 0:5½ �
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Fig. 7.26 Synthetic line characteristic function r kΔsð Þ ¼ 0:7, p ¼ 0:5½ �

Fig. 7.27 Synthetic line characteristic function, r kΔsð Þ ¼ 0:9, p ¼ 0:5½ �
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conditional probabilities of the combinations of two successive events at equally

spaced points along a sampling line can be written as

P ν=νð Þ ¼ r Δsð Þ
P g=νð Þ ¼ 1� r Δsð Þ

P g=gð Þ ¼ 1� p

1� p
1� r Δsð Þ½ �

P ν=gð Þ ¼ p

1� p
1� r Δsð Þ½ � ð7:79Þ

On the average, the probability P(υ) that a point lies in a void space is equal to p,
whereas the probability P(g) that a point is within a solid space is q¼ 1� p. The
void-solid sequence probability is given in Eq. 7.79 as P(υ/g) which defines a

crossing point in the line characteristic function. The probability that a solid is

followed by a void, P(g, υ), is equal to P(g)P(υ/g) and explicitly

P g; νð Þ ¼ p 1� r Δsð Þ½ �

However, the probability P(g, υ, g) of having void length equal to 1Δs can be

obtained as P(g, υ)P(g/υ) or as

P g, ν, gð Þ ¼ p 1� r Δsð Þ½ �2 ð7:80Þ

Similarly, in general, the probability of having the void length equal to nΔs
becomes

P g, ν, ν, ν, ν . . . , ν, gð Þ ¼ p 1� r Δsð Þ½ �n�1
1� r Δsð Þ½ �2 ð7:81Þ

The number of voids, Nυ, of length nΔs in a set of N equally spaced points along the

sampling line can be obtained as

Nν ¼ Np 1� r Δsð Þ½ �n�1
1� r Δsð Þ½ �2 ð7:82Þ

For the independent process, r(Δs) ¼ p, and then Eq. 7.82 yields the same result as

originally proposed by Roach (1968). Furthermore, a similar expression for the

solid can be found as

Ng ¼ N 1� pð Þ 1� rg Δsð Þ
 �n�1
1� rg Δsð Þ
 �2 ð7:83Þ

Figure 7.28 shows the change in the number of voids per unit length, Nυ/N with the

autorun coefficient for given void length of 1Δs, 2Δs, and 3Δs at different poros-
ities, p¼ 0.1, 0.2, 0.3, and 0.4. It is obvious that the number of voids with length

1Δs decreases continuously with the increase of the autorun coefficient. However,
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such a relationship is not valid for other void lengths because the number of voids

with lengths other than 1Δs has maximum values for autorun coefficients other than

zero. For instance, this maximum occurs at about r(Δs) ¼ 0.3 for p¼ 0.3. Further-

more, whatever the porous medium parameters are in the long run, the number of

voids of any length will be more than voids with smaller lengths. It can be

concluded from Fig. 7.28 that the difference between the numbers of voids per

unit length for voids of length 1Δs and others is relatively larger at low autorun

coefficients. For a line characteristic function with N¼ 10,000 points, p¼ 0.3, and r
(Δs)¼ 0.2, the number of voids for void lengths of 1Δs, 2Δs, and 3Δs are 1920,

384, and 77, whereas with r(Δs) ¼ 0.8, they are 120, 96, and 77, respectively.
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Fig. 7.28 (a–d) Number of voids on a line characteristic function
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7.6 CSV Technique for Identification of Intact Length
Correlation Structure

Different rock quality description indices that are presented into the rock mechanics

literature, which are based on intact lengths, assume that the occurrences of

discontinuities and accordingly intact lengths are independent from each other.

Unfortunately, the validity of such an assumption is questionable, and, therefore,

the final equations for rock quality assessments need to be validated prior to

their use.

Otherwise the results can be regarded only as initial approximations, which

might be rough estimations of the rock quality. It is rather obvious that due to

different geological phenomena, the rock discontinuities appear in local cluster

forms which show that the intact lengths cannot be considered as independent from

each other. In order to check whether the intact lengths along a scanline are

independent or dependent from each other, herein, the CSV method has been

presented in detail. The basic concept of standard CSV is presented and so simpli-

fied that in the case of independent intact length occurrences, its variation with the

total intact length appears as a straight line which passes from the origin. Any

systematic deviation from straight line implies that the intact length is dependent,

and therefore classical rock quality description index must not be used, and instead

measures which take into account the correlation of intact lengths must be preferred

in rock quality studies. Besides theoretical CSV models are developed for the

independent, Markov and ARIMA (1, 1) processes. These models provide a general

guide in the identification of intact length correlation structure as well as the

numerical value of such a correlation.

The application of the methodology developed, herein, is presented for scanline

measurements at Tytherington Quarry in England. The Markovian type of correla-

tion structure is identified for all of the scanlines from this quarry.

Mechanical and/or hydraulic behavior of jointed rock masses requires an accu-

rate representation of joint geometry including intact and trace lengths, orientation,

intensity, etc. The spacing between two successive joints along an arbitrary sam-

pling line, namely, scanline, is referred to as the intact length. Most of the mechan-

ical behavior and the quality classification of jointed rock masses are directly

related to the intact length occurrences along different directions. According to

Terzaghi (1965), the intact lengths along the mean pole direction can be regarded as

the true spacing, whereas along any other directions, they can be expressed as a

function of the true spacing and the angle between the sampling and mean pole

directions. In case of several joint sets, within the same rock mass, it is rather

difficult to measure true spacing for an individual set. In practice, however, scanline

measurements include intact lengths between joints belonging to different sets.

Many investigators have examined empirical joint spacing distributions based

on measured intact lengths, and generally two different types of theoretical distri-

bution functions were proposed, namely, lognormal (Steffen 1975; Bridges 1975;

Barton 1977; Şen and Kazi 1984) and negative exponential distribution
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(Call et al. 1976; Priest and Hudson 1976; Einstein and Baecher 1983; Wallis and

King 1980). Besides, gamma distribution of intact lengths has been proposed by

Şen (1984). However, it seems that the negative exponential distribution appears to

be the most frequently used one due to its simplicity. In order to decide whether the

intact lengths fit the negative exponential or lognormal distribution, most often the

conclusions are based on visual comparison but Beacher et al. (1977) have used

goodness-of-fit tests in the decision making about the best distribution. For such a

test the primary requisite is the histogram of intact lengths. However, any test of

goodness of fit ignores the internal structure in the intact length occurrence along a

scanline, i.e., the intact length occurrences are assumed to have a complete random

behavior without any dependence on each other. We cannot really assume that

nature is nice enough to present us with independent identically distributed intact

lengths. In nature, the creation of fractures depends on many interactive phenomena

such as pressure, temperature, volcanic activity, earthquakes, etc. As a conse-

quence, prior to any assessment of intact lengths with the classical techniques,

one should confirm their random occurrences. All of the aforementioned studies

imply that the intact lengths occur randomly which might not be the case in actual

situations, and subsequently overestimations result in the evaluations. Hence, a key

question in the intact length evaluation is whether they have an independent

structure or not. Provided that the independence is verified, then the use of classical

techniques leads to reliable answers. Otherwise, new techniques should be devised

so as to take into consideration the dependence structure of intact lengths. This

point has been observed first by Higgs (1984) who suggested an empirical tech-

nique called “the profile area method” by which the dependence structure within the

intact length measurement series is taken into consideration indirectly but in an

effective way. Later, Şen (1990b) provided analytical formulation for the profile

area method which showed explicitly that the rock quality measures are not only

functions of simple statistical parameters such as the mean and variance values but,

additionally, the serial correlation coefficient. The classical techniques appear as a

special case of the analytical formulations when the serial correlation coefficient is

practically equal to zero. On the other hand, Eissa and Şen (1990) made an

extensive computer simulation by using Monte Carlo techniques so as to generate

serially dependent intact lengths according to a very simple Markov model. The

calculations of rock quality designation (RQD) for different serial correlation

coefficients indicated that increase in correlation coefficient results in increase in

rock quality.

However, neither the empirical method (Higgs 1984) nor the simulation tech-

nique (Eissa and Şen 1990) is suitable for practical purposes. It is, therefore,

suggested herein the use of CSV concept as suggested by Şen (1989a, b) in

evaluating the intact length occurrences and accordingly the rock quality classifi-

cation. The CSV technique provides graphs which give additional interpretations in

intact length occurrences and especially in their regional behaviors.
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7.6.1 Intact Length CSV

Intact length measurements in the field are dependent on the relative positions of the

scanline within the study area. The variability of intact lengths along a scanline

leads to the concept of regional variability of intact length with the change in

scanline orientation. This variability determines the regional behavior as well as the

predictability of the intact lengths on the basis of which the rock quality appreci-

ations can be assessed. Large variability implies that the degree of dependence of

intact length on each other might be rather small even for scanlines close to each

other. Such a variability may be a product of either one of the active geological

phenomena such as tectonic, volcanic, depositional, erosion, recharge, or other

activities.

In order to quantify the degree of variability of regional changes, variance

techniques have been used already (Higgs 1984). On the other hand, Eissa and

Şen (1990) and Şen (1991) have employed autocorrelation methods in the intact

length assessment. However, these methods cannot account for the regional depen-

dence due to either non-normal distribution (Şen 1978) and/or irregularity of

sampling positions (Subyani and Şen 1990).

The SV method has been proposed by Matheron (1963) to get rid of the

aforementioned drawbacks. Its elegancy is that the regionalized variable PDF is

not important in obtaining the SV, and furthermore, it is effective for irregular data

positions. It is to be recalled herein that the classical variogram, autocorrelation,

and autorun techniques all require equally spaced data values. However, the

discontinuities along a scanline are irregularly spaced, and, therefore, use of

classical techniques is highly questionable, except that these techniques provide

approximate results only. The SV technique, although suitable for irregularly

spaced data, has practical difficulties as summarized by Şen (1989a, b). Among

such difficulties is the grouping of distance data into classes of equal or variable

lengths for SV construction, but resulting SV results in an inconsistent pattern and

does not have a nondecreasing form.

However, adaptation of CSV gives with the same data always a nondecreasing

pattern without grouping of distances but rather their arrangement in ascending

order. By this arrangement each one of the distances is considered individually in

the regional variability of the intact lengths. In general, CSV, γs(dk) is defined as a

successive summation of square differences as

γc dkð Þ ¼
Xk
i¼1

d di
� � ¼ 1

2

Xk
i¼1

Zi � Zi�1ð Þ2 ð7:84Þ

in which d(di) indicates half-square difference at ith order in an ordered intact

length arrangements where superscript i indicates the rank; Zi is the intact length

corresponding to rank i.
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7.6.2 Theoretical CSV Model

Equation 6.1 in its present form is useful to obtain experimental CSV from a given

set of intact lengths which will be performed in the application. However, the

interpretation of these CSVs requires a set of relevant theoretical models for their

comparison. It is possible to derive theoretical models provided that the underlying

generating mechanism of the intact lengths is known or assumed. To start with let

us take expectation of both sides in Eq. 7.84 leading to (after the expansion of

parenthesis term on the right-hand side)

E γc hkð Þ½ � ¼ 1

2
E Z2

i

� �� 2E ZiZi�1ð Þ þ E Z2
i�1

� �
 � ð7:85Þ

Let us assume that the intact lengths are second-order stationary, which implies that

E Z2
i

� � ¼ E Z2
i�1

� � ¼ σ2 and E ZiZi�1ð Þ ¼ cov ZiZi�1ð Þ þ σ2 where cov Zi , Zi�1ð Þ
indicates the covariance between Zi and Zi-1 and finally σ2 is the variance of intact
lengths. It is to be noted that second-order stationary implies that the statistical

parameters are independent from i, i.e., from rank. Consideration of these condi-

tions and the substitution of the relevant values into Eq. 2 lead to

E γc hkð Þ½ � ¼ σ2 k �
Xk
i¼1

cov Zi; Zi�1ð Þ
σ2

" #
ð7:86Þ

or since from statistical time series analysis (Box and Jenkins 1970) the ratio term in

the parenthesis is defined as the lag-k autocorrelation function, ρi, then Eq. 7.86 can
be rewritten succinctly as

E γc kkð Þ½ � ¼ σ2 k �
Xk
i¼1

ρi

 !
ð7:87Þ

in which ρi represents the correlation within the intact length sequence, and this

expression is a general formulation of the theoretical CSV. The following specific

models of CSV can be derived from the available stochastic processes in the

literature as employed by Eissa and Şen (1990):

1. Independent Model CSV: This is the most widely used assumption in the rock

quality assessments that have appeared in the literature (Priest and Hudson 1976;

Hudson and Priest 1979; Şen 1984, 1990b). The uncorrelatedness of intact

lengths implies ρ¼ 0, and consequently, the simplest model of all emerges as

E γc kkð Þ½ � ¼ kσ2 ð7:88Þ

which means that in the CSV model of such intact length occurrences, the

variance plays the dominant role only. The graphical representation of
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independent CSV model appears as a straight line that passes through the origin

as shown in Fig. 7.29. The slope of this straight line gives the variance of intact

lengths.

As the variance value becomes smaller and smaller, the independent process

CSV becomes closer to the horizontal axis which represents the distances. For

instance, in the case of equal intact lengths along a scanline, the variance

becomes zero and hence the horizontal axis represents the CSV. Otherwise,

for large variances the CSV model becomes closer to the vertical axis indicating

significant and random differences between successive intact lengths.

2. Markov Model CSV: When the intact lengths are serially dependent and the

correlation coefficient decreases according to a power law with the increase of

lag, then the generating mechanism of them is Markov process, which has the

autocorrelation structure as ρ0 ¼ 1, but ρi ¼ ρ i
1 i ¼ 1, 2, . . .ð Þ, where ρi is the

lag-one correlation coefficient which may assume any value between�1 and +1.

For this model the CSV model becomes

E γc kkð Þ½ � ¼ k 1� ρ1
1� ρ k

1

1� ρ1

� �
σ2 ð7:89Þ

which reduces to Eq. 7.87 for ρ1 ¼ 0. Positive ρ1 1 value means that the average,

long intact lengths follow long intact lengths and short intact lengths follow

short intact lengths. On the other hand, negative ρ1 implies that long intact

lengths follow short intact lengths or vice versa. Equation 7.84 has power

form for small k values but becomes straight line for large k values as

E γc kkð Þ½ � ¼ k 1� ρ1
1� ρ1

� �
σ2 ð7:90Þ
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Fig. 7.29 Theoretical standard CSV model of independent intact lengths
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Division of both sides by σ2 gives rise to the definition of standard CSV, E
[γc(kk)]/σ

2, as

Γ kð Þ ¼ k 1� ρ1
1� ρ1

� �
ð7:91Þ

The graphical representation of Γ(k) is given in Fig. 7.30.

1. ARIMA Model CSV: These models have been proposed by Box and Jenkins

(1970) and applied to the intact length simulation by Eissa and Şen (1990). The

autocorrelation structure of this model is given as

ρ0 ¼ 1

ρ1 ¼
1� ϕθð Þ ϕ� θð Þ
1þ θ2 � 2ϕθ

ρi ¼ ϕρi�1
1

for i >2. ARIMA model represents intact lengths which are more persistent than

the Markov model case. The substitution of autocorrelation structure into

Eq. 7.87 yields after necessary algebraic manipulation to

E γc kkð Þ½ � ¼ k � ρ1
1� ϕk

1� ϕ

� �
σ2 ð7:92Þ

0

2

4

6

8

10

12

14

2 4 6 8

d
r =

 0.9

0.
70.

5

10

Log - k

E
 (
ŏ c

k)

12 14 16 18 20

Fig. 7.30 Theoretical standard CSV model for Markovian intact lengths
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where ϕ is the model parameter representing extra persistence on the Markov

model. The standard CSV model is

Γ kð Þ ¼ k � ρ1
1� ϕk

1� ϕ
ð7:93Þ

which provides power type of curves for small k values but as k becomes bigger

and bigger, it asymptotically approaches to a straight line portion which can be

expressed as

Γ kð Þ ¼ k � kρ1
1� ϕ

ð7:94Þ

The graphical representation of ARIMA (1, 1) model standard CSVs is presented

in Fig. 7.31.

The comparison of this figure with the Markovian standard CSVs in Fig. 7.30

indicates that in the case of ARIMA (1, 1) model, the attendance of CSV to a

straight line appears at bigger distances. It is obvious that ARIMA model CSV

reduces to Markov and independent model cases for ϕ ¼ ρ1 and ρ1 ¼ 0, respec-

tively. Equation 7.94 helps to identify the correlation structure of intact lengths.

In order to find the correlation coefficient, it is sufficient to take the derivative of

Eq. 7.94 with respect to k which leads to

Δγc ¼
dΓ kð Þ
dk

¼ 1� ρ1
1� ϕ

ð7:95Þ
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in which Δγc indicates the slope of standard CSV at large distance. For inde-

pendent process case ρ1 ¼ 0 and hence Δγc ¼ 1.

This is the case where the RQD formulations in terms of the average

discontinuity number as given by Priest and Hudson (1976) or Şen (1984) for

different distributions are valid. Otherwise, deviations from the straight line that

passes through the origin on a standard CSV plot indicate invalidity of all these

formulations since the intact lengths are correlated.

If the correlation structure is of Markovian type, i.e., ϕ ¼ ρ1, then Eq. 7.95

can be rearranged for the first-order (lag-one) autocorrelation coefficient esti-

mation as

ρ ¼ 1� Δγc
2� Δγc

ð7:96Þ

Example 7.1 The field data for the implementation of the methodology developed

herein are extracted from a previous study by Ryckes (1984) on modes of failure

and the stability of rock slopes. The scanline measurements are carried out at the

Tytherington Quarry, which is located halfway between Thornbury and

Tytherington about 16 km north of Bristol in the county of Avon. The Paleozoic

rocks of the lower coal series in the area are affected by many movements in the

past which led to faults, folds, and unconformities each of which led to different

pattern of discontinuity spacing, i.e., intact length distributions. Due to these

different mechanisms, it is not possible to expect that the intact length sequence

along any scanline in this area has independent correlation structure. In order to

depict the regional discontinuity pattern in this area, three scanlines were set up at

different directions. The bedding plane orientation is almost horizontal for the first

scanline which will be referred herein as SL1. The second scanline, SL2, has a

direction of 20� toward the southwest, whereas the third scanline, SL3, has an

intermediate inclination to the former. All of the scanlines were set up horizontally

as two joint sets were recognized to be vertical. The geometrical and statistical

summaries of these three scanlines are presented in Table 7.6. Due to its

Table 7.6 Scanline data characteristics

Parameter SL1 SL11 SL12 SL2 SL3

Length (m) 13.30 4.82 6.19 7.80 11.19

Intact length

number

75 35 40 79 73

Average 15.48 13.78 15.48 10.00 15.33

Median 8.00 10.00 7.50 7.00 11.00

SD 219.5 14.87 22.18 10.14 14.05

RQD (%) 84.5 88 79.5 74 86.7

Distribution Lognormal

(Fig. 7.4)

Exponential

(Fig. 7.5)

Lognormal

(Fig. 7.6)

Exponential

(Fig. 7.7)

Lognormal

(Fig. 7.8)

x2-square 0.260 0.350 7.880 9.046 2.34
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heterogeneous structure, the first scanline will be examined in two subsets, which

will be referred to as SL11 and SL12.

The frequency distribution functions for scanlines are shown in Fig. 7.32.

The theoretical PDFs have been fitted to the experimental counterparts by using

χ2 tests. For five different scanlines, two types of intact length distributions,

namely, negative exponential and logarithmic normal, emerge as representative.

This difference in the intact length distribution indicates very clearly that their

Fig. 7.32 Sample and theoretical PDFs for intact lengths along (a) SL1, (b) SL11, (c) SL12, (d)
SL2, (e) SL3

7.6 CSV Technique for Identification of Intact Length Correlation Structure 389



occurrences within the rock mass are heterogeneous, i.e., direction dependent, and

consequently, even from this observation, one can qualitatively conclude that intact

lengths have dependent structure. However, classical statistical tests such as the one

used for distribution function identification do not give any clue about the correla-

tion structure of intact lengths.

Eissa and Şen (1990) suggested the use of correlation function technique in

intact length structure exploration. However, correlation techniques are valid only

for the normally distributed intact lengths (Şen 1978). As shown above none of the

intact lengths at Tytherington Quarry are distributed normally, and consequently

the use of correlation techniques is not meaningful. However, the non-normal intact

lengths, especially lognormally distributed ones, can be transformed into normal

distribution easily but the transformation of negative exponential distribution

exposes great difficulties. Nevertheless, even if the transformation is possible, the

transformed intact lengths will not reflect genuine properties of original lengths.

As mentioned in the previous section, the CSVs are robust and valid for any

PDF. In fact, the central limit theorem of classical statistics states that whatever the

underlying probability distribution of a random variable, its successive summations

or averages will have normal distribution. The experimental CSVs for each one of

the scanlines considered in this study are presented in Fig. 7.33. At a first glance,

one can observe the following significant points:

1. None of the CSVs appear as a straight line passing through the origin. This is

tantamount to saying that the intact length occurrences along any scanline

cannot be considered as independent processes but they emerge all from depen-

dent processes. This further implies that in the creature of discontinuities within

the rock mass, uniform conditions did not prevail but rather a complex combi-

nation of multitude geological events such as tectonics, cooling, volcanic activ-

ities, etc. took place jointly.

2. The initial portions of each experimental CSVs shifts toward the distance axis.

Such a shift implies the existence of positive correlation between successive

intact lengths. It further implies that in general big intact lengths follow big

intact lengths and small intact lengths follow small intact lengths. Otherwise, if

negative correlation should prevail, in the occurrence of intact lengths, then the

initial CSV portion would shift toward the vertical axis.

3. Each experimental CSV shows fluctuation about a straight line at large distance.

As stated before the existence of such a straight line as a portion in the CSV

implies that over the distance range of this straight line portion, the intact lengths

are independent from each other. This is the only range where the classical rock

quality designation formulations keep their validity. Local deviations from the

straight line indicate the hidden or minor dependencies in the intact length

evaluation.

4. Over an initial distance range, R, the experimental CSV appears as a curve. This

range is defined quantitatively as the distance between the original point and the

abscissa of the initial point of the late straight line portion as mentioned in step

(3). It is worth mentioning, herein, that as long as the threshold value necessary
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in rock quality designation (RQD) calculation is greater than this range value,

then the calculation is theoretically sound and valid. Otherwise, for threshold

values less than this range, value will give RQD values which are unreliable.

Hence, CSV provides a criterion for checking the validity of classical RQD

values based on 0.1 m (4 in.). Such a valuable criterion cannot be obtained with

the correlation techniques. These techniques are valid only for the distance

domain over which the CSV appears as a straight line.

Fig. 7.33 Sample standard CSV of (a) SL1, (b) SL11, (c) SL12, (d) SL2, (e) SL3
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5. Existence of straight line at large distances identifies the underlying generating

mechanism of the intact lengths as a Markov process. It is already mentioned in

the previous section that if the curvature continues even at reduced rates at large

distances, then the ARIMA (1,1) process becomes effective. In this section, all

the scanlines considerations have Markovian dependence.

6. The slope of the large distance straight line portion is related to the standard

deviation of the underlying intact lengths. It is possible to consider this slope as

the population standard deviation of the intact lengths.

7. The vertical distance between the late distance straight line and the one drawn

parallel to it passing through the origin reflects the magnitude of correlation

coefficient of the intact lengths. Obviously, the smaller this distance, the smaller

will be the intact length correlation. Under the light of the abovementioned

points, the relevant numerical values concerning the initial range, R; vertical

distance, d; and slope Δγc ¼ 1 of final straight line, and the correlation coeffi-

cient estimation from Eq. 6.13 is summarized in Table 7.7.

It is obvious from this table that the correlation coefficient along each scanline

has more or less the same magnitude, and, therefore, the intact length dependence

may be regarded as regionally isotropic. It implies that only one type of model

which is already identified as Markovian type can be used in intact length descrip-

tion. The use of this model in intact length generation is outside of this paper’s
scope. Last but not the least, the following particular points for each scanline can be

inferred from the CSV graph comparison from Fig. 7.33:

1. The CSVs of SL1, SL2, and SL3 have the same pattern in that they are composed

of initial curvature portion and large distance straight line. However, local

deviations around this straight line are rather more persistent in the case of

SL1 than others. This indicates that the intact lengths along SL1 have the same

secondary internal structure. In order to discover this structure, SL1 is divided

into two mutually exclusive portions, namely, SL11 and Sl12.

2. The CSVs for SL11 and SL12 in Fig. 7.33b, c are distinctively different than

others. They exhibit not a single straight line but two successive straight lines.

This implies that along the SL1 direction, there is another secondary geological

event which plays a role in the occurrence of discontinuities along this scanline.

A reliable explanation on this point can be arrived only after a detailed geolog-

ical study of the quarry considered.

Table 7.7 CSV parameters

Parameter SL1 SL11 SL12 SL2 SL3

Range, R(m) 0.74 0.37 1.00 0.68 0.52

Vertical distance, d(m2) 475.0 54.0 465.0 650.0 325.0

Slope, Δyc(m) 8.26 2.00 5.70 15.38 8.06

Correlation coefficient, p 0.495 0.497 0.493 0.460 0.489
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One of the most recent and significant questions about the intact lengths is

whether they have independent or dependent occurrences along a given scanline.

In the past, without consideration of such a question, all of the rock quality

classifications derived from the intact length properties were based on the assump-

tion that the intact lengths are identically and independently distributed. The

difficulty was due to the lack of a reliable technique in quantifying the correlation

structure of intact lengths. However, in this paper, standard CSVs are proposed as a

practical tool in measuring the intact length correlations. The CSV calculations are

straightforward without any difficulty or ambiguity. The CSV graphs show the

change of half-square differences between intact lengths with ordered distance. The

intact lengths are independent only when the standard CSV variation with distance

appears as a straight line that passes through the origin. Otherwise, they are

dependent, and according to the dependence structure, standard CSV graphs take

different shapes. However, they have some common property such as that at small

distances they appear as curves, whereas at big distances again straight lines

dominate but their extensions do not pass through the origin. The slope of the

straight line portions on standard CSV plot gives opportunity in calculating the

intact length correlation coefficient. For instance, if this slope is close to unity, then

and only then the intact lengths can be assumed as independent, and consequently

theoretical RQD relationships with the average number of discontinuities are

reliably used in any rock evaluation project. The application of methodology

developed in this paper has been performed for field data obtained at Tytherington

Quarry in England.

7.7 Multi-directional RQD Simulation

A simple fracture network model is proposed based on the negative exponential

PDF of the discontinuities in all directions. In the fracture generating procedure, the

midpoint coordinates of each fracture is generated by a uniform PDF; the fracture

directions are simulated by normal PDFs and the fracture lengths are derived from a

lognormal PDF. Three different sets of fractures are presented on a planar surface

with different random seeds. The main purpose of this paper is to assess the rock

quality designation (RQD) on the basis of one, two, and three directional fracture

sets. All previous studies up to date theoretically or practically were confined to one

direction only. A graphical procedure is presented for depicting the population

estimate of the average number of discontinuities along a scanline. The substitution

of this estimate into the relevant RQD equation provides the rock quality estimation

in a better representative manner than the classical estimates.

Fracture network models are useful tools for understanding the geotechnical and

geohydrological behaviors of rock masses. These networks can be constructed by

adopting a model for the fracture geometry (position, direction, trace length,

aperture, roughness, etc.), estimating the statistical distribution of the appropriate

geometric parameters through field measurements, and then generating realizations
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of statistically indistinguishable networks. Once the geometry of a particular

realization is specified, then either flow through the network or the geotechnical

properties can be studied. For example, one might benefit from such a procedure in

the study of average fracture lengths in various directions, extreme values of

apertures or traces, average permeability of fracture network under various bound-

ary conditions, etc. Last but not least, fracture network models might be a part of a

larger study of hydrologic response to a perturbation such as the construction of an

underground opening containing nuclear waste.

Simple simulation studies were initiated by Goodman and Smith (1980) for

unidirectional discontinuity spacing with the purpose of obtaining an experimental

relationship between the rock quality designation (RQD) and the average number of

discontinuities. On the other hand, Baczynski (1980) has proposed a zonal concept

for spatial distribution of fractures in rock masses. However, many fracture network

studies have been undertaken especially for the water flow through interconnected

fractures. Among such studies are the equivalent porous medium permeability in

network of discontinuous fractures by Long (1983), the groundwater flow through

fractures by Rouleau (1984), and the mass transport in fractured media by Smith

and Schwartz (1984). Recently, extensive computer simulation studies were

performed by Şen (1984, 1990a) and Eissa and Şen (1990) in assessing the rock

quality classifications. To the best of author’s knowledge so far, all of the fracture

simulation studies in the geomechanics domain are performed unidirectionally

for RQD.

7.7.1 Fracture Network Model

In general, the dimensions, orientation, trace lengths, apertures, and other

geomechanical properties of each fracture are randomly distributed in nature.

Therefore, their replications through Monte Carlo simulations lead to realizations

of a possible portion of the fractured medium with the same statistical properties as

the observed ones. Once a representative simulation model is developed, it is then

possible to obtain the geomechanical properties of the fracture network in detail.

Herein, the main geomechanical property is the directional rock quality designation

(RQD). In order to achieve such a goal in this paper, the discontinuity network

properties are assumed and defined by the following characteristics:

1. The discontinuities within a fracture network are assumed to occur randomly

with their midpoint coordinates, obeying the uniform PDF within a unit frame of

1� 1. It is possible to enlarge such a basic frame by suitable horizontal and

vertical scales in order to obtain desired frame dimensions. The distribution of

discontinuity midpoint location in the frame obeys a 2D Poisson process.

2. Throughout this study the discontinuities are assumed to be planar and of finite

trace lengths so that intersection by any arbitrary plane gives rise to a group of

linear traces. These traces can be represented by an average length and a measure
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of variability in terms of standard deviation. In this study, the trace lengths are

assumed to originate from a lognormal PDF. Besides, this trace length distribu-

tion is independent of the intersection plane orientation.

3. The discontinuity orientations for each set are assumed to have a normal PDF

with an average orientation from the north direction, in addition to a reasonable

variation expressed by the standard deviation. The occurrences of different

directions within each set are independent from each other.

The plausible values of each one of the PDFs mentioned above can be estimated

from field studies by examining either borehole cores or exposed rock faces.

However, reliable measurements of trace lengths can be obtained from extensive

rock faces only. Parameter estimations for the PDFs in describing discontinuities

should be determined from both linear and areal measurements. Priest and Hudson

(1981) and Hudson and Priest (1983) have presented brief explanations of the

scanline measurements, i.e., linear measurements, which provide information

about the frequency of discontinuity occurrences along a scanline as well as

variability of intact lengths and aperture sizes to a certain extent. However, areal

measurements provide significant supplementary information about the discontinu-

ity directions, trace lengths, and midpoints.

7.7.2 RQD Analysis

In its simplest form, the rock quality designation (RQD) is defined as the percentage

of intact length summation, S, that is greater than a threshold value such as 0.1 m

(4 in.) along a scanline length, L, as

RQD ¼ 100
S

L
ð7:97Þ

The rock mass classification is already given in Table 7.1. The practical difficulties

in using Eq. 7.97 are that:

1. It gives a single sample value of RQD along one direction. The practical

difficulty may arise in trying to get a different scanline direction so as to assess

the possible heterogeneities within the rock mass. For instance, along a highway

cut or tunnel excavation, only longitudinal scanlines can be measured for RQD

calculations. Lateral scanlines are possible only in large diameter tunnels and

large highway cuts. Therefore, it is necessary to set up a fracture network model

from the available scanline measurements; and then by using this model, many

scanlines in a multitude of desired directions can be taken synthetically.

2. Most often in nature, either due to narrow rock surface exposure or weathering or

geomorphologic features, it may not be possible to make measurements along

rather long scanlines. This gives rise to another source of error or bias in the

RQD calculations according to Eq. 6.1, (Sen and Kazi 1984). However, a
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well-defined representative fracture network model provides unlimited opportu-

nities in making scanline measurements as long as desired.

3. The RQD calculations from Eq. 7.97 do not give any insight into the intact

length distribution. As mentioned by Şen (1984), different distributions provide

different formulations of the RQD calculation. However, in a fracture network

model, as developed in this paper, the intact length distributions are known, and

therefore one can make more accurate RQD estimations.

4. In a scanline measurement, different sets of fractures are measured irrespective

of their individual probability distribution functions. Therefore, it is not possible

to assess the effect of each set separately from others. However, in a fracture

network model, such assessments can be made rather easily, and the contribution

of each fracture set on the RQD value can be quantified individually.

5. Along the scanline adopted in the field, there may occur only intact lengths

which are all greater (or smaller) than the threshold value. In such a situation,

Eq. 7.97 leads to the rock mass as either excellent or very poor. In order to

account completely for all of the possible intact lengths, the population distri-

bution of fractures at every direction should be known. Such a task can be

achieved easily once the fracture network model is established for the rock mass.

Because of the aforementioned points, it is worth to investigate the RQD value

behavior within a rock mass based on a specific intact length distribution which is

adopted herein as the negative exponential distribution.

The negative exponential distribution function, f(x), of intact lengths can be

expressed through Eq. 7.27 with λ as the average number of discontinuity, i.e.,

fractures, say along one direction. Priest and Hudson (1981) derived the expected

RQD value based on this distribution as in Eq. 7.34 with the threshold value, t. The
difference between Eqs. 7.97 and 7.27 is such that the former gives only sample

estimate of RQD, whereas the latter provides population estimation. Of course, in

any study the latter type of estimation must be preferred, but its calculation is rather

difficult. Theoretically, very long scanline measurements might yield approxi-

mately the population RQD value with the use of Eq. 7.97. However, practical

difficulties such as small rock surface exposures make such an approximation

almost impossible. Besides, the short scanline estimates lead to biased estimations,

i.e., underestimation of the RQD value even if many scanlines were available (Şen

and Kazi 1984). Therefore, in the RQD analysis, as proposed herein a new tech-

nique of its estimation by using Eq. 7.27 is suggested. The field measurements will

not be processed as usually done by Eq. 7.97 but rather by Eq. 7.27.

To this end, let us consider the cumulative probability distribution of the intact

lengths by taking integration of Eq. 7.27 from 0 to any x value. After necessary

calculations, this leads to

F xð Þ ¼ 1� e�λx ð7:98Þ

where F(x) is the cumulative probability which is a nondecreasing function of the

intact length, x. It assumes any value in the range 0–1. However, in order to bring
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this equation into a more practical form, first of all the probability, P(x), of an intact
length to be greater than a given length, x, is considered as P(x) ¼ 1 F(x) and then

natural logarithms of both sides in Eq. 7.98 is leading to

lnP xð Þ ¼ ln 1� F xð Þ½ � ¼ �λx ð7:99Þ

By taking the differentiation of both sides in this expression, it is possible to

obtain d lnP xð Þ ¼ �λx; hence, finally,

dx

dlnP xð Þ ¼ �1

λ
ð7:100Þ

This equation shows a linear relationship between ln P(x) and x, and the slope of
straight line is equal to 1/λ. Consequently, the following points can be advised for a
practicing geologist in order to find the λ value:

1. Find the probability, P(x), of each intact length measurement.

2. Plot on a semilogarithmic paper intact lengths versus the probabilities on the

logarithmic axis.

3. Fit a straight line through the scatter of field points.

4. Calculate the slope value of the straight line. This slope value is, in fact, equal to 1/λ.
5. Substitute the 7 l value into Eq. 6.3 and find the population RQD value.

The only practical difficulty in this procedure is encountered in step 1 for

calculating the cumulative probability. However, there appears to be two distinctive

approaches. One is the usual way of constructing a histogram for the intact

lengths and then transforming it into a cumulative PDF. However, this application

raises practical difficulties, especially when the number of intact lengths is small,

which is almost the case in any field survey. Another way to obtain the cumulative

probability is by means of an empirical approach based on the rank, m, of any

intact length within a data size, n. Hence, the cumulative probability can be

expressed as

P xð Þ ¼ m

nþ 1
ð7:101Þ

This empirical approach is used very often in the practical studies, and it does not

give any difficulty in the applications. The RQD analysis based on this empirical law,

together with the generated intact lengths, is given in the following section.

7.7.3 RQD Simulation Results

The simulation studies in this paper are based upon a computer program which has

been developed to generate in two dimensions a random network of discontinuity
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pattern. Three different orientations are adopted for the fracture orientation, each of

which is assumed to be normally distributed about a given value. Table 7.8 shows

the relevant parameters taken for the simulation of fractures in this paper. However,

in any future study, they may be changed according to the field conditions.

This program can typically handle up to any number of sets, each containing any

desired number of discontinuities. The program finds the beginning and ending

points’ coordinates of any trace. The results of this program appear as a numerical

representation of a 2D discontinuity network. Such a network is one of the example

samples of random discontinuity geometry generated according to the input data

shown in Table 7.8.

The sample area size in these generations is considered as 1� 1. However, its

transformation into any desired size is possible by the multiplication with any

desired scale. Some sample realization of generated discontinuity sets are shown

in Fig. 7.34 in detail as individual and combined fracture sets.

It is important to notice in the individual sets, i.e., Fig. 7.34a, that some fracture

traces intersect with the general frame of the area. These fractures are referred to as

censored trace lengths. The generation scheme gives their total trace lengths, but in

practice they are never known. On the other hand, some short length traces appear

entirely within the sample area. Consideration of the whole set on one sample area,

as in Fig. 7.34c, makes the picture rather complex as it is the case in nature.

In order to assess the effect of different fracture sets individually or collectively

on the RQD calculations, the sample area is overlain with scanlines in the east-west

direction at different levels between 0 and 1. Of course, it is possible to take a

scanline at any level, but the discussion here will concentrate on five different levels

which are at 0.1, 0.3, 0.5, 0.7, and 0.9. The computer program lays these scanlines,

at these levels, on the sample area of a generated fracture network; subsequently, it

finds individually and collectively the intact lengths along them, ordering them in

an ascending order, and attaches to each intact length an order to be used in

Eq. 7.101. The results are presented on semilogarithmic paper as shown in

Fig. 7.35.

A visual inspection of these figures indicates that there appear wide ranges of

data scatter, and with the consideration of more than one set of fracture, the scatter

becomes less. The best straight lines are fitted through the scatter of points; their

slopes are found by considering a full cycle on the logarithmic axis. The

Table 7.8 Input data for fracture network generation

Set 1 Set 2 Set 3

Property Distribution Mean Variance Mean Variance Mean Variance

Orientation Normal 30 9 130* 9 0 4

Trace

length (m)

Lognormal 0.2 0.05 0.18 0.04 0.16 0.04

Intact

length (m)

Negative

exponential

0.013 2� 10�4 0.013 2� 10�4 0.013 2� 10�4

Location Bristol 0.5 0.5 0.5 0.5 0.5 0.5

398 7 Spatial Simulation



corresponding length on the horizontal axis is equal to the slope, i.e., 1/λ 1 param-

eter. This slope calculation procedure is presented in Fig. 7.35c. The results are

summarized in Table 7.9.

As is obvious from Table 7.9, the best rock quality is obtained when only one

fracture set is considered. As expected, an increase in the number of fracture sets

can cause a decrease in the RQD value. There appears a practically significant

difference between the RQD values based on the single set of fracture and those on

two or three fracture sets. The rock quality is of an excellent type when one set of

fractures is considered; whereas the quality deteriorates and becomes very good and

fair for two and three fracture sets, respectively. The last row in Table 7.9 gives

average RQD values for all the scanlines considered in this study. It is obvious from

the comparison of these values that when two sets are considered, the RQD

deterioration relative to one set is almost 15%, whereas for three sets consideration

is almost 30%.
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Fig. 7.34 (a) A fracture set with 30� orientation from the north, (b) two fractures sets with 0� and
30� orientation from the north, (c) three fractures sets with 0�, 30�, and 130� orientation from the

north
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Fig. 7.35 Cumulative probability plots of intact lengths at the 0.1 level. (a) Single set at 30�, (b)
two sets at 0� and 30�, (c) three sets at 0�, 30�, and 130�

Table 7.9 Slope and RQD

values for t¼ 0.1 m
Level One set Two sets Three sets

0.1 Slope 0.267 0.120 0.106

RQD % 94.5 79.8 75.6

0.3 Slope 0.214 0.135 0.128

RQD % 92.0 83.0 81.0

0.5 Slope 0.227 0.117 0.079

RQD % 92.7 79.0 63.9

0.7 Slope 0.212 0.122 0.050

RQD % 91.8 80.0 40.6

0.9 Slope 0.188 0.092 0.076

RQD % 90.0 70.4 62.0

Average RQD % 92.2 78.4 64.6
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Şen Z (1984) RQD models and fracture spacing. J Geotech Eng Am Soc Civ Eng 110(2):203–216
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