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Preface

The 15th International Conference on Medical Image Computing and Computer
Assisted Intervention, MICCAI 2012, was held in Nice, France, at the Acropolis
Convention Center during October 1–5, 2012.

Over the past 14 years, the MICCAI conferences have become a premier
international event with full articles of high standard, indexed by Pubmed, and
annually attracting leading scientists, engineers and clinicians working at the
intersection of sciences, technologies and medicine.

It is interesting to recall that the MICCAI conference series was formed in
1998 by the merger of CVRMed (Computer Vision, Virtual Reality and Robotics
in Medicine), MRCAS (Medical Robotics and Computer Assisted Surgery) and
VBC (Visualization in Biomedical Computing) conferences, and that the first
CVRMed conference was held in Nice in April 1995. At that time the CVRMed
conference was a single event and the proceedings, also published in Lecture
Notes in Computer Science (LNCS), consisted of a single volume of 570 pages.
In 2012 the MICCAI proceedings span three volumes and more than 2000 pages,
and the conference was complemented by 32 MICCAI satellite events (work-
shops, challenges, tutorials) publishing their own proceedings, several of them in
LNCS.

MICCAI contributions were selected through a rigorous reviewing process in-
volving an international Program Committee (PC) of 100 specialists coordinated
by a Program Chair and 2 Program Co-chairs from 3 continents. Decisions were
based on anonymous reviews made by 913 expert reviewers. The process was
double blind as authors did not know the names of the PC members/reviewers
evaluating their papers, and the PC members/reviewers did not know the names
of the authors of the papers they were evaluating.

We received 781 submissions and after the collection of over 3000 anonymous
review forms, the final selection was prepared during a 2-day meeting in Nice
(12–13 May 2012) attended by 50 PC members. They finalized the acceptation
of 252 papers (i.e., acceptance rate of 32%) and also prepared a short list of
candidate papers for plenary presentations. The accepted contributions came
from 21 countries and 5 continents: about 50% from North America (40% USA
and 8% Canada), 40% from Europe (mainly from France, Germany, the UK,
Switzerland and The Netherlands), and 10% from Asia and the rest of the world.

All accepted papers were presented during 6 poster sessions of 90 minutes
with the option, this year for the first time, of displaying additional dynamic
material on large screens during the whole poster session. In addition, a subset
of 37 carefully selected papers (mainly chosen among the short list of candidate
papers recommended by PC members) were presented during 7 single-track ple-
nary oral sessions.



VI Preface

Prof. Alain Carpentier, President of the French Academy of Sciences, was the
Honored Guest of MICCAI 2012 for his pioneering and visionary role in several
of the domains covered by MICCAI. Prof. Carpentier addressed the audience
during the opening ceremony along with Prof. Michel Cosnard, the CEO of
Inria, and introduced one the keynote lectures.

Prof. Jacques Marescaux, director of the Strasbourg IHU (Institut Hospitalo-
Universitaire) delivered the keynote lecture “Surgery for Life Innovation: Infor-
mation Age and Robotics” and Prof. Michel Häıssaguerre, director of the Bor-
deaux IHU, delivered the keynote lecture “Preventing Sudden Cardiac Death:
Role of Structural and Functional Imaging”. Both of these lectures were out-
standing and inspiring.

The conference would not have been possible without the commitment and
hard work of many people whom we want to thank wholeheartedly:

– The 100 Program Committee members and 913 scientific reviewers, listed in
this book, who worked closely with us and prepared many written reviews
and recommendations for acceptance or rejection,

– Xavier Pennec as the Chair for the organization of the 32 satellite events
(workshops, challenges, tutorials) with the assistance of Tobias Heimann,
Kilian Pohl and Akinobu Shimizu as Co-chairs, and all the organizers of
these events,

– Agnès Cortell as the Local Organization Chair, who successfully coordinated
all the details of the organization of the event with the support of a local orga-
nizing team (composed of Marc Barret, Grégoire Malandain, Xavier Pennec,
Maxime Sermesant and two of us), several Inria services (involving heavily
Odile Carron and Matthieu Oricelli), and the MCI company,

– Maxime Sermesant as MICCAI Website Chair,
– Grégoire Malandain for the new organization of posters including digital

screens,
– Isabelle Strobant for the organization of the PC meeting in Nice, the invita-

tions of the MICCAI guests, and her constant support during the preparation
of the event,

– Gérard Giraudon, director of Inria in Sophia Antipolis, for his constant sup-
port,

– Sebastien Ourselin for his help in coordinating industrial sponsorship,
– All students and engineers (mainly from Asclepios and Athena Inria teams)

who helped with the scientific and local organization,
– Emmanuelle Viau, who coordinated the team at MCI including in particular

Thibault Claisse and Thibault Lestiboudois,
– Jim Duncan as the President of the MICCAI Society and its board of direc-

tors who elected MICCAI 2012 to be held in Nice,
– Janette Wallace, Johanne Guillemette and Chris Wedlake for the liaison with

the MICCAI Society,
– James Stewart for his precious help with the Precision Conference System,
– All our industrial and institutional sponsors and partners for their fantastic

support of the conference.



Preface VII

Finally, we would like to thank all the MICCAI 2012 attendees who came
to Nice from 34 countries from all around the world, and we look forward to
meeting them again at MICCAI 2013 in Nagoya, Japan, at MICCAI 2014 in
Cambridge, Massachusetts, USA and at MICCAI 2015 in Munich, Germany.

October 2012 Nicholas Ayache
Hervé Delingette

Polina Golland
Kensaku Mori
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Awards Presented at MICCAI 2011, Toronto

MICCAI Society Enduring Impact Award Sponsored by Philips: The Enduring
Impact Award is the highest award of the MICCAI Society. It is a career award
for continued excellence in the MICCAI research field. The 2011 Enduring Im-
pact Award was presented to Chris Taylor, Manchester University, UK.

MICCAI Society Fellowships: MICCAI Fellowships are bestowed annually on
a small number of senior members of the society in recognition of substantial
scientific contributions to the MICCAI research field and service to the MICCAI
community. In 2011, fellowships were awarded to:

– Christian Barillot (IRISA-CNRS, France)
– Gabor Fichtinger (Queens University, Canada)
– Jerry Prince (Johns Hopkins University, USA)

Medical Image Analysis Journal Award Sponsored by Elsevier: Ola Friman, for
the article entitled: “Probabilistic 4D Blood Flow Tracking and Uncertainty
Estimation”, co-authored by: Ola Friman, Anja Hennemuth, Andreas Harloff,
Jelena Bock, Michael Markl, and Heinz-Otto Peitgen

Best Paper in Computer-Assisted Intervention Systems and Medical Robotics,
Sponsored by Intuitive Surgical Inc.: Jay Mung, for the article entitled “A Non-
disruptive Technology for Robust 3D Tool Tracking for Ultrasound-Guided In-
terventions”, co-authored by: Jay Mung, Francois Vignon, and Ameet Jain.

MICCAI Young Scientist Awards: The Young Scientist Awards are stimulation
prizes awarded for the best first authors of MICCAI contributions in distinct
subject areas. The nominees had to be full-time students at a recognized uni-
versity at, or within, two years prior to submission. The 2011 MICCAI Young
Scientist Awards were given to:

– Mattias Heinrich for his paper entitled “Non-local Shape Descriptor: A New
Similarity Metric for Deformable Multi-modal Registration”

– Tommaso Mansi for his paper entitled “Towards Patient-Specific Finite-
Element Simulation of Mitral Clip Procedure”

– Siyang Zuo for his paper entitled “Nonmetalic Rigid-Flexible Outer Sheath
with Pneumatic Shapelocking Mechanism and Double Curvature Structure”

– Christof Seiler for his paper entitled “Geometry-Aware Multiscale Image
Registration via OBB Tree-Based Polyaffine Log-Demons”

– Ting Chen for her paper entitled “Mixture of Segmenters with Discriminative
Spatial Regularization and Sparse Weight Selection”
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Dominant Component Analysis of Electrophysiological Connectivity
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Yasser Ghanbari, Luke Bloy, Kayhan Batmanghelich,
Timothy P.L. Roberts, and Ragini Verma



XXX Table of Contents – Part III

Tree-Guided Sparse Coding for Brain Disease Classification . . . . . . . . . . . 239
Manhua Liu, Daoqiang Zhang, Pew-Thian Yap, and Dinggang Shen

Improving Accuracy and Power with Transfer Learning Using a
Meta-analytic Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
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Abstract. Diffusion Spectrum Imaging (DSI) offers detailed information on 
complex distributions of intravoxel fiber orientations at the expense of extremely 
long imaging times (~1 hour). It is possible to accelerate DSI by sub-Nyquist 
sampling of the q-space followed by nonlinear reconstruction to estimate the 
diffusion probability density functions (pdfs). Recent work by Menzel et al. imposed 
sparsity constraints on the pdfs under wavelet and Total Variation (TV) transforms. 
As the performance of Compressed Sensing (CS) reconstruction depends strongly 
on the level of sparsity in the selected transform space, a dictionary specifically 
tailored for sparse representation of diffusion pdfs can yield higher fidelity results. 
To our knowledge, this work is the first application of adaptive dictionaries in DSI, 
whereby we reduce the scan time of whole brain DSI acquisition from 50 to 17 min 
while retaining high image quality. In vivo experiments were conducted with the 
novel 3T Connectome MRI, whose strong gradients are particularly suited for DSI. 
The RMSE from the proposed reconstruction is up to 2 times lower than that of 
Menzel et al.’s method, and is actually comparable to that of the fully-sampled 50 
minute scan. Further, we demonstrate that a dictionary trained using pdfs from a 
single slice of a particular subject generalizes well to other slices from the same 
subject, as well as to slices from another subject. 

1 Introduction 

Diffusion weighted MR imaging is a widely used method to study the interconnectivity 
and structure of the brain. Diffusion Tensor Imaging (DTI) is an established diffusion 
weighted imaging method, which models the diffusion as a univariate Gaussian 
distribution (1). One limitation of this model arises in the presence of fiber crossings, and 
this can be addressed by using a more involved imaging method. Diffusion Spectrum 
Imaging (DSI) samples the full q-space and yields a complete description of the diffusion 
probability density function (pdf) (2). While DSI is capable of resolving complex 
distributions of intravoxel fiber orientations, full q-space coverage comes at the expense 
of substantially long scan times (~1 hour).     

Compressed Sensing (CS) comprises algorithms that recover data from undersampled 
acquisitions by imposing sparsity or compressibility assumptions on the reconstructed 
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images (3). In the domain of DSI, acceleration with CS was successfully demonstrated 
by Menzel et al. (4) by imposing wavelet and Total Variation (TV) penalties in the pdf 
space. Up to an undersampling factor of 4 in q-space, it was reported that essential 
diffusion properties such as orientation distribution function (odf), diffusion coefficient, 
and kurtosis were preserved (4). 

The performance of CS recovery depends strongly on the level of sparsity of the 
signal in the selected transform domain (3). While prespecified transformations such 
as wavelets and spatial gradients yield sparse signal representation, tailoring the 
sparsifying transform based on the characteristics of the particular signal type may 
offer even sparser results. K-SVD is an algorithm that designs a dictionary that 
achieves maximally sparse representation of the input training data (5). The benefit of 
using data-driven, adaptive dictionaries trained with K-SVD was also demonstrated in 
CS reconstruction of structural MR imaging (6).  

In this work, we employ the K-SVD algorithm to design a sparsifying transform that 
captures the structure in diffusion pdfs and yields a signal representation with increased 
level of sparsity. Coupling this adaptive dictionary with the FOcal Underdetermined 
System Solver (FOCUSS) algorithm (7), we obtain a parameter-free CS algorithm. With 
3-fold undersampling of q-space, we demonstrate in vivo up to 2-fold reduced pdf 
reconstruction errors relative to our implementation of the CS algorithm that uses 
wavelets and variational penalties by Menzel et al. (4). At higher acceleration factors of 5 
and 9, we still demonstrate substantial improvement. For additional validation, the 
RMSE of the reconstructed ‘missing’ diffusion images were calculated by comparing 
them to a gold standard dataset obtained with 10 averages. In this case, dictionary-based 
reconstructions were seen to be comparable to the fully-sampled 1 average data. Further, 
we show that a dictionary trained on data from a particular subject generalizes well to 
reconstruction of another subject’s data, still yielding significantly reduced reconstruction 
errors. Hence, application of the proposed method might reduce a typical 50-minute DSI 
scan to 17 minutes (upon 3× acceleration) while retaining high image quality. 
Additionally, we also investigate using a simple ℓ -norm penalty in the pdf space with 
the FOCUSS algorithm, and show that this approach gives comparable results to the 
more involved wavelet- and TV-based reconstruction by Menzel et al. (4), while being 
computationally more efficient. 

2 Theory 

CS Recovery with Prespecified Transforms  

Letting ∈ represent the 3-dimensional diffusion pdf at a particular voxel as a 
column vector, and ∈  denote the corresponding undersampled q-space 
information, CS recovery with wavelet and TV penalties aim to solve the convex 
optimization problem at a single voxel, 

  Ω · · TV  (Eq. 1)

where Ω is the undersampled Fourier transform operator,  is a wavelet transform 
operator, TV .  is the Total Variation penalty, and  and  are regularization 
parameters that need to be determined. 
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Training an Adaptive Transform with K-SVD 

Given an ensemble ∈  formed by concatenating  example pdfs  
collected from a training dataset as column vectors, the K-SVD algorithm (5) aims to 
find the best possible dictionary for the sparse representation of this dataset by solving,   

 ,  ∑ subject to  (Eq. 2)

where  is the matrix that contains the transform coefficient vectors  as its 
columns,  is the adaptive dictionary formed by example pdfs,  is a fixed constant 
that adjusts the data fidelity, and .  is the Frobenius norm. The K-SVD works 
iteratively, first by fixing  and finding an optimally sparse  using orthogonal 
matching pursuit, then by updating each column of  and the transform coefficients 
corresponding to this column to increase data consistency. 
 
CS Recovery with an Adaptive Transform Using FOCUSS 

The FOCUSS algorithm aims to find a sparse solution to the underdetermined linear 
system Ω , where  is the vector of transform coefficients in the transform 
space defined by the dictionary  using the following iterations, 

For iteration number 1, … , 

 W , /
 (Eq. 3)

 argmin   such that Ω  (Eq. 4)
 

  (Eq. 5)

Here,  is a diagonal weighting matrix whose jth diagonal entry is denoted as W , , 
 is the estimate of transform coefficients at iteration t whose jth entry is . The 

final reconstruction in diffusion pdf space is obtained via the mapping .  
We note that it is possible to impose sparsity-inducing ℓ  penalty directly on the 

pdf coefficients by taking  to be the identity matrix . A detailed description of 
application of FOCUSS algorithm to MRI can be found in (8), where it is shown that 
reweighted ℓ  norm solutions for the auxiliary variable  induce ℓ  penalty on . 

3 Methods 

Diffusion EPI acquisitions were obtained from three healthy volunteers (subjects A, B 
and C) using a novel 3T system (Magnetom Skyra Connectom, Siemens Healthcare, 
Erlangen, Germany) equipped with the AS302 “Connectom” gradient with Gmax = 300 
mT/m (here we used Gmax = 200 mT/m) and Slew = 200 T/m/s. A custom-built 64-
channel RF head array (9) was used for reception with imaging parameters of 2.3 mm 
isotropic voxel size, FOV = 220×220×130, matrix size = 96×96×57, bmax = 8000 s/mm2, 
514 directions full sphere q-space sampling organized in Cartesian grid with interspersed 
b=0 image every 20 TRs (for motion correction), in-plane acceleration = 2× (using 
GRAPPA algorithm), TR/TE = 5.4 s / 60 ms, total imaging time ~50 min. In addition, at 
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5 q-space points ( 1,1,0 ,  0,2, 1 ,  0,0,3 , 0,4,0 , and 5,0,0   residing on 5 
different shells, 10 averages were collected for noise quantification. Eddy current related 
distortions were corrected using the reversed polarity method (10). Motion correction 
(using interspersed b=0) was performed using FLIRT (11) with sinc interpolation. 

Variable-density undersampling (using a power-law density function (3)) with R = 3 
acceleration was applied in q-space on a 12×12×12 grid. Three different adaptive 
dictionaries were trained with data from slice 30 of subjects A, B and C. Reconstruction 
experiments were applied on test slices that are different than the training slices. In 
particular, two reconstruction experiments were performed. First, voxels in slice 40 of 
subject A were retrospectively undersampled in q-space, and reconstructed using 5 
different methods: wavelet+TV method of Menzel et al. (4),  ℓ -regularized FOCUSS, 
and Dictionary-FOCUSS with the three dictionaries trained on three different subjects. 
Second, voxels in slice 25 of subject B were undersampled with the same R = 3 sampling 
pattern, and again reconstructed with wavelet+TV, ℓ -FOCUSS, and the three 
dictionaries trained on three different subjects. For Menzel et al.’s method, Haar wavelets 
in MATLAB’s wavelet toolbox were used. The regularization parameters  and  in Eq.1 
were chosen by parameter sweeping with values 10 , 3 · 10 , 10 , 3 · 10  to 
minimize the reconstruction error of 100 randomly selected voxels in slice 40 of subject 
A. The optimal regularization parameters were found to be 3 · 10  for wavelet and 10  for the TV term. By taking the fully-sampled data as ground-truth, the fidelity 
of the five methods were compared using root-mean-square error (RMSE) normalized by 
the ℓ -norm of ground-truth as the error metric both in pdf domain and q-space. 

Since the fully-sampled data are corrupted by noise, computing RMSEs relative to 
them will include contributions from both reconstruction errors and additive noise. To 
address this, the additional 10 average data acquired at the selected 5 q-space points 
were used. As a single average full-brain DSI scan takes ~50 min, it was not practical 
to collect 10 averages for all of the undersampled q-space points. As such, we rely on 
both error metrics, namely: the RMSE relative to one average fully-sampled dataset 
and the RMSE relative to gold standard data for 5 q-space points. 

4 Results 

Fig.1 depicts the error of the five reconstruction methods in the pdf domain for each 
voxel in slice 40 of subject A. At R = 3 acceleration, reconstruction error of Menzel et 
al.’s method averaged over brain voxels in the slice was 15.8%, while the error was 
15.0% for ℓ -regularized FOCUSS. Adaptive dictionary trained on subject A yielded 
7.8% error. Similarly, reconstruction with dictionaries trained on pdfs of the other 
subjects B and C returned 7.8% and 8.2% RMSE, respectively. At R = 5 and 9, 
Dictionary-FOCUSS with training on subjects C and B returned 9.3% and 10.0% RMSE, 
respectively. 

In Fig.2, reconstruction errors at R = 3 on slice 25 of subject B are presented. In 
this case, Menzel et al.’s method yielded 17.5% average RMSE, and ℓ -FOCUSS had 
17.3% error. Dictionary trained on slice 40 of subject B returned 11.4% RMSE, while 
adaptive transforms trained on subjects A and C had 11.4% and 11.8% error, 
respectively. At higher acceleration factors of R = 5 and 9, Dictionary-FOCUSS with 
training on subjects C and A returned 13.5% and 14.2% RMSE, respectively. 
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Reconstruction errors in q-space images of subject A obtained with Wavelet+TV, ℓ -FOCUSS and Dictionary-FOCUSS for the undersampled q-space directions are 

plotted in Fig.3. For two particular diffusion directions, q-space reconstructions 
obtained with the three methods are also presented.  

Fig. 1. RMSE at each voxel in slice 40 of subject A upon R=3 acceleration and reconstruction 
with Menzel et al.’s method (a), ℓ -FOCUSS (b), Dictionary-FOCUSS trained on subjects A 
(c), B (f), and C (g). Dictionary-FOCUSS errors in (d) and (e) are obtained at higher 
acceleration factors of R=9 and 5. 

Fig. 2. RMSE at each voxel in slice 25 of subject B upon R=3 acceleration and reconstruction
with Menzel et al.’s method (a), ℓ -FOCUSS (b), Dictionary-FOCUSS trained on subjects B
(c), A (f), and C (g). Dictionary-FOCUSS errors in (d) and (e) are obtained at higher
acceleration factors of R=9 and 5. 
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To allow inter-subject 
comparison, slices that correspond 
to approximately the same 
anatomical region in subjects A, B 
and C were also reconstructed. As 
shown in Fig.1f, slice 40 of subject 
A when reconstructed using the 
dictionary trained on subject B 
gave 7.8% average error. Slices 38 
of subjects B and C yielded 7.3% 
and 9.3% RMSE when 
reconstructed with the dictionary 
trained on subject A upon 3-fold 
undersampling (not shown). 

In an attempt to quantify the 
noise in q-space and separate it 
from CS reconstruction error, we 
take the 10 average data acquired 
at 5 q-space directions as ground 
truth and compute RMSEs 
relative to them. Fig.4 shows the 
error plots for the 1 average fully 
sampled data, Wavelet+TV, ℓ -
FOCUSS, and Dictionary-
FOCUSS reconstructions relative 
to the 10 average data for slices 
from subjects A and B. 

 
 
 
 

 
 
 
 
 
 
 
 
 
     

 
 
 

Fig. 3. Top: RMSEs in ‘missing’ q-space directions 
estimated with Wavelet+TV, ℓ - and Dictionary-
FOCUSS at R=3. q-space images at directions [5,0,0] 
(a) and [0,4,0] (c) are also depicted. In (b), 
Wavelet+TV and ℓ  recons of dir. [5,0,0] are scaled 
up to have same ℓ  norm as fully-sampled 10 avg . 

Fig. 4. Panel on the left depicts RMSEs of Wavelet+TV, ℓ -FOCUSS and Dictionary-
FOCUSS at R=3  and fully-sampled 1 average data computed in 5 q-space locations relative to 
the 10 average data for subject A. Panel on the right shows the same comparison for the slice 
belonging to subject B. 
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Fig.5 presents Orientation Distribution Function (ODF) visualization of reconstructions 
obtained at 3-fold acceleration using Wavelet+TV and Dictionary-FOCUSS, and 
compares the tractography solutions obtained with adaptive reconstruction and fully-
sampled data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

5 Discussion 

This work presented the first application of adaptive transforms to voxel-by-voxel CS 
reconstruction of undersampled q-space data. Relative to reconstruction with prespecified 
transforms, the proposed algorithm has up to 2 times reduced error in the pdf domain at 
the same acceleration factor (R = 3), while requiring no regularization parameter tuning. 
When the undersampling ratio was increased to R = 5 and even up to R = 9, the proposed 
method still demonstrated substantial improvement relative to using prespecified 
transforms at R = 3 (Figs.1 and 2). This will render DSI clinically feasible, by cutting a 
50 min scan to 5.5 min upon 9-fold acceleration. As demonstrated, a dictionary trained 
with pdfs from a single slice of a particular subject generalizes to other slices of the same 
subject, as well as to different subjects. However, further tests are needed to see if 
dictionaries can generalize across healthy and patient populations, across age groups, or 
fundamentally different anatomical locations. 

Since the acquired 1 average DSI data is corrupted by noise (especially in the outer 
shells), it is desired to obtain noise-free data for more reliable computation of CS 
reconstruction errors. Because even the 1 average full-shell acquisition takes ~50 min, 
it is practically not possible to collect multiple-average data at all q-space points. To 
address this, one representative q-space sample at each shell was collected with 10 
averages to serve as “(approximately) noise-free” data. When the noise-free data were 

Fig. 5. ODFs for subject A using Wavelet+TV (a), dictionary (b), and fully-sampled data (c) 
within the ROI in the FA map in (d). Tracts with R=3 dictionary recon (e) and fully-sampled 
data (f) are also presented. 
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taken to be ground-truth, the dictionary reconstruction with 3-fold undersampling was 
comparable to the fully-sampled 1 average data for both subjects (Fig.4).  

RMSE in Fig.2 was overall higher than in Fig.1. A possible explanation is the 
inherently lower signal-noise-ratio (SNR) in the lower axial slice, particularly in  
the center area of the brain which is further away from the receive coils. In particular, the 
error is higher in the central region of the image where the SNR is expected to be lowest. 
Future work includes a detailed analysis of how SNR level affects the reconstruction 
performance of the proposed CS algorithm and the dictionary learning step. 

As seen in Fig.3, wavelet and TV penalized reconstruction and ℓ -FOCUSS yield 
especially poor quality results in estimating the high q-space samples. In particular, as 
depicted in Fig.3a, these CS methods tend to underestimate the high q-space content. 
However, this is not a simple scaling problem, even when q-space images are scaled 
to have the same ℓ -norm as the fully-sampled 10 average data, they yield either flat 
(Wavelet+TV) or grainy ( ℓ -FOCUSS) results (Fig.3b). ODF visualization and 
tractography solutions in Fig.5 show good agreement between the adaptive 
reconstruction and the fully-sampled dataset. Average FA and tract volume metrics 
obtained from 18 major white-matter pathways were seen to support this good 
agreement (data not shown due to space limitation). As the tract results show that 
main fiber bundles are not corrupted, adaptive reconstruction causes no regional bias 
in the reconstruction.  

In our implementation, per voxel processing time of ℓ -FOCUSS was 0.6 seconds, 
while this was 12 seconds for Dictionary-FOCUSS and 27 seconds for Wavelet+TV 
method on a workstation with 12GB memory and 6 processors. Hence, full-brain 
reconstruction using the Dictionary-FOCUSS algorithm would still take several days. 
Because each voxel can be processed independently, parallel implementation is likely 
to be a significant source of performance gain. 

The proposed CS acquisition/reconstruction can be combined with other 
techniques to further reduce the acquisition time and/or improve reconstruction 
quality. In particular, combining the proposed method with the Blipped-CAIPI 
Simultaneous MultiSlice (SMS) acquisition (12) could reduce a 50 minute DSI scan 
to mere 5.5 minutes upon 9-fold acceleration (3×3 CS-SMS) while retaining high 
image quality.  
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Abstract. In this work, we propose an original and efficient approach
to exploit the ability of Compressed Sensing (CS) to recover Diffusion
MRI (dMRI) signals from a limited number of samples while efficiently
recovering important diffusion features such as the Ensemble Average
Propagator (EAP) and the Orientation Distribution Function (ODF).
Some attempts to sparsely represent the diffusion signal have already
been performed. However and contrarly to what has been presented in
CS dMRI, in this work we propose and advocate the use of a well adapted
learned dictionary and show that it leads to a sparser signal estima-
tion as well as to an efficient reconstruction of very important diffusion
features. We first propose to learn and design a sparse and paramet-
ric dictionary from a set of training diffusion data. Then, we propose a
framework to analytically estimate in closed form two important diffu-
sion features : the EAP and the ODF. Various experiments on synthetic,
phantom and human brain data have been carried out and promising
results with reduced number of atoms have been obtained on diffusion
signal reconstruction, thus illustrating the added value of our method
over state-of-the-art SHORE and SPF based approaches.

1 Introduction

Diffusion MRI (dMRI) modality is known to assess the integrity of brain anatom-
ical connectivity and to be very useful for examining and quantifying white mat-
ter microstructure and organization not available with other imaging modalities.
However, dMRI data acquisition is also well known to be significantly time-
consuming, in particular when Diffusion Spectrum Imaging (DSI) or High An-
gular Resolution Diffusion Imaging (HARDI) is to be used in a clinical setting.
Accelerated acquisitions, relying on a smaller number of sampling points, are
thus more than welcome. Compressed Sensing (CS) [3] is a recent technique
to accurately reconstruct sparse signals from few measurements. In this work,
we present a CS based method for accelerating the reconstruction of the EAP
and the ODF, by significantly reducing the number of measurements. Some ap-
proaches have been recently proposed in order to build dictionaries that enable
sparse representations (For a summary see [1]). However, these works lead to
non-parametric dictionaries, which do not enable to obtain continuous repre-
sentations of the diffusion signal neither allow to get closed form for diffusion
features such as EAP and ODF. For instance, in [9] and in [10], the authors
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nicely proposed a dictionary for a sparse modeling in dMRI. However, their dic-
tionary is just postulated to be the Spherical Ridgelets in [9] and the Spherical
Wavelets in [10] i.e the dictionary is not learnt from a training phase as ours. In
addition, their dictionary is used only for modelling diffusion signal in [9] and
only the ODF in [10] i.e not the EAP and the ODF.

In this work, we propose to learn a parametric dictionary based on a frame-
work especially designed for dMRI. This framework enables a continuous mod-
eling of the diffusion signal and leads to analytical and closed form formulas to
estimate two important diffusion features : the EAP, which represents the full
3D displacement probability function of water molecules at every voxel and the
ODF, which characterizes the relative likelihood of water diffusion along any
given angular direction. The article is structured as follows : we start by intro-
ducing the dMRI framework together with the proposed basis, then we focus on
the parametric dictionary learning algorithm and finally we conclude with an
experimental part illustrating the added-value of our approach with promising
results showing how our approach allows to accurately estimate the diffusion
signal with much less atoms (almost the half) than using state-of-the-art bases
such as SHORE [8,4] and SPF [2].

2 dMRI Framework for Recovery of EAP and ODF

In this section, we introduce the dMRI framework to model the diffusion signal
and its important features: the EAP and the ODF. Due to a lack of space, we
omit all the details and refer the interested reader to our research report, to be
included in the final version of this article.

2.1 Basis for Diffusion Signal Estimation

Inspired by the basis proposed in the state-of-the-art diffusion signal estimation
i.e the SHORE [8,4], the SPF [2], we propose to express the diffusion signal as
a truncated linear combination of 3D functions Ψnlm where each basis function
can be decomposed in a radial part and an angular part represented by a the
symmetric and real spherical harmonics (SH) Y (u) [5].

E(qu) =
N∑

n=0

L∑
l=0

l∑
m=−l

cnlmΨnlm(anlm, ζnlm, qu), (1)

with cnlm = 〈E, Ψnlm〉 are the transform coefficients, N the radial order, L the
angular order , q the norm of the effective gradient, u a unitary vector. We
let j = j(n, �,m) = (n + 1) × ((�2 + � + 2)/2 + m) and rewrite formula 1 as

E(qu) =
∑J

j=0 cjΨj(aj, ζj , qu). Then, Ψj is given by

Ψj(aj, ζj , qu) =
1

√
χaj

exp

(
− q2

2ζj

)(
q2

ζj

)l/2 n∑
i=0

aj(i)

(
q2

ζj

)i

Yj(u), (2)
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where χaj
is the normalization factor in the l2-norm sense, aj ∈ Rn+1 a vector of

polynomial parameters associated with the scaled parameter ζj , and Yj = Y m
�

the spherical harmonic of order � and degree m with �, m the index related to
j. aj and ζj are the parameters we want to learn for each 3D function Ψj .

It’s worthwhile to note that our basis Ψj in Eq. 2 simplifies to the SHORE
basis [8,4] by setting aj as the generalized Laguerre polynomial coefficients of
degree n and l.

2.2 On EAP and ODF Recovery: Closed Formulas

Using the basis function we proposed in the previous section, it is possible to
derive important and analytical closed formulas for the two diffusion features :
the EAP and the ODF.

EAP Feature: The EAP, denoted P (Rr), is the inverse Fourier transform of
the normalized diffusion signal, denoted E(qu). From eq. 1, we can derive the
following expression for the EAP :

P(aj, ζj, Rr) =

J∑

j=0

cj

2π(−1)
l
2

√
χaj

R
Yj(r)

n∑

i=0

aj(i)

ζ

l
2
+i

j

(2πR)
l+ 1

2 Γ ( 3
2

+ l + i)

2
l+3

2 ( 1
2ζj

)
3
2
+l+i

Γ (l + 3
2
)

1F1(
3

2
+ l + i; l +

3

2
;−2ζjπ

2
R

2
),

(3)

where 1F1 is the confluent hypergeometric function and Γ the Gamma function.

ODF Feature: The ODF is given by Υ (r) =
∫ ∞
0

P (R · r)R2dR . We can show that
the following closed form can be derived for the ODF :

Υ ((aj, ζj , r) =
1

√
4π

+

J∑

j=0

Yj(r)

⎛

⎜⎜⎝
N∑

n=0

cj
(−1)

l
2 πl+1

2
3
2
√

χaj

(
1

2ζjπ2

) 3
2
+ l

2
n∑

i=0

aj(i)

ζ
l
2
+i

j

Γ ( l
2 + 3

2 )Γ ( l
2 + i)

(
1

2ζj

) 3
2
+l+i

Γ ( l
2 )

⎞

⎟⎟⎠ .

(4)

3 Dictionnary Learning

Here, we introduce a parametric dictionary learning method that enables a sparse
representation of any diffusion signal from continuous functions. We started by
considering the K-SVD [1] algorithm as a model for our own method. However,
the K-SVD technique designs non-parametric dictionaries, which presents some
shortcomings among which : 1) a non-parametric method does not enable to
compute a continuous version of our signal (not suitable for interpolation, nei-
ther data extrapolation) , 2) we could not get closed form for diffusion features,
which would be very appreciated for EAP and ODF estimations, and 3) the K-
SVD is acquisition-dependant. Although the K-SVD method appears powerful
in designing sparse dictionary, these drawbacks push towards a better design via
parametric dictionary learning. This algorithm consists in a sparse coding step
and a dictionary update step, where the polynomial and scale parameters aj, ζj
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are estimated using a non linear approach, the Levenberg-Marquardt algorithm
(LMA). The section 3.1 presents our dictionary learning algorithm and the sec-
tion 3.2 describes the method we use to reconstruct any diffusion signal using
the dictionary previously learned.

3.1 Dictionary Learning Algorithm

Notation: Suppose the training set consists in M observations {si}Mi=1 (i.e. M
voxels). For each observation si we have ms samples in the q-space, i.e. s1..M ∈
Rms . We represent {si}Mi=1 in matrix form S ∈ Rms×M where si is the ith

column. The algorithm searches for the dictionary D ∈ Rms×J , that enables
the sparsest representation for every column of S. The dictionary consists in J
atoms {dj}Jj=1 with dj ∈ Rms a column ofD. dj corresponds to the 3D function
Ψj in eq. 2. Here, we do not try to directly estimate dj but the polynomial and
scale parameters aj and ζj , that characterize the atom dj . For each observation
si, we define a coefficient vector ci ∈ Rnc , which forms the ith column of the
coefficient matrix C ∈ Rnc×M .

Given a training data set S, we search for the dictionary D that gives the
sparsest representation of this set. The overall problem is to find the dictionary
D and the vectors ci in C by solving :

argmin
ci,D

{‖S−DC‖22} subject to ∀i‖ci‖1 ≤ ε (5)

with ε ∈ R. The method to solve Eq. 5 is described in the following and a
summary of the algorithm is given in alg. 1. This algorithm iteratively alternates
between sparse signal estimations (i.e. C) and updates of the dictionary (i.e. D)
so to better fit the training data set (i.e. S).

In the first step, the estimation of the column vector ci is performed separately
for each signal si, i.e for each column of S. Sparse estimation is achieved through
a fast iterative thresholding shrinkage algorithm (FISTA) [6].

In the second step, we update the dictionary D. For this purpose, we compute
an absolute averaged coefficient vector, ĉ = 1/M

∑
i |ci|, and find the atoms

associated with the non zeros values of ĉ. It gives a rough idea of which atoms
are used for modeling the signal and enables to discard some unnecessary atoms,
which enforces sparsity. Then, in this set of atoms, we update one atom at a
time, while fixing all the others. This process is repeated for all the non-zero
coefficients in ĉ. The in-update atom is denoted dk. To update this atom, we
begin by decomposing the error term in eq. 5 as in [1], i.e.

‖S−DC‖2�2 =

∥
∥
∥
∥
∥
∥

S−
M∑

j=1

djc
r
j

∥
∥
∥
∥
∥
∥

2

�2

=

∥
∥
∥
∥
∥
∥

⎛

⎝S −
∑

j �=k

djc
r
j

⎞

⎠− dkc
r
k

∥
∥
∥
∥
∥
∥

2

�2

= ‖Ek − dkc
r
k‖2�2 , (6)

where crj is the jth row of C. We could use the LMA in order to fit the atom dk

to the error matrix Ek. However, because we take into account all the coefficients
and atoms, this dictionary update doesn’t enforce sparsity. Hence, we need to
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Algorithm 1. Semi-parametric dictionary learning
1. Initialize the dictionary by fixing the polynomial and scale parameters aj, ζj .

2. Sparse estimation of the observations {si}M
i=1. We use the FISTA algorithm to solve for ci

associated to each observation : argminci
{‖si − Dci‖2

2} subject to ∀i‖ci‖1 ≤ ε (Eq. 5bis).
3. Updating the dictionary. Compute the absolute averaged coefficients vector ĉ = 1/M

∑
i |ci|.

Repeat until all the atoms of the dictionary , with non zeros value in ĉ, have been scanned :

– Let note the current atom, the kth .
– Define the group of observation that use this atom : wk = {i, 1 ≤ i ≤ M, ck(i) �= 0}.
– Compute the error matrix Ewk

∈ Rm×card(wk).
– Apply Levenberg - Marquardt algorithm to estimate the polynomials and scale parameters

ak,1..n, ζk, which enable dk to best fit Ewk
– Update the atoms according to ak,1..n, ζk.

4. Go back to the step 2 unless the overall error does not vary anymore

reduce the number of atoms used for modeling the signal. For this purpose, we
define the group of observations that use the atom dk, i.e wk = {i, 1 ≤ i ≤
M, ci(k) 	= 0}. In other words, they are the observations whose the coefficients,
associated with the atom dk are non zeros. This forces the atom dk to fit only
a subset of observations and not the entire data set and, thus, enforces sparsity.
Then, we compute the error matrix Ewk

∈ Rms×card(wk). It corresponds to the
estimation error between the observation vector {si}i∈wk

that forms the columns
of Swk

∈ Rm×card(wk) and the signal estimated for the group of observation wk

without taking into account the kth atom, i.e S̃wk
=
∑

j �=k djc
T
j (i), i ∈ wk.

Finally, we use a non linear approach (the LMA) to estimate the polynomials
and scale parameters ak,1..n, ζk , which enable dk to fit the error matrix Ewk

.
The method, as a whole, is given in Alg. 1.

Convergence: The sparse coding step (Eq. 5bis in Alg. 1) is well known to be
convex and FISTA allows to converge to the unique solution specific to the cur-
rent dictionary D. The dictionary update step, where aj, ζj are estimated using
the Levenberg-Marquardt algorithm (LMA), could converge to local minima,
depending on the initial solutions. In our experiments, a good convergence has
been reached after few iterations with the polynomials parameters initialized as
Laguerre polynomials coefficients of order n and l and a fixed ζ = 700 [4].

3.2 Reconstruction

The purpose of section 3.1 was to learn the dictionary D. Now, using the esti-
matedD, we are able to model any diffusion signal s , i.e. not in the training data
set used to learn D, by solving for c and with FISTA [6], the convex problem
argminc{‖s−Dc‖22} subject to ‖c‖1 ≤ ε, where ε is a small number.

4 Results

Synthetic Data from a Multi-tensor Model. The attenuation signal is
described, by F fibres, as E(qu) =

∑F
f=1 pf exp(−4π2τq2uTDfu) where a fibre

f is defined by a tensor matrix Df and weight pf . q denotes the norm of the
effective gradient and u is a unitary vector in Cartesian coordinate.
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Firstly, we learn our dictionary with a training data composed of M = 5000
synthetic signals, evaluated on ms = 1000 q-space samples spread between
bmin = 0 and bmax = 10000 s/mm2. For each diffusion signal generated we
randomly vary the number of fibers (between 1 and 2 fibers), the fractional
anisotropy related to a fiber (between 0.75 and 0.90) and the crossing angle
between these fibers (between 30◦ and 90◦). The maximal angular and radial
order of the dictionary are respectively set to L = 8 and N = 5, which gives
270 atoms. The algorithm 1 converges in 9 iterations in about 20 minutes with
Python and a CPU at 2.8 GHz.

Secondly, we proceed to the signal reconstruction (see sec. 3.2) using our
previous learned dictionary. To evaluate the reconstruction, we compute the
normalized mean square error (NMSE =‖E − Ẽ‖22/‖E‖22) between the original
observation signal E and the estimated signal Ẽ. We consider three cases : one
fiber, two fibers crossing at 90◦ and two fibers crossing at 60◦, and generate them
using the multi-tensor model. We take 50 samples, a clinically acceptable number
of acquisitions, spread on three shells of b-values 500, 1500, 2500 s/mm2 along
a spherical uniform distribution, and add Rician noise with SNR = 10, 20, 30.
We compare our results while replacing the learned dictionary by the SPF and
SHORE bases [2,8] in the reconstruction , because these bases are known to
sparsely represent the diffusion signal. We average the results on 1000 trials. To
perform a fair comparison, for each trial we try several regularization parameters
in the reconstruction (ε in sec. 3.2) and keep the lowest NMSE. The averaged
NMSEs are shown in table 1. We also add the averaged number of non zero
coefficients after reconstruction. It indicates the sparsity of the dictionary/basis
used in the reconstruction.

Overall, we obtain a higher sparsity (lower number of atoms) and a higher
accuracy (lower NMSE) using the LD. Moreover, for SNR = 10 the SPF basis
is clearly not appropriate in an �1 minimization reconstruction. The correspond-
ing NMSE, between the reconstruction using the learned dictionary and the
SPF/SHORE basis, gets closer while increasing the SNR. However the number
of atoms still remains higher with the SPF and SHORE bases. These results are
not surprising while taking synthetic signals as training data set. In the next
section, we prove the effectiveness of our method on a phantom data set.

Table 1. NMSE between the estimated signal and the ground truth signal for three
different SNR. The reconstruction is based on the Learned Dictionary (top, LD), the
SHORE basis (second line) and the SPF basis (third line).

SNR=10 SNR=20 SNR=30
NMSE atoms number NMSE atoms number NMSE atoms number

LD
one fiber 0.019421 11.50 0.007712 16.18 0.004757 18.32

60◦- cross. fib. 0.017969 9.12 0.007079 14.04 0.004072 16.16
90◦- cross. fib. 0.015642 6.45 0.006061 9.49 0.003629 12.07

SHORE
one fiber 0.026667 16.21 0.009804 22.05 0.005246 25.90

60◦- cross. fib. 0.023187 13.31 0.009119 19.13 0.004920 24.88
90◦- cross. fib. 0.021361 12.45 0.008370 18.03 0.004569 20.64

SPF
one fiber 0.032988 19.43 0.013062 23.62 0.005901 31.53

60◦- cross. fib. 0.031719 18.79 0.012131 21.34 0.005629 28.69
90◦- cross. fib. 0.026818 14.05 0.011317 16.72 0.005273 24.19
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Fig. 1. Left : a, d : ODF estimations. b,e : ODF maxima. c, f : EAP estimations
at radii 5 μm (red), 10 μm (green) and 15 μm (blue). Top : Our method. Bottom :
SHORE estimation. Right : ODF from a coronal slice of a human brain.

Phantom Data. We perform our experiments on a phantom data used in a fiber
cup contest in MICCAI 2009 [7]. The data were acquired for three different b-
values b=650/1500/2000 s/mm2, 64 orientations at each b-value, and an imaging
matrix of 64x64x3. We use two slices as training data set. The test data set is
the third slice. The angular and radial order of the dictionary are respectively
L = 8 and N = 5.

For the reconstruction we take 50 samples following an uniform spherical
law. From the estimated signals, we first present in Fig. 4 (left) : a) the ODFs
computed via Eq. 4 and d) the ODF computed via the SHORE framework [8].
However, because it is quite difficult to directly give an appreciation on these
figures, we compute the local maxima of the ODFs (see Fig. 4.b and e) (left)).
The maxima show that the ODFs, based on our method, catch significant angular
information, whereas the ODFs based on the SHORE framework do not model
the angular information as precisely.

Furthermore, we present in Fig. 4.c and f (left) the EAP computed at three
different radii 5 μm (red), 10 μm (green) and 15 μm (blue) respectively using the
closed form at Eq. 3 and the SHORE framework [8]. It adds a new dimension to
the ODF feature because both radial and angular information are caught. Again
the SHORE estimation appears more noisy than the EAP estimated with our
method. The EAP fully describes the diffusion process. However, few applications
using this feature exist because of the large number of measurements usually
required. With our method, we are able to get a continuous approximation of
the EAP and ODF with a clinically acceptable number of measurements (50
samples). It is worthwhile to note that since our method requires less atoms to
estimate than SHORE and SPF, we could also reconstruct the EAP and ODF
with much less samples while being less sensitive to noise than SHORE and SPF.

Real Data. We validate our method on a real data from a human brain. The
data were acquired for three different b-values b=500/1000/2000 s/mm2, 60
orientations at each b-value,and an imaging matrix of 93x116x93. We add a
part of the data set in learning process and reconstruct the signal from a coronal
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slice with 50 samples following an uniform spherical law. Fig. 4 (right) shows
the ODF estimated via our closed form in eq. 4. These ODFs correctly show the
represented crossing region.

5 Conclusions

In this work, we proposed an original and efficient approach to exploit the abil-
ity of Compressed Sensing (CS) to recover dMRI signals from limited number of
samples. Our approach allows to learn a parametric dictionary characterized by
a set of polynomial and scale parameters well adapted to sparsely and continu-
ously model the diffusion signal as well as to reconstruct in closed form two of
its important features : the EAP and the ODF. We showed that our framework
outperforms the SPF and SHORE framework in both ODF and EAP estima-
tions. Other diffusion features such as the probability to return to zero, the mean
square displacement, and high order moments features can also be easily derived
from our framework.
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Abstract. Diffusion-weighted imaging (DWI), while giving rich
information about brain circuitry, is often limited by insufficient spa-
tial resolution and low signal-to-noise ratio (SNR). This paper describes
an algorithm that will increase the resolution of DW images beyond
the scan resolution, allowing for a closer investigation of fiber structures
and more accurate assessment of brain connectivity. The algorithm is
capable of generating a dense vector-valued field, consisting of diffusion
data associated with the full set of diffusion-sensitizing gradients. The
fundamental premise is that, to best preserve information, interpolation
should always be performed along fiber streamlines. To achieve this, at
each spatial location, we probe neighboring voxels in various directions
to gather diffusion information for data reconstruction. Based on the
fiber orientation distribution (FOD), directions that are more likely to
be traversed by fibers will be given greater weights during interpolation
and vice versa. This ensures that data reconstruction is only contributed
by diffusion data coming from fibers that are aligned with a specific di-
rection. This approach respects local fiber structures and prevents blur-
ring resulting from averaging of data from significantly misaligned fibers.
Evaluations suggest that this algorithm yields results with significantly
less blocking artifacts, greater smoothness in anatomical structures, and
markedly improved structural visibility.

1 Introduction

Due to the nature of diffusion magnetic resonance imaging, acquiring images
higher than the typical 2mm isotropic resolution is extremely difficult without
incurring unrealistic scan times and causing very low SNR due to reduced voxel
size. Increasing the resolution, however, is not only important for registration,
segmentation, and tractography to be performed with greater accuracy, but is
also crucial for better visualization of anatomical structures to identify possi-
ble neuropathologies. Solutions to achieve higher resolution include employing
higher magnetic fields or stronger/faster gradients, dedicated acquisition tech-
niques [4, 8], as well as post-processing algorithms [1, 6]. In this paper, we will
take the last approach and demonstrate that resolution such as (1mm)3 can be
achieved purely via post-processing techniques.
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A decent super-resolution algorithm called Track-Density Imaging (TDI) was
recently proposed by Calamante et al. [1]. TDI gains its image contrast by
computing the number of fiber streamlines traversing each element of a high-
resolution image grid. In order to generate a super-resolution image, whole-brain
probabilistic tractography is first performed (generated by randomly seeding a
large number of tracks throughout the brain, e.g., > 1,000,000). From these fiber
tracks, the total number of tracks present in each grid element is then calculated.
While promising, TDI is limited for the following reasons: 1) The results can only
be as accurate as the tractography algorithm employed; 2) Contrast can only be
extracted from regions that can be reached by the fiber streamlines (i.e., regions
with reasonably high diffusion anisotropy); and 3) Only scalar maps, computed
from fiber statistics, can be generated.

In this paper, we present a technique that will exploit the continuity infor-
mation given by local fiber structures to increase the resolution of DWI data
beyond the initial scan resolution. Our algorithm will generate a spatially dense
vector-valued field consisting of diffusion data associated with the full set of
diffusion-sensitizing gradient directions. Very much in the spirit of TDI, our ap-
proach gains spatial resolution by using additional information obtained from
outside each individual voxel. Our approach, however, has a slightly different
aim with the following important distinctions:

1. Directional Profiling — Instead of relying on tractography, our approach
uses a directional profiling scheme to study the neighborhood of each spatial
location and gauge the probability of whether a specific direction is likely
to be traversed by fibers. The directional probability distribution is em-
ployed to encourage interpolation along the tangential and not orthogonal
directions of fiber streamlines. Unlike the conventional trilinear interpolation
approach, which has no concern of the directional structure of DWI data,
our approach mimics DWI acquisition mechanism more closely by infusing
information from different directions to reconstruct the DWI data at each
spatial location.

2. Microstructure-Preserving Smoothing — Smoothed diffusion data al-
low fiber pathways to be tracked more reliably and in a continuous manner.
Equally important is the preservation of boundaries that defines the spatial
extent of individual structures. In contrast to many existing methods that
use inter -voxel gradient information to constrain smoothing to relatively ho-
mogeneous regions, our method uses intra-voxel fiber orientation distribu-
tions (FODs) to guide smoothing. By constraining interpolation along fiber
streamlines, we not only preserve boundaries of the white matter, but also
those between fiber tracts within the white matter.

3. Complete DWI Data — Our approach generates a vector-valued field
of DWI data corresponding to the full set of diffusion-gradients and is not
limited to the white matter. Gray matter provides contextual information
for the white matter and the availability of gray matter data allows tissue
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segmentation based on diffusion data, such as that done in [5], to be per-
formed, providing complementary tissue contrast to tissue segmentation
based on structural MRI.

2 Approach

To increase resolution, the image domain is divided using a grid with grid ele-
ments that are smaller than the acquired voxel size. The DWI data for each of
these grid elements is then reconstructed using the following steps: 1) Directional
profiling in a field of FODs [2]; 2) Interpolation of DWI data based on the FOD
profile; and 3) Bias correction associated with the Rician distribution nature of
the magnitude signal. Each step is detailed in the following sections.

2.1 Local Fiber Profiling

To determine the probability of whether a grid element at spatial location x is
traversed by fibers in direction vk (k = 1, . . . ,M), we profile the field of FODs
{p(x,v)} in the neighborhood of x along direction vk (see Fig. 1). The FOD
profile is defined as:

p̂(x,vk) =

∑
xi∈N (x,vk)

w(xi,x,vk)p(xi,vk)∑
xi∈N (x,vk)

w(xi,x,vk)
(1)

where N (x,vk) is a neighborhood of voxels in the vicinity of a reference line
radiating from x in the direction vk. The weights are determined by

w(xi,x,vk) = exp

(
−d2axial(xi,x,vk)

2σ2
axial

)
exp

(
−d2radial(xi,x,vk)

2σ2
radial

)
(2)

where daxial and dradial are respectively the axial distance (length parallel to the
reference line) and the radial distance (length perpendicular to the reference
line), as illustrated in Fig. 1. Specifically,

daxial(xi,x,vk) = (xi − x) · vk (3)

and

dradial(xi,x,vk) = ||xi − x− daxial(xi,x,vk)vk||, (4)

where || · || is the Euclidean norm. Parameters σaxial and σradial control the falloff
of the weight with respect to the axial and radial distances, respectively. The
resulting FOD profile p̂(x,vk) is a directional function that allows for anisotropic
interpolation of neighboring information to reconstruct the DWI data of the grid
element at location x.
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vk

dradial

daxial

xi

x

Fig. 1. Directional Profiling. The space resided by the voxels (black dots) are di-
vided by a grid with resolution finer than the scan resolution. For each grid element
of interest (red dot), we probe its neighborhood in directions vk, k = 1, . . . ,M (red
arrows) to obtain a FOD profile p̂(x,vk), which is essentially a directional function
informing us of the certainty of interpolating in a certain direction. The location x
and direction vk defines a reference line. Voxels closer to the reference line (blue),
measured with daxial(xi,x,vk) and dradial(xi,x,vk), will be given greater weights for
interpolation.

2.2 Fiber-Sensitive Interpolation with Rician-Bias Correction

To reconstruct the DWI data at location x, interpolation is performed with the
help of the FOD profile:

Ŝ(x,gl) =

[∑
k p̂(x,vk)R(x,vk,gl)∑

k p̂(x,vk)
− 2σ2

rician

] 1
2

+

(5)

where

[z]+ =

{
z, z > 0;

0, otherwise,
(6)

and

R(x,vk,gl) =

∑
xi∈N (x,vk)

w(xi,x,vk)S
2(xi,gl)∑

xi∈N (x,vk)
w(xi,x,vk)

. (7)

To avoid blurring of the reconstructed data by data in directions that have low
probability of being traversed by fibers, we consider in (5) only directions with
p̂(x,vk) > 〈p̂(x,vk)〉vk

. Note that the squared signal values are used here so
that the statistical bias 2σ2

rician can be removed for unbiased estimation. This is
derived from the fact the second order moment of a Rician distributed quantity
is given as E(S2) = S2

true + 2σ2
rician, where Strue is the true signal value. The

noise variance σ2
rician associated with the Rician distribution [7] can be estimated

from the background signal (Strue = 0) using σ2
rician =

√
〈S2

background〉/2.
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3 Experimental Results

We evaluated the effectiveness of the proposed method using a set of in vivo
DWI data. For all cases, we set σaxial = 2 and σradial = 1. Directional profiling
was performed in 642 directions, which were generated by subdividing the faces
of an icosahedron 3 times.

3.1 Dataset

Diffusion-weighted images for 4 adult subjects were acquired using a Siemens 3T
TIM Trio MR Scanner with an EPI sequence. Diffusion gradients were applied in
120 non-collinear directions with diffusion weighting b = 2000 s/mm2, flip angle
= 90◦, repetition time (TR) = 12, 400ms, and echo time (TE) = 116ms. The
imaging matrix was 128× 128 with a rectangular FOV of 256 × 256mm2. The
slice thickness was 2mm. T1-weighted structural images were also acquired as
anatomical references.

3.2 Computation of the FOD Field

The FOD field was computed by fitting mixtures of tensors to the DWI data.
An over-complete set of tensors were used and the fitting problem was solved
using an L1-constrained sparse representation framework [2]. We utilized an
active-set-based algorithm that was modified from the feature-sign algorithm
presented in [3] to incorporate a non-negative constraint. This approach to FOD
estimation is known to have great robustness to noise.

3.3 Methods for Comparison

We up-sampled each DW image from its original resolution of (2mm)3 to (1mm)3.
The results given by the standard trilinear interpolation, performed both on the
anisotropy map as well as the vector-valued DWI data, were shown for com-
parison. The generalized anisotropy at each voxel location was computed as the
standard deviation to RMS ratio of the signal values.

3.4 Qualitative Evaluation

A set of representative results are shown in Fig. 2 together with close-up views in
Fig. 3. It is clear from the results that the proposed method yields results that
exhibit significantly less blocking artifacts, greater smoothness in anatomical
structures, and markedly improved structural visibility. Note that interpolation
of DWI benefits quite significantly from interpolation schemes that consider the
directionality of the data. From the figure we can see that when interpolation
is performed on the scalar anisotropy image, the resulting image is blurred with
not much structural details. Details are however much more readily visible when
interpolation is performed on the vector-valued DWI data, i.e., by independently



Resolution Enhancement of Diffusion-Weighted Images 23

A B

C D

Fig. 2. DWI Resolution Enhancement. DW images were up-sampled to an (1mm)3

resolution from the original (2mm)3 resolution. (A) The anisotropy image of the original
data; (B) The linearly up-sampled anisotropy image; (C) The anisotropy image of the
linearly up-sampled DWI data; and (D) The anisotropy image given by the proposed
method. Close-up views of the regions marked in orange and red are shown in Fig. 3.

interpolating each element of the data vector across space. This is largely due
to the fact that by doing so we are essentially computing a convex combination
of neighboring diffusion data that is associated with each particular gradient
direction. While clearly giving more structural details, vector-based linear in-
terpolation results in significant blockiness due to the Cartesian nature of the
interpolation. All these problems are effectively dealt with using the proposed
method, as is evident from the results.

3.5 Quantitative Evaluation

For quantitative evaluation, we computed the local variances of the general-
ized anisotropy values in the white matter (WM), gray matter (GM) and cere-
brospinal fluid (CSF). For this purpose, we segmented the T1-weighted image
associated with each of the 4 subjects into WM, GM, and CSF. These segmented
images were then used as masks to compute the average anisotropy variances
for regions corresponding to WM, GM, and CSF. The variability of the aniso-
tropy values gives us an indication on how smooth the interpolated image is. The
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Fig. 3. Closeup Views. Regional closeup views of Fig. 2.
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Fig. 4. Average Regional Variance of Generalized Anisotropy. The anisotropy
variance at each voxel location is computed using a 3× 3× 3 neighborhood. The bars
show the average values of the anisotropy variance. Only results for vector-based linear
interpolation ( ) and the proposed method ( ) are shown since these two methods
yield better structural clarity.

results, shown in Fig. 4, indicate that the proposed method, while giving markedly
improved structural details as shown in the previous section, also yields greater
structural smoothness. Such smoothness is important for applications such as
tractography to ensure that fiber pathways can be traced more reliably with
greater continuity. The blocking artifacts caused by vector-based linear interpo-
lation will cause abrupt changes in local fiber orientations, the effect of which
on tractography can be disastrous.
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4 Conclusion

We have presented a technique that increases the image resolution of DWI data
beyond the acquired resolution, producing results that are free from blocking
artifacts and imaging noise while at the same time show excellent structural
clarity. Our approach produces spatially dense vector-valued data that are avail-
able for all diffusion gradient directions as well as all tissue types. This important
distinction essentially implies that, with the results generated by our approach,
the myriad of existing diffusion models can be fitted for multifaceted analysis. In
addition, our work also prompts the need of a closer examination on the effect
of interpolation artifacts on the performance of various DWI algorithms, such as
tractography. Future work will be directed at utilizing locally non-linear interpo-
lation strategies to elucidate even finer structural details and to resolve complex
fiber architectures such as configurations associated with branching and kissing.
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Abstract. A new method for the geometrical averaging of labels or
landmarks is presented. This method expands the shape-based averaging
[1] framework from an Euclidean to a geodesic based distance, incorpo-
rating a spatially varying similarity term as time cost. This framework
has unique geometrical properties, making it ideal for propagating very
small structures following rigorous labelling protocols. The method is
used to automate the seeding and way-pointing of optic radiation trac-
tography in DTI imaging. The propagated seeds and waypoints follow a
strict clinical protocol by being geometrically constrained to one single
slice and by guaranteeing spatial contiguity. The proposed method not
only reduces the fragmentation of the propagated areas but also signif-
icantly increases the seed positioning accuracy and subsequent tractog-
raphy results when compared to state-of-the-art label fusion techniques.

1 Introduction

Diffusion magnetic resonance imaging (diffusion MRI) is an imaging technique
that provides insights about the pattern of diffusion of water molecules in the
brain, frequently represented by a tensor. Tractography algorithms have been
proposed to characterise and delimit white matter fibre bundles [2]. However,
diffusion imaging and subsequently tractography techniques are prone to imag-
ing artefacts and algorithmic limitations [3]. Due to these limitations, the most
commonly used technique for tractography initialisation is still manual localisa-
tion of tractography seeds, waypoints and exclusion zones. Nevertheless, diffusion
based image analysis techniques are increasingly used for their ability to charac-
terise white matter connectivity and microstructure [4], possibly leading to the
development of biomarkers for neurodegenerative disease progression[5].

Ideally, one would like to reduce both human interaction time and inter-
rater variability by standardising the tractography procedure using automated
methods. A basic step which is common to many recently proposed automated
seeding and way-pointing procedures is multi-atlas based information propaga-
tion through inter-subject alignment of multiple image volumes. This alignment
involves either a single [6] or multiple reference anatomies [7] and fusion of can-
didate segmentations using a multitude of methods normally adapted from com-
puter vision. For example, Suarez et al. [7] proposes to use non-rigid registration
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based multi-atlas propagation combined with the STAPLE (Simultaneous Truth
and Performance Level Estimation) fusion framework for automated seed prop-
agation. Note that, contrarily to T1 anatomical label fusion frameworks, none
of these automated methods have explored the use of image similarity metrics
to improve the fusion accuracy. Furthermore, the label fusion methods used in
previous works do not permit geometrically restrictive protocols where only a
very limited number of voxels and/or slices are allowed.

In this work we present an extension to Shape-based Averaging (SBA). The
Euclidean distance used in SBA is replaced by a geodesic distance in order to
integrate a image similarity term in the label fusion algorithm. The geodesic
SBA enables the robust propagation of sparse and non-overlaping labels and
allows the inclusion of geometrical and volumetric constrains. To the best of our
knowledge, this paper presents the first framework that incorporates both an
image similarity metric and shape-based label fusion.

2 Methods

This section first introduces the classical SBA framework and its unique geomet-
rical properties, followed by a reformulation of the framework using a geodesic
distance metric. Finally, the similarity based geodesic time cost function is de-
scribed within the geodesic SBA framework.

2.1 SBA and Its Geometrical Properties

The intuitive concept behind the original Shape-based Averaging method [1] is
that if one wants to fuse a set of candidate labels from a number of classifiers,
the fused label would be the one which has the the smallest Euclidean distance
to the boundaries of all the candidate labels, i.e. the one with the mean shape.

For K input images over Rm and k = 1, ...,K, let sk(i) be the label value at
location i. Each label is a number in the set Λ = {0, 1, ..., L − 1}, where zero
without loss of generality represents the image background. Now let a distance
maps dk,l(i) be the signed Euclidean distance transform (EDT) from the pixel i
in image k to label l. The signed EDT for each label is computed as the distance
between pixel i and the edge of label l, with its value being positive if pixel i in
on the inside of the edge, and negative if i is on the outside. Formally, dk,l(i) is
negative if sk(i) = l and dk,l(i) is positive if sk(i) 	= l. It is important to note
that dk,l is a convex function.

Then, for each label one can then calculate the mean Euclidean distance from
pixel i to the edge of all candidate labels in all K images, as

Dl(i) =
1

K

K∑
k=1

dk,l(i) (1)

These Euclidean distance transforms from different labels are then fused by
minimizing the mean distance over all labels, S(i) = argmin

l∈Λ
Dl(i). A key feature
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SBA

MV

Labels

Fig. 1. Top) Four examples with three labels to fuse (in blue, red and green). Overlap-
ing labels are represented by a partial pixels. Middle) Results from the SBA algorithm
in purple. Note that the fused label is continuous even if the labels do not overlap.
Bottom) Results from the Majority Voting algorithm in purple. Majority voting only
places labels in overlaping areas, leading to empty or non-connected results.

to note is that Dl is convex as it is the sum of a series of convex functions
dk,l. Due to this particularity, SBA is known to produce smooth fusions with
reduced structural fragmentations [1]. Also, it is possible to obtain a value of
distance from the shape-based average boundary at every pixel and for every
label. The combination of the convexity of the function and the fact that one
can sample this distance at any point provides unique geometrical properties to
the SBA framework. It allows the fusion of labels that do not overlap and labels
with completely different shapes. A graphical depiction is show in Fig. 1. These
geometrical properties are not present in majority voting, weighted voting and
STAPLE label fusion techniques.

2.2 Geodesic Distance Transform

A natural extension of the above described algorithm is the introduction of
classifier performance weights. If the proposed algorithm is seen in the perspec-
tive of multi-label propagation and fusion, where a series of labels from a tem-
plate database are propagated to a new unseen image using image registration,
then each propagated label should have a different fusion weight depending on
how similar the unseen image is to the registered image after transformation.
The introduction of classifier performance can help the overall label propagation
performance by giving insights about registration accuracy and morphological
similarity between images.

In this perspective, the Eq. 1 can then be extended to

Dl(i) =

∑K
k=1Wk(i)dk,l(i)∑K

k=1Wk(i)
(2)

where Wk(i) represent the similarity between the propagated template images k
and the current image at position i. If this similarity Wk(i) is spatially varying,
one cannot guarantee that Wk(i)dk,l(i) will be monotonically increasing. This
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Fig. 2. a) Two labels in blue and green; b) A similarity function Wk(i) for each label
with white being similar and black being dissimilar; d) The resultant geodesic distance
transforms dk,l(i); d) The final set S(i) on the top and the distance Dl(i) at the bottom.
All distances are thresholded between −4 and 4 for the purpose of visualisation.

would only occur if Wk(i) is constant for every i, where Dl(i) is reduced to a
weighted sum of Euclidean distance transforms.

In order to maintain the monotonicity of dk,l(i) while introducing a spatially
variant similarity term, one can replace the Euclidean distance transform by a
Eikonal equation based geodesic distance transform. The Eikonal equation is of
the form | ∇dk,l(i) |= Wk(i), with dk,l(i)|l = 0 and Wk(i) > 0 and with ∇
representing the gradient and |.| representing the Euclidean norm. Physically,
dk,l(i) is the shortest time needed to travel from the boundary of label l to i
with Wk(i) being the time cost at i. This distance can be solved using the fast
marching method [8]. As dk,l(i) is the result of a first order PDE withWk(i) > 0,
dk,l(i) is guaranteed to be monotonically increasing. An example of this distance
can be seen in Fig. 2.

2.3 Label Propagation and Similarity Metric

Without loss of generality, the proposed method will be used to automate the
seeding and way-pointing of optic radiation tractography. Starting from a
database of 40 datasets containing both T1 and DTI MRI imaging modalities,
each T1 image was rigidly aligned to the fractional anisotropy (FA) of the DTI
image using a block matching approach [9]. An expert human rater manually
placed the seeds and waypoints on the DTI image, following the protocol defined
in [10].

Assuming a new unseen image, all the multimodal datasets in the database
can be propagated to this new dataset by preforming an affine registration, using
the same block matching approach, followed by a non-rigid alignment step. To
make use of the multimodal nature of the available data for the non-rigid regis-
tration step, a multi-modal fast free-form registration algorithm [11] was used.
As in Daga et al. [12], the multimodal data used for the registration step was
compromised of the T1 image and the FA image. The resulting transformations
were then used to propagate the manually placed seeds and waypoints from each
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atlas to the new image under study. These manual labels were resampled using
a nearest-neighbour interpolation in order to maintain their binary nature.

The similarity metric used in this work is based on the local sum of squared dif-
ferences (LSSD) within a gaussian kernel with standard deviation of 5mm. This
similarity term is necessary to characterise both the local differences in tissue
appearance due to pathology, registration errors and morphological variability
between subjects that could not be captured by the registration. The similarity
is calculated independently between the propagated T1 and FA images from
the atlas and the unseen T1 and FA images, respectively. This results in a FA
derived metric (LSSDFA) and an T1 derived metric (LSSDT1). The LSSD can
then be combined into a common similarity metric by using an inverse expo-
nential function. Thus, Wk(i) will be defined as Wk(i) = e(−LSSDFA−LSSDT1),
where higher values of Wk(i) means higher similarity.

2.4 The Clinical Protocol

The seeding and waypoint placement protocol is described in [10]. In short, the
seed mask consists of a series of voxels antero-lateral to the lateral geniculate
nucleus at the base of Meyers loop, positioned in the white matter in one single
coronal slice. These voxels should be contiguous in order to ensure that the
entire coronal cross-section of Meyers loop was encompassed. The volumes of
seed masks were standardised to 15 voxels for all subjects in order to reduce
inter-subject tractography variability. In addition to the seed, a waypoint was
placed in the lateral wall of the occipital horn of the lateral ventricle. This
waypoint was also restricted to one single coronal slice.

From this clinical protocol, three main constrains are necessary: both the
seeds and waypoints should be continuous and restricted to one single coronal
slice and the number of voxels in the seed is standardised to Nl = 15. Due
to the geometrical nature of the proposed method, these constrains are easily
integrated into the current framework by constraining the space of solutions of
S(i). Because we are not interested in the background label, instead of finding
what is the label that minimises the sum of the geodesic distances, one can
find what is the coronal slice with a set S(i) of Nl voxels that minimises the
sum of the geodesic distances. As the geodesic dk,l(i) is not necessarily convex,
contiguity of S(i) is not mathematically guaranteed. However, the monotonically
increasing nature of dk,l(i) will result in a smooth solution.

3 Validation

The validation of the proposed methodology will first quantify the error in auto-
mated placement of seeds and waypoints when compared to the manually placed
ones using a leave-one-out cross validation approach. The propagated seeds and
waypoints will also be characterised in terms of volume and contiguity. Secondly,
because small errors in seed positioning can result in drastically different trac-
tography results, the probabilistic overlap between manual and automatically
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Table 1. Automated seed and waypoint accuracy results using MV, STAPLE, SBA and
the proposed method. Column ’Manual’ contains the gold standard statistics. Distance
is not available for both MV and SBA because the fused output was empty.

Metric
Seed Fusion Waypoint Fusion

MV STAPLE SBA GSBA Manual MV STAPLE SBA GSBA Manual

Distance
Mean - 1.70 - 1.60 - - 1.86 - 1.86 -
Std - 1.81 - 1.41 - - 1.12 - 0.97 -

Voxels #
Mean 0 5.8 0 15 15 0 31.89 0 113.15 136.17
Std 0 2.89 0 0 0 0 18.85 0 17.62 85.6

Mean # Conn.Comp. 0 1.2 0 1 1 0 1.9 0 1 1
Mean Euler 0 3.2 0 2 2 0 7.2 0 2 2

generated tracts is assessed. For all experiments, the geodesic SBA fusion per-
formance is also compared to majority voting (MV), STAPLE [7], Euclidean
SBA [1] with the original cost function for S(i).

3.1 Seed and Way-Point Placement Accuracy

This section aims at assessing both accuracy of seed and waypoint placement and
their geometrical properties. In order to do so, both seeds and waypoints were
propagated as described in Section 2.3 and then fused using the above described
methods. Due to the very small size of the seeds and waypoints and because
they are limited in thickness to one single coronal slice, overlap measures like the
Dice coefficient would not provide insightful information about the placement
accuracy. Instead, we use the mean Euclidean distance from all the points in
the automated seed and waypoints to the manually placed ones as a measure
of accuracy. We also calculate the number of voxels, the number of connected
components and the Euler characteristic of each propagated seed. The later
describes topology of the propagated seed, where an Euler characteristic of 2
means that the seed is homotopic to a closed disk.

Results are presented in Table 1. Due to the label positioning variability,
both MV and SBA methods resulted in an empty set. Note that SBA also fails
because the original metric for S(i) was used. Both GSBA and STAPLE obtain
similar results regarding positioning accuracy, but the geometrical characteristics
of the STAPLE’s seeds and waypoints are discrepant when compared to the gold
standard. The mean number of voxels, number of connected components and the
Euler characteristic for the seeds and waypoints from STAPLE was significantly
different (p < 10−4) from the gold standard, while no significant differences were
found between the GSBA and the gold standard.

3.2 Automated Tractography Validation

As a geometrically accurate positioning of the seeds and waypoints is meaningless
if they lead to different tractography results, a further assessment of the sim-
ilarity between manually generated and automatically generated tracks is also
preformed. In order to do so, the Probabilistic Index of Connectivity (PICo)
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Fig. 3. Left) Optic radiation tractography for two patients. Tractography from the
manual seeds, GSBA and STAPLE are in blue, red and green respectively. Right) A
3D recontruction of the optic radiation for the manual and geodesic SBA methods.

algorithm [2] was used for tractography. Voxels in which a single tensor fitted
the data poorly were identified using a spherical-harmonic voxel-classification
algorithm [13]. In these voxels, a two tensor model was fitted, with the princi-
pal diffusion directions of the two diffusion tensors providing estimates of the
orientations of the crossing fibres. In all other voxels, a single tensor model was
fitted. Tracking from the seed was performed using 50000 Monte Carlo itera-
tions, an angular threshold of 180 (sufficient angular flexibility to allow tracking
of Meyer’s loop) and a fractional anisotropy threshold of 0.1. Because both MV
and SBA method fail to generate usable seeds and waypoints, only STAPLE and
the geodesic SBA were used for the comparison.

As the output from PICo is a probabilistic segmentation and because thresh-
olding a probabilistic segmentation introduces too much boundary variability,
the probabilistic Dice coefficient [14] was used as a measure of similarity between
tracts. Results show that the mean(std) Dice coefficient between the manually
seeded tracts and the automated tracts using the geodesic SBA is 0.547(0.138),
while with STAPLE method is 0.226(0.114). Using a two-tailed paired t-test for
statistical comparison, the geodesic SBA method provides highly statistically
significant improvements (p < 10−4) in tractography accuracy. Note that this is
the overlap of the full tract from the Meyer’s loop to the visual cortex.

4 Conclusion

This work presents an geodesic extension the Euclidean Shape-based Averag-
ing (SBA) framework, integrating an image similarity term in the label fusion
algorithm. The geodesic SBA enables the robust propagation of sparse and
non-overlaping labels and naturally permits the inclusion of geometrical and
volumetric constrains into the propagated label sets. Application to DTI trac-
tography shows statistically significant improvements in both seed and waypoint
placement accuracy, geometric characteristics and topology when compared to
state-of-the-art methodology, leading to improvements in tractography accuracy.
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Abstract. The geometry of white matter tracts is of increased interest
for a variety of neuroscientific investigations, as it is a feature reflective of
normal neurodevelopment and disease factors that may affect it. In this
paper, we introduce a novel method for computing multi-scale fibre tract
shape and geometry based on the differential geometry of curve sets. By
measuring the variation of a curve’s tangent vector at a given point in all
directions orthogonal to the curve, we obtain a 2D “dispersion distribu-
tion function” at that point. That is, we compute a function on the unit
circle which describes fibre dispersion, or fanning, along each direction
on the circle. Our formulation is then easily incorporated into a contin-
uous scale-space framework. We illustrate our method on different fibre
tracts and apply it to a population study on hemispheric lateralization
in healthy controls. We conclude with directions for future work.

1 Introduction

The brain consists of diverse structures, each with a characteristic shape and an
intricate architecture. Their shape varies across the normal population, and is
an important feature thought to reflect genetic and environmental factors that
may contribute to disorders of neurodevelopmental origin or neurodegenerative
diseases (e.g., [1]). In this context, the study of white matter geometry is of
importance to the neuroscience of white matter and disorders that affect it.

A large group of methods for white matter geometry analysis in diffusion MRI
compute the curvature and torsion of individual fibres recovered with a tractog-
raphy algorithm (e.g., [2]). The geometry of sets of curves is usually obtained
by mapping individual curves to medial axes/surfaces (e.g. [3]) or an average
representation (e.g., [4,5]). However, this type of mapping may involve heuristic
decisions in the choice of corresponding points and fibre similarity measures. An
elegant alternative was recently introduced on the basis of the currents frame-
work [6], which represents fibre tracts as a smooth vector field and captures
global tract shape while avoiding the need for specific point correspondences [7].

All geometry analysis methods based on fibre tractography are inherently lim-
ited in that tractography does not, in general, produce stable and reproducible
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results. Recognizing this limitation, a method for computing white matter ge-
ometry indices directly from diffusion imaging data without requiring prior trac-
tography was proposed in [8]. This method, however, is currently only defined
for the single tensor model of diffusion, itself with well known limitations.

In the present work, we propose a scale-based white matter geometry analysis
method that is situated logically between that of [8], and vector field based
methods such as [7]. While our method is based on vector fields derived from
tractography and is therefore subject to all associated limitations, its advantage
with respect to [8] is that it is not limited by the tensor model of diffusion,
and also allows for a more precise characterisation of fibre fanning at different
spatial scales, as detailed in Section 1.1. As for the currents method of [7],
it is optimized to capture global tract shape and its modes of variation in a
population. In contrast, our method computes local geometrical features based
on the differential geometry of curve sets, which makes possible subsequent tract-
based statistical analysis with methods such as [3]. We note, however, that our
method is complementary to the currents framework of [7], and both may be
used in conjunction in order to analyse the geometry of a currents vector field.

1.1 Comparison to Tensor-Based Model of Dispersion

Both our method and the method of [8] compute macrostructural white matter
geometry. However, they approach this problem in diametrically opposed ways,
which makes them complementary to each other. The method of [8] works di-
rectly with DTI data within a 3D neighborhood, without any prior knowledge
about fibre tracts. This is an advantage, as it allows to avoid tractography and
its limitations. This, however, comes at a price: the geometry of all the white
matter present in the 3D neighborhood is represented by a single scalar, which
may be less informative when distinct fibre populations pass near each other.

In contrast, our new method works with the tangent vector field of tracts
obtained by tractography. This reliance on tractography is a limitation, but it
also allows the analysis of a specific tract independently of the influence of other
nearby tracts. Furthermore, no constraints are imposed on the underlying model
of diffusion. Unlike the method of [8], defined only for diffusion tensor fields, our
method can be used even with high quality HARDI data. Finally, instead of
computing a single scalar to represent fibre dispersion at a point, we compute
directional dispersion in a “dispersion distribution function”, as detailed below.

The two methods therefore exploit the two sides of a basic trade-off: avoiding
the uncertainty inherent in tractography [8], vs. exploiting information about
tract structure provided by tractography, as proposed here.

2 Geometrical Framework

The work in [9] models white matter fibre geometry by associating an orthonor-
mal frame (ET , EN , EB) with each point along each 3D curve. Here ET is the
curve’s tangent vector, and EN and EB are the normal and binormal vectors. The
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local tract geometry can then be characterized, with respect to the local frame,
by computing the variation of ET in the frame’s three orthonormal directions.

In this work, we propose to measure the rate of change of the tangent vector
ET not only in the direction of the normal EN and the binormal EB, but in
all directions in the plane orthogonal to ET . This allows to avoid the need to
define Frenet frames, which can be unstable. By computing the rate of change
of ET along the entire circle orthogonal to ET , instead of only 2 directions, we
insure against missing “interesting events”, and we describe more completely
the complex geometry of white matter tracts. The function on a circle thus
computed is a 2D “dispersion distribution function” (DDF), i.e. a function on
the circle with values proportional to the amount of fibre dispersion in each
direction orthogonal to the fibre. This function provides a richer description of
dispersion than the scalar measure of [8], and constitutes our main contribution.

3 Approach

3.1 Problem Statement

The goal of our method is the following: given a set C of curves Ci that represent
the output of some streamline tractography algorithm, with a tangent vector ET

defined at each point p on each curve Ci ∈ C, we compute the function

Ψ(θ) = ∇vET . (1)

Here ∇vET represents the covariant derivative of the tangent vector ET in di-
rection v, with the constraints that {v|v ∈ S1

⋂
v ⊥ ET }, i.e., v is a direction

on the unit circle centered at p in the plane orthogonal to ET , and is denoted
by angle θ in this plane. This function is computed at each p along each Ci, re-
sulting in a DDF at each p describing the local fibre dispersion pattern relative
to the local tangent vector ET , as illustrated in Fig. 1 (left).

We note that (1) is defined only for continuous vector fields. That is, a line
passing though point p on curve Ci with direction v must always intersect
another curve Cj at point p′ with a tangent vector E′

T defined at p′, otherwise
∇vET will not exist. Since we work with a vector field F =

⋃
C ET of tangent

vectors of 1D curves in 3D Euclidean space R3, F is not continuous, specific point
correspondences cannot always be established and (1) is not always defined.

To resolve this issue, we construct a continuous vector field F c(x, y, z) at each
(x, y, z) ∈ R3 by averaging F over a neighborhood N centered at (x, y, z):

F c(x, y, z) =
1

N

∑
(i,j,k)∈N

F(i,j,k) (2)

where N is some neighborhood of R3 centered at location (x, y, z), and N is the
number of vectors of F that occur within N .

We note that F is discrete because it is obtained from a discrete set of curves,
but also because of the discrete nature of diffusion MRI data, which causes
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Fig. 1. Left: Our method computes at each point p a function on the unit circle
orthogonal to the tangent vector ET at p which measures the rate of change of ET in
all of these directions, thus computing a 2D “dispersion distribution function”. Right:
To compute ∇vET at location p at scale S, we define a disk-shaped neighborhood
with radius S around p, over which vector field F =

⋃
C ET is averaged. The same

averaging is performed over a neighborhood centered at p + Sv (orange). ∇vET is
then approximated as the angular difference between the two vectors thus obtained.

each curve Ci not to be continuous, but rather a polyline approximation to a
continuous curve. Each Ci is therefore a sequence of small linear segments, with
one tangent vector ET per segment. There is thus a countable number of vectors
belonging to F in each neighborhood N , which allows the summation in (2).
The spatial location of these vectors is denoted with the (i, j, k) subscript in (2),
which are floating point coordinates with sub-voxel resolution.

We also note that a priori, the tangent vectors can be presented either as ET

or as −ET . To avoid arbitrary sign changes from one location to the next which
can drastically affect the result of (2), we ensure a sign consistency over the
entire dataset relative to a global coordinate frame, such as that derived from
the principal components of the tracts’ spatial distribution.

3.2 Scale Space

Since we seek to characterize the variation of curve orientation in directions
orthogonal to the curves, in our implementation we choose the neighborhood N
to be shaped as a disk lying in the plane orthogonal to ET , with a small thickness
chosen to be 1 voxel. The radius of this disk is treated as a scale parameter. To
compute (1) for a given direction v at a given location p, we first apply (2) at p
in order to obtain a value for ET at scale S, ES

T . Then, we apply (2) at location
p + Sv (i.e., at a distance S from p in direction v), in order to obtain a value
for the tangent vector E

′S
T at location p + Sv. Finally, we approximate ∇vET

(at scale S) as the angular difference between ES
T and E

′S
T :

∇vET ≈ arccos
(〈
ES

T , E
′S
T

〉)
, (3)

with 〈., .〉 denoting the standard dot product in R3.
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Fig. 2. The total dispersion (TD) visualized for tracts forming part of the corpus
callosum. Here and in subsequent figures, yellow indicates high TD values.

These steps are illustrated in Fig. 1 (right). The inclusion of a scale parameter
in this manner allows for a simple way to construct a continuous scale space.

4 Validation

Our method is a high-level analysis that is applied after tractography.We assume
the particular tractography method has already been tested on synthetic data
or phantoms, and its limitations are known. The focus of the experiments in this
paper is the macrostructural geometric analysis of already-traced fibre tracts.

Our method was tested on tracts traced with a filtered tractography algorithm
for HARDI data [10]. This method was run on diffusion-weighted imaging data
acquired from a volunteer on a GE Signa HDxt 3.0T scanner using an echo planar
imaging sequence with a double echo option, an 8 Channel coil and ASSET with
a SENSE-factor of 2. The acquisition consisted of 51 directions with b = 900
s/mm2, and 8 images with b = 0 s/mm2, with scan parameters TR=17000 ms,
TE=78 ms, FOV=24 cm, 144 × 144 encoding steps, 1.7 mm slice thickness. 85
axial slices covering the whole brain were acquired.

As described previously, our method computes 2D DDFs at each point along
each curve in the tract set. In order to summarize this large amount of informa-
tion and present it visually, in the following figures we show fibres where each
point is colored by a measure of total dispersion (TD), such that yellow indicates
high TD values. We define TD as the average value of Ψ(θ) (1) at a point.

In Fig. 2, we show the TD measure for a set of fibres passing through the
corpus callosum. Here TD was computed with a scale parameter S = 5mm. As
expected, the measure is highest in regions with highest overall dispersion.

We next explore the effect of varying the scale parameter S on a fibre tract
which connects the substantia nigra of the brain stem to the caudate nucleus, a
sub-cortical grey matter structure. This tract was selected for illustration pur-
poses because it presents a well-defined fanning structure.

In Fig. 3, we present views of this tract colored by TD, computed at scales S
ranging from 1.7mm to 13.6mm. At the smallest scale only very local dispersion
features are highlighted. With increasing scale, the larger fanning structure is
highlighted more strongly, while small features are progressively lost.
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(a) S = 1.7mm (b) S = 3.4mm (c) S = 5.1mm (d) S = 6.8mm

(e) S = 8.5mm (f) S = 10.2mm (g) S = 11.9mm (h) S = 13.6mm

Fig. 3. A fibre tract colored by TD, for a range of values for scale parameter S

5 A Study of Lateralization in Healthy Controls

We illustrate the applicability of the method to population studies via an inves-
tigation of lateralization in healthy controls. Diffusion MRI data was acquired
from 16 adult healthy male volunteers using the protocol described in Section 4.

Our study was focused on tracts associated to the inferior frontal cortex, as
this area has been shown to be lateralized in healthy males, for example in terms
of functional connectivity [11], and it has also been implicated in disorders such
as autism and schizophrenia (e.g., [11]). We extracted fibre tracts connecting
the pars orbitalis cortical area (part of the inferior frontal cortex) of each hemi-
sphere, using the filtered HARDI tractography algorithm of [10]. We first com-
puted whole-brain tractography, from which we extracted the interhemispheric
tracts connecting both cortical regions as defined by an automated FreeSurfer
(http://surfer.nmr.mgh.harvard.edu) parcellation of the cortex. The tracts were
then cut within 5 mm from the midsagittal plane. For each subject, we computed
the mean TD at scale S=5mm over these tracts in each hemisphere. An example
of these tracts for one subject is shown in Fig. 4.

The lateralization results are presented in Fig. 5 and they indicate an overall
increase of TD in the right hemisphere, with a p-value of 0.030 (two-tailed T
test). The male inferior frontal cortex has been previously shown to be right-
lateralized in terms of volume and functional connectivity (e.g., [11]). Anatomical
differences in white matter geometry are less well known, and our method can be
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Fig. 4. Left: The set of tracts used in our group study shown for one subject. The
fibres are colored by TD (computed at scale S=5mm), and are overlaid on an axial slice
through the FA volume. Right: The same fibre tract shown with both a sagittal and
an axial slice though FA, as well as a semi-transparent model (blue) of the FreeSurfer
cortical segmentation of the pars orbitalis.

0.04
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0.08

0.1

0.12

L R

Fig. 5. Comparison of the mean TD value (units of rad/mm) for each individual, shown
for each hemisphere. A t-test between the two groups yields a p-value of p=0.030.
Horizontal red lines: group mean. The error bars indicate ± 1 standard deviation. L:
left hemisphere. R: right hemisphere.

used in this context. While our current results are preliminary, they do illustrate
the applicability of the method to population studies.

6 Discussion and Conclusion

In this paper, we presented a multi-scale approach for computing white matter
fibre geometry, based on the local differential geometry of curve sets. The method
works with curves traced by fibre tractography algorithms, and has both advan-
tages and weaknesses. The main drawback of this method is its dependence on
the quality of the tractography algorithm used to generate the fibres. With this
limitation in mind, we reviewed in Section 1.1 several advantages of our method
relative to a non-tractography method such as [8]. In addition, we note that
fibre tracts provide an explicit correspondence between the white matter and
locations on the cortical surface where they originate or terminate. This is very



Multi-scale Characterization of White Matter Tract Geometry 41

important for establishing a connection between white matter and grey matter
geometry, as the relationship between the two may provide novel insights into a
variety of neuroscientific applications, regarding for example brain development
or atrophies caused by disease. We will address these questions in future work.

Finally, we note that the TD measure reduces the information in Ψ(θ) to a
directionless scalar. In order to better take advantage of the directional infor-
mation contained in Ψ(θ), one may define an inner product between Ψ(θ) and
a vector field, in order to measure dispersion in a specific direction. We will
analyse such directional information in future work.
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Abstract. Acquisition geometries for tomographic reconstruction are
usually densely sampled in order to keep the underlying linear system
used in iterative reconstruction as well–posed as possible. While this
objective is easily enforced in imaging systems with gantries, this issue
is more critical for intra–operative setups using freehand–guided data
sensing. This paper investigates an incremental method to monitor the
numerical condition of the system based on the singular value decompo-
sition of the system matrix, and presents an approach to find optimal
detector positions via a randomized optimization scheme. The feasibility
of this approach is demonstrated using simulations of an intra–operative
functional imaging setup and actual robot–controlled phantom experi-
ments.

1 Introduction

Three–dimensional imaging modalities such as X–ray CT, PET or SPECT have
turned out to be indispensable tools for diagnosis in modern medicine. Their
size requirements due to a big imaging gantry, however, prevents wide-spread
use also in intra–operative therapy. In the operating room, the state of the art
of imaging mostly encompasses the use of one– and two–dimensional modalities
like gamma probes or ultrasound, possibly combined with previously acquired
volumetric images.

A possible solution to provide intra–operative volumetric imaging are space–
efficient acquisition setups using small detectors guided by humans (e.g. freehand
ultrasound or freehand SPECT [8]) or robots (e.g. laparoscopic ultrasound with
the Da Vinci robot [6] or C–arm X–ray imaging [2]), and using these measure-
ments for tomographic reconstruction. In this case, it is essential to quickly
generate useful acquisition trajectories such that a minimal number of acqui-
sitions yields the best possible sampling of the region of interest, and thus an
optimal reconstruction for the task at hand.

In this paper we will present an incremental optimization approach based on
the singular value decomposition of the system matrix to compute optimized
acquisition trajectories. The feasibility of this approach is demonstrated using
simulations of an intra–operative functional imaging setup and actual robot–
controlled phantom experiments.
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1.1 Terminology

We consider a series expansion approach [4] for iterative reconstruction. In a
volume of interest Ω ⊂ R3 the unknown signal f : Ω → R is approximated
using a set of n basis functions bi : Ω → R, such that f ≈

∑n
i=1 xibi with a

corresponding coefficient vector x = (xi) ∈ Rn. x is informally referred to as the
reconstruction of f . Popular choices for basis functions are for example voxels,
Kaiser–Bessel functions, or wavelets.

The set of measurements from the detector is denoted m = (mj) ∈ Rm. In
order to relate these sensor readings with the image function f , we define physical
measurement models Mj that map f to the corresponding value Mj(f) = mj .
In the case of X-ray CT, for example, the Radon transform is a suitable model.

Assuming the models Mj are linear, the series expansion approach combines
the discretization and the physical model:

mj = Mj(f) ≈ Mj

(∑
i

xibi

)
=
∑
i

xi Mj(bi).︸ ︷︷ ︸
=: aji

For a specific measurement model Mj encapsulating a sensor pose, the aji form
a unique row vector aTj = (aji) ∈ Rn describing the coverage of each of the n
basis functions when viewed from the respective sensor’s perspective, and we get
mj = 〈aTj ,x〉 in case of a good reconstruction x.

Using all m measurements mj , this leads to a linear system Ax = m with
the system matrix A = (aji) ∈ Rm×n. A is generally not invertible, and to
compute a reconstruction x we solve a least–squares problem instead (typically
with iterative methods):

min
x

1
2‖Ax−m‖2.

1.2 Quality of Acquisition Geometry

In devices using imaging gantries, the acquisition protocol is designed such that
the solution of the linear system is as well–posed as possible. For instance in
X–ray CT, the X–ray source/detector pair rotates around the region of interest
Ω, and measurements are being collected on an arc–shaped trajectory of at least
180◦.

In case of freehand– or robot–guided data acquisition, however, the acquisition
geometry is very sparsely and irregularly sampled, leading to very ill–posed prob-
lems. Fewer available measurements often result in under–determined systems,
where a good sampling of the region of interest is mandatory. As communicating
accurate instructions — particularly when orientation is involved — to a human
operator is a complex and largely unsolved problem, we restrict ourselves to
robot–controlled acquisitions in this work.

Ignoring application–specific approaches and focusing on a general setting,
some of the approaches to characterize the ill–posedness of a system equation
are:



44 J. Vogel et al.

1. Column sums [8]. Given m measurements, the linear system effectively con-
tains m dot products between every row of the system matrix and the re-
construction x. Vice versa, the i’th column of the system matrix contains all
the m contributions of the basis function coefficient xi to the measurements.
A low value of the sum over all of column values is consequently an indica-
tor for under–sampling, and enforcing maximal column sums yields better
reconstructions.

2. Singular spectrum of A [5]. Over– and under–determined linear systems are
solved via least squares methods, and the solution is for example obtained
from the normal equation ATAx = ATm. In order for this system to have
full rank, and thus a well–defined solution, the eigenvalues of ATA need to be
of sufficiently large magnitude. This spectrum is exactly the set of singular
values of A, and optimizing them accordingly during the acquisition improves
the numerical condition of the system.

3. Null–space of A [9]. If x is a solution to Ax = m, and if x̃ is in the null–space
of A, i.e. x̃ is a solution to Ax̃ = 0, then x+ x̃ is also a solution of Ax = m.
To gain a unique solution for the inverse problem, the null–space has to be
reduced to {0}, which is typically not feasible. However, if all null–space
vectors have a common sub–region of zero values, that region is uniquely
determined by the acquisition geometry.

2 Methods

We generate a trajectory by iteratively selecting the best next sensor perspective
out of a set of candidates. Such an approach requires two major components,
generation of candidate perspectives, and quality estimation of each single can-
didate.

Using the notation from above, each sensor location is characterized by a
unique row-vector aT ∈ Rn. Describing the current state after k measurements
by the system matrix A ∈ Rk×n and the measurement vector m ∈ Rk, we are
interested in finding an additional perspective, such that extending the linear
system by the corresponding row aTk+1 and measurementmk+1 yields an equation

A′x = m′ or

(
A

aTk+1

)
x =

(
m

mk+1

)
with a better quality estimate η(aT ).

2.1 SVD–Based Quality Estimation

In order to specify this aim accurately, we use a quality measure based on the
singular value spectrum. Ideally, in comparison to A, the new system matrix A′

will exhibit larger singular values. We enforce this objective by selecting new
sensor poses that maximize the sum of singular values

η(aT ) :=

k+1∑
i=1

σ′
i
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where σ′
1 ≥ · · · ≥ σ′

k+1 ≥ 0 are the singular values of the extended matrix A′,

and aT is constrained to be generated by a legal sensor perspective.

2.2 Incremental Computation of the SVD

Computing the singular values of a matrix is a numerically expensive opera-
tion, in particular considering the size of a typical system matrix. Due to the
incremental nature of the system, it is reasonable to use a known decomposi-
tion of A when computing the factors of the extended matrix A′ during the
step k → k+1. We focus on underdetermined systems (k < n), and use the
economy-sized definition A = UDV T

1 , where U ∈ SO(k) is an orthogonal ma-
trix, D = diag(σ1, . . . , σk) ∈ Rk×k a diagonal matrix holding the singular values
σ1 ≥ · · · ≥ σk ≥ 0, and V1 ∈ Rn×k a matrix with orthonormal columns.

Updating the SVD after adding a single row or column to a matrix is a problem
already investigated in the fields of Data Mining, Latent Semantic Analysis, and
also Computer Vision. There are several approaches, depending on whether exact
values are required or whether approximations suffice. Also, some applications
use the dominant singular values only, and omit the smaller ones entirely.

In our case, we are interested in the full spectrum of the squared system matrix
ATA, and we use the exact method presented by Gu and Eisenstat [3], including
the optimizations proposed by Chetverikov and Axt [1]. Using A = UDV T

1 , we
can preliminarily decompose A′ into

A′ =

(
A
aT

)
=

(
U 0
0T 1

)
︸ ︷︷ ︸

=: M

(
D 0
zT ζ

)
︸ ︷︷ ︸

=: L

(
V T
1

vT

)
︸ ︷︷ ︸
=: NT

=

(
UDV T

1

zTV T
1 + ζvT

)
,

where z = V T
1 a ∈ Rk is the projection of a into the subspace defined by the rows

of V1. The other unknowns, ζ ∈ R and v ∈ Rn, can be solved from the equation
w := a−V1V

T
1 a = ζv which is obtained from the last row of the decomposition

of A′. If the additional vector aT is linearly independent of the rows of A, v is
orthogonal to all columns of V1, as required. Computing the SVD of the inner
— relatively small — square matrix L ∈ Rk×k using standard methods yields
the decomposition L = ŨD̃Ṽ T with both, Ũ , Ṽ ∈ SO(k) orthogonal matrices.
Using this and the preliminary decomposition A′ = MLNT , the economy-sized
SVD of A′ = U ′D′V ′T

1 is given by U ′ = MŨ , D′ = D̃, and V ′ = NṼ .
We have extended this algorithm to support the addition of linearly dependent

rows. This situation appears to be uncommon in other settings where real–world
measurements are used, but may appear when searching for additional sensor
poses in a structured way. In this case, ‖w‖ ≈ 0 and ζ ≈ 0, as expected, but
v is usually no longer orthogonal to all columns of V1 — leading to errors in
the following step k+1 → k+2. We detect this, and reinitialize v by creating
an orthogonal vector by means of applying the Gram-Schmidt orthogonalization
procedure to a random initial vector.

Please note that these equations are valid for underdetermined systems only,
as we expect such a setting in our application of functional imaging. Equivalent
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rules can be developed for all other linear systems in a very similar way, but
we omit them here for brevity. The reader is kindly referred to the two original
publications [3,1] for in–depth explanations and analyses.

2.3 Optimization and Trajectory Generation

Given a current system matrix A and a set of possible successor poses C(1), we
can now select the best next pose out of that set using the techniques presented
above. The remaining problem is that of generating that candidate set.

Given the singular value–based energy measure η(aT ), an optimal candidate
row aT will be as orthogonal as possible to the existing rows, thus optimizing
the coverage of the basis functions bi. Such a position is typically rather far away
from the current pose, and a global search will be required to find it.

Identifying an orthogonal row, however, is a complex operation, but random
selection has been shown to be a good replacement with high average success
rate [7]. We consequently select candidate positions arbitrarily within a space
of possible poses. The latter is used to impose constraints caused by geometric
limitations, maximal measurement distances, etc.

The entire optimization procedure will thus start at an initial location given
by row-vector aT(0) and the corresponding system matrix A(0) = (aT(0)) ∈ R1×n

with known SVD. With C(1) denoting the randomly selected candidate set, the
second sensor perspective is chosen as

aT(1) = arg max
aT∈C(1)

η(aT ),

yielding an extended system matrix A(1) ∈ R2×n with maximal sum over the
singular value spectrum. That process is repeated until the required number of
poses has been reached.

Such a random path will obviously contain large hops, and to minimize the ac-
quisition path length and time to scan it is essential to post–process it. We use a
two–stage approach to sort the poses into a useful sequence, first partitioning all
positions into local clusters, and then reordering each of them individually using
an approximative Traveling–Salesman–solver based on the Minimum Spanning
Tree heuristic. If steps of large size remain, we insert ‘safe positions’, and recom-
bine the partitions, yielding a smooth acquisition path that can for example be
traced by a robot in reasonable time.

3 Experiments and Results

3.1 Experiments

In order to test the optimization procedure, we created a Matlab script comput-
ing trajectories. Path planning has been performed on a laptop computer with
an Intel Core i7 CPU with 4 processing cores at 2.3 GHz and 8 GB of memory.

The experiments are based on an intra–operative functional imaging setup
similar to freehand SPECT [8], using a tracked gamma detector to generate
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localized reconstruction of a radioactivity distribution. Assuming a region of
interest surrounded by a bounding box of (10 cm)2 × 5 cm, we used two alter-
native parameterizations of two degrees of freedom, generating locations on a
hemisphere around the base plane’s center, then retracting the sensor along that
direction to reach the surface of the bounding box. The first parameterization
used spherical coordinates, the other directly created unit directions in Cartesian
space. Of the six sides of the cuboid, we only measure on the top plane, as well as
on two orthogonal side planes, thus imitating the spatial constraints of an intra–
operative situation where patient body and operating bed place constraints on
accessibility.

Using a rather coarse discretization of that region of 10 × 10 × 5 voxels, we
were able to generate a path of 300 positions in about 140 seconds. The coarse
discretization is reasonable as the small system matrix shows similar behavior
as observed when working with its full–size equivalent. Furthermore, when using
a robot to traverse the trajectory, additional data can be recorded during the
movements to record considerably more than just 300 measurements.

(a) Energies over path length (b) Partitions and trajectory

Fig. 1. Evaluation. (1a) Energy curves denote, from bottom up, a human measurement,
random sampling with 1 candidate and spherical coordinates (SC), with 1 candidate
and Cartesian coordinates (CC), 5 candidates SC, 5 candidates CC, 12 candidates
SC, 12 candidates CC. (1b) Sampling of the (invisible) region of interest; acquisition
locations on three bounding box planes (red/green/blue = left/front/top), and robot
trajectory (cyan).

3.2 Results

Singular-Values-Spectrum over Path Length In a first experiment, we compared
the energy η(aT ) at different evolution stages for different sampling strategies.
The result is shown in figure (1a). We used candidate sets of size 1, 5, and 12 and
the two mentioned parameterizations. In general, more samples yielded better
results, and sampling in Cartesian space turned out to be slightly superior —
this parameterization does not show any clustering, as can be observed around
the poles when using spherical coordinates.

We also evaluated the evolution of the energy η(aT ) for a trajectory recorded
while a human performed a standard protocol. In terms of our energy, this path
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is the worst, potentially due to the fact that the probe is primarily translated,
while the orientation vector remains almost static for a considerable amount
of time. Also, the number of measurements per side is not proportional to the
surface area.

Simulated Measurements. Next, we generated ground truth volumes and
simulated measurements, and compared the reconstruction results for several
trajectories, generated by humans and the optimization procedure. The recon-
structions were considerably underdetermined (300 measurements for 500,000
unknowns), solved by MLEM [4] (20 iterations), and show SPECT–typical dis-
placement errors. Nevertheless, the reconstructions based on trajectories created
by the proposed method show better separation between the hot spots, and con-
siderably less ‘activity bleeding’. Examples are shown in figures (2a) and (2b).

Real Robot-Guided Measurements. Finally, we fed our trajectories to a robot
arm guiding the gamma detector. An example image showing the partitioned
sets of probe positions, and the robot trajectory (omitting the intermediate safe
positions) is shown in figure (1b). Results are given in figures (2c), (2d).

(a) Human (b) SVD-based (c) Robot 1 (d) Robot 2

Fig. 2. Reconstruction results, looking top–down, with blue circles denoting ground
truth locations of activity seeds. (2a)–(2b) show the logarithms of the per–column
standard deviations of the intensities in a simulated setting. The path generated by
our method yields a better separation and improved circumscription of the hot regions.
(2c)–(2d) show the results of two real acquisitions performed by a robot following a
trajectory created by our method.

4 Discussion and Conclusion

We have presented a method to generate an optimized trajectory for tomographic
reconstruction in intra–operative settings. This optimality is defined based on
the singular value spectrum, and the corresponding measure is computed using
fast incremental updates of the SVD. Since this only depends on the system
matrix, this approach is applicable for any imaging modality. Even though our
experiments used a regular bounding box, more complicated geometries given as
a polygon mesh, for instance obtained by laser–scanning the patient, could also
be used to generate trajectories.
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Several improvements can be made. Runtime can be improved by an efficient
implementation as well as by exploiting the ‘broken–arrowhead’ structure of the
inner matrix while computing its SVD, thus enabling the computation of longer
trajectories. Furthermore, it would be interesting to investigate other energy
measures based on the kernel or column sums.

The most interesting point will be to convert this approach to a real–time path
planning application considering the kinematics of a robot. While the energy
measure is sufficiently fast, a näıve local search for candidates is prone to get
stuck at local maxima. A strategic planner will need to consider now what other
positions to visit later, while still guaranteeing both full coverage and smooth
motion.

Acknowledgements. This work was partially funded by DFG SFB 824, DFG
Cluster of Excellence MAP and European Union FP7 grant No 25698.
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Abstract. Many successful segmentation algorithms are based on Bayes-
ian models in which prior anatomical knowledge is combined with the
available image information. However, these methods typically have many
free parameters that are estimated to obtain point estimates only, whereas
a faithful Bayesian analysis would also consider all possible alternate
values these parameters may take. In this paper, we propose to incor-
porate the uncertainty of the free parameters in Bayesian segmentation
models more accurately by using Monte Carlo sampling. We demon-
strate our technique by sampling atlas warps in a recent method for
hippocampal subfield segmentation, and show a significant improvement
in an Alzheimer’s disease classification task. As an additional benefit, the
method also yields informative “error bars” on the segmentation results
for each of the individual sub-structures.

1 Introduction

Many segmentation algorithms in medical image analysis are based on Bayesian
modeling, in which generative image models are constructed and subsequently
“inverted” to obtain automated segmentations. Such methods have a prior that
makes predictions about where anatomical structures typically occur throughout
the image, such as Markov random field models or probabilistic atlases [1, 2].
They also include a likelihood term that models the relationship between seg-
mentation labels and image intensities, often incorporating explicit models of
imaging artifacts [3]. Once the prior and likelihood have been specified, the pos-
terior distribution over all possible segmentations can be inferred using Bayes’
rule. It is then possible to search for the segmentation that maximizes this pos-
terior, or to directly estimate from it the volumes of specific structures.

Although these methods are clearly “Bayesian”, an issue that is usually over-
looked is that they only apply Bayesian analysis in an approximate sense. In
particular, these models typically have many free parameters for which suitable
values are unknown a priori. In a true Bayesian approach, such parameters need

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 50–57, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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to be integrated over when inferring the segmentation posterior. But, in practice,
their optimal values are first estimated and only the resulting point estimates
are used to compute the segmentation posterior instead. In recent years genera-
tive models have started to include deformable registration methods that warp
probabilistic atlases into the domain of the image being analyzed, often adding
thousands of free parameters to the model [4–7]. Since many plausible atlas
warps beside the truly optimal one may exist, computing segmentations based
on a single warp may lead to biased results. Furthermore, the numerical opti-
mizers computing such high-dimensional atlas warps may not necessarily find
the global optimum, further contributing to segmentation errors.

In this paper, we investigate the effect of using a more accurate approximation
of the segmentation posterior in Bayesian segmentation models than the point
estimates of the free model parameters. In particular, we will approximate the
integral over atlas deformations in a recently proposed method for hippocampal
subfield segmentation [7] using Markov chain Monte Carlo (MCMC) sampling,
and compare the results to those obtained using the most probable warp only.
We show that MCMC sampling yields hippocampal subfield volume estimates
that better discriminate controls from subjects with Alzheimer’s disease, while
providing informative “error bars” on those estimates as well.

To the best of our knowledge, the issue of integrating over free parameters in
Bayesian segmentation models has not been addressed before in the literature.
The closest work related to the techniques used in this paper infers the posterior
distribution of deformation fields in the context of computing location-specific
smoothing kernels [8], quantifying registration uncertainties [9], or constructing
Bayesian deformable models [10].

2 Methods

2.1 Baseline Segmentation Method

We start from the Bayesian method for hippocampal subfield segmentation [7]
that is publicly available as part of the FreeSurfer software package1. In this
method, a segmentation prior is defined in the form of a tetrahedral mesh-based
probabilistic atlas in which each mesh vertex has an associated vector of proba-
bilities for the different hippocampal subfields and surrounding tissues (fimbria,
presubiculum, subiculum, CA1, CA2/3, CA4/DG, hippocampal fissure, white
matter, gray matter, and CSF). The resolution and topology of the mesh are
locally adaptive to the level of shape complexity of each anatomical region, e.g.,
it is coarse in uniform regions and fine around convoluted boundaries. The mesh
can be deformed according to a probabilistic model on the location of the mesh
nodes p(x) ∝ exp(−φ(x)), where x is a vector containing the coordinates of
the mesh nodes, and φ(x) is an energy function that penalizes mesh positions
in which the tetrahedra are deformed [11]. This function goes to infinity if the
Jacobian determinant of any tetrahedron’s deformation approaches zero, and

1 http://surfer.nmr.mgh.harvard.edu/

http://surfer.nmr.mgh.harvard.edu/
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therefore ensures that the mesh topology is preserved. For a given x, the prior
probability pi(k|x) of tissue k occurring in voxel i is obtained by interpolating
the probability vectors in the vertices of the deformed mesh. Assuming condi-
tional independence of the labels between voxels given x, the prior probability
of a segmentation is then given by p(l|x) =

∏
i pi(li|x), where l = (l1, . . . , lI)

T,
li ∈ {1, . . . ,K} is a segmentation of an image with I voxels into K tissue types.

For the likelihood, we model the intensity of voxels in tissue k as a Gaussian dis-
tribution with parameters μk, σ

2
k: p(y|l, θ) =

∏
iN (yi;μli , σ

2
li
), where the vector

y = (y1, . . . , yI)
T contains the image intensities, and θ = (μ1, σ

2
1 , . . . , μK , σ

2
K)T

represents the Gaussian distribution parameters. A non-informative prior for θ
(i.e., p(θ) ∝ 1) completes the model.

Given an image to segment, the posterior over possible segmentations is given
by p(l|y) =

∫
θ
∫
x
p(l|y,x, θ)p(x, θ|y)dxdθ, which takes into account the contri-

bution of all possible values for the model parameters {x, θ}, each weighted by
their posterior probability p(x, θ|y). In [7], this integral is approximated by es-
timating the parameters with maximal weight {x̂, θ̂} = argmax{x,θ} p(x, θ|y),
and using the contribution of those parameters only, yielding

p(l|y) � p(l|y, x̂, θ̂) =
∏
i

pi(li|yi, x̂, θ̂) (1)

with pi(k|yi, x̂, θ̂) ∝ N (yi; μ̂k, σ̂
2
k)pi(k|x̂). (2)

The segmentation maximizing this approximate posterior is obtained by simply
assigning each voxel to the tissue class that maximizes Eq. (2). Furthermore, the
volume of class k also has an (approximate) posterior distribution, with mean

vk =
∑
i

pi(k|yi, x̂, θ̂) (3)

and variance
γ2k =

∑
i

pi(k|yi, x̂, θ̂)[1− pi(k|yi, x̂, θ̂)]. (4)

2.2 Incorporating Parameter Uncertainty

The approximation of Eq. (1) will be a good one if the posterior of the model
parameters, p(x, θ|y), is very peaked around {x̂, θ̂}. Although this is a reasonable
assumption for the Gaussian distribution parameters θ – one cannot alter them
much without considerably decreasing the likelihood of the model – assuming
a sharp peak for the mesh position x is not necessarily accurate, since moving
vertices in areas with low image contrast does not drastically change p(x, θ|y).

We therefore propose to use a computationally more demanding but more
accurate way of approximating p(l|y). Specifically, we propose to draw a number
of samples x(n), n = 1, . . . , N from the posterior distribution p(x|y, θ̂) using
Monte Carlo sampling, and approximate the segmentation posterior by

p(l|y) �
∫
x

p(l|y,x, θ̂)p(x|y, θ̂)dx � 1

N

N∑
n=1

p(l|y,x(n), θ̂), (5)



Incorporating Parameter Uncertainty in Bayesian Segmentation Models 53

where in the first step we have used the mode approximation in the direction of
θ, as before, but in the second step the remaining integral is approximated by
summing the contributions of many possible atlas warps (with more probable
warps occurring more frequently), rather than by the contribution of a single
point estimate x̂ only. Given enough samples, this approximation can be made
arbitrarily close to the true integral.

Once N samples x(n) are available, it follows from Eqs. (3–5) that the ap-
proximate posterior for the volume of tissue class k has mean and variance

vk =
1

N

N∑
n=1

vk(n) (6)

γ2k =
1

N

[
N∑

n=1

[vk(n)− vk]
2 + γ2k(n)

]
, (7)

respectively, where vk(n) =
∑

i pi(k|yi,x(n), θ̂) and γ2k(n) =
∑

i pi(k|yi,x(n), θ̂)
[1− pi(k|yi,x(n), θ̂)].

2.3 MCMC Sampling

In order to obtain the required samples x(n), we use a MCMC sampling tech-
nique known as the Hamiltonian Monte Carlo (HMC) method [12], which is more
efficient than traditional Metropolis schemes because it uses gradient informa-
tion to reduce random walk behavior. Specifically, it facilitates large steps in x
with relatively few evaluations of the target distribution p(x|y, θ̂) and its gradi-
ent, by iteratively assigning a random momentum to each component of x, and
then simulating the Hamiltonian dynamics of a system in which − log p(x|y, θ̂)
acts as an internal “force”. In our implementation, we discretize the Hamiltonian
trajectories using the so-called leapfrog method [12], and simulate the Hamil-
tonian dynamics for a number of time steps sampled uniformly from [1, 50] to
obtain a proposal for the Metropolis algorithm. Discretization step sizes that
are adequate for some tetrahedra might be too large or small for others, leading
to either slow convergence or too many rejected moves. We therefore use the
following heuristic stepsize for each vertex: η/max[∂2(− log p(x))/∂x2

j |x̂], where
η is a global adjustment factor and ∂2/x2

j denotes the second derivatives with

respect to the three spatial coordinates of vertex j. Two samples of p(x|y, θ̂)
obtained using the proposed scheme are displayed in Fig. 1.

3 Experiments and Results

To investigate the effect of approximating the true posterior over the segmenta-
tions using parameter sampling instead of point estimates, we compared the per-
formance of the estimated subfield volumes for both methods (Eq. (3) vs. Eq. (6))
in an Alzheimer’s disease classification task2. In particular, we collected the

2 Although this specific classification task is best performed using information from
the whole brain [13], the goal of this paper is to show the effect of MCMC sampling.
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volume estimates for all seven subfields (averaged over the left and right hemi-
spheres) into a feature vector v for each subject, and trained and tested a simple
multivariate classifier to discern between elderly controls (EC) and Alzheimer’s
disease patients (AD) in the corresponding feature space. We also compared
the variance (“error bars”) on the subfield volume estimates for both methods
(Eq. (4) vs. Eq. (7)), and investigated the effect of incorporating this information
in the training of the classifier as well.

3.1 Data and Experimental Set-Up

The 400 baseline T1 scans from controls and AD subjects available in ADNI 3

where used in this study. The MRI pulse sequence is described elsewhere3. The
volumes were preprocessed and parsed into 36 brain structures using FreeSurfer.
We discarded 17 subjects for which FreeSurfer crashed. The demographics for
the remaining 383 were: 56.2% controls (age 76.1± 5.6), 43.8% Alzheimer’s (age
75.5± 7.6); 53.6% males (age 76.1± 5.6), 46.4% females (age 75.9± 6.8).

After the segmentation of subcortical structures, the FreeSurfer hippocampal
subfield segmentation routine (Section 2.1) was executed. The output {x̂, θ̂} was
used to initialize the HMC sampler, which was then used to generate N = 50
samples per subject. The parameter η was tuned so that the average Metropolis
rejection rate was approximately 25%. To decrease the correlation between suc-
cessive samples, we recorded x at the end of every 200th Hamiltonian trajectory
(chosen by visual inspection of the autocorrelation of subsequent runs). We al-
lowed 300 initial “burn-in” runs before collecting samples. The running time of
the sampling was roughly three hours.

3.2 Classification and ROC Analysis

We used a Quadratic Discriminant Analysis (QDA) classifier, which assumes
that the feature vectors v in each group are normally distributed according to
N (v|μEC ,ΣEC) and N (v|μAD,ΣAD), respectively. The means and covariances
were estimated from the available training samples. In testing, a subject was
classified as EC or AD by thresholding the likelihood ratio N (v|μEC ,ΣEC)/
N (v|μAD,ΣAD) ≶ λ. The corresponding ROC curve (i.e., true positive rate
vs. false positive rate) was obtained by sweeping the threshold λ, and the area
under the curve (Az) was then used as a measure of performance. The ROCs
were computed using cross-validation with two randomly selected folds.

We also analyzed the accuracy when the volume of the whole hippocampus
is thresholded to separate EC from AD. We compared two estimates of the
volume: (1) the sum of the volumes of the subfields; and (2) the estimate from
the FreeSurfer pipeline. Finally, to assess the effect of sampling on training and
testing separately, we conducted an experiment in which the classifier was trained
on point estimate volumes and evaluated on MCMC volumes, and vice versa.

3 Online at http://www.adni-info.org/

http://www.adni-info.org/
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3.3 Results

Fig. 2 shows the ROC curves and the areas under them (Az) for the different
methods. Also shown are the p-values of paired DeLong statistical tests [14] that
evaluate if the differences in Az are significant. At p = 0.05, sampling signifi-
cantly outperformed point estimates in all cases (subfields and whole hippocam-
pus). At the operating point closest to (0, 1), sampling provides a ∼ 2% increase
in classification accuracy. Using all the subfields performed significantly better
than the whole hippocampal volume alone. All methods based on the subfield
analysis outperformed the standard FreeSurfer hippocampal segmentation.

When the QDA was trained on the point estimate subfield volumes and tested
on those obtained with sampling, we obtained Az = 0.875, and when the roles
were switched, Az = 0.876. These values are better than when point estimate
volumes were used for both training and testing, but worse than when sampling
was used throughout, indicating that MCMC sampling is beneficial for both
obtaining better discriminative directions and classifying individual subjects.

We also compared the variances of the hippocampal subfield volume posteriors
(Table 1). The point estimates (Eq. (4)) clearly underestimate them, especially
for the larger subfields; e.g., the standard error for CA2-3 is 0.4% of its volume,
unrealistic given the poor image contrast (Fig. 1). In contrast, sampling (Eq. (7))
produces values between 5% and 10%, better reflecting the uncertainty in the
estimated volumes.

In an attempt to take the MCMC volumetry uncertainty estimates into ac-
count in the classifier, we also trained a QDA by simply using all contributing
volumes vk(n), n = 1, . . . , N = 50 in Eq. (6) for each subject – effectively using
50 times more training samples than there are training subjects. The ROC and
the corresponding Az are displayed in Fig. 2 (labeled as “error bars”), showing
a modest further improvement compared to when the classifier is trained using
the mean values only. Although the improvement was not statistically significant
(p ≈ 0.1), the ROC seems to be consistently better in the region that is closest
to (0,1), where the operating point of the classifier would be typically defined.

4 Discussion

In this paper we proposed to approximate the segmentation posterior in prob-
abilistic segmentation models more faithfully by using Monte Carlo samples of
their free parameters. We demonstrated our technique by sampling atlas warps
in a Bayesian method for hippocampal subfield segmentation, and showed a sig-
nificant improvement in an Alzheimer’s disease classification task. The method is
general and can also be applied to other Bayesian segmentation models. It yields
realistic confidence intervals on the segmentation results of individual structures,
which we believe will convey important information when these techniques are
ultimately applied in clinical settings. Furthermore, such confidence information
may also help select the most suitable scanning protocol for imaging studies
investigating the morphometry of specific anatomical structures.
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Fig. 1. A coronal slice of an MR scan, zoomed in around the right hippocampus,
and two different samples from p(x|y, θ̂). Left: deformed mesh; right: corresponding
priors p(l|x) (at the locations in which more than one class prior is greater than zero,
the color is a linear combination of the class colors, weighted by their corresponding
probabilities). The abbreviations in the color code are: FI: fimbria, PS: presubiculum,
SU: subiculum, WM: white matter, GM: gray matter.

Table 1. Mean volumes and relative standard deviations (γk/vk) for the different
subfields, estimated using point estimates and MCMC samples of atlas deformations.
HF stands for “hippocampal fissure”; the other abbreviations are as in Fig. 2.

Subfield HF FI CA4 CA1 PS SU CA23

Volume (mm3) 38 56 248 265 324 326 517

γk/vk, point est. (%) 5.5 1.0 1.2 0.5 0.3 0.7 0.4

γk/vk, sampling (%) 9.9 4.8 7.3 7.4 6.3 8.0 5.8

Fig. 2. Left: ROC curves for the different methods. “FreeSurfer” refers to the whole
hippocampus segmentation produced using the standard FreeSurfer pipeline. Note that
only the region [0, 0.5]× [0.5, 0.95] is shown. Right: Area under the curve (Az) for each
method as well as p-values corresponding to DeLong tests comparing Az for different
methods. “SF” stands for subfields, “WH” for whole hippocampus, “pe” for point
estimate, “sp” for sampling, “eb” for sampling with error bars (i.e. using all volumes
vk(n) in Eq. (6)), and “FS” for FreeSurfer.
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Abstract. The spatio-temporal coherence in data plays an important
role in echocardiographic segmentation. While learning offline dynamical
priors from databases has received considerable attention, these priors
may not be suitable for post-infarct patients and children with congen-
ital heart disease. This paper presents a dynamical appearance model
(DAM) driven by individual inherent data coherence. It employs multi-
scale sparse representation of local appearance, learns online multiscale
appearance dictionaries as the image sequence is segmented sequentially,
and integrates a spectrum of complementary multiscale appearance infor-
mation including intensity, multiscale local appearance, and dynamical
shape predictions. It overcomes the limitations of database-driven sta-
tistical models and applies to a broader range of subjects. Results on
26 4D canine echocardiographic images acquired from both healthy and
post-infarct subjects show that our method significantly improves seg-
mentation accuracy and robustness compared to a conventional intensity
model and our previous single-scale sparse representation method.

1 Introduction

Segmentation of the left ventricle from 4D echocardiography plays an essential
role in quantitative cardiac functional analysis. Due to gross image inhomo-
geneities, artifacts, and poor contrast between regions of interest, robust and
accurate automatic segmentation of the left ventricle, especially the epicardial
border, is very challenging in echocardiography. The inherent spatio-temporal
coherence of echocardiographic data provides important constraints that can
be exploited to guide cardiac border estimation and has motivated a spatio-
temporal view point of echocardiographic segmentation.
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Following the seminal work of Cootes et al. [1] on statistical shape/appearance
modeling, a number of spatio-temporal statistical models (e.g., [2–6]) have been
proposed for learning dynamical priors offline from databases. While these mod-
els have advantages in different aspects, the problem of forming a database that
can handle a wide range of normal and abnormal heart images is still open to
our knowledge. The assumption that different subjects have similar shape or
motion pattern or their clinical images have similar appearance may not hold
for routine clinical images, especially for disease cases, due to natural subject-to-
subject tissue property variations and operator-to-operator variation in acquisi-
tion [7]. For example, for post-infarct patients, the positions, sizes and shapes
of infarcts and thereby the overall heart motion can be highly variable across
the population. It is very hard to build a reliable database accounting for all
these variations, while such individual uniqueness is essentially desired informa-
tion in some important applications like motion-based functional analysis. In
addition, the tremendous cost of building reliable databases compromises the
attractiveness of the database-driven methods.

Exploiting individual data coherence through online learning overcomes these
limitations. It is particularly attractive when a database is inapplicable, unavail-
able, or defective. To this end, a model is indispensable for reliably uncovering
the inherent spatio-temporal structure of individual 4D data. Sparse representa-
tion is a powerful mathematical framework for studying high-dimensional data.
We proposed a 2D single-scale sparse-representation-based segmentation method
in [8]. It shows the feasibility of analyzing 2D+t echocardiographic images via
sparse representation and online dictionary learning. However, it is difficult to
directly apply this method to 4D data. An important limitation is that it uti-
lizes only a single scale of appearance information and requires careful tuning
of scale parameters. This compromises segmentation accuracy and robustness.
This paper generalizes our previous work [8] and introduces a new 3D dynami-
cal appearance model (DAM) that leverages a full spectrum of complementary
multiscale appearance information including intensity, multiscale local appear-
ance, and shape. It employs multiscale sparse representation of high-dimensional
local appearance, encodes appearance patterns with multiscale appearance dic-
tionaries, and dynamically updates the dictionaries as the frames are segmented
sequentially. The online multiscale dictionary learning process is supervised in
a boosting framework to seek optimal weighting of multiscale information and
generate dictionaries that are both generative and discriminative. Sparse cod-
ing w.r.t. the predictive dictionaries produces a local appearance discriminant.
We also include intensity and a dynamical shape prediction to complete the
appearance spectrum that we incorporate into a MAP framework.

2 Methods

2.1 Multiscale Sparse Representation

Let Ω denote the 3D image domain. We describe the multiscale local appearance
at a pixel u ∈ Ω in frame It with a series of appearance vectors yk

t (u) ∈ IRn
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at different appearance scales k = 1, ..., J . yk
t (u) is constructed by concatenat-

ing orderly the pixels within a block centered at u. Complementary multiscale
appearance information is extracted using a fixed block size at different levels
of Gaussian pyramid. Modeled with sparse representation, an appearance vector
y ∈ IRn can be represented as a sparse linear combination of the atoms from
an appearance dictionary D ∈ IRn×K which encodes the typical patterns of a
corresponding appearance class. That is, y ≈ Dx. Given y, D, and a sparsity
factor T0, the sparse representation x can be solved by sparse coding:

min
x

‖y −Dx‖22 s.t. ‖x‖0 ≤ T0. (1)

A shape st in It is represented by a level set function Φt(u). We define Φ+
t (u) =

Φt(u)+ψ1 and Φ−
t (u) = Φt(u)−ψ2. The regions of interest are two band regions

Ω1
t = {u ∈ Ω : Φ−

t (u) < 0, Φt(u) ≥ 0}, and Ω2
t = {u ∈ Ω : Φ+

t (u) > 0, Φt(u) <
0}. We define Ω∗

t = {u ∈ Ω : Φ+
t−1(u) + ζ1 ≥ 0, Φ−

t−1(u) − ζ2 ≤ 0}. The con-
stants are chosen such that st ∈ Ω∗

t . Suppose {D1
t ,D

2
t}k are two dictionaries

adapted to appearance classes Ω1
t and Ω2

t respectively at scale k. They exclu-
sively span, in terms of sparse representation, the subspaces of the respective
classes. Reconstruction residues are defined as

{Rc
t(u)}k = ||yk

t (u)− {Dc
t x̂

c
t(u)}k||2 (2)

∀u ∈ Ω∗
t , k ∈ {1, ..., J}, and c ∈ {1, 2}, where x̂c

t is the sparse representation of
yk
t w.r.t. Dc

t . It is logical to expect that {R1
t (u)}k > {R2

t (u)}k when u ∈ Ω2
t ,

and {R1
t (u)}k < {R2

t (u)}k when u ∈ Ω1
t . Combining the multiscale information,

we introduce a local appearance discriminant

Rt(u) = 1Ω∗
t
(u)

J∑
k=1

(log
1

βk
)sgn({R2

t (u)}k − {R1
t (u)}k), (3)

∀u ∈ Ω, where βk’s are the weighting parameters of the J appearance scales.

2.2 Online Multiscale Dictionary Learning

To obtain the discriminant Rt, {D1
t ,D

2
t}k and βk need to be learned. Leveraging

the inherent spatio-temporal coherence of individual data, we introduce an on-
line multiscale appearance dictionary learning process supervised in a boosting
framework. We interlace the processes of dictionary learning and segmentation as
illustrated in Fig. 1. Similar to the database-driven dynamical shape models [3–
5], we also assume a segmented first frame for initialization. It can be achieved by
some automatic method with expert correction or purely manual segmentation.
We dynamically update the multiscale appearance dictionaries each time a new
frame is segmented. For t > 2, {D1

t ,D
2
t}k are well initialized with {D1

t−1,D
2
t−1}k

and updated with only a few iterations. {D1
2,D

2
2}k are initialized with training

samples. To reduce propagation error, we divide a sequence into two subse-
quences to perform bidirectional segmentation like [8]. The proposed dictionary
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Fig. 1. Dynamical dictionary update interlaced with sequential segmentation

learning algorithm following the structure of the AdaBoost [9] is detailed in Algo-
rithm 1. J dictionary pairs {D1

t ,D
2
t}k and weighting parameters βk are learned

from two classes of appearance samples {Y1
t−1}k = {yk

t−1(u) : u ∈ Ω1
t−1} and

{Y2
t−1}k = {yk

t−1(u) : u ∈ Ω2
t−1}, k = 1, ..., J . The K-SVD [10] algorithm is

invoked to enforce the reconstructive property of the dictionaries. The boost-
ing supervision strengthens the discriminative property of the dictionaries and
optimizes the weighting of multiscale information.

2.3 MAP Estimation

We estimate the shape Φt in frame It given the knowledge of Φ̂1:t−1 and I1:t.
Different from the single-scale method in [8], we integrate a spectrum of comple-
mentary multiscale appearance information including intensity, the multiscale
local appearance discriminant, and a dynamical shape prediction Φ∗

t . Since Φt−1

and Φt−2 are both spatially and temporally close, we assume a constant evo-
lution speed during [t − 2, t]. Within the band domain Ω1

t ∪ Ω2
t we introduce

an approximate shape prediction Φ∗
t = Φ̂t−1 + G(Φ̂t−1 − Φ̂t−2) to regularize

the shape estimation. Here G(∗) denotes Gaussian smoothing operation used to
preserve the smoothness of level set function. The segmentation is estimated by
maximizing the posterior probability:

Φ̂t = argmaxΦt p(Φ̂1:t−1, I1:t−1, It|Φt)p(Φt)
≈ argmaxΦt p(Φ

∗
t , Rt, It|Φt)p(Φt)

≈ argmaxΦt p(Φ
∗
t |Φt)p(Rt|Φt)p(It|Φt)p(Φt).

(4)

The shape regularization is given by p(Φ∗
t |Φt)p(Φt) ∝ exp{−γ

∫
Ω1

t∪Ω2
t
(Φt −

Φ∗
t )

2du} exp{−μ
∫
Ω
δ(Φt)|∇Φt|du}. We assume i.i.d. normal distribution of Rt:

p(Rt|Φt) ∝
∏

u∈Ω1
t
exp{−[Rt(u)−c1]

2

2ω2
1

}
∏

u∈Ω2
t
exp{−[Rt(u)−c2]

2

2ω2
2

}, and i.i.d. Ray-

leigh density of It: p(It|Φt) =
∏

u∈Ω1
t

It(u)

σ2
1

exp{−It(u)2

2σ2
1

}
∏

u∈Ω2
t

It(u)

σ2
2

exp{−It(u)2

2σ2
2

}.
Since intensity is not helpful for epicardial discrimination, p(It|Φt) is dropped in
the epicardial case. The overall segmentation energy functional is given by:

E(Θ,Φt) =
∫
Ω1

t
I2t /2σ

2
1 + log(σ2

1/It)du+
∫
Ω2

t
I2t /2σ

2
2 + log(σ2

2/It)du

+
∫
Ω1

t
(Rt − c1)

2/2ω2
1du+

∫
Ω2

t
(Rt − c2)

2/2ω2
2du

+γ
∫
Ω1

t∪Ω2
t
(Φt − Φ∗

t )
2du+ μ

∫
Ω δ(Φt)|∇Φt|du,

(5)
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where Θ = [c1, c2, ω1, ω2, σ1, σ2]. We minimize the energy functional as follows:
(a) Initialize Φ0

t with Φt−1, τ = 0; (b) Compute the maximum likelihood estimate
of Θ(Φτ

t ); (c) Update Φ
τ+1
t by gradient descent; (d) Reinitialize Φτ+1

t after every
few iterations; (e) Stop if ‖Φτ+1

t − Φτ
t ‖2 < ξ, otherwise, τ = τ + 1, go to (b).

Algorithm 1. Multiscale Appearance Dictionary Learning

Input: appearance samples {Y1
t−1}k = {yk

1,i}M1
i=1 and {Y2

t−1}k = {yk
2,j}M2

j=1, initial

dictionaries {D1
t−1,D

2
t−1}k, k = 1, ..., J , w1

1 = {w1
1,i}M1

i=1 = 1,w1
2 = {w1

2,j}M2
j=1 = 1.

Output: dictionary pairs {D1
t ,D

2
t}k, weighting parameters βk, k = 1, ..., J .

For k = 1, ..., J:

– Resampling: Draw sample sets Ỹk
1 from {Y1

t−1}k and Ỹk
2 from {Y2

t−1}k based

on distributions pk
1 = {pk1,i}M1

i=1 =
wk

1∑M1
i=1 wk

1,i

and pk
2 = {pk2,j}M2

j=1 =
wk

2∑M2
j=1 wk

2,j

.

– Dictionary Learning: Apply the K-SVD to learn {D1
t ,D

2
t}k from Ỹk

1andỸ
k
2 :

min
Dc

t ,X
‖Ỹk

c −Dc
tX‖22 s.t. ∀i, ‖xi‖0 ≤ T0; c ∈ {1, 2}. (6)

– Sparse Coding: ∀y ∈ {Y1
t−1,Y

2
t−1}k, solve the sparse representations

w.r.t. {D1
t}k, and{D2

t}k using the OMP [11], and get residues R(y,D1
t )k and

R(y,D2
t )k.

– Classification: Make a hypothesis hk : y ∈ {Y1
t−1,Y

2
t−1}k → {0, 1}:

hk(y) = Heaviside(R(y,D2
t )k − R(y,D1

t )k). Calculate the error of hk: εk =∑M1
i=1 p

k
1,i|hk(y

k
1,i)− 1|+

∑M2
j=1 p

k
2,jhk(y

k
2,j). Set βk = εk/(1− εk).

– Weight Update: wk+1
1,i = wk

1,iβ
1−|hk(yk

1,i)−1|
k , wk+1

2,j = wk
2,jβ

1−hk(yk
2,j)

k .

3 Experiments and Results

We acquired 26 3D canine echocardiographic sequences from both healthy and
post-infarct subjects using a Phillips iE33 ultrasound imaging system with a
frame rate of ∼ 40 Hz. Each sequence spanned a cardiac cycle. The sequential
segmentation was initialized with a manual tracing of the first frame. Both endo-
cardial and epicardial borders were segmented throughout the sequences. Fig. 2
shows typical segmentation examples by our method. 100 frames were randomly
drawn from ∼ 700 frames for manual segmentation and quality assessment. We
evaluated automatic results against expert manual tracings using the following
segmentation quality metrics: Hausdorff Distance (HD), Mean Absolute Distance
(MAD), Dice coefficient (DICE), and Percentage of True Positives (PTP).

Benefit from the Dynamical Appearance Model.When the dynamical ap-
pearance components are turned off, our model reduces to a conventional ultra-
sound intensity model: the Rayleigh model [12]. Comparison with the Rayleigh
method clearly shows the added value of the proposed DAM. Since the Rayleigh
method is generally sensitive to initial contours, we initialized its segmentation
of each frame with the first frame manual tracing. Fig. 3(a) compares typical
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Fig. 2. Typical segmentations by our method (red,purple) and manual tracings (green)

segmentation examples by the Rayleigh method and our method. We observed
that the Rayleigh method was easily trapped by misleading intensity informa-
tion (e.g., image inhomogeneities and artifacts), while our approach produced
accurate segmentations. Fig. 2 qualitatively shows the capability of the DAM in
estimating reliably 3D left ventricular borders throughout the whole cardiac cy-
cle. The Rayleigh method did not generate acceptable segmentation sequences in
the experiment. Table 1 demonstrates that the DAM significantly outperformed
the Rayleigh model. Better means (higher DICE and PTP, and lower MAD
and HD) and lower standard deviations show the remarkable improvement of
segmentation accuracy and robustness achieved by employing the DAM.

Table 1. Sample means and standard deviations of segmentation quality measures

expressed as mean±std DICE (%) PTP (%) MAD (mm) HD (mm)

Rayleigh [12] 74.9 ± 18.8 83.1 ± 16.3 2.01 ± 1.22 9.17 ± 3.37
Endocardial DAM 93.6 ± 2.49 94.9 ± 2.34 0.57 ± 0.14 2.95 ± 0.62

SSDM [5] —— 95.9 ± 1.24 1.41 ± 0.40 2.53 ± 0.75

Rayleigh [12] 74.1 ± 17.4 82.5 ± 12.0 2.80 ± 1.55 16.9 ± 9.30
Epicardial DAM 97.1 ± 0.93 97.6 ± 0.86 0.60 ± 0.19 3.03 ± 0.76

SSDM [5] —— 94.5 ± 1.74 1.74 ± 0.39 2.79 ± 0.97

Advantages over Single-scale Sparse Representation. We compared our
DAM to the single-scale sparse representation model (SSR) in [8]. The SSR was
extended to 3D and performed at 5 appearance scales ranging from low scale
3.5× 3.5× 3.5mm3 to high scale 15.5× 15.5× 15.5mm3, while the DAM utilized

Fig. 3. Segmentation examples. (a) Manual (Green), DAM (Red), Rayleigh (Blue). (b)
Manual (Green), DAM (Red), SSR (Blue).
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multiscale appearance information. Fig. 3(b) presents end-systolic segmentation
examples showing that the use of DAM resulted in lower propagation error and
higher segmentation accuracy compared to the SSR. Fig. 4 presents the quanti-
tative results of the comparison study. We observed that the performance of the
SSR varied with the scale, which implies its sensitivity to the appearance scale.
The SSR required scale tuning to get better results. The DAM achieved the best
results in almost all the metrics for both endocardial and epicardial segmenta-
tions, which demonstrates the advantages of DAM over SSR. By summarizing
complementary multiscale appearance information, the DAM consistently pro-
duced accurate segmentations without careful parameter tuning.

Fig. 4. Means and 95% confidence intervals obtained by the SSR (blue, scales 1, ..., 5)
and the DAM (yellow, 6) in endocardial (top row) and epicardial (bottom row) cases.

Comparison with Database-Driven Dynamical Models.Table 1 compares
the HD, MAD and PTP achieved by our model and that by a state-of-the-art
database-driven dynamical shape model SSDM reported in [5]. The database-free
DAM achieved comparable results with the SSDM, and outperformed the SSDM
in segmenting epicardial borders. It is worth noticing that the DAM does not
require more human interaction at the segmentation stage than the database-
driven dynamical models such as [3–5] which also need manual tracings of the
first or first few frames for initialization.

4 Discussion and Conclusion

We have proposed a 3D dynamical appearance model that exploits the inherent
spatio-temporal coherence of individual echocardiographic data. It employs mul-
tiscale sparse representation, online multiscale appearance dictionary learning,
and a spectrum of complementary multiscale appearance information includ-
ing intensity, multiscale local appearance, and shape. Our method resulted in
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significantly improved accuracy and robustness of left ventricular segmentation
compared to a standard intensity method and our previous single-scale sparse
representation method. The DAM achieved comparable results with a state-of-
the-art database-driven statistical dynamical model SSDM. Since the DAM is
database-free, it overcomes the limitations introduced by the use of databases.
The DAM can be applied to the cases (e.g., the post-infarct subjects in this
study) where it is inappropriate to apply database-based a priori motion or shape
knowledge. Even when the priors are effective, the DAM can be a good choice for
complementing the database and relaxing the reliance of statistical models (e.g.,
[2–6]) on database quality. Future work includes extensions to human data, other
modalities, and an integrated online and offline learning framework to exploit
their complementarity.
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Abstract. Kidney segmentation in 3D CT images allows extracting
useful information for nephrologists. For practical use in clinical routine,
such an algorithm should be fast, automatic and robust to contrast-
agent enhancement and fields of view. By combining and refining state-
of-the-art techniques (random forests and template deformation), we
demonstrate the possibility of building an algorithm that meets these re-
quirements. Kidneys are localized with random forests following a coarse-
to-fine strategy. Their initial positions detected with global contextual
information are refined with a cascade of local regression forests. A clas-
sification forest is then used to obtain a probabilistic segmentation of
both kidneys. The final segmentation is performed with an implicit tem-
plate deformation algorithm driven by these kidney probability maps.
Our method has been validated on a highly heterogeneous database of
233 CT scans from 89 patients. 80 % of the kidneys were accurately
detected and segmented (Dice coefficient > 0.90) in a few seconds per
volume.

1 Introduction

Segmentation of medical images is a key step to gathering anatomical informa-
tion for diagnosis or interventional planning. Renal volume and perfusion, which
can be extracted from CT images, are typical examples for nephrologists. How-
ever, it is often long and tedious for clinicians to segment 3D images. Automatic
and fast segmentation algorithms are thus needed for practical use. It is yet still
challenging to design an algorithm robust enough to noise, acquisition artifacts
or leakages in neighboring organs.

Several papers in the literature tackle the problem of kidney segmentation in
CT images. In [1] and [2], the authors used the Active Shape Model framework
to learn the kidney mean shape and principal modes of variation, in order to
constrain the segmentation. Recently Khalifa et al. [3] proposed a level-set ap-
proach, based on a new force combining shape and intensity priors as well as
spatial interactions, which showed promising results. However, they were assessed
on small datasets (41, 17 and 20 volumes in [1], [2] and [3] respectively). More-
over, all these algorithms are either based on a manual initialization, or tested
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on images already cropped around the kidney. A fully automatic method has
already been introduced by Tsagaan et al. [4], but their detection of the region
of interest presents limitations. First, it relies on hard geometrical constraints,
which requires knowledge on the field of view. Then, a rough search is done by
template matching, which is not robust to pathologies or kidney orientation.

In this paper, we propose a fast and completely automatic method to detect
and segment both kidneys in any kind of CT image: acquired at different contrast
phases (or without contrast) with various fields of view, from both healthy sub-
jects and patients with kidney tumors. Kidneys’ positions are first detected with
regression forests following a coarse to fine strategy (Section 2). Then a two-step
segmentation is performed on cropped images around the kidneys (Section 3)
using (i) a random forest to estimate a probability map of each kidney and (ii)
a template deformation algorithm [5] to extract the kidney surface. Experiments
and results are detailed in Section 4.

2 Kidney Detection with Regression Forests

This section presents a fast and reliable estimation of the kidneys’ locations.
Various approaches for anatomy detection and localization have been proposed in
the literature (Section 2.1). We propose a regression-based method in two steps.
The whole image is first used to provide an estimate of the region of interest
(Section 2.2) which is then refined using local information only (Section 2.3).

2.1 Background on Organ Detection

Registration-based approaches using labeled atlases (e.g. [6]) have often been
used for this problem. However such approaches are subject to registration errors
due to inter individual variability. The robustness of the registration step can be
improved by using multi-atlas or multi-template techniques [7] but at the cost
of an increase in computation time.

More recently, supervised learning methods have been used for this detec-
tion problem to better take into account interindividual variability. Most clas-
sification-based detection algorithms consist in constructing a classifier whose
role is to predict from local features to which organ a voxel belongs (e.g. [8]).
However, by considering only local features, such approaches do not benefit from
anatomical contextual information. To overcome this shortcoming, Criminisi et
al. [9] used a generalization of Haar features that models contextual information.
Instead of classifying each voxel, some authors consider the detection problem as
finding a vector of parameters describing the organ locations. Such parameters
can describe contour line or surface of an organ [10] or more simply bounding
boxes around the different organs of interest [11]. The role of the classifier is
then to predict whether a set of parameters is correct or not. Zheng et al. [11]
used a greedy approach to avoid searching the whole parameter space, which is
intractable.

Zhou et al. [12] showed that finding a set of continuous parameters from an
image is by definition a multiple-output regression problem. More precisely, they
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proposed a boosting ridge regression to detect and localize the left ventricle in
cardiac ultrasound 2D images. Regression-based techniques do not require an
exhaustive search of parameters. Other regressors such as regression forests and
random ferns have also been proposed [13,14].

In the following, we consider regression forests to simultaneously detect both
kidneys. Regression forests [15,16] are particularly well adapted to this problem
in clinical routine since, thanks to their tree structures, they allow very fast test-
ing with nonlinear regression functions. Since there is no explicit regularization,
random forests require a large number of training samples to avoid overfitting
the training data. Here, this is not a limitation since the training samples are
the voxels of the training CT scans.

2.2 Coarse Localization of the Kidneys

We consider the detection step as the problem of finding bounding boxes around
both kidneys. First, we find a coarse positioning based on contextual information
adapting the approach proposed by Criminisi et al. [13]. Then, the position of
each box is refined based on local information.

Each bounding box is parameterized by a vector in R6 (two points in 3D).
A random forest is trained on CT scans with known kidney bounding boxes
to predict for each voxel the relative position and size of the kidneys. Since
CT intensities (expressed in Hounsfield units) have direct physical meaning,
as explained in [13], the features used are the mean intensities over displaced,
asymmetric cuboidal regions. To allow a much faster training, we used residual
sum of squares (RSS) instead of the information gain for the node optimization
in the training stage. Note that optimizing the RSS comes to minimizing the
trace of the covariance matrix at each node instead of its determinant. We did
not notice any differences in term of prediction accuracies.

This step gives a first estimate of the kidneys’ positions and sizes. By construc-
tion, the relative estimated position of the left and right kidneys are strongly
correlated. Such a correlation ensures coherent results but may not reflect the
whole possible interindividual variability. This might be critical when the num-
ber of subjects in the training set is low. To overcome this shortcoming, we
propose a refinement step of the bounding boxes that relaxes the correlation
between the two kidneys’ position.

2.3 Refinement of the Region of Interest

This step consists in refining the left and right kidneys’ positions based on local
information only. The constraints between the kidneys’ relative positions are
relaxed by treating both kidneys independently. For each kidney, a regression
forest is trained to predict, from every voxel located in its neighborhood, the
relative position of the kidney’s center.We used the same training set as in the
previous step. The features used for this step are, for each voxel, its intensity
and its gradient magnitude, as well its neighbors’.
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For testing, only the voxels in the neighborhood of the center of the bounding
box predicted by the first step are considered. As depicted in Figure 1.b, each
voxel v then votes for a location ĉv of the kidney’s center. For robustness sake,
the final location estimate is ĉ = argminc∈R3

∑K
v=1 ‖c − ĉv‖1 where (ĉv)1,K

are the K votes with the highest probability. The final bounding box is then
translated accordingly.

To ensure stability, this refinement step is constrained to very small displace-
ments and is iterated until convergence. This can be considered as a cascaded
pose regression similar to [17]. Illustration of the kidney detection is given in
Figure 1 and quantitative results are reported in Section 4.

(a) (b) (c)

Fig. 1. Illustration of the kidney detection on a CT volume. (a) Initial bounding boxes
detected using global contextual information. (b) Refinement step: voxels near the cen-
ter of the initial bounding box (red) vote for its new center, using only local information.
(c) Comparison between the initial (red) and refined (green) bounding box.

3 Kidney Segmentation

Even when the image is cropped to a region Ω around the kidney, its segmen-
tation remains a challenging task: (i) kidneys are composed of different tissues
(cortex, medulla, sinus) resulting in different image intensities, (ii) surrounding
organs may touch the kidney without a clear boundary, (iii) the contrast phase
of the CT image is unknown. For all these reasons, it is not possible to solely rely
on the image intensity, and we rather use it simultaneously with other features.

3.1 Probability Estimation via Random Forests

In addition to regression, random forests can also be used to perform classifica-
tion [15,16]. We trained a random forest classifier to predict, for each voxel
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x of the previously detected bounding box, the probability P (x) of belong-
ing to a kidney. This random forest combines different image features: inten-
sity and first/second order derivatives of the voxel and its neighbors. Decision
stumps were used as weak classifiers and the impurity criterion was the Gini
index [15,16]. Such probability maps are shown in Figures 2.a and 2.c. Indepen-
dently from the contrast-phase, the whole kidney tissues are enhanced, whereas
the confusing adjacent structures are removed.

3.2 Initialization of the Segmentation

For the sake of robustness to interindividual variability and to pathologies, we
only assumed that kidneys have a bean shape that can be roughly approximated
by an ellipsoid. The segmentation algorithm is thus initialized with the ellipsoid
E = {x ∈ R3 | (x−cE )

TM−1
E (x−cE ) = 1}, where cE =

∫
Ω P (x) x dx denotes the

weighted barycenter and ME is proportional to the weighted covariance matrix∫
Ω P (x) (x − cE)(x− cE )

T dx.

3.3 Implicit Template Deformation

We followed the framework introduced in [5] to deform the ellipsoid E . A model-
based approach is here particularly suited because (i) kidneys usually have very
smooth shapes, (ii) we want the algorithm to reasonably extrapolate the bound-
ary when the probability map is uncertain. Hereafter we recall the main princi-
ples of the adapted model-based deformation algorithm.

Given a working image I : Ω → R and the initial ellipsoid E defined by an
implicit function φ, we find a transformation ψ : Ω → Ω such that the image
gradient flux across the surface of the deformed ellipsoid E(ψ) = (φ ◦ ψ)−1(0) is
maximum. Denoting n the normal vector, the segmentation energy is then

Es(ψ) =

∫
E(ψ)

−〈∇I(x) , n(x)〉 dx+ λR(ψ) , (1)

R(ψ) is a regularization term which prevents large deviations from the original
ellipsoid. The transformation is decomposed as ψ = L ◦ G where

– G is a global linear transformation, which may correct or adjust the center,
orientation and scales of the initial ellipsoid;

– L is a non-rigid local deformation, expressed using a displacement field u
such that L(x) = x + (u ∗ Kσ)(x). Kσ is a Gaussian kernel that provides
built-in smoothness, at a given scale σ.

This decomposition allows R to be pose-invariant and constrains only the non-
rigid deformation : R(ψ) = R(L) =

∫
Ω ‖L− Id‖2 =

∫
Ω ‖u ∗Kσ‖2. Finally, using

Stokes formula, Es can be rewritten as

Es(ψ) = −
∫
Ω

H(φ ◦ L ◦ G) ΔI + λ

∫
Ω

‖u ∗Kσ‖2 , (2)
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where H is the Heaviside function and Δ is the Laplacian operator. This energy
is minimized, with respect to the parameters of G and each component of the
vector field u, through a gradient descent. Note that since the energy in (2) is
not convex, the resulting segmentation depends on the initialization. Hence, we
first apply this algorithm to the probability map (I = P ) in order to reach an
appropriate local minimum (e.g. no leaks in surrounding tissues). The segmenta-
tion is finally refined on the original CT volume, with a higher shape constraint
parameter λ and a finer scale σ (Figures 2.b and 2.d).

(a) (b) (c) (d)

Fig. 2. Illustration of the two-step kidney segmentation on two cases: (a-b) non-
contrasted volume of a healthy patient, (c-d) contrast-enhanced image of a kidney with
a tumor. The kidney probability maps (a) and (c) are learned with a random forest,
and used to coarsely segment the kidney (red) by deforming an initial ellipsoid (yellow).
The segmentation is then refined (green) using the original volumes (b) and (d).

4 Experiments and Results

The validation of our method was performed on a representative clinical dataset
of 233 CT volumes from 89 subjects including diseased patients. The scans were
contrast-enhanced or not and with various fields of view and spatial resolutions.
They have between 33 and 973 (mean: 260) 512 × 512 slices with slice (resp.
interslice) resolutions ranging from 0.5 to 1 mm (resp. 0.5 to 3.0 mm). 16%
of the kidneys were slighlty truncated, but were nevertheless included in the
evaluation to keep it clinically representative. The database was split into a
training set of 54 volumes from 26 randomly selected patients, and a testing set
composed of the other 179 volumes from 63 patients.

The proposed algorithm used 3 regression forests and 2 classification forests.
Each forest was composed of 7 trees with a maximum tree depth d = 15 and a
minimal node size n = 100. We did not notice a high sensitivity of the results
to these parameters value. The whole training procedure lasts ∼ 5 hours. Times
are indicated for a C++ implementation (3.0 GHz dual-core, 4 Go RAM).
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Kidney Detection. Detection errors were defined as the absolute difference be-
tween predicted and true wall positions averaged over all the bounding box sides.
The distance between the predicted bounding box center and the ground truth
was also used to assess the detection accuracy. These results are given in Table 1
and compared to those reported in [13]. The refinement step (Section 2.3), for a
low extra time cost, greatly increases the accuracy of the bounding box detection
(e.g. the median center error is divided by 3).

Table 1. Detection results reported as: Mean ± Standard-deviation (Median)

Detection Walls error (mm) Center error (mm) Time (s)
Left Right Left Right Left+Right

[13] 17± 17 (13) 19± 18 (12) – – –
Coarse 12± 7 (10) 13± 6 (11) 23± 14 (20) 26± 13 (23) 2.1± 0.5 (2.0)
Refined 7± 10 (5) 7± 6 (6) 11± 18 (6) 10± 12 (7) 2.8± 1.7 (2.4)

Automatic Segmentation. The results of the automatic segmentation includ-
ing the detection step were compared to the ground truth using the Dice index.
Figure 3 shows the histograms of the scores for both kidneys. 80 % of the kidneys
were correctly detected and segmented (Dice > 0.90). The algorithm failed in
only 6% of the cases (Dice < 0.65). The total execution time is around 10 s.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0%

20%

40%

60%

80%

100%

Dice coefficient

Left Kidney

Right Kidney

Dice Left Right

1st quartile 0.93 0.93
median 0.96 0.96

3rd quartile 0.97 0.97
maximum 0.99 0.99

Fig. 3. Distribution of the Dice coefficient between the ground truth and the automat-
ically segmented kidneys. Red and blue lines show the cumulative distribution.

5 Conclusion

This paper presented a fully automatic method to detect and segment both
kidneys in any CT volume using random regression and classification forests.
Regression forests were used to estimate the kidneys’ positions. A classification
forest was then used to obtain a probability map of each kidney. The segmen-
tation was carried out with an implicit template deformation algorithm. The
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full automation and the execution time are compatible with clinical routine. Re-
sults show that our method provides an accurate segmentation in 80% of the
cases despite the highly heterogeneous database. Remaining cases were mostly
due to pathological kidneys not represented in the training set. Such cases could
be quickly corrected by the clinician, since the chosen model-based deformation
algorithm [5] allows user interactions. We also emphasize the generality of our
framework, that could be as future work extended to other organs.

References

1. Spiegel, M., et al.: Segmentation of kidneys using a new active shape model gen-
eration technique based on non-rigid image registration. Comput. Med. Imaging
Graph. 33(1), 29–39 (2009)

2. Li, X., Chen, X., Yao, J., Zhang, X., Tian, J.: Renal Cortex Segmentation Using
Optimal Surface Search with Novel Graph Construction. In: Fichtinger, G., Mar-
tel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 387–394.
Springer, Heidelberg (2011)

3. Khalifa, F., Elnakib, A., Beache, G.M., Gimel’farb, G., El-Ghar, M.A., Ouseph,
R., Sokhadze, G., Manning, S., McClure, P., El-Baz, A.: 3D Kidney Segmentation
from CT Images Using a Level Set Approach Guided by a Novel Stochastic Speed
Function. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III.
LNCS, vol. 6893, pp. 587–594. Springer, Heidelberg (2011)

4. Tsagaan, B., Shimizu, A., Kobatake, H., Miyakawa, K.: An Automated Segmen-
tation Method of Kidney Using Statistical Information. In: Dohi, T., Kikinis, R.
(eds.) MICCAI 2002, Part I. LNCS, vol. 2488, pp. 556–563. Springer, Heidelberg
(2002)

5. Mory, B., Somphone, O., Prevost, R., Ardon, R.: Real-Time 3D Image Segmenta-
tion by User-Constrained Template Deformation. In: Ayache, N., Delingette, H.,
Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 560–567.
Springer, Heidelberg (2012)

6. Fenchel, M., Thesen, S., Schilling, A.: Automatic Labeling of Anatomical Struc-
tures in MR FastView Images Using a Statistical Atlas. In: Metaxas, D., Axel,
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Abstract. Methods that leverage neighbourhood structures in high-
dimensional image spaces have recently attracted attention. These ap-
proaches extract information from a new image using its “neighbours” in
the image space equipped with an application-specific distance. Finding
the neighbourhood of a given image is challenging due to large dataset
sizes and costly distance evaluations. Furthermore, automatic neighbour-
hood search for a new image is currently not possible when the distance
is based on ground truth annotations. In this article we present a general
and efficient solution to these problems. “Neighbourhood Approximation
Forests” (NAF) is a supervised learning algorithm that approximates the
neighbourhood structure resulting from an arbitrary distance. As NAF
uses only image intensities to infer neighbours it can also be applied
to distances based on ground truth annotations. We demonstrate NAF
in two scenarios: i) choosing neighbours with respect to a deformation-
based distance, and ii) age prediction from brain MRI. The experiments
show NAF’s approximation quality, computational advantages and use
in different contexts.

1 Introduction

Computational methods that leverage available datasets for analyzing new im-
ages show high accuracy and robustness. Among these methods one class that
has lately shown significant potential is neighbourhood-based approaches. These
approaches formulate the set of all images as a high-dimensional space equipped
with an application-specific distance. They then utilize the neighbourhood struc-
ture of this space for various tasks. The underlying principle is that neighbour-
ing images, in other words images that are similar with respect to the distance,
provide valuable and accurate information about each other. Therefore, when
analyzing a new image one can propagate information from its neighbours.

Neighbourhood-based approach, as a general framework, has recently been
applied in different contexts. Patch-based techniques [7] and multi-atlas based
methods [11] utilize it for segmenting medical images. Nonlinear “manifold”-
based methods, which are used in different applications [10,20], also rely on
the neighbourhood-based approach, i.e. the neighbourhood structure is pre-
served during the low-dimensional embedding and subsequent analyses in the
low-dimensional space are based on this structure.

One problem in neighbourhood-based approaches, which currently limits their
use, is determining the close neighbours of a new image within an existing
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dataset. In theory, to determine this neighbourhood one should compute the
distances between the new image and all the other images. However, depending
on the nature of the distance and the size of the training set this exhaustive
search can be computationally very expensive or even impossible. For instance,
in multi-atlas based segmentation one would register a new image to all other
images to determine its neighbours and propagate labels based on this. The cost
of this exhaustive search is high due to computational times of nonlinear regis-
tration. Similar problems exist in “manifold”-based techniques, as also pointed
out in [2]. In case the distance is defined with respect to ground truth annotation
not available for the new image then exhaustive search becomes impossible.

Besides exhaustive search, currently used techniques for finding the neigh-
bourhood of a new image is either through heuristic search strategies [1,7] or
K-means like approaches such as multi-template constructions [16,3]. Heuristic
strategies are based on application specific rules, therefore not flexible. K-means
like approaches have a trade-off in choosing the number of centroids, i.e. too
many will result in a computational bottleneck and too few will not correctly
reflect the neighbourhood structure. In manifold techniques, some methods find
the manifold coordinates of a new image without reconstructing the embedding,
[5,14]. However, these methods also rely on computing all distances. Lastly, if
a set of low-dimensional features that describes the neighbourhood structure is
known then quantization [13] and hashing [19,15] techniques create short binary
codes from these features for fast image retrieval. Construction of the initial
low-dimensional features still remains an open problem though.

In this article, we present “Neighborhood Approximation Forests” (NAF),
a general supervised learning algorithm for approximating an arbitrary neigh-
bourhood structure using image intensities. The main principle of NAF is to
learn a compact representation that can describe the neighbourhood structure
of a high-dimensional image space equipped with a user-specified distance. For
a new image, NAF predicts its neighbourhood within an existing dataset in an
efficient manner. We first define the general framework of neighbourhood-based
approaches and detail the proposed algorithm. In the experiments we apply NAF
to two applications. First we treat the problem of determining the closest neigh-
bours of a new image within a training set with respect to the amount of defor-
mation between images. This experiment demonstrates the prediction accuracy
of NAF compared to the real neighbourhood structure and shows the computa-
tional advantages. In the second application we devise a simple neighbourhood-
based regression method powered by NAF to solve the “toy” problem of age
prediction using brain MRI. This experiment demonstrates the use of NAF on
an image space where the neighbourhood relation is determined by a continuous
and non-image based meta information. Results show high regression accuracies
achieved by NAF compared to the values reported in the literature.

2 Neighbourhood Approximation Forests

Neighbourhood-based approach (NbA) is a general framework that is applied for
various image analysis tasks. The underlying principle is to extract information
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from an image using other “similar” images within a dataset with ground truth,
i.e. training set. NbA formulates the set of all images as a high-dimensional space
I, where each point I ∈ I denotes an image. The dataset with ground truth is a
finite subset within this space I = {Ip}Pp=1 ∈ I. The space I is equipped with a
distance ρ(I, J) that quantifies a similarity between images, which is application
dependent. For an image I the set of k most similar images in I is then defined as
the neighborhood Nk

ρ(I), i.e. k images with the lowest distance to I. To analyse

a new image J /∈ I, one needs to determine Nk
ρ(J) within I to be able to use

NbA. This is challenging because the computation of ρ(·, ·) between J and all
images in I can be expensive or even not possible. In the following we describe
a learning algorithm to approximate Nk

ρ(J) that overcomes these challenges.
Our approach relies on the hypothesis that the neighbourhood structure con-

structed by ρ(·, ·) can be approximated using compact image descriptors derived
from intensity information. Consequently, using these descriptors, for a new im-
age J we can approximate its neighborhood Nk

ρ(J) within I without the need to
evaluate ρ(·, ·). Neighborhood Approximation Forests (NAF) is a supervised al-
gorithm that learns such descriptors for arbitrary ρ(·, ·). It is a variant of random
decision forests [6,8], i.e. an ensemble of binary decision trees, where each tree is
an independently learned predictor of Nk

ρ(J) given J . As all supervised learning
algorithms NAF has two phases: training and prediction. Below we explain these
phases and then demonstrate NAF in Section 3.

Predicting neighbourhood with a single tree: We represent each image I

using a set of intensity-based features f(I) ∈ RQ of possibly high dimensions,
which can be as simple as intensity values at different points. These features
have no prior-information on ρ(·, ·). For a new image J , each tree T predicts J ’s
neighbours within a training set I by applying a sequence of learned binary tests
to a subset of its entire feature vector fT (J) ∈ Rq, q < Q and fT (J) ⊂ f(J).
Each binary test in the sequence depends on the result of the previous test.
This whole process is represented as a binary decision tree [4], where each test
corresponds to a branching node in the tree. Starting from the root node s0 the
image J traverses the tree taking a specific path and arrives at a node with no
further children, a leaf-node. The path and the final leaf-node depend on the
feature vector fT (J) and the binary tests at each node.

Each leaf-node stores the training images (or simply their indeces) In ∈ I
which traversed T and arrived at that node. So, at the leaf-node J arrives there
is a subset of training images which have taken the same path as J and therefore
share similar feature values based on the applied tests. This subset of training
images, NT (ρ)(J), is the neighbourhood of J predicted by T . The subscript T (ρ)
denotes the tree’s dependence on ρ(·, ·), which we explain in the training part.

Approximating neighborhood with the forest: The forest F is composed
of multiple independent trees with independent predictions. Each tree works
with a different subset of features fT (J) ⊂ f(J) focusing on a different part of
the feature space. We compute the ensemble forest prediction by combining the
independent tree predictions. This combination process computes the approxi-
mate affinity of J to each In by wF (J, In) �

∑
∀T∈F 1NT (ρ)(J)(In), where 1A(x)
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is the indicator function (we note that [9] uses a similar construction for a differ-
ent purpose: defining a neighborhood structure) The forest prediction of Nk

ρ(J)
is simply the k training images with the largest wF (J, In) values. We denote this
set with Nk

F (ρ)(J). Once again the subscript denotes the ρ of the forest.

Training: In order to learn the structure of a tree we use the training set I and
the distances ρ(In, Im) for each image pair in I. Our goal is to find the sequence
of binary tests on image features that sequentially partition I into the most
spatially compact subsets with respect to ρ(·, ·). Assuming I is a representative
dataset, the learned binary tests would then successfully apply to other images.

Given a node s and the set of training images at it, Is, we first define branching
of s via the binary test and the partitioning of Is into two as

ts(In;m, τ) �
{
In ∈ IsR , if f

m
T (In) > τ,

In ∈ IsL , if f
m
T (In) ≤ τ,

∀In ∈ Is (1)

where fm
T denotes the mth component of fT (In), τ ∈ R, and sL and sR are the

children of s. At every node we would like to optimize the parameters m and
τ to obtain the most compact partitioning of Is. To do this we define spatial
compactness of a set A with respect to ρ(·, ·) as

Cρ(A) � 1

|A|2
∑
Ii∈A

∑
Ij∈A

ρ(Ii, Ij), (2)

where |A| denotes the size of the set and Cρ(A) its cluster size. Using Cρ(·) we
can formulate the gain in compactness a specific set of parameters yields with

G(Is,m, τ) � Cρ(Is)−
|IsR |
|Is|

Cρ(IsR)−
|IsL |
|Is|

Cρ(IsL), (3)

where the weights |IsR |/|Is| and |IsL |/|Is| avoid constructing too small partitions.
Using this formulation we determine the best possible binary test at node s with
the following optimization problem

(ms, τs) = argm,τ max G(Is,m, τ). (4)

In practice we do not take into account all m in the above optimization problem
but choose a small random subset of the components of fT (·) at each node as is
commonly done in decision forests [8]. The optimization over τ though is done
through exhaustive search.

For each tree we start from its root node setting Is0 = I. We then sequentially
determine the binary tests using Eqn. 4 and add new nodes to the tree. We
continue this process and grow the trees. The growth process is terminated
at a node when i) we can no longer find a test that creates a more compact
partitioning than the one in the node, i.e. ∀(m, τ), G < 0, ii) the number of
training images within the node is too small or iii) we reach at the maximum
allowed depth and stop due to computational cost considerations.
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3 Experiments

In this section we demonstrate NAF on two different applications. Our aim is
to analyze NAF in different experimental setups and for different image spaces.
We also highlight the application-specific components that can be changed to
use NAF in different contexts. For both experiments we use 355 T1 weighted
brain MR images from the publicly available OASIS dataset [12]. These images
are skull stripped, histogram equalized and aligned to a common reference frame
via affine registration. The resolution of each image is 1× 1× 1 mm3.

A. Choosing the Closest Images for Non-linear Registration: In the
first application we focus on predicting the neighbourhood of a new image J
within a dataset I with respect to the amount of deformation between images.
We predict images in I that need the least amount of deformation to nonlinearly
align them to J . This is a relevant problem for large cohort studies and multi-
atlas based segmentation methods. Our aim in this experiment is to demonstrate
the quality of NAF’s predictions compared to the real neighbourhoods for this
highly nonlinear problem. The application specific and experimental details are
given below along with results and discussions.

ρ(·, ·): We measure the amount of deformation between two images using the

distance ρ(I, J) �
∫
ΩI

log |Jac(ΦI→J )| dΩI +
∫
ΩJ

log |Jac(ΦJ→I)| dΩJ , where ΩI

is the domain of I, ΦI→J is the deformation mapping I to J , i.e. ΦI→J◦I = J , and
Jac(·) is the Jacobian determinant. We use the diffeomorphic demons algorithm
[18] for determining each deformation.

Dataset: The first 169 images are used in training and the rest 186 for testing.

Features: We randomly choose Q = 10000 pairs of voxels in the reference frame.
Then we smooth each image with an averaging kernel of size 12× 12× 12 mm3.
The feature vector for each image consists of the intensity differences between
the pairs of voxels in the smooth version of the image.

NAF details: Using the training set we train a NAF of 1500 trees, each of max-
imum depth 6. Minimum number of allowable training images for a node is set
to 7 beyond which we stop growing the tree. Each tree is constructed using a
random subset of the entire feature vector of size q = 1000. For each test image
J we predict its neighbourhood,Nk

F (ρ)(J), for different values of k = 1, 3, 5, 7, 10.

Evaluation and Results: For each test image J , we evaluate the quality ofNk
F (ρ)(J)

by comparing it to the real neighbourhood Nk
ρ(J) using the following ratio

�J (N
k
F (ρ)(J)) �

∑
I∈Nk

F (ρ)
(J) ρ(I, J)∑

I∈Nk
ρ(J)

ρ(I, J)
≥ 1, (5)

which measures how close the images in Nk
F (ρ)(J) to J compared to the ones

in Nk
ρ(J). In Table 1 we provide the mean values and standard deviations of

�J(N
k
F (ρ)(J)) computed over 186 test images for different k. These values can

be best interpreted in comparison with the ranges �J(·) can take for each k. In
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order to present these ranges, for each test image J and each k we randomly
chose 2000 subsets within the training set. We denote each of these subsets by
Nk

r(J). We then computed �J(N
k
r (J)) values and present the mean and standard

deviations for these random subsets (computed over 186× 2000 subsets for each
k) in Table 1. Results given in Table 1 demonstrate that NAF predictions are
indeed very close to the real neighbourhoods in terms of their distances to J .
Especially in comparison with �J(N

k
r (J)) we notice that �J(N

k
F (ρ)(J)) values are

within the lowest part of the entire range of �J(·). We further plot in Figures 1(a)
and (b) the normalized histograms for �J(N

k
r (J)) and Nk

F (ρ)(J) for k = 1 and

k = 7. Comparing these histograms we see that the distribution of Nk
F (ρ)(J) is

more concentrated close to one and it lies in the lower frequency region of the
distribution for �J (N

k
r (J)). The difference is even more pronounced for k = 7, i.e.

choosing multiple neighbours, which is more relevant for most applications such
as multi-atlas based segmentation. Lastly in Figures 1(c)-(e) we show two sets
of examples (different rows) where NAF predicts a different closest neighbour
than the real one. However, visually the test image and the predicted neighbour
are very similar.

Computation Times: For each test image NAF took at maximum 10.2 seconds
to predict the neighbourhood with a C++ implementation on an Intel Xeon R©

at 2.27 GHz. Exhaustive search requires 169 nonlinear registrations which took
on the average 1.9 hours for each test image.

B. Age Regression from Brain MR Scans: In the second application we
focus on a high-dimensional image space equipped with a distance based on non-
image based meta information: subject age. We devise an image-based regression
algorithm powered by NAF to predict the age of a subject using the MR image.
Our aim is to demonstrate the use of NAF for this type of applications and also
quality of the predicted neighbourhood through an analysis end result.

ρ(·, ·): The distance of the image space is ρ(I, J) = |age(I) − age(J)|, where
age(I) denotes the subject’s age with image I and | · | is the absolute value.

Dataset: We use the 355 images and perform leave-one-out tests.

Features: We randomly choose Q = 10000 voxels in the reference frame and use
the intensity values taken from the images smoothed as in the previous case.

NAF details: Most details of NAF are the same as the previous case. The only
differences is this time the maximum tree depth is 12 and we use 700 trees.

Evaluation and Results: In this application we evaluate NAF’s results by com-
paring the real age of the test subject with the prediction obtained using the
neighbourhood predicted by NAF. For each test image J we predict the age of
the subject by taking the average age inN15

F (ρ)(J). Figure 1(f) plots the predicted
age vs. actual age for all 355 tests. The resulting correlation is reasonable high
with a r-value = 0.93 ([17] reports slightly lower values for a slightly smaller
dataset). We observe that NAF is able to approximate an informative image
neighbourhood for a new image that is useful for the regression analysis.
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Table 1. Top row: mean and standard deviations for the ratios of total distance from
Nk

F (ρ)(J) to J and from Nk
ρ(J) to J , see Eqn. 5. Bottom row: presents the range of �J (·)

within the training set by providing same values for random subsets of the training set.
NAF predictions are very close the real neighbourhood considering the range of �J(·).

k 1 3 5 7 10

�J(N
k
F (ρ)(J)) 1.05 ± 0.04 1.05 ± 0.02 1.04 ± 0.02 1.04 ± 0.02 1.04 ± 0.01

�J (N
k
r (J)) 1.20 ± 0.07 1.18 ± 0.06 1.18 ± 0.06 1.17 ± 0.06 1.16± 0.06

Fig. 1. Experiment A:(a,b) Normalized histograms of �J (N
k
F (ρ)(J)) (light) and

�J(N
k
r (J)) (dark) for k = 1 , 7 respectively. NAF predictions are concentrated close

to one and lie in the low frequency region of the distribution for �J(N
k
r (J)) (c)-(e)

Two tests (different rows) where NAF suggests a different closest image than the real
one: (c) the test image, (d) real closest (e) NAF prediction. Note that images are very
similar visually. Experiment B:(f) Image-based regression for age prediction by NAF
using N15

F (ρ)(J). Note the high correlation r = 0.93.

4 Conclusion

We proposed an algorithm for solving one of the critical problems common to
all neighborhood-based approaches for image analysis: approximating the neigh-
borhood of a new image within a training set of images with respect to a given
distance. The algorithm is general and can be applied to various tasks that utilize
different distance definitions, as shown in the experiments. Furthermore, as the
method is based on the framework of random decision forests the computation
times are fast. We believe that applications such as multi-atlas registration and
‘manifold’-based techniques can benefit from the proposed algorithm.
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Abstract. A novel approach to the problem of locating and recognizing
anatomical structures of interest in ultrasound (US) video is proposed.
While addressing this challenge may be beneficial to US examinations in
general, it is particularly useful in situations where portable US probes
are used by less experienced personnel. The proposed solution is based
on the hypothesis that, rather than their appearance in a single image,
anatomical structures are most distinctively characterized by the varia-
tion of their appearance as the transducer moves. By drawing on recent
advances in the non-linear modeling of video appearance and motion, us-
ing an extension of dynamic textures, successful location and recognition
is demonstrated on two phantoms. We further analyze computational de-
mands and preliminarily explore insensitivity to anatomic variations.

1 Motivation

Many developing countries, as well as rural areas of developed nations, do not
have immediate access to expensive medical imaging equipment such as MR or
CT. As highlighted in a recent study [8], ultrasound (US) imaging is particu-
larly well-suited for those underserved areas, since it is low-cost, versatile and
non-invasive. Additionally, medical care in emergency vehicles and military field
operations may benefit from US when performing first care. However, as empha-
sized in [8], training is needed for personnel to unfold the full potential of US
imaging; yet this training requirement can be problematic in rural and emer-
gency situations due to cost and circumstance. In addition to US interpretation,
high US acquisition quality is essential but often difficult to achieve.

A cost-effective and practical solution to the training challenge is to embed ex-
pertise into the US system and/or a connected mobile device. This has led other
groups to attempt to embed computer-aided diagnosis (CAD) systems into imag-
ing devices. We instead seek to help an inexperienced operator acquire clinically
significant images that can then be transferred to a central location for reading
by experts. This approach should be easier to achieve and more broadly useful
than an embedded CAD system. The technical challenge reduces to developing
algorithms for recognizing key anatomic structures as the US videos are acquired.
Based on those localizations, the system can then convey to the operator how
to acquire additional images, relative to those key locations, for transmission
to expert readers, or can indicate when US video must be re-acquired to meet
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Y =

⎡⎢⎣y0,0 yT−1,0
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. . .
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y0,d yT−1,d
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Time t
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Frame at t0 Frame at tT−1

(a) Data matrix

yt+C(·)
Non-linearity

+

Az−1
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LinearityUnit delay

Observation noise

State noise

(Linear in case of DTs)

(b) Generative model of the KDT

Fig. 1. (a) Assembly of the data matrix Y from a video sequence S ; (b) Generative
model for the KDT

quality requirements. Apart from being helpful to novice users, we argue that
automated recognition of anatomical structures might also be beneficial to expe-
rienced physicians, since it could help to minimize the risk of misidentifications.

The objective of this work is to promote a new pathway for locating anatomi-
cal structures when moving an US transducer. The key idea is to avoid image-to-
image comparisons using an atlas but rather to exploit the full spatio-temporal
information of the US video sequences. It is argued that the appearance changes
of anatomical structures, due to probe motion, are particularly distinctive for
their localization. Technically, we draw on recent advances in video modeling in
computer vision. The varying appearance of an anatomical structure is repre-
sented by a generative video model, known as the kernel dynamic texture [2].
Similarity between video sequences is then defined as similarity in the parame-
ter space of this model. Since we propose storing a database of key-location US
sequences on portable devices and performing real-time analysis of US videos
as they are acquired, generative models are particularly useful. In our case, we
only need to augment the database by the KDT model parameters (which have
a small memory footprint) and distances can be very efficiently computed.

While classification of US images has been previously studied (e.g., [7]), to the
best of our knowledge, this is the first work to tackle localization on the basis
of dynamic US sequence information. This paper presents 1) our application of
the kernel dynamic texture algorithm, 2) a preliminary study on sensitivity and
specificity using phantoms (admittedly for a limited range of the relevant prob-
lem space) and 3) a study on robustness towards simulated anatomic variations
between the modeled structures to be localized and the actual observations.

2 Recognition with Kernel Dynamic Textures

We selected dynamic texture (DT) [5] models as an appropriate class of gen-
erative models for capturing video appearance changes. DT models arose from
computer vision and were selected for US modeling because of the prominent role
texture plays in US images, e.g., compared to edges or intensity. In particular,
we exploited a recent non-linear extension of the DT family, denoted the kernel
dynamic texture (KDT) [2], to capture non-linear appearance changes that will
occur as structures move into and out of the ultrasound imaging plane.



Recognition in Ultrasound Videos: Where Am I? 85

Consider a US sequence S as an ordered sequence of T video frames, i.e.,
S = (y0, . . . ,yT−1), where yt ∈ Rd is the frame observed at time t. Under
the DT framework of [5], these observations are modeled as samples of a linear
dynamical system (LDS). At time t, a vector of state coefficients xt ∈ RT is first
sampled from a first-order Gauss-Markov process, and the state coefficients are
then linearly combined into the observed video frame yt, according to

xt = Axt−1 +wt, (1)

yt = Cxt + vt (2)

where A ∈ RT×T is the state-transition matrix and C ∈ Rd×T is the generative
matrix that governs how the state determines the observation. Further, wt and
vt denote state and observation noise with wt ∼ N (0, I) and vt ∼ N (0,R),
respectively. Assuming that the observations are centered1 and following the
system identification strategy of [5], C is estimated by computing an SVD de-
composition of the data matrix Y = [y0 · · ·yT−1] as Y = UΣV � and setting

C = U . The state matrix X = [x0 · · ·xT−1] is estimated as X = ΣV � and A
can be computed using least-squares as A = [x1 · · ·xT−1][x0 · · ·xT−2]

†, where
† denotes the pseudoinverse. When restricting the DT model to N states, C
is restricted to the N eigenvectors corresponding to the N largest eigenvalues.
The rest follows accordingly. Due to space limitations, refer to [5] for details on
noise parameter estimation. In the non-linear DT extension of [2], the generative
matrix C is replaced by a non-linear observation function C : RT → Rd, i.e.,

yt = C(xt) + vt, (3)

while keeping the state evolvement linear. The corresponding dynamical system
is denoted a kernel dynamic texture (KDT), shown in Fig. 1(b). The non-linearity
of C requires a different, although conceptually equivalent, set of parameter es-
timates. The idea is to use kernel PCA (KPCA) to learn the inverse mapping
D : Rd → RT from observation to state space, in which case the KPCA co-
efficients then represent the state variables.2 We note that the KDTs are not
necessarily restricted to work with intensity observation matrices; they will work
with any kind of feature for which we can define a suitable kernel, c.f. [3].

Additionally, we have chosen to adopt the distance measure from [2] for mea-
suring similarity of two video sequences, Sa and Sb. This approach was chosen
for its speed. It is based on an adaption of the Martin distance [6] among the
corresponding DTs Da = (Aa,Ca) and Db = (Ab,Cb) with N states each. The
(squared) Martin distance, given by [6,4]

d2(Sa,Sb) = − log

N∏
i=1

cos2(φi), (4)

is based on the subspace angles φi among the infinite observability matrices Oa

and Ob, defined as [4] [C�
a (CaAa)

� (CaA
2
a)

� · · · ]� =: Oa. In fact, the cos(φi)
correspond to the N largest eigenvalues λi of the generalized eigenvalue problem

1 Centering is straightforward by subtracting the column-wise means of Y .
2 See supp. material to [2] for centering in the feature space induced by the kernel.
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Side view Top view Slice view

Fig. 2. Illustration of the noodle phantom, made of gelatine and Soba noodles (left
three images) and an abdominal CIRS phantom mounted in a water tank (right)

[
0 Oab

Oba 0

] [
x
y

]
= λ

[
Oaa 0
0 Obb

] [
x
y

]
with Oab = O�

a Ob, (5)

subject to x�Oaax = 1 and y�Obby = 1. For DTs, computation of Oab is
straightforward, since the terms C�

a Cb can be evaluated. For KDTs, it can be
shown that computation of C�

a Cb (which are no longer available) boils down
to computing the inner products between the principle components of kernel
matrix Ka

ij = k(ya
i ,y

a
j ) and K

b
ij = k(yb

i ,y
b
j), i.e.,

Oab =

∞∑
n=0

(An
a)

� C�
a Cb︸ ︷︷ ︸
DTs

An
b →

∞∑
n=0

(An
a)

� α̃�Gβ̃︸ ︷︷ ︸
KDTs

An
b , (6)

where α̃ = [α̃0 · · · α̃T−1], β̃ are the (normalized) KPCA weight matrices with
α̃i = αi − 1/N(e�αi)e and G is the kernel matrix with entries Gij = k(ya

i ,y
b
j).

In the remainder of the paper, we use (4)-(6) for measuring similarity between
US sequences and a standard RBF kernel for all kernel computations.3

For localization, we follow a sliding-window strategy, measuring how well a
key sequence matches a subsequence from a long path (i.e., the search sequence
Pn) of acquisitions. That is, givenQ frames in a key sequence, we move a sliding-
window Wi of Q frames along a path by p frame increments. For each Wi, we
estimate the KDT parameters and compute the Martin distance to the KDT
of the key sequence. A key sequence is indicated in a search sequence when the
distance is minimal. At this time these minimums are illustrative. As more data
and specific applications evolve, statistical likelihood methods will be used.

3 Experimental Protocol

For the studies in this paper, we use two different kinds of phantoms: 1) a
homemade noodle phantom made of gelatine with embedded Soba noodles and
2) a triple modality 3D abdominal phantom (CIRS Model 057) mounted in a
water tank, see Fig. 2. The noodle phantom is particularly useful, since the
noodles are self-similar at a small scale, have ambiguous patterns of bends at

3 For KPCA, kernel width is set as σ2 = mediani,j‖yi − yj‖2; to compute Gij , it can

be shown [2] that ya
i and yb

j need to be scaled by σa and σb first.
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medium scales, and at large scales and in US sequences present a rich set of
structures that are difficult to casually distinguish.

For imaging we use the Telemed LogicScan 128 INT-1Z kit. US frequency is
set to 5Mhz. Penetration depth is 90mm on the noodle phantom and 150mm
on the abdominal phantom. Speckle reduction is enabled in the US acquisition
software. All images were acquired freehand, without tracking. We learn N = 5
state KDTs and clip each sequence to a central 300× 300 (noodle phantom), or
200 × 200 (abdominal phantom) pixel window. Using more states did not lead
to any improvements in the presented results.

3.1 Localization of Structures within US Sequences

The first experiment tested whether it is possible to localize key structures in
the noodle phantom. Two different sets of acquisitions were made. The first set
was composed of short (40 frames) US key sequences Sn, captured by moving
the US transducer over three different key structures to be localized, see Fig. 3.
Key structures were chosen ad hoc by the probe operator. We then estimated
KDT models for each of the three key structures using this first set of data.
The second set was composed of longer US search sequences Pn, acquired along
multiple paths on the noodle phantom; these simulated searches for the key
structures, see Fig. 4. On both sets, we tried to minimize probe tilt and rotation,
but rotation and titling was inevitable. Note also that the acquisition direction
of the key sequences matched the acquisition direction of the search sequences.

To evaluate sensitivity, we performed the localization using key sequences
applied to search sequences that also covered the corresponding key structures.
Distance plots are shown on the left-hand side of Fig. 5. To evaluate specificity,
we repeated this experiment along multiple search paths that did not cover any
of the key structures. Distance plots are on the right-hand side of Fig. 5.

To evaluate the robustness against shifts of the ultrasound imaging plane
(e.g., partial inclusion of a key structure), we performed ten runs with random
displacements δx, δy of the clipping window in x and y direction with δx, δy ∈
{−5, . . . , 5} pixel. Fig. 5 shows the Martin distance averaged over all clipping
window positions for each sliding window index along three search paths (left).
The enclosing light-blue hull illustrates the standard deviation.

Based on the above three experiments we make the following observations: 1)
key structures exist at global minima in the Martin distance metric of a search
sequence, when key structures are encountered; 2) Martin distance decreases as
the sliding window moves towards a key structure and increases as it leaves the

S0(ti) S0(ti+15) S1(ti) S1(ti+15) S2(ti) S2(ti+15)

Fig. 3. Snapshots of three key structures at two time points on the noodle phantom
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t+
t−

Soba noodle

Gelatine

++

Path for search sequence (Pn)
Back-and-forth moves
→ Key sequence Sn

(a) Acquisition

Wj

Sliding window Wi at position i

t+ t−

(b) Overlap

Tran
slati

on
Tilting

US Transducer
(curved array)

(c) Movement

Fig. 4. Illustration of (a) the acquisition process on the noodle phantom, (b) sliding
windows overlapping key structures (yellow) and (c) probe movements. In (b), hand-
annotations t+ and t− bracket where the sliding window overlaps the key structure.
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Fig. 5. Martin distance between key sequence KDT and the sliding window KTDs
for three different paths, averaged over ten random clipping window positions (left);
sliding window positions where the key structure is covered to some extent are marked
light gray (from manual annotation); Distance measurements when trying to locate a
key structure that was not covered by a path (right)

key structure; 3) if a key structure is not encountered by a search, then there is
not a distinctive minimum in the distance measurements.

3.2 Localizing a Hepatic Vessel on an Abdominal Phantom

Our second experiment is more challenging in the sense that we try to locate
a more subtle structure, namely a specific section of a hepatic vessel in an
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abdominal phantom. The experimental protocol is similar to the previous ex-
periment; however, US transducer tilting (also known as angulation [1]) (see
Fig. 4) is used instead of translation along a path. We attempt to localize the
hepatic vessel key structure within a single search sequence. The key sequence
acquisition spans ≈ 40◦ around the angle where the vessel is visible. The search
sequence covers ≈ 140◦ around the vessel. Again, all acquisitions were performed
freehand, and the ultrasound probe was repositioned on the phantom between
each acquisition. Fig. 6 shows the Martin distances for localization and for lo-
calization using shifted clipping windows.

This experiment highlights two things. First, we can again localize the key
sequence within the longer search sequence, even though the span of the min-
imal Martin distances that correspond to the true location of the vessel is less
prominent and less persistent than in the previous experiment. Second, variation
in the distance measurements is much higher for small vessels than for the more
distinct, larger structures form the noodle phantom.

3.3 Localization in the Presence of Simulated Anatomical Variation

Our third experiment focused on the insensitivity of the distance metric and the
localization method to anatomic variations. Specifically, we simulate anatomic
variation by (non-linear) spatial distortion of the search sequences. We admit
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Fig. 6. Martin distance measurements for three clipping window positions and distance
measurements averaged over all random runs (left); illustration of the hepatic vessel
appearing and disappearing in the key sequence (right)
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Fig. 7. Distortion experiments on the search sequence for two different types of (non-
linear) spatial distortion (illustrated on the checkerboard pattern)
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that this does not cover the range of variation among individuals, but it does
begin to give an impression of robustness. Fig. 7 shows the distance measure-
ments when the key structure is encountered within the search sequence. The
distortions are illustrated on a checkerboard pattern. Note that the underwa-
ter distortion is changing over time.4 As shown, the distortions do not have a
negative impact on the localization, however, we observe less distinctive minima.

3.4 Discussion and Future Work

We conclude that the KDT framework + Martin distance is an effective combi-
nation in localizing short US sequences of key structures. Further, computational
requirements are modest, even for our un-optimized (MATLAB) code and use
of intensity features. For example, given a key sequence consisting of 40 frames,
computing the KDTmodel and distance metric per sliding window requires≈ 0.1
seconds on an Intel Core i7 1.7Ghz CPU with 8GB of RAM. It is also worth
noting that we can perfectly recognize the short US key sequences using a simple
nearest-neighbor classifier and the Martin distance as a metric. For future work
we note that using intensity information as our observations space has its limita-
tions. Due to the generic nature of the KDT approach and KPCA-based system
identification, we could easily integrate more specifically tailored US features as
long as we can define a suitable kernel.
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Self-similarity Weighted Mutual Information:

A New Nonrigid Image Registration Metric

Hassan Rivaz and D. Louis Collins

Montreal Neurological Institute, McGill University

Abstract. Extending mutual information (MI), which has been widely
used as a similarity measure for rigid registration of multi-modal images,
to deformable registration is an active field of research. We propose a
self-similarity weighted graph-based implementation of α-mutual infor-
mation (α-MI) for nonrigid image registration. The new Self Similarity
α-MI (SeSaMI) metric takes local structures into account and is robust
against signal non-stationarity and intensity distortions. We have used
SeSaMI as the similarity measure in a regularized cost function with
B-spline deformation field. Since the gradient of SeSaMI can be de-
rived analytically, the cost function can be efficiently optimized using
stochastic gradient descent. We show that SeSaMI produces a robust
and smooth cost function and outperforms the state of the art statistical
based similarity metrics in simulation and using data from image-guided
neurosurgery.

1 Introduction

The joint intensity histogram of two images, of different or same modalities, is
spread (i.e. the joint entropy is high) when they are not aligned, and is compact
(i.e. the joint entropy is low) when the two images are aligned. Therefore, mu-
tual information (MI) and its variants such as normalized MI (NMI) have been
proposed and widely used for rigid registration of multi-modal images [1,2,3].
MI, being based on global intensity histograms, does not take into account local
structures. Therefore, nonrigid registration, which has considerably more degrees
of freedom and can distort local structures, is challenging with MI. It is also not
robust against spatially varying bias fields. Exploiting the spatial information by
conditioning MI calculation to location [4,5,6,7] has been shown to significantly
improve nonrigid registration results.

In this work, we propose to incorporate image self-similarity into MI formu-
lation. Self-similarity estimates the similarity of a point in one of the images
to other points in the same image, and depends on local structures which are
ignored by MI. Self-similarity was first proposed for object detection and image
retrieval [8], and has since been used in image denoising [9] and registration [10].

Since self-similarity is calculated for pairs of points, it is natural to per-
ceive it in a graph representation where image pixels are vertices and self-
similarity is the weight of the edges. α-mutual information (α-MI) similarity

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 91–98, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Corresponding intra-operative US (hot colormap) and pre-operative MR
(grayscale colormap) images of neurosurgery. A reconstructed US volume is sliced in
the axial (top), coronal (bottom left) and sagittal (bottom right) directions. While
local structures correspond, intensities are not related globally.

metric [11,12,13,14,15] is also graph based and has been recently shown to out-
perform MI in nonrigid registration applications. Therefore, we choose to in-
corporate self-similarity into this powerful registration framework. We apply
the method to register pre-operative magnetic resonance (MR) images to intra-
operative ultrasound (US) images in the context of image-guided neurosurgery
(IGNS). Other works that nonlinearly register US to other modalities have used
local correlation ratio [16] and MI of phase information [17]. Figure 1 shows
an example of the registered US and MR images. The US images suffer from
strong bias field due to signal attenuation, caused by scattering (from smaller
than US wavelength inhomogeneities), specular reflection (from tissue bound-
aries) and absorption (as heat). In addition, US beam width varies significantly
with depth, and therefore the same tissue looks different at different depths.
Therefore, it is critical to exploit local structures.

In most image guided applications, one of the images is pre-operative. We
therefore perform the self-similarity estimation only on this image offline, result-
ing in no increase in the on-line computational complexity. The pre-operative
image is also usually of higher quality, making it a more attractive choice. We
show that SeSaMI outperforms NMI and multi-feature α-MI in terms of produc-
ing a smooth dissimilarity function and registration accurary.

2 Rotationally Invariant Self-similarity Estimation

We first estimate a rotationally invariant 2D histogram descriptor for all pixels;
such a sample pixel is marked with an asterisk in Figure 2 (we show 2D images for
clarity; the arguments are trivially extended to 3D images). A circular patch with
radius r is centered on the pixel, shown in the left image. In this work, we set r to
5 in 2D and to 2 in 3D. The axes of the histogram are d, the normalized Euclidian
distance of the pixel from the center point, and i, the pixel’s normalized intensity.
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d = 1, i = 0 

d = 0, i = 0.5 

Fig. 2. Construction of the spin image and the resulting self-similarity distance. Left
shows the image of a coin, with a circular patch of radius r = 5 pixels around a center
point. Middle shows the zoomed patch, and the estimated 2D histogram descriptor (i.e.
the spin image). Right shows the self-similarity distance to the center point (marked
with an asterisk and pointed to by an arrow).

d = 0 and d = 1 in the histogram respectively correspond to the center pixel and
to the pixels on the circle with radius r = 5 pixels. The intensity of pixels inside
the patch is normalized to [0 1]. Each pixel inside the patch contributes to the
2D histogram: the histogram is constructed using a Gaussian Parzen window,
i.e. a pixel with distance d to the center and normalized intensity i contributes
to all bins according to a Gaussian centered at (d, i). The 2D histogram usually
has a higher mass at higher d values because the number of pixels at distance
d is proportional to d. Since d is the distance to the center (i.e. orientation is
ignored), the 2D histogram descriptor is rotation invariant. It is also invariant to
affine changes in the intensity because of the intensity normalization step. The
histogram descriptor is similar to the spin image used in [18].

After calculating the 2D histogram descriptor for all points, we calculate the
similarity between two points by the Earth Mover’s Distance (EMD) [19]. The
EMD metric avoids quantization and binning problems associated with his-
tograms, and has been shown [19] to outperform other histogram comparison
techniques. Figure 2 right shows the EMD distance to the point indicated by the
asterisk. Note that small values of the EMD distance (darker pixels) represent
more similar regions. It can be seen that the similarity metric is fully rotation
invariant. We compute the self-similarity distance between each point and a win-
dow, of size The computational complexity of calculating the EMD distance is
not an issue since it can be calculated offline on only the pre-operative image.

The histogram descriptor provides stability against small deformations of
structures (due to the binning process), while subdividing the distance to the
center (d in the histogram) encodes the spatial information. As a result, it is
more robust than filter banks and differential invariants, which are also local
descriptors [18]. Its disadvantage is its computational complexity. To reduce the
running time and memory requirements, the EMD distance of a pixel with re-
spect to pixels within its neighborhood is calculated. The EMD computation for
a volume of size 1003 pixels currently takes about 5 hours on a 3GHz processor.

The EMD distance provides a powerful metric to condition or weight MI
estimation. Conditioning MI on EMD distance is motivated by the works which
condition MI on spatial location and perform it on regions instead of the entire
image [4,5,6,7]. Our preliminary results on conditioning MI on EMD have been
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promising, especially since spatial distance can also be incorporated into the
EMD distance. This is intuitive since self-similar pixels in one image are more
likely to follow the same statistical relationship in the joint histogram. In this
work, however, we focus on the second avenue, weighting MI with self-similarity.
In the next section, we first briefly explain α-MI and then formulate SeSaMI.

3 Self-Similarity α-MI (SeSaMI)

Registration of a moving image Im to a fixed image If can be formulated as

μ̂ = argmin
μ

C, C = S(If (x), Im(Tμ(x)) +
ωR

2
‖∇μ‖2 (1)

where S is a dissimilarity metric, ωR is a regularization penalty weight, ∇ is
the gradient operator and Tμ is the transformation modeled by μ. We choose a
free-form transformation parameterized by the location of cubic B-spline nodes.
μ is therefore a vector of the location of all the nodes in all directions.

MI similarity metric is usually calculated on the intensities only, and there-
fore the joint histogram is 2D. α-MI is usually calculated on multiple fea-
tures like intensities and their gradients. Adopting the notation of [11], let
z(xi) = [z1(xi) · · · zq(xi)] be a q-dimensional vector containing all the features
at point xi. Similar to [11], we choose image intensity and gradients at two dif-
ferent scales as features, resulting in 5 total features. Let zf (xi) and zm(Tμ(xi))
be respectively the features of the fixed and moving image at xi and Tμ(xi), and
zfm(xi,Tμ(xi)) be their concatenation [zf (xi), zm(Tμ(xi))]. Minimal span-
ning tree (MST) [12] and k-nearest neighbor (kNN) [11,15] are among differ-
ent methods for estimating α-MI from multi-feature samples. With N samples,
the complexities of constructing MST and kNN graphs are O(N2 logN) and
O(N logN) respectively [14]. Therefore, we choose kNN.

Let zf (xip), z
m(Tμ(xip)) and zfm(xip,Tμ(xip)) be respectively the nearest

neighbors of zf (xi), z
m(Tμ(xi)) and zfm(xi,Tμ(xi)). Note that these three

nearest neighbors in general do not correspond to the same point. To prevent
notation clutter, we show the dependencies on location xi orTμ(xi) only through

i after this point whenever clear. Let dfm
ip = ‖zfm

i −zfm
ip ‖, and dm

ip = ‖zm
i −zm

ip‖
(dfm

ip and dm
ip will be used later when we differentiate the cost function) and set

Γ f
i =

k∑
p=1

‖zf
i − zf

ip‖, Γm
i (μ) =

k∑
p=1

‖dm
ip‖, Γ

fm
i (μ) =

k∑
p=1

‖dfm
ip ‖. (2)

A kNN estimator for α-MI=−S (the dissimilarity function in Eq. 1) is

α̂-MI(μ) =
1

α− 1
log

1

Nα

N∑
i=1

⎛⎝ Γ fm
i (μ)√
Γ f
i Γ

m
i (μ)

⎞⎠2γ

(3)
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where γ = (1 − α)q and 0 < α < 1; experimental results of rigid registration in
[12] suggest that for MST graphs, α close to 1 gives better registration accuracy,
while α close to 0.5 yields a wider capture range. We set α = 0.99 in this work.

Weighting α-MI by Self-similarity. In an analogy to MI, small Γ fm
i for

majority of locations i means that data in the joint histogram is clustered and
compact, and Γ f

i and Γm
i are for normalization. Therefore, accurate estimates of

Γ fm
i are essential. Generally, most of the nearest neighbors in the joint feature

space are also the most self-similar. However, due to spatially varying bias, small
geometrical distortions, lack of enough number of features and misalignment, not
all the nearest neighbors are self-similar. Therefore, to penalize points that are
close but are not self-similar, we modify Γ fm

i by

Γ fm
i (μ) =

k∑
p=1

wip‖dfm
ip ‖, wip = EMD(H(xi), H(xip)) (4)

where EMD(H(xi), H(xip)) is the EMD between the histogram descriptors.
We adopt an iterative stochastic gradient descent optimization method [20]

for solving Eq. 1, which is fast and is less likely to get trapped in local minima.
Therefore, μt+1 = μt+at∇μC where ∇μC is the gradient of C (from Eq. 1) wrt
μ. The step size is a decaying function of the iteration number: at = a/(A+ t)τ ,
with a > 0, A ≥ 0 and 0 < τ ≤ 1 user-defined constants [20]. From Eq. 1, we

have ∇μC = −∇μα̂-MI + ωRΔμ where Δ = ∇.∇ is the Laplacian operator. At
a specific μ where the graph topology changes, Eq. 3 can be non-differentiable
[12]. However, assuming the topology does not change for small changes in μ,

the gradient of α̂-MI is calculated analytically in [11,15] using the chain rule;
due to space limitations, we refer the reader to them for details. The chain rule
finally results in computation of the ∇μΓ

fm
i (μ). From Eq. 4, we have

∂

∂μj
Γ fm
i (μ) =

k∑
p=1

wip

‖dfm
ip ‖

dfm
ip

T
.
∂

∂μj
dfm
ip =

k∑
p=1

wip

‖dfm
ip ‖

dm
ip

T .
∂

∂μj
dm
ip (5)

where T means transpose. wip is calculated for either If or Im; in the former case,
its derivative wrt μ is trivially zero, and in the latter case it is zero because the
2D histogram descriptors are invariant to small deformations [18]. Also, even for
large global deformations, the histogram patches can be assumed locally rigid.
The second equality is true because zfm is the concatenation of zf and zm, and
∂zf/∂μ = 0. Finally,

dm
ip

T · ∂

∂μj
dm
ip = dm

ip
T ·

(
∂

∂T(xi)
zm
i

∂

∂μj
T(xi)−

∂

∂T(xip)
zm
ip

∂

∂μj
T(xip)

)
. (6)

Note that partial derivative of zm wrt T means calculating derivatives in Im’s
native space, i.e. wrt its own x, y or z coordinate. In our implementation, we pre-
compute all the features of the If and Im, and the derivatives of Im’s features
wrt x, y and z directions.
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(a) Biased red (If ) (c) α-MI-5f (e) SeSaMI-5f

(g) NMI
(b) Green (Im) (d) α-MI-3f (f) SeSaMI-3f

Fig. 3. Effect of the bias on the dissimilarity metrics in the human brain images.
(a) The red channel with an additive bias. (b) The green channel. (c)-(f) The αMI
and SeSaMI dissimilarity metrics calculated from N = 400 points randomly selected
throughout If with 5 or 3 features (5f or 3f). (g) Our NMI implementation. The x and
y axis represent the amount of rigid displacements of Im in those directions (maximum
of ±4 pixels). Images are registered at 0 displacement. The self-similarity metrics in
(e)-(f) are calculated using the biased If .

4 Experiments and Results

Visible Human Project. We test the new similarity metric on red and
green channels of the visible human project, which are intrinsically registered.
The data is publicly available at www.nlm.nih.gov/research/visible/

visible human.html. We set the red image as If and add bias to it to show
the robustness of our self-similarity measure and SeSaMI (the self-similarity is
calculated on the biased If image). Figure 3 shows the results; in (c)-(f) a total
of N = 400 randomly selected points are used (the same random points are
used in all the 4 cases) and the number of nearest neighbors k is 100. (g) is
our NMI implementation with Parzen window histogram estimation [3]. SeSaMI
successfully gives the global optimum at 0, and also produces a relatively smooth
dissimilarity metric. In addition, it gives a global minimum even with 3 features
(original intensity, smoothed intensity and gradient magnitude), instead of 5 fea-
tures (calculated at 2 scales). Reduction of the number of features makes the
algorithm run faster.

US and MR. We apply our registration algorithm to the clinical data of the
IGNS obtained from 13 patients with gliomas in the Montreal Neurological Insti-
tute. The pre-operative MR images are gadolunium-enhanced T1 weighted and
are acquired approximately 2 weeks before the surgery. The intra-operative US
images are obtained using an HDI 5000 (Philips, Bothell, WA) with a P7-4 MHz

http://www.nlm.nih.gov/research/visible/visible_human.html
http://www.nlm.nih.gov/research/visible/visible_human.html
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Table 1. MR/US registration mTRE (mm) for 3 nonlinear registration methods

Patient No. of landmarks Initial NMI α-MI SeSaMI

P1 35 6.30 11.93 2.32 2.05
P2 40 9.38 19.36 3.14 2.76
P3 32 3.93 13.43 1.83 1.92
P4 31 2.62 18.82 2.62 2.71
P5 37 2.30 15.76 1.97 1.89
P6 19 3.04 9.01 2.28 2.05
P7 23 3.75 16.03 3.05 2.89
P8 21 5.09 7.83 2.44 2.93
P9 25 3.00 14.05 2.83 2.75
P10 25 1.52 18.65 1.44 1.28
P11 21 3.70 11.01 2.81 2.67
P12 23 5.15 17.46 3.37 2.82
P13 23 3.78 9.15 2.45 2.34

phased array transducer. The ultrasound probe is tracked with a Polaris cam-
era (NDI, Waterloo, Canada), and 3D US volumes are reconstructed using the
tracking information. The tracking information is also used to perform the initial
rigid registration of MR to US; a sample of this initial registration is shown in
Figure 1. A neurosurgeon and two experts have selected corresponding anatom-
ical landmarks in US and MR images in sub-voxel accuracy, which are used
to calculate mTRE for validation. Table 1 shows that multi-feature α-MI and
SeSaMI significantly outperform NMI in nonlinear registration of MR to US in
all the 13 cases. In 10 out of 13 cases, SeSaMI gives the most accurate results due
to its robust self-similarity measure incorporated into the powerful multi-feature
α-MI similarity metric.

5 Conclusions

We introduced SeSaMI, a similarity metric that incorporates rotation and bias
invariant self-similarity measures into graph-based α-MI. SeSaMI exploits self-
similarity in a kNN α-MI registration framework by penalizing clusters (i.e. the
nearest neighbors) that are not self-similar. Therefore, it significantly reduces the
number of incorrect local minima as shown in Figure 3. We have also, for the first
time, shown that multi-feature α-MI and SeSaMI significantly increase the regis-
tration accuracy of MR to US registration in our on-going IGNS project. In the
future we will investigate GPU implementations of SeSaMI to achieve our goal of
near-real time intra-operative US-MRI registration.
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Abstract. This paper presents a new approach for the robust alignment and 
interpretation of 3D anatomical structures with large and localized shape 
differences. In such situations, existing techniques based on the well-known 
Procrustes analysis can be significantly affected due to the introduced non-
Gaussian distribution of the residuals. In the proposed technique, influential 
points that induce large dissimilarities are identified and displaced with the aim 
to obtain an intermediate template with an improved distribution of the 
residuals. The key element of the algorithm is the use of pose invariant shape 
variables to robustly guide both the influential point detection and displacement 
steps. The intermediate template is then used as the basis for the estimation of 
the final pose parameters between the source and destination shapes, enabling 
to effectively highlight the regional differences of interest. The validation using 
synthetic and real datasets of different morphologies demonstrates robustness 
up-to 50% regional differences and potential for shape classification. 

1 Introduction 

Procrustes analysis is a well-established approach for the alignment and interpretation 
of sets of corresponding landmark shapes [1]. Statistical shape modeling [2], shape 
classification [3], and regional shape analysis [4] are amongst the most common 
applications. In medical imaging, the shape complexity and the high variability means 
the 3D alignment needs to be robust and consistent in order to allow for a biologically 
meaningful analysis. It is now accepted that the standard Procrustes with its least 
square minimization can introduce errors in the presence of large shape differences  
[3, 5]. This is particularly the case when the shape variation is localized in a region of 
the anatomy, thus generating a non-Gaussian distribution of the residuals in both the 
spatial and frequency domains. Such situation is common in medical imaging, for 
instance due to abnormal remodeling at specific regions of the anatomy [4]. Thus far, 
the most common strategy to improve the Procrustes analysis is by using robust 
statistics (such as by using M-estimators [6]) but the performance is limited for 
regional shape analysis. More recently, two approaches have been proposed to 
increase the robustness of the Procrustes alignment. Firstly, the method in [7] replaces 
the least squares criterion with the more robust L1-norm, but the technique is only 
valid in 2D, while anatomical shapes are mostly studied in 3D and increasingly in 4D. 
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A supervised Procrustes was also presented in [3] with the aim to aid classification, 
but the method requires a potentially biased or unavailable prior input.  

In this paper, we propose a new Procrustes method that is unsupervised, robust and 
can be applied to different morphology types. To this end, instead of introducing a 
new similarity or minimization scheme, the proposed technique uses pose invariant 
shape variables to robustly compare the landmark configurations and to generate an 
intermediate template that is used for a geometrically meaningful alignment. More 
specifically, the influential landmarks (i.e., those corresponding to large residuals) are 
identified using an invariant measure of dissimilarity and thus independently of the 
initial pose. Subsequently, these points are displaced within the source shape such that 
the new invariant discrepancies are minimized. The intermediate template as 
compared to the destination shape is free of large landmark residuals, thus enabling a 
successful final Procrustes alignment of the two input shapes. Detailed synthetic and 
real data experiments with various morphologies are carried out to assess the 
performance of the introduced algorithm and its value for shape discrimination. 

2 Methods 

2.1 Invariant Detection of Influential Points 

The presence of regional anatomical differences means a subset of the landmarks 
carry a large amount of the total shape variability. Conventionally, the identification 
and handling of these influential points is achieved by performing an initial Procrustes 
alignment, followed by an iterative weighting of the landmarks based on the obtained 
landmark residuals. However, when the differences are large and localized, this initial 
least squares Procrustes becomes significantly and irreversibly corrupted, which does 
not allow for accurate weighting of the landmarks at subsequent iterations. To tackle 
this problem, we present in this work a new procedure for influential landmark 
identification that is independent of any pose estimation. To this end, variables that 
exclusively describe shape information are used. Let us denote ( )sx  and ( )dx  the 
source and destination shape vectors, respectively, encapsulating the coordinates of 

n  corresponding points ( ( ) (1 ), ,
T

i i i ix y z i n= ≤ ≤x ). For the proposed technique, 

each shape is associated with an inter-landmark distance matrix D  of size n n× ,  
i.e., : 
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where 
2ij i jd = −x x  is the Euclidean distance between points ip  and jp . Such 

shape variables have the advantage over point coordinates to be invariant to both 
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translation and rotation of the shapes. Furthermore, they can be used to robustly 
correct for size differences, by applying to ( )sx  the following robust scaling factor: 

1
.

≤ < ≤

( )

( )
med( )

d
ij

si j n
ij

d

d
 (2) 

The aim of the proposed method is to derive an invariant and robust measure of shape 
dissimilarity at each landmark point based on the differences in the inter-landmark 
distances calculated from the two shapes. Typically, a landmark associated with a 
significant shape difference will have many large differences of corresponding inter-
landmark distances. Similarly, points corresponding to smaller shape residuals will 
have a large number of small inter-landmark differences. As a result, a median based 
measure of shape dissimilarity at each landmark is introduced as follows: 

2

1
.δ

≤ ≤
 = − 

( ) ( )med ( )s d
i ij ijj n

d d  (3) 

iδ  gives a good indication of the type of histogram involved with the inter-landmark 

differences for the point ip . Subsequently, the set A  of influential points is expected 

to be associated with particularly high iδ  values. Based on robust statistics [8], an 

appropriate definition of A  can be derived by using robust estimations of the average 
point dissimilarity and deviation, i.e,: 
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The parameter c  describes the number of deviations from the central value to 
consider and is typically chosen between 2 and 3. Next section describes how the 
identified shape dissimilarities are taken into account to derive a more robust and 
geometrically meaningful alignment. 

2.2 Iterative Displacement of Influential Points  

The aim of the proposed algorithm is to derive an intermediate template with an 
improved distribution of landmarks residuals. It will be subsequently used as a link 
between the source and destination shapes to enable robust alignment. The intermediate 

template vector is denoted as x̂  (its inter-landmark-distances as ˆ
ij
d ) and it is initialized 

with the source shape vector ( )sx . To obtain x̂ , each influential point kp A∈  is 

displaced with the aim to minimize the associated large residual by approaching the 
invariant properties of ( )dx . To this end, a displacement vector ˆkdx  is calculated such 

that it minimizes the sum of the associated inter-landmark differences, i.e., 
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where B  denotes the set of non-influential landmarks in the shape (i.e., all landmarks 
in the shape minus A ). By differentiation of (5), it can be easily shown that an 
improved ˆkdx  can be calculated at time 1t +  based on the following formulae: 

1 α
∈

−
+ = −

x x
x ( )

ˆ ˆ( ( ) )
ˆˆ ( ) ( ( ) ) .

ˆ ( )kj kj

kj

k jd
k k

j S

t
d t d t d

d t
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The parameter kα  is the optimal displacement step which can be found through 

simple line minimization. It is worth noting that ˆkdx  corresponds to a weighted sum 

of the unit vectors between ˆkx  and each non-influential point in B , where the 

weights ( )ˆ
kj kj

dd d−  promote displacements in the directions corresponding to large 

inter-landmark discrepancies. The vector ˆkdx  is typically obtained after a number of 

successive displacements following Eq. (6). The inter-landmark distance matrices D̂  
and ( )dD  are subsequently updated, followed by a new round of influential point 
detection and displacement. This iterative approach is a key element of the proposed 
technique as it allows identifying both large and less significant shape differences. 
The most severe landmark residuals are typically detected during the initial iterations. 
After their correction, their effects are eliminated which facilitates the identification 
of less severe influential landmarks at subsequent iterations. The iterative procedure 

 

Fig. 1. Toy problem illustrating the main stages involved in the proposed technique. (a) and (b)
show two quadrilaterals with differences at landmark 1 and 3. The calculated inter-landmark
differences (see edges) and the associated landmark dissimilarity measures (Eq. (3), see circled)
are displayed in (c) for iteration 1. The landmark 3 is identified as an influential point and
displaced as shown in (d). It can be noticed how the associated inter-landmark discrepancies are
decreased. At iteration 2 (d), the landmark 1 becomes an influential point and the algorithm
continues until the intermediate template is obtained in (e). It can be seen how the
transformation from (c) to (e) allows a balanced intermediate Procrustes alignment with the
destination shape (f). The final result in (g) demonstrates good identification of the expected
residuals. The Procrustes analysis alone in (h), however, introduces errors at all landmarks. 
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then is repeated until no influential point remains, indicating that the shape 
differences between x̂  and ( )dx  become normally distributed along all landmarks. 
Finally, a Procrustes alignment is carried out between the intermediate and destination 
shapes, followed by the application of the corresponding parameters to the original 
vector ( )sx  for final alignment with ( )dx .  

It is worth mentioning that unlike existing techniques, the inter-point Procrustes 
has an interpretative power since it explicitly distinguishes between common 
structures and dissimilar regions in the shape. The proposed algorithm is now 
summarized in Table 1 and illustrated in the synthetic example of Fig. 1.  

Table 1. Listing for the proposed alignment algorithm 

1. 
( )sx  and ( )dx  are the input shape vectors. 

x̂  is the output intermediate vector initialized as ( )ˆ s=x x . 

2. Calculate the inter-landmark distance matrices D̂  and ( )dD . 

3. Calculate the median discrepancy values iδ . 

4. Identify the set of influential landmarks A  (Eq. (4)). 

5. If A = ∅  go to step (8). 

6. Displace the influential points in A  (Eq. (6)). 

7. Go to step (2). 

8. Align x̂  and ( )dx using the standard Procrustes analysis.  

9. Apply the pose parameters from step (8) to the source shape ( )sx . 

3 Results 

For numerical assessment, the robustness of the proposed technique is evaluated with 
respect to the severity of regional shape differences. To this end, a 3D liver dataset 
(Fig. 3) is used to synthetically create regional deformations, by randomly selecting 
and deforming a localized group of landmarks based on uniform noise. Varying 
percentages of deformed landmarks and amplitudes of deformation are simulated as 
shown in Fig. 2. Additionally, a perturbation of all landmarks is carried out using zero 
mean Gaussian noise. For comparison purposes, the standard Procrustes and a robust 
extension based on M-estimators [6] are implemented. It is evident from the results in 
Fig. 2 that the proposed technique outperforms existing Procrustes methods.  

The improvement becomes particularly marked as the number of extreme residuals 
(a) and their amplitude increase (b). The robust Procrustes improves upon the least 
squares results up to a certain percentage of landmarks involved in the localized 
dissimilarity (around 20%). The proposed alignment, however, displays a higher 
breakdown point (close to 50%) and can handle large residuals as a result of the 
invariant influential point detection. Fig. 3 shows an example of regional shape 
deformation involving the left lobe of the liver (shown by the arrows). The influential 
points as detected by the proposed technique are displayed in dark shading in (c), 



104 K. Lekadir, A.F. Frangi, and G.-Z. Yang 

where it can be seen that the left lobe is correctly highlighted. This is a key feature of 
the proposed alignment which can be used as a quantitative as well as a visualization 
tool for shape interpretation. 

 

Fig. 2. Effects of the number of landmarks (a) and extent of localized deformation (b) on shape 
alignment by using the proposed algorithm and the techniques used for comparison. In (a), the 
amplitude is fixed to 30 mm, while in (b) the percentage of deformed landmarks equals 25%. 

 

Fig. 3. Illustration of the performance of the proposed algorithm in explicit identification and 
visualization of regional shape differences 

The proposed technique is then applied to a real dataset consisting of human 
carotid arteries. Such anatomical tree-like structures are very prone to large regional 
differences. In particular, existing research has shown that the geometry of the 
bifurcation is an important heamodynamic factor for the genesis and progression of 
atherosclerotic plaque. In this application, we have collected two classes of real 
carotid artery datasets. The first class contains 26 carotids with normal bifurcation 
geometry (example in Fig. 5(a)) and the second consists of three carotids with a 
genetic distortion of the external branch (example in Fig. 5(b)) as identified by the 
clinician (and referred to as wide-angle bifurcations). Both the standard and the inter-
point Procrustes were then applied to the entire sample for shape discrimination and 
the results based on the first two modes of variation are plotted in Fig. 4. It can be 
seen that the separation between the two classes with the existing Procrustes is rather 
subtle, yet these shapes are significantly different as illustrated in Figs. 5(a) and (b). 
With the proposed technique, however, the class separation becomes pronounced.  
 



 Identifying Regional and Large Differences in 3D Anatomical Shapes 105 

This is because the proposed technique explicitly identifies the major regional 
differences (in this case the external branch), which are then taken into account during 
the intermediate alignment step. Unlike the method in [3], no supervision and user 
input is required to separate the three abnormal cases from the rest of the arteries.  

 

Fig. 4. Discrimination of the real carotid datasets by both the standard and proposed Procrustes 

 

Fig. 5. Illustration of the strength of the proposed method for highlighting regional differences 
in tree-like structures. The carotid arteries in (a) and (b) differ significantly in their external 
branch, as detected by the proposed technique (d). The Procrustes analysis in (c), however, 
introduces alignment errors at various areas of the artery as shown by the arrows. 

The strength of the proposed is further demonstrated in Fig. 5, where two carotids 
taken from the two classes are aligned with both the least-square Procrustes and the 
proposed method. Figs. 5(a) and 5(b) differ in various areas of the artery but with an 
evident large dissimilarity in the shape of their external branches (see Fig. 5(b)). In 
such a situation, the Procrustes analysis in Fig. 5(c) tends to distribute the residuals 
along the carotid, thus introducing alignment artifacts at the main branch and at the 
bifurcation as shown by the arrows. Although the gold standard alignment for real 
datasets is unknown a priori, it is evident that the proposed technique enables  
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improved fitting of the main and internal arteries, while the difference in the external 
artery is now fully highlighted. This demonstrates the benefit of the introduced 
technique to obtain anatomically meaningful results. 

4 Conclusions 

We have presented an inter-point Procrustes technique for robust shape alignment and 
interpretation. Unlike the standard method which minimizes a predefined matching 
criterion, the proposed approach is geometrically and biologically motivated: it 
explicitly identifies the common structures and the dissimilar regions in the shapes 
under investigation. This important information is taken into account during the 
alignment, which means the true shape differences can be highlighted in subsequent 
analysis. The validation shows that the technique can handle single-part (e.g., liver) or 
multi-part (e.g., tree-like structures) morphologies with a significant robustness to the 
severity of the regional differences. The results also suggest a potential interpretative 
value particularly for regional shape analysis and anatomical classification. 
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Abstract. Transrectal ultrasound (TRUS) facilitates intra-treatment
delineation of the prostate gland (PG) to guide insertion of brachyther-
apy seeds, but the prostate substructure and apex are not always visible
which may make the seed placement sub-optimal. Based on an elastic
model of the prostate created from MRI, where the prostate substruc-
ture and apex are clearly visible, we use a Bayesian approach to estimate
the posterior distribution on deformations that aligns the pre-treatment
MRI with intra-treatment TRUS. Without apex information in TRUS,
the posterior prediction of the location of the prostate boundary, and
the prostate apex boundary in particular, is mainly determined by the
pseudo stiffness hyper-parameter of the prior distribution. We estimate
the optimal value of the stiffness through likelihood maximization that is
sensitive to the accuracy as well as the precision of the posterior predic-
tion at the apex boundary. From a data-set of 10 pre- and intra-treatment
prostate images with ground truth delineation of the total PG, 4 cases
were used to establish an optimal stiffness hyper-parameter when 15%
of the prostate delineation was removed to simulate lack of apex infor-
mation in TRUS, while the remaining 6 cases were used to cross-validate
the registration accuracy and uncertainty over the PG and in the apex.

1 Introduction

In conventional trans-rectal ultrasound (TRUS) guided prostate brachytherapy,
low dosage radioactive seeds are permanently implanted throughout the prostate
gland (PG). However, as the majority of prostate cancer cases are confined to
the peripheral zone (PZ), partial gland implants targeting the PZ, which mini-
mize the amount of healthy tissue irradiated, are desirable in treating prostate
tumors. However, with TRUS it is difficult to determine the internal prostate
substructure [1], and the boundary of the prostate apex (PA) (inferior part of
prostate) is difficult to determine because of poor contrast from the constrained
TRUS field of view and shadowing artifacts. The limited visibility of the gland in
TRUS may lead to less than ideal placement of the radioactive seeds, resulting
in iatrogenic complications. MR images obtained with an endorectal coil (ERC)
have excellent soft tissue contrast, making them ideal for imaging the gland,
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its substructure and adjacent structures. Therefore, non-rigidly registering pre-
treatment with the intra-treatment prostate images to enhance the delineation
of prostate substructure is clinically important and shown to be feasible with
intensity-based [2], model-based [1] and learning-based registration methods [3].

Registration methods typically optimize two terms – a likelihood (data) term
and a weighted prior (regularization) term. At poorly visible substructures like
the apex, the registration is driven more by the prior model and less by the
data. Therefore, it becomes critical to optimize the free hyper-parameters (HPs)
(e.g. regularization weight) of the registration model in order to minimize the
error in their registered delineation [4]. Apart from manually tuning these hyper-
parameters, one automated approach is to estimate an optimal value of the HP
through minimization of cross-validation error in localizing homologous points
in the registered fixed and moving images [4]. However, this approach only uses
point-estimates of the registration parameters, and discards the associated un-
certainty that a posterior distribution provides, when determining the optimal
HP setting.

In contrast, Bayesian registration frameworks [5,6,7] that quantify the pos-
terior distribution on transformation parameters can estimate the uncertainty
in registration in terms of credibility intervals or inter-quartile ranges, along
with an optimal alignment. For example, Risholm et al. [6] estimate the poste-
rior distribution p(U | Pus,Pmr, τ ) of the transformation U using a finite-element
model [6] which treats the prostate as a synthetic elastic bio-mechanical object.
Here, Pus and Pmr are representations of the prostate in TRUS and MR im-
ages respectively which are demarcated as part of the standard brachytherapy
workflow. Furthermore, assume that Pmr and P ′

us = Pus

⋃
Aus are the ground

truth representations of the prostate, that Aus represents the missing apex in
the TRUS, and that the homologous area of Aus in the MR image is represented
as Amr ⊂ Pmr.

Boltzmann’s distribution is used to convert the elastic energy of a deforma-
tion into a prior p(U | τ ), where τ is a temperature HP that can be interpreted
as an overall inverse pseudo stiffness of the underlying tissue. The value of this
temperature HP affects both the spread/uncertainty of the distribution as well
as the mode, especially in areas with weak data like the apex. One strategy [5,8]
for dealing with HPs in a Bayesian setting is to equip them with a maximum
entropy hyper-prior p(τ ) and marginalize them out from the posterior distribu-
tion: p(U | Pus,Pmr) =

∫
p(τ )p(U | Pus,Pmr, τ )dτ . However, the drawback with

marginalization under an over-dispersed hyper-prior is that it may result in an
over-dispersed posterior, as compared to a hyper-prior concentrated around an
appropriate value of the HP. This effectively implies increased parameter uncer-
tainty due to HP uncertainty, and this effect will be strong in areas with weak
data (e.g. Aus).

The main contribution of this paper is a technique for HP selection under
uncertainty, where we maximize the likelihood of the temperature τ under the
posterior predictive distribution p(∂Aus | ∂Amr, τ ) of the apex boundary ∂Aus

in the TRUS image conditioned on its boundary ∂Amr in the MR image. This
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distribution is obtained from the posterior distribution of the transformation
p(U | Pus,Pmr, τ ). Consequently, our method identifies a specific value of the
temperature HP that maximizes the ability of the posterior distribution in pre-
dicting poorly determined structures like the apex while mitigating the effect of
HP related uncertainty. The proposed method for estimating optimal HPs is not
restricted to MRI-TRUS registration, but is applicable in any situation where
we have ground truth homologous correspondences in the two image spaces.

Because the apex is difficult to delineate in TRUS, the method was trained
and validated on a data-set of 10 corresponding pre- and intra-treatment prostate
MRI, where accurate ground truth delineation of the prostate gland boundary
was possible. With the intra-treatment MRI acting as a surrogate for the TRUS,
the apex was systematically removed so that the prior model was the main
predictor of the apex location. Temperature estimation was carried out on 4
cases, while the remaining 6 cases were used to cross validate the model’s ability
to predict the location of the apex. These results are presented in Section 3
and are representative for MRI-TRUS registration results assuming that the
deformations seen in the pseudo TRUS (e.g. intra-treatment MRI) are good
approximations of the deformations seen in real TRUS images.

2 Methods and Materials

2.1 Bio-mechanical Prostate Model

As in Risholm et al. [6], we model the prostate with a bio-mechanical finite-
element (FE) mesh that assumes the prostate Pmr to be an elastic material
with unknown stiffness and compressibility parameters. The tetrahedral FE-
mesh consists of Ne tetrahedra and Nv vertices V =

[
v�
1 , . . . ,v�

Nv

]
. The boundary

vertices vi = [xi, yi, zi]
� are identified as Vb =

[
v�
1 , . . . ,v�

Nb

]
with vi ∈ ∂Pmr,

where Nb ≤ Nv. Each boundary vertex is associated with a displacement vector
ui = [ui, vi, wi]

� such that vi[ui] = vi + ui ∈ ∂Pus. Once the deformation of the
boundary U =

[
u�
1 , . . . ,u�

Nb

]�
that aligns ∂Pmr with ∂Pus is determined, the

displacement of the internal nodes under the linear elastic model is determined
by solving a linear system of equations. Associated with each pair of vertices vi

and vj is a stiffness matrix Kij which depends on Young’s modulus (E = 1/τ)
and Poisson’s ratio (ρ) of the underlying tissue. Because no boundary forces are
applied, E is a unit-less pseudo stiffness. The linear elastic (band) energy for the
deformation of the prostate boundary is defined as Eel(U) =

∑Nb
i=1

∑
j∈Bi

uiKijuj ,
where Bi is the set of vertices in the Markov neighborhood of vertex i.

2.2 Bayesian Estimation of Boundary Conditions

Under the posterior distribution p(U | Pus,Pmr, τ ) ∝ p(Pus | U,Pmr)p(U | τ ), the
likelihood term corresponds to the distance of the deformed boundary ∂Pmr ◦U
from the TRUS boundary ∂Pus, and is a normal distribution on the �2 distance
from ∂Pus:

p(Pus | U,Pmr) = N (||∂Pmr ◦U− ∂Pus||22 | 0, σ2) , (1)
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where σ2 models the uncertainty of the position of the boundary ∂Pus.
The prior distribution on deformations uses Boltzmann’s distribution on the

linear elastic energy Eel(U) parametrized by the temperature τ so the log pos-
terior becomes

log p(U | Pus,Pmr, τ ) = − 1

σ2

Nb∑
i=1

�2(vi[ui]; ∂Pus)−
Eel(U)

τ
+ const, (2)

where � is the (signed) �2 distance of vertex vi[ui] from ∂Pus.
The Boltzmann’s temperature controls the overall stiffness of the elastic ma-

terial (i.e. it uniformly modulates all stiffness matrices Kij) and is, in general,
a priori unknown. Higher temperatures correspond to lower overall stiffness, in-
creases the spread of both the prior and hence the posterior distribution, while
lower temperatures indicate stiffer materials with tight spreads of the distribu-
tions. Furthermore, this temperature also affects the location of the mode of the
distributions.

The posterior distribution is characterized non-parametrically using Metropo-
lis Hastings (MH) Markov Chain Monte Carlo (MCMC) sampling. Starting from
an initial deformationU0, a proposal boundary deformationU∗ is generated from
a multi-variate normal proposal distribution and accepted (Un = U∗) or rejected
(Un = Un−1) according to the MH-criterion. After convergence of the MCMC
chain, assessed with the Geweke criterion, the collection of posterior samples
U = {U1, . . . ,UNs} characterizes the posterior distribution in Eqn. (2).

2.3 Temperature Estimation

This section describes how to estimate the temperature HP throughmaximization
of the posterior predictive distribution given a representative training data-set
with ground truth markers, either in the form of homologous points, contours or
surfaces. In this paper, these markers are the manually demarcated boundaries of
the prostate apex, ∂Aus ⊂ ∂P ′

us and ∂Amr ⊂ ∂Pmr, extracted from pre- and intra-
treatment prostate MRI, where the intra-treatmentMRI is used as a surrogate for
TRUS. Note that the apex boundary ∂Aus is not used to estimate the posterior
distribution on deformations, but is used only post-registration in the temperature
estimation step. Therefore, the distribution of the location of the apex boundary
∂Aus

mr as predicted by the MR image is:

p(∂Aus
mr | ∂Amr, τ ) =

∫
p(∂Aus

mr | U, ∂Amr)p(U | Pus,Pmr, τ )dU , (3)

where p(∂Aus
mr | U, ∂Amr) = δ

(
||∂Amr ◦U− ∂Aus

mr||22
)

is modeled with a Dirac
delta which is zero everywhere except where, after applying a transformation
U, the apex boundary from the MR image ∂Amr overlaps with the candidate
apex boundary ∂Aus

mr. The posterior probability of a particular deformation
p(U | Pus,Pmr, τ ) is given by the set of deformation samples generated through
MCMC (§Section 2.2) using non-parametric Kernel Density Estimation (KDE).
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Therefore, integrating out U in Eqn. (3), and through the sifting property of the
Dirac delta function, the kernel estimate of predictive density becomes:

p(∂Aus
mr | ∂Amr, τ ) =

1

Ns

Ns∑
s=1

kh
(
||∂Amr ◦Us − ∂Aus

mr||22
)
, (4)

where k is a symmetric positive kernel with bandwidth h, mean 0 and integral 1,
and Us is the s–th sample from the MCMC chain of Ns samples. Now, given a
training data-set of Dt pairs of ground-truth prostate delineations from pre- and
intra-treatment images, and assuming independence conditioned on the temper-
ature, the maximum likelihood estimate (MLE) of the temperature HP from the
posterior predictive distribution is:

τ∗ = argmax
τ

Dt∏
d=1

p(Aus
mr = A(d)

us | A(d)
mr , τ ), (5)

where A(d)
us is the manually demarcated boundary of the apex in the surrogate

TRUS image. Hence, we choose the model temperature τ such that the ground
truth position of the apex has highest predictive probability.

2.4 Patient Data

In this evaluation, intra-treatment MRI was used as a proxy for TRUS because
it permitted an accurate demarcation of the apex boundary. The patient data,
collected from D = 10 patients undergoing prostate biopsy, was acquired as
part of a prospective clinical research protocol which is HIPPA compliant and
approved by the local institutional review board. For each patient, a diagnostic
MRI (512×512×30 with a pixel size of 0.3×0.3×3 mm3) and an intra-treatment
MRI (320×320×40 with pixel size 0.5×0.5×3 mm3) used for biopsy guidance were
acquired. There is significant change in the prostate between the two images due
to the use of an ERC when acquiring the diagnostic MRI and different patient
positioning during imaging. The PGs were segmented for each patient on both
the pre- and intra-treatment MR images by an abdominal radiologist with over
10 years of experience in prostate MR interpretation.

3 Results

The label-maps of the pre- and intra-treatment segmentations were rigidly reg-
istered, and the manually contoured boundaries were smoothed through anti-
aliasing followed by Gaussian smoothing with variance of 1mm2. For each of
the D cases, a tetrahedral FE-mesh of P(d)

mr was created. We also removed the
apex A(d)

us , corresponding to approximately 15% of the prostate volume, from the
ground truth label-map of the surrogate TRUS image such that P(d)

us = P(d)
us

′
\A(d)

us ,
in order to evaluate the ability of the model to correctly predict the location of
the apex in the total absence of image contrast.
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The likelihood variance was set to the maximum pixel spacing (3mm) to model
the boundary label uncertainty, and the prostate was modeled as a nearly in-
compressible material (ρ = 0.45). The average number of FE-vertices over the 10
cases was N̄v = 415. In all MCMC runs, 2× 106 samples were generated, which
after thinning with a factor of 10 and discarding the first 25% of the chain for
burn-in, resulted in Ns = 1.5 × 105 remaining samples. The total running time
for one chain was ≈ 4 hrs.

3.1 Temperature Estimation

We first performed MLE (§Section 2.3) for the temperature HP on Dt = 4 ran-
domly chosen data-sets. To optimize Eqn. (3), the temperature τ was discretized
into 10 bins over the range 20 ≤ τ ≤ 380 and the predictive density (§Eqn. (4))
was estimated for each temperature and data-set in parallel (4 × 10 parallel
computations). Because of the high number of samples, the particular choice of
kernel and bandwidth in Eqn. (4) has a negligible effect on the result – we used
a standard normal kernel and found the optimal temperature to be τ∗ = 180.
Figure 1 shows the marginal posterior distribution of the deformed prostate in
relation to the ground truth at three different temperature settings and shows
that uncertainty plays an important role in selecting HPs.

(a) τ = 20 (b) τ = 180 (c) τ = 340

Fig. 1. Coronal slices of the marginal posterior probability p(∂Pus
mr | φ, θ) of ∂Pus

mr cross-
ing a ray, with spherical coordinates φ and θ, originating from the prostate center at
three different temperatures for one of the 4 training cases. The region below the hori-
zontal line denotes Aus, and the black outline delineates ∂P ′

us. For each temperature we
compare the predicted log probability Ξ(τ ) = log p(∂Aus | ∂Amr, τ ) with the conven-
tional Expected Mean Squared Error (EMSE): Λ(τ ) = 1

Nb

∑Nb
i=1

∫
�2 (vui , ∂Aus) p(U |

Pus,Pmr, τ )dU. Fig. (a): Ξ(20) ≈ −∞ and Λ(20) = 22.7. Fig. (b): Ξ(180) = −69.8
and Λ(180) = 37.9. Fig. (c): Ξ(340) = −73.1 and Λ(340) = 66.3. The trend, which is
confirmed by the 3 other training data-sets, is that EMSE is overly optimistic about
distributions with low temperatures, and that these distributions, as shown in Fig. (a),
are implausible when evaluated on the training data. Conversely, the MLE chooses the
temperature (τ∗ = 180) that maximizes the posterior predictive distribution on the
training data.
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3.2 Evaluation of Method

The accuracy and precision of the HP estimation method was evaluated using
the 6 remaining cases. The predictive distribution of both the apex boundaries
and the remaining prostate gland were characterized for each case at τ∗, and
error in boundary prediction as well as the inter-quartile range (IQR) on the
distance errors were computed, as listed in Table 1. Figure 2 shows the marginal
posterior distribution of the prostate, at optimum temperature, which conveys
the mode as well as the corresponding uncertainty and is compatible with the
ground-truth delineation of the prostate.

Fig. 2. Results from the evaluation using the optimal temperature (τ∗ = 180). Coronal
slices of the marginal posterior probability p(∂Pus

mr | φ, θ) of ∂Pus
mr crossing a ray, with

spherical coordinates φ and θ, originating from the prostate center. The ground truth
boundary of the prostate ∂P ′

us is overlaid as a black contour. The area below the
horizontal line delineates Aus.

Table 1. Accuracy and precision of the posterior distribution at optimal temperature
value for PA (∂Aus

mr) and the rest of the PG (∂Pus
mr \ ∂Aus

mr). Note: All values in mm.
For each case we estimated the mode û of the posterior distribution. The mean and
maximum errors are the mean and maximum absolute distances of boundary vertices
deformed by û from ∂P ′

us measured by the�metric. Also tabulated is the inter-quartile
range (IQR) of the distribution of the distances {�(vi ◦ us

i ; ∂P ′
us)}i∈∂Pmr,s=1,...Ns .

Case: 1 2 3 4 5 6

Apex
Mean Error 3.9 5.5 5.0 4.7 4.7 4.5
Max Error 8.5 12.9 11.6 12.3 10.7 15.4
IQR 6.6 8.1 7.4 7.4 7.6 8.8

Prostate
Mean Error 1.6 1.7 1.8 1.7 1.9 1.6
Max Error 14.1 12.7 11.5 15.0 12.9 11.4
IQR 3.8 4.3 4.6 4.1 5.4 3.6
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4 Discussion

With a Bayesian method, we estimate the posterior distribution on boundary
conditions of an elastic model of the prostate extracted from MRI that will
align it with the prostate delineated in TRUS. Because the posterior distribu-
tion, and in particular the posterior prediction of the location of the prostate
apex, is sensitive to the pseudo stiffness (prior) HP, we maximize the posterior
predictive distribution with regards to the HP given homologous ground truth
apex delineation. The registration method, with optimal HPs, was evaluated on
6 MRI-MRI datasets where the mean error on the boundary was found to be
1.7mm. Comparable results are reported on homologous landmarks, e.g. using
intensity-based registration [2] with a mean error of 1.5mm and the model-based
approach of Hu et al. [1] with median RMS of 2.4mm. However, the advantage of
our method is that we prescribe error-bars on the registration results, in terms
of IQRs, and that the true prostate boundary is within these error-bars.

Acknowledgments. This work was supported by NIH grants P41EB015898,
R01CA111288, P41RR019703, P41RR013218 and P41EB015902.
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Abstract. Deformable image registration poses a highly non-convex
optimisation problem. Conventionally, medical image registration tech-
niques rely on continuous optimisation, which is prone to local minima.
Recent advances in the mathematics and new programming methods en-
able these disadvantages to be overcome using discrete optimisation. In
this paper, we present a new technique deeds, which employs a discrete
dense displacement sampling for the deformable registration of high res-
olution CT volumes. The image grid is represented as a minimum span-
ning tree. Given these constraints a global optimum of the cost function
can be found efficiently using dynamic programming, which enforces the
smoothness of the deformations. Experimental results demonstrate the
advantages of deeds: the registration error for the challenging registra-
tion of inhale and exhale pulmonary CT scans is significantly lower than
for two state-of-the-art registration techniques, especially in the presence
of large deformations and sliding motion at lung surfaces.

1 Introduction

Deformable image registration is a key enabling technique in medical image
analysis. Applications include motion correction, image-guided radiotherapy,
multi-modality fusion, quantification of longitudinal progression of disease, and
inter-subject registration for atlas-based segmentation. Non-rigid registration
algorithms aim to solve a highly non-convex optimisation problem with several
million degrees of freedom. In the medical domain, this problem has so far been
addressed almost exclusively using continuous optimisation. In a recent compar-
ison study of non-rigid registration methods applied to pulmonary CT scans [1],
23 out of 24 algorithms used continuous optimisation. However, continuous opti-
misation of a non-convex cost function is susceptible to local minima, potentially
leading to an erroneous registration. Local minima are frequently encountered

� We thank EPSRC and Cancer Research UK for funding this work in the Oxford Can-
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when the initial motion estimate is far from the desired solution, especially for
small anatomical features, which have undergone large deformations. A second
drawback for continuous optimisation is the necessity either for an analytical or
for a numerical derivative of the cost function, thus limiting its choice.

Discrete optimisation offers numerous advantages to overcome these limita-
tions. It has been widely used for 2D computer vision applications. However, in
discrete optimisation the space of possible displacements L has to be quantised.
If the smallest discretisation step is defined to be one voxel, the displacement
space can be of the order of thousands and therefore there are millions of degrees
of freedoms. This high computational and memory demands have previously dis-
couraged its use in 3D problems. One state-of-the-art medical image registration
method, based on discrete optimisation, drop [2], reduces the dimensionality of
the problem by using a parametric transformation model based on a B-spline
deformation grid. Additionally, the displacement space is sampled only sparsely
(along the three axes). This may possibly cause the optimal displacement to
be missed. The authors attempt to address this problem, first by introducing
a multi-resolution scheme, and second by iteratively updating the transforma-
tion (thus warping the source image towards the target). While the method is
an improvement (both in terms of accuracy and speed) over commonly used
continuous optimisation counterparts, it lacks some of the attractive properties
that a discrete framework potentially offers: most notably, avoidance of an iter-
ative solution and image interpolation; and the use of a dense sampling of the
displacement space.

In this work, we address these shortcomings in three ways. First, we refor-
mulate the image grid so that it is not fully connected. Instead, a minimum
spanning tree [3] is computed, which best replicates the underlying structure of
the anatomical connectivity of the image. This allows us to use dynamic pro-
gramming to find the global optimum of the registration cost non-iteratively
in just two passes. Second, we use the min-convolution technique [4] to reduce
the complexity of the pair-wise regularisation cost computation from O(|L|2)
to O(|L|). Finally, we use a multi-level approach in which groups of voxels are
represented by a single node in the graph. This leads to an efficient coarse-
to-fine optimisation, while, at the same time, all data terms are calculated in
the original image resolution (so there is no image degradation as a result of
downsampling). At subsequent (finer) levels, the previous solution is used as a
prior of the displacement. The improved computational efficiency allows us to
use a very large label space and thus better address the efficiency-quality trade-
off than previous approaches. We employ a symmetric diffeomorphic approach
to ensure unbiased physically plausible transformations. Our approach is called
deeds (dense displacement sampling) and is explained in detail in the next
section. An experimental validation is performed for the non-rigid registration
of pulmonary CT scans at different breathing states. We compare our approach
to a continuous optimisation algorithm (gsyn [5]), which performed best in the
recent EMPIRE study [1]; and a discrete parametric optimisation framework
(drop) using linear programming [2].
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2 Deformable Registration Using deeds

Discrete optimisation is usually performed as Markov Random Field (MRF)
labelling. For the purposes of our non-parametric image registration framework,
a graph is defined, in which the nodes p ∈ P correspond to voxels (or groups
of voxels) and in which, for each node, there is a set of (hidden) labels fp,
which correspond to discrete displacements. The energy function to be optimised
consists of two terms: the data (also called unary) cost D (which is independent
for each node); and the pair-wise regularisation cost R(fp, fq) for any node q,
which is directly connected (∈ N ) with p:

E(f) =
∑
p∈P

D(fp)︸ ︷︷ ︸
data term

+α
∑

(p,q)∈N
R(fp, fq)︸ ︷︷ ︸

regularisation term

(1)

The unary cost measures the similarity of a voxel in one image and a displaced
voxel in the second image, and is independent of the displacements of its neigh-
bours. The pair-wise term enforces a globally smooth transformation by pe-
nalising deviations of the displacements of neighbouring voxels. The weighting
parameter α sets the influence of the regularisation.

Methods to solve the MRF labelling problem can generally be categorised
as one of two approaches: message passing and graph cuts. Message passing
schemes include: loopy belief propagation (LBP); sequential tree-reweighted mes-
sage passing (TRW-S); and dynamic programming on a tree. Popular graph
cut algorithms include: α-expansion moves; and the fast primal-dual strategy
(FastPD). For some problems, graph cuts guarantee convergence to a known
bound, close to the global optimum. However, in practice, the complexity limits
both the number of nodes and the label space (directly applied to medical images
α-expansion graph cuts take up to 24 hours for a single registration [6]). In con-
trast, our approach can find the global optimum for a complex 3D registration
problem with a very large (dense) label space within minutes using a reduced
neighbourhood interaction based on a minimum spanning tree (MST).

2.1 Dynamic Programming on Minimum Spanning Tree (MST)

Optimising the registration cost function on a six-connected graph is NP-hard.
In contrast, the very efficient dynamic programming technique finds a global
minimum, without iterations, in just two passes on a cycle-free graph (e.g. a
tree). Using Prim’s algorithm [7], we can quickly find the unique MST given a
set of nodes p ∈ P and edges e. The edge weight w(p, q) is defined as the sum of
absolute differences (SAD) between the intensities of all voxels contained within
the node p and the respective voxels in node q. The MST is a spanning tree with
minimum total edge costs. The selection of the root node does not influence the
result of the optimisation. The MST sufficiently reflects the underlying anatom-
ical connectivity in a medical image (see Fig. 1 left). It is well balanced, and,
as a consequence, the maximum width is approximately |P|/ log|P|. The output
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root node 
normal node 
leaf node 

current node 
children 

parent 

group of voxels 
forming a node 

dense displacement 
sampling L=
{0,±1,..±4}2 

message passing 

Fig. 1. An example of minimum spanning tree (MST) of a 2D coronal slice of a lung
CT is shown on the left (♦ root, © normal, and � leaf nodes). The concept of our
proposed discrete optimisation scheme, using dense displacement sampling, is displayed
on the right. Note that, even though the nodes may be sparsely distributed, the data
cost is always computed in the original resolution.

of Prim’s algorithm consists of a sorted list of all nodes (with increasing tree
depth) and the index of each node’s parent. A similar approach has been used
for stereo correspondence [3] however, other methods (LBP, TRW-S) perform
better on that specific application.

Finding the best labelling, and thereby the global optimum of Eq. 1, is possible
using dynamic programming on the MST [3]. At each node p, the cost Cp of the
best displacement can be found, given the displacement fq of its parent q:

Cp(fq) = min
fp

(
D(fp) +R(fp, fq) +

∑
c

Cc(fp)

)
(2)

where c are the children of p. The best displacement can be found by replacing
min with argmin in Eq. 2. For any leaf node, Eq. 2 can be evaluated directly
(since it has no children). Thereafter, the tree is traversed from its leaves down
to the root node. It is worth noting that the costs Cp only have to be stored for
the next tree level (only the argmin is needed to select the best displacement).
Once the root node is reached, the best labelling for all nodes can be selected in
another pass through the tree (from root to leaves). Finding the minimum näıvely
would require |L|2 calculations for the regularisation cost per node. In [4] the
min-convolution technique is introduced, which reduces the complexity to |L| by
employing a lower envelope computation. For most commonly used (pair-wise)
regularisation terms, such as diffusion (squared difference of displacements) and
total variation (absolute difference) regularisation, this simplification is possible.

2.2 Dense Displacement Sampling

To avoid local minima, most continuous-optimisation-based registration algo-
rithms use a multi-resolution scheme in which the images are downsampled after
a prior Gaussian smoothing. This may degrade the quality of the registration.
We adopt a different approach: a multi-level scheme, in which we only employ
the highest resolution image. For a given level, the image is subdivided into
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non-overlapping cubic groups of voxels. The similarity cost is first calculated for
each voxel separately using dense displacement sampling, then aggregated for all
voxels of the same group (this forms an additional intrinsic regularisation and
reduces the number of nodes). Subsequently, the regularisation term is calcu-
lated only for each group of voxels (see Fig. 1). Using this approach, both high
spatial accuracy and low computational complexity are achieved. The optimal
labelling is obtained as explained previously. For the next level, the previous
deformation field is upsampled and used as the prior deformation. At a finer
level, the sampling range may be reduced, because the optimal transformation
for the coarser level is known and only a small deviation from it is expected.

2.3 Symmetric and Diffeomorphic Transformations

For many deformable registration algorithms, one image has to be chosen as the
target, the other as the moving image. This biases the registration outcome and
may additionally introduce an inverse consistency error (ICE). The ICE for a
forward transform A and a backward transform B is defined as the difference
between AB and the identity. gsyn [5] uses a symmetric deformable registration,
which calculates a transformation from both images to a common intermediate
image and also ensures that A(0.5) = B(0.5)−1. The full forward transformation
is then A(0.5) ◦ B(0.5)−1. We adopt a similar approach and estimate both A
and B. We then use a fast iterative inversion method, as presented in [8], to
obtain A(0.5)−1 and B(0.5)−1. Additionally, if we treat the displacement field
as a velocity field, we can transform it into a diffeomorphic mapping by applying
the scaling and squaring method [9]. This approach avoids transformations for
which physically implausible folding of volume occurs. Although this yields a
continuous-valued transformation, we need to apply the voxel-sized discretisation
for the next level. However, the discretisation is not performed for the final level.

3 Experiments and Results

We evaluate our deformable registration method on ten cancer (esophagus or
lung) patients of the DIR-Lab 4D CT dataset1 between the inhale and exhale
phases (no intermediate frames were used in our experiments). The scans were
acquired as a breathing cycle CT of the thorax and upper abdomen with a
spatial resolution of 0.97 to 1.16 mm in the xy-direction and 2.5 mm in the z-
direction. These registration tasks are particularly challenging due to: the large
deformations of small features (lung vessels, airways); the discontinuous sliding
motion between lung lobes and the lung rib cage interface; and changing contrast
due to the compression of air. For each pair, 300 anatomical landmarks were
selected by a clinical expert, with an inter-observer error of less than 1 mm
[10]. We compare our method to gsyn [5], which is a symmetric, diffeomorphic,
continuous optimisation-based registration tool, and drop [2], which is a discrete

1 The 4D CT dataset with landmarks is freely available at http://www.dir-lab.com

http://www.dir-lab.com
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Table 1. Results for deformable registration of inhale and exhale CT. Average tar-
get registration error (TRE) for 300 expert selected landmarks per scan pair is given
in mm. Best performing algorithm per case is set in bold (for comparison: ØTRE
obtained by [11] for the same dataset is 2.13±1.8 mm). Average computation time,
(maximum) degrees of freedom (d.o.f.), and harmonic energy of the deformation fields.
The deformation fields of both deeds and gsyn have no negative Jacobians, the ones
of drop exhibit a small fraction of 8.5×10−4.

# initial drop gsyn deeds # initial drop gsyn deeds

1 3.89±2.8 1.10±0.7 1.03±0.5 0.80±0.7 8 15.0±9.0 6.64±8.2 7.06±8.6 2.78±3.1
2 4.34±3.9 1.12±0.8 1.02±0.6 0.86±0.7 9 7.92±4.0 2.89±2.6 1.89±2.0 1.35±0.8
3 6.94±4.1 1.74±1.4 1.31±1.0 1.14±0.8 10 7.30±6.3 2.03±2.6 2.06±3.0 1.50±1.4
4 9.83±4.9 2.78±4.1 1.65±1.6 1.71±1.7 Ø 8.46±6.6 2.85±4.0 2.43±4.1 1.60±1.7
5 7.48±5.5 2.03±2.0 2.05±2.3 1.77±1.7 avg. time 8 min 29 min 20 min
6 10.9±7.0 5.20±4.5 2.50±3.3 1.88±1.4 d.o.f. 3.7×106 2.2×107 9.8×108

7 11.0±7.4 3.02±3.4 3.77±5.7 2.21±2.3 harm. energy 0.12 0.05 0.13

optimisation method using a B-spline deformation grid. In order to have a fair
comparison, we used the same parameter settings as those chosen by the authors
themselves in the EMPIRE challenge. For all approaches, 4 levels were used.
As similarity metric, SAD is used for drop and deeds, and normalized cross
correlation (NCC) with a radius of 2 voxels for gsyn (SAD is not differentiable).
The dense sampling range for deeds is defined to be L = {0,±1, . . . ,±15}3
voxels, (|L| = 29791) for the coarsest level (for datasets (1-5), with smaller
deformations, the sampling range of deeds was decreased to Lmax = 10). At each
subsequent level, the range is halved. In our multi-level framework, we use cubic
groups of voxels of sizes 63, 43 and 23. For drop the memory requirements (using
3.5 GB of RAM) limit us to use a sparse sampling of L = 3× {0,±1, . . . ,±10}
(|L| = 61), with a range of 24 mm. The Gaussian smoothing for gradient and
deformation fields in gsyn is set to 3 and 1 voxels respectively. The regularisation
parameters in drop λ = 5 and deeds α = 50 were empirically chosen (intensities
are in the range [0,256]); a quadratic penalty function is used for both methods.

The resulting target registration error (TRE, see Table 1) of deeds is 1.25
mm lower than drop, and 0.83 mm lower than gsyn. For cases with larger
deformations the differences are most substantial, because the larger search space
(and degrees of freedom, see Table 1) of deeds helps to avoids local minima.
The improvements are significant, based on a Wilcoxon rank test (p<3× 10−4).
The registration outcome for Case 9 is illustrated in Fig. 2, where an improved
alignment using our method can clearly be seen. Another advantage of the non-
iterative dense displacement sampling is the preservation of naturally occurring
discontinuous motion fields. This sliding motion occurs when the lung lobes
slip along their surfaces at the boundary to the rib cage and between fissures.
Figure 2 gives an example, where this sliding motion is clearly preserved using
deeds while the registration using drop or gsyn smoothes over the motion
boundary.
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Fig. 2. Registration result for Case 9 of 4D CT dataset. The target volume is displayed
in magenta, the moving volume in green (complementary colour). Axial slices before
and after registration are shown in the top row. The arrow points to an improved
alignment of lung vessels using our approach. The second row shows the coronal plane
along with vectors indicating the registration error (errors larger than the voxel size are
marked in red). The magnitudes of deformation fields is shown in the bottom row. The
sliding motion of the lungs against rib cage and the heart (descending aorta) is better
preserved using deeds. The deformation fields of drop and gsyn are too smooth close
to the motion boundary at the lung surface (see arrow).

4 Conclusion and Discussion

We have introduced a novel deformable registration method deeds that uses
discrete optimisation. A dense displacement sampling is performed for the simi-
larity term on the highest available resolution. The regularity of the deformation
field is obtained using dynamic programming on a minimum spanning tree. This
ensures a globally optimal solution without the need for an iterative scheme. The
algorithm is efficiently implemented in a symmetric multi-level framework yield-
ing comparable computation time to state-of-the-art algorithms, but employing
many more degrees of freedom. An average TRE of 1.60 mm was found for a
challenging dataset of inhale-exhale CT scans. This is a significant improvement
over the most popular discrete optimisation framework drop [2] (TRE=2.85
mm) and gsyn [5] (TRE=2.43 mm), which performed best on the recent lung
registration challenge (EMPIRE). The TRE was found to be higher than the
results from the EMPIRE challenge [1] for several reasons (larger deformations,
lower resolution, and only one annotation per landmark). Most importantly,
in contrast to the EMPIRE study, no lung segmentations were used to guide
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the registration (and mask out intensities outside the lungs). Lung masks can
substantially increase the registration accuracy within the lungs. However, this
introduces an additional step and does not recover the full physical deformation.
Our registration errors (using only inhale and exhale volumes) are smaller than
the voxel size for all cases and comparable to the best performing technique on
this dataset (4DLTM), which utilises all frames of the breathing cycle. In the
presence of large deformations, our proposed dense displacement sampling yields
a higher robustness against misregistration than drop and gsyn. Furthermore,
it intrinsically deals very well with the sliding motion at the pleural interface,
and hence avoids numerically more complex modelling as done e.g. in [11]. In the
future, we plan to apply this new optimisation method on multi-modal datasets.
Here we belief the improvements will be even more significant, due to the higher
ambiguity in the similarity term.
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Abstract. We present what we believe to be the first investigation into
unbiased multi-subject registration of whole brain diffusion tractography
of the white matter. To our knowledge, this is also the first entropy-
based objective function applied to fiber tract registration. To define the
probability of fiber trajectories for the computation of entropy, we take
advantage of a pairwise fiber distance used as the basis for a Gaussian-
like kernel. By employing several values of the kernel’s scale parameter,
the method is inherently multi-scale. Results of experiments using syn-
thetic and real datasets demonstrate the potential of the method for
simultaneous joint registration of tractography.

Keywords: registration, white matter, tractography, diffusion MRI.

1 Introduction

Automated medical or neuroscientific analyses of white matter tractography
data, such as segmentation or labeling, creation of atlases, and measurement of
tract statistics, all require initial alignment or normalization of tractography via
some method. This alignment is most often performed by applying the transfor-
mations resulting from an image-based fractional anisotropy or diffusion tensor
registration [18,4]. However if the eventual goal is modeling and analysis of white
matter tracts, it may be advantageous to register the tracts themselves, as the
quantity being optimized during registration will be closely related to the final
goal. In this work we explore the possibility of driving an unbiased multi-subject
registration using the trajectory data produced by streamline tractography.

In contrast to the proposed approach, to our knowledge all other methods for
simultaneous joint registration of tractography have been based on alignment of
pre-defined fiber bundles. These methods have required a pre-existing tractog-
raphy segmentation for each subject and have thus been limited to particular
structures: corticospinal tract, forceps major, cingulum and inferior longitudinal
fasciculus [1]; structures resulting from an initial clustering plus expert labels
[19]; left uncinate and front-occipital fasciculi [17]; and the arcuate fasciculus,
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corticospinal tract, and middle cerebellar peduncles [3]. So far, methods that
have performed registration using unlabeled fiber tracts from the whole brain,
e.g. [9,21,12], have been limited to subject-to-subject (pairwise) registration.

In addition to tractography-based registration, our current work builds on two
other categories of related work: fiber tract comparison, and groupwise image reg-
istration.Work in fiber tract clustering has led tomany differentmetrics [16,15,10],
generally based on distances computed between points along the tracts, often with
conversion to fiber affinities using Gaussian kernels as in our proposed objective
function. Tracts have also been analyzed via many styles of point-wise matching,
for example [2,12,10,1]. In the image registration field, several groups have pro-
posed multiple-subject unbiased and template-based image registration methods.
These include entropy-based congealing methods for 2D [8] and 3D [20] that find
a population central tendency image by minimizing entropy, as well as methods
that estimate a population template image that is the minimum distance (in the
space of diffeomorphisms) from all input images [6,4].

2 Methods

2.1 Objective Function

Our basic approach is to represent a brain or atlas by a probability distribution
on trajectories. A “brain” distribution is constructed as a kernel density estimate
from the tractography, and an “atlas” distribution is constructed as a mixture of
the constituent brain distributions. We then choose the alignment parameters on
the collection of brains by maximizing the “sharpness” of the atlas, or minimizing
its entropy.

Given a distance metric D between fibers we define the probability of a fiber
f , given another fiber fj , as

p(f |fj) =
1

Z
e−

D2(f,fj )

σ2 (1)

where the distance is used as the basis for a Gaussian-like kernel with standard
deviation σ, and the normalization constant Z will be discussed later. Our cur-
rent choice of D is discussed below, however this can in principle work for any
of the many existing fiber distances from the literature. Next, the probability of
a fiber f , given the set of all fibers A and their transformations T (“the atlas”),
is defined as

p(f |A, T ) = 1

|A|
∑
j

p(f |fj ∈ A, T ) (2)

where all fibers fj in A contribute to the total probability.
The Shannon entropy H of the distribution of fibers is the expected value of

the negative log-probability of the fibers. In this case the set of current transfor-
mations T has been applied to the fibers (including the transformations Ti and
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Tj currently applied to fibers fi and fj), and we replace the expected value with
the sample average value (using the weak law of large numbers).

H(f |A, T ) = E(−log(p(f |A, T ))) (3)

= − 1

|A|
∑
i

log
1

|A|
∑
j

p(fi|fj , Ti, Tj) (4)

We minimize the entropy as our objective function, arriving at a set of transfor-
mations T .

T = argmin
T

H(f |A, T ) = argmin
T

(− 1

|A|
∑
i

log
1

|A|
∑
j

1

Z
e−

D2(fi(Ti),fj (Tj))

σ2 ) (5)

Note that to simplify the concept and the notation above, we have not mentioned
the fact that the fibers come from several brains. This is implicitly handled in
that the transformation Ti applied to fiber fi is the same transformation that is
also applied to all other fibers from that brain. We assume that Z is constant
for a given value of σ, and thus does not contribute to the optimization.

2.2 Fiber Representation and Distance Function

For simplicity and computational speed, we convert the input variable-length
fiber trajectories to a fixed-length representation (as also proposed by [12,14]).
In practice, representing each fiber by 5 points (endpoints, midpoint, and two
intermediate points) was empirically found to be effective for registration.

Using this fiber parameterization, we propose a pairwise fiber distance metric
D that is related to the Hausdorff distance (the maximum of the minimum dis-
tances between pairs of closest points). We calculate D as the maximum distance
between pairs of corresponding points along the fibers (i.e. the first through fifth
point pairs). This fiber distance computation can thus take advantage of matrix
subtractions. D is a symmetric distance that is the same between fibers (fi, fj)
and (fj , fi), eliminating the issue of the classic Hausdorff measure being a di-
rected distance. Because point ordering along the fiber is not known a priori (a
fiber parameterization can equivalently start from either end), D is computed
with both possible orderings and the minimum is chosen.

In practice, this method works very well with relatively nearby and corre-
sponding fibers. For more distant fibers the point correspondence and distance
measure may not be informative, a known problem with all such fiber distance
metrics that have been shown to capture the local structure but poorly reflect
the “true relationship” of distant fibers [16]. Luckily in our case, these uninfor-
mative large distance measures are unimportant for registration. These far-away,
dissimilar, or outlier fibers are distant relative to the radius of interest defined
by σ and have little effect on the objective function.

2.3 Implementation

We have implemented a full affine registration framework using a coordinate de-
scent method. The code is a Python package that uses VTK [7], scipy [5], and
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numpy [5]. For optimizationwe usePowell’s simplex-basedCOBYLA (Constrained
Optimization by Linear Approximation)method [13] in the scipy.optimize toolkit.
The affine parameters are constrained (across subjects) as in other entropy-based
congealing methods [8,20] to avoid an unnecessary overall rotation or translation
of all brains, and to avoid the shrink to a point solution that artifactually reduces
entropy. We require that all translation, rotation, and shear components sum to 0
over all transforms applied to the data, and that all scale factors average to 1. The
COBYLA package allows definition of expected initial step sizes ρbeg, and deter-
mines convergence when final step sizes ρend are under a user-provided threshold,
thus we have set these ρ parameters empirically using the expected magnitudes of
our transform parameters.

The σ parameter of the Gaussian kernel (eq. 1) has been tuned to enable
multi-scale registration. In practice, we run several iterations of optimization,
alternating translation and rotation, with an initial σ of 30mm. Next, we decrease
σ to 10mm, then to 5mm, and optimize while alternating translation, rotation,
scale, and shear. The computation of the fiber distances has been implemented
in a multiprocessor framework. The distances are computed between a random
sample of fibers from each input subject (typically 200-300), and another, smaller
random sample of these fibers whose size we increase during the registration
process (typically beginning with 25 or more fibers). The smaller random sample
is resampled (all sampling is done without replacement) each time we change
the parameters being optimized. The style of randomly sampling data points
at which to compute the objective function has been successfully employed in
many registration strategies [11,8,20] and in fiber clustering [15]. The terms in
eq. 5 that result from comparing fibers from the same brain are neglected.

2.4 Data and Processing

N=26 healthy subjects dataset: Diffusion weighted images (DWI) scans were
acquired on a 3-T GE system using an echo planar imaging sequence and the
following parameters: 51 gradient directions with b=900, eight baseline scans
with b=0, TR 17000 ms, TE 78 ms, FOV 24 cm, 144×144 encoding steps, 1.7 mm
slice thickness. Artifacts due to eddy currents and head motion were removed
by affine registration of diffusion to baseline images using FSL’s linear image
registration tool (FLIRT). Single-tensor streamline tractography was seeded in
the entire brain of each subject in voxels with anisotropy (linear measure) > 0.2.

3 Results

We performed three registration experiments: objective function probing, syn-
thetic data validation, and multi-subject registration.

Experiment 1: Objective Function Probing. We investigated the behavior
of the multi-scale objective function under simple rotation, translation, scaling,
and shear. One healthy control subject was chosen, and 2000 trajectories were
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randomly sampled without replacement, twice, to generate different fixed and
moving brains. A range of transformations was applied to the moving brain, and
the objective function was computed using all fibers from both brains (see fig.
1). Importantly, results demonstrate that the objective function is very smooth,
and that decreasing σ has the desired behavior of increasing sensitivity to small
transformations.

Translation Rotation Scale Shear

σ1

σ2
σ3
σ4

Fig. 1. Plots of the objective function under x-translation (-40 to 40mm), rotation
about x (-40 to 40 degrees), scaling along x (factors of 0.5 to 1.5), and shear (-40
to 40 degrees skew about x). The curves represent different values of the multi-scale
parameter σ: 5mm (top curve, blue), 10mm, 20mm, and 30mm (lowest curve, cyan).

Experiment 2: Synthetic Data Validation. Using as input one healthy con-
trol subject, we generated synthetic data as follows: 300 trajectories of length
greater than 40mm were randomly sampled from the input dataset, and a ran-
domly generated transformation was applied to these trajectories, to generate
a “synthetic brain.” The parameters of the random transform were: translation
up to ±20mm along each axis, scale factor from 0.85 to 1.15 in each axis, and
rotation up to ±20 degrees around each axis. To enable unambiguous computa-
tion of errors in the other parameters, shear was not included. This procedure
was repeated 10 times to generate a dataset of 10 synthetic brains with known
ground-truth transformations. The registration pipeline was applied to the 10
brain dataset (see fig. 2), using three levels of scale: σ of 30, 10, and 5mm; and
3 levels of randomly sampled subset fibers: 25, 50, and 75 fibers. These param-
eters were set empirically as a compromise between fast optimization and good
convergence. Errors in the resulting parameters were measured by comparison
to the ground truth applied transforms. The mean absolute errors and their
standard deviations in each component were: 1.33± 1.49, 1.50± 1.20, 2.06± 2.06
degrees rotation; 0.62 ± 0.456, 0.74 ± 0.548, 2.07 ± 0.770 mm translation; and
0.015± 0.014, 0.006± 0.007, 0.017± 0.015 scale factor magnitude. The method
cannot recover any mean transformation that may have been applied (e.g. if all
input brains were rotated together by 30 degrees that could not be detected)
so any mean transformations were removed from the ground truth transforms
before calculation of the errors. The experiment ran for 48.8 minutes, spending
the following amount of time at each level of scale: 6.6 minutes at 30mm, 18.1
minutes at 10mm, and 24 minutes at 5mm. (The computing environment was
a 2x2.26 GHz Quad-Core Mac with 16GB of memory. Note that reported run
times could be improved by coding in C rather than python, and/or increasing
use of multiprocessing, however this initial implementation is a proof of concept.)
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Input Synthetic Data σ = 30 σ= 10 σ= 5

Fig. 2. Results of multi-scale registration of randomly transformed synthetic brain
(n=10) dataset (inferior view). Each subject is shown in a different color. The output
brains are shown after each registration scale (σ), demonstrating successful coarse-
to-fine registration. The output brains appear slightly “rotated” relative to standard
AC-PC orientation due to some mean component of the initial random transforms.

Input Data N=26 controls σ = 30 σ= 5

Fig. 3. Results in N=26 healthy subject dataset demonstrate successful coarse-to-fine
registration (inferior and left views shown). Each subject is shown in a different color.

Experiment 3: Multi-Subject Dataset. The proposed registration method
was applied to the full (N=26) healthy control multi-subject dataset (see fig.
3). The registration pipeline used 200 randomly sampled fibers of length greater
than 60mm per subject, three levels of scale: σ of 30, 10, and 5mm; and 4 levels
of numbers of randomly sampled subset fibers: 25, 50, 75, and 100 fibers. The
method spent 48 minutes at the 30mm scale, 188 minutes at the 10mm scale, and
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235 minutes at the 5mm scale. The results demonstrate successful alignment of
the brains, as can be appreciated visually in fig. 3, where the output trajectories
look locally similar and parallel, and the subject colors are generally mixed
locally (i.e. trajectories from many subjects are neighboring).

4 Discussion and Conclusion

We have proposed a probabilistic atlas model for tractography that enables the
computation of the entropy of a collection of fibers, and we have shown that
registration by minimizing this entropy can successfully align the white matter
in multiple subjects. Advantages of our objective function include its smoothness
and the fact that any fiber outliers will have little effect. Optimization of the
proposed objective, because it is based on tractography data, has the potential
to enhance downstream tractography modeling and statistical analysis results.
Future work will include code optimization, incorporation of higher-order defor-
mations, and comparison of the method to other fiber- and image-based regis-
tration methods. To our knowledge, this work represents the first method for
groupwise registration of whole-brain diffusion tractography data.
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Abstract. We propose a method for deformable registration based on
learning the manifolds of individual brain regions. Recent publications
on registration of medical images advocate the use of manifold learning
in order to confine the search space to anatomically plausible deforma-
tions. Existing methods construct manifolds based on a single metric over
the entire image domain thus frequently miss regional brain variations.
We address this issue by first learning manifolds for specific regions and
then computing region-specific deformations from these manifolds. We
then determine deformations for the entire image domain by learning the
global manifold in such a way that it preserves the region-specific defor-
mations. We evaluate the accuracy of our method by applying it to the
LPBA40 dataset and measuring the overlap of the deformed segmenta-
tions. The result shows significant improvement in registration accuracy
on cortex regions compared to other state of the art methods.

Keywords: Manifold Learning, Image Registration, Brain MRI.

1 Introduction

The analysis of deformation from non-rigid registration has become an impor-
tant component in brain image applications such as morphometric analysis [1]
and atlas-based segmentation [6]. To improve registration accuracy and thus the
subsequent analysis, recent publications on registration [3,5,7,11] first learn the
manifold capturing the neighborhood relationship of a set of images before reg-
istering individual scans. Registration then consists of determining the geodesic
path between the image pairs and decomposing the deformation into a series of
small deformations along that path. Since each subject moves only towards its
nearby subject, the resulting deformations can be more accurate.

However, the state-of-the-art in this domain faces several challenges. First,
the accuracy of the manifold in capturing the neighborhood relationship of the
underlying data structure highly depends on the metric used for measuring dif-
ferences between images. Current methods typically use a single metric over the
entire image domain. For example, ABSORB [7] measures intensity difference
of the images and GRAM [11] computes the distance based on pairwise defor-
mations between whole brain anatomies. However, two images might be very
similar in certain image regions but very different in other regions. A single
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global metric generally will blur those differences and thus not accurately cap-
ture the neighborhood relations of localized brain regions. A second challenge
relates to the sample size used for training the manifolds. Since manifolds are
constructed directly from image samples, training based on a limited number of
the image samples is likely to result in a poor approximation of the true data
structure. This concern is especially relevant to medical image domain, where
studies are usually limited to a few hundred samples. We address these issues
by developing a deformable registration method based on regional manifolds.

Our method constructs the manifold over the entire image region in two steps.
First, it separately learns the manifolds for individual brain regions and uses
these manifolds to compute region-specific deformations. The construction of
these regional manifolds is now based on metrics that are much more sensitive
to local variations within that region than a single global metric. In addition, the
anatomical variation within a specific region is smaller compared to one captures
in the entire image domain so that our method can faithfully learn regional man-
ifolds with a relatively small number of samples. In the second step, our method
learns the manifold over the entire image domain so that moving along geodesics
of that manifold does not interfere with the deformations inferred from the re-
gional manifolds. Specifically, we use a Markov Random Field model to produce
smooth deformation maps across the entire image domain while preserving the
region-specific deformations. In other words, our approach determines the opti-
mal geodesic path over the entire image region by gradually warping localized
brain regions according to the regional manifolds.

We demonstrate the advantage of our method by performing atlas-based seg-
mentation on LPBA40 dataset. The results show significant improvement in
registration accuracy on cortex regions in terms of overlap score compared to
other state-of-the art registration methods.

2 Regional Manifold Learning Based Registration

We now describe our Regional Manifold Learning based Registration (RMLR)
as illustrated in Fig.1. RMLR first defines a set of regions of interests (ROIs) in
training images. Then, RMLR independently learns the manifolds for individual
regions and finds the region-specific deformations constrained by the regional
manifolds. Next, RMLR learns the manifold for the whole brain image based
on regional manifolds. Finally, RMLR determines the deformation in the entire
image domain based on the global manifold while preserving region-specific de-
formations. We outline each step in more detail in the remainder of this section.

Defining the ROIs. To define the ROIs, we first set the ROIs in the template
image IT . Specifically, we separate the entire image domain Ω into R image
regions {Ωr : r = 1, . . . , R} so that the union of all regions is a subset of Ω
(i.e. ∪r=R

r=1 Ω
r ⊂ Ω) and each region does not overlap with another region, (i.e.

for ∀r,�s 	= r : {Ωr ∩ Ωs 	= ∅}). We then automatically find the corresponding
regions in training images {Ii : i = 1, . . . , N} using a non-rigid registration [10].
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Fig. 1. Illustration of the proposed method: It first defines ROIs and then learns the
manifolds for each ROI. Next, the global manifold is constructed based on these regional
manifolds. Then, the localized brain regions will be warped to their nearest neighbors
based on the regional manifolds (red and green), however adjacent regions will deform
in mutually compatible ways maintaining the smoothness of the overall deformation
based on the global manifold (blue).

Computing the Regional Manifolds. For each Ωr, we learn the regional
manifolds as in GRAM [5], which was originally proposed for learning the mani-
fold of an entire image domain. In order to reduce the risk of boundary artifacts
during registration, we compute the manifold for a larger image block Br ⊃ Ωr.
Let φBr (Ii, Ij) be the diffeomorphic deformation which maps the image block in
Ii to the corresponding block in Ij . Then, the distance dBr (Ii, Ij) between blocks
is defined as the weighted sum of intensity difference and field smoothness [3,5]:

dBr(Ii, Ij) :=
∑
u∈Br

||Ii ◦ φBr (Ii, Ij)(u)− Ij(u)||22 + λr|| � φBr (Ii, Ij)(u)||22, (1)

where λr is a weighting parameter between intensity difference and field smooth-
ness term, and || · || is the L2 norm. To reduce the computational burden in com-
puting the distances for all pairs of blocks, we use the symmetric diffeomorphic
registration [10] and compute dBr (Ii, Ij) only for i < j. Also, we empirically set
λr so that two terms have the same maximum value over all pairs of images.

Based on these pairwise distances, we construct k-NN graph for each region
whose nodes correspond to the image blocks. Heuristically, we set the smallest
value that makes the k-NN graph connected as k. From the k-NN graph, we
find the shortest paths from the block in the template IT to all other image
blocks. Then, the shortest paths from one root node to the rest form a span-
ning tree with respect to Br. We consider this spanning treeMΩr as the regional
manifold for Ωr that represents the neighborhood relations in the specific region.

Registering the ROIs. After computing the regional manifold, we construct
the region-specific deformation based on this regional manifold. Between two
image blocks in Ii and Ij , we choose the shortest path [i, p1, . . . , pl, j] within

the graph MΩr and define φ̂Br (Ii, Ij) := φBr (Ii, Ip1) ◦ · · · ◦ φBr (Ipl
, Ij) by con-

catenating the corresponding deformations between neighbor blocks along that
path. φ̂Br (Ii, Ij) is diffeomorphic because composition operator preserves this

property. The region-specific deformation φ̂Ωr (Ii, Ij) is simply the φ̂Br (Ii, Ij)
restricted to the region Ωr. This process is performed on all R regions indepen-
dently, producing region-specific deformation fields.
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Computing the Global Manifold. Given registration results in the ROIs,
we compute the manifold for the entire image domain Ω. Similar to regional
manifold computation, we measure the distance based on pairwise deformations
φΩ(Ii, Ij) between Ii and Ij . To preserve pre-computed region-specific deforma-
tions while maintaining the smoothness of overall deformation, it is desirable
to compute the globally diffeomorphic deformation in such a way that it keeps
the region-specific deformations. Toward this, we determine φΩ(Ii, Ij) using an
MRF based registration method [4]. A typical MRF model optimizes the follow-
ing energy function:

E :=
∑
s∈V

θs(xs) +
∑

(s,t)∈E
θst(xs, xt), (2)

where V is a set of nodes on the image, E is a set of edges between neighbor nodes,
and xs is the label of node s ∈ V . Each label xs corresponds to a displacement
vector v(xs) by which s moves to a new position. The unary term θs(xs) repre-
sents the data cost of assigning label xs at node s in terms of image dissimilarity.
The smoothness term θst(xs, xt) penalizes the cost of label discrepancy between
two neighboring nodes s and t, i.e. θst(xs, xt) := γst ·min{||v(xs)−v(xt)||1, Tst},
with γst being a regularization constant and Tst being a threshold for truncation.
In order to preserve the region-specific deformations, we define a modified unary
term θ̂s(xs) as following:

θ̂s(xs) :=

{
L(1− δ(xs − x̂s)) for s ∈ ∪r=R

r=1 Ω
r

1−NCC(xs) for s ∈ Ω \ ∪r=R
r=1 Ω

r,
(3)

where L is very large, x̂s is the pre-defined label from region-specific deforma-
tions, δ(·) is a delta function, and NCC is a normalized cross correlation. We
optimize this energy model via tree re-weighted message passing method [8] with
γst = 3 and Tst = 20. In order to guarantee the diffeomorphism, we constrain
the displacement at each node not to exceed 40% of the spacing between two
adjacent nodes [2]. The MRF-based registration for each pair of subjects gives
us φΩ which is diffeomorphic and preserves the region-specific deformations.

Based on these MRF registrations, we construct the k-NN graph whose nodes
represent the images. From this graph, we find a spanning tree from one root
node to all images and consider this spanning tree MΩ as the global manifold.

Registering the Whole Brain Images. We now find the global deformation

φ̂Ω(Ii, Ij) between Ii and Ij constrained by the global manifold MΩ. We denote

[i, G1, . . . , Gm, j] as the shortest path between Ii and Ij in MΩ. Then, φ̂Ω(Ii, Ij)

is defined as φ̂Ω(Ii, Ij) := φΩ(Ii, IG1) ◦ · · · ◦ φΩ(IGm , Ij), where φΩ is the MRF

propagated deformation from the previous step. We now show that φ̂Ω(Ii, Ij)

preserves the region-specific deformation φ̂Ωr (Ii, Ij) in Ω
r.

We prove the claim by contradiction. First, in Ωr, the deformation φΩ between
neighbor nodes on MΩ is defined by φ̂Ωr (according to MΩr) because our MRF
registration preserves the region-specific deformation. Then, the deformation for
any path on MΩr with the same start and end node [b, . . . , b] is the identity as
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MΩr is loop-free and φ̂Ωr is symmetric. Thus, the deformation of path passing
through a node twice, such as [a, . . . , b, . . . , b, . . . , c], is equivalent to the defor-
mation defined by the path [a, . . . , b, . . . , c] without that loop. Now, suppose that

there is an image pair with φ̂Ωr (Ii, Ij) 	= φ̂Ω(Ii, Ij) onΩ
r. Let [i, p1, . . . , pl, j] and

[i, G1, . . . , Gm, j] be the shortest paths in MΩr and MΩ, respectively. Then, we
define [i, G′

1, . . . , G
′
n, j] as the corresponding equivalent path of [i, G1, . . . , Gm, j]

inMΩr by first replacing two neighboring nodes [Gq, Gq+1] with the correspond-
ing path in MΩr and then removing all loops according to the previous observa-
tion. We note that a node in either path [i, p1, . . . , pl, j] or [i, G

′
1, . . . , G

′
n, j] can

only appear once in that path. If now φ̂Ωr (Ii, Ij) 	= φ̂Ω(Ii, Ij) on Ωr, then two
paths have to differ in at least one position k, i.e. pk 	= G′

k. This implies that the
loop-free graph structureMΩr has a loop as there are two unique loop-free paths
between node i and j. As this contradicts our assumption ofMΩr , it follows that
φ̂Ω(Ii, Ij) always has to be equivalent to φ̂Ωr (Ii, Ij) on Ω

r.

3 Experiments on LPBA40 Dataset

We measure the accuracy of our RMLR method by applying it to the LPBA40
dataset [9]. The dataset consists of 40 linearly aligned brain images each with 54
manually labeled segmentations. From those 40 scans, we empirically choose one
scan as a template. We then determine the registration accuracy by aligning all
other subjects to the template and measuring the overlap between the aligned
and template segmentations. For comparison, we measure the accuracy of direct
diffeomorphic Demons [10] which aligns the images without any manifold learn-
ing. In addition, we compare our RMLR method with whole brain GRAM [5]
which learns the manifold based on a single metric over the entire image domain.
For all three methods, we used the same registration parameters with three levels
of resolution and the smoothing kernel size of 1.5. The remainder of this section
discusses the experimental results in further detail.

Choosing Regions. The proposed method is independent of the choices of
ROIs. In this paper, we try out the two schemes shown in Fig.2. First, we define
regions simply as cubes over the entire image domain as shown in Fig.2(a). The

(a) cubic regions (b) structure regions

Fig. 2. The mid-axial slice of the template image with (a) cubic regions and (b) struc-
ture regions. Red boundaries indicate ROIs.



136 D.H. Ye et al.

(a) region-specific deformation (b) whole brain deformation

Fig. 3. y-displacement in a coronal view for (a) region-specific and (b) whole brain
deformations from RMLR. Black boundaries represent the ROIs. Notice that whole
brain deformation is globally smooth while preserving region-specific deformations.

151×188×136 image is divided into 36 cubic regions whose sizes are 37×32×32.
In order to separate cubic regions, we empirically set a gap of 20-voxels between
regions. The second scheme uses the segmentation of template image IT to define
regions according to anatomical brain structures. As illustrated in Fig.2(b), we
specify 10 regions including frontal lobe, parietal lobe, occipital lobe, temporal
lobe, and sub-cortical regions of left and right hemispheres. Each structure re-
gion is refined through erosion to guarantee the non-overlap between regions.

Comparing Regional and Global Deformations. First,wevisually compare
the region-specific deformation with the whole brain deformation from our RMLR
method. Fig.3(a) shows an example of region-specific deformations based on re-
gionalmanifolds.Weonly display y-displacement vector field in amid-coronal slice.
Black boundaries represent structure ROIs including frontal lobe, temporal lobe
and subcortical regions. Initially, there is only zero-displacement vector field out-
side the ROIs. Fig.3(b) illustrates the whole brain deformation based on the global
manifold which is constructed from regional manifolds. Note that the whole brain
deformation is globally smooth and preserves the region-specific deformation from
the Fig.3(a). This supports our claim thatMRF registration produces the globally
smooth deformation and the region-specific deformation can be preserved during
the MRF registration and composition along the path on the global manifold.

Comparing the RMLR and GRAM. Next, we compare the regional mani-
folds from RMLR with the manifold produced by GRAM based on a single metric
over a whole brain image. To do so, we visualize the shortest paths for the left
hippocampus and right angular gyrus in Fig.4(a) and Fig.4(b), respectively. Up-
per row represents the GRAM manifold and lower row represents the regional
manifolds from RMLR. First, we note that the paths are the same for both re-
gions according to the GRAM manifold (upper) but not so for RMLR (lower).
This indicates that the anatomical variation for one region is generally different
from that of another region and the manifold based on a single global metric
may not capture this local variation with limited samples. Furthermore, regional
manifolds reflect more gradual changes in both regions in terms of hippocampus
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(a) left hippocampus (b) right angular gyrus

Fig. 4. Shortest path for (a) left hippocampus and (b) right angular gyrus. The upper
row is the path by GRAM and the lower row is the path by regional manifolds. The
numbers on top is the subject ID. Notice gradual decreases in hippocampus size and
sulcal depth in the paths of regional manifolds compared with those from GRAM.

size and gyrus appearance compared to the path from GRAM manifold. This
also confirms that regional manifold can better capture the anatomical variation
in the specific region with a small number of samples.

Measuring DICE Scores. To measure registration accuracy, we compute the
DICE score between manual segmentation and atlas-based segmentation from
all registration methods. The average DICE score over all 54 labels on the orig-
inal dataset is 57.4% and the score after direct diffeomorphic Demons is 72%.
Whole brain GRAM slightly improves the score to 73.1%. RMLR increases the
score to 75.1% with the cubic and to 75.2% with the structural region setting.
This shows that our RMLR achieves improvement in average DICE score over all
labels and that this improvement is somewhat independent towards the region
selection schemes. For further comparison, we display in Fig 5 the 25, 50 and 75
percentiles of the DICE scores for the four different registration methods with
respect to selected structures. RMLR produces scores with higher median and
lower variation than GRAM or Demons. In particular, RMLR achieves statisti-
cally significant improvement in cortex regions (p < 0.05). If we use the scores
of Demons as an indicator regarding the degree of difficulty in registering the

Fig. 5. Structure-specific DICE scores. Upper and lower bar represent 75 and 25 per-
centiles of DICE scores, respectively. Midpoint indicates the median.
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regions then the regional manifolds provides the biggest improvements in dif-
ficult regions, such as angular gyrus, and only slightly impacted the results in
easy regions, such as the temporal gyrus and subcortical regions. In summary,
these results agree with our initial intuition that manifolds based on a single
metric over the entire image domain are not as accurate in capturing local brain
variations than ones that are based on regional manifolds.

4 Conclusion

In this paper, we proposed a deformable registration based on learning the man-
ifolds of individual brain regions. Our method first learns the manifolds for spe-
cific regions and then computes region-specific deformations from these mani-
folds. We then determine deformations for the entire image domain by learning
the global manifold while preserving the region-specific deformations via a MRF
model. Experimental results on the LPBA40 dataset show that the proposed
method can significantly improve registration accuracy compared to direct pair-
wise or whole brain manifold learning based registration methods. In a future
work, we will investigate an adaptive way of our method for overlapping ROIs.
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Abstract. Fiducial-based registration is often utilized in image guided surgery 
because of its simplicity and speed. The assessment of target registration error 
when using this technique, however, is difficult. Although the distribution of 
the target registration error can be estimated given the fiducial configuration 
and an estimation of the fiducial localization error, the target registration error 
for a specific registration is uncorrelated with the fiducial registration error. 
Fiducial registration error is thus an unreliable predictor of the target 
registration error for a particular case. In this work, we present a new method to 
estimate the quality of a fiducial-based registration and show that our measure 
is correlated to the target registration error and that it can be used to reduce 
registration error caused by fiducial localization error. This has direct 
implication on the attainable accuracy of fiducial-based registration methods. 

Keywords: Image registration, registration circuits, rigid registration, fiducial 
registration, image guided surgery, registration error. 

1 Introduction 

Fiducial-based registration is an important technique in Image Guided Surgery (IGS). 
It is often utilized to align image information to the surgical space in an operating 
room. In this context, fiducial markers are attached to the patient and an image is 
acquired. The physical location of the fiducial markers in the operating room is 
obtained as well as the location of the markers in the image and the two point sets 
(fiducial configurations) are registered to each other. Error in identifying the correct 
location of the individual fiducials, called Fiducial Localization Error (FLE) [1] may 
occur which causes error in the registration between the image and surgical space. An 
analytical solution for the distribution of errors in fiducial registration has been 
proposed [1, 2, 3], but this solution does not permit the assessment of the target 
registration error in a particular case. Fiducial Registration Error (FRE) is often used 
as a surrogate for the Target Registration Error (TRE) that is the quantity of clinical 
interest [4]. Unfortunately, it has been shown [5] that TRE and FRE are uncorrelated. 
FRE is thus an unreliable predictor of registration accuracy. 

In this work, we propose a method to estimate the quality of a registration that 
correlates with TRE and therefore produces a value that correlates with the true 
registration accuracy at a target location. The next section describes our technique, 
which we call AQUIRC for Assessing Quality Using Image Registration Circuits. In 
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the results section, simulation results we have produced to demonstrate the correlation 
between our measure and TRE are presented and future work and applications are 
discussed. 

2 General Algorithm 

This algorithm was first proposed in [6] for global atlas selection and was utilized to 
estimate the quality of intensity-based rigid image registration in [7]. Briefly, 
AQUIRC builds on the idea of registration circuits which was proposed as a 
consistency measure by Woods et al. [8] and Holden et al. [9]. Here, a registration 
circuit involves three fiducial configurations A, B, and C and three transformations 
TAB, TBC, and TCA. The configurations' coordinates differ by the assumed localization 
error of the individual fiducials. As discussed by Fitzpatrick [10], using only one 

registration circuit can lead to an 
underestimation of registration 
error because the error made 
along one edge in the circuit may 
correct error introduced from a 
separate edge in the circuit.  

In this work, we expand upon 
the idea of a registration circuit to 
multiple circuits. We start with a 
set of fiducial configurations and 
compute pair-wise registrations 
between all elements in the set, 
creating a complete graph as 
shown in Figure 1. The complete 
graph of registrations is similar to 
what is done by Christensen [11]. 
In [11], however, the set consisted 
of medical images and the 

complete graph was used as an overall measure of quality for a registration algorithm, 
rather than as a method to determine the quality of individual registrations as we have 
done here. If our initial set contains N fiducial configurations (i.e., the same set of 
fiducial markers but with the position perturbed by the assumed fiducial localization 
error) the graph contains N  edges. With each edge in this graph, we associate an 
initially unknown measure of registration quality called ε that we wish to solve for. There 
are N  unique registration circuits that can be formed from a complete graph (we have 
used registration circuits of size 3; the circuit size can be increased to form more 
registration circuits but this was not explored here). 

Next, we define a measure of registration error that can be computed across a circuit. 
Here, to compute this error, we select a target point or set of points in A, say X. We then 
compute the transformed point(s) X′ as X′  TAB TBC TCA X . We note the important 
fact that the order in which transformations are composed is critical and that this order 
differs from the originally proposed registration circuit in [8, 9]. The quality of  
 

Fig. 1. Example complete graph with one circuit shown
in red arrows 
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registrations across circuit A, B, C, is then defined as EC  X, X′ . The 
value, EC, is affected by the error of three registrations, i.e., the registration error between 
A and B, the registration error between B and C, and the registration error between C and 
A. With only one circuit the contribution of each component cannot be computed. It can, 
however, be estimated with more than one circuit. To achieve this we make the 
assumption that each registration affects the quality measure multiplicatively, i.e., εABC= 
εA*εB*εC or, log(εABC) = log(εA)+log(εB)+log(εC). An additive model may also be 
applicable but was not tested in this work. Computing this expression for all possible 
circuits and rearranging them in matrix form, we obtain 1 1 1 0 . . . 01 0 1 1 . . . 01 1 0 1 . . . 00 1 1 1 . . . 0.                      .                      .                           

log εlog εlog ε...log ε N
  

log Elog Elog E...log E N
                             1  

in which EC  is defined as the X, X′  value around circuit i. This 

expression can be rewritten as P log ε log E . As a result of the multiplicative 
assumption, log ε  can be solved for using a linear least squares solution log ε PTP PTlog E                                          2   

and finally solving for ε ε  e                                                              3   

We are currently working on a proof of conditions on the registration circuits for 
when P is full rank and therefore PTP  is invertible. Experimentally P has been 

observed to be full rank when N 5. We define P to be all unique circuits in the 
graph of size 3.  

There are multiple ways to define the circuits that are utilized to create the  
matrix. In this work, we utilize the set of unique circuits of size 3 in the graph. For 
example, for the three nodes A, B, and C in Figure 1, we consider only one circuit 
e.g., TAB(TBC TCA .  

2.1 AQUIRC Applied to Fiducial-Based Registration 

For this work, we utilize the fiducial registration method that minimizes the FRE 
between two sets of points. This fiducial registration method is standard and uses 
singular-value decomposition as proposed by Arun et al [12]. We also define the 
function X, X′  to be the TRE(X, X') where TRE(X, X') is defined as 
the Euclidean distance between X and X' because, as explained below, our set X  
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contains a single element. In this particular study, we define two spaces: the image 
space and the surgical space, to mimic the situation of a typical point-based 
registration problem where pre-operative images need to be registered to the patient in 
the operating room. We define X as the target point and we select that point in image 
space. As discussed below, we introduce a known transformation between image and 
surgical space that can be large and we perturb the position of the fiducials in image 
space.  

3 Experiments and Results 

To test our algorithm we repeat an experiment that was performed by Fitzpatrick 
which showed analytically and experimentally that FRE and TRE are uncorrelated 
[5]. Using the same experiment we show that our quality measure is correlated to the 
TRE. 

3.1 Experiments 

In Experiment 1 in [5], Fitzpatrick simulates an actual Deep Brain Stimulation case 
with 4 fiducials and a target location in the deep brain. The location of the four 
fiducials , , , and  as well as the target position  are: 

  197217115 ,     109225121 ,     83139127 ,     202132130 ,     14415557  

 
Following the same simulation model as in [5], we first apply a rotation R and 
translation t to the location of the fiducials , , , and  as well as to the target 
position , which results in the corresponding positions , , , , and . We 
consider the fiducials , , , and  and  to be in the image space while the 
rotated and translated fiducials , , , , and  are considered to be in the 
surgical space. Again, as in [5], we set the rotation R to be 10, 20, and -30 degrees 
about the x, y, and z axes and we set the translation t to be (7, -10, 100) mm (which 
was chosen as an arbitrary mis-registration in [5]). 

We then perturb the location of the fiducials in image space using a fiducial 
localization error drawn from a random distribution with zero mean and variance of 
FLE/3, where FLE is set to 1mm. This is done N-1 times to create a set of N-1 
perturbed fiducial configurations (as seen in the left of Figure 2). We then compute all 
pair-wise fiducial registrations between each of the N-1 fiducial configurations in the 
image space as well as between these and the unperturbed rotated fiducial 
configuration in the surgical space, creating the complete graph of registrations 
necessary to run our algorithm which we use to calculate the ε value for each of the 
registrations. There are three quantities of importance in this work: TRE, FRE, and ε. 
These three values are calculated for the registrations between the fiducial 
configurations in the image space and the fiducial configuration in the surgical space, 
which results in N-1 values for TRE, FRE, and ε (this is represented as the red links in 
Figure 2). FRE is defined as the root mean square distance between the fiducial points 
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in image space and the points transformed from image space to surgical space using 
the computed transformations. For each run, we thus produce N-1 FRE values. 
Similarly, TRE is defined as the Euclidean distance between the target position in 
surgical space and the position of the target transformed from image space to surgical 
space. We repeat this process in a Monte Carlo simulation; creating thousands of 
image space fiducial configurations with randomized FLEs. 

In the first experiment we utilize an N of size 30 over 1000 simulations. We 
calculate the correlation between the TRE values and ε values and the FRE and ε 
values. In the second experiment we test the effect N has on our results by varying the 
size of N from 5 to 25 using 5000 simulations for each value of N. Again, we 
calculate the correlation between TRE and the ε values for each value of N. Finally, in 
the third experiment, we test the ability of our algorithm to improve the TRE in a 
fiducial-based registration scenario. To do this we use an N of 30 over 1000 
simulations. For each simulation we consider the registration between the 29 image 
space fiducials and the surgical space fiducial and for all 29 registrations calculate the 
mean TRE, the min TRE, the max TRE, the TRE of the fiducial configuration that 
AQUIRC identifies as being of the highest quality, and the TRE of the fiducial 
configuration with the minimum FRE. 

 

 

Fig. 2. Diagram of the experiment methodology. The image space contains N-1 fiducial 
configurations that are created by adding FLE to the original fiducial locations. The surgical space 
contains the rotated and translated fiducials. Each set of fiducial configurations are registered to 
every other configuration, both in image space and in surgical space. The red links represent the 
registrations for which we calculate the TRE, FRE and ε values. 

3.2 Results 

The results of experiment 1 are shown in Figures 3. In the left of Figure 3 we show a 
scatter plot of the FRE and TRE values (the points in both scatter plots were reduced 
to a random sampling of 1000 data points for better visualization). As can be seen, we 
produce a correlation that is very similar to the one found in [5], with an r = -0.0012, 
which is not statistically significant (p = 0.8351). In the right of Figure 3 we show the 
correlation between our algorithm's ε value and TRE. In this case there is a 
statistically significant correlation of r = 0.6086 and a p < 0.001. The results of 
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experiment 2 are shown in Figure 4. By increasing the number of fiducial 
configurations that we utilize in the image space we can increase the correlation 
between TRE and ε, producing better estimations of the quality of error in fiducial 
registrations. The results of experiment 3 are shown in Figure 5; it shows the practical 
utility of our algorithm. If, for every simulation, we choose the configuration with the 
lowest ε value, the TRE is reduced by a statistically significant 0.1347 mm when 
compared to the mean TRE value and is reduced by a statistically significant 0.1367 
when compared to the TRE of the fiducial configuration with the minimum FRE. The 
figure also shows the mean and standard deviation of the TRE values when the 
configurations with the max and min TRE values are selected at every run.  

 
Fig. 3. Left: Scatter plot of the TRE and FRE values. Right: Scatter plot of the TRE and ε 
values. 

 

Fig. 4. Correlation between TRE and ε as a function of the number of fiducial configurations 
utilized in the surgical space. 
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Fig. 5. Bar graph of the mean value and standard deviation of the TRE value across 1000 
simulations. For each simulation we calculate the mean TRE of all 30 fiducial configurations, 
the min TRE of all 30 fiducial configurations, the max TRE of all 30 fiducial configurations, 
the TRE of the fiducial configuration that AQUIRC identifies as being of the highest quality, 
and TRE of the fiducial configuration with the minimum FRE. 

4 Discussions/Future Work 

In this work we have introduced a method that produces a measure of registration 
quality that is correlated to the target registration error. We are unaware of any other 
published work that describes a technique that is able to do so. We have shown that 
the number of fiducial configurations that are utilized in the complete graph of 
registrations affects the quality of our algorithm's estimation and the correlation 
between our measure and TRE increases as the number of configuration increases. 
Most importantly for practical applications, we also show that by choosing the 
configuration that our algorithm identifies as producing the best registration, we can 
reduce the average TRE.  

To use our algorithm in practice, all that is needed is to acquire the location of the 
fiducial markers in the image space as well as in surgical space. The location of the 
markers in image space can then be randomly perturbed by an FLE that is 
representative of the error that naturally occurs when attempting to identify the 
coordinates of the markers (alternatively, the position of the markers in surgical space 
could be perturbed). These sets of markers can then be registered together to form a 
complete graph of registrations and AQUIRC is applied. The ε value of the 
unperturbed configuration, i.e., the position of the fiducials selected by the end user, 
can then be compared to the distribution of ε values produced by our algorithm. If the 
unperturbed ε value is large compared to the perturbed ε values, the end user could be 
warned of a potential registration problem. 
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In the future, we will investigate various types of models that could better represent 
the combination of error that occurs when combining multiple transformations than 
the multiplicative model we have used in this work. We will also explore further the 
distribution of ε values and attempt to define statistical tests that would permit to 
quantify the quality of a particular registration.  

As discussed earlier, the order in which transformations are composed when 
computing the registration error across a circuit is important. In fact, if  X′ is 
computed as X ′  TAB TBC TCA X , we have not observed a correlation between 
the TRE and ε values. The theoretical reasons for this observation have not yet been 
elucidated and are under investigation.  If successful, this algorithm would provide 
end users with quantitative measures of accuracy for a particular registration. This 
would represent a major advance in the field of fiducial-based registration. 
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Abstract. We present a fast and robust supervised algorithm for label-
ing anatomical airway trees, based on geodesic distances in a geometric
tree-space. Possible branch label configurations for a given tree are eval-
uated based on distances to a training set of labeled trees. In tree-space,
the tree topology and geometry change continuously, giving a natural
way to automatically handle anatomical differences and noise. The algo-
rithm is made efficient using a hierarchical approach, in which labels are
assigned from the top down. We only use features of the airway centerline
tree, which are relatively unaffected by pathology.

A thorough leave-one-patient-out evaluation of the algorithm is made
on 40 segmented airway trees from 20 subjects labeled by 2 medical
experts. We evaluate accuracy, reproducibility and robustness in pa-
tients with Chronic Obstructive Pulmonary Disease (COPD). Perfor-
mance is statistically similar to the inter- and intra-expert agreement,
and we found no significant correlation between COPD stage and labeling
accuracy.

Keywords: airway tree labeling, geodesic matching.

1 Introduction

Computed Tomography (CT) is an important tool in the analysis of diseases
affecting the airways. Using image segmentation methods, three-dimensional
models of the airway surfaces can be constructed, and their dimensions mea-
sured. Such measurements are, however, dependent on the location in which
they are made [4], so solving the problem of finding anatomically corresponding
positions in different airway trees is crucial to robustly compare measurements
across patients. It can be solved by assigning anatomical names to the airway
tree branches. This is nontrivial, since the topology of the anatomical airway
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Fig. 1. Left: The method takes only the airway centerline tree as input. Middle-right:
Airway trees are frequently topologically different, while geometric differences are small.

tree changes from person to person1, and the segmented trees have differences
introduced by noise, including missing and spurious branches.

Several types of airway branch labeling algorithms have appeared previously.
Van Ginneken et al. [11] and Lo et al. [5] use machine learning on branch fea-
tures, with additional assumptions on airway tree topology. Among the features
used are branch length, radius, orientation, cross-sectional shape and bifurcation
angle. Branch length and radius are sensitive to the presence of structural noise
or diseases like cystic fibrosis, tuberculosis or Chronic Obstructive Pulmonary
Disease (COPD), and assumptions on tree topology make these methods vul-
nerable to topological differences. Tschirren et al. use association graphs [10] for
pairs of airway trees, which incorporate information from both trees, such that
maximal cliques in the association graph induce branch matchings between the
original graphs. This is a combinatorial construction, although it can depend on
the geometric properties of the initial trees. Such a separation of geometric and
combinatorial properties can be problematic, as airway trees are often geomet-
rically and visually similar despite being combinatorially different, as in Fig. 1.
Feragen et al. [2] label airways based on geodesics (shortest paths) in a space of
trees. Their tree-space is highly non-linear and has no known efficient algorithm
for geodesic computation, making labeling of a complete airway tree infeasible.

We present a novel supervised method for automatic airway branch label-
ing, based on shortest paths in a space of geometric trees [1]. This tree-space
is less general than that of Feragen et al. [2], but allows geodesics to be com-
puted in polynomial time [6]. Possible label configurations on an unlabeled tree
are evaluated based on distances to all trees in a training set of labeled trees. In
tree-space, both topology and geometric branch attributes are allowed to change
continuously, and we can thus compare trees with different topology and branch
geometry. The only feature used is the airway centerline tree, see Fig. 1. The
method does not depend directly on the branches identified by the segmentation,
but rather on a subtree spanning the labeled branches, defined in Fig. 2, where
branches may be concatenations of branches from the originally segmented tree.
As a consequence, the method is less sensitive to structural noise such as false
or missing branches than methods that work only on the originally segmented

1 Tree topology describes how tree branches are connected. The tree topologies in our
data are plotted in http://image.diku.dk/aasa/miccai_supplemental.tar.gz

http://image.diku.dk/aasa/miccai_supplemental.tar.gz
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Fig. 2. Left: Given a configuration of leaf labels on an airway centerline tree, extract
the subtree spanning the leaf labels and prune off the rest, giving the subtree spanning
the labels, a geometric leaf-labeled tree which can be compared to the training data.
Right: After assigning a set of labels, each label is moved to the branch in the segmented
airway tree closest to the root which is not part of the subtree spanning the other labels.

branches. The method is implemented in a hierarchical fashion, making it suffi-
ciently fast to be of practical use. A thorough leave-one-patient-out evaluation
of the algorithm is made on a set of 40 segmented airway trees from 20 sub-
jects different stages of COPD (healthy-severe), labeled by 2 medical experts.
We evaluate accuracy, reproducibility and robustness to disease stages.

2 Anatomical Branch Labeling

Airway branch labels correspond to the division of the lung into compartments:
LMB and RMB lead to the left and right lungs; LUL, RUL, L4+5, R4+5, LLB,
RLL lead to the lobes; and R1-R10, L1-L10 lead to (up to) 10 segments in each
lung. In addition, intermediate branch names appear in the literature, whose
presence depends on the topology of the anatomical airway tree. However, if the
segment branch labels and the airway tree structure are known, the remaining
branch labels can be reconstructed trivially. For this reason, a leaf-labeled airway
tree (where the leaf labels are segment labels) is equivalent to a labeled airway
tree. Thus we focus on evaluating the assignment of segment labels in this paper.

Methodology. Each airway tree was normalized by person height as an isotropic
scaling parameter. Each branch was represented by 6 landmark points sampled
equidistantly along the centerline, translated so that the first landmark point was
placed at the origin. Thus, each branch e is represented by a vector xe ∈ R15.

For an arbitrary unlabeled airway tree T , we attach a set of 20 leaf labels cor-
responding to the 20 segmental bronchi, named X = {L1, ..., L10, R1, ..., R10}.
Our training set consists of n airway trees which have been labeled by two experts
in pulmonary medicine. We extract the subtree spanning the labels, as defined in
Fig. 2, and obtain 2n leaf-labeled trees T = {T 1

1 , . . . , T
1
n , T

2
1 , . . . , T

2
n}.

Given an unlabeled airway tree T , we proceed as follows. Denote the set of
branches in T by E. A labeling of T is a map L : X → E. We only consider
labelings where the leaf labels are all attached to leaves in the subtree spanning
the labels, i.e., we do not consider labelings where two leaf labels are attached
to branches on the same path to the root. Given such a labeling L, extract the
subtree TL of T spanning the labels. For each labeled tree T̃ in our training set
and each TL, we compute the shortest-path distance d(T̃ , TL) between the trees
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Fig. 3. Hierarchical labeling: In each step, search through 2 or 3 generations of branches
(as indicated in the figure) to find an optimal alignment of a set of labels, obtaining a
leaf-labeled subtree of the segmented airway tree similar to the trees shown in black.
The real tree topology may differ; the figure only illustrates the stepwise hierarchy.

T̃ and TL in the tree-space defined below. We find a labeling of T by choosing
the labeled tree Tlabeled among the TL that satisfies:

Tlabeled = argmin
TL

∑
T̃∈T

d(T̃ , TL). (1)

Ideally, we would search through the whole airway tree T , test all admissible con-
figurations TL of the 20 segment leaf labels and select the one that optimizes (1).
However, for an airway tree with 100 branches, the search space size is on the
order of 10020, which is too large to handle. In order to ensure computational
feasibility, we choose a hierarchical subtree approach, where labels of different
generation are added subsequently, see Fig. 3. In the first step, 2 generations
below the trachea are searched for the optimal configurations of the RMB, LMB
labels. In the second step, 2 and 2 generations below the RMB and LMB, resp.,
are searched for the optimal configurations of {RUL, BronchInt, L6, LLB, LUL}.
In the third step, 2, 2, 2 and 3 generations below RUL, BronchInt, LLB, and
LUL are searched for the optimal configurations of {R1-R5, L1-L3, L4+5 L7-
L10}. In the final step, 3 and 2 generations below RLL, R4+5 are searched for
optimal configurations of {R4, R5, R7-R10}.

In particular, we treat more shallow branches as leaves in the first steps of
the algorithm, and work our way down to the segments. In each step of the
hierarchical label placement, we pick the optimal branches for the given set of
labels and backtrace each label through the path to the root, see Fig. 2.

Tree-Space. The tree-space used in this paper is a straight-forward generaliza-
tion of the tree-space from [1], generalizing single-dimensional shape vectors on
the branches to multi-dimensional ones. Any two trees are joined by a shortest
path through this space, whose length defines a distance (a metric) on tree-space.

Each point in tree-space is a leaf-labeled tree, with the leaves labeled by some
fixed set X . Each edge in a leaf-labeled tree can be represented by a partition of
X into the leaves descending from the edge, and the remaining leaves (including
the root), see Fig. 4. Then a tree will uniquely correspond, as follows, to a vector
in (R15)S , where S is the number of possible partitions ofX . Each consecutive set
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Fig. 4. Left: Tree edges are defined by partitions on the leaf label set. Right: The
number of correctly assigned branch labels per segmented airway versus COPD stage.

of 15 coordinates corresponds to a possible partition of X . If the edge associated
with that partition appears in the tree, then those 15 coordinates will be its
branch vector, and otherwise they are all 0. Certain edges can never appear in
a tree together (e.g., an edge that splits {R1, R2} off from the rest of the tree
and an edge that splits {R1, R3} off), so not all vectors are possible. Tree-space
is precisely those vectors in (Rk)S that correspond to trees. Thus, tree-space is
a subset of Euclidean space. The shortest-path distance between two trees is the
shortest path between them that remains fully within this restricted subspace,
with the length of the path being measured in the ambient Euclidean space using
the Euclidean metric. An analytic formula for this distance does not exist, but
it can be computed recursively in polynomial time. See [6] for details and code.2

3 Experimental Results

Data. We work with a set of 40 airway tree centerlines obtained from low-dose
(120 kV and 40 mAs) pulmonary CT scans from the Danish lung cancer screening
trial [7]. The images came from 20 subjects scanned at two different times,
with an average interval of 5 years. There were 5 asymptomatic subjects and 5
from each of 3 different patient groups with mild, moderate and severe COPD
according to the GOLD standard [9]. The images were segmented, centerlines
extracted and branching points detected all automatically as described in [8].

The 40 airway trees were manually labeled by two experts in pulmonary
medicine, who assigned segment labels L1 - L10 and R1 - R10 to the airway
trees; the remaining labels in Fig. 3 were deduced from these. This was done
using in-house developed software, simultaneously showing the segmented air-
way and centerline, which can be rotated, panned and zoomed, as well as a CT
cross-section perpendicular to and centered on any given point of the airway.

2 Code:
http://vm1.cas.unc.edu/stat-or/webspace/miscellaneous/provan/treespace/

http://vm1.cas.unc.edu/stat-or/webspace/miscellaneous/provan/treespace/
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Table 1. Labeling results. Agreement with two experts measures % of agreement of the
automatic labeling with the experts’ labeling in the cases where the experts agree. Aver-
age intra-expert agreement and Automatic reproducibility measure the reproducibility
of the experts’ and automatic labelings, respectively, on pairs of scans of the same
patient. The automatic method does not always assign all labels; this happens when
the search subtree does not have sufficiently many leaves. Plots of airway trees with
attached labels as well as tables with the complete branch labeling can be found at
http://image.diku.dk/aasa/miccai_supplemental.tar.gz .
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R1 84.62 69.23 76.92 80.00 92.50 80.00 81.25 39

R2 82.05 74.36 78.21 75.00 95.00 85.00 90.00 39

R3 84.62 79.49 82.05 85.00 95.00 85.00 85.29 39

R4 92.50 80.00 86.25 87.50 82.50 90.00 91.43 40

R5 92.50 82.50 87.50 87.50 82.50 90.00 94.29 40

R6 100.00 92.50 96.25 97.50 85.00 95.00 94.87 40

R7 60.53 92.11 76.32 60.00 82.50 85.00 91.67 38

R8 39.47 84.21 61.84 45.00 60.00 65.00 77.78 38

R9 52.63 68.42 60.53 52.50 57.50 60.00 76.19 38

R10 50.00 60.53 55.26 52.50 55.00 65.00 66.67 38

L1 85.00 72.50 78.75 67.50 57.50 75.00 96.30 40

L2 85.00 75.00 80.00 75.00 57.50 75.00 93.33 40

L3 82.50 80.00 81.25 70.00 70.00 70.00 96.43 40

L4 65.00 65.00 65.00 95.00 92.50 55.00 68.42 40

L5 65.00 65.00 65.00 95.00 95.00 60.00 68.42 40

L6 100.00 100.00 100.00 100.00 100.00 95.00 100.00 40

L7 50.00 65.00 57.50 42.50 47.50 80.00 76.47 40

L8 50.00 62.50 56.25 47.50 50.00 80.00 73.68 40

L9 55.00 50.00 52.50 50.00 50.00 65.00 70.00 40

L10 55.00 60.00 57.50 55.00 45.00 65.00 77.27 40

Trachea 100.00 100.00 100.00 100.00 100.00 100.00 100.00 40

LMB 100.00 100.00 100.00 100.00 100.00 100.00 100.00 40

LUL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 40

LB4+5 97.50 95.00 96.25 97.50 97.50 95.00 97.44 40

LLB 100.00 100.00 100.00 100.00 100.00 100.00 100.00 40

RMB 100.00 100.00 100.00 100.00 100.00 100.00 100.00 40

RUL 90.00 90.00 90.00 90.00 85.00 90.00 100.00 40

BronchInt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 40

RLL 92.50 95.00 93.75 97.50 97.50 90.00 94.87 40

Avg segment 71.57 73.92 72.74 71.00 72.63 76.00 83.49 39.5

Avg total 79.70 81.32 80.51 79.48 80.43 82.59 88.35 39.6

http://image.diku.dk/aasa/miccai_supplemental.tar.gz
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Labeling Results. The labeling was implemented in MATLAB, using tree
distance computations implemented in Java. For airway trees with 150 branches
on average, the whole labeling takes, roughly, 5 minutes per tree running on a
single 2.40 GHz processor on a laptop with 8 GB RAM.

The labeling was tested in a leave-one-patient-out fashion. Thus for each air-
way, the training set was made up of 38 airway trees from other patients, with
each tree labeled separately by the two medical experts, giving a total of 76
training airway trees. The results of the labeling are shown in table 1, along
with a comparison of the two expert labelings.

In order to test reproducibility of the expert and automatic labels, the two
CT scans of each subject were registered using the image registration method
described in [3], and the labeled airway trees were compared in a common co-
ordinate system. Expert 1, Expert 2 and the automatic algorithm reproduced
14.0, 15.1 and 15.2 labels per subject on average. The automatic algorithm was
not significantly different from the average expert (p = 0.51 in a paired t-test).

On average, the automatic labeling agreement with an expert is 72.8% on
the segment branches, which is not significantly different from the average inter-
expert agreement of 71.0% (p = 0.75 in a paired t-test). Fig. 4 shows labeling
performance stratified by COPD stage. Spearman’s correlation test shows no
significant correlation between the average agreement with an expert and the
severity of COPD (ρ = −0.22, p = 0.18).

4 Discussion and Conclusion

Higher percentages are reported in the literature: 97.1%, 90%, 83% on all branch
labels in [10, high dose CT], [11], [5]; 77% on segment labels [5]. These methods
use fewer than 20 segment labels and/or more intermediate (easier) labels, and
reject uncertain labels using a threshold. On average, only 71%, 93% and 83%
of the given label set [10], [11], [5] and at most 77% of the given segment label
set [5] are assigned, whereas we almost always assign all 20 segment labels. The
97.1% success rate [10] is among branches that have been labeled identically
by three experts. Taking unassigned labels into account in [5, 11, 10], these do
not appear to perform better, and do not test reproducibility. We, on the other
hand, perform just as well and reproducibly as a medical expert on our dataset.

Our evaluation, which is thorough compared to previous work, gives detailed
insight into the difficulties of the labeling problem. It is noteworthy that the
experts and the automatic method perform well in different parts of the airway
tree. In particular, the automatic method is far more reproducible in parts of the
airway tree where the experts have difficulties, e.g., the lower left lobe (L7-L10).

The fact that the method as presented always assigns all segment labels if
possible, makes it sensitive to missing branches and increases our false positive
rate on difficult branches. This could be tackled by introducing label probabil-
ities based on the geodesic airway tree distances, and thus assigning fewer labels.
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The hierarchical scheme of Fig. 3 may cause difficulties with rare topologies. This
could be handled by a more refined hierarchical labeling scheme, particularly one
informed by an analysis of where the experts performed better. The labeling is
sensitive to mistakes made above the segment level. This could be improved by
label probabilities; however, the algorithm rarely makes such mistakes.

We present a new supervised method for anatomical branch labeling of airway
trees, based on geodesic distances between airway trees in tree-space. Using the
distances, the algorithm evaluates how well a suggested branch labeling fits with
a training set of labeled airway trees, and chooses the optimal labeling. The
labeling performance is robust in patients with COPD, and is comparable to
that of two experts in pulmonary medicine. As it only uses branch centerlines
and tree topology, we expect it to generalize to other datasets. Its reproducibility
and robustness in patients with COPD makes it highly suitable for clinical use.
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Abstract. Groupwise non-rigid registration is an important technique in medical
image analysis. Recent studies show that its accuracy can be greatly improved by
explicitly providing good initialisation. This is achieved by seeking a sparse cor-
respondence using a parts+geometry model. In this paper we show that a single
parts+geometry model is unlikely to establish consistent sparse correspondence
for complex objects, and that better initialisation can be achieved using a set
of models. We describe how to combine the strengths of multiple models, and
demonstrate that the method gives state-of-the-art performance on three datasets,
with the most significant improvement on the most challenging.

1 Introduction

Finding consistent correspondences across sets of images is a challenging problem,
with applications in many areas, particularly in constructing statistical models of shape
or appearance [1,2]. A promising solution is groupwise non-rigid image registration
[3,4,5], where the correspondence is usually determined by minimising some objective
function. A common choice of initialisation for groupwise registration is affine transfor-
mation. However, our recent studies have shown that it is insufficient when registering
images of large local shape variations and repeating structures [6,7]. Hence, more so-
phisticated approaches to initialisation have been developed [8,9,6,7].

Although implementation varies, these algorithms share the same idea, that is, delib-
erately finding a sparse set of corresponding points and using them to initialise group-
wise registration. In [9], it was shown that a small set of manually selected parts can
be used to build a parts+geometry model [10,11,12,13] capable of giving a good sparse
correspondence. Later in [6,7], such human intervention was shown to be unnecessary—
the set of “good” parts can be automatically obtained. Instead of using parts+geometry
models, Langs et al. [8] explored using a Point Distribution Model [1] in a weakly su-
pervised fashion. The model is iteratively estimated so as to minimise the description
length of the feature points across the images, leading to the optimal correspondence.

A problem with the above methods is that they all attempt to use a single model to
achieve the good sparse correspondence. Due to the limited amount of sample images
and the imperfection of the algorithm, it is unlikely for a single model to capture every
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(a) Model A (b) Consistent matches (c) Failures

(d) Model B (e) Failures (f) Consistent matches

Fig. 1. Left column: two parts+geometry models. Right four columns: matches of the models.
Top row: model A finds consistent matches on two images but fails on the other two. Bottom
row: model B gives consistent matches on those where model A fails, but fails where model A
works well. Failures are indicated by cyan ellipses.

possible variation of the object, particularly those of complex structures. As a result,
the learned model may fail on some of the images. See Fig. 1 for an example.

Figure 1 also suggests that it is always possible to learn a model that can deal well
with a subset of images. Different models that work well with different subsets are
likely to complement each other. By combining the best result from each model, we
may achieve better initialisation than just using a single model.

In this paper we explore using multiple parts+geometry models to initialise group-
wise non-rigid registration—a multi-model initialisation scheme. We use our previous
approach [6] to generate a population of reasonably good models. We then apply the
algorithm described below to these models to obtain the desired correspondence.

2 Initialisation with Multiple Parts+Geometry Models

Let the term pattern refer to the sparse set of points found on an image by a particular
model, which thus defines the correspondence for that image to a reference frame for
that model. When using multiple models we obtain multiple patterns on each image. As
shown in Fig. 1, some patterns are apparently better than the others. By replacing those
poor patterns with good ones, we can modify and improve the correspondence defined
by the single model.
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Parts+geometry
models

Images

Sparse cor-
respondence

Sparse cor-
respondence

Dense cor-
respondence

Dense cor-
respondence

A common mean image

Search

Generate sparse points

Generate dense points Generate dense points

Warp Warp

Fig. 2. An overview of the multi-model initialisation strategy

An overview of the multi-model initialisation scheme is given in Fig. 2. Given a
set of parts+geometry models, we use each in turn to search the image set to obtain a
sparse correspondence, where a dense correspondence can be generated using a thin-
plate spline (TPS) interpolation. Poor patterns will lead to poor dense points (indicated
by the red box in Fig. 2). The quality of the pattern can be evaluated by warping the
target image to a mean image using the dense points, and comparing the similarity
between the warped image and the mean. To choose the best pattern for an image,
we use each of the associated sets of dense points to warp the image to the mean and
compute the similarity. A new correspondence can thus be established by grouping the
sets of dense points related to the best patterns across the images. We give the details of
each step below.
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2.1 Dense Points

To easily compare the quality of different patterns for an image, we transfer the corre-
spondence information encoded in each pattern to a common set of points. A simple
method is to generate a dense set of points on a reference image and propagate the
points to the other images using a TPS. We use X = (x1, y1, x2, y2, . . . , xn, yn)

T to
denote the positions of the dense points.

2.2 Quality of the Pattern

An observation from groupwise registration is that if the correspondence across the im-
age set is well established, we should be able to obtain a crisp mean image. Furthermore,
if a pattern is good, its related image should be similar to the mean when comparing the
two in the same frame, and vice versa. Hence, we can use a mean image to evaluate the
quality of a pattern.

Suppose we have a set of images {Ik|k = 1, . . . , NI} and NG parts+geometry mod-
els. We use {Xl

k|l = 1, . . . , NG} to denote the sets of dense points associated with
image Ik . Let Ī be the mean image and X be the dense points in the mean (see below).
Given an image Ik and one of its dense point sets Xl

k, a warp from Ī to Ik is uniquely
defined by X and Xl

k. We write this warp as z′ = W (z : X;Xl
k), where z is a point in

Ī and z′ is the corresponding point in Ik. To evaluate the quality of the pattern related
to Xl

k, we warp Ik onto Ī so as to compare them in a same frame, and use the following
function

Dl
k =

∑
z∈R

∣∣Ik(W (z : X;Xl
k))− Ī(z)

∣∣ , (1)

where R is a region of interest in the mean frame. This function computes the absolute
intensity difference over the region of interest between the warped image Ik(W (z :
X;Xl

k)) and the mean. Note that all the images have been preprocessed to standardise
their intensity ranges.

2.3 Mean Image

Given {Xl
k|k = 1, . . . , NI}, we can perform the following steps to compute the mean

image Ī l and its associated dense points Xl:

(1) Align each Xl
k to a reference frame1 using Procrustes Analysis [1]. Averaging the

aligned dense sets of points leads to Xl;
(2) Create a triangulation of Xl using the Delaunay algorithm;
(3) Warp each image Ik to the reference frame, computing Ik(W (z : Xl;Xl

k)),
2 z ∈

R;
(4) Compute the mean image using Ī l(z) = 1

NI

∑NI

k=1 Ik(W (z : Xl;Xl
k)), z ∈ R.

1 The choice of the reference frame is free. Any image in the set can be used for this purpose.
2 Ik(W (z : Xl;Xl

k)) is computed by piece-wise linear interpolation between corresponding
triangles in Xl and Xl

k. We use piece-wise linear interpolation for efficiency.
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A Common Mean. Different sets of points {Xl
k|k = 1, . . . , NI} will lead to a dif-

ferent mean image Ī l. Hence, the quality D computed using different means cannot be
compared directly. This can be solved by using a single, common mean. We take the
following steps to compute this common mean image:

(1) For l ← 1 to NG

(a) Compute the mean image Ī l using the sets of points {Xl
k|k = 1, . . . , NI};

(b) Warp every image to the mean Ī l, computing Dl
k using (1);

(c) Rank all images by Dl
k and select the top 50% of the images as the set Sl;

(2) Find a common set of images S =
⋂NG

l=1 Sl—selecting the images in all sets {Sl};
(3) For each image in S, average associated sets of dense points, X̂k = 1

NG

∑NG

l=1 X
l
k;

(4) Compute a mean image Ī using S and the sets of points {X̂k} (similar to what has
been described above). Take this as the common mean.

2.4 Pattern Selection

Once we have the common mean image, we can take the following steps to select the
best pattern for each image:

(1) For l ← 1 to NG

For k ← 1 to NI

Warp Ik to the common mean and compute Dl
k;

(2) For k ← 1 to NI

Select the best Xl̂
k from {Xl

k|l = 1, . . . , NG} such that Dl̂
k is minimum.

By grouping Xl̂
k across the image set we can obtain a new correspondence {Xl̂

k|k =
1, . . . , NI}. Although we can use it to directly initialise groupwise registration, in the
following experiment we use it to generate a sparse correspondence. This is more effi-
cient, and allows fairer comparison with the single-model scheme which only outputs
sparse sets of points.

To create the sparse correspondence we (1) generate a sparse set of points on an
image Ik using the best parts+geometry model (in terms of model utility, see [6] for
details); (2) project the sparse points onto the other images using the piece-wise affine
transformation between different Xl̂

k.

3 Experiments

We demonstrate the approach on three different datasets of increasing difficulty:

(1) 100 digital micrographs of female fly wings. Each image has a size of 1280×1022
pixels and is marked with 15 points by human expert (Fig. 3a);

(2) 100 radiographs of the hands of children (aged between 10-13), taken as part of
study into bone ageing. The image size varies across the set, with a height ranging
from 1000 to 1700 pixels. Each image has 37 manually labelled landmarks. The
resolution of this set of images is 0.2mm per pixel (Fig. 3b);
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(a) Fly wing (b) Hand (c) Spine

Fig. 3. Examples of the datasets and associated landmarks used in the experiment

(3) 100 radiographs of the lumber spine. The image height varies from 1500 to 1700
pixels. Each image has 337 manual landmarks placed around the outline of the
vertebrae. This set of images has a resolution of 0.17mm per pixel (Fig. 3c).

Examples of these three datasets and their manual landmarks are given in Fig. 3. In all
experiments the manual annotations are only used to evaluate the performance of the
method.

We compare the method with the two single-model initialisation strategies proposed
in [6] and [7]. Given a large number of candidate parts, one approach constructs many
different parts+geometry models of fixed number of parts, and uses a variant of Genetic
Algorithm (GA) to select the best model [6], while the other builds a number of models
of random configuration and adopts a voting strategy to achieve the same goal [7].
To generate the candidate parts, both approaches randomly select a reference image,
place an overlapping grid on the reference and build a part model for each patch in
the grid. In this way, we constructed over 1000, 2700 and 600 candidate parts for the
fly wings, hands and spines, respectively. For each set of candidate parts, we first ran
the voting based method to choose the optimal parts+geometry model and used it for
initialisation. The resulting model determines the number of parts to be used in the GA
based approach, from which we obtained a group of NG models. The very best one was
used to do the single-model initialisation as done in [6] and all of them were used for
multi-model initialisation. In all experiments we set NG = 10.

To evaluate the accuracy of the groupwise registration we compare with a manual
annotation. We used the same protocol with [6] to compute the registration error. Point-
to-point location error is reported for the fly wings and hands, and point-to-curve lo-
cation error is reported for the spines. Results are given in Table 1. We used Welch’s
(two-tailed) t-test to compare the multi-model strategy with each single-model one, re-
sulting in the p-values. The multi-model initialisation scheme performs similarly to the
single-model ones on the fly wings, and does much better on the hands and spines. The
power of multiple models can be clearly seen from the result on the spines, where the
improvement is the most significant compared with what has been achieved on the other
two datasets. This is not surprising as the spine dataset contains large shape variations
and fractured vertebrae, which are very challenging for a single model to handle.

To further demonstrate the performance of the multi-model scheme, we repeated the
above experiment with another 9 different reference images, thus totally 10 different
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Table 1. Point location errors of the dense correspondence

(a) Fly wings (pixels) (b) Hands (mm)

Method Parts Mean±s.e. Med. 90% p-value
GA 20 1.9±0.06 1.7 2.7 p < 0.01

Voting 20 1.3±0.05 1.2 1.8 p = 1
Multi 20 1.3±0.04 1.2 1.7 –

Method Parts Mean±s.e. Med. 90% p-value
GA 45 1.4±0.1 1.0 2.1 p < 0.01

Voting 45 1.3±0.09 1.0 2.2 p < 0.05
Multi 45 1.1±0.04 1.0 1.8 –

(c) Spines (mm)

Method Parts Mean±s.e. Med. 90% p-value
GA 21 3.9±0.5 2.6 4.7 p < 0.01

Voting 21 3.6±0.4 2.3 6.5 p < 0.01
Multi 21 2.1±0.2 1.6 3.1 –

Table 2. The influence of choice of reference images on the single-model and multi-model ini-
tialisation strategies

(a) Fly wings (pixels) (b) Hands (mm)
Method ĉ MAD cmin s.d.

GA 1.8 0.3 1.3 0.5
Voting 1.2 0.09 1.1 0.2
Multi 1.4 0.1 1.2 0.4

Method ĉ MAD cmin s.d.
GA 0.9 0.07 0.8 0.5

Voting 0.9 0.06 0.8 0.6
Multi 0.9 0.04 0.9 0.3

(c) Spines (mm)
Method ĉ MAD cmin s.d.

GA 2.5 0.6 1.8 6.0
Voting 5.0 2.5 2.3 4.0
Multi 1.8 0.4 1.6 2.0

sets of experiments. This is to show the effects of different choice of the reference im-
age. We computed the median ĉ of the 10 medians ci and the mean absolute difference
MAD =

∑10
i=1 |ĉ − ci|/10 for each method on each dataset. We compared ĉ with the

best median cmin of the 10 cases and MAD with the corresponding standard deviation.
We summarise the results in Table 2. We find that the choice of reference images only
has a small effect on the results of the multi-model initialisation strategy for all three
datasets. Although a similar pattern can be observed for both single-model initialisa-
tion methods on the fly wings and hands, the performance of the two methods varies
more on the spines. For example, the performance of the voting based method varies
dramatically from one reference image to another.

4 Discussion and Conclusions

We have described a method that can effectively initialise groupwise non-rigid regis-
tration. This is achieved by using multiple parts+geometry models. Experiments show
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that our algorithm is able to achieve state-of-the-art results, significantly outperforming
earlier approaches that only use a single model. We also compared this multi-model
initialisation strategy with the single-model one in terms of the influence of reference
images. We find that the multi-model scheme is the least sensitive to the choice of ref-
erence images, suggesting that a robust system can be expected.

Current work indiscriminately uses the top models output by the GA based method
[6]. If some models result in too many poor matches, the performance of the multi-
model scheme will be inevitably degraded. Moreover, if different models share too
many common parts, redundancy will arise. This will dilute the advantage of using
multiple models to do initialisation, since different models may fail on the same images
so that there is no chance to rectify those failures. In the future we will explore how
to effectively choose a good set of parts+geometry models. The approach has a natural
extension to 3D, which we intend to investigate.
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Abstract. In this paper a novel groupwise registration algorithm is pro-
posed for the unbiased registration of a large number of densely sampled
point clouds. The method fits an evolving mean shape to each of the
example point clouds thereby minimizing the total deformation. The
registration algorithm alternates between a computationally expensive,
but parallelizable, deformation step of the mean shape to each example
shape and a very inexpensive step updating the mean shape.

The algorithm is evaluated by comparing it to a state of the art regis-
tration algorithm [5]. Bone surfaces of wrists, segmented from CT data
with a voxel size of 0.3×0.3×0.3mm3, serve as an example test set. The
negligible bias and registration error of about 0.12 mm for the proposed
algorithm are similar to those in [5]. However, current point cloud reg-
istration algorithms usually have computational and memory costs that
increase quadratically with the number of point clouds, whereas the pro-
posed algorithm has linearly increasing costs, allowing the registration
of a much larger number of shapes: 48 versus 8, on the hardware used.

1 Introduction

Groupwise registration is a recurring problem in many medical applications.
Two prominent applications are atlas building and the construction of statis-
tical shape models (SSM). Such registrations should be unbiased in the sense
that the outcome must not depend on the selection of a target or on the order
in which the samples are processed. Furthermore, it is often desirable to reg-
ister a large number of samples, such that the atlas or SSM generalizes well.
However, depending on chosen similarity criteria and allowable transformations
the groupwise registration problem may become intractable, both in terms of
computational expense as well as memory requirements.

Group-wise registration algorithms are available both for voxel-based regis-
trations, e.g. [3] as for point cloud registrations, e.g. [2]. The most important
methodological difference between voxel-based and point cloud registrations is
in the correspondence measure, e.g. intensity based vs. distance based. In [6]
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it is proposed to approximate the point clouds with Gaussian kernels and to
(densely) sample the space with clouds on a grid, effectively transforming the
point cloud registration problem into an intensity registration problem. However,
using the L2 divergence and Gaussian kernels to estimate the density function
such a sampling can be avoided and the divergence can be computed efficiently
in closed form [5]. Unfortunately, the computational and memory costs of the
solution proposed in [5] grow quadratically with the number of registered shapes.

In this work we propose a solution to the groupwise point cloud registration
problem that has a computational complexity that increases linearly with the
number of point clouds to be registered. In this algorithm (I) the computational
and memory costs grow linearly with the number of clouds, and (II) the algo-
rithm is trivially parallellizable. This allows the unbiased registration of a very
large number of point clouds on regular hardware and permits GRID computing.
The registration problem is solved by independently evolving copies of a mean
cloud that has minimal deformation with respect to each of the point clouds.
This solution differs from common approaches where all example point clouds
are deformed to the evolving mean [3,6,5] and has the advantage that an implicit
point correspondence is present between all registered shapes, without the need
for an image grid as in [3,6] This implicit correspondence allows the computa-
tionally inexpensive mean shape update. Both the accuracy and efficiency of the
proposed method are compared to a state-of-the-art method [5] by applying the
registration to three sets of 48 wrist bones (See Figure 3).

2 Methods

The registration algorithm that is proposed in this paper establishes correspon-
dence between N point clouds Ci, i = 1, . . . , N and an evolving mean cloud M
with nm points. The numbers of points ni in all clouds Ci do not need to be the
same. For each cloud Ci, a deformed copy of M that approximates Ci is denoted
as Mi. The algorithm to evolve clouds M and Mi, i = 1, . . . , N consists of five
steps, outlined below. The first three steps are illustrated in Figure 1. After es-
timating an initial cloud M (step 1), the non-rigid registration in step 2 is the
computationally most expensive step. Due to the splitting up of the procedure
in a registration (step 2) and update of the mean shape (step 3), step 2 can be
performed separately for each cloud Ci and is therefore trivially parallelizable.

Step 1: Estimate an Initial Mean Cloud M . In this work an initial coarse
alignment of the point clouds Ci is assumed. Furthermore, the initial mean cloud
M is assumed to come from a surface with the same topology as the clouds Ci.
In this work the surfaces sampled by Ci are available and the initial estimate of
M is obtained by sampling the 0-level of the average signed distance transforms
of the surfaces.

Step 2: Register M to Each Cloud Ci. Following many recent registra-
tion methods, shapes, initially represented as point clouds, are modeled using a
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(a) Step 1 (b) Step 2 (c) Step 3

Fig. 1. Schematic representation of the registration algorithm. Step 1: (a) Three point
clouds C1,2,3 (solid contours) and initial estimate of mean shape M (dashed contours).
Step 2: (b) Copies M1,2,3 of M have been registered to C1,2,3. For one point corre-
spondences are denoted by arrows. Step 3: (c) New estimate of shape M , with minimal
deformation with respect to clouds M1,2,3.

mixture of Gaussians. In this work, all Gaussian kernels are isotropic and have
the same size, determined by parameter σ. The density Di of each cloud at
coordinates x is therefore described by

Di (x) =
1

ni (2π)
d/2

σd

ni∑
j=1

exp
(
− (x− pij)

T
(x− pij)�2σ2

)
(1)

where ni is the number of points in cloud Ci, d is the spatial dimensionality of
the cloud points and pij are the coordinates of a point indexed by j in cloud Ci.

As in [5] the L2 divergence is used as a distance measure between two density
functions. For two clouds Mi and Ci with density functions Dm and Dc, this
measure is defined as

fL2 (Mi, Ci) =

ˆ
Rd

(
D2

m − 2DmDc +D2
c

)
dx (2)

where Rd is the spatial domain in which the point-clouds reside. The L2 diver-
gence is a member of the family of Density Power Divergences [5], which also
contains the well-known Kullback-Leibler (KL) divergence. The L2 divergence
is symmetric and (2) can be evaluated in closed form for Gaussian density func-
tions, using the identity:

ˆ
Rd

G (x|μ1, Σ1)G (x|μ2, Σ2) dx = G (0|μ1 − μ2, Σ1 +Σ2) (3)

where G (x|μ1, Σ1) and G (x|μ2, Σ2) are (multivariate) Gaussian density func-
tions with means μ1 and μ2 and covariance matrices Σ1 and Σ2, respectively.

In this work the similarity between Mi and Ci is maximized through the
minimization of (2). To this end M is transformed (into Mi) with a thin-plate-
spline (TPS) transform [1] with nφ control points pφ

l , l = 1, . . . , nφ. For cloud Ci
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the optimally deformed mean cloud is given by Mi = ΦΘi +M where Φ is the
nm × nφ matrix that contains the radial basis functions of the TPS transform
and Θi is the nφ × d matrix that contains the transformation coefficients. The
transformation is regularized with the costs for the deformation of Mi

fstress (Θi,M) = tr
(
ΘT

i Φ
TΦΘi

)
(4)

where tr stands for the matrix trace. This regularization prevents large deforma-
tions from M and thereby preserves shape similarity and meaningful point-point
correspondence between the clouds Mi. fstress is a function of M because matrix
Φ is a function of M . For all clouds combined, the function to be optimized is
defined as the sum

F (Θ1, . . . , ΘN ,M) =

N∑
i=1

[fL2 (Mi, Ci) + λfstress (Θi,M)] ≡ FL2 + λFstress (5)

where λ is a regularization weight and fL2 (Mi, Ci) is a function of M and Θi,
because Mi is a function of M and Θi. This function can be minimized directly
using iterative methods, such as a quasi-Newton optimization. However, this is
a costly optimization, due to the large number of parameters (nφ · d · N) and
the necessary update of matrix Φ as a function of M . However, by keeping M
constant, the cost functions within the sum have no shared optimization variables
and can be minimized separately. This the key novelty of our work and of crucial
importance to subsequence parallelization.

To account for misalignments, fL2 will also include rigid transformations for
all clouds Ci. Because the clouds Mi do not deform (only move) with respect to
M and fstress can be kept as in (4).

Step 3: Update the Current Estimate of M by Computing the Mean
of Mi. Keeping M constant during the minimization of (5) prohibits finding
the global minimum of (5). Therefore M needs to be updated separately. With
Mi constant, M only affects the term that describes the total deformation costs
Fstress =

∑N
i=1 tr

(
ΘT

i Φ
TΦΘi

)
. From ΦΘi = Mi −M follows that

Fstress =
N∑
i=1

tr
(
(Mi −M)T (Mi −M)

)
=

N∑
i=1

nm∑
j=1

∥∥pmi

j − pm
j

∥∥2
where pmi

j and pm
j are the points with index j in cloud Mi and M , respectively.

Therefore, Fstress is minimal when pm
j is the mean of pmi

j , i = 1, . . . , N , thus
the optimal estimate of the mean shape is given by M ← 1

N

∑N
i=1Mi. This inex-

pensive step takes care of the coupling of the clouds. Note that this simple mean
computation is only possible because of the implicit correspondence between
all deformed mean shapes, which is particular for the proposed algorithm.Θi is
updated using a linear least-squares estimate.

Step 4: Test for Convergence. If converged, continue, otherwise go to step 2.
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Step 5: Transform Ci to the Mean Cloud Using the Correspondence
between Mi and M . One should note that minimizing F

(
Θ̃1, . . . , Θ̃N ,M

)
as in (5) results in sets of corresponding points Mi. However, the much denser
clouds Ci have not deformed and, thus, are not registered to M (See Figure
1c). To do so, all point clouds Ci are rigidly transformed using ri and ti and
deformed towards M by computing the inverse TPS transforms Ci = ΦC

i Θi+ Ĉi

where the matrix with TPS basis functions ΦC
i and the deformed point cloud

Ĉi have to be estimated for a given set of transformation parameters Θi. This
can be done using an iterative procedure. For an accurate registration, all clouds
Ĉi represent a surface of the same shape. These registered surfaces can then be
used for a dense correspondence estimate between the clouds Ci.

3 Experiments

The experiments in this section evaluate both the accuracy and the precision
of the proposed registration algorithm and compare these to the registration
method in [5]. The chosen application is the registration of wrist bones to estab-
lish a dense correspondence of points on the bone surfaces of different individuals.
Specifically, the focus is on the scaphoid, lunate and hamate bones (See Figure
3). The 3 × 48 bone surfaces are represented as triangulated surfaces with ver-
tices Vi at a sampling density of approximately 0.14 vertices/mm2 (voxel size
0.3× 0.3× 0.3 mm3), typically yielding 1.8× 104 (SD 3.4× 103) points per bone
surface. The bones are coarsely aligned by ensuring the same scan orientations
and by translating the centers of gravity of each bone to the origin. Optimal
parameter settings (See Section 2) were experimentally determined for this data
as σ = 0.6 mm, nm = 1000, λ = 10−6 and nφ = 600. Each bone is represented
by a point cloud Ci with a subset of nm vertices of Vi.

In all experiments the registration accuracy Eacc and precision Eprec are eval-
uated on the transformed bone surfaces i.e. after the vertices Vi are deformed
towards M as in Step 5. This allows comparable results for different sample
densities. The resulting clouds are denoted as V̂i. Eacc is defined as the average
(over shapes) norm of the average (over points) signed point-to-plane distance
between all pairs of clouds V̂i and V̂j , evaluated on points that are not in Ci

(thus not used for the registration). Eprec is the average absolute point-to-plane
distance between all pairs of clouds V̂i and V̂j , again using points not in Ci. Eacc

reflects the presence of a bias, while Eprec reflects the remaining matching error.

3.1 Robustness to Initial Mean Cloud Estimate

The initial estimate of M has a strong influence on Fstress during the first
iterations. The robustness of the algorithm was tested by using four different
initial estimates of M : (I) Points drawn randomly from the 0-level set of the
average signed distance transform (SDT) as in Section 2, Step 1. (II) Points
drawn randomly from all clouds to be registered (rand). (III) Points drawn
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Fig. 2. (a) Registration accuracy and precision for four initial estimates of the mean
shape M : (I) SDT (II) rand, (III) sph, (IV) one. For ‘sph’ and ‘one’ also the results
of a multiscale registration are shown (msph, mone). (b) Registration precision for the
proposed algorithm and (c) for the algorithm from [5] for increasing γ and N . (a-c)
The errorbars denote standard deviations.

randomly from a sphere with radius equal to the mean standard deviation of
the point cloud coordinates (sph). (IV) One of the point clouds (one). For each
of these initial point clouds a random selection of N = 3 three clouds were
registered, repeated with 10 drawings for each of the 3 bone types.

The registration accuracies Eacc and precisions Eprec in Figure 2a show that
initializing M by taking points from the SDT gives the most accurate results,
closely followed by a random selection of points from the non-registered point
clouds. With a sphere or a single shape the registration algorithm often converged
in local minima due to a lack of overlap between the kernels of M and the kernels
of C1, C2 and C3 for the current, small, choice of σ = 0.6 mm. A multiscale
approach where σ decreases from σ = 3 to σ = 0.6 mm solves this as depicted
by the last two results of Figure 2a.

3.2 Robustness to Initial Shape Alignment

When more shapes are present, rotated over a random angle, it is more likely
that a shape that has a rotation ‘in between’ improves the convergence of the
algorithm. Therefore N previously aligned shapes were rotated around randomly
distributed rotation axes, with angles randomly sampled from [−γ, γ], for differ-
ent values of N and γ. The initial M was obtained as in Section 2, step 1. The
clouds were registered using both the proposed algorithm and the algorithm in
[5]. The experiment was repeated 30 times for each combination of the following
settings: N ∈ {3, 6, 9} randomly selected shapes (10 selections for each of the
three bone types) and γ ∈ {20, 40, 60} degrees.
Eacc for the proposed method and the method from [5] were all in the order of

10−4 mm, except at γ = 60◦. Here Eacc was approximately 0.07 mm for N = 3
shapes. In the latter case, both algorithms converged in a local minimum with
large shape deformations. Eprec is shown in Figure 2b for the proposed method
and in Figure 2c for the method in [5]. For γ = 0◦, 20◦ both methods perform
equally well. For γ = 40◦, 60◦ the proposed method is more precise than the
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Fig. 3. Bone surfaces and intersections after registration of N = 48 (a) scaphoids, (b)
lunates and (c) hamates. The white lines on the surfaces show the locations of the
contours. (d) Average registration times (and standard deviations) in minutes for the
registration of N ∈ {6, 12, . . . , 48} shapes, for the proposed method parallel on three
cores and single-threaded and the method in [5] for nm = 1000 (top) and nm = 100
(bottom).

method of [5]. We hypothesize that the method of [5] is slightly more susceptible
to local minima, due to the larger number of concurrently optimized parameters.
Furthermore, an increase in N decreases the registration error for large angles
γ. This is mainly due to the denser sampling of poses between −γ and γ. For [5]
experiments with 9 shapes did not succeed due to a lack of computer memory.

3.3 Feasibility of Large Data Set Registration

To investigate the feasibility of registering large datasets, an increasing number
of randomly selected sets of bones were registered: N ∈ {6, 12, . . . , 48}. Regis-
trations were performed for each type of bone and for three different shape set
selections. Experiments were performed on a computer with an Intel Xeon pro-
cessor at 2.67GHz with 6.0 GB of RAM memory. The method was implemented
in MATLAB R2010b, from The Mathworks, Inc.

Example registration results are shown in Figure 3 for N = 48 bones. For the
scaphoid and lunate, all contours are aligned. For the hamate, however, small
misalignments can be observed on the left and right of the protrusion of the
bone (see arrows). This is due to the large shape variations of the protrusion,
combined with the TPS interpolation of the shape surfaces. For correspondence
estimates between the surfaces, however, these small misalignments do not form
a problem. For 12 shapes and more, the registration accuracy Eacc and precision
Eprec do not depend on the number of shapes and are Eacc ≈ 0.00 mm and
Eprec ≈ 0.12 mm, with negligible standard deviations.
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Figure 3d shows that the registration time increases linearly with an increasing
number of shapes, using the proposed method, while it increases approximately
quadratically using the method proposed in [5]. For nm = 1000, registering
more than 8 shapes, using the method of [5] was not possible, as the data did
not fit in the availabe RAM. Therefore also results for nm = 100 are shown.
The parallelization of the registration using three cores shortens the registration
time with approximately a factor 2.8, an efficient parallelization.

4 Discussion

In this paper, a method was presented for the non-rigid registration of a large
number of shapes, whose surfaces are represented by point clouds. Experiments
showed that the proposed algorithm indeed can register large numbers of point
clouds with high accuracy and precision with modest hardware demands. The
registration time increases linearly with the number of shapes N . Furthermore,
the registration accuracies and precisions are similar to the method of [5], which
itself was compared favorably to other state of the art methods, e.g. [6].

Although, as in [2] both algorithms evolve a mean cloud that is only mildy
constrained, the proposed method does not suffer from the instabilities in [2].
This is because the proposed method by definition does not need the assump-
tion that the ‘forward’ and ‘backward’ thin-plate spline transform are exactly
the same and because of an improved similarity measure. Interesting follow-up
research is if current based methods, e.g. [4] also allow group-wise registration
with a closed-form mean estimate as in step 3.

As shown in Figure 3, a much denser correspondence than the nm = 1000
points used for registration can easily be obtained from the registered surfaces.
Furthermore, taking the linear increase of registration times into account, com-
bined with the parallelization of the non-rigid registration step, one could register
almost 600 surfaces in a day. Note that such a dataset is not easily obtained.
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Abstract. In this paper we propose an auditory stimulation and Near Infra-Red 
Spectroscopy (NIRS) hemodynamic changes acquisition protocol for preterm 
neonates. This study is designed to assess the specific characteristics of 
neurovascular coupling to auditory stimuli in healthy and ill neonate brains. The 
method could lead to clinical application in Intra-Ventricular Hemorrhage 
(IVH) diagnosis along with other techniques such as EEG. We propose a 
realistic head model creation with all useful head structures and brain tissues 
including the neonate fontanel for more accurate results from NIRS signals 
modeling. We also design a 3D imaging tool for dynamic mapping and analysis 
of brain activation onto the cortex surface. Results show significant differences 
in oxy-hemoglobin between healthy neonates and subjects with IVH. 

Keywords: Head model design, 3D brain NIRS optical imaging, Hemodynamic 
response to audio stimuli, Neonate IVH diagnosis, Functional brain imaging. 

1 Introduction 

This paper introduces a Near Infra-Red Spectroscopy (NIRS) cerebral hemodynamic 
response optical monitoring method of the healthy and sick premature infant with Intra-
Ventricular Hemorrhage (IVH). Non-invasive investigation of the oxygenation of the 
infant’s brain is of high interest. The proposed method can be applied for early diagnosis 
of impairments in complement with other current brain imaging techniques such as 
ElectroEncephaloGraphy (EEG). Low arterial blood oxygenation and abnormal cerebral 
blood flow is believed to influence the function of the neonatal brain [1]. Preterm 
neonates are at high-risk of IVH because of their lack of ability to regulate cerebral blood 
flow and pressure [2]. Currently, brain injuries in infants are mainly diagnosed clinically 
by EEG (investigates neural function, but not vascular response) and cranial ultrasound 
(gives only anatomical information) [3]. Previous studies on cerebral hemodynamic 
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responses using NIRS on neonates have been done using various stimulations such as 
visual [4] and auditory [5]. Visual stimuli in adults using NIRS has also been proposed 
while investigating head modeling and image reconstruction [6]. Another study on 
cerebral blood flow estimated by NIRS in preterm neonates has correlated NIRS findings 
with cerebral ultrasound results [7]. Children with delays in language and speech 
development are at high risk for later disorders in reading, spelling, and writing; 
academic skills which are highly dependent on language abilities. Brain injuries have 
been found to be associated with language and speech outcomes among children born 
prematurely [8]. IVH are risk factors for adver-se neurodevelopment outcomes, including 
cognitive impairment and cerebral palsy. 

2 Material and Methods 

2.1 Subjects and NIRS Signals Acquisition Setup 

This study was carried out on two groups; the first one is composed of 12 healthy control 
subjects and the second one of 7 ill subjects with IVH of grade III-IV. All subjects of 
both groups are preterm neonates of gestational age from 28 to 32 weeks; tested during 
their sleep between 2 and 4 days after birth. Subjects were submitted to auditory stimuli 
which consist of two digitized syllables /ba/ and /ga/ as in a previous EEG study [9]. 
Three stimulations conditions were used: the standard one (ST: four /ba/ male); deviant 
voice (DV: three /ba/ male, one /ba/ female); and deviant phoneme (DP: three /ba/ male, 
one /ga/ male). The four syllables block duration is 4s and total stimulation (20s) is 
composed of five consecutive blocks. A newborn special NIRS probe showed in Fig. 1(a) 
was designed and consists of two patches containing two detectors and sixteen light 
sources in each of them (8 to λ=690nm; 8 to λ=830nm wavelengths). Twenty acquisition 
channels, ten per hemisphere, are measured in the configuration showed in Fig. 1(b). We 
used a multi-channel frequency domain based optical imaging system (Imagent, ISS Inc.) 
for the acquisition of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (Hb) 
changes during auditory stimuli. Values of HbO and Hb and their changes were obtained 
using the relation between absorption spectroscopic coefficients of the environment and 
chromophore concentrations according to the modified Beer-Lambert law [10] used in 
NIRS studies. 

 
 
 
 
 
 
 

 

Fig. 1. NIRS acquisition probe design. (a) NIRS sensors patches design and its application to one 
subject. (b) Schematic positions and numbering of NIRS sensors according to both hemispheres 
with 4 detectors (A...D, black), 16 emitters (1...16, red) and 20 channels (1...20, blue). 
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2.2 Neonate Realistic Head Model Creation 

We created a 30 weeks (average of all healthy and ill subjects) preterm neonate complete 
head model with all useful head and brain structures used for NIRS signals mapping onto 
the brain. The first of three steps was a straightforward extraction from choosing the 30 
weeks iteration of a previously created 4D (3D+t) preterm neonate MRI-based atlas [11]. 
This results in intracranial head model creation including cerebrospinal fluid, grey matter 
and white matter tissues. In the second step we created a full term neonate realistic head 
model from 15 subjects between 39 to 42 weeks of gestational age. MRI and CT-Scan of 
all subjects were acquired for clinical purposes and were found without any anatomical 
abnormalities after inspection. We used SPM toolbox (http://www.fil.ion.ucl.ac.uk/spm/) 
to perform co-registration of both imaging modalities, segmentation and space 
normalization of head and brain structures in order to build the atlas containing each 
structure probability mask. The fontanel was segmented from the CT-Scan using a 
variational level-set method [12]. The third step was achieved by registering the 
intracranial brain mask of the full term head model (created at step 2) to the intracranial 
brain mask of the preterm head model (created at step 1). The resulting transformation 
was then applied to the scalp, skull and fontanel of the full term model in order to fit 
these structures onto the preterm intracranial model; thus obtaining a complete preterm 
head model with all useful structures. Analysis of our full term neonate head model is 
resumed in Fig. 2 which shows the importance of considering the fontanel in neonate 
brain modeling; especially in temporal regions, of interest for this study, that are more 
widely covered by the fontanel. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2. Impact of fontanel in the head model. (a) to (d) Views of fontanel and other head and 
brain structures on one subject used in the head model creation. The brain is covered at 17% by 
the fontanel and 83% by the skull. (e) Procedure to create the full term head model (step two). 
(f) Proportion of the fontanel overlapping each brain lobes: this means 29% of the total fontanel 
surface overlaps both brain temporal lobes. (g) For each brain lobe, proportion of the 
overlapping fontanel compared to the total surface of the lobe: this means 26.3% of both 
temporal lobes surface is covered by the fontanel. Charts show average values for all subjects. 
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To create our full term neonate head model we segment brain tissues from the MRI 
using the expectation maximization method [13]. To overcome the large grey levels 
overlap between different tissues in neonate MRI, we incorporate contextual and 
spatial a priori information during tissue classification using a mixture of Gaussians 
where each cluster is modeled by its mean, variance and a mixing proportion.  

Skull and fontanel are segmented from CT-Scan. In neonates, the skull is composed of 
cranial bones and the fontanel. The cranial bones are obtained by applying automatic 
threshold to the image histogram and the fontanel can be identified as gaps between 
cranial bones of the skull. In order to extract the fontanel, a model-based variational 
level-set method is used to reconstruct the full skull; thus filling the fontanel gaps. Then 
the fontanel is obtained by removing cranial bones from the reconstructed full skull. Let 
φ be the level-set function for segmentation and φm be the signed distance function of the 
skull model. To reconstruct the full skull (including fontanel) the input image is 
segmented by minimizing the following functional: 
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where ECV is a level-set formulation of the functional as previously proposed in [14] 
with H(φ)=[1+(2/π)atan(φ/ε)]/2 being the heaviside function. Eshape is used as shape 
prior to guide the segmentation as detailed in [12]; thus providing a constraint during 
evolution of the level-set function which is attracted to the skull. 

Both MRI and CT atlases are created using the same method based on the 
intracranial brain mask (BM) segmentation of each subject in order to register all 
other brain tissues and head structures (ST) according to this procedure:  
 

1. Select a reference subject: BMR  
2. Compute each subject affine transformation: Ai = BMi→BMR 
3. Normalize (first-pass) each subject structures: STi' = Ai x STi  
4. Compute cosine basis functions deformation fields: Di = BMi'→BMR  
5. Normalize (second-pass) each subject structures: STi'' = Di x STi' 
6. Compute nonlinear transf. of ref. subj. to all affine norm. subj.: Ti = BMR→BMi'  
7. Compute the mean transformation: TM = mean(Ti) 
8. Compute spatially unbiased structures: STUi = TM x STi'' 
9. Compute each structure average from individuals: STUA = mean(STUi) 
10. Smooth STUA structures with a Gaussian kernel: 2mm full-width half-maximum 
 

To minimize the bias introduced by the chosen reference subject, this atlas creation 
process is repeated by replacing the initial reference intracranial target (BMR) with the 
first-pass intracranial model result. Finally the created MRI and CT atlases are fused 
together to create the multimodality neonatal atlas. The intracranial probabilistic 
model created from CT data is registered onto the MRI one. The obtained 
transformation parameters are applied to the CT atlas head structures in order to 
complete the MRI atlas brain tissues; thus obtaining our full term neonate head 
model. 
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2.3 Modeling and Imaging of NIRS Signals Propagation in Tissues 

At NIRS signals acquisition session, the position of each emitter and detector are 
digitized along with biomarkers reference positions. For each subject these 3D sensors 
positions are registered onto our average 30 weeks preterm neonate head model. Then the 
banana-shape photon path [15] through the head and brain tissues between each 
considered pair of emitter/detector are computed. Fig. 3(a) shows a schematic of the 
photon path between a pair of emitter/detector. Fig. 3(b) shows one subject example of 
the 3D head model with the sensors positions and the computed photon paths. The 
photons migration along the path between the emitter and detector is modeled by a 
probability distribution [16] which occurs with a hitting density expressed by: 
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where d is the emitter/detector distance (15mm), µa the absorption coefficient and µs the 
reduced scattering coefficient of the environment. Our anatomical head model is used to 
determine to which tissue belongs each voxel in order to locally compute the suitable k 
based on the different values of µa and µs provided in [17] for each tissue. It has been 
demonstrated in [17] that considering the fontanel tissue in our head model leads to a 
more realistic modeling from NIRS signals. For each subject we constraint equation (2) 
to the grey matter of the preterm head model which is filled with information according 
to all photon paths and their distributions. Each pair-wise sensor photon path may 
partially overlap into some voxels; resulting in multiple values for a single voxel. Thus an 
average function is used to output a final value per voxel. Then a grand average is 
performed over all subjects and brain activity is normalized. For visualization purpose, 
brain activations in the grey matter volume are integrated to the cortex surface by 
orthogonal projection onto the brain folds themselves. This procedure is repeated for 
each time steps of the recorded NIRS signals. All generated 3D images of brain 
activations build a real time series of dynamic topography mapping. 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3. Photon path and its 3D modeling. (a) Schematic of the banana-shape photon path trough 
head tissues between sensors. (b) Left hemisphere view of the 3D head model (only scalp and 
brain are showed) with NIRS sensors registered and 3D photon paths trough the grey matter. 
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3 Results 

NIRS signals are acquired at a frequency of 9.2Hz along with oxygen saturation and 
cardio-respiratory sensors data used in preprocessing to reject artifacts due to systemic 
and non-cerebral modifications. A software application has been designed to compare in 
real time healthy and IVH subjects dynamic brain activations images generated as 
described in previous section 2.3. This tool allows analysis of dynamic mapping of NIRS 
signals onto the brain surface which runs from -5s (5s before stimuli start, used for 
baseline information) to +25s (5s after the 20s of stimuli, used for resting state).  

Fig. 4(a) is an average image of 5s activity of NIRS HbO signals. It was computed 
using the dynamic real time brain activation mapping application. The average period 
from 5s to 10s of stimulation time was chosen for its high and peak activity as shown 
in most HbO channels in Fig. 4(b). For each stimulation condition (ST, DV, DP) 
taken individually and for all conditions together, Fig. 4(a) shows higher brain 
activation in normal subjects compared to abnormal IVH ones.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Images and signals comparisons between healthy and IVH subjects. (a) Average image of 5s 
(5s to 10s) showing much more activation in healthy subjects for each condition. (b) Grand average 
HbO signals for the 20 channels over all conditions and significant part of the signals at p<0.05 
corrected for multiple comparisons. (c) AUC per channel for ST condition. Channels marked with 
at least one star (*) show significant t-test difference at p<0.05. Channels marked with two stars 
(**) are corrected for multiple comparisons. (d) AUC per hemisphere for all conditions showing no 
overlap between healthy control (ctr) and IVH subjects. 
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The strongest brain activation shown in Fig. 4(a) for IVH is only 43% of the 
maximum in normal subjects and it is only visible on the planum temporal of right 
hemisphere for standard condition. Otherwise the maximum activation of IVH found 
elsewhere is around 25% of healthy subjects. Normal control subjects show high 
activation in all conditions and most regions of interest. Fig. 4(b) shows the 20 NIRS 
channels HbO signals of all conditions averaged together. The solid line is for healthy 
subjects and the doted line for IVH ones. The gap between the levels of activation of both 
groups is obvious in all channels. The horizontal red (healthy) and black (IVH) bars show 
the significant part of the signals compared to the baseline (-5s to 0s) at p<0.05 corrected 
for multiple comparisons using Holm’s method for small samples [18] implemented in 
FieldTrip toolbox (http://fieldtrip.fcdonders.nl/). The maximum number of permutations 
for each group has been used. This result shows large significant activations in most 
channels for healthy subjects and almost no significant activation for IVH subjects. The 
main significant part of IVH signals are almost exclusively desactivation (negative 
values) which reinforce the gap between both groups. 

Fig. 4(c) shows the area under curve (AUC) integration values for each channel 
signals in the standard condition for both groups. Standard condition has been 
selected because it shows less activation in the healthy group. Moreover the AUC was 
computed for the positive part of the signals only since IVH subjects show more 
desactivation. These choices have been made to reduce to minimum the gap between 
both groups. Even in these analysis conditions, Fig. 4(c) result shows statistically 
significant differences between both groups in the majority of the channels which are 
star marked (* t-test at p<0.05;  ** corrected with Holms method). Fig. 4(d) shows 
another AUC result for all conditions together and per hemisphere which means 
average values for the ten channels on each side have been used. This box-plot type 
result shows no overlap at all between both groups in AUC of all individual subjects; 
suggesting a strong significant difference between both groups. 

4 Conclusion 

The present data confirm the existence of neurovascular coupling in premature brain, 
although it may be impaired in ill subjects. It also shows that ill premature neonates 
are unable to process syllabic stimuli, a step for language acquisition ability. This 
inability of pathological brain to adapt to either endogenous or exogenous stimuli by 
an increase in blood flow can represent a mechanism by which the pathological brain 
enters in a deleterious pathological loop. This might explain cerebral disabilities 
observed latter in acquisitions throughout the neurodevelopment [8]. Our audio 
stimuli and NIRS acquisition protocol coupled to the designed head model and 3D 
dynamic mapping of brain activation could represent a valuable tool for IVH 
diagnosis and for a wider range of applications as well. On top of the binary 
classification of a subject (healthy or IVH), the proposed imaging solution enables: i) 
a multimodality image-based analysis to compare and complete other sources 
information such as EEG, ultrasound scan and fMRI; and ii) a shape/functional 
related local region analysis such as their asymmetries. 
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Abstract. Identifying brain hemodynamics in event-related functional
MRI (fMRI) data is a crucial issue to disentangle the vascular response
from the neuronal activity in the BOLD signal. This question is usu-
ally addressed by estimating the so-called Hemodynamic Response Func-
tion (HRF). Voxelwise or region-/parcelwise inference schemes have been
proposed to achieve this goal but so far all known contributions com-
mit to pre-specified spatial supports for the hemodynamic territories
by defining these supports either as individual voxels or a priori fixed
brain parcels. In this paper, we introduce a Joint Parcellation-Detection-
Estimation (JPDE) procedure that incorporates an adaptive parcel iden-
tification step based upon local hemodynamic properties. Efficient infer-
ence of both evoked activity, HRF shapes and supports is then achieved
using variational approximations. Validation on synthetic and real fMRI
data demonstrate the JPDE performance over standard detection esti-
mation schemes and suggest it as a new brain exploration tool.

1 Introduction

Within-subject analysis in event-related BOLD fMRI mainly relies on (i) detec-
tion of evoked activity to localize which parts of the brain are activated by a
given stimulus type, and on (ii) estimation of the dynamics of the brain response
also known as the Hemodynamic Response Function (HRF). Most approaches
to detect neural activity rely on a single a priori HRF model for the whole brain
although there has been evidence that this response can vary between cortical re-
gions and across subjects [8] and that an accurate HRF model may significantly
improve detection performance. To capture this variability, robust HRF estima-
tion is necessary which can be achieved only in voxels or regions that elicit an
evoked response to a given stimulus [9]. So far, many works have addressed this
issue either by considering linear or nonlinear HRF models [1,4,14], parametric,
semi-parametric or non-parametric (i.e. FIR models) descriptions [6, 16, 7], and
by performing univariate (voxelwise) [4,16], multivariate (regionwise) [10,13] or
even multiscale, i.e. spatially adaptive inference [15]. However, to the best of
our knowledge, all these existing works assume the spatial support of the HRFs,
either defined at the voxel or region-level, to be pre-specified. The proposed
methodology takes place in the Joint Detection-Estimation (JDE) framework in-
troduced in [10] and extended in [13,3] to account for spatial correlation between

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 180–188, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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voxels. Standard JDE-based inference requires a pre-specified decomposition of
the brain into functionally homogeneous parcels (groups of connected voxels)
but with no guarantee of their optimality. These parcels should be small enough
to guarantee the invariance of the HRF within each parcel but large enough to
contain reliable information for its inference [12]. Here, we introduce the concept
of hemodynamic territory as a set of parcels which share a common HRF pattern.
To determine such sets, we incorporate an additional layer in the JDE hierar-
chy, namely an adaptive parcel identification step based upon local hemody-
namic properties. In this novel Joint Parcellation-Detection-Estimation (JPDE)
model (Section 2), for all the parcels of a given territory, HRFs are voxelwise
but defined as local stochastic perturbations of the same HRF pattern. Then,
hemodynamics estimation reduces to the identification of a limited number (say
K) of such HRF patterns and parcel identification reformulates as a cluster-
ing problem where each voxel is assigned an HRF group among K. The HRF
group assignment variables are governed by a hidden Markov Model to enforce
spatial correlation, i.e. favor group assignments to vary smoothly. Finally, the
overall scheme iteratively identifies hemodynamic territories as pairs of one HRF
pattern and a set of parcels assigned to the corresponding HRF group.

The proposed approach thus makes the JDE framework fully adaptive and
more flexible. It is based on a variational Expectation Maximization (EM) algo-
rithm (Section 3) to derive estimates of the HRF patterns, the response ampli-
tude, the corresponding labels (activating/non-activating voxels) and the HRF
group labels. Results on artificial and real fMRI data demonstrate that the JPDE
approach outperforms the standard JDE (see Section 4).

2 A Joint Parcellation-Detection-Estimation model

2.1 Observed and Missing Variables

We extend the parcel-based JDE model of [10, 13] to a whole-brain one, with a
set of voxels denoted by P , and recast it in a missing data framework. At voxel
j, the fMRI time series yj is measured at times {tn, n = 1:N}, where tn = nTR,
N being the number of scans and TR the time of repetition. The number of
different stimulus types or experimental conditions is M . At each voxel j, we
assume a voxel dependent HRF hj ∈ RD+1 with H = {hj , j ∈ P} the set of all
HRFs. Each hj is associated with a HRF group among K. These groups or HRF
classes are specified by a set of hidden labels Z = {zj , j ∈ P} where zj ∈ {1 : K}
and zj = k means that voxel j belongs to the k-th group. An estimation of Z
corresponds then to a partition of the brain into K hemodynamic territories
whose connected components define a parcellation. The link to the observed
BOLD data is specified via the following forward model:

∀j ∈ P , yj =

M∑
m=1

am
j Xmhj + P �j + εj , (1)

where the binary matrix Xm = {xn−dΔt
m , n = 1 : N, d = 0 : D} is of size

N × (D + 1) and provides information on the stimulus occurrences for the
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m-th experimental condition, Δt < TR being the sampling period of the un-
known HRFs. The scalar am

j ’s are weights that model the transition between
stimulations and the neuro-vascular response. They are generally referred to
as Neural Response Levels (NRL). We denote by A = {am, m = 1 : M} with
am =

{
am

j , j ∈ P} the response amplitudes, am
j being the amplitude at voxel j

for condition m. Similarly to the HRF’s, each NRL is assumed to be in one of I
groups specified by activation class assignment variables Q = {qm, m = 1 : M}
where qm =

{
qm
j , j ∈ P} and qm

j represents the activation class at voxel j for
condition m. The number of classes considered here is I = 2 for activated (i = 2)
and non-activated (i = 1) voxels. Finally, the rest of the signal is made of vector
P �j , which corresponds to low frequency drifts with P a N ×O matrix, �j ∈ RO

a vector to be estimated and L = {�j, j ∈ P}. Regarding the observation noise,
the εj ’s are assumed to be independent with εj ∼ N (0, Γ−1

j ). The set of all
unknown precision matrices is denoted by Γ = {Γ j , j ∈ P}.

2.2 Hierarchical Model of the Complete Data Distribution

With standard additional assumptions [10, 13, 3], the joint model distribution
writes p(Y , A, H , Q, Z) = p(Y |A, H) p(A |Q) p(Q) p(H |Z) p(Z).

Likelihood. Assuming spatial independence of the noise, the likelihood reads

p(Y |A,H ; L, Γ ) ∝ ∏
j∈P N (

yj ;
M∑

m=1

am
j Xmhj + P �j , Γ

−1
j

)
. Various possibilities

for the Γ j ’s include standard white and autoregressive noise models [10].

Neuronal Response Levels. The NRLs are assumed to be statisti-
cally independent across conditions: p(A; θa) =

∏M
m=1 p(am; θm) where

θa = {θm, m = 1 : M} and θm gathers the parameters for the m-th condition.
A mixture model is then adopted by using the allocation variables qm

j to
segregate non-activated voxels (qm

j = 1) from activated ones (qm
j = 2). For

the m-th condition, and conditionally to the assignment variables qm, the
NRLs are assumed to be independent: p(am | qm; θm) =

∏
j∈P p(am

j | qm
j ; θm)

with p(am
j | qm

j = i; θm) ∼ N (μmi, vmi) and θm = {μmi, vmi, i = 1, 2}. We also
denote μ ={μmi, m = 1 : M, i = 1, 2} and v = {vmi, m = 1 : M, i = 1, 2}. For
non-activating voxels (i = 1) we set for all m, μm1 = 0. The other parameters
are unknown and have to be estimated.

Activation Classes. We assume prior independence between the M
experimental conditions regarding the activation class assignments:
p(Q)=

∏M
m=1 p(qm; βm). Also, the density p(qm; βm) ∝ exp

(
βmU(qm)

)
defines

a spatial Markov prior, namely an Ising model with interaction parameter βm

and energy function U(qm) =
∑

j∼j′ δ(q
m
j , qm

j′ ) where ∀(a, b) ∈ R2 , δ(a, b) = 1
if a = b and 0 otherwise. The notation j ∼ j′ means that the summation is
over all neighboring voxels (in a 6-connexity 3D neighborhood). The unknown
parameters are denoted by β = {βm, m = 1 : M}.
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HRF Groups. In order to promote parcellation connexity, we also introduce
here a spatial Markov prior, namely a K-class Potts model with interac-
tion parameter βz: p(Z; βz) ∝ exp

(
βzU(Z)

)
, where the global energy reads

U(Z) =
∑

j∼j′ δ(zj, zj′), i.e. neighboring voxels tend to belong to the same
HRF group.

HRF Patterns. In contrast to [10, 13, 3] where a unique HRF shape is con-
sidered for a whole parcel, the distribution of hj is expressed, for each voxel
j, conditionally to the HRF group variable zj: p(H |Z) =

∏
j∈P p(hj | zj) with

p(hj | zj = k) ∼ N (h̄k, Σ̄k). Here, the mean vector h̄k can be seen as the
HRF pattern for group k and Σ̄k = vhID regulates the stochastic perturbations
around h̄k. In addition, smooth h̄k’s are favored by controlling their second or-
der derivatives: h̄k ∼ N (0, σ2

hR) with R = (Δt)4 (Dt
2D2)−1 where D2 is

the second-order finite difference matrix and σ2
h is a parameter to be estimated

or fixed. Moreover, h̄k0 = h̄kDΔt = 0 as in [10, 13, 3]. The parameters are then
denoted by Θ =

{
Γ , L, μ, v, β, βz, σ

2
h, (h̄k, Σ̄k)1≤k≤K

}
and belong to a set Θ.

3 Variational EM Estimation

We propose to use an EM framework to deal with the missing data A ∈ A,
H ∈ H, Q ∈ Q, Z ∈ Z. We resort to an iterative variational EM procedure
as in [3]. At each iteration (r), with Θ(r−1) denoting the current parameter
values, the intractable posterior p(A, H , Q, Z |Y , Θ(r−1)) is approximated as
a product of four pdfs, p̃

(r)
H , p̃

(r)
A , p̃

(r)
Q and p̃

(r)
Z respectively on A, H, Q and

Z. Our E-step becomes then an approximate E-step, which is decomposed into
four sub-steps that consist of updating the four pdfs above in turn. Compared
to [3], this implies adding an E-sub-step for the HRF group assignments (p̃(r)

Z
updating) and specifying its impact on the other E-sub-steps. The E-Q sub-step
(p̃(r)

Q updating) is not actually impacted by the HRF groups addition and can

be found in [3]. The E-A sub-step (p̃(r)
A updating) is also very close to the one

involved in [3]: similar updating formulas are obtained by replacing the HRF
of [3] by voxel dependent HRFs. We thus only detail the E-H and E-Z steps.
At iteration (r), with current estimates p̃

(r−1)
A , p̃

(r−1)
Z and Θ(r−1), we obtain:

E-H: p̃
(r)
H (H) ∝ exp

(
E

p̃
(r−1)
A p̃

(r−1)
Z

[
log p(H |Y , A,Z; Θ(r−1)

])
(2)

E-Z: p̃
(r)
Z (Z) ∝ exp

(
E

p̃
(r)
H

[
log p(Z |Y , H ; Θ(r−1)

])
, (3)

where Ep̃

[
.
]

denotes the expectation with respect to p̃.
It follows from standard algebra that p̃

(r)
H and p̃

(r−1)
A are both Gaussian

distributions: p̃
(r)
H =

∏
j∈P p̃

(r)
Hj

and p̃
(r−1)
A =

∏
j∈P p̃

(r−1)
Aj

, where p̃
(r)
Hj

∼
N (m(r)

Hj
, Σ

(r)
Hj

) and p̃
(r−1)
Aj

∼ N (m(r−1)
Aj

, Σ
(r−1)
Aj

). More specifically, we obtain:
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• E-H step: Compute Σ
(r)
Hj

= (V1 + V2)−1 and m
(r)
Hj

= Σ
(r)
Hj

(m1 +

m2), where V1 =
∑

m,m′
Σ

(r−1)
Aj(m,m′)X

t
mΓ

(r−1)
j Xm′ + S̃t

jΓ
(r−1)
j S̃j , V2 =

K∑
k=1

p̃Zj (k)(r−1)Σ̄
(r−1)−1
k , m1 = S̃t

jΓ
(r−1)
j (yj − P �

(r−1)
j ) and m2 =∑K

k=1 Σ̄
(r−1)−1
k p̃Zj (k)(r−1)h̄

(r−1)
k . Above, S̃j =

∑M
m=1 m

(r−1)
Am

j
Xm and m

(r−1)
Am

j
,

Σ
(r−1)
Aj(m,m′) denote respectively the m and (m, m′) entries of m

(r−1)
Aj

and Σ
(r−1)
Aj

.

• E-Z step: Akin to [3], we resort to a mean field approximation, p̃
(r)
Z (Z) =∏

j∈P p̃
(r)
Zj

(zj) where p̃
(r)
Zj

(k) ∝ N (m
(r)
Hj

; h̄
(r−1)
k , Σ̄

(r−1)
k ) exp{−1

2
trace(Σ

(r)
Hj

Σ̄
−1
k ) +

βz

∑
l∼j δ(k, z̃l)}, where {z̃j, j ∈ P} is a particular configuration of Z updated

according to a specific scheme [2] and ∼ j denotes voxels neighboring j.
• M step: The maximization step can also be divided into five sub-steps (two
additional ones compared to [3]) involving separately (μ, v), β, βz, (L, Γ ) and
(h̄k, Σ̄k)1≤k≤K . For the (μ, v) and (h̄k, Σ̄k)1≤k≤K sub-steps, closed forms can
be analytically derived for the updates. Numerical procedures are required for
the other sub-steps. See [3] for details.

4 Validation

Artificial Datasets. Experiments have been carried out on artificial fMRI data
generated according to Eq. (1). We simulated a random mixed sequence of in-
dexes coding for M = 2 different stimuli composed of 30 trials each. The resulting
ternary sequence was then multiplied by stimulus-dependent and space-varying
NRLs, which were drawn from the prior distribution p(A; θa). To this end, 2D
slices composed of 20 x 20 binary labels Qm (activating and non-activating vox-
els) were constructed for each stimulus type m (see Fig. 1[Left]). Given these
labels, the NRLs were simulated as follows, for m = 1, 2: am

j | qm
j = 1 ∼ N (0, 0.5)

and am
j | qm

j = 2 ∼ N (3.2, 0.5) (see Fig. 2[Left]). As regards HRFs, three
groups (K = 3) were considered and spatially organized in three parcels of
similar size (labels Z) as shown in Fig. 1[Top-right]. Within each parcel, all
voxels share the same HRF prior parameters (h̄k, Σ̄k). The mean HRF shapes
(h̄k)k=1:K are depicted in Fig. 3 and show strong fluctuations across parcels.
Diagonal prior covariance matrices (Σ̄k)k=1:K were considered to draw voxel-
specific HRFs according to p(hj |zj = k).

As regards parcellation, Fig. 1[Top-right] shows the ability of JPDE to
recover the spatial support of hemodynamic territories with high accuracy (1%
of misclassified voxels and a DICE index of 0.993) from an imperfect initializa-
tion (Fig. 1[Bottom-right]). The HRF variability does not seem to affect the
activation maps which are equally well estimated in the JPDE and JDE cases
(Fig. 1[Left]). However, a clear difference is seen on the estimated HRFs, which
are depicted in Fig. 3 together with the ground truth: the three parcel-specific
HRF estimates using JPDE are plotted as well as the single JDE-based HRF
time course obtained by merging all parcels. The JPDE estimation is accurate
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for all parcels although the parcels cover different proportions of activation areas
(i.e. useful signal). In contrast, JDE provides an intermediate HRF shape which
lies between those of the three parcels. This explains the observed differences
between the two models in terms of estimated NRL dynamics and points out
the JDE sensitivity to the choice of the a priori parcellation. When imperfect,

Ground Truth JPDE JDE Real mask Estimated mask

m = 1

➌ ➋ ➌ ➋

➊ ➊

m = 2
➌ ➋ Initialization

➊

Fig. 1. Left: reference activation labels and Posterior Probability Maps (PPM) for
JPDE and JDE (a single parcel is assumed for JDE); Right: reference, estimated and
initial parcellation masks

Ground Truth JPDE JDE JPDE-JDE

m = 1

m = 2

Fig. 2. Reference and estimated NRLs using JPDE (3 parcels) and JDE (1 parcel)
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a
l

h̄1 h̄2 h̄3

Time (s) Time (s) Time (s)

Fig. 3. Reference and estimated HRF patterns (h̄k) for each parcel using JPDE and
JDE
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JDE is forced to miss-fit the real HRF shape, and therefore activation dynamics.
In the same context, JPDE is able to automatically refine an initial parcellation
and provide reliable detection and estimation results.

Interestingly, the NRL differences in Fig. 2 (see the JPDE-JDE plots in
Fig. 2[Right]) show that NRL estimates with JPDE have higher pic values,
which means that JPDE allows retrieving stronger activation dynamics closer
to the ground truth. The most significant NRL differences lie in parcels 2 and 3
where the JDE HRF estimate differs the most from the ground truth. In terms
of Mean Square Error (MSE), reported values confirm the performance of JPDE
over JDE: MSEm=1

JDE = 0.0182 vs MSEm=1
JPDE = 0.0107 and MSEm=2

JDE = 0.0183
vs MSEm=2

JPDE = 0.0141.

Real Data. fMRI data were recorded at 3 T (Siemens Trio) using a gradient-
echo EPI sequence (TE=30ms/TR=2.4s/thickness=3mm/FOV=192mm2) during a
Localizer experiment [11] with a fast event-related paradigm. The paradigm in-
volved sixty auditory (Aud.), visual (Vis.) and motor stimuli, defined in ten
experimental conditions (Aud./Vis. sentences, Aud./Vis. calculations, left/right
Aud. and Vis. clicks, horizontal and vertical checkerboards). For the considered
dataset, the acquisition consisted of a single session of N = 128 scans, yield-
ing 3-D volumes with a spatial resolution of 2 × 2 × 3mm3. In this experiment,
we focus on the Auditory condition which is supposed to reveal activations in
the temporal lobes. The initial parcellation used (from [12]) and the JPDE es-
timated one are shown in Fig. 4[Top-middle]. It appears that JPDE groups a
number of initial parcels as they turn out to have similar hemodynamic proper-
ties, which suggests that the initial parcellation may be unnecessarily too fine.
JPDE retrieves respectively three and two different parcels in the left and right
temporal regions of interest (ROI). However, JPDE HRF estimates (Fig. 4[Top-
right]) show very close shapes for parcels 1 and 3 for the left ROI, which explains

Anatomical
superposition

Initial parcels Estimated parcels

JPDE JDE JPDE-JDE

Left ROI

Right ROI

Fig. 4. Left: ROI definition; Middle: Initial and estimated parcels (top), NRL esti-
mates with JDE and JPDE and difference image (bottom); Right: HRF estimates for
the estimated parcels
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the reduced size of the third parcel. As regards activation levels, Fig. 4[Bottom-
middle] shows the estimated NRLs using JPDE and JDE. The difference image
in Fig. 4 confirms the ability of JPDE to retrieve stronger activations w.r.t. to
JDE.

5 Conclusion

We proposed a JPDE framework that provides an automatic parcellation of the
brain into homogeneous hemodynamic territories. The quality and reliability of
such a parcellation is at the core of robust neural activity detection and brain
hemodynamics estimation. By enabling a fully adaptive data-dependent iden-
tification of the parcels, the JPDE framework greatly extends the possibilities
of detection-estimation approaches. The gain in removing the commitment to
a priori fixed territories has been confirmed in preliminary experiments that
showed that the JPDE achieved better results than the standard JDE using a
fixed parcellation. An important remaining question raised by this new frame-
work is related to the issue of choosing the right number of HRF groups at best
i.e. in a sparse manner so as to capture the spatial variability in hemodynamic
territories while enabling the reproducibility of parcel identification across fMRI
datasets. This question should be the most critical to validate our approach but
also the most interesting to neuroscientists in case of success. For this specific
point, we shall investigate variational approximations of standard information
criteria [5] such as the Bayesian Information Criterion.
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Abstract. Identifying functional networks from resting-state functional
MRI is a challenging task, especially for multiple subjects. Most cur-
rent studies estimate the networks in a sequential approach, i.e., they
identify each individual subject’s network independently to other sub-
jects, and then estimate the group network from the subjects networks.
This one-way flow of information prevents one subject’s network estima-
tion benefiting from other subjects. We propose a hierarchical Markov
Random Field model, which takes into account both the within-subject
spatial coherence and between-subject consistency of the network label
map. Both population and subject network maps are estimated simulta-
neously using a Gibbs sampling approach in a Monte Carlo Expectation
Maximization framework. We compare our approach to two alternative
groupwise fMRI clustering methods, based on K-means and Normalized
Cuts, using both synthetic and real fMRI data. We show that our method
is able to estimate more consistent subject label maps, as well as a stable
group label map.

1 Introduction

Resting-state functional MRI (rs-fMRI) is widely used for detecting the intrin-
sic functional networks of the human brain. The availability of large rs-fMRI
databases opens the door for systematic group studies of functional connectivity.
While the inherently high level of noise in fMRI makes functional network esti-
mation difficult at the individual level, combining many subjects’ data together
and jointly estimating the common functional networks is more robust. However,
this approach does not produce estimates of individual functional connectivity.
Such individual estimates are an important step in understanding functional net-
works not just on average, but also how these networks vary across individuals.

The most common approaches for functional network identification are In-
dependent Component Analysis (ICA) and its variants [2], which identify the
statistically independent functional networks without a priori knowledge of the
regions of interest. The more recently proposed clustering-based methods [1,8]
partition the brain into disjoint spatial clusters, or label maps, representing
the functional networks. Group ICA [2] is a generalization of ICA to multiple
subjects, in which all subjects are assumed to share a common spatial compo-
nent map but have distinct time courses. The time courses from all subjects

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 189–196, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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are concatenated temporally, followed by a single ICA. Although the subject
component maps are obtained by a back-reconstruction procedure, there is no
explicit statistical modeling of the variability between the group and subject
component maps. Ng et. al [6] use group replicator dynamics (RD) to detect
subject’s sparse component maps, with group information integrated into each
subject’s RD process. In clustering-based methods, the subjects clusterings are
usually averaged to obtain a group affinity matrix and are followed by a second
level clustering on the group similarity matrix [1,8]. Because the group level clus-
tering is conducted after subject level clustering, the clustering of one subject is
unaware of the information from other subjects, as well as the group clustering.

In this paper we propose a Bayesian hierarchical model to identify the func-
tional networks from rs-fMRI that includes both subject and population levels.
We assume a group network label map that acts as a prior to the label maps for
all subjects in the population. This Bayesian perspective provides a natural reg-
ularization of the estimation problem of a single subject using information from
the entire population. The variability between the subjects and group are taken
into account through the conditional distributions between group and subjects.
The within-subject spatial coherence is modeled by a Markov Random Field
(MRF). Both the group clustering and subject clusterings are estimated simul-
taneously with a Monte Carlo Expectation Maximization (MCEM) algorithm.
The model is data-driven in that all parameters, regularized by two given hyper-
parameters, are estimated from the data, and the only parameter that must be
specified is the number of networks.

Markov Random Fields have previously been used in fMRI analysis to model
spatial context information [3,4]. However, to our knowledge, ours is the first
hierarchical MRF applied to fMRI for modeling both group and individual net-
works. The model of Ng et al. [5] combines all subjects into a single MRF and
bypasses the need for one-to-one voxel correspondence across subjects, but the
edges are added directly between subjects without a group layer. In our model, a
group layer network map is explicitly defined, and the consistency between sub-
jects is encoded through adding edges between group and subjects labels. Our
method differs from other clustering methods [1,8] in that their methods identify
the subject’s functional network patterns independently, without any knowledge
of other subjects or group population. Instead, our method estimates both lev-
els of network patterns simultaneously. The proposed approach can be seen as
a counterpart on the clustering branch of the multi-subject dictionary learn-
ing algorithm [9], which also has a hierarchical model and a spatially smoothed
sparsity prior on the group component map.

2 Hierarchical Model for Functional Networks

We define each subject’s network label map as a Markov Random Field (MRF)
with statistical dependency between spatially adjacent voxels. These connections
act as a prior model favoring spatial coherence of functional regions. An addi-
tional group label map is defined on top of all subject label maps. The group
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label map has the same Markov structure as the individuals, again to encour-
age spatial coherence of the functional regions in the group level. In addition,
each voxel in the group is connected to the corresponding voxel of each subject.
These connections model the relationship between the group and the individ-
uals. Hence, all voxels of subjects and group label map are jointly connected
into a single MRF. See Figure 1 for an illustration. More specifically, define a
graph A = (S, E), and the set of node S = (G,H). G is the set of voxels in the
group label map, and H = (H1, . . . ,HJ) includes voxels for all of the J subjects’
label maps. An edge (s, t) ∈ E is defined if 1) s ∈ Hj , t ∈ G and s, t are at
the same voxel location, or 2) if s, t ∈ G, and s, t are spatial neighbors, or 3)
s, t ∈ Hj , and s, t are spatial neighbors. On each node s ∈ S, a random variable
ys ∈ L = {1, · · · , L} is defined to represent the functional network labels.

MRF Prior: Our MRF prior on the hierarchical model is essentially a Potts
model with different weights for the within-subject connections and the connec-
tions between the group and individuals. Because of the equivalence of MRFs
and Gibbs fields, we define our prior as p(Y ) = 1

Z exp{−U(Y )}, where the energy
function U(Y ) is given by

U(Y ) =
∑
s,r∈G

βψ(ys, yr) +

J∑
j=1

⎛⎝ ∑
s∈G,s̃∈Hj

αψ(ys, ys̃) +
∑

s,r∈Hj

βψ(ys, yr)

⎞⎠ .

Here ψ is a binary function that is zero when the two inputs are equal and
one otherwise, and α and β are parameters determining the strength of the
connections. This regularization encodes two physiologically meaningful a priori
assumptions on the functional networks under investigation: 1) The networks
are spatially coherent within single subject. This is modeled by the β term. 2)
The networks are similar between subjects, and therefore between the group and
subjects. This is modeled by the α term.

Likelihood Model: In the generative model, for any individual subject, the
observed time course at each voxel is assumed to be generated from a distribution
conditioned on the network label at that voxel. In fMRI analysis the time series
at each voxel is usually normalized to be zero mean and unit norm, so the
analysis is robust to shifts or scalings of the data. This results in the data being
projected onto a high-dimensional unit sphere. After normalization, the sample
correlation between two time series is equal to their inner product.

We use the notation X = {(x1, . . . , xN ) | xs ∈ Sp−1} to denote the set of nor-
malized time series in p-sphere. Given Y , the random vectors xs are conditional
independent, hence log p(X |Y ) =

∑
s∈H log p(xs|ys). The likelihood function

p(xs|ys) is naturally modeled by a von Mises-Fisher (vMF) distribution

f(xs|ys = l;μl, κl) = Cp(κl) exp
(
κlμ

T
l xs

)
, xs ∈ Sp−1, l ∈ L, (1)

where for the cluster labeled l, μl is the mean direction, κl ≥ 0 is the concen-
tration parameter, and Cp is the normalization constant. The larger the κl, the
greater the density concentrated around the mean direction.
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3 Bayesian Inference

We solve the inference problem in a maximum a posteriori (MAP) framework.
That is, given the observed time course data X , we estimate the posterior mode
of p(Y |X). This consists of the following components.

Parameter Estimation: In this data-driven model, we propose to estimate
the parameters θ = {α, β, κ, μ} from the data using an Expectation Maximiza-
tion (EM) algorithm. However, the high-dimensionality and dependency between
spatially adjacent voxels in MRF make it infeasible to obtain a closed form solu-
tion of the expectation of [log p(X,Y )] with respect to p(Y |X). Here we propose
to approximate the expectation using Monte Carlo EM (MCEM), in which a
sample, (Y 1, · · · , YM ), generated from density p(Y |X) is used to approximate

the expected value by the empirical average 1
M

∑M
m=1 log p(X,Y

m).

Gibbs Sampling: Gibbs sampling converts a multivariate sampling problem
into a consecutive univariate sampling, hence is well adapted to draw the Monte
Carlo samples from p(Y |X). In our hierarchical structure, the sampling proce-
dure is also done in a hierarchical way. At the image level, a sample of the group
label map, Y m

G , is drawn given the previous subject label map, Y m−1
Hj

. Next, a
sample for each subject map, Y m

Hj
, is generated given the previous group label

map, Y m−1
G . At the voxel level, we can draw samples of the label ys given the

rest of nodes fixed, and update ys, ∀s ∈ S. The conditional probability used to
generate samples at the group and subject voxels are given as

p(ys|y−s, X) ∝ 1

Zs
exp{−U(ys|y−s)} · p(xs|ys) =

1

Zs
exp{−Up(ys|yNs , xs)}

Up = α

J∑
j=1

ψ(ys, y
j
s̃) + β

∑
r∈Ns

ψ(ys, yr), ∀s ∈ G, (2)

Up = αψ(ys, ys̃) + β
∑
r∈Ns

ψ(ys, yr)− κlμl
�xs − logCp, ∀s ∈ Hj , (3)

where −s is the set of all nodes excluding s, Zs the normalization constant, Up

is the posterior energy, and Ns is the set of neighbor’s of s. In our model we use
6-neighbor system in a 3D volume image. yjs̃ in (2) is the label of subject j’s voxel
with the same spatial location with s, and ys̃ in (3) is the label of group’s voxel
with the same spatial location with s. Because of the dependency on previous
samples, the sequence of samples will be a Markov Chain, hence our method falls
into Markov Chian Monte Carlo (MCMC) sampling. After a sufficient burn-in
period, a series of samples Y m,m = 1 · · ·M is saved for approximating the
expectation E[log p(X,Y )].

Pseudo Likelihood: To evaluate log p(X,Y m; θ) = log p(Y m; θ) +
log p(X |Y m; θ) as a function of θ, we face the difficulty of evaluating the par-
tition function Z in p(Y m). In practice the Gibbs field is approximated by
pseudo-likelihood, which is defined as the product of the conditional distribution
p(ys|y−s), ∀s ∈ S. Therefore the energy function can be written as
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U(Y ) ≈
∑
s∈S

U(ys|y−s) =
∑
s∈G

⎛⎝α∑
j∈J

ψ(ys, y
j
s̃) + β

∑
r∈Ns

ψ(ys, yr)

⎞⎠
+

J∑
j=1

∑
s∈Hj

(
αψ(ys, ys̃) + β

∑
r∈Ns

ψ(ys, yr)

)
,

where yjs̃ and ys̃ has the same definition with (2) and (3).

Hierarchical MRF Algorithm Using MCEM: With all the preparation
above, parameter estimation can be done by maximizing 1

M

∑M
m=1 log p(X,Y

m).
The α and β in the MRF prior can be optimized by maximizing
1
M

∑M
m=1 log p(Y

m) with a Newton-Raphson method. We assume a Gaussian
prior distribution on α with hyper-parameters μα and σα, which is given man-
ually and does not have significant impact on the model. In order for MCMC
sampling to converge quickly to the posterior, we need a reasonably good ini-
tial network label map. Here the K-means clustering on a concatenated group
dataset is used for the initial maps of both the group and subjects. After the EM
parameter estimation iterations are done, an Iterated Conditional Modes (ICM)
on the current sample map gives the final label maps. Putting this all together,
the groupmrf algorithm to estimate the group and individual label maps is given
in Algorithm 1.

Algorithm 1. Monte Carlo EM for group MRF

Data: Normalized fMRI, initial group label map
Result: Group label map YG , subjects label map YH, parameters {α, β, μ, σ}
while E[log p(X,Y )] not converge do

repeat
foreach s ∈ G do Draw consecutive samples of ys from p(ys|yNs , X; θ)
using (2) ;
foreach j = 1 . . . J do

foreach s ∈ Hj do Draw consecutive samples of ys from
p(ys|yNs , X; θ) using (3) ;

Save sample Y m after B burn-ins;

until B +M times;
foreach l = 1 · · ·L do

Estimate {μl, κl} by maximizing 1
M

∑M
m=1 log p(X|Y m);

Estimate {α, β} by maximizing 1
M

∑M
m=1 log p(Y

m);

Run ICM on current samples to estimate final label maps.

4 Results and Conclusion

Three methods are compared in both synthetic data and in vivo data test. The
first method is K-Means [1] applied on each subject’s fMRI data, as well as
on a group dataset constructed by concatenating all subjects time courses. To
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alleviate the dependency on initial cluster centers, we run K-Means 20 times with
different initial cluster centers generated by a K-means++ algorithm. The second
method is a Normalized-Cuts algorithm (N-Cuts), following Van den Heuvel, et
al. [8], which is applied in two stages. First N-Cuts is run on each subject’s affinity
matrix, as computed by pairwise correlation between time courses. Second, N-
Cuts is applied on a group affinity matrix, which is computed by summing up
all of the subjects’ segmentation matrices. We use the Ncutclustering 9 toolbox
[7], a newer version of the one used in [8]. The third method is our groupmrf
approach applied on all subjects’ fMRI data. The preprocessing are same for all
three methods except that groupmrf use image data without spatial smoothing,
while the other two use data smoothed by a standard 6mm Gaussian filter.

Truth K-Means N-Cuts groupmrf

g
ro
u
p

su
b
1

group mean(sub) var(sub)
K-means 92.9 87.0 0.67
N-Cuts 85.4 87.1 0.58
groupmrf 95.7 97.5 0.59

Fig. 1. Left: Hierarchical MRF depicted by undirected graph. The J subjects are com-
pactly represented by a box with label J . Right: clustering of K-means and N-Cuts on
synthetic time series with spatial smoothing, and groupmrf without smoothing. Top is
group label map and bottom is one of subjects label map. The table gives the rand
index accuracy between estimated label map and ground truth image. The rand index
of all subjects are summarized by a mean and variance value.

Synthetic Example: We simulate synthetic time course on each voxel of 16
subjects by first sampling from MRF with α = 0.4 and β = 2.0 and get both
group and subjects network label map. The time course signals at each voxel are
generated by adding Gaussian white noise of σ2 = 40 on each cluster’s mean time
course, which is synthesized from an auto-regressive process of xt = ϕxt−1 + ε
with ϕ = 0.7 and noise variance σε = 1. The sample correlation between the
mean time series is in the range of (−0.15, 0.3). The rand index value on right
side of Figure 1 shows that groupmrf algorithm is able to detect both group and
subjects label map more accurately than the K-Means and N-Cuts method. The
synthetic images shows that despite the different assumption of K-Means and
N-cuts on the data, our algorithm is able to estimate subject label maps with
more spatial and inter-subject coherence than the other two methods.
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Fig. 2. Functional networks estimated by 3 methods shown in separate rows. groupmrf
has more consistent estimation of the DMN (red) and motor network (blue) among
two example subjects of 66 total used.

In Vivo Data: We tested our method on the ADHD-200 dataset in the 1000
Functional Connectomes Project. A total of 66 healthy control adolescent sub-
jects were chosen from the same site (University of Pittsburgh). BOLD EPI
images (TR = 1.5 s, TE = 29 ms, 29 slices at 4 mm slice thickness, 64 x 64 ma-
trix, 196 volumes) were acquired on a Siemens 3 Tesla Trio scanner. The fMRI
volumes were motion corrected, slice timing corrected, registered to NIHPD ob-
ject 1 atlas, bandpass filtered to 0.01 to 0.1 Hz, regressed out nuisance variables
including white matter, CSF mean time courses and six motion parameters, and
at last filtered by a 8 mm Gaussian filter for spatial smoothness.

Figure 2 shows the functional networks computed from the three methods. As
in the synthetic data experiment, all 66 subjects’ time series were concatenated
into a single group dataset. K-means and N-Cuts were applied on the spatially-
smoothed, concatenated group dataset, as well as on each subject fMRI. Our
groupmrf was applied on all subjects data without any spatial smoothing and
with the initial parameter values α = 0.7, β = 1.0. Following [8,1], the number
of clusters are set to 7. It can be seen in Figure 2 that our algorithm is able
to detect the major functional networks even for individual subjects, while K-
means and N-Cuts miss some components in the Default Mode Network (DMN)
for certain subjects, due to the high noise level of single subject data.

The real strength of Bayesian statistics lies in the probabilistic explanation of
the results. The last experiment in Figure 3 shows the posterior probability maps
of DMN and attention network of two subjects. The maps are approximated
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sub1 sub2 sub3

Fig. 3. Posterior probability maps of DMN and attention network for 3 example sub-
jects out of the 66 total used. Top row: DMN, x = −8, z = 26. Bottom row: attention
network. x = 40, z = 54.

by averaging the Monte-Carlo samples from the individual posterior densities.
Unlike other approaches, such as ICA or clustering, these images provide a truly
probabilistic interpretation of a voxel’s membership in a particular network.
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Abstract. We propose a metamorphic geodesic regression approach ap-
proximating spatial transformations for image time-series while simulta-
neously accounting for intensity changes. Such changes occur for example
in magnetic resonance imaging (MRI) studies of the developing brain due
to myelination. To simplify computations we propose an approximate
metamorphic geodesic regression formulation that only requires pairwise
computations of image metamorphoses. The approximated solution is an
appropriately weighted average of initial momenta. To obtain initial mo-
menta reliably, we develop a shooting method for image metamorphosis.

1 Introduction

To study aging, disease progression or brain development over time, longitudinal
imaging studies are frequently used. Image registration is required if local struc-
tural changes are to be assessed. Registration methods that account for temporal
dependencies in longitudinal imaging studies are recent, including generaliza-
tions of linear regression or splines for shapes [1,2] or images [3] and methods
with general temporal smoothness penalties [4,5]. Changes in image intensities
are generally not explicitly captured and instead accounted for by using image
similarity measures which are insensitive to such changes. However, approaches
accounting for intensity changes after registration exist [6].

We generalize linear regression to image time-series, capturing spatial and
intensity changes simultaneously. This is achieved by a metamorphic regres-
sion formulation combining the dynamical systems formulation for geodesic re-
gression for images [3] with image metamorphosis [7,8], similar to [9] for the
large displacement diffeomorphic metric mapping (LDDMM) case. While several
methods have been proposed to simultaneously capture image deformations and
intensity changes for image registration [10,11,12] the metamorphosis approach [8]
is most suitable here, because spatial deformations and intensity variations are de-
scribed by a geodesic. This allows generalizing the concept of a regression line.

Sec. 2 reviews image metamorphosis and its relation to LDDMM. Sec. 3 de-
rives optimality conditions to allow for a shooting solution to metamorphosis
using an augmented Lagrangian approach [13]. Sec. 4 discusses first- and second-
order adjoint solutions. Sec. 5 introduces metamorphic geodesic regression. Sec. 5
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shows how an approximate solution can be obtained by appropriate averaging
of the initial momenta of independent pair-wise metamorphosis solutions. We
show results on synthetic and real longitudinal image sequences in Sec. 7. The
paper concludes with a summary and an outlook on future work.

2 Metamorphosis

Starting from the dynamical systems formulation for LDDMM image registration

E(v) =
1

2

∫ 1

0

‖v‖2L dt+
1

σ2
‖I(1)− I1‖2, s.t. It +∇IT v = 0, I(0) = I0, (1)

image metamorphosis allows exact matching of a target image I1 by a warped
and intensity-adjusted source image I(1) by adding a control variable, q, which
smoothly adjusts image intensities along streamlines. Here, σ > 0, v is a spatio-
temporal velocity field and ‖v‖2L = 〈Lv, Lv〉, where L is a differential operator
penalizing non-smooth velocities. The optimization problem changes to [8,7]

E(v, q) =
1

2

∫ 1

0

‖v‖2L+ρ‖q‖2Q dt, s.t. It+∇IT v = q, I(0) = I0, I(1) = I1. (2)

The inexact match of the final image is replaced by an exact matching, hence
the energy value depends on the images to be matched only implicitly through
the initial and final constraints; ρ > 0 controls the balance between intensity
blending and spatial deformation. The solution to both minimization problems
(1) and (2) is given by a geodesic, which is specified by its initial conditions. The
initial conditions can be numerically computed through a shooting method.

3 Optimality Conditions for Shooting Metamorphosis

To derive the second order dynamical system required for a shooting method, we
add the dynamical constraint through the momentum variable, p. Eq. 2 becomes

E(v, q, I, p) =

∫ 1

0

1

2
‖v‖2L +

1

2
ρ‖q‖2Q+ 〈p, It+∇ITv− q〉 dt, s.t. I(0) = I0, I(1) = I1.

(3)

To simplify the numerical implementation we use an augmented Lagrangian
approach [13] converting the optimization problem (3) to

E(v, q, I, p) =

∫ 1

0

1

2
‖v‖2L +

1

2
ρ‖q‖2Q + 〈p, It +∇IT v − q〉 dt

− 〈r, I(1)− I1〉+
μ

2
‖I(1)− I1‖2, s.t. I(0) = I0, (4)
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where μ > 0 and r is the Lagrangian multiplier function for the final image-
match constraint. The variation of Eq. 4 results in the optimality conditions⎧⎪⎨⎪⎩

It +∇IT v = 1
ρ(Q

†Q)−1p, I(0) = I0,

−pt − div(pv) = 0, p(1) = r − μ(I(1)− I1).

L†Lv + p∇I = 0,

(5)

The optimality conditions do not depend on q, since by optimality q =
1
ρ(Q

†Q)−1p. Hence, the state for metamorphosis is identical to the state for

LDDMM registration, (I, p), highlighting the tight coupling in metamorphosis
between image deformation and intensity changes. The final state constraint
I(1) = I1 has been replaced by an augmented Lagrangian penalty function.

4 Shooting for Metamorphosis

The metamorphosis problem (2) has so far been addressed as a boundary value
problem by relaxation approaches [14,8]. This approach hinders the formulation
of the regression problem and assures geodesics at convergence only. We propose
a shooting method instead. Since the final constraint has been successfully elim-
inated through the augmented Lagrangian approach, ∇p(0)E can be computed
using a first- or second-order adjoint method similarly as for LDDMM registra-
tion [15,16]. The numerical solution alternates between a descent step for p(0)
for fixed r, μ and (upon reasonable convergence) an update step

r(k+1) = r(k) − μ(k)(I(1)− I1).

The penalty parameter μ is increased as desired such that μ(k+1) > μ(k). Nu-
merically, we solve all equations by discretizing time, assuming v and p to be
piece-wise constant in a time-interval. We solve transport equations and scalar
conservation laws by propagating maps [17] to limit numerical dissipation.

4.1 First-Order Adjoint Method

Following [16], we can compute ∇v(0)E by realizing that the Hilbert gradient is

∇v(0)E = v(0) +K ∗ (p(0)∇I(0)),

where K = (L†L)−1. Therefore based on the adjoint solution method [17,18]

∇v(0)E = v(0) +K ∗ (p̂(0)∇I(0)) = v(0) +K ∗ (|DΦ|p̂(1) ◦ Φ∇I(0)), (6)

where Φ is the map from t = 1 to t = 0 given the current estimate of the velocity
field v(x, t) and p̂(1) = r − μ(I(1) − I1) with I(1) = I0 ◦ Φ−1. Storage of the
time-dependent velocity fields is not required as both Φ and Φ−1 can be com-
puted and stored during a forward (shooting) sweep. Instead of performing the
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gradient descent on v(0) it is beneficial to compute it directly with respect to p(0)
since this avoids unnecessary matrix computation. Since at t = 0:−(L†L)δv(0) =
δp(0)∇I(0), it follows from Eq. 6 that

∇p(0)E = p(0)− p̂(0) = p(0)− |DΦ|(r − μ(I(1)− I1)) ◦ Φ.

4.2 Second-Order Adjoint Method

The energy can be rewritten in initial value form (wrt. (I(0), p(0))) as

E =
1

2
〈p(0)∇I(0),K ∗ (p(0)∇I(0))〉 + 1

2ρ
〈(Q†Q)−1p(0), p(0)〉

− 〈r, I(1)− I1〉+
μ

2
‖I(1)− I1‖2, s.t. Eq. (5) holds.

At optimality, the state equations (5) and⎧⎪⎨⎪⎩
−λIt − div(vλI) = div(pK ∗ λv),
−λpt − vT∇λp = −∇ITK ∗ λv + 1

ρ(Q
†Q)−1λI ,

λI∇I − p∇λp + λv = 0,

hold, with final conditions: λp(1) = 0; λI(1) = r − μ(I(1)− I1). The gradient is

∇p(0)E = −λp(0) +∇I(0)TK ∗ (p(0)∇I(0)) + 1

ρ
(Q†Q)−1p(0).

The dynamic equations and the gradient are only slightly changed from the
LDDMM registration [15] when following the augmented Lagrangian approach.

5 Metamorphic Geodesic Regression

Our goal is the estimation of a regression geodesic (under the geodesic equations
for metamorphosis) wrt. a set of measurement images {Ii} by minimizing

E =
1

2
〈m(t0),K ∗m(t0)〉+

1

2ρ
〈(Q†Q)−1p(t0), p(t0)〉+

1

σ2

N∑
i=1

Sim(I(ti), Ii) (7)

such that Eq. (5) holds. Here, σ > 0 balances the influence of the change of
the regression geodesic with respect to the measurements, m(t0) = p(t0)∇I(t0)
and Sim denotes an image similarity measure. A solution scheme with re-
spect to (I(t0), p(t0)) can be obtained following the derivations for geodesic
regression [3]. Such a solution requires the integration of the state equation as
well as the second-order adjoint. Further, for metamorphosis it is sensible to
also define Sim(I(ti), Ii) based on the squared distance induced by the solu-
tion of the metamorphosis problem between I(ti) and Ii. Since no closed-form
solutions for these distances are computable in the image-valued case an iterative
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solution method is required which would in turn require the underlying solution
of metamorphosis problems for each measurements at each iteration. This is
costly.

6 Approximated Metamorphic Geodesic Regression

To simplify the solution of metamorphic geodesic regression (7), we approximate
the distance between two images I1, I2 wrt. a base image Ib at time t as

Sim(I1, I2) = d2(I1, I2) ≈ t2
1

2
〈m1(0)−m2(0),K ∗ (m1(0)−m2(0))〉

+ t2
1

2ρ
〈(Q†Q)−1(p1(0)− p2(0)), p1(0)− p2(0)〉, (8)

where p1(0) and p2(0) are the initial momenta for I1 and I2 wrt. the base image
Ib (i.e., the initial momenta obtained by solving the metamorphosis problem
between Ib and I1 as well as for Ib and I2 respectively) and m1(0) = p1(0)∇Ib,
m2(0) = p2(0)∇Ib. This can be seen as a tangent space approximation for meta-
morphosis. The squared time-dependence emerges because the individual differ-
ence terms are linear in time.

We assume that the initial image I(t0) on the regression geodesic is known.
This is a simplifying assumption, which is meaningful for example for growth
modeling wrt. a given base image1. Substituting into Eq. (7) yields

E(p(t0)) =
1

2
〈m(t0),K ∗m(t0)〉+

1

2ρ
〈(Q†Q)−1p(t0), p(t0)〉

+
1

σ2

N∑
i=1

1

2
(Δti)

2〈m(t0)−mi,K∗(m(t0)−mi)〉+
1

2ρ
(Δti)

2〈(Q†Q)−1(p(t0)−pi), p(t0)−pi〉.

Here, m(t0) = p(t0)∇I(t0), Δti = ti − t0, mi = pi∇I(t0) and pi is the initial
momentum for the metamorphosis solution between I(t0) and Ii. For a given
I(t0), the pi can be independently computed. The approximated energy only
depends on the initial momentum p(t0). The energy variation yields the condition

R[(1 +
1

σ2

N∑
i=1

(Δti)
2)p(t0)] = R[

1

σ2

N∑
i=1

(Δti)
2pi],

where the operator R is R[p] := ∇I(t0)TK ∗ (∇I(t0)p) + 1
ρ(Q

†Q)−1p. Since

K = (L†L)−1 and ρ > 0 this operator is invertible and therefore

1 Ideally one would like to construct an image on the geodesic given all the measure-
ment images and then perform all computations with respect to it. For the linear
regression model the point defined by the mean in time and the measurements, (t, y),
is on the regression line. If such a relation exists for metamorphic geodesic regression,
e.g., some form of unbiased mean with similar properties, remains to be determined.
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p(t0) =
1
σ2

∑N
i=1(Δti)

2pi

1 + 1
σ2

∑N
i=1(Δti)

2

σ→0≈
∑N

i=1(Δti)
2pi∑N

i=1(Δti)
2
.

The last approximation is sensible since typically σ << 1. It recovers the meta-
morphosis solution if there is only one measurement image and the base image.

7 Experimental Results

7.1 Simulated Examples

In Fig. 1, four images (32 × 32, spacing 0.04) are synthesized to simulate the
movement of a bull’s eye. The outside white loop of the eye shrinks with no
intensity changes, while the inside circle grows at a constant speed and its in-
tensity changes from white to gray. The images are at time instants 0, 10, 20,
30 and we chose the first one as the base image. Eight Gaussian kernels [19] are
used for K: {K0.5, K0.4, K0.3, K0.25, K0.2, K0.15, K0.1, K0.05}; ρ = 0.75. The re-
sult confirms that the spatial transformation and intensity changes are captured
simultaneously. The dark solid circle at the center of the average momentum of
Fig. 1 indicates that the intensity of the inside circle will decrease gradually. The
white loop outside of the dark area captures the growth of the inside circle.

Fig. 1. Bull’s eye metamorphic regres-
sion experiment. Measurement images
(top row). Metamorphic regression result
(middle row) and momenta (bottom row).
The first image is chosen as base image.
Momenta images: left: time-weighted av-
erage of the initial momenta; right: mo-
menta of the measurement images with
respect to the base image.

Fig. 2 shows a square (64× 64; spac-
ing 0.02) moving from left to right
at a uniform speed with gradually de-
creasing intensity. Measurements are at
0, 10, 20, 30, 40. We used a multi-
Gaussian kernel K with {K1.0, K0.75,
K0.5, K0.4, K0.3, K0.2, K0.1} and set
ρ = 5.0. Metamorphic regression suc-
cessfully captures the spatial transfor-
mation and the intensity changes of
the square even when adding vertical
oscillations. As expected, metamorphic
regression eliminates the oscillations
while capturing the intensity change
and the movement to the right. We see
from the time-weighted average of the
initial momenta that intensity changes
are controlled by the values inside the
square region (dark: decreasing inten-
sity; bright: increasing intensity). The
spatial transformations are mainly con-
trolled by the momenta on the edges of
the square.
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(a) (b)

Fig. 2. Square metamorphic regression experiment. (a) moving square with decreasing
intensities and no oscillations during movement; (b) moving and oscillating square with
alternating intensities. For both cases, the base image is the first one. Top row: mea-
surement images, middle row: metamorphic regression results, bottom row: momenta
images (left: time-weighted average of the initial momenta, to the right: momenta of
the measurement images with respect to the base image).

7.2 Real Images

Fig. 3. Representative data-
sets at 3, 6 and 12 months
(left to right)

Fig. 3 shows two representative longitudinal MRI
time-series (300× 250 with spacing 0.2734) of nine
macaque monkeys at age 3, 6, and 12 months. Some
subjects have no visible myelination in the ante-
rior parts of the brain at 3 months (top left), while
others show substantial myelination (bottom left).
Here, we use metamorphic geodesic regression not
for an individual longitudinal image set, but for all
nine monkeys and all time-points simultaneously.
We use an unbiased atlas for images at 12 months
as the base image. Metamorphic geodesic regres-
sion is applied over the remaining 18 images at 3 and 6 months. We use a
multi-Gaussian kernel, K, with {K40, K20, K15, K10, K5, K2.5}; ρ = 500.

(a) (b) (c)

Fig. 4. Regression results for monkey data: LDDMM (top) metamorphosis (bottom).
(a) Images on geodesic at 12, 6, 3 months; (b) Zoom in for images on geodesic at 12,
6, 3 months; (c) Zoom in for images at 3 months to illustrate spatial deformation.
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Fig. 4 shows regression results for the simple metamorphic model and for
its LDDMM version [9] which cannot capture intensity changes. The metamor-
phic regression geodesic captures intensity changes of the brain well (increase in
white matter intensity with age caused by myelination) while capturing spatial
deformations, most notably a subtle expansion of the ventricles.

8 Discussion and Conclusions

We proposed metamorphic geodesic regression for image time-series which si-
multaneously captures spatial deformations and intensity changes. For efficient
computations we use a tangent space approximation with respect to a chosen
base-image. Solutions can be computed by solving pairwise metamorphosis prob-
lems through a shooting approach. Future work will address the properties of the
approximation, alternative models of intensity change and the trade-off between
spatial deformation and change in image intensities.
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Abstract. We contribute a novel and interpretable dimensionality re-
duction strategy, eigenanatomy, that is tuned for neuroimaging data.
The method approximates the eigendecomposition of an image set with
basis functions (the eigenanatomy vectors) that are sparse, unsigned
and are anatomically clustered. We employ the eigenanatomy vectors
as anatomical predictors to improve detection power in morphometry.
Standard voxel-based morphometry (VBM) analyzes imaging data
voxel-by-voxel—and follows this with cluster-based or voxel-wise mul-
tiple comparisons correction methods to determine significance. Eige-
nanatomy reverses the standard order of operations by first clustering
the voxel data and then using standard linear regression in this reduced
dimensionality space. As with traditional region-of-interest (ROI) analy-
sis, this strategy can greatly improve detection power. Our results show
that eigenanatomy provides a principled objective function that leads
to localized, data-driven regions of interest. These regions improve our
ability to quantify biologically plausible rates of cortical change in two
distinct forms of neurodegeneration. We detail the algorithm and show
experimental evidence of its efficacy.

1 Introduction

In machine learning, interpretable data decompositions are termed “parts-based
representations” because they transform unstructured data into interpretable
pieces [1–3]. Recent work in machine learning points to the fact that exploiting
problem-specific information can improve parts-based representations [4–6]. Un-
informed, generic matrix decomposition methods, e.g. standard principal com-
ponent analysis (PCA), may be difficult to interpret because the solutions will
produce vectors that are everywhere non-zero, i.e. involve the whole brain rather
than its parts. Sparse methods have sought to resolve this issue [2, 3, 7–10]. How-
ever, these recent sparse multivariate methods are anatomically uninformed.

In this work, we employ a novel data-driven framework, related to the methods
above, to delineate cortical networks wherein longitudinal atrophy patterns in
Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) differ
from controls. Our novel image processing framework is open-source, unbiased
with respect to registration and segmentation [11, 12] and is formulated spa-
tiotemporally, as described in [13]. At the statistical level, our method is unbiased
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in that it uses the intrinsic covariation of the dataset to parcellate the cortex
into coherent regions and, in this reduced space, we gain sensitivity over full
voxel-wise testing with voxel-based morphometry (VBM) [14]. Dimensionality
reduction is critical for datasets that are relatively small and yet which quantify
valuable and difficult to collect measurements in uncommon populations of sub-
jects, as in FTLD. Critically, our novel dimensionality reduction method provides
an objective function that optimally maps the classical singular value decompo-
sition (SVD) eigenvectors that are both signed and global into spatially localized,
sparse, unsigned pseudo-eigenvectors (or eigenanatomy). To our knowledge, the
specific objective function used in eigenanatomy is the first to formulate an un-
signed sparse decomposition with explicit guidance by the SVD solution and
with anatomically informed regularization. We apply this framework in a cohort
that is diagnosed by CSF biofluid biomarkers with high specificity and sensi-
tivity [15]. This well-defined cohort provides an excellent test-bed for this new
algorithm as we expect to identify specific patterns of cortical atrophy within
regions known to be affected in FTLD and AD. At the same time, the relatively
small cohort and challenges of longitudinal mapping may make this quantifica-
tion difficult to achieve with VBM. We also show that eigenanatomy produces
more powerful predictors when compared to related methods: VBM, classic SVD
and penalized matrix decomposition (PMD) [16]. PMD is freely available and
provides a sparse approach to PCA.

2 Methods

The class of methods encompassing non-negative matrix factorization (NMF)
[1, 3, 17, 18], sparse principal components analysis (SPCA) [2, 19, 16, 20] and
singular value decomposition [21] form the basis for the approach proposed here.
More formally, define a n×p (rows by columns) matrixX where each row derives
from an observed subject image such that the collection of images is given as
vectors {x1, ..., xn} with each vector xi containing p entries. First, we denote
each eigenanatomy component (a pseudo-eigenvector) as vi where i is ordered
such that each eigenanatomy from v1 to vm provides a decreasing contribution
to the variance of matrix X. We define eigenanatomy pseudo-eigenvectors as
sparse. Sparseness means that some entries in vj will be zero.

The classic singular value decomposition (SVD) may be used to reduce the
dimensionality of this data by decomposing the dataset into the eigenvectors of
Cp = XTX and Cn = XXT (the right and left singular vectors, respectively).
The relationship between a Cp and a Cn eigenvector is given by Xvp = vn and
XTvn = vp. The n eigenvectors from Cp and Cn may be used to reconstruct the
matrix X by

∑
i v

n
i ⊗ vp

i λi where the λi denotes the ith eigenvalue and ⊗ the
outer product. We now detail the algorithm that comprises the main contribution
of this work and which is available as part of the sccan program within Advanced
Normalization Tools (ANTs) [13].
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Our goal is to approximate the matrixX with its right and left singular vectors
but where the right singular vector is sparse. We might, then, minimize:

‖X−
∑
i

vn
i ⊗ vsp

i λi‖2 (1)

where the vsp
i denotes the ith sparse right singular vector. It is known that the

optimal value for vsp
i is exactly XTvn ( if we relax sparseness constraints ).

Using the fact that Xvp = vn and XTvn = vp, we therefore reformulate the
objective in a slightly simpler form and seek to directly find vsp

i by optimizing:

argmin
vsp
i

‖Xvsp
i − vn

i ‖2. (2)

This optimization problem is quadratic without sparseness constraints and easily
solved by conjugate gradient through the normal equations ‖XTXvsp

i −XTvn
i ‖2.

Now, note that the vector XTvn
i = vp

i might have both positive and negative
values. As with non-negative matrix factorization, we seek a decomposition that
is unsigned. Thus, an optimal solution that minimizes ‖Xvsp

i − vn
i ‖2 will need

to model both signs. We therefore make a second adjustment by modeling the
positive and negative components of vp

i separately.
Each eigenvector may be written in an expanded form via the use of indicator

functions which are diagonal matrices with binary entries. For instance, if v
contains entries [ − 2, − 1, 0, 1, 2 ], then the positive indicator function is
I+ = [ 0, 0, 0, 1, 1 ] and the negative indicator function is I− = [ 1, 1, 0, 0, 0 ].
v may then be expressed as v = I+v+ I−v = v+ + v−. We use these indicator
functions to separate the positive and negative components of our objective such
that the optimization in equation 2 becomes,

argmin
vsp+
i , vsp−

i

‖XTXvsp+
i − vp+

i ‖2 + ‖XTXvsp−
i − vp−

i ‖2 (3)

This minimization problem forms the basis for our novel approach to computing
eigenanatomy, i.e. anatomically localized approximations to the eigenvectors of
an anatomical imaging dataset. Derivation of sparse eigenanatomy is shown in
Figure 1.

As noted above, we seek sparse and interpretable solutions. We define a sparse
vector as one which minimizes a l0 or l1 penalty term i.e. has either a user-
specified number of non-zero entries (l0) or absolute sum (l1). Although the
l1 penalty has advantages [2], we use the l0 penalty because it specifies the
fraction of the vector that is allowed to be non-zero. The sparseness restriction is
therefore easily interpreted by users of the eigenanatomy method. Eigenanatomy
seeks to identify sparse functions vsp+

i and vsp−
i that closely approximate the

eigenvectors in n-space, i.e. vi
n = Xvp

i . The objective function, again employing
the normal equations, is then:

argmin
vi

n∑
i=1

‖ Cpv
sp+
i − vp+

i ‖2 + ‖ Cpv
sp−
i − vp−

i ‖2 (4)

subject to: ‖vsp+
i ‖0 = ‖vsp−

i ‖0 = γ,
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Algorithm 1. SNLCG optimization for eigenanatomy.

Input X, the eigenvectors of XXT and γ, the sparseness parameter.
for all vi ∈ {v1, . . . ,vn−1} do

vi ← XTvn
i � Get the p-space eigenvector from the vn

i .
Compute v+

i and v−
i . � Find the + and − representation of vi.

vs+
i ← vs−

i ← 1
p

� Initialize the sparse + and − vectors.

vs+
i ← SNLCG(X,vs+

i ,v+
i , γ) � SNLCG + minimization.

vs−
i ← SNLCG(X,vs−

i ,v−
i , γ) � SNLCG − minimization.

vs−
i ← vs−

i ∗ (−1) � Reset vs−
i to be positive.

end for

where γ defines the desired level of sparseness for each eigenanatomy vector.
Eigenanatomy therefore produces 2∗n sparse pseudo-eigenvectors whose product
with X may be used a predictors in standard linear regression. Importantly,
because these vectors are unsigned, they may be interpreted as weighted averages
of the input data.

Sparseness can be enforced by a soft-thresholding algorithm as in [2, 16]. We
denote this function as S(v, γ) and (in an adhoc manner) allow it to also re-
ject isolated voxels of the eigenanatomy vector that are non-contiguous (i.e. we
provide a cluster threshold as in VBM). Minimization problems involving the
l0 penalty are np-hard. The relaxed form of this objective function (i.e. with-
out the sparseness constraint) is purely quadratic and can easily be solved by a
conjugate gradient method. Thus, we propose a new sparse, nonlinear conjugate
gradient (SNLCG) method as a minimization procedure for the eigenanatomy
objective function to deal with the nonlinearities induced by the S function and
l0 constraint. The additional advantage of SNLCG is that its solutions approach
the quadratic minimum as sparseness constraints are relaxed. We detail the
minimization algorithms for the eigenanatomy objective function (equation 4)
in algorithms 1 and 2. The algorithms are also available in an open-source R
package for free use and within the ANTs toolkit.

3 Results

For all uses of eigenanatomy below, we set the sparseness parameter, γ, to select
5% of the voxels in the cortex. We choose 5% because this provides interpretable
clusters of regions in the cortex and yet still allows a reasonable reconstruction
of the original data matrix, as shown in Figure 1.

Reconstruction Error: We quantify the ability of the eigenanatomy algorithm
to reconstruct the original dataset from sparse eigenvectors using equation 1.
As a baseline, we compare the full eigenanatomy solution to the reconstruc-
tion given by applying the soft-threshold function S directly to the SVD-derived
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Original atrophy image Eigenanatomy
reconstruction

Soft SVD
reconstruction

Eigenvector Eigenvector + Eigenvector - Eigenanatomy -

Fig. 1. The eigenanatomy basis functions: The original eigenvector (far left) has
both positive and negative components. These are separated into the positive and
negative vector components (middle figures). The sparse eigenanatomy approximation
to v− is shown at far right. Because the entries of vs− are either zero or negative, the
sign of vs− can be changed to positive. Thus, vs− is an interpretable measurement of
the data and provides a weighted average of the original signal. Ultimately, the weighted
average of the imaging data provided by vs− is used as a predictor in regression. The
same is done with vs+. In the lower portion of the figure, we see reconstruction results
from the eigenanatomy method—see the results section for more explanation.

vectors vp
i without further optimization. We call this “soft-SVD”. We also com-

pare reconstruction error to the eigenanatomy algorithm run with a restriction
on the number of iterations in the SNLCG sub-algorithm. These experiments
show that the full eigenanatomy algorithm run until convergence (error = 1.251
) improves upon both the soft-SVD solution (error = 1.292) and the limited iter-
ation eigenanatomy solution (error = 1.279). Error is measured by the frobenius
norm taken between the original matrix and the reconstructed matrix.

Neuroimaging Data: Our cohort consists of 61 participants, including 15 pa-
tients with AD (7 females), 23 patients with FTLD (14 females), and 23 controls
(13 females). All patients were clinically diagnosed by a board-certified neu-
rologist and cerebrospinal fluid confirmation of the underlying pathology was
obtained [15]. No significant difference exist between disease duration, age or
education in the patient or control groups. Two 3.0T MPRAGE T1-weighted
magnetic resonance images were obtained for each subject. The FTLD group
(time interval 1.12 years +/- 0.28) trended (p<0.081) towards having a reduced
interval when compared to elderly controls (time interval 1.29+/-0.36 years), as
did the AD group (time interval 1.13+/-0.25 years, p<0.12). The interval be-
tween scans was therefore factored out as a nuisance variable.

Detection Power in Comparison to VBM, SVD and PMD: In this sec-
tion, we employ eigenanatomy to compare the ability to detect group differences
in cortical atrophy rate between FTLD subjects and controls as well as AD
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Algorithm 2. SNLCG sub-algorithm for eigenanatomy.

Input X,v−
i ,vs−

i , γ.
b ← v−

i

xk ← vs−
i

rk ← ( b − XT ( X xk ) ) � Use the gradient of the quadratic term.
pk ← rk
ΔE ← ∞
while ΔE > 0 do

αk ← 〈 pk, XT X xk 〉 � 〈·, ·〉 denotes inner product.
xk+1 ← xk + αkpk

xk+1 ← S(xk+1, γ)
� Project xk+1 to the sparse solution space given by the objective function.

rk+1 ← S( b − XT ( X xk+1 ) , γ) � Use the gradient of the quadratic term.
� Project rk+1 to the sparse solution space given by the objective function.

βk ← ‖rk+1‖2/‖rk‖2 � Standard conjugate gradient definitions below.
pk+1 = rk+1 + βk ∗ pk
ΔE ← ‖rk‖ − ‖rk+1‖
rk ← rk+1;xk ← xk+1;pk ← pk+1.

end while

subjects and controls. This analysis shows specificity of the approach and bio-
logical plausibility in two different neurodegenerative disorders.

We passed the same input dataset to all methods. The data consisted of unbi-
ased voxel-wise measures of annualized atrophy rate in the cortex of all patients
normalized to a group template, as described elsewhere [13]. The regression
model employed for all methods is summarized ( in R syntax) as: atrophy-rate
≈ 1+ diagnosis + education + interval-between-images + disease-duration +
gender. “Diagnosis” is the predictor of interest i.e. we test whether the pres-
ence of disease predicts atrophy rate given the presence of the covariates. The
atrophy-rate is either a vector of voxel-wise measures or a basis function projec-
tion against the original atrophy rate image matrix X i.e. Xvp

i . The latter case
is used for classic SVD, PMD, soft-SVD in addition to eigenanatomy. We define
significance as a q-value < 0.05 where a q-value is a false discovery rate corrected
p-value. For PMD and SVD, we tested n different atrophy rates ( one for each
eigenvector ) where n is number of subjects. For eigenanatomy and soft-SVD,
we used 2n predictors as suggested by design in the algorithm. For VBM, we
tested all 50,194 voxels (the number of columns in X).

For the FTLD subjects and the AD subjects, when classic SVD projections
were used as measures of atrophy rate, no significant predictors emerged. The
same is true for the PMD method—although we note the caveat that, poten-
tially, a more exhaustive parameter search may have resulted in better PMD
results. Both univariate VBM and soft-SVD identify significant effects although
the minimum q-value and extensiveness of both soft-SVD and VBM are far less
than eigenanatomy. This is particularly true for the FTLD subjects for which
VBM only produces a small 20 voxel cluster that survives correction. The results
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FTD eigenanatomyFTD VBM FTD soft-SVD AD eigenanatomyAD VBM AD soft-SVD 

Fig. 2. Statistical comparison: Eigenanatomy detects the most effects and also with
smallest p-values (FTLD: q < 0.0015, AD: q < 0.002) versus the next best soft-SVD
(FTLD: q < 0.0035, AD: q < 0.009). Different colors represent different eigenvectors /
predictors. Note that multiple disjoint, but related, voxel clusters (i.e. a network) may
be involved in an eigenanatomy vector. VBM detects 20 voxels in FTLD (q < 0.015 ).
In AD, univariate results are more robust, likely due to the widespread nature of AD
atrophy, and 1382 significant voxels (q < 0.0270) were detected.

are summarized further in Figure 2. Detailed clinical interpretation is beyond
the scope of the paper but the results, overall, are coincident with what is known
about these disorders. In particular, the largest atrophy rate in FTLD was in
right orbitofrontal cortex. For AD, this region was in the precuneus.

4 Conclusion

We detailed the eigenanatomy theory and algorithm and showed that eige-
nanatomy improves image reconstruction from a sparse set of anatomical basis
functions. We showed that eigenanatomy also improves detection power for de-
tecting group differences in longitudinal cortical change relative to SVD, PMD
and univariate VBM. We note that showing that a method increases detection
power does not comprise sufficient validation. This approach is not limited to
longitudinal analysis and may be applied in a variety of morphometry contexts.
Future extensions to the basic eigenanatomy algorithm given here will include
network interpretations, exploration of alternatives to the SNLCG algorithm,
alternative penalty terms and an automation of parameter selection.

References

1. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788–791 (1999)

2. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. Journal
of Computational and Graphical Statistics 15(2), 262–286 (2006)

3. Hoyer, P.O., Dayan, P.: Non-negative matrix factorization with sparseness con-
straints. Journal of Machine Learning Research 5, 1457–1469 (2004)

4. Guan, N., Tao, D., Luo, Z., Yuan, B.: Manifold regularized discriminative non-
negative matrix factorization with fast gradient descent. IEEE Trans. Image Pro-
cess. 20(7), 2030–2048 (2011)

5. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized non-negative matrix
factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell.
(December 2010)



Eigenanatomy Improves Detection Power for Longitudinal Cortical Change 213

6. Hosoda, K., Watanabe, M., Wersing, H., Krner, E., Tsujino, H., Tamura, H., Fu-
jita, I.: A model for learning topographically organized parts-based representations
of objects in visual cortex: topographic nonnegative matrix factorization. Neural
Comput. 21(9), 2605–2633 (2009)

7. Witten, D.M., Tibshirani, R.: A framework for feature selection in clustering. J.
Am. Stat. Assoc. 105(490), 713–726 (2010)

8. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear
models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

9. Cherkassky, V., Ma, Y.: Another look at statistical learning theory and regulariza-
tion. Neural Netw. 22(7), 958–969 (2009)

10. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with
the graphical lasso. Biostatistics 9(3), 432–441 (2008)

11. Yushkevich, P.A., Avants, B.B., Das, S.R., Pluta, J., Altinay, M., Craige, C.,
A.D.N.I.: Bias in estimation of hippocampal atrophy using deformation-based mor-
phometry arises from asymmetric global normalization: an illustration in ADNI 3
t MRI data. Neuroimage 50(2), 434–445 (2010)

12. Holland, D., Dale, A.M., A.D.N.I.: Nonlinear registration of longitudinal images
and measurement of change in regions of interest. Med. Image Anal. 15(4), 489–497
(2011)

13. Avants, B.B., Yushkevich, P., Pluta, J., Minkoff, D., Korczykowski, M., Detre,
J., Gee, J.C.: The optimal template effect in hippocampus studies of diseased
populations. Neuroimage 49(3), 2457–2466 (2010)

14. Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3), 839–851
(2005)

15. Irwin, D.J., McMillan, C.T., Toledo, J.B., Arnold, S.A., Shaw, L.M., Wang, L.S.,
Trojanowski, J.Q., Lee, V.M.Y., Grossman, M.: Comparison of Cerbebrospinal
Fluid Levels of Tau and ABeta1-42 in Alzheimer’s Disease and Frontotemporal
Degeneration Using Two Analytical Platforms. Archives of neurology (2011) (sub-
mitted)

16. Witten, D.M., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with
applications to sparse principal components and canonical correlation analysis.
Biostatistics 10(3), 515–534 (2009)

17. Kim, H., Park, H.: Sparse non-negative matrix factorizations via alternating non-
negativity-constrained least squares for microarray data analysis. Bioinformat-
ics 23, 1495–1502 (2007)
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Abstract. Accurate localization of functionally meaningful Regions of Interests 
(ROIs) from fMRI data is critically important to functional brain imaging. A 
variety of established approaches such as General Linear Model (GLM) have 
been widely used in the community. How to determine the optimal location and 
size of an fMRI-derived ROI, however, remains an open, challenging problem. 
This paper presents a novel individualized optimization algorithm that 
simultaneously optimizes the locations and sizes of fMRI-derived ROIs by 
maximizing the coherences of their functional interaction patterns with respect 
to the block-based paradigm. As an alternative ROI optimization approach 
using functional interaction patterns, the algorithm was applied on a working 
memory task-based fMRI dataset and the experimental results are promising. 

1 Introduction 

Identifying functionally-specialized brain Regions of Interest (ROIs) constitutes the first 
step in a number of functional brain image analyses. For the purpose of functional ROI 
localization, task-based functional Magnetic Resonance Imaging (fMRI) has been widely 
considered as a benchmark approach in the community [1], e.g., via the General Linear 
Model (GLM) for activation detection [2]. Despite the wide use of this approach, there 
has been a significant, open question: how to pick the best possible fMRI signals to 
represent the activated region? In other words, given a roughly localized activation map, 
what are the optimal location and size of an fMRI-derived ROI? 

Recently, a variety of studies demonstrated that the temporal functional 
connectivity curves on meaningful structural ROIs or landmarks roughly follow the 
external stimulus curve in task-based functional neuroimaging [3]-[5]. For instance, 
Lim et al. [3] has made an attempt in representing the functional brain states by 
concatenating functional connectivities on DTI-derived axonal fibers into feature 
vectors.  Interestingly, via a sliding-window approach, they discovered that brain 
state changes in task-based fMRI are in temporal correspondence with the task 
paradigm [3]. In [4], Lindenberger et al. used electroencephalography (EEG) to 
measure the within-brain functional interaction. They found the interaction at the 
onset or starting point of certain events is strongest [4]. The authors in [5] reported 
that many functional connectivity curves on DTI-derived fibers closely follow the 
external stimulus task curves, and they can detect more activated brain regions than 
the raw fMRI BOLD signals. 
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Fig. 1. (a) Working memory block-based paradigm. (b) Average interaction map between two 
ROIs. Red and blue represent strong and weak interaction, respectively. The block design is 
temporally aligned with the interaction map. (c)-(e): functional interaction maps from two pairs 
of time series selected from two ROIs in a working memory task-based session. (c) Location of 
the ROIs and the two pairs of voxels (pair 1 is in red and pair 2 is in green). (d) and (e): 
Functional interaction map of the pair 1 and 2 in (c), respectively. 

Along the similar direction as the above studies, in our own experiments, we observed 
similar patterns in the time-frequency domain, as shown in Figs. 1a and 1b. Specifically, 
the working memory block-based paradigm and the average functional interaction map 
among ROIs (details in section 2.1) exhibited quite close temporal correlation, as shown 
in Figs. 1a and 1b, respectively. We can see that regions with intense interactions in the 
high frequency domain occur between adjacent blocks. This interesting and meaningful 
pattern has been replicated in other working memory block-based fMRI sessions we 
studied. As an example, Figs. 1c-1e show two ROIs identified by activation detection in a 
working memory paradigm. We randomly selected two pairs of time series from two 
ROIs (each pair contains one time series from each ROI), and depicted their functional 
interaction maps in Figs. 1d and 1e, respectively. Their functional interaction patterns are 
quite consistent. Therefore, we postulate that voxels in meaningful ROIs should possess 
fMRI BOLD signals revealing similar coherent functional interaction patterns with other 
voxels within this network. 

 

Fig. 2. Overview of the proposed algorithmic pipeline. (1) Task-based fMRI data. (2) GLM 
activation map. (3) Initial ROIs selected from activation peaks. (4) Functional coherence 
optimizer. (5) Spatial constraints. Red: current ROI; green: candidate voxels; dark: far away 
voxels are penalized. (6) Optimized ROIs (green). Red: initial positions; yellow arrows: 
movement. 
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Based on the abovementioned observation, we propose in this paper a novel ROI 
optimization algorithm that optimizes the locations and sizes of ROIs simultaneously, 
given the fMRI activation peaks to initialize. Our basic premise is the optimization 
should improve the coherence of meaningful functional interaction patterns among 
fMRI-derived ROIs. With the mathematical and computational modeling of the above 
principle, our proposed algorithm simultaneously optimizes the locations and sizes of 
ROIs by maximizing the coherences of functional interaction patterns with respect to 
the block-based paradigm. 

2 Methods 

An overview of the proposed algorithmic pipeline is shown in Fig. 2. Briefly, initial 
ROIs (3) are obtained from task-based fMRI data (1) through GLM (2); the optimizer 
builds a functional interaction coherence model (4) and estimates coherence values 
with spatial constraints (5) to simultaneously optimize the locations and sizes of ROIs 
(6). Within a single subject, all the ROIs are optimized at the same time. 

2.1 Functional Interaction Model 

We derived a functional interaction model from cross wavelet transform (XWT) [6], 
[7] to describe the time-frequency domain interactions. A coherence measure was 
then obtained for each pair of time series to evaluate the interaction patterns with 
respect to the block-based paradigm.  

The core of the model, XWT, is a powerful tool in assessing the multi-scale time-
frequency characteristics between time series. The basis functions, or wavelets, in 
wavelet transform, are localized both in the temporal and frequency domain, 
comparing with the sine wave basis functions in Fourier transform localized only in 
the frequency domain. The time-frequency result from a wavelet transform reveals the 
spectral characteristics at multiple frequencies or scales at different time of the time 
series. By combining the wavelet transforms, XWT uncovers the regions in the time-
frequency domain where both time series share high co-power, which is considered 
and defined as the functional interaction in [6] and this paper. Furthermore, under a 
statistical significance test, XWT suggests the time and frequency/scale where the 
time series have intense interactions. Consider two time series of the same length, X 
and Y, their cross wavelet transform is defined as: 

 ∗= YXXY WWXWT  (1) 

where W denotes continuous wavelet transform (CWT); and WY
* denotes the 

complex conjugation of WY. We used the Morlet kernel [7] and statistical significance 
test of 95% significance level [6], [7]. With this configuration, we obtain a binary 
matrix representation for each pair of time series, denoted as an interaction map: 
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where n is the time index and s is the scale index. Elements in IMXY inside the Cone 
of Influence [6] are always set to zero due to the boundary effect of CWT. The binary 
representation enables us to focus on regions in the time-frequency domain where the 
co-power of the time series are significant. In fact, Fig. 1b is an averaged result of 
hundreds of interaction maps of each time series pair from two ROIs. 

The high-frequency part of the interaction map is of special interest since it 
contains fine interaction patterns at various scales. We derive a binary histogram 
indicator array of interactions HXY for the high-frequency part of the interaction map: 
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A one in the array indicates that the co-power of time series X and Y is significant at 
corresponding time and scale. A zero indicates no interaction in the interaction map.  

The coherence measure was obtained by relating the binary indicator array with the 
block-based paradigm. For a paradigm with M blocks denoted as {B1, B2, …, BM}, 
there are M-1 transition states {S1, S2, …, SM-1} with Sk being the transition state 
between the kth block and the (k+1)th block. A transition indicator array TXY of size 
M-1 is derived from the histogram indicator array HXY to represent the availability of 
any transition state in the interaction map. Specifically, TXY(k)=1 if and only if 
HXY(n1)=1 and HXY(n1)=1, in which n1 is the last time point of the kth block and n1+1 
is the first time point of the (k+1)th block. Simply put, there exist at least two adjacent 
ones in the binary histogram indicator array that covers the transition state k. We 
derive the coherence measure of time series X and Y as: 
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QXY measures how coherent the observed interactions and the paradigm design are 
with regard to the state transitions. This pair-wise coherence measurement was 
extended to ROI-level and network-level through a linear combination. 
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where Ri and Rj are two ROIs; NRi and NRj are the number of voxels in Ri and Rj, 
respectively; Ri(k1) and Rj(k2) are the k1

th and k2
th voxel or time series in Ri and Rj, 

respectively. QROI gives the ROI-level coherence measure. Meanwhile, the network-
level coherence measure is given by: 
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where NROI is the number of ROIs in the network. This network-level measure is 
essentially an average of the ROI-level measures of NROI(NROI-1)/2 possible ROI 
pairs.  
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Our primary focus in this optimization problem is to maximize the network-level 
coherence measure by simultaneously optimizing the location and size of each ROI. 

2.2 Coherence Voting and Spatial Constraints 

To assess the individual significance or coherence of every ROI voxel, we propagate 
the pair-wise coherence values to voxels using a voting strategy. The average vote is 
denoted as its individual coherence value. For the jth voxel in the ith ROI, its individual 
coherence is defined as: 
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This individual coherence value represents how coherent a voxel in an ROI interacts 
with all other ROIs in the network with regard to the block-design paradigm. 
Therefore it is a network-level measure of individual ROI voxels. By optimizing ROIs 
so that they include voxels with higher Qij values, the network-level coherence 
improves as well, since both Qij and Q are linear combinations of the same set of pair-
wise coherence values with positive coefficients. 

While the coherence measurement is meaningful to better localize the ROIs, it is 
possible that the variability and noise in fMRI data could still drag an ROI from its 
true location or change the size to include irrelevant voxels. A second concern regards 
our basic assumption: GLM already provides rough locations of the ROIs. A recent 
study showed that the fMRI-derived activation peak could be shifted a few voxels 
from its true location due to spatial smoothing [8]. Therefore, the optimization 
procedure should not move ROIs too far away from their initial locations. Hence we 
enforce three spatial constraints to regularize the optimization. (1) The search space of 
our optimization routine is limited to grey matter voxels to ensure we extract the right 
time series (grey matter constraint). (2) Voxels far away from the mass center of the 
current ROI are penalized to ensure the ROI does not grow too large (size constraint). 
(3) Voxels far away from the initial location are penalized (movement constraint). 

2.3 ROI Optimization 

Our goal in this optimization problem is to move and/or reshape ROIs to include 
voxels with higher individual coherence values with spatial constraints. A unified 
procedure was employed to add qualified voxels into a ROI or removes certain voxels 
from a ROI. For a candidate voxel v for ROI Ri, its individual coherence value is 
converted to an intrinsic weight: 

 )12exp()(
2

iRivvote Qvp σ−−=  (8) 

where σRi is the standard deviation of all individual coherence values in ROI Ri; Q̄iv  
is the normalized individual coherence value of the candidate voxel v with regard to 
ROI Ri, 0 ≤ Q̄iv  ≤ 1. 
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Finally, the individual coherence value and the spatial constraints are combined for 
each candidate voxel. We obtain the following probability of removal: 

 )()()()( vpvpvpvp votesizemovementremoval =  (9) 

where psize and pmovement are ROI size penalty and movement penalty, respectively. 
Our iterative optimization process is as follows. 

Initialization. Grey matter voxels within 3-voxel distance to the initial locations from 
GLM are included. Note the results are insensitive to the initial size. 

Optimization. In each iteration, only voxels at the surface of each ROI are changed 
since we do not want to create topological issues, e.g. a hole inside a ROI. The actual 
optimization is a two-step procedure. In the first step, all grey matter voxels within 
the neighborhood of surface voxels with probabilities of removal smaller than a 
preselected threshold are included in the optimized ROI. In our experiments, we set 
the threshold to 0.3. The probabilities and weighted mass centers are recalculated. In 
the second step, all surface voxels with probabilities of removal larger than a 
preselected threshold are removed. In our experiments, we set the threshold to 0.7. 
The optimization procedure ends when the ROIs have been stabilized. Our algorithm 
processes all ROIs simultaneously and searches within the whole space (activated 
regions). It is a global search that ensures optimal, instead of suboptimal, solution. 

 

Fig. 3. (a) and (b): Initial ROIs (red) and optimized ROIs (green) of two subjects. Yellow 
arrows indicate rough directions of movement. The average movement is 3.50 mm. (c)-(f): 
individual coherence measures of two ROIs before and after optimization. (c) and (e): ROI 14 
and 15 before optimization. (d) and (f): ROI 14 and 15 after optimization. The voxels are 
colorcoded in their individual coherence measure values. The voxels in transparency are from 
corresponding optimized ROIs in (c) and (e); and are from corresponding initial ROIs in (d) 
and (f) for easier visual comparison. 

3 Results 

We applied the proposed algorithm on a working memory fMRI dataset with twelve 
healthy subjects. The multimodal fMRI and DTI data (only for validation) are 
analyzed by FSL [8]-[10]. Sixteen initial ROIs were derived from GLM results. 
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3.1 Optimized ROIs 

Examples of optimized ROIs are shown in Figs. 3a and 3b. We can see that the 
optimized ROIs are quite close to their initial locations. The overall average 
movement in twelve subjects is 3.50mm (standard deviation: 2.54mm). The average 
size of the optimized ROIs is 40.16 voxels (standard deviation: 6.53 voxels), a 
29.52% drop comparing with initial ROIs. The network-level coherence was 
increased by 14.87% on average, proving that our algorithm is effective in moving 
and reshaping the ROIs. Shown in Figs. 3c-3f are examples of individual coherence 
measures. We can see that the optimized ROIs contain voxels with higher coherence 
values in comparison with the initial ROIs. This visualization further proves the 
effectiveness of our algorithm. 

3.2 Signal Consistency 

Average Z values from the GLM activation detection were calculated for each 
subject. Overall, we did not found any significant difference after optimization. The 
comparable Z values before and after optimization confirms that the optimized ROIs 
are still in the activated regions. We also computed the ratio of the variance of the 
first (principal) component using Principal Component Analysis (PCA). The average 
ratio before and after optimization are 98.3% and 98.2%, respectively. The overall 
functional connectivity measured by Pearson correlation increased by 0.02. These 
results are in line with our expectation to the optimization, which is, increasing the 
functional coherence while maintaining the signal consistency. 

 

Fig. 4. Visualization of fibers connecting to the same ROI before and after optimization for 
three subjects. Each column is one subject. (a), (c), and (e): before optimization; (b), (d), and 
(f): after optimization. Red: initial ROI; green: optimized results. 

3.3 Structural Connectivity 

As an independent validation study, we used structural connectivity pattern derived 
from DTI data to measure the improvements. Specifically, we implemented a similar 
algorithm as the trace map model [11] to quantitatively measure the fiber connections. 
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For fair comparisons, we used FSL FLIRT [12] to register the extracted fibers to a 
template subject. For every pair of subjects we calculated for each ROI the distance 
between their trace map features. The average distance for each ROI was recorded. It 
is interesting that our optimization based on coherent functional interaction patterns 
indeed improves the overall structural consistency measured by the trace-map model, 
by 4.26%. As an example, we visualized the fibers connecting to one ROI for three 
subjects in Fig. 4. It is evident that after optimization, the fibers emanating from the 
same ROI become more consistent (cyan arrows). This further confirms the validity 
of our optimization: both functional and structural connectivity improve. 

4 Conclusion 

In this paper we proposed to simultaneously optimize the locations and sizes of GLM-
derived ROIs based on functional interactions between fMRI time series. Apart from 
the traditional GLM-based approach, a novel wavelet-based interaction model was 
designed to capture the intrinsic interactions and make full use of the block-based 
paradigm by relating the block-based paradigm with high-frequency functional 
interactions. The optimization algorithm is evaluated and validated using GLM 
activation detection results, functional coherence metric, functional connectivity 
consistency, and structural connectivity consistency, and promising results were 
achieved.  

With the availability of these optimized functional ROIs, we will be able to extract 
more accurate and reliable fMRI signals from these ROIs to enable and facilitate other 
important tasks such as assessment of functional dynamics and interactions among 
brain networks and construction of predictive models of functional brain ROIs based 
on consistent structural fiber connection patterns. Our current algorithm is 
individualized. group-wise treatment of those ROIs requires huge amount of 
combinational processing and optimization across multiple brains and is a big 
challenge at the current stage. In addition, it is very difficult to compare fMRI signals 
across individuals due to the vast complexity and variability. In the future, we plan to 
further investigate into the group-wise extension of the proposed approach. Our future 
work also includes applying this approach on more fMRI paradigms and jointly 
optimizing ROIs with structural constraints. 
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Abstract. Statistical analysis of shapes, performed by constructing an
atlas composed of an average model of shapes within a population and
associated deformation maps, is a fundamental aspect of medical imag-
ing studies. Usual methods for constructing a shape atlas require point
correspondences across subjects, which are difficult in practice. By con-
trast, methods based on currents do not require correspondence. How-
ever, existing atlas construction methods using currents suffer from two
limitations. First, the template current is not in the form of a topo-
logically correct mesh, which makes direct analysis on shapes difficult.
Second, the deformations are parametrized by vectors at the same lo-
cation as the normals of the template current which often provides a
parametrization that is more dense than required. In this paper, we pro-
pose a novel method for constructing shape atlases using currents where
topology of the template is preserved and deformation parameters are
optimized independently of the shape parameters. We use an L1-type
prior that enables us to adaptively compute sparse and low dimensional
parameterization of deformations. We show an application of our method
for comparing anatomical shapes of patients with Down’s syndrome and
healthy controls, where the sparse parametrization of diffeomorphisms
decreases the parameter dimension by one order of magnitude.

1 Introduction

Shape statistics is fundamental to medical imaging studies, for instance to char-
acterize normal versus pathological structures or to highlight the effect of treat-
ments on anatomical structures. Usual methods build an average shape model,
called template, that is representative of a shape ensemble, and correspondences
between the template and each subject’s shape, altogether called an atlas. Dif-
ferences appear in the shape model used and the way shapes are put into corre-
spondence. Parametric models, such as medial axis representation [12], extract
low-dimensional shape features, which are averaged and compared across sub-
jects. Non parametric methods are often based on point correspondences across
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shapes with an either fixed or optimized parameterization of the curves or sur-
faces [2,7,9,13]. Homologous point positions are averaged and 3D-deformations
map the average model to the point configuration of each subject, such maps be-
ing used for deriving shape statistics [14,11]. To alleviate the problem of finding
point correspondences across shapes, which is not always possible in practice, one
can compare shapes using the metric on currents [15]. In this framework, shape
statistics are represented by a template current and diffeomorphic 3D mappings
that map the template current to each subject’s shape.

Existing atlas construction approaches using the metric on currents [6,4,3]
suffer from two main limitations. First, the template current is either the super-
imposition of warped surfaces [6] or a set of disconnected normals or tangents
(Dirac currents) [4,3] and therefore is not given as a mesh. It has never been
shown that such templates could be the approximation of a continuous sur-
face. In this sense, these approaches do not preserve the topology of the shapes,
namely the continuity of the surfaces and the number of connected components
of the shapes in the population, thus limiting its practical use for segmenta-
tion purposes, for instance. Second, the template-to-surface deformations are
parameterized by momentum or speed vectors that are at the same location as
the normal or tangent of the template current. However, there is no reason to
link the parameterization of the template shape with the parameterization of
the deformations. The most variable parts of the shape are not necessarily the
parts that require the finest sampling, e.g. the most folded ones. Therefore, the
template shape and the deformations should have independent parameterization.

In this paper, we propose to build a shape atlas using the metric on currents,
but in a way which allow the user to fix the topology of the template mesh,
namely the number of vertices and the edges connecting them, and to optimize
their position in the 3D space. This will be possible due to an optimal control
formulation of the diffeomorphic matching problem in the Large Deformation
Diffeomorphic Metric Mapping paradigm [10,5]. In this formulation, the three
variables to optimize, namely the template shape, the control points positions
and the momentum vectors attached to them that parameterize the deforma-
tions, are seen as the initial conditions of a dynamical system. We derive here the
analytic expression of the gradient with respect to these variables. Additionally,
we use a L1 prior to select the most relevant subset of control points for the
parameterization of the shape variability. Such a sparse and adaptive parame-
terization will be particularly well suited for statistical purposes. We show an
application of our method to a study comparing anatomical features of patients
with Down’s syndrome (DS) and healthy controls, where the sparse parametriza-
tion of shape variability enable statistical analysis in lower dimensional spaces.

2 Shape Atlas Construction

2.1 Joint Estimation of Template and Deformations

The method aims to estimate a template shape X0 and template-to-subjects
deformations φi from a set of shapes X1, . . . ,XNsu . Each Xi denotes a vector
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containing the positions of the vertices of the input shapes, which may be of
different sizes. X0 denotes the vertices of the template shape, whose number and
connectivity is fixed by the user. Only the positions of the vertices of the template
are optimized and not its connectivity, so that the topology of the template
is preserved during optimization. In the framework of Fréchet means [11], we
estimate one template and Nsu deformations φi that minimize the criterion:

E(X0, {φ1, . . . , φNsu}) =
Nsu∑
i=1

D(φi(X0),Xi) + Reg(φi), (1)

where D denotes the squared distance on currents, φi(X0) the deformation of
the template shape X0 and Reg a measure of regularity of the deformations.

2.2 Parameterization of Deformations

We use a mechanical system of self-interacting particles, called control points,
to build dense diffeomorphic deformations [5]. Let c0 = {c0,k} be a set of control
points and α0 = {α0,k} a set of initial momenta of the particles, altogether
called the initial state of the system S0 = {c0,α0}. This set of particles moves
from time t = 0 to t = 1 according to following equations of motion:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ċk(t) =
N∑

p=1

K(ck(t), cp(t))αp(t)

α̇k(t) = −
N∑

p=1

αk(t)
tαp(t)∇1K(ck(t), cp(t))

, (2)

which are such that the energy of the system
∑

i,j αi(t)
tK(ci(t), cj(t))αj(t)

is conserved in time. The kernel K models the interaction forces among the
particles. These equations describe the evolution of the state of the system
S(t) = {ck(t), αk(t)} and can be written in short: Ṡ(t) = F (S(t)) with the
initial condition S(0) = S0.

The motion of the control points defines a diffeomorphism of the whole 3D
space [8]. The speed at position x0 interpolates the speed of the control points:

ẋ(t) =

N∑
k=1

K(x(t), ck(t))αk(t). (3)

This equation shows that the rate of decay of the kernel determines the size of
the neighborhood that is “pulled” by each control point. It can be written in
short as ẋ(t) = G(x(t),S(t)) with the initial condition x(0) = x0. Using the
vertices of the template shape x0 as initial conditions, the integration of this
equation computes the deformation of the template shape X0 = X(0) to X(1)
that is equal to φ(X0) with φ is the diffeomorphism parameterized by S0.
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2.3 Atlas Estimation

The Nsu template-to-subject deformations in the criterion (1) are parameterized
by Nsu vectors Si

0. Each of these vectors serves as the initial condition in (2).
Then, the template deformation is obtained by integration of (2) followed by (3).
We choose to use the same set of control points c0 for all subjects, which defines
a common basis for the deformations parameterization. By contrast, the set of
initial momenta αi

0 are subject-specific. As a regularizer of the deformations, we

use the energy of the set of particles
∑

p,q α
i
0,p

t
K(c0,p, c0,q)α

i
0,q, which is also the

geodesic distance connecting the template to the the ith shape [8]. In order to
select the most relevant subset of control points, we add a L1 penalty to (1), so
that the criterion to minimize writes:

E(X0, c0, {αi
0}) =

Nsu∑
i=1

{
1

2σ2
D(Xi

0(1),Xi) +
∑
p,q

αi
0,p

t
K(c0,p, c0,q)α

i
0,q + γ

∑
p

∥∥∥αi
0,p

∥∥∥
}

(4)

subject to: {
Ṡi(t) = F (Si(t)) with Si(0) = {c0,αi

0}
Ẋi

0(t) = G(Xi
0(t),S

i(t)) with Xi
0(0) = X0

(5)

The first equation in (5) is the equations of motion of the particles, like in (2). The
second equation is deformation of the template parameterized by the particles
motion, like in (3). σ2 and γ balance the data term against the regularization
terms. The variables to be optimized are: (i) the position of the vertices of the
template shape X0, (ii) the position of the control points in the template domain
c0 and (iii) the Nsu initial momenta αi

0 that parameterize each template-to-
subject deformation. In practice, we also regularize the template shape defined
by X0 by applying a penalty on Gaussian curvature of the mesh.

Only the first two terms in (4) are differentiable. As shown in the supplemen-
tary material accessible at the first author’s webpage, the gradient of data term
is given as:

∇αi
0
D = ξα,i(0) ∇cD =

Nsu∑
i=1

ξc,i(0) ∇X0D =

Nsu∑
i=1

θi(0)

where the auxiliary variables ξi(t) = {ξc,i(t), ξα,i(t)} (of the same size as Si(t))
and θi(t) (of the same size as X0) satisfy the linear ODEs:

θ̇i(t) = −(∂1G(Xi
0(t),S

i(t)))tθi(t) with θi(1) =
1

2σ2
∇Xi

0(1)
D(Xi

0(1),Xi)

ξ̇i(t) = −
(
∂2G(Xi

0(t),S
i(t))tθi(t) + dSi(t)F (Si(t))tξi(t)

)
with ξi(1) = 0

(6)

To compute the gradient, one integrates the flow equations (5) forward in time
to build the deformations of the template shape. Then, one computes the gra-
dient of the residual data term ∇D, which serves as initial conditions in (6).
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The ODEs (6) transport this information from each subject’s space back to the
template space, where the final value of the auxiliary variables θ(t) (resp. ξ(t))
is used to update the template (resp. the control point positions and momenta).

To optimize (4), which combines differentiable terms denoted EL2 with an
L1 penalty, we use an adapted gradient-descent scheme called Fast Iterative
Shrinkage and Thresholding Algorithm [1]. The template and control points are
not affected by the L1 term and are updated using a gradient-descent step at
each iteration. By contrast, the momenta αi

0,p are updated according to:

αi
0,p ← Sτγ

(∥∥∥αi
0,k − τ∇αi

0,k
EL2

∥∥∥) αi
0,k − τ∇αi

0,k
EL2∥∥∥αi

0,k − τ∇αi
0,k
EL2

∥∥∥ , (7)

where τ is the current step-size of the gradient descent and S the usual soft-
thresholding function Sλ(x) = max(0, x − λ) + min(0, x + λ). This function
zeroes out the momenta that are too small in magnitude, thus ensuring sparsity
in the parametrization of deformations.

The parameters of the algorithm are the trade-offs σ and γ, the standard
deviation of the Gaussian kernels for the momenta σV and the currents metric
σW [15,4]. We initialize the template shape with an ellipsoid for each connected
component of the shapes, the control points with a regular lattice of step σV ,
and the initial momenta are set to zero.

3 Results

We apply our method to a study that seeks to compare neuroimaging, genetics,
and neurotransmitter properties of patients with Down’s syndrome and healthy
controls. We construct an atlas from surfaces of three different deep brain struc-
tures: amygdala, hippocampus, and putamen (Fig. 1). We initialize the atlas
with one ellipsoid for each of the three anatomical structures, and we initialize
the control points with a regular lattice of 650 points. After the optimization, the
template shapes capture the common anatomical features across the populations
(Fig. 2-left), and are given as meshes with the same topology as the initial set
of ellipsoids. The parameterization of the template-to-subject deformations were
also optimized: control points are moved toward the surfaces (where their the-
oretical optimal locations are, as shown in [15]) and the sparsity prior selects a
subset of control points (99 out of 650) that carry a non-zero momentum vector.
Results were generated using σ = 10−4, γ = 3× 106, σV = 5, and σW = 2.

By comparison, we show the atlas built with the method of [4] in Fig. 3.
The template shape is given as a set of disconnected normals: the continuity
of the surfaces and the number of connected components of the input shapes
have not been preserved. Moreover, the template-to-subjects deformations are
parameterized with momenta located at the same place as the template normals.
By contrast, our method optimized the position and the number of the control
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Down’s syndrome patients (8 in total) Control subjects (8 in total)

Fig. 1. Sample input shapes where hippocampus, amygdala, and putamen are shown
in yellow, blue, and cyan respectively

Initial template Deformation momenta to 2 Down’s syndrome patients

Final template Deformation momenta to 2 control subjects

Fig. 2. Atlas construction: template shape (left) and parameterization of the template-
to-subject deformations (right). The template is initialized with an ellipsoid per con-
nected components (top-left). After the optimization, the template shapes still have
the same topology as the sample shapes. Simultaneously, template-to-subjects deforma-
tions are estimated, which are parameterized by the momentum vectors (red arrows).
The vectors are located at the position of the control points, which are the same for
all subjects. Control point positions were initialized as the nodes of a regular lattice,
and our algorithm moves the control points to their optimal position near the surfaces
and selects the most relevant ones according to the sparsity prior.

points independently of the vertices of the template shapes. Consequently, defor-
mations are parameterized by more than 40 times fewer momenta. Constraining
the template to remain a mesh has not introduced bias in the estimation: the
norm of the difference between the templates generated by the two methods is
3.4 × 10−5, which is much smaller than the standard deviation and below the
usual threshold of 3 times standard deviation to decide statistical significance.

We construct a common template for the combined DS and healthy popula-
tions, and perform a Principal Component Analysis (PCA) on the momentum
vectors for each population separately. The results in Fig. 4 show that the two
populations contain different variability at different objects and at different loca-
tions within each object. The sparse momentum vectors enable statistical anal-
ysis in lower dimensional space which has great potential for clinical studies.
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[4] Our method [4] Our method

Fig. 3. Comparison of hippocampus template generated using [4] and our method. Ar-
rrows indicate the momenta driving the registration of the template to the first subject.
Our method generates topologically correct mesh as opposed to triangle normals, and
with momenta that are not constructed to be located at the surface triangles.

Means −λ +λ −λ +λ
DS vs Control DS Control

Fig. 4. Statistical analysis of momentum vectors for Down’s syndrome (DS) and
healthy control population. Left: template deformed according to the average momenta
for DS (red) and control (yellow). Center and Right: Templates deformed according to
the first mode of PCA on momentum vectors for DS and control population, demon-
strating the different modes of variability. Colors indicate the magnitude of displace-
ment from the population mean shape (in mm).

4 Conclusions

We propose a new method for estimating shape atlases using the currents met-
ric. In contrast to [6,4], the template shape is given as a mesh that has the
same topology as the shapes in the population and the parameterization of the
template-to-subject deformations were optimized independently of the template
shape. We use a single gradient descent for estimating the template and the defor-
mations, in contrast to the alternating minimization in [6,4]. This scheme is much
more efficient than using the matching pursuit technique and shows good con-
vergence properties, even with the most naive initialization. Our non-parametric
method makes use of the metric on currents, which enables the use of shapes
without point correspondences, and therefore with minimal pre-processing.

The method also provides automatic parametrization of diffeomorphisms for
mapping subjects within a population, where the parameters are constrained
to lower dimensional spaces. We demonstrated the potential for these sparse
parametrizations for performing statistical analysis on shapes from Down’s syn-
drome and healthy control population groups, which can enable future research
correlating brain function, anatomy, and neurocircuitry.
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In the future, we plan to analyze the robustness and statistical power of the
parametrizations provided by our method, in particular in High Dimension Low
Sample Size (HDLSS) settings that are typical in imaging studies of populations.
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Abstract. Connectivity matrices obtained from various modalities
(DTI, MEG and fMRI) provide a unique insight into brain processes.
Their high dimensionality necessitates the development of methods for
population-based statistics, in the face of small sample sizes. In this
paper, we present such a method applicable to functional connectivity
networks, based on identifying the basis of dominant connectivity compo-
nents that characterize the patterns of brain pathology and population
variation. Projection of individual connectivity matrices into this ba-
sis allows for dimensionality reduction, facilitating subsequent statistical
analysis. We find dominant components for a collection of connectivity
matrices by using the projective non-negative component analysis tech-
nique which ensures that the components have non-negative elements
and are non-negatively combined to obtain individual subject networks,
facilitating interpretation. We demonstrate the feasibility of our novel
framework by applying it to simulated connectivity matrices as well as
to a clinical study using connectivity matrices derived from resting state
magnetoencephalography (MEG) data in a population of subjects diag-
nosed with autism spectrum disorder (ASD).

1 Introduction

Although the neurological origin of many brain disorders is still unknown, com-
putational techniques applied to neuroimaging data help unveil the underly-
ing functional or structural differences between patient and typically developing
(TD) populations. Many brain disorders such as ASD and schizophrenia are be-
lieved to be due, in part, to altered brain connectivity [1–4]. Hence, connectivity
analyses of brain function has received considerable attention as an indicator of
or biomarker for brain disorders. Such studies have investigated the functional
or structural connectivity networks using fMRI, DTI, EEG, or MEG recordings
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by calculating correlation, synchronization, or mutual information measures and
interpreting abnormalities such as deficient long-range connections [1, 3].

A number of analysis approaches exists to utilize connectivity methods to
investigate the underlying brain processes occurring during rest as well as un-
der specific task conditions. A successful analysis methodology must possess a
means of identifying relevant sub-networks providing an interpretable represen-
tation of the brain activity, while also facilitating the statistical analysis able to
describe how this representation is affected by disease. The approach taken here
is the decomposition of connectivity matrices into dominant components while
enforcing positivity of both the components and coefficients. Such a decompo-
sition maintains the interpretation of each component as a connectivity matrix
and the coefficients as activations of those networks while providing a succinct
low dimensional representation of the population amenable to statistical analy-
sis. The traditional approaches, principal and independent components analyses
(PCA and ICA), used for investigating brain networks [5, 6] provide dimen-
sionality reduction but lack the necessary constraints that provide a physiologic
interpretability of the decomposition.

In this paper, we present the projective non-negative component analysis to
identify the dominant functional connectivity networks in a population. These
networks form a basis of variation in the population that could be due to dif-
ferences in age, pathology, gender, etc. The non-negativity constraint on both
components and the coefficients allows the interpretation of a difference in the
coefficient of a particular component as a change in the degree to which it is
activated. Additionally, the connectivity components are nearly orthogonal. The
orthogonality of components with non-negative elements happens only when
they do not share non-zero dimensions, leading to sparsity [7, 8]. Such unique
analysis enables us to obtain the dominant networks, thereby providing a global
view of the brain processes and how they are affected by disease.

The applicability of the proposed method is demonstrated in simulated con-
nectivity matrices while comparing it with an alternate form of basis decom-
position. While the method is generalizable to any type of connectivity matrix
from alternate modalities, in this work we apply it to electrophysiological func-
tional connectivity networks computed from resting-state MEG data by using
the synchronization likelihood (SL) analysis [9]. This novel approach utilizes the
high temporal resolution of MEG data, allowing an accurate characterization of
the functional coupling between different areas of the brain. When coupled with
a suitable analysis framework, such as the proposed, MEG based connectivity
promises valuable insights into the temporal dynamics of brain states that is
unavailable from other modalities as well as how they are affected by pathology.

2 Methods

2.1 Projective Non-Negative Component Analysis (PNCA)

We hypothesize that each connectivity matrix obtained from recording the brain
activity of a subject is a linear combination of several fundamental connectivity
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matrices called connectivity components. Due to the symmetry of connectivity
matrices, a vector of all elements of the upper triangular part of any connectivity
matrix is considered as a representative of that matrix, and is used as an obser-
vation vector yi for the corresponding subject i. To compute the connectivity
components whose mixture approximately constructs the observed connectivity
matrices, a matrix factorization model is used as follows.

Y ≈ WΦ, (1)

where columns of Y p×q, i.e. yi (1 ≤ i ≤ q), are the SL connectivity matrix
representatives, and columns of W p×r, i.e. wj (1 ≤ j ≤ r), are representative
of the basis connectivity components, i.e. the upper triangular elements of the
matrix of the corresponding connectivity component. These components (wj)
are then mixed by the elements of each column of the loading matrix Φr×q to
approximate the corresponding column of Y [10, 8].

Assuming that Φ is the projection of Y onto W , i.e. Φ = W TY , the non-
negativity constraint on the elements of W and Φ makes our non-negative
component analysis an optimization problem of minimizing the cost function
F (W ) = ‖Y −WW TY ‖2 with respect to W , where ‖.‖ represents the ma-
trix norm. Considering the Frobenius norm, the optimization problem can be
denoted by [10]

min
W≥0

F
fro

(W ) = min
W≥0

trace
{(

Y −WW TY
) (

Y −WW TY
)T}

. (2)

The above cost function can be minimized by a gradient descent approach, i.e.
updating Wi,j = Wi,j − ηi,j

∂F
∂Wi,j

with a positive step-size ηi,j where

∂F

∂Wi,j
= −4

(
Y Y TW

)
i,j

+2
(
WW TY Y TW

)
i,j

+2
(
Y Y TWW TW

)
i,j
. (3)

The gradient descent updating, as stated above, does not guarantee to keep the
elements of W non-negative. However, due to the positivity of the elements of
Y and by applying positive initialization to W , our non-negativity constraint is
guaranteed by having the step-size as follows

ηi,j =
1
2Wi,j

(WW TY Y TW )i,j + (Y Y TWW TW )i,j
, (4)

which results in the following multiplicative updating procedure [10]

Wi,j = Wi,j

2
(
Y Y TW

)
i,j

(WW TY Y TW )i,j + (Y Y TWW TW )i,j
. (5)

For stability of the convergence, at each iteration, W is normalized by W =
W

‖W‖2
. Starting by initial random positive elements onW , the iterative procedure

will converge to the desired W ≥ 0 whose columns are PNCA. Each obtained
component wj (the jth column of W ) is then normalized by its norm ‖wj‖,
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and correspondingly the coefficients, i.e. elements of the matrix Φ = [ϕji], are
adjusted as ϕji =

ϕji

‖wj‖ : 1 < i < q.

The resulting non-negative coefficients are an indicator of the weight of the
corresponding component in reconstructing the original connectivity matrices.
Therefore, we rank each component wj based on the average of corresponding
coefficients, i.e. 1

q

∑q
i=1 ϕji.

2.2 Group PNCA Model for SL Networks

As stated by (1), the q connectivity observations, i.e. yi : 1 ≤ i ≤ q, in the
matrix Y are approximated by

[y1,y2, . . . ,yq] ≈ [w1,w2, . . . ,wr]

⎡⎢⎣ϕ11 ϕ12 . . . ϕ1q

...
...

...
ϕr1 ϕr2 . . . ϕrq

⎤⎥⎦ . (6)

Each observation vector per subject i is thus, approximately reconstructed by

yi ≈
r∑

j=1

ϕjiwj =
r∑

j=1

(
wT

j yi

)
wj ; 1 ≤ i ≤ q. (7)

Let us suppose, with no loss of generality, that the first q1 elements are from the
first group (e.g. population of ASD) and the remaining from the second group
(e.g. TD group). Thereby, the role of each component wj in reconstructing the
corresponding connectivity vector in the first group, i.e. yi : 1 ≤ i ≤ q1, is
characterized by the corresponding coefficients ϕji; and so forth for the second
group. Therefore, the statistical significance between the set of {ϕji : 1 ≤ i ≤ q1}
and {ϕji : q1 + 1 ≤ i ≤ q} describes the importance of the corresponding basis
connectivity component wj in differentiating the two groups.

2.3 Synchronization Likelihood (SL) Connectivity Networks

Time-frequency synchronization likelihood assumes that two signals are highly
synchronized if a pattern of one signal repeats itself at certain time instants
within a time period while the other signal repeats itself at those same instants
[9]. Such signal patterns at a time instant ti of channel k can be represented by
an embedding vector xk,ti = [xk(ti), xk(ti+l), . . . , xk(ti+(m−1)l)] where l is the
lag and m is the length of the embedding vector. l and m are typically set to
l = fs

3hf
and m =

3hf

lf
+ 1 where fs is the sampling frequency, and hf and lf are

the high and low frequency contents of the signal, respectively [9]. At each time
instant ti, the Euclidean distance is measured between the reference embedding
vector xk,ti and the set of all other embedding vectors at times tj , i.e. xk,tj ,

where tj lies in the range ti − tw2

2 < tj < ti − tw1

2 or ti +
tw1

2 < tj < ti +
tw2

2

(in this work tw2 was set to 10 sec and tw1 = 2l(m−1)
fs

). Then, nref nearest

embedding vectors xk,tj are retained [9].
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This procedure is conducted for each channel k and each time instants ti.
Then, the SL between channel k1 and channel k2 at time instant ti is the number
of simultaneous recurrences in the two channels divided by the total number of
recurrences, i.e. SLti = nk1k2/nref . The synchronization likelihood at all the
time instants ti are then averaged yielding the final SL between the two channels.

3 Results

3.1 Simulation Experiments

In order to demonstrate the effectiveness of the proposed method of PNCA in
identifying the true underlying connectivity components, we apply our method to
simulated connectivity matrices. We compare this with ICA which is the most
widely-adopted method for similar purposes. The simulation is performed by
using random non-negative numbers as the elements of three 10× 10 simulated
symmetric SL matrices plus a small background random (non-negative) noise.
Ten linear mixtures of the simulated connectivity matrices are composed by a
random mixing matrix with non-negative elements. The upper triangular part
(excluding the diagonal) of the 10 connectivity matrices are vectorized to form
the 10 columns of Y 45×10. We apply the fast ICA algorithm [11] as well as
the proposed technique in Sect. 2.1 to solve for r = 3 normalized components
as columns of W 45×3. For visualization, the SL matrices and the elements of
the resulting components from fast ICA and PNCA algorithms are displayed by
grayscale images. The results are shown in Fig. 1. It can be seen that while our
method produces the right components (as compared to the original components
in Fig. 1(a)), ICA is unable to resolve the components correctly. This is due to
the fact that ICA forces the components to be statistically independent (i.e. with
covariance of identity) whereas PNCA forces the components to be non-negative
and orthogonal which leads to localized components due to sparsity. Please note
that the resulting components are not ranked and ordered in Fig. 1.

3.2 PNCA on MEG SL Connectivity Networks

Dataset and preprocessing. Our dataset consisted of 48 children subjects
(26 ASD’s and 22 TD’s) aged 6-15 years (mean=10.1, SD=2.3 in ASD, and
mean=11.0, SD=2.5 in TD). A standard t-test showed that the populations’
age difference was not statistically significant (p − value > 0.19). All subjects
reported are free from medication use. Resting-state data were collected by a
275-channel MEG system, 274 channels being effective at the time of recording,
with three head-position indicator coils to monitor head motion and ensure im-
mobility. After a band-pass filter (0.03-150 Hz), MEG signals were digitized at
1200 Hz and downsampled offline to 500 Hz. Eye-blink artifacts were removed
by learning the pattern of eye blinks and deleting that component from the data.

The recordings are then used to calculate the 274× 274 SL matrices for delta
(0.5–4 Hz) frequency band using a fourth order Butterworth bandpass filter. This
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(a) Original components (b) 10 mixtures of original components

(c) Fast ICA components (d) PNCA components

Fig. 1. The results of fast ICA and PNCA on the simulated SL matrices. (a) The simu-
lated SL matrices as the original components. (b) 10 linear mixtures of the components
by random weightings. (c) The solution of fast ICA. (d) The solution of PNCA.

could be computed in any frequency band, but ASD studies, e.g. [1], have shown
delta band anomalies and hence we concentrate on the delta band. Therefore,
a total of 26 and 22 SL matrices are obtained for 26 ASD and 22 TD subjects,
respectively. The upper triangular (excluding the diagonal) elements of each SL
matrix are concatenated to make a vector of 274×273

2 = 37401 elements which
form one column of Y 37401×48.

Component Analysis. In order to determine the number of components used
in the PNCA decomposition, we separately apply PCA to the aggregated con-
nectivity vectors of populations of ASD, TD, and pooled ASD and TD (needed
for a joint statistical analysis). The PCA findings indicated that a decomposi-
tion consisting of five (r = 5) components would account for 93% to 95% of
the total variance. The PNCA is applied to the three cases of ASD (Y 37401×26),
TD (Y 37401×22), and pooled ASD and TD (Y 37401×48), and the model of (1) is
solved for five components (W 37401×5) for each of the three population cases.
The resulting 37401-length connectivity components at each column of W are
then used to form the corresponding 274×274 symmetric connectivity matrices.
Figure 2 shows the resulting five connectivity components on the MEG sensor
map. These components are ranked here (left to right) based on the descending
average of their corresponding coefficients in each of the three population cases.
The averages of the coefficients are given in Table 1.

A statistical group analysis, as described in Sect. 2.2, was performed over the
resulting PNCA coefficients, i.e. ϕji. The two-sample t-test is applied to the
coefficients of each normalized connectivity component from the pooled AST–
TD and the p−values and t−values are given in Table 1.

We see that the average of the first component weights (ϕ1i) are statisti-
cally smaller in constructing the SL connectivity matrices of the ASD group
compared to the TD group. Interestingly, this is the most dominate compo-
nent, ranked by the average of the corresponding coefficients, in the pooled
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(a) Connectivity components of ASD

(b) Connectivity components of TD

(c) Connectivity components of pooled ASD and TD

Fig. 2. PNCA connectivity components plotted on the MEG sensor map and sorted
based on their average coefficients

Table 1. PNCA component ranking and statistical group analysis

Component ASD TD Pooled ASD-TD ASD-TD ASD-TD
No. Average Average Average group group

Coeff’s Coeff’s Coeff’s p−value t−value

1 10.2 11.4 9.7 0.02 -2.3
2 6.2 6.4 7.0 0.32 -1.0
3 6.0 4.8 5.7 0.75 +0.3
4 4.6 4.6 5.0 0.28 -1.1
5 2.0 2.8 2.8 0.23 +1.2

population, and is quite similar to the most dominant components determined
from the separate ASD and TD populations. This component can be interpreted
as the default connectivity network observed in the resting brain. It is also no-
table that the presence of the fourth and fifth components of ASD indicates
strong short range frontal connectivity diminished in TD, while the fourth com-
ponent in TD population, with clear long range connectivity, is not found in the
ASD set of components. Together these support intact default connectivity in
ASD with evidence for diminished long range and enhanced short-range connec-
tivity in ASD; a finding consistent with other connectivity analysis investigations
in autism [1].
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4 Conclusion

We have presented a non-negative component analysis technique for learning lo-
calized and part-based sparse components of non-negative connectivity matrices.
The algorithm is based on non-negative projections which produces non-negative
bases and coefficients by a gradient descent approach minimizing a Frobenius
norm of the reconstruction matrix error. We applied it to the simulated con-
nectivity matrices which showed more accurate component findings compared
to the well-known ICA technique. The proposed method is then applied to the
novel problem of investigating MEG derived SL connectivity matrices, within a
group study of ASD. The projections of the connectivity elements onto the com-
ponents revealed statistically significant differences between how the ASD and
TD functional connectivity matrices are composed of their fundamental connec-
tivity components. The presented technique represents a framework, in principle
capable of handling other types of functional or structural connectivity networks
from any modality for statistical group analysis or feature selection.
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Abstract. Neuroimage analysis based on machine learning technologies has 
been widely employed to assist the diagnosis of brain diseases such as 
Alzheimer's disease and its prodromal stage - mild cognitive impairment. One 
of the major problems in brain image analysis involves learning the most 
relevant features from a huge set of raw imaging features, which are far more 
numerous than the training samples. This makes the tasks of both disease 
classification and interpretation extremely challenging. Sparse coding via L1 
regularization, such as Lasso, can provide an effective way to select the most 
relevant features for alleviating the curse of dimensionality and achieving more 
accurate classification. However, the selected features may distribute randomly 
throughout the whole brain, although in reality disease-induced abnormal 
changes often happen in a few contiguous regions. To address this issue, we 
investigate a tree-guided sparse coding method to identify grouped imaging 
features in the brain regions for guiding disease classification and interpretation. 
Spatial relationships of the image structures are imposed during sparse coding 
with a tree-guided regularization. Our experimental results on the ADNI dataset 
show that the tree-guided sparse coding method not only achieves better 
classification accuracy, but also allows for more meaningful diagnosis of brain 
diseases compared with the conventional L1-regularized Lasso.   

1 Introduction 

Neuroimaging data, such as magnetic resonance image (MRI) and fluorodeoxyglucose 
positron emission tomography (FDG-PET), provides a powerful in vivo tool for aiding 
diagnosis and monitoring of brain diseases, such as Alzheimer's disease (AD) and mild 
cognitive impairment (MCI) [1, 2]. Recently, many machine learning and pattern 

                                                           
* This work was partially supported by NIH grants EB006733, EB008374, EB009634, AG041721, 

and MH088520, Medical and Engineering Foundation of Shanghai Jiao Tong University (No. 
YG2010MS74), and NSFC grants (No. 61005024 and 60875030). 



240 M. Liu et al. 

 

recognition technologies, e.g., support vector machines (SVM), have been investigated 
for analysis of brain images to assist the diagnosis of brain diseases [1-6]. However, the 
original neuroimaging data of the whole brain is often of huge dimensionality, and their 
direct use for control-patient classification is not only computationally expensive, but 
also could lead to low performance since not all features are relevant to disease 
pathology. Thus, feature extraction and selection are necessary and important for 
identifying the most relevant and discriminative features for guiding classification. 

Morphological analysis of brain images has been widely used to investigate the 
pathological changes related to the brain diseases. One popular method is to group 
voxels into multiple anatomical regions, i.e., regions of interest (ROIs), through the 
warping of a pre-labeled atlas, and then extract regional features such as anatomical 
volumes for guiding the classification [1, 7, 8]. However, this approach to anatomical 
parcellation may not adapt well to the diseased-related pathology since the abnormal 
region may be part of ROI or span over multiple ROIs. To address this issue, Fan et 
al. [9] proposed to adaptively partition the brain image into a number of most 
discriminative brain regions according to the similarity computed based on correlation 
of image features with respect to the class labels. Then, regional features were 
extracted for brain disease classification. In addition to significantly reduce the 
feature dimensionality, this method is also robust to noise and registration error. 
However, the extracted regional features are generally very coarse and not sensitive to 
small local changes, thus affecting classification performance. Although this 
limitation could be potentially solved by voxel-wise analysis method [10], i.e., using 
voxel-wise features for classification, the number of voxel-wise features from the 
whole brain is often very large (i.e., in millions), while the number of training 
samples is very small (i.e., in hundreds) in the neuroimaging study. This could also 
cause a significant drop in performance for high-dimensional classification methods, 
such as support vector machines (SVM) [11]. Therefore, it is important to 
significantly reduce the number of voxel-wise features before performing 
classification.  

So far, many feature reduction and selection techniques have been proposed to 
select a small number of discriminative features for brain classification. Principal 
Component Analysis (PCA) is one of the popular methods to reduce the feature space 
to the most discriminant components [12]. It performs a linear transformation of the 
data to a lower dimensional feature space for maximization of data variance, and thus 
cannot always detect features from those localized abnormal brain regions. Another 
popular method is to select the most discriminative features and eliminate the 
redundant features in terms of the correlations of the individual features to the group 
difference such as t-test [3]. However, this selection method does not consider the 
relationships of imaging features, thus limiting its ability to detect the complex 
population difference.   

Recently, L1-regularized sparse coding methods, e.g., Lasso, was proposed and 
used to sparsely identify a small subset of input features to best represent the outputs 
[13], and promising results were obtained. However, the selected features by L1-
regularization may distribute randomly throughout the whole brain, although in reality  
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the disease-induced abnormal changes often happen in a few number of contiguous 
brain regions, instead of isolated voxels. This makes the interpretation of 
classification results very difficult. Actually, spatially adjacent voxels of a brain 
image are usually correlated, thus the coefficients assigned to them during the L1-
regularization should have similar magnitudes in order to reflect their underlying 
correlations. Recently, a group sparse coding (Lasso) method with the hierarchical 
tree-guided regularization was proposed as an extension of Lasso to consider the 
underlying structural information among the inputs or outputs [14, 15]. In this paper, 
we propose to apply this tree-guided group Lasso method to identify the relevant 
biomarkers with the structured sparsity from MR images for brain disease 
classification. The hierarchical relationships of the imaging features in the whole 
brain are imposed in the regularization of sparse coding by a tree structure. Our 
experimental results on ADNI database demonstrate that, in addition to better classify 
the neuroimaging data of AD and MCI, the proposed classification algorithm can also 
identify the structured relevant biomarkers to facilitate the interpretation of 
classification results.   

2 Method 

Assume we have M training brain images, with each represented by a N-dimensional 
feature vector and a respective class label. The classification problem involves 
selection of the most relevant features and also decoding the disease states of the 
images, i.e., the class labels. It is observed that there are only a few brain regions 
affected by the disease. Thus, sparsity can be incorporated into the learning model for 
feature selection and disease classification. 

2.1 L1-Regularized Sparse Coding (Lasso) 

Let X denote a N×M feature matrix with the m-th column corresponding to the m-th 
image’s feature vector , … , , … , ∈  and y be a class label vector 
of M images with  denoting the class label of the m-th image. A linear model can 
be assumed to decode the class outputs from a set of features as follows:   

 ε (1) 

where , … , , … ,  is a vector of coefficients assigned to the respective 
features, and ε is an independent error term. The least square optimization is one of 
the popular methods to solve the above problem. When N is large and the number of 
features relevant to the class labels is small, sparsity can be imposed on the 
coefficients of the least square optimization via L1-norm regularization for feature 
selection [13, 16]. The L1-regularized least square problem, i.e., Lasso, can be 
formulated as:                                      min                                                                            2  
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where λ is a regularization parameter that controls the amount of sparsity in the 
solution. The non-zero elements of α indicate that the corresponding input features are 
relevant to the class labels.  

The L1-regularized sparse coding provides an effective way to select a small subset 
of features by taking into account the correlations of individual features to the class 
labels. However, the structural relationships among the features, which are an 
important source of information, are ignored in this method. In some situations, the 
associated features should be jointly selected to identify the complex population 
difference. For example, the disease-induced abnormal changes often happen in the 
contiguous regions of brain image, instead of isolated voxels.  

2.2 Tree-Guided Sparse Coding  

To reduce the feature dimensionality while taking into account the structural 
relationships among the features, group Lasso was proposed as an extension of  
Lasso to use the groups of features instead of individual features as the units of 
feature selection [14]. In the regularization of sparse coding, group Lasso applies L1-
norm penalty over the feature groups and L2-norm penalty for the features within 
each group. It assumes that the groupings of features are available as prior knowledge. 
However, in practice, a prior knowledge about the structures and relationships among 
the brain imaging features is not always available. In many applications, the features 
can be naturally represented using a tree structure to reflect their hierarchical spatial 
relationships. A tree-guided group lasso was proposed for multi-task learning where 
multiple related tasks follow a tree structure [14].  

The brain image shows spatial correlations between the neighboring voxels, 
forming groups of different sizes and shapes. In this work, we propose to apply a tree 
structure to represent the hierarchical spatial relationships of brain image structure, 
with leaf nodes as the imaging features and internal nodes as the groups of features. A 
regularization predefined by the tree structure can be imposed on the sparse coding 
optimization problem to encourage a joint selection of structured relevant features. 
Fig. 1 shows a hierarchical tree structure imposed on a sample brain image. Assume 
that an index hierarchical tree T of d depth levels with  , … , , … ,  
containing  nodes in the ith level, 0 . The different depth levels indicate 
the variant scales of feature groups. The index sets of the nodes in the same level have 
no overlapping while the index sets of a child node is a subset of its parent node. The 
tree-guided group Lasso (sparse coding) method can be formulated as:   

                            min                                    3  

where  is the set of coefficients assigned to the features within node ,  is a 

predefined weight for node  and is usually set to be proportional to the square root 
of the group size, and the number of depth levels d is set to 3 as in Fig.1. The features 
with non-zero coefficients are finally selected for further classification.   
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Fig. 1. Illustration of the tree structure using 2D slice as an example: (a) the subimages in 
different levels of tree and (b) the hierarchical tree nodes and leaves 

2.3 Classification 

Based on the selected imaging features by the tree-guided sparse coding method, a 
classifier model will be trained to make the final classification. There are various 
classifier models investigated for classification of brain diseases. Among them, SVM 
is one of the widely used classifiers because of its high classification performance [1, 
7, 9, 12]. SVM constructs a maximal margin classifier in a high-dimensional feature 
space by mapping the original features using a kernel-induced mapping function. We 
choose the SVM model with a linear kernel and implement it using MATLAB SVM 
toolbox and the default parameters to train a classifier with the selected features for 
classification.   

3 Experiments 

We evaluate the proposed classification algorithm with the T1-weighted baseline MR 
brain images of 643 subjects, which include 196 AD patients, 220 MCI subjects, and 
227 normal controls (NC), randomly selected from Alzheimer's Disease 
Neuroimaging Initiative (ADNI) database. Table 1 provides a summary of the 
demographic characteristics of the studied subjects (denoted as mean ± standard 
deviation). Before performing classification, the image preprocessing was performed 
as follows. All MR brain images were first skull-stripped and cerebellum-removed 
after a correction of intensity inhomogeneity [17]. Then, each image was segmented 
into three brain tissues, i.e., gray matter (GM), white matter (WM), and cerebrospinal 
fluid (CSF), which were spatially normalized onto a standard space by a mass-
preserving deformable registration algorithm [18]. The spatially normalized tissues 
are called as tissue densities in this paper. To reduce the effects of noise, registration 
inaccuracy, and inter-individual anatomical variations, tissue density maps were 
further smoothed using a Gaussian filter and then down-sampled by a factor for the 
purpose of saving the computational time. 
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Table 1. Demographic 
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AD 196
MCI 220
NC 227
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For interpretations, we show the selected image features by both the L1-regularized 
and tree-guided Lasso methods, with their own best regularization parameters, in Fig. 
3 and 4 for AD vs NC and MCI vs NC classifications, respectively. We can see that 
the spatial overlaps between the L1-regularized and tree-guided Lasso methods are 
usually at the most relevant regions such as hippocampus, entorhinal cortex, and 
parahippocampal gyrus. But the features selected by L1-regularized Lasso are 
irregularly distributed throughout the whole brain, while the features selected by tree-
guided Lasso are usually grouped at the relevant regions which are able to facilitate 
the interpretation of the obtained results. We evaluated that the resulting regions 
identified by tree-guided Lasso include hippocampus, entorhinal cortex, 
parahippocampal gyrus, and amygdala, which are consistent with those reported in the 
literature for AD and MCI studies [4, 5, 7]. These results verify the effectiveness of 
the tree-guided sparse coding method in incorporating the spatial structure and 
relationships of imaging features for guiding the disease classification and also 
identification of grouped relevant features.   

4 Conclusion 

In this paper, a sparse coding method with a tree-guided regularization is investigated 
to sparsely identify the grouped relevant biomarkers for brain disease classification. 
The tree-guided regularization is used to capture the hierarchical spatial relationships 
among the imaging features. Thus, the tree-guided sparse coding can provide an 
effective way to identify the meaningful biomarkers for brain disease classification 
and interpretation. Experimental results on ADNI dataset show that the proposed 
method not only identifies the grouped relevant biomarkers but also achieves better 
classification performance than the conventional L1-regularized Lasso method. 
Although we test this method only on classification of MR images for AD and MCI 
diagnosis, the similar idea can be extended and applied to other neuroimaging 
modalities for diagnosis of AD or other brain diseases. 
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Abstract. Typical cohorts in brain imaging studies are not large enough
for systematic testing of all the information contained in the images. To
build testable working hypotheses, investigators thus rely on analysis
of previous work, sometimes formalized in a so-called meta-analysis. In
brain imaging, this approach underlies the specification of regions of in-
terest (ROIs) that are usually selected on the basis of the coordinates of
previously detected effects. In this paper, we propose to use a database
of images, rather than coordinates, and frame the problem as transfer
learning : learning a discriminant model on a reference task to apply it
to a different but related new task. To facilitate statistical analysis of
small cohorts, we use a sparse discriminant model that selects predictive
voxels on the reference task and thus provides a principled procedure to
define ROIs. The benefits of our approach are twofold. First it uses the
reference database for prediction, i.e. to provide potential biomarkers in
a clinical setting. Second it increases statistical power on the new task.
We demonstrate on a set of 18 pairs of functional MRI experimental
conditions that our approach gives good prediction. In addition, on a
specific transfer situation involving different scanners at different loca-
tions, we show that voxel selection based on transfer learning leads to
higher detection power on small cohorts.

Keywords: Meta-analysis, fMRI, multiple comparison, machine
learning.

1 Introduction

Multi-subject or multi-condition experiments are the workhorse of bio-medical
imaging research, whether it be drug development or basic research. Imaging
provides a wealth of information on the biomedical problem at hand. However the
typical sample size is too small to fully exploit this information. For this reason,
investigators often turn to previous studies in order to formulate hypotheses and
restrict the search space, i.e. select a subset of anatomical or functional structures
of interest to the current study. A typical case is that of early-stage clinical
trials, for which the group size is very small, but that are most often based on
previous results concerning the pathology under study. However, understanding
the literature is increasingly difficult and requires a systematic approach, that
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takes the form of a meta-analysis, pooling results from multiple experiments that
address a set of related research hypotheses [1].

In particular, brain imaging studies heavily rely on such meta-analyses [2],
as the brain is still an ill-understood and complex organ. In functional Mag-
netic Resonance Imaging (fMRI) studies, typical group sizes range from 10 to 20
subjects, which is not always enough to warrant the reliability of brain-wide anal-
ysis [3]. More importantly, the time that can be spent in the scanner by subjects
is limited, and not all interesting experimental conditions will be acquired.For
this reason, it is common practice to reduce the study to a set of regions of
interest (ROIs) extracted from the literature. Investigators define these ROIs
by extracting locations of peak activations from the literature [4], or from coor-
dinate databases such as BrainMap [5]. While most of these meta-analyses are
conducted on activation coordinates, the increase of data sharing opens the door
to meta-analysis on full brain images which results in higher statistical power [6].
Previous statistical and modeling work on meta-analysis for fMRI has focused
on better modeling of the reference database [2].

In this work, we are interested in the generalization power of meta-analyses on
new data. We introduce a new meta-analysis method using a reference database
of images to guide statistical analysis of a new dataset. In particular we rely on
predictive models, useful to learn biomarkers, and use them to select relevant
voxels in order to increase the statistical power of a new study.

2 Methods

Problem setting. We start from a reference database made of l experiments, each
comprising nl contrasts possibly acquired over multiple subjects. We denote

the brain images by X l ∈ Rnl,p with associated experimental condition yl ∈
Rnl

. Given a new experiment, denoted target, (X�,y�) ∈ (Rn�,p,Rn�

), we are
interested in two problems: i) (biomarkers) can we predict y� from X�? ii)
(inference) can we test hypotheses on the links between y� and X�, for instance
in a linear model? These are ill-posed problems from the statistics standpoint,
as n� � p. The root of the problem is the dimensionality of the data: medical
images are composed of many voxels, typically p ≈ 50 000 with fMRI. This large
number of descriptors limits statistical inference power due to multiple testing;
a problem that appears in predictive approaches as the curse of dimensionality.
Here, we use our reference database to better condition this statistical problem.

Transfer learning. The gist of our approach is to learn on some experiments of
our database (X l,yl) discriminative models that contain predictive information
for the target experiment (X�,y�). In machine learning, this problem is known as
transfer learning [7]. The underlying assumption of transfer learning is the same
as that for meta-analysis: the reference database should contain some common
information with the target experiment. Here we use a simple form of transfer
learning: we train a linear classifier on an experiment in the database that is
similar from the neuroscientific point of view to the new data, and use it to
predict the labels of the new data.
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Selecting predictive features. We use a sparse linear classifier, specifically an
�1-penalized logistic regression. The motivation behind this choice of classifier
is that it produces a sparse set of weights that can be used to select relevant
voxels. In particular, under certain conditions, the classifier can recover with
high probability the complete set of k features in X that are predictive of y for
a sample size of nmin = O

(
k log p

)
[8]. The logarithmic dependence in p is an

appealing property in view of the dimensionality of medical imaging datasets.
In practical situations, it can be hard to control the errors on this feature

selection, in particular as it depends on the choice of the amount of �1 penalty.
For this reason, Meinshausen and Bühlmann [9] introduce randomized variants
of sparse estimators, that can be seen as sampling the posterior probability of
selection and keeping only features that are selected frequently. In particular,
they establish non-asymptotic recovery results for the randomized lasso, which
consists in applying the Lasso on random subsamples of the data and rescaling
of the regressors. Here, we adapt this strategy to classification as the logistic
regression is locally equivalent to a weighted least square and recovery results
can carry from square-loss regression to logistic regression [8].

We want to use transfer learning to perform screening of the voxels, i.e. elim-
inate many voxels that are not related to our target experiment. For this pur-
pose, we need a low probability of rejecting relevant variables. Each iteration
of the sparse logistic regression in the randomized logistic can select reliably
only kmax ≈ n/ log p variables. In the worst case situation, we have k heavily-
correlated variables and one of them is selected at random by the sparse logistic
regression at each iteration. For each of these variables, the probability of select-
ing it less than s times during m iterations of the randomized logistic is given
by the cumulative distribution function of a binomial with per trial success ra-
tio 1/k. If s ≤ m/k, by Hoeffding’s inequality, this probability goes to zero in
o
(
expm

)
. In other words, if we impose a threshold τ = s/m on the selection

frequency, we can recover a group of k correlated variables for τ ≤ 1/k.

Brain parcellations. Although randomization relaxes the conditions on recovery,
a remaining necessary condition is that the regressors of interest, i.e. the values
xi across the subjects of the k predictive voxels, must be weakly correlated1.
Because of the large amount of smoothness present in medical images, in partic-
ular in group-level fMRI contrasts, these conditions cannot be satisfied. Indeed,
values taken by a voxel are very similar to values taken by its neighbors. In
addition, the numbers of subjects used in fMRI are often below the sample size
required for good recovery. For these reasons we resort to feature agglomeration:
using hierarchical clustering to merge neighboring voxels carrying similar infor-
mation into parcels [10]. This strategy brings the double benefit of reducing the
problem size, and thus the required sample size, and mitigating local correlation,
at the expense of spatial resolution.

1 Specifically, the condition for recovery with randomized lasso it is a lower bound on
the conditioning of the sparse eigenvalues of the design matrix [9, theorem 2] and
for sparse logistic regression the corresponding condition is a lower bound on the
eigenvalues of the regressors of interest’s covariance matrix [8, theorem 4].
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3 Experiments and Results

3.1 FRMI Datasets

We use 3 studies for this meta-analysis. The first study (E1 ) [11] is composed
of 322 subjects and was designed to assess the inter-subject variability in some
language, calculation, and sensorimotor tasks. The second study (E2 ) is similar
to the first one in terms of stimuli, but its data was acquired on 35 pairs of twin-
subjects. The last study (E3 ) [12] characterizes brain regions in charge of the
syntactic and the semantic processing for the language. It was performed with
40 subjects, 20 of which were stimulated by pseudowords (jabberwocky stimuli)
instead of actual meaningful sentences. All the studies were pre-processed and
analyzed with the standard fMRI analysis software SPM5. The data used for this
work are the statistical images resulting from the intra-subject analyses across
the 3 studies. E1 has 34 contrasts images available, E2 56, and E3 28. The raw
images were not always acquired on the same scanner. E1 has data from a 3T
SIEMENS Trio, and a 3T Brucker scanner; E2 data were acquired on a 1.5T
GE Signa; and E3 images come from the same 3T SIEMENS Trio.

3.2 Experimental Results for Prediction

Here we are interested in the prediction problem: using transfer learning to dis-
criminate a pair of constrasts with an estimator trained on two other contrasts.

We used 4 different approaches to learn the discriminative models. The first
approach relies on the activation likelihood estimate (ALE) method [13], as this
is a commonly published method for coordinate-based meta-analyses. We extract
the activation positions from the contrasts maps, and then apply a Gaussian ker-
nel. We use the preferred FWHM of 10mm [14]. The other approaches directly
use the contrast images. We name raw contrasts the method based on the con-
trasts voxels values; contrast-specific parcels the method that uses parcels from
the training set: and meta-analystic parcels the method that learns parcels from
the full database. We evaluate on our base of contrasts the ability to do transfer
learning, i.e to learn decision rules that carry over from one situation to another.
Since we must make the assumption that the reference contrasts hold common
information with the contrasts of interest, we do not try out all the possible com-
binations, but rather manually select pairs of contrasts from a single experiment
that form a meaningful classification task (e.g., computation versus reading,
or Korean language versus French language). Out of all the possible combina-
tions, we select 35 pairs of classification task, and subsequently combine them
into 18 transfer pairs, on which it is reasonable to think that the transfer could
occur (e.g., computation and reading in visual instructions, transfer on com-
putation and reading in auditory instructions). We first train a linear classifier
within 6-fold cross validation test on a first set of pairs, setting the penalization
amount by nested cross-validation, we call this step inline learning. We then
re-use the discriminative model on a different pair of contrasts to perform the
transfer learning. The 3 studies containing language related tasks, we can trans-
fer between pairs within an experiment, and across experiments. Among the 18
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selected transfer pairs, we find that 9 can give rise to such a transfer. Since a
transfer is directed, we perform it both ways, which yields once again 18 transfer
pairs to test upon. The associated prediction scores from the different methods
are reported in Table 1. The general observation is that ALE yields a poorer
prediction performance than any other method. This is true both for the trans-
fer and inline predictions. We also find that brain parcellations scores similar to
the raw contrasts images, and closer to the inline predictions. We find that while
the contrast-specific parcels and meta-analytic parcels methods do not return the
same parcels, they produce very close results. We can thus use the full database
to learn a single reference parcellation to perform meta-analysis.

Table 1. Prediction scores for inline and transfer learning. trans.= transfer; in.= inline;
comp.= computation, sent.= sentences (reading), jabb.= jabberwocky; S= sentence
with one word constituents, L= one constituent long sentence.

Names Peaks Contrasts Parcels Meta parcels

trans. in. trans. in. trans. in. trans. in.

E1, comp./sent. → E2, comp./sent. 0.75 0.85 0.88 0.97 0.83 0.96 0.83 0.96
E2, comp./sent. → E1, comp./sent. 0.66 0.83 0.88 0.96 0.85 0.95 0.85 0.96
E3, jabb./French (L) → E3, jabb./French (S) 0.46 0.48 0.65 0.67 0.62 0.60 0.67 0.62
E3, jabb./French (S) → E3, jabb./French (L) 0.52 0.71 0.67 0.85 0.71 0.85 0.65 0.79
E3, jabb./French (L) → E2, Korean/French 0.65 0.46 0.73 0.79 0.65 0.81 0.76 0.85
E2, Korean/French → E3, jabb./French (L) 0.73 0.81 0.79 0.85 0.75 0.81 0.75 0.75

Fig. 1. Prediction performance
relative to the best performing ap-
proach: inline prediction with raw
contrasts images: the p-values indi-
cate whether the associated meth-
ods are significantly poorer than
the best performing method.
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3.3 Experimental Results for Inference

Here we are interested in the inference problem: using transfer learning to help
hypothesis testing on a target dataset. In the following, we only consider a spe-
cific transfer, namely the last line in Table 1: we learn a model discriminating
French native speakers reading French or Korean, and apply it on another exper-
iment in which French subjects had to read French or jabberwocky. This transfer
is interesting as it involves two different experiments acquired on different scan-
ners, and cognitive paradigms that share a similar expression, incomprehension
of visual language stimuli. As can be seen in Table 1, the prediction scores of
transfer learning as well as inline learning on this pair are acceptable although
not excellent: French language and jabberwocky are difficult to separate.

Figure 2 gives the stability scores of the randomized logistic discriminating
reading Korean from reading French for the different set of features –activation



Meta-analysis by Transfer-Learning 253

peaks, raw contrasts, parcels learned on the training contrasts or on the full
database. We can see that while learning at the voxel level or at the parcel
level gives similar prediction performance (Table 1), the stability score maps
are very different. At the voxel-level, with 70 subjects (p = 40 000, n = 70)
the recovery is limited to approximately 7 voxels without randomization: the
recovery conditions are violated. As a result, the randomized logistic selects only
the most predictive voxels. On the parcels, contrast-specific or meta-analytic
(i.e., learned on the full database), the selection frequency highlights regions of
the brain that are known to be relevant for language comprehension, including
the left anterior superior temporal sulcus and the part of the temporal parietal
junction (Wernicke’s area).

We threshold the stability selection scores of the first experiment (Korean vs
French) to select candidate voxels for the target experiment (jabberwocky vs
French). As we want to perform a rough screening and would rather err on the
side of false detections than false rejections, we take a very low threshold τ = .01.
Following our analysis above, the size of the largest group of correlated features
that we can detect with such a threshold is on the order of 1/τ ≈ 100. With
2000 parcels, this number corresponds to 5% of the brain, i.e. 8 000 voxels, and
we can safely consider that no fMRI contrasts is composed of groups of heavily
correlated features larger than this fraction.

On the target experiment, we perform a standard group-level analysis
with the voxels selected, testing for the difference between the two conditions,
jabberwocky or French reading. We report results with p-values corrected for
multiple comparisons at a given family-wise error rate (FWER) using Bonfer-
roni correction, and for a given false discovery rate (FDR) using the Benjamini-
Hochberg procedure. On table 2, we compare the number of detections and the
detection rate, i.e. the fraction of voxels detected as significantly different, for a

Activation peaks Raw contrasts

Contrast-specific parcels Meta-analytic parcels

Fig. 2. Stability scores of the randomized logistic on the Korean versus French predic-
tion of E2 for the different set of features: the colormap represents the frequency at
which a feature, parcel or voxel, was selected. The maps are thresholded at 1%.
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Fig. 3. Q-Q plots for the p-values with and without voxel selection by transfer learning,
as well as FDR=0.05 threshold: left for a cohort size n� = 10, middle for a cohort
size n� = 20, right for a cohort size n� = 40

Table 2. Number of detections at p < 0.05 for difference cohort size, for transfer
learning and ANOVA. The percentage of detection is indicated in parenthesis.

FWER corrected FDR corrected
n� All voxels Selection ANOVA All voxels Selection ANOVA

10 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
20 0 (0%) 3 (0.02%) 0 (0%) 0 (0%) 4 (0.027%) 0 (0%)
40 5 (0.0084%) 33 (0.22%) 2 (0.0014%) 143 (0.97%) 1339 (9%) 201 (1.4%)

full brain analysis and for an analysis limited to the voxel selection. We compare
our voxel selection method to a one-way ANOVA, and find that transfer learn-
ing outperforms the ANOVA for all the cohort sizes. Figure 3 shows the Q-Q
plots on which the Benjamini-Hochberg procedure is applied. We find that voxel
selection by transfer learning improves both the absolute number of detections
and the detection rate for FWER and FDR correction.

4 Conclusion

In this paper, we propose to improve the conditioning and power of statistical
analyses in imaging studies, using a large meta-analytic database.

In a transfer learning scheme, we train on the database sparse discriminative
models that are suited to the target experiment. Not only can the predictive
power of these models can be useful to establish biomarkers, but also they per-
form feature selection that can increase the statistical power of a standard group
analysis on new experiments, provided enough predictive features (voxels) can
be recovered. Using brain parcellations, the discriminative model acts to screen
parcels unlikely to be relevant in the target experiment, thus defining automat-
ically ROIs.

Using a set of 3 fMRI studies related to language, we confirm experimentally
that our transfer learning scheme is able to: i) perform accurate predictions
on experiments acquired on a different scanner and with varying paradigm, ii)
outperform the standard meta-analysis procedures based activation peaks, iii)
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increase the statistical power in the target experiment by using the ROIs defined
by the discriminative model.

In this work we manually select the contrast pairs since it is delicate to in-
terpret a transfer learning score without good knowledge of the cognitive or
clinical conditions under study. Future work will study automatic contrast pairs
selection, e.g. by mining the descriptions of the experiments [4], to address the
problem of synthesizing the ever-growing literature and data in medical research.
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Abstract. Preterm birth increases the risk of perinatal brain injury and
is believed to initiate a cascade of processes causing white matter damage
resulting in subsequent neurological deficit; neonatal magnetic resonance
imaging provides a number of potential biomarkers of this deficit. In this
work we unify measures of the cortical folding pattern and of white mat-
ter integrity to establish correlation between grey and white matter de-
rived properties. Diffusion weighted MRI has revealed that the cortical
grey matter in the extremely preterm period exhibits a strong transient
radial organisation suggesting neuronal axons are orientated towards the
underlying white matter. This effect is lost during cortical maturation
and is considered no longer visible on MRI at term equivalent age. Here
we show that, in a group of 19 infants, radial organisation in the cor-
tical grey matter remains detectable at term-equivalent age and that
there is a strong anterior-posterior asymmetry. A group of three infants
with moderate or severe abnormal white matter abnormality have signif-
icantly higher cortical grey matter radial organisation (p < 0.02), higher
grey matter FA (p < 0.01) and a lower measure of cortical complexity
(p < 0.03) than infants with normal or mild abnormal white matter ab-
normality; all measures associated with the preterm phenotype before
term equivalent age. The novel combination of state-of-the-art imaging
techniques, analysing grey-matter based spatial characteristics, may pro-
vide insight into the mechanism of neurodevelopmental deficits seen in
infants with abnormal MR imaging at term equivalent age.

1 Introduction

Preterm brain injury is increasingly recognised to be an amalgamation of specific
brain injury and abnormal brain development [1]. Advances in MR techniques
including volumetric and cortical surface analysis [2] have begun to define dif-
ferences in the brains of preterm infants imaged at term compared to term
born controls and thus can help define biomarkers for prediction of subsequent
neurodevelopment outcome. This preterm brain phenotype extends beyond re-
duction in volume and anisotropy of the cortical white matter to encompass
decreased volume in the cortical grey matter, basal ganglia and cerebellum.

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 256–263, 2012.
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Very preterm birth coincides with a period of rapid brain growth and develop-
ment [1]. During this period there is proliferation and migration of neurones from
the subventricular zone to the cortex by radial migration. This results in radial
cortical organisation; axons within the cortex lie perpendicular to the cortex, and
this appears to be observed using diffusion tensor imaging as highly organised
directional diffusion with consequent high fractional anisotropy. Examination of
the principal eigenvectors suggest that axons are orientated perpendicular to
the cortical surface towards the underlying white matter [3,4]. During normal
cortical maturation the progressive development of multiple associative cortical
interconnections results in a loss of this diffusion pattern by 35 weeks post men-
strual age [3]. In addition, measures of gyrification are found to correlate with the
underlying grey matter diffusion properties [5], although not after adjustment
for gestational age at birth.

As preterm white matter injury is associated with a reduction in cortical grey
matter volume we hypothesise it may also be associated with abnormal corti-
cal development and organisation including higher cortical fractional anisotropy,
lower white matter fractional anisotropy and the continued presence of cortical
radial organisation visible on MRI at term equivalent age. In addition, measures
of gyrification are found to correlate with the underlying grey matter diffusion
properties [5]. We therefore also aim to correlate these findings to measures of
cortical folding in babies with and without white matter injury on conventional
MR imaging. Here, we develop a novel algorithm to specifically detect residual
radial structure in the preterm cortex and show that its presence may be sig-
nificantly higher in infants with moderate or severe white matter abnormality.
The algorithm uses state-of-the-art image analysis techniques to develop, to the
best of our knowledge, the first description of radial cortical architecture in very
preterm infants at term equivalent age. Addressing this neonate-specific neuro-
science question using such a technique may provide insight into the mechanism
of neurodevelopmental deficits seen in infants with abnormal MR imaging at
term equivalent age.

2 Methods

In this section we describe the steps needed to form the algorithm used for radial
structure detection, comprising image segmentation, cortical surface extraction
and diffusion parameter estimation and provide details of the 19 subject cohort
of preterm infants scanned at term equivalent age.

2.1 Segmentation and Cortical Surface Analysis

Segmentation of the grey and white matter components of each infant is carried
out using an adaptive neonatal-specific segmentation algorithm1 [6]. The segmen-
tation method estimates the cortical grey and white matter regions within an

1 Available as part of the niftyseg package at: sourceforge.net/projects/niftyseg/

sourceforge.net/projects/niftyseg/
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expectation maximisation routine whilst simultaneously spatially relaxing priors
over the tissue classes. The algorithm incorporates a Markov random field for
noise reduction, automated bias field correction and an implicit partial volume
strategy. The interface between the segmented grey and white matter is found
using a level-set technique, extracting a function at the surface upon which the
gradient and curvature are implicitly defined at every position [7]. The boundary
between grey and white matter is optimised using an evolving level set (1);

δφ

δt
+ (λss(x, t)− λcc(x, t))||∇φ(x, t)|| = 0 (1)

solving a partial differential equation for the function φ(x, t) combining a signed
distance function from the boundary, s, and a restriction on the curvature of the
resulting function, c, with scalar weighting parameters λs = 0.1 and λc = 0.4
respectively. The level set is initialised along the white matter boundary and the
result is a map of signed distances from the optimised GM/WM boundary.

We define measures of the gradient and curvature on this implicit surface,
similar to the method used in [7]. The gradient of the level set is defined as
perpendicular to the surface whilst the local Hessian matrix of second order
derivatives can be use to define two curvatures; the eigenvalues of the local
Hessian matrix define the principal curvatures, κ1 and κ2 (with κ1 > κ2) which
summarise the local shape. Explicitly we define the signed shape index, S (2),
describing how cup-like or saddle-like the surface is [8].

S =
2

π
tan−1

(
κ2 + κ1
κ1 − κ2

)
(2)

The distribution of the absolute values of shape index found on the surface
may be summarised by the standard deviation of the absolute values of the
shape index (implying that gyri and sulci are indistinguishable). Briefly, if the
cortex has a complicated folding pattern, this is likely to introduce a larger
range of possible shape-index values, and thus the standard deviation of this
distribution, σS , will also be high. In contrast to global or slice-wise measures like
the gyrification index, defined either automatically or manually [9,5], the shape
index is defined at every position on the cortex, thus the standard deviation
statistic may be defined over any arbitrary region.

2.2 Diffusion Imaging and Registration

Local fibre orientation in each voxel of the cortical grey matter is estimated by
fitting the probabilistic ball and (two) stick model [10], thus each voxel contains a
measure of its diffusivity and an estimate of the principal diffusion direction used
to infer the underlying fibre orientation. Mean diffusivity images are registered
to a single baseline and the diffusion information is then combined with the
segmentation result by affine registration between the T1w image and the mean
diffusivity image. Subsequently the GM, WM and level set segmentations are
propagated to the diffusion space and we define the fractional anisotropy (FA)
image in order to investigate spatial and group trends in the GM and WM FA.
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2.3 Radial Structure Detection

After registration between the level set and the diffusion images, the radial direc-
tion perpendicular to the cortex in the diffusion space is defined by the gradient
of the level set, g (Equation 3). If, at any position, the principal diffusion direc-
tion [10] in the grey matter, p, is parallel to the gradient of the level set function,
the structure of the cortical grey matter can be considered radial (Equation 3).
This measure of radial structure should not be confused with the radial com-
ponent of the directional diffusivity given by the sum of the second and third
eigenvalues of the diffusion tensor which has been shown to correlate with gesta-
tional age at birth [5]. Figure 1c illustrates the technique, relating the principal
diffusion direction found using the ball and stick model to the direction across
the underlying GM/WM boundary.

d = |ĝ · p̂| (3)

Integrating this function over the entire cortex results in a summary measure, D,
of the radial structure for each infant, Equation 4 in spherical polar coordinates2.

D =

∫ π

−π

∫ π

0

∫ ∞

0

|ĝ · p̂|r2sinφδrδφδθ (4)

The measure, D, may also be subdivided into segments, δθ in the axial plane,
θ (D(θ, δθ)), to observe any intra-subject spatial relationship along the medial
lateral and anterior-posterior directions. This direction is expected to show the
major trends in the folding pattern [9] and be sensitive to the known pattern
of white matter myelination [11]. In any region of the cortex, D(θ, δθ) may be
compared with the underlying average grey and white matter FA and also to the
standard deviation of absolute shape index values as described above, thus any
observed radial structure can be correlated with known measures of cortical grey
and white matter maturation. Visualisation of this information is provided using
axially orientated rose plots; data is divided into segments and summary values
found over each segment is presented by angle in the axial plane whilst the radius
at any point represents the magnitude of the associated parameter. This style
of visualisation allows variation in the observed parameters to be contrasted in
the anterior-posterior and medial-lateral directions.

2.4 Data

Twenty infants born very preterm (less than 32 weeks completed gestation)
underwent an MRI at term equivalent age. High-resolution T1-weighted imag-
ing (0.39 × 0.39 × 1mm) and 2x30 directional diffusion tensor imaging (b =
600s.mm−2 at 0.9× 0.9× 3mm) were acquired alongside two unweighted images

2 Analytically, the expected value of the radial structure measure D over any arbitrary
region containing an isotropic random distribution of grey matter diffusion directions
is D = 0.5. Interestingly, this result is a 3D extension of the classic Buffon’s needle
problem.
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Fig. 1. Axial colour-coded FA slices for a) normal white matter appearance and b)
moderate white matter abnormality visible on DTI. Note the suggestion of radially
(perpendicular to the cortex) organised structure in the prefrontal cortex in b). c)
illustrates the relationship between the principal diffusion direction found using the
ball and stick model and the direction of the underlying GM/WM boundary.

and clinical T2 weighted images (3mm slices). One infant was subsequently re-
moved from the study due to the presence of motion artefacts in the diffusion
weighted sequence. Conventional MRI was assessed for WM abnormality using
an established qualitative scoring system based on a grading system of 5 scales
[12]. Images were scored by an experienced neuroradiologist blinded to clini-
cal history and neurodevelopmental outcome. WM abnormality was classified as
normal/mild or moderate/severe [12].

3 Results

Of the 19 babies analysed 11 were males, the average gestation was 25.8 weeks
(range 22.9-30.7) with average birthweight of 822g (range 447-1185g). MR imag-
ing was obtained at 40.8 weeks post menstrual age (range 38.3-44 weeks). Three
babies were classified as moderate / severe white matter injury. The remaining
16 babies were classified as normal / mild using an established white matter
scoring system [12].

Figure 1 shows colour-coded FA maps for four subjects, red colour coding cor-
responds to medial-lateral principal diffusion direction (PDD), green to anterior-
posterior PDD and blue to superior-inferior PDD; pixel intensity represents the
FA value. Figure 1a shows one infant with normal white matter appearance
and little visible radial grey matter organisation. Figure 1b shows one infant
with moderate white matter abnormality. The radial detection measure is calcu-
lated for the 16 infants with normal /mild white matter abnormality and for the
3 infants with moderate/severe white matter abnormality. Figure 2 illustrates
the change in cortical grey and white matter properties with angle in the ax-
ial plane for the normal/mild group when divided into 64 equal angle segments
(the anterior-posterior direction is aligned along the 90− 270o axis). Figure 2a
measures the radial organisation (Equation 3) showing increased radiality in
the frontal and pre-frontal region relative to the occipital region even at term
equivalent age. In addition the pattern is broadly symmetric along the medial-
lateral axis. Figure 2b and c illustrate the corresponding average cortical grey
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Fig. 2. Rose plots of each parameter with angle in the axial plane (normal/mild white
matter abnormality group only): a) radial organisation measure; b) average GM FA
value; c) average WM FA value (with each axial segment) and d) absolute shape index
standard deviation. All plots show the mean in black, the grey region is ±σ.

and underlying white matter FA values (calculated using the propagated seg-
mentations) for each segment. The average grey matter FA is broadly isotropic
around the cortex and appears higher in the pre-frontal region relative to the
occipital region. The corresponding white matter pattern suggests higher FA
along the medial-lateral axis, possibly representing the partial myelination of
the corticospinal tracts. Total average grey and white matter FA are negatively
correlated (r = −0.56, p < 0.02), which concords with the expected trajectories
of white and grey matter maturation; the average FA associated particularly
with the corticospinal tracts increases with gestation age whilst the observed
grey matter FA reduces as a result of increased cortical inter-connectivity [5].
Figure 2d plots the standard deviation of the shape index values found in each
region of the cortex, representing a measure of the cortical folding pattern. The
cortical folding pattern is more complicated posterior than anterior. The total
shape index standard deviation has a non-significant negative correlation with
the grey matter FA (r = −0.30, p = 0.22).

Figure 3a and b show the spatial radial structure measure (Equation 3, μ±σ)
for the normal/mild and moderate/severe white matter abnormality groups
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Fig. 3. Rose plots of radial structure for: a) normal or mild white matter abnormality
(n=16) and b) moderate or severe white matter abnormality (n=3). All plots show
the mean in black, the grey region is ±σ. The value of D (Equation 4) is found to be
significantly higher in the moderate/severe white matter abnormality group than the
normal/mild group (p < 0.02), although the group sizes are disparate.

respectively. The moderate/severe group has a significantly higher measure of
radial structure (D, Equation 4) than does the normal/mild group (p < 0.02),
although the correlation is low. Additionally, the moderate/severe white mat-
ter abnormality group has significantly higher grey matter FA (p < 0.01) and
significantly lower shape index standard deviation (p < 0.03) than infants with
normal/mild white matter abnormality. Each of these features is associated with
the preterm phenotype before term equivalent age, although it is not clear which
is most informative.

4 Discussion

This work has used a combined analysis of segmentation and diffusion proper-
ties in both the grey and white matter to suggest a link between white matter
abnormality on conventional MRI and structural organisation in very preterm
infants scanned at term equivalent age. White and grey matter diffusion prop-
erties correlate with structural cortical folding information and retention of the
preterm radial cortical architecture at term equivalent age in a small group of
babies with moderate to severe white matter abnormality, particularly in the
prefrontal cortex. The presence of this radial organisation in the cortex at term
equivalent age may suggest that moderate to severe white matter abnormality
is associated with a delay or disruption in normal cortical maturation, although
we emphasise that the small group size makes general inference difficult. To
our knowledge this is the first description of radial cortical architecture in very
preterm infants at term equivalent age and may provide insight into the mecha-
nism of neurodevelopmental deficits seen in infants with abnormal MR imaging
at term equivalent age. Further work with serial MR acquisitions through the
preterm period and beyond in combination with long term neurodevelopmental
followup may help identify the nature of these changes and their association with
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outcomes in childhood. Furthermore, formalisation of this technique into a ro-
bust analysis of grey-matter based spatial statistics may be a useful complement
to existing white-matter techniques.
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Abstract. Sparse learning has recently received increasing attentions in 
neuroimaging research such as brain disease diagnosis and progression. Most 
existing studies focus on cross-sectional analysis, i.e., learning a sparse model 
based on single time-point of data. However, in some brain imaging 
applications, multiple time-points of data are often available, thus longitudinal 
analysis can be performed to better uncover the underlying disease progression 
patterns. In this paper, we propose a novel temporally-constrained group sparse 
learning method aiming for longitudinal analysis with multiple time-points of 
data. Specifically, for each time-point, we train a sparse linear regression model 
by using the imaging data and the corresponding responses, and further use the 
group regularization to group the weights corresponding to the same brain 
region across different time-points together. Moreover, to reflect the smooth 
changes between adjacent time-points of data, we also include two smoothness 
regularization terms into the objective function, i.e., one fused smoothness term 
which requires the differences between two successive weight vectors from 
adjacent time-points should be small, and another output smoothness term 
which requires the differences between outputs of two successive models from 
adjacent time-points should also be small. We develop an efficient algorithm to 
solve the new objective function with both group-sparsity and smoothness 
regularizations. We validate our method through estimation of clinical cognitive 
scores using imaging data at multiple time-points which are available in the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.  

1 Introduction 

Neuroimaging plays an important role in characterizing the neurodegenerative process 
of many brain diseases such as Alzheimer’s disease (AD). At present, a lot of pattern 
classification and regression methods have been developed for brain disease diagnosis 
and progression. Recently, sparse learning techniques have attracted more and more 
attentions due to their excellent performances in a series of neuroimaging applications 
on different modalities. For example, in a recent study [1], a voxel-based sparse 
classifier using L1-norm regularized linear regression model, also known as the least 
absolute shrinkage and selection operator (LASSO) [2], was applied for classification 
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of AD and mild cognitive impairment (MCI) using magnetic resonance imaging 
(MRI) data, showing better performance than support vector machine (SVM) which is 
one of the state-of-the-art methods in brain imaging classification. 

Following LASSO, several other advanced sparse learning models (i.e., LASSO 
variants) have also been recently used for solving problems in neuroimaging 
applications. For example, in [3], the elastic net which extends LASSO by imposing 
extra L2-norm based regularizer to encourage a grouping effect, was recently used for 
identifying both neuroimaging and proteomic biomarkers for AD and MCI using MRI 
and proteomic data. In [4], a generalized sparse regularization with domain-specific 
knowledge was proposed for functional MRI (fMRI) based brain decoding. More 
recently, group LASSO [5], based on L2,1-norm regularization, was used for jointly 
learning multiple tasks including both classification tasks (e.g., AD/MCI vs. healthy 
controls) and regression tasks (e.g., estimation of clinical cognitive scores) using MRI 
data in [6] and multimodal data including MRI, fluorodeoxyglucose positron emission 
tomography (FDG-PET) and cerebrospinal fluid (CSF) in [7], respectively. Here, the 
assumption of both methods is that multiple regression/classification variables are 
inherently related and essentially determined by the same underlying pathology, i.e., 
the diseased brain regions, and thus they can be solved together. 

One commonplace of all above mentioned methods (i.e., LASSO and its variants) 
is that they aimed for cross-sectional analysis. In other words, only single-time-point 
imaging data (input) and single-time-point responses (output) are used for learning 
models in those methods. However, in some practical brain imaging applications, 
multiple-time-point data and/or multi-time-point responses are often available, thus 
longitudinal analysis can be performed to better uncover the underlying disease 
progression patterns [8]. According to the number of time-points in input and output 
of learning models, we can categorize them into the following four different learning 
problems: 1) Single-time-point Input and Single-time-point Output (SISO), 2) Single-
time-point Input and Multi-time-points Output (SIMO), 3) Multi-time-points Input 
and Single-time-point Output (MISO), and 4) Multi-time-points Input and Multi-time-
points Output (MIMO). Fig. 1 gives an illustration for these four different learning 
problems, with more detailed explanations given later in Section 2. To the best of our 
knowledge, most existing sparse models are aimed for the SISO problem (Fig. 1(a)), 
and it remains unknown in the literature on how to effectively use the longitudinal 
information in sparse learning to solve the other three problems (Fig. 1(b)-(d)). 

In this paper, we address the above problems, i.e., SIMO, MISO and MIMO, which 
involves longitudinal information in either output or input or both. For this purpose, 
we develop a novel temporally-constrained group LASSO method, named as 
tgLASSO, which simultaneously includes the group regularization and the 
temporally smoothness regularization into its objective function. On one hand, as in 
group LASSO (gLASSO), for each time-point we train a sparse linear regression 
model by using the corresponding imaging data and responses at that time-point, and 
further use the group regularization to group the weights corresponding to the same 
brain region across different time points together. On the other hand, to reflect the 
smooth changes between adjacent time-points of data, we also introduce two 
smoothness regularization terms: 1) fused smoothness term which originates from 
fused LASSO [9] , for constraining the differences between two successive weight 
vectors from adjacent time-points to be small; 2) output smoothness term, for 
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constraining the differences between outputs of two successive models from adjacent 
time-points to be small. To the best of our knowledge, no previous sparse models ever 
use both the group-sparsity and the (fused plus output) smoothness regularizations 
into the objective function, for which we further develop a new efficient algorithm. 
We will use our proposed method for estimating clinical cognitive scores, e.g., Mini 
Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale - 
Cognitive Subscale (ADAS-Cog), by using MRI data from different time-points. 

 

 

Fig. 1. Illustration on four different learning problems. Here, each edge represents a model, and 
the nodes xj and yj denote the imaging data (input) and clinical scores (output) at j-th time-
point, respectively.  

2 Method 

In this section, we will introduce our temporally-constrained group LASSO 
(tgLASSO) method for longitudinal data analysis. We will first give our motivation 
and problem formulation in Section 2.1, followed by providing the objective function 
in Section 2.2 and the algorithmic solution in Section 2.3. 

2.1 Motivation and Problem Formulation 

Because of the neurodegenerative property of many brain diseases, e.g., AD and MCI, 
patients usually undergo a series of temporal changes reflected in MRI data and 
clinical scores (e.g., MMSE and ADAS-Cog for AD). Here, we want to estimate the 
clinical scores using MRI data. There are four different learning problems according 
to different number of time-points in both MRI data (input) and clinical scores 
(output), as shown in Fig. 1. 

In the first learning problem, i.e., SISO as shown in Fig. 1(a), we want to estimate 
the clinical scores at a certain time-point, e.g., time-point 1 (baseline), by using 
imaging data from single time-point (e.g., baseline). Because both input and output 
are from single time-point, no longitudinal information is involved in this problem, 
and it can be easily solved by the existing sparse linear models, e.g., LASSO. 

In the second learning problem, i.e., SIMO as shown in Fig. 1(b), we want to 
estimate the clinical scores at each time-point (ranging from 1 to T), by using imaging 
data from single time-point 1 (baseline). Similarly, in the third learning problem, i.e., 
MISO as shown in Fig. 1(c), we want to estimate the clinical scores at time-point T, 
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by using imaging data from all time-points (from 1 to T). Finally, in the fourth 
learning problem, i.e., MIMO as shown in Fig. 1(d), we want to estimate the clinical 
scores at each time-point j, by using imaging data from its corresponding time-point j, 
for j =1, …, T. 

Unlike the first learning problem (SISO), the last three learning problems all 
involve longitudinal information, and thus cannot be directly solved using the existing 
sparse models. Also, it is worth noting that SIMO can be gotten from MIMO if setting 
xj = x1 (for j =1, …, T), and similarly MISO can be gotten from MIMO if setting yj = 
yT (for j =1, …, T). For this reason, in this section we focus on MIMO and will further 
develop a new efficient algorithm to solve this new problem as below.  

2.2 Objective Function 

Assume that we have N training subjects, and each subject  has  imaging data at  
different time-points, represented as , … , , … , , where ∈  is a -
dimensional row vector. Denote ; … ; ; … ;  ( ∈ ) and  ( ∈

) as the training data matrix (input) and the corresponding clinical scores at the -th 
time-point, respectively. We use the linear model to estimate the clinical score from the 
imaging data  at the -th time-point as , where the feature weight vector ∈ . Let , … , , … ,  (∈ ), then the objective function of our 
temporally-constrained group LASSO (tgLASSO) can be defined as follows min 12  (1)

Where  and  are the group regularization term and the smoothness 
regularization term, respectively, which are defined as below 

,  (2)

and 

 (3)

In Eq. 2,  is the -th row vector of . It is worth noting that the use of L -norm 
on row vectors forces the weights corresponding to the d-th feature across multiple 
time-points to be grouped together and the further use of L -norm tends to select 
features based on the strength of T time-points jointly. The regularization parameter 

 controls the group sparsity of the linear models. 
On the other hand, as shown in Eq. 3, the smoothness regularization consists of 

two parts. The first one as defined in the first term in Eq. 3 is called as the fused 
smoothness term which originates from fused LASSO [9], and its function is to 
constrain the differences between two successive weight vectors from adjacent time-
points to be small. Also, it is worth noting that, due to the use of L -norm in the fused 
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smoothness term which encourages the sparsity on differences of weight vectors, 
there will be a lot of zeros in the components of the weigh difference vectors. In other 
words, a lot of components from adjacent weight vectors will be identical because of 
using the fused smoothness regularization. The second term in Eq. 3 is called as the 
output smoothness term which constrains the differences between outputs of two 
successive models from adjacent time-points to be small as well. The regularization 
parameters  and  balance the relative contributions of the two terms and also 
control the smoothness of the linear models. It is easy to know that when both  and 

 are zero, our method will reduce to group LASSO. 
To the best of our knowledge, the objective function in Eq. 1 is the first time to 

simultaneously include both the group and the fused regularizations, which cannot be 
solved by the existing sparse models. Also, no previous studies consider using the 
output smoothness as extra regularizer. In the next section, we will develop a new 
efficient algorithm to solve the objective function in Eq. 1. 

2.3 Efficient Iterative Solution 

To minimize Eq. 1, we propose to use the iterative projected gradient descent approach 
[10]. Specifically, we separate the objective function in Eq. 1 to the smooth term 12 (4)

and the non-smooth term 

, (5)

In each iteration k, the projected gradient descent contains two steps. Firstly, from 
, we compute s (6)

where s  denotes the gradient of  at , and  is the step size that 
can be determined by line search. Secondly, we set min 12 | | (7)

The problem in Eq. 7 is the proximal operator associated with the non-smooth term 
, and it can be computed by sequentially solving the proximal operator 

associated with the group Lasso penalty [5] and the proximal operator associated with 
the fuse Lasso penalty [9].  

By utilizing the technique discussed in [10], the above projected gradient descent can 
be further accelerated to yield the accelerated gradient descent approach. Specifically, 
instead of performing gradient descent based on , we compute the search point 

(8)

where  is a pre-defined variable [10], Then, we set 
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s (9)

Finally, we compute the new approximate solution as in Eq. 7. It can be shown that 
such a scheme can achieve a convergence rate of 1/  for l iterations. For more 
details, please refer to [10]. 

3 Results 

In this section, we validate our proposed tgLASSO method, with comparison to the 
existing LASSO and gLASSO methods, using 445 subjects (including 91 AD, 202 
MCI, and 152 healthy controls) from the ADNI database. For each subject, there are 
MRI data as well as clinical scores including MMSE and ADAS-Cog, for the four 
different time-points, i.e., baseline, 6 months, 12 months, and 24 months which are 
denoted as T1, T2, T3 and T4, respectively. Our goal is to estimate the MMSE and 
ADAS-Cog scores at each of the four time-points using MRI data from corresponding 
time-point, which is a MIMO problem as shown in Fig. 1. It is worth noting that both 
SIMO and MISO problems can also be solved by our method as mentioned before. 
However, due to space limit, we do not report those results in this paper. 

Standard image pre-processing is performed for all MRI images, including anterior 
commissure (AC) - posterior commissure (PC) correction, skull-stripping, removal of 
cerebellum, and segmentation of structural MR images into three different tissues: 
grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF). Then, an atlas 
warping method [11] is used to register all different time-point images of each subject 
to a template with 93 manually labeled regions of interests (ROIs). For each of the 93 
ROIs, we compute the GM tissue volume from the subject’s MRI image as features. 

In our experiments, 10-fold cross-validation is adopted to evaluate the performances 
of LASSO, gLASSO, and tgLASSO, by measuring the correlation coefficient between 
the actual clinical score and the estimated one. For all methods, the values of the 
parameters are determined by performing another cross-validation on the training data. 

Fig. 2 shows the feature weight maps gotten from three different methods. Here, 
gLASSO and tgLASSO jointly learn the weight vectors for the four time-points, while 
LASSO learns each weight vector independently for each time-point. As can be seen 
from Fig. 2, due to the use of group regularization, gLASSO and tgLASSO obtain 
more grouped weights across different time-points than LASSO. Furthermore, due to 
the use of smoothness regularization, tgLASSO achieves more smooth weights across 
different time-points than other two methods. These properties are helpful to discover 
those intrinsic biomarkers relevant to brain diseases. For example, as shown in Fig. 2, 
among other disease related brain regions, both left and right hippocampal regions 
which are well-known AD-relevant biomarkers, are detected by tgLASSO, while only 
the left one can be detected by the other two methods. 

On the other hand, Fig. 3 gives the comparisons of regression performances of the 
three methods in estimating MMSE and ADAS-Cog scores at four different time-
points. As can be seen from Fig. 3, tgLASSO consistently outperforms the other two 
methods in estimating clinical scores for multiple time-points. In average, tgLASSO 
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4 Conclusions 

We have presented a new sparse learning method called tgLASSO for longitudinal 
data analysis with multiple time-points of data, which is different from most existing 
sparse learning methods focusing on cross-sectional analysis with single time-point of 
data. Our methodological contributions include: 1) proposing to simultaneously use 
group and (fused plus output) smoothness regularizations in sparse learning; 2) 
developing an efficient iterative algorithm for solving the new objective function. 
Experimental results on estimating clinical scores from imaging data at multiple time-
points show the advantages of our method over the existing sparse methods on both 
regression performance and ability in discovering disease related imaging biomarkers. 
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Abstract. Transcranial sonography (TCS) is a new tool for the diag-
nosis of Parkinson’s disease (PD) according to a distinct hyperechogenic
pattern in the substantia nigra (SN) region. However a procedure includ-
ing rating scale of SN hyperechogenicity was required for a standard clin-
ical setting with increased use. We applied the feature analysis method
to a large TCS dataset that is relevant for clinical practice and includes
the variability that is present under real conditions. In order to decrease
the influence to the image properties from the different settings of ul-
trasound machine, we propose a local image analysis method using an
invariant scale blob detection for the hyperechogenicity estimation. The
local features are extracted from the detected blobs and the watershed
regions in half of mesencephalon area. The performance of these features
is evaluated by a feature-selection method. The cross validation results
show that the local features could be used for PD detection.

Keywords: Parkinson’s Disease, Transcranial Sonography, Blob detec-
tion, Feature analysis, local feature.

1 Introduction

Transcranial sonography (TCS) was used for the first time in a clinical study
between a group of Parkinson’s disease (PD) patients and healthy controls in
1995 [1]. For PD patients, the hyperechogenicity of the substantia nigra (SN) was
significantly increased compared with controls. In 2002 the SN hyperechogenicity
in PD was confirmed by another independent group [2]. By means of TCS, it
is possible to determine the formation of idiopathic PD as well as monogenic
forms of parkinsonism at an early state [3]. Furthermore, the SN area showed
a distinct hyperechogenicity pattern on TCS for about 90% of PD patients,
however, the structural abnormalities were not detected on CT and MRI scans
[4]. These studies show that the SN hyperechogenicity is a valuable marker for PD
diagnosis, especially for early diagnosis [5]. Compared to other clinical imaging
modalities, the advantages of TCS include mobility, lack of side effects, and low
cost. However, the quality of TCS images mainly dependents on the experience
of the examiner and the acoustic bone window of the patient. With increased use,
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a standardized procedure including rating scale of SN echogenicity was required
for a standard clinical setting [7].

One solution to reduce investigator dependence of the diagnosis is to apply
feature analysis to the image of the ipsilateral mesencephalon wing, which is
close to the ultrasound probe as shown in Fig. 1. Firstly, the moment of inertia
and Hu1-moment were calculated based on manually segmented half of mesen-
cephalon (HoM) for separating control subjects from Parkin mutation carriers
[5]. Then a hybrid feature extraction method which includes statistical, geomet-
rical and texture features for the early PD risk assessment was proposed [8],
which showed good performance of texture features (especially Gabor features).
Thirdly, a texture analysis method that applied a bank of Gabor filters and
gray-level co-occurrence matrices (GLCM) was used on TCS images [9]. After
feature selection by sequential forward floating selection (SFFS), GLCM tex-
ture features were combined with Gabor features as a feature subset. The cross
validation showed good results with the selected feature subset.

(a) Images from dataset1 (b) Images from dataset2 (c) Images from dataset3

Fig. 1. Manually segmented TCS images from Philips SONOS 5500. The first row is
from healthy control subjects, and the second row from PD patients. The red marker
indicates the upper HoM. Yellow/green markers show the SN area as a bright spot.

The last two previous works [8,9] analyzed data from only one ultrasound ma-
chine, and the selected features turned out to be sensitive to user settings and
the ultrasound machine itself. In this paper, we collected three datasets that
were acquired by different examiners with Philips SONOS 5500 in different pe-
riods. These datasets include the TCS images from PD and the healthy controls
(HC). Actually, the properties of the TCS images, such as the gray values, the
brightness, and the contrast, could be possibly affected by the different settings
of the ultrasound machine used by different examiners. The mean and variance
of the region of interest (HoM) in each TCS image were calculated and shown
in Fig. 2. The variation between each dataset can be seen from TCS images in
Fig. 1 and the statistical features of the images in Fig. 2. Our goal is to develop
local features that are invariant to the illumination and contrast changes from
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(a) 38 subjects of Parkinson’s Disease
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(b) 39 subjects of healthy control

Fig. 2. The illustration about mean and variance of ROI (HoM) of 138 TCS images
from Philips SONOS 5500

the different settings, even invariant to different ultrasound machines. The pro-
posed local feature analysis method applies invariant blob detection to localize
the hyperechogenicity area in HoM area and extracts local features based on
watershed regions for the hyperechogenicity estimation.

2 Keypoint Localization

The hyperechogenicity of SN area consists of several bright spots in TCS im-
age. The blob detection algorithm is stable under the monotonic changes in gray
scale. The goal of this section is to localize the hyperechogenicity in HoM by
the invariant scale blob detector. Based on space-scale theory, a multi-scale blob
detector was proposed by Lindeberg [10], which could automatically select the
appropriate scale for an observation. The scale space can be built using differen-
tial operators, such as Laplacian of Gaussian (LoG) and difference of Gaussians
(DoG) filters. A brief framework for the invariant scale blob detector based on
LoG is given by

�2
norm g = σ2 · �2g(x, y;σ). (1)

where σ is the standard deviation of the Gaussian g(x, y;σ), and the scale-space
representation L(x, y;σ) of the image f(x, y) is defined as

L(x, y;σ) = �2
normg ∗ f(x, y), (2)

(x̂, ŷ; σ̂) = arg[extremum(x,y;σ)L(x, y;σ)], (3)

where (x̂, ŷ) corresponds to the center vector and σ̂ to the scale vector of the
detected blobs on each scale level. We suppose that one blob center (x̂1, ŷ1) is
stable through the scale space, and a unique maximum over scales is given by

∂σ(L(x̂1, ŷ1;σ)) = 0. (4)
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The evolution of blobs along scales was studied based on the idealized model
patterns [10]. In practice, the amount of detected blobs on each scale level is
different, and the centers of the same blobs might not be found at the same
position on corresponding levels. One common solution is that a blob is detected
if a local 3D extreme is present and its absolute value is higher than a threshold
[11]. However, same blobs at different scales are not related and can be detected
many times along the scale space. Our strategy is to link the trajectory of the
same blobs along scale space and select the scale and center at the unique maxima
that best represent each blob. For the presentation of this method, a phantom
image was created as shown in Fig. 3(c). The linked pipelines for each detected
blob from the phantom image are shown in Fig. 3(a). The corresponding local
maxima of each pipe through scales are shown in Fig. 3(b). The final scale
selection by (4) is shown in Fig. 3(c).

(a)Pipes through scale space
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Fig. 3. Blob scale selection from their trajectories along scale-space representation
with LoG. (a) Three filtered images at scale σ = 4, 15, and 30. (b) Four global max-
ima at scales 4, 15, 20, and 25 were found from the connected trajectories. (c) Four
corresponding blobs were detected and displayed on the phantom image.

In addition, the DoG is a close approximation to the scale normalized LoG,
�2

normg, given by

g(x, y; kσ)− g(x, y;σ) ≈ (k − 1)�2
norm g, (5)

where the factor (k − 1) is constant over all scales and has almost no impact on
the stability of extrema localization [12]. In this paper, DoG was applied for the
construction of scale space. Actually, the analysis of scale-space maxima presents
severe complications in TCS image, but the possible hyperechogenicity areas are
localized by the proposed extrema selection method.

3 Local Feature Extraction

The mesencephalon is a butterfly-shape-like structure from the transverse view.
The TCS image is obtained from the temporal acoustic bone window in a stan-
dardized axial mesencephalic imaging plane [5]. Only the HoM which is close to
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Fig. 4. (a) Detected maxima using DoG in 26 neighbors or (b) through pipe in scale
space from control images (top row) and PD (bottom row) of Philips SONOS 5500. (c)
Watershed segmentation results based on the detected blobs.

the probe is analyzed because of a decreased signal-to-noise ratio with increasing
insonation depth. As a result, two TCS images from both sides are acquired per
individual. It is better for this study not to include uncertainties that are at-
tributed to the segmentation algorithm. Therefore HoM images were manually
segmented by physicians and then analyzed for the estimation of the hypere-
chogenicity. The hyperechogenicity area is indicated with the blob detection as
shown in Fig. 4. In the next step, a local image descriptor is needed to label
the detected blob. The watershed algorithm [13] works on the gradient of an
image, which is invariant to the brightness changes of the image. The watershed
regions were thus segmented with the input of the detected blobs to estimate
the hyperechogenicity in HoM.

Firstly, the blobs were detected with DoG operators in the HoM using the
proposed extrema-selection method. The detection results of TCS images from
Philips SONOS 5500 are shown in Fig. 4. The same blobs were prevented from
being detected many times and the appropriate scales for each blob are indicated
around the blob center as shown in Figs. 4(a) and (b). Secondly, based on the
input of the detected blobs, the watershed regions were segmented and labeled
by different color as shown in Fig. 4(c). Then, a selection procedure for the
blob and watershed region was implemented with an ellipse mask filtering the
false positives as shown in Fig. 5(a). From the prior knowledge of the anatomic
location of SN, this mask is created from the ellipse which is fitted onto the
ROI as mentioned in [5]. The values of the ellipse mask are calculated from their
distance d to the minor ellipse axis. For d < f (with f the distance between the
focus point and the minor axis) the mask value is one. For d ≥ f the mask value
is zero. Only the blobs that have big scale (For example, σ ≥ 3) were taken into
account as shown in Fig. 5(b). The watershed regions that are entirely within
the ROI were considered as interesting areas. As a result, the selected blobs
(indicated by green plus signs) and watershed regions are shown in Fig. 5(c).
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(a) Ellipse mask (b) Selected blobs (c) Selected regions

Fig. 5. (a) An ellipse is fitted with the ROI. Two green lines are parallel to the minor
ellipse axis and across the two ellipse focuses, respectively. (b) The selected blobs (green
sign) and (c) the selected watershed regions which are inside of the ellipse mask.

For the estimation of the hyperechogenicity, nine local features F1...F9 were
extracted based on the selected blobs and watershed regions in HoM. Entropy
is used to measure the randomness of a local region. The parameters shape and
scale of a Weibull approximation [14] of the gradient distribution were deter-
mined by maximum likelihood estimation [13] and used as local image features.
The calculation of entropy and the estimation of Weibull distribution parameters
were obtained from the gradient images after Gaussian smoothing. Considering
the image scaling, the features F1 and F2 were normalized by the corresponding
HoM area. The local features are shown as follows:

F1,F3: Area and entropy of all selected watershed regions
F2,F4: Area and entropy of all selected blobs
F5,F6: Weibull parameters (a,b) of all selected watershed regions and blobs
F7: The scale of the biggest detected blob
F8,F9: Entropy of the biggest blob and HoM

4 Experimental Results

The experiments were based on three data sets which were obtained with Philips
SONOS 5500 by different examiners. Dataset 1 includes 42 TCS images from 23
PD patients and 36 TCS images from 21 healthy controls. Dataset 2 includes
15 PD TCS images from ten PD patients and eight control images from four
controls. The last dataset consisted of ten PD TCS images from five PD patients
and 27 TCS from 14 controls. Totally, this large dataset includes 67 PD images
from 38 PD patients and 71 control images from 39 healthy subjects.

The outline of the framework is as follows: First, the dataset is classified
using the selected feature subsets F(17, 25, 26, 27, 29) from [8] and F(17, 77)
from [9]. Secondly, based on the manually segmented HoM images which were
marked by the physicians, the suspicious hyperechogenicity areas were localized
by the invariant scale blob detection method. Then, the watershed-segmentation
algorithm was applied to the gradient image after Gaussian smoothing. At last,
local features were extracted based on the selected blobs and the watershed
regions. These local features were evaluated by the feature-selection method
SFFS. The criterion function of SFFS was the accuracy of the SVM classifier.
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The training of SVMs was carried out with sequential minimal optimization
(SMO) and a linear kernel. The SVM classification results were cross validated
with the leave-one-out method.

The feature analysis results are shown in Table 1. Based on this dataset, the fea-
tures found in [8] and [9] achieved 76.81% and 48.55% correct rate, respectively.
Five local features F (3,7,8,1,9) were selected with SFFS based on this dataset. Us-
ing the selected local featrues, the classification accuracy reached 72.46%, which
was better than the Gabor feature and GLCM feature from [9]. To test how the
feature sets perform when standard operations such as brightness and contrast
normalization are carried out, for each image the intensity values in the ROI were
normalized to the range [0, 255]. The results in the right column of Table 1 show
that the local features are invariant to illumination changes from the image nor-
malization and outperform the other features under such conditions.

In another experiment, an SVM classifier was used to evaluate the perfor-
mance of the three selected feature subsets when the training is carried out on
other datasets than the test. We used Datasets 1 and 3 for Training and Dataset
2 for test. The classification results are listed in Table 2. They show that the clas-
sifier with the selected local features works better than the others when training
and test conditions are different.

Table 1. Feature analysis and SVMs cross-validation results on the large dataset

Dataset 1,2,3 Accuracy Confusion matrix Accuracy(normalized data)

F (17, 25, 26, 27, 29) from [8] 76.81%

(
63 4
28 43

)
71.01%

F (17, 77) from [9] 48.55%

(
40 27
44 27

)
58.70%

Local feature F (3, 7, 8, 1, 9) 72.46%

(
52 15
23 48

)
72.46%

Table 2. Classification results of the three selected feature subsets

Training data(Dataset 1,3), test data (Dataset2) Accuracy Confusion matrix

F (17, 25, 26, 27, 29) from [8] 65.22%

(
15 0
8 0

)

F (17, 77) from [9] 60.87%

(
14 1
8 0

)

Local feature F (3, 7, 8, 1, 9) 78.26%

(
14 1
4 4

)

5 Conclusions

We have analyzed the selected features from two previous works and nine new
local features based on a large dataset of TCS images. In particular, the local
features are invariant to the monotonic changes in gray scale. Almost all possible
locations of hyperechogenicity in HoM area could be indicated by the proposed
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invariant scale blob detection. Moreover, the watershed segmentation was applied
to segment the ROI for PD detection. Of course, the current results depend on
the manual segmentation of HoM area by physician. An automatic segmentation
algorithm could be implemented for localization of the HoM area. Even though
the appearance of mesencephalon can vary considerably across subjects, the
prior knowledge of anatomic shape and location of SN can be utilized for the
improvement of the selection strategy. The keypoint detection would be improved
with shape estimation, and more robust and precise local image descriptors of
hyperechogenicity may be developed for PD detection.
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Abstract. Longitudinal imaging studies are frequently used to inves-
tigate temporal changes in brain morphology. Image intensity may also
change over time, for example when studying brain maturation. How-
ever, such intensity changes are not accounted for in image similarity
measures for standard image registration methods. Hence, (i) local sim-
ilarity measures, (ii) methods estimating intensity transformations be-
tween images, and (iii) metamorphosis approaches have been developed
to either achieve robustness with respect to intensity changes or to si-
multaneously capture spatial and intensity changes. For these methods,
longitudinal intensity changes are not explicitly modeled and images are
treated as independent static samples. Here, we propose a model-based
image similarity measure for longitudinal image registration in the pres-
ence of spatially non-uniform intensity change.

1 Introduction

0.5 3 6 12 18

Fig. 1. Brain slices and magnifications for a
monkey at ages 2 weeks, 3, 6, 12, and 18 months.
White matter appearance changes locally as ax-
ons are myelinated during brain development.

To study changes that occur
during brain development, neu-
rodegeneration, or disease pro-
gression in general, longitudinal
imaging studies are important.
Spatial correspondences almost
always need to be established
between images for longitudi-
nal analysis through image regis-
tration. Most image registration
methods have been developed to
align images that are similar in appearance or structure. If such similarity is
not given (e.g., in case of pathologies or for pre- and post-surgery images) cost
function masking is typically used to discard image regions without correspon-
dence from the registration. Such strict exclusion is not always desirable. When
investigating brain maturation for example (our target application in this pa-
per) valid correspondences for the complete brain are expected to exist. However,
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brain appearance changes continuously over time due to biological tissue changes
(here, myelination of white matter [1,12]) and adversely affects image registration
results [9].

The effect of appearance change on the result of an image registration depends
on the chosen transformation model and the chosen image similarity measure.
Generally, transformation models with few degrees of freedom (such as rigid or
affine transformations) are affected less by local changes in image appearance
than transformation models which can capture localized spatial changes, such
as elastic or fluid models. In particular, we have previously shown that affine
methods perform well even in the presence of strong non-uniform appearance
change, while deformable methods introduce erroneous local deformations in or-
der to resolve inconsistencies in appearance [3]. However, transformation models
which can capture local deformations are desirable for many longitudinal studies
as changes in morphology tends to be spatially non-uniform.

For longitudinal registration, temporal regularization of the transformation
model has been explored recently. This is motivated by the assumption that
unrealistic local changes can be avoided by enforcing temporal smoothness of
a transformation [5,7]. In this paper we instead focus on the complementary
problem of determining an appropriate image similarity measure for longitudinal
registration in the presence of temporal changes in image intensity.

Approaches which address non-uniform intensity changes have mainly ad-
dressed registration for image-pairs so far and either rely on local image uni-
formities [9,13] or try to estimate image appearance changes jointly with an
image transform [8,11,10]. Often (e.g., for bias field compensation in magnetic
resonance imaging), image intensity changes are assumed to be smooth. Our
proposed approach in contrast, estimates local longitudinal models of intensity
change using all available images. Our approach alternates between parameter
estimation for the local models of intensity change and estimation of the spa-
tial transformation. Image similarities are computed relative to the estimated
intensity models, hence accounting for local changes in image intensities.

Section 2 introduces the model-based image similarity measure (mSM). Sec-
tion 3 discusses parameter estimation. Section 4 describes the performed exper-
iments and discusses results. The paper concludes with a summary and outlook
on future work.

2 Model-Based Similarity Measure

Assume we have an image intensity model Î(x, t; p) which for a parameterization,
p, describes the expected intensity values for a given point x at a time t. This
model is defined in a spatially fixed target image. Then, instead of registering
a measured image Ii at ti to a fixed target image IT we can register it to its
corresponding intensity-adjusted image Î(x, ti; p), effectively removing temporal
intensity changes for a good model and a good parameterization, p. Hence,

Sim(Ii ◦ Φi, IT ) is replaced by Sim(Ii ◦ Φi, Î(x, ti; p)),
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where Sim(·, ·) is any chosen similarity measure (e.g., sum of squared differences
(SSD), normalized cross correlation, or mutual information), and Φi is the map
from image Ii to the spatially fixed target space. Since our method aims to
create an intensity adjusted model Î that matches the appearance of the source
image, we use SSD in this paper. We call the intensity-adjusted SSD similarity
measure a sum of squared residual (SSR) model, where the residual is defined
as the difference between the predicted and the measured intensity value.

2.1 General Local Intensity Model Estimation for SSD

Since SSR is a local image similarity measure, for a given set of N measurement
images {Ii} at times {ti} we can write the full longitudinal similarity measure
as the sum over the individual SSRs, i.e.,

SSR({Ii}; p) =
N−1∑
i=0

∫
Ω

(Ii ◦ Φi(x) − Î(x, ti; p))
2 dx,

where Ω is the image domain of the fixed image. For given spatial transforms Φi

this is simply a least-squares parameter estimation problem given the measure-
ments {Ii◦Φi(x)} and the predicted model values {Î(x, ti; p)}. We use alternating
optimization with respect to the intensity model parameters, p, and the spatial
transformations Φi to convergence (see Sec. 3).

2.2 Logistic Intensity Model with Elastic Deformation

t

i

2w 3m 6m 12m

α

Fig. 2. Logistic intensity
model

SSR can be combined with any model for intensity
change, ranging from a given constant target im-
age (the trivial model), linear models, and splines to
models more closely adapted to the myelination pro-
cess we are interested in capturing during neurode-
velopment. Since the myelination process exhibits a
rapid increase during early brain development fol-
lowed by a gradual leveling off [4], nonlinear appear-
ance models are justified. In this paper we investigate the logistic model

Î(x, t;α(x), β(x), k(x)) =
α(x)

1 + β(x)e−k(x)t
, (1)

which is often used in growth studies [6]. Here, α, β, and k are spatially
varying model parameters with biological meaning, k being the maximum rate
of intensity change, α the maximum increase of white matter intensity during
myelination, and β is related to the onset time of myelination (see Fig. 2). As-
suming that both unmyelinated and fully myelinated white matter intensities are
spatially uniform we keep α constant as the difference between myelinated (upper
asymptote) and unmyelinated (lower asymptote) white matter intensities. This
is a simplifying, but reasonable assumption since intensity inhomogeneities in
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unmyelinated or myelinated white matter are small compared to the white mat-
ter intensity change due to the myelination process itself [1].

3 Parameter Estimation

Once the parameters for the local intensity models are known, SSR can be used
to replace the image similarity measure in any longitudinal registration method.
Here, we use an elastic deformation model (Sec. 3.1) and jointly estimate the
parameters for the intensity model (Sec. 3.2).

3.1 Registration Model

The growth process of the brain not only includes appearance change but com-
plex morphological changes as well, hence the need for a deformable transfor-
mation model. To single out plausible deformations, we use (for simplicity) an
elastic regularizer [2] defined on the displacement field u as

S[u] =

∫
Ω

μ

4

d∑
j,k=1

(∂xjuk + ∂xk
uj)

2︸ ︷︷ ︸
rigidity

+
λ

2
(div u)2︸ ︷︷ ︸

volume change

dx,

where μ (=1) and λ (=0) are the Lamé constants that control elastic behavior,
and the div is the divergence operator defined as ∇ · u, where ∇ is the gradi-
ent operator. Registrations over time then decouple into pairwise registration
between the intensity-adjusted target image and a given source image Ii. This
is sufficient for our test of the longitudinal image similarity measure, but could
easily be combined with a spatio-temporal regularizer which would then directly
couple the transformations between the images of a time-series (instead of only
having an indirect coupling through the model-based similarity measure).

3.2 Model Parameter Estimation

We estimate the intensity model parameters only within the white matter (seg-
mentation was obtained at the last time-point with an atlas-based segmentation
method and propagated to earlier time-points [14]) where image appearance
changes non-uniformly over time; for simplicity, gray matter intensity was as-
sumed to stay constant.

Note that overestimating the white matter results in fitting the model to the
surrounding gray matter voxels. This has negligible effect on the registration,
since the model can capture the constant gray matter intensities. Underestimat-
ing the white matter, on the other hand, can lead to uncorrected intensities near
the white-gray matter boundary and introduce erroneous local deformations.

Instead of estimating the parameters independently for each voxel, spatial
regularization was achieved by estimating the parameters from overlapping local
3× 3× 3 neighborhoods using robust statistics (median of the parameters).
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The algorithm is defined as follows

0) Initialize model Î parameters to p = p0.
1) Affinely pre-register images {Ii} to Î.
2) Estimate the appearance of Î at times {ti}, giving {Î(ti)}.
3) Estimate displacement fields {ui} by registering images {Ii} to {Î(ti)}.
4) Estimate model parameters p from the registered images {Ii ◦ ui}.
5) Repeat from step 2 until convergence.

The algorithm terminates once the registration energy decreases by less than
a given tolerance between subsequent iterations. In all our experiments only
few iterations (typically less than 5) were required. A more in-depth numerical
convergence analysis should be part of future work. If desired, a prior model
defined in the target image (a form of intensity model parameter atlas) could
easily be integrated into this framework.

4 Experimental
Results

12mo 6mo 3mo 2wk

Fig. 3. Corresponding target (cyan) and source (red)
landmarks for a single subject

We compared the model-
based similarity measure
to mutual information
(MI) on sets of longitu-
dinal magnetic resonance
images of 9 monkeys, each with 4 time-points. Each set was affinely pre-registered
and intensity normalized so that the gray matter intensity distributions matched
after normalization (gray matter intensity generally stays constant over time).

We registered 3D images of the three early time-points I2wk, I3mo, I6mo to the
target image I12mo with an elastic registration method. Since the ground truth
deformations were not known, manually selected landmarks (Fig. 3) identified
corresponding regions of the brain at the different time-points (10-20 landmarks
in a single slice for each of the 4 time-points in all 9 subjects; the landmarks
were picked based on geometric considerations). The distance between trans-
formed and target landmarks yielded registration accuracy. Figure 4 shows the
experimental setup.

Note that for the model-based method the target image is not I12mo but the
model Î12mo estimated at time t of the source image. Here, we estimate the
intensity change of I12mo as white matter segmentation is easily obtained given
the good gray matter white matter contrast, but other time-points could be
used.

With MI, the registration method accounts for both the non-uniform white
matter appearance change and the morphological changes due to growth
through large local deformations. This is especially apparent for registrations
between I2wk (and to a lesser extent I3mo) and the target I12mo and suggests large
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Fig. 4. Experimental setup and results for a single subject. To test MI, the source
images (blue; from bottom: I2wk, I3mo, I6mo) are registered to the latest time-point
I12mo (green). The resulting deformation field and the magnitude of the deformations
(in pixels) is shown in the right panel. For mSM, the source images are registered to
the model (red) that estimates the appearance of I12mo at the corresponding time of
each source image (results in middle panel).

local morphological changes contradictory to normal brain development [4]. The
landmark mismatch results (Fig. 5) show that both mutual information and
the model-based approach perform well in the absence of large intensity non-
uniformity, however, mSM consistently introduces smaller erroneous deforma-
tions than MI.

Table 1 shows the aggregate results of the landmark mismatch calculations for
both methods. The model-based approach can account for appearance change by
adjusting the intensity of the model image (see the estimated model images in
Fig. 4) and therefore is most beneficial when the change in appearance between
the source and target image is large (I2wk, I3mo).

We also compared 1st and 2nd degree polynomial intensity models to the
logistic model and found no significant difference. This is expected with only
4 time-points as even the 1st degree model can reasonably estimate the local
appearance changes. However, we expect the logistic model to outperform the
simpler models in larger studies with more time-points or when the model ap-
pearance needs to be extrapolated (e.g., if new images are acquired later in a
longitudinal study after the previous time-points have been aligned). This will
be investigated as part of future work.
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12mo 6mo 3mo 2wk

target source

Fig. 5. Landmark registration error. Each row shows a single subject. The first column
shows the target images and landmarks (cyan). Columns 2-4 are the source images
and landmarks: each source landmark is marked as two circles (red : MI, yellow : mSM)
with size proportional to registration error (smaller circle on top; green: both are equal).
That is, the size of the circles is proportional to registration accuracy (smaller is more
accurate) in that particular location.

Table 1. Landmark registration error (in voxels) between target I12mo and source im-
ages I2wk, I3mo, I6mo (significance level is α = 0.05; significant results are highlighted).

I2wk I3mo I6mo

mean std 50th 90th mean std 50th 90th mean std 50th 90th

MI 1.76 1.09 1.60 3.22 1.07 0.77 0.84 2.04 0.66 0.46 0.56 1.22
mSM 1.15 0.84 0.93 2.24 0.74 0.57 0.54 1.66 0.61 0.39 0.50 1.18
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5 Conclusions

We proposed a new model-based similarity measure which allows the deformable
registration of longitudinal images with appearance change. This method can
account for the intensity change over time and enables the registration method
to recover the deformation due only to changes in morphology. We compared
the model-based approach to mutual information and demonstrated that it can
achieve higher accuracy than mutual information in cases when there is a large
appearance change between source and target images. We used a logistic model
of intensity change and an elastic deformation model, however, the formulation
is general and can be used with any other appearance or deformation model. In
the future we will investigate the use of prior models to inform the estimation
step in regions with high uncertainty (e.g., due to poor initial alignment), in
addition to the effect of various intensity models on the registration accuracy.

Acknowledgments. This work was supported by NSF EECS-1148870, NSF
EECS-0925875, NIH NIHM 5R01MH091645-02, NIH NIBIB 5P41EB002025-28,
U54 EB005149, P50 MH078105-01A2S1, P50 MH078105-01.

References

1. Barkovich, A.J., Kjos, B.O., Jackson, D.E., Norman, D.: Normal maturation of the
neonatal and infant brain: MR imaging at 1.5T. Radiology 166, 173–180 (1988)

2. Broit, C.: Optimal registration of deformed images. Ph.D. thesis, University of
Pennsylvania (1981)

3. Csapo, I., Davis, B., Shi, Y., Sanchez, M., Styner, M., Niethammer, M.:
Temporally-Dependent Image Similarity Measure for Longitudinal Analysis. In:
Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR
2012. LNCS, vol. 7359, pp. 99–109. Springer, Heidelberg (2012)

4. Dobbing, J., Sands, J.: Quantitative growth and development of human brain.
Archives of Disease in Childhood 48(10), 757–767 (1973)
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Abstract. Cortical thinning is a widely used and powerful biomarker
for measuring disease progression in Alzheimer’s disease (AD). However,
there has been little work on the effect of atrophy on the cortical folding
patterns. In this study, we examined whether the cortical folding could
be used as a biomarker of AD. Cortical folding metrics were computed
on 678 patients from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort. For each subject, the boundary between grey matter and
white matter was extracted using a level set technique. At each point on
the boundary two metrics characterising folding, curvedness and shape
index, were generated. Joint histograms using these metrics were calcu-
lated for five regions of interest (ROIs): frontal, temporal, occipital, and
parietal lobes as well as the cingulum. Pixelwise statistical maps were
generated from the joint histograms using permutations tests. In each
ROI, a significant reduction was observed between controls and AD in
areas associated with the sulcal folds, suggesting a sulcal opening asso-
ciated with neurodegeneration. When comparing to MCI patients, the
regions of significance were smaller but overlapping with those regions
found comparing controls to AD. It indicates that the differences in cor-
tical folding are progressive and can be detected before formal diagnosis
of AD. Our preliminary analysis showed a viable signal in the cortical
folding patterns for Alzheimer’s disease that should be explored further.

1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects
nearly 1 in 8 people over 65 in the U.S.[1], and the prevalence is expected to
increase in the near future. The hallmark pathology of AD are amyloid plaques
and neurofibrillary tangles, which result in neuronal dysfunction. This ultimately
leads to cell death which can be observed macroscopically in structural MRI as
brain atrophy. Numerous imaging biomarkers have been proposed for the robust
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and accurate measurement of this atrophy process [2,3]. One of the most popular
methods has been to measure cortical thickness [4,5]. In this method, the cortical
ribbon is extracted and correspondences are established between the grey matter
(GM) to white matter (WM) boundary and the pial surface, from which thickness
measurements can then be computed. Cortical thickness is a biomarker that has
been shown to separate patients with AD from healthy controls [5], and to find
a pattern of thinning [6] that closely resembles what is observed through post-
mortem studies [7]. In [8], there were some regions, primarily in the temporal lobe
that appeared to thin at greater rates if the subject showed signs of Alzheimer’s
disease pathology according to cerebrospinal fluid markers of amyloid beta and
tau.

Besides cortical thickness, the cortical folding pattern has been analysed for
numerous applications. Manual histology based methods frequently use a gyrifi-
cation index (GI) defined on slices measuring the ratio of the length of the grey
matter to that of the shortest route around the coronal surface [9,10]. Compu-
tational methods using structural MRI require an accurate underlying segmen-
tation and are in principle defined in 3D. [11] made use of a level set routine in
order to assess the scaling relation of cortical volume to cortical surface area and
developed summary statistics of the cortical surface by collecting complementary
values of curvature into two-dimensional histograms. The representation of the
surface is such that their histograms have two visible peaks distinguishing gyri
from sulci. The histograms can be assessed using pixelwise statistical tests. In
[12] the authors analysed the cortical surface by defining a mesh on the surface
of the cortex and defining a mean curvature found from nodes within a local
region. This study of healthy adults found strong gender dimorphism although
the impact of overall subject size was unclear. The longitudinal cortical folding
pattern of neonates has also been investigated by [13] in which after a semi-
automatic segmentation, the cortical surface was delineated by a surface mesh.
The authors analysed the appearance and formation of major sulci over 26-36
weeks gestational age making use of a sulcation ratio of the area of major sulci
in relation to total cortical area.

Despite the volume of work on cortical folding, there has been very little focus
on examining how it is affected by the process of neurodegeneration. King et al.
[14] used fractal dimension analysis and gyrification index in addition to cortical
thickness measurements to study the cortical ribbon in patients with AD. In
this study, we applied the curvature metrics defined in [11] to determine if there
are group wise differences in cortical folding patterns between normal controls
(NC), mild cognitively impaired (MCI), and patients with AD.

2 Methods

2.1 Data

The data for this study consisted of a total of 678 participants, divided into 4
groups: controls (n=199, age 76.0 (5.1), 47% female, MMSE 29.1 (1.0)), MCI
patients stable after followup of up to 36 months (n=192, age 75.2 (7.1), 34%
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female, MMSE 27.0 (1.8)), MCI patients who converted to AD during followup
(n=140, age 74.3 (7.4), 39% female, MMSE 27.1 (1.7)) and 147 subjects di-
agnosed with AD (mean age 75.3 (7.3), 47% female, MMSE 23.4 (1.9)). All
subjects were selected from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database [15]1. A 1.5T scan with sufficient image quality from each
subject’s baseline visit was downloaded from the ADNI database. All images
went through the standard pre-processing pipeline of bias correction, correction
of B1 inhomogeneity, and correction of geometric distortion [16]. The whole brain
was manually delineated through a semi-automated process [17], which was used
for further calculations.

2.2 Tissue Classification and Brain Parcellation

The pre-processed images were masked using the brain delineations and then
segmented using an expectation-maximisation based algorithm [18] into five tis-
sue classes: cortical GM, WM, external CSF, deep GM and internal CSF. The
image was also parcellated into anatomical regions of interest. A library of 30
atlases manually labelled with 83 anatomical regions [19] was used as a basis for
the parcellations. Each of the atlases was propagated via a nonlinear registration
to provide a set of candidate segmentations for the new image. These candidate
parcellations were combined using a label fusion strategy based on the STAPLE
method [20]. It was adapted to use only a subset of the most similar candidate
segmentations chosen for each voxel by a local image similarity metric [21].

2.3 Boundary Surface Generation

The segmentation method allows an inspection of the shape of the boundary
between grey and white matter surfaces similar to [11]. In our work we optimise
the boundary between GM and WM using an evolving level set, solving a partial
differential equation (1) for the function φ(x, t), consisting of a weighted signed
distance function from the boundary, d, and a curvature function, c, that serves
as a regularisation term. The level set is initialised at p(WM) = 0.5, that provides
a signed distance function from the GM/WM boundary.

δφ

δt
+ (λdd(x, t)− λcc(x, t))||∇φ(x, t)|| = 0 (1)

The outer boundary of GM can be defined by evolving the initial GM/WM
surface outward to the p(WM) + p(GM) = 0.5 boundary. The ratio of the inner
surface (GM/WM interface) area to the outer surface area (GM/CSF interface)
can be used as an approximation of the gyrification index [9].

2.4 Curvature Measurements

We define measures of curvature on this implicit surface, similar to the method
used in [11]. The local Hessian matrix of second order derivatives can be found

1 www.adni-info.org

www.adni-info.org
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at each point of this implicit surface. Hence, at every point on the surface we
can use the eigenvalues of the local Hessian matrix, κ1 and κ2 (with κ1 > κ2) to
summarise the local shape. Explicitly we define the shape index, S (2), describing
how cup-like or saddle-like the surface is,

S =
2

π
tan−1

(
κ2 + κ1
κ2 − κ1

)
(2)

and a curvature, C, describing the distortion of the surface relative to that of a
flat sheet ([22]): C =

√
(κ1)2 + (κ2)2. Intuitively C and S are complementary

in the sense that they are a polar representation of the eigenvalue sum (κ1+κ2)
and difference (κ2 − κ1). The value of C is corrected for brain volume using
the strategy described in [11], where each value of C is divided by a correction
factor: β3

i = ICV /ICVi, where ICV is the intracranial volume.
The distribution of C and S can be summarised in a 2D histogram [11],

in which empirically, the resulting histograms have two clusters corresponding
to negative (sulci) and positive shape index (gyri). Joint histograms were con-
structed from these pairs of values at every point on the level set. We used a
joint histogram of 32 bins along each axis, with a range for curvature from 0 to
1.5 and shape index from -1 to 1. In order to provide more spatial localisation to
the measurements, the joint histograms were built over various regions of inter-
est (ROI) as defined by the parcellation. Individual regions were combined into
5 meta regions: the cingulum, frontal, occipital, parietal, and temporal lobes.
From the joint histogram, a bivariate probability density function (PDF) was
estimated using an adaptive kernel density estimation technique [23] based on
the discrete cosine transform.

2.5 Statistical Analysis

Pixelwise statistical tests were performed on the joint histogram for each ROI’s
from all of the subjects. The resulting t-statistic values were corrected for mul-
tiple comparisons using a non-parameteric method [24]. 5000 permutations were
performed on 12 t-tests for each region. These t-tests represent forward (i.e. con-
trol > AD) and reverse (i.e. AD > control) comparisons between each of the four
groups. Age and gender were accounted for in the design matrix as covariates.

3 Results

Mean GI values, adjusted for TIV, gender and age, for the four groups are
shown in Fig. 1. There were significant differences for controls vs. MCI-Stable
(p = 0.027), controls vs. MCI-Converters (p = 0.011), controls vs. AD (p <
0.001), and MCI Stable vs AD (p = 0.039). There was no difference between the
two MCI subgroups (p = 0.617) or MCI Converters vs. AD (p = 0.147).

Figure 2 shows the average histogram for each ROI overlaid with colour coded
areas when a t-test reached significance at (p < 0.05) after correcting for multiple
comparisons. In all five ROIs, there are regions of statistical significance (red, top
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Fig. 1. Mean (95% confidence intervals) of gyrification index for each of the groups.
The values have been adjusted for age, gender and total intracranial volume.

row) that indicate where the values in the histogram are higher in controls than
AD. These occur mostly in areas near the peak of the joint histogram, where S
is negative and C≈ 0.2− 0.5 mm−1. For the cingulum, there is also a region at a
similar curvature but where S is positive. Comparisons involving MCI subgroups
resulted in smaller regions primarily contained within the control > AD region.
Significant regions were detected for control > MCI Converters (all ROIs except
frontal), controls > MCI Stable (frontal, temporal, parietal), MCI Stable > AD
(temporal, parietal), and MCI Converter > AD (temporal).

In all five ROIs, there were areas of significance (red regions, bottom row)
when using the reverse comparison, AD > Control. For each ROI except the
cingulum, these occurred in two areas of the histogram: (1) upper left, where S
is negative and C > 0.65 mm−1 and (2) far right, where S is close to +1 and
C ≈ 0.2 mm−1. In the cingulum, there were also significant regions in the very
lower left: where S is negative and C< 0.175 mm−1. Similar smaller overlapping
regions were again observed when performing comparisons with MCI subgroups
including: MCI Converter> Control (temporal, occipital), MCI Stable> Control
(cingulum), AD > MCI Stable (frontal,temporal parietal).

4 Discussion

The cortical folding measurements in this paper track changes between disease
groups that appear to be related to neurodegeneration. In Fig. 1, there are
statistically significant differences between a summary statistic derived from the
cortical folding. This value is higher in controls than MCI and AD subjects,
which was also observed by King et al. [14], indicating the complexity of cortical
folding is decreasing due to the disease process.

The main areas of significance in the forward comparison are near one of the
histogram peaks where S is negative and C is moderate, typically attributed
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Fig. 2. Statistical maps for each region of interest. The X axis represents the shape
index (range -1 to +1, unitless) and the Y axis is the curvature value (range 0 to
1.5mm−1). The top row has the forward comparisons (i.e. control > AD) and the
bottom row the reverse comparisons (i.e. AD> control). Areas of statistical significance
(p < 0.05) are overlaid on the average joint histogram as colour coded in the legend.

to sulcal areas. As these regions are greater in healthier patients (i.e Control >
MCI > AD), this suggests that the sulci are widening and thus the curvature is
reducing, thus flattening the peak of the histogram. There are also regions of sig-
nificance when performing reverse comparisons. These occur both in extremely
high curvature areas with negative shape indices or extremely low curvature ar-
eas with positive shape indices (and also in negative shape indices in the case
of the cingulum). The high curvature areas have much lower values (5–30%) in
the PDF compared to the areas representing the sulcal peaks. It could either
be that at this image resolution, the level set is unable to accurately acquire
these areas of high curvature in healthy controls until there is further sulcal
opening, or that neurodegeneration is further opening deep sulcal spaces and
increasing cortical folding complexity. The low curvature areas being higher in
affected patients seems to support the idea that neurodegeneration is reducing
the curvature in the cortical folds. It is encouraging that the comparisons involv-
ing MCI subgroups result in smaller clusters that overlap with regions associated
with controls vs. AD. This appears to suggest the measurement tracks with dis-
ease progression. The temporal lobe appears to show the greatest discriminant
power, as it showed the most discrimination between the four groups. This is in
agreement with many studies which indicate structures in the temporal lobe are
some of the earliest to change.

It will be important to compare this method with cortical thickness measure-
ments to determine if there is a correlation between the two measurements. As
there is significant cortical variability between subjects, it would be difficult to
apply this method on a vertex or voxel wide basis as is done in cortical thickness.
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However, it would be worthwhile to compute the joint histograms over smaller
ROIs defined, such as individual cortical regions from the parcellation. Often in
clinical trials, a summary statistic is more desirable than statistical maps to asses
the effectiveness of treatment. Therefore, it is imperative that effective summary
statistics, similar to the gyrification index, are developed from these metrics. As
the level set can be evolved outwards to the pial surface, it would be worthwhile
to test the effect of computing the curvature metrics from different boundaries,
such as the outer pial surface or a midline between the two boundaries, as King
found different levels of correlation between their fractal dimension values and
the cortical thickness depending on which boundary was used.

5 Conclusion

From this preliminary study, there is evidence that the cortical folding pattern
could be a useful biomarker in disease progression of Alzheimer’s disease. While
primarily applied to areas of development (such as neonatal applications), these
markers also apply to neurodegeneration as well. Further work to refine the
method and determine longitudinal changes should be pursued.
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Abstract. Quantitative modeling and analysis of structural and functional brain 
networks based on diffusion tensor imaging (DTI)/functional MRI (fMRI) data 
has received extensive interest recently. However, the regularity of these 
structural or functional brain networks across multiple neuroimaging modalities 
and across individuals is largely unknown. This paper presents a novel 
approach to infer group-wise consistent brain sub-networks from multimodal 
DTI/fMRI datasets via multi-view spectral clustering of cortical networks, 
which were constructed on our recently developed and extensively validated 
large-scale cortical landmarks. We applied the proposed algorithm on 80 
multimodal structural and functional brain networks of 40 healthy subjects, and 
obtained consistent multimodal brain sub-networks within the group. Our 
experiments demonstrated that the derived brain sub-networks have improved 
inter-modality and inter-subject consistency.                    

Keywords: DTI, fMRI, multimodal brain connectivity, multi-view clustering.   

1 Introduction 

Studying structural/functional brain networks via DTI/fMRI has attracted increasing 
interest recently due to its potential in elucidating fundamental architectures and 
principles of the brain [1]. E.g., in [2], Beckmann applied PICA to analysis fMRI; in 
[3], the functional connectivity in resting brain is studied to infer default mode 
network. In many previous studies, structural and functional brain networks are 
typically examined separately, leaving their relationship largely unknown. In addition, 
the regularity of the structural or functional brain networks across multiple 
neuroimaging modalities and across different brains has rarely been investigated. 
Essentially, better quantitative characterization of the relationship between 
multimodal brain networks and its consistency across individuals could significantly 
advance our understanding of the human brain architectures [4].    

In response to this issue, this paper presents a novel approach to infer group-wise 
consistent brain networks from multimodal DTI/fMRI datasets via multi-view spectral 
clustering of large-scale cortical landmarks and their connectivities. Based on our 
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recently developed and validated large-scale connectivity-based cortical landmarks 
[5] as network nodes, we constructed both structural and functional brain networks 
from multimodal DTI/fMRI data of 40 healthy brains. Then, we applied an effective 
multi-view spectral clustering algorithm [6] on these 80 multimodal structural and 
functional brain networks to derive consistent multimodal brain sub-networks. 

The prominent advantage of multi-view spectral clustering methodology is that it 
can effectively deal with heterogeneous features by maximization of the mutual 
agreement across multimodal clusters in different views [6]. In this work, we 
considered each structural or functional network in a subject as a separate view of the 
studied large-scale network. We modeled the clustering of group-wise consistent 
multimodal brain sub-networks in a unified multi-view clustering framework, by 
which the substantial variability of large-scale brain networks across modalities (DTI 
and R-fMRI) and different individuals (40 subjects) is modeled and handled by the 
powerful multi-view spectral clustering method. This is the major methodological 
novelty and contribution of this paper. 

Our experimental results have shown that the derived brain sub-networks via the 
multi-view spectral clustering method have improved inter-modality predictability 
and consistency in comparison with clustering results by single modality, and have 
improved inter-subject consistency. More importantly, they are consistent with 
current neuroscience knowledge and better explain the relationship between brain 
structure and function. Our study provides novel insights on inferring reliable and 
reproducible multimodal networks and network-based signatures for the elucidation 
of brain function and dysfunction in the future.    

2 Methods 

Our computational pipeline is summarized in Fig. 1. Both structural and functional 
brain networks (Fig. 1a-b) were constructed from DTI and resting state fMRI (R-
fMIR) data of the same group of subjects based on our recently validated 358 cortical 
landmarks [5]. The joint connectivity matrix (Fig. 1c) is then computed via multi-
view spectral clustering algorithm. Then, the clustering procedure generates group-
wise consistent multimodal sub-networks (Fig. 1d), which are then projected back to 
the original 358 cortical landmark space for visualization and validation (Fig. 1e). 
Finally, we quantitatively compared different schemes in clustering brain network. 

 

 

Fig. 1. The computational pipeline of proposed approach. (a) Structural connectivity matrix. (b) 
Functional connectivity matrix. (c) Joint connectivity matrix obtained via multi-view clustering 
algorithm. (d) Group-wise clustering. (e) Cluster sub-network. 
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2.1 Multimodal Brain Network Construction 

A prerequisite to perform multi-view clustering of structural and functional networks 
is that the network nodes should possess correspondences across different modalities 
and individual brains. Recently we created and validated 358 cortical landmarks that 
have intrinsically established structural and functional correspondences in different 
brains [5], providing natural and ideal nodes for brain network construction. In brief, 
each of the 358 cortical landmarks was optimized to possess group-wise consistent 
white matter fiber connection patterns, which have been demonstrated to be predictive 
of functional localizations in the brain [5, 7]. The neuroscience basis is that each 
brain’s cytoarchitectonic region has a unique set of intrinsic axonal inputs and 
outputs, called the “connectional fingerprint” [8], which largely determines the 
functions that brain area can perform. In particular, the functional correspondences of 
these 358 cortical landmarks were extensively validated by functional brain networks 
derived from both task-based fMRI data and R-fMRI data [5].  
 

 

Fig. 2. An example of the constructed structural (a) and functional (b) networks. Both networks 
used the same set of 358 cortical ROIs as nodes. Each sub-figure shows a joint view of ROIs 
(green dot) and their connections (gray line) with corresponding connectivity matrix on right. 

Based on these 358 cortical landmarks/ROIs (Fig. 2), we constructed both 
structural (Fig. 2a) and functional (Fig. 2b) networks for 40 healthy brains with 
multimodal DTI/R-fMRI data. We adopted R-fMRI data to construct the connectivity 
matrix of functional networks as follows. First, we performed brain tissue 
segmentation directly on DTI data [9], and used the gray matter segmentation map as 
a constraint for R-fMRI BOLD signal extraction. A principal component analysis was 
then conducted for the R-fMRI time series of all gray matter voxels within a ROI, and 
the first principal component was adopted as its representative R-fMRI BOLD signal. 
Then, the functional connection strength between ROIs is defined as the Pearson 
correlation of their R-fMRI BOLD signals.For the structural connectivity matrix, it 
was constructed from DTI data. Briefly, for each pair of ROIs, their connection 
strength is defined as the average FA (fractional anisotropy) value along the fiber 
bundle connecting the two ROIs. If there is no connecting fiber bundle between two 
ROIs, the connection strength is set to 0. An example of the constructed structural and 
functional networks is shown in Fig. 2. 
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2.2 Spectral Clustering 

We used the spectral clustering to cluster the brain networks based on the connectivity 
matrix described above. In brief, spectral clustering is a technique that takes the 
advantage of the property of Laplacian of graph to reduce feature dimension for 
clustering. Specifically, k-means algorithm is used to cluster nodes on the first k 
eigenvectors of graph Laplacian with the smallest eigenvalue. The outline of the 
algorithm applied on our data is listed below. More details of the algorithm can be found 
in [10]. 
 

Input: Connectivity matrix S with size nn × , where ijS is the connection strength 

between nodes i and j. Number k of clusters to construct. 
Output: Clusters of nodes.  

1. Compute the normalized Laplacian 2/12/1 −−−= SDDIL , where = j ijii SD is a 

diagonal matrix with graph degree on diagonal and 0 for the rest.  
2. Compute the first k eigenvectors kuu ,...,1 of L with smallest eigenvalue. 

3. Let U denotes a kn× matrix containing kuu ,...,1 that ijU is the ith value of ju . 

Normalize each row of U to obtain V. 
4. ith row in V corresponds to the ith node in S. Cluster nodes using each row of V as 

the feature vector via the k-means algorithm. 

2.3 Co-training Approach for Multi-view Clustering 

In our research problem, we have both structural connectivity and functional 
connectivity for large-scale brain network clustering. To find a common brain sub-
networks across different modalities, the most intuitive way is to assign a weight to 
each view or modality. However, it is difficult to define optimal weights, especially 
when ROIs are unlabeled and there exists significant variability across modalities as 
shown in Figs. 2a and 2b. Thus, how to fuse these multimodal networks to achieve 
relatively consistent sub-networks becomes an important issue. Recently, a clustering 
method dubbed multi-view clustering has been developed to solve this type of 
problem [6, 11]. In this paper, we adopted a co-training approach based on spectral 
clustering [6] to maximize the agreement between structural network and functional 
network to find the consistent multimodal sub-networks of the human brain. 

In spectral clustering, the reason why the first k eigenvectors can be used for 
clustering is that they contain the most discriminative information that can 
differentiate each cluster. By projecting the connectivity matrix to the space of the 
first k eigenvectors, the inner cluster details will be discarded and only essential 
information required for clustering retains. Thus, we can project the functional 
connectivity matrix to the space of the first k eigenvector of the Laplacian of 
structural connectivity matrix and then project it back and vice versa for structural 
connectivity matrix. By doing this iteratively, we can keep the common network 
between different modalities and discard the inconsistent information. Then, we 
combined feature vectors of both views and computed the Gaussian similarity 
between each ROI to obtain the joint connectivity matrix (Fig. 1c). The detailed 
algorithm is as follows [6]. 
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Input: Connectivity matrix of two views 0
2

0
1 ,SS , number k of clusters to construct. 

Output: Joint connectivity matrix *S . 

1. Compute the initial normalized Laplacian 0
2

0
1 , LL of each connectivity matrix, and 

the first k eigenvectors 0
2

0
1 ,UU with smallest eigenvalue of 0

2
0
1 , LL . 

2. for i = 1 to iter 
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1

1
2

1
2

1
1

1
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1
21

TiTiiiTiii SUUSUUS −−−−−− +=  

4.   2/])([ 1
2

1
1

1
1

1
2

1
1

1
12

TiTiiiTiii SUUSUUS −−−−−− +=  

5.   Compute Laplacian and corresponding first k eigenvectors ii UU 21 , of ii SS 21 , . 

6. Normalize each row of ii UU 21 , . Then combined normalized matrix to form a 

kn 2× matrix V. 
7. ith row in V correspond to the ith node in 21,SS .  

8. Compute the Gaussian similarity σ

2
2)()( jViV

e
−−

between each row to obtain the joint 

connectivity matrix *S . 

3 Experimental Results 

3.1 Data Acquisition, Preprocessing and Experiment Setup 

Our experiment was performed on 40 healthy adults. Both DTI and R-fMRI were 
acquired for each subject. The parameters are as follows: R-fMRI: 64×64 matrix, 4 
mm slice thickness, 220 mm FOV, 30 slices, TR = 2s; DTI: 256×256 matrix, 3 mm 
slice thickness, 240 mm FOV, 50 slices, 15 DWI volumes. Preprocessing including 
tissue segmentation, surface reconstruction and fiber tracking was performed with the 
same method in [5]. Then a set of large-scale, group-wise consistent ROIs were 
obtained on the cerebral cortex of each subject using method in [5]. The structural and 
functional connectivity matrices are then computed using method described in section 
2.1. Examples of ROIs and connectivity matrices are shown in Fig. 2. 

For comparison, the clustering has also been performed on structure connectivity 
matrix, function connectivity matrix and the mean of these two modalities. When  
only the structural connectivity matrix is used, the clustering only considers  
structural networks and thus the clustering of functional networks will be  
determined by the clustering result of the structural networks. Similarly, when the 
functional connectivity matrix is used, the clustering results of functional network 
will determine the grouping of structural networks. In the third scenario of using 
averaged structural and functional networks, we assigned equal weight to each view 
to obtain an average connectivity matrix. Then, the result sub-network will be based 
on both networks.        
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3.2 Clustering Results 

The clustering results when the cluster number k is 10 are shown in Fig. 3. Each 
cluster is highlighted by a red box. By visualization, it is evident that the proposed 
multi-view clustering method generates more consistent sub-networks across 
modalities. When only structure network is used for clustering, the ROIs that have 
strong fiber connections are clustered together. However, the functional networks 
obtained have weaker connections between ROIs within each sub-network (Fig. 3c). 
Similarly, the clusters obtained by clustering functional network only tend to have 
weaker structural connections within each clustered sub-network (Fig. 3d). In 
contrast, the clusters by multi-view clustering and mean connectivity matrix 
considered both aspects (Fig. 3a-b). Importantly, our further quantitative analysis in 
section 3.3 will demonstrate that the clusters by multi-view clustering are more 
mutually consistent and predictable across different modalities and subjects. 

 

 

Fig. 3. Clustering results when k is 10. Each cluster of sub-network is highlighted by a red box. 
For each subfigure, the ID of the cluster from left to right is 1 to 10 respectively. (a)-(d) are 
results of clustering using multi-view, mean, structure only, and function only accordingly. 

The clustered sub-networks by four schemes when k is ten are visualized in Fig. 4. 
Overall, there are certain similarities in the global patterns of clustered sub-networks 
by these four schemes (e.g. sub-network #3, #4, and #5 in Fig. 4). However, detailed 
examination of these sub-networks suggests that the multi-view clustering result has 
better agreement across modalities. For instance, according to the functional meta-
analysis [5], both of the two ROIs highlighted by red box in Fig. 4 are involved in 
auditory perception and cognitive attention networks and should be clustered into the 
same network. But the clustering results based on structural connectivity matrix (Fig. 
4c) and mean connectivity matrix (Fig. 4b) both failed in clustering these two ROIs 
into the same network.  
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Fig. 4. Visualization of clustered brain sub-networks when k is 10. Each clustered sub-network 
is color-coded by a different color. The color scheme is on the right. The ID of each sub-
network is the same with Fig. 3. (a)-(d) are results of clustering using multi-view, mean, 
structure only, and function only accordingly. 

3.3 Quantitative Comparisons 

In order to examine the clustering methods’ sensitivity to cluster numbers and 
quantitatively compare these four schemes, we varied the cluster number k from 8 to 
15 and measured the consistency between structural and functional sub-networks 
within each cluster. We used a linear regression model to predict functional network 
by structural network using the methods similar to that in [12]. Then, the regression 
residual is considered as the metric to assess how structural network is predictive and 
compatible with the functional network [12]. As shown in Fig. 5a, our results 
demonstrate that the regression residual by the proposed multi-view spectral 
clustering method is substantially smaller than other approaches, which indicates that 
the simultaneously clustered structural and functional brain sub-networks have 
improved predictability and consistency across modalities.  
 

 

 
Fig. 5. Measurement of consistency between structural and functional networks of each clustered 
sub-network obtained by four different schemes. The horizontal axis is the number of clusters k, 
and the vertical axis is the consistency measurement. (a) Average residuals after linear regression 
from structural network to functional network within each cluster. (b) Average mutual information 
between each structural network and functional network within each cluster. 
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Furthermore, the mutual information between the structural and functional 
connectivity matrix within each clustered sub-network is computed and averaged 
across different brains. As mutual information is a quantitative measurement of the 
mutual dependence of two matrices, the relatively higher average mutual information 
within sub-networks by the proposed multi-view clustering result shown in Fig. 5b 
further indicates that this approach can generate more consistent multimodal brain 
networks across individuals compared with other three schemes.  

4 Discussion and Conclusion 

This paper presents a novel framework of clustering group-wise consistent 
multimodal brain networks based on DTI/R-fMRI datasets. The major methodological 
contribution of this work is modeling the inter-subject and inter-modality variations of 
brain networks by the multi-view spectral clustering algorithm. Experimental results 
demonstrated that the proposed multi-view clustering approach performs better than 
other schemes, and offered novel insights into the regularity of brain networks across 
modalities and individual brains. The effort in this paper can help construct both 
structurally and functionally meaningful and consistent brain networks in the future, 
which would have significant implications in basic and clinical neurosciences.        
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Abstract. The human connectome has recently become a popular research topic 
in neuroscience, and many new algorithms have been applied to analyze brain 
networks. In particular, network topology measures from graph theory have 
been adapted to analyze network efficiency and ‘small-world’ properties. While 
there has been a surge in the number of papers examining connectivity through 
graph theory, questions remain about its test-retest reliability (TRT). In 
particular, the reproducibility of structural connectivity measures has not been 
assessed. We examined the TRT of global connectivity measures generated 
from graph theory analyses of 17 young adults who underwent two high-
angular resolution diffusion (HARDI) scans approximately 3 months apart. Of 
the measures assessed, modularity had the highest TRT, and it was stable across 
a range of sparsities (a thresholding parameter used to define which network 
edges are retained). These reliability measures underline the need to develop 
network descriptors that are robust to acquisition parameters. 

1 Introduction 

Graph theory is increasingly used to analyze brain connectivity networks. Graph 
theory, a branch of mathematics concerned with the description and analysis of 
graphs, describes the brain as a set of nodes (brain regions) and edges (connections). 
Information on either structural or functional connectivity may be expressed in 
connectivity matrices, from which various network properties may be derived, such as 
clustering, efficiency, or small-world organization. Several of these measures have 
been shown to change during childhood development [1], and to be heritable [2], 
associated with specific genetic variants [3,4] and be altered in various 
neuropsychiatric disorders [5]. To date, only one study has examined the test-retest 
reliability (TRT) of these measures for structural networks, finding high reliability 
[6], but they did not examine different network sparsities. Results in the TRT of these 
measures in functional networks have been inconsistent. Low reliability [7], 
remarkably high reliability [8], and moderate reliability [9,10] have all been found. To 
define which connections are present in a network, often a sparsity threshold is 
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applied, to retain only those connections whose edge strengths exceed a given 
threshold, or to eliminate “weaker” connections. Telesford et al. [8], found that the 
reliability did not depend on the network sparsity, while Wang et al. [7], and Braun et 
al. [10], found it depended heavily on network sparsity and other user-selected 
network parameters. Zalesky et al. [11] suggested small-worldness or scale-freeness 
measures can change drastically depending on the scale of the parcellation, but few 
studies have assessed their reproducibility. As so many papers have been published 
using network measures, their reproducibility deserves further analysis.  

We set out to examine the test-retest reliability of graph theory analyses of brain 
structural connectivity by scanning 17 young adults twice, over a 3-month interval, 
using high-angular resolution diffusion imaging (HARDI) at 4-Tesla. Other ongoing 
studies have assessed how connectivity matrices dependent on the scanner field 
strength, spatial, angular, and q-space resolution [12]. Here we assessed the reliability 
of commonly used network measures over a wide range of network sparsities, as well 
as inherently more robust measures integrated over different sparsity ranges. 

2 Methods 

2.1 Subjects 

Our analysis included young adults aged 20-30 scanned twice with both MRI and DTI 
at 4T. Our analysis included a subset of a much larger cohort who was asked to return 
for a second scan, to assess reproducibility. Of these, some subjects were filtered out 
due to artifacts in their raw data or errors in tractography, leaving us with 26 subjects. 
Of these, 2 were statistical outliers on at least one graph theory metric (>3 SD from 
group mean), 5 had a large difference in the number of fibers tracked in scan 1 and 
scan 2 (difference of more than 33% in number of fibers in each scan), and 2 had a 
much larger interval between scan 1 and scan 2. After these subjects were filtered out, 
we were left with 17 subjects. Subjects were 12 female, 5 male, 100% Caucasian, 
mean age: 23.6 years, SD 1.47. 

2.2 Scan Acquisition  

Whole-brain anatomical and high angular resolution diffusion images (HARDI) were 
collected with a 4T Bruker Medspec MRI scanner. T1-weighted anatomical images 
were acquired with an inversion recovery rapid gradient echo sequence. Acquisition 
parameters were: TI/TR/TE = 700/1500/3.35ms; flip angle = 8 degrees; slice 
thickness = 0.9mm, with a 256x256 acquisition matrix. Diffusion-weighted images 
(DWI) were also acquired using single-shot echo planar imaging with a twice-
refocused spin echo sequence to reduce eddy-current induced distortions. Acquisition 
parameters were optimized to provide the best signal-to-noise ratio for estimating 
diffusion tensors [13]. Imaging parameters were: 23cm FOV, TR/TE 6090/91.7ms, 
with a 128x128 acquisition matrix. Each 3D volume consisted of 55 2-mm thick axial 
slices with no gap and 1.79x.1.79 mm2 in-plane resolution. 105 images were acquired 
per subject: 11 with no diffusion sensitization (i.e., T2-weighted b0 images) and 94  
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diffusion-weighted (DW) images (b = 1159 s/mm2) with gradient directions evenly 
distributed on the hemisphere. Scan time for the HARDI scan was 14.2 min. The 
average scan interval was 101 days, SD 18 days.  

2.3 Cortical Extraction and HARDI Tractography 

Non-brain regions were automatically removed from each T1-weighted MRI scan, 
and from a T2-weighted image from the DWI set, using the FSL tool “BET” (FMRIB 
Software Library, http://fsl.fmrib.ox.ac.uk/fsl/). A trained neuroanatomical expert 
manually edited the T1-weighted scans to refine the brain extraction. All T1-weighted 
images were linearly aligned using FSL (with 9 DOF) to a common space [14] with 
1mm isotropic voxels and a 220×220×220 voxel matrix. Raw diffusion-weighted 
images were corrected for eddy current distortions using the FSL tool, “eddy_correct” 
(http://fsl.fmrib.ox.ac.uk/fsl/).  For each subject, the 11 eddy-corrected images with 
no diffusion sensitization were averaged, linearly aligned and resampled to a 
downsampled version of their corresponding T1 image (110×110×110, 2×2×2mm). 
Averaged b0 maps were elastically registered to the structural scan to compensate for 
EPI-induced susceptibility artifacts. 35 cortical labels per hemisphere, as listed in the 
Desikan-Killiany atlas [15], were automatically extracted from all aligned T1-
weighted structural MRI scans using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). 
As a linear registration is performed by the software, the resulting T1-weighted 
images and cortical models were aligned to the original T1 input image space and 
down-sampled using nearest neighbor interpolation (to avoid intermixing of labels) to 
the space of the DWIs. To ensure tracts would intersect labeled cortical boundaries, 
labels were dilated with an isotropic box kernel of width 5 voxels.  

The transformation matrix from the linear alignment of the mean b0 image to the T1-
weighted volume was applied to each of the 94 gradient directions to properly re-orient 
the orientation distribution functions (ODFs). At each HARDI voxel, ODFs were 
computed using the normalized and dimensionless ODF estimator, derived for q-ball 
imaging (QBI) in [16]. We performed a recently proposed method for HARDI 
tractography [17] on the linearly aligned sets of DWI volumes using these ODFs.  
Tractography was performed using the Hough transform method as in [18]. Elastic 
deformations obtained from the EPI distortion correction, mapping the average b0 image 
to the T1-weighted image, were then applied to the tracts’ 3D coordinates for accurate 
alignment of the anatomy. Each subject’s dataset contained 5000-10,000 useable fibers 
(3D curves). For each subject, a full 70×70 connectivity matrix was created. Each 
element described the proportion of the total number of fibers in the brain that connected 
a pair of labels; diagonal elements of the matrix describe the total number of fibers 
passing through a certain cortical region of interest. As these values were calculated as a 
proportion - they were normalized to the total number of fibers traced for each individual 
participant, so that results would not be skewed by raw fiber count.  

2.4 Graph Theory Analyses 

On the 70x70 matrices generated above, we used the Brain Connectivity Toolbox 
([18]; https://sites.google.com/a/brain-connectivity-toolbox.net/bct/Home) to compute 
five standard measures of global brain connectivity - characteristic path length (CPL), 
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mean clustering coefficient (MCC), global efficiency (EGLOB), small-worldness 
(SW), and modularity (MOD) [18]. CPL is a measure of the average path length in a 
network; path length is the minimum number of edges that must be traversed to get 
from one node to another; it does not depend on the physical lengths of the fibers, 
only their network topology. MCC is a measure of how many neighbors of a given 
node are also connected to each other, as a proportion of the total number of 
connections in the network. EGLOB is inversely related to CPL: networks with a 
small average CPL are generally more efficient than those with large average CPL. 
SW represents the balance between network differentiation and network integration, 
calculated as a ratio of local clustering and characteristic path length of a node 
relative to the same ratio in a randomized network. We created 10 simulated random 
networks. MOD is the degree to which a system can be subdivided into smaller 
networks [19]. Figure 1 visualizes these measures in an example network. 
 

          
Fig. 1. Measures of global connectivity. Examples show network motifs that serve the basis of 
each measure. Adapted from the diagram in [18]. 

One step in binarized graph theory analyses is selecting a sparsity, which may be 
considered a thresholding operation on the edge strengths (here, fiber counts). The 
sparsity can alternatively be defined as the fraction of connections retained from the full 
network, so setting a sparsity level of 0.2 means that only the top 20% of connections (in 
this case, greatest numbers of fibers) are retained for calculations. The networks 
reconstructed at a given density will not be identical for any two people, but should be 
comparable as healthy people have highly similar white matter pathways, especially for 
the larger tracts. Selecting a single sparsity level may arbitrarily affect the network 
measures, so we typically compute measures at multiple sparsities, and integrate them 
across a range to generate more stable scores. We have previously used the range 0.2-0.3 
to calculate and integrate these measures, as that range is biologically plausible [20] and 
more stable [4]. To determine whether the test-retest reliability varied across different 
sparsities we calculated these measures across the entire range (0-1 in 0.01 increments) as 
well as integrated across several smaller ranges (0.1-0.2, 0.2-0.3, 0.3-0.4, and 0.4-0.5, in 
0.01 increments). We calculated these measures for the whole brain over these different 
sparsity ranges, and computed the area under the curve of those 11 data points to derive 
an integrated score for each measure.  

2.5 Test-Retest Reliability Analyses 

Test-retest reliability was measured by assessing the ICC (intraclass correlation 
coefficient) between graph theory measures generated from scan 1 matrices and scan 
2 matrices. ICC is calculated according to the following formula: 
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nodes, but especially characteristic path length and global efficiency, as the mean shortest 
path length changes drastically if a significant portion of nodes is deleted. If networks get 
fractured differently between scan 1 and scan 2, this could lead to the very low reliability 
of characteristic path length and global efficiency at low sparsities. Characteristic path 
length and global efficiency are determined by calculating the path length between each 
node in a network and every other node in the network, for the shortest paths that exist, 
and averaging over all of those path lengths. Mean clustering coefficient, however, is 
determined by calculating for all the nodes connected to a given node, how many of its 
neighbors are also connected to each other, averaged over the whole network. 
Characteristic path length traces shortest paths, so if one path changes, many paths may 
take a different course, which could drastically alter mean shortest path length. For mean 
clustering coefficient, however, one path loss may reduce a node’s clustering coefficient 
from 5/6 to 2/3 (for example); when averaged over the whole network this may not be a 
large net change.  

Another factor that could be responsible for the difference in reliability between 
characteristic path length/global efficiency and mean clustering coefficient may be 
which paths are trimmed at low sparsities. Long-range paths heavily influence 
characteristic path length/global efficiency, but the mean clustering coefficient 
depends more on short paths. If long-range paths are generally trimmed before short-
range paths, then the reliability of characteristic path length and global efficiency will 
drop sooner than that of mean clustering coefficient, as sparsity decreases, and their 
reliability will be impaired. In support of this, the reliability for characteristic path 
length, global efficiency, and mean clustering coefficient, are all much closer to each 
other at the highest sparsity, when all connections are retained. 

There was a substantial dip in the reliability of a number of measures when 
integrated over the range 0.3-0.4. This was due to an increase in both the within- and 
between-subject variability in these measures. The average percent connectedness of 
these matrices was 26.5%, with all subjects fully connected at a sparsity of 0.30. The 
range of sparsities where all subjects are beginning to become fully connected may be 
associated with some instability in the measures, especially if many more unreliable 
(weak) connections are added. 

5 Conclusion 

Here we examined the test-retest reliability for a number of graph theory measures 
commonly used to assess brain structural connectivity. This depends to some extent 
on the tractography method, as well as the angular and spatial data resolution (we 
consider these topics elsewhere). Even so, we minimized several sources of error, 
using a 4-Tesla high angular resolution (94-direction) protocol, and a Hough method 
that uses ODFs to compute tracts. We found that modularity had moderately high 
reliability (mean r=0.58 for integrated analyses), as expected for a measure of general 
network topology. Mean clustering coefficient had higher reliability than 
characteristic path length or global efficiency for the lower sparsities, perhaps because 
networks fracture at lower sparsities. Integrating over a range of sparsities improved 



312 E.L. Dennis et al. 

 

the reliability of MCC and SW, while decreasing that of CPL and EGLOB at some 
sparsities. Selecting an appropriate sparsity range to integrate over, and defining 
network measures robust to sparsity, deserves further analysis.  
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Abstract. Diffusion magnetic resonance imaging has been used exten-
sively to probe the white matter in vivo. Typically, the raw diffusion
images are used to reconstruct a diffusion tensor image (DTI). The in-
capacity of DTI to represent crossing fibers leaded to the development
of more sophisticated diffusion models. Among them, multi-fiber models
represent each fiber bundle independently, allowing the direct extrac-
tion of diffusion features for population analysis. However, no method
exists to properly register multi-fiber models, seriously limiting their use
in group comparisons. This paper presents a registration and atlas con-
struction method for multi-fiber models. The validity of the registration
is demonstrated on a dataset of 45 subjects, including both healthy and
unhealthy subjects. Morphometry analysis and tract-based statistics are
then carried out, proving that multi-fiber models registration is better at
detecting white matter local differences than single tensor registration.

Keywords: Diffusion Imaging, Multi-Fiber Models, Registration, White
Matter.

1 Introduction

Diffusion magnetic resonance imaging offers the ability to investigate in vivo the
white matter microstructure. The representation of the signal by diffusion tensor
images (DTI) has proven useful for population analysis in two ways [1]. First,
scalar features extracted from DTI, such as the fractional anisotropy (FA), may
indicate the presence of brain diseases. Second, the use of DTI in registration
improves the detection of morphometric differences, compared to scalar images.

The single tensor diffusion model has, however, proven inaccurate for two
main reasons. First, it cannot represent the signal arising from multiple fibers
with heterogeneous orientations in one voxel. Second, it does not account for
the non-monoexponential decay observed when imaging at high b-values. Novel
models addressing one or both of these issues have been introduced [2] : Q-
ball imaging, spherical deconvolution, 4th order tensors, DOT, and others. Most
of them focus on describing the general shape of the diffusion at each voxel.
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In contrast, mixture models represent each fiber bundle independently, keeping
the interpretability of single fiber models while accounting for crossing fibers.
Therefore, scalar quantities such as the fractional anisotropy (FA) can still be
computed for each fiber independently. This property makes them very attractive
for population analysis.

While the literature on the registration of complex diffusion models is growing
(e.g., [3,4]), no method has been developed to register mixture models. This lack
of a registration method limits the use of mixture models in population analysis
despite their attractiveness. This issue has been previously reported, and has
incited researches to register the raw diffusion weighted images instead [5].

The remaining of this paper is organized as follows. Section 2 introduces the
diffusion mixture models. Section 3 presents a method to compute weighted
average of mixture models. Section 4 develops a similarity metric for diffusion
mixture images. Section 5 presents the integration of the developed methods in
a registration algorithm and analyzes its complexity. Section 6 presents experi-
mental results on a dataset of 45 subjects. Finally, Section 7 concludes.

2 Diffusion Mixtures

The basic idea behind multi-fiber models is to fit a single fiber model to each of
the fiber bundles present in the voxel. If Si(x) is a suitable model to represent
the diffusion process in a single fiber, then,

S(x) =

N∑
i=1

fiSi(x) (1)

is a multi-fiber model for N crossing fibers with relative volumetric occupancy
given by fi. The assumption behind these models is that the exchange of water
molecules between populations of fibers is negligible during the diffusion time [2].

The simplest multi-fiber model is the multi-tensor model in which Si =

S0e
−bgTDig. More complex multi-fiber models have later been introduced [6]. Po-

tentially, any single fiber model can be extended to a multi-fiber model by means
of mixtures. One such model, the biexponential decay model [2], represents each
fiber bundle by a Gaussian mixture to capture the non-monoexponential decay
of the signal. The corresponding multi-fiber model would be a mixture of Gaus-
sian mixtures which is itself a Gaussian mixture. A natural parameterization
of diffusion Gaussian mixtures is the set of pairs (fraction, covariance matrix),
that we write: {(f1,Σ1), ..., (fN ,ΣN )}. Alternatively, to connect with the tensor
formalism, the inverse of the covariance matrix, Di = Σ−1

i , can be used.

3 Weighted Combination of Mixtures

Computing weighted combinations of voxel values is at the basics of interpola-
tion (the value in one location is the weighted combination of the values in the
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neighborhood), smoothing (the value at a grid voxel is replaced by a weighted
combination of the values in a neighborhood) and atlas construction (the value
at one voxel is the average of the values in the aligned subjects’).

Gaussian mixture simplification (GMS) was introduced to efficiently compute
weighted combinations of diffusion mixture [7]. In this section, we underline the
important aspects of this method. The idea behind GMS is that computing
weighted combinations of mixtures would be trivial if the number of compo-
nents of the result could be arbitrarily large. Indeed, the linear combination of
K mixture models with N components is a mixture models with M = KN
components:

MC =

K∑
k=1

wkMk =

K∑
k=1

wk

N∑
j=1

fk
j S

k
j (x) ≡

M∑
i=1

giSi(x). (2)

We refer to this mixture as the complete mixture. GMS optimizes the parameters
of a simplified mixture MS =

∑N
j=1 hjRj(x) with N < M components that

best approximates MC . The energy function to be minimized is the cumulative
differential entropy (the reference to the location x is omitted for clarity):

D(MC ,MS) =

N∑
j=1

∑
i:πi=j

giD(Si||Rj) =

N∑
j=1

∑
i:πi=j

gi

∫
Si(g) log

Si(g)

Rj(g)
dg, (3)

where g is the gradient vector and where latent variables πi cluster the com-
ponents of the complete mixture Si in N clusters each represented by a single
component of the simplified mixture, Rj ; πi = j means that Si is best repre-
sented by Rj . Following the recent developments in probabilistic clustering, an
EM scheme is used to minimize (3). Banerjee et al showed that both the E-step
and the M-step can be solved in closed form for mixtures of exponential distri-
butions [8]. For Gaussian mixtures, the E-step consists in optimizing the latent
variables πi by computing the Burg matrix divergence between the covariance
matrices of each component of MC (ΣS

i ) and each component of MS (ΣR
j ):

πi = argmin
j

B
(
ΣS

i ,Σ
R
j

)
= argmin

j
Tr
(
ΣS

i Σ
R
j

−1
)
− log

∣∣∣ΣS
i Σ

R
j

−1
∣∣∣ . (4)

As for the M-step, it sums up to calculating:

ΣR
j =

∑
i:πi=j fiΣ

S
i∑

i:πi=j fi
and hj =

∑
i:πi=j

fi. (5)

Alternating (4) and (5) until convergence provides the parameters (hj and ΣR
j )

of the resulting mixture. A log-Euclidean version of this interpolation scheme is
obtained by replacing all covariance matrices by their logarithm.

4 Generalized Correlation Coefficient for Mixtures

The correlation coefficient, invariant under linear transformations of the voxel
intensities, is widely used in mono-modal image registration. The inter-subject
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Fig. 1. Comparison of the single tensor and multi-fiber registration in terms of the SSD
between eigenvalues after alignment, for different regularization parameter values [9].
Multi-fiber registration significantly improves the quality of the registration.

variability of diffusivity values motivates the introduction of a generalized corre-
lation coefficient, invariant under these differences. In DTI, this variability has
been reported and partially accounted for in some registration methods [1]. The
correlation coefficient between blocks F and G is defined as the scalar product
of the normalized blocks:

ρ(F,G) =

〈
F − μF

||F − μF ||
,
G− μG

||G− μG||

〉
,

where μF is the mean of the image values in the block. It is invariant if F (and/or
G) is replaced by aF + b. It has been generalized to vector images by redefining
the means μF and μG as the projection of the block onto a constant block T [10]:

F − μF = F − 〈F, T 〉 T

||T ||2 .

The corresponding generalized correlation coefficient is invariant if F is replaced
by aF + bT where T is now any constant vector block. The definition of a scalar
product between two blocks of mixture models seems impractical if not impos-
sible. We therefore further generalize the correlation coefficient by substituting
the inner product by a more general scalar mapping, m(Mf ,Mg):

ρ(Mf ,Mg) = m

(
Mf −m(Mf , T )T

nm(Mf −m(Mf , T )T )
,

Mg −m(Mg, T )T
nm(Mg −m(Mg, T )T )

)
,

where nm(M)2 = m(M,M) is a generalization of the norm. This definition does
not guarantee the invariance property of the metric for any scalar mapping. One
can show that the invariance is preserved as long as the scalar mapping is linear
with respect to the constant block T :

m(aMf + bT , T ) = am(Mf , T ) + bm(T , T ). (6)

To preserve the interpretability of ρ as a similarity metric, it needs to be sym-
metric, equal to one in case of perfect match and lower than one in any other
case. These constraints on ρ translate into the following constraints on m:
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p<0.05

p<0.001

Multi-Fiber DTI DT-REFinD

Fig. 2. (top) The two-tensor atlas built by means of the developed registration method
reveals crossing pathways common to all anatomies. (bottom) White matter volume
shrinkage in tuberous sclerosis represented by the p-value maps. Multi-fiber registration
reveals more differences than single tensor registration and DT-REFinD [11]

m(Mf ,Mg) = m(Mg,Mf ) (7)

nm(aMf ) = a nm(Mf ) (8)

|m(Mf ,Mg)| ≤ nm(Mf )nm(Mg). (9)

The latter is a generalized form of the Cauchy-Schwartz inequality for inner
products. Conditions (6-9), the choice of T and the definitions of the addi-
tion M + T and multiplication by a scalar aM, stand together as a model to
define a correlation coefficients in potentially any space. For DTI, if T is an
isotropic tensor block (T (x) = DI3×3), m is the log-Euclidean scalar product,
and the log-Euclidean algebra is used, then ρ is invariant under linear transfor-
mations of the eigenvalues in the log-domain [12]. For multi-tensor images, we fix
T (x) =

{
( 1
N , DI3×3), ..., (

1
N , DI3×3)

}
, and we define the addition of T , and the

multiplication by a scalar component-wise in the log-domain. The scalar mapping
m(Mf ,Mg) is defined by pairing the tensors in each voxel to maximize the linear
combination of pairwise scalar products. Let Mf (x) = {(f1,F 1), ..., (fN ,FN )}
and Mg(x) = {(g1,G1), ..., (gN ,GN )} defined on a domain Ω, we have:

m(Mf ,Mg) =
∑
x∈Ω

max
π

N∑
i=1

figπ(i)
〈
F i,Gπ(i)

〉
,

where π is a pairing function associating one tensor of Mg to each tensor of
Mf . This scalar mapping satisfies conditions (6-9). Interestingly, the resulting
generalized correlation coefficient is invariant under any global (within the block)
linear transformation of all eigenvalues in the log-domain. This similarity metric
is therefore robust to the inter-subject variability of diffusivities.
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Fig. 3. (a) Arcuate fasciculus, a set of fibers involved in language, on which tract
based statistics was performed, (b) The FA profile in TSC patients shows significantly
disrupted white matter fascicules in different clusters, indicated by the stars.

5 Implementation and Complexity

The developed methods were integrated in the efficient block matching regis-
tration algorithm described in [9]. The parameters used are the following: 4
pyramid level, 10 iterations per level, block size: 5 × 5 × 5, outlier removal
rate: 20%. The implementation was multi-threaded. On a 8 core workstation,
with 220×220×176 two-fiber images, the entire registration takes 1.5 hour. All
weighted combinations were computed until complete convergence of the soft
clustering. The average number of iterations required for that convergence is 4.

6 Results

The registration was applied to a clinical dataset of 45 subjects, 13 controls
and 32 patients with tuberous sclerosis complex (TSC), a rare genetic disease
associated with impaired white matter integrity. A DTI and a multi-tensor model
with three components (one isotropic and two anisotropic) were reconstructed
for each subject [13].

6.1 Validation

An alternative to the method presented in this paper would be to select one of
the two tensors in each voxel (e.g. the one with the highest FA) and to perform
single tensor registration on this image. Here, we validate that our method works
better than this simple alternative. The quality of the alignment is assessed by
the sum of square differences of each eigenvalue after alignment of control sub-
jects. Indeed, while the diffusivities can significantly differ in diseased brain, they
are approximately equal for healthy subjects. We performed 26 randomly cho-
sen registrations with four levels of regularization, totalizing 104 registrations.
In each voxel, the eigenvalues were averaged between the two anisotropic com-
ponents (weighted by their fractions). Results show that multi-fiber registration
performs significantly better than single tensor registration (Fig. 1).
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6.2 Atlas Construction

An atlas was constructed using our registration and alternating three steps:
aligning all subjects to the current atlas (initially a randomly chosen subject),
averaging the aligned subjects (using the weighted combination of mixtures),
applying the mean inverse field to the resulting average [14]. This atlas remark-
ably shows areas where multiple fibers are consistently present in all subjects
(Fig. 2).

6.3 Morphometry

The clinical hypothesis according to which there is substantial white matter
shrinkage in TSC subjects was tested by performing a one-tailed two sample t-
test on the log-Jacobian of the deformation fields [15]. The subject classes were
then randomly permuted 4000 times to assess the null distribution of extreme
t-scores. The entire process was repeated with single tensor images. As a result,
multi-fiber registration reveals more white matter differences (> 3800 significant
voxels) than single tensor (< 1000 voxels) (Fig 2). The entire process was then
repeated with DT-REFinD, a state-of-the art DTI registration algorithm [11],
to test whether the improved detection of differences is truly due to the knowl-
edge brought by multi-fiber models. Again, DT-REFinD did not capture all the
differences detected by multi-fiber registration (< 1300 voxels) (Fig 2).

6.4 Tract-Based Statistics

Some structural subnetworks are believed to be impaired in TSC patients. To
test this hypothesis, we analyzed the FA profile along the median tract of the
arcuate fasciculus, generated on the atlas by a probabilistic tractography al-
gorithm [5](Fig. 3(a)). A one-tailed two-sample t-test was performed at every
location. A threshold t0 was then set to the t-statistics and the length of the con-
tiguous supra-threshold segments were recorded. The null distribution of these
lengths was assessed by randomly permuting the subjects classes 4000 times.
The operation was repeated for a wide range of thresholds (1.5 ≤ t0 ≤ 4.5) to
estimate the robustness of our findings. For t0 = 2.7 (p0 = 0.01), with our multi-
fiber registration, four significant clusters, together representing 15% of the tract
were detected, indicating a strong impairment of this subnetwork in TSC pa-
tients (Fig. 3(b)). These findings were robust to the choice of t0 for any t0 ≤ 3.4.
In contrast, single tensor registration only revealed one cluster representing 5%
of the fiber, which was not robust outside the range 1.9 ≤ t0 ≤ 2.8.

7 Conclusions

This paper introduced a registration and atlas construction method to align
multi-fiber models. A proper interpolation method and a robust similarity metric
were presented. Results in both morphometry and tract-based statistics demon-
strated that multi-fiber registration reveals more group differences than DTI
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registration. We therefore believe that this registration method opens new doors
to understanding brain disorders based on multi-fiber models.
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Scalable Tracing of Electron Micrographs

by Fusing Top Down and Bottom Up Cues
Using Hypergraph Diffusion
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Abstract. A novel framework for robust 3D tracing in Electron Micro-
graphs is presented. The proposed framework is built using ideas from
hypergraph diffusion, and achieves two main objectives. Firstly, the ap-
proach scales to trace hundreds of targets without noticeable increase
in runtime complexity. Secondly, the framework yields flexibility to fuse
top down (global cues as hyperedges) and bottom up (local superpix-
els as nodes) information. Subsequently, a procedure for auto-seeding to
initialize the tracing procedure is proposed. The paper concludes with
experimental validation on a challenging large scale tracing problem for
simultaneously tracing 95 structures, illustrating applicability of the pro-
posed algorithm.

Keywords: Tracking, Tracing, Electron Micrograph, Spectral Graphs.

1 Introduction

Connectomics [1] is a sub-field of bio-informatics attempting to understand
neuronal connectivity patterns from data acquired using microscopic imaging
of neurons. This work focusses on the analysis of volumetric datasets from a
connectome, acquired using electron microscopy at nanometer resolutions. The
major image analysis challenge in tracing neuronal structures from Electron Mi-
crographs (EM) are two-fold. Firstly, the datasets are extremely large with a
requirement to scale algorithms to trace hundreds of targets (structures) simul-
taneously. Secondly, the structures present in the data undergo arbitrary defor-
mations and topological changes that need to be accurately modeled. This work
proposes a tracing model attempting to jointly satisfy the above requirements.
The problem can be defined as one of extracting 3D reconstructions of hundreds
of structures from a volumetric dataset in an accurate and computationally effi-
cient manner. There are well established algorithms for single structure tracing
in Electron Micrographs with deformations and topological changes. However,
creating multiple binary segmentations by applying single structure tracing on

� This work was supported by NSF OIA 0941717 and NSF III 0808772. The authors
thank Dr.Robert Marc, Dr.Bryan Jones and Dr.James Anderson from the Univ. of
Utah for providing data used in experiments and for useful discussions.
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every structure is problematic. Firstly, if a pixel is set to one in the binary masks
of two structures, it is not clear which label takes ownership of the structure.
Secondly, interactions between structures cannot be modeled in such a scenario.
The obvious solutions of utilizing discrete Markov random fields(MRFs)/Level
sets, though attractive may not be most suitable as verified by experiments in
Section 3. In case of MRFs, scaling the number of labels has a direct impact on
the runtime of algorithms like alpha expansions and behavior of such methods
for segmenting hundreds of labels is not a well studied problem (though such
problems have been looked into for stereo and optic flow). Level Set methods like
the Chan-Vese model, have also not been shown to work on hundreds of labels.

Proposed Solution: The image stack is assumed to be made up of superpixels
linked to each other in three dimensions, forming a graph. As an example, Figure
1a shows superpixel segmentation of two consecutive slices, say s13 represents
third superpixel in slice 1. The superpixel graph is constructed by introducing
edges between the superpixel of interest (s11) and its spatial (s12, s14) and
temporal neighbors (s21, s22, s24). Hyperedge construction from top down in-
formation is illustrated in Figure 1b. Maroon dotted circle is the output of top
down detector grouping red, green, blue and yellow blobs leading to a hyperedge.
Hyperedges based on k-nearest neighbors are similarly constructed. The key idea
is to model the label propagation across image sequences as the solution of a
hypergraph diffusion equation in a 3D superpixel hypergraph. In doing so, one is
presented with a model having some very desirable properties. Firstly, a flexible
framework that can utilize top down (coarse object location) and bottom up
(local image structure) information results. Secondly, the diffusion has a closed
form solution with complexity weakly dependent on the number of labels. In

(a) Three Dimensional Superpixel Graph Construction

(b) Hyperedge Construction from Superpixels

Fig. 1. Construction of the 3D superpixel hypergraph
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other words, the complexity remains unchanged in spite of an increase in the
number of labels. The primary contributions of this work include: An efficient
tracing framework based on hypergraph diffusion that fuses top down
and bottom up cues and a method for Automatic Target Seeding .

Related Works: The works by [7,8,6,12] are good sources of reference for EM
image analysis. Further, [5] utilized hypergraphs for unsupervised video seg-
mentation, in contrast to the supervised case the proposed approach deals with.
Salient aspects of the proposed 3D tracing framework are scalability to hundreds
of labels, modeling higher order interaction between segments, introduction of
global contour cues using hyperedges, generic autoseeding for fully automatic
tracing, and semi-supervised nature, amenable to user interaction if needed.
Our claim of originality is in the framework comprising the salient aspects listed
above. In related work, [12] propose an interesting technique utilizing pairwise
segment interactions on EM data from a mouse (gradient based), but do not lay
emphasis on user interaction or scalability. The data used in this work is very
different and is from a rabbit retina (noisy regional texture based). Techniques
similar to [12] did not perform well on our datasets, leading us to compare with
the state of the art on rabbit retina and relevant tracing techniques. Our work
is intended as a scalable replacement to the graph cut solvers used in [6], as will
be established by experimental results.

2 Proposed Model

The model is initially presented in terms of a bigraph. Subsequently, it is ex-
tended to the hypergraph case. The intuition behind the graph diffusion en-
ergy is motivated by semi-supervised learning [13], where structure of the data
manifold is utilized along with a sparse initial labeling of data points (y) to
arrive at a final labeling(f). Consider a bigraph G = (V,E,w), comprising a
vertex set v ∈ V with weights between nodes {u, v} ∈ G denoted by w(u, v).
Further, let d(u) denote the degree of node u. Considering a two label model,
f ∈ {−1, 1}|V | is the classification function to be estimated, and y ∈ {−1, 1}|V |

is the initial labeling vector. The following equation can be interpreted as fol-
lows, estimate a labeling function f over graph G whose smoothness is measured
by a smoothness cost term, and which does not deviate too much from initial

labeling: argmin
f∈R|V |

1
2

∑
{u,v}∈V

w(u, v)

(
f(u)√
d(u)

− f(v)√
d(v)

)2

︸ ︷︷ ︸
Smoothness Cost

+ μ||f − y||2︸ ︷︷ ︸
Deviation from Seeds

.

The above formulation can be extended to a hypergraph [14], generalizing the
notion of an edge linking a pair of nodes to a hyperedge linking multiple nodes.
The intuition behind the hypergraph model is similar to the bigraph case, ex-
cept for the fact that smoothness is over multiple nodes constituting a hyper-
edge. Consider a hypergraph G = (V,E,w), comprising a vertex set v ∈ V ,
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an edge set e ∈ E and a set of weights w. A hyperedge e comprises of a set
of nodes ve ⊂ V that form a clique inside the hyperedge. The degree of a
hyperedge is δ(e) = |ve|, while the degree of a vertex is defined by d(v) =∑

e∈E,v∩ve �=∅
w(e). The incidence matrixH ∈ �|V |×|E| contains binary elements

h(v,e) taking the value 1 if v ∈ ve, and 0 otherwise. De ∈ �|E|×|E| and Dv ∈
�|V |×|V | refer to the diagonal matrices of hyperedge and vertex degrees. The
ultimate goal is to perform estimation of a smooth function f on the graph, given
an initial labeling y ∈ {−1, 1}|V |. The formulation to accomplish the same is

given by: argmin
f∈R|V |

1
2

∑
e∈E

∑
{u,v}⊂e

w(e)

δ(e)

(
f(u)√
d(u)

− f(v)√
d(v)

)2

︸ ︷︷ ︸
Smoothness Cost

+ μ||f − y||2︸ ︷︷ ︸
Deviation from Seeds

.

Defining the matrix Θ = D
− 1

2
v HWD−1

e HTD
− 1

2
v , and � = I − Θ, it is straight-

forward to obtain a closed form solution on label certainties by, f = (1− ζ)(I −
ζΘ)−1y, ζ = 1

1+μ . In the context of image labeling (see Figure 1), v ∈ V cor-
responds to a set of superpixels in an image sequence, e ∈ E refer to the hy-
peredges constructed by including higher order neighbors on the 3D superpixel
graph, thus forming the matrix H . Inferring using the above equation would
result in a class marginal on each superpixel that would lead to a tracing result.
The use of transductive hypergraph learning for supervised tracing in EM stacks
is our first contribution.

Extension to Multiple Labels and Uncertainty Characterization: The
above formulation can be extended to the multiple label case in a straightforward
manner. The vectors f, y used for the two class problems are now transformed to
matrices F, Y ∈ �|V |×|L|, where column j of {F, Y } correspond to the probability
of label j to be associated with every node in the graph. The entry Y (i, j)
is set to 1 if node i has a label j associated with it, and F (i, j) yields the
probability of node i to be associated with label j after diffusion. Alternately,
each row i of the matrices F, Y can be interpreted as the probabilities of node i
to be associated with each label. The associated inference is given by: F = (1−
ζ)(I − ζΘ)−1Y, ζ = 1

1+μ . A side benefit of the above formulation is the fact that
uncertainty of solutions can be characterized from the entropy computed using
rows of F . Computing uncertainty estimates would point towards confidence of
the algorithm in its solutions, and it can readily probe the user for assistance
using an active learner in interactive settings.

Low Level Features and Graph Weights: The feature representation of
superpixels plays an important role in the end results. We utilize gray scale
and Local Binary Pattern (LBP) based texture histograms [9] for characteriz-
ing appearance of superpixels. The distance between histograms is modeled us-
ing the symmetric Kullback Leibler divergence, assuming independence between
gray scale and texture channels. Assuming hgray(i) and hlbp(i) respectively to
denote the gray scale and texture histograms of superpixel i, the dissimilarity
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between superpixel i and j is constructed as:KL[h(i), h(j)]=
∑

k h(i, k) ln
h(i,k)
h(j,k)+

h(j, k) ln h(j,k)
h(i,k) w(i, j) = exp (−KL[hgray(i), hgray(j)] +KL[hlbp(i), hlbp(j)]).

Complexity of Algorithm. The complexity of inversion is cubic O(|V |3) in
the number of nodes, as is evident from the equation for inferring multiple labels.
Since the matrix considered is sparse, efficient sparse solvers can be employed
leading to considerable reduction in running time. The matrix inversion of the
graph Laplacian has the greatest computational load, while the matrix multi-
plication with the label vector Y is of lower complexity than the inversion. As
a result, an increase in the columns of Y (additional targets) does not affect
the overall time complexity of the algorithm. An intuitive way of looking at the
solution is that the graph Laplacian models the entire 3D stack (primary target
and contextual information), and a diffusion utilizing this graph Laplacian yields
a simple and efficient method for label propagation. Finally, if solutions need to
be corrected during interactive segmentation, the computed inverse matrix can
be cached, resulting in extremely fast responses to user corrections. Now two
important questions arise, Can the hyperedges be utilized to induce a top down
global contour cue? (Global Cue Detectors) and is it possible to automatically
initialize the number of targets present in the field of view? (Automatic Seeding).
The following discussions answer the above questions followed by experimental
validation of the proposed ideas.

Global Cue Detectors. As has been described, global detectors are outputs
of any algorithm that gives a rough grouping of the nodes in a graph. In the
current problem, any algorithm that gives a probable association between su-
perpixels over the 3D volume, thus modeling higher order correlation over the
stack is called a global cue detector. The idea is to learn edge profiles using
Boosted Edge Learning (BEL) [4], followed by a pass of watershed transform
for obtaining 2D segments. The 2D segments are associated in an unsupervised
manner across the third dimension using the Floyd-Warshall all source shortest
path algorithm [3] to generate probable global cues, see Figure 2a. These cues
define association rules between superpixels, thus modeling longer range corre-
lations. Subsequently, the k-nearest neighbors of every superpixel are also used
in constructing hyperedges constituting additional global cues.

An important observation to be made is that the k-nearest neighbor hyper-
edges enforce a Potts style prior encouraging spatial smoothness of labels among
superpixels using pairwise interactions. However, in scenarios where information
on association between superpixels over larger spatial neighborhoods (across
space and the third dimension) are available, they can be readily encoded using
the hyperedges for promoting label smoothness. The top down cue detectors
serve the purpose of defining these larger interaction neighborhoods over which
label smoothness is encouraged.

Automatic Seeding. Another important problem that arises is the automatic
initialization (seeding) of targets for efficient tracing. While the most widely
used strategy for target initialization is based on user marked seeds in the first
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(a) (b)

Fig. 2. Figure of the left illustrates outputs from the top down cue detector that serves
to construct hyperedges. Figure on right illustrates results of the automatic seeding.

frame, it may not always be possible to seed hundreds of targets manually. In
order to solve the above problem, a technique for automatic seeding is proposed.
The result of the seeding algorithm can be utilized for initializing the matrix
Y . The question asked for auto-seeding is: Is it possible to pick a set (cardi-
nality |L|) from the K superpixels from the first slice that are as different from
one another in appearance (Ai1 ∈ �m) and spatial positions (Si1 ∈ �2)? The
above problem can be solved by estimating an indicator vector z ∈ {0, 1}K that
minimizes a cost comprising distances between selected points in spatial and fea-
ture spaces. We formalize the above intuition as a relaxed quadratic program [2]

(QP) argmin
z

∑|V |
i=1

∑|V |
j=1 wijzizj , s.t

∑N
i=1 zi = |L|. Rounding the solution of

QP yields the desired set of superpixels to be used as seeds for tracing, see Fig-
ure 2b. The weights w in the above equation can be constructed in a manner
discussed previously.

Contour Refinement. The result of hypergraph diffusion achieves regional ho-
mogeneity but is not always edge aware. We utilize an edge based active contour
based on hidden Markov models (HMM) [10][11]. Contours resulting from hy-
pergraph diffusion initialize the edge based active contour. For each contour, a
trellis with states sampled as points along normals to the contour is instantiated.
These points represent the states of the HMM, and any path through the trellis
is a potential contour candidate. The Viterbi decoding algorithm yields the final
contour passing through strong image gradients.

3 Experiments

Experiments are reported on a tracing task over two separate stacks of electron
micrographs. For the purpose of studying the behavior of diffusion in isolation
from seeding, contours are manually initialized in the first frame. The metrics
used for validating the tracing are the F-measure and Rand index, two com-
monly used metrics in the segmentation literature. Justification for scalability is
given by the running time of algorithms on an Intel Core i7 860 @ 2.8GHz ma-
chine. Further, two variants of the proposed idea are utilized in experiments. The
HGraph3D method attempts to perform diffusion through the entire 3D graph
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(a) Result of hypergraph diffusion on Dataset-I

Method Median Mean Standard Deviation Time(sec.)

Level Set Tracking 0.55 0.53 0.25 1080

BiGraph3D 0.16 0.23 0.26 78

HGraph3D (Proposed) 0.68 0.66 0.21 108

HGraph Propagate (Proposed) 0.71 0.78 0.22 34

Graph Cuts, Pn Model 0.67 0.77 0.28 1320

(b) F-Measure and Running Time on Tougher Dataset-I (95 targets, 5 slices)

Method Level Set Tracking HGraph3D HGraph Propagate Pn Graph Cuts

Median 0.87 0.91 0.89 0.91

RunTime(sec.) 378 210 61 950

(c) F-Measure and Running Time on Easier Dataset-II (30 targets, 10 slices)

Method Frame1 Frame2 Frame3 Frame4 Frame5

Level Set Tracking 0.82 0.78 0.75 0.72 0.69

BiGraph3D 0.81 0.70 0.64 0.60 0.58

HGraph3D (Proposed) 0.88 0.86 0.83 0.79 0.77

HGraph Propagate (Proposed) 0.88 0.86 0.85 0.83 0.80

Graph Cuts, Pn Model - 0.81 0.85 0.84 0.80

(d) Rand Indices on Tougher Dataset-I (95 targets, 5 slices)

Fig. 3. Validation of the Proposed Tracing Framework

and thus performs a one shot optimization. On the other hand, HGraph Propa-
gate attempts to propagate contours in a slice by slice manner with segmentation
of one slice being the prior for subsequent slice. Figure 3(a) illustrates the result
of tracing all structures over the first few frames of the dataset. In order to place
the proposed algorithm in context with existing state of the art techniques, we
compare performance with Graph Cuts based Pn model [6], Level Sets using the
Chan-Vese model, and bi-graph diffusion, see Figure 3. The striking aspect of
experiments is the running time of algorithms. For instance, HGraph
Propagate runs in 34 seconds on Dataset-I without compromising ac-
curacy, in comparison to graph cuts which takes 1320 seconds. This is
a speed up of almost 35×. Table 3(b),3(c) reports statistics on F-Measures
against the ground truth over 475 (Dataset-I) and 300 (Dataset-II) contours
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respectively on two different datasets with corresponding run times. Dataset-I
is much more challenging due to appearance variability and larger number of la-
bels. Similarly, Table 3(d) also reports the average Rand index of Dataset-I over
all structures in every frame. In conclusion, this paper presented a simple trac-
ing technique that easily scales to hundreds of labels. Experimental results on
electron micrographs and comparisons to state of the art illustrate the method’s
applicability. Future work includes stable auto seeding using Minimum Descrip-
tion Length, deployment on larger distributed computing infrastructures, and
active learning based interactive tracing.
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Abstract. Fluorescently-tagged proteins located on vesicles can fuse with the
surface membrane (visualised as a ‘puff’) or undock and return back into the bulk
of the cell. Detection and quantitative measurement of these events from time-
lapse videos has proven difficult. We propose a novel approach to detect fusion
and undocking events by first searching for docked vesicles that ‘disappear’ from
the field of view, and then using a diffusion model to classify them as either fusion
or undocking events. We can also use the same searching method to identify
docking events. We present comparative results against existing algorithms.

1 Introduction

The movement of numerous proteins between the various sub-compartments of a cell
is critical in the biological function of a cell. Defects in protein movement can lead to
disease, e.g. ineffective movement of a protein called GLUT4 from small intracellular
vesicles towards the surface membrane of a fat and muscle cell, and their consequent
fusion with that membrane, leads to insulin resistance and type 2 diabetes [1]. Un-
derstanding these processes at a molecular level is, therefore, critical to understanding
cellular behavior in normal and diseased states.

The docking and fusion of intracellular vesicles with the surface membrane of cells
can be visualised using Total Internal Reflection Fluorescence Microscopy (TIRFM). A
snapshot of the distribution of vesicles labeled with a fluorescently-tagged GLUT4 in a
single fat cell is shown in Fig. 1(left) while Fig. 1(right) shows some of the key events
in GLUT4 movement to the surface membrane. These key events in vesicle movement
to the surface membrane can be described as follows. First insulin, which is required
for the vesicles to fuse with the membrane, signals for the vesicles to move towards the
surface membrane. Then some of the vesicles make it to the edge of the cell and ‘dock’
with the cell membrane. This docking event corresponds to vesicles suddenly halting
and vibrating in the same place for a few seconds. After docking for some time, some
of the vesicles then fuse at the cell membrane. This can be seen as a ‘puff’ (see row A
in Fig. 2). Other vesicles dock for a few seconds and then undock and leave the vicinity
of the membrane, returning back into the main bulk cell (i.e. go out of view; row B in
Fig. 2) or move off to a different part of the membrane.

Extracting information and quantifying vesicle dynamics in TIRFM videos has
proven difficult and is a major barrier to understanding their molecular basis. It is im-
practical to manually mark the video data as it would be far too time-consuming and
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Fig. 1. (left) A fat cell’s vesicles (bright dots) tagged with a green fluorescent protein and imaged
using TIRFM. (right) Key events of insulin-stimulated GLUT4 translocation (see text for details).

error-prone, making an automatic approach necessary. Developing a robust quantita-
tive vesicle analysis method will be important in many areas of cell biology where
vesicle fusion and undocking with the surface membrane occurs, e.g. events such as
neurosecretory vesicle fusion [2], which is relevant to Alzheimer’s disease and
schizophrenia. Current methods that are popularly and extensively used for biologi-
cal research first segment individual vesicles by analyzing the surrounding gray level
distribution, and then use thresholds on the pixel intensity to distinguish between fu-
sion and undocking events, e.g. Bai et al.[3] and Huang et al. [4]. In Vallotton et al.
[5], a matched filtering approach is used to identify events that highly correlate against
a standard fusion event through space and time. However, this approach is not only
computationally expensive, but tends to miss many events due to the high variability in
duration, size and noise levels of fusion events. In Mele et al. [6], videos are represented
as a 3D image space, where using a threshold for noise, patches of interest are differ-
entiated from noise according to absolute difference in pixel intensity between frames.
These patches of interest are then further analysed using a 3D extension of the Maxi-
mally Stable Extremal Regions algorithm to detect high intensity and highly variable
regions which would correspond to potential fusion events. A set of descriptors includ-
ing intensity differences, fusion spot size, and degree of fit to a diffusion model are
collected for each candidate event, and are then compared against pre-identified fusion
events using PCA. This method however does not consider undocking events.

2 Proposed Method

We first outline a search algorithm for detecting vesicles that suddenly disappear due to
fusion or undocking - we shall call these candidate events. By modifying this algorithm
we are also able to detect vesicles that suddenly appear, and to the best of our knowledge
this is the first approach that has been proposed to detect docking events. To classify
the candidate events, we build on an idea taken from [6] which is to use a mathematical
diffusion model to extract features for classification. In [6] an analytical solution to the
diffusion equation is derived to explain how the intensity of a vesicle should change
over time during fusion (recall as mentioned earlier, [6] cannot handle undocking, and
docking, events). We develop this idea by considering a 2D diffusion model which
considers the whole vesicle and its surrounding area, and we also introduce a source
and sink term to model both fusion and undocking events explicitly. We then fit these
fusion and undocking models to the candidate event and use the goodness of the fit
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to classify the event as a fusion or an undocking event. We test our algorithm on real
TIRFM data and demonstrate its performance for a range of videos.

Detecting Fusion and Undocking Events - Sophisticated algorithms to track the be-
haviour of vesicles already exist, e.g. [7]. Here, the vesicles of interest are only those
that have docked to the membrane and then go on to either fuse or undock, and thus,
there is no need to track individual vesicles - this same phenomenon was also looked
at in [8] using a patch-based method. Our main assumption is that a vesicle remains
stationary for around N frames before it fuses or undocks. Hence, we search for vesi-
cles that have been visible in the same position throughout the past Np frames but then
cannot be found again in this position during Nf future frames. This corresponds to the
vesicle first being docked (visible) and then having either undocked or fused (not visi-
ble). We also allow for brief periods of vesicle disappearance. This allows us to detect
vesicles that shortly go out of view due to noise and TIRFM artifacts but still follow
the overall pattern of a disappearing vesicle. As preprocessing, we reduced noise in our
videos using a standard Gaussian filter (σ = 1.5), as in [6]. For further efficiency, we
also applied a low threshold to eliminate areas with very low intensity and no activity.
We use local maxima to identify the individual vesicles in each frame which gives better
results than using an adaptive thresholding approach as performed in [7].

Fig. 2. (Left) Local maxima (red crosses) and local minima (blue circles). (Right) An image
sequence showing a very prominent fusion event (row A), and an undocking event (row B).

Let V denote a 2D matrix that contains the positions of all local pixel maxima (see
Fig. 2) in a 5×5 neighbourhood for every frame in the video, such that vi j is the position
of the jth maxima (vesicle) in the ith frame, and vk: = [vk1, vk2, ..., vk j, ...] denote the set
of all the local maxima found in the kth frame. Similarly let W denote a 2D matrix that
contains the positions of all the pixels that have a local minima (see Fig. 2) in a 3 × 3
neighbourhood in each frame such that wi j is the position of the jth minimum in the ith

frame. We can then calculate a score ai j for each vesicle vi j which reflects how closely
vi j follows the pattern of being stationary and visible for the past Np frames and then
being out of view for the future Nf frames:

ai j =

k=i−1∑

k=i−Np

h(vk:, vi j) +
k=i+N f∑

k=i+1

g(wk:, vk:, vi j). (1)
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Here h(vk:, vi j) is a function which searches vk: for a local maxima that is positioned
within r pixels of vi j. More specifically,

h(vk:, vi j) =

⎧⎪⎪⎨⎪⎪⎩
1 if ∃ v ∈ vk: s.t |v − vi j| ≤ r ,

0 otherwise,
(2)

where r is the radius of the vesicle. The function g(wk:, vk:, vi j) searches wk: for a local
minima that is positioned within r pixels of vi j and also checks that there are no local
maxima v ∈ vk: which are close to vi j, i.e.

g(wk:, vk:, vi j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if ∃w ∈ wk: s.t |w − vi j| ≤ r,

∧∀ v ∈ vk: s.t |v − vi j| > r,

0 otherwise.

(3)

To decide whether a vesicle should qualify as having gone missing we set a threshold
such that if ai j ≥ (Np + Nf )C, then a missing vesicle is detected at vi j, where C ∈ [0, 1]
is a threshold representing the amount of ‘brief disappearance’ that is allowed.

Detecting Docking Events - To detect vesicles that are first not visible but then sud-
denly appear and stay stationary we can simply rearrange Eq. (1) such that

bi j =

k=i−1∑

k=i−Np

g(wk:, vk:, vi j) +
k=i+N f∑

k=i+1

h(vk:, vi j). (4)

To decide whether a vesicle should qualify as having docked we set a threshold such
that if bi j ≥ (Np + Nf )C, then a docking vesicle is detected at vi j.

3 A Computational Model for Fusion and Undocking Events

TIRFM helps create an evanescent field which illuminates and excites fluorophores in
a region ≈100nm below the interface. The evanescent field’s intensity decreases expo-
nentially with the distance perpendicular to the interface which directly relates to an
exponential decrease in the fluorescence [9]. For a vesicle that goes from being docked
at the membrane to fusing and diffusing into the membrane, the total number of fluo-
rophores does not change, however, as the fluorophores diffuse into the membrane they
are now collectively closer to the interface which can result in a slight total intensity in-
crease in the video. In the fusion model, this is represented using a diffusive and a source
term centred at the vesicle. During an undocking event, there is no diffusion since the
vesicle just undocks and returns into the cell. This is modelled using just a sink term
centred at the vesicle which is able to explain the sudden decrease in intensity.

Definition of the Models - For each of the previously detected candidate events vi j

a sequence of subregions centred at the event spatially and temporally is taken from
the video. A sequence length of Np/2 + Nf /2 guarantees that the actual event happens
during these frames. The size of the subregion should include the whole vesicle and
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some room for a fusion (puff) to happen - we take this to be 4r × 4r. Let Ik(x, y) be
the pixel intensity at position (x, y) within the subregion, during the kth frame, with
x ∈ [−2r, 2r], y ∈ [−2r, 2r] and k ∈ [i − Np/2, i+ Nf /2]. Let Mk be the circular mask of
radius r, centred at the candidate vesicle position vi j = (vx, vy) such that

Mk(x, y) =

⎧⎪⎪⎨⎪⎪⎩
Ik(x, y) if (x − vx)2 + (y − vy)2 ≤ r2

0 otherwise.
(5)

This will be the mask on which the source or sink will be able to act. We can then
introduce the model for a fusion event as

∂I
∂t
= DF

(
∂2I
∂x2
+
∂2I
∂y2

)
+ S FMk, (6)

where S F ∈ [0,∞) is the magnitude of the source and DF ∈ [0,∞) is the diffusion coef-
ficient, which model the amount of increase and diffusion of fluorescence respectively.
The model for an undocking event is given by

∂I
∂t
= S UMk, (7)

where S U ∈ (−∞, 0] is the magnitude of the sink. As there is no puff, i.e. no diffusion
in an undocking event, then DU = 0, causing the diffusion term to disappear.

Using the Models for Classification - We can use Eqs. (6) and (7) to explain how a
candidate event evolves temporally and whether it can be classified as a fusion event, an
undocking event, or neither. We pick a frame as initial conditions to (6) and (7), evolving
the system by one time step and then comparing the predicted result with the actual next
frame. The total intensity difference between the predicted frame and the actual frame
of each model is then turned into a likelihood ratio which is used for classification. Let
us define a function which evolves the fusion model in (6) by one time step and solves
for the new intensity distribution ÎF

k+1 of the subregion

ÎF
k+1 = F(Ik,DF , S F). (8)

The fusion model in (6) is solved numerically using the Crank-Nicolson method, with
homogeneous Neumann boundary conditions and initial conditions Ik. We then opti-
mize (8) to find the optimal DF and S F values which let the fusion model best predict
the next frame. This optimization step is implemented using the well known Nelder-
Mead method. The absolute difference ξFk over the whole subregion between the pre-
dicted frame ÎF

k+1 = F(Ik,DF , S F) and the actual frame Ik+1 is then given by ξFk =

minDF ,S F

∫
Ω
|ÎF

k+1−Ik+1| dΩ, whereΩ is the area of the subregion and k = [i−Np/2, ..., i+

Nf /2]. A similar calculation can be done for the undocking model using ξUk = minS U

∫
Ω

|ÎU
k+1−Ik+1| dΩ, where ÎU

k+1 = U(Ik, S U) is the function that evolves the undocking model
(7) by one time step and solves for a new intensity distribution of the subregion. We can
then define a likelihood ratio λk =

ξUk

ξFk
to see which model is better at predicting the next

frame. When λk > 1, then the fusion model is better at predicting the next frame Ik+1,
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and if λk < 1, then the undocking model is better. To finally decide whether a fusion
event has happened, we use a simple threshold on λ to determine the class, i.e. Fusion
if (max(λ) ≥ α), Undocking if (min(λ) < γ ∧ max(λ) < α), or Noise otherwise. The
thresholds can be determined by inspecting the results of a few known events.

4 Results

All the results presented here are evaluated against groundtruth generated by a cell
biology expert working in the field of TIRF microscopy and vesicle trafficking. Our data
set comprises of four videos1. The first part of the proposed method, which searches
for ‘disappearing’ vesicles, achieves an average detection rate of 87.5%. This might
not seem as high as expected but is due to the inherent difficulty of the problem. The
fusions can be extremely varied in their nature and are often, even for biology experts,
difficult to spot and classify. The low spatial and temporal resolution and low SNR in
the videos, due to microscopy limitations, also add to the difficulty of the problem.
Table 1 shows the number of fusion and undocking events in the groundtruth for each
video, the total number of candidate events detected by the proposed method, and the
number of candidate events detected by the proposed method corresponding to true
events in the groundtruth. In these experiments, we set Np = Nf = 20 and C = 0.6.
Other advantages of the proposed method are that it is easy to implement, it is fast,
and it does not rely on any intensity thresholds, just minima and maxima. This part of
the proposed method, i.e. the detection of candidate events alone can be very useful for
biologists who analyze such videos. What previously took a full day’s work to analyze
one video manually can now be achieved in just a few minutes by finding all candidate
events in a video (about 0.25 fps) and then manually classifying the events as fusion
or undocking events. To automatically classify the events, a threshold on the likelihood
ratio produced by the two models is used. The large peak in Fig. 3(left) demonstrates
the algorithm’s ability to produce a clear signal even for cases where a fusion looks
fairly similar to an undocking event. This large peak can then easily be classified as a
fusion event.

Table 1. Precision and Recall results for detecting candidate events

Fusion Undocking Candidate Correct Time
events events events candidate Recall Precision taken

groundtruth groundtruth detected events seconds (s)

Movie1 16 7 24 19 82.6% 79.2% 42 s
Movie2 10 3 13 13 100% 100% 30 s
Movie3 15 12 35 22 81.5% 62.9% 43 s
Movie4 9 12 23 18 85.7% 78.3% 31 s
Average 87.5% 80.1%

In Fig. 3(right), an example of an undocking event is shown, where the large trough
in the likelihood ratio can also be easily classified as an undocking event. The vesicle in

1 Note in other works, e.g. [3] and [4], only one long movie was tested.



Diffusion Model for Detecting and Classifying Vesicle Fusion and Undocking Events 335

2 4 6 8 10 12 14
0.5

1

1.5

2

2.5

Frame number

Li
kl

ih
oo

d 
ra

io
 λ

2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Frame number

Li
kl

ih
oo

d 
ra

tio
 λ

Fig. 3. (Top left) frames 4-11 taken from a fusion event in Movie3.avi, (bottom left) the likelihood
ratio between the fusion model and the undocking model for different frames during the fusion
sequence, and a threshold of α = 1.5. (Top right) an undocking event and its likelihood ratio
(bottom right) with a threshold of γ = 0.9.

the image sequence is stationary and then moves away (undocks) instead of returning
straight back into the cell which is more common for an undocking event (see Fig.
2(B)). This is where other methods, such as [3] that use intensity thresholds on features
including the maximum intensity increase in the annular area of the vesicle, would fail
and incorrectly classify the event as fusion due to the increase in intensity in the annulus,
which of course is caused by the vesicle movement, and not by a fusion.

Table 2. Results for the automatic classification of detected events

Fusion Accuracy Recall Precision False +ve Undocking Accuracy Recall Precision False +ve
Movie1 91.7% 100.0% 85.7% 16.7% Movie1 91.7% 85.7% 85.7% 5.9%
Movie2 76.9% 80.0% 88.9% 33.3% Movie2 76.9% 33.3% 50.0% 10.0%
Movie3 80.0% 80.0% 61.5% 20.0% Movie3 54.3% 60.0% 37.5% 43.5%
Movie4 91.3% 83.3% 83.3% 5.9% Movie4 78.3% 75.0% 81.8% 18.2%
Average 85.0% 85.8% 79.9% 19.0% 75.3% 63.5% 63.8% 19.4%

Table 2 shows the results for the automatic classification of events detected during the
searching stage with α = 1.5 and γ = 0.9. It also shows that the diffusion model is able
to correctly classify the majority of events and is consistent in detecting fusion events
across videos, which are of prime interest to researchers. The complete analysis for a
typical set of 200 frames of size 160x160 on a standard 2GHz processor took around
1-2 minutes when implemented in MATLAB. Results for detecting docking events have
not been presented here because obtaining the groundtruth for them is extremely cum-
bersome. Fig. 4 shows a comparison of our method against Bai et al. [3] and Huang et
al. [4] using ROC plots. The parameters in algorithms [3] and [4] were optimised for
our videos to give their best possible results. Our proposed method outperforms [3] and
[4], since it avoids the use of pixel intensity thresholds for classification. This makes it
more robust to different videos with different quality and image properties as well as
busy regions where closely neighbouring vesicles can interfere with events that are be-
ing analyzed. Fig. 4 (right) also shows a basic sensitivity analysis on the classification
threshold α which has been performed over all videos. This analysis only looks at the
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Fig. 4. ROC plots for comparative evaluation of fusion (left) and undocking (middle) events, and
a sensitivity analysis (right) of α on the classification of fusion events

classification of fusion events which are of main interest. Choosing α between 1.3 and
1.8 seems to optimize most of the performance measures.

5 Conclusion

Quantitatively measuring the rate of fusions and undocking vesicles is a common
problem in cell biology and crucial for making progress in researching the biological
function of cells. We proposed a simple, fast and easy to implement search algorithm to
find disappearing vesicles. This searching algorithm can also be reformulated to detect
docking events. To automatically classify the disappearing events, we proposed a novel
computational diffusion model for both fusion and undocking events.
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Abstract. For biologists studying the morphology of cells, Electron Mi-
croscopy (EM) is the method of choice with its nm resolution. However,
the time necessary to acquire EM image series is long and often limits
both the number and size of samples imaged. This paper presents a strat-
egy for fast imaging and automated selection of regions of interest that
significantly accelerates this process. In particular, this strategy involves
scanning a tissue sample once, finding regions of interest in which tar-
get structures might be located, scanning these regions once again, and
iterating the process until only relevant regions of the block face have
been scanned repeatedly. For mitochondria and synapses, this approach
is shown to produce near equal localization results to current state-of-the
art techniques, and does so in almost a tenth of the time.

1 Introduction

Focused Ion Beam Scanning Electron Microscopes (FIB-SEM) and their ability
to image with isotropic resolution of up to 4nm per pixel are becoming invaluable
tools in studying cell ultrastructure and model organelles, such as mitochondria,
synapses, and vesicles. Acquiring images such as those depicted in Fig. 1 involves
repeatedly milling a few nm from the surface of a tissue block using a focused
gallium ion beam, scanning each line of a rectangular region of the block face
several times, averaging the results, and milling again.

The resulting images have already yielded many new insights in the structure
and functioning of cells [1, 2], but the acquisition process is desperately slow.
For example, imaging the 10× 10× 10μm tissue block of Fig. 1 at full resolution
took approximately 50 hours. Such lengthy processing times are limiting because
neuroscientists now require larger volumes to enable multiple cells, and even
entire tissue samples, to be analyzed, which would currently be prohibitively
slow. Furthermore, because thermal changes can cause the block face to drift
and produce misaligned image series, considerable precision is needed to maintain
consistent imaging. This is difficult to achieve over extremely long periods and
limits the size of the images that can be captured.

In short, a pressing need exists to reduce scanning time without compromis-
ing the usefulness of the resulting images. Some research has already gone into

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 337–344, 2012.
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Fig. 1. FIB-SEM Scanning Process. The microscope repeatedly scans the surface of a
sample block until a clear image is produced.

achieving such a result. For example, synthetic and real data have been used to
show that Sparse Sampling techniques could potentially help [3]. However, the
current generation of microscopes simply cannot perform the required random
sampling because imaging extremely small and random locations on the block
face would be incredibly time consuming.

In contrast, this paper uses a combination of real and synthetic data to demon-
strate an approach to achieving much faster scanning using existing technol-
ogy [4] when the images are intended for automated detection, counting, and
modeling of organelles. The strategy involves scanning each image line of the
block surface once instead of several times, finding rectangular regions of in-
terest in which target structures might be located, scanning these regions once
again, and iterating the process until only relevant regions of the block face have
been scanned repeatedly. This process will be shown to result in much reduced
imaging time at almost no performance loss.

The remainder of this paper is organized as follows. The paper begins by
specifying our approach in Sec. 2, and provides a problem formulation in Sec. 2.1
and an algorithm description in Sec. 2.2. In Sec. 3, the method is validated
experimentally. The paper concludes with final remarks in Sec. 4.

2 Sequential Region Cascades

The following observations are used as the starting point:

1. If the goal is to count or model organelles that occupy only a small fraction
of a tissue block, precisely imaging the entire tissue block is a waste of
time. This concept has long been known and exploited by Computer Vision
researchers [5], [6] but, to the best of our knowledge, has been neglected by
microscopists.

2. Once an organelle has been found in one slice, it will be seen with very high
probability at similar locations in subsequent slices, e.i. organelles are 3D
structures. Similarly, a slice must exist in which an organelle first appears,
as well as a final one.
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3. Current microscopes are good at quickly scanning rectangular regions, and
new scanning engines that will make this process entirely programmable
on a slice-by-slice basis will soon be commercially available [4]. In contrast,
microscopes that can quickly and randomly access specific image locations
are likely to remain beyond the state-of-the-art for the foreseeable future,
thus precluding the use of standard Sparse Sampling techniques [3].

4. The microscopes are optimized to scan lines at one particular speed. Total
scanning time, and image quality, are controlled by the number of times
each line of the rectangular regions of interest is scanned. Typically, the
final result is the average of these scans.

Therefore, we propose our Sequential Region Cascades (SRC) approach for ac-
celerating the scanning process by building a cascade of region classifiers and
sequentially evaluating regions that appear likely to contain a particular intra-
cellular structure. While most cascade systems increase classification accuracy
over levels, given the technical constraints discussed above, classification is in-
stead performed on images acquired with varying scan counts. To take advantage
of what was found in one slice and accelerate the scanning in the next, target
locations are directly imaged using locations from previous slices with the largest
possible numbers of scans, and new targets are searched for in the remainder of
the slice using the cascade.

In the remainder of this section, the SRC approach is first formalized, and
then its implementation is discussed. Section 3 shows that it allows counting of
both mitochondria and synapses with much reduced acquisition times and at
almost no loss in accuracy.

2.1 Problem Formulation

We formalize our problem as follows. Let the volume to image be denoted by
V = {S1, . . . , ST }, where St corresponds to a slice of the volume. When using
a scanning EM microscope, we consider two sets of parameters when acquiring
images. First, we define a rectangular region to scan, R = (r1, r2), where r1 and
r2 are the upper left and bottom right pixel coordinates, respectively. Second,
the scan count is defined as the number of times the electron beam images one
pixel and denote this value as C = {1, . . . , Cmax}.

Given these two parameters, (R,C), the process of acquiring an image by
scanning a region of a slice can be described by the function f , where f : S ×
R × C  → I. That is, evaluating the function f(S,R,C) provides an image IRC
of size R and corresponds to the average of C independently scanned samples.
Typically, the time cost associated with evaluating f(S,R,C) is C × area(R).

As in [7–9], we may train a classifier to verify if a pixel in IRC belongs to
a target organelle. As can be seen in Fig. 1, images acquired using different
scan counts exhibit different statistics and we may train different classifiers for
each. We therefore take a family of classifier to be H = {h1, . . . , hCmax}, where
hc : I

R
C  → {0, 1}R. Note that these classifiers return binary images.
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Algorithm 1. Sequential Region Cascades (SRC)

1: P ← empty queue, Q ← empty queue.
2: for t = 1, . . . , T do
3: Push(([0, 0], [M,N ]), 1) into Q
4: RemoveOverlaps(Q,P)
5: while |Q| > 0 do
6: [R,C] ← Top(Q)
7: IRC ← f(St, R,C)
8: R ← ExtractRegions(hC (IRC ))
9: if Cmax == C then
10: Push(R, C) into P
11: else
12: Push(R, C + 1) into Q
13: end if
14: end while
15: end for

Finally, let P t to be the set of pixels corresponding to the location of target
structures in slice St. Our goal is to discover these sets {P t}t=T

t=1 for all slices as
efficiently and as quickly as possible.

2.2 Algorithm and Implementation

An outline of the algorithm is shown in Alg. 1. To begin, the user provides
the set of classifiers and the volume to image, H = {h1, . . . , hCmax} and V =
{S1, . . . , ST }, respectively. The algorithm begins by forming two queues that will
maintain tuples of regions and scan counts, i.e. (R,C). The first, P , maintains
a set of regions deemed the target structure on a given slice. The second, Q,
maintains an intermediary list of candidate regions that appear likely to contain
target structures within them. Initially, both queues are empty.

For each new slice, we begin by pushing the entire observable domain as a
candidate region using the smallest scan count. The following sequence of steps is
then looped, which is called the refining stage and is depicted by Fig. 2 (lines 5 to
14): A candidate region and scan count index from the queue Q is retrieved. The
associated image region, IRC , is then acquired and the corresponding classifier is
evaluated by computing hc(I

R
C ). At this point, the binary classification image

is searched for disjoint sets of rectangular regions that indicate potential target
locations. If newly extracted regions were acquired using the highest possible
scan count, these are pushed into the target region queue, P , otherwise, they
are pushed into the candidate region queue, Q. This process iterates until no
candidate region remains.

In addition, before starting the refining stage, the overlapping region that
coexists in both Q and P are removed. This effectively creates a new set of
regions in Q that are disjoint of P and reduces the direct need for searching
targets likely to have stayed in the same location. Doing so is one way of encoding
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Fig. 2. SRC Refining Stage: For any slice, the queue Q contains a list of tuples (R,C)
that specify a region and scan count with which the microscope should image. Once an
image region acquired, IRC , a dedicated classifier assigns a binary label to each location
in the image for the presence of targets. New tuples are then formed and inserted into
Q or into the permanent queue P .

3D information for location of targets in a volume. Obviously, during the first
slice of the tissue block, this step is irrelevant because P is empty.

3 Experiments and Results

We used a Zeiss NVision40 FIB-SEM microscope to mill and scan a rodent
brain sample of 10 × 10 × 1μm, which produced 165, 1024 × 1536 images. We
also collected a second stack of 377, 655×429 images. In both cases, each line was
scanned Cmax = 44 times. This took 5 and 12 hours, respectively. We evaluated
our algorithm for the tasks of localizing two types of organelle: mitochondria
and synapses. Here, we show how the SRC strategy could be used to divide the
scanning time by a factor of 10 to 15 depending on the target type.

Test Data: Given that the scanning engine of our NVision40 microscope was
not designed for this, implementing our approach on it would be very difficult.
However, this will soon change when newer scanning engines come to market [4].
To demonstrate our approach in the meantime, we therefore proceed as in [3]
and synthesized the scans we would have gotten using values of C < Cmax by
appropriately degrading the higher-quality ones. To ensure realism we proceeded
as follows.

Before scanning, and thus destroying, the whole first block, we collected six
independent images {I1, ..., I6} of the first slice using a single scanning pass for
each and a single one, which we denote as Î, using 6 passes. From this, we first
verified that for any pixel location u, the gray-level Ii(u) in any of the 6 single-
scan images is well approximated by a Gaussian of mean Î(u) and standard
deviation σu = mÎ(u) + b, where m and b are linear regression parameters, as
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Fig. 3. Reconstructing small scan count images. (left) Relation between Average in-
tensity and standard deviation for pixels acquired with low scan counts. (right) Top
rows shows real images acquired under 1, 4, 12 and 44 scan counts, and the bottom
shows the corresponding reconstructed images.

illustrated by Fig. 3 where we plot μu against σu for 10’000 randomly selected
pixels. In other words, the gray level variance is directly proportional to the gray
level value.

From this, using an image acquired with a large number of scans, we can
simulate acquiring an image from a smaller number of scans. For example, a pixel
with n scans can be reconstructed by sampling the Gaussian G(Î(u),mÎ(u) +
b) n times and averaging the samples. Fig. 3 shows the true (top row) and
reconstructed (bottom row) images using this process with 1, 4, 12 and 44 scan
counts.

Experimental Setup: We tested four scan count sequences—Cs = {12, 44},
Cs = {6, 12, 44}, Cs = {1, 6, 12, 44}, Cs = {1, 4, 6, 44}—for synapse and mi-
tochondria detection purposes. Each classifiers hc were built as in [7]. That is,
we first extracted regularly spaced superpixels from which we computed both
intensity histograms and steerable features. We then used 15 training images for
each scan count C to train a different Support Vector Machine (SVM) classifier
with an RBF kernel. In the C = Cmax case, we used the original images and for
all other C < Cmax, we used synthesized images obtained as discussed above.

Fig. 4 depicts the algorithm’s behavior when attempting to locate mitochon-
dria using the scan sequence Cs = {6, 12, 44}. From left to right, we show the
complete set of regions evaluated with each scan count on the initial slice, S1.
In red, we show C = 6, in green C = 12 and in blue C = 44. The ground truth
regions are also shown. Additionally, for C = 12 and 44, we also display what
regions from the previous step were evaluated.

Evaluation: Recall that our goal is to image at full resolution all the regions
containing target structures–mitochondria and synapses in our experiments–
while spending as little time as possible scanning the block faces. In this context,
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Fig. 4. SRC Examples. Images depict the algorithm’s behaviour when attempting to
locate mitochondria using the scan sequence Cs = {6, 12, 44}. From left to right, we
show the complete set of regions evaluated with each scan count on the initial slice,
S1. In red, we show C = 6, in green C = 12 and in blue C = 44. The ground truth
regions are also shown. Additionally, for C = 12 and 44, we also display what regions
from the previous step were evaluated.

the proper measure of success is the True Positive Rate (TPR) as a function of
scanning time, which is plotted in Fig 5. The false positive rate is less relevant
as false positives only cause irrelevant parts of the block being scanned, which
implies no loss of information but a time penalty that the increased scanning
time already reflects.

For the purpose of this evaluation, we consider the time cost of one imaging
strategy to be the sum of the number of times each individual pixel is scanned.
For simplicity’s sake, we normalize these numbers by the corresponding count
when scanning the whole block at the maximum scan count. As a result, the
times that appear in Fig 5 are numbers between 0 and 1.

From these results, we can see all the scan count sequences we tested provide
a significant speed increase, mostly at a very small loss in TPR. By choosing
the appropriate sequence we can establish more than five-fold speedups for an
insignificant TPR loss. In practice, this means a neuro-scientist could examine
and gather statistics for five times as many synapses in the same scanning time.

Note that the choice of which specific scan count sequence to use is not in-
nocuous as it implies training different classifiers for each scan count value, some
of which might be more appropriate than others. For example, the {1,4,6,44}
sequence appears to outperform the {1,6,12,44} one, which may imply that ad-
ditional research into optimizing these sequences might lead to further gains.

Fig. 5.Mean relative time and TPR for localizing Mitochondria and Synapses by tested
methods. Each point indicates a specific scanning strategy. See text for details.
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Also, the gain in time achieved by our approach is highly dependent on the
type of organelle that must be found. In particular, targets that cove smaller
surface areas, such as synapses (roughly 0.05% of the surface) allow higher time
gains then for mitochondria (3 to 5% surface covered).

4 Conclusion

We presented an approach for speeding-up image acquisition when tasked with
localizing specific structures in FIB-SEM imagery. It exploits the fact that
low-quality images can be acquired faster than higher-quality ones and yet be
sufficient for inference purposes. We have demonstrated greater than five-fold
speed-ups at very little loss in accuracy in the context of mitochondria and
synapse detection. Furthermore, the algorithm we propose is generic and appli-
cable to many imaging modalities that allow trading quality for speed.
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Abstract. In low-resource areas, the most common method of tuber-
culosis (TB) diagnosis is visual identification of rod-shaped TB bacilli
in microscopic images of sputum smears. We present an algorithm for
automated TB detection using images from digital microscopes such as
CellScope [2], a novel, portable device capable of brightfield and flu-
orescence microscopy. Automated processing on such platforms could
save lives by bringing healthcare to rural areas with limited access to
laboratory-based diagnostics. Our algorithm applies morphological op-
erations and template matching with a Gaussian kernel to identify can-
didate TB-objects. We characterize these objects using Hu moments,
geometric and photometric features, and histograms of oriented gradi-
ents and then perform support vector machine classification. We test our
algorithm on a large set of CellScope images (594 images corresponding
to 290 patients) from sputum smears collected at clinics in Uganda. Our
object-level classification performance is highly accurate, with Average
Precision of 89.2% ± 2.1%. For slide-level classification, our algorithm
performs at the level of human readers, demonstrating the potential for
making a significant impact on global healthcare.

1 Introduction

Though tuberculosis (TB) receives relatively little attention in high-income coun-
tries, it remains the second leading cause of death from infectious disease world-
wide (second only to HIV/AIDS) [10]. The majority of TB cases may be treated
successfully with the appropriate course of antibiotics, but diagnosis remains a
large obstacle to TB eradication. Presently, the most common method of di-
agnosing patients with TB is visually screening stained smears prepared from
sputum. Technicians view the smears with microscopes, looking for rod-shaped
objects (sometimes characterized by distinct beading or banding) that may be
Mycobacterium tuberculosis, the bacteria responsible for TB disease. Apart from
the costs of trained technicians, laboratory infrastructure, microscopes and other
equipment, this process suffers from low recall rates, inefficiency, and inconsis-
tency due to fatigue and inter-evaluator variability [9]. Hence, with the advent
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Fig. 1. Two versions of CellScope, a novel mobile microscope. Various uses include
point-of-care diagnostics or transmission of images from rural areas to medical experts.

of low-cost digital microscopy, automated TB diagnosis presents a ready oppor-
tunity for the application of modern computer vision techniques to a real-world,
high-impact problem.

We propose an algorithm for automated TB detection using images from digi-
tal microscopes such as CellScope [2] (Figure 1), a low-cost and portable alterna-
tive to standard laboratory-based microscopes. We present results from a large
dataset of sputum smears collected under real-field conditions in Uganda. Our
algorithm performs at the level of human readers when classifying slides, which
opens exciting opportunities for deployment in large-scale clinical settings. Since
our method is capable of processing direct-stained smears, only basic staining
supplies are required for slide preparation. Rapid staining kits such as the QBC
Diagnostics F.A.S.T. kit are viable in field settings and could thus be used with
CellScope in remote areas that lack laboratory infrastructure.

Previous Work. The two main methods of screening sputum samples are flu-
orescence microscopy (FM) and brightfield microscopy, in which the sputum
smears are stained with auramine-O and Ziehl-Neelsen respectively (see Fig-
ure 2). CellScope is capable of both types of microscopy, but we focus on FM
here because studies indicate it is more sensitive and significantly faster [3,13].
Several groups have explored automated TB detection for conventional FM mi-
croscopes. Veropoulos et al. [18] applied Canny edge detection, filtered objects
based on size, and used boundary tracing to identify candidate objects. Fourier
descriptors, intensity features, and compactness were then combined with various
probabilistic classification methods, and a multilayer neural network achieved
the best performance. Forero et al. [9] took a generative approach, representing
the TB-bacilli class with a Gaussian mixture model (GMM) and using Bayesian
classification techniques. Hu moment features were chosen for their invariance
to rotation, scaling, and translation. Other groups have proposed algorithms for
brightfield microscopy [7,12], but these algorithms often rely on the distinct color
characteristics of Ziehl-Neelsen staining.



Automated Tuberculosis Diagnosis Using Mobile Microscopy 347

Fig. 2. Left: Sample CellScope fluorescence image. Right: Sample brightfield image [14].

Additional TB diagnostic procedures include culture and polymerase chain
reaction (PCR)-based methods. Culture results are ideally used to verify smear
screenings and are the current gold-standard for diagnosis. However, culture
assays are more expensive and technically challenging to perform than smear
microscopy and require prolonged incubation: about 2-6 weeks to allow accurate
evaluation of bacteria. PCR-based methods such as Cepheid’s GeneXpert assess
the presence of TB bacterial DNA and are rapid, more sensitive than smear
microscopy, and capable of testing resistance to a common anti-TB antibiotic [1].
However, PCR-based methods continue to lag in sensitivity compared to culture
and rely on costly equipment that is poorly suited for low-resource, peripheral
healthcare settings [8]. Sputum smear microscopy continues to be by far the
most widely used method of TB diagnosis, suggesting that enhancements to
microscopy-based screening methods could provide significant benefit to large
numbers of TB-burdened communities across the globe.

2 Methods and Materials

2.1 Algorithm

We propose a TB detection algorithm for FM with three stages: (1) candidate
TB-object identification, (2) feature representation, and (3) discriminative clas-
sification. A block diagram of the algorithm is shown in Figure 3.

Candidate TB-Object Identification. In the first stage, our goal is to identify
any bright object that is potentially a TB-bacillus. We perform a white top-hat
transform and template matching with a Gaussian kernel. The white top-hat
transform reduces noise from fluctuations in the background staining, and the
template matching picks out areas that resemble bright spots. The result is a
binarized image, from which we extract the connected components as candidates.
We consider a region of interest or patch from the input image centered around
each candidate. The patch-size (24x24 pixels) is chosen based on the known size
of the TB-bacilli (typically 2-4μm in length and 0.5μm in width) and CellScope’s
sample-referenced pixel spacing of 0.25μm/pixel.

Feature Representation. We characterize each candidate TB-object using Hu
moments [11]; geometric and photometric features; and histograms of oriented
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Fig. 3. Overview of algorithm. (a) Array of candidate TB-objects. (b) Each candidate
characterized by 102-dimensional feature vector. (c) Candidates sorted by decreasing
probability of being a TB-bacillus (row-wise, top to bottom). Sample subset of can-
didate TB-objects with corresponding probabilities shown at the output. Object-level
probabilities subsequently used to determine slide-level diagnosis.

gradients (HOG) [4]. Hu moments, photometric features, and HOG are calcu-
lated from the grayscale patch, whereas geometric properties are determined
from a binarized version of the image patch. Binarization is achieved using Otsu’s
method [15], which minimizes the variance within each of the two resulting pixel
classes. Eight Hu moment features provide a succinct object-level description
that is invariant to rotation, translation, and scaling (similar to [9]). In addition,
we calculate fourteen geometric and photometric descriptors: area, convex area,
eccentricity, equivalent diameter, extent, filled area, major/minor axis length,
max/min/mean intensity, perimeter, solidity, and Euler number. Finally, we ex-
tract HOG features from each 24x24 patch using two scales and 8 orientations,
giving eighty HOG feature values. We thus obtain a 102-dimensional feature
vector representing the appearance of each candidate TB-object.

Candidate TB-Object Classification. We consider three object-level classi-
fiers in our experiments (in order of increasing discriminative power and com-
putational cost): logistic regression, linear support vector machines (SVMs) and
intersection kernel (IK) SVMs [5,6,17]. Intuitively, SVMs find the hyperplane
that maximizes the margin between the TB-positive and TB-negative classes
in the feature space. IKSVMs achieve nonlinear decision boundaries via the in-
tersection kernel, defined as K(u,v) =

∑
imin(ui,vi). We normalize the input

feature vectors using maximum-minimum standardization and apply logistic re-
gression to the SVM outputs to obtain probabilities [16], which indicate the
likelihood of each object being a TB-bacillus.

Performance Metrics. We present our experimental results using two sets
of performance metrics: Recall/Precision and Sensitivity/Specificity, which are
widely used in the computer vision and medical communities respectively. Recall
refers to the fraction of true positive objects correctly classified as positives,
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while Precision refers to the fraction of objects classified as positive that are
true positives. Sensitivity is the same as Recall, and Specificity is Recall for
the negative class. Recall/Precision are more appropriate for gauging object-
level performance in this study because our negative class is much larger than
our positive class. At the slide level, however, our data has balanced class sizes
and thus both Recall/Precision and Sensitivity/Specificity are suitable. In this
study, we optimize over Average Precision (AP) at the slide level, which places
equal weight on Recall and Precision. Often in practice it is more useful to
have either very high Precision or very high Recall (rule-in or rule-out value,
respectively) rather than moderately high values for both. In these cases, one
may instead optimize over the maximum Fβ-measure, defined as Fβ = (1 +
β2) Precision·Recall

(β2·Precision)+Recall , where β < 1 gives more weight to Precision than Recall

(β = 1 gives equal weight).

2.2 Dataset and Ground Truth

Our dataset consists of sputum smear slides collected at clinics in Uganda. Fluo-
rescence images of these smears were taken using CellScope, which has a 0.4NA
objective and an 8-bit monochrome CMOS camera. CellScope gives a Rayleigh
resolution of 0.76μm and is capable of effective magnifications of 2000-3000x.
The CellScope images are 1944x2592 pixels and cover a 640x490μm field of view
at the smear-referenced plane. We use 594 CellScope images (296 TB-positive,
298 TB-negative), which correspond to 290 patients (143 TB-positive, 147 TB-
negative). We have slide-level human reader and culture classification results for
all 290 slides. In addition, a human annotator labeled TB-objects in a subset
of the positive images (92 of 296 images), resulting in 1597 positive TB-objects.
The human readers in this study received guidance from experts, and their per-
formance has been shown to be statistically comparable to that of trained mi-
croscopists. Our dataset and human annotations will be publicly available.

3 Experimental Results and Discussion

Object-Level Evaluation. For the object-level classification task, we use the
subset of TB-positive images for which we have human annotations and all TB-
negative images. Applying our object identification procedure, we retain 98.8% of
the positive TB-objects in the dataset after the first step. All objects identified in
TB-negative images are considered negative objects. This results in 1597 positive
and 34948 negative objects, which correspond to 390 images (92 positive and 298
negative).

We generate five random training-test splits with our object-level data: one
for model parameter selection and four to assess robustness of results. We train
various object-level classifiers, using slide-level performance as the optimizing
criterion for parameter selection. We then perform systematic ablation studies
as summarized in Figure 4. We find that the best performance is achieved when
using the whole feature set with an IKSVM: Average Precision of 89.2%± 2.1%
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Fig. 4. Object-level test set AP across different classifiers (logistic regression, lin-
ear SVM, and IKSVM) and feature subsets. Two categories of features: Hu mo-
ments/photometric/geometric (MPG) and histograms of oriented gradients (HOG).

over the four remaining test sets. When relying solely on HOG features, logistic
regression and linear SVM methods perform poorly. This is expected because
the HOG features are not rotation invariant. [18] also evaluated their algorithm
performance at the object-level, but their data and implementation code are not
publicly available for direct comparison.

Slide-Level Evaluation. We also consider algorithm performance at the slide
level, which is more relevant for practical diagnosis. Because slide-level culture
results are available, evaluating our algorithm at the slide level frees us from
human-labeled ground truth. To determine slide-level decisions from object-level
scores, we refer to how experts manually classify slides. For each slide, we gather
the output SVM scores of all the objects and average the top K scores, where
K = 3 is chosen via validation experiments. We classify the slide as positive if
the averaged score falls above a given threshold. By varying this threshold, we
obtain a Recall-Precision curve (see plot in Figure 5). As shown in Figure 5, we
consider the three object-level classifiers (logistic regression, linear SVMs, and
IKSVMs) in terms of their slide-level performance. We adopt the IKSVM because
it achieves slightly better slide-level performance than the other two methods. On
the four remaining test sets, the IKSVM achieves slide-level Average Precision
of 92.3%± 0.9% and Average Specificity of 88.0%± 1.3%.

Slide-Level Comparison with Baseline and Human Readers.We compare
our algorithm’s slide-level performance to that of human readers and Forero’s
GMM-based approach [9].We train Forero’s algorithmusing our data, where color
filtering is reduced to intensity filtering because CellScope images are monochro-
matic. The GMM method achieves Average Precision of 79.7%±3.3% and
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Method AP(%) Max F1-meas(%)

Humans - 85.9±1.3
Our SVM 92.3±0.9 84.9±2.4
Baseline 79.7±3.3 78.8±1.8

Classifier AP(%) AS(%)

LogReg 91.4±0.5 87.1±1.2
LinSVM 91.1±1.2 86.4±1.3
IKSVM 92.3±0.9 88.0±1.3

Fig. 5. Slide-Level Performance. Left top: Comparison of our IKSVM-based algo-
rithm’s performance to that of humans and the baseline method (GMM approach).
Average Precision (AP) and maximum F1-measure across four test sets. Right: Slide-
level Recall-Precision curves across different methods for one test set. Left bottom:
Our algorithm’s slide-level performance for different object-level classifiers. Average
Precision (AP) and Average Specificity (AS), where we average over four test sets.

maximum F1-measure of 78.8%±1.8% (see Figure 5). Human readers also
inspected the same CellScope images and classified each slide, resulting in an F1-
measure of 85.9%±1.3% across the four test sets. The plot in Figure 5 shows Re-
call/Precision curves across different methods for a sample training-test split. For
that split, we see that our algorithm’s slide-level performance is comparable to
that of human readers and achieves a higher fraction of true positives than the
GMM approach for most Recall values.

4 Summary and Conclusions

We propose an accurate and robust automated TB detection algorithm for low-
cost, portable digital microscopes such as the CellScope. Applying modern com-
puter vision techniques to images from mobile microscopes could save lives in
low-resource communities burdened by TB and suffering poor access to high-
quality TB diagnostics. The sputum smears used in our study were collected in
Uganda and provide a realistic dataset for algorithm training and evaluation. Our
algorithm first identifies potential TB-objects and characterizes each candidate
object using Hu moments, geometric and photometric features, and histograms
of oriented gradients. We then classify each of the candidate objects using an
IKSVM, achieving Average Precision of 89.2% ± 2.1% for object classification.
At the slide level, our algorithm performs as well as human readers, showing
promise for making a tremendous impact on global TB healthcare. We will re-
lease our dataset, annotations, and code, which we hope will provide helpful
insights for future approaches to quantitative TB diagnosis.

Acknowledgment. We would like to thank our collaborators at the Mulago
Hospital of Kampala, Uganda, who provided the sputum smears used in this
study.
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Abstract. Extraction of bone contours from radiographs plays an im-
portant role in disease diagnosis, pre-operative planning, and treatment
analysis. We present a fully automatic method to accurately segment the
proximal femur in anteroposterior pelvic radiographs. A number of can-
didate positions are produced by a global search with a detector. Each is
then refined using a statistical shape model together with local detectors
for each model point. Both global and local models use Random Forest
regression to vote for the optimal positions, leading to robust and accu-
rate results. The performance of the system is evaluated using a set of
519 images. We show that the fully automated system is able to achieve a
mean point-to-curve error of less than 1mm for 98% of all 519 images. To
the best of our knowledge, this is the most accurate automatic method
for segmenting the proximal femur in radiographs yet reported.

Keywords: automatic femur segmentation, femur detection, Random
Forests, Hough Transform, Constrained Local Models, radiographs.

1 Introduction

In clinical practice, plain film radiographs are widely used to assist in disease
diagnosis, pre-operative planning and treatment analysis. Extraction of the con-
tours of the proximal femur from anteroposterior (AP) pelvic radiographs plays
an important role in diseases such as osteoarthritis (e. g. diagnostics and joint-
replacement planning) or osteoporosis (e. g. fracture detection and bone density
measurements). In addition, accurately segmenting the contours of the proximal
femur in radiographs allows monitoring of disease progression.

Manual segmentation of the femur is time-consuming and hard to do con-
sistently. Our aim is to automate the segmentation procedure. Fully automatic
proximal femur segmentation is challenging for several reasons: (i) The quality of
radiographs may vary a lot in terms of contrast, resolution and the region of the
pelvis shown. (ii) AP pelvic radiographs only give a 2D projection, and hence
are susceptible to rotational issues; the same 3D shape may yield a different 2D
projection depending on the view point. (iii) Plain film radiographs do not pro-
vide homogeneous values for the same structure due to overlapping body parts.
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(iv) Deformities of the proximal femur may cause the loss of distinguishable
radiographic key features.

Automatically extracting the contours of the proximal femur comprises two
key steps: Firstly, the femur is detected in the image and secondly, the contours
are segmented. Behiels et al. [1] have shown the suitability of statistical shape
models for proximal femur segmentation. Recent work on automatically seg-
menting the femur in radiographs using statistical shape models includes [11,12].
Object detection in the latter as well as in the atlas-based approach of Ding et
al. [8] is based on edge detection. We use Random Forest regression in a sliding
window approach to automatically segment the proximal femur.

Random Forests (RF) [2] describe an ensemble of decision trees trained in-
dependently on a randomised selection of features. They have been shown to
be effective in a range of classification and regression problems [6,10]. Recent
work on Hough Forests [9] has shown that objects can be effectively located by
training RF regressors to predict the position of a point relative to the sampled
region, then running the regressors over a region and accumulating votes for
the likely position. To detect the femur, our global search uses a RF regressor
that votes for the centre of a reference frame, resulting in a response image of
accumulated votes. The approximated position is then used to initialise a local
search to segment the femur, combining local detectors with a statistical shape
model. Following [3], we apply RF regression in the Constrained Local Model
(CLM) framework to vote for the optimal position of each model point. Here,
feature detectors are run independently to generate response images for each
point and then a shape model is used to find the best combination of points [7].

Using RF regression voting for both object detection and CLM-based contour
extraction yields a robust and fully automatic segmentation system. We use the
latter to segment the femur in pelvic radiographs, and demonstrate that results
are very accurate. The local search and the fully automatic search outperform
alternative matching techniques such as Active Shape Models [5], CLMs using
normalised correlation and RF classification-based search. We believe this to be
the most accurate fully automatic femur segmentation system yet published.

2 Methods

The fully automated segmentation system comprises a global search detecting
the object and a local search segmenting the contours. Both global and local
search use RF regression voting to predict object and point positions.

2.1 Voting with Random Forest Regression

We use RF regression in a similar manner to the Hough Forests approach [9].
However, we do not require voting to be dependent on a class label, allowing all
image structures to vote. In the voting-regression approach, we evaluate a set of
points in a grid over a region of interest. At each point z, a set of features f(z) is
sampled. A regressor, R(f(z)), is trained to predict the most likely position(s) of
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the target point relative to z. During training, given the samples at a particular
node, we seek to select a feature and threshold to best split the data. Let fi
be the value of one feature associated with sample i. The best threshold, t, for
this feature at this node is the one which minimises GT (t) = G({di : fi <
t})+G({di : fi >= t}) where G(S) is a function evaluating the set of vectors S,
and di the predicted displacement of sample i. We aim at minimising the entropy
in the branches when splitting the nodes using G({di}) = Nlog|Σ|, where N is
the number of displacements in {di} and Σ the respective covariance matrix.
Criminisi et al. [6] showed that a related measure of information gain was effective
for regression.

Hough Forests use RFs whose leaves store multiple training samples. Thus
each sample produces multiple votes, allowing for arbitrary distributions to be
encoded. Each leaf of our decision trees only stores the mean offset and the
standard deviation of the displacements of all training samples that arrived at
that leaf. During search, these predictions are used to vote for the best position in
an accumulator array. Predictions are made using a single vote per tree yielding
a Hough-like response image. To blur out impulse responses we slightly smooth
the response image with a Gaussian.

Below, we use Haar features [13] as they have been found to be effective for a
range of applications and can be calculated efficiently from integral images.

2.2 Object Detection

Training. A reference frame, or bounding box, is set to capture the object
of interest. For each training image, a number of random displacements (scale,
angle and position) of the bounding box are sampled. To train the detector,
for every sample we extract features fi at a set of random positions within the
sampled patch and store displacement di from the original centre of the reference
frame. We then train a RF on the pairs {fi,di}. To train a single tree, we take
a bootstrap sample of the training set, and construct the tree by recursively
splitting the data at each node as described in Section 2.1. The extracted features
are a random subset of all possible Haar features and at each node, we choose
the feature and associated threshold which minimise GT to split the data.

Search. To detect the object in an image, we scan the image at a set of coarse
angles and scales in a sliding window approach. The search is speeded up by
evaluating only positions on a sparse grid rather than at every pixel. For every
angle-scale combination, we scan the bounding box across the image. We obtain
the relevant feature values from each box and get the RF to make predictions on
the reference frame centre. Predictions are made using a single Gaussian weighted
vote per tree, where the weights relate to the spread of the displacements of the
training samples that arrived at the particular leaf. The resulting response image
is then searched for local maxima. Once a response image has been obtained for
every angle-scale combination, all maxima are ranked according to their total
votes. Every maxima is associated with an angle, a scale and a prediction of the
reference frame centre. This results in candidate positions for the object.
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2.3 Segmentation Using Constrained Local Models

CLMs combine global shape constraints with local models of pattern of intensi-
ties. Based on a number of landmark points outlining the contour of the object
in a set of images, we train a statistical shape model by applying PCA to the
aligned shapes [5]. This yields a linear model of shape variation which represents
the position of each landmark point using xi = Tθ(x̄i +Pib+ r) where x̄i gives
the mean in the reference frame, Pi is a set of modes of variation, b are the shape
model parameters, r allows small deviations from the model, and Tθ applies a
global transformation (e. g. similarity) with parameters θ. Similar to Active Ap-
pearance Models [4], CLMs combine this shape model with a texture model but
only sample a local patch around each landmark rather than the whole object.

To match the CLM to a new image, we seek the shape and pose parameters,
p = {b, θ}, which optimise the fit of the model to the image. Given an initial
estimate of every landmark’s position, an area around each landmark point is
searched. At every position i, a quality-of-fit value, describing the similarity
between the template texture for this landmark learned from the model and the
texture at that position, is obtained and stored in a response image Ri. We then
find the shape and pose parameters which optimise Σn

i=1Ri(Tθ(x̄i +Pib+ r)).
In [3] it is shown how RF regression voting produces useful response images

for the CLM framework. Here we summarise the key steps.

Training. CLMs in their original form use normalised correlation as quality-
of-fit measurement for each response image. In the RF regression approach, we
train a regressor to predict the position of a landmark point based on a random
set of Haar features. The quality-of-fit values here relate to the votes of the RF.

For every landmark i, we sample local patches at a number of random dis-
placements di from the true position. For every sample we extract features fi
and train a RF on the pairs {fi,di}. As with the global search, we train every
tree taking a bootstrap sample and constructing it recursively by splitting the
data at each node as described in Section 2.1.

Search. To match the RF regression-based CLM to a new image, for every land-
mark i, we sparsely sample local patches in the area around an initial estimate
of the landmark’s position. We extract the relevant features for each sample and
get the RF to make predictions on the true position of the landmark. Predictions
are made using a single vote per tree. This yields a response image Ri for every
landmark i. We then aim to combine voting peaks in the response images with
the global constraints learned by the shape model.

2.4 Automated System

The fully automated system performs a global search at multiple scales and
orientations to produce a number of candidate poses which are ranked by total
votes. The local search is then applied at each of the best l search candidates,
and the final results are ranked by the total CLM fit (sums of votes).
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3 Experiments and Evaluation

The aim is to fully automatically segment the femur by putting a dense annota-
tion of 65 landmarks along its contours as demonstrated in Figure 1; (a) gives the
manual annotation and (b)-(c) the result of the fully automated system. We use
a front-view femur model that excludes both trochanters and approximates the
superior lateral edge (points 43 to 47) from an anterior perspective. All points
were defined using anatomical features mixed with an evenly spaced subset.

(a) (b) (c)

Fig. 1. Segmentation of the proximal femur: (a) 65 landmarks outlining the ‘front-view’
femur (ground truth); (b)-(c) automatically segmented femur in AP pelvic radiograph

Our data set comprises AP pelvic radiographs of 519 females suffering from
unilateral hip osteoarthritis. All images were provided by the arcOGEN Consor-
tium and were collected under relevant ethical approvals. The images have been
collected from different radiographic centres resulting in varying resolution levels
(555-4723 pixels wide) and large intensity differences. In addition, the displayed
pelvic region and the pose of the femur in the images vary a lot. For each im-
age, a manual annotation of 65 landmarks as in Figure 1(a) is available. In the
following we performed two-fold cross-validation experiments, averaging results
from training on each half of the data and testing on the other half.

3.1 Global Search: Automatic Femur Detection

We set up a detector that samples the whole proximal femur and three regions
of interest (shaft, femoral head, greater trochanter). For each of the latter, we
train a RF of 10 trees using samples at 20 random pose and scale displacements.

During search, the object detector scans the image at a range of coarse orienta-
tions and scales, and provides the 40 best fits. Each match determines candidate
positions for points 16 and 43 (see Figure 1), defining a reference length. All can-
didates are clustered using a cluster radius of 10% of the reference length. We
evaluate the mean point-to-point error as a percentage of the reference length,
and give results for the best (minimal mean error) cluster only. When averag-
ing over both reference points, the detector yields an error of less than 11.4%
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for 95% of all 519 images. Our data set contains 15 calibrated images suggesting
an average reference length of 57mm. Using the latter, the error of the global
search relates to less than 6.5mm for 95% of all images.

3.2 Local Search: Accurate Femur Segmentation

We train a RF regression-based CLM using a reference frame that is 200 pixels
wide and a patch size of 15x15 pixels within the reference frame. For each training
image and every landmark, we sample 20 patches using random displacements of
up to 20 pixels in x and y in the reference image, as well as random displacements
in scale (±5%) and rotation (±6◦). We train a RF of 10 trees for every landmark.

To compare the performance of the RF regression-based CLM with alternative
techniques, we train a correlation-based CLM and a RF classification-based CLM
using the same settings, as well as an ASM. All models are trained to explain
95% of the shape variation given by the training set, and start searching from
the mean shape at the correct pose. Figure 2(a) shows the mean point-to-curve
error as a percentage of the shaft width. We define the latter as the distance
between landmarks 0 and 64 (see Figure 1). We use this as a reference length
as it tends to be relatively constant across individuals; our calibrated subset
suggests an average length of 37mm. Results show that the RF regression-based
CLM performs best with a mean point-to-curve error of within 2.0% for 95% of
all images, which relates to a local search accuracy of within 0.7mm.
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Fig. 2. Quantitative evaluation: (a) local search results starting from mean shape at
true pose; (b) fully automated search showing results for the best clustered candidate

3.3 Full Search: Accurate Automatic Femur Segmentation

For the fully automated system, we use the clustered candidates obtained via the
global search to initialise the local search. Every candidate predicts the positions
of points 16 and 43. This initialises the scale and pose of the RF regression-based
CLM. We test all candidates for every image, and run 20 search iterations from
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the initialised mean model. We choose the candidate that gives the best final
quality-of-fit value to give the fully automatic segmentation result.

Figure 2(b) gives the mean point-to-curve error of the fully automated system
as a percentage of the shaft width. This shows that the global search works suffi-
ciently well for the fully automated system to be very accurate with errors of less
than 2.1% for 95% of all 519 images, relating to 0.8mm. The overlapping plots
indicate that the fully automated system yields almost equally high accuracy as
a local search starting from the mean shape at the correct pose.

Figure 3 shows various segmentation results of the fully automated system,
ranked according to mean point-to-curve percentiles: (a) gives the median result
(50% of the images have a mean error of less than 0.5mm); (b) is based on the
second highest global search error yielding a mean segmentation error of 0.7mm;
(c)-(d) show the two highest mean segmentation errors where (c) achieved an
accuracy of 1.6mm and (d) is the only case out of 519 images where the global
search failed to initialise the local search sufficiently well.

(a) (b) (c) (d)

Fig. 3. Examples of segmentation results of the fully automated system (sorted by
the mean point-to-curve percentiles): (a) median; (b) 92.1%, based on second highest
global search error; (c) 99.8%, second highest overall error; (d) maximal overall error,
only example where global search failed to sufficiently initialise the local search. (Due
to space we only show the proximal femur; all searches were run on full pelvic images.)

A direct comparison to other reported results seems difficult as most findings
are either given qualitatively, or are not easy to interpret in more general terms.
The best reported results appear to be the ones by Pilgram et al. [11] with a
point-to-curve error of within 1.6mm for 80% of the 117 test cases (estimated
on the basis of likely shaft width relative to image width).

4 Discussion and Conclusions

We have presented a system to segment the proximal femur in AP pelvic radio-
graphs which is fully automatic, does not make any assumptions about the femur
pose, and is very accurate. We have shown that the system achieves excellent
performance when tested on a set of 519 images of mixed quality. The femur de-
tector, achieving an accuracy of a mean point-to-point error of less than 8.4mm
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for 99% of all images, works generally sufficiently well to initialise the local model
used for segmentation. In our experiments, the fully automatic segmentation sys-
tem achieved an overall mean point-to-curve error of less than 1mm for 98% of
all images. We believe that this is the most accurate fully automatic system for
segmenting the proximal femur in AP pelvic radiographs so far reported.

All experiments were run on a 3.3 GHz Intel Core Duo PC using 2GB RAM.
The global search took on average 15s per image, and the local search 10s per
image and cluster; we searched on average 10 clusters. Note that running times
vary depending on image size and search settings. The fully automated system
is sufficiently general to be applied to other medical segmentation problems.

Acknowledgements. The arcOGEN Consortium is funded by Arthritis Re-
search UK and C. Lindner by the Medical Research Council.
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Abstract. We provide a fully automatic method of segmenting verte-
brae in DXA images. This is of clinical relevance to the diagnosis of
osteoporosis by vertebral fracture, and to grading fractures in clinical
trials. In order to locate the vertebrae we train detectors for the upper
and lower vertebral endplates. Each detector uses random forest regres-
sor voting applied to Haar-like input features. The regressors are applied
at a grid of points across the image, and each tree votes for an endplate
centre position. Modes in the smoothed vote image are endplate candi-
dates, some of which are the neighbouring vertebrae of the one sought.
The ambiguity is resolved by applying geometric constraints to the con-
nections between vertebrae, although there can be some ambiguity about
where the sequence starts (e.g. is the lowest vertebra L4 or L5, Fig 2a).
The endplate centres are used to initialise a final phase of Active Ap-
pearance Model search for a detailed solution. The method is applied
to a dataset of 320 DXA images. Accuracy is comparable to manually
initialised AAM segmentation in 91% of images, but multiple grade 3
fractures can cause some edge confusion in severely osteoporotic cases.

1 Introduction

The accurate identification of vertebral fractures is clinically important in the
diagnosis of osteoporosis. Typically diagnosis uses a semi-quantitative approach
using subjective judgement by a radiologist. Quantitative morphometric meth-
ods are not specific and require tedious manual annotation of six points on each
vertebra. See [1] for a discusson of diagnosis methods. More sophisticated clas-
sification methods based on statistical models have been reported in [1,2], but
these require an accurate segmentation method. Active appearance models [3]
(AAM) have been used to segment dual energy X-ray absorptiometry (DXA)
images in [4], but the method required a manual initialisation on the centre
of each vertebra. In applications such as clinical drug trials, it is desirable to
eliminate the manual initialisation.

This paper describes a three-phase approach. First we locate putative verte-
bral endplates using a set of random forest regressors (one per endplate), together
with Hough-style tree voting. Modes in the vote image of each vertebral end-
plate are candidate endplate positions. Secondly, the ambiguity is resolved by
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applying a graphical model of the connections between vertebrae, thus applying
geometric constraints. The solution of the graph problem is used to initialise a
third phase of AAM search. The novelty of the work lies in providing a fully
automatic segmentation method for vertebrae, although there still remains an
inevitable ambiguity in the starting level (e.g. is the bottom vertebra detected in
Fig 2a L4 or L5), which even experienced clinicians can find difficult to resolve.

1.1 Data

The dataset used consists of 320 DXA Vertebral Fracture Assessment (VFA)
images scanned on various Hologic (Bedford MA) scanners, obtained from: a) 44
patients from a previous study [5]; b) 80 female subjects in a epidemiological
study of a UK cohort born in 1946; c) 196 females attending a local clinic for DXA
BMD measurement, and for whom the referring physician had also requested
VFA (as approved by the local ethics committee). The lumbar vertebrae from
L4-L1 and the thoracic vertebrae from T12-T7 (Fig 2c) were annotated with
detailed point positions (42 points per vertebra) for training AAMs.

2 Methods

2.1 Regression Forests

Background on Regression Trees. Regression trees [6] are an efficient way
of predicting continuous output vectors given a complex set of input features. At
each branch in the tree the data is split into two subsets based on a threshold on
a selected feature using some criterion that seeks to increase the homogeneity of
the output vectors in the child branches. A regression forest consists of multiple
trees with some degree of randomisation, for example each tree is trained on a
bootstrapped subset; and at each branch a random subset of the input features
are considered. After training, a new data point can be predicted by dropping the
input vector down the trees. Each tree produces a prediction, which is typically
the mean of the training outputs at the terminal node. The predictions of each
tree in the forest are then aggregated, typically by taking the mean over all trees;
or in [7] the distributions of each leaf node are used; or Hough style voting can
be used [8]. Unlike Hough forests [8] we do not train object classification; each
of our trees cast one vote; and we include votes cast by patches which may be
displaced completely outside the object.

Pre-processing and Training. The images are smoothed with a Gaussian
filter with σ =1mm for L4-L1 and then reduced according to mean vertebral size
in the thoracic spine. The image is locally normalised using mean and variance
derived from a sliding exponential filter of standard deviation 25mm. Patches
are then sub-sampled with a step size of 1.5σ based on the appropriate endplate
centre and aligned to the vertebral axis. For the lumbar vertebrae (L4-L1) the
patch extends from the centre of the endplate 18 mm inside the vertebra and
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12mm outside, whilst in width it extends to the mean semi-width across the
training set, plus a left distance of 18mm and 12mm to the right. The left
(posterior) bias is to include further context information from the spine. These
distances are downscaled for the smaller thoracic vertebrae. Similar patches are
also sampled by randomly displacing the centre up to 30mm in x, 20mm in y
(with an x-axis aligned to the true vertebral axis), and randomly rotating by up
to 20◦. The (axis-relative) displacements in x, y and orientation are stored after
normalising.

Input Features and Training. The input features used are all possible Haar-
like features [9]. In [7] the features used were the difference in mean intentsity
values between two randomly displaced boxes. We also experimented with these,
but found that the Haar features performed slightly more accurately and reli-
ably. We believe that broadly similar results can be obtained from random box-
comparison features, but the Haar scheme includes more complex comparisons
for highlighting ridges and corners.

In order to randomise between trees, and reduce the large Haar set, at each
tree branch we pick a random subset of features (mean size 1000). We generated
100 perturbations for each patch in each image and trained the random forest
regressors using leave-20-out cross-validation. The splitting criteria used was the
total variance (weighted by sub-sample size) summed over the output variables.
The selected splitting feature and threshold are those that minimise the weighted
total variance, subject to an imposed minimum node sample size of 7. A branch
was terminated if the node variance reached a minimum variance of 1% of the
total initial variance, or at a depth of 18. We used a forest size of 40 trees. The
output is the 3-dimensional vector giving the displacements in x, y (axis-relative)
and rotation.

Voting Scheme. Endplate centre candidates are located by sampling the Haar
features across a grid of points separated by 4mm in x and 2mm in y, and at a

set of 5 orientations {α(t)
r }, given by the mean vertebral axis and displacements

between −20◦ and +20◦ at 10◦ intervals. The grid is sampled over the 3 SD
range of positions for that vertebra in the training set together with a 10%
bounding region. We initially maintain separate voting accumulators for each of
the 5 starting orientations. Each grid position casts votes from each tree in the
forest as follows. For tree i starting at grid position xj for endplate r, the angular

displacement prediction θ̂ijr is used to update the vertebral axis α̂ijr = α
(t)
r +θ̂ijr ;

then after applying the counter-rotation RT (α̂ijr) from the tree’s axis-relative

frame, we obtain the predicted location x̂ijr = xj + RT [Δxijr , Δyijr ]
T
. This

update scheme also using orientation prediction is more complex than simply
predicting Δx,Δy in a world frame, but since the features are defined relative
to a vertebral axis, it should be more accurate; it also allows us to introduce
orientation weighting (see below) in the voting scheme.

The predicted location x̂ijr is used to accumulate a vote array in the neigh-
bourhood of the rounded position in an array of 1x1mm2 bins, using Gaussian
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kernel smoothing with σ = 0.5 (half a bin). The vote portion accumulated in
bin position blm is wlm/

∑
(l,m)∈N wlm with N the neighbourhood such that

|blm − x̂ijr | ≤ 2, and wlm = exp(−|blm − x̂ijr |2/2σ2).

The vote of each tree is further weighted by angular displacement wa(θ̂ijr),
as we expect better accuracy for starting orientations closely aligned to the real
orientation; where

wa(θ̂ijr) = 1
∣∣∣θ̂ijr∣∣∣ <= θ0; wa(θ̂ijr) = exp

(
− |θ̂ijr|−θ0

σθ

) ∣∣∣θ̂ijr∣∣∣ > θ0

We use θ0 = 5◦ and σθ = 10◦. The total vote for each accumulator at each
point Vlmr is obtained by summing across all starting grid points and trees so
Vlmr =

∑
i

∑
j wa(θ̂ijr)wlm(x̂ijr). Each vote accumulator is then treated as a 2D

image and further smoothed with SD 1.5mm. All local modes in this smoothed
vote image V̆ are located, and the top 20 modes from each orientation are passed
on for clustering.

The clustering algorithm forms the minimum spanning tree of all modes
pooled from all orientations, and then deletes all arcs of length exceeding 2mm.
The remaining connected sub-graphs form clusters and the feature location is
taken as the highest scoring mode in the cluster. The vote score V̆kr of mode
k is post-processed onto a (0,1) scale to form a quasi-probability p̆kr, using a
sigmoidal transform parameterised using the inter-quartile range of the success-
fully located modes in the training set. This transform can be viewed as a biased
version of the logistic function commonly used in classification 1, or as an ap-
proximation to the CDF of the successful mode vote. The top 10 modes for each
endplate location give a candidate set of scores {p̌r} and positions {x̌r}.

2.2 Inter-Feature Geometric Constraints

Typically the correct endplate position is somewhere in the list of modes, but
similar responses are encountered at neighbouring vertebrae (Fig 2a), and the
lower endplate detectors can locate neighbouring upper endplates or vice versa
(Fig 2b). To resolve the ambiguity, we use a geometric model containing mul-
tiple nodes (one per endplate), together with a model of the pairwise geometrical

Fig. 1. The arcs connecting L2 endplates to neighbours. Similar connections exist for
other vertebrae.

1 Note that the graph solution (see below) is invariant to constant bias.
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relationships between them as in [10]. We can then use graph algorithms to locate
the optimal solution for the combination of feature response and geometry. We
connect the lower endplate to the upper endplate, which is also connected to
the lower endplate immediately above it. This chain can be solved by dynamic
programming. However a more complex graph is needed to allow for missing
detection cases, and also additional constraints can help resolve ambiguities.
So arcs also join each upper/lower endplate to the corresponding endplates of
vertebrae above and below including two vertebrae distant (Fig 1). The arc
costs are given by the Mahalanobis distance Drq of each pair in the edge set E
after aligning into the target vertebral axis frame. The final selection of optimal
solution k̃ from the set of candidate modes {x̌rk} is given by finding the minimum
sum of node and arc costs over the R endplates:

k̃ = argmink

{ R∑
r=1

− log(p̌r(kr)) + λ
∑

(r,q)∈E

Drq(kr, kq)
}

(1)

The graph is not a tree and cannot be solved by dynamic programming, but
we use loopy belief propagation (LBP) instead [11] 2. The parameter λ controls
the relative weighting on the spatial constraints; we used λ = 0.1, based on
some provisional experiments with related random forest classifiers (i.e. is a
box centred on the endplate or not). We found the detection of T8/T7 to be
somewhat unreliable (may be obscured by the scapulae, Fig 2d), and so solve
the graph problem from L4-T9, and leave T8/T7 to the next phase of AAM
fitting.

2.3 Active Appearance Models

We train AAMs [3] for overlapping triplets of vertebrae similar to [4] covering
L4-T7. We initialise a global shape model using the endplate centres using a
robustM -estimator to allow for some detection failures. Then a set of individual
AAMs are initialised for each triplet covering L4 to T9. Initially we concentrate
on the more reliable L4-T11 section, and at each iteration perform a tentative
fit to all remaining triplets, and then pick the best one (lowest residual sum of
squares in AAM texture model) to impose. This affects the re-initialisation of
the neighbours. After fitting L4-T11, the remaining triplets are fitted by moving
up the spine, and after each triplet fit a global shape model is updated to predict
the positions of the remaining vertebrae used in their AAM initialisation.

2.4 Experiments

We tested the algorithms using leave-20-out cross-validation on the 320 images,
and calculated point-to-line errors against the gold standard manual annotation.
There is a fundamental ambiguity in determining the vertebral levels. The lowest

2 The max-product variant, equivalent to max-sum with log probabilities.
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visible vertebra may be L4 or L5 (even L3) (Fig 2a); false positives can be de-
tected on the sacrum; or there can even be an L6. The optimum graph solution
can correspond to the correct solution shifted up or down by one vertebra (oc-
casionally even two). We have not yet addressed how to resolve this ambiguity.
In order to produce meaningful overall accuracy statistics we examine the top
solution, and other solutions after removing the lowest nodes in the former, up
to 5 possible solutions. If any of these identify the vertebral centres L4-T12 to
within 4mm in Y and 6mm in X we consider it a success, and proceed with the
highest ranked such solution to the AAM stage.

(a) (b) (c) (d)

Fig. 2. Detected positions for bottom of L2 and overall LBP graph solutions used to
initialise AAM. a) Top 5 L2 (bottom) regressor mode positions on bottoms of L5-L1;
b) Similar regressor modes on bottoms of L2-L4 plus confounders at the tops of L3, L4;
note L1,L3,L4 fractures; c) Good image with accurate LBP solution for all vertebrae;
d) Severely osteoporotic case - most fractures are located by the LBP solution but the
top of T9 is mis-located on the bottom of the extremely fractured T8 (indicated).

3 Results

Figure 2 (a-b) shows two examples of the top 5 located positions for the L2
lower endplate. These typically include responses from neighbours, but there
are responses on the upper endplates which can produce some confusing shifts.
Figure 2 (c-d) also shows examples of the solution for L4-T9 used to initialise the
AAM. A successful initialisation was obtained in 308 images out of 320 (96.2%).
The failures were mostly severely osteoporotic cases with many fractures (hence
unusual geometries), or severe disc disease fusing vertebrae. In the 308 successful
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Table 1. Search error statistics (point-to-line) for AAM by vertebra fracture status.
Bracketed figures are after excluding the 15 images (5%) where 3 or more vertebrae
suffered edge confusion with neighbours.

Automatic Initialisation Manual Initialisation
Vertebra %ge of Search Error Statistic Search Error Statistic
Status Sample Mean Median %ge errors Mean Median %ge errors

(mm) (mm) >2mm (mm) (mm) >2mm

Normal 84.9% 0.66(0.55) 0.41(0.40) 3.6(2.5)% 0.55(0.55) 0.40(0.40) 2.5(2.3)%
Grade 1 5.9% 0.92(0.75) 0.52(0.50) 7.7(5.4)% 0.70(0.70) 0.49(0.49) 4.8(4.8)%)
Grade 2 5.1% 1.12(0.88) 0.61(0.58) 11.4(9.3)% 0.92(0.88) 0.61(0.59) 10.2(9.3%)
Grade 3 4.1% 1.94(1.18) 0.80(0.67) 23.9(15.0)% 1.19(1.07) 0.72(0.68) 16.5(14.0)%

images, 60% have the best solution at the correct vertebral level, with 27% and
13% shifted up or down by one vertebra respectively, and a single case is shifted
by two.

Table 1 gives point-to-line accuracy results for these 308 successful cases,
together with corresponding figures for a manually initialised AAM search. In
these 308 cases the overall mean segmentation error was 0.74mm, increasing with
fracture grade. After running the AAM there were 15 images (5%) with edge
confusions on 3 or more vertebrae in succession - typically caused by successive
severe fractures (such as Fig 2d). Removing these images from the statistics
substantially reduces the mean error, which is skewed by the larger error tail
on these partial failures. The errors on the images without these substantial
edge confusions are given in brackets in table 1, which also shows errors from
manually initialised AAM fits for comparison. If the 15 edge confusion images
are also considered failures, then the overall success rate is 91.2%, and in these
cases the accuracy is comparable to that obtained using a manual initialisation
(overall mean 0.59mm vs 0.58mm manual).

4 Discussion and Conclusions

Although there is some failure of the automatic initialisation process, the algo-
rithm sucessfully locates a plausible set of vertebrae in over 91% of cases, with
most failures on extremely osteoporotic cases. The fundamental ambiguity of
vertebral levels is still an unsolved problem, but in some triage applications (e.g.
detect any patient with possible fracture) this may not matter; or the user can be
presented with the best solution plus two shifted versions to choose from. Good
accuracy is obtained for normal (unfractured) vertebrae, but there are larger er-
rors for severely fractured vertebrae, due to edge confusions between a vertebra
and its neighbours. The overall mean error of 0.74mm compares well to other
methods (e.g. [12], mean error 1.4mm, or [13], mean errors 1.22 or 1.34mm). Our
initialisation failure of 3.8% on L4-T9 appears comparable to the 2% on L4-L1
for the baseline data in [13], when scaled by the number of vertebrae. The final
failure rate of 8.8% appears higher, but [13] deals only with the lumbar, whereas
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our additional failures are due to multiple severe fractures in the thoracic spine.
The thoracic vertebrae are harder to segment because the vertebrae are closer
together (especially when affected by disc disease), resulting in more edge con-
fusions between neighbouring vertebrae; and there is more overlaying structure
from the ribs and scapulae. If the algorithm were being used in triage to pick up
patients with any fractures, then even the additional 15 image “failures” would
still result in successful patient referrals, as all are cases like Fig 2d with some
fractures being successfully located before edge confusion occurs.
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Abstract. We present a method for automatic segmentation of high-
grade gliomas and their subregions from multi-channel MR images. Be-
sides segmenting the gross tumor, we also differentiate between active
cells, necrotic core, and edema. Our discriminative approach is based
on decision forests using context-aware spatial features, and integrates
a generative model of tissue appearance, by using the probabilities ob-
tained by tissue-specific Gaussian mixture models as additional input
for the forest. Our method classifies the individual tissue types simulta-
neously, which has the potential to simplify the classification task. The
approach is computationally efficient and of low model complexity. The
validation is performed on a labeled database of 40 multi-channel MR
images, including DTI. We assess the effects of using DTI, and vary-
ing the amount of training data. Our segmentation results are highly
accurate, and compare favorably to the state of the art.

1 Introduction

In this paper, we present our work on tissue-specific segmentation of high-grade
gliomas in multi-channel MR images, with focus on grade IV glioblastoma tu-
mors. Such high-grade gliomas (HGG) grow rapidly, infiltrate the brain in an
irregular way, and often create extensive vasculature networks. HGGs contain a
necrotic core (NC), surrounded by a varyingly thick layer of active cells (AC).
Together, necrotic core and active cells form the gross tumor (GT). Usually, the
tumor itself is surrounded by a varying amount of edema (E). In consequence,
HGGs have extremely heterogeneous shape, appearance and location (cf. Figs.
1,2), which makes their automatic analysis challenging.

Our goal is to segment high-grade gliomas as well as the individual tissue com-
ponents automatically and reliably. This would 1) speed-up accurate delineation
of the tissue components, which is crucial for radiotherapy and surgery planning
and is currently performed manually in a labor intensive fashion, and 2) allow di-
rect volume measurements. Volume measurements are critical for the evaluation

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 369–376, 2012.
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of treatment [17], however seldom performed since manual tumor segmentation
is often impractical in a routine clinical setting. Instead more straightforward
but less accurate measures are used, such as a pair of perpendicular tumor diam-
eters [17]. Distinguishing between volumes of individual tissue types, especially
active cells and necrotic core is an important step for assessment of treatment
response. For example, an effective drug might not change the gross tumor vol-
ume, while transforming active into necrotic cells. To detect this change, the
volumes of both these tissues must be monitored.

This paper proposes an efficient method for automatic segmentation of
glioblastoma in multi-channel MR images. While most of the previous research
focuses on segmentation of gross tumor, or tumor and edema, we perform a
tissue-specific segmentation of three relevant tissues types: active cells (AC),
necrotic core (NC), and edema (E). Our method is based on decision forests
(DF) [3], a discriminative model which we combine with a generative model of
tissue appearance. We achieve this by using the probability estimates based on
Gaussian mixture models (GMM) as additional input for the forest. An impor-
tant advantage of DFs is that they are inherently multi-label classifiers, which
allows us to classify the different tissues simultaneously. Such simultaneous sepa-
ration of classes has the potential to simplify the modeling of the distributions of
the individual classes. Through the use of context-sensitive features in the forest,
our approach yields a natural smoothness of the segmentation results without
explicit regularization. Our method has a low model complexity and reduces the
necessity for a large number of pre- and post-processing steps.

The accuracy of our method is evaluated quantitatively on a database of 40
high-grade glioma patients – to our knowledge, the largest annotated database
of this kind so far – and compares favorably to the results in the literature.

1.1 Related Work

In recent years several approaches for segmentation of brain tumors have been
proposed. The settings differ from one another in many respects, such as the type
of tumor being handled (e.g. low-grade [6], high-grade [4,13], pediatric tumors
[16]), the type of anomalous tissues being detected (e.g. GT [7,10,16]; GT and
E [4,6,12,15]; AC, NC, E [2,15]), input data, and the evaluation procedure.

A popular group of methods is based on the registration of patient images to
a probabilistic brain atlas [6,9,10,12]. The main idea is that – given an accurate
atlas and registration – the tumor can be detected as deviation of patient data
from the atlas. Since the presence of the tumor makes the registration challeng-
ing, some approaches use manual interaction [9], while others integrate tumor
growth models [6].

A large group of discriminative methods applies learning techniques to the
problem [2,4,7,13,15,16]. Our method belongs to this group. Mostly, a learning
method is combined with a regularization step, e.g. by modeling the bound-
ary [8,11], or by applying a variant of a random field spatial prior (MRF/CRF)
[4,7,16]. Works which classify multiple labels [2,15] often use SVMs, which are in-
herently binary classifiers. In order to classify different tissues, they are applied
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Fig. 1. Example of one of 40 patients in our high-grade glioma database, with tissues
labeled as active cells (red), necrotic core (green), and edema (yellow)

hierarchically [2], or in the one-versus-all manner [15]. For these approaches,
several classes have to be grouped together, a step which can make the distri-
bution inside the aggregate group more complex than the distribution of each
individual class. For example, the intensity distribution of a tumor consisting
of AC and NC tissues, which have very different representations in the multi-
channel data, is likely to be more complex than the distributions of the single
classes. In our technique, we circumvent this potential problem by classifying all
tissues simultaneously, which allows us to only handle distributions of individual
classes.

Finally, discriminative methods are sometimes seen as requiring heavy data
processing and mandatory spatial regularization [10]. In our discriminative ap-
proach, despite using only minimal amounts of pre-processing, we achieve high
accuracy results without post-hoc regularization.

2 The Labeled High-Grade Glioma Database

We acquired a set of multi-channel 3D MR data for 40 patients suffering from
high-grade gliomas, with 38 cases of grade IV tumors (glioblastomas) and 2
grade III tumors (anaplastic oligodendrogliomas). The data is acquired prior to
treatment. For each patient we have the following 6 channels: T1 post gadolinium
(T1-gad), T1, T2 turbo spin echo (T2-tse), and FLAIR, and 2 channels from
diffusion tensor imaging (DTI-p and DTI-q). Fig. 1 gives an example for one
patient. All acquisitions were performed on a 3T Siemens TrioTim. We will refer
to the multi-channel data as IMR. For all 40 patients, a manual segmentation of
the three classes of AC, NC, and E is obtained in 3D (see Figs. 1,2).

We try to keep the amount of data pre-processing at a minimum. We perform
skull stripping of MR channels [14], and for each patient we perform an affine
intra-patient registration of all channels to the T1-gad image. No inter-patient
registration is required. We also avoid a full bias-field correction, and only align
the mean intensities of the images within each channel by a global multiplicative
factor. All these steps are fully automatic.

3 Method: Decision Forests with Initial Probabilities

In our approach we use decision forests (DF)[3,5] as a discriminative multi-
class classification method, and combine them with a generative model of tissue
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appearance. This is achieved by using initial tissue probability estimates based
on trained GMMs as additional input channels for the forest, along with the
MR data IMR. We classify four classes AC, NC, and E, and background (B),
and gross tumor remains defined as GT=AC∪NC.

As the first step of our approach, we estimate the initial class probabilities
for a given patient as posterior probabilities based on the likelihoods obtained
by training a set of GMMs on the training data. For each class c, we train a
single GMM, which captures the likelihood p(IMR|c) of the multi-dimensional
intensity for this class. For a given patient data set IMR, the GMM-based pos-
terior probability pGMM

c for the class c is estimated for each point x ∈R3 by
pGMM(c|x) = p(IMR(x)|c) pc /

∑
cj
p(IMR(x)|cj) pcj , with pc denoting the prior

probability for the class c, based on its relative frequency. We can now use the
probabilities pGMM

c (x)=pGMM(c|x) directly as input for the decision forests, in ad-
dition to the multi-channel MR data. So now, our data for one patient is a set
of nc channels I=(T1-gad,T1,T2,FLAIR,DTI-q,DTI-p, pGMM

AC , pGMM

NC , p
GMM

E , pGMM

B ).
For simplicity, we denote single channels by Ij , and the data for a patient k

by I(k). Please note that we can use the GMM-based probabilities for maximum
a posteriori classification by ĉ = argmaxc p

GMM(c|x). We will use this for a base
line comparison in Sec. 4.

3.1 Decision Forests

We employ decision forests (DF) to determine a class c∈C for a given spatial
input point x∈Ω, based on the representation of x by a feature vector f(x, I).
DFs are ensembles of (binary) decision trees, indexed by t∈[1, n]. As a supervised
method, DFs operate in two stages: training and testing.

During training, each tree t learns a weak class predictor pt(c|f(x, I)) for a
nf-dimensional feature representation f(x, I)∈Rnf of a spatial point x from the
data set I. The input training data set is {(f(x, I(k)), c(k)(x)) : x∈Ω(k)}, that is,
the feature representations of all spatial points x∈Ω(k) , in all training patient
data sets k, and the corresponding manual labels c(k)(x). We refer to all spatial
points in all training data sets by X=

⋃
k Ω

(k). We will use x∈X to identify single
training examples in most part, thus writing e.g. pt(c|x) for pt(c|f(x, I)).

In a decision tree, each node i contains a set of training examples Xi, and a
class predictor pit(c|x), which is the probability corresponding to the fraction of
points with class c inXi. Starting withX at the root, the training is performed by
successively splitting the training examples at every node based on their feature
representation, and assigning the partitions XL and XR to the left and right
child node. At each node, a number of splits along randomly chosen dimensions
of the feature space is considered, and the one maximizing the Information Gain
is applied. Tree growing is stopped at a certain tree depth d.

At testing, a point x to be classified is pushed through each tree t, by applying
the learned split functions. Upon arriving at a leaf node l, the leaf probability is
used as the tree probability, i.e. pt(c|x)=plt(c|x). The overall probability is com-
puted as the average of tree probabilities, i.e. p(c|x)=1

n

∑n
t=1 pt(c|x). The actual

class estimate ĉ is chosen as the most probable class, i.e. ĉ = argmaxc p(c|x).
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Fig. 2. Examples of results on 8 patients. Obtained by a forest with GMM, MR, and
DTI input, with training on 30 patients. The high accuracy of our results is quantita-
tively confirmed in Figs. 3,4 (AC=red, NC=green, E=yellow).

3.2 Context-Aware Feature Types

We employ three spatial and context-aware features types, which are intensity-
based and parametrized. Two of these feature types are generic [5], while the
third one is designed with the intuition of detecting structure changes. Every
instantiated feature with its unique parameters corresponds to one dimension of
the feature space used by decision trees.

We use the following notation: Again, x∈Ω is a spatial point, to be assigned a
class, and Ij is an input channel. Ns

j (x) denotes an x-centered and axis aligned

3D cuboid in Ij with edge lengths s=(sx, sy, sz), and v∈R3 is an offset vector.

Feature Type 1: Intensity difference between x in a channel Ij1 and an offset
point x+ v in a channel Ij2 (note that Ij1=Ij2 is allowed)

f1(x, I)j1,j2,v = Ij1(x) − Ij2(x + v) . (1)

Feature Type 2: Difference between intensity means of a cuboid around x in
Ij1 , and around an offset point x+ v in Ij2

f2(x, I)j1,j2,s1,s2,v = μ(Ns1
j1
(x))− μ(Ns2

j2
(x+ v)) . (2)

Feature Type 3: Intensity range along a 3D line between x and x+v in one
channel. This type is designed with the intuition that structure changes can yield
a large intensity change, e.g. NC being dark and AC bright in T1-gad.

f3(x, I)j,v = max
λ

(Ij(x + λv))−min
λ

(Ij(x + λv)) with λ ∈ [0, 1] . (3)

4 Evaluation

We perform an extensive series of cross-validation experiments to evaluate our
method. For this, the 40 patients are randomly split into non-overlapping train-
ing and testing data sets. To investigate the influence of the size of the training



374 D. Zikic et al.

10/30 20/20 30/1010/30 20/20 30/1010/30 20/20 30/1010/30 20/20 30/1010/30 20/20 30/1010/30 20/20 30/10

20% 

10% 

0% 

30% 

St
d.

 d
ev

. 
Forest (GMM,MR,DTI) Forest (GMM,MR) Forest (MR,DTI)  Forest (MR) GMM(MR,DTI)  

90% 

80% 

70% 

60% 

50% 

100% 

10/30 20/20 30/1010/30 20/20 30/1010/30 20/20 30/1010/30 20/20 30/1010/30 20/20 30/1010/30 20/20 30/10

GMM(MR) 
D

IC
E 

m
ea

n 

Gross Tumor 
Active Cells 
Necrotic Core 
Edema 

Fig. 3. Average mean and standard deviations of DICE scores, for experiments on
10 random folds, with the training/testing data set sizes of 10/30, 20/20, and 30/10.
From left to right, the approaches yield higher mean scores, with lower std. devs. Our
approach (rightmost) shows increased robustness to amount of training data, resulting
in more horizontal lines, indicating better generalization.

set and generalization properties of our method, we perform experiments with
following training/testing sizes: 10/30, 20/20, 30/10. For each of the three ratios,
we perform 10 tests, by randomly generating 10 different training/testing splits.

To demonstrate the influence of the single components of the method, we
also perform tests on Forests without GMMs, and compare to the results of
GMM only. Finally, we investigate the influence of using DTI, by performing all
experiments also with MR input only. Overall, this results in 30 random training
sets, and 600 tests for each of the 6 approaches. The evaluation is performed with
all images sampled to isotropic spatial resolution of 2mm, and forests with n=40
trees of depth d=20. With these settings, the training of one tree takes between
10-25 min, and testing 2-3 min, depending on the size of training set and the
number of channels. The algorithm and feature design were done on a single
independent 20/20-fold, which was not used for evaluation.

Fig. 2 shows a visual example of the results, while the quantitative evalua-
tion and more details are given in Figs. 3,4. We observe an improvement of the
segmentation accuracy by the proposed method (Forest(GMM,MR,DTI)) com-
pared to the other tested configurations. The amount of training data influences
NC and E more than AC and GT. The effect of using DTI seems to be most
visible for smaller training data sets.

Comparison to Quantitative Results of Other Approaches is difficult for a
number of reasons, most prominently the different input data. To provide some
indicative context, we cite results of a recent work from [2]. There, the mean and
standard deviation for a leave-one-out cross-validation on 10 glioma patients,
based on multichannel MR are as follows: GT: 77±9, AC: 64±13, NC: 45±23,
E: 60±16. Our results compare favorably. For our 30/10-tests we get: GT: 90±9,
AC: 85±9, NC: 75±16, E: 80±18, and for the more challenging 10/30-tests (less
training data), we get GT: 89±9, AC: 84±9, NC: 70±19, E: 72±23.
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Fig. 4. Evaluation of 10 random fold experiments with varying amount of training
data. Distribution of DICE scores is indicated along y-axis, by plotting the histogram
of the scores, grouped per test and tissue, with medians (+) and means (×). Our forest
method clearly reduces the number of lower score outliers compared to GMM. The
outliers occur mostly for NC and E, and visual inspection confirms that the misclassifi-
cation of NC and E is the most significant error of our method. Increasing the amount
of training data reduces the number of outliers. DTI has most effect for less training
data, and the GMM estimates.

Sensitivity to Variation of Parameters is tested by varying n∈ [15, 40] and
d∈ [12, 20], for the ten 30/10-tests. We observe robustness to the selection of
these values, especially n. Details are given in the supplementary material [1].

5 Summary and Conclusion

We propose a method for automatic and tissue-specific segmentation of high-
grade gliomas. Our discriminative approach is based on decision forests using
context-aware features, integrates a generative model of tissue appearance, and
classifies different tissues simultaneously. Our method requires comparably little
pre-processing, and no explicit regularization, thus resulting in a low model com-
plexity. The approach is computationally efficient, reasonably robust to param-
eter settings, and achieves highly accurate segmentation results. The automatic
results are suitable for volume measurements, and can be used as high-quality
initial estimates for interactive treatment planning.
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Abstract. Magnetic resonance (MR) imaging of carotid atherosclerosis
biomarkers are increasingly being investigated for the risk assessment of
vulnerable plaques. A fast and robust 3D segmentation of the carotid ad-
ventitia (AB) and lumen-intima (LIB) boundaries can greatly alleviate
the measurement burden of generating quantitative imaging biomarkers
in clinical research. In this paper, we propose a novel global optimization-
based approach to segment the carotid AB and LIB from 3D T1-weighted
black blood MR images, by simultaneously evolving two coupled surfaces
with enforcement of anatomical consistency of the AB and LIB. We show
that the evolution of two surfaces at each discrete time-frame can be op-
timized exactly and globally by means of convex relaxation. Our contin-
uous max-flow based algorithm is implemented in GPUs to achieve high
computational performance. The experiment results from 16 carotid MR
images show that the algorithm obtained high agreement with manual
segmentations and achieved high repeatability in segmentation.

Keywords: Carotid atherosclerosis, convex relaxation, continuous max-
flow, image segmentation, GPGPU, coupled level sets.

1 Introduction

Stroke is the second leading cause of death worldwide and approximately 87%
of the stroke cases are ischemic [1]. Atherosclerosis at the carotid bifurcation
is a major cause of generation of thrombosis and subsequent cerebral emboli.
Non-invasive, imaging-based biomarkers provide a direct measurement of plaque
burden for monitoring plaque progression and regression in patients who undergo
medical interventions [2]. MR imaging has shown promise in quantifying carotid
measurements, such as vessel wall volume and thickness maps, plaque compo-
sition, and inflammation [2], for assessing the efficacy of medical treatment. A
robust 3D segmentation of the carotid adventitia (AB) and lumen-intima (LIB)
boundaries would greatly assist a comprehensive analysis of carotid atheroscle-
rosis aiding in the translation of these measurements to clinical research.
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Fig. 1. (a) Carotid MR image with overlaid manual segmentations; (b) Pictorial rep-
resentation of image domain Ω and its sub-domains Rl, Rw, and Rb; and (c) Contour
evolution

Most existing techniques for the carotid AB and LIB MR segmentation are
2D slice-by-slice based methods and delineate the two boundaries separately
and independently: Klooster et al. [3] used surface fitting for segmentation of
the carotid LIB and AB; Kerwin et al. [4] proposed to utilize B-spline snakes
to extract both boundaries; Adame et al. [5] applied fuzzy clustering for carotid
LIB segmentation and ellipse fitting with dynamic programming for carotid AB
segmentation. However, such methods provide only locally optimal results which
are often inefficient and sensitive to the initialization; in addition, they need to
explicitly handle changes in topology at the carotid bifurcations and require a
great amount of user interaction.

Contributions. In this paper, we describe a novel approach to segment the AB
and LIB of common carotid artery (CCA), internal carotid artery (ICA), and
external carotid artery (ECA) from T1-weighted (T1w) black blood MR images
efficiently and robustly. The segmentation of the carotid AB and LIB is achieved
by simultaneously evolving two surfaces with the enforcement of their anatomical
order. We show the simultaneous evolution of the coupled surfaces can be solved
globally and exactly at each discrete time step, by means of convex relaxation.
We propose a continuous max-flow model for the coupled surface evolution,
which introduces a dual model to the convex relaxed formulation and derives a
fast and fully parallelized algorithm. The results of the experiments demonstrate
that our method provides high accuracy and repeatability with significantly less
user interaction. The method is mainly intended for monitoring atherosclerosis
in patients during medical treatment.

2 Method

The segmentation task of the carotid AB and LIB partitions an MR image into 3
regions: the lumen Rl, the outer-wall Rw, and the background Rb [see Fig. 1 (a)
& (b)]. Since the lumen region is always enclosed within the outer wall region,
we model such spatial consistency by a geometrical constraint such that

Rl ⊂ Rw , (1)

where the background region Rb = Ω\Rw: i.e. only two regions Rl and Rw need
to be segmented. Here, we propose a novel global optimization-based approach
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for the simultaneous evolution of two surfaces (Rl and Rw in this case) subject
to histogram-matching and the overlap constraint (1).

2.1 Optimization Model

PDF Matching. The probability density functions (PDFs) of intensities are
regional descriptors of the objects of interest, thus matching PDFs provides a
robust partitioning of regions with similar PDFs [6, 7]. In practice, model PDFs
(i.e. histogram) can be obtained either from a training set or from sampled
voxels. In this work, we generated the model PDFs using sampled voxels.

Let I(x) ∈ Z be a given 3D carotid MR image, where Z is the set of image
intensity values. ui(x), i = l, w, b, be the indicator function of the estimated
region Ri such that

ui(x) :=

{
1 , where x is inside Ri

0 , otherwise
, i = l, w, b . (2)

Given that Rb = Ω\Rw, we have ub = 1− uw, i.e. only two indicator functions
ul(x) and uw(x) are used in our optimization problem. The PDF pi(u, z), where
z ∈ Z and i = l, w, b, of the estimated region Ri is computed using the Parzen
method such that

pi(u, z) =

∫
Ω
K(z − I(x))u dx∫

u dx
, i = l, w, b ,

where K(·) is the Gaussian kernel function K(x) = 1√
2πσ2

exp(−x2/2σ2).

Let qi(z), i = l, w, b, be the intensity PDF of region Ri, where z ∈ Z. We use
the statistical divergence metric, e.g. Bhattacharyya or Kullback-Leibler distance
etc., to measure the distance between the estimated PDFs pi(u, z), i = l, w, b,
of the three regions and their respective model PDFs qi(z). In this work, the
Bhattacharyya distance [7] is used for PDF matching:

Ematch(u) = −
∑

i=l,w,b

∑
z∈Z

√
pi(u, z) qi(z) . (3)

Optimization Formulation. Using the binary indicator functions ul,w(x), the
geometrical overlap prior (1) for regionsRl andRw reduces to the linear inequal-
ity constraint

uw(x) ≥ ul(x) , ∀x ∈ Ω , (4)

which enforces the label order of ul(x) and uw(x).
In view of the histogram matching energy function (3) and the geometrical

overlap constraint (4), we propose to segment 3D carotid MR images by mini-
mizing the energy functional

min
ul,w(x)∈{0,1}

Ematch(u) +
∑
i=l,w

∫
Ω

gi(x) |∇ui(x)| dx , s.t. uw(x) ≥ ul(x) , (5)
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where gi(x) = λ1 + λ2 × exp(−λ3 × |∇I(x)|) and λ1, λ2, and λ3 are positive
constants and |∇I(x)| is the normalized image gradient. The anisotropic total-
variation term encodes the segmentation with the minimal geodesic length or
area. In this work, we propose to minimize the energy functional (5) by means
of contour evolution.

2.2 Evolution of Coupled Contours

Distinct from the conventional local optimization-based contour evolution meth-
ods, e.g. [7–9] etc, we simultaneously propagate two coupled contours by means
of global optimization. The global optimization approaches to evolve a single
contour was previously studied by using graph-cuts [10] and by a total variation-
based method [11]. In this work, we extend the single contour evolution [10] to
evolve two coupled surfaces simultaneously in a spatially continuous setting.

For each region Rt at time t, we consider its changes w.r.t. its new position R
at the next time frame t+ 1, in terms of two distinct regions R+ and R− with
their respective cost functions e+(x) and e−(x) (see Fig. 1)

1. R+ denotes the increased area w.r.t.R, i.e. for ∀x ∈ R+, it is initially outside
Rt, but ‘jumps’ to be inside R; for such ‘jump’, it pays the cost e+(x).

2. R− denotes the reduced area w.r.t. Rt: for ∀x ∈ R−, it is initially inside Rt,
but ‘jumps’ to be outside R at t+1; for such ’jump’, it pays the cost e−(x).

Rt is propagated to R by optimizing the following energy globally and exactly:

min
R

∫
R+

e+(x) dx +

∫
R−

e−(x) dx +

∫
∂R

g(s) ds . (6)

In view of (6), we propose to minimize (5) by evolving the current two regions
Rt

l and Rt
w to their new positions Rl and Rw such that

min
Rl,Rw

∑
i=l,w

{∫
R+

i

e+i (x) dx +

∫
R−

i

e−i (x) dx
}
+

∑
i=l,w

∫
∂Ri

gi(s) ds (7)

subject to the geometrical overlap constraint Rl ⊂ Rw.
By using the indicator functions (2), we can equally reformulate (7) as follows

min
ul,w∈{0,1}

〈ul, Cl〉+ 〈uw − ul, Cw〉+ 〈1− uw, Cb〉+
∑
i=l,w

∫
Ω

gi(x)|∇ui| dx (8)

subject to the labeling order constraint (4), i.e. uw(x) ≥ ul(x) for ∀x ∈ Ω. The
above cost functions Ci(x), i = l, w, b, are defined as the first-order variation of
the histogram matching term (3) w.r.t. ul and uw (see [7] for details).

2.3 Convex Relaxation and Continuous Max-Flow Approach

It has been proven that the non-convex optimization problem (8) can be solved
globally and exactly by its convex relaxation [12]:

min
ul,w∈[0,1]

〈ul, Cl〉+ 〈uw − ul, Cw〉+ 〈1− uw, Cb〉+
∑
i=l,w

∫
Ω

gi(x)|∇ui| dx (9)
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(a) Initialization (b) Final result (c) Initialization (d) Final result

Fig. 2. Example expert initializations and 2D segmentation results. The only user
interaction used in the pipeline is the choice of sample seeds on a single transverse
slice. Green, red, and blue seeds correspond to lumen, wall and background regions
respectively. (a) & (b): T1w 3T MR image.(c) & (d) T1w 1.5T MR image.

subject to the label ordering constraint uw(x) ≥ ul(x) for ∀x ∈ Ω. In other
words, the two regions Rt

l and Rt
w can be evolved to their globally optimal

positionsRl andRw at each time frame from t to t+1, subject to the geometrical
overlap constraint (1). In this work, we follow the continuous min-cut/max-flow
theory proposed by Yuan et al. [13] and Bae et al. [12] to solve the proposed
optimization problem (9), globally and exactly. To this end, we adopt their flow
configuration [12] and propose the continuous max-flow as follows:

max
pb,pl,pw

∫
Ω

pl(x) dx (10)

subject to the flow capacities

|qi(x)| ≤ gi(x) , i = l, w ; pi(x) ≤ Ci(x) , i = b, l, w ; (11)

and the flow conservation conditions

(div ql − pw + pl)(x) = 0 , (div qw − pb + pw)(x) = 0 , ∀x ∈ Ω . (12)

The continuous max-flowmodel is dual/equivalent to the convex relaxation prob-
lem (9) [12]. By (10), we derive an efficient continuous max-flow based algorithm
which is different from the ones proposed by Bae et al. [12]. Our model explores
the optimization over all the dual flow functions in parallel, instead of sequen-
tially or group-wise sequentially. In practice, the new parallelized scheme achieves
a faster convergence.

3 Experiments and Results

Segmentation Pipeline. Initially, the anisotropic voxels are interpolated into
isotropic voxels. In our approach, the carotid wall, lumen and the background
regions were initialized using an interactive user interface by the expert only on
a single transverse slice as shown in Fig. 2 (a) and (c). The sampled voxels are
used to generate model PDFs for histogrammatching [see (3)] and are considered
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(a) Initial for LIB (b) Final result (c) Initial for LIB (d) Final result

Fig. 3. Example segmentations of a T1w 3T MR image [Fig. 3(b)] and a 1.5T MR
image [Fig. 3(d)] by the proposed coupled surface evolution approach

as region-based hard constraints. The carotid AB and LIB are segmented using
2D multi-surface evolution by minimizing the objective function (5). The 2D
segmentation result is then used to generate a more representative prior PDFs
for each region for the 3D coupled segmentation. We perform a region growing
segmentation of the LIB to obtain a crude initial guess [see Fig. 3 (a) & (c)]. We
used region growing method for its simplicity; however, the operator could also
provide additional sampled seeds on the long-axis direction of the artery. We
obtain an initial estimate of the AB surface by dilating the LIB initial surface.
Finally, we use the coupled surface evolution in 3D for the segmentation of
carotid AB and LIB by minimizing the objective function (5). To incorporate
an anatomically-motivated separation of the carotid AB and LIB, we assigned
e+(x) infinite cost for the voxels that are within a minimum separation distance
(0.6 mm is used for experiments) outside to the LIB.

Data and Validation. The data comprise of 16 left and right carotid artery
T1w black blood MR images from eight subjects: eight 3T (voxel size ≈ 0.2 ×
0.2×2 mm3) and eight 1.5T (voxel size ≈ 0.5×0.5×2mm3) MR images. Subjects
were scanned using a GE Excite HD MRI (Milwaukee, WI, USA) with a custom-
built six-element carotid-bifurcation-optimized receive-only phased-array coil.
The imaging parameters are as follows: TR is 1RR and TEs are 11.4 ms and 12
ms for 3T and 1.5T images respectively with FSE and fat saturation.

The performance of the algorithm was evaluated with respect to manual seg-
mentations in terms of accuracy and reproducibility. Manual segmentations were
performed on a slice-by-slice basis on transverse view using a multi-planar re-
formatting software with 1 mm inter-slice distance up to 4 cm along carotid
including CCA, ICA, and ECA. We used Dice coefficient (DSC) as the region-
based metric, root mean square error (RMSE), and Hausdorff distance (MAXD)
as distance-based metrics.

Results. The convex max-flow algorithm was implemented using parallel com-
puting architecture (CUDA, NVIDIA Corp., Santa Clara, CA) and the user
interface in Matlab (Natick, MA). The experiments were conducted on a Quad
core Windows workstation with 2.8 GHz and a GPU of NVDIA GTX580. Our
algorithm required ≈ 25s of time for expert initialization. The computational
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Table 1. Results for eight 3T MR images and eight 1.5T MR images

CCA ICA ECA
Metric AB LIB AB LIB AB LIB

DSC (%) 94± 2 94± 4 87± 6 90± 5 80± 6 83± 6
3T RMSE (mm) 0.3 ± 0.1 0.4± 0.3 0.3± 0.1 0.3 ± 0.1 0.3± 0.1 0.3± 0.2

MAXD (mm) 1.2 ± 0.2 0.5± 0.6 2± 1.6 0.7 ± 0.2 1.4± 1.5 0.8± 0.3

DSC (%) 90± 5 93± 3 75± 9 92± 4 69± 12 88± 4
1.5T RMSE (mm) 0.5 ± 0.2 0.8± 1.2 0.6± 0.3 0.4 ± 0.1 0.6± 0.3 0.4± 0.1

MAXD (mm) 1.6 ± 1.0 1.5± 2.0 3.1± 5.3 1.1 ± 1.1 6± 4.0 0.9± 0.3

Table 2. Results for observer variability using DSC(%) for 8 1.5T MR images

CCA ICA ECA
Repetition # AB LIB AB LIB AB LIB

1 89.8 ± 5.1 93.3± 3.2 75.5 ± 9.0 91.8 ± 3.9 70.4 ± 12.0 87.9 ± 3.8
2 89.6 ± 5.0 93.3± 3.3 75± 8.9 92± 4.0 68.2 ± 11.5 88.4 ± 4.5
3 89.7 ± 5.0 93.6± 3.4 75.2 ± 9.1 92.2 ± 4.3 69.3 ± 10.7 88.3 ± 4.1

time for convergence of the algorithm was ≈ 40s (8s for max-flow in a GPU and
32s for cost computation using non-optimized Matlab code) which was achieved
within 10-15 iterations for a single 3D MR image with 110 slices. Figure 3 (b)
& (d) show the carotid AB and LIB surfaces generated using our algorithm for
some example 3T and 1.5T MR images. The performance results of the algo-
rithm are shown in Table 1. The algorithm yielded high DSC and low RMSE for
CCA, ICA, and ECA for both data sets except for the ECA AB where a DSC of
70% was obtained for 1.5T MR images. We also assessed the intra-observer vari-
ability by repeatedly segmenting the same image set three times with different
initializations. The results of the intra-observer variability analysis of the algo-
rithm is shown in Table 2. The algorithm yielded approximately similar DSCs
in all three repetitions, which suggests a high reproducibility of our approach.

4 Discussion and Conclusion

We developed a novel global optimization approach for coupled surface evolution
for carotid AB and LIB segmentations. The coupling permits the integration of
image information derived from both surfaces to drive their optimization. The
algorithm provided robust and efficient segmentation results for the AB and
LIB in terms of accuracy and intra-observer reproducibility. The 2D method
proposed by Adame et al. [5] is currently used in clinical trials, which requires
40s to segment a single 2D slice. Our method provides substantial improvement
in speed for segmenting 3D images over previous methods. Li et al. [14] also
proposed a single-shot graph-cut approach to segment coupled surfaces, but their
method need to unwrap the image domain, in which handling carotid bifurcations
or changes in topology are challenging.
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Most previous papers segment only the carotid CCA and report accuracy
in terms of area measurements but not DSC or RMSE [5, 4]. Our algorithm
reports a higher accuracy in terms of DSC for the CCA and ICA than ECA.
The reduced accuracy for the ECA is mostly due to the weak image information
of the ECA AB, in which the algorithm attempts to maintain a minimal length
surface without splitting at the carotid bifurcations. Clinically, CCA and ICA
segmentations are more important than ECA as the plaque tend to be present
mostly in CCA and ICA [2]. The expert may initialize on more than one 2D
slice to achieve further accuracy of the segmentations, especially proximal to
the carotid bifurcations. The performance results of our algorithm suggest that
it may be suitable for use in clinical trials involving the monitoring of carotid
atherosclerosis using 3D MR imaging-based biomarkers.

References

1. Roger, V., Go, A., Lloyd-Jones, D., Adams, R., Berry, J., Brown, T., et al.: Heart
disease and stroke statistics 2011 update1. Circulation 123(4), e18–e209 (2011)

2. Yuan, C., Oikawa, M., Miller, Z., Hatsukami, T.: MRI of carotid atherosclerosis.
J. Nucl. Cardiol. 15(2), 266–275 (2008)

3. van’t Klooster, R., de Koning, P.J., Dehnavi, R.A., Tamsma, J.T., de Roos, A.,
Reiber, J.H., van der Geest, R.J.: Automatic lumen and outer wall segmentation
of the carotid artery using deformable 3D models in MR angiography and vessel
wall images. JMRI 35(1), 156–165 (2011)

4. Kerwin, W., Xu, D., Liu, F., Saam, T., Underhill, H., Takaya, N., Chu, B., Hat-
sukami, T., Yuan, C.: Magnetic resonance imaging of carotid atherosclerosis. Top.
Magn. Reson. Imag. 18(5), 371–378 (2007)

5. Adame, I.M., van der Geest, R.J., Wasserman, B.A., Mohamed, M.A., et al.: Au-
tomatic segmentation and plaque characterization in atherosclerotic carotid artery
MR images. Magn. Reson. Mater. Phy. 16(5), 227–234 (2004)

6. Aubert, G., Barlaud, M., Faugeras, O., Jehan-Besson, S.: Image segmentation
using active contours: calculus of variations or shape gradients? SIAM J. Appl.
Math. 63(6), 2128–2154 (2003)

7. Michailovich, O., Rathi, Y., Tannenbaum, A.: Image segmentation using active
contours driven by the Bhattacharyya gradient flow. IEEE TIP 16(11), 2787–2801
(2007)

8. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. IJCV 22(1) (1997)
9. Chan, T., Vese, L.A.: Active contours without edges. IEEE TIP 10, 266–277 (2001)

10. Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An Integral Solution to
Surface Evolution PDEs Via Geo-cuts. In: Leonardis, A., Bischof, H., Pinz, A.
(eds.) ECCV 2006. LNCS, vol. 3953, pp. 409–422. Springer, Heidelberg (2006)

11. Chambolle, A.: An algorithm for mean curvature motion. Interf. Free Bound. 6,
195–218 (2004)

12. Bae, E., Yuan, J., Tai, X.C., Boycov, Y.: A fast continuous max-flow approach to
non-convex multilabeling problems. Technical report CAM-10-62, UCLA (2010)

13. Yuan, J., Bae, E., Tai, X.: A study on continuous max-flow and min-cut approaches.
In: CVPR 2010 (2010)

14. Li, K., Wu, X., Chen, D., Sonka, M.: Optimal surface segmentation in volumetric
images-a graph-theoretic approach. IEEE T. Pattern. Anal. 28(1), 119–134 (2006)



Sparse Patch Based Prostate Segmentation

in CT Images

Shu Liao1, Yaozong Gao1,2, and Dinggang Shen1

1 Department of Radiology and BRIC, University of North Carolina at Chapel Hill
liaoshu.cse@gmail.com

2 Department of Computer Science, University of North Carolina at Chapel Hill
yzgao@cs.unc.edu, dgshen@med.unc.edu

Abstract. Automatic prostate segmentation plays an important role in
image guided radiation therapy. However, accurate prostate segmenta-
tion in CT images remains as a challenging problem mainly due to three
issues: Low image contrast, large prostate motions, and image appear-
ance variations caused by bowel gas. In this paper, a new patient-specific
prostate segmentation method is proposed to address these three issues.
The main contributions of our method lie in the following aspects: (1) A
new patch based representation is designed in the discriminative feature
space to effectively distinguish voxels belonging to the prostate and non-
prostate regions. (2) The new patch based representation is integrated
with a new sparse label propagation framework to segment the prostate,
where candidate voxels with low patch similarity can be effectively re-
moved based on sparse representation. (3) An online update mechanism
is adopted to capture more patient-specific information from treatment
images scanned in previous treatment days. The proposed method has
been extensively evaluated on a prostate CT image dataset consisting
of 24 patients with 330 images in total. It is also compared with sev-
eral state-of-the-art prostate segmentation approaches, and experimen-
tal results demonstrate that our proposed method can achieve higher
segmentation accuracy than other methods under comparison.

1 Introduction

Prostate cancer is the second leading cause of cancer death for male in US. Image
guided radiation therapy (IGRT), as a non-invasive approach, is one of the major
treatment methods for prostate cancer. The key to the success of IGRT is the
accurate localization of prostate in the treatment images such that cancer cells
can be effectively eliminated by the high energy X-rays delivered to the prostate.

However, accurate prostate localization in CT images remains as a challenging
problem. First, the image contrast between the prostate and its surrounding
tissues is low. This issue can be illustrated by Figures 1 (a) and (b). Second, the
prostate motion across different treatment days can be large. Third, the image
appearance can be significantly different due to the uncertain existence of bowel
gas. This issue can be illustrated by Figures 1 (a) and (c).
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(a) (b) (c)

Fig. 1. (a) An image slice of a 3D prostate CT image volume. (b) The manually
delineated prostate boundary (i.e., the red contour) by the radiologist superimposed
on the image in (a). (c) An image slice with bowel gas of a 3D prostate CT image
volume with the same patient as in (a) but acquired from a different treatment day.

Many novel approaches have been proposed in the literature [1–4] for prostate
segmentation in CT images. For instance, Davis et al. [1] proposed a deflation
algorithm to eliminate the distortions brought by the existence of bowel gas,
followed by a diffeomorphic image registration process to localize the prostate.
Chen et al. [3] proposed a Bayesian framework for prostate segmentation in CT
images. In this paper, we propose a new patient-specific prostate segmentation
method. The main contributions of our method lie in the following aspects: (1)
Anatomical features are extracted from each voxel position. The most informa-
tive features are selected by the logistic Lasso to form the new salient patch
based signature. (2) The new patch based signature is integrated with a sparse
label propagation framework to localize the prostate in each treatment image.
(3) An online update mechanism is adopted to capture more patient-specific
information from the segmented treatment images. Our method has been exten-
sively evaluated on a prostate CT image dataset consisting of 24 patients with
330 images in total. It is also compared with several state-of-the-art prostate seg-
mentation approaches, and experimental results demonstrate that our method
achieves higher segmentation accuracy than other methods under comparison.

2 Patch Based Signature in Discriminative Feature Space

Patch based representation has been widely used in medical image analysis [5]
as anatomical signatures for each voxel. The conventional patch based principle
is to define a small K×K image patch centered at each voxel x as the signature
of x, where K denotes the scale of interest.

However, the conventional patch based signature still may not fully distinguish
voxels belonging to the prostate and non-prostate regions due to the low image
contrast around the prostate boundary. Therefore, we are motivated to construct
more salient patch based signatures in the feature space. For each image I(x),
it is convolved with a specific kernel function ψj(x) by Equation 1:

Fj(x) = I(x) ∗ ψj(x), (j = 1, ..., L) (1)
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where Fj(x) denotes the resulting feature value with respect to the jth kernel
ψj(x) at voxel x. L denotes the number of kernel functions used to extract
features. In this paper, we adopt the Haar [6], histogram of oriented gradient
(HOG) [7], and local binary pattern (LBP) [8] features.

For each feature map Fj(x) (j=1,...,L), we can also define a K × K patch
centered at each voxel x. Thus, x has aK×K×L dimensional signature, denoted
as a(x). Then, the logistic Lasso [9] is adopted to select the most informative
features. More specifically, N voxels xi (i=1,...,N) are sampled from the training
images, with labels li = 1 if xi belongs to the prostate and li = −1 otherwise.
Then, we aim to minimize the logistic Lasso problem [10] in Equation 2:

J(β, c) =

N∑
i=1

log(1 + exp(−li(βTa(xi) + c))) + λ||β||1, (2)

where β is the sparse coefficient vector, || · ||1 is the L1 norm, c is the intercept
scalar, and λ is the regularization parameter. The optimal solution βopt and copt

to minimize Equation 2 can be estimated by Nesterov’s method [11]. The most
informative features can be determined by selecting features with βopt(d) 	= 0
(d = 1, ...,K ×K × L). We denote the final signature of each voxel x as b(x).

3 Sparse Patch Based Label Propagation

The general label propagation process [5] can be formulated as follows: Given n
training images and their segmentation groundtruths (i.e., label maps), denoted
as {(Iu, Su), u = 1, ..., n}. For a new treatment image Inew , each voxel x in
Inew is linked to each voxel y in Iu with a graph weight wu(x,y). Then, the
corresponding label for each voxel x can be estimated by Equation 3:

Snew(x) =

∑n
u=1

∑
y∈Ω wu(x,y)Su(y)∑n

u=1

∑
y∈Ω wu(x,y)

, (3)

where Ω denotes the image domain, and Snew denotes the prostate probability
map of Inew .

Based on the new patch based signature derived in Section 2, the graph weight
wu(x,y) can be defined by Equation 4 similar to [5]:

wu(x,y) =

{
Φ
(

||bInew (x)−bIu (y)||2
2Kα

)
, if y ∈ Nu(x);

0, otherwise.
(4)

where bInew (x) and bIu(y) denote the patch signature at x of Inew and at y of Iu,
respectively, and || · ||2 denotes the L2 norm. The heat kernel Φ(x) = e−x is used
similar to [5]. α is the smoothing parameter. Nu(x) denotes the neighborhood of
voxel x in image Iu, and it is defined as theW×W×W subvolume centered at x.
Noted that the standard deviation of image noise for the selected features could
also be considered in Equation 4 to estimate the graph weight more accurately.
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Fig. 2. First row: original prostate CT images, overlayed with the groundtruth high-
lighted by red contours. Second to fourth rows: The corresponding probability maps
obtained by label propagation with the intensity patch voxel signature, patch based
voxel signature in the feature space without using sparse representation, and the patch
based voxel signature in the feature space with sparse representation, respectively

Inspired by the discriminant power of sparse representation, we are motivated
to estimate the graph weight based on Lasso. Specifically, we organize bIu(y),
y ∈ Nu(x) (u = 1, ..., n) as columns of a matrix A. Then, the sparse coefficient
vector θx for voxel x is estimated by minimizing Equation 5 with Nesterov’s
method [11]:

J(θx) =
1

2
||bInew (x)−Aθx||22 + λ||θx||1, θx ≥ 0. (5)

We denote the optimal solution of Equation 5 as θopt
x . The graph weight wu(x,y)

is set to the corresponding element in θopt
x with respect to y in image Iu.

Then, the prostate probability map Snew is estimated by Equation 3. Fig-
ure 2 shows an example of the prostate probability maps obtained by different
strategies. It is shown that the new patch based signature with sparse label
propagation estimates the prostate boundary more accurately.

After estimating the prostate probability map Snew, the prostate in Inew can
be localized by aligning the segmentation groundtruth of each training image Su

(u = 1, ..., N) to Snew and perform majority voting. The affine transformation
[12] is used due to the relatively simple shape of the prostate.
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4 The Online Update Mechanism

In this paper, an online update mechanism is adopted to incorporate more
patient-specific information. More specifically, at the beginning stage of the ra-
diation therapy, only the planning image of the current patient is available to
serve as the training image. As more treatment images are collected and seg-
mented during the therapy process, they will also serve as the training images.
Therefore, the online update mechanism gradually captures more patient-specific
information during the period of radiation therapy. It is worth noting that man-
ual adjustments to the automatic segmentation results are also feasible to correct
some poorly segmented images since such adjustments can be completed offline.

5 Experimental Results

Our method was evaluated on a 3D prostate CT dataset consisting of 24 pa-
tients with 330 images. Each image has in-plane resolution 512×512, with voxel
size 0.98× 0.98 mm2. The voxel size along the sagittal direction is 3 mm. The
segmentation groundtruth provided by the clinical expert is also available.

In all the experiments, the following parameter settings were adopted for our
method by cross validation: patch size K = 5, neighborhood size W = 15,
λ = 10−4 in Equations 2 and 5, α = 1 in Equation 4. Therefore, the dimension
of the original feature is 1325, and the same subset of selected feature is used
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Fig. 3. Centroid distance between the estimated prostate by our method and the
groundtruth along the (a) lateral, (b) anterior-posterior, and (c) superior-inferior di-
rections, respectively. The horizontal lines in each box represent the 25th percentile,
median, and 75th percentile. The whiskers extend to the most extreme data points.
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Fig. 4. Whisker plots of the (a) average surface distance and (b) true positive fraction
between our estimated prostate and the groundtruth for each patient. The horizon-
tal lines in each box represent the 25th percentile, median, and 75th percentile. The
whiskers extend to the most extreme data points.
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Fig. 5. The average Dice ratios and the standard deviations of the 24 patients after
bone alignment, and using our method without or with the online update mechanism.

for all voxels. For each patient, we first rigidly aligned the pelvic bone structures
of each treatment image to the planning image with FLIRT [12] to remove the
whole-body rigid motion.

Four quantitative measures were used to evaluate the segmentation accuracy
of our method: The centroid distance (CD), average surface distance (ASD),
true positive fraction (TPF), and the Dice ratio. The whisker plots of CD along
the lateral, anterior-posterior and superior-inferior directions of each patient are
shown in Figures 3 (a) to (c), respectively. It is shown that the median CD along
each direction of each patient lies within 0.4 mm from the groundtruth, which
implies the effectiveness of our method. The whisker plots of the ASD and TPF
measures of each patient are also shown in Figures 4 (a) to (b), respectively.
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Fig. 6. Typical segmentation results of the 3rd treatment image of the 17th patient
(first row, Dice ratio 90.04%) and the 5th treatment image of the 15th patient (second
row, Dice ratio 90.86%). The yellow contours denote the estimated prostate boundaries
by our method, and the red contours denote the prostate boundaries of the groundtruth.

Table 1. Comparison of different methods, N/A indicates that the corresponding result
was not reported in the respective paper. The last three rows denote our method
using intensity patch signature, discriminative (Dist) patch signature in feature space,
and the discriminative (Dist) patch signature with sparse label propagation. Results
obtained by our method on the last row are bolded.

Methods Mean Dice Ratio Mean ASD Mean CD (x/y/z) Median TPF
(mm) (mm)

Davis et al. [1] 0.820 N/A -0.26/0.35/0.22 N/A
Feng et al. [2] 0.893 2.08 N/A N/A
Chen et al. [3] N/A 1.10 N/A 0.84
Intensity Patch 0.731 3.58 1.84/1.62/-1.74 0.72

Dist Patch 0.862 1.52 0.24/-0.23/0.31 0.84
Our Method 0.909 1.09 0.17/−0.09/0.19 0.89

The average Dice ratio and its standard deviation between the estimated
prostate volume and the groundtruth for each patient after bone alignment,
with and without the online update mechanism of our method are also shown in
Figure 5. It is shown that our method can achieve high Dice ratios (i.e., mostly
above 85%) even without the online update mechanism (i.e, only the planning
image is served as the training data). The segmentation accuracies can be further
improved with the online update mechanism (i.e., mostly above 90%).

A typical example of the segmentation results by using the proposed method
is shown in Figure 6. It can be observed that the estimated prostate boundaries
are very closed to the prostate boundaries of the groundtruth even for the apex
area of the prostate and in slices where bowel gas exists.

Our method was also compared with three state-of-the-art prostate CT seg-
mentation algorithms [1–3]. The best results reported in [1–3] were adopted for
comparison, and detailed comparisons are listed in Table 1. It can be observed
from Table 1 that our method outperforms other methods under comparison.
The contributions of the new patch based signature and the sparse label propa-
gation framework can also be mirrored by Table 1.
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6 Conclusion

In this paper, we propose a new patient-specific prostate segmentation method
for CT images. Our method extracts anatomical features from each voxel posi-
tion, and the most informative features are selected by logistic Lasso to construct
the patch based representation in the feature space. It is shown that the new
patch based signature can distinguish voxels belonging to the prostate and non-
prostate regions more effectively. The new patch based signature is integrated
with a sparse label propagation framework to localize the prostate in new treat-
ment images. An online update mechanism is also adopted in this paper to
capture the patient-specific information more effectively. The proposed method
has been extensively evaluated on a prostate CT image dataset consisting of
24 patients with 330 images. It is also compared with several state-of-the-art
prostate segmentation methods. Experimental results show that our method
achieves higher segmentation accuracy than other methods under comparison.
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Anatomical Landmark Detection Using Nearest
Neighbor Matching and Submodular Optimization

David Liu and S. Kevin Zhou

Siemens Corporation, Corporate Research and Technology, Princeton NJ, USA

Abstract. We present a two-stage method for effective and efficient detection
of one or multiple anatomical landmarks in an arbitrary 3D volume. The first
stage of nearest neighbor matching is to roughly estimate the landmark locations.
It searches out of 100,000 volumes for the closest to an input volume and then
transfers landmark annotations to the input. The second stage of submodular op-
timization is to refine the landmark locations by running discriminative landmark
detectors within the search ranges constrained by the first stage results. Further
it coordinates multiple detectors with a search strategy optimized on the fly to
reduce the overall computation cost arising in a submodular formulation. We
validate the accuracy, speed and robustness of our approach by detecting body
regions and landmarks in a dataset of 2,500 CT scans.

1 Introduction

In the paper, we define an anatomical landmark (or landmark in brief) as a distinct point
in a body scan that coincides with anatomical structures, such as liver top, lung top, aor-
tic arch, iliac artery bifurcation, femur head left and right, to name but a few. Landmark
detection is crucial for medical image applications. As a body region can be defined
by landmark(s)1, body region detection can be solved by landmark detection. Land-
marks also provide seed points to initiate image segmentation [1] and registration[2]. In
seminar reporting, the detected organ landmarks can help config the optimal intensity
window for display [3] and offer the text tooltips for structures in the scan [4].

A practical landmark detection method must meet the following requirements. First,
it must be robust to deal with pathological or anomalous anatomies such as fluid-filled
lungs, air-filled colons, inhomogeneous livers caused by different metastasis, and re-
sected livers after surgical interventions, different contrast agent phases, scans of full
or partial body regions, extremely narrow field of views, etc. Figure 1 shows some ex-
amples of CT scans that illustrate the challenges. Second, since landmark detection is
mostly a pre-processing step for computationally heavier tasks such as CAD and regis-
tration, it must run fast so that more time can be allocated for the heavier tasks. Finally,
the landmark detection accuracy depends on the subsequent applications. For exam-
ple, for body region detection exact 3D point positions are not needed; for registration,
accurate landmarks are desired.

1 A simple approach for determining the body region could rely on certain DICOM tags. But
these tags are not always reliable, justifying a need for a dedicated image-based algorithm.

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 393–401, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Our dataset has 2,500 3D CT scans with different body regions and severe pathologies

We leverage the unitary, pairwise, and holistic contextual information (defined in
Section 2) manifested in medical images to design an effective and efficient method
for detection of one or multiple landmarks in a 3D volume. The proposed algorithm in
Section 3 has two stages. First, nearest neighbor (NN) matching is to roughly estimate
the landmark locations. It searches out of 100,000 volumes for the NN to the input query
volume and then transfers the landmark annotations to the query. Second, submodular
optimization is to refine the landmark locations by running discriminative landmark
detectors within the search ranges constrained by the results from the first stage. Further
it coordinates multiple detectors with a search strategy optimally determined on the fly
to further reduce the overall computational cost arising in a submodular formulation.
We validate the robustness, speed and accuracy of our approach by detecting one or
multiple landmarks in a dataset of 2,500 CT volumes in Section 4.

2 Related Work and Context Exploitation
Designing a useful landmark detection method should effectively exploit the rich con-
textual information manifested in the body scans, which can be generally categorized as
unitary, pairwise or higher-order, and holistic context. The unitary context refers to the
local regularity surrounding a single landmark. The classical object detection approach
in [5,6] exploits the unitary context to learn a series of supervised classifier to separate
the positive object (herein landmark) from negative background. The complexity of this
approach depends on the volume size. The pairwise or higher-order context refers to
the joint regularities between two landmarks or among multiple landmarks. Liu et al.
[7] embed the pairwise spatial contexts among all landmarks into a submodular for-
mulation that minimizes the combined search range for detecting multiple landmarks.
Here the landmark detector is still learned by exploiting the unitary context. In [8], the
pairwise spatial context is used to compute the information gain that guides an active
scheduling scheme for detecting multiple landmarks. Seifert et al. [9] encoded pairwise
spatial contexts into a discriminative anatomical network. The holistic context goes be-
yond the relationships among a cohort of landmarks and refers to the whole relationship
between all voxels and the landmarks; in other words, regarding the image as a whole.
In [10], shape regression machine is proposed to learn a boosting regression function to
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predict the object bounding box from the image appearance bounded in an arbitrarily
located box and another regression function to predict the object shape. Pauly et al. [3]
simultaneously regress out the locations and sizes of multiple organs with confidence
scores using a learned Random Forest regressor. To some extent, image registration [11]
can be regarded as using the holistic context too.

The proposed approach leverages all three contexts. The first stage of nearest neigh-
bor (NN) matching exploits the holistic context. But instead of learning a regression
function to capture the relationship between all voxels and the landmarks, we directly
perform a full match and transfer the landmark annotations. This way we avoid scan-
ning the image. The second stage of submodular optimization builds upon the approach
in [7] that exploits both the unitary and pairwise contexts, but minimizes the overall
computation instead of the total search range in [7]. Also, no holistic context is used in
[7]. Instead, an ‘anchor landmark’ is first detected before triggering the whole detection
process, utilizing only the unitary context in an exhaustive scanning.

3 Landmark Detection

3.1 Stage 1: NN Matching for Coarse Detection

Assume that a volume is represented by a D-dimensional feature vector. Given a query
(unseen input) vector x ∈ RD, the problem is to find the element y∗ in a finite set Y of
vectors to minimize the distance to the query vector:

y∗ = argmin
y∈Y

d(x, y) (1)

where d(., .) is the Euclidean distance function. Other choices can be used too.

Volume Features. To facilitate the matching, we represent each volume by a D-
dimensional feature vector. In particular, we adopt a representation of the image us-
ing ‘global features’ that provide a holistic description as in [12], where a 2D image is
divided into 4 × 4 regions, eight oriented Gabor filters are applied over four different
scales, and the average filter energy in each region is used as a feature, yielding in total
512 features. For our 3D volumes, we compute such features from nine 2D images,
consisting of the sagittal, axial, and coronal planes that pass through 25%, 50%, and
75% of the respective volume dimension, resulting a 4,608-dimensional feature vector.

Efficient NN Search. In practice, finding the closest volume through evaluating the
exact distances is too expensive when the database size is large and the data dimension-
ality is high. Two efficient approximations are used for speedup. Vector quantization
is used to address the database size issue and product quantization [13] for the data
dimensionality issue.

A quantizer is a function q(.) mapping a D-dimensional vector x to a vector q(x) ∈
Q = {qi, i = 1, 2, ...,K}. The finite set Q is called the codebook, which consists of K
centroids. The set of vectors mapped to the same centroid forms a Voronoi cell, defined
as Vi = {x ∈ RD|q(x) = qi}. The K Voronoi cells partition the space of RD. The
quality of a quantizer is often measured by the mean squared error between an input
vector and its representative centroid q(x). We use the K-means algorithm to find a
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near-optimal codebook. During the search stage, which has high speed requirement,
distance evaluation between the query and a database vector consists of computing the
distance between the query vector and the nearest centroid of the database vector.

Our volume feature vectors are high dimensional (we use D = 4608 dimensions),
which poses difficulty for a straightforward implementation of the K-means quantiza-
tion described above. A quantizer that uses only 1/3 bits per dimension already has
21536 centroids. Such a large number of centroids makes it impossible to run the K-
means algorithm in practice. Product quantization [13] addresses this issue by splitting
the high-dimensional feature vector into m distinct sub-vectors as follows,

x1, ..., xD∗︸ ︷︷ ︸
u1(x)

, ..., xD−D∗+1, ..., xD︸ ︷︷ ︸
um(x)

(2)

The quantization is subsequently performed on the m sub-vectors
q1(u1(x)), ..., q

m(um(x)), where qi, i = 1, ...,m denote m different quantizers.
In the special case where m = D, product quantization is equivalent to scalar quanti-
zation, which has the lowest memory requirement but does not capture any correlation
across feature dimensions. In the extreme case where m = 1, product quantization
is equivalent to traditional quantization, which fully captures the correlation among
different features but has the highest (and practically impossible, as explained earlier)
memory requirement. We use m = 1536 and K = 4 (2 bits per quantizer).

Transferring Landmark Annotations. Given a query, we use the aforementioned
method to find the most similar database volume. Assume this database volume con-
sists of N landmarks with positions {s1, ..., sN}. We simply ‘transfer’ these landmark
positions to the query. In other words, the coarsely detected landmark positions are set
as {s1, ..., sN}. In the next section, we discuss how to refine these positions.

3.2 Stage 2: Submodular Optimization for Refined Detection

After the stage of NN matching, certain landmarks are located roughly. We now trigger
the landmark detectors to search for a more precise position for each landmark only
within local search ranges predicted from the first stage results. Running a landmark
detector locally instead of over the whole volume reduces the computation and also
reduces false positive detections. The local search range of each detector is obtained
offline based on spatial statistics that capture the relative position of each pair of land-
marks. Note that the two sets of landmarks in two stages can be different.

In order to speed up the detection, the order of triggering the landmark detectors
needs to be considered. This is because, once a landmark position is refined by a detec-
tor, we can further reduce the local search ranges for the other landmarks by using the
pairwise spatial statistics that embody the pairwise context. Consider a volume with N
landmarks. Denote by Λ(1):(n) = {l(1) ≺ l(2) ≺ ... ≺ l(n)}, n ≤ N the ordered set of
landmarks that have been refined by detectors. Denote by U the un-ordered set of land-
marks that remains to be refined. For each landmark li ∈ U , we define its search range
Ω[li|Λ(1):(n)] as the intersection of the search ranges predicted by the already detected
landmarks:

Ω[li|Λ(1):(n)] =
⋂

j,lj∈Λ(1):(n)

Ω[li|{lj}], (3)
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where Ω[li|{lj}] denotes the local search neighborhood for landmark li conditioned on
the position of a detected landmark lj .

Denote the volume of search range Ω[lj |Λ] as V (Ω[lj |Λ]). Without loss of general-
ity, assume the search volume is the cardinality of the set of voxels that fall within the
search range. Denote by α[lj ] the unit computation cost for evaluating the detector for
landmark lj . Our goal is then to find the ordered set Λ(1):(N) that minimizes the total
computation, i.e. ,

Λ′
(1):(N) = argmin

Λ(1):(N)

{α[l(1)] V (Ω[l(1)]) +
∑N

i=2
α[l(i)]V (Ω[l(i)|Λ(1):(i−1)])}. (4)

In [7], α[lj ] = 1 for all j. This reduces to searching the minimum overall search range.
We find that unit computation cost is roughly proportional to the physical disk size
needed to store the detector model; hence we set α[l(i)] as the model disk size.

As in [7], we use a greedy algorithm for finding the ordering {l(1), ..., l(N)} that
attempts to minimize the overall cost proceeds as follows:

Initialize Λ = φ.
for j=1,...,N do

l(j) = argmink α[k]V (Ω[k|Λ]);
Append l(j) to the ordered set Λ so that the new Λ = l(1), ..., l(j).

end

In other words, in each round one triggers the detector that yields the smallest compu-
tation.

It is easy to prove that the overall cost function in Eq.(4) can be reducible to a sub-
modular function [7]. Optimizing submodular functions is in general NP-hard [14]. One
must in principle evaluate N ! detector ordering patterns. Yet amazingly, the greedy al-
gorithm is guaranteed to find an ordered set Λ such that the invoked cost is at least
63% of its optimal value [7]! It is worth emphasizing that the ordering found by the
algorithm is data-dependent and determined on the fly.

4 Experimental Results

We present two sets of experimental results. The first is on NN matching for body region
detection and the second about fast and accurate detection of one or multiple landmarks.
The system runs on an Intel Xeon 2.33GHz CPU with 3GB RAM.

4.1 NN Matching for Body Region Detection

In this experiment, we use the NN matching for detecting body regions that need rough
landmark locations by utilizing the holistic context. Our matching-based approach re-
quires a database sufficiently large so that, given a query, the best match in the training
database indeed covers the same body region(s) as the query. We collect 2,500 volumes
annotated with 60 anatomical landmarks, including the left/right lung tops, aortic arch,
femur heads, liver top, liver center, coccyx tip, etc. We use 500 volumes for construct-
ing the training database and the remaining 2,000 volumes for testing. To ensure that
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each query finds a good match, we construct our database of 100,000 volumes in a
near-exhaustive manner: In each iteration, we randomly pick one of the 500 volumes
and then randomly crop and slightly rotate it into a new volume before adding it to
the database. The annotated anatomical landmark positions in the original volume are
transformed accordingly.

Median
time (ms)

Average
of Median

errors (mm)
Baseline [7] 450 28.6

Our
method

5 29.9

Fig. 2. The performance of detecting body regions using NN matching. The left plot shows the
speed up ratio vs. the volume size.

Registration based methods are not applicable since the test volumes cover a large
variety of body regions. If each region is detected separately say using [6], the total
detection time is proportional to the number of regions, as detecting each region requires
a scan over the whole volume. The work in [15] reports a detection time around 2000
ms for 9 landmarks, and median distance error around 22mm on a GPU (parallelized)
implementation. The work in [7] has the highest accuracy and fastest speed, so we
compare against this work in better detail. As in Fig. 2, our implementation of [7],
which is tuned to a similar detection accuracy as shown in Table 1, has a detection time
of 450ms for 6 landmarks that define the presence of right lung, skull, aorta, sternum,
and liver; but the maximum time is 4.9sec, significantly larger than the median. This
poses a problem for time critical subsequent tasks. The proposed method has a nearly
constant detection time of 5 ms, achieving a speed-up of 90 times while maintaining
similar detection accuracy. The speed-up is even more significant if more regions are of
interest as our detection does not depend on the number of regions. Our NN matching
code can be optimized and parallelized for faster speed. In general, a large detection
error from NN matching, which is fine for body region detection purpose, is due to the
large variability in the landmark appearance and its relative location to other landmarks.

Table 1. Median detection errors (mm) for 6 different landmarks that define 5 body regions

Lung apex right Skull base Aortic root Lung center Sternum bottom Liver center
Baseline [7] 24.1 31.9 23.2 20.6 37.3 35.2
Our method 27.1 19.1 35.8 24.5 35.1 37.9

4.2 Landmark Detection

When accurate positions are desired, we combine the NN matching with landmark de-
tectors that exploit unitary context. Now each landmark detector only needs to search
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in a local neighborhood around the rough position estimate given by the first stage, in-
stead of searching in the whole volume. For detection of multiple landmarks, we further
utilize pairwise spatial context for more improvements.

Detecting One Landmark. We consider detecting the liver top. In Fig. 3, the baseline
approach uses a Probabilistic Boosting Tree (PBT) [6] to scan through the whole vol-
ume. Our method uses the PBT only to search in a local neighborhood. Evidently our
method is much faster than the state-of-the-art due to the additional leverage of holistic
context. A bigger volume yields more pronounced speedup (as large as 6-fold) as the
use of holistic context breaks down the dependency on volume size.

Median
time (ms)

Average
of Median

errors (mm)
Baseline [6] 340 1.3
Our method 165 1.3

Fig. 3. The performance of accurately detecting the liver top

Detecting Multiple Landmarks. We further experiment accurately detecting 7 land-
marks listed in Table 2 with three example landmarks of trachea bifurcation, liver bot-
tom, and left kidney center shown in Fig. 4. Table 2 presents the mean detection error
and the 95th percentile error that exhibits the robustness of the combined approach. The
results in [7] are also included for comparison. We obtain better detection results except
for the left kidney center, whose annotations are quite ambiguous, while consuming less
time with a mean computation of 1.1s vs 1.3s for [7]. Due to space limitation, we omit
the results of 16 other organs and anatomical structures.

Fig. 4. Detected positions of trachea bifurcation, liver bottom, and left kidney center
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Table 2. Errors (mm) in accurately detecting 7 different landmarks using NN matching and sub-
modular optimization

(mm) Mean Q95 Mean [7]
Trachea bifurcation 2.5 4.5 2.8
Left Lung Top 2.6 6.0 3.2
Right Lung Top 3.2 8.5 3.7

(mm) Mean Q95 Mean [7]
Liver Top 2.5 4.0 2.9
Liver Bottom 6.4 30.5 n.a.
Left Kidney Center 8.4 50.7 6.3
Right Kidney Center 6.4 39.2 7.0

5 Conclusions

In this work we have introduced a fast and accurate method to detect landmarks in
3D CT data. Our method outperforms the state-of-the-art methods in detection speed
with improved and comparable accuracy. The improvements arise from the leverage of
holistic contextual information in the medical data via the use of an approximate NN
matching to quickly identify the most similar database volume and transfer its land-
mark positions and the exploitation of unitary and pairwise context via a submodular
formulation that aims to minimize the total computation for detecting landmark(s) and
renders itself tocs a computationally efficiently greedy algorithm. Our method has been
successively validated on a database of 2,500 CT volumes. In future we will extend it
to different modalities such as MRI.
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Fast Multiple Organ Detection and Localization in Whole-Body MR Dixon Sequences.
In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893,
pp. 239–247. Springer, Heidelberg (2011)

4. Seifert, S., Kelm, M., Moeller, M., Mukherjee, S., Cavallaro, A., Huber, M., Comaniciu, D.:
Semantic annotation of medical images. In: SPIE Medical Imaging (2010)

5. Viola, P., Jones, M.: Robust real-time face detection. Intl. J. of Comp. Vis. 57, 137–154
(2004)

6. Tu, Z.: Probabilistic boosting-tree: Learning discriminative models for classification, recog-
nition, and clustering. In: Proc. ICCV, pp. 1589–1596 (2005)

7. Liu, D., Zhou, S.K., Bernhardt, D., Comaniciu, D.: Search strategies for multiple landmark
detection by submodular maximization. In: Proc. CVPR (2010)

8. Zhan, Y., Zhou, X.S., Peng, Z., Krishnan, A.: Active Scheduling of Organ Detection and
Segmentation in Whole-Body Medical Images. In: Metaxas, D., Axel, L., Fichtinger, G.,
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Abstract. The use of classifier-based object detection has found to be a 
promising approach in medical anatomy detection. In ultrasound images, the 
detection task is very challenging due to speckle, shadows and low contrast 
characteristic features. Typical detection algorithms that use purely intensity-
based image features with an exhaustive scan of the image (sliding window 
approach) tend not to perform very well and incur a very high computational 
cost. The proposed approach in this paper achieves a significant improvement 
in detection rates while avoiding exhaustive scanning, thereby gaining a large 
increase in speed. Our approach uses the combination of local features from an 
intensity image and global features derived from a local phase-based image 
known as feature symmetry. The proposed approach has been applied to 2384 
two-dimensional (2D) fetal ultrasound abdominal images for the detection of 
the stomach and the umbilical vein. The results presented show that it 
outperforms prior related work that uses only local or only global features. 

Keywords: Ultrasound, Local phase, Monogenic signal, Feature symmetry, 
Haar features, AdaBoost, Anatomical object detection. 

1 Introduction 

Ultrasound imaging is considered the simplest, least expensive and most widely used 
imaging modality in the field of obstetrics. Standard fetal biometric measurements 
from 2D ultrasound have been extensively used to estimate the gestational age of the 
fetus, to track fetal growth pattern, to estimate fetal weight and to detect 
abnormalities. Typically, fetal biometry is determined from standardized ultrasound 
planes taken from the fetal head, abdomen and thigh. Fetal growth is then assessed 
from these measurements by using population-based growth charts. The acquisition of 
standard image planes where these measurements are taken from is crucial to allow 
for accurate and reproducible biometric measurements, and also to minimize inter- 
and intra-observer variability.  

Detection of medical anatomic structure plays an important role in medical image 
understanding and application. In our application, the detection of the important 
anatomical landmarks is one of the pre-defined criteria for qualitative scoring of a  
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fetal biometric image [1]. For example, the correct abdominal section for taking the 
abdominal circumference measurement (one of the important fetal biometric 
measures) should demonstrate the main anatomic landmarks: the stomach (SB) and 
the umbilical vein (UV). Results from the detection can also provide valuable 
initialization information for applications such as segmentation and registration. 
Therefore, the methodology presented in this paper is general and could be adapted 
for the detection of other anatomical features in medical imaging. 

The use of classifier-based object detection with bounding boxes [2] which gained 
its popularity for generic object detection in natural images has found to be promising 
in medical anatomy detection [3]. The standard approach is to train the binary 
classifier by discriminating the anatomic structure of interest from the background. 
Then, exhaustive scan using the sliding window technique is performed (for all 
possible translations and a sparse set of scales) to find the anatomical object in the 
query image. In other words, a classifier is applied to all sub-windows within an 
image and takes the maximum of the classification score as an indication of the 
presence or absence of an object. One inherent disadvantage of this approach is the 
significant increase in computational cost, because of the large number of candidate 
sub-windows.  

In [4], Rahmatullah et al. proposed the use of Haar features for  the detection of 
important anatomical landmarks in fetal abdominal images. However, the local 
detector was applied on the entire image, resulting in an inefficient computational 
time of six seconds for an image size of 1024 by 768 pixels. In order to avoid the 
exhaustive search, our proposed approach includes global features that are formulated 
to predict the likely location of the object. It is important that the features used are 
detectable even under changes in image scale, noise and contrast. Moreover, in the 
case of fetal ultrasound images, the fetus shape and anatomy varies during pregnancy 
and the image quality diminishes with gestational age (GA) with typically stronger 
artifacts appearing in the image towards the end of pregnancy. The anatomical object 
can also appear at any pose in the images. 

Encouraging results in other ultrasound-based applications (for example [5,6])  
have shown that a local phase based approach  outperforms the conventional 
intensity-based approach for feature detection in ultrasound images . In this paper, we 
propose the feature symmetry (FS) measure [7] derived from the local phase-based 
method as a global (coarse) feature for object detection. A local (fine) detector is then 
applied only to the locations deemed probable by the global features. To the best of 
our knowledge, the current study is the first to demonstrate the efficiency and the 
significance of integrating the feature symmetry in a machine learning framework for 
the detection of anatomical features in ultrasound images. 

2 Local Phase Based Feature Measurement 

Local phase information can be obtained by convolving a 1D signal with a pair of 
band-pass quadrature filters. A common choice of quadrature filters is the log-Gabor 
filter, which has a Gaussian transfer function when viewed on the logarithmic 
frequency scale. The log-Gabor filter has a transfer function of the form:  
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⁄2  (1)

where  is the centre frequency of the filter and 0 1 is related to the spread of 
the frequency spectrum in a logarithmic function. Log-Gabor filters allow arbitrarily 
large bandwidth filters to be constructed while still maintaining a zero DC component 
in the even-symmetric filters. 

The monogenic signal was introduced to calculate local phase in N-dimensional 
signals [8]. The monogenic signal is generated using the Riesz transform. The spatial 

representations of these filters are: ,   / 2  and ,   / 2 . The image ,  is first convolved with an even isotropic 
band-pass filter ,  that produces the even (symmetric) component of the 
monogenic signal: , , , , . The bandpassed image ,  is then convolved with the Riesz filter to produce the two odd (anti-
symmetric) components: , , ,  and ,, , . The monogenic signal ,  of ,  is often expressed as , , ,  , , ,  , , . 

The stomach and the umbilical vein in fetal ultrasound images, typically appear as 
dark blobs, with non-uniform intensity and sizes in different scans. Therefore we 
propose the use of the multi-scale feature symmetry (FS) measure [7] for computing 
the phase congruency for these two objects, which is defined as: 

 , | , | | , |, ,  (2)

where  represents the scale of the band-pass filter,  is a small positive constant that 
avoids division by zero, .  operator denotes zeroing of any negative values, and  is 
scale specific noise compression term defined similarly in [5] as exp log , , . 

For band-pass filtering with log-Gabor filter, the following parameters produced 
the best empirical results: = 0.50 and 3 scales of filter wavelength: [250 150 50] 
pixels. The filter wavelength scales were selected from the coarse, medium, and fine 
ranges that would produce local phase images as shown in Fig. 1 (a)-(c). FS values 
vary from a maximum of 1, indicating a very significant feature, down to 0 indicating 
no significance. Based on the observation of the validation set, we set the significance 
value of 0.35. Connected component labeling was then applied to the FS image and 
the local discriminative detector was applied around the center location of the labeled 
component. The same FS image was used for both the stomach and the umbilical 
vein. In our validation set, the size of the stomach component in the labeled image 
usually varied from 800 to 2500 pixels and the umbilical vein from 300 to 1000 
pixels. There might be overlap of potential components for the stomach and the 
umbilical vein but the task to distinguish them is passed to the local detector trained 
with the local features. Fig. 1 shows the prediction of the candidate locations of 
objects based on the global feature symmetry measure. 
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Fig. 1. The top row shows the local phase images produced using (a)-(c) coarse to fine filter 
scales and (d) the feature symmetry map generated using these scales. The bottom row shows 
the feature symmetry maps (e) and (g) with significant features (>0.35) that were used to 
produce the candidate locations for the stomach (red circles) and the umbilical vein (green 
crosses) shown superimposed on the original intensity image in (f) and (h). The red and green 
arrows denote the correct positions for the stomach and the umbilical vein, respectively. 

3 Local Features and Training 

The standard approach to local object detection is to classify each image sub-window 
as foreground (containing the object) or background. In this case, there are two main 
decisions to be made: what kind of local features to extract from each sub-window, 
and what kind of classifier to apply to this feature vector.  

We propose to use features derived from Haar wavelets for representing the 
information in sub-window (local) image region. Haar features had been proven to 
effectively encode the domain knowledge for different types of visual patterns 
including objects in ultrasound images [3]. Extraction is achieved with high speed of 
computation due to the use of the integral image [2]. The features are trained as a 
local classifier using AdaBoost [9], an intuitive and proven effective method in object 
detection problem. It forms a strong hypothesis through linear combination of weak 
classifiers that are derived from a pool of extracted features. The training process 
involves modification of the weight distributions based on the previous classification 
error in order to focus on the more difficult training samples, thus driving down the 
classification error. Advantages of AdaBoost algorithm are that it has no parameters 
to tune other than the number of iterations and the most representative features are 
automatically selected during the training process, requiring no additional 
experiments.  

            (a)                                 (b)                                  (c)                                 (d) 

       (e)                                  (f)                                   (g)                                 (h) 



406 B. Rahmatullah, A.T. Papageorghiou, and J.A. Noble 

Our training data for the classifier is created as follows. For positive training 
samples, we cropped image regions that contain the anatomical object. The negative 
samples were extracted randomly from the background and also from images that 
does not contain SB or UV. The cropped sub-windows were normalized to 100x100. 
From the training dataset, we extracted the following separate feature sets: 

a.   Local features: Haar features extracted from intensity image 
b.  Global features: Unary features acquired from the feature symmetry (FS) image. 

300 rounds of boosting were performed on each feature set. This is based on the 
performance on the validation set. The resulting first five features chosen for each 
object are shown in Fig. 2. 
 

 

Fig. 2. The first five selected features by AdaBoost for the stomach (top row) and the umbilical 
vein (bottom row) detection are shown superimposed on example images from the training set. 
The features are calculated by summing the value in white regions and subtracted with the 
totals in grey regions (if any). (a) Local features from intensity image and (b) global features 
from feature symmetry (FS) image are shown with each feature classifier weight ( . 

4 Experimental Setup and Results 

4.1 Data Acquisition 

Fetal abdominal images for this work were randomly selected from a clinical study 
database where data has been obtained from over 4000 healthy pregnant women at 
low risk of impaired fetal growth who are scanned up to six times from <14+0 weeks 
to term. All women were screened at study entry with particular focus on excluding 
known risk factors for IUGR (e.g. smoking, chronic illness) and over-growth (e.g 
diabetes). Multiple pregnancy or major fetal abnormality were excluded from the 
study. All ultrasound examinations were performed using a Philips HD9 ultrasound 
machine with a 2-5MHz 2D probe by ultrasonographers trained to follow 
standardized data acquisition procedures. All images were saved in a DICOM format 
with a size of 1024 x 768 pixels. Details of datasets is shown in Table 1 where images 
were labeled and divided (no overlaps) after consultation with trained sonographers. 

Table 1. Details of the number of positive (+) and negative (-) images in the training, validation 
and testing datasets 

 Train+ Train- Valid+ Valid- Test+ Test- 
SB 633 2073 50 50 2283 101 
UV 224 851 50 50 2284 100 

                                 (a)                                                                          (b)



Integration of Local and Global Features for Anatomical Object Detection in Ultrasound 407 

4.2 Results and Performance Analysis 

The experiment was implemented in MATLAB running on a Pentium Xeon® 3.4 
GHz machine with 3GB of memory. We experimented with three different detection 
methods: “Local”, “Global” and “Hybrid”. In the “Local” and the “Global” methods, 
we exhaustively scanned the image at multiple scales using the sliding window 
method. Features from each sub-window were extracted and classified according to 
its trained model (local Haar features or global FS). For “Hybrid”, the detector trained 
with the local features was applied at the probable locations and scales predicted by 
the global features (FS). We empirically set that a ground-truth object is considered 
detected if 75% of its area is covered by the output boxes. 

We compared the performance of the three methods using ROC curves, as shown 
in Fig. 3 and summarize the performance metric; area under the curve (AUC), 
accuracy, sensitivity, specificity and execution time, shown in Table 2. From the 
results, we found that the method using global and local features is computationally 
efficient and eliminates many false positives caused by using local features alone, and 
these are illustrated qualitatively in Fig. 4. The umbilical vein detection is a harder 
problem hence the lower AUC value and accuracy compared to the stomach 
detection. This is due to the presence of other similar looking blood vessels in the 
abdomen causing false positive in the detection. However the detection accuracy is 
increased by 9.75% with the integration of global feature with the local features in the 
“Hybrid” method. 

Table 2. The performance of three different methods in the detection of the stomach and the 
umbilical vein in fetal abdominal images 

 AUC Accuracy (%) Sensitivity (%) Specificity (%) Mean Execution 
Time (secs)  SB UV SB UV SB UV SB UV 

Local 0.80 0.57 78.94 62.80 60.84 54.59 96.04 71.00 10.27 
Global 0.71 0.53 69.28 57.99 59.35 33.98 79.21 82.00 10.65 
Hybrid 0.88 0.75 82.75 72.55 66.49 57.09 99.01 88.00   0.94 

 

 

Fig. 3. ROC plot for the detection of the stomach (left) and the umbilical vein (right). We see 
that combining the global and local features improves detection performance. 
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      (a) FS map      (b) Stomach detection      (c) FS map            (d) UV detection    
I) False positive results by “Local” method (red boxes) corrected with true positives by 
“Hybrid” method (blue boxes) along with the detection scores. 

 
      (a) FS map      (b) Stomach detection      (c) FS map            (d) UV detection    
II) False positive results (high detection scores) by “Local” method (red boxes) corrected with 
true negatives (low detection scores) by “Hybrid” method (blue boxes). 

 
      (a) FS map      (b) Stomach detection      (c) FS map            (d) UV detection    
III) False negative results (low detection scores) by “Local” method (red boxes) corrected with 
true positives (high detection scores) by “Hybrid” method (blue boxes). 

 
      (a) FS map      (b) Stomach detection      (c) FS map            (d) UV detection    
IV) Misdetections which occurred mostly in late GA images. The correct location of the objects 
could not be identified through the FS map due to major shadowing effect over the objects. 

Fig. 4. Examples of the results achieved using “Hybrid” method. White box represents the 
ground truth. (a) and (c) show the FS maps that input the candidate locations for stomach (red 
circles) and UV (green crosses), respectively.  
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5 Conclusion 

This paper presents a novel feature set for the detection of anatomical objects in fetal 
ultrasound image. We integrated the unary features extracted from local phase image 
global feature within a machine learning framework that trains a local classifier using 
local Haar features. This provides a computationally cheap step before invoking a 
local object detector to be applied in plausible locations and scales. The proposed 
method exhibits good generalization capability when tested on 2384 images with an 
accuracy of 82.75% and 72.55% for the detection of the stomach and the umbilical 
vein, respectively. In average, it runs 9 times faster than the typical local object 
detector with the sliding window approach. Our future works will focus on the 
extension of the proposed method for the detection of objects in other fetal biometry 
scan areas and in 3D ultrasound volumes. 
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Abstract. We present a new segmentation approach that combines the
strengths of label fusion and spectral clustering. The result is an atlas-
based segmentation method guided by contour and texture cues in the
test image. This offers advantages for datasets with high variability, mak-
ing the segmentation less prone to registration errors. We achieve the
integration by letting the weights of the graph Laplacian depend on im-
age data, as well as atlas-based label priors. The extracted contours are
converted to regions, arranged in a hierarchy depending on the strength
of the separating boundary. Finally, we construct the segmentation by a
region-wise, instead of voxel-wise, voting, increasing the robustness. Our
experiments on cardiac MRI show a clear improvement over majority
voting and intensity-weighted label fusion.

1 Introduction

Label fusion has gained much popularity in medical image segmentation. It ben-
efits from prior information in a form of images previously labeled by experts.
Instead of summarizing the data as a probabilistic atlas [2], label fusion algo-
rithms maintain and use all the labeled images [6,9,11]. In various comparisons,
label fusion outperforms alternative atlas-based segmentation strategies when
the anatomical variability is too large to be represented by mean statistics [6,9].

In computer vision, spectral techniques, such as normalized cuts [12], are com-
monly employed for segmentation. Central to these methods is the quantification
of pairwise similarities between points in the image, which serve as weights for
the graph Laplacian. Earlier work computed the similarity by comparing inten-
sity values [12]. Further studies introduced intervening contours, which relate
the similarity between two locations to the existence of a boundary separating
them [5]. In order to extract the boundary, image edges and textons are calcu-
lated to combine contour and texture cues [8]. The spectral framework constructs
a globally optimal partitioning based on these local measures. In a recent com-
parison [1], a multiscale version of normalized cuts outperformed other contour
detectors and produced excellent segmentation results on natural images.

The mentioned spectral algorithms, as well as active contour and level set
techniques, obtain impressive results by solely considering image cues. In con-
trast, label fusion segmentation is mainly based on intensity differences between
the images, but the contour information in the test image is rarely exploited.
Our method addresses exactly this issue and closes the gap between label fusion

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 410–417, 2012.
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(a) Label fusion (b) Image contour based (c) Spectral label fusion

Fig. 1. Example segmentations of the left atrium of the heart. Automatic segmentation
is shown in yellow, expert labeling is shown in red.

techniques and spectral segmentation approaches. We combine image contour
cues and label information in the graph Laplacian to produce contours that
jointly depend on the atlas and the test image. Fig. 1 illustrates that this is
beneficial. Intensity-weighted label fusion [11] leads to an undersegmentation of
the left atrium of the heart (Fig. 1(a)). We observed this behavior in many cases.
Using image contours only faces challenges in identifying the correct boundaries,
especially for smooth intensity transitions (Fig. 1(b)). As a result, certain parts
are oversegmented while others, e.g., the veins, are cut off. The segmentation
with spectral label fusion, which fuses image and label information, leads to
the most accurate segmentation. The proposed algorithm constitutes a novel
approach to integrate prior information in spectral segmentation and leverages
state-of-the-art contour and region extraction methods to enhance label fusion.

1.1 Clinical Motivation

The proposed approach is well suited for delineating structures of high variabil-
ity, which are challenging to segment with atlas-based techniques due to difficul-
ties of inter-subject registration. With the integration of local image cues, the
method is less prone to alignment errors. We focus on the left atrium of the heart,
which exhibits large variations in the shape of the cavity and in the number and
location of pulmonary veins [4]. Its segmentation is of significant clinical rele-
vance, because one of the most common heart conditions is atrial fibrillation [4].
In atrial fibrillation, the left atrium no longer pumps blood into the left ventri-
cle efficiently but instead quivers in an abnormal way. The common treatment
is radio-frequency catheter ablation of ectopic foci [7]. Accurate segmentation
of the left atrium and its pulmonary venous drainages on contrast-enhanced
magnetic resonance angiography (MRA) images is essential for planning and
evaluating ablation procedures.

1.2 Related Work

In addition to prior work reviewed above, our work is also related to a rela-
tively new approach for brain image segmentation based on non-local means
filtering [3,10]. The method compares image patches between the test subject
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and the atlas images, with voting that depends on intensity differences between
these patches. In our application this technique seems less promising because we
work with contrast-enhanced MRA images, characterized by substantial inten-
sity variations. In [14], a local search on patches is performed to improve the
results after the atlas-based segmentation. Instead of refining the segmentation
through the integration of image information in a post-processing step, we con-
sider image and label information jointly in the graph Laplacian. Moreover, we
work on image contours that have advantages over comparing intensities [5].

Recently, an algorithm based on graph cuts has been demonstrated for the
refinement of atlas propagation [13,15]. In contrast to this method, we apply tech-
niques from spectral clustering and combine gradient and texture cues, leading
to a region-based voting on an oversegmentation of the image. In [7], the segmen-
tation of the left atrium is obtained by extracting the blood pool with intensity
thresholding, which is sensitive to intensity variations. Intensity-weighted label
fusion achieved accurate results for the segmentation of the left atrium in [4].
We therefore treat this label fusion technique as a baseline for comparison.

2 Method

Spectral label fusion consists of three steps, as illustrated in Fig. 2. The first step
extracts the boundaries from the image and label map, joins them in the spectral
framework, and produces weighted contours. In the second step, these contours
give rise to regions, partitioning the image. In the third step, we assign a label to
each region based on the input label map, producing the final segmentation. We
formulate segmentation as a binary labeling problem; for a multi-label problem
the same procedure is repeated for each label.

2.1 Input Data

The new image I to be segmented and the probabilistic label map L̂ are the in-
puts to the algorithm. Any atlas-based approach, parametric or non-parametric,
can be employed to create the label map, which serves as atlas-based label prior.
In this work, we adapt the label fusion approach and register each of the im-
ages in the training set to image I with a variant of the diffeomorphic demons
algorithm, iteratively fitting a polynomial transfer function to compensate for
intensity differences in the MRA images [4]. We use I = {I1, . . . , In} to denote
the transformed and intensity corrected training images. We apply the estimated
warps to the labels, leading to propagated labels L = {L1, . . . , Ln}. Following
the formulation in [4,11], we compute the MAP labeling at location x:

L̂(x) = argmax
l
p(L(x) = l, I(x)|L, I) = argmax

l

n∑
i=1

p(L(x) = l|Li) · p(I(x)|Ii).

(1)
The label likelihood p(L(x) = l|Li) ∝ exp(κDl

i) serves as soft vote, weighted by

the image likelihood p(I(x)|Ii) ∝ exp(− (I(x)−Ii(x))
2

2σ2 ). Dl
i is the signed distance

transform of label l in the warped label map Li. We set κ = 1.5 and σ2 = 1.
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Fig. 2. Overview of spectral label fusion

2.2 Contours

We employ the concept of intervening contours to calculate the weights in the
graph Laplacian, which leads to better results than the comparison of intensity
values [5]. The first step is to estimate the probability Pb(x) of a contour in each
slice of the image I at location x. We choose to employ the oriented gradient
signal [1]. The method robustly estimates the image gradient by calculating the
χ2 distance between the histograms of two half-discs at each location for various
orientations. Depending on the size of the disc, we obtain gradient estimates on
multiple scales. To quantify the texture in the image, we calculate textons by
convolving the image with 17 Gaussian derivative and center-surround filters [8].
We obtain 64 different textons with a K-means clustering in the 17-dimensional
space. The image and texton gradients of multiple scales are added, resulting in
the multiscale contour probability mPb(x) [1], as illustrated in Fig. 2. We use
mPb to calculate weights between points i and j in the image, following the
concept of intervening contours by identifying the maximum along the line ij:

W I
ij = exp

(
−max

x∈ij
{mPb(x)}

)
. (2)

Analogously, we estimate the probability of a contour in the label map L̂, denoted
by lP b, and derive the weights

WL
ij = exp

(
−max

x∈ij
{lP b(x)}

)
. (3)

For computational efficiency the weights are only calculated within a radius
r = 5, yielding sparse matrices [1].

Once the image and label weights are computed, we combine them in the joint
weight matrix

W = W I +WL. (4)

The generalized eigenvalue decomposition (D−W )v = λDv gives rise to eigen-
vectors vk that partition the image based on image and label cues, with
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Dii =
∑

iWij . We consider the 16 eigenvectors corresponding to the smallest
non-zero eigenvalues λk. Instead of performing a K-means clustering in the 16
dimensional space [12], which tends to break up uniform regions [1], we obtain
the spectral boundary sPb by summing up the gradients of the eigenvectors
sPb =

∑16
k=1

1√
λk

· ∇vk. While mPb contains responses to all edges, sPb only

shows the most salient structures in the image. The global contour is obtained
by combining both maps to take advantage of the two characteristics, i.e., gPb =
mPb+ γ · sPb, where γ is a weighting constant.

2.3 From Contours to Regions

In the second step, we use the extracted contours gPb to partition the image into
regions. These regions form an oversegmentation of the image. Consequently, the
left atrium and veins do not correspond to one but several regions. The size of
these regions is subject to a trade-off. Large regions provide stability in the face
of registration errors, but they are also more likely to miss the actual organ
boundary. To enable adaptive region size selection, we use the strength of the
extracted boundaries to build a hierarchical segmentation. At the lowest level,
we have the finest partition of the image, and the higher levels contain larger
regions implied by stronger contours.

Specifically, we use the oriented watershed transform to create the finest par-
tition [1]. We experimented with the watershed in 2D and 3D. For the 3D wa-
tershed, we apply a 3D closing operation of the contours to prevent leakage in
out-of-plane direction. Next, we employ the ultrametric contour map (UCM) [1]
to represent the hierarchical segmentation, illustrated in Fig. 2. We clearly see
that the strong boundary of the atrium appears in the UCM. We select the
segmentation scale in the hierarchy by thresholding with parameter ρ.

2.4 Voting on Regions

One of the limitations of the current label fusion framework [11] is the assump-
tion of independence of voxel samples, which is generally not justified for medical
images. It is more appropriate to consider independence with respect to a lo-
cal neighborhood, applying the Markov property in the derivation. Crucial is
the selection of image-specific neighborhoods that capture the relevant informa-
tion. The regions constructed in the previous step can naturally serve as such
neighborhoods. We obtain the region-based MAP estimation by considering the
location x as random variable and marginalizing over it

L̃R = argmax
l

∑
x∈R

p(LR = l|L, x)p(IR|I, x)p(x) (5)

= argmax
l

∑
x∈R

n∑
i=1

exp

(
κDl

i(x) −
(I(x) − Ii(x))

2

2σ2

)
, (6)

where LR and IR denote the region R in the label map and the intensity image,
respectively. Since we aggregate the voting information over the entire region,
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Fig. 3. Dice volume overlap (left) and modified Hausdorff distance (right). Red line
indicates median, the boxes extend to the 25th and 75th percentiles, and the whiskers
reach to the most extreme values not considered outliers (red crosses). Significance was
evaluated using a single-sided paired t-test with IW as baseline.

the resulting method is more robust to registration errors and noise than a voxel-
based approach.

3 Experiments

To evaluate the proposed method, we automatically segment the left atrium of
the heart in a set of 16 electro-cardiogram gated (0.2 mmol/kg) Gadolinium-
DTPA contrast-enhanced cardiac MRA images (CIDA sequence, TR=4.3ms,
TE=2.0ms, θ = 40◦, in-plane resolution varying from 0.51mm to 0.68mm, slice
thickness varying from 1.2mm to 1.7mm, 512 × 512 × 96, -80 kHz bandwidth,
atrial diastolic ECG timing to counteract considerable volume changes of the left
atrium). The left atrium was manually segmented in each image by an expert.
For all the experiments we set γ = 2.5, giving higher weight to the spectral
component. We set ρ = 0.2 for the 2D and ρ = 0 for the 3D watershed after
inspecting the UCM. We perform leave-one-out experiments by treating one
subject as the test image and the remaining 15 subjects as the training set. We
use the Dice score and the modified (average) Hausdorff distance between the
automatic and expert segmentations as quantitative measures of segmentation
quality. We compare our method to majority voting (MV) and intensity-weighted
label fusion (IW) [11].

We apply a median filter in a 5× 5× 5 window to the spectral segmentations.
In-plane filtering has little effect; filtering improves the consistency and closes
holes in out-of-plane direction. The application of the filter on MV and IW seg-
mentations led to a deterioration on all subjects. We therefore present unfiltered
results for these cases. Fig. 1 illustrates the results of IW and the 2D spec-
tral label fusion, together with an approach that considers only image contours,
W = W I . Fig. 3 presents dice volume overlap and modified Hausdorff distance
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Fig. 4. Examples of automatic segmentation results for different subjects are shown in
yellow. Manual delineations are shown in red.

for each algorithm. The improvements in segmentation accuracy between the
proposed method and IW are statistically significant (p<10−5). At first glance,
it may seem surprising that the 2D algorithm leads to better results than the 3D
version. The anisotropic resolution of the data presents a challenge for extract-
ing meaningful 3D regions. A further inspection of the results in each subject
reveals that the values for IW are always better than the ones for MV, and the
values of the 2D spectral method are consistently better than the ones for IW.

Fig. 4 illustrates the segmentation results for MV, IW, and 2D spectral fu-
sion for several subjects. We see that spectral fusion better captures the organ
boundary. This is supported by the clearly lower Hausdorff distances in Fig. 3.
On the images for Subject 1 in Fig. 4, we observe that spectral label fusion
achieves a better separation between the veins and atrium. This case is particu-
larly challenging because the gap is small and registration errors of misaligning
either the vein or the atrium lead to a closure. By integrating the image cues
and voting on regions, we achieve a more accurate segmentation.

4 Conclusion

We presented spectral label fusion, a new approach for multi-atlas image seg-
mentation. It combines the strengths of label fusion with advanced spectral seg-
mentation. The integration of label cues into the spectral framework results in
improved segmentation performance for the left atrium of the heart. The ex-
tracted image regions form a nested collection of segmentations and support a



Spectral Label Fusion 417

region-based voting scheme. The resulting method is more robust to registration
errors than a voxel-wise approach.

Acknowledgement.We thank Michal Depa for algorithmic help, Martin Reuter
for discussions, and Ehud Schmidt for providing image data. This work was sup-
ported by the Humboldt foundation, NIH NIBIB NAMIC U54-EB005149, NIH
NCRR NAC P41-RR13218, and NSF CAREER 0642971.

References

1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE Trans. on Pat. Anal. Mach. Intel. 33(5), 898–916 (2011)

2. Ashburner, J., Friston, K.: Unified segmentation. NeuroImage 26(3), 839–851
(2005)
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Abstract. Currently, multi-organ segmentation (MOS) in abdominal
CT can fail to handle clinical patient population with missing organs
due to surgical resection. In order to enable the state-of-the-art MOS for
these clinically important cases, we propose 1) automatic missing organ
detection (MOD) by testing abnormality of post-surgical organ motion
and organ-specific intensity homogeneity, and 2) atlas-based MOS of
10 abdominal organs that handles missing organs automatically. The
proposed methods are validated with 44 abdominal CT scans including 9
diseased cases with surgical organ resections, resulting in 93.3% accuracy
for MOD and improved overall segmentation accuracy by the proposed
MOS method when tested on difficult diseased cases.

1 Introduction

Multi-organ segmentation (MOS) has recently become popular toward improving
overall segmentation accuracy when segmenting a set of organs located nearby,
enabling comprehensive computer-aided diagnosis (CAD) of various multi-focal
abdominal diseases [1–10]. In this paper, we investigate how such MOS can be
extended to a patient population with missing organs due to surgical resections.
Without considering this population, MOS cannot be applied to a number of
important clinical applications such as follow-up studies of surgical treatment
and cancer recurrence in abdomen. Despite this clinical importance, however,
current MOS solutions are not designed to handle such cases with irregular
anatomy. A common process in various MOS methods is to fit an atlas of normal
organ anatomy to an image to be analyzed. When analyzing a case with missing
organs, regardless of atlas formats (i.e., static [3], probabilistic [2, 4, 5, 8, 9], or
geometric [4, 6–8, 10]), MOS can fail to segment other intact organs because of
1) mis-match of the atlas’ part corresponding to the missing organs to nearby
non-targets and 2) post-surgical organ shifts. Fig.1(a) illustrates such a failure
case with a missing right kidney where the liver (red) shifted downward into
the cavity caused by the removed kidney and a part of the liver was incorrectly
identified as kidney (cyan).

Addressing the above issue, this paper presents two novel contributions to im-
prove the current atlas-guided MOS solutions. First, we propose an automatic

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 418–425, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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(a) (b) (c)

Fig. 1. Illustrative examples of a) segmentation failures (part of the liver is incorrectly
labeled as kidney) and b,c) ten modeled organs. Red: liver, blue: spleen, cyan: r-kidney,
magenta: l-kidney, yellow: pancreas, orange: aorta, dark green: gall bladder, purple: l-
adrenal, lavender: r-adrenal, green: stomach.

missing organ detection (MOD) solution based on testing abnormality of data-
driven features computed from the 4D spatio-intensity Gaussian mixture model
(GMM) fitted to data. Three probabilistic features, capturing post-surgical or-
gan motions, organ-specific intensity homogeneity, and their linear combinations,
are proposed and compared. Such automatic MOD allows us to handle clinical
scan data more robustly even when previous medical history information is miss-
ing or corrupted in patient record or DICOM tag [11]. Second, we present an
atlas-guided MOS solution for 10 abdominal organs that automatically handles
missing organs by incorporating the MOD solution to an atlas-guided maximum-
a-posteriori (MAP) algorithm proposed in [4]. These proposed methods are vali-
dated with 44 abdominal CT scans, including 9 diseased cases with two common
surgical resection procedures of splenectomy (spleen removal) and nephrectomy
(kidney removal). Our experimental results demonstrate advantages of the pro-
posed MOS method such that a correct MOD improves overall segmentation
accuracy on average when dealing with the difficult diseased cases. The issue of
handling missing organs in abdominal MOS is scarcely addressed in the litera-
ture. To the best of our knowledge, there is no previous studies that proposed an
abdominal multi-organ segmentation with automatic missing organ handling.

2 Method

2.1 Atlas-Guided MAP Multi-Organ Segmentation

An atlas-guided MOS method proposed by Shimizu et al. [4] is adopted in
this study as our base MOS method. This method employs the MAP estima-
tion of organ label l ∈ {1, .., L} over 4D spatio-intensity feature vector v =

(x, y, z, I(x, y, z)): l̂ = argmaxlp(v|l)p(l). The prior p(l) is modeled by a standard
probabilistic atlas [2, 9]. The atlas Al(x) ∈ [0, 1], x = (x, y, z), is built by regis-
tering K training images of normal anatomy to a fixed reference image IR with a
size-preserving affine registration then computing a probability map for each of
L modeled organs by counting manually segmented organs. The likelihood p(v|l)
is modeled by an extended GMM p(v) =

∑L
l=1

∑N
n=1 αl(n)N (v;ul,Σl) where N
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denotes the number of voxels and the mixing weights αl(n) are defined over each
voxel n. To segment organs in a new image, the image is first registered to IR
using affine transformation followed by B-spline non-rigid registration [12]. From
theK training images, a normal spatio-intensity model (uvl,Σvl) for each organ
l is also computed where uvl and Σvl are the mean and covariance of feature
vectors of the organ l. Initialized by this normal spatio-intensity model, p(v) is
fit to the new image using the EM-algorithm [13], yielding the patient-specific
likelihood estimate {p̂(v|l)}. Additionally, the fitted GMM yields data-driven

estimate of organ center and associated covariance (ûxl, Σ̂xl) for each organ l.

2.2 Automatic Missing Organ Detection (MOD)

When fitting the GMM p(v) to an image Imo with missing organs, normal
components in p(v) corresponding to missing organs will be fitted to arbitrary
non-target structures located nearby. Exploiting this observation, we propose a
data-driven MOD by analyzing this EM model fitting error. Three probabilistic
measures of missing organs, Fl, Gl, and Hl, are derived by testing abnormality of
organ features estimated from the GMM fitting result with respect to respective
normal models, as described below.

The first measure Fl indicates the probability of organ l to be missing by
quantifying how abnormal the estimated organ center x is spatially. Geometry of
abdominal organs varies due to a) inter-subject variation, b) post-surgical organ
shifts, c) postures and d) pathology. To account for the first two factors, the
normal spatial models of organ centers are constructed separately for cases with
normal anatomy and with different patterns of missing organs due to varying
surgical resection procedures. Let MO and NA denote sets of training samples
with and without missing organs, respectively. And MOt=1,..,T , denotes training
samples for the t-th surgical organ resection procedure where T indicates the
total number of resection procedures considered and MO =

⋃
tMOt. Then

normal anatomy model Mna and missing organ model Mmoare defined by the
following sets of normal distributions,

Mna = {Mna
l } = {N (x;una

l ,Σna
l )|l = 1, .., L} (1)

Mmo = {Mmo
tl } = {N (x;umot

l ,Σmot
l )|t = 1, .., T, l = 1, .., L} (2)

where (una
l ,Σna

l ) denote the mean and covariance of the center location for organ
l averaged over NA, while (umot

l ,Σmot
l ) denote those averaged over MOt for the

t-th resection procedure.
We define Fl given M

na and Mmo as follows,

Fl = 1− p(x|θl)
= min(1−N (x;una

l ,Σna
l ), {1−N (x;umot

l ,Σmot
l )}t=1,..,T )

= 1−max(N (x;una
l ,Σna

l ), {N (x;umot
l ,Σmot

l )}t=1,..,T ) (3)

where θl = ((una
l ,Σna

l ), {(umot
l ,Σmot

l )}). This measure yields high value when
the estimated organ center does not follow trends captured in none of the known
normal anatomy or surgical procedure-specific models.
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The second measure Gl examines the abnormality in texture pattern homo-
geneity. For each organ l, a binary mask Bl(x) representing an average shape
of the organ is derived from the probabilistic atlas by setting Bl(x) = 1, ∀x
Al(x) = 1 and zero otherwise. Using these binary masks, intensity entropy Elm

= −
∑B

i=1 plm(i) log plm(i) are computed for each organ l in all training samples
of NA, where plm(i) is a B-bin normalized histogram of intensity values sampled
under Bl(x) in the m-th sample. For each organ l, the mean and standard devi-
ation of the entropy distribution (Ena

l , σna
l ) are computed over {Elm}, forming

a normal model of organ-specific texture homogeneities. To evaluate an organ
l, the entropy El of the organ is computed by overlaying Bl(x) by aligning its
gravity center to the estimated organ center in the new image and sampling
intensity values within the mask. Then Gl is defined as an abnormality measure
of El with respect to the normal model,

Gl = 1− p(El|φl) = 1−N (El;E
na
l , σna

l ) (4)

where φl = (Ena
l , σna

l ).
The third measure Hl is defined as a linear combination of Fl and Gl,

Hl = βFl + (1− β)Gl (5)

where β ∈ [0, 1]. Finally, missing organs are detected by applying a threshold
function to these measures derived for each organ in a new image for arbitrary
number of missing organs per case.

2.3 Multi-Organ Segmentation (MOS) with Missing Organs

As a final step, the base MOS method described in Sec 2.1 can be adopted to
missing organ cases by discarding the atlas Al and the spatio-intensity model
N (x;uvl,Σvl) corresponding to missing organs during the model fitting and
inference procedures. The entire MOS procedure thus consists of three successive
steps: 1) the base MOS, 2) MOD with Fl, Gl, or Hl, and 3) the modified MOS
without Al, uvl, and Σvl for the detected missing organs.

3 Experiments

3.1 Data

A total of 44 abdominal CT scans are used in this study. Ten non-contrast thin-
slice (1mm) abdominal CT scans of healthy volunteers (K = 10) are manually
segmented by expert radiologists and used to construct the probability atlas
by . The NA set contains 25 contrast-enhanced abdominal CT scans with nor-
mal anatomy, while the MO set consists of 9 diseased scans with three types
(t = 1, 2, 3) of surgical organ removal: i) 5 splenectomy cases (spleen removed),
ii) 3 nephrectomy cases (right kidney removed), and iii) 1 splenectomy and
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Fig. 2. Quantitative validation of the proposed MOD. (a) Maximum accuracy and AUC
values with various mixing rate β for computing the Hl measure. Green and magenta
dotted-lines denote β values that yield the maximum accuracy and the maximum AUC,
respectively. (b) ROC analysis of MOD with four different measures: red, Fl, blue, Gl,
green, H1 with β = 0.789, and pink, H2 with β = 0.923.

nephrectomy case (spleen and left kidney removed). Each scan consists of 512×
512 × 50 voxel slices with 5mm slice thickness stored in Mayo analyze format.
CT scanners from various manufacturers are used to acquire this dataset with
the ISOVUE 300 contrast agent. Ten abdominal organs (L = 10) are considered
in this study: aorta (AO), gallbladder (GB), left/right adrenal glands (LA,RA),
liver (LV), left/right kidney (LK,RK), pancreas (PN), spleen (SP), and stomach
(ST). For validation, segmentation ground-truth is generated for 9 NA and 9
MO cases by expert researchers with ITK-Snap tool. Fig.1(b,c) illustrate some
examples.

3.2 Results

Leave-one-out cross validation is performed to validate the performance of the
proposed MOD method on the MO set. For each of the three measures, we
evaluated 50, 000 different detection thresholds with a fixed interval between 0
and 1 and derived the receiver operating characteristic (ROC) curves. Maximum
accuracies (TP+TN/TP+ TN+FP+FN) with minimum false positive rate was
0.867 and 0.933 for Fl and Gl, respectively. The number of 80 bins (B=80) was
used to derive Gl. For Hl, we evaluated 50, 000 different mixing rate β values
with a fixed interval between 0 and 1. Fig. 2(a) shows the maximum accuracy and
the area under the ROC curve (AUC) computed for various β values. The linear
combination did not increase the accuracy measure; the maximum accuracy of
0.933 with highest AUC of 0.911 was found at β = 0.789 (referred as H1). On
the other hands, the overall maximum of AUC with 0.922 was found at β = 0.923
with slightly decreased accuracy of 0.922 (referred as H2). Fig. 2(b) shows the
ROC curves for Fl, Gl, H1, and H2, clearly demonstrating the advantage of the
proposed linear combination measure. AUC values for Fl and Gl were 0.795 and
0.834, respectively.
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Fig. 3. Average Jaccard index computed for 10 abdominal organs, comparing different
MOS methods and datasets. (a) Performance by the base MOS method (Base) for
normal anatomy (NA) and missing organs (MO) cases. (b) Comparison of the base
and the proposed methods with automatic (Auto) and manual (Manu) MOD with
β = 0.923 (H2) on MO. (c) With β = 0.789 (H1).

We next evaluate the proposed MOS method with the missing organ cases.
Fig. 3(a) shows organ-wise segmentation accuracy of the base MOS method [4] in
Jaccard index (JI) on the nine normal anatomy NA and the nine diseased MO
cases as baseline. Liver, left kidney, and spleen have relatively high accuracy.
Segmentation of adrenal glands and gall bladder is challenging because they are
very small and their shape varies widely. Stomach also yields very low JI because
its shape and intensity is extremely variant. For most organs, the accuracy for
MO cases is lower than that for NA. The accuracy for spleen and left kidney
in MO is largely lowered due to missing them in some cases of MO. Not only
missing organ itself but even neighboring organ, liver, is influenced by right
kidney missing such that the bottom of liver is segmented as right kidney that
causes the lower accuracy of MO liver.

Fig. 3(b) and (c) compare the accuracy in JI for the base and the proposed
MOS methods with automatic and manual MOD on MO cases with the two
versions of Hl measures with β = 0.789 (H1) and β = 0.923 (H2), respectively.
The manual MOD specifies which organs are missing according to the ground-
truth labels. In both versions, the MOS with manual MOD (Manu) performed
better than the base method (Base), demonstrating the proof-of-concept of our
approach in improving segmentation accuracy by explicitly considering missing
organs. Our proposed fully-automatic method (Auto) outperformed Base on
average for both versions, although accuracy was lowered from that of Manu
due to the MOD errors. For spleen, the proposed Auto method largely improved
Base in both versions. The accuracy for the left kidney was slightly improved
with β = 0.789, and that for liver and right kidney was also slightly improved
by the both versions of Auto.

Fig. 4 shows four illustrative examples for segmenting splenectomy cases
(missing spleen). In these examples, spleen (blue), as well as other organs such
as gallbladder (dark green) and pancreas (yellow), are fully or partially resected
surgically. The examples show that the missing organs are correctly detected by
our method and existing neighboring organs, such as left kidney (magenta), is
also correctly segmented despite its post-surgical organ shifts. Fig. 5 compares
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(a) Missing SP (b) Missing SP & GB

(c) Missing SP & Partial PN (d) Missing SP & Partial PN

Fig. 4. Four illustrative splenectomy examples of MOS by the proposed Auto method.
Spleen (blue) is missing in these examples.

(a) Base (b) Proposed (Auto)

Fig. 5. Segmentation comparison for neighboring organ; (a) the missing spleen (blue)
is incorrectly placed inside the left kidney; (b) the improved segmentation

the segmentation results by the base and proposed methods in the splenectomy
example in Fig. 4(b). The base method without MOD falsely segments a large
part of left kidney (magenta) as (missing) spleen (blue) as shown in Fig. 5(a).
Fig. 5(b) clearly shows that the correct MOD of spleen leads to much better
segmentation of the neighboring kidney.

4 Conclusions and Discussion

This paper presented novel methods for automatic MOD and atlas-guided MOS
that handle missing organs. Our experimental results are promising in that 1)
high accuracy of MOD was observed even with the limited number of missing
organ cases used in training and 2) the proposed MOS improved the average
JI accuracy, demonstrating the advantage of our MOD-MOS approach. As our
future work, more missing organ cases and surgical resection procedures must be
included to further our study in 1) post-surgical organ shifts in finer details and
2) MOD and MOS of partially resected organs that were not addressed in this
paper. Finally, we plan to improve the accuracy of our MOS solution, especially
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for those difficult organs, by improving our atlas and GMM models, as well as by
refining the discontinuous segmentation results by using our results to initialize
other graph-based/contour-based segmentation solutions.
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Abstract. Multi-atlas segmentation provides a general purpose, fully automated 
class of techniques for transferring spatial information from an existing dataset 
(“atlases”) to a previously unseen context (“target”) through image registration. 
The method used to combine information after registration (“label fusion”) has 
a substantial impact on the overall accuracy and robustness. In practice, 
weighted voting techniques have dramatically outperformed algorithms based 
on statistical fusion (i.e., algorithms that incorporate rater performance into the 
estimation process — STAPLE). We posit that a critical limitation of statistical 
techniques (as generally proposed) is that they fail to incorporate intensity 
seamlessly into the estimation process and models of observation error. Herein, 
we propose a novel statistical fusion algorithm, Non-Local STAPLE, which 
merges the STAPLE framework with a non-local means perspective. Non-Local 
STAPLE (1) seamlessly integrates intensity into the estimation process, (2) 
provides a theoretically consistent model of multi-atlas observation error, and 
(3) largely bypasses the need for group-wise unbiased registrations. We 
demonstrate significant improvements in two empirical multi-atlas experiments. 

Keywords: Simultaneous Truth And Performance Level Estimation (STAPLE), 
Statistical Label Fusion, Rater Models, Multi-Atlas Segmentation. 

1 Introduction 

The de facto standard baseline for large-scale, consistent, and robust segmentation is 
to perform a multi-atlas segmentation in which a collection of canonical atlases (with 
labels) are registered to a target-of-interest [1, 2]. Here, we focus on the problem of 
resolving voxelwise conflicts between the registered atlases (i.e., “label fusion”).  

Voting fusion strategies (e.g., a majority vote) have long provided robust 
segmentations. Recently, weighted voting using global [3], local [4], semi-local [5] 
and non-local [6] intensity similarities between the atlases and the target have 
demonstrated significant improvements in segmentation accuracy. Particularly for 
neurological applications, highly local weights have provided the most consistent and 
accurate segmentation estimates [4, 5]. 

In contrast to voting, statistical fusion strategies (e.g., Simultaneous Truth And 
Performance Level Estimation, STAPLE [7]) directly integrate a model of rater 
behavior (i.e., labeling error probabilities). Despite elegant theory and success with 
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— i.e., , , , where  is the voxel on atlas  that 
corresponds to target voxel . Throughout, the index variables ,  and  will be used 
to iterate over the voxels,  and  over the labels, and  over the registered atlases. 

2.1 The Non-local STAPLE Algorithm 

NLS uses an Expectation-Maximization (EM) approach to estimate the true latent 
segmentation based on the target intensities, atlas information, and the rater 
performance level parameters (Figure 1). Estimation of the true segmentation (E-Step) 
follows [7]. Let ∈ , where  represents the probability that the true label 
associated with voxel  is label . Using a Bayesian expansion and conditional 
independence between the raters, the solution for  on iteration  is , , ,∏ , | , ,∑ ∏ , | , ,  (1)

where  is a voxelwise a priori distribution of the underlying segmentation, 
and  is the label decision by atlas  and corresponding voxel .  

In NLS, we assume that we do not know which voxel  on atlas  corresponds 
with voxel  on the target. We approximate the expansion with the expected value of 
Eq. 1 based on the probability of correspondence across the images and an assumption 
of conditional independence between the labels and intensity: , | , , , , ,, ,∈

 (2)

where  is the search neighborhood of voxel , and  is the probability 
of the non-local correspondence between the target at voxel  and voxel  on atlas . 
We use a standard non-local means approach to define: 1 exp 2 2  (3)

where ·  is the set of intensities in the patch neighborhood of a given intensity 
location,  is the Euclidean distance between voxels  and  in image space, and  
and  are the standard deviations of the assumed Gaussian distributions governing 
the intensity similarity and the Euclidean distance-based decay, respectively. Lastly, 

 is a partition function that enforces the constraint that ∑ ∈ 1. 
Finally, we revisit Eq. 2 and, using the fact that , find that the final 

representation for the voxelwise label probabilities is 
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∏ ∑ ∈∑ ∏ ∑ ∈ . (4)

The estimate of the performance level parameters (M-Step) is obtained by finding the 
parameters that maximize the expected value of the conditional log likelihood 
function found in Eq. 4. arg max ln , | , , , , ,

arg max ln , | , , .  (5)

Noting the constraint that each row of the rater performance matrix must sum to one 

to be a valid probability mass function (i.e., ∑ 1), we can maximize the 

performance level parameters by formulating the constrained optimization problem 
using a LaGrange multiplier. After taking the element-wise partial derivative and 
using the constraint that ∑ ∈ 1, the performance update becomes ∑ ∑ ∈ :∑ . (6)

2.2 Initialization and Convergence 

As is typical [7], NLS was initialized with performance parameters equal to 0.95 
along the diagonal and randomly setting the off-diagonal elements to fulfill the 
required constraints. For all presented experiments, the voxelwise label prior, 

, was initialized using the probabilities from a “weak” log-odds majority 
vote (i.e., decay coefficient set to 0.5) [5], and the search neighborhood, , was 
initialized to an 11 11 11 window centered at the target voxel of interest. Several 
values for the patch neighborhood, · , are considered in this manuscript all of 
which are centered at the voxels of interest. Unless otherwise noted, the values of the 
standard deviation parameters,  and , were set to 0.1 and , respectively. Lastly, 
convergence of the algorithm was detected when the average change in the on-
diagonal elements of the performance level parameters fell below 10 .  

3 Methods and Results 

As benchmarks, we compare to a log-odds majority vote (MV) [5], a locally weighted 
vote (LWV) [5], and STAPLE [7]. For the voting algorithms, the implementation was 
the same as suggested in [5]. Note that LWV has a parameter that is essentially 
equivalent to the NLS parameter . For fairness of comparison, this parameter was set 
to the same value (herein, 0.1) for both algorithms.  STAPLE was initialized using the 
same value for  as NLS. For both STAPLE and NLS, “consensus voxels” 
(herein, voxels where max 0.95) were ignored. For all experiments, the 
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atlases were intensity normalized to the 25th and 75th percentiles. All pair-wise 
registrations were performed using an initial affine registration followed by a non-rigid 
procedure (Adaptive Bases Algorithm [12]). After registration the images were 
cropped to obtain a reasonable region of interest. Quantitative accuracy was primarily 
assessed using the Dice Similarity Coefficient (DSC).  

3.1 Thyroid Multi-atlas Segmentation 

First, we analyzed the fusion accuracy on an empirical multi-atlas approach for 
thyroid segmentation using a collection of 15 head and neck atlases. The computed 
tomography (CT) images used in this experiment were collected from consenting 
patients who underwent intensity-modulated radiation therapy. The patients were 
injected with 80mL of Optiray 320, a 68% iversol-based nonionic contrast agent.  
Each image has a voxel size of 1 1 3 mm . We performed a leave-one-out cross-
validation experiment (i.e., 14 atlases per segmentation estimate) to assess fusion 
accuracy. NLS was run using various patch neighborhood sizes (1 1 1, 3 3 3, 5 5 3, and 7 7 3). 

NLS substantially improved thyroid segmentation accuracy with the 3 3 3 
patch neighborhood significantly outperforming all other algorithms (p < .05, Figure 
2A). Median DSC performance was improved by 0.05 over LWV and 0.08 over 
STAPLE. The quantitative results seen in Figure 2A show the accuracy (in terms of 
the DSC) of the considered algorithms across the 15 atlases. Note the significant 
outliers in the results for the voting-based algorithms. Qualitative results can be seen 
 

 

Fig. 2. Results of the empirical multi-atlas segmentation of the thyroid. The quantitative results 
(A) show that NLS provides significant improvement, with a 3 3 3 patch neighborhood 
significantly outperforming all other algorithms. The qualitative results (B) demonstrate that 
NLS provides improvement in terms of  shape, boundary and point-wise surface distance error. 
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in Figure 2B, where, for all considered algorithms, a representative slice and a 3D 
rendering of the point-wise surface distance error is presented. The various 
estimations from NLS are all qualitatively superior to the other benchmarks, as they 
more accurately estimated the underlying shape and size and resulted in substantial 
reductions in point-wise surface distance error. For small patch neighborhoods (e.g., 1 1 1), it is evident that high quality boundaries are estimated but “speckle noise” 
is more likely to be apparent. Alternatively, for larger windows, estimations are 
smoother but sacrifice the high quality boundary estimation. 

3.2 Whole-Brain Multi-atlas Segmentation 

Second, we examine fusion accuracy on an empirical experiment for whole-brain 
segmentation. A collection of 15 brains (OASIS, www.oasis-brains.org) were 
manually labeled (www.braincolor.org) by an expert anatomist. For each atlas a 
collection 26 labels were considered ranging from large structures (e.g. cortical gray 
matter) to smaller deep brain structures. All images were 1mm isotropic. To assess 
overall accuracy, we performed a cross-validation experiment using 5 to 14 atlases 
per target atlas. The per-label accuracy was assessed using 5 atlases per target. Lastly, 
the sensitivity of NLS with respect to the parameters  and  was assessed. Due to 
the large number of labels and limited atlases, STAPLE results were poor (not 
shown). 

 

 

Fig. 3. Results from the empirical whole-brain experiment. Overall (A) and qualitative (B-F) 
results show NLS (with a single voxel neighborhood) significantly outperforming the other 
algorithms. Per-label results (G) show consistent improvement regardless of label size or 
location. 
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The results of the cross-validation (Figure 3) demonstrate that NLS provides 
consistent improvement in segmentation accuracy. For overall accuracy (reported as 
mean DSC, Figure 3A), NLS resulted in significant improvement (p < 0.05  over the 
other algorithms regardless of the number of atlases and provided estimates that are 
less dependent upon the number of atlases fused. Unlike the thyroid results, a single 
voxel neighborhood resulted in consistent improvement over larger neighborhood 
sizes. NLS using a single voxel neighborhood resulted in qualitatively more accurate 
segmentations (Figure 3B-3F). The per-label results (Figure 3G) demonstrate that, 
particularly for the larger labels, the NLS estimates are vastly superior to a locally 
weighted vote. NLS using a 1 1 1 patch neighborhood resulted in significantly 
superior (p < 0.05) results over LWV on 23 out of 26 labels and for 16 out of 26 
labels over NLS using a 3 3 3 patch neighborhood. Neither MV nor LWV was 
significantly superior to either NLS approach for any label. 

 

 

Fig. 4. Sensitivity to NLS model parameters. The sensitivity of NLS to  (A) and  (B) 
demonstrate degraded performance for values that are either too small or too large. Regardless, 
consistent improvement over a locally weighted vote is achieved. Gray outlines indicate the 
values used in the previously presented experiments.  

Lastly, the sensitivity of NLS to two of the model parameters,  and  (Eq. 3), 
can be appreciated in Figure 4. NLS accuracy decreases for  values that result in 
segmentations that are overly noisy (small  values) or overly smooth (larger  
values) (Figure 4A). Note that the value of this parameter is largely dependent upon 
the intensity normalization process (i.e., the relative distribution of atlas and target 
intensities). NLS sensitivity to , which can be interpreted as a proxy for sensitivity 
to search window size, is presented in Figure 4B. For values that are too small, 
accuracy sharply diminishes as too few voxels are used in constructing the non-local 
correspondence. Alternatively, values that are too large result in the inclusion of 
regions of the image that are not anatomically indicative of the label of interest.  

4 Discussion 

Non-Local STAPLE represents the first statistical fusion algorithm that (1) creates a 
cohesive theoretical model specifically targeting registered atlas observation behavior, 
and (2) incorporates intensity seamlessly into the core of the fusion framework’s rater 
model. Both of these goals are accomplished through the reformulation of the 
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STAPLE algorithm from a non-local means perspective and the integration of the 
concept of non-local correspondence into the estimation process. NLS models atlas 
observation behavior by learning which label would have been observed, given 
perfect correspondence between the target and the atlases. NLS overcomes several of 
the current obstacles that plague both the accuracy and theoretical underpinning of 
label fusion algorithms. We demonstrated superior performance over premier label 
fusion algorithms on two empirical multi-atlas experiments for segmentation of the 
thyroid (Figure 2) and whole-brain segmentation (Figures 3 and 4). 

While the sensitivity of NLS is assessed with respect to the number of atlases fused 
(Figure 3A) and the parameters  and  (Figure 4), several questions still persist in 
order to understand the optimality of the algorithm. For example, the effect of using 
an alternative similarity metric (e.g., normalized correlation coefficients or mutual 
information) to the assumed Gaussian difference model presented here (Eq. 3) need to 
be investigated. Alternative similarity measures may dramatically lessen the impact of 
noise in the intensity images and the need for accurate intensity normalization 
between the target and the atlases. Additionally, automated techniques for 
determining optimal window sizes (i.e.  and ) and initialization strategies would 
provide valuable advancements for the applicability of NLS to new problem spaces. 

Recently, several advancements to the STAPLE framework have been suggested to 
account for spatially varying labeling difficulty [2, 10] and rater performance [8, 9]. 
We propose that these advancements could be integrated in a straightforward manner 
into the current theoretical formulation governing NLS.  Further investigation into 
their applicability to the NLS framework represents fascinating areas of continuing 
research. Additionally, while not presented here, future investigation into the 
relationship between NLS and non-local voting based algorithms [6] is critical to 
understanding the importance of integrating performance level estimates into the 
multi-atlas estimation process. Lastly, integration of Markov Random Fields (MRF) 
[5, 7] and global/local atlas pre-selection [9] could provide valuable benefits in terms 
of segmentation accuracy (e.g., limiting the effects seen in Figure 2B). 
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Abstract. The recently proposed Sparse Shape Composition (SSC)
opens a new avenue for shape prior modeling. Instead of assuming any
parametric model of shape statistics, SSC incorporates shape priors on-
the-fly by approximating a shape instance (usually derived from appear-
ance cues) by a sparse combination of shapes in a training repository.
Theoretically, one can increase the modeling capability of SSC by includ-
ing as many training shapes in the repository. However, this strategy con-
fronts two limitations in practice. First, since SSC involves an iterative
sparse optimization at run-time, the more shape instances contained in
the repository, the less run-time efficiency SSC has. Therefore, a compact
and informative shape dictionary is preferred to a large shape repository.
Second, in medical imaging applications, training shapes seldom come in
one batch. It is very time consuming and sometimes infeasible to re-
construct the shape dictionary every time new training shapes appear.
In this paper, we propose an online learning method to address these
two limitations. Our method starts from constructing an initial shape
dictionary using the K-SVD algorithm. When new training shapes come,
instead of re-constructing the dictionary from the ground up, we update
the existing one using a block-coordinates descent approach. Using the
dynamically updated dictionary, sparse shape composition can be grace-
fully scaled up to model shape priors from a large number of training
shapes without sacrificing run-time efficiency. Our method is validated
on lung localization in X-Ray and cardiac segmentation in MRI time
series. Compared to the original SSC, it shows comparable performance
while being significantly more efficient.

1 Introduction

Sparse Shape Composition (SSC) [11] is a recently proposed method for shape
prior modeling. Different from previous methods [3], which often assume a para-
metric model for shape statistics, SSC is a non-parametric method that approx-
imates an input shape usually derived from low level appearance features, by
a sparse combination of other shapes in a repository. In this way, shape priors
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are incorporated on-the-fly. SSC is able to correct gross errors of input shape
and can preserve shape details even if they are not statistically significant in the
training repository.

Theoretically, the more shape instances contained in the shape repository, the
more shape modeling capacity SSC has. However, a repository including a large
number of shapes adversely affects the efficiency of SSC, which iteratively per-
forms sparse optimization at run-time. To reduce the redundancy in the shape
repository and the computational cost, one can learn a compact and informative
dictionary. Unfortunately, dictionary learning sometimes confronts another limi-
tation. In medical imaging applications, training shape instances seldom come in
one batch. If the dictionary needs to be completely re-learned every time when
new training shapes come, the learning process will become very time consuming
and sometimes infeasible.

In this paper, we propose an online learning method to address these two
limitations. Our method starts from learning an initial dictionary offline using
available training shapes. The K-SVD method is employed to learn the initial
dictionary due to its flexibility and accelerated convergency. When new train-
ing shapes come, instead of re-constructing the dictionary from the ground up,
we use an online dictionary learning method [7] to update the shape dictio-
nary on-the-fly. With more and more new training shapes, our shape dictionary
keeps updated to contain shape priors from all of them. Hence, sparse shape
composition performed on the shape dictionary achieves two advantages: 1) The
run-time efficiency of the shape composition is not sacrificed given much more
training shapes. 2) SSC can be gracefully scaled-up to apply shape priors from,
theoretically, infinite number of training shapes.

Relevant Work: Related studies can be traced to two categories, shape model-
ing and sparse dictionary learning. In the former category, most previous studies
[3,5,6,9,10] aim to model shape priors using a parametric model, e.g., multi-
variant Gaussian [3] and hierarchical diffusion wavelet [6]. SSC is the first shape
modeling method using sparse representation theory. Sparse dictionary learn-
ing methods have been extensively studied in signal processing domain. Popular
ones include optimal direction (MOD) and K-SVD [1]. While these methods re-
quire the access of all training samples, a recently proposed online dictionary
learning [7] allows an efficient dictionary update only based on new samples.
Although dictionary learning has been successfully applied on low level image
processing tasks, to the best of our knowledge, the proposed method is the first
one to employ them for high-level shape prior modeling.

2 Methodology

In this section, we will first briefly introduce standard Sparse Shape Composition.
Dictionary learning technologies that aims to tackle the two limitations of SSC
will be presented afterwards.

Sparse Shape Composition: SSC is designed based on two observations: 1)
After being aligned to a common canonical space, any shape can be approx-
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imated by a sparse linear combination of other shape instances in the same
shape category. Approximation residuals might come from inter-subject varia-
tions. 2) If the shape to be approximated is derived by appearance cues, residual
errors might include gross errors from detection/segementaion errors. However,
such errors are sparse as well. Accordingly, shape priors can be incorporated on-
the-fly through shape composition, which is formulated as a sparse optimization
problem as follows.

In SSC, a shape is represented by a contour (2D) or a triangle mesh (3D)
which consists of a set of vertices. Denote the input shape as v, where v ∈ RDN

is a vector concatenated by coordinates of its N vertices, where D = {2, 3}
denotes the dimensionality of the shape modeling problem. (In the remainder of
this paper, any shape instance is defined as a vector in the same way.) Assume
D = [d1,d2, ...,dK ] ∈ RDN×K is a large shape repository that includes K
accurately annotated and pre-aligned shape instances di. The approximation of
v by D is then formulated as an optimization problem:

argmin
x,e,β

‖T (v, β)−Dx− e‖22 + λ1‖x‖1 + λ2‖e‖1, (1)

where T (v, β) is a global transformation operator with parameter β, which aligns
the input shape v to the common canonical space of D. The key idea of SSC lies
in the second and third terms of the objective function. In the second term, the
L1-norm of x ensures that the nonzero elements in x, i.e., the linear combination
coefficients, is sparse [2]. Hence, only a sparse set of shape instances can be
used to approximate the input shape, which prevents the overfitting to errors
from missing/misleading appearance cues. In the third term, the same sparse
constraint applies on e ∈ RDN , the large residual errors, which incorporates the
observation that gross errors might exist but are occasional. Eq. 1 is optimized
using an Expectation-Maximization (EM) style algorithm, which alternatively
optimizes β (“E” step) and x, e (“M” step). “M” step employs a typical convex
solver, e.g., interior-point convex solver [8] in this study.

Shape Dictionary Learning: Theoretically, the more shape instances in D,
the larger shape modeling capacity SSC has. However, the run-time efficiency of
SSC is also determined by the size of the shape repository matrix D ∈ RDN×K .
More specifically, the computational complexity of the interior-point convex opti-
mization solver is O(N2K) per iteration [8], which means the computational cost
will increase quickly with the increase of K, the number of the shape instances
in the shape repository. Note that O(N2K) is the computational complexity
for one iteration. Empirically, with larger K, it usually takes more iterations to
convergency, which further decreases the algorithm speed.

In fact, owing to the similar shape characteristics across the population, these
K shape instances usually contain lots of redundant information. Instead of
including all of them, D should only contain “representative” shapes. This is
exactly a dictionary learning problem, which has been extensively investigated in
signal processing community. More specifically, a well learned dictionary should
have a compact set of “atoms” that are able to sparsely approximate other
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Algorithm 1. Online learn and update dictionary, using mini-batch mode.

Input: Initialized dictionary D0 ∈ Rn×k, input data Y = [y1, y2, ..., yK ], yi ∈ Rn,
number of iterations T , regularization parameter λ ∈ R.
Output: Learned dictionary DT .
A0 = 0, B0 = 0.
for t = 1 → T do

Randomly draw a set of yt,1, yt,2, ..., yt,η.
for i = 1 → η do

Sparse coding: xt,i = argmin
x∈Rk

1
2
‖yt,i −Dt−1x‖22 + λ‖x‖1.

end for
At = βAt−1 +

∑η
i=1 xt,ix

T
t,i, Bt = βBt−1 +

∑η
i=1 yt,ix

T
t,i,

where β = θ+1−η
θ+1

, and θ = tη if t < η, θ = η2 + t− η otherwise.
Dictionary update: Compute Dt, so that:
argmin

D

1
t

∑t
i=1

1
2
‖yi −Dxi‖22 + λ‖xi‖1 = argmin

D

1
t

(
1
2
Tr

(
DTDAt

)
− Tr(DTBt)

)
.

end for

signals. In our study, shape dictionary is learned using K-SVD [1], a popular
dictionary learning method because of its accelerated converging speed.

Online Shape Dictionary Update: Using the compact dictionary derived by
K-SVD, the run-time efficiency of SSC is dramatically improved, as the number
of atoms in D is much less than the number of training shapes. However, K-SVD
requires all training shapes available in the “dictionary update” step, which can
not be satisfied in a lot of medical applications. For example, owing to the ex-
pensive cost, manual annotations of anatomical structures often come gradually
from different radiologists/technicions. Re-construction of the dictionary D with
every batch of new training shapes is very time consuming and not always fea-
sible. To tackle this problem, we employ a recently proposed online dictionary
method [7] to update the shape dictionary.

Algorithm 1 shows the framework of online dictionary learning for sparse cod-
ing. Starting from an initial dictionary learned by K-SVD, it iteratively employs
two stages until converge, sparse coding and dictionary update. Sparse coding
aims to find the sparse coefficient xi for each signal yi:

xi = argmin
x∈Rk

1

2
‖yi −Dx‖22 + λ‖x‖1 (2)

whereD is the initialized dictionary or dictionary computed from the previous it-
eration. LARS-Lasso algorithm [4] is employed to solve this step. The dictionary
update stage aims to update D based on all discovered xi, i ∈ [1,K]:

argmin
D

1

K

K∑
i=1

1

2
‖yi −Dxi‖22 + λ‖xi‖1 (3)

Based on stochastic approximation, the dictionary is updated efficiently using
block-coordinates descent. It is a parameter-free method and does not require
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Fig. 1. Comparisons of the localization results. From left to right: manual label, detec-
tion results, PCA, SSC, and the online learning based shape refinement results. Due to
the erroneous detection (marked by the red box), PCA result moves to the right and
is not on the boundary (see the red arrow). Zoom in for better view.

any learning rate tuning. It is important to note that the “dictionary update”
step in Algorithm 1 is significantly different from that of K-SVD. Instead of
requiring all training shapes, it only exploits a small batch of newly coming data
(i.e., xi, i ∈ [1, η]). The dictionary update thereby becomes much faster than
K-SVD, as η�K. In this way, we can efficiently update the shape dictionary
online by using new data as selected xi.

Using this online updated dictionary, SSC obtains two additional advantages.
1) The run-time efficiency of shape composition is not sacrificed with much more
training shapes. 2) SSC can be gracefully scaled-up to contain shape priors from,
theoretically, infinite number of training shapes.

3 Experiments

We validate our algorithm in two applications, lung localization in Chest X-ray,
and left ventricle tracking in MRI.

Lung Localization: Chest radiography (X-ray) is a widely used medical imag-
ing modality because of the fast imaging speed and low cost. Localization of
lungs in chest radiography not only provides lung shapes, which are critical
clues for pathology detection, but also paves the way for other medical image
analysis tasks, e.g., cardiac measurements. On one hand, owing to the relatively
cheap cost of manual/semi-automatic annotations of lungs in X-ray images, it is
possible to get a large number of lung shapes for training. On the other hand,
however, training lung shapes seldom come in one batch in clinical practices.
Instead, clinicians often verify and correct auto-localization results and prefer
a system that has self-improvement ability using these corrected shapes as new
training shapes.Therefore, lung localization in chest X-ray becomes an ideal use
case to test the effectiveness of our online dictionary method.

Our lung localization system starts from a set of auto-detected landmarks
around the lung (e.g., the bottom-left lung tip), based on which lung shapes are
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inferred using shape priors. Note that various factors, e.g., imaging artifacts, lung
diseases, etc., might induce missing/wrong landmark detection, which should be
corrected by shape prior models. Although the overall system performance de-
pends on multiple components, including initial landmark detection, shape prior
modeling and the following deformable segmentation, our comparison focuses on
the shape prior modeling part, i.e., other components remain the same in com-
parsions. Our experimental dataset includes 367 X-ray images from different
patients. 32 of them are used as training data to construct the initial data ma-
trix/dictionary D in Eq. 1. Note that simply stacking more training shapes into
D can also improve the capability of shape representation. However, it dramati-
cally reduces the computational efficiency, which highly depends on the scale of
D when solving Eq. 1 [8].

Table 1. Quantitative comparisons of the
lung localization using shape priors. P, Q,
DSC stand for the sensitivity, specificity, and
dice similarity coefficient (%), respectively.

P Q DSC

PCA 87.5± 5.2 96.0± 3.1 90.1± 4.0

SSC 86.7± 4.8 96.6± 2.4 89.4± 3.9

Ours 94.3± 4.6 96.2± 2.3 94.5± 3.6

Three shape prior methods are
compared, 1) the PCA based prior
as used in Active Shape Model [3],
2) SSC [11], and 3) our method.
Fig. 1 shows an example of using
these methods to infer shapes from
auto-detected landmarks. This case
is challenging due to the misplaced
medical instrument, which causes
erroneous detections (marked by a
red box in Fig. 1). Although all
three methods achieve reasonable accuracy, the whole shape of PCA result shifts
slightly to the right (where the red arrow points in Fig. 1), because PCA is sensi-
tive to outliers. Benefited by the sparse representation and L1-norm constraint,
SSC and our method can both handle erroneous detections. However, since the
initial shape dictionary may not be generative and representative enough, the in-
ferred shape from SSC is not as accurate as the proposed method, which updates
the dictionary on-the-fly and improves its capability of shape representations.
Table 1 shows the quantitative accuracy (compared to experts’ annotations) of
the three methods, in terms of the sensitivity, specificity, and dice similarity co-
efficient (DSC). In general, our method achieves significantly better sensitivity,
while slightly worse specificity than SSC. The reason is that SSC under-segments
some images, which results in low sensitivity but high specificity. Our method
achieves much better performance in terms of DSC, which is a more compre-
hensive measurements (includes both sensitivity and specificity) for localization
accuracy. The experiments are performed on a PC with 2.4GHz Intel Quad CPU,
8GB memory, with Python 2.5 and C++ implementations. The whole frame-
work is fully automatic and efficient. The shape inference step takes 0.2-0.3s,
with around 0.06s as an overhead to update the dictionary online, which is neg-
ligible. In contrast, re-training the dictionary using K-SVD needs around 15-40s
each time.

Real-Time Left Ventricle Tracking: Extraction of the boundary contour
of a beating heart from cardiac MRI image sequences plays an important role
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Fig. 2. Box plots for quantitative comparisons. Blue, black, red and green boxes repre-
sent results from the deformation, PCA, SSC, and the proposed method, respectively.

in cardiac disease diagnosis and treatments. MRI-guided robotic intervention is
potentially important in cardiac procedures such as aortic valve repair. One of
the major difficulties is the path planning of the robotic needle, which requires
accurate contour segmentation of the left ventricle on a real-time MRI sequence.
Thus, the algorithm should be robust, accurate and fast. We use a shape prior
based tracking framework to solve this problem.

In our method, a collaborative trackers network is employed to provide a de-
formed mesh and then generate a rough contour as the initialization at each
time step [12]. Next, this initialized shape model deforms based on low level im-
age appearance. Appearance-based deformation may not be accurate since the
image information can be ambiguous and noisy. Thus, the shape prior model
is employed to refine the deformed contour. Based on this framework, we com-
pare the performance of (a) deformable model based on image appearance, (b)
PCA based, (c) SSC based and (d) the online dictionary based shape refinement
methods. For computational efficiency consideration, the dictionary size of (b)
and (c) is fixed as a small number 8. The SSC method constantly uses this initial
dictionary, while the proposed method (c) updates the dictionary on-the-fly by
using acquired tracking results as the mini-batch input of Algorithm 1.

Fig. 2 shows the quantitative evaluations, in terms of the sensitivity, speci-
ficity, and the dice similarity coefficient. Appearance-based deformation results
produces inconsistent results when the image information is ambiguous. SSC
based shape refinement may not improve the accuracy of the deformed result due
to the small size of dictionary. PCA based method achieves good performance.
However, it is not able to handle certain new shapes which cannot be general-
ized from the current PCA results. In general, the proposed method achieves
the most accurate result, since it updates the dictionary on-the-fly using newly
acquired information. Thus it is more generic and adaptive to new data. Online
updating the dictionary takes around 0.03s, which causes very small overhead
for the whole system. To track total of 189 frames, our system takes 23.7s. Re-
training the dictionary using K-SVD takes around 12s each time, which is not
feasible for realtime applications.
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4 Conclusions

In this paper, we propose a shape modeling method to tackle the two limi-
tations of Sparse Shape Composition (SSC). Instead of directly including all
training shapes in a repository, we employ dictionary learning technologies to
learn a compact and informative shape dictionary. In more details, an initial
shape dictionary is learned by K-SVD using available training shapes. When
new training shapes come, online dictionary learning method is used to update
the dictionary on-the-fly. With the dynamic updated dictionary, SSC is grace-
fully scaled-up to contain shape priors from a large number of training shapes
without losing the run-time efficiency. Compared to standard SSC, it achieved
better shape modeling performance with a much faster speed.
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Abstract. Parkinson’s disease (PD) is a neurodegenerative movement
disorder caused by decay of dopaminergic cells in the substantia nigra
(SN), which are basal ganglia residing within the midbrain area. In the
past two decades, transcranial B-mode sonography (TCUS) has emerged
as a viable tool in differential diagnosis of PD and recently has been shown
to have promising potential as a screening technique for early detection of
PD, even before onset of motor symptoms. In TCUS imaging, the degen-
eration of SN cells becomes visible as bright and hyper-echogenic speckle
patches (SNE) in the midbrain. Recent research proposes the usage of 3D
ultrasound imaging in order to make the application of the TCUS tech-
nique easier and more objective. In this work, for the first time, we pro-
pose an automatic 3D SNE detection approach based on random forests,
with a novel formulation of SNE probability that relies on visual context
and anatomical priors. On a 3D-TCUS dataset of 11 PD patients and 11
healthy controls, we demonstrate that our SNE detection approach yields
promising results with a sensitivity and specificity of around 83%.

1 Introduction and Medical Motivation

Parkinson’s Disease (PD) is a neuro-degenerative movement disorder which has
been the matter of increasing research in the medical and scientific community
for the past decades. The primary symptoms of PD affect the motoric system,
such as rigidity, shaking or slowness, but PD may also evoke non-motor symp-
toms such as dementia in later stages of the disease. The root cause of PD is
the death of dopaminergic substantia nigra (SN) cells, which are located in the
midbrain area. Although it is not known whether it is the cause or an effect
of SN cell death, the progress of the disease is accompanied by a build-up of
ferrite deposits within the SN. Over the past two decades, several studies have
shown that these physiological changes can be visualized using transcranial ul-
trasound (TCUS), making this imaging technique a viable tool in differential
diagnosis of PD [12]. Additionally, it has been shown recently that TCUS can
be used as an early indicator of PD [2]. This result is particularly relevant, since
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it increases the hope that TCUS can be used as a cheap, quick and non-invasive
early-detection and screening tool for large populations. The changes in SN are
visible in TCUS in form of hyper-echogenicities, i.e. small bright speckle patches,
within the midbrain. If performed by an expert sonographer with substantial ex-
perience in this technique, sensitivity and specificity of this technique can be as
high as 90% [7]). However, the challenging nature of TCUS images causes high
intra- and inter-rater variability and makes it difficult for less experienced groups
to reach the diagnostic reliability of expert groups in this field [11]. Recently,
the usage of three-dimensional (3D-) TCUS started being investigated for PD
diagnosis , since it can make this promising PD screening technique easier, more
objective, and more significant due to the volumetric analysis of substantia ni-
gra echogenicities (SNE). In this paper, we introduce a fully automatic approach
for the detection of SNE voxels within the midbrain, once the latter has been
localized. There is little related work in literature concerning the automatic anal-
ysis of SNE, but similar to our work, all approaches we are aware of perform
a midbrain ROI segmentation first and a SNE detection within the midbrain
subsequently. Kier et al. [9] and Chen et al. [4] respectively perform SN pixel
detection using morphological operators or image-feature-based SVM classifica-
tion, both within a manually segmented midbrain in 2D. Engels et al. [6] use a
hierarchical finite-element model and active contours to simultaneously segment
the midbrain and SNEs in 2D. Despite early work on segmentation of midbrain
area in 3D ultrasound [1], to our knowledge, there is no previous work on (semi-)
automatic SNE analysis in 3D-TCUS. The main contributions of this paper are
therefore to 1) propose a novel and volumetric SNE detection method based on
random-forest, 2) formulate a detection paradigm mimicking human experts by
using probabilistic modeling of visual and spatial SNE features and 3) show the
reliability of our SNE detection approach on a set of 3D-TCUS volumes from 22
subjects.

2 Materials and Methods

As illustrated by Fig.1, an experimented observer can detect PD-related hyper-
echogenicities in the left and right SN using 3D-TCUS. Unfortunately, TCUS
cannot visualize the SN regions themselves, but only the high-contrast SNE
speckles located randomly within the area of SN. Thus, relying on prior knowl-
edge of the midbrain anatomy and the known rough location of the SN within
the midbrain, an experimented observer has to decide whether an echogenicity
belongs to the SN or not based on location and intensity of speckle patches.
This makes the detection of Parkinson-related SNEs quite challenging. In the
present work, we aim at providing a reliable detection of PD-related SNEs in 3D
by analoguously integrating two types of information: (i) visual context and (ii)
spatial location within the midbrain.

Problem Statement: Let us consider an intensity function denoted by I :
Ω → R, where Ω ⊂ R3 is the image domain representing the 3D ultrasound
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Fig. 1. Goal of our approach: On the left, the anatomy of the midbrain is detailed,
showing the Substantia Nigra regions located at the front of both hemispheres. The
other images show examples of typical SNE speckle patterns (in yellow) in 3D-TCUS
transversal slices.

data. We further assume that we are given a segmentation of the midbrain
M ⊂ Ω, either from a manual expert segmentation or alternatively from the
output of a ROI detection algorithm [1]. In this paper, we propose to formulate
the detection problem as a classification task in which each voxel x ∈ M needs
to be associated to a label c ∈ {0, 1}, where 0 denotes the background and 1
the Substantia Nigra Echogenicities (SNE) class. In fact, c is the realization of
2 random variables (E ,S) where E represents the observation of an echogenicity
and S of the Substantia Nigra (SN), i.e. c = 1 if and only if E = 1 and S = 1.
Therefore, we aim at learning P (E ,S|x, I), which represents the joint probability
of observing an echogenicity E belonging to the SN S given the location x and
the intensity function I. It is important to note that (1) it is not the SN itself
which causes hyper-echogenicities but only potential acoustic micro-scatterers
residing within it and (2) echogenicities can happen in the whole skull in TCUS
due to tissue boundaries and micro-scatterers present in the entire brain tissue.
Hence, we can assume the independence of the random variables E and S, and
decompose this joint probability as follows:

P (E ,S|x, I) = P (E|x, I)P (S|x) (1)

The first term P (E|x, I) is a data term, encoding the probability of observing an
echogenicity given some visual information at location x, and the second term
P (S|x) is an anatomical prior not depending on I, i.e. the ultrasound data. As
learning these probability distributions is challenging due to the dimensionality
of the problem, we propose to use two discriminative models based on random
forests. Following a “divide” and “conquer” strategy, random forests [3] provide
efficient piecewise approximations of any distribution in high-dimensional spaces
by: (1) partitioning the space using simples decisions, and (2) estimating the
posterior in each “cell” of this space. As shown in [5,10] , random forests have
been successfully applied to the task of multiple organ localization in CT and
MR scans. Geremia et al. in [8] demonstrated state-of-the-art results for the
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segmentation of multiple-sclerosis lesions based on multi-channel MRI data. In
addition to a forest using visual context, we propose to learn a novel spatial
prior based on two hemisphere-specific coordinate systems. In the following, we
describe how to use random forests for learning: (1) the data term P (E|x, I) and
(2), the prior P (S|x).

Learning the Data Term P (E|x, I): In TCUS, echogenicities are character-
ized by higher intensities and higher contrast. Therefore, we propose to describe
the visual context of a voxel at location x by extracting a set of simple features
that encode the mean intensities in cuboidal regions of different sizes in the
neighborhood of x similarly as in [8]. Let us denote by X the space spanned by
these simple features, and X the feature representation associated to a voxel at
location x. We consider a training set (Xn, En)Nn=1, where each feature vectorXn

is associated to a label En which is equal to 1 if there is an echogenicity at location
xn and 0 if not. Consisting of an ensemble of independent trees, a random forest
permits to efficiently partition this high-dimensional space X . Each tree can be
seen as a directed acyclic graph where each node consists in a decision function
fv,τ defined as fv,τ(X) = (X · v ≥ τ). v is a vector of dimensionality dim(X )
having only 1 non-zero value, and τ ∈ R a threshold. According to the result of
this decision function, incoming data are pushed towards the left or right child
of the current node. Note that the role of v is to select a feature dimension where
to perform the decision, yielding thus axis-aligned splits in X . Let us denote by
Δ the set of feature points from X reaching the current node, and Δl, Δr the
subsets respectively sent to the left and right child nodes. At each node, the
choice of v and τ is optimized following a greedy optimization strategy. A set Γ
of functions are randomly drawn and the best candidate (v∗, τ∗) is selected by
maximizing information gain:

(v∗, τ∗) = argmax
(v,τ)∈Γ

(H(Δ)− wlH(Δl)− wrH(Δr)) (2)

where wl = |Δl|/|Δ| and wr = |Δr|/|Δ|. H corresponds to the classical Shan-
non’s entropy H = −

∑
e∈{0,1} P (E = e|x, I) log (P (E = e|x, I)), the posterior

distribution being estimated from the set of points in the current node as:

P (E = e|x, I) = | {Xn ∈ Δ, En = e} |
| {Xn ∈ Δ} | (3)

By optimizing this energy function, the tree aims at minimizing the uncertainty
on the random variable E , encouraging thereby the creation of leaves containing
either mostly echogenicities, or mostly background. Nodes are grown until a
maximal tree depth has been reached, or when the number of feature points
falls below a given threshold. Finally, in each leaf, the posterior distribution
P (E|x, I) is computed on the set of features points reaching this leaf using Eq.3
and stored. Now, to predict the probability of observing an echogenicity at a
location x for an unseen ultrasound volume of the midbrain, one just needs to
first extract its associated feature vector X, to push it downward the tree until it
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Fig. 2. Midbrain anatomy: in the transversal plane, the midbrain has a character-
istic butterfly shape. The Substantia Nigra are thin structures located at the front
of both hemispheres. A hemisphere-specific coordinate system is computed to express
voxel spatial location accounting for inter-patient asymmetric changes of scales and
orientation.

reaches a leaf, and to use the stored posterior distribution. Considering a random
forest consisting of T trees, predictions can be simply computed by averaging
tree posteriors: P (E|x, I) = 1

T

∑T
t Pt(E|x, I).

Learning the Prior P (S|x): As shown on Fig.2, the midbrain has a char-
acteristic butterfly shape in the transversal plane, which does not vary much
along the longitudinal axis. The Substantia Nigra are thin structures located
at the front of both hemispheres and do not vary much along the longitudi-
nal axis either. Hence, we propose to express the location of each voxel using
patient-specific coordinate systems that represent the left and right midbrain
hemispheres in the transversal plane. By doing so, we can easily account for
asymmetric changes of scales and orientation of the midbrain anatomy, which
can occur in TCUS imaging. Let us denote by {xm}Mm=1 = M, the finite set
of M voxels belonging to the midbrain. First, the centers of the left and right
hemispheres are computed by performing a K-means clustering on M. Then,
each voxel is associated to its nearest cluster center to create the 2 hemisphere
subsets Hleft and Hright. Finally, principal component analysis is applied to each
of these subsets to compute a hemisphere-specific transversal coordinate system,
and the location of each point is expressed in the normalized coordinate systems
of the hemisphere it belongs to. The in-plane location of each voxel xm can then
be encoded by a vector x′

m = [x′m, y
′
m, hm], where x′m and y′m are the in-plane

components in the hemisphere coordinate system, and hm is a categorical vari-
able encoding the left/right side. To summarize, each voxel xm is associated for
the training phase to a couple (x′

m, Sm), where Sm is equal to 1 if xm belongs
to the Substantia Nigra and 0 if not. As in the previous section, we use a random
forest to learn the prior P (S|x) using a training set of 3D-TCUS from different
patients. During the training, each tree aims at separating the SN from the rest
of the midbrain, and creates clusters in its leaves that are consistent in terms of
spatial location x′

m.



448 O. Pauly et al.

Fig. 3. The effect of our spatial prior: From left to right, (i) the manual segmen-
tation overlayed on the US data, (ii) the predicted posterior using the data term forest
and (iii) the output after combining with the forest-based spatial prior. All outputs are
probabilistic and can be thresholded to provide a binary segmentation.

SNE Detection: Once the data term and the prior have been learned from
a set of labelled midbrains, a new unseen patient data can be processed as
follows: (1) the midbrain is segmented, (2) the hemisphere coordinate systems
are determined using K-means followed by a PCA, (3) the probability P (E|x, I)
and the prior P (S|x) are computed for each voxel, and (4) the joint probability
P (E ,S|x, I) can be predicted using Eq.1. Hence, we obtain for each voxel a
probability of belonging to an SNE, and we can use a threshold T ∈ [0, 1] to
create a binary segmentation of the ferrite deposits: c = 1 if P (E ,S|x, I) ≥ T ,
and c = 0 otherwise.

3 Experiments and Results

In this section, we evaluate our SNE detection approach on the bi-lateral 3D-
TCUS dataset volume of 22 subjects, consisting of 11 PD patients and 11
healthy controls. The 3D volumes were reconstructed at an isotropic resolution
of 0.45mm and labelled by a blinded expert into the regions ”midbrain”, ”SNE
left” and ”SNE right”. For our validation, we will consider this labeling as gold
standard. We conduct comparative experiments to evaluate our SNE detection
approach based on 2 discriminative models (VisForest-PriorForest) against the
simple forest without spatial prior (VisForest), and a forest with a spatial prior
constructed using a Gaussian distribution model for each hemisphere (VisForest-
GaussianPrior). The parameters of each Gaussian spatial prior are estimated by
computing the sample mean and the covariance of the location of the SNE voxels
in their hemisphere coordinate systems.

We perform a leave-one-patient-out cross-validation (LOO), i.e. we train all
models on 21 labelled midbrains and test on the remaining one. As the outputs
from our system are probabilities between 0 and 1, we perform a ROC analysis,
i.e. we vary the threshold’s value to compute a binary segmentation, compute
the corresponding confusion matrices for each run and derive different quality
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Table 1. Overall SNE Detection results on 22 patients: The proposed prior
permits to achieve better detecton by improving the specificity, i.e. by better rejecting
echogenicities that do not belong to the estimated SN. Moreover, using a forest-based
prior provides slightly better results.

F-measure Specificity Sensitivity

Mean Std Median Mean Std Median Mean Std Median

VisForest 0.456 0.115 0.463 0.775 0.060 0.779 0.845 0.081 0.859

VisForest-GaussianPrior 0.508 0.155 0.547 0.819 0.045 0.812 0.829 0.113 0.844

VisForest-PriorForest 0.519 0.148 0.574 0.835 0.043 0.832 0.828 0.099 0.829

measures: f-measure, specificity and sensitivity. While the number of trees is set
to 10 for all experiments, the depth parameter is tuned by doing a discrete search
(i.e. depth = 5,10,15,20) and performing a full LOO for each depth value. Best
results were obtained for a depth = 15 for the VisForest, and for a depth = 10
for the PriorForest.

Overall results are presented in Tab. 1. On the left, the best f-measure are
reported by using threshold values of 0.5, 0.1 and 0.2 respectively for the Vis-
Forest, VisForest-GaussianPrior and VisForest-PriorForest models. By including
our hemisphere-specific spatial prior, the f-measure is increased from 0.456 (Vis-
Forest) to 0.518 (VisForest-PriorForest). Moreover, learning this prior distribu-
tion using a random forest provides slightly better results than with Gaussian
prior achieving 0.508. On the right, the best compromise between sensitivity
and specificity are computed from the ROC analysis for all approaches. As illus-
trated by Fig. 3, the proposed prior permits to achieve improved specificity by
better rejecting echogenicities that do not belong to the estimated SN. By vary-
ing the segmentation threshold, we also compute the area under curve which is
AUC = 0.903 for our approach, compared to a VisForest alone AUC = 0.879
or with a simple Gaussian prior AUC = 0.891.

4 Discussion and Conclusion

In this paper, we presented the first approach for the automatic detection of
Substantia Nigra Echogenicities in 3D-TCUS. As the interpretation of such data
is very difficult and yields high inter and intra-observer variability, our aim is to
provide an objective and reliable segmentation of such Parkinson-related speckle
patches. Inspired by the way medical experts recognize SNE, we proposed a prob-
abilistic formulation combining two discriminative models: (1) a ”visual” random
forest specialized on the detection of echogenicities and (2) a ”spatial” random
forest modeling a location prior within the midbrain. Therefore, voxel locations
are parametrized within hemisphere-specific coordinate systems in order to ac-
count for asymmetric changes of orientation and scale in the midbrain anatomy.
In experimentations conducted on 22 patients data, we could assess the reliabil-
ity of our approach that achieves a sensitivity and specificity of around 83%.
From the segmentation output of our system, we can quantify automatically the
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amount of hyper-echogenicities in each hemisphere, with the motivation of using
this information within a computer aided diagnosis system for Parkinson disease
based on 3D-TCUS in the near future.
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Abstract. Accurate segmentation of prostate in CT images is impor-
tant in image-guided radiotherapy. However, it is difficult to localize the
prostate in CT images due to low image contrast, unpredicted motion
and large appearance variations across different treatment days. To ad-
dress these issues, we propose a sparse representation based classification
method to accurately segment the prostate. The main contributions of
this paper are: (1) A discriminant dictionary learning technique is pro-
posed to overcome the limitation of the traditional Sparse Representation
based Classifier (SRC). (2) Context features are incorporated into SRC to
refine the prostate boundary in an iterative scheme. (3) A residue-based
linear regression model is trained to increase the classification perfor-
mance of SRC and extend it from hard classification to soft classification.
To segment the prostate, the new treatment image is first rigidly aligned
to the planning image space based on the pelvic bones. Then two sets
of location-adaptive SRCs along two coordinate directions are applied
on the aligned treatment image to produce a probability map, based on
which all previously segmented images of the same patient are rigidly
aligned onto the new treatment image and majority voting strategy is
further adopted to finally segment the prostate in the new treatment
image. The proposed method has been evaluated on a CT dataset con-
sisting of 15 patients and 230 CT images. Promising results have been
achieved.

1 Introduction

Prostate cancer is the second-leading cancer for American men. Currently one
of the major treatment methods is external beam radiation therapy, which basi-
cally has two stages, namely the planning stage and the treatment stage. In the
planning stage, a planning image is scanned from the patient and a dose plan is
designed. During the treatment stage, a CT image is acquired at each treatment
day for the same patient, which could be repeated for up to 40 times, each with a
CT image acquired. The prostate in each treatment image needs to be accurately
localized so that the dose plan made in the planning image can be adjusted to
the current treatment image. Therefore, the success of external beam radiation
therapy highly depends on the accurate localization of the prostate.

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 451–458, 2012.
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(a) (b) (c)

Fig. 1. (a) and (b) are two axial slices from different treatment images of the same
patient. Blue contours are the prostate contours manually delineated by experts. (c) is
an illustration of context locations of the center pixel by red points.

However, there are three main challenges to accurately segment the prostate.
First, prostate boundary is of extremely low contrast with its surrounding tissues
in the CT images as shown in Fig. 1. Second, prostate motion is unpredictable
due to the uncertain existence of bowel gas in different treatment days. Third, the
bowel gas can significantly alter the image appearance and makes it inconsistent
across different treatment days as illustrated in Fig. 1(a) and 1(b). In order to
address these challenges, many novel methods have been proposed these years.
The first category of methods is deformable model [1, 2]. The second category
is registration-based method [3, 4]. Recently, Li et al. [5] incorporated context
features into prostate segmentation and achieved promising results.

On the other hand, Sparse Representation based Classifier (SRC) [6] has
achieved the state-of-the-art results in face recognition. It represents a testing
sample as a sparse linear combination with respect to an over-complete dictio-
nary, which consists of training samples from all classes. Representation residue
with respect to each class is used to determine the class label of a testing sample.
However, the good performance of the traditional SRC depends on the assump-
tion that the training samples in each class are distinct from those in other
classes. In practice, especially in pixel-wise classification, different classes may
include very similar samples. To overcome this limitation, we propose a discrim-
inant dictionary learning technique to enhance the dissimilarity between classes.
Moreover, context features are incorporated into SRC to refine the prostate
boundary in an iterative scheme. Finally, a linear regression model is further
trained to predict the class probability based on the representation residues.
The proposed method has been evaluated on 230 CT images from 15 patients.
The experimental results show that our method can achieve promising results
and outperform other state-of-the-art prostate segmentation methods.

2 Methodology

2.1 Sparse Representation Based Classifier (SRC)

Given a dictionary D ∈ Rn×N and a sample y ∈ Rn, sparse representation
aims to find a sparse linear combination of dictionary elements in D for best
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representing y. Mathematically, the problem can be formulated as the following
minimization:

min
x

‖x‖0, subject to ‖y −Dx‖2 ≤ ε, (1)

where x contains the sparse linear coefficients and is usually called as sparse code
in the literature, and ε is the maximum allowable representation error. Although
solving (1) is a NP-hard problem, the solution can be well approximated by many
pursuit algorithms such as Basis Pursuit (BP) and Orthogonal Matching Pursuit
(OMP) [7]. In consideration of both efficiency and performance, we use OMP to
solve the sparse coding problem in this paper.

In the traditional SRC, the dictionary D is formed as a collection of training
samples from all classes:

D = [D1, D2, · · · , Di, · · · , DK ] = [d1,1,d1,2, · · · ,di,j , · · · ,dK,NK ], (2)

where Di is a sub-dictionary of class i that only contains training samples from
class i, di,j is the j-th training sample of class i, K is the number of classes
and NK is the number of training samples in class K. To classify a new sample
y, its sparse code x is first computed according to (1). Then the representation
residual vector ri with respect to class i is computed as:

ri = y −Dixi, (3)

where xi carries entries of x indexed by an index set, which contains indices of
columns in D belonging to Di. Finally, the new sample y is classified to the class
with the minimum ‖ri‖2.

2.2 Discriminant Sub-dictionary Learning

The traditional SRC method works well when there are no similar elements be-
tween sub-dictionaries. However, in many cases this assumption doesn’t hold. In
order to overcome this limitation, we need to build discriminant sub-dictionaries
whose elements are distinct from those in other sub-dictionaries. In this pa-
per, we combine feature selection with dictionary learning technique to learn a
discriminant sub-dictionary for each class. Here only the case of two classes is
illustrated since a voxel is either classified to object (prostate) or background
in the case of prostate segmentation. But this idea can be readily extended to
multi-class cases when combined with multi-class feature selection techniques.

Given both background and object training samples, we want to select the
topmost discriminant features that can enlarge the dissimilarities between train-
ing samples of two classes. Feature ranking based on Fisher’s Separation Criteria
(FSC) [10] is adopted in this paper to select the most discriminant features while
eliminate features that are similar in both classes.

After feature selection, background and object samples can be directly used
to form two sub-dictionaries. However, in practice the number of samples is
usually large. In consideration of both sparse coding efficiency and dictionary
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storage, we need to use dictionary learning technique to learn a compact rep-
resentation of training samples. In this paper, we adopt K-means as a way to
learn sub-dictionaries. Compared with many reconstruction-oriented dictionary
learning methods such as K-SVD [8] which don’t consider discriminability during
dictionary optimization, K-means can identify the individual clusters of differ-
ent classes and thus can better preserve the dissimilarity between background
and object class during dictionary learning. Therefore, it is more suitable when
combined with SRC in classification.

2.3 Boundary Refinement by Context Features

In order to accurately localize the prostate boundary, it is necessary to draw
more background and object training samples near the prostate boundary. How-
ever, these background and object samples are quite similar even after feature
selection basically for two reasons: First, these samples are spatially close and
sometimes next to each other. Second, prostate boundary in CT images is of ex-
tremely low contrast. To the best of our knowledge, no effective features which
can accurately localize the prostate boundary have been identified. Therefore,
even after performing discriminant sub-dictionary learning strategy, the SRC
method can still produce many classification errors along the prostate bound-
ary, which results in a zigzag boundary, as shown in Fig. 2(a).

Motivated by [5], we incorporate context features into SRC and propose an
iterative SRC classification scheme. For each voxel, its features include not only
local features but also context features taken at context locations as illustrated in
Fig. 1(c). Previous classification results at context locations are used as context
probability features which help guide the boundary refinement in the next clas-
sification iteration. Assume no prior information is available, we start with an
uniform probability map. These context features don’t help in the first iteration
since they are filtered out by feature selection. However, in the later classifi-
cation iterations, when the probability map becomes clearer and clearer, more
context features will be selected to guide the classification refinement. Usually
after several iterations, the prostate boundary becomes more refined as shown
in Fig. 2(c).

(a) (b) (c)

Fig. 2. The first, second and third column represents the results of the first, second
and third classification iteration, respectively
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2.4 Prediction by Residue-Based Linear Regression Model

The traditional SRC compares residual norms of different classes to determine
the class label of a testing sample. In such case, residues of different features are
equally treated. Usually a voxel is represented by the combination of different
types of features, the discriminabilities of individual features are different and
their contributions to classification are also different. Therefore, equally weight-
ing them in determining the class label limits the classification performance.
Besides, the traditional SRC is a hard classification method, which only assigns
class label to a new sample. In contrast, soft classification provides more quanti-
tative informaton, especially in the decision margin where the class membership
is unclear.

Motivated by these observations, a residue-based linear regression model is
trained to learn the contributions of different features in class probability pre-
diction. For each training sample, its background residual vector r0 and object
residual vector r1 are computed and stacked into a single vector r = [rT0 r

T
1 ]

T,
which is used together with its class label l ∈ {−1, 1} to train a linear regression
model m ∈ R2t, where t is the number of selected features for each sample. For
a new testing sample ynew , its object (prostate) class probability is computed
as:

p = g(
mTrnew + 1

2
), (4)

where rnew is the stacked residual vector of ynew and g(.) is defined as a piece-
wise function that maps any value outside [0, 1] to its nearest boundary value in
order to keep the predicted probability between [0, 1].

2.5 Iterative Prostate Segmentation by SRC

We believe patches repeat not only spatially but also longitudinally. Therefore, in
prostate segmentation, patches in the new treatment image likely have appeared
in the previous treatment images or the planning image. If we build two discrim-
inant patch-based sub-dictionaries for prostate and background using previous
images, for a new patch in the new treatment image, it tends to draw more
supports from the respective sub-dictionary in the sparse representation. Based
on the representation residues corresponding to each class, we can estimate class
probability of the voxel associated with this patch.

Our segmentation method consists of two stages, namely training stage and
classification stage. In the training stage, two sets of location-adaptive [5]
SRCs along two coordinate directions are learned using previous images of the
same patient, which take the variability of different prostate regions into account.
For each location-adaptive SRC, it only draws training samples from slices that it
is responsible for. Then, based on the training samples, discriminant features are
selected, two discriminant sub-dictionaries are constructed, and a residue-based
linear regression model is finally learned. All these three steps are used together
to classify all training slices and the class probabilities after classification are
used to update the corresponding context probability features of the training
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samples. After the training samples are updated, we can learn a new SRC for
the next classification iteration. The process is repeated until a specified number
of iterations have been reached.

In the classification stage, the middle slice along each of two coordinate
directions needs to be manually specified by users in order to shift the learned
SRCs to the new treatment image space for classification (Note that the auto-
matic middle slice identification method will be developed in our future work).
The classification results along two coordinate directions are fused to form a final
probability map. After classification is done, all previously segmented prostate
images of the same patient are rigidly aligned to the probability map of the new
treatment image and then majority voting strategy is adopted to segment the
prostate finally.

3 Experimental Results

Our dataset consists of 15 patients, each with more than 11 CT images, with
total 230 CT images. The resolution of each CT image is 1mm×1mm×3mm. The
expert manual segmentation results are available for each image to serve as the
ground truth. We use the first 3 images including the planning image to initialize
our method. As more treatment images are collected, only the latest 5 images
are used as training images, which account for the tissue appearance change
under radiation treatment. Two sets of location-adaptive SRCs are placed along
anterior-posterior (y) direction and superior-inferior (z) direction, respectively,
because slices along these two directions contain richer context information (e.g.,
pelvic bones) than slices along lateral (x) direction.

Before any operation is applied in the training stage, all previous treatment
images are rigidly aligned to the planning image based on the pelvic bone struc-
tures in order to remove the irrelevant whole-body motion. The same prepro-
cessing is also applied to the new treatment image before classification.

For each voxel, its features include both local appearance features and context
features. Context features have two types of features, namely context probability
features and context appearance features. Context probability features have been
introduced in the previous section. They are used to refine classification results
and updated in each iteration. In the experiment we only use 3 classification
iterations. Context appearance features are the same kinds of features as local
appearance features, but taken at context locations. 9 dimensional Histogram of
Oriented Gradient (HOG) [9] and 23 Haar features computed in a 21mm×21mm
local window are used as appearance features in this paper.

The box-and-whisker plot of the DICE measures and centroid distances along
three coordinate directions of our method are shown in Fig. 3. Fig. 4 visually
compares the segmentation results using residual norm comparison and residue-
based linear regression. It can be seen that in the beginning and ending slices
where the prostate is relatively small and difficult to accurately localize, the
proposed linear regression model performs better than the traditional residual
norm comparison. Four existing state-of-the-art prostate segmentation methods
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Fig. 3. Left-top figure shows the DICE measures of our method. Right-top, left-bottom
and right-bottom figures are centroid distances in lateral (x), anterior-posterior (y) and
superior-inferior (z) directions, respectively.

Fig. 4. Comparison of the segmentation results between linear regression and residual
norm comparison. Blue contours are the prostate boundaries manually delineated by
experts. Red and green contours are the segmentation results of the proposed method
with linear regression and residual norm comparison, respectively. This indicates that
our proposed method with linear regression achieves better results, especially in the
beginning and ending slices of the prostate.

[1–3, 5] are compared with our method. The mean and standard deviation of
DICE measures of our method is 0.912 ± 0.044 based on Fig. 3, which is better
than 0.820 ± 0.060 in [3], 0.893 ± 0.050 in [2] and 0.908 in [5]. The median DICE
measure of our method is 0.918, which is also better than 0.840 in [3] and 0.906
in [2]. The median probability of detection and false alarm of our method are
0.913 and 0.072, respectively, which are better than 0.840 and 0.130 reported in
[1], and 0.900 and 0.100 reported in [5]. Besides, we also compared the centroid
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distances. The mean centroid distances along lateral (x), anterior-posterior (y)
and superior-inferior (z) direction of our method in Fig. 3 are 0.06 mm, -0.07 mm
and 0.19 mm, respectively, which are much better than the respective centroid
distances of -0.26 mm, 0.35 mm and 0.22 mm reported in [3], and comparable
to the result of 0.18 mm, -0.02 mm and 0.57 mm in [5].

4 Conclusion

We have proposed a sparse representation based classificationmethod for segmen-
tation of prostate in CT images. Feature selection is combined with dictionary
learning technique to learn two discriminant sub-dictionaries which overcome the
limitation of the traditional SRC. Context features are further incorporated into
SRC to refine the classification results (especially the prostate boundary) in an
iterative scheme. A residue-based linear regression model is finally learned to in-
crease the classification performance and extend the traditional SRC from hard
classification to soft classification. Experimental results show that our proposed
method can achievemore accurate prostate segmentation results than other state-
of-the-art segmentation methods under comparison.
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Abstract. This paper presents a novel method for segmenting func-
tional and anatomical structures simultaneously. The proposed method
unifies domains of anatomical and functional images (PET-CT), repre-
sents them in a product lattice, and performs simultaneous delineation
of regions based on a random walk image segmentation. In addition,
we propose a simple yet efficient object/background seed localization
method, where background and foreground object cues are automati-
cally obtained from PET images and propagated onto the corresponding
anatomical images (CT). In our experiments, abnormal anatomies on
PET-CT images from human subjects are segmented synergistically by
the proposed fully automatic co-segmentation method with high preci-
sion (mean DSC of 91.44%) in seconds (avg. 40 seconds).

Keywords: Joint Segmentation, PET-CT, Random Walk, Object
Detection.

1 Introduction

Hybrid imaging modalities such as PET-CT and MRI-PET are in vogue since
they can achieve higher sensitivity and specificity than the component modal-
ities alone [1]. As a functional measurement, standardized uptake value (SUV)
is often used in Positron Emission Tomography (PET) imaging (See Figs. 1a-e).
However, SUVs alone are not enough in a PET-CT acquisition to diagnose,
characterize, and stage the disease, since anatomic boundaries of the corre-
sponding structure on Computed Tomography (CT) are also needed for this
calculation. As a result, diagnostic sensitivity and specificity achieved in hy-
brid imaging modalities (i.e., PET-CT) are higher than either modality alone.
All these processes require precise segmentations of both PET and CT images.
There are several reasons why region delineations need to be performed metic-
ulously and accurately in both CT and PET images. (1) errors in segmentation
can distort the SUV calculations by altering the region’s margins, (2) manual or
semi-automated mechanisms of segmentation can be inefficient and suffer from
unacceptable inter-observer variance, and (3) using CT for segmenting lesions
that are quantitatively measured on PET can overlook and exclude other im-
portant quantitative data such as texture features in PET images. Therefore, we
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aim to produce an automated, efficient, and reproducible segmentation method
that simultaneously unifies anatomic and functional information. The proposed
method can be especially useful in quantifying lesions characterized by fuzzy
boundaries and low contrast from surrounding normal structures.

Related Works: Except for a few studies [2, 3], radiotracer uptake regions are
usually delineated manually in clinical routines. Fixed and adaptive threshold-
ing and region based segmentation methods (i.e., fuzzy c-means, region growing,
and watershed) are also used to determine boundaries [4]. However, segmen-
tations of PET images in these studies are formulated without incorporating
corresponding anatomical information (i.e., CT), and the accuracy, robustness,
and reproducibility of these methods are suspect in more difficult cases.

A joint PET-CT image segmentation method was proposed recently in [2],
where a Markov Random Field (MRF) algorithm was formulated on a graph.
The method requires user interaction, and it was used only in images from head-
neck with large tumors. Its performance in small uptake regions was not assessed.
Another problem was due to the potentially unrealistic assumption that there is
a one-to-one correspondence between PET and CT delineations. For example,
lesions may have smaller uptake regions (on PET images) compared to outlines
of lesions in CT images because of functional or metabolic characteristics of the
tumor. In this study, we consider these issues and propose a co-segmentation
method which is driven by the uptake regions from PET in finding the correct
anatomical boundaries in the corresponding CT images. Our algorithm also uses
a novel automatic background/foreground seed localization technique to make
the whole system fully automatic.

2 Methods

Graph theoretic segmentation methods represent space elements (spels for short)
of an image as a graph with spels as its nodes and edges defined by spel adja-
cency with cost values assigned to edges. These methods partition the nodes into
two disjoint subsets representing the object and background. This process can be
accomplished by finding the minimum cost/energy among all possible cut scenar-
ios in the graph (as in graph-cut algorithms) or optimizing some sort of discrete
energies combining boundary regularization with regularization of regional prop-
erties of segments [2]. However, a common problem with these is the “small cut”
behavior. As a possible solution to this behavior, the random walk algorithm is
more efficient than the conventional graph-cut algorithms in terms of handling
ambiguities among object boundaries (i.e., weak edges among objects) and more
accurate segmentations in noisy and low contrast images [5]. Since PET images
are low resolution, and weak boundaries often exist in CT images, random walk
segmentation is a natural choice for the simultaneous segmentation of PET and
CT images. We reformulate random walk as a co-segmentation algorithm for de-
lineating PET and CT images simultaneously and providing globally optimum
segmentation results. To create a fully automated framework, we propose an au-
tomatic seed localization system by identifying interesting uptake regions (IUR)
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from PET images, using these regions to identify foreground and background
seeds, and propagating the detected background and foreground seeds to the
corresponding CT images.

2.1 Automated Random Walk Co-segmentation

Let a connected and undirected graph G be represented as a pair G = (V,E)
with vertices/nodes v ∈ V and edges e ∈ E ⊆ V x V . Conventionally, a node
vi is said to be a neighbor of another node vj if they are connected by an edge
eij , which is weighted by wij . Since the graph is assumed to be connected and
undirected: wij = wji. By following the recommendation in [5], we construct the
weighting functions for PET and CT image modalities separately as

wPET
ij = exp(−βPET (IPET

i − IPET
j )2), (1)

wCT
ij = exp(−βCT (ICT

i − ICT
j )2). (2)

where Ii indicates the intensity at spel i, and β represents a weighting factor.
Note that PET and CT images are obtained from the same scanner in the
same scanning session; therefore they are registered so that there is a one-to-one
spel correspondence between them. Conventionally, the desired random walker
probabilities have the same solution as the combinatorial Drichlet problem [6]:

D[x] =
1

2
xTLx, where x denotes the probability (potential) assumed at each

node [5], and L represents combinatorial Laplacian matrix. For each of the PET
and CT modalities, this matrix can be formulated as:

LX
ij =

⎧⎨⎩
dXi if i = j
−wX

ij if vXi and vXj are adjacent nodes
0 otherwise.

(3)

where X is either PET or CT, and di is the degree of a vertex for all edges
eij incident on vi and is defined as: di =

∑
eij∈E w(eij). Moreover, vPET and

vCT are the nodes pertaining to the graph constructed on PET and CT images,
respectively.

Simultaneous segmentation of PET and CT images on the graph requires
a special representation of both data without losing information. From graph
theory, it has been well known that given two graphs and their product as an
outcome graph, an edge exists in the product graph if and only if an edge exists
in both graphs [6]. Defining a special graph combining these two graphs, or
a hypergraph, is a natural choice to satisfy this property. Given two graphs
GCT = (V CT , ECT ) and GPET = (V PET , EPET ), without loss of generality, we
define our special product graph as Gfuse = (V fuse, Efuse). Note that V CT and
V PET have the same number of spels due to one-to-one spell correspondence.
Gfuse has an important property that an edge exists in Efuse if and only if the
corresponding nodes are adjacent in both GCT and GPET . Thus,
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V fuse = {(vCT
i , vPET

i ) : vCT
i ∈ V CT ∧ vPET

i ∈ V PET },
Efuse = {((vCT

i , vPET
i ), (vCT

j , vPET
j )) :

(vCT
i , vCT

j ) ∈ ECT ∧ (vPET
i , vPET

j ) ∈ EPET }.
(4)

We use the product graph Gfuse to segment objects simultaneously instead of
using separate implementation of GCT and GPET . Since the critical points of
D[x] are assumed to be minima, finding these minima points yields the solution
for the random walk probabilities. This requires an updated definition of the
combinatorial Laplacian matrix on the product graph. Namely, the combinatorial
Laplacian matrix (Lfuse) of the product graph Gfuse is defined as Lfuse =
(LCT )α ⊗ (LPET )θ, for some constants 0 ≤ α, θ ≤ 1. Meanwhile, the initial
probability distribution xfuse of the product graph is xfuse = (xCT )ζ⊗(xPET )η,
where ζ and η are used to optimize the initial probability distributions subject
to the constraint 0 ≤ ζ, η ≤ 1, and xCT and xPET denote initial probability
distributions (i.e., priors) over nodes of GCT and GPET . Performing a random
walk on the product graph Gfuse is equivalent to performing a simultaneous
random walk on the graphs GCT and GPET [6]. Therefore, the combinatorial
formulation of Drichlet integral can be re-written as

D[xfuse] =
1

2
(xfuse)TLfusexfuse =

1

2

∑
eij∈Efuse

wfuse
ij (xfusei − xfusej )2, (5)

where a combinatorial harmonic function of xfuse, satisfying the Laplace equa-
tion �2xfuse = 0, minimizes Eqn. 5. We can decompose Eqn. 5 by considering
prior probabilities and Laplacian matrices of labeled and unlabeled nodes sepa-
rately as

D[xfuseu ] =
1

2
[(xfuse)Tl (x

fuse)Tu ]

[
Lfuse
l B
BT Lfuse

u

][
xfusel

xfuseu

]
(6)

where B corresponds to the sub-matrix in the matrix decomposition of Lfuse.
Given the fact that the combinatorial Laplacian matrix Lfuse is positive semi-
definite, critical points of D[xfuse] are only the minima, hence, differentiating
D[xfuse] with respect to prior probability distributions of unlabeled nodes xfuseu

and finding the minima yields Lfuse
u xfuseu = −BTxfusel , where Lfuse

u and B are

known, and xfusel is the prior for labeled node. Solving this equation for every
xfuseu completes the binary labeling problem of co-segmentation on the graph
Gfuse.

2.2 Automated Seed Localization

The goal in seed localization is to define the foreground and background regions
in both PET and CT images. An overview of the proposed automated back-
ground and foreground seed localization is sketched in Fig. 1(f-i). Briefly, we
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Fig. 1. Even though intensity profiles in CT images (b) show similar characteristics,
SUV from PET images (a) might further characterize the nodules. Radioactivity uptake
regions are shown in small nodules in (a and c)(and details of fused image (c) are
shown in d and e). The concepts of interesting uptake region (IUR) detection and
background/foreground seed localization are sketched in (f-i).

partition the image into a set of regions such that some of those regions (i.e.,
IURs) are more similar to each other than to those of other regions. We ac-
complish this selection procedure by defining an encoder function c(.), which is
nothing but a threshold interval for PET images:

c(λ) =

{
1, λ ∈ [SUV global

max /N, SUV global
max ],

0, otherwise,
(7)

where (N > 1) ∈ R is free parameter, and each region identified by the encoding
function is considered as IUR. Once IURs are identified, we set the number of
disconnected IURs as a hard constraint (i.e., number of objects to be segmented)
on seed localizations. The seed localization procedure is as follows: (1) Both CT
and PET images are median filtered to smooth the images. (2) We find the skin
boundary from CT scan by using simple mathematical morphology (i.e., a few
times opening followed by closing) and incorporate this information into the cor-
responding PET image (black outlines in Fig. 1f). (3) We find the IURs inside
the body region and pertaining to the interval of [SUV global

max /N, SUV global
max ] by

using Eqn. 7 (Fig. 1f). (4) For each IUR, the spels with the maximum SUVs
(SUV local

max ) of that particular IUR are marked as foreground seeds (Fig. 1g).
Note that maximum SUV of one particular IUR (i.e., SUV local

max ) does not neces-
sarily equal SUV global

max . (5) At each spel, marked as a foreground seed, we explore
its neighborhood through an 8-connectivity graph labeling algorithm [6]. For all
8-directions starting from each foreground seed, we find locations of the very
first spels with values less than or equal to the SUV global

max /N . Those spels are
marked as background seeds. Fig. 1h and i illustrate this procedure for a par-
ticular foreground seed. (6) We add additional background seeds into the spels
lying in the spline connecting background seeds determined in the previous step
(Fig. 1i). Fig. 2 shows automatically located seeds with (b) and without (a)
additional background seeds. We find step 6 necessary to avoid any leakage in
delineation of the abnormal anatomy in CT images. Fig. 2c shows an example of
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(a) (b) (c) (d)

Fig. 2. (a) Automatically located background (red) and foreground (blue) seeds. (b)
Additional background seeds are obtained by connecting initial background seeds using
b-splines. (c) Ground truth (black) and random walk segmentations using only a limited
number of background seeds. (d) The effect of the proposed seed localization method
(with additional background seeds) in avoiding possible leakages.

the leakage occurring due to the close proximity of normal and abnormal tissues
with similar intensity profiles while the effect of having additional background
seeds on segmentation is shown in Fig. 2d.

3 Results

Data and Evaluation Metrics: A retrospective study involving 15 patients
with PET-CT scans was performed. The resolution of PET scans is limited to
spels of size 4mm x 4mm x 4mm. The patients considered have infectious lung
disease abnormality patterns including ground glass opacities, consolidations,
nodules, tree-in-bud, lung tumors, and non-specific lung lesions. While PET
scans consist of more than 300 slices per patient, CT scans have the same number
of slices but different in-plane resolution with 0.98 mm x 0.98 mm x 1.5 mm spel
size. Dice similarity coefficients (DSC) and Hausdorff distance (HD) are used to
evaluate the accuracy of segmentations. High DSC and low HD values indicate
goodness of the image segmentation method. The ground truth segmentations
were obtained from manual delineations of two expert interpreters on PET-CT
data, and average DSC values were reported.

Qualitative and Quantitative Evaluation: Fig. 3 shows segmentation ex-
amples. Co-segmentation of PET-CT images (blue), segmentation of CT images
(green), and PET images (yellow) are shown in first, second, and third columns,
respectively. The fourth column reveals all segmentations overlaid together for
comparison. In all images, ground truth segmentations are shown in black. It can
be seen that the co-segmentation results are superior to delineation using only
CT and only PET images, and agree well with the ground truth delineations.
Fig. 4 reports the average DSCs and HDs of delineations over 15 subjects and
comparison to the method presented in [2]. Note that co-segmentation on PET-
CT images is superior in accuracy of segmentations to other methods.
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Fig. 3. Two different segmentation examples of uptake regions are shown in each col-
umn. First column: co-segmentation (blue) and ground truth (black) are overlaid. Sec-
ond column: ground truth (black) and segmentation from PET only (yellow). Third
column: ground truth (black) and segmentation from CT only (green). Fourth column:
all segmentations and ground truth are overlaid together.

Fig. 4. Mean DSCs and HDs are enlisted. DSC ratios: PET Only: 83.23 ∓ 1.87, CT
Only: 87.88 ∓ 2.04, Han et al.: 89.34 ∓ 1.95, PET-CT cosegm.: 91.44 ∓ 1.71. HDs
ratios: PET Only: 5.25∓ 0.53, CT Only: 4.82 ∓ 0.38, Han et al: 4.65 ∓ 0.73, PET-CT
cosegm.:4.47 ∓ 0.54.

Training, Parameter Selection, and Computational Issues: First, we up-
sampled the PET images so that the PET and CT images have the same size,
and each spel in PET has its correspondence in CT in the same spatial coor-
dinate. We used a training set consisting of PET-CT scans of 5 patients (dif-
ferent from the test data set) to train parameters of the segmentation process
explained below. In defining the product graph, we weight the corresponding
combinatorial Laplacian matrices (LCT and LPET ) with α and θ and the initial
probability distributions xCT and xPET with ζ and η, respectively. We noted
that multiplication and summation of Laplacian matrices do not have signifi-
cant effects on the segmentation results if ζ and η are set to 1. The best possible
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combination of (α, θ) is found to be (0.2, 0.8) when ζ = η = 1. Other parame-
ters were set to: σPET = σCT = 1, βPET = 0.3, and βCT = 0.7. Lastly, based
on our experimental results and empirical observations, we set a slightly tighter
bound on SUVmax/N by setting N = 2 compared to the conventional clinical
usage where N is usually 2.5. The combined running time for detecting all seeds
and delineating the corresponding binary labeling problem per slice does not
exceed 2 seconds at maximum, and averages 0.8 seconds. The maximum number
of slices showing high tissue activity does not exceed 50, therefore all detection
and segmentation procedures end within an average of 40 seconds (using an Intel
(R) workstation with Core(TM) i7 CPU 930 running at 2.80 GHz with 12 GB
RAM). The proposed algorithm can be run in either pseudo-3D or 3D directly.

4 Discussion and Conclusion

We proposed a joint-segmentation framework for anatomical and functional im-
ages. Our approach differs from the approach reported in [2] in the following man-
ners: (1) We propose a completely automated method of segmentation, therefore
user-interaction is not required. As a result, the proposed method is faster and
reproducible. (2) We do not have constraints about one-to-one correspondence
of abnormal anatomy in PET and CT images, as it is possible that a tumor can
reveal increased radioactivity uptake only in some areas inside the tumor region,
or it may be possible for an uptake region to enclose both normal and abnormal
anatomy in CT scans. Instead, it is semantically more meaningful and reliable to
drive the segmentation of both images based on the guidance of PET images. (3)
Although MRF based segmentation of images on graphs is shown to be useful in
many applications, incorporating an additional energy term, similar to the one
proposed in [2], may not be the best solution for avoiding the leakage in CT and
PET delineations. In contrast, the proposed method is more powerful in terms
of handling image noise and low contrast and therefore more suited to PET-
CT segmentations. Another advantage of our method is the special graph model
constructed by a product graph via taking into account the anatomical and func-
tional image features to derive algorithms for accurately finding the most likely
IUR boundaries. Initial results on 15 clinical PET-CT images (i.e., thousands
slices) show high accuracy in delineations by the proposed method. Furthermore,
the proposed method considerably reduces the time for manual segmentations.
As an extension of this work, we aim to generalize the proposed co-segmentation
method for MRI-PET and multi-fusion MRI-CT-PET segmentations.
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segmentation Method. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS,
vol. 6801, pp. 245–256. Springer, Heidelberg (2011)



Co-segmentation of Functional and Anatomical Images 467

[3] Montgomery, D.W., et al.: Fully automated segmentation of oncological PET vol-
umes using a combined multiscale and statistical model. Medical Physics 34(2),
722–736 (2007)

[4] Jentzen, W., et al.: Segmentation of PET Volumes by Iterative Image Thresholding.
J. Nucl. Med. 48, 108–114 (2007)

[5] Grady, L.: Random Walks for Image Segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28(11), 1768–1783 (2006)

[6] Harary, F.: Graph Theory. ABP Publishing (1994)



Using Multiparametric Data with Missing

Features for Learning Patterns of Pathology

Madhura Ingalhalikar1, William A. Parker1, Luke Bloy1,
Timothy P.L. Roberts2, and Ragini Verma1

1 Section of Biomedical Image Analysis, University of Pennsylvania,
Philadelphia, PA, USA

{Madhura.Ingalhalikar,Ragini.Verma}@uphs.upenn.edu
2 Lurie Family Foundations MEG Imaging Center, Department of Radiology,

Children’s Hospital of Philadelphia, Philadelphia, PA, USA�

Abstract. The paper presents a method for learning multimodal clas-
sifiers from datasets in which not all subjects have data from all modal-
ities. Usually, subjects with a severe form of pathology are the ones
failing to satisfactorily complete the study, especially when it consists
of multiple imaging modalities. A classifier capable of handling subjects
with unequal numbers of modalities prevents discarding any subjects, as
is traditionally done, thereby broadening the scope of the classifier to
more severe pathology. It also allows design of the classifier to include
as much of the available information as possible and facilitates testing of
subjects with missing modalities over the constructed classifier. The pre-
sented method employs an ensemble based approach where several sub-
sets of complete data are formed and trained using individual classifiers.
The output from these classifiers is fused using a weighted aggregation
step giving an optimal probabilistic score for each subject. The method
is applied to a spatio-temporal dataset for autism spectrum disorders
(ASD)(96 patients with ASD and 42 typically developing controls) that
consists of functional features from magnetoencephalography (MEG) and
structural connectivity features from diffusion tensor imaging (DTI). A
clear distinction between ASD and controls is obtained with an aver-
age 5-fold accuracy of 83.3% and testing accuracy of 88.4%. The fusion
classifier performance is superior to the classification achieved using sin-
gle modalities as well as multimodal classifier using only complete data
(78.3%). The presented multimodal classifier framework is applicable to
all modality combinations.

1 Introduction

Pattern classification techniques are generating increasing interest in the neu-
roimaging community as they are powerful in learning the patterns of pathology
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from a population, assign a probabilistic score to each subject which charac-
terizes pathology on an individual basis and aid in assessing treatment in con-
junction with other clinical scores [1,2]. The earlier single modality [1,2] studies
have given way to multimodality classifiers that can potentially aid in exploring
additional dimensions of pathology patterns and provide a rich multiparametric
signature or profile with increased diagnostic accuracy [3,4]. However, none of
these studies account for a challenging problem plaguing clinical studies, that
data from some modalities could be missing, as the subjects do not complete
the entire study due to enhanced pathological severity or scanner issues and
noise that force the studies to partially discard the data. Removing subjects
with incomplete datasets from the study (as is the approach adopted by the tra-
ditional multimodal classification studies) reduces the already small sample size
and diminishes the information content in the dataset, thus making the classi-
fier decision unreliable since it does not account for the pathology patterns from
the subjects who were unable to complete the clinical study due to their more
severe form of pathology. Further, it limits the dimensionality of the multimodal
approach since the probability of a subject being excluded increases with the
number of modalities attempted.

In statistical theory, missing value problems are addressed using various strate-
gies based on the patterns in missing data [5]. For randomlymissing data, imputa-
tion techniques that substitute or fill in the missing items are commonly used [5,6].
Imputation methods can include substitutions like mean or median of the feature
or multiple substitutions which replace each missing value with a set of plausible
ones, reflecting the underlying uncertainty in the data [6]. Thus, the multiple im-
putation technique is considered as one of the effective methods to handle partial
data. Other well-established strategies to deal with missing data involve model
based procedures like expectation maximization (EM) which potentially recover
unknown values from similar samples. Finally, simple decision tree classifiers have
also been utilized as they avoid the missing data completely [6].

However, most of the above methods perform substitution in some way or the
other, which usually interpolates and may create spurious data and thus cannot
be completely trusted when the percentage of missing data is high (≈30% and
above). Moreover, if the missing data is associated with an extreme in the patho-
logic condition, which is widely true, interpolation would become extrapolation
making the data highly unreliable. Finally, these methods just attempt to fill
in and thus do not directly take the classification problem into consideration
[7]. Recent machine learning literature has shown ensemble classifiers to be an
effective way to accommodate sparse data by using weak classifiers and then
boosting the performance by combining the output [7], [8].

In this paper we present an ensemble based classification framework that has
the potential to handle spatio-temporal multimodal data with a high percentage
of missing values in a petite sample size. The method learns patterns of pathology
on different subsets created from the original data and aggregates the output from
all the classifiers using a weighting strategy, giving an optimal probabilistic score
for each subject. The method considers subjects with complete or incomplete data
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in training the classifier as well as in testing, without filling in the missing values.
We apply this method on a populationwithAutism SpectrumDisorder (ASD) and
typically developing controls (TDC), where the pathology can be investigated by
creating spatio-temporal classifiers that utilize the spatial features from diffusion
tensor imaging (DTI) of white matter and the temporal features computed from
magnetoencephalography (MEG) data increasing the classification accuracy over
the single modality classifiers.

2 Methods

We use ensemble classifiers, i.e. a pool of classifiers, each trained using a subset
of the original dataset [7]. The output from all the classifiers is fused together to
boost the overall performance. This fusion is a weighted aggregation based on
the classification accuracy of each classifier as well as the similarity between the
features used in the training and the testing set. We successfully demonstrate
the applicability of this method on a spatio-temporal dataset derived from MEG
features and DTI features.

2.1 Classification of a Dataset with Missing Values

Consider a dataset with n subjects (x1, x2, .., xn) and m features. Each subset
(S) is defined by a collection of subjects (< n) that have complete data for a
specific set of features s(s ≤ m). Subsets are formed such that the total number of
subsets t encompass all the subjects and the features from the original dataset.
The decision of how many subsets to create depends upon what features are
missing in the training and testing samples. In the case where all the features
have some part missing, 2m − 1 subsets can be created.

A classifier model (e.g. LDA, SVM etc) is trained over each subset resulting
in t outputs. Thus, for a subject xi, the classification output can be formulated
as (O(xi, S1), .., O(xi, St)) resulting from t subsets. At the next stage, all the
outputs from individual classifiers are combined to boost the overall performance.
While fusing the outputs it is important to note that some subsets could be
more valuable than others, depending on the subject under testing. Therefore,
in the aggregation stage the final output for a subject is given by the weighted
combination of the subset outputs [7]. For example, for a subject xtest under
testing the final output is given by 1.

Oagg(xtest) =
1∑

i
1

ϕi,xtest

t∑
i=1

1

ϕi,xtest

O(xtest, Si) (1)

In 1, ϕi,xtest is the expected error of the classifier (given by equation 2) for subset
Si which depends on the general accuracy of the classifier for Si as well as the
number of features used in the classifier.

ϕi,xtest =
1

ηxtest

∑
x∈training

d(x, xtest)ϕi,x (2)
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where

d(x, xtest) =

√
‖x− xtest‖2f(sTxKsxtest) (3)

ηxtest =
∑

x∈training

d(x, xtest) (4)

ϕi,x = (O(x, Si)− Y (x))2f(sTKsx) (5)

The training accuracy of each classifier is accounted via ϕi,x in equation 2. ϕi,x is
the expected error for a subject under training given by equation 5, where Y (x)
is the known label and O(x, Si) is the output of subset Si for a training subject
x. The d(x, xtest) term in equation 2 takes into account the distance between two
samples. The similarity between the feature space of the subset and the subject
is given by function f in equations 3 and 5 where K is a diagonal matrix that
weighs the features based on their information content [7]. Here we define f as
f(v) = 1/v, a non-increasing function, accounting for the similarity term as well
as the feature ranking.

2.2 Classification Using MEG+DTI Features

Feature Extraction. In this study, we consider 3 categories of features. These
features are associated primarily with language impairment in ASD, but the
framework is applicable to any set of MEG-DTI features. The features used in
this study are: (i) the latency of auditory evoked neuromagnetic field 100ms
component called M100 [9], (ii) the latency of magnetic mismatch field (MMF),
which is a response component reflecting detection of ‘change’ in the auditory
stream [10], and (iii) Fractional anisotropy (FA) and mean diffusivity (MD)
measures from 37 ROI’s created by a normalized cuts clustering method [11] in
WM areas of brain associated with language (figure 1), providing 74 values.

Feature Ranking in DTI. In the subsets that contain DTI as a feature, we
perform feature ranking on the 74 DTI attributes. This step provides us with
attributes that most contribute to the patient-control classification and aids in
minimizing the classification error. To find a compact discriminatory subset of
features, we choose a ranking and selection method known as the signal-to-noise
(s2n) ratio coefficient filter [12]. For the jth DTI attribute vector dtij and class
labels Y , the signal to noise ratio is given by equation 6. In this equation, μ(y+)
and μ(y−) are the mean values while σ(y+) and σ(y−) are the variances for class
y+ and y− respectively. Based on these s2n coefficients, the features are ranked
and a subset of the top ranked features is implemented in the classification.

s2n(dtij, Y ) =
μ(y+)− μ(y−)

σ(y+) + σ(y−)
(6)

Training, Cross Validation and Testing. We have created a generalized
framework; therefore, any kind of classifier (e.g. SVM, QDA etc.) would work in
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this ensemble setup. We implement a simple linear discriminant analysis (LDA)
classifier on each of our subsets as the aim here is to demonstrate that incorpo-
rating missing data from our multimodal features aids in classification.

Since our missing data is spread over all three features, we use total of 7 subset
combinations ( M100, MMF, DTI, M100+DTI, MMF+DTI, MMF+M100 and
MMF+M100+DTI). If a subset contains DTI as a feature, then s2n ranking is
performed only on the DTI features. The number of top ranked DTI features to
be retained in the classification process is based on the minimum cross valida-
tion error computed from the error plot that is constructed by using different
number of features in the cross validation [12]. The ranking matrix K defined in
section 2.1 is set to identity, implying that M100, MMF and DTI provide equal
information.

We compute a probabilistic abnormality score for each subject using a 5-fold
cross validation on the training data which is permuted 100 times for general-
ization of the folds. Finally, the trained classifier framework is applied to test
data with missing values.

3 Results

Dataset and Preprocessing. Our dataset consisted of 138 subjects (42 TD
and 96 ASD), out of which 55 subjects had complete data while others had some
feature missing (60.1% subjects with partial data). 30% of subjects were missing
MMF, 15.7% were missing M100 and 38% were missing DTI. We randomly
picked 112 subjects (51 complete and 61 subjects with partial data, making
54.4% missing data) for training and the other 26 (4 complete and 22 partial
data) as test data.

The MEG recordings were performed using a CTF 275-channel biomagne-
tometer with the following protocol: (i) binaural auditory presentation of brief
sinusoidal tone stimuli at 45dB SL. M100 latency was determined from the source
modeled peak of the stimulus-locked average of 100 trials of each token (ii) bin-
aural auditory presentation of interleaved standard and deviant tone and vowel
tokens (/a/, /u/). Mismatch field (MMF) latency was determined from the sub-
traction of superior temporal gyrus (STG) source-modeled responses for each
token as deviant vs. standard. The DTI data were acquired on Siemens 3T

Fig. 1. Figure displays the ROI’s in which mean FA and MD were used in the classifier.
These ROI’s were computed using normalized cuts algorithm in the areas associated
with language.
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Fig. 2. Bar chart comparing the accuracies of 4 different classifiers. The performance
of the fusion method becomes superior with more missing data. Multimodal classifiers
perform better than single modality classifiers in all the cases. The x-axis displays
the percentage of missing data starting with 51 complete subjects and then randomly
adding 15 subjects with missing data in each case until all the subjects with missing
data were added (total 112 subjects) in the last case.

VerioTM scanner using the Stejkal Tanner diffusion weighted imaging sequence
(2mm isotropic resolution) with b=1000 mm/s2 and 30 gradient directions.

The mean scalar features (FA and MD) from DTI were computed in each
of the 37 ROIs (figure 1). For this initially, language related WM ROI’s (supe-
rior temporal white matter (STWM), inferior and superior longitudinal fasciculi
(SLF, ILF), inferior fronto-ocipital fasciculus (IFOF)) were derived from a stan-
dard atlas called EVE [13]. The size of these ROI’s is large enough to smooth
out the effect of mean FA and MD. Therefore, we implemented a normalized
cuts algorithm [11] that was based on a variance threshold computed over the
DTI images to divide these ROI’s into smaller regions with homogeneous WM.

Training, Cross Validation and Testing. Using 5-fold cross validation, we
computed the classifier score for each subject in training. For our dataset, the
top 15% DTI features were employed based on their optimal performance in
the cross-validation of DTI classifier. Figure 2 shows a bar chart of training
accuracies for classifiers with only DTI, only MEG (MMF and M100), DTI
and MEG with deletion of incomplete data and DTI and MEG with the fusion
approach. When only the subjects with complete data (N=51) were considered,
the classifier performed with only 78.3% accuracy, while when using the whole
sample (N=112), including those with missing data, the accuracy increased to
83.3%.

Out of the 7 subset classifiers, other than the classifier with all 3 features, the
individual MMF classifier (77.7%) and the MMF+DTI classifier (79.4%) added
to the overall discrimative power. Individual DTI classifier performed with an
accuracy of ≈75%, higher than the individual M100 classifier (≈70%), suggesting
that combining modalities performed better (note that the number of subjects in
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(a) (b)

Fig. 3. (a) ROC curve for classifier with complete data (51 subjects) and ROC for
classifier with 54.4% missing data (112 subjects). (b) ROI’s that we frequently selected
by the DTI feature selection technique in the 5-fold classification.

each classifier were different). The ensemble framework gains from the diversity
of the subset classifiers, boosting the overall performance.

Figure 3(a) displays the receiver operating characteristic (ROC) curves for the
cases with complete data (51 subjects) and missing data based (112 subjects)
on the 5-fold validation. The area under curve for the first case was 0.73 that
increased to 0.82 in the second case. Finally, we classified the 26 subjects reserved
as testing samples, on the fusion classifier trained on the 112 subjects. The
testing accuracy was 88.5% where 100% a (4/4) on subjects with complete data
and 86.4% (19/22) subjects with partial/missing data were classified correctly.

All the brain regions employed to extract DTI features are specific to language
impairment in ASD. The feature selection ranks these regions in each of the cross-
validation loop suggesting that the selected regions have more discriminative
power. The most frequently selected features (in the 5-fold validation) via s2n
ranking scheme are shown in figure 3(b). These mainly include right SLF and
right and left STWM. Other regions like left SLF were also involved in the 5-fold
classification, but were not selected very frequently.

4 Conclusion

We have presented a classification technique that can build classifiers on multi-
modal data with missing modalities/features. We applied it to a problem involv-
ing spatio-temporal (MEG and DTI) data with features that were associated with
language abnormalities in ASD. When multiple modalities are utilized within a
classification framework, the aggregate output for each subject can potentially
define a more comprehensive quantification of pathology than when used individ-
ually. Such an approach necessitates a means for handling subjects with incom-
plete data, such as presented here. Our ensemble approach demonstrated superior
performance when compared with those utilizing the smaller complete samples,
suggesting that utilizing the subjects with incomplete data was advantageous to
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correctly learning the patterns of difference. The internal DTI feature ranking
pointed out the regions that were responsible for language impairment in ASD
while the subset classifiers in the ensemble provided insight into the relative con-
tributions of DTI and MEG to classification.

In large studies that involve multimodality imaging data together with psycho-
logical scores, genomic data etc.,a high percentage of missing data is expected.
Our generalized framework can be readily applied to such problems and will
have a high impact.
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Abstract. Diffusion imaging, through the study of water diffusion, al-
lows for the characterization of brain white matter, both at the popula-
tion and individual level. In recent years, it has been employed to detect
brain abnormalities in patients suffering from a disease, e.g. from mul-
tiple sclerosis (MS). State-of-the-art methods usually utilize a database
of matched (age, sex, ...) controls, registered onto a template, to test for
differences in the patient white matter. Such approaches however suf-
fer from two main drawbacks. First, registration algorithms are prone
to local errors, thereby degrading the comparison results. Second, the
database needs to be large enough to obtain reliable results. However,
in medical imaging, such large databases are hardly available. In this
paper, we propose a new method that addresses these two issues. It re-
lies on the search for samples in a local neighborhood of each pixel to
increase the size of the database. Then, we propose a new test based
on these samples to perform a voxelwise comparison of a patient image
with respect to a population of controls. We demonstrate on simulated
and real MS patient data how such a framework allows for an improved
detection power and a better robustness and reproducibility, even with
a small database.

1 Introduction

Diffusion weighted imaging is an MRI modality that provides information about
water diffusion within tissues. It has therefore gained much interest for the study
of brain white matter architecture. In particular, it may be utilized for the de-
tection of structural differences related to a disease. Reported studies on diseases
usually fall within two categories: (i) group comparisons between a population
of healthy subjects and a group of patients suffering from the disease and (ii)
comparison of one patient to a set of healthy controls. The former aims at char-
acterizing the overall course of a disease while the latter focuses on detecting its
early signs and, possibly, its future evolution.

Both approaches are of great interest to understand a disease. In this work,
we are interested in diffusion imaging for multiple sclerosis (MS). MS is a de-
myelinating disease, causing both lesions visible on conventional MRI and diffuse
damage to the brain white matter architecture that may be visible in diffusion
imaging [1]. Having a robust detection of that diffuse damage for a specific pa-
tient is crucial as it could help to predict how the disease will evolve in time,
and potentially allow to adapt the treatment.

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 476–484, 2012.
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Recent works on the comparison of diffusion images have first focused on scalar
values extracted from the diffusion tensor, such as mean diffusivity (MD) or frac-
tional anisotropy (FA). For example, Filippi et al. [2] presented a study on manu-
ally defined regions of interest demonstrating an MD increase and an FA decrease
in specific regions for MS patients brains. However, utilizing only a scalar value
may discard a large part of the tensor information and decrease the precision of the
comparison. To overcome this problem, several groups have proposed methods to
utilize the full tensor either for population comparison (Lepore et al. utilized the
Hotelling’s T 2 test on tensors for HIV patients [3], Whitcher et al. [4] the Cramers
test on tensors), or for patient to group comparison (Commowick et al. [5]). These
works have demonstrated that a test based on the full tensor information yields
more precise comparisons. Finally, when high quality data is available (HARDI
acquisitions), one may now consider higher order models such as orientation dis-
tribution functions (ODFs) to get improved sensitivity in crossing fibers regions
where the diffusion tensor performs poorly [6].

Independently of their strengths and weaknesses, comparison methods usu-
ally rely on a parametric or permutation statistical test. Such approaches often
require large databases either to ensure that the distribution of the test statistic
matches the hypothesized one or to make the permutation test data indepen-
dent. However, in medical imaging studies, databases are usually small due to
the difficulty to recruit patients and volunteers, and they may be even smaller
when parameters such as age or sex must match between the control database
and the patients. In those cases, the chosen statistical test may become erroneous
and generate either false positive or false negative detections.

In addition, all automatic approaches need a common reference frame that is
often constructed from the healthy subjects by means of non linear registration
(so called atlas construction [7]). However, such registration methods are not
perfect and may be prone to errors due to noise and artifacts. Such errors may
further corrupt the comparison performance.

To tackle these issues, we propose a new methodology for the robust detec-
tion of white matter differences at a patient level. It is based on ideas recently
introduced for non-local means denoising [8] and segmentation [9], adapted for
a patient-to-group comparison of diffusion models that can be represented as
vectors in a vector space (e.g diffusion tensors or ODFs). We present in Section
2 the overall comparison method. We then apply this new method to simulated
data and real data of multiple sclerosis patients demonstrating higher accuracy
and reproducibility for differences detection over state-of-the-art methods.

2 Non-Local Means for the Comparison of Diffusion Data

In the following, we assume that a database ofM images Im has been constituted,
i.e. all these images have been non linearly registered to a common reference
system, and that we are interested in comparing voxel by voxel an image T to
the reference database. We propose an algorithm relying on the non-local means
framework [10] optimized by Coupé et al. for medical image denoising [8] and
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segmentation [9]. For each point x of T , we define a patch B(x) (half size h)
around it and follow these main steps:

– For each image Im, search for patches Bm(xj) similar to the patch B(x) of
T in a neighborhood N(x) around x

– Associate a weight wmj to each patch Bm(xj), depending of the similarity
between B(x) and Bm(xj) (Section 2.1)

– Keep the center voxel Dmj of each patch and associate it to its weight wmj

– Utilize the set of weighted samples to perform the comparison between T
and Im,m ∈ {0, ...,M} (Section 2.2)

This framework has several advantages: it may help to account for potential
registration errors onto the common template for comparison, and it may sig-
nificantly increase the number of samples to perform the voxelwise comparison
even though the database consists of a limited number of images.

2.1 Similarity Weights between Patches

The selection of patches is a crucial point as it will define the relative importance
of each patch in the final differences detection step. We consider that the model
chosen to describe the diffusion of water molecules may be represented as a
vector, e.g. tensors in the Log-Euclidean framework [11] or ODFs on a spherical
harmonics basis [6]. Before comparing patches, a preselection is performed for
speed reasons and to avoid the degeneracy of the patches weights wmj :

1. Compute the Log-Euclidean distance between the covariance matrices ΣB(x)

and ΣBm(xj): if it exceeds the average distance between any two covariance
matrices ΣBm(x) of the database, discard Bm(xj), otherwise proceed to the
next step;

2. Compute Hotelling’s T 2 statistic [12] to test for mean differences between
B(x) and Bm(xj) using the pooled covariance matrix: if it exceeds the aver-
age statistic computed from any two patches Bm(x), discard patch Bm(xj).

For the remaining patches, we then compute their weights. The weight wmj

between two patches B(x) and Bm(xj) is defined as a function of the sum of
squared differences between the two patches:

wmj = e−
1

2β|B(x)|
∑

i∈B(x) Δ
T
i Σ̂−1(x)Δi (1)

where Δi = Im(i + xj − x) − T (i) are the differences between corresponding
voxels of the patches, |B(x)| is the number of voxels in B(x), β a user-defined
scale parameter and Σ̂(x) is the local noise covariance around x on T . These
weights characterize the similarity between patches and vary between 0 and 1: 1
is reached when the two patches are equal, 0 corresponds to a total disagreement.

Since structures with different orientations may occur, the noise covariance Σ̂
is estimated locally. Computing it globally over the whole image could indeed
lead to an over-estimation and therefore to biased weights. Coupé et al. [8]
proposed a method to estimate such a local noise variance on scalar valued
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images. Here, we extend it to vector-valued images. Σ̂(x) is estimated from
voxels in patch B(x):

– For each voxel xi in B(x), consider a small neighborhood of N voxels around
it (e.g. the 26 neighbors of xi). Pseudo-residuals εxi are computed as:

εxi =

√
N

N + 1

⎛⎝T (xi)− 1

N

∑
xj∈N(xi)

T (xj)

⎞⎠
– The local image noise covariance is defined from these pseudo-residuals:

Σ̂(x) =
1

|B(x)|
∑

xi∈B(x)

εxiε
T
xi

2.2 Comparison of Weighted Data Samples

We have constituted a list of weighted samples S = {S1, . . . , SM} at each voxel x
of T , where Sm = {(Dm0, wm0), . . . , (DmJ , wmJ)}. We now utilize these samples
to confront the patient image to the healthy subjects database. We compute the
weighted mean μx and weighted covariance matrix Σx at each point x as:

μx =
1∑

i,j wij

∑
i,j

wijDij (2)

Σx =

∑
i,j wij(∑

i,j wij

)2
−
∑

i,j w
2
ij

∑
i,j

wij(Dij − μ)(Dij − μ)T

These estimates are very interesting as they take into account the similarity
of each patch in the estimation of the mean and covariance. We then test for
voxelwise differences by computing the Mahalanobis distance at each point:

Z2(Dx, μx, Σx) = (Dx − μx)
TΣ−1

x (Dx − μx) (3)

where Dx is the vector value of the patient image at point x (e.g. log-tensor or
ODF value). Considering there are enough samples, this squared distance follows
a χ2 distribution with d degrees of freedom, where d is the vector dimension,
and a p-value is computed from Z2 as:

px = 1− Fχ2
d

(
Z2(Dx, μx, Σx)

)
(4)

where Fχ2
d

is the cumulative distribution function of a χ2 distribution with d
degrees of freedom.



480 O. Commowick and A. Stamm

3 Results

Our method has two main parameters: the patch size and the search neighbor-
hood. The smaller the sizes, the closer the method gets to [5]. On the contrary,
large sizes tend to increase the number of false negatives. We fixed the parame-
ters on the basis of qualitative results on several patients: patch size of 3× 3× 3
(h = 1) and a neighborhood for patch search of 4 voxels in every direction. In
addition, we have set β - Eq. (1) - to 1 as is suggested by Coupé et al. [8].

3.1 Experiments on Simulated Data

We first present a quantitative study on simulated images. Starting from a refer-
ence diffusion tensor image (Fig. 1.a), 90 images were simulated by adding Rician
noise to the DWI. Then, a patient image was simulated by inserting lesions, i.e.
tensors swollen in the two non principal directions. To illustrate the detection
power of our method and its robustness to database size, we randomly selected
from the 90 images subgroups of 15 to 90 images and used them as the reference
database to compare to the simulated patient. Fig. 1 shows the average Dice
score results of our method (M2) and the one proposed in [5] (M1).

This figure illustrates well the issues arising when using a small database
for differences detection. As the sample size decreases, M1 performs worse,
mainly due to a large number of false positives being detected (see Fig. 1.c).

(a) (b)

(c) (d) (e)

Fig. 1. Quantitative Detection Power on Simulated Data. Left: Illustration of
one noisy reference database image (a) and the simulated lesions image (b), as well
as results of detection utilizing 15 images from the database with M1 (c) and M2 (d).
The right side (e) presents the dice scores obtained by each method as a function of
the number of samples in the database. Legend: blue - M1, red - M2.
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These errors mainly stem from the small size of the database that weakens the
power of the test. Instead, M2 obtains much better and more steady scores,
which demonstrate its robustness. M2 performs better as we are able from a
small database to increase the number of samples used for the comparison.

3.2 Experiments on Multiple Sclerosis Data

We have utilized the LONI ICBM database of healthy control diffusion images1.
This database is composed of 160 control images: T1-weighted images (isotropic
1mm3) and diffusion images acquired on a 3T MRI scanner (b-value of 1000
s/mm2, 30 directions with a resolution of 2x2x2 mm3). This control subject
database was compared to a database of 10 MS patient images acquired following
a similar protocol with the same parameters. As a first step before processing,
the diffusion tensor images are first registered to the T1-w images using a global
affine transform [13] and a non linear free-form deformation [14] with few control
points to recover EPI distortions. Then, a DTI atlas is computed from the control
subjects DTI using Guimond’s et al. atlas construction method [7], combined to
a non linear tensor-based registration algorithm.

Each DTI patient image is then registered onto the atlas and compared voxel
by voxel to the database of controls either with the method proposed in [5] M1

or the proposed method M2. We present in Fig. 2 a representative qualitative
comparison of the results obtained by the two methods utilizing only a subgroup
of 40 images from the controls subjects database.

We can notice on this figure that M1 is affected by the small size of the
database and the registration errors, resulting in a large number of false positive
detections in Fig. 2.b. On the contrary, adding additional patches as it is done
in M2 leads to many more patches being considered (see Fig. 2.d) and possibly
more accurate ones if the registration errors were in the bounds of the local
neighborhood. As a consequence, the detection results in Fig. 2.c reveal much
less false positives while keeping the detection power on the MS lesions.

Finally, we present a quantitative evaluation of the reproducibility of the
obtained score maps when the control subjects database changes. To do so, we
have, for each patient, repeatedly selected NDb images out of the 160 images of
the database. We have then computed for each of these sub-databases a score
map deriving either from M1 or M2. To evaluate the variability of the scores,
we have chosen to utilize the average of the voxelwise standard deviation of
these maps. We present in Table 1 the average over all images of these standard
deviation values for NDb = 20, 40 and 80 images.

This table shows that the obtained standard deviations are significantly lower
for M2 (paired t-tests, p-value of 0.001). This indicates a better reproducibility
of the results when considering our non-local approach. This confirms the robust-
ness of the proposed method and the interest of utilizing neighboring patches,
especially when performing a comparison against a very small database.

1 https://ida.loni.ucla.edu/login.jsp?project=ICBM

https://ida.loni.ucla.edu/login.jsp?project=ICBM


482 O. Commowick and A. Stamm

(a) (b) (c)

(d) (e) (f)

Fig. 2. Qualitative Comparison on Real MS Patient Images. Comparison of
the score maps (Eq. (3)) and differences detected by the two methods M1 (b,c) and
M2 (d-f). (a): T1 image of a patient, (b,e): score maps for M1 and M2, (d): number
of patches kept for each voxel by M2 (from blue: low number, to red: large number),
(c,f): differences detected at the 95% level.

Table 1. Reproducibility of Comparison Results with Changing Databases.
Average variation of z-scores over all voxels of all images for the compared methods.

NDb = 20 NDb = 40 NDb = 80

Method M1 0.737 0.373 0.164
Method M2 0.627 0.336 0.155

4 Conclusion

We have presented a new method for the robust detection of differences be-
tween a patient diffusion image and a population of control subject diffusion
images. It relies on the search for additional patches in a local neighborhood of
each voxel utilizing the non-local means framework adapted to diffusion tensor
images in the Log-Euclidean space. We have demonstrated both on simulated
and real datasets that this allows to detect more accurately differences even if
the reference database is small, and to be more robust to potential registration
errors. Moreover, it may be applied to any type of diffusion data that can be
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represented as vector values such as ODFs in a spherical harmonics basis, which
should further increase detection performance in regions with crossing fibers.

Future works will include an in-depth study of weights definition for oriented
structures. The weights may be erroneous in patches where different orienta-
tions are present, which could lead to decreased performance. Accounting for
these changes in orientations will therefore further improve comparison quality.
We will also investigate other approaches to use the selected patches to detect
differences. For example, our method could be coupled with a robust compari-
son algorithm such as the one proposed by Commowick et al. for tensors [15].
Accounting for spatial correlation between the selected patches could also bring
further improvements to the comparison. Finally, we will also investigate how to
extend our approach to robust population comparison.
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Abstract. Fiber clustering is an essential step towards brain connectivity mod-
eling and tract-based analysis of white matter integrity via diffusion tensor im-
aging (DTI) in many clinical neuroscience applications. A variety of methods 
have been developed to cluster fibers based on various types of features such as 
geometry, anatomy, connection, or function. However, identification of group-
wise consistent fiber bundles that are harmonious across multi-modalities is 
rarely explored yet. This paper proposes a novel hybrid two-stage approach that 
incorporates connectional and functional features, and identifies group-wise 
consistent fiber bundles across subjects. In the first stage, based on our recently 
developed 358 dense and consistent cortical landmarks, we identified consistent 
backbone bundles with representative fibers. In the second stage, other remain-
ing fibers are then classified into the existing backbone bundles using their  
correlations of resting state fMRI signals at the two ends of fibers. Our experi-
mental results show that the proposed methods can achieve group-wise consis-
tent fiber bundles with similar shapes and anatomic profiles, as well as strong 
functional coherences. 

Keywords: DTI, Fiber clustering, Resting state fMRI, Fiber Classification. 

1 Introduction 

Automatic fiber clustering based on diffusion tensor imaging (DTI) has become a 
very active research area for the purpose of group-based statistical analysis on the 
fiber bundles [3-9]. However, DTI tractography algorithms typically generate a large 
number (10,000–100,000) of fibers per subject, which makes the information pro-
vided by the fibers not easily comprehensible. Therefore, the large number of fibers is 
often grouped into fiber bundles by fiber clustering methods [3-9] to facilitate group-
wise tract-based analysis. 

A typical framework is to first define a similarity between pairwise fibers and then in-
put the similarity matrix to standard data clustering algorithms. Therefore, various simi-
larity measures have been proposed in the literature including geometric, anatomical, 
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connectional and functional characteristics of fibers [3-9]. For example, Maddah et al. [4] 
represented fibers as 3D quintic B-splines, Brun et al. [5] tried to capture the three geo-
metric features using a 9-D descriptor, Corouge et al. [6] and Gerig et al. [7] proposed a 
mean closest distance that contains position and shape information, and Maddah et al. [3] 
enhances the Hausdorff similarity with Mahalanobis distance between fiber points. Later, 
anatomical (or atlas-based) feature was used to guide fiber clustering automatically/semi-
automatically [11]. Recently, Ge et al. [8] made attempts to use the functional correlation 
derived from resting state fMRI (R-fMRI) data to guide fiber clustering.  

This paper presents a novel two-stage hybrid fiber clustering approach that clusters 
fibers in a hierarchical way based on connectional and functional features. Specifical-
ly, the first stage groups a portion of fibers into group-wise consistent representative 
backbone bundles based on our recently developed 358 dense and consistent cortical 
landmarks [2]. The second stage classifies other remaining fibers into the backbone 
bundles obtained in the first stage according to functional coherences derived from R-
fMRI data. The major advantage of this methodology is that those consistent and 
common 358 cortical landmarks define and form the reliable and corresponding back-
bone fiber bundles, which serve as the reliable reference for the following clustering 
of less consistent fibers. Furthermore, in the second stage, the traditional fiber cluster-
ing problem is converted into a fiber classification problem in which the functional 
coherence derived from R-fMRI data guides the fiber clustering procedure. In short, 
the proposed two-stage fiber clustering methodology effectively utilizes the deep-
rooted common connectional and functional brain architectures to guide the fiber 
clustering processes such that the obtained fiber clusters possess both structural and 
functional correspondences across individuals, which was demonstrated by our expe-
rimental results.   

 

 

Fig. 1. Flowchart of the proposed computational framework 
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2 Materials and Methods 

2.1 Overview 

As summarized in Fig.1, our algorithmic pipeline includes the following steps. First, 
we pre-processed the raw DTI data and R-fMRI data, and then performed fiber track-
ing based on DTI data. Also, we registered the R-fMRI signals to the DTI space using 
FSL FLIRT. In the meantime, we predicted the 358 consistent landmarks for all sub-
jects via the methods in [2], and grouped/labeled these 358 landmarks by the MNI 
(Montreal Neurological Institute) atlas. Then, we identified the backbone fiber bun-
dles based on these consistent cortical landmarks, and each backbone bundle is 
represented by several representative fibers. Finally, we represented the backbone 
fiber bundles by the mean R-fMRI signals of these fibers, and classified other remain-
ing fibers into these backbone bundles by comparing the wavelet-derived correlations 
of the R-fMRI signals.  

2.2 Multimodal Data Acquisition and Pre-processing 

Eight student volunteers were scanned using a 3T GE Signa MRI system under IRB 
approvals. We acquired the R-fMRI data with the dimensionality of 128*128*60*100, 
space resolution 2mm*2mm*2mm, TR 5s, TE 25ms, and flip angle 90 degrees. DTI 
data was acquired using the same spatial resolution as the R-fMRI data; the parameters 
were TR 15.5s and TE 89.5ms, with 30 DWI gradient directions and 3 B0 volumes 
acquired. Pre-processing of the R-fMRI data included brain skull removal, motion cor-
rection, spatial smoothing, temporal pre-whitening, slice time correction, global drift 
removal, and band pass filtering (0.01Hz~0.1Hz). For the DTI data, pre-processing 
steps included brain skull removal, motion correction, and eddy current correction. Af-
ter the pre-processing, fiber tracking was performed using MEDINRIA (FA threshold: 
0.2; minimum fiber length: 20). The DTI image space was used as the standard space 
from which to generate the tissue segmentation map and from which to show the func-
tionally coherent fiber bundles on the cortical surface. DTI and fMRI images were  
registered via FSL FLIRT.  

2.3 Identifying Backbone Fiber Bundles via 358 Consistent Cortical Landmarks 

Recently, we identified and validated 358 group-wise consistent cortical landmarks that 
possess intrinsic correspondences across individuals and populations [2]. These land-
marks have consistent DTI-derived fiber connection patterns and exhibit corresponding 
functional locations. Importantly, they have been reproduced in over 240 individual 
brains [2]. Thus, these 358 landmarks offer a universal and individuated brain reference 
system. In particular, these 358 landmarks can be accurately predicted in each individu-
al brain with DTI data [2]. Figure 2(a) shows an example of these 358 landmarks.  

Based on the MNI atlas, first, we grouped these landmarks into Brodmann-labeled 
classes, 37 Brodmann areas were used to label the 358 landmarks. We performed this 
step on one randomly chosen subject once, and then these labeled landmarks can be 
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2. Then, the mean R-fMRI signal (Xjmean) within each backbone fiber bundle was 
computed. That is,  for the jth bundle. 

3. The MODWT was used to decompose each mean fMRI time series into the follow-
ing scales or frequency intervals [10]: scale 1, 0.16–0.31 Hz; scale 2, 0.08–0.16 
Hz; scale 3, 0.04–0.08 Hz; and scale 4, 0.02–0.04 Hz. Afterwards, we computed 
the MODWT wavelet coefficients ( ) on scale 3 of the wavelet decomposition. 

4. For each other remaining fiber that is neighboring to the fibers within the backbone 
bundle, we computed the MODWT wavelet coefficients ( ) in the same man-
ner. Also, the wavelet correlation [1] between the fiber and each backbone fiber 
bundle was then computed as | |, and the fiber was classified into the backbone 
fiber bundle with maximal correlation value, which must be larger than a pre-
defined threshold in order to ensure that the most relevant fibers are selected.   

Notably, in this work, we focused on the scale 3 of the wavelet decomposition in that 
this is the frequency band most commonly studied in R-fMRI analyses and represents 
a reasonable trade-off between avoiding the physiological noise associated with high-
er frequency oscillations and the measurement error associated with estimating very 
low frequency correlations from limited time series [10]. And the threshold was cho-
sen empirically. We manually selected the 11 fiber bundles according to the method 
in [12], and computed the functional correlation values between fibers within each 
bundle, then averaged them for all 11 fiber bundles. The averaged value of 0.7 was 
chosen as threshold. 

3 Experimental Results 

In total, we identified 32 group-wise consistent fiber bundles for the whole brain, as 
shown in Fig 3. For the purpose of visual differentiation, each fiber bundle was 
represented by the representative fiber (shown in Fig 3(b)) whose mean closest distance 
with other fibers within the bundle was minimal. Each corresponding fiber bundle and 
the representative fiber in Fig. 3 have the same color in different brains. It is evident that 
the distributions of these 32 representative fibers are quite reasonable and consistent. As 
a more detailed example, Fig.4 shows 8 consistent fiber bundles from two randomly 
selected subjects. For a quantitative comparison, we computed the Hausdorff distances 
between the corresponding representative fibers of the eight subjects, as shown in  
Table 1. It can be seen that the Hausdorff distances are relatively small.    

Moreover, we compared the percentages of streamline fibers in the 8 backbone fi-
ber bundles and those of the corresponding finally clustered bundles after the second 
stage classification in Table 2. On average, the percentage of consistently clustered 
fibers increases from 8.03% to 25.78%, suggesting that the group-wise consistent 
backbone fiber bundles can really serve as the common white matter fiber tracts for 
clustering, and not all fibers were clustered into these 32 bundles because the 358 
landmarks can only cover a portion of the cortex. Table 3 shows the functional cohe-
rence of the 8 final fiber bundles with the corresponding backbone fiber bundles. We 
can see that final fiber bundles maintain the high functional coherence after classifica-
tion. These above results demonstrated the fiber bundles have both similar connection 
patterns and functional coherences.  
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fiber bundles, whose correspondences and consistencies are achieved automatically. 
In the second stage, the functional coherences derived from R-fMRI data were used to 
guide the classification of the remaining fibers into the already consistent backbone 
bundles. Both qualitative and quantitative analyses demonstrated the good perfor-
mance of the proposed framework. In the future, we plan to investigate finer scale 
clustering of these fibers into a more structurally and functionally homogenous bun-
dles. In addition, we plan to perform large scale task-based fMRI studies to validate 
the functional correspondences of these backbone fiber bundles.  
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Learning a Reliable Estimate of the Number

of Fiber Directions in Diffusion MRI

Thomas Schultz

Max Planck Institute for Intelligent Systems, Tübingen, Germany�

Abstract. Having to determine an adequate number of fiber directions
is a fundamental limitation of multi-compartment models in diffusion
MRI. This paper proposes a novel strategy to approach this problem,
based on simulating data that closely follows the characteristics of the
measured data. This provides the ground truth required to determine
the number of directions that optimizes a formal measure of accuracy,
while allowing us to transfer the result to real data by support vector
regression. The method is shown to result in plausible and reproducible
decisions on three repeated scans of the same subject. When combined
with the ball-and-stick model, it produces directional estimates compara-
ble to constrained spherical deconvolution, but with significantly smaller
variance between re-scans, and at a reduced computational cost.

1 Introduction

Multi-compartment models are a traditional way of estimating more than a single
fiber orientation in diffusion MRI [1,2]. The number of fiber compartments used
in such models can have a profound effect on the estimated directions, making
it mandatory to decide on a setting that is adequate for any given voxel.

Despite this, only few systematic approaches to this problem are available: Au-
tomated Relevance Determination [2] has been used to force the weights of fiber
compartments with insufficient statistical support to zero. However, it requires
computation in a full Bayesian framework. The Bayesian Information Criterion
has been demonstrated to produce suboptimal results even on idealized syn-
thetic data [3]. Approaches based on peaks of the fiber ODF [3,4] require setting
a threshold, and suffer from noise-induced spurious peaks.

This work proposes a novel strategy for setting the number of fiber compart-
ments. It formalizes the pragmatic view that it is best to use the number that
leads to the most accurate estimates of the desired parameters. Since the in vivo
data lacks ground truth, the optimal number of compartments is determined in
simulated data that closely follows the characteristics of the experimental data.
Based on this synthetic data, a classifier is trained to recognize voxels that are
best analyzed by a ball-and-stick model [2] with a single, two, or three fiber com-
partments, and thereby achieves reliable and efficient fiber direction estimates.

� I would like to thank Lek-Heng Lim (University of Chicago) for useful discussions
and Hans J. Johnson (University of Iowa) and the PREDICT-HD project for sharing
the data set (made possible by NIH grants NS054893, U54EB005149, NS40068).
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2 Defining the “Most Adequate” Number of Directions

When analyzing a diffusion MRI signal that arises as an average over n fiber
compartments with principal directions vi and relative weights wi, two or more
of the vi may be so close to collinearity that, given noisy measurements with
limited angular and spectral resolution, it becomes impossible to separate them
with reasonable precision. In this case, we prefer to describe them with a single
estimate v̂j . Similarly, when some of the weights wi are so small that the asso-
ciated directions can no longer be reliably estimated, we prefer to set them to
zero in order to obtain a less complex model that is more robust to noise.

This tradeoff is formalized by the following definition of weighted average
angular error (WAAE), which measures the average angle between each true
direction vi and its nearest estimate v̂j , weighted by its true volume fraction wi:

WAAE :=

n∑
i=1

wimin
j

arccos(|vi · v̂j |) (1)

Given a model that requires choosing the number of fiber compartments, we
define the number that minimizes WAAE as the one most suitable for analysis.
Even though WAAE is used throughout this paper, the fundamental idea is
to use some formal error measure like it to decide on the “right” number of
directions, not necessarily its exact definition. In particular, when dealing with
advanced multi-compartment models that additionally estimate parameters such
as axon diameter [5] or account for fiber fanning or bending, learning could be
based on an objective function that penalizes errors in those.

3 Learning the Number of Fiber Compartments

Since evaluation of WAAE requires ground truth, it cannot be computed di-
rectly for in vivo data. Instead, we use machine learning to train a classifier that
predicts the best number of fiber compartments for experimental data based on
its similarity to simulated data, for which WAAE can be computed.

3.1 Support Vector Regression

Given a suitable representation x of the diffusion-weighted signal S(θ, φ), we seek

a function f̂(x) whose value provides an estimate of the most adequate number

of directions to analyze S. We obtain f̂(x) through support vector regression,
which produces functions of the form

f̂(x) =

�∑
i=1

(αi − α∗
i )k(xi,x) + b. (2)

Support vector regression requires us to decide on a representation x of the
signal, to specify training samples xj for which the value of f(xj) is known,
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and to specify a kernel function k(xj ,x) that measures the similarity between
any input x and the training data xj . Based on this, an optimization procedure
automatically finds a subset {xi}�i=1 of the training data and suitable parameters

αi, α
∗
i , and b, so that a given distance measure between f̂(xj) and the training

values f(xj) is minimized, subject to additional constraints. Full details of the
method are beyond the scope of this paper and are given in [6].

3.2 Feature Definition and Kernel Selection

The representation x from which Eq. (2) is computed is known as a feature
vector. Ideally, it should encode the available prior knowledge about f . For
example, the number of fiber compartments clearly should not be affected by
joint rotations of all fibers. Therefore, x should be invariant under rotations of
the measurement frame, while providing information that can be used to infer a
suitable number of directions.

The experiments reported in this paper use the three sorted eigenvalues of a
single diffusion tensor per voxel as the feature vector. Even though the diffusion
tensor is insufficient to resolve the directions of more than a single compart-
ment, the results show that it reliably indicates their number. Experiments with
more complex features based on rotational invariants of various HARDI models,
including ADC profiles [7], Q-Balls, and fiber ODFs, have led to small improve-
ments on simulated data, but reproducibility on real data was much reduced.

As the kernel k(xj ,x), we use a standard radial basis function, k(xj ,x) =
exp(−γ‖xj − x‖2). The parameter γ, as well as two additional parameters, C
and ν, which control the number � of support vectors in Eq. (2), have been fixed
automatically using cross-validation [6].

3.3 Training Data and Labels

In order to successfully transfer the learned function f̂(x) to real data, it is es-
sential that the characteristics of the training data xj be as similar as possible
to the experimental data. Therefore, we generate it directly from the measure-
ments, with random weights wi > 0, w1 + w2 + w3 = 1, and random directions
vi. Note that even though we always simulate three compartments, modeling
them with only one or two compartments may lead to a smaller WAAE when
some wi are very small, or at least two vi are nearly collinear.

As in [8], the N voxels with largest FA in the measured data are assumed
to contain a single dominant direction, indicated by the principal diffusion di-
rection. It is our goal to reproduce the natural variability of these single fiber
voxels, including the bending and spreading which is present even in the most
anisotropic voxels. Therefore, we randomly select one of the N voxels as a tem-
plate for each simulated fiber compartment. In order to get a sufficiently realistic
estimate of the variability, we use N = 1000, corresponding to FAmin ≈ 0.68.

Since the classifier should be able to handle partial voluming with cere-
brospinal fluid (CSF) or gray matter, we include it in our training data. For this,
we use the N least anisotropic voxels each from a CSF mask, obtained by Otsu
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segmentation [9] on mean diffusivity, and a brain mask excluding CSF, respec-
tively. Each simulated voxel V selects a near-isotropic signal I(θ, φ) from either
gray matter or CSF, and weights it by a uniform random factor wiso ∈ [0, 0.5].

Taken together, the simulated signal S is given by the following weighted com-
bination of a randomly selected near-isotropic signal I, three randomly selected
single-fiber signals Ri, rotated to match the directions vi, and error terms ε that
are estimated using residual bootstrapping [10]:

S(θ, φ) = wiso(I(θ, φ) + εiso) + (1 − wiso)
3∑

i=1

wi (Ri(θ, φ) + εi) (3)

From the simulated data, eigenvalue features xj are computed, and directional
estimates v̂j are obtained from the ball-and-stick model [2] with one, two, and
three fiber directions. The number of compartments that led to the smallest
WAAE is used as the true value of f(xj) in the support vector regression. No
cases other than {1, 2, 3} are considered, since we assume a separate classifier
defines a white matter mask, and no prior work has plausibly reconstructed more
than three fiber directions from a single voxel.

Since we only use discrete values f(xj) ∈ {1, 2, 3} in our training data, we
should avoid including boundary cases in which two settings perform similarly
well. Therefore, we simulate a large number of voxels (250,000) and only train on
the 1,000 examples xj of each class for which the difference in WAAE between the
optimal choice of compartment number and the second-best choice was largest.

4 Results on Experimental Data

Three repeated diffusion MR acquisitions have been obtained within the same
session at 3 T, with voxel size 2×2×2mm2, 71 gradient directions, 8 B0 images,
b = 1000 s/mm2. Eddy current distortions and head motion have been corrected
for using FSL (www.fmrib.ox.ac.uk), and the B matrix has been rotated accord-
ingly [11]. In order to evaluate reproducibility, results that use all available data
are compared to results obtained from the three individual repeats.

4.1 Number of Fibers

We clamp the values of f̂(x) to range [1, 3] and round them to obtain discrete
classes {1, 2, 3}. The percentages of voxels that were marked as being best ana-
lyzed with one, two, or three fiber compartments are listed in Table 1 for a brain
mask (excluding CSF), and for two different thresholds of Fractional Anisotropy.

A comparison to constrained spherical deconvolution (with lmax = 8) was
performed using the software MRtrix [8]. Applying an FOD threshold of 0.1 as in
[4] results in a much smaller number of single fiber voxels than with our classifier.
Moreover, compared to the combined data from all three repeats, deconvolution
systematically reported a smaller number of single-fiber voxels in the individual
repeats (between 2.3% and 2.4%, rather than 3.4%).
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Table 1. Counting the peaks in constrained deconvolution (CSD) estimates fewer
single-fiber voxels than our classifier, consistent with known effects of noise on CSD

Learned Classifier Non-Neg. Deconvolution
non CSF FA > 0.1 FA > 0.2 non CSF FA > 0.1 FA > 0.2

1 Fiber 7.6% 9.8% 15.8% 3.4% 4.4% 7.3%
2 Fibers 20.3% 26.1% 43.6% 18.6% 24.1% 40.6%
3 Fibers 72.1% 64.1% 40.6% 78.0% 71.5% 52.1%

(a) (b) (c)

Fig. 1. While fiber ODFs from constrained deconvolution (top row) show reasonable
agreement with the ground truth (bottom row) in simulated two- and three-fiber cases
(b/c), large spurious peaks arise in two out of the three shown single directions (a)

This indicates that the reduced effective SNR in the individual measurements
leads to spurious peaks in the fiber ODFs, which reduces the reliability of their
number as an indicator of distinct fiber compartments. Figure 1 illustrates the
problem using three examples each from the training sets that define the single-,
two-, and three-fiber cases (a–c). The rods in the bottom row indicate the ground
truth directions vi, lengths indicating relative weights wi (radii being reduced
in (a) and (b) to avoid occluding the smaller contributions in (b)).

The strong spurious peaks that arise in two out of the three single-fiber cases
(a) are a known problem of deconvolution, particularly in the presence of partial
voluming with isotropic compartments [12]. They are caused by the fact that the
regularization introduced in [8] suppresses negative peaks, but does not address
spurious positive peaks. In contrast to this, the fraction of fibers assigned to each
class by our classifier was stable across re-scans. The percentage of single-fiber
voxels in the individual repeats varied between 7.5% and 7.9%.

The reproducibility of our estimates is further confirmed by Table 2, which
lists the percentage of voxels in which the classification in each individual mea-
surement agreed with the class assigned based on the combined data, as well as
the mean difference and the 95% confidence interval of the value of f̂(x).

Figure 2 presents a visual comparison between our classification (a/c) and the
results from fODF thresholding (b/d) in a coronal (a/b) and an axial (c/d) slice.
As in [4], red, green, and blue indicate one, two, and three directions, respectively.

In (a/c), the values of f̂(x) are mapped before rounding, to demonstrate the
smooth transition between the classes.
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Table 2. Good agreement between classification of the combined data and individual
repeats supports the reproducibility of our method

Learned Classifier Non-Neg. Deconvolution
Agreement Mean 95% Conf. Agreement Mean 95% Conf.

1st Repeat 94.5% 0.062 0.215 89.7% 0.106 1.0
2nd Repeat 95.3% 0.056 0.189 90.0% 0.103 1.0
3rd Repeat 95.3% 0.056 0.192 90.1% 0.102 1.0

(a)

(b)
(c) (d)

Fig. 2. Compared to the fiber number estimate from constrained deconvolution (b/d),
our classifier (a/c) provides more coherent clusters of single fiber voxels (red), and
smooth transitions between the classes

4.2 Estimates of Fiber Direction

Since the parameter we are ultimately interested in is fiber orientation, let us now
consider the reproducibility of directional estimates based on the ball-and-stick
model [2] when the number of sticks is determined by our function f̂(x).

Table 3 reports the weighted average angular deviation (WAAD) within a
white matter mask (FA > 0.2). It is computed from Eq. (1), by treating the
estimates from the combined data as “ground truth”. The results from all three
repeats were very similar and have been averaged for presentation. Compared to
constrained deconvolution, ball-and-stick achieves slightly lower precision in the
two-fiber case, but higher reproducibility in the one- and three-fiber cases. The
unfavorable 90% confidence bound on deconvolution-based single fiber estimates
is consistent with the emergence of spurious peaks as observed in Figure 1 (a).

The mean WAAD over the whole white matter was 9.8◦ when combining
ball-and-stick with our classifier, which improves over the WAAD achieved by
deconvolution (11.0◦). According to a two-sided t-test on the distribution of
WAADs from all white matter voxels, this difference is highly significant (p <
10−20), in each of the three repeated measurements. In contrast, fitting the ball-
and-stick model with three compartments in all voxels led to a larger average
WAAD (11.9◦). This confirms the importance of selecting an adequate number
of fibers based on the data.
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Table 3. Reasonable agreement is achieved between direction estimates from the com-
bined data and individual measurements for one- and many two-fiber voxels

Ball-and-Stick Non-Neg. Deconvolution
Mean Median 90% Conf. Mean Median 90% Conf.

1 Fiber 2.0 1.2 3.0 4.0 1.9 10.5
2 Fibers 8.7 5.7 20.9 7.1 5.4 14.7
3 Fibers 14.1 13.5 23.6 15.0 14.6 24.6

(a) Ball-and-Stick Result (b) Constrained Deconvolution Result

Fig. 3. The triple crossing between corpus callosum (red), corticospinal tract (blue) and
superior longitudinal fasciculus (green) was the only region that produced reproducible
three-fiber estimates. Closeup shows a slanted view onto an axial slice.

Large absolute errors indicate that many of the voxels that have been labeled
as “three-fiber” by both methods do not afford reliable directional estimates us-
ing either model. However, inspecting all voxels in which three-fiber estimates
were consistently obtained with less than 10◦ WAAD revealed two clear clusters:
The triple crossing between corpus callosum, corticospinal tract, and superior
longitudinal fasciculus, in both hemispheres. Visual inspection of a detail of that
region in Figure 3 suggests that, when combined with an appropriate classi-
fier, ball-and-stick fitting produces directional estimates that are very similar to
constrained deconvolution.

The proposed method is computationally efficient. It took less than 10 seconds
to propose a fiber number for all 96,000 voxels within the brain mask. Subsequent
fitting of the ball-and-stick model took 74 seconds. In comparison, constrained
deconvolution and subsequent peak finding with the implementation from [8]
took almost 10 minutes on the same 2.7GHz workstation.

5 Conclusion

A novel strategy to select the number of fiber directions in multi-compartment
models has been presented, which explicitly aims to minimize a formal measure
of error in the estimated model parameters. Since accuracy cannot be measured
in vivo, a machine learning approach is used to automatically transfer insights
from simulated data with known ground truth to experimental data.
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On the conceptual side, the main contribution of this work is to demonstrate
that such a transfer produces plausible and reproducible results. As a practical
benefit, combining the proposed classifier with the ball-and-stick model produces
directional estimates that are similar overall, but more reproducible than the
ones from constrained deconvolution across re-scans, particularly in single-fiber
voxels. They are also obtained at a markedly reduced computational cost. This
seems particularly relevant when performing bootstrapping-based tractography,
which requires repeated model fitting [13].
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Abstract. In clinical practice, physicians often exploit previously ob-
served patterns in coronary angiograms from similar patients to quickly
assess the state of the disease in a current patient. These assessments
involve visually observed features such as the distance of a junction from
the root and the tortuosity of the arteries. In this paper, we show how
these visual features can be automatically extracted from coronary artery
images and used for finding similar coronary angiograms from a database.
Testing on a large collection has shown the method finds clinically similar
coronary angiograms from patients with similar clinical history.

1 Introduction

X-ray Coronary angiography is a commonly used technique to assess the state
of coronary artery disease (CAD). During assessment, clinicians look for char-
acteristic visual features, taking into account the overall disease burden, the
complexity of individual lesions, and placing more weight on proximal stenoses
of the coronary arteries. Even though there are quantitative assessment scores
such as the Syntax Score[12], they require manual input of angiographic informa-
tion. Thus the clinicians still characterize the disease by ’eyeballing’ on salient
visual features such as lumen variation or the relative thickness of arteries (see
Fig. 1a-c)[5], the distance of the junctions from the root, the number of trifur-
cations, etc. In this paper, our goal is to automatically extract features from
coronary angiograms that mimic this process and learn a distance matrix to
retrieve similar coronary angiograms for purposes of clinical decision support.

Automatically deriving such salient features from coronary artery imaging is,
however, a challenging problem. It requires reliable separation of the major coro-
nary arteries from the background. Complete delineation of arteries is difficult
due to the similarities in intensity distribution in the regions surrounding the
arteries. It also requires a reliable detection of all major junctions and the tubu-
lar arterial segments between junctions to allow computation of features such as
arterial width and curvature changes or tortuosities.

2 Related Work

Much of the existing work on coronary angiogram analysis has focused on the
preprocessing and segmentation of coronary angiograms. The majority of the
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(a) (b) (c)

Fig. 1. Observable semantic features in coronary angiograms. (a) The dark blobs along
arterial walls are calcifications, and irregular thickness variations can be observed.(b)
Lumen variations along arteries. (c) Thinner/fine arteries showing diffused vessels.

methods locate vessel regions using various filters, deformable model methods,
and supervised or unsupervised learning-based approaches [3,4,10,2]. Completely
automatic artery tree extraction has also been attempted in 3D CT Angiography
[15], but often rely on user identification of root in 2D X-ray angiography [7].
Previous work has also studied the junction detection in arteries. While the
majority of the work is on 3D CT angiography data, relying on a good 3D
vessel tree model and a robust 2D-3D shape alignment algorithm, [1,15], junction
detection in 2D X-ray angiography has been restricted to either sensing Y or X
junctions in pixel neighborhoods or using the intersection of artery centerlines.

There is also work on quantitative characterization of coronary artery disease
in the identification of coronary artery root. Popular angiography tools offer
measurements such as luminal cross-sectional area and percentage area steno-
sis. Most of these tools, however, require some manual assistance including the
identification of the coronary tree root.

3 Image Pre-processing of Coronary Angiograms

Our pre-processing uses well-known techniques put together in a new sequence
to delineate coronary arteries. Since the clinical assessment focuses on major
coronary arteries, accurate and complete tree reconstruction is not necessary.

3.1 Highlighting Coronary Arteries

Starting from coronary angiogram video frames, we first extract a region of
interest containing the arteries by exploiting the spatial and temporal variance
in pixels. We then highlight the coronary artery vessel structure using a suitable
ridge detection filter. While several filters could be used [4], we adopted Radon-
Like Features (RLF)[6] as it does a non-isotropic sampling of neighborhoods
based on edge sensing along different orientations. It has been shown to give a
more complete highlighting of coronary arteries, including minor segments, while
still suppressing noise. The result of RLF-filtering the coronary artery image of
Fig. 2a is shown in Fig. 2c.
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 2. Illustration of artery preprocessing.(a) original image. (b) RLF-filtered image.
(c) Binary image obtained by adaptive thresholding. (d) Skeletonization and initial
junction detection. (e) Junction clustering. (f) Tubular region detection for a single
skeletal curve. (g)Tubular segments surrounding skeletal curves between junctions.

3.2 Locally Adaptive Statistical Thresholding

Next, we threshold the intensity gradients in the filtered region to separate the
foreground vessel region from the background. Since a global threshold is in-
sufficient, we model the filtered coronary image as the output of a short-space
stationary process. Since coronary arteries have small thickness (less than 16 pix-
els), an overlapping window analysis with a small window sizeW ×W (W ≤ 16),
is sufficient. Within each window of size W × W , we find an optimal thresh-
old T using similar ideas to Otsu thresholding [8], such that it separates the
pixels within the regions into two classes with minimized intra-class variance
σ2
w(T ) = ω1(T )σ

2
1(T ) + ω2(T )σ

2
2(T ) where ω1, ω2 are the fraction of pixels be-

longing to the two classes. Fig. 2c shows the result of adaptive thresholding of
the filtered image in Fig. 2b. Due to the narrow artery widths and the use of
local Otsu thresholding, vessel fragmentation is minimized.

3.3 Junction Extraction from Foreground Regions

To locate the junctions, we adopt Zhang and Suen[14] to skeletonize the binary
thresholded image, as it is fast, simple, and outperformed other approaches we
tried. The skeletonization of Fig. 2c is shown in Fig. 2d, and it preserves the
main artery centerlines. By grouping connected components on interior pixels
(non-junctions) of the skeletal image, we form skeletal curves Si = {(x, y)}. The
set of junctions is Jm = (S1, S2, ...Sk) where the mth junction is the intersection
of the incident skeletal curves S1, ..Sk to give a junction of degree k. Spurious
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initial junctions which are pixels with at least two incoming curves, are clustered
using this grouping and the centroidal pixel becomes a robust indicator of the
actual junctions, as illustrated in the change from Fig. 2d to Fig. 2e.

3.4 Extracting Coronary Artery Segments

To extract the tubular regions from the skeletal curves, we look for boundary
pixels on either side of the skeletal curve proceeding along surface normals at each
skeletal point. The tubular boundary may have points out of order at turning
points, particularly where there is ambiguity in surface normals (Fig. 2f). These
out-of-order points are corrected by treating the chain of endpoints on either
boundary as pairs of curves to be aligned using dynamic time warping [13]. The
resulting artery fragments are shown in Fig. 2g for the skeletal curves in Fig. 2d.

Each coronary artery segment Ci is represented by an ordered set of skeletal
points {(x, y, δ1, δ2, θ)} where (x, y) ∈ Si is a skeletal pixel on the skeletal curve
Si passing through the tubular segment, and δ1, and δ2 are the units along the
surface normal θ at which the tubular boundary points are detected.

4 Feature Extraction from Coronary Angiograms

Given the skeletal representation, we next extract clinically meaningful features.
The proposed features are supported by several clinical studies including those
in the SYNTAX score and JACC011 guidelines[5,12].

4.1 Number of Significant Junctions

This gives an indication of the bushiness of arteries as diffuse arteries tend to
have a larger number of junctions. This feature f1 is simply recorded by the
number of junctions Jm computed in the section above.

4.2 Thickness of Arteries

A blockage in the middle of the artery appears as a sudden change in the width
of the artery. The average thickness of a coronary artery segment is given by

Wi =
∑

j(δ2j−δ1j)

P where the
∑

j is over the P skeletal points. The range of

thickness variation within tubular regions is given as Ri = (δ21max
i − δ21min

i ),
and gives an indication of stenosis. The distribution of thickness of arteries is
given by the feature f2 = H(Wi) and f3 = H(Ri), where H(Wi) and H(Ri) are
the histograms of the average thickness distribution and range respectively. The
peaks in the histograms indicate the widths of dominant arteries and are useful
in identifying the major coronary segments.
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4.3 Number of Trifurcations

Trifurcations are useful to detect in cases when left main trifurcating coronary
artery disease is present. Certain viewpoints (e.g. caudal) can cause trifurcation
junctions to be detected, which is a good viewpoint descriptor. This feature is
simply computed as f4 = {Jm , degree(Jm) > 3}.

4.4 Tortuosity

Tortuosity is the number of curvature changes in the skeletal curves, measured
using a histogram. The significant peaks in the histogram indicate the variation
in tortuosity across the coronary artery segments. To estimate the curvature
changes, we form a line segment approximation to the skeletal curve by recur-
sively partitioning it at points of maximum deviation. These points of deviation
are places where there is significant change in curvature. The tortuosity is nor-
malized by taking the ratio of the curvature change points Nk over the total
number of points Ni to give Ti =

Nk

Ni
. By repeating this over all curves, we form

the tortuosity feature vector as a histogram over Ti as f5 = H(Ti).

4.5 Lengths of Artery Segments

The length of artery segments is important to assess early bifurcation of the left
main coronary artery. Since the skeletal curves are available, this feature is easily
computed by the pixel length of the skeletal curves and forming a histogram of
it f6 = H(|Si|), where |Si| is the length of skeletal curve Si.

4.6 Lumen Variations

To measure the lumen variations, we sample the intensity in the original image
along surface normals to the skeletal curve and average it at each point along
the skeletal curve. The range in intensity variations is similarly normalized by
the maximum intensity in the region and its histogram is feature f7 = H(Ii)
where Ii is the normalized range of intensity variation in skeletal curve Si.

5 Finding Similar Coronary Angiograms

By arranging the features into one long feature vector, each angiogram is repre-
sented by a vector Fc. Simple Euclidean distance comparisons between feature
vectors is not sufficient to retrieve similar angiograms, both because of errors in
vessel detection and the inherent variation in raw feature vectors.

Going past the Euclidean metric, we attempt to learn a distance metric so that
vessels that are ”similar” end up close to each other in feature space. Specifically,
we adopted a recent work on a supervised metric learning method called Relevant
Component Analysis (RCA)[11] as it has been shown to significantly improve
clustering performance. RCA works by eliminating those dimensions that are
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unlikely to be useful for classification using small subsets or chunklets of sample
points. The chunklet covariance matrix is estimated as C = 1

N

∑
i

∑
j(xji −

mj)(xji − mj)
T where mj denotes the mean of the j-th chunklet and xji the

i-th element of the j-th chunklet. A whitening transformation is then associated
with the covariance matrix C W = C− 1

2 to apply to the data points after
dimensionality reduction[11].

To obtain the learning matrix, we first normalize all the feature vectors to be
unit range and then annotate the features of a training set from distinct view-
points, so that those from the same viewpoint and similar coronary anatomies
are annotated with the same label. Using the resulting metric learned W , the
distance between any two coronary angiograms is simply given by the Maha-
lanobis distance (X2−X1)TW (X2−X1). This distance is finally used to rank
coronary angiogram images in a database using their respective feature vectors.

6 Results

From a collection of 1600 runs of X-ray angiography videos from 70 patients,
we applied a keyframe detection method [13] to retain the top 10 key frames
from each run, generating a ground truth test set of 600 images drawn across
multiple patients, viewpoints and coronary arteries. The training set for metric
learning was derived from another subset of keyframes chosen from the runs
to depict distinct viewpoints such as anterior oblique projection, left anterior
oblique, caudal and right coronary artery view. The training and testing was
done on different sets of patients.

6.1 Accuracy of Junction Detection

First, trained experts manually counted the number of junctions observed in
a set of about 130 left and right coronary images in 3 viewpoints. The spatial
overlap with the automatically detected junctions is shown in Table 1. The 10%
non-overlap in the spurious junctions is mostly from non-artery regions or from
vessel overlaps and intersections (e.g. cross-overs) while all manually identified
junctions were consistently detected. There is a large agreement between the
manual and automatically found junctions. The lower overlap of RCA is due to
the lower visibility of RCA over LCA in the X-ray images provided.

Table 1. Accuracy of junction detection in coronary arteries

Artery class Number of Avg. Manually detected Automatically % Spatial Overlap
Images Junctions per image detected junctions

LCA 31 62.6 75.3 89.8%
LCA Caudal View 50 45.8 67.6 93.5%
RCA 50 24.3 37.5 74.3%
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6.2 Accuracy of Coronary Artery Segment Extraction

First, trained experts marked major arteries using LabelMe[9] to trace the con-
tours of the segments. We automatically detected tubular structures to extract
the coronary segments and measured the spatial overlap between the two regions.
Table 2 summarizes the average accuracy of the detection process in comparison
with the ground truth for the three artery classes in our dataset. Here we define
average overlap as the fraction of pixels that are in both manual and automat-
ically extracted artery segments over the pixel area of the manual segments.
Similarly, average non-overlap is defined the fraction of pixels in automatic re-
gions that are not within manually indicated segments over the total number of
white pixels in all manual and automatically detected regions. Due to the differ-
ent normalization used, the two numbers need not add up to 100%. From this,
we conclude that a large fraction of the artery regions are accurately detected.

Table 2. Accuracy of coronary artery segment detection

Artery class Number of Images Average Overlap Average Nonoverlap

LCA 31 95.3% 12.4%
LCA Caudal View 50 93.8% 13.5%
RCA 50 86.2% 6.2%

6.3 Similarity Retrieval Performance

Using the learned distance matrix, we used query images from the 600 image test
set to retrieve the top 10 most similar images from the same set. Fig. 3 shows a
sample result with the query image in the top-left, and the top 5 similar images
in ranked order ordered left to right, top to bottom. The retrieved images have
similar topology, lumen variation, variation in artery thickness, and the same
disease (left main). To evaluate precision and recall, we selected 200 images from
the viewpoint set and asked trained experts to mark clinically similar images in
the 600 image data set. We then measured the recall as the fraction of these
images returned by the similarity ranking in the top K list while precision was

Fig. 3. Similarity retrieval of coronary angiograms. (a) Query angiogram image. (b)-(f)
ranked order of matching coronary angiograms. (b) Precision-recall curve.
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measured by the fraction of the top K matches returned that were relevant.
The parameter K was varied to obtain the precision-recall curve. Fig. 3 shows
the precision-recall curve using RCA-based metric learning in comparison to the
Euclidean metric, indicating a large improvement in performance. In general, we
found that the similarity retrieval preserved the identity of the arteries in the
top 10 hits when the viewpoints were mixed in the dataset.

7 Conclusions

In this paper, we address for the first time, the problem of finding similar coro-
nary angiograms using clinically meaningful features whose variation across pa-
tient population is learned using metric learning.
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Abstract. Assessment of trauma patients with multiple injuries can be one of the 
most clinically challenging situations dealt with by the radiologist. We propose a 
fully automated method to detect acute vertebral body fractures on trauma CT 
studies. The spine is first segmented and partitioned into vertebrae. Then the cortical 
shell of the vertebral body is extracted using deformable dual-surface models. The 
extracted cortical shell is unwrapped onto a 2D map effectively converting a 
complex 3D fracture detection problem into a pattern recognition problem of 
fracture lines on a 2D plane. Twenty-eight features are computed for each fracture 
line and sent to a committee of support vector machines for classification. The 
system was tested on 18 trauma CT datasets and achieved 95.3% sensitivity and 1.7 
false positives per case by leave-one-out cross validation. 

1 Introduction 

Assessment of trauma patients with multiple injuries, particularly in the setting of 
multiple trauma patients presenting to the hospital concurrently, can be one of the 
most clinically challenging situations dealt with by the radiologist. Traumatic injury 
of the spine is a subset of the spectrum of blunt trauma pathology, and is common and 
potentially devastating.  Previous reports estimate the number of vertebral fractures 
each year in the United States at more than 140,000, with 19%-50% of fractures of the 
thoracolumbar spine associated with neurological injury [1]. Rapid and accurate 
assessment is essential for determination of an acceptable management algorithm, and 
delay in detection and management of spinal injuries can result in prolonged pain and 
suffering, or biomechanical disability.   

Limited forays have been performed in prior work investigating computer-aided 
assessment of fractures, mainly in the realm of the detection of fractures on plain film 
radiographs for limited clinical circumstances [2]. Design of algorithms has been 
performed for simple assessment of anterior height loss of thoracolumbar vertebrae, 
and has recently reached the stage of clinical application limited to plain film 
radiograph lateral views of the spine [3]. There are also prior works assessing for 
fractures based on detected global geometric deformities of the vertebral bodies 
(compression deformities), rather than direct detection of fracture lines in the 
vertebrae [4] [5]. Analysis of the complex structure of the spine on cross sectional CT 
images for direct visualization of fractures is a novel topic of clinical importance, and 
is the goal and focus of this investigation. To the best of our knowledge, our 
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investigation is the first to target computer-aided detection of fracture-associated bone 
discontinuities in vertebral bodies using CT images. 

 

 

Fig. 1. Examples of vertebral body fractures (arrows) on axial CT images in three different 
patients 

Figure 1 shows examples of vertebral body fractures in axial CT images. Fractures 
occur in myriad patterns, and vertebrae exhibit complex geometry, posing a complex 
mathematical problem. Our idea is to directly detect the osseous fracture line 
involvement of the anterior, posterior, and lateral cortices of the vertebral body. Thus, 
we propose a novel method to convert the complex 3D detection problem into a 2D 
pattern recognition problem by unwrapping the cortical shell of the vertebral body.  

2 Methods 

Our method is summarized as follows. Given a spine CT data set, the spinal column is 
first extracted and partitioned into individual vertebrae. The cortical shell of vertebral 
body is then segmented using deformable dual-surface models. After that, the cortical 
shell is unwrapped onto a 2D plane. Pattern recognition techniques are then applied to 
detect fracture lines on the unwrapped cortical shell. These detections are then re-
projected back to 3D space and quantitative features are computed. Finally, the 
detections are passed to a committee of support vector machines for classification.  

2.1 Spinal Column Segmentation and Partitioning  

First, thresholding and connected component analysis are conducted to obtain the initial 
spine segmentation. The spinal canal is then extracted using a watershed algorithm and 
a directed acyclic graph search. Next, curved planar reformation is computed along the 
centerline of the spinal canal to partition the spinal column into individual vertebrae. 
Details of the automated spinal column extraction and partitioning can be found in [6]. 

2.2 Cortical Shell Segmentation 

In a fractured vertebral body, the cortical shell is often damaged with cracks or broken 
into disconnected components, posing challenges for its segmentation. Concentric ring 
approach can’t segment cortical shell correctly. We propose a deformable dual-surface 
model to extract both the exterior and interior (periosteal and endosteal) surfaces of the 
cortical shell. 

a) b) c) 
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Fig. 2. Cortical shell segmentation. The original image is in Figure 1a. a) Initial models; b) 
Potential boundary map (RE, RI), cyan: RE, red: RI; c) Potential force for exterior surface P(SE); 
d) Potential force for interior surface P(SI). Maps are down-sampled for clarity. Force direction 
points from red to cyan; e) Evolution of exterior surface; f) Evolution of interior surface; g) 
Results of dual-surface segmentation; and h) 3D visualization. 

After the spine is extracted, a local cylindrical coordinate system is established for 
each vertebral body. An initial dual surface is placed in the center of the vertebral 
body. The height is set as the distance between the superior and inferior end plates 
and the radius is estimated as twice of the average width of the vertebral body (Figure 
2a). The surface is constructed as a triangular mesh, where the vertices are evenly 
spaced. The surface can be represented as r =S(z, φ) in the cylindrical coordinate 
system, where z is the height along the axis, φ is the azimuth angle, and r is the radial 
distance. r is uniform at every point on the initial exterior (SE) and interior (SI) 
surfaces. The resolution of the surface mesh is set to be the same as the CT image. 

The deformable dual-surfaces [7] are driven by internal forces, image potential 
forces, and constraints between the exterior and interior surfaces. The energy 
functional for the dual-surface is written as, 
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where SE and SI are exterior and interior surfaces, I(S) is the internal force, P(S) is the 
image potential force, C(SE,SI) is the constraint between the two surfaces, and wi, wp 
and wc are weights for the three forces. The internal forces keep the surface smooth 
and continuous, which can be written as, 
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The first order derivative discourages the stretching and the second order derivative 
discourages the bending of the surfaces. α and β are weights and set to 1. 

a) b) c) d)

e) f) g) h)
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A directional gradient in the cylindrical coordinate system is applied to compute 
the potential image. For a point (z, φ, r) on the image, the directional gradient is  
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where G is the grayscale image. For every direction defined by (z, φ) (at level z, angle 
φ), we search for the maximum of a pair of positive and negative directional gradients 
to be used as the potential boundary for exterior and interior surfaces, i.e., 
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Here +∇G


and −∇G


represent positive and negative directional gradient 
respectively, and ε1 and ε2 are the minimum and maximum cortical shell thickness. 
Due to the image noise and other anatomical structures near the vertebral body, (RE, 
RI) may become stuck at false edges. In order to eliminate outliers, we fit a Bezier 
function for RE over the domain of (z, φ). Those (RE, RI) pairs that are far away from 
the Bezier function are excluded. Figure 2b shows an example of (RE, RI) map 
superimposed on an image slice. The distance to the (RE, RI) map is then used to 
derive the potential force for the dual surfaces, which can be formulated as,  
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where is the Euclidean distance. Figures 2c and 2d show the potential forces P(SE) 

and P(SI).  
The constraint between the dual surfaces is the thickness of the cortical shell. We 

assume that the thickness should be continuous over the cortical shell, and use the 
following function for the thickness regulation, 
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The weights for different forces (wi, wp and wc) in equation 1 are kept constant 
throughout the evolution. Since the potential force becomes smaller when closer to 
the boundaries (see Fig. 2c and 2d), the internal force and thickness constraint will 
play a bigger role upon convergence. Figures 2e and 2f show the evolution of the 
exterior and interior surfaces. Figures 2g and 2h show the final segmentation results 
on one 2D slice and in 3D space. 

2.3 Cortical Shell Unwrapping 

The unwrapping of the cortical shell is based on the cylindrical coordinate system. 
We map the 3D cortical shell onto the 2D space of (z, φ). The unwrapping process is, 

( ) −
=

),(

),(
),,(

),(),(

1
,

ϕ

ϕ
ϕ

ϕϕ
ϕ

zS

zS
IE

E

I

drrzG
zSzS

zU  (7)



 Detection of Vertebral Body Fractures Based on Cortical Shell Unwrapping 513 

 

here G is the image intensity. Essentially, we project the mean intensity of the cortical 
shell onto a 2D map. The mapping is one-to-one: any point on the unwrapped map 
has a corresponding point on the 3D cortical shell. Figure 3a shows an example of the 
cortical shell unwrapped map. The horizontal axis is φ and the vertical axis is z. Axis 
φ starts from the center of the spinal canal (detected in section 2.1) and spans 360°, 
and axis z goes from the inferior to the superior endplates. 
 

 

Fig. 3. Cortical shell unwrapping and fracture line detection. Original CT image is in Figure 1a. 
a) Unwrapped cortical shell map (bright dot indicates the projected fracture site marked by an 
expert on the original CT); and results after b) Adaptive filtering; c) Skeletonization; d) Pruning 
(the bright line is the true fracture line). 

2.4 Fracture Line Detection 

Fracture lines on the cortical shell appear as gaps or discontinuities on the unwrapped 
map (Figure 3a). Detecting discontinuities on the map is a relatively simple 2D 
pattern recognition problem compared to the complex 3D fracture detection problem, 
similar to road crack detection in computer vision applications [8]. We adopt a multi-
scale adaptive filtering method to detect cracks on the unwrapped map. Two 
assumptions are applied: 1) a crack is darker than the background (normal cortical 
shell); and 2) a crack is composed of a set of connected segments with different 
orientations and limited width. We define the crack filter as a rectangle function,  
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where T is the width of the crack and also the scale of the filter. We convolve the 
unwrapped map U(z, φ) with f(x) of different scales (by varying T) at multiple 

a) 

b) 

c) 

d) 
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orientations ([0, π/4, π/2, 3π/4]). The outputs of all filters are merged and used as the 
initial detection for the fractured regions (Figure 3b). The merging is additive and a 
connected component analysis is conducted to obtain detections. 

We then apply a Hilditch thinning algorithm [9] to skeletonize the fracture region 
(Fig 3c). After that, the branches on the skeleton are pruned [10] so that only the 
longest path remains, and is detected as one potential fracture line (Fig 3d).  

2.5 Feature Extraction and Classification 

Many false positives remain after the filtering. We extract a set of 28 quantitative 
features to differentiate true fracture lines from false detections. The features for each 
fracture line can be roughly partitioned into four categories: location (e.g. 
circumferential angle, distance, and orientation), shape (e.g. width, thickness, aspect 
ratio), intensity (e.g. intensity, contrast) and attributions of its associated vertebral 
body (e.g. height, radius, and intensity). Due to the page limit, here we only list the 
formula for a few features (f1:average width, f2:average thickness, f3:average 
intensity, and f4:average interior intensity), 
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where ΩA is the set of points in the detected fracture region, ΩS is the skeleton of ΩA, 
and d is the distance from a skeleton point to its closest boundary point. The features 
are computed from both the 3D CT data and the 2D unwrapped map. 

A committee of support vector machines (SVM) [11] is trained to classify the 
detections into true fracture lines or false ones. The training was based on reference 
standard of fractures marked by an expert. A forward stepwise feature selection 
procedure was conducted to form a seven-member committee. Each committee 
member had three characteristic features (features may overlap among committee 
members). Ten-fold cross validation was employed to evaluate the performance. 

3 Data Sets and Experimental Results 

Our cohort includes 18 trauma patients admitted to UC Irvine Medical Center between 
June 2009 and July 2010. The mean patient age was 51±11 yrs (18-86yrs). There were 
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13 men and 5 women. All patients were scanned on a Siemens Sensation 64 scanner. 
The scanning parameters were: 2mm slice thickness, 120 kvp, no intravenous contrast 
administration, and convolution kernel B40f (16 patients) or B60f (2 patients). The CT 
data covered the thoracic and lumbar spines, and included 14 vertebrae on average. An 
expert radiologist examined the cases and manually marked the fracture sites. Ten 
patients were positive for vertebral body fractures. The total number of spatially distinct 
fracture sites was 21, among the 10 patients. The remaining 8 patients had no evidence 
of vertebral body fracture. The average running time is 5.6 minutes. 
 

 

Fig. 4. Examples of detected fracture lines. Original images are in Figure 1. First row: 2D view; 
second row: 3D view. 

 

Fig. 5. FROC analysis. Big markers indicate operating points. 

Figure 4 shows examples of detected fracture lines. Our method successfully 
detected both nondisplaced and simple fractures (Fig. 4a, 4b), as well as burst 
fractures (Fig. 4c). Figure 5a shows the FROC curve of fracture line detection. We 
also evaluated the performance on a per-vertebra basis, by merging all detections in 
one vertebral body into one “detection” (only keeping the detection with highest SVM 
value) and report the number of vertebrae having any fracture (FROC in Figure 5b).  
The system achieved 92.7% sensitivity (95% confidence interval: [76.7%, 98.5%]) at 
3.3 false fracture sites per patient, and 95.3% sensitivity (95% CI: [72.6%, 99.9%]) at 

a) b)

a) b) c)
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1.7 false fractured vertebrae per patient. The FROC analysis was conducted using 
ROCKIT (http://xray.bsd.uchicago.edu/krl/KRL_ROC/software_index6.htm). 

The etiology of common false positives includes costovertebral junctions, partial 
volume averaging of vertebral disks and nutrient vessel foramen. 

4 Discussion 

Our method converts a complex 3D fracture detection problem into a simpler 2D 
pattern recognition problem and achieves high sensitivity and specificity. The system 
may serve as a shadow reader to assist radiologists and has the potential to increase 
detection rates for spinal fractures at early points after occurrence, allowing 
appropriate management and preventing secondary complications. 

Future work will include detection of fractures in spinous and transverse 
processes. We will also incorporate rib segmentation in the system to reduce the 
number of false positives at the costovertebral junctions.  
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Abstract. Texture–based computerized analysis of high–resolution
computed tomography images from patients with interstitial lung dis-
eases is introduced to assist radiologists in image interpretation. The
cornerstone of our approach is to learn lung texture signatures using
a linear combination of N–th order Riesz templates at multiple scales.
The weights of the linear combination are derived from one–versus–all
support vector machines. Steerability and multiscale properties of Riesz
wavelets allow for scale and rotation covariance of the texture descriptors
with infinitesimal precision. Orientations are normalized among texture
instances by locally aligning the Riesz templates, which is carried out
analytically. The proposed approach is compared with state–of–the–art
texture attributes and shows significant improvement in classification
performance with an average area under receiver operating characteris-
tic curves of 0.94 for five lung tissue classes. The derived lung texture
signatures illustrate optimal class–wise discriminative properties.

Keywords: Texture analysis, Riesz, steerability, interstitial lung dis-
eases, high–resolution computed tomography, computer–aided diagnosis.

1 Introduction

Objective assessment of texture information is a difficult task in radiology [1].
Texture is central to human image understanding and plays an important role in
efficient characterization of biomedical tissue that cannot be described in terms of
shape or morphology [2]. Early detection of diffuse disease conditions requires to
analyze very subtle changes in texture properties of the image, where computer-
ized image processing proved to significantly outperform clinical experts [1]. The
various appearances of lung tissue affected by interstitial lung diseases (ILD) in
high–resolution computed tomography (HRCT) are best characterized in terms
of texture properties [3]. Differentiation of these patterns is regarded as difficult
even for experienced radiologists. Consequently, several studies investigated the
potential of computerized classification of the lung parenchyma to assist radiol-
ogists in HRCT interpretation [4–7]. To ensure the success of such a system, the
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ability of the image attributes to encode the subtle texture signatures associated
with the various lung tissue types is crucial. In particular, localized quantifica-
tion of orientations and scales is known to be relevant for texture discrimina-
tion [8, 9]. Whereas most of the image analysis approaches to texture feature
extraction are based on the characterization of these two affine properties, all re-
quire arbitrary sampling of at least one of these two parameters (e.g., grey–level
co–occurrence matrices (GLCMs) [9], run–length matrices (RLE), local binary
patterns (LBP) [8], and non–steerable Gabor or Gaussian filterbanks [10]). The
choice of scales and orientations has a direct impact on system performance and
is difficult since these properties vary for each image pixel.

In this article, we introduce a novel texture analysis approach allowing trans-
lation invariance as well as scale and rotation covariance with infinitesimal preci-
sion. It extends our previous work [11] by using support vector machines (SVM)
to learn the respective relevance of multiscale Riesz components. Class–wise tex-
ture signatures are then obtained from linear combinations of the latter, allowing
for visual assessment of the learned texture patterns.

2 Material and Methods

2.1 Dataset

A publicly available dataset of 85 ILD cases with annotated HRCT images is used
to evaluate our approach [12]. Expert annotations were carried out in collabora-
tion by two radiologists with 15 and 20 years of experience in CT imaging. The
slice thickness is 1mm and the inter–slice distance is 10mm. The images were ac-
quired with two imaging devices at the Radiology Service of the University Hos-
pitals of Geneva: a Philips Mx8000 IDT 16 CT Scanner and a General Electric
HiSpeed CT. The five lung tissue classes encountered in most ILDs were chosen
as lung texture classes: healthy (H), emphysema (E), ground glass (G), fibrosis
(F) and micronodules (M). In each annotated slice, 2D hand–drawn regions of
interests (ROIs) are divided into 32×32 square blocks. The visual appearance of
the lung texture classes and their distribution are detailed in Fig. 4.

2.2 Multiscale Lung Texture Signature Learning

The cornerstone of our approach to multiscale lung texture signature learning
is to use the structural risk minimization principle to derive class–wise texture
prototypes from the Riesz transform. The obtained class–wise texture signature
has optimal discriminative properties for a given one–versus–all (OVA) classifi-
cation task. The Riesz transform yields steerable filterbanks and commutes with
translation, scaling or rotation [13]. The richness of the filterbank is controlled
by the order N of the Riesz R transform as:

�R(n1,n2)f(ω) =

�
n1 + n2

n1!n2!

(−jω1)
n1(−jω2)

n2

||ω||n1+n2
f̂(ω), (1)
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N = 1

G ∗ R(1,0) G ∗ R(0,1)

N = 2

G ∗ R(2,0) G ∗ R(1,1) G ∗ R(0,2)

N = 3

G ∗ R(3,0) G ∗ R(2,1) G ∗ R(1,2) G ∗ R(0,3)

Fig. 1. Riesz filterbanks for N=1,2,3

for all combinations of (n1, n2) with n1 + n2 = N and n1,2 ∈ N. The vector ω
is composed of ω1,2 corresponding to the frequencies in the two image axes, and

f̂(ω) denotes the Fourier transform of f(x). The Riesz transform yields N+1
distinct components behaving as N–th order directional differential operators.
Riesz components R(n1,n2) convolved with isotropic Gaussian kernels G(x) for
N=1,2,3 are depicted in the spatial domain in Fig. 1. Multiscale versions of
the filterbanks are obtained by coupling the Riesz transform with Simoncelli’s
multi–resolution framework based on isotropic band–limited wavelets [14]. Four
scales si = {1, . . . , 4} with a dyadic progression are used to cover the Nyquist
domain. The Riesz wavelet filterbanks are steerable, which means that the re-
sponse of each component G ∗ R(n1,n2) rotated by an arbitrary angle θ can be
derived analytically from a linear combination of the responses of all components
of the filterbank [15, 13]. This property enables rotation covariance of the pro-
posed texture descriptors with infinitesimal angular precision. To ensure that the
distribution of the directional information is normalized among the Riesz com-
ponents for any rotation of the texture patterns, each components are all locally
aligned to maximize the response of G∗R(N,0) at the finest scale, which is carried
out analytically and proved to improve lung texture classification performance
in [11]. This enables rotation invariance of the texture descriptors without dis-
carding precious orientation information, which is often lost when using isotropic
detectors [7, 6] or when averaging the responses of multi–oriented features as it is
commonly carried out for GLCMs, RLEs and Gaussian filterbanks [5]. To sum-
marize, the Riesz wavelets benefit from the steerability property while enabling
much richer feature extraction than rotated filterbanks and classical steerable
filterbanks [16]. Therefore, it allows multiscale and multi–directional image anal-
ysis with infinitesimal spatial and angular precision1.

In order to optimally exploit the richness of the feature detectors encompassed
in the multiscale Riesz components for a given texture classification task, an

1 In the discrete domain, the spatial and angular precisions are determined by Nyquist.
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appropriate weighting scheme of the energy of the responses of the multiscale
Riesz components is required. The goal is to build an optimal texture signature
ΓN
c of the class c (versus all) from a linear combination of the multiscale Riesz

components as:

ΓN
c = w1

�
G ∗ R(N,0)

�
s1

+w2

�
G ∗ R(N−1,1)

�
s1

+ · · ·+w4N+4

�
G ∗ R(0,N+1)

�
s4

. (2)

l1–norm support vector machines (SVM) are used to find the optimal weights
wT = (w1 . . . w4N+4) in the sense of structural risk minimization [17] as:

min
w,ξ,b

�
||w||21
2

+ C

n�
i=1

ξi

�
subject to yi(K(w,xi)− b) ≥ 1− ξi, ξi ≥ 0. (3)

where ξ is the slack variable of the soft margin, C is the cost of the errors, xi

are the texture instances i = 1 . . . n expressed in terms of the energy of the
Riesz components, and yi are the corresponding labels. K(xi,xj) is a Gaussian

kernel as: K(xi,xj) = exp(
−||xi−xj||21

2σ2 ). The contribution of each Riesz compo-
nent is determined by the weight that its corresponding energy level received
in Eq. (3). For multiclass classification with Nc classes, the OVA approach is
used. The model with the highest decision level for the positive class determines
the final class cmax as: maxc∈{1,...,Nc} {K(wc,xi)− b}. The global workflow of
the proposed approach for lung texture signature extraction and classification is
summarized in Fig. 2.

Fig. 2. Flow chart of lung texture signature learning and classification

3 Results

The proposed methods are evaluated both qualitatively and quantitatively on
artificial and real lung textures. The principle of multiscale texture signature
learning is first demonstrated on artificial data, where scale and rotation covari-
ance are investigated in Fig. 3. All artificial texture patterns are containing noise
and their signatures are learned when confronted to white noise. The first two
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Fig. 3. Lower row: multiscale texture signatures Γ 8
c of the upper row for N=8

healthy emphysema ground glass fibrosis micronodules

Γ 4
healthy Γ 4

emphysema Γ 4
ground glass Γ 4

fibrosis Γ 4
micronodules

3011 blocks, 407 blocks, 2226 blocks, 2962 blocks, 5988 blocks,

7 patients. 6 patients. 32 patients. 37 patients. 16 patients.

Fig. 4. Distribution of the texture classes and visual appearance of the class–wise
multiscale lung texture signatures Γ 4

c

signatures are learned from two checkerboards with various scales. The distribu-
tion of the weights w for the scales {s1, . . . , s4} are {0.1%, 18.5%, 81.1%, 0.3%}
for the small scale and {2.3%, 3.9%, 14%, 79.8%} for the large scale checkerboard.
The rotation covariance is demonstrated with oriented stripes in the third and
fourth columns of Fig. 3. Robustness to non–rigid transformations is illustrated
with deformed versions of the stripes and checkerboard in the last two columns.

The visual appearance of the five lung tissue classes and the corresponding
learned class–wise texture signatures over the entire dataset in OVA configu-
rations are shown in Fig. 4. Fig. 5 shows the receiver operating characteristic
(ROC) analysis of the classification performance of the proposed methods over
the 85 folds of a leave–one–patient–out cross–validation. We compared our ap-
proach with two commonly used lung texture feature sets: LBPs [4] and GLCMs
combined with RLEs [5]. We optimized the parameters of each approach using
an exhaustive grid search. A radius R ∈ {1, 2} pixels and a number of samples
P ∈ {8, 16} are used for LBPs, according to [4]. For GLCMs and RLEs, distances
of {1, 2, . . . , 5} are used and the texture measures from [9] are averaged across
orientations of {0◦, 45◦, 90◦, 135◦}. A grey–level reduction of 8 levels obtained
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healthy (H) emphysema (E) ground glass (G)

fibrosis (F) micronodules (M)
confusion matrix of

Riesz and GLH features

H E G F M
H 82.7 2.9 0.3 0.2 13.9
E 10.8 72.7 3.2 8.6 4.7
G 15.4 0.1 68.4 11.5 4.6
F 0.6 1.5 7 84.2 6.6
M 12 0.3 1.7 2.5 83.5

Fig. 5. ROC analysis for the various texture analysis approaches and confusion matrix.
N = 4 for all Riesz features.

best performance when compared to 16 and 32. All approaches are combined
with 22 grey level histogram (GLH) bins in [-1050;600] Hounsfield Units (HU)
and the percentage of air pixels with values ≤-1000 HU. Best area under ROC
curves (AUC) are of 0.941, 0.936 and 0.925 for Riesz (N=4), LBPs (R=1, P=8)
and GLCMs with RLEs, respectively.

4 Discussions and Conclusions

We propose a novel texture analysis method to learn multiscale texture signa-
tures based on Riesz wavelets and SVMs, which is rotation and scale covariant. A
pixel–wise alignment of the Riesz templates ensures the normalization of the dis-
tribution of the directional information over the Riesz components, which allows
both inter–instance rotation invariance and intra–instance rotation covariance,
similarly to rotation–invariant LBPs [8]. The important scales and orientations
are learned based on the structural risk minimization principle and therefore do
not need a priori assumptions, which is an advantage when compared to other
state–of–the–art texture features such as GLCMs, RLEs and LBPs. Linear com-
binations of multiscale Riesz components allow discovering class–wise important
discriminatory patterns and visual analysis of their relevance. The multiscale
texture signatures shown in Fig. 3 demonstrate the ability of our approach to
characterize texture patterns with multiple and varying scales and orientations.
A relative robustness to non–rigid transformations is also observed. The lung
texture signatures depicted in Fig. 4 are showing important class–wise discrim-
inative properties. Γ 4

fibrosis clearly resembles the fibrosis patterns characterized
by air bubbles surrounded by high–density walls of collagen. The same is true for
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Γ 4
micronodules, where the micronodule detector is clearly visible with a high peak

in the center of the signature for relatively small scales. Γ 4
healthy and Γ 4

ground glass

are found to be similar, which is coherent to the definition of ground glass char-
acterized by a diffuse increased opacity, where the bronchovascular structures
remain visible. Γ 4

healthy and Γ 4
ground glass are therefore implementing a hybrid

ridge and peak detector corresponding to the projections of the bronchovascular
structures in 2D HRCT slices. Emphysema patterns are the result of the destruc-
tion of lung tissue, which is replaced by air. This process does, therefore, not
engender the typical texture signature that our method aims to learn. LBPs seem
to better encode the transitions between air and parts of remaining tissue, which
shows the potential of combining Riesz and LBP. ROC analysis of the classifica-
tion performance of the texture analysis approaches reveals an excellent average
performance AUC=0.94 for the proposed approach, based on realistic data and
methodology. It outperforms LBPs and GLCMs combined with RLEs in terms of
overall classification performance with high statistical significance based on a 1–
tailed paired T–test: p = 4.75×10−20 for Riesz versus LBPs and p = 5.59×10−43

for Riesz versus GLCMs combined with RLEs. This performance suggests that
it can provide valuable assistance in the difficult task of texture analysis of lung
tissue patterns in clinical routine with high reliability. In future work, class–wise
feature combination and selection among various Riesz orders and other texture
features such as LBPs, GLCMs and RLEs will be investigated using SVM–based
recursive feature elimination. We are also currently extending our approach to
three dimensions. It is expected to provide even better results, since the number
of possible scales and orientations increases exponentially in 3D. A priori knowl-
edge on their organization in 3D is difficult to obtain, because textures existing
in more than two dimensions cannot be fully visualized by humans.
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Abstract. In this paper we present a hybrid 0D-3D modeling method to
investigate the hepatic flow in a virtual right lobe hepatectomy (RLH),
the surgical procedure for adult-to-adult living donor liver transplana-
tion (LDLT). The 3D method is employed to simulate complex 3D flow in
the portal vein, and the 0D model is used to study the systemic hepatic
circulation. In particular, we quantify the flow velocity and wall shear
stress (WSS) in the left portal vein which increase dramatically post-
RLH, and also simulate the essential hepatic distribution features in a
healthy adult pre- and post-procedure. We further predict the arterial
flow in the remnant left liver, which would decrease due to a hepatic
arterial buffer response (HABR) effect. Finally we discuss the physio-
logical significance of these phenomena, and the potential of this hybrid
modeling approach.

1 Introduction

Liver transplantation is the treatment of choice for patients with end-stage liver
disease [1]. However, there is a huge and growing disparity between supply and
demand for cadaveric liver donors. Some patients on the waitlist are delisted
due to deteriorated condition or death while waiting for a cadaveric liver to
become available. One solution to alleviate this problem is the living donor liver
transplantation (LDLT), whereby a portion of a living donor’s liver is resected
and transplanted to a recipient. Fig. 1 illustrates a LDLT scenario. Fig. 1(a)
shows a whole liver and its vascular systems, which include a portal venous
(PV) tree and a hepatic arterial (HA) tree suppling blood to the liver, and a
hepatic venous (HV) tree which drains the blood into the inferior vena cava
(IVC). In a right lobe hepatectomy (RLH), the larger right lobe is harvested
and transplanted to an adult recipient. The remnant left lobe, about 30-40% of
total liver mass, is perfused by the left portal vein (LPV), left hepatic artery
(LHA) and drained by the left hepatic vein (LHV).

It has been reported that dramatic hepatic flow alterations would occur in
both donor and recipient after the procedure [2,3]. For instance, in the left lobe
of the donor, which previously only receives about 30-40% of total portal flow,
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now receives the full portal inflow. Furthermore, the cardiac output after a lobec-
tomy will increase [2]. This leads to an elevated total portal inflow immediately
after the procedure. These dual effects would cause portal hyperperfusion, which
actually is one of the major mechanisms driving liver regeneration following re-
section [3]. However, RLH carries with it the risk of donor mortality and mo-
bidity. Therefore a good understanding of the perfusion pattern of the remnant
liver is essential [2].

Fig. 1. Vascular anatomy of the liver: (a) the whole liver is supplied by a PV tree
and a HA tree, and drained by a HV tree; (b) the remnant left liver, about 30-40%
of total liver volume, is supplied by the l. HA and l. PV, and drained by l. HV. The
bold broken curve represents the incision line. Abbreviations: HV - hepatic vein; HA -
hepatic artery; PV - portal vein.

Three-dimensional (3D) flow in portal vein pre- and post-RLH was previously
simulated by Ho et al [3]. They showed that increased portal flow and more
complex flow streamlines occurred after the procedure, and speculated that this
might be one of the main mechanisms that trigger a portal vein remodeling [3].
The systemic circulation pattern in the remnant liver, such as what would be
the overall perfusion pattern, and how would arterial flow change with respect
to increased PV flow, remain uninvestigated from a computational perspective.

In this work we propose a hybrid 0D-3D method to study hepatic flow from
different perspectives, which could better prepare us to address these questions.
We will reconstruct hepatic venous structures from a CT image, perform a virtual
RLH, and simulate flow variations due to the virtual procedure. We will show
the simulation results, and finally discuss the significance of this work.

2 Method

2.1 Medical Imaging and Vascular Construction

We studied the CT image (GE LightSpeed) of a male patient, who was admitted
to the hospital due to a pathological condition (aneurysm) not relevant to the
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liver. The spatial resolution of the image was 0.879 × 0.879 × 0.625mm. The
image, shown in Fig. 2(a), was used to visualize the portal and hepatic veins.
Using a MIMICS software (Materialise, Leuven, Belgium) we segmented the liver
and intrahepatic PV and HV trees. Also segmented are the superior mesenteric
vein (SMV) and the splenic vein (SV), which merge into the PV (see Fig. 2b). To
facilitate 3D flow simulation, the portal veins downstream the second generation
were discarded because the image resolution was not high enough for us to
conduct an accurate 3D vascular surface-reconstruction. A virtual incision line,
indicated by the red line in Fig. 2(c), was assumed to occur at the right portal
vein.

Fig. 2. Medical imaging and vascular construction: (a) front and axial view of the
CT-image; (b) segmented PV and HV trees; (c) the portal vein is trimmed after the
second generation. The red line indicates incision position and the bold arrows indicate
flow directions.

The surface mesh of the PV, SMV and SV (see Fig. 2c) was imported into an
ICEM software (ANSYS Inc.) for computational grid generation. The number
of generated tetrahedral elements was about 160K.
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2.2 Blood Flow Modeling

A hybrid 0D and 3D method was employed for blood flow modeling, whereby
the 3D method was used for the simulation of complex 3D flow, and the 0D
model for systemic circulation analysis, as briefed below.

3D Flow Simulation. The governing equations for blood flow in large arteries,
the Navier Stokes equations, are expressed as:

∇ · v = 0 (1)

ρ(
∂v

∂t
+ v · ∇v) = −∇p+∇ · τ (2)

where v and ρ represent the flow velocity and density of blood, respectively. p
and τ represent the blood pressure and shear stress. The equations (1-2) were
discretized over the computational grid of the portal system shown in Fig. 2(c),
and were solved numerically using a finite volume based computational fluid
dynamics solver, ANSYS CFX [4]. The portal flow was considered as steady,
as revealed by ultrasonic measurements [3]. The inflow velocity boundary con-
ditions, 20 cm/s and 30 cm/s, were prescribed at SV and SMV, respectively.
These data were adopted from literature [2,3]. In addition, a zero pressure was
imposed at the outlet(s) to allow free outflow.

0D Flow Simulation. For hepatic circulation models we follow the strategy of
Debautt et al [5], who employed a dual source circuit to study hepatic perfusion.
The difference between our model and that of [5] is that, instead of employing
a large number of pi-filters for various PV, HV and HA generations, we simply
used one pi-filter for each tree, therefore significantly simplified the circuit. The
circuit, shown in Fig. 3, represents a basic hepatic circulation model. The direct
current (DC) source in the circuit generates portal flow, whilst the pulsatile cur-
rent (PC) source produces arterial flow. Note, that the law of mass conservation
i.e. the hepatic inflow equals hepatic outflow (FPV + FHA = FHV ) is naturally
obeyed in the circuit.

The parameters of the electronic components in a pi-filter (shown in Fig. 3b)
are calculated based on a set of equations, e.g., [5]:

RS =
8μl

πr4
(3)

L =
1.33ρl

πr2
(4)

where μ is the viscosity of blood, l, r are the length and radius of blood vessel, re-
spectively. The hepatic arterial resistance RHA is a nonlinear element to simulate
a hepatic arterial buffer response (HABR), the intrinsic regulating mechanism
whereby the changes of hepatic arterial flow counteracts that of portal flow [6].
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Fig. 3. Electrical analog circuits for hepatic circulation. (a) Basic model: the three pi-
filters simulate flow in HA, HV and PV trees (each shown inside a gray rectangle); (b)
a pi-filter; (c) the schema of the extended circuit accounts for the hepatic circulation
to the left and right lobes. The parameter values of the electric components are shown
in Table 1.

Table 1 lists the parameters for the electronic components in Fig. 3(a). Their
values are based on the data in [5], and were fine-tuned after simulations.

Since the left and right lobes of the whole liver are perfused and drained
independently, the basic electric circuit of Fig. 3(a) was expanded into a more
complex circuit that differentiates the left and right lobes. The schema of this
electric circuit is shown in Fig. 3(c). Note, that each segment in the circuit
represents a pi-filter, and that the two lobes receive different portion (left: 40%,
right: 60%) of total HA and PV flow, with each lobe drained by a single hepatic
vein.

3 Results

3.1 3D Flow Alteration in the Portal Vein

The 3D flow simulation took about 30 minutes to complete on a desktop com-
puter (Intel Core 2.4GHz). A variety of hemodynamic data were computed. Of
particular interest are the flow velocity and the wall shear stress (WSS) pre- and
post the virtual RLH procedure.

Fig. 4(a) visualizes flow streamlines along the flow path. It shows that the peak
flow velocity in the LPV increased from 18cm/s to 46cm/s, as a result of receiving
full portal flow. Consequently, the WSS in the LPV, shown in Fig. 4(b), was
drastically elevated from merely 0.2Pa pre-RLH to 0.6Pa post-RLH. This agrees
with the simulation of [3] which showed that WSS almost doubled post-RLH
(from 0.4 Pa to 0.8 Pa). Also observable are the strong helical flows (indicated
by slim arrows) in PV developed after the merging point of the SMV and SV.
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Table 1. Parameters of Electronic components in Fig. 3(a)

Component Whole organ Unit

RHA 1.5689e9 (nominal value) Pa · s/m3

RHV 1.3630e8 Pa · s/m3

RPV 3.7807e7 Pa · s/m3

RHA 1 1.562e10 Pa · s/m3

RHV 1 1.40607e7 Pa · s/m3

RPV 1 2.1054e8 Pa · s/m3

RIV C 16.5e6 Pa · s/m3

CHA 1.2803e-10 m3/Pa · s
CHV 1.4224e-6 m3/Pa · s
CPV 9.4995e-9 m3/Pa · s
LHA 200e6 Pa · s2/m3

LHV 30e6 Pa · s2/m3

LPV 50e6 Pa · s2/m3

This was not presented in [3] because that study placed the flow inlet after the
SMV-SV junction. The physiological implications of the helical flows to PV wall
remodeling remain to be investigated.

3.2 Hepatic Circulation in the Whole Liver and the Left Lobe

The portal vein pressure was assumed to be 6 mmHg at DC, and a pulsatile
pressure varying between 80mmHg and 120mmHg was prescribed from the PC.
The resulted flow rate waveforms of PV, HA and HV in the whole liver are plotted
in Fig. 5(a). In particular, the total hepatic flow (FHV ) is about 1.45 L/min,
i.e. approximately 30% of the cardiac output (∼5 L/min) in a healthy adult.
The hepatic arterial flow, which is more pulsatile than the portal and hepatic
venous flows, contributes about 400mL/min (or 33%≈1/3 of total hepatic flow
volume) oxygenated blood to hepatic circulation, whilst the portal vein supplies
the remaining 1,050 mL/min (or 67%≈ 2/3 of total volume) poorly-oxygenated
yet nutrient-borne blood.

The above flow distribution represents the essential hepatic circulation fea-
tures in a healthy adult, and was achieved by using the electric circuit of Fig.
3(a). We further analyzed the flow distribution into the left and right lobes using
the extended circuit of Fig. 3(c). Fig. 5(b) shows the results: the flow rate in
LPV is 1.05 L/min post-RLH, almost threefold of that pre-RLH (380 mL/min).
This causes portal hyperperfusion (and high shear) in the LPV, as also revealed
from 3D simulations. On the other hand, the left arterial flow decreases from
140 mL/min pre-RLH to 50 mL/min post-RLH. This surprising phenomenon is
due to the HABR that was observed in partial liver grafts in recipients [7]. The
presumed aim of this intrinsic mechanism is to keep the total hepatic circulation
within a physiological range.
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Fig. 4. Comparison of hemodynamic data pre- and post-RLH (a) flow streamline:
helical flows are formed after the SMV and SV junction. The flow velocity increase
in the LPV from 18cm/s to 46cm/s; (b) wall shear stress in the LPV is drastically
increased, from merely 0.2Pa to 0.6Pa.

4 Discussion

Right lobe hepatectomy is the surgical method used in adult-to-adult LDLT
[1]. Donor mortality and morbidity may occur due to multiple factors such as
inadequate remnant liver mass, compromised hepatic circulation, etc. A com-
prehensive understanding of hepatic circulation in the remnant liver would aid
biomedical and surgical research of this procedure. In this paper we used a hy-
brid 3D-0D method for the flow analysis of a virtual RLH. In particular, we
simulated the essential flow distribution feature in the whole liver, and also in
the remaining left lobe. This has never been performed previously, to our knowl-
edge. Moreover, we made a physiological predication that hepatic arterial flow
may decrease sharply in the liver remnant following RLH. This decrease, after
verified through in vivo ultrasonic measurements, could be of significance. The
possible implications of such a decrease are many, for example hepatic arterial
thrombosis is a life-threatening disorder that is associated with liver dysfunction.

The presented models can be further extended to study more complex and
clinically-related hepatic circulation problems. For instance, the pathological
condition of the liver, e.g., cirrhosis, may be taken into the circulation model
by altering the hepatic venous resistance and raising the portal pressure.
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Fig. 5. (a) Flow rate in the HV, HA and PV in a whole liver: HA contributes 1/3 of
total hepatic flow whilst PV contributes the rest; (b) LPV flow drastically increases
but the LHA flow decreases due to the HABR effect

5 Conclusion

In this paper we simulated blood flow in a virtual right lobe hepactomy that was
constructed from a 3D CT image. We showed the increased flow velocity and
wall shear stress in portal vein, and reproduced the essential flow distribution
features in the whole liver and the remnant left lobe.
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Abstract. We present a new method to analyze, classify and character-
ize 3D landmark-based shapes. It is based on a framework provided by
oriented matroid theory, that is on a combinatorial encoding of convex-
ity properties. We apply this method to a set of skull shapes presenting
various types of coronal craniosynostosis.

1 Introduction

Since three decades,GeometryMorphometrics has revolutionized the quantitative
analysis of the variation of the shape of anatomical structures [1]. It can be defined
as a collection of methods that process directly the coordinates of landmarks, in
2D or in 3D, rather than with traditional distance or angle measurements. The
landmarks, which are in general points, can be defined by experts in anatomy
or can be automatically computed by geometrical feature extraction algorithms.
Landmark-based morphometry methods are now used in many medical applica-
tions but they present some important drawbacks as emphasised in [7,6].

In the superposition methods, many schemes of alignment have been proposed
to superimpose the sets of landmarks (e.g. Procrustes, matching of a specified
edge, etc.). The morphometrical result is then directly related to the alignment
scheme itself, which is often selected by guessing the potential variability of the
shape. Moreover, in some cases, the alignment scheme may result in transforming
a strictly local deformation into a global one (Pinocchio effect [4]).

In the deformation methods, the difficulty is to define an appropriate class of
transformations to warp a set of landmarks toward another. If the class is too
general, the reference shape may deform to anything without any geometrical
consistency. On the contrary, if the transformation is too constrained, there may
be no accurate registration. In both cases, the transformation parameters will not
properly characterize the shape deformation. Many mathematical formulations
have been proposed but they remain difficult to assess and interpret as we do
not know the potential variability of the shape.

Linear distance-based methods as the Euclidean Distance Matrix Analysis do
not require to define any geometrical transformation to align or deform the shape.
Nevertheless, the results which are based on inter-landmark distances are quite
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difficult to understand. The practitioner, indeed, does not only want not to know
that the shape of an anatomical structure has varied by a quantity, but also to
graduate this quantity on a standard scale and to localize the deformation. And
even if some procedures to identify the most influential landmarks were proposed
[3], this kind of methods remains little used for medical applications.

In this paper, we propose to encode 3D landmark configurations as oriented
matroids, a combinatorial mathematical structure which was developed over the
past forty years [2]. The idea is to code all the relative 3D positions of points of
the shape, without taking into account the distances between them. As in linear
distance-based methods, no alignment or deformation is to be computed. Using
tetrahedra orientations in the shape, we obtain a vector of discrete values (-1 or 1)
which characterizes the structure of the shape, independently of its size, its
position, or more generally of any linear isomorphism of the space (see Section 2).
The mathematical structure allows one to detect structural changes in a shape
such as the crossing of a landmark through the plane defined by three others,
and more generally all convexity properties involving subsets of landmarks. In
Section 3, we introduce some theoretical and computational method to analyze
and compare those shape representations. Let us point out that the discretization
allows to perform a morphometrical analysis, without any numerical error or
approximation. We show in Section 4 a clinical application to the classification
of coronal craniosynostosis, yielding simple formal/geometrical/combinatorial
characterizations of the classes within the studied set of individuals.

2 Combinatorial Structure of a 3D Model

LetE be a finite set of n labels. LetM be a set of n points labelled byE in the real
affine space of dimension 3. We call M a model. We assume that these n points
are in general position, meaning that every subset of E having four elements is
a basis of the affine space. We call basis such a subset B = {a, b, c, d}. Let B be
the set of all bases. For the sake of formal simplicity, we assume that E and B
are linearly ordered. Hence every element B = {a, b, c, d}< of B is ordered, and
we denote B = abcd. Then, for instance, B can be ordered lexicographically.
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Fig. 1. The two possible orienta-
tions of tetrahedron abcd given by
χM (abcd)

Every basis B in B gets a sign in {+1,−1},
called orientation or sign of B in M , and de-
noted χM (B). It is defined as the orientation
of the tetrahedron formed by the four points
in B with respect to the ordering of B and a
chosen orientation of the space. See Figure 1.

Equivalently, in linear algebra terms, and
in computational terms, χM (B) is the sign of
the determinant of the 4 × 4 matrix whose
columns give the coordinates of the points in
a canonical basis of the space, that is:

χM (abcd) = sign

(
determinant

⎛⎝ 1 1 1 1

xa xb xc xd
ya yb yc yd
za zb zc zd

⎞⎠).
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Let χM be the list of signs of elements of B in M , with respect to the linear
ordering of B, that is χM = [χM (B1), χM (B2), χM (B3) . . .]. We call χM the
chirotope of M . We consider χM as a vector in the real space RB of dimension
|B|; and for a vector x of this space, x(B) denotes the value of x at coordinate B.

Figure 2 shows an example of M on 5 points labelled by 1 < 2 < ... < 5. The
following table shows the ordered list of bases and their signs:

basis 1234 1235 1245 1345 2345
sign −1 −1 +1 −1 −1

yielding the chirotope χM = [−1,−1,+1,−1,−1] ∈ R5.
Figure 3 shows another example M ′ on 5 points with the same labels. The

chirotope of M ′ is χM ′ = [+1,−1,+1,−1,−1]. In comparison with M from
Figure 2, the point 1 has crossed the plane 234 (and no other plane spanned by
points of the model). That is why χM and χ′

M differ only with the sign of the
basis 1234. Also, for example, it can be read from the chirotope if the point 1
belongs or not to the convex hull formed by the other points.

Observe also that if a point moves in M without crossing a plane spanned by
other points, then χM does not change. The properties encoded by χM do not
depend directly on numerical measures (distances, angles...), and this combina-
torial encoding rather describes the “structural shape” of the point set.

The properties of χM are known as the uniform oriented matroid theory [2].
This rich mathematical theory is forty years old and can be seen as a combinato-
rial abstraction of linear algebra. In the case of real points, the oriented matroid
defined by χM is a mathematical structure which is combinatorial (i.e. defined
on a finite set), encodes the relative positions of the points of M , and catches in
particular all their convexity properties1.

In this paper, we use this information to compare models, labelled by a same
set, practically given by landmarks. Formally, we fix a set M of models M
labelled by E, and we study the set of χM , for M ∈ M.
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5

Fig. 2. A model M . Full lines belong to the
front part of the convex hull; light dashed
lines belong to its back part; the medium
dashed line 15 is inside the convex hull.
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Fig. 3. A model M ′ obtained from M
by moving 1 inside the tetrahedron
2345. The lines 12, 13, 14 and 15 are
now inside the convex hull.

1 We mention that the case where points may not be in general position leads to a
possible 0 sign for the values χM (B), and to the general theory of oriented matroids.
In this paper, for the sake of clarity and concision, we focus on the uniform case.
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3 Method of Analysis

3.1 General Scope

The main concept to compare models in M is the following. For a subset D of
B, and two vectors x and y in RB, we define the distance between x and y w.r.t.
D as

dD(x, y) = (1/2) ·
∑

B∈D | x(B) − y(B) |
which is, mathematically, a distance for projections onto the space RD. In what
follows we make the abuse to call dD a distance in RB even when D 	= B. Observe
that the distance dD between two chirotopes χM and χM ′ equals the number of
bases in D having different signs in M and M ′.

Let us now consider a partition of M in two classes M = C $ C′, or, more
generally, a partition into k classes M = C1 $ . . . $ Ck. Such a partition can be
given by the experts that provided the models (e.g. four known medical types
for skulls as in Section 4). On the other hand, such a partition can be built using
the chirotopes of the models without any other preliminary knowledge. Note
that if classes satisfying automatic unsupervised classification criteria match
classes given by experts, then it means that the combinatorial data captures
some geometrical properties that characterize the classes in which the experts
are interested, and yields a formal characterization of those classes.

Once a partition is given, either by experts or by automatic classification, a
second step is to characterize classes using the less possible information from the
chirotopes. For instance, we look for a few bases whose signs allow to determine
if a model belongs to a given class or not. In terms of applications, those bases
should be significant, providing either a mathematical formal confirmation of
criteria used by experts, or new properties pointing out typical features of the
class that would interest experts.

3.2 Automatic Classification

Given a set C of models, the barycenter mC of C is the vector in RB whose coor-
dinate at basis B is the mean of the signs of models in C at basis B, that is:

mC(B) = 1
|C|
∑

M∈C χM (B).

We say that the partition M = C $ C′satisfies the k-means criterion if for every
M ∈ M we have:M ∈ C if and only if dB(χM ,mC) < dB(χM ,mC′), andM ∈ C′ if
and only if dB(χM ,mC) > dB(χM ,mC′). Of course, this criterion directly extends
to a partition into k classes.

Various clustering algorithms can be used to build automatically a partition
into classes satisfying criteria such as the above one. The most classical one
consists in initializing arbitrary classes, computing the barycenters for each class
and move a model to an other class if it is closer to the barycenter of this other
class than to the barycenter of its initial class. Repeating this procedure until
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stability yields a partition satisfying the k-means criterion. Then, one may test
many initializations and select an “optimal” classification.

For lack of space, we just mention that such an algorithm allows to detect
“mean” individuals among the classes, characterized by “mean” chirotopes, and
that other clusterisation algorithms can be used (e.g. k-medoids).

3.3 Characterization of Classes

Assume that a partition M = C $ C′ is given. We now look for simple and
significant combinatorial criteria defining this partition.

Formally, in this paper, we will build classes depending on three parameters:
a set D of bases, a vector x in the space RB, and a real value l. We define

CD,x,l = {M ∈ M | dD(χM , x) ≤ l}.
This set can be considered as the set of model chirotopes contained in a “ball”
in the space RB, centered at x and of radius l for the distance dD.

Practically, we look for a subset D of B the smallest possible for simplicity,
for a vector x in RD with coordinates in {−1,+1}, and for an integer value l,
such that CD,x,l is equal to class C. In this combinatorial setting, a model M
belongs to the class C if and only if there are at most l bases B in D such
that χM (B) 	= x(B). Hence, D serves as a significant set of bases, x as the
characteristic values of these bases for C, and l as a threshold value to the fact
that a model fits this charateristic values.

As an example of particular interest, consider the case where D consists of a
single basis D = {B}. Then x is given by a single sign, say x(B) = +1. Then a
model M belongs to C if and only if χM (B) = +1, and it belongs to C′ if and
only if χM (B) = −1. Equivalently, we have C = C{B},+1,0. In this case, the sign
of B determines if M belongs to C or not. We say that B is totally discriminant
for the class C. This is the most simple possible characterization of a class.

The problem is to detect such parameters D, x, l. Let us use the following
procedure. For a basis B, we define the discriminability of B as τ(B, C, C′) =|
mC(B)−mC′(B) | /2. This value belongs to [0, 1]. The closer to 1 this value is, the
more significant the basis B is for the class C. The extreme case is τ(B, C, C′) = 1,
implying that mC(B) = +1 and mC′(B) = −1 (or the inverse), and then, by
definition of mC and mC′ , that every model in C (resp. C′) has value +1 (resp.
−1), meaning that B is totally discriminant for C and C′. On the contrary,
τ(B, C, C′) = 0 can be obtained for instance when B has the same sign in every
model in M, or also at the limits when B has a random sign; hence we cannot
expect B to be significant to describe C.

We can order the bases in B according to their discriminability. This
ordering allows a computation to search parameters D, x, l. Indeed, from the
computational viewpoint, there may be a huge number of elements in B (any
set of four landmarks is a basis), and hence a non-affordable number of subsets
D to test. Considering only bases with high discriminability allows to restrict
the number of subsets to be tested, while focusing on the information that has
some chance to be significant. So we consider bases having the highest possible
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discriminability to build a set D and an integer l as required. The values x(B)
determining x are naturally given by the signs of mC(B)−mC′(B) for B ∈ D.

Observe that if a partition M = C1 $ . . . $ Ck is given and such parameters
are known for every class Ci in the partition, then we have two independent
criteria to detect a class: first the direct criterion provided by the parameters
characterizing Ci, secondly the negation of the criteria determining that a vector
belongs to another class Cj, j 	= i.

4 Applications to Coronal Craniosynostosis

Coronal craniosynostosis is a rare infant pathology in which one of the two
coronal sutures of the skull prematurely fuses by ossification. We can distinguish
between left (LUCS), resp. right (RUCS), uni-coronal craniosynostosis when only
one side is affected and the bilateral case (BCS) when both sides are fused. It
is essential to use 3D morphometric tools to quantify and analyze precisely the
deformation of the skull shape in this pathology. In [5], the authors used classical
landmark-based tools (Procrustes and Principal Component Analysis) to study
a database of the International Craniosynostosys Consortium and assess the
(a)symmetry of the pathology. We could test our new morphometric method on
the same data and we propose below some preliminary results.

The clinical database is composed of CT-Scan images of 40 children diagnosed
with non syndromic coronal craniosynsostis (LUCS=8 / RUCS=17 / BCS=15 )
and 20 unaffected individuals of the same age. Anatomy experts pointed 41 land-
marks on these CT-Scan and added 92 semilandmarks along predefined curves,
as illustrated on Figure 4. No alignment or spatial normalization was performed.

To compute the
(
133
4

)
tetrahedron signs, it takes about 6 hours on a standard

PC. This process is performed only once. The k-means clustering itself takes
about 30 seconds on a standard PC, but one wants to run it multiple times
(1000 in our application) with different starting positions.

First, we present results obtained by using the whole set of 133 landmarks.
We started off by testing if the four classes given by the experts (BCS, LUCS,
RUCS and Unaffected) satisfie the k-means criterion. This criterion is satisfied
by these four classes, so we can assume that the premature fusion of sutures

Fig. 4. Illustration of the 133 3D landmarks (RUCS skull shown here). Anatomical
landmarks are in red and curve semilandmarks are displayed in green.



A Combinatorial Method for 3D Landmark-Based Morphometry 539

corresponds to changes in the skull shape chirotopes. We applied the k-means
algorithm to find a partition of the 60 individuals in 4 clusters which minimizes
the sum of distances between the individuals and the barycenter of their class.
The algorithm returns exactly the classes defined by the experts, strengthening
the above observation. With this result we obtain also for every class C the
closest individual of the barycenter of C.

Let C be a class among BCS, LUCS, RUCS and Unaffected. We denote by C′

the set of all the individuals which are not in C. We computed the discriminability
τ(B, C, C′) for every basis B and class C. For every class there exist several bases
which are totally discriminant. Precisely there are 147 such bases for BCS, 15,667
such bases for LUCS, 5,064 such bases for RUCS, and 7 such bases for Unaffected.
So for each class we have many simple characterizations (direct criterion and
negation of the criterion of the others classes).

In a second time we used only the 41 anatomical landmarks. The first reason
is to focus only on what has a real anatomical meaning and a precise anatomical
definition. The second reason is to speed up all the calculus as it reduces the
number of tetrahedra from

(
133
4

)
= 12, 457, 445 to

(
41
4

)
= 101, 270.

The k-means algorithm yields a partition into 4 clusters which match exactly
the 4 classes given by the experts, except for one individual among the 60.

There exist bases which are totally discriminant for LUCS (22 bases) and
RUCS (4 bases). The four bases for RUCS all contain the bregma (intersection
of the coronal and the sagittal suture) and the lambda (intersection of the sagittal
and lambdoidal sutures). Each basis contains a third landmark in the median
sagittal plane. This third landmark is the nasion for two bases and the nasale
for the two other bases. For each basis, the fourth landmark is a point of the
right part of the cranial base. For each of these bases, if we replace the fourth
landmark by the symmetric landmark with respect to the median sagittal plane,
we obtain one of the 22 bases which are totally discriminant for LUCS. Figure 5
shows one of the four basis totally discriminant for RUCS and the symmetric
basis which is totally discriminant for LUCS.

For BCS, there is no totally discriminant basis. Let us detail one characteri-
zation we obtained, among other ones. We found two tetrahedra B1 and B2 such
that an individual is BCS if and only if both the orientations of these tetrahedra
are −1. That is BCS = C{B1,B2},x,0 for x(B1) = x(B2) = −1. Their discrim-
inabilities are high and equal 0.89 and 0.91. These two tetrahedra share two
landmarks. Let us denote B1 = 1234 and B2 = 1256. Figure 6 shows these two
tetrahedra on some BCS model, and Figure 7 details their positions for the BCS
class. Figure 8 shows the other possibilities, available for models in the other
classes. The involved landmarks are: the left anterior clinoid process (1); the
left asterion (posterior end of the parietomastoid suture) (2); the left and the
right fronto-zygomatic junction at orbital rim (4 and 3 respectively); the anterior
nasal spine (5); and the left external auditory meatus (6).

For the unaffected individuals, we found (for instance) a slightly more involved
characterization: a set D2, with five bases having discriminabilities between 0.85
and 0.875, such that this class equals CD2,y,2 for some y ∈ {−1,+1}B. That is:
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Fig. 5. One of the 4 bases totally discriminant for the RUCS (left and middle) and the
basis obtained by symmetry which is totally discriminant for the LUCS (right)

Fig. 6. The two tetrahedra (red and blue) which give a characterization for BCS

1

2

3 4
5

6

Fig. 7. The orientations [−1,−1] of B1

(red) and B2 (blue) characterize BCS

Fig. 8. The other possible orientations
[−1,+1], [+1,−1], and [+1,+1] (from left
to right), available for non-BCS models.

x is unaffected if and only if there exist at least three bases in D2 such that the
signs of these bases are the same in x and y.

Finally, we point out that the formal/geometrical/combinatorial character-
izations above are obtained with respect to a given whole set of models, and
may depend noticeably on this initial data. However, they raise the question of
medical anatomical interpretations.

Acknowledgement. The authors are much grateful to Yann Heuzé and Joan
Richtsmeier for communicating the landmark data from [5] studied in Section 4.
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Abstract. Arterial Spin Labeling (ASL) enables measuring cerebral
blood flow in MRI without injection of a contrast agent. Perfusion mea-
sured by ASL carries relevant information for patients suffering from
pathologies associated with singular perfusion patterns. However, to date,
individual identification of abnormal perfusion patterns in ASL usually
relies on visual inspection or manual delineation of regions of interest.

In this paper, we introduce a new framework to automatically out-
line patterns of abnormal perfusion in individual patients by means of
an ASL template. We compare two models of normal perfusion and as-
sess the quality of detections comparing an a contrario approach to the
Generalized Linear Model (GLM).

1 Introduction

Perfusion is the process through which the blood provides nutrients and oxygen
to the tissues by means of micro-circulation. ASL is a recent MRI technique [1]
that allows perfusion measurement and quantification of Cerebral Blood Flow
(CBF). Contrary to Dynamic Susceptibility weighted Contrast (DSC) imaging
– the most validated technique to measure perfusion with MRI – ASL does not
rely on the injection of an exogenous contrast agent. In a few words, blood
water is labeled with a radio-frequency pulse in the neck and, after a delay
called inversion time, a labeled image of the brain is acquired. The difference
between the label image and a control image, acquired without labeling, leads
to a perfusion weighted image. Due to the low signal to noise ratio (SNR) of
the ASL sequence, a single pair of control and label image is not sufficient to
measure perfusion, the acquisition is usually repeated several times leading to R
pairs of images. Perfusion information is then extracted by averaging. A model
is applied to this image to obtain a quantification of CBF. ASL is particularly
well suited for longitudinal studies or studies of patients with difficult venous
access such as children. Its non-invasiveness makes ASL the method of choice
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for the study of perfusion of healthy subjects. However this comes at the cost of
low SNR and lower spatial resolution than DSC.

Today, ASL studies are able to outline differential patterns of perfusion in
pathological populations, including Alzheimer disease [2] or schizophrenic pa-
tients. At the same time, the interest of ASL in the study of individual pa-
tients presenting singular perfusion abnormalities was also demonstrated. In
these pathologies, the highly variable pathological patterns preclude group anal-
ysis. Abnormal patterns of perfusion must then be identified at the subject level.
It is for instance the case of tumors, strokes or multiple sclerosis lesions. For pa-
tients diagnosed with tumors, the clinician is interested by hyperperfusions that
would reveal the grade of the tumor [3]. In this context, perfusion abnormal-
ity studies usually rely on comparing the level of perfusion in the lesion to the
controlateral normal tissue. This method is based on manual regions of interest
delineations, a time-consuming task prone to inter-expert variability.

The aim of this paper is to present an automatic framework to identify hy-
poperfused and hyperperfused regions in individual patients by comparison to
a model of normal perfusion. In [4], we investigated the ability to detect hy-
poperfused and hyperperfused regions on patients using a template of normal
perfusion. Here we propose a new model that takes into account the first level
variance and we focus on quantitative evaluation of this framework.

Section 2 presents the method developed, that focuses on two aspects : the
computation of an appropriate model for normal perfusion and the selection of
an adequate test to detect perfusion abnormalities at the subject level. In Section
3 the framework is evaluated based on 12 subjects diagnosed with brain tumors
using a perfusion template derived from 35 healthy subjects. False positive rates
(FPR) are estimated and the quality of detections are assessed.

2 Material and Methods

2.1 ASL Template: A Model of Normal Perfusion

Given perf vi , i ∈ 1..N , a set of perfusion maps in a group of N control subjects,
we want to compute a model of normal perfusion Perf v, referred as the perfusion
template. This model is specific to each voxel v. For ease of notation, the v
superscript is omitted in the following.

In [5] or [4] the perfusion signal Perf , is modeled by the normal distribution:

Perf ∼ N(μpop , σ
2
pop). (1)

The population mean, μpop , and variance, σ2
pop , are approximated by μ̂pop and

σ̂2
pop , the sample mean and variance of the perfusion maps in the control group.
However, the above specified model ignores the error made when estimating

the perfusion maps perf i as the average of R repeats (control minus label pairs).
This error is dependent on the first level variance that has shown to carry relevant
information in group fMRI studies [6]. To simplify the model, we consider that
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all subjects in the template group have the same first level variance σ2
sub,tpl. Perf

is then modeled by the normal distribution:

Perf ∼ N(μpop , σ
2
pop + σ2

sub,tpl). (2)

The first level variance, σ2
sub,i, can be approximated by σ̂2

sub,i =
σ̂2
rep,i

R , where

σ̂2
rep,i is the sample variance over the R repeats for the ith subject. The first level

variance in the template group σ2
sub,tpl is estimated by σ̂2

sub,tpl =
∑N

i=1 σ̂2
sub,i

N . In

this model, σ2
pop can no longer be estimated as the sample variance of the perfu-

sion maps in the control group since this estimate includes first level variance. To
correct for this bias, σ2

pop can be approximated by the method of moments [7]
subtracting the control subjects first level variance, σ2

sub,tpl, from the sample

variance. Negative variance estimates are avoided by enforcing positivity of σ̂2
pop .

2.2 Detection of Hypoperfused and Hyperperfused Regions in a
Single Subject

Given the model of normal perfusion Perf , we are interested in drawing conclu-
sions about a new observation perf N+1, for instance a patient map.

Uncorrected Probability Maps: Assuming Gaussian errors, (3) presents the
best linear unbiased estimator of the patient versus group effect β, ignoring the
first level variance:

β̂ = perfN+1 − μ̂pop , Var(β̂) = σ2
pop × (

1

N
+ 1). (3)

This model is at the basis of the well-known two-sample t-test group analysis.
Since σ̂2

pop is estimated by the sample variance, this model is also valid in case
of homoscedasticity (same first level variance for all subjects).

The best linear unbiased estimator of the patient versus group effect, β, with
explicit first level variance, is expressed in (4).

β̂ = perfN+1 − μ̂pop , Var(β̂) =
σ2
pop + σ2

sub,tpl

N
+ σ2

pop + σ2
sub,N+1 (4)

The first level variance, σ2
sub,N+1, can be approximated by σ̂2

sub,N+1 =
σ̂2
rep,N+1

R .
Assuming that a unique patient map cannot be of better quality than the tem-
plate maps, σ2

sub,N+1 is constrained to be greater or equal to σ2
sub,tpl.

Ignoring the error on the variance estimates, under the null hypothesis that

perf N+1 follows the template distribution, β̂√
V ar(β̂)

follows a standard normal

distribution. To the aim of discriminating hypoperfusions from hyperperfusions,
positive and negative effects are studied separately.
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GLM-FDR. Most of the GLM approach has been described in the previous
section. However, given the large number of voxels found in a typical ASL image
a correction for multiple comparisons is required to ensure an acceptable FPR.
The False Discovery Rate (FDR) algorithm insures that no more than a ratio q
(usually q = 0.05) of detections are false positives. In GLM experiments, the
data is usually pre-smoothed with a Gaussian kernel.

A Contrario: The a contrario approach, introduced in [8], is inspired from the
Gestalt laws of perception. This theory has later been applied to medical image
processing [9, 10]. In our context, the a contrario method uses the uncorrected
p-value map and takes an original approach to account for multiple comparison.
The inference is done by looking into a spherical neighborhood. In the first step,
the uncorrected p-value map is thresholded using a predefined set of p-values,
L = {p1 . . . pT }, to generate a set of binary maps referred as rare event maps. For
instance with a p-value of 0.001, voxels verifying p < 0.001 are outlined as rare
events. Then, for each rare event maps, the number kv of rare events found in
a neighborhood around each voxel v is computed. The probability πv

i of having
kv or more rare events is then estimated considering that the number of rare
events in the neighborhood comes from a binomial distribution: πv

i = P (X ≥
kv), where X ∼ B(n, pi),, pi ∈ L and n is the number of voxels in the studied
neighborhood. For the sake of multiple comparisons correction, a number of false
alarm (NFA) map is then computed by NFAv = V T min(πv

i ) where V is the
total number of voxels. V T therefore corresponds to the total number of tests.
Voxels verifying NFA < 1 are outlined as detection. Due to the neighborhood
constraint, a voxel can be detected both as hyperperfused and hypoperfused. To
avoid this confusing situation, a voxel cannot be outlined as hyperperfused (rep.
hypoperfused) if its value is smaller (resp. greater) than the template mean. In
this paper we worked with the following set of p-values P = {0.001, 0.005}.

3 Results

3.1 Data

Data: 36 healthy volunteers and 14 patients diagnosed with brain tumors were
involved in this study. Data acquisition was performed on a 3T Siemens Verio
MR scanner with a 32-channel head-coil. The imaging protocol included a 3D
T1-weighted anatomical sequence (T1) (TR: 1900 ms, TE: 2.27 ms, resolution:
1×1×1mm3), a PICOREQ2TIPS sequence with crusher gradients (TR: 3000ms,
TE: 18ms, resolution: 3×3mm2, slice thickness: 7mm, TI: 1700ms, TIwd: 700 ms,
R = 60). In addition to these sequences, the patients also underwent a 3D T1 post
gadolinium (T1-Gd) sequence (TR: 1900ms, TE: 2.27ms, resolution: 1×1×1mm3)
and a T2 FLAIR sequence (TR: 9000 ms, TE: 90 ms, resolution: 0.69×0.69 mm2,
slice thickness: 4 mm). Three subjects (1 control, 2 patients) were excluded for
abnormally low signal.
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Pre-processing: Image pre-processing was performed using the Matlab tool-
box SPM8 (Wellcome Department of Imaging Neuroscience, University College,
London). The anatomical image of each subject was segmented using the unified
segmentation. For each subject, an anatomical brain mask was created, exclud-
ing voxels with less than 50% of brain tissue in subsequent statistical analyses.
A six-parameter rigid-body registration of the ASL volumes was carried out in
order to reduce undesired effects due to subject motion. Coregistration on grey
matter map was then performed based on mutual information. The average of
unlabeled volumes was used to estimate the geometrical transformation to apply
to each volume. The 60 unlabeled and labeled ASL volumes were pair-wise sub-
tracted and averaged in order to obtain a perfusion weighted map per subject.
A standard kinetic model [11] was then applied in order to get ASL CBF.

In order to account for inter-subject variations in CBF, each map was nor-
malised by the mean perfusion value computed from all voxels containing more
than 70% of GM [5]. In patients, tumorous tissue was excluded from the cal-
culation. Spatial normalisation parameters estimated during the segmentation
step were then applied to the T1 and ASL CBF map in order to normalise the
subjects into the ICBM template space [12].

3.2 Influence of First Level Variance in the Model of Normal
Perfusion

Quantitative Comparison: We compared the basic model of normal perfu-
sion, presented in (1), to the model with explicit first level variance estimation,
outlined in (2), by means of FPR estimation. FPR estimates were computed by
leave-one-out cross-validation on the control group using the tests specified in (3)
and (4). Given the absence of correction for multiple comparisons the theoretical
FPR was therefore equal to the selected p-value: p=0.05.

With the basic model (1) the FPR was 6.5%, outlining the error made by
ignoring first level variance. With the model including first level variance (2),
the FPR was reduced to 4.3%. Though the difference was not strong, the FPR
of the model including first level variance was closer to the theoretical FPR.
Moreover, benefits could potentially be larger in the study of patients presenting
more pronounced patterns of noise. As an example, the following subsection
illustrates the benefits in a single subject presenting strong ghosting artefacts.

Qualitative Comparison: Figure 1 illustrates the benefits of the explicit mod-
eling of first level variance. The ghosting and motion artefacts, outlined by white
arrows, indeed corresponds to regions of high standard deviation. Including the
first level variance in the model reduces the artefactual detections and enables
the comparison of individuals with different patterns of noise.

3.3 Validation of Detections

Metrics Definition: Quantitative evaluation of the detections and comparison
between detection methods are challenging tasks. This is mainly because, like in
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Fig. 1. False positive detections in a control subject perfusion map presenting ghosting
artefacts. From left to right: T1, ASL CBF, standard deviation of ASL CBF, ASL CBF
with hypo- (winter color-map) and hyper-perfusions (hot color-map) overlaid for the
basic model (Model 1) and for the model including first level variance (Model 2)

many other medical imaging problems, the ground truth is not clearly stated. We
chose to evaluate this framework on patients diagnosed with tumor pathology
because perfusion abnormalities are better understood in this context. Based on
clinical knowledge, we set the following rules to get an idea of the specificity and
sensitivity of the methods. It is however important to keep in mind that in the
absence of a known delineation of the actual hyperperfusion and hypoperfusion,
true specificity and sensitivity cannot be calculated:

– pseudo-specificity: According to clinical knowledge, in the absence of
metastasis, the perfusion abnormalities should be confined to the affected tis-
sue (tumor and oedema) identifiable on T1-Gd and T2. The proportion of the
non-affected tissue undetected was used as a measure of pseudo-specificity.

– pseudo-sensitivity: Though hyperperfused regions can be extended out of
the T1-Gd hyper-signal, these hypersignals are nevertheless indicative of the
presence of hyperperfusions [3]. The proportion of the hyper-signal in T1-Gd
detected as hyperperfusion was used as a measure of pseudo-sensitivity.

Tumor segmentation was done using a semi-automated method based of the T2
and T1-Gd images and visually inspected by an expert neuro-radiologist. One
subject was excluded in the pseudo-specificity calculation because its T1-Gd
hyper-signal was located in the cerebellum out of the coverage of the template.

Quantitative Evaluation: Table 1 presents the pseudo-specificity and pseudo-
sensitivity obtained with different parameters. Based on these criteria we cannot
identify a method as being definitely better than the other. This study however
outlines the different behaviors of the two methods. The GLM with FDR cor-
rection appears to be more conservative with a smaller FPR at the cost of false
negatives. According to these measures, the choice of the method will therefore
depend on the application as a trade-off between specificity and sensitivity.

Qualitative Comparison: Though the quantitative analysis did not outline
significant difference between the a contrario and the GLM methods, there are
however strong differences when looking at the detections patient by patient. We
chose three subjects to illustrate this argument. Figure 2 presents the detections
obtained by GLM with smoothing kernel of 8 and a contrario with sphere radius
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Table 1. Pseudo-sensitivity and pseudo-specificity of detections for GLM with different
full width at half maximum w (in mm3) smoothing kernels and a contrario methods
with different sphere radii r (in voxels)

GLM a contrario

w = 2 w = 4 w = 6 w = 8 w = 10 r = 1 r = 2

pseudo− sensitivity 0.29 0.31 0.32 0.33 0.34 0.37 0.53
pseudo− specificity 0.98 0.97 0.96 0.95 0.94 0.96 0.89

of 2 which are the parameters leading to the best visual results for each method.
Subject 1 is affected by a tumor in the right frontal lobe. The hypoperfusion of
the oedema is detected by both the GLM and the a contrario methods. However
only the latter is able to outline the central hyperperfusion. Subject 2, presents a
left temporal glioblastoma characterised by a ring shaped hypersignal. While the
a contrario approach detects most of the hypersignal ring, the GLM detection
is restricted to the area presenting the highest level of hyperperfusion. Subject 3
suffers from a meningioma of both occipital lobes, the hyperperfusion is correctly
detected by both methods. The a contrario method detects additional hypoper-
fusions in the oedema. Both methods detect an artefactual hyperperfusion, due
to motion, in the frontal lobe. The a contrario approach also detects artefactual
hypoperfusions due to motion in the occipital lobe.

Fig. 2.Detection of perfusion abnormalities based on GLM and a contrario methods on
3 representative patients with brain tumors. From left to right: T1-Gd, Segmentation
in GM (grey), WM (white), oedema and necrosis (green) and T1-Gd hypersignal (red),
ASL CBF with hypoperfusions (winter color-map) and hyperperfusions (hot color-map)
overlaid, close-ups in the regions outlined by a white frame in the T1-Gd.
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4 Conclusion

We have presented a comprehensive framework for the detection of brain perfu-
sion abnormalities in individual patients by comparison to a template of healthy
subjects. We outlined the interest of modeling the first level variance in the
perfusion models. In future work, this might ease the analysis of patient data
characterised by a higher level of motion and related artefacts. It also opens
the field to comparison between ASL sequences displaying different patterns of
noise. We applied this model to 12 patients suffering from brain tumors and
compared an original method, the a contrario approach, to the classical GLM
with FDR correction. Quantitative analysis outlined the conservativeness of the
GLM, leading to a low FPR at the cost of more false negatives. In radiological
practice, the FPR is however less pregnant since false positives can easily be
ruled out by a clinician. In a qualitative analysis we pointed out the benefits
of the a contrario approach: a better conservation of the hypoperfusions and
hyperperfusions boundaries and a greater sensitivity. This increase in sensitivity
might be crucial in the study of pathologies presenting more subtle patterns of
abnormal perfusion such as multiple sclerosis.
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Abstract. In this study, we propose a computational diagnosis system
for detecting the colorectal cancer from histopathological slices.The com-
putational analysis was usually performed on patch level where only
a small part of the slice is covered. However, slice-based classification
is more realistic for histopathological diagnosis. The developed method
combines both textural and structural features from patch images and
proposes a two level classification scheme. In the first level, the patches
in slices are classified into possible classes (adenomatous, inflamed, can-
cer and normal) and the distribution of the patches into these classes
is considered as the information representing the slices. Then the slices
are classified using a logistic linear classifier. In patch level, we obtain
the correct classification accuracies of 94.36% and 96.34% for the cancer
and normal classes, respectively. However, in slice level, the accuracies
of the 79.17% and 92.68% are achieved for cancer and normal classes,
respectively.

1 Introduction

Colorectal cancer is the third most common cancer in both men and women
world-wide and is the third leading cause of cancer-related deaths in the West-
ern world [1]. For 2012, 103,000 colon cancer cases and 51,000 colon cancer
related deaths are predicted for the United States. Like for many other types
of cancer, histopathological analysis is accepted as the gold standard for malig-
nancy diagnosis [2]. The analysis of these data, however, is performed visually
and the detection and grading of the suspect tissue may show variability depend-
ing on the experience and awareness of the experts. Therefore, various studies
have been performed into the development of computer-aided diagnosis systems
(CAD) to improve the ability of pathologists at discriminating between malig-
nant and benign tissue.

As the presence and grade of malignancy in the cell tissue is strongly corre-
lated to histological structures like, lumina, stroma, nuclei and glands, most CAD
research is focused on structural shape changes. A gland, which has lumina at
the center and is surrounded by the stroma and nuclei, loses its regular structure
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with progressing malignancy [3,4]. In addition to glands, the number of nuclei
and also the arrangement of the nuclei in the tissue can have diagnostic signif-
icance for some kind of malignancy in histopathology [5,6]. Numerous methods
have been used to detect the nuclei in histopathology images and various au-
tomated detection results were compared against manual segmentation [7,8]. It
has, however, been indicated that the histological objects in the tissue may not
need to be perfectly detected for good tissue classification when a comprehensive
set of features is available [9]. Boucheren et. al [10] achieved good classification
results on breast cancer histopathology with the imperfectly segmented nuclei.
In addition to glands and nuclei, the malignancy drastically changes the den-
sity of lumina and stroma in tissue. The relevance of texture information on
the cytoplasm and stroma structures was reported for classification. Sertel et.al
[11] evaluated Haralick and Local Binary Pattern (LBP) features categorizing
the nerve histopathology images into stroma rich and stroma poor classes for
nervous cancer prognosis.

CAD in histopathological image analysis [11] is, however, still at the evolving
level compared to CAD in radiology [12]. Besides, recent studies in histopathol-
ogy image analysis were mostly focused on prostate and breast cancer [6,5] de-
tection but very limited study was encountered on computational diagnosis of
colorectal cancer [13,14]. In general, the computational histopathological image
analysis is performed on patch level rather than slice-level due to their relatively
large size [6,13,3,8]. Serter et.al [11] proposed a multi-scale analysis system to
classify the nervous tissue images into stroma-rich and stroma-poor regions for
neuroblastoma cancer detection. In colon histopathology, Ficsor et. al [14] ex-
tracted the glandular and nuclei structure in patches, then combined the patch-
level statistics to get slice-level features for classification of the Crohn’s diseases,
ulcerative colitis and aspecific colitis. However, slice-based approach proposed in
[14] is not appropriate for cancer diagnosis. Because nonmalignant regions in a
tissue may suppress the malignant regions in a slice if global statistics is used.
To the best of our knowledge we are the first to present both a scheme that
performs a diagnosis at the level of the full image and a method that focuses on
colorectal cancer.

We propose a two level classification scheme for classifying full colon cancer
histopathological images, which we refer to as slices. These very large sized slices
are built up of sub-images, which we refer to as patches. In the first level, we
use patch-labeled tissue images to generate a four class classifier with classes
normal, cancer, adenomatous and inflamed (see Fig.2). Subsequently, patches
in slices are classified into these four classes. Each slice is then represented by a
feature vector from the patch classification results based on which the entire slice
can be labeled and our procedure can be evaluated. Further details on the data
employed together with the used feature extraction, selection, and classification
algorithms are presented in Section 2. Experimental results and conclusions are
given in Sections 3 and 4, respectively.
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2 Materials and Methods

2.1 Data

A total of 120 H&E stained colon biopsy slices from 96 different patients were col-
lected and scanned by high resolution camera at AtriumMedical Center, Heerlen.
The original slices (sized about 70,000x120,000) consist of equal sized patches of
1024x1024 pixels. Each slice may include different numbers of patches that dis-
play actual tissue (between 200 and 6000) depending on the size of the original
biopsy etc. Slices were labeled at two different levels: either at slice-level or at
patch-level. 55 of the slices are used for patch-based labeling where each individ-
ual patch was assigned to one of the four primary (normal, cancer, adenomatous,
inflamed) and two secondary classes (unknown, inappropriate) by a pathologist
(see Fig.2). The unknown class is for the patches which the pathologist is not sure
and inappropriate is for the patches which are not appropriate for analysis due to
the imaging problems such as camera focus. We consider the primary classes only,
which include 6134, 2503, 2261 and 2967 patches, respectively.

Fig. 1. Patch images from patch-based dataset for six different classes

The remaining 65 slices were labeled in a slice-based manner where 24 of
them were assigned to the cancer and 41 of them were assigned to the normal
class. The patches in these 65 slices were not labeled individually. The slice-based
dataset is more challenging for pattern recognition tasks but more realistic for
analysis in pathology. A pathologist assigns the slices to one class although it may
include patches from different classes. For example, a cancer labeled slice may
include patches from non-cancer classes as well as it includes cancer patches,
though the opposite situation is unlikely. To limit the computation times, we
randomly selected a number of patches from every slices as a representation,
with a maximum number of 300. Taking more than 300 patches hardly leads to
improved performance as the necessary statistics are already estimated well.

2.2 Structural Features

In colon tissue, glands may have irregular shapes even in nonmalignant slices
(Figure 1). Therefore, we ignored the shape of the glands and focused on the
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density of the structures and nuclei in tissue. We divide the tissue image into
background, stroma, lumina, and nuclei (Fig. 2b) using k-means clustering. We
initialize the center of the clusters with the empirically detected RGB triplet
values {(0, 0, 0), (0.29, 0.19, 0.4), (0.91, 0.91, 0.94), (0.7, 0.5, 0.72)} and iteratively
refine the clusters until no more assignment is observed. The background segment
(Fig. 2b) is used for masking. Next, the RGB image is transformed to gray
levels, which are normalized. These normalized images are then used for nuclei
detection.

Fig. 2. a) a tissue patch from normal class, b) clustered into four segments, c) detected
nuclei (shown in blue star)

Nuclei are detected by Laplacian filtering. Because of slight variations in scale,
we used Lindeberg’s blob detection algorithm with automatic scale selection over
a small scale range to find the nuclei [15]. Using this algorithm, we can detect
a larger number of nuclei around and between the glands (Fig.2c). With this
procedure, the connected nuclei around the glands, which are concatenated to
each other, are missed however. The nuclei in patches could be better segmented
using more advanced techniques. The findings in [9,10] indicate, however, that
imperfect detections like the ones we employ do not necessarily hamper good
classification results.

The number of nuclei in the tissue and their arrangement has significant im-
portance for tissue classification. To capture this, we divide every patches into 16
sub-patches, considering only sub-patches that contain tissue. We then extract
local shape features for each sub-patch, such as the number of nuclei per tissue,
the ratio of each individual segment (stroma, nuclei and lumen) to the whole
tissue, and pairwise ratios of individual segments. Then the mean and variance
of these local features are evaluated to yield 19 structural features to represent
a patch.

2.3 Texture Features

H&E staining in pathology colors the structures in tissue with different colors
(i.e. blue-purple, pink etc). However, we observed a number of improperly stained
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tissues which the colors are inappropriately distributed in RGB space. Therefore,
we moved to HSV space for texture analysis and extracted texture features from
H, S, V components together with normalized gray value components.

Haralick Features. We extract four of the second order statistical texture [16]
features. We first evaluate gray level-concurrence matrix M(θ) ∈ RNxN in four
different directions where θ ∈

{
0, π4 ,

π
2 ,

3π
4

}
. Using this matrices, we extract the

four Haralick features; homogeneity, contrast, energy and correlation for each
directions to yield 16 features.

Gabor Filter Features. We construct a set of Gabor filters G(f, θ) [17,5]
for orientation parameters G(f, θ) and frequency parameters f ∈ {k, 2k, ..., 8k}
where k is selected to be 1/16 to produce filter within one period. With the
inclusion of the filter for the parameter (0,0) we obtain 65 different Gabor filters.
We filter the tissue image with the obtained filters and the average, variance and
minimum-to-maximum ratio of these filtered images are used as features to yield
a total of 195 Gabor features for the given image.

Color Channel Histograms. The existence of malignancy and also the level
of malignancy alter the structures in tissue and this significantly the effect the
color distribution after H&E staining. Therefore, color channel histograms of R,
G and B component of the raw tissue image are obtained after removing the
background pixels. We evaluate 32 bin histograms for each channel to yield a
total of 96 features for each raw image.

2.4 Feature Selection

A total of 1287 (1269 texture + 19 structural) features are extracted using the
algorithms defined in previous section. Not all features, however, may be rele-
vant for the classification of patches and having too many of them typically has
a negative effect on the classification accuracy. Besides, it is computationally
demanding to extract large number of features for large data set like high reso-
lution microscopy images. Therefore, we chose to reduce the data dimensionality
by simply ranking the features according to their discrimination potential using
the sum of Euclidean distances between all four class means [18]. To decide on
the number of features to retain, features are incrementally included and tested
for classification performance. The optimal number of features is simply that
number that gives the lowest estimated classification error.

2.5 Classification and Slice Level Fusion

Using the reduced feature set, a k-NN classifier is trained for four-class patch
classification in which the neighborhood parameter k is optimized by means of
leave-one-out cross validation. As our procedure should operate at a slice level,
rather than patch level, we propose a second level fusion step for slices based
on the patch based classification scores obtained on every slice. Using the k-NN
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classifier, this second step collects all the posterior probabilities from the (up to)
300 patches that represent every slice and calculates the average posterior for
all of the four primary classes. These averaged posteriors can now be taken as
new feature vectors that represents a full slice. Using these features, a logistic
regression is used to come to a final diagnosis for a whole slice. We note that the
initial patch classifier has been trained on the first part of the data only. None
of the 65 test images were involved in this. The second stage classifier is also
evaluated by means of leave-one-out.

3 Experimental Results

3.1 Patch-Based Classification

The patch-labeled dataset with cancer and normal classes is randomly divided
into test and train sets and the best 155 number of features are selected consid-
ering their individual Euclidean distances between the classes. A logistic-linear
classifier is used for classification and the mean classification error is considered
for evaluation. The patches in colon histopathology may have different tissue
ratio (tissue area/ patch area). In order to analyze the effect of tissue ratio for
classification we restricted the lower bound of the tissue ratio for specific values
and perform classification only with the patches whose tissue rate is higher than
the defined values (Fig. 3).

Fig. 3. Minimum classification error rates with respect to the lower bound in tissue
ratio

It is observed that the error rate decreases if we move the lower bound to 50%
but then starts to increase. Increasing the tissue ratio inversely decreases the
number of objects in dataset and the decrease of objects in dataset explains the
increase on the error curve. However, We fix the tissue ratio to 25% for further
analysis and obtain the correct classification rates of 94.36% and 96.34% for the
cancer and normal classes, respectively.
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3.2 Slice-Based Classification

For slice-based classification, the entire objects in patch-based dataset are used
for training a k-nn classifier with four main classes (normal, cancer, adenomatous
and inflamed). Then, the unlabeled patches in each slice are classified into these
four classes and feature vector representing the entire slice are obtained based on
the patch-based classification. The slices are then classified by using leave-one
out principle using a logistic linear classifier and correct classification accuracies
of 79.17% and 92.68% are achieved for the cancer and normal slices, respectively.

The results in slice-based classification give rise to an 87.69% correct clas-
sification accuracy which is lower than the accuracy obtained in patch-based
classification. The accuracy of testing is measured by the area under ROC curve
(AUC) and we obtain a AUC value 0.90 for the slice-based classification.

4 Conclusion

An automatic whole-slice based histopathological image analysis method is pro-
posed to determine the colon cancer. In the proposed approach, a two level classi-
fication scheme is proposed to handle the patch-based and slice-based recognition
based on the texture and structural features. In the first level, path-based clas-
sification is performed between cancer and normal classes and the classification
accuracies of 94.36% and 96.34% are achieved for each class, respectively. The tis-
sue ratio significantly affects the classification results. Eliminating the patches
with, respectively, less tissue ratio decreases the classification error. However,
marginal elimination should be avoided because malignancy may exist at even
small tissues. The obtained patch-based classification results are promising and
it is more or less than the results obtained in literature. However, the main con-
tribution of the study is on the whole-slice classification which is more realistic
for histopathology. Because, malignancy does not spread homogeneously in the
tissue and the patches acquired with high resolution scanner may be in differ-
ent diagnostic labels. The whole-slice based classification task is achieved in two
levels; first the patches in slices are patch-based classified into normal, cancer,
adenomatous and inflamed classes and then the distribution of the patches to
these classes are considered to get a higher level feature vector representing the
slice. Then the slices are classified into two cancer and normal classes where 19
of the 24 cancer and 38 of the 41 normal slices are correctly classified which
makes a 87.69% mean classification accuracy in slice level.
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Abstract. Dynamic PET imaging provides important spatial-temporal
information for metabolism analysis of organs and tissues, and gener-
ates a great reference for clinical diagnosis and pharmacokinetic analy-
sis. Due to poor statistical properties of the measurement data in low
count dynamic PET acquisition and disturbances from surrounding tis-
sues, identifying small lesions inside the human body is still a challenging
issue. The uncertainties in estimating the arterial input function will also
limit the accuracy and reliability of the metabolism analysis of lesions.
Furthermore, the sizes of the patients and the motions during PET ac-
quisition will yield mismatch against general purpose reconstruction sys-
tem matrix, this will also affect the quantitative accuracy of metabolism
analyses of lesions. In this paper, we present a dynamic PET metabolism
analysis framework by defining a patient adaptive system matrix to im-
prove the lesion metabolism analysis. Both patient size information and
potential small lesions are incorporated by simulations of phantoms of
different sizes and individual point source responses. The new frame-
work improves the quantitative accuracy of lesion metabolism analysis,
and makes the lesion identification more precisely. The requirement of
accurate input functions is also reduced. Experiments are conducted on
Monte Carlo simulated data set for quantitative analysis and validation,
and on real patient scans for assessment of clinical potential.

1 Introduction

Dynamic Positron Emission Tomography (dPET) is a molecular imaging tech-
nique that is used to monitor the spatiotemporal distribution of a radiotracer
in vivo and enables cellular level metabolism analysis in clinical routine. dPET
provides a good promise for quantitative lesion metabolism analysis to help
identify lesions. However, due to poor statistical properties of the measurement
data in low count dynamic PET acquisition and disturbances from surround-
ing tissues, identifying small lesions inside the human body is still a challenging
issue. Furthermore, the mismatch between general purpose models and patient
size/motions makes the situation even worse.

Quantitative kinetic analysis of radiotracer uptakes requires the reconstruc-
tion of kinetic parameters[1–3]. The mainstream is statistical reconstruction al-
gorithms, however, whose quality is determined by the accuracy of sophisticated
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system probability matrix (SM). Many efforts have been devoted to improve the
accuracy of SM [4–7]. However, the ideal SM is almost impossible to obtain under
practical conditions. The general purpose SM also could not compensate differ-
ent sizes of patients and the motions during acquisition, which will decrease the
accuracy of reconstructions. Furthermore, the reconstruction of dynamic PET
image sequences, whose poor temporal resolution, insufficient photon counts,
more complicated data corrections and poor statistical properties of measure-
ment data also requires a more accurate SM.

In this paper, we present a dynamic PET metabolism analysis framework
by defining a patient adaptive system matrix to improve the lesion metabolism
analysis. Both patient size information and potential small lesion information
are incorporated by simulations of phantoms of different sizes and individual
point source responses[8–10]. Experiments of 90 studies are conducted using 15
phantoms of different sizes based on Zubal thorax phantom. Each experiment
has randomly generated motions and a lesions in lung. Both true lesion and
false lesion cases are studies. We also analyze the results using input functions
of different accuracies. Our method shows obvious improvements in identifying
lesions (including sizes, true/false situations, metabolism rates), and reduces
the requirement of the accuracy of input functions. An experiment based on real
patient scans is also conducted for assessment of clinical potential.

2 Method

2.1 Tracer Kinetics

Dynamic PET imaging provides the opportunities to perform lesion metabolism
analysis by using compartmental models to quantitatively describe regional ra-
diotracer kinetics. A typical three compartmental model (Phelps 4K model) can
be mathematically represented by a set of ordinary differential equations [11].

dCF (t)

dt
= k1(t)CP (t) + k4(t)CB(t)− (k2(t) + k3(t))CF (t) (1)

dCB(t)

dt
= k3(t)CF (t)− k4(t)CB(t) (2)

where CP (pmol/ml) is arterial concentration of injected radiotracer, CF is the
free and non–specific binding ligands, CB is the specific binding tracers in tissues.
Parameters k1, k2, k3 and k4(min

−1) are first-order rate constants specifying
radiotracer transport rates. The general PET measurement equation is Y =
DX + e. With the compartment model introduced, the activity distribution X
should be the combination of CF , CB, CP and fractional volume of blood fv

X(t) = (1− fv)(CF (t) + CB(t)) + fvCP (t) (3)

CF , CB are the functions of kinetic parameters, if defining κ = {k1, k2, k3, k4}

Y (t) = DX(κ, t) + e(t) (4)
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2.2 System Matrix Derived from Supervised Learning

Statistical reconstruction requires a well modeled SM, which directly determines
the accuracy of reconstruction results. The SM D is extended to include 2 parts,
D1 is a SM generated from geometry information and physical phenomena, and
will account for sizes and motions of different patients, D2 is an additional SM
generated from point source responses. D1 and D2 are full size SM, and com-
bined together by weighting matrices w1 and w2 according to the anatomical
information of patients. This effort makes the SM more patient adaptive. The
measurement equation is extended from Eqn.4 to be

Y (t) =
[
w1 w2

] [D1

D2

]
X(κ, t) + e(t) (5)

w1, w2, D1, D2 are updated by supervised learning. Training sets are provided by
Monte Carlo simulations using GATE toolbox. Correspondingly, 2 series of simu-
lations are performed, one is performed with human thorax phantom of different
sizes, and the other is done by point source response inside a thorax phantom
of normal size. Denoting the activity concentrations as X = {x1, x2, · · ·xn} and
measurement datasets as Y = {y1, y2, · · ·xn}. n is the number of training sets,
and every dataset is a dynamic data sequence related to time t. For simplifica-
tion of expression, Eqn.5 is written as Y (t) = D′X(k, t)+ e(t). Since ADALINE
has been proved to be simple yet successful for updating SM in[7], we also adopt
ADALINE for our SM training here. The initialization of D1 and D2 are the
SMs generated with uniform cylindrical phantom. The update procedure by
ADALINE using back-propagation and least mean square error is:

ŷm(t) = D′
mX(k, t) + em(t) δk(t) = Y (t)− ŷm(t) (6)

D′
m+1(t) = D′

m(t) + 2LδmX
T (t) em+1(t) = em(t) + 2Lδm(t) (7)

wherem is the iteration step of training, and L is the learning rate. After defining
a precision level of learning ε,

D′ subject to

{
Y (t)− ŷm(t) < ε

ŷm(t)− Y (t) < ε
(8)

the weighting matrices w1 and w2 will be obtained when convergence is achieved.

2.3 Parameter Reconstruction of Dynamic PET

The kinetic model and image reconstruction are combined in one equation, the
log likelihood function can be derived with measurement data y(t) as

L(y|κ) =
∑
t

y(t) log ȳ(κ, t)− ȳ(κ, t) (9)

where ȳ(κ, t) = D′x(κ, t) + e(t) (10)
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Fig. 1. First 5 phantoms
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Fig. 2. (a) Standard Zubal Phantom; (b) TAC curves of 3 ROIs indicated in (a); (c)
TAC curves of true lesion and false lesion

κ̂ = argmaxΦ(κ), Φ(κ) = L(y|k)− βU(k). (11)

where U is the penalty regularization term with parameter β controlling reso-
lution/noise tradeoff. Eqn.11 is solved by a paraboloidal surrogates algorithm
in [12]. Since the parameter reconstruction has a higher data dimensionality/
freedom, we also define the evaluation of a student’s t-distribution hypothesis test
to determine their statistical differences among iterations. By selecting Region of

Interest (ROI), calculate t = |x̄m−x̄m+1|
σ , where σ = (

varm+varm+1−2covm,m+1

N )0.5

and covm,m+1 = 1
N−1

∑N
i=1(xm,i − x̄m)(xm+1,i − x̄m+1) . x̄m and x̄m+1 are the

means in ROI at iteration m and m + 1, var is the corresponding variances
across the image elements. cov is the covariance across the two iterations. t is
calculated until less than t0.05 in the t-table to show a confidence level of 95%
that the difference between images is small enough.

3 Experiment and Results

3.1 Monte Carlo Simulated Dynamic PET Data

Experiment Settings. First dataset is generated using Monte Carlo simula-
tions of the acquisition of our PET scanner. There are totally 90 studies.

1. A series of 15 phantoms is generated based on Zubal thorax phantom of
different sizes (to represent different patients from skinny to fat). Randomly
generated motions (shifts and rotation) are added to each phantom.



562 F. Gao, H. Liu, and P. Shi

Table 1. Kinetic parameters used for Monte Carlo simulations

ROI1 ROI2

k1 k2 k3 k4 k1 k2 k3 k4

0.102 0.130 0.062 0.0068 0.082 0.102 0.045 0.0041

ROI3 Lesion

k1 k2 k3 k4 k1 k2 k3 k4

0.064 0.124 0.042 0.0035 0.4870 0.7120 0.1950 0.0341
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Fig. 3. Influx rates by General Method (left 3) and Our Method (right 3)

2. A lesion is added in every phantom. For each lesion, 2 cases are studied: true
lesion (e.g. tumor) and false lesion (e.g. some normal tissue with undesired
radiotracer concentration.). First 5 phantoms with lesions are shown in Fig.1.

3. The Time Activity Curves (TAC) are generated by Feng input, CFDG
P (t) =

(A1t − A2 − A3)e
−λ1t + A2e

−λ2t + A3e
−λ3t. The values of the parameters

λi and Ai selected here are A1 = 28μCi/mL/min, A2 = 0.75μCi/mL,
A3 = 0.70μCi/mL, λ1 = 4.1339min−1, λ2 = 0.01043min−1 and λ3 =
0.1191min−1. For Feng input, the final results need be calibrated for possi-
ble underestimation. The dynamic acquisition consists of 29 frames: 6×5sec,
2×15sec, 6×0.5min, 3×2min, 2×5min and 10×10min. The kinetic param-
eters used in simulations are listed in Table. 1. The TACs of 3 normal ROIs
are shown in Fig. 2 (b) and TACs of true lesion and false lesion are shown
in Fig. 2 (c). False lesion uses the same kinetic parameters as ROI2.

4. All the parameter reconstructions are performed with 3 different input func-
tion initializations: Input Function 1 is perfect input function (equivalent to
perfect blood sampling with less than 5% error), Input Function 2 is good
input function (equivalent to a disturbed blood sampling with about 20%
error), Input Function 3 is an Image Derived Input Function (IDIF). In next
part, reconstructions with general purpose SM are called General Method.

Experiment Results. The influx rate maps are calculated based on
Influx Rate = k1k3

k2+k3
to evaluate the reconstruction results.

First, all the true lesions are extracted from 45 studies and analyzed
pixel-wisely. Fig.3 shows the histograms of influx rates of lesions calculated by
results from General Method and Our Method using different input functions.
When using Input Function 1 and Input Function 2, our results are closer to the
true value (it is 0.1047), and show obvious smaller standard derivations, which
will help identify lesion sizes more precisely. With Input Function 3, the bad
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Fig. 4. Histograms of influx rate by (a) General Method in ROI1; (b) Our Method in
ROI1; (c) General Method in ROI2; (d) Our Method in ROI2

estimation of input function leads to the overestimation of influx rates, however,
our method still has more pixels near the true value. Our Method also intro-
duces improvements in other regions. For ROI 1 and 2 indicated by Fig.2 (a), in
Fig.4 we show the histograms of influx rates from all the pixels of all studies in
corresponding ROIs. As the lesion region, results from our method are closer to
the true values with obviously smaller standard derivations.

Fig.5 shows the influx rate maps of Phantom 3 using Input Function 2. This
special case is to represents the oversized patient with underestimations of the
lesion. Our method first shows a better overall image quality. Then our method
also show smoother results and better discrimination of lesion region and differ-
ent ROIs like indicated by histograms in Fig.3 and Fig.4. The lesions are more
clear and uniform by our method, and especially the false lesion is identified
clearly to metabolize like muscles.

We summarize all 90 studies in Table.2, which shows the ratio of successful
identification of lesions using different input functions (”Success” means the
difference between mean of lesion region and true value should be less than
40%, which is just the value to separate lesions from muscles in our experiments
when lesions are near body surface or heart, and the standard deviations of
lesion regions should be less than 0.67 to correctly identify the sizes of lesions).
Both methods performs well by using Input Function 1 (perfect input function).
However, with Input Function 2 (with disturbances), the accuracy of General
Method decreases, but our method still provides good results. The simulation
results show the improvement in identifying lesions by our method, and the
reduction of requirement of accurate input function.

3.2 Real Patient Experiments

The real patient data in this study was a dynamic PET scan acquired from
a 28-year-old, 75kg male volunteer using our PET scanner. 10 mCi 18F-FDG
was injected and a dynamic acquisition of the thoracic cavity started just after
injection. The acquisition consists of 40 time frames: 20×0.5min, 15×1min, and
5×2min. All corrections are performed properly with the software provided by
the scanner. The input function is estimated by the image-derived method. Fig. 6
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(a) (b) (c) (d)

Fig. 5. Influx rate maps of Phantom 3. (a) General Method with true lesion; (b) Our
Method with true lesion; (c) General Method with false lesion; (d) Our Method with
false lesion.

Table 2. Summary of experiments

Group1 Group2 Group3 Group4 Group5 Group6

Lesion Type True True True False False False

Input Function 1 2 3 1 2 3

Successful Estimation/Total Studies Group1 Group2 Group3 Group4 Group5 Group6

General Mehtod 13/15 7/15 5/15 11/15 7/15 6/15

Our Mehtod 14/15 13/15 7/15 12/15 12/15 7/15

(a) (b) (c)

Fig. 6. (a) Lesion in 40th slice; (b) 32nd slice; (c) Influx rates

(a) shows a lesion region by a red arrow in the 40th slice. We calculate the influx
rates of the lesion and compare them with the heart muscles in the 32nd slice.
The lesion metabolism calculated by our method is closer to the muscles than
that by General Method, and the lesion is confirmed by the doctor as a false
lesion with temporarily increased metabolism than muscles, results from our
method show potential improvement in diagnosis.

4 Conclusion

We presented a dynamic PET metabolism analysis framework by defining a
patient adaptive SM. Experiment results show obvious improvements on iden-
tifying lesions by our method, and requirement of input functions is also reduced.
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Abstract. Time-resolved imaging of the thorax or abdominal area is
affected by respiratory motion. Nowadays, one-dimensional respiratory
surrogates are used to estimate the current state of the lung during its
cycle, but with rather poor results. This paper presents a framework to
predict the 3D lung motion based on a patient-specific finite element
model of respiratory mechanics estimated from two CT images at end
of inspiration (EI) and end of expiration (EE). We first segment the
lung, thorax and sub-diaphragm organs automatically using a machine-
learning algorithm. Then, a biomechanical model of the lung, thorax and
sub-diaphragm is employed to compute the 3D respiratory motion. Our
model is driven by thoracic pressures, estimated automatically from the
EE and EI images using a trust-region approach. Finally, lung motion
is predicted by modulating the thoracic pressures. The effectiveness of
our approach is evaluated by predicting lung deformation during exhale
on five DIR-Lab datasets. Several personalization strategies are tested,
showing that an average error of 3.88 ± 1.54mm in predicted landmark
positions can be achieved. Since our approach is generative, it may con-
stitute a 3D surrogate information for more accurate medical image re-
construction and patient respiratory analysis.

1 Introduction

Respiratory motion is a source of artifacts in medical image acquisition, which
is the basis for disease monitoring, therapy planning and intervention guidance.
Currently, signals from devices such as spirometers, abdominal pressure belts
or external markers are used as surrogates of respiratory motion. However, the
one-dimensional nature of these signals makes it difficult to estimate the 3D lung
deformation accurately. There is therefore a need for methods to predict the 3D
lung deformation during regular and irregular breathing cycles.

Two categories of methods for patient-specific estimation of respiratory move-
ments can be distinguished: image-based and biomechanical methods. On the one
hand, image-based methods commonly estimate the lung deformations between
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two or more phases of the respiratory cycle using non linear image registration.
The idea is to create a lung-motion atlas, which is subsequently adapted to the
patient [4]. Advanced image registration techniques have been developed to that
end, relying in particular on advanced spatial regularization terms that allow
sliding [8,10]. Recent results are promising, but image-based methods are usu-
ally restricted to normal breathing patterns [13], with lower predictive power
and versatility in patients. On the other hand, biomechanical approaches com-
pute lung biomechanics, often using finite element methods (FEM), to simulate
the physiological deformations during respiration cycles [1,12]. The anatomical
model is created from patient images and then deformed according to lung tis-
sue properties and non-physiological driving forces defined from the difference
between two volumetric objects [1,12]. As a result, these approaches still rely
on 4D image data, which makes it difficult to predict respiratory motion when
unexpected changes in breathing patterns appear [9,11].

As a first step towards the prediction of respiratory motion given 1D surro-
gate signals of the thorax displacements, we propose a generative biomechanical
model of the respiratory system driven by patient-specific thoracic and diaphrag-
matic pressures (Sec. 2). Contrary to previous approaches, our framework is not
directly driven by image forces but by a novel thorax/diaphragm/lung interac-
tion model. Deformation is not limited by a secondary geometry or based on
image data. As illustrated in Fig. 1, the framework first estimates a comprehen-
sive anatomical model from an image at end of exhale (EE). If not available,
the thoracic and diaphragmatic pressures necessary to load the lung till end of
inhale (EI) are estimated automatically using a trust region optimizer. Lung de-
formation is then predicted throughout the respiratory cycle by modulating the
thoracic pressures. The prediction power of our model is evaluated by predicting
exhale deformations in five DIR-Lab datasets (Sec. 3). We further investigate
the need of including information about the deformation into personalization
and show in experiments that an average error of 3.88 ± 1.54mm in predicted
landmark positions can be achieved. Sec. 4 concludes the paper.

Anatomical 
Model at EE 

Biomechanical 
Model 

Computed Lung 
Position at EI 

Biomechanical 
Model 

Predicted 
Expiratory 

Motion 

CT image 
at EE 

Personalization loop 
CT image 

at EI 

Pressure 
Values 

Fig. 1. Pipeline of the proposed motion model. See text for details
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2 Methods

The motion model consists of two main components: i) a detailed anatomi-
cal model of the respiratory system comprising the lungs, thorax, and a sub-
diaphragm region grouping abdominal organs including the diaphragm (Sec. 2.1);
and ii) a generative biomechanical model that computes lung deformations ac-
cording to tissue properties and pressures generated by the thorax and the di-
aphragm (Sec. 2.2). The pressure parameters of the model are estimated
automatically from two EE and EI CT images (Sec. 2.3).

2.1 Anatomical Model of Respiratory System

Thorax dynamics are complex, involving several interacting organs. In particular,
the lung is deformed indirectly through expansion and contraction of the rib
cage and diaphragm. During this process, the lung slides along the thoracic
surface of the rib cage and diaphragm. The diaphragm is fixed along the rib
cage and is curved towards the lung, and in some patients it slides along the
rib cage as well. To capture these interactions, we create an anatomical model
that consists of four independent components: the two lungs, the thorax, and a
lumped component, called sub-diaphragm region, which includes the diaphragm
and other abdominal organs. The two lungs and patient’s skin, which defines the
outer layer of the thorax, are automatically segmented from 3D CT images using
a machine learning approach combined with level-set optimization, as described
in [5] (Fig. 2, left panel). The sub-diaphragm region is computed automatically
from the skin and the lung segmentations by casting the lung downwards (Fig. 2).

Each component is meshed with tetrahedra using CGAL (www.cgal.org). To
capture the heterogeneous muscle forces, thoracic and diaphragmatic pressures
are estimated regionally. The inner surface of the thorax and the diaphragmatic
interface are sub-divided into uniform patches (Fig. 2 right panel). The number of
patches is set experimentally; in areas with lung interaction 9 evenly distributed
thoracic patches (incl. mediastinum), and two on the diaphragm.

2.2 Biomechanical Model of Respiratory System

During respiration, the muscles apply forces, which are then transferred to the
lungs. We thus deform the lung by solving simultaneously the dynamics equa-
tions for the lungs (l), thorax (t) and sub-diaphragm region (d):⎧⎪⎪⎨⎪⎪⎩

MlÜl + ClU̇l +KlUl = Ft→l
c + Fd→l

c

MtÜt +CtU̇t +KtUt = Fl→t
c + Fd→t

c + Ft
p

MdÜd +CdU̇d +KdUd = Fl→d
c + Ft→d

c + Fd
p

(1)

In the following, the superscripts are omitted if not necessary. The vectors Ü,
U̇ and U gather the accelerations, velocities and positions of the free nodes of
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Fig. 2. a): The coronal CT slice is overlaid by the skin segmentation (blue) and in-
tersects in 3D with the left lung (pink) and the sub-diaphragm mesh (green). b): The
thorax (front face removed) with different coloring for each pressure patch for the left
lung. Below the lung lays the sub-diaphragm mesh (brown; one pressure patch visi-
ble in red) comprising the diaphragm and the abdominal organs. For more realistic
deformations, this mesh is separated from the thorax.

each simulated object. M is the (lumped) mass matrix (mass densities: ρl =
1.05 g/mL, ρ{t,d} = 1.50 g/mL). K is the stiffness matrix of the internal elastic
forces. C is a damping matrix. Here, Rayleigh damping is chosen, with coefficients
0.1 for both mass and stiffness. As described below, lungs, thorax and sub-
diaphragm are each subject to interaction forces Fc, which model the sliding
interactions between two organs, and pressure forces Fp, which represents the
physiological force driving the respiratory motion.

Passive Material Properties. Lungs, thorax and diaphragm are non linear, het-
erogeneous materials [9,11]. Because we want to estimate the driving pressures
and lung stiffness, fast simulations are necessary to reduce computation time.
We thus chose to use a linear elastic model [1], whose stiffness is set by the
Young’s modulus E and compressibility by Poisson’s ratio ν. Co-rotational lin-
ear tetrahedra are employed to cope with large deformations [6]. The parameters
are set using values reported in the literature [1]: El = 900Pa, E{t,d} = 7800Pa,
νl = 0.4 and ν{t,d} = 0.43.

Respiratory Forces. Breathing relies on the contraction of surrounding muscles,
which expand the lungs during contraction. In our model, we apply the negative
pressure as force on each element of the thoracic surface of the thorax and
diaphragm: f ip = pi n dS, where pi is the pressure of the i-th patch and n is the
normal of the surface element dS.

Collision and Sliding Interaction. Between lung and thorax lies the pleura, which
is filled with a serous fluid allowing nearly friction-free movement between the
lungs and thoracic cavity. During respiration, the lungs stay attached with the
thoracic surface of the rib cage and diaphragm, the change of pleural volume be-
ing minimal. To model this behavior, a collision model has been implemented as
a penalty force to prevent interpenetration, allow tangential sliding movement,
and attract objects to each other to ensure they stay connected. The collision
detection, based on proximity detection, is provided by the SOFA framework1.

1 www.sofa-framework.org

www.sofa-framework.org
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Fig. 3. Drawing of the collision force. By design, that force does not restrict sliding
but only penalizes inter-penetration of the thorax and lung.

Once a collision is detected, the proposed penalty force is applied automatically
whenever the distance between a vertex of one object and a triangle of another
object is lower than an alarm distance da. Exemplarily for all interactions be-
tween lungs, thorax and diaphragm the force generated by the thorax on a vertex
v of the lung can be written as (Fig. 3):{

Ft→l
c (v) = 0, if ‖u(v)‖ = 0 or ‖u(v)‖ > da

Ft→l
c (v) = −nlks

(
u(v) · nl

)
otherwise

where u is the vector between the lung vertex v, which belongs to the triangle
T l, and the corresponding collision point on the thorax. nl is the normal of the
triangle T l. ks is the penalty force stiffness coefficient, set to 0.1N/m in this
study. The interactions Fc between all three objects are defined in a similar way.
Implementation The biomechanical model is implemented based on SOFA frame-
work1. Eq. 1 is solved using a semi-implicit Euler solver with a time step of 1ms.

2.3 Model Personalization

Model personalization is achieved by optimizing the patch-wise pressure values.
We estimate the pressure necessary to load the lung from EE to EI by minimizing
a multi variate cost function using Powell’s NEWUOA algorithm [7], a trust-
region method that does not explicitly calculate cost function gradients.

The cost function is defined by C = DS +DLM , where DS is the mean Haus-
dorff surface-to-surface distance between the deformed EE lung surface at system
equilibrium and the segmented lung surface at EI. DLM is the average Euclidian
distance between landmarks at EI and their corresponding EE landmarks moved
according to the internal deformation provided by the biomechanical models.

3 Experiments and Results

Two different sets of experiments were carried out to evaluate our approach and
assess the importance of considering internal deformation during personalization.
Tab. 1 summarizes the different protocols. All configurations were validated by
predicting full exhale (EI to EE), without any image information.
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Table 1. Experiment protocols. See text for details.

Personalization (Optimization Parameters) Cost Function

Experiment 1 (E1): Personalization based on surface distance
14 pressure values C = DS

Experiment 2 (E2): Personalization based on surface and landmark distances
14 pressure values C = DS + DLM

Phase 1 (EI)             2                       3                      4                    5                   6 (EE)    

Fig. 4. A simulated lung during exhale (pink). The ground truth (in black wireframe)
and the simulation (in pink) are showed for each 4D CT phase.

Data Sets and Pre-Processing. We used EI and EE images from DIR Lab data
sets [2] for which the thorax is entirely visible (cases 6 to 10, image resolution of
0.97 × 0.97 × 2.50mm). For these sets landmarks were available. We automat-
ically segmented the lungs and skin surface and meshed the thorax, lung, and
diaphragm including abdominal organs with 25351, 2650 and 2754 tetrahedra
on average. In the following we report results for the left lung only, but due to
the anatomical separation, our method can easily be extended to both lungs.

Personalization.The pressure estimationwas based on a cost function (seeTab. 1),
which compared the current state of the simulation with the ground truth at EI.
The NEWUOA optimizer converged after an average of 109 iterations for pressure
estimation (≈ 15h single threaded system with 2.93GHz and 6GB memory; im-
provements expected by use of multi threading and collision detection on GPU,
such as in [3]). The obtained landmark errors at EI (Tab. 2) were of the same or-
der of magnitude as values reported in the literature [10,12], although our model
is not directly driven by image forces.

Table 2. Mean errors between simulation and ground truth. Setup details in Tab 1.

Case 6 7 8 9 10 Mean
E1: C = DS

EI surface error (mm) 4.66 3.73 4.43 3.09 2.95 3.77 ± 0.89

EI landmark error (mm) 4.68 7.32 11.17 5.25 2.85 6.26 ± 4.92
Mean landmark error during

prediction (mm)
3.96 4.67 6.35 3.29 2.83 4.22 ± 2.13

E2: C = DS + DLM

EI surface error (mm) 4.08 3.66 4.35 3.17 3.04 3.66 ± 0.69

EI landmark error (mm) 4.53 6.86 8.63 4.53 2.32 5.37 ± 3.26
Mean landmark error during

prediction (mm)
3.67 4.55 5.41 3.18 2.56 3.88 ± 1.54
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Fig. 5. Average landmark error during exhale simulation for the two experiment sce-
narios: estimation of patch-wise pressure values using the surface distance (left) or the
surface plus landmark distance (right) as cost function. The simulation starts at the
mechanical no-load phase EE, the lung is loaded using the personalized pressure, and
recoils to the no-load phase (plotted exhale). Therefore the errors near EE are smaller.

Validation. The quality of the model’s exhale prediction was evaluated by com-
paring the simulated landmark positions with the landmarks of each intermedi-
ate phase during exhale, which were not used during personalization. The exhale
was performed by turning off the personalized thoracic pressures just after reach-
ing the EI equilibrium (Fig 4). To reproduce a real-case scenario we synchro-
nized the simulated lung with the 4D CT images by means of the lung volume.
Despite the simplifications of our model, we obtained promising predicted lung
motion, with an average landmark error of 3.88± 1.54mm (Tab. 2, Fig. 5).

The experiments showed that the predictive power of the model can be im-
proved by considering the landmarks as information of internal deformation into
the cost function; surface matching is not enough. Analysis based on the dis-
tances of each landmark using a paired t-test showed that the improvements of
the model’s exhale prediction obtained in E2 were significant for cases 6 to 9
(p-value < 0.05). Error in case 10 was already of the order of magnitude of the
slice thickness, therefore a significant improvement was not expected.

4 Discussion and Future Works

In this study we have presented a novel approach to predict patient respiratory
motion, including the estimation of the thoracic pressure values. To the best of
our knowledge, our generative model is the first to simulate the lung, thorax and
diaphragm interactions without being explicitly driven by image forces. Person-
alized from two CT images, the model is generative and can predict respiratory
motion throughout the entire cycle. The obtained results were of the same order
of magnitude as state-of-the-art respiratory motion models, encouraging further
work in this direction. Tethering the lungs to the airways, estimating spatial
varying tissue properties, using hyperelastic material, refining the anatomical
model, and reducing the uncertainties in the FEM simulation could reduce the
simulation error. In a step towards the clinical application, we plan to investigate
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the correlation between the 1D surrogate and personalized pressure force field. In
conclusion, our method, being generative, may constitute a 4D surrogate model
to improve prediction of respiratory motion for image reconstruction.

Acknowledgments. This work was performed with partial support from NIH
grant U01-CA140206.
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Endoscope Distortion Correction Does Not (Easily)
Improve Mucosa-Based Classification of Celiac Disease�
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Abstract. Distortion correction is applied to endoscopic duodenal imagery to
improve automated classification of celiac disease affected mucosa patches. In a
set of six edge- and shape-related feature extraction techniques, only a single one
is able to consistently benefit from distortion correction, while for others, even a
decrease of classification accuracy is observed. Different types of distortion cor-
rection do not lead to significantly different behaviour in the observed application
scenario.

Keywords: endoscope distortion correction, shape- and edge-based features, celiac
disease, automated classification.

1 Introduction

Computer-aided decision support systems relying on automated analysis of endoscopic
imagery receive increasing attention [1].

A specific type of degradation, present in all endoscopic images, is a barrel-type
distortion. This type of degradation is caused by the wide-angle (fish eye) nature of the
optics used in endoscopes.

The aim of correcting this distortion in endoscopy is manifold. Barrel type distortion
is claimed to affect diagnosis [2], since it introduces nonlinear changes in the image,
due to which the outer areas of the image look significantly smaller than their actual
size. Therefore, the estimation of area or perimeter of observed lesions can be signif-
icantly incorrect depending on the position in the image [3]. In a recent study [4] it
has been demonstrated, that in classification of celiac disease based on duodenal im-
ages, in fact misclassification cases can be related to the extent of barrel distortion of
the texture patches involved in classification. Using the same image material, the im-
pact of distortion correction on classification accuracy has been investigated [5], [4]. In
these studies it turned out that most feature extraction methods considered failed to take
advantage of applying distortion correction as a pre-processing step to the endoscopic
images, resulting in an even decreased classification accuracy. It has been suspected that
these unexpected results might be due to the (i) (too) simple distortion correction tech-
nique applied. The only feature extraction techniques exhibiting improved classification

� This work has been partially supported by the Austrian Science Fund project no. 24366.
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© Springer-Verlag Berlin Heidelberg 2012
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when applied to distortion corrected images were based on edges and geometrical fea-
tures [5]. Therefore, it was also speculated that in general, (ii) edge and shape-related
feature types would be able to benefit from distortion correction.

In this work we focus on those two conjectures (i) and (ii) stated as conclusions after
result analysis in the mentioned studies. First, we employ the more recent parameter-
free distortion correction approach of Hartley and Kang [6]. Second, we use a set of
features related to edge and shape information instead of the mostly texture-oriented
descriptors in [5,4]. Further contributions of this work are the usage of a more realistic
evaluation protocol for classification assessment (leave-one-patient-out (LOPO) cross
validation) and the application of a richer set of classifiers to avoid bias due to the use
of a single classifier.

The manuscript is structured as follows. Section 2 explains the background of apply-
ing duodenal mucosa texture classification for diagnosis and staging of celiac disease
and describes the image database used with the corresponding histological ground truth.
In Section 3, we describe the experimental setup by first explaining the distortion cor-
rection techniques and their respective application to our image test and subsequently,
by reviewing the feature extraction (and classification) techniques employed. Section 4
presents and discusses experimental results and in Section 5 we finally conclude this
work.

2 Classification of Duodenal Texture for Celiac Disease Diagnosis

Celiac disease, commonly known as gluten intolerance, is a complex autoimmune disor-
der that affects the small bowel in genetically predisposed individuals of all age groups
after introduction of food containing gluten. Endoscopy with biopsy is currently con-
sidered the gold standard for the diagnosis of celiac disease. During standard upper
endoscopy at least four duodenal biopsies are taken. Microscopic changes within these
specimen are then classified in a histological analysis according to the Marsh classifi-
cation. The modified Marsh classification [7] distinguishes between classes Marsh-0 to
Marsh-3, with subclasses Marsh-3a, Marsh-3b, and Marsh-3c, resulting in a total num-
ber of six classes. An automated system identifying areas affected by celiac disease in
the duodenum can help to improve biopsy reliability (by indicating areas eventually
affected by celiac disease), can aid to improve less invasive diagnosis techniques avoid-
ing biopsies, and can reduce the costs of interpreting video material captured during
capsule endoscopy [7]. Prior approaches dealing with the computer-aided diagnosis of
celiac disease using endoscopic still images images include feature extraction based
on Local Binary Pattern based operators, band-pass type Fourier filters, histogram and
wavelet-transform based features, as well as smoothness/sharpness measures [7]. Tech-
niques involving temporal information computed from video-capsule endoscopy have
been also described [8].

The image test set used in this work (see [7] for example images) stems from three
pediatric gastroscopes without magnification, types GIF-Q165 and GIF-N180, Olym-
pus, with two of the first type and one of the latter type, respectively. The patients
presented in the pediatric Department because of celiac-like symptoms. Diagnostic
evaluation was indicated because of dyspeptic symptoms, positive celiac serology,
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anaemia, malabsorption syndromes, inflammatory bowel disease, and gastrointestinal
bleeding. For the endoscopy, the modified immersion technique was applied. This pro-
cedure is based on the instillation of water into the duodenal lumen for better visibility
of the villi. Then, the tip of the gastroscope is inserted into the water in order to take
images of meaningful regions. The images were taken from the Duodenal Bulb and the
Pars Descendens. Most importantly, these regions differ by their geometric properties.
Thus, it is necessary to treat these image sets separately.

From the acquired images, an experienced endoscopist extracted 128 × 128 pixels
patches significant for diagnosis. The images and patients were pre-classified by the di-
agnostic outcome of the biopsy of the significant region at the hospital into the modified
Marsh classification as shown in Table 1.

Table 1. Number of images/patients in the data sets and Marsh-classes

Data-Set Marsh-0 Marsh-3a Marsh-3b Marsh-3c
Bulbus 163/60 47/8 54/8 23/8
Pars Descencens 141/72 47/10 60/8 72/12

3 Experimental Study

3.1 Distortion Correction

The following stages are applied to the entire endoscopic images before the extraction of
the texture patches used for classification. Each colour image has been transformed into
a grayscale image with the usual conversion formula and subsequently, the MATLAB
built-in function for histogram equalisation (flat histogram) has been applied.

We use a planar checkerboard pattern (with points on a known grid) for distortion
calibration (see Fig. 1.a). Fig. 1.b shows an example of a distortion corrected calibra-
tion pattern. The first distortion correction technique applies the MATLAB software
developed by J.-Y. Bouguet1. For each gastroscope, 10 images were chosen to extract
calibration points and distorted points. The algorithm to extract the grid corners of a
checkerboard requires clicking on the four extreme corners of the rectangular checker-
board pattern. The calibration images that were used in this study contain only parts
of a checkerboard, so that for each image some sensible area of the checkerboard was
decided to contain the most extreme corners. Since the distortion in this study is quite
significant, providing a manual estimation for radial distortion was required for all im-
ages. After computing the intrinsic and extrinsic camera parameters, the undistort-tool
as provided in the tool-box is used (which is also used for computing the centres of the
texture patches as mentioned below).

Barreto et al. [9] have found the parameter-free approach of Hartley and Kang [6]
being better suited for endoscopic imagery as compared to Bouguet’s approach – there-
fore, we have developed a corresponding MATLAB implementation of their technique.
After a manual extraction of calibration points and their adjustment using Bouguet’s

1 http://www.vision.caltech.edu/bouguetj/calib_doc/

http://www.vision.caltech.edu/bouguetj/calib_doc/
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(a) (b) (c) (d)

Fig. 1. Distortion correction applied to checkerboard (taken with Olympus GIF-Q165) and to
entire endoscopic image (Bouguet distortion correction applied)

tool, the implementation of Peter Kovesi2 was applied to all images to calculate the
fundamental matrix. The reminder of the algorithm is implemented as described in the
paper, partially using MATLAB built-in functions for e.g. optimisation (“fmincon”).

Since after distortion correction the squared texture patches using for classification
do no longer correspond to squares (see Fig. 1.c and 1.d) these cannot be used im-
mediately for subsequent classification (most feature extraction techniques implicitly
assume at least a rectangularly shaped texture patch). Therefore we apply the following
technique to generate square-shaped texture from distortion corrected image material:
Based on the original (distorted) endoscopic images, we record the coordinates of the
centre of the extracted 128× 128 pixels. Subsequently, distortion correction is applied
to the entire original images and the recorded centre coordinates are mapped into the
distortion corrected image. Using these coordinates, a 128× 128 pixels texture square
is extracted from the distortion corrected image which is then used for classification.

3.2 Feature Extraction and Classification

To be able to assess the impact of distortion correction techniques on the classification
accuracy, we use a set of different feature extraction techniques. Contrasting to earlier
studies, emphasis is given to edge- and shape-related strategies.

Fractal Dimension: Boxcounting [10]: A texture signature is computed from binary
images obtained from original images using different thresholds and application of the
box-counting fractal dimension on each thresholded image. In our implementation, all
gray-level thresholds from 50 to 175 were used to generate binary images, for box-
counting, Moisy’s tool3 is used with box-sizes from 22 - 232. For the final signature,
the mean and standard deviation over the values for the box sizes are used for each
threshold value.

Locally Invariant Fractal Features [11]: Local fractal dimension (also termed local
density) is computed for each pixel in an image after applying the MR8 filterbank. For
each class, the 8-dimensional local density vectors of all training images are aggregated
and subjected to k-means clustering resulting in cluster centres termed textons. For an
image to be classified, local density vectors are computed and each one is labelled with

2 www.csse.uwa.edu.au/~pk/research/matlabfns/
3 www.fast.u-psud.fr/~moisy/ml/

www.csse.uwa.edu.au/~pk/research/matlabfns/
www.fast.u-psud.fr/~moisy/ml/
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the texton that is closest to it. The frequency histograms of the texton occurrences are
used as feature descriptors. Custom MATLAB code is developed for this approach.

Gray-Level Co-occurrence Matrix (GLCM [12]): The GLCM is defined over an im-
age as the distribution of co-occurring values at a given offset Δx and Δy for a n×m
image as follows:

CΔx,Δy(i, j) =

n∑
p=1

m∑
q=1

{
1, if I(p, q) = i and I(p+Δx, q +Δy) = j
0, otherwise

(1)

For classification, the Haralick features contrast, correlation, energy, and homogene-
ity are used for offset-values 1,2,4, and 8 in 4 directions (vertical, horizontal, diag-
onal 45◦ and 135◦). Calculations are performed with the MATLAB built-in function
”graycomatrix”.

Edge Co-occurrence Matrix (ECM [13]): For this approach (custom MATLAB im-
plementation), a Sobel edge detection approach using the Robinson compass masks is
applied to the images. Subsequently, a co-occurrence matrix is constructed using 1,2,3,
and 4 as distances in 8 directions. Again, the Haralick features computed from this
matrix as mentioned above are used as feature vector.

Edge Orientation Histogram (EH [14]): The EH is one of three MPEG-7 texture
descriptors. The EH requires dividing the image into 4 × 4 sub-images, where each
sub-image is sub-divided again into blocks of typically 4 × 4 pixels. The EH finds
vertical, horizontal, diagonal and non-directional edges. This makes the EH specifically
well suited for natural images with non-uniform edge distribution. Each image block
is filtered to obtain the most prominent edge in the block. If the block is monotone, no
edge is counted. As a consequence, a histogram with 5 bins can be computed over all
the image blocks in each of the 16 sub-images. Thus, this results in an 80 bin histogram
which is computed using the implementation of OConaire4.

Spatial Size Distributions (SSD [15]): The difference of the autocorrelation for a given
image and the autocorrelation of the same image after applying a morphological open-
ing is computed. To be able to capture texture properties of different sizes, these com-
putations are performed using scaled versions of the structure element used. The results
obtained for the different structure element sizes are then summed up and normalised
by the square of the sum over all grayscale values within the image. The result is a
cumulative distribution function. The probability density associated with this cumula-
tive distribution is called a spatial size distribution. The features which are then used
to classify textures are obtained by computing first-order and second-order moments of
the probability density.

While the shape variants of the structuring element have been chosen in accordance
to the original suggestion, the number of scales of the structuring element and the

4 clickdamage.com/sourcecode/index.php

clickdamage.com/sourcecode/index.php
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number of different support disc sizes have been reduced to 4 and 2 in our MATLAB
implementation, respectively, to limit the very demanding computations.

Classification: To avoid over-fitting phenomena the leave-one-patient-out cross-
validation protocol is used to estimate classification accuracy. In each validation run,
MATLAB built in classifiers are used: Discriminant analysis with a diagonal quadratic
function, knn classification (with Euclidean distance metric and k = 1), and classifica-
tion with SVM using a linear or a quadratic kernel function, respectively. Classification
is performed separately for the two topographical regions of the duodenum. From the
resulting classes that are assigned to the images, the performance of the classification
was evaluated by calculating sensitivity, specificity and overall accuracy.

3.3 Experimental Results

In Tables 2 - 4 we display classification results. Configurations where results obtained
from distortion corrected material are superior in terms of overall accuracy are marked
in bold face.

Table 2. Classification performance for fractal dimension-based feature extraction

Fractal dimension: Boxcounting
class. region images Sens. Spec. Acc.

diag. Bulbus distorted .51 .66 .59
quad. Hartley .58 .82 .72

Bouguet .46 .86 .69
Pars Desc distorted .46 .52 .49

Hartley .51 .65 .57
Bouguet .66 .57 .62

knn Bulbus distorted .40 .75 .60
Hartley .48 .79 .66
Bouguet .85 .65 .65

Pars Desc distorted .47 .57 .52
Hartley .50 .57 .53
Bouguet .45 .59 .51

SVM- Bulbus distorted .38 .72 .57
linear Hartley .52 .79 .67

Bouguet .53 .82 .69
Pars Desc distorted .57 .43 .51

Hartley .63 .50 .57
Bouguet .59 .45 .53

Locally invariant fractal features
class. region images Sens. Spec. Acc.

diag. Bulbus distorted .35 .91 .67
quad. Hartley .30 .93 .66

Bouguet .19 .96 .62
Pars Desc distorted .64 .72 .68

Hartley .65 .64 .65
Bouguet .47 .70 .57

knn Bulbus distorted .73 .65 .69
Hartley .71 .54 .61
Bouguet .56 .82 .71

Pars Desc distorted .73 .51 .63
Hartley .56 .58 .57
Bouguet .55 .51 .53

SVM Bulbus distorted .73 .90 .83
linear Hartley .59 .85 .74

Bouguet .70 .88 .80
Pars Desc distorted .73 .68 .71

Hartley .72 .62 .68
Bouguet .78 .68 .74

The only feature extraction technique where distortion corrected images consistently
lead to better results is the “fractal dimension: boxcounting” technique. Also, for edge
co-occurrence features we notice a few improvements (e.g. for knn classification and
Bouguet distortion correction applied to Pars Descendens images also for the other two
classifiers). For the other four feature extraction techniques improvements are sParse
and in the majority of configurations result degradations are observed.

There are absolutely no trends which justify the much more complicated parameter-
free distortion correction as compared to Bouguets software. The tendency that Pars
Descendens imagery is more difficult to classify can be confirmed with the results in
this study. In most cases SVM classification delivers the best results, but there are also
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Table 3. Classification performance for grayscale co-occurrence and SSD feature extraction

Gray scale Co-occurence features
class. region images Sens. Spec. Acc.

diag Bulbus distorted .70 .79 .75
quad. Hartley .75 .76 .76

Bouguet .77 .81 .79
Pars Desc distorted .74 .59 .68

Hartley .61 .72 .66
Bouguet .67 .67 .67

knn Bulbus distorted .75 .79 .77
Hartley .62 .83 .74
Bouguet .64 .77 .71

Pars Desc distorted .70 .68 .69
Hartley .68 .65 .67
Bouguet .68 .54 .62

SSD features
class. region images Sens. Spec. Acc.

diag. Bulbus distorted .53 .78 .67
quad. Hartley .49 .79 .66

Bouguet .26 .91 .63
Pars Desc distorted .57 .67 .62

Hartley .71 .54 .63
Bouguet .57 .71 .63

knn Bulbus distorted .82 .83 .83
Hartley .73 .82 .78
Bouguet .75 .83 .79

Pars Desc distorted .71 .67 .69
Hartley .71 .66 .69
Bouguet .65 .69 .67

Table 4. Classification performance for edge co-occurrence and edge orientation features

Edge Co-occurrence features
class. region images Sens. Spec. Acc.

diag Bulbus distorted .51 .67 .60
quad. Hartley .59 .58 .58

Bouguet .51 .58 .55
Pars Desc distorted .45 .67 .55

Hartley .49 .59 .52
Bouguet .53 .65 .58

knn Bulbus distorted .39 .57 .49
Hartley .48 .55 .52
Bouguet .45 .54 .50

Pars Desc distorted .53 .38 .46
Hartley .54 .48 .51
Bouguet .56 .48 .53

SVM Bulbus distorted .68 .78 .74
linear Hartley .56 .72 .56

Bouguet .66 .76 .72
Pars Desc distorted .64 .45 .55

Hartley .61 .40 .52
Bouguet .63 .49 .57

Edge orientation features
class. region images Sens. Spec. Acc.

diag. Bulbus distorted .69 .68 .68
quad. Hartley .68 .72 .70

Bouguet .73 .72 .72
Pars Desc distorted .49 .57 .53

Hartley .44 .55 .49
Bouguet .37 .57 .46

knn Bulbus distorted .85 .45 .62
Hartley .72 .39 .53
Bouguet .81 .45 .57

Pars Desc distorted .45 .52 .51
Hartley .48 .57 .52
Bouguet .58 .43 .51

SVM Bulbus distorted .77 .62 .69
quadratic Hartley .63 .56 .59

Bouguet .63 .58 .60
Pars Desc distorted .59 .55 .57

Hartley .46 .42 .44
Bouguet .62 .56 .60

a few exceptions. The best result with 0.83 accuracy is obtained with locally invariant
fractal features and SSD on the distorted Bulbus image set using SVM classification and
knn classification, respectively. Overall, classification accuracy is found to be lower for
the considered set of feature descriptors as compared to transform-based or LBP-related
methods.

4 Conclusion

Distortion correction does not improve classification of celiac-disease related duodenal
image material in many cases, even if edge- and shape-related feature descriptors are
used. The role of interpolation as used in all distortion correction techniques needs to
be investigated in more detail – especially in the corner regions of the images, where
distortion correction is most crucial due to the strong barrel distortion, interpolation
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artefacts are most severe due to the large extent of distances to be corrected. Further-
more, the validity of the conclusions found so far needs to be checked for other types of
endoscopes (e.g. high-magnification or high-definition endoscopes) and other types of
classification tasks (e.g. colon polyp classification, stomach mucosa classification etc.).
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Abstract. In this paper, we propose a new pharmacokinetic model for parame-
ter estimation of dynamic contrast-enhanced (DCE) MRI by using Gaussian 
process inference. Our model is based on the Tofts dual-compartment model for 
the description of tracer kinetics and the observed time series from DCE-MRI is 
treated as a Gaussian stochastic process. The parameter estimation is done 
through a maximum likelihood approach and we propose a variant of the coor-
dinate descent method to solve this likelihood maximization problem.  The new 
model was shown to outperform a baseline method on simulated data. Parame-
tric maps generated on prostate DCE data with the new model also provided 
better enhancement of tumors, lower intensity on false positives, and better 
boundary delineation when compared with the baseline method. New statistical 
parameter maps from the process model were also found to be informative, par-
ticularly when paired with the PK parameter maps. 

Keywords: DCE-MRI, Gaussian Stochastic Process, Pharmacokinetic Model, 
Bayesian Inference, Coordinate Descent Optimization. 

1 Introduction 

Dynamic contrast-enhanced MR imaging (DCE-MRI) is a special magnetic resonance 
imaging (MRI) technique which assesses the micro-vascular status of tissue by re-
peated acquisition of rapid T1-weighted images on a region-of-interest (ROI) before, 
during and after the injection of a low molecular weight contrast agent [1, 2]. The 
tracking of contrast agent, typically a gadolinium (Gd) compound, provides a way to 
analyze the pharmacokinetics of the contrast agent which reveals information about 
the local vascular permeability, blood flow and extracellular volumes in the ROI. 

The most widely used pharmacokinetic (PK) model in DCE is the Tofts’ dual-
compartment model [3], which models the exchange of contrast agent between the 
vascular space (blood plasma) and the extravascular-extracellular space (EES). The 
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Tofts’ model predicts for two quantitative parameters, Ktrans and kep, which have been 
shown to correlate with cancer (Ktrans and kep vary according to the organ being stu-
died). These parameters are typically calculated by using nonlinear regression curve-
fitting techniques [4], which fit the concentration profiles of each MRI voxel  
independently, on a voxel-by-voxel basis. To challenge this voxel-independence as-
sumption, Schmid et al. utilized adaptive Gaussian Markov random fields to estimate 
the kinetic parameters of DCE-MRI. In this analysis, neighboring voxels in the kinetic 
parameter estimation reduced the variability in local tumor regions and keep the 
boundaries between heterogeneous tissues sharp. This neighboring voxel approach 
was further developed with a spatial prior model by Kelm et al. [5]. 

Other probability models have also been used to treat the PK modeling problem. 
For example, Orton et al. utilize a full Bayesian approach [6]. Also, in the work of 
Chen et al., pixel-wise partial volume effect (PVE) was taken into account due to 
limited spatial resolution of DCE-MRI and tumor tissue heterogeneity [7]. However, 
in all of the probability models mentioned, it is assumed that the DCE-MRI observa-
tions at different time points are independent. This assumption does not hold for the 
real physical pharmacokinetic process because the observations from different time 
points have correlations imposed by the tracer dynamics across time. In reality, time 
dependence in DCE-MRI exists, and is difficult to characterize. In this paper, to cap-
ture the covariance between different time points of DCE-MRI, we treat the time 
series of DCE-MRI as a stochastic process and use a Gaussian process to describe it 
[8]. With the Gaussian process modeling, we estimated the pharmacokinetic and sta-
tistical parameters using maximum likelihood Bayesian inference. 

The paper is organized as following: in Sec. 2, we first introduce the Tofts dual-
compartment model briefly, and then propose a new method for the pharmacokinetic 
parameter estimation using Gaussian process inference (GPI); in Sec. 3 we show ex-
perimental results on both simulated data and the prostate MRI dataset; we conclude 
our findings in this study in Sec. 4 with a short discussion and future direction. 

2 Methods 

2.1 Pharmacokinetic Model  

In this paper, we adopted a dual-compartment model proposed by Tofts et al. which 
was widely used to describe the dynamic uptake of contrast agent Gd-DTPA into the 
extracellular-extravascular space (EES) [3] (our method is a general framework and 
can also utilize other PK models). The concentration of Gd-DTPA as time goes by is 
modeled by the following equation: 

( ) ( ) ( )C , , exptrans
t p epx t K C x t k t = ⊗ −   (1)

where ( )C ,t x t  is the measured Gd-DTPA concentration in the tissue located at x at 

time t, ( ),pC x t  is an arterial input function (AIF) giving the tracer concentration in 

blood plasma, Ktrans is the transfer constant between the blood plasma and EES, and 
Kep is the rate constant between the EES and blood plasma. The units of EES and 
blood plasma are both 1min − . ⊗ denotes the convolution operator. 
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By using T1 weighted images, the Gd-DTPA concentration in tissue ( )C ,t x t can 

be calculated from the following equation [9]: 

( ) ( ) ( )1 11
1 1 10C , ,t x t r T x t T x

− −−  = −   (2)

where 10T is the 1T  value before contrast agent administration, and 

1 4.24 / /r l s mmol= [3] is the longitudinal relaxivity of Gd-DTPA. 

The Gd-DTPA concentration ( ),pC x t  in blood plasma is modeled by a bi-

exponential function (arterial input function (AIF)) [3]: 

( ) ( )
2

1

, expp i i
i

C x t D a m t
=

=   (3)

where 1 3.99 /a kg l= , 1 4.78 /a kg l= , 1
1 0.144 minm −= , 1

2 0.0111 minm −=
[10], and D is the actual dose of contrast agent for a given body weight (

0.1 /D mmol kg= in study [4]). In eq. (3) the first term models the short-term ex-

change of contrast agent with the tissues; the second term models the removal of con-
trast agent by the kidneys. 

After substituting ( ),pC x t  in eq. (1) with eq. (3) and convoluting, we get: 

( ) ( ) ( ) ( ) ( )1 2

1 2
1 2

exp exp exp exp
C , +

ep eptrans
t

ep ep

k t m t k t m t
x t DK a a

m k m k

 − − − − − −
 =
 − − 

 (4)

2.2 Gaussian Process Inference 

Due to measurement noise in MR imaging and other sources of noise, the observation 
of tracer concentration in tissue on location x at different time points 1, 2,...,t T=

which is defined as ( ) ( ) ( ) ( )O ,1 ,O ,2 ,...,O ,t t t tx x x x T=   O  is a sequence of random 

variables, i.e., ( ) ( ) ( )2O , , 0,t i t i nx t C x t N σ= + .  We assume ( )t xO  is a Gaussian 

stochastic process [8]:   

( ) ( ) ( )( ),t tx GP x xO C Σ ,                                          (5) 

where ( ) ( ) ( ) ( )C ,1 ,C ,2 ,...,C ,t t t tx x x x T=   C is the mean function and ( )xΣ is the cova-

riance function, ( ) ( ) ( )( ), , , cov C , ,C ,i j i j t i t jx t t x t x tΣ = . 

Based on the observation that for DCE images, the images taken at time points 
which are close to each other on the time axis should have higher correlation than 
those taken at time points which are far away from each other on the time axis, we use 
the “squared exponential” covariance function [8], which fits the data well: 

( ) ( ) ( ) ( )( )2 22
i, , , exp 2j i j f j ix t t x t t l xσ  Σ = − −  

 (6)
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where 2
fσ  defines the maximum allowable covariance and l defines the characteristic 

length-scale (the time required for a [1-e-0.5] = 39.4% decay in covariation). 
By combining the covariance function shown in eq. (6) and the measurement noise 

with distribution ( )20, nN σ  from MR imaging together, we use the following cova-

riance function: 

( ) ( ) ( ) ( )( ) ( ) ( )2 22 2
i, , , exp 2 ,j i j f j i n i jx t t x t t l x x t tσ σ δ Σ = − − +  

 (7)

where ( ),i jt tδ  is the Kronecker delta function. Zero mean Gaussian noise is used for 

simplicity, though non-zero mean Gaussian noise is easily implementable. 
With the Gaussian process assumption, the log likelihood function is: 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1

log , , , , ,

1 1
log log 2

2 2 2

trans
t t ep f n

T

t t t t

L x p x x K k l

T
x x x x x x

σ σ

π−

=

= − − − − −

O C

O C O CΣ Σ
 

(8)

To maximize the likelihood function and find the values of hyperparameters 

( ), , , ,trans
ep f nK k lσ σ  introduced above, we use a variant of coordinate descent [11]; in 

our variation, the parameters are optimized in two groups: with Ktrans and Kep in one 
group, and σn, σf, and l in the other. Formulas for the gradient follow: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 1 2

1 2
1 2

1,...,

exp exp exp exp
+

T ep i i ep i i

t ttrans
ep ep

i T

k t m t k t m tL
x x x D a a

K m k m k

−

=

 − − − − − −∂
 = −

∂ − −  
O C Σ  

( ) ( )( ) ( )

( ) ( )( ) ( )( )
( )

( ) ( )( ) ( )( )
( )

1

1 1 2 2

1 22 2

1 2
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exp exp exp exp exp exp
+

T trans
t t

ep

ep i i i ep i ep ep i i i ep i ep

ep ep
i T

L
x x x DK

k

k t m t t k t m k k t m t t k t m k
a a

m k m k

−

=

∂ = − ×
∂

 − − − − − − − − − − − −
 
 − − 

O C Σ
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2 2 2

1 1

2 2
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3 Experimental Results and Discussion 

The proposed Gaussian process inference (GPI) strategy was studied in two parts.  
First, the algorithm was tested on simulated data to assess its performance in estimat-
ing the “true” local pharmacokinetic parameters.  Then, the algorithm was used to 
generate parametric maps using actual MRI-DCE axial scans of the prostate, and the 
resulting maps were qualitatively compared with histopathology results from radical 
prostatectomy after the DCE images were obtained.  In both parts of the study, the 
GPI algorithm was compared against a standard least-squared-error (LSE) minimiza-
tion method using a Nelder-Mead simplex algorithm. Squared-error-minimization is 
widely used in DCE-MRI [4]. 

3.1 Results on Simulated Data 

For the simulated DCE data, we generated concentration profiles consisting of 46 Gd-
DTPA time-points spaced 5.6 seconds apart (spanning 4.3 minutes). The concentra-
tions were assumed to follow the Gaussian probability distribution described in Sec. 
2.2 with covariance terms σn equaling 2% of the maximum Gd-DTPA concentration, 
σf equaling 10% of the concentration peak, and l equaling 30 seconds.  Simulated data 
were generated for a physiologically relevant range of 0.1 to 1 min-1 for Ktrans and 0.2 
to 3 min-1 for Kep.  Further, the constraint: 2*Ktrans < Kep < 10*Ktrans was imposed, 
allowing for ve (the EES fraction) to vary between 0.1 and 0.5.  For each Ktrans/Kep 
pair, 100 independent random samples were generated. 
 

 

Fig. 1. Simulation results comparing the Mean Squared Errors from the GPI method (left) and 
the LSE method (right) in Ktrans (top) and Kep (bottom).  On average, the GPI method resulted in 
lower errors than the LSE method (p < 0.0001 for both parameters). 
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through maximum likelihood approach and we propose a coordinate descent variant 
to solve this likelihood maximization problem. 

By testing the algorithm on simulated MRI data, it was shown that the Gaussian 
process inference approach results in significantly more accurate results for MRI data 
that exhibits Gaussian covariance. Further, the Ktrans maps generated by the GPI algo-
rithm show promise in yielding higher sensitivity and specificities, while leading to 
better delineations of lesion boundaries. σf, and l also showed promise in aiding clini-
cians to detect tumor boundaries. In the future, quantitative comparisons of GPI with 
LSE and other PK methods are required to determine the true benefit of GPI. 
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Abstract. This paper presents a new method for automatic localiza-
tion and identification of vertebrae in arbitrary field-of-view CT scans.
No assumptions are made about which section of the spine is visible
or to which extent. Thus, our approach is more general than previous
work while being computationally efficient. Our algorithm is based on re-
gression forests and probabilistic graphical models. The discriminative,
regression part aims at roughly detecting the visible part of the spine. Ac-
curate localization and identification of individual vertebrae is achieved
through a generative model capturing spinal shape and appearance. The
system is evaluated quantitatively on 200 CT scans, the largest dataset
reported for this purpose. We obtain an overall median localization error
of less than 6mm, with an identification rate of 81%.

1 Introduction

This paper proposes an algorithm for automatic detection, localization, and iden-
tification of individual vertebrae in computed tomography scans. A variety of
tasks beyond spine specific analysis can immediately benefit from such a system.
The spine provides a natural patient-specific coordinate system, where individ-
ual vertebrae serve as anatomical landmarks. These can be used, for instance,
for semantically guided inspection tools, linking of radiological reports with cor-
responding image regions, or for robust initialization of image registration. Ver-
tebrae localization also provides valuable priors for subsequent tasks such as
anatomy segmentation, image retrieval, shape and population analysis.

The challenges associated with automatic localization of individual vertebrae
arise from i) the repetitive nature of these structures, ii) the variability of normal
and pathological anatomy, iii) and the variability of images (e.g. resolution and
field-of-view). A common approach for vertebra (in CT) and intervertebral disks
(in MRI) is to employ a multi-stage approach. In the first stage a detector in
the form of a filter [1, 2], a single/multi-class classifier [3–8] or a model-based
Hough transform [9] is used to detect potential vertebra candidates. As these
candidates may contain many false positive responses a second stage is applied
to add robustness. Prior knowledge on the global shape and/or appearance of
individual vertebrae and their interconnections is used. In [2], a clever search is

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 590–598, 2012.
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performed based on prior information through the candidates, while [1, 4, 5] fit
a low order polynomial curve to the candidates to remove outliers. In [3, 6, 8, 9]
the authors add prior information via graphical models, such as Hidden Markov
Models (HMMs) [10], and infer the maximum a-posteriori (MAP) estimate for
the vertebrae locations. In contrast, [11, 12] use a fully generative model, and
inference is achieved via generalized expectation-maximization, while in [7] de-
formable templates are used for segmentation and subsequent identification.

Although previous works achieve high localization accuracy they cannot han-
dle completely general scans where it is not known in advance which portion
of the anatomy is visible. In fact, most algorithms require a priori knowledge
of which vertebrae are visible in the scan [1–8]. They either focus on a specific
region, such as lumbar or thoracic, or need to modify their models based on
the expected spine region. In [11, 12] approximate alignment between scans is
assumed. To the best of our knowledge the only work that explicitly handles ar-
bitrary scans is [9]. However, the added generality comes at high computational
cost. Based on an affine vertbra registration algorithm, the identification phase
is reported to take up to 36 minutes for 12 thoracic vertebrae.

In this paper we overcome those drawbacks with a vertebra localization and
identification algorithm which is both robust and efficient. Its main advantage is
the automatic handling of arbitrary field-of-view scans displaying widely varying
anatomical regions. For instance, in a narrow abdominal scan we may be able to
see just a handful of vertebrae together with the kidneys. A radiologist makes
use of such contextual information to infer that we are looking at a lumbar
section of the spine. In our system we incorporate contextual information within
a regression forest algorithm. More specifically, we build upon state-of-the-art
supervised, non-linear regression techniques [13] used jointly with a probabilistic,
generative prior of spinal shape and appearance. The forest provides context-
aware, fast estimation of vertebrae centres. In a second stage a joint model of
vertebra appearance and global spine shape yields a refined localization as well as
individual vertebra identification. The whole process takes less than 2 minutes on
a standard desktop machine, thus allowing integration in existing image analysis
pipelines. Details of our approach are presented in the next section, followed by
an extensive quantitative validation on a large labelled dataset of 200 CT scans.

2 Vertebrae Localization and Identification

Similar to previous methods, our system relies on a two-stage approach. The first
stage aims at roughly detecting and localizing all vertebrae of the spine within
the image. Refinement of vertebrae positions and their identification is obtained
in the second stage.

Previous work extracts location candidates via classification (e.g. in a sliding
window framework). In contrast, here we take a more direct, regression approach.
In fact, given a training set we learn a regression function which associates
vertebrae positions with image points, directly. By combining the predictions of
many (possibly sparse) sampled image points, one can obtain robust and efficient
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location estimates while avoiding sliding window-like expensive search. Note that
these location estimates are not restricted to be inside the visible image domain,
and thus, an approximate localization of all vertebrae is possible, even if only a
small portion of the patient’s anatomy is visible.

Contextual reasoning is enabled via long-range spatial features, like the ones
used in [14, 15]. This way, the presence of organs such as kidneys, liver, or lungs
provide strong indications about the presence of certain vertebrae. Regression
forests enable us to select automatically the most discriminative features of ac-
curate prediction. Next, we first formalize the regression technique. Then we
describe the second, refinement stage.

2.1 Stage 1: Regression Forests

Regression forests is a supervised learning technique for the probabilistic estima-
tion of continuous variables. Recent work has shown that this technique can be
successfully applied to organ bounding box localization in CT [14] and MR [15].
In our application, we aim at regressing the set of n vertebrae centroids denoted
as C={ci}n1 with c∈R3. The predictor function is then defined as p(C|X ) where
X = {(xj , f j)} is a set of pairs of feature vectors f = (f1, . . . , fd) ∈ Rd with
visual feature responses f extracted for individual image points x ∈ R3. Thus,
given the data X obtained from an image this discriminative predictor allows to
estimate the most likely positions of vertebrae in that image.

Regression forests tackle the problem of learning the predictor in a divide-
and-conquer fashion. A forest is an ensemble of T (probabilistic) binary decision
trees, where each tree t learns its own predictor pt(C|X ). Given a training set
T = {(Xk, Ck)}, obtained from annotated CT scans, training a tree is done by
successively subdividing the training examples within the feature space. At each
internal node data subsets TL, TR are sent to the left and right child node. A local
split function is determined at each node based on the arriving examples. The
splits are obtained by (randomly) selecting one feature response for all examples
and optimizing over a threshold w.r.t. an objective function. The splitting aims
at clustering examples in leaf (terminal) nodes with both consistent annotations
and similar feature responses. Tree growing stops when a certain tree depth is
reached. In order to extract visual feature responses f , we employ displaced box
features which: i) capture long-range appearance context [14, 15] and, ii) can be
implemented efficiently via integral image processing [16]. Injecting randomness
during the tree training process decreases correlation between individual trees
and increases the forest generalization capabilities1.

Forest Training. Since our training set is composed of feature vectors for im-
age points from arbitrary, unregistered CT scans with varying resolutions and
croppings, a regression over absolute image coordinates of vertebrae is not mean-
ingful. Instead, and similar to the case of bounding box regression [14, 15], we as-
sociate each training point x with its relative displacements {di}, i.e. the offsets
to all available vertebrae centroids given by di=ci −x. We employ multivariate

1 More details on forests can be found in [13].
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(a) (b) (c) (d)

Fig. 1. (a) Mean images of our appearance model for T3 and L3. (b) Visualization
of Gaussian densities for offset probabilities in our shape model. Ellipses illustrate
one standard deviation w.r.t. covariance matrices. (c) Output of the regression forest
for a test image (red) with an overlay of expert annotation (yellow) and prediction
distribution for L4. (d) Result after refinement via HMM. Besides accurate predictions
for vertebrae within the image, our method yields reasonable predictions outside.

Gaussians to model the node predictor functions:N (μ,Σ|D) with μ ∈ R3n where
D={{di}j} is the set of offsets obtained from all training points arriving at that
node. The training objective function is defined as ξ(TL, TR) = tr(ΣL) + tr(ΣR).
Node training aims at minimizing ξ which, in turn, minimizes the diagonal en-
tries of the covariance matrices. This produces child subsets TL,R with lower
uncertainty and higher confidence in the prediction of vertebrae location.

Forest Testing.Given a previously unseen CT scan, image points cast a (proba-
bilistic) vote on the position of all vertebrae. In fact, each point is pushed through
all trained trees. Each split node then sends the point to its left or right child
depending on its feature vector, recursively until the point reaches a leaf node.
The corresponding predictor function (i.e. Gaussian in this case) is read out
and used for making one prediction for all vertebrae positions relative to the
image point location. Aggregating all predictions over all trees and test points
yields a distribution over all vertebrae positions (see Fig.1(c)). For robustness, we
approximate the maximum a-posteriori estimate Ĉ of this distribution through
mean-shift (initialized with the maximum response of a low-resolution histogram
over predictions with bin size 4mm). The output vertebrae locations obtained
here are then used as input for our refinement step, described next.

2.2 Stage 2: Hidden Markov Model

The second stage of our approach aims at refining the localization of all centroids
of vertebrae visible in the image. To this end, we employ a joint prior model of
vertebra appearance and spinal shape. The model parameters are optimized
using the same data set employed to train the forest.

Vertebra Appearance Model. The appearance model consists of pairs of
mean and variance images A={(Mi, Vi)}n1 , one pair per vertebrae. These pairs
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are computed by super-imposing sub-volumes of size 11×11×5cm cropped from
the training data and centered on each annotated vertebra. A few iterations of
nonlinear registration are performed to increase the sharpness of the mean images
(see examples in Fig. 1(a)). Given a candidate position ci we define a likelihood
function w.r.t. the appearance model as

p(ci|A) =

∫
Ωi

1√
2πVi(x)

exp

(
− (I(ci − x)−Mi(x))

2

2Vi(x)

)
dx . (1)

Spine Shape Prior. The shape model captures conditional probabilities over
vertebrae positions. We determine a set of distributions S={p(ci|ci−1, s)}n2 where

p(ci|ci−1, s)=̂N
(
‖ci − ci−1‖

s
|μi, Σi

)
with s =

1

n− 1

n∑
i=2

‖ci − ci−1‖
E(‖ci − ci−1‖)

(2)

The variable s corresponds to a global scale factor which reflects overall body
size. A visualization of these offset distributions is shown in Fig. 1(b).

Joint Shape and Appearance. We define an HMM with hidden states for
each vertebrae position, appearance likelihoods and inter-vertebra shape priors.
The HMM distribution p(C|A,S, s) conditioned on global scale yields the energy:

E(C; s) = −
n∑

i=1

log [p(ci|A)]− λ
n∑

i=2

log [p(ci|ci−1, s)] . (3)

Given a value for s and multiple sampled location candidates MAP inference can
be achieved via dynamic programming. Several thousand candidate locations are
sampled from the vicinity of the forest prediction using a normal distribution
N (ci, σ

2) with σ=30mm. In practice, we optimize over 7 scale parameters from
a [0.85, 1.15] interval covering 97% of observed patient scales. The weighting
parameter λ controls the influence of the shape term, and thus, how much the
solution can deviate from the mean shape. Throughout our experiments this
weighting is fixed to 0.1. In the exemplary result in Fig. 1(d) notice how the
thoracic vertebrae follow reasonable predictions outside the image domain.

3 Experiments

Our spine model includes n = 26 individual vertebrae, where the regular 24
from the cervical, thoracic, and lumbar regions are augmented with 2 centroids
denoted as S1 and S2 located on the sacrum. We evaluate accuracy of both lo-
calization and identification on a dataset of 200 CT scans where the centroids of
all visible vertebrae have been manually selected. The dataset is a heterogeneous
collection of CT scans from different clinical centers equipped with varying hard-
ware. Images have been acquired for diverse clinical tasks. The scans vary widely,
especially in terms of vertical cropping, image noise and physical resolution. The
inter-axial distance varies between 0.5 and 6.5mm, with 79 scans having a dis-
tance of 3.75mm. The number of slices varies between 51 and 2058 with an
average of about 240. Some highly cropped images show only 4 vertebrae.
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Table 1. Summary of the localization and identification errors evaluated on 200 CTs

Vertebrae Stage 1: Regression Forest Stage 2: HMM Distance to Closest Identification 
Region Counts Median Mean Std Median Mean Std Median Mean Std Correct Rate 

All 2595 15.91 18.35 11.32 5.31 9.50 10.55 4.79 6.10 5.53 2089 81% 
Cervical 116 25.97 30.74 18.64 6.87 10.85 12.49 6.14 8.53 9.05 84 72% 
Thoracic 1417 15.79 18.20 10.81 5.51 9.83 10.44 4.91 5.94 4.84 1100 78% 
Lumbar 1062 15.40 17.20 10.07 4.88 8.92 10.45 4.59 6.06 5.82 905 85% 
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Fig. 2. Error statistics for individual vertebrae: (left) forest prediction only, (right)
refinement via HMM. The counts of each vertebra in our database are given in brackets.

3.1 Results

We split the 200 CT scans into two non-overlapping sets with 100 scans each.
Each set is used once for both: i) forest training (50 trees, depth 20), and ii)
estimating the shape and appearance model; the remaining set is used for testing.
Thus we can report errors for all 200 scans and a total of 2595 vertebrae.

Localization Errors defined as distance (in mm) of each predicted vertebra
location from its expert annotation are summarized in Tab. 1 and Fig. 2. We
obtain a median error of less than 6mm. The highest errors are within the cervical
region with a median of about 7mm. This is due to the low number of cervical
vertebrae in our data sets (only 6-17 examples for C1 to C7). The lowest errors
are obtained for the lumbar region (including S1 and S2) where visual appearance
is more discriminative and low image resolution has less of an impact. In Fig. 2,
we plot the statistics over localization errors graphically. The figure highlights
the massive improvement due to the HMM refinement step. We also give the
counts for vertebrae as they appear in the set of 200 scans.

In Tab. 1 we also report distances of predictions from the closest vertebra.
So, we have an estimate whether our prediction is in fact located on a vertebra,
even if it is not the correct one. The difference between these errors and the ones
when considering the correct vertebra is higher for the cervical region, while in
the thoracic and lumbar region the difference between median errors is less than
0.6mm. This indicates that in most cases the closest centroid in T and L regions
is the correct one, while in C our predicted localizations are in fact on the spine,
but might be in some cases on the incorrect vertebra. This confirms that the
increased difficulty in discriminating close-by vertebrae in the cervical and upper
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Fig. 3. Our results (red) for varying CT scans (cropped, low resolution, noise, and
large field-of-view). Numbers are the mean errors w.r.t. expert annotations (yellow).

thoracic regions contributes to most of our errors. Still, even in these challenging
cases our system is able to robustly localize the overall spinal anatomy, which in
certain applications might be sufficient.

Identification Errors.We define a vertebra identification criterion as follows: if
the closest centroid in the expert annotation corresponds to the correct vertebra,
and the localization error is less than 20mm, we call the identification correct.
The last two columns in Tab. 1 show an overall success rate of 81%, i.e. 2089
out of 2595 vertebrae correctly identified.

Efficiency. In the proposed system training a single tree takes about 3 minutes
on randomly sampled 5% of the image points of 100 scans. Each tree can be
trained independently and in parallel. More importantly, testing is very fast.
In fact, testing a whole forest on a scan takes less than 1 second. The HMM-
based refinement takes about 5-15 seconds for each scale s, also depending on
the number of vertebrae within the image. Thus, in total, the localization and
identification of all vertebrae in one test image is achieved in less than 2 minutes.
Figure 3 provides some visual results and corresponding mean errors.

4 Conclusion

This paper has proposed an automatic and efficient approach for the localization
and identification of vertebrae in generic CT scans. The algorithm does not make
any assumptions on the input images and can deal with highly cropped scans and
partially visible spines. Exhaustive experiments on a database of 200 labelled CT
scans demonstrate the strength of our joint model of discriminative regression
and generative appearance and shape modeling.

In the future, increasing the amount of training data, in particular, for the
cervical region would produce an increase in accuracy across the entire spine.
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Additionally, automatically predicting the patient overall size could replace the
current scale search step and reduce testing times to only a few seconds. Further
investigation will also be carried out w.r.t. highly pathological cases of spine
such as high-grade scoliosis and cifosis.
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Abstract. With improvements in acquisition speed and quality, the
amount of medical image data to be screened by clinicians is starting
to become challenging in the daily clinical practice. To quickly visual-
ize and find abnormalities in medical images, we propose a new method
combining segmentation algorithms with statistical shape models. A sta-
tistical shape model built from a healthy population will have a close fit
in healthy regions. The model will however not fit to morphological ab-
normalities often present in the areas of pathologies. Using the residual
fitting error of the statistical shape model, pathologies can be visual-
ized very quickly. This idea is applied to finding drusen in the retinal
pigment epithelium (RPE) of optical coherence tomography (OCT) vol-
umes. A segmentation technique able to accurately segment drusen in
patients with age-related macular degeneration (AMD) is applied. The
segmentation is then analyzed with a statistical shape model to visualize
potentially pathological areas. An extensive evaluation is performed to
validate the segmentation algorithm, as well as the quality and sensitiv-
ity of the hinting system. Most of the drusen with a height of 85.5μm
were detected, and all drusen at least 93.6μm high were detected.

Keywords: pathology hinting, statistical shape model, multi-surface
segmentation, optical coherence tomography.

1 Introduction

With the recent advances in OCT, the quality and acquisition speed has in-
creased dramatically. This has revolutionized ophthalmology, as it allows the
fast and non-invasive imaging of various structures of the human eye. Today,
the imaging of the retinal layers with OCT is standard clinical practice. As with
other image modalities in medicine, the faster acquisition speed and increased
image resolution also increases the amount of work to be done by the clinician
to screen the datasets and state a diagnosis. The current clinical practice of ana-
lyzing an OCT volume is visual inspection of each individual B-scan. As such an
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inspection takes minutes instead of seconds, in practice clinicians only quickly
scroll through the B-scans and abnormalities are often missed. This calls for new
analysis and visualization tools.

Segmentation of OCT datasets has become an important tool to quantitatively
analyze retinal layers. Recent advances in segmentation techniques [1], [2] make
it possible to segment the drusen of AMD patients with high accuracy.

The main contribution of this work is the use of a statistical model as a tool
to quickly visualize possibly pathological regions in a dataset. For this we built
a statistical shape model [3] from segmentations of fovea-centered OCT datasets
of healthy patients. To analyze a new patient’s OCT volume, the dataset is first
segmented and the statistical shape model is then fitted to that segmentation.
The error of the fitting is then visualized as a top down rendering (en-face map).

Key Contributions: We propose the combination of a graph-based segmenta-
tion algorithm with a statistical shape model to build a quick pathology hinting
system. Our key contributions are twofold:

– A graph-based method for highly accurate drusen segmentation
– A hinting system able to quickly visualize morphological abnormalities.

2 Methods

2.1 Segmentation

The segmentation is based on the optimal net surface problems introduced by
Wu et al. [4] and extended to multiple surfaces by Li et al. [5]. Garvin et al. [1]
applied this algorithm to the segmentation of retinal layers in OCT volumes.
Additional soft constraints, proposed by Song et al. [2], were applied. These
constraints allow us to add costs for the rigidity of a surface and costs for the
distance between two surfaces. Prior information can therefore be better incor-
porated into the graph, resulting in an improved segmentation [2].

Furthermore, the soft constraints also enable more possibilities when seg-
menting pathologies such as drusen. Drusen are an accumulation of extracellular
material in the Bruch’s membrane (BM) of the retina [6]. The result is a dis-
placement of the cell layers above it. In the OCT, this is most visible in the
displacement of the inner and outer photoreceptor segments (IS/OS). However,
the boundary between the choroid and the Bruch’s membrane is left mostly in-
tact. This makes it easy to segment the lower BM boundary with this method.
See Fig.1(b) for an example of large drusen in an OCT. By adding a strong soft
constraint on the rigidity of the surface of the lower BM boundary, it is possible
to get a smooth and accurate segmentation.

The next step is the segmentation of the upper IS/OS boundary. Because the
displacement from the drusen can be quite large, only a weak soft constraint
on the rigidity is added. Additionally, a medium soft constraint on the expected
distance to the lower BM boundary is added. This favors a segmentation that
is close to the expected IS/OS position of a healthy RPE, but still allows the
segmentation of the displaced IS/OS when a druse is present. Fig.1 shows two
examples of the applied segmentation.
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(a) (b)

Fig. 1. Segmented OCT B-scans: (a) Healthy retina around the fovea, (b) AMD patient
with drusen

2.2 Statistical Shape Model

Statistical shape models can capture the natural shape variation from training
shapes [3]. The idea is to allow the statistical shape model to generate the whole
range of healthy shapes, without being able to generate pathological shapes. By
fitting the statistical shape model to a new segmentation, we will then be able
to detect if and where the new segmentation cannot be accurately represented
by this model.

Model Building. To build a statistical shape model, the training shapes first
have to be brought into a common coordinate frame. Because we do not use 3D
positions to build the model, but only the differences between the segmented
layers, the rotation of the shapes can be omitted and a translation is enough to
align all training shapes. The fovea was used as an anchor, which was detected
by finding the lowest point on the segmentation of the inner limiting membrane
(ILM). All shapes were translated so the fovea is at the coordinate origin (0, 0).
Each position (i · dx, j · dy) relative to the fovea becomes a landmark position,
where i and j are integers with predefined boundaries and dx and dy are the
sampling spacing in x- and y-direction. This simplifies the landmarking process,
as the landmark positions form a simple grid around the fovea and no anatomical
landmarks are required. The statistical shape model was then built by computing
the mean shape and covariance matrix, and principal component analysis (PCA)
was applied for dimensionality reduction [3]. Automatic segmentations of 28
OCT volumes were used as training shapes. Fig.2 illustrates all steps required
to build the statistical shape model.

Model Fitting. Given a new segmentation of a new OCT volume, the statistical
shape model can be deformed so that it minimizes the distance to the shape
vector of that new segmentation. See [3] for an iterative approach to deform the
statistical shape model to a new shape vector.

During the fitting, the deformation of the model is limited so it is able to only
represent about 99% of the variation encountered in the training datasets. This
ensures that the generated shape is similar to the shapes seen in the training
datasets and cannot deform to an extreme shape. See Fig.3 for the necessary
steps to fit the model to a new segmentation.
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Fig. 2. Complete statistical shape model building procedure including leave-one-out
test for the natural error estimate computation

2.3 Pathology Hinting

For every landmark, the residual absolute fitting error between the deformed
model and the new segmentation serves as a measure of pathology at that posi-
tion. The hinting can be further improved by normalizing that error.

When building the statistical shape model, we perform a leave-one-out test to
estimate the natural residual errors. For every landmark position, the distribu-
tion of the mean unsigned error εμ and its variance ε2σ is computed. Assuming
a normal distribution of that error, we now know that 68% of the errors in the
training set are within the interval εμ ± εσ, 95% are within εμ ± 2εσ, and so on.

Let’s say we now fit the model to a new segmentation and encounter a residual
fitting error ε at a specific landmark, for example ε = εμ+3εσ. We know that at
that landmark, only 0.27% of the measured errors in a healthy dataset are at least
this large and that therefore the landmark is highly abnormal. We formulate the
measure of abnormality ψ at a specific landmark position as the actual residual
fitting error normalized to the natural residual fitting error:

ψ2 =
(ε− εμ)

2

ε2σ
(1)

Intuitively, ψ measures in what interval εμ ± ψ · εσ the error is. The role of this
error normalization is also illustrated in Fig.3.
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Fig. 3. Statistical shape model fitting: The statistical shape model (grey) is deformed
to fit to the surfaces of a new segmentation (red) and the residual error is normalized
to build the hinting en-face map for each surface

(a) (b) (c)

μ+3σ

μ+2σ

μ+1σ

μ

(d)

Fig. 4. Thickness hinting en-face maps of the RPE thickness: (a) AMD patient with
large drusen, (b) small drusen, (c) healthy RPE, (d) used color transfer function

To present the computed measurements to the diagnostician, an en-face map
is built for each layer thickness. Every landmark becomes a pixel in this en-face
image. A color transfer function is used to map the values from (1) to a color
value. Fig.4 shows en-face maps for two dataset with drusen and a healthy one.
The error can of course also be projected back into the OCT volume. Fig.5
shows an example B-scans containing drusen where the cell layers between the
segmentation surfaces are colored by the hinting system. The drusen are clearly
made visible by the hinting. Note also the abnormally thin cell layer above the
drusen to the right of the fovea.

We also implemented a statistical shape model using the full 3D positions of
the segmented surfaces. This model is less accurate in detecting small thickness
abnormalities, but can reliably visualize abnormalities in the actual shape of the
segmented surfaces. Fig.6 shows an example of a patient with an abnormally
shaped retina.
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Fig. 5. B-scan with the residual fitting error projected back into the OCT volume

(a) (b)

Fig. 6. (a) Shape deformation analysis of the ILM of a patient with a degenerated outer
nuclear layer (lower arrow), leading to an abnormally shaped ILM (upper arrow), visible
in the corresponding hinting en-face map in (b)

3 Experiments and Results

3.1 Segmentation Evaluation

The accuracy of the hinting system depends greatly on the accuracy of the
segmentation and a thorough evaluation was therefore performed. The segmen-
tation algorithm needs to be able to segment healthy datasets as well as datasets
with drusen. We therefore evaluated the algorithm on both healthy and AMD
datasets. 20 OCT volumes, each having five randomly chosen B-scans manually
segmented by two experts, were used in the evaluation. The average manual
segmentation from both observers was compared to the result of the automatic
segmentation algorithm. As we evaluated the hinting system on drusen, the
evaluation of the segmentation focused on the two layers relevant for drusen
segmentation: the lower BM and upper IS/OS boundaries.

The upper IS/OS boundary was segmented with a mean unsigned error of
1.69 ± 1.61μm. The lower BM boundary was segmented with a mean unsigned
error of 2.75± 2.49μm.

To evaluate the accuracy of the segmentation on actual drusen, 20 datasets
containing drusen were used. In every dataset, the lower BM and upper IS/OS
boundary of every druse up to a height of 141μm was segmented manually. The
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healthy parts of the RPE were not segmented and not used in the evaluation.
This allowed us to evaluate the accuracy of the algorithm only on the positions
where drusen were present. For the upper IS/OS boundary, the mean unsigned
error over all drusen was 5.66± 10.00μm. The mean unsigned error of the lower
BM boundary was 4.67± 7.42μm over all drusen.

While the error for drusen is larger than the error for healthy tissue, it is
still relatively small considering the axial pixel resolution of 3.9μm. The result
is also comparable to the results by Garvin et al. [1], who reported an unsigned
mean error of 3.30± 1.60μm for the upper IS/OS boundary on healthy datasets.
Furthermore, the larger segmentation errors were observed for large drusen that
did not have a clear gradient. However, in this case, a larger error is not a problem
as the segmentation is still very much outside the range of segmentations of
healthy eyes and the drusen are clearly visible in the hinting system.

3.2 Hinting Evaluation

To evaluate the statistical shape model, a leave-one-out test was performed. The
mean unsigned error over all landmark points over all datasets was 5.71±7.86μm.

To evaluate the actual hinting, we implemented a screening system where
experts had to decide purely from the en-face map of the RPE thickness if a
dataset contained drusen. 20 datasets with drusen were mixed with 20 datasets
of healthy eyes. The datasets were presented in random order to each experts and
they had to decide for each one whether it contained drusen. One dataset with
only a few small drusen was missed by one of the two experts, all other datasets
containing drusen were correctly identified by both experts. The combined false
positive ratio of the two expert was 10% (4 out of 40). As most datasets contained
very large drusen, this test was very easy for the experts. Nevertheless, it shows
that the hinting system works well on real data.

As we wanted to know how sensitive the hinting system is, we implemented
an evaluation procedure with artificially created small drusen. 50 datasets of
50 healthy subjects were used. When a dataset was presented to the expert, a
single druse was created with a probability of 50%. The position of the druse was
randomly chosen, as was the height displacement, ranging from just one pixel to
15 pixels in the OCT volume. With an axial resolution of 3.9μm, the resulting
height displacement was in the range of 3.9 to 58.5μm. Table1 shows the results
of the evaluation. Most drusen with a height of 85.5μm were already detected,
and all drusen with a height of at least 93.6μm were detected. The experts
spent an average duration of only 7.3± 4.8 seconds looking at the en-face map
before making a decision. This included loading the segmentation, fitting of the
statistical shape model and visualization. As expected, experts had difficulties
identifying the smaller drusen, as they often were not sure if a slightly abnormal
looking area was healthy and had to guess. In a real clinical setting, the OCT
would of course be made visible as well. A click at an abnormal looking area in
the hinting map could for example open the OCT volume at that position for
the diagnostician to check.
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Table 1. Combined results of the two experts identifying drusen from only the hinting
en-face map. The column ‘AMD’ is the result of the test with patients with drusen.

Druse height (μm) no
druse

70.2 74.1 78.0 81.9 85.5 89.70 93.6-
136.5

AMD

Identified as drusen 23 0 3 2 3 8 7 49 39
Identified as healthy 129 5 1 4 3 2 1 0 1

Correctly identified (%) 84.9 0 75 33.3 50 80 87.5 100 97.5

4 Conclusion

In this work a new method to quickly detect morphological abnormalities in
medical images is proposed. By combining automatic segmentation with a sta-
tistical shape model, we were able to visualize and detect most drusen in OCT
volumes. With an average time of only 7.3± 4.8 seconds spent on each dataset,
experts were able to very quickly screen the datasets. The proposed method is
completely complementary to the current clinical practice of visual inspection
of each individual B-scan of the OCT volume. The accuracy and speed make
this method a valuable tool for both large-scale screening systems and the daily
clinical practice. Furthermore, it can be applied in virtually any field where au-
tomatic segmentation and statistical modeling of anatomy is possible. We are
currently working on extending the method to include the analysis of texture
information by using a statistical model of appearance.
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Abstract. Analyzing geometry of sulcal curves on the human cortical
surface requires a shape representation invariant to Euclidean motion.
We present a novel shape representation that characterizes the shape of
a curve in terms of a coordinate system based on the eigensystem of the
anisotropic Helmholtz equation. This representation has many desirable
properties: stability, uniqueness and invariance to scaling and isometric
transformation. Under this representation, we can find a point-wise shape
distance between curves as well as a bijective smooth point-to-point cor-
respondence. When the curves are sampled irregularly, we also present
a fast and accurate computational method for solving the eigensystem
using a finite element formulation. This shape representation is used
to find symmetries between corresponding sulcal shapes between corti-
cal hemispheres. For this purpose, we automatically generate 26 sulcal
curves for 24 subject brains and then compute their invariant shape rep-
resentation. Left-right sulcal shape symmetry as measured by the shape
representation’s metric demonstrates the utility of the presented invari-
ant representation for shape analysis of the cortical folding pattern.

1 Introduction

The human cerebral cortex is a highly convoluted sheet with rich and detailed
folding patterns. Sulci are fissures in the cortical surface which are used fre-
quently as anatomical landmarks. The geometry of these cortical landmarks is
used for registration as well as the study of disease progression [10], aging [12]
and brain asymmetry [1]. However, these approaches do not use the shapes of
sulci but instead features such as length, depth and 3D location.

Quantification, matching, and classification of the shape of curves is a chal-
lenging problem with a long history. Spectral graphs [3] use graph theory to
attempt to match two curves. In addition, geometric features such as areas of
enclosed regions [21] have been used for curve representation. Recent methods
use the distributions of distances from all points on a curve to a reference point;
the most popular is the shape context [9].
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PDE based models such as elastic matching [19] LDDMM [5], conformal repre-
sentation [16], bimorphisms [20] use locally smooth deformation models for curve
registration. In general, these methods find transform parameters and then cal-
culate a distance on the final fit [2]. However, it is unclear whether they capture
both the local and the global features of a curve.

In order to address these issues in the context of sulcal pattern analysis, we
present a novel model for shape analysis of 1D curves based on an extension
of the Global Point Signature (GPS) [13,14]. The GPS representation for 2D
surfaces uses the eigensystem of the Laplace-Beltrami operator. We first review
our method for labeling the cortical surface automatically and for generating
sulci on a population of cortical surfaces. We next present a novel invariant 1D
curve representation based on the extension of GPS to 1D curves. For consis-
tency of terminology with the shape analysis literature, we refer to our novel
representation as the GPS representation of curves. 1D curves are represented
using the eigensystem of an anisotropic Helmholtz equation where curvature is
used as the anisotropy term. This representation also defines a metric in the em-
bedded space of the representation - admitting a local measure of shape distance
for curve matching. Finally, we present the results of applying our methodology
towards analysis of sulcal shape symmetry between left and right brain hemi-
spheres.

2 Sulci Generation

We briefly review our method for automatic generation of sulci on a subject’s
cortical surface, described in more detail in [7]. We assume as input a triangu-
lated mesh approximating the cortical surface. We use BrainSuite [17] to extract
the cortical surface meshes from T1-weighted MRI volumes for an atlas and for
the subject. We then identify sulcal landmarks on the cortex automatically. We
compute a one-to-one correspondence between the atlas surface and the subject
surface in two stages: (i) the surface of each cortical hemisphere is parameter-
ized to a unit square, and (ii) a vector field is found within this parameterization
that aligns curvature of the atlas surface to curvature of the subject surface. We
parameterize the cortical surfaces by modeling them as an elastic sheet and then
solving the associated linear elastic equilibrium equation using finite elements.
We constrain the corpus callosum to lie uniformly on the boundary of the unit
square. The elastic energy minimization yields flat maps of each cortical hemi-
sphere to a plane (Fig. 1). Multiresolution representations of curvature for the
subject and atlas are calculated and then aligned by minimizing a cost function
with elastic energy as a regularizer. This step reparameterizes the cortical hemi-
sphere surfaces, establishing a one-to-one point correspondence between subject
and atlas surfaces.

For this study we registered N = 24 T1-weighted MRI volumes. For the
atlas, a set of 26 sulcal curves per hemisphere were traced interactively in Brain-
Suite [17] using the protocol described in [11]. Using the point correspondence
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established above, these sulci are transferred to the subject surface. The loca-
tions of the estimates are subsequently refined using geodesic curvature flow on
the cortical surface as described in [7]. The refinement uses a level set based
formulation of flow on non-flat surfaces with the sulci as the zero level sets. The
resulting PDE is discretized on a triangulated mesh using finite elements. After
this refinement, we have 26 sulci on each of N = 24 cortical surfaces. We note
that other methods for sulcal set generation [18] can also be used.

Fig. 1. (a) Automatic atlas to subject registration and parameterization of cortical
surfaces and sulcal curves; and (b) geodesic curvature flow refinement of sulcal curves

3 Shape Representation Using GPS Representation

In this section we introduce a coordinate system to represent a 1D curve. Spec-
tral theory provides the basis to study the eigenspectrum of the sulcal curves.
Motivated by spectral theory and corresponding work on 2D surfaces [14,13], we
model the 1D curves as inhomogeneous vibrating strings. Their harmonic be-
havior is governed by the 1D Helmholtz equation. To characterize the shape of
the curve C, we use its curvature κ(s) to introduce anisotropy into the governing
equation: {

∂
∂s κ(s) ∂

∂sΦi(s) = λiΦi(s)
Φi(s)|∂C = 0

, ∀s ∈ C (1)

where ∂C is the set of the endpoints of the curve C. Denote the eigenfunctions
of this equation by Φi with eigenvalues λi ordered by magnitude. We define the
embedding manifold in the spectral domain by the map:

GP S(p) =
(

1√
λ1

Φ1(p), 1√
λ2

Φ2(p), 1√
λ3

Φ3(p), . . .
)

.

Each point of the curve is embedded into an infinite dimensional space. We
cannot use the 1D Laplacian directly for this purpose because 1D shapes always
have a trivial intrinsic geometry. However, due to the fundamental theorem of
curves (two unit-speed plane curves that have the same curvature and torsion
differ only by a rigid transformation), curvature and torsion define the curve
uniquely up to a rigid transformation. Furthermore, the curve can be recovered
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Fig. 2. (a) Inferior frontal sulcus highlighted in red; (b) first four color coded GPS
coordinates; (c) GPS representation of a sulcus plotted from end to end

from the embedding by first recovering the curvature and torsion, and then using
the Frenet-Serre formulas [4]. For curves in 3D space, this requires curvature
and torsion. The embedding defined above is based on curvature alone because
the sulcal curves analyzed in this paper had negligible torsion. The following
properties also apply to this representation:

1. GPS coordinates are isometry invariant as they depend only on derivatives
and curvature, which are ony dependent on shape.

2. Scaling a 1D curve manifold equally scales curvature. Therefore, normalizing
the eigenvalue produces scale invariance (as well as position invariance, as
mentioned earlier).

3. Shape changes result in continuous changes in a curve’s spectrum. Conse-
quently the representation presented here is robust.

4. In the embedding space, the inner product is given by the Green’s function
due to the identity: G(x1, x2) =

∑
i

Φi(x1)Φi(x2)
λi

. Thus the GPS representa-
tion encodes local and global shape information. Additionally, the metric is
Euclidean.

An example of this representation for a sulcal curve is shown in Fig. 2.

4 Discretization Using Finite Element Method

Sulcal curves are often sampled non-uniformly, so we use a finite element method
to discretize the eigenvalue problem in Eq. 1. Let Φ(s) =

∑
i φiei(s) be an

eigenfunction and η(s) =
∑

i ηiei(s) be a ‘test function’ represented as weighted
sums of linear elements. The eigenvalue problem from Eq. 1 is:(

∂

∂s
κ(s) ∂

∂s

)
Φ = λΦ

=⇒
ˆ (

∂

∂s
κ(s) ∂

∂s
Φ(s)

)
η(s)ds = λ

ˆ
Φ(s)η(s)ds

=⇒
ˆ

κ(s) ∂

∂s
Φ(s) ∂

∂s
η(s)ds = λ

ˆ
Φ(s)η(s)ds
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where the latter follows using integration by parts. Substituting the finite element
model we get:

∑
i

∑
j

φiηjκij

ˆ
∂

∂s
ei(s) ∂

∂s
ej(s)ds = λ

∑
i

∑
j

φiηj

ˆ
ei(s)ej(s)ds

κSφ = λMφ (2)

where κij represents (κi + κj)/2: the average of curvatures calculated at points
i and j.

For the 1D case with linear elements, the element-wise mass matrix is given by

Mel =
[

(κijdij)/3 (κijdij)/6
(κijdij)/6 (κijdij)/3

]
for element el corresponding to the edge between

nodes i and j. Similarly, the element-wise stiffness matrix is given by Sel =[
1/dij −1/dij

−1/dij 1/dij

]
using linear finite elements [15].

The matrix equation in Eq. 2 is a generalized sparse eigenvalue problem that
can be solved using standard methods, such as the QZ method that is a part of
the Matlab function eigs. The point-wise curvature of the curve κi is computed
using the Frenet frame [4].

5 Shape Matching

In brain image analysis, a matching technique is required to analyze sulcal vari-
ation across a population. In this section, we describe a method for finding such
a matching using GPS coordinates. Later, we match left vs right hemispherical
sulci to investigate asymmetry between hemispheres.

Let GP S1 and GP S2 denote the GPS coordinates for the two sulcal sets. Our
goal is to find a reparameterization function ψ such that the matching energy
E(ψ) is minimized.

E(ψ) =
ˆ

||(GP S1(s) − GP S2(s + ψ(s))||2ds (3)

where ψ is represented in terms of b-spline basis functions [15]. Minimization of
the cost function results in a 1-1 point correspondence between the two curves
(Fig 3). Once the optimal ψ is found, the local shape difference at point s is
given by ||(GP S1(s) − GP S2(s + ψ(s))||.

For the purpose of mapping symmetry, we compute (a) the point-wise GPS
distance between corresponding sulci from one hemisphere to the other, for all
subjects; (b) the point-wise GPS distance between corresponding sulci for the
same hemisphere in two different subjects. We define a measure of symmetry
Symm = −log(mean(a)

mean(b) ). The measure Symm ranges from 0 to ∞. We then use
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Fig. 3. Three representative sulci from left and right hemispheres and the point cor-
respondence between them

a non-parametric Mann–Whitney–Wilcoxon test between statistics (a) and (b)
at α = 0.05, correcting for multiple comparisons, with the false discovery rate
(FDR).

6 Results

We performed symmetry detection on data from 24 subjects, divided into two
cohorts of 12 subjects [11]. The first cohort was scanned at the Dornsife Cogni-
tive Neuroscience Imaging Center using a 3T Siemens MAGNETOM Trio scan-
ner. The second cohort was scanned at the University of Iowa using thin-cut
MR coronal images obtained in a General Electric Signa Scanner operating at
1.5 Tesla. We applied the BrainSuite surface extraction sequence followed by
sulcal set generation as outlined in Sec. 2. This produced 24x2 cortical sur-
face hemisphere representations with 26 sulci each. The sulci were denoised
by fitting a 12th order polynomial with the degree of the polynomial was se-
lected using L-curve analysis and selecting the maximum degree necessary for
all curves. Next, the GPS coordinate representation was formed as described in
Sec. 3 and Sec. 4. The symmetry between the sulci was then estimated using
the method in Sec 5. The results of the symmetry mapping are shown in Fig.
4. It is interesting to note that the post- and pre-central sulci, together with
the posterior segment of the superior temporal, the transverse temporal, the
middle temporal and the inferior occipital sulci in the dorso-lateral view, show
the maximal amount of left/right asymmetry; on the mesial view the collat-
eral, the supraorbital, the occipito-parietal and long stretches of the cingulate
sulci are also extremely asymmetric. It is not surprising to see the cingulate
sulcus (visible in the depth of the mesial view) show a great extent of relative
symmetry. Reports of brain asymmetry usually focus on the Sylvian fissure
but our data suggest that other asymmetries may be worth investigating to
determine if they are indeed comparable to the well confirmed Sylvian fissure
asymmetry.

It would be interesting to apply other shape representation approaches for the
problem of finding sulcal shape symmetry. In this work, we tried a simple affine
curve matching approach [6] that finds an optimal affine transform to minimize
distance between curves but but we did not find significant asymmetries with
this affine approach.
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Fig. 4. Shape symmetry measure of the sulci plotted on a smooth representation of an
individual cortical surface. The black regions on the curves indicate that a significant
symmetry was not found for those points.

7 Discussion and Conclusion

We have presented a novel invariant shape representation using the eigensystem
of the anisotropic Helmholtz equation. This representation also has an interesting
physical interpretation in terms of vibrating strings. Because our representation
depends only on shape and not on the Euclidean embedding of the shape, it is
invariant to Euclidean transformations. As opposed to surface-based measures
[8,5] in which sulcal shape differences are confounded by the shape of the cortical
sheet surrounding the sulcal fold, we model sulci as curves as opposed to folds
on surfaces. The invariant representation therefore provides information that is
complementary to surface-based shape analysis. The properties listed Sec 3 make
the presented GPS representation for curves an attractive alternative over the
existing methods [20,16,9,19], although a thorough comparison is still required.

One potential drawback of our method is that errors in automatically gener-
ated sulci can lead to inaccurate input when generating the GPS representation.
We are in the process of validating the sulcal generation method in a more exten-
sive manner on a larger data-set; initial validation is promising. It is important
to note that, if required, the BrainSuite software allows for semi-automatic in-
teractive corrections of the sulci to reduce inaccuracies.

This model has a variety of potential applications in computer vision as well
as brain image analysis. Many of the existing methods for brain morphometry
focus on point-wise features such as 3D location, curvature, thickness, deforma-
tion, and image intensity. Conversely, the framework we have presented directly
captures the geometric shape of the folding pattern. As a result, we can study the
cortical folding pattern quantitatively for a variety of neuro-developmental con-
ditions (e.g. autism) and other neurological conditions characterized by changes
in sulcal patterns.
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Abstract. The restoration of microscopy images makes the segmenta-
tion and detection of cells easier and more reliable, which facilitates
automated cell tracking and cell behavior analysis. In this paper, the
authors analyze the image formation process of phase contrast images
and propose an image restoration method based on the dictionary rep-
resentation of diffraction patterns. By formulating and solving a min-�1
optimization problem, each pixel is restored into a feature vector corre-
sponding to the dictionary representation. Cells in the images are then
segmented by the feature vector clustering. In addition to segmentation,
since the feature vectors capture the information on the phase retarda-
tion caused by cells, they can be used for cell stage classification between
intermitotic and mitotic/apoptotic stages. Experiments on three image
sequences demonstrate that the dictionary-based restoration method can
restore phase contrast images containing cells with different optical na-
tures and provide promising results on cell stage classification.

1 Introduction

Computer-aided image analysis of phase contrast microscopy [1] has attracted
increasing attention since it enables long-term monitoring of the proliferation
and migration processes of live cells. Among the tasks of microscopy cell image
analysis, cell detection and segmentation is one of the most fundamental com-
ponents in that various analyses can be performed based on it. Cell detection
and segmentation in phase contrast microscopy is challenged by clustered cells,
cell shape deformation, and image artifacts such as bright halos and shade-off.

The common techniques employed for cell segmentation include threshold-
ing [2], edge detection, and morphological operations [3]. These methods often
fail when the contrast between cells and background is low. Another group of
segmentation algorithms that are based on intensity gradient of images, namely,
watershed [4], active contours [5], and level set [6], are sensitive to the initializa-
tions and local noisy gradients. To address these drawbacks, a restoration-based
segmentation was recently proposed [7]. The method models the image forma-
tion process of phase contrast microscope to restore phase retardation caused by
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cells, based on which cells are detected. However, this method fails to segment
cells when they are bright in phase contrast microscopy images, e.g., mitotic or
apoptotic cells, because the model assumes that the phase retardation caused by
cells is small, which is not valid when cells become thick and thus appear bright
in phase contrast microscopy.

In this paper, we revisit the phase contrast imaging model in [7], and propose a
novel restoration algorithm based on dictionary representation of diffraction pat-
terns, which can restore phase contrast images with various phase retardations.
The proposed dictionary-based method restores a feature vector corresponding
to diffraction patterns for each pixel. After the image restoration, high quality
segmentation is achieved by clustering the feature vectors. Furthermore, since
the restored feature vectors embed phase retardation information, cells can be
classified between different stages, particularly between intermitosis and mito-
sis/apoptosis(dead).

2 Methodology

2.1 The Image Formation of Phase Contrast Microscope

The phase contrast microscope converts the phase difference in light passing
through the transparent specimen to brightness changes in the image [1]. The
wavefront of the illuminating beam is divided into two components after passing
through the specimen. The primary component is the surround wave (S wave)
that passes through or around the specimen without interacting with it. The
other component is the diffracted wave (D wave) that is scattered by the spec-
imen. These two waves undergo interference and produce a resultant particle
wave (P wave). The cells can be observed only when the amplitudes of P wave
and S wave are significantly different.

In [7], the surround wave lS and the diffracted wave lD are derived as:

lS = iζpAe
iβ , and lD = ζcAe

i(β+θ(x)) + (iζp − 1)ζcAe
i(β+θ(x)) · airy(r), (1)

where A and β are the amplitude and phase of the incident light, respectively;
ζc and ζp are the amplitude attenuation factors caused by cells and phase ring,
respectively; θ(x) is the phase retardation caused by the specimen at location x;
and airy(r) is an obscured Airy pattern (diffraction pattern with a bright region
in the center surrounded by a series of concentric dark and bright rings [7]). The
particle wave lP is calculated as lP = lS + lD.

During the imaging model derivation in [7], the exponential terms in equa-
tion (1) are approximated using eiθ(x) ≈ 1+ iθ(x). Note that this approximation
is valid only when the phase retardation θ(x) is close to zero. The assumption is
apparently not applicable to general cases since θ(x), which is a function of the
refractive indices and the thickness of cells, often vary along with different cell
types and stages; more formally, the phase retardation θ can be calculated as:

θ =
2π

λ
(n1 − n2)t, (2)
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where λ denotes the wavelength of the incident light; t is the thickness of the cell;
and n1 and n2 denote the refractive indices of the cell and medium, respectively.

2.2 Dictionary Representation of Diffraction Patterns

In this paper, we propose a generalized imaging model by approximating the
term eiθ(x) in Eq. (1) using a linear combination of {eiθm}:

eiθ(x) ≈
M−1∑
m=0

ψm(x)eiθm , s.t.

M−1∑
m=0

ψm(x) = 1 and ψm(x) � 0. (3)

where {θm} = {0, 2πM , · · · , 2mπ
M , · · · , 2(M−1)π

M }. We impose the nonnegative con-
straint because the solution would not be unique without it as ψm(x)eiθm =
−ψm(x)ei(θm+π). Moreover, the nonnegative constraint removes the absolute op-
erator of �1 norm, allowing the problem to be solved in a standard manner.

The intensity of the observed image g is calculated as:

g = ‖lp‖2 = (lS + lD) · (lS + lD)∗

= A2

{
ζp

2 + ζc
2 − 2ζ2c · airy(r) + (ζ2p + 1)ζ2c · (airy(r))2+

ζ2pζc(e
−iθ(x) + eiθ(x)) · airy(r) + iζpζc(e

−iθ(x) − eiθ(x))

}
. (4)

Substituting the exponential terms in Eq. (4) with Eq. (3) yields a linear repre-
sentation of the observed image:

g = A2

⎧⎨⎩
ζp

2 + ζc
2 − 2ζ2c · airy(r) + (ζ2p + 1)ζ2c · (airy(r))2+

M−1∑
m=0

ψm(x)
(
(2ζpζc sin θm · δ(r) + 2ζ2pζc cos θm · airy(r)

)⎫⎬⎭ .

= C +D

M−1∑
m=0

ψm(x)
(
sin θm · δ(r) + ζp cos θm · airy(r)

)
(5)

where δ(·) is a Dirac delta function, C is a constant that indicates the items
unrelated to the feature vector ψm(x), and D is also a constant. C can be
eliminated by flat-field correction [1,7] and thus we ignore it for simplicity. Hence,

g ∝
M−1∑
m=0

ψm(x)
(
sin θm · δ(r) + ζp cos θm · airy(r)

)
�

M−1∑
m=0

ψm(x)PSF (θm), (6)

where PSF denotes the point spread function; i.e., PSF (θm) represents the
diffraction pattern with phase retardation θm. In our experiments, ζp was set
between 0.4 and 0.5 based on the information of microscope we used.
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We discretize PSF (θm) into a (2T +1) × (2T +1) kernel, (u, v) element of
which is denoted by P̂ SF (θm, u, v). Then, from Eq. (6), the imaging model of
(i, j) pixel of g is also discretized as:

g(i, j) =
M−1∑
m=0

2T+1∑
u=1

2T+1∑
v=1

ψm(i+u−T−1, j+v−T−1)P̂ SF(θm, u, v). (7)

We define Ψm as the vectorized representation of the matrix {ψm(i, j)} and
hm(i, j) as the vector obtained by vectorizing the sparse matrix whose (i−T :

i+T, j−T :j+T ) submatrix is {P̂ SF (θm, u, v)} and the other elements are zero.
Then, Eq. (7) is simplified into:

g(i, j) =

M−1∑
m=0

hm(i, j)TΨm, (8)

and thus the vectorized form of the phase contrast microscopy image {g(i, j)}
can be modeled as:

g =

M−1∑
m=0

HmΨm, s.t. Ψm � 0 (9)

where Hm is the matrix obtained by stacking up row vectors {hm(i, j)T } in
order. Note that when g consists of P pixels in total, Hm is a P × P matrix,
each row of which contains only (2T+1)×(2T+1) non-zero elements.

2.3 The Restoration of the Phase Contrast Images

Based on the theory of sparse representation [8], we formulate the following
optimization problem to restore the feature vector from Eq. (9):

min

N−1∑
k=0

{‖Ψmk
‖1 + wsΨ

T
mk

LΨmk
} s.t.

⎧⎨⎩‖g −
N−1∑
k=0

Hmk
Ψmk

‖2 < ε

Ψmk
� 0

(10)

where L is a Laplacian matrix defining the similarity between spatial pixel neigh-
bors [7]; ws is the weight determining the spatial smoothness, which was set
between 0.2 to 0.4 in our experiments; and, N is the number of representative
retardations, the optimal value of which can vary with the cell type and property.

We propose an iterative optimization algorithm to solve this min-�1 optimiza-
tion problem since it is known that there is no closed-form solution for such a
problem. We first search the best-matching N bases in the dictionary {Hm} with
the matching pursuit algorithm [8], and then utilize a non-negative multiplica-
tive updating method [9] to obtain the nonnegative feature vectors {Ψmk

}. The
procedure is described in Algorithm 1.

Solving Eq. (10) yields the best set of {Ψm1 , · · · , Ψmk
}, which means that each

pixel is restored as a feature vector. We apply K-means clustering on the feature
vectors to segment cells in images.
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Algorithm 1. Optimization Algorithm for the Image Restoration
Input g: vectorized image, {Hm} dictionary matrices,

N : number of representative retardations, th: threshold for residual evaluation.
Output {Ψmk}: feature representation vectors.
Initialization R0

g ← g; P ← size of g; R0
g ← initial residual error.

for k = 0 → N − 1 do
//Search for the best matching basis Hmk in dictionary {Hm}
for m = 0 → M − 1 do

Compute inner product: ρm(i) =
〈
Hm(:, i), Rk

g

〉
,∀i ∈ {0,· · ·, P−1}

if m is equal to zero then ρk ← ρm, Hmk ← Hm.
else if ‖ρm‖0 > ‖ρk‖0 then

ρk ← ρm, Hmk ← Hm.
end if

end for
//Calculate the feature vector Ψmk

g′(i) = 0, ∀i ∈ {0,· · ·, P−1} s.t. ρk(i) ≤ th.
g′(i) ← Rk

g(i), ∀i ∈ {0,· · ·, P−1} s.t. ρk(i) > th. //Assign the relevant elements
Formulate a subproblem from Eq. (10):

min‖Ψmk‖1 + wsΨmk

TLΨmk s.t. ‖g′ −HmkΨmk‖2 < ε and Ψmk � 0.
Obtain the feature vector Ψmk by solving this problem with the method [9]
Rk+1

g ← Rk
g −HmkΨmk //Update the residual error

end for

3 Experiments and Discussions

Data. The proposed approach was tested on three different sets of phase contrast
images of 1040× 1392 pixels. The specifications of the datasets are summarized
in Table 1.

Table 1. Specifications of the Datasets

Frame
number Cell type Cell number

per image Cell stages

Seq1 500 bovine aortic endothelial cell 500 to 800+ intermitosis/mitosis
Seq2 600 muscle stem of a progeroid 50 to 300+ intermitosis/mitosis
Seq3 500 C2C12 myoblastic stem cell 300+ intermitosis/apoptosis(dead)

Parameters. Our algorithms involve three parameters: the dictionary size M ,
the number of representative phase retardations N , and number of classes for
clustering K. We determined these parameters by investigating 10 frames for
each sequence, which were uniformly sampled. For setting M , we plotted M
versus the average residual error in Eq. (3) and set M to be 15 where the
residual error levels off as shown in Fig. 1(a). We set N to be 3 for dark cells,
bright cells, and background. In addition to these three categories, we took into
account two more categories, the boundary between either dark cells or bright
cells and background, setting k to be 5, as shown in Figs. 1(b) and (c).
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(a) (b)

intermitosis mitosis
background

intermitosis 
boundary

mitosis 
boundary

intermitosis apoptosis
background

intermitosis 
boundary

apoptosis 
boundary

(c)

Fig. 1. (a) The average residual error decreases as M increases and it levels off
when M is around 15. (b,c) Three representative retardations for intermitosis, mi-
tosis/apoptosis(dead), and background; and five clustering classes for inner intermito-
sis, intermitosis boundary, inner mitosis/apoptosis, mitosis/apoptosis boundary, and
background.

2.2(a) 2.2(d)2.2(b) 2.2(c)

2.3(a) 2.3(d)2.3(c)2.3(b)

2.1(a) 2.1(d)2.1(b) 2.1(c)

Fig. 2. The sample results of cell segmentation. Top, middle, and bottom rows show
the results on Seq1, Seq2, and Seq3, respectively. (a) Original phase-contrast images,
(b-c) segmentation results of the proposed method, (d) segmentation results of the
previous method [7]. The intermitotic cells are marked with green color and the mi-
totic/apoptotic(dead) cells with red color. Yellow ellipses in Fig. 2.1(d) indicate missed
mitotic cells. Figs. 2.2(d) and 2.3(d) also demonstrate that the previous method fails
to detect most of mitotic/apoptotic(dead) cells.

Segmentation: Our dictionary-based approach achieved high quality segmen-
tations as can be seen in Fig. 2. The method well detected bright cells, which
undergo mitosis or apoptosis. On the other hand, the previous method [7] failed
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Table 2. Quantitative Results on Cell Segmentation

Seq.1 Seq.2 Seq.3
Proposed Previous Proposed Previous Proposed Previous

Average Precision 93.1% 87.8% 95.3% 34.8% 94.5% 31.4%
Average Recall 90.2% 85.8% 92.6% 15.7% 91.6% 34.7%
Average Fscore 0.9154 0.8676 0.9412 0.1749 0.9302 0.3212

Table 3. Quantitative Results on Cell Stage Classification

Seq.1 Seq.2 Seq.3
Precision Recall Precision Recall Precision Recall
71.3% 98.6% 78.3% 97.9% 67.8% 98.3%

to segment mitotic cells in Seq1 and Seq2 as well as apoptotic cells in Seq3,
as shown in column (d) of Fig. 2. This result clearly demonstrates that the
assumption of the previous method on the phase retardation being close to zero
is not valid for bright cells.

Classification: The proposed method is able to not only segment cells, but
also classify them among different stages. Fig. 2.1-2.(c) show zoom-in details on
the classification between intermitotic cells (green) and mitotic/apoptotic(dead)
cells (red). In Fig 2.3.(c), as cell death proceeds, more cells appear red on the
results.

Evaluation: In order to evaluate our method quantitatively, we manually la-
beled every 50th image in Seq1 (4125 annotated cells, 9.1×105 cell pixels), every
75th image in Seq2 (1459 annotated cells, 5.1×105 cells pixels), and every 100th
image in Seq3 (3915 annotated cells, 1.32 × 106 cell pixels). During the test,
we skipped the frames used for training. We measured performance in terms of
precision, recall, and F score.

Table 2 demonstrates our method significantly outperforms the previous
method [7]. The performance gap is more clear when data contains more mi-
totic or apoptotic(dead) cells. Our method adopts a combination of different
phase retardations to detect various stages of cells.

Table 3 summarizes the performance of our algorithm on cell stage classifica-
tion per frame. For this evaluation, we manually annotated 193 mitotic cells in
Seq1, 396 mitotic cells in Seq2, and 596 apoptotic(or dead) cells in Seq3. The pre-
cision is not as high as recall since bright halos are often detected as bright cells.
Mitosis and apoptosis are temporal events that occur over several frames; thus,
the method that does not utilize temporal information and performs classifica-
tion purely on per-frame features, like ours, obviously has limitation. However,
the high recall indicates that our results can be used to provide a way to extract
candidates for mitotic or apoptotic cells, for other methods that detect cellular
events in a sequence (not per frame) by exploiting temporal contexts, e.g., [10].
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4 Conclusion

In this paper, we propose a phase contrast image restoration method based on
the dictionary representation of diffraction patterns. The dictionary corresponds
to different phase retardations caused by specimens at different cell stages. We
formulate a min-�1 optimization problem to restore the images and propose an
iterative algorithm to solve it. Experiments validate that our proposed method
outperforms the previous method [7], particularly when cells undergo various
stages. High quality restoration can benefit automated cell tracking and cell
stage classification.
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Abstract. Histopathology image segmentation plays a very important
role in cancer diagnosis and therapeutic treatment. Existing supervised
approaches for image segmentation require a large amount of high qual-
ity manual delineations (on pixels), which is often hard to obtain. In
this paper, we propose a new algorithm along the line of weakly super-
vised learning; we introduce context constraints as a prior for multiple
instance learning (ccMIL), which significantly reduces the ambiguity in
weak supervision (a 20% gain); our method utilizes image-level labels to
learn an integrated model to perform histopathology cancer image seg-
mentation, clustering, and classification. Experimental results on colon
histopathology images demonstrate the great advantages of ccMIL.

1 Introduction

High resolution histopathology images provide critical information for cancer di-
agnosis and analysis [1]. Some clinical tasks for the histopathology image analysis
may include [2]: (1) diagnosing the presence of cancer (image classification); (2)
segmenting images into cancer and non-cancer cells (image segmentation); (3)
clustering the tissue cells into various sub-classes. In this paper, we focus on the
segmentation task but our integrated framework essentially is able to perform
classification, segmentation, and clustering altogether.

Standard unsupervised image segmentation methods [3] may not work well
for the histopathology cancer images due to their complicated patterns. Most of
the existing supervised approaches [4] for tissue cell segmentations require de-
tailed manual annotations; this task is not only time-consuming but also intrin-
sically ambiguous, even for well-trained experts. Recent development in weakly-
supervised learning (WSL), more specifically multiple instance learning (MIL)
[5], uses coarse-grained labeling to aid automatic exploration of fine-grained in-
formation. In MIL, a training set consists of bags (images in our case); each
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bag consists of a number of instances (patches in our case); only bag-level la-
bels are given in training; the training algorithm then automatically explores
instance-level and bag-level models to best fit the given bag labels. Encouraging
results have been observed in medical image classifications [6]; in other medical
applications, a multiple instance learning approach was adopted in [7] to detect
accurate pulmonary embolism among the candidates; in [8] a CAD system was
proposed for polyp detection with the main focus on supervised learning features,
which are then used in multiple instance regression; MIL-based histopathology
image classification was tackled in [9]. However, none of the above methods
were targeted for image segmentation, which is also different from an integrated
framework of segmentation, clustering, and classification.

In this paper, we design an MIL-based histopathology image segmentation for-
mulation by proposing a new framework, context-constrained multiple instance
learning (ccMIL); it significantly reduces the ambiguity due to the independence
assumptions in the standard multiple instance learning. We observe great im-
provement of ccMIL over competing methods. Our approach also differs from
existing formulations in machine learning in the following aspects: latent condi-
tional random fields algorithm [10] deals mostly with compositional components
of object models but not for segmentation; MIL on structured data was proposed
in [11] but we emphasize the contextual information of instances as a prior here;
multiple clustered instance learning (MCIL) [12] adopts the clustering concept
into MIL but it takes the assumption of independent instances; a context-based
learning/segmentation framework was proposed in [13] but it is a fully supervised
approach.

2 Methods

Rich contextual information has important significance for accurate segmenta-
tion [13]. ccMIL aims to take into consideration such contextual information to
enhance the performance and achieve robustness. An integrated framework, mul-
tiple clustered instance learning (MCIL) [12], was recently proposed to perform
simultaneous image-level classification, pixel-level segmentation and patch-level
clustering. ccMIL inherits some aspects of MCIL but studies the contextual prior
in the MIL training stage to reduce the intrinsic ambiguity due to the nature
of weak supervision. We observe significant improvement of ccMIL over MCIL
in experiments, e.g. over 20% gain. Fig. 1 illustrates the distinction between
standard supervised learning, MIL, MCIL and ccMIL.

2.1 Context-Constrained Multiple Instance Learning (ccMIL)

In ccMIL, learning examples are represented by a bag of instances. In our case,
a histopathology image is a bag and each patch sampled from an image is an
instance. Patches with cancer tissues are treated as positive instances and the
ones without cancer tissues are negative. A bag is labeled as positive (cancer
image) if the bag contains at least one positive instance.
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Fig. 1. Distinct learning goals between supervised learning, MIL, MCIL and ccMIL.
ccMIL makes an important step over MIL by studying the contextual prior information
among the instances to reduce the instance-level ambiguity due to weak-supervision.

We are given a training set X , and xi is the i
th bag in X . Each bag consists

of a set of m instances i.e. xi = {xi1, . . . , xim}; each xi is also associated with
a label yi ∈ Y = {−1, 1}. Assume there are K clusters (cancer types), then
each instance xij has a corresponding label ykij ∈ Y = {−1, 1}, k ∈ {1, . . . ,K},
that denotes whether the instance belongs to the kth cluster. If this instance
belongs to one of the K clusters, that is ykij = 1, then this instance is considered

as positive. Note that, this ykij is not known during training. A bag is labeled
positive if at least one of its instances belongs to one of the K groups:

yi = max
j

max
k

(ykij). (1)

The goal of ccMIL is to split the positive instance into K groups by learning K
instance-level classifiers hk(xij) : X → Y for K clusters, using only bag labels
yi, such that maxj maxk h

k(xij) = yi.
We combine AnyBoost[14,15,16] framework, the same as MIL-Boost [15], to

solve hk(xij). First loss function L(h) (details are given in the next subsection)
is introduced to find the optimal weak classifier response hkt : X → Y that most
reduces the loss on the training data. We train hkt by minimizing the training
data error weighted by |wk

ij |: hkt = argminh

∑
ij 1(h(x

k
ij) 	= yki )|wk

ij |; while wk
ij ≡

−∂L(h)

∂hk
ij

. A differentiable softmax function gl(vl) is given to approximate the max

over v = {v1, . . . , vm}. It is defined as follows:

gl(vl) ≈ max
l

(vl) = v∗,
∂gl(vl)

∂vl
≈ 1(vi = v∗)∑

l 1(vl = v∗)
, m = |v|. (2)

There are a number of approximations for g. We choose GM model [16], that is

gl(vl) = ( 1
m

∑
l v

r
l )

1
r , based on the experiment results. In order to optimize the

loss function L, we must get pi, which is defined as the maximum over pkij , the

probability of an instance xij belonging to the kth cluster: pkij = σ(2hkij), where

hkij = hk(xij). Using the softmax g in place of the max, we can get pi as:

pi = gj(gk(p
k
ij)) = gjk(p

k
ij) = gjk(σ(2h

k
ij)), σ(v) =

1

1 + exp (−v) . (3)
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So, the weights wij can be written as wk
ij = −∂L(h)

∂hk
ij

= −∂L(h)
∂pi

∂pi

∂pk
ij

∂pk
ij

∂hk
ij

. Thus, we

can train the weak classifier hkt by optimizing weighed error |wk
ij |, and finally, get

a strong classifier: hk ← hk + αt
khkt , where αt weighs the weak learners relative

importance.

2.2 Loss Function and Solving Process of ccMIL

The key to ccMIL is a formulation for introducing the contextual information as
a prior for MIL.

Now we define two functions LA(h) and LB(h) as:

LA(h) = −
n∑

i=1

wi(1(yi = 1) log pi + 1(yi = −1) log (1− pi)), and (4)

LB(h) =

n∑
i=1

wi

∑
(j,m)∈Ei

vjm ‖ pij − pim ‖2, (5)

where wi is the weight of the ith training data (the ith bag). Ei denotes the
set of all the neighboring instance pairs in the ith bag. vjm is the weight on
a pair of instances (patches) j and m related to the distance (on the image,
denoted as djm) between them. Higher weights are put on those closer pairs. In
our experiment, we chose: vjm = exp(−djm).

Then, we can define loss function as:

L(h) = LA(h) + λLB(h). (6)

LB(h) imposes an effective contextual constraints (in a way smoothness prior)
over the instances to remove the ambiguity in training; it encourages the nearby
image patches to share similar class types. λ is the weight of the additional
item that reflects the importance of relationship between the current instance
and its context (neighbors). The overall classification function obtained with
the new formulation is thus robust to noise and able to achieve more accurate
segmentation results.

According to the new loss function we compute the weight wk
ij as following:

wk
ij = −∂L(h)

∂hkij
= −∂L(h)

∂pi

∂pi

∂pkij

∂pkij
∂hkij

. (7)

∂L(h)
∂hkij

=
∂LA(h)

∂hkij
+ λ

∂LB(h)

∂hkij
=
∂LA(h)

∂pi

∂pi

∂pkij

∂pkij

∂hkij
+ λ

∂LB(h)

∂pkij

∂pkij

∂hkij
. (8)

∂LA(h)

∂pi
=

⎧⎪⎨⎪⎩
− wi

pi
if y = 1;

wi

1− pi
if y = −1,

∂LB(h)

∂hkij
= wi

∑
(j,m)∈Ei

2vjm(pkij − pkim).

(9)
Details of ccMIL are demonstrated in Algorithm 1. K is the number of cancer
types, and T is the number of weak classifiers in Boosting.
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Algorithm 1. ccMIL

Input: Bags {X1, . . . , Xn}, {y1, . . . , yn}, K, T
Output: h1, . . . ,hK

for t = 1 → T do
for k = 1 → K do

Compute weights wk
ij = − ∂L(h)

∂hk
ij

= −( ∂LA(h)
∂pi

∂pi
∂pk

ij

∂pkij

∂hk
ij

+ λ ∂LB(h)

∂pk
ij

∂pkij

∂hk
ij

)

Train weak classifiers hk
t using weights |wk

ij |
hk
t = argminh

∑
ij 1(h(x

k
ij) �= yk

i )|wk
ij |

Find αt via line search to minimize L(.,hk, .)
αk
t = argminαL(.,hk + αhk

t , .)
Update strong classifiers hk ← hk + αk

t h
k
t

end for
end for

3 Experiments

ccMIL is a general approach for common cancer types, including colon, prostate,
and breast cancer. Without loss of generality, colon histopathology images are
chosen in our experiments to illustrate its effectiveness. We collected the im-
age dataset in Department of Pathology of Zhejiang University in September
2010. The images are obtained from the Nano Zoomer 2.0HT digital slice scan-
ner produced by Hamamatsu Photonics with a magnification factor of 40. In
this dataset, 30 non-cancer (NC) images and 53 cancer images are included.
The cancer images can be medically divided into four cancer types according to
their morphological characteristics. These four cancer types are Moderately or
well differentiated tubular adenocarcinoma (MTA), Poorly differentiated tubu-
lar adenocarcinoma (PTA), Mucinous adenocarcinoma (MA), and Signet-ring
carcinoma (SRC). To ensure the ground truth of the image dataset, images are
carefully studied and labeled by experts. Specifically, each image is independently
labeled by two pathologists, the third pathologist moderates their discussion un-
til they get an agreement on the result. All images are labeled as cancer images
or non-cancer images. For cancer images, cancer tissues are further annotated
and corresponding cancer type is identified for the evaluation.

We combine all the images to generate three different subsets: binary, multi1,
andmulti2. Each subset contains 60 different histopathology images. binary con-
tains 30 non-cancer and 30 MTA cancer images. It is used to test the capability
of cancer image detection. multi1 and multi2 mean two or more types of cancer
images as well as non-cancer images are contained. They can reveal the ability
of pixel-level segmentation. In particular, multi1 consists of 30 NC, 15 MTA, 9
PTA and 6 SRC; multi2 consists of 30 NC, 13 MTA, 9 PTA and 8 MA. Settings
are made as following. First we down-sample the images by 5 times, and then
extract 64 × 64 patches from each image. The parameters in algorithm are set
as: r = 20, K = 4, T = 200. r controls sharpness and accuracy in GM model of
softmax function. The λ used in the loss function is set to 0.01 according to the
results of cross validation. We assume the initial distribution is uniform so that
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Fig. 2. Image Types: (a): The original images. (b): The instance-level results (pixel-
level segmentation and patch-level clustering) for image-level supervision + K-means,
(c): pixel-level full supervision, (d): MCIL, (e): ccMIL, (f): The instance-level ground
truth labeled by three pathologists. Different colors stand for different types of cancer
tissues. Cancer Types: from top to bottom: MTA, MTA, PTA, NC, and NC.

the prior weight wi for the i
th bag is set as the same value. Our method is not

focusing on feature design, so generic features for object classification are used
here, including L∗a∗b∗ Color Histogram, Local Binary Pattern, and SIFT. The
weak classifier we use is Gaussian function. Experimental results are reported
in a 5-fold cross validation. All the methods in the following experiments are
conducted under the same experimental settings.

Pixel-Level Segmentation. We tested subset multi2 with different meth-
ods to measure pixel-level segmentation. Fig. 2 shows the segmentation results.
ccMIL significantly improves results by reducing the intrinsic training ambiguity
compared to other weakly supervised methods. For example, ccMIL can correctly
recognizes noises and small isolated areas in cancer images and achieve cleaner
boundaries, which can be observed from the segmented results of MTA and PTA
cancer images in the figure. Moreover, due to the guidance of contextual infor-
mation, ccMIL reduces the possibility of extracting noises as a positive instance
from a non-cancer image and further improves the accuracy of cancer detection.

For the quantitative evaluation of the segmentations, F-measure is used here
to evaluate the segmentation. the F-measure values of image-level supervision,
MCIL and ccMIL are 0.312, 0.601 and 0.717. ccMIL improves F-measure by 20%,
compared with the closet competing method.
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(a)binary (b) multi1 (c) multi2 (d) F-measure

Fig. 3. ROC curves for different learning methods (binary, multi1 and multi2) and
(d) the segmentation F-measure of pixel-level full supervision

For comparing with supervised approaches, we implemented two methods: (1)
one utilizes supervision in the image level by treating all the pixels in the positive
and negative bags as positive and negative instances respectively, and (2) one with
the full pixel-level supervision (require laborious labeling work). The advantage of
ccMIL over the image-level supervision is proved by both segmented images and
F-measure evaluation. As for full pixel-level supervision, in order to compare the
performance, we used varying numbers (1, 5, 7, 10) of images of pixel-level fully
supervision, and calculated the corresponding values of F-measure. The figure is
plotted in Fig. 3.d, from which, it can be concluded that ccMIL is able to achieve
comparable results (the value of F-measure is around 0.7).

Patch-Level Clustering. We also obtained the clustering results of the same
test data mentioned in pixel-level segmentation and the results are shown in
Fig. 2. ccMIL achieves less noisy clustering results than MCIL. Also, it revises
the error caused by MCIL, which can be observed from the results obtained from
the two MTA images in Fig. 2.

Image-Level Classification. Bag-level classification, that is cancer and non-
cancer images classification, is compared in this experiment also. Seven meth-
ods, namely MI-SVM, mi-SVM, Boosting, MIL-BOOST, MKL (multiple kernel
learning as a widely used image categorization technique), MCIL, and ccMIL,
are compared in this experiment with the same features and parameters (we do
not put all the references due to the space limit). Fig. 3 shows the receiver oper-
ating characteristic (ROC) curves in the three subsets. The results demonstrate
the practicality of ccMIL.

4 Conclusion

We have introduced the context constraints to the multiple instance learning
framework for segmentation and observe significant improvement (20%) over
the closest competing method. In addition, ccMIL is able to perform segmen-
tation, clustering, and classification in a principled framework while achieving
comparable results in segmentation with full pixel-level supervision approaches.
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Structural-Flow Trajectories for Unravelling 3D
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Abstract. We cast segmentation of 3D tubular structures in a bundle as parti-
tioning of structural-flow trajectories. Traditional 3D segmentation algorithms
aggregate local pixel correlations incrementally along a 3D stack. In contrast,
structural-flow trajectories establish long range pixel correspondences and their
affinities propagate grouping cues across the entire volume simultaneously, from
informative to non-informative places. Segmentation by trajectory clustring re-
covers from persistent ambiguities caused by faint boundaries or low contrast,
common in medical images. Trajectories are computed by linking successive reg-
istration fields, each one registering pairs of consecutive slices of the 3D stack.
We show our method effectively unravels densely packed tubular structures, with-
out any supervision or 3D shape priors, outperforming previous 2D and 3D seg-
mentation algorithms.

Keywords: 3D tubular structures, trajectory clustering, morphological segmen-
tation.

1 Introduction

Automatic segmentation of tubular structures is of vital importance for various fields
of medical research. An example of such tubular structures are the organ-pipe-like

a: input 3D stack c: trajectory affinitiesb1: structural trajectories

b2: 2D convexity features

d: our results
3D tubular segmentation

attraction
repulsion

ambiguitieses

Fig. 1. Method overview. (a) A stack of 2D images of a tubular bundle. Image is courtesy of
Medha Pathak and David Corey, Harvard. (b1) Structural-flow trajectories traversing the stack.
(b2) 2D convexity cues. (c) Trajectory attractions and repulsions. (d) Resulting 3D segmentation.

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 631–638, 2012.
© Springer-Verlag Berlin Heidelberg 2012



632 K. Fragkiadaki et al.

stereocilia bundles of the inner ear, depicted in Fig.1(a). Automatic segmentation of
stereocilia in their fluorescent image stacks contributes to medical research on hearing
[1].

There are two main lines of work that tackle segmentation of tubular forms: 1) Meth-
ods that compute a series of independent 2D segmentations [2–5] and then correspond
them along the third dimension [6]. 2) Methods that segment directly in 3D, such as
level sets, 3D watershed [4, 3, 7], region growing [8], or methods that employ 3D
shape priors, often initialized via some type of user interaction [9–11]. In the former
approaches, segmentation and correspondence do not interact with or benefit from each
other, hence 2D segmentation mistakes often propagate to erroneous 3D correspon-
dences. In the latter, local correlations along the third dimension are often aggregated
in an incremental, feed-forward fashion. Consequently, close configurations between
adjacent tubular structures that cause segmentation ambiguity to persist across multiple
slices in the 3D image stack are hard to deal with.

Our main insight is that the topology of tubular structures, each with a correspond-
ing one dimensional medial axis and a deforming continuum of 2D cross-sections along
the axis direction, allows reliable registration of consecutive cross-sections. A condition
for this is the medial axes directions to be non-parallel to the slicing direction. Linking
of successive registration fields results in long range pixel correspondences in the 3D
volume, which we call structural-flow trajectories. We segment densely packed tubu-
lar structures by partitioning structural-flow trajectories, as shown in Fig.1. Trajectory
affinities are computed by marginalizing corresponding convexity-driven pixel affini-
ties across trajectory lifespans (Fig.1(c)). They propagate grouping information along
the 3D image stack, from informative to non-informative places and are robust to lo-
cally ambiguous grouping cues, often caused by closely attached tubular structures in a
bundle. In this way, trajectory partitioning effectively unravels tubular structures auto-
matically (Fig.1(d)), without 3D shape priors or user interactions.

We test our algorithm on segmenting stereocilia bundles of the inner ear in their fluo-
rescent images. We significantly outperform various baseline segmentation algorithms
that do not exploit long range structural information. To the best of our knowledge,
we are the first to utilize structural trajectories for capturing long range structural cor-
respondences between pixels at different depths of a 3D volume rather than temporal
correspondences between pixels of consecutive frames in a video sequence [12].

2 Long Range Structural Correspondence

Consider two consecutive slices, Iz(x, y) and Iz+1(x, y), where z ∈ Z+ denotes the
slice index from bottom to top of a 3D stack. We define (u, v) to be the deformation
field that registers the two slices as the one minimizing intensity and gradient pixel
matching scores:

minimize
u,v

|Iz+1(x+ u, y + v)− Iz(x, y)|
+ |∇Iz+1(x + u, y + v)−∇Iz(x, y)|+ |∇u|+ |∇v|. (1)

The last two robust penalization terms on gradients of the deformation field u, v encour-
age smoothness in registration [13]. Such smoothness constraints allow registration to
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be reliably computed even in places of ambiguous grouping cues (e.g. faint boundaries),
by propagating registration information from reliable (gradient rich) pixel neighbours
with peaked unary matching terms. We solve for (u, v) through a coarse to fine es-
timation scheme with successive linearisation of the intensity and gradient constancy
constraints under the assumption of small displacements, as proposed in [13]. Dense
slice sampling with respect to deformation along the medial axis of the tubular struc-
tures guarantees displacements to be small from slice to slice.

We define a structure-flow trajectory to be a sequence of (x, y, z) points:

tri = {(xzi , yzi , z), z ∈ Zi}, (2)

where Zi is the set of slice indices in which trajectory tri is “alive”. Trajectories are
dense in space and capture slice-to-slice pixel correspondences, despite illumination
changes or density variations of the 2D shapes between slices across the stack. We
compute structural trajectories by following per slice registration fields computed from
Eq. 2 between pairs of consecutive slices. A forward-backward check determines termi-
nation of a trajectory [14]. Thus, structural trajectories can have various lifespans and
adapt to the varying lengths of the 3D tubular structures (e.g. stereocilia). We visualize
structural trajectories in Fig.1(b1).

The notion of a pixel trajectory has been traditionally used to describe 2D projections
of a single physical point in a video sequence [14]. In our case, the notion of a struc-
tural trajectory refers to a series of physical points geometrically related via successive
registrations.

3 Constrained Segmentation with Structural Flow Trajectories

In 3D segmentation, local cues are often faint and unreliable. Such ambiguities appear
in batches rather than randomly scattered along a 3D stack, since the configuration of
2D cross-sections of the tubular bundle cannot change drastically from one slice to
another. We address persistency of cue ambiguity by formulating 3D segmentation as
spectral partitioning of structural-flow trajectories. We estimate pixel pairwise relation-
ships at each image slice based on local convexity cues proposed in [5]. Trajectory
affinities marginalize corresponding pixel relationships. Thus, grouping cues are prop-
agated from informative to non-informative slices and provide a consistent and well-
informed segmentation throughout the whole 3D volume.

3.1 Per Image Grouping Cues

Consider pixel pi and its neighbourhood Nd(pi) of radius rd, as shown in Fig.2. We
define a peak neighbour pa of pi to be a pixel in Nd(pi) that can be connected to
pi by a straight line of non-decreasing image intensities, of total intensity difference
S(pi, pa) = I(pa) − I(pi). Let f(pi) be the weighted average direction from pi to its
peak neighbours:

f(pi) ∝
∑

pa∈P(pi)

S(pi, pa)(pa − pi), ||f(pi)||2 = 1, (3)
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a: convexity estimation b: peak direction vector f(p) c: degree Df

Local 
Confusion 

Fig. 2. 2D convexity cues. (a) Estimation of the peak vector f(pi). (b) The peak vector field f(p)
points at each pixel to the closest highest intensity peak. (c) Degree image Df . Valleys and peaks
correspond to convex and non-convex regions in the original intensity image. Closely attached
tubular structures in this slice, cause double valleys in Df and confuse the corresponding pixel
relationships.

where pi denotes the 2D pixel coordinate of pi and P(pi) the set of peak neighbors.
We visualize the vector field f in Fig.2(b).

The inner product of f(pi) and f(pa) within the neighbourhood Nd(pi), measures
how much pa’s convexity center agrees with pi’s. We define Df (pi) to be the sum of
such inner products, indicating degree of agreement of a pixel with its surroundings:

Df (pi) =
∑

pa∈Nd(pi)

f(pi)
�f(pa). (4)

We visualize Df in Fig.2(c). Df is rotationally invariant and effectively captures the
rough convex shapes of the 2D cross-sections of a tubular structure. Sinks of f (dot
centers) are characterized by negative values and sources of f by positive ones. In con-
trast to morphological charts computed straight from image intensities, Df is robust to
variations of relative intensities of the peaks and valleys in the original image [5].

Given a degree image Df , we define repulsion Rp(pi, pj) and attraction Ap(pi, pj)
between pixels pi and pj according to the difference of degrees Df (pi), Df (pj) to the
minimal degree mij = min

pt∈line(pi,pj)
Df (pt) encountered on their connecting line:

Rp(pi, pj) = 1− exp(−min(|Df (pi)−mij |,|Df (pj)−mij |)
σr

)

Ap(pi, pj) = (1−Rp(pi, pj)) · δ(||pi − pj ||2 < ra),
(5)

where δ is the delta function. Attractions are short range, acting on pixels within ra
distance. Parameter ra is chosen as a lower bound of the distance between adjacent
structure centers. We set ra = 4 pixels in all our experiments for stereocilia segmenta-
tion.

3.2 Trajectory Partitioning

We compute trajectory pairwise relationships by marginalizing pixel relationships across
trajectory lifespans. We define repulsion RT (tri, trj) between trajectories tri and trj
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to be the maximum of corresponding pixel repulsions and attraction AT (tri, trj) to be
the minimum of corresponding pixel attractions as follows:

RT (tri, trj) = max
z∈Zi∩Zj

Rp(p
z
i , p

z
j ) · δ(|Zi ∩ Zj | > 0)

AT (tri, trj) = min
z∈Zi∩Zj

Ap(p
z
i , p

z
j ) · δ(|Zi ∩ Zj | > 0),

(6)

where superscript z indicates the slice index of a pixel. The above cue marginaliza-
tion reflects the nature of tubular structure bundles: in some slices, tubular structures
attached to each other confuse corresponding degree fields as shown in Fig.2(c), caus-
ing leakage in segmentation. On the contrary, over-segmentation of 2D cross sections
is highly unlikely under our convexity cues. As such, trajectory affinities essentially try
to detect the informative slice where attached structures separate.

We classify trajectories as foreground or background by thresholding their average
degrees Df (tri) = mean

z∈Zi

Df (pzi ) at 0. Let X ∈ {0, 1}|T |×K be the matrix whose

columns are the indicator vectors of K clusters. We cluster foreground trajectories by
maximizing intra-cluster attractions AT and inter-cluster repulsions RT [15]:

maximize ε(X) =

K∑
k=1

X�
k (AT −RT +DR)Xk

X�
k (DA +DR)Xk

(7)

subject to X1|T | = 1|T |,

where DA = Diag(AT1|T |), DR = Diag(RT1|T |) are degree matrices and 1|T | is
the |T | × 1 vector of 1. We choose K to be a rough upper-bound of the total number
of tubular structures present in the stack, estimated from the per frame degree fields.
We obtain the near-global optimal continuous solution of Eq.7 from the top K gener-
alized eigenvectors of (AT − RT + DR,DA + DR). We discretize the eigenvectors
by rotation [16] and obtain K clusters. We repeatedly merge clusters with no repulsion
between their trajectories. Structure bifurcation can be accommodated by a hierarchical
segmentation scheme, where cluster merging probabilities depend on ratios of cluster
attractions versus repulsions. We summarize our method in Algorithm 1.

Algorithm 1. Unraveling Tubular Structures
1: Let {Iz, z = 1 · · ·T} denote an ordered sequence of T images in a 3D stack.
2: for all Iz, z = 1 · · ·T do
3: Compute peak vector field fz(pi) and degree field Df

z (pi) using Eq. 3 and Eq. 4.
4: Compute pixel attractions Ap and repulsions Rp using Eq. 5.
5: end for
6: Compute structural trajectories tri, i = 1 · · · |T | using method of [14].
7: Compute trajectory degrees Df (tri), i = 1 · · · |T |.
8: Classify trajectories as foreground T F = {tri|Df (tri) > 0}.
9: Compute foreground trajectory attractions AT and repulsions RT using Eq. 6.

10: Compute the top K generalised eigenvectors V of (AT −RT +DR,DA +DR).
11: Discretize eigenvectors V by rotation [16] to obtain K trajectory clusters Gi, i = 1 · · ·K.
12: while ∃ Gi, Gj ,RT (Gi, Gj) = 0 do
13: Merge Gi, Gj

14: end while
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4 Experiments

We test our method on segmenting stereocilia of the hair cells in the inner ear from
their fluorescent image stacks. Each stack is 7 to 20 slices long and contains 50 to
70 stereocilia. 3D ground-truth stereocilia centers are marked in each image stack.
Ground-truth samples are illustrated in the first column of Fig. 3. We compare our
method against three baseline approaches: 1) 3D k-means on pixel intensities. Number
of centers k is chosen to achieve best performance. The resulting clusters are pruned
based on their size and aspect ratio. 2) 3D watershed (MATLAB built-in implementa-
tion) 3) Dot finding [5] using code provided by the authors. Given the 2D output dots of
[5], we produce the 3D segmentation by linking segmented dots between consecutive
slices via Hungarian matching. We evaluate performance with the following metrics:

Input Stack 3D K-means 3D Watershed Dots Finding Our Method

Fig. 3. Segmenting a stereocilia stack (best viewed in color). First column shows 4 (out of 22)
images of a stereocilia stack with corresponding 3D ground-truth tubular structure centers. Depth
decreases from top to bottom. Column 2-5 show 3D segmentation using 3D k-means, 3D water-
shed, dot finding [5] and our method respectively. Numbers and colours indicate tubular structure
identities. In 3D watershed, tubular structures leak across faint boundaries and break arbitrarily
between slices. In dot finding, notice the leaking segments of numbers 9, 20, 38, 43, etc. Our
method provides consistent 3D segmentations, correcting leakages and miss-detections.
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Fig. 4. Left: Precision-recall for 2D slice segmentation. We histogram (precz, recz) values for all
slices z in our stacks. Right: Precision-recall for 3D tubular structure identification. We histogram
(track-reci, track-preci) of all labelled tubular structures in our stacks. Best performance is
achieved when the histogram is concentrated at the right top corner (precision=1, recall=1). Our
method (in green) has significantly higher precision and recall in both tasks.

1) Goodness of 2D segmentation. For each slice z, given mz ground-truth structure
centers and nz segment centers hypotheses, let dzij be the Euclidean distance between
structure center i and segment center j in slice z. We use the following measures:

precz =
#{j: minmz

i=1 dz
ij≤τ}

nz
, recz =

#{j: minmz
i=1 dz

ij≤τ}
mz

. (8)

We visualize the histogram of (precz , recz) over all slices in Fig.4 left. Same evaluation
metrics were used in [5].

2) Goodness of 3D identification. Given m 3D ground-truth tubular structures and
n 3D tubular structures hypotheses, let �gi denote the length of ground-truth structure
i and �dj denote the length of segment structure hypothesis j. We use the following
measures:

track-reci = maxnj=1
#{z: dz

ij≤τ}
�gi

, track-preci = maxnj=1
#{z: dz

ij≤τ}
�dj

. (9)

Tracking precision and recall together quantify how consistently the 3D segmentation
hypotheses capture the 3D ground-truth structures [17]. We visualize the histogram of
(track-reci,track-preci) over all labelled tubular structures in Fig.4 right. We set τ = 3.

Our method outperforms all baseline approaches. Low contrast and faint boundaries
make stereocilia segmentation challenging. Our gain in performance comes from cor-
rections of leakages and miss-detections by propagating separations or detections from
informative to ambiguous places in the 3D volume, as shown in Fig.4. Miss-detections
in our method are often due to localization errors: segment hypotheses centers are a bit
more than 3 pixels away from the corresponding ground-truth. A local gradient descent
for discovering the intensity peak in the local neighbourhood could alleviate from such
localization mistakes. We did not add this step to keep the method clean.
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5 Conclusion

We presented an algorithm for unravelling 3D tubular structures in a tight bundle by
propagating grouping information across multiple cross-sections of their 3D volume si-
multaneously via spectral partitioning of structural-flow trajectories. Our qualitative and
quantitative results show our method effectively integrates local grouping cues for ac-
curate segmentation and identification of densely packed structures, outperforming 3D
and 2D baseline segmentation algorithms. We are currently exploring ways of applying
our algorithm to 4D cell tracking, where both temporal and structural correspondences
would mediate cues for segmenting spatio-temporal cell structures.
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Online Blind Calibration of Non-uniform

Photodetectors: Application to Endomicroscopy
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Abstract. We present an original method for the online blind calibra-
tion of non-uniform photodetectors. The disparity of the detectors may
arise from both irregular spatial arrangement and distinct slowly
time-varying photometric transfer functions. As natural images aremostly
continuous, the signal collected by neighboring detectors is strongly corre-
lated over time. The core idea of our method is to translate the calibration
problem into relative pairwise calibrations between neighboring detectors
followed by the regularized inversion of a system akin to gradient-based
surface recovery. From our blind calibration procedure, we design an on-
line blind calibration pipeline compatible with clinical practice. Online
blind calibration is proved to be statistically better than standard offline
calibration for reconstructing endomicroscopy sequences.

1 The Need for Online Blind Calibration
in Endomicroscopy

In vivo endomicroscopy consists of imaging the tissue at microscopic level, by
inserting, through a standard endoscope, a probe made of tens of thousands of
optical fibers. A laser scanning unit sends along each fiber an excitation light
that is locally absorbed by fluorophores in the tissue and emitted back at a longer
wavelength along the same fiber to a photodetector. Raw images are produced
at a rate of 9 to 18 frames per second. The standard endomicroscopy image
reconstruction scheme proposed by Le Goualher et al. [1] is composed of three
steps: estimation of the signal collected by each fiber, compensation of calibration
coefficients, and interpolation. Alternative less physically motivated methods [2,
3] use image filtering to remove the fiber honeycomb pattern at the cost of
introducing some blur. As described in [1], each fiber i of the endomicroscopy
probe acts as a mono-pixel photodetector with an affine transfer function:

vi(t) = αiui(t) + βi (1)

where αi and βi are respectively the gain and offset of fiber i, ui(t) is the concen-
tration of fluorophore seen at time t by fiber i, and vi(t) is the signal collected
at time t by fiber detector i.

For the estimation of the calibration coefficients, Le Goualher et al. [1] pro-
posed a offline non-blind calibration method, assuming constant gain and offset
for each fiber. This method compensates for affine fiber transfer functions by

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 639–646, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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previously acquiring two reference images, one in the air and one in a fluo-
rophore solution, and then deducing from these two images a static offset and a
static gain for each fiber. However, fiber coefficients are both slowly time-varying
and medium-dependent. Indeed, due to photo-bleaching, autofluorescence signal
slowly decreases with illumination time during the course of the procedure un-
less a long pre-illumination has been performed. In addition, fiber gains also
depend on refractive indices and dispersive properties of the observed medium.
For these reasons, image quality after the offline calibration may be affected by
the presence of a veil on the image, i.e. a static noise pattern, which can be seen
in all three images on the top of Fig. 3. Blindly recovering the parameters of non-
uniform photodetectors is an ill-posed problem that has been scarcely addressed
in the literature. In the field of astronomy, Kuhn et al. [4] proposed a blind cali-
bration method that requires shifted images of the exact same scene, which can
typically not be acquired on in vivo samples. The closest work is found in the
field of computer vision. Weiss [5] presented an algorithm for blindly recovering
intrinsic images from a sequence of natural scenes with different illumination, but
only considered detectors on regular grids and with a single gain coefficient. To
the best of our knowledge, this paper proposes the first online blind calibration
of non-uniform mono-pixel photodetectors.

Our first objective is to design a blind method for the calibration of pho-
todetectors having both irregular spatial arrangement and distinct photometric
transfer functions. We then show how our blind calibration can be applied in an
online manner to handle slowly time-varying transfer functions.

2 Solving an Inverse Problem on Temporal Windows

Let us first focus on static blind calibration. The core observation behind our
method is that, when looking at physical objects, neighbor fibers nearly see the
same object signal over time, so the collected signal from two neighbor fibers is
strongly temporally correlated. This property arises from the mostly continuous
nature of natural images, where edges form a set of zero measure and where
the noise can be measured for example using total variation as introduced by
Rudin et al. [6]. To translate this into mathematical terms, we capture the spatial
relationship of the irregularly arranged photodetectors with a Delaunay trian-
gulation applied to fiber locations, and express (1) in terms of a global function
Ut(p) which represents the concentration of fluorophore in the observed medium
at position p and time t. Let G = (V,E) the undirected graph associated with
the triangulation. In our endomicroscopy probes the fiber pattern is pseudo
hexagonal leading to |E| � 3|V |. In (1), we substitute for ui(t) the expression
Ut(φ(t) + pi), where pi is the spatial position of fiber i relative to the center of
probe distal end, and φ(t) is the spatial position of the probe center at time t.
We then have:

vj(t) =
αj

αi
(vi(t)− βi) + βj + εij(t) (2)

where εij(t) = (pj − pi) · ∇Ut(pi + φ(t)) + o(‖pj − pi‖) is a noise term whose
distribution is sparse, with the natural assumption, similar to [6], that spatial
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variations of the concentration Ut(.) are almost always smooth. The signals col-
lected by two neighboring fibers can thus be related by the affine relationship
vj(t) � aijvi(t) + bij , from which we derive two systems:

{aij =
αj

αi
}(i,j)∈E (3)

{bij = βj −
αj

αi
βi}(i,j)∈E (4)

Interestingly, the affine coefficients aij and bij may conceptually be seen as the
gradients of the fiber gain map and of the fiber offset map, respectively, except
that the fibers are distributed on a non regular grid. Thus, the problem of recov-
ering the calibration coefficients from the relative pairwise calibrations is akin
to recovering a surface from a gradient field [7, 8].

Our blind calibration method is designed in two steps. The first step performs
linear regressions on a buffer of collected images to estimate the relative cali-
bration coefficients (aij , bij) for all (i, j) ∈ E. Once all regressions have been
computed, the second step consists of solving the gain system (3) and the offset
system (4), in order to recover the gain αi and the offset βi of each fiber i.

2.1 Pairwise Relative Calibrations of Photodetectors

The first step of our blind calibration method consists of estimating relative cal-
ibration coefficients aij and bij between two observed signals vi(t) and vj(t) that
are collected by neighboring fibers (i, j) and sampled at times t ∈ {1, ..,m} with-
out loss of generality. From equation (2), we have: vj(t) = aijvi(t) + bij + εij(t).
Noticing that there is measurement error in both variables, an orthogonal linear
regression [9] is more appropriate than ordinary least squares regression to esti-
mate aij and bij . In order to account for outliers resulting from the non-normality
of εij(t), the most common example being when an edge occurs between two
neighbor fibers, we perform a robust orthogonal regression. For this purpose, we
use M-estimators because they are deterministic and computationally competi-
tive compared to other methods. We choose to perform an iteratively reweighted
least squares fitting algorithm, which is at iteration p:

θ̂
(p)

ij = argmin
{θij |θ2

1ij
+θ2

2ij
=1}

m∑
t=1

z(r
(p−1)
ij,t )(θ1ijvi(t) + θ2ijvj(t) + θ3ij )

2 (5)

where θ represents the regression coefficients, z(x) = ρ′(x)/x is the weight func-

tion and r
(p)
ij,t = θ

(p)
1ij
vi(t) + θ

(p)
2ij
vj(t) + θ

(p)
3ij

is the orthogonal residual at iteration
p associated with a sample at time t. By choosing the Tukey’s biweight function
for ρ(.), we ensure that the residuals larger than a cutoff value c are eliminated.
We set c = 4.6851σ̂, where σ̂ is the median absolute deviation of residuals. Our
robust algorithm initialization sets initial slope to sj/si and initial intercept to
μj − sjμi/si, where μi and si respectively denote the median and interquartile
range of {vi(t)}1≤t≤m.
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As the probe may contain dead fibers that do not transmit any light, any re-
gression between these fibers and their neighbors is sterile. To overcome this
issue, we decide to detect and reject regressions which are bad fits, based
on a robust goodness-of-fit measure gij for (i, j) ∈ E. We define gij as the
weighted squared Pearson correlation coefficient between vi and vj : gij =
(
∑m

t=1 zij,t(vi(t) − vi)(vj(t) − vj))
2 / (

∑m
t=1 zij,t(vi(t) − vi)

2
∑m

t=1 zij,t(vj(t) −
vj)

2), where {zij,t}1≤t≤m are the final weights of (5) after convergence, and
vi = (

∑m
t=1 zij,tvi(t))/(

∑m
t=1 zij,t). These {gij}(i,j)∈E will be used in the second

step of our blind calibration method, focusing on system inversion.

2.2 From Relative Calibrations to Global Calibration

Gain Estimation. The gain system (3) uses the results of an linear orthog-
onal regression. The symmetry of orthogonal regression implies that noise on
the estimates âij is better modeled as multiplicative. Therefore, (3) can be
advantageously transposed to the log domain: {α∗

j − α∗
i = â∗ij}(i,j)∈E with

α∗
i = logαi and â

∗
ij = log âij . This can be rewritten as Mα∗ = â∗, where M is

the |E| × |V | matrix such as Mlp = δp,jl − δp,il , with E = {(il, jl), 1 ≤ l ≤ |E|}.
In order to cope with noise and dead fibers, we introduce the weight function
w(x) = (1+e−(x−g0))−1δ(x ≥ g0), where δ is the Kronecker operator. This func-
tion puts more weight on the relations of (3) associated with higher goodness-
of-fit values, and ignores those associated with values below an arbitrary cutoff
value g0 = 0.6. To cope with the non-uniqueness of the solution and regularize
the system, we add the a priori that the gains are close to 1. We use the |E|×|E|
diagonal matrix W defined by Wll = w(giljl) to obtain the weighted system:

α̂∗ = argmin
α∗

‖W (Mα∗ − â∗)‖2 + λ‖α∗‖2 (6)

The overdetermined system (6) is solved using a conjugate gradient method
(LSQR) which has a good numerical stability for ill-conditioned systems. Finally,
we deduce the estimated gains α̂ = exp α̂∗.

Offset Estimation. In order to uncouple offset estimation from gain estimation,
weapproximateαj/αi by âij in the offset system(4).As (4)uses the estimates b̂ij re-
sulting from the symmetric orthogonal regression,we symmetrize the offset system
by introducing a normalization factor γij = (1 + âij

2)0.5: βj/γij − (âij/γij)βi =

b̂ij/γij . In order to regularize the system, we make the assumption A that fiber
background β(t) at time t > t0 can be approximated by qβ0 where β0 is an initial
offline background estimation and q is an unknown global factor only depending on
t [10]. Injecting βi = qβ0i in (4) gives: qβ0j − âijqβ0i � bij . A robust estimate of q

is then: q̂ = median(i,j)∈E{b̂ij/(β0j − âijβ0i)}. From this estimate q̂, we obtain an
approximation q̂β0 of β and use this value to regularize the system (4). Weighting
the system as described in 2.2, offset estimation is rewritten as:

β̂ = argmin
β

‖W (Aβ − 1

γ
b̂)‖2 + λ‖β − q̂β0‖2 (7)
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where A is the |E| × |V | matrix such as Alp = (δp,jl − δp,il âiljl)/γiljl . Being
similar to system (6), the system (7) is solved using LSQR.

2.3 Online Blind Calibration Pipeline

Our second objective is to integrate the blind calibration method described in
Section 2.2 into an online calibration pipeline, illustrated in Fig. 2. For this pur-
pose, we leverage the fact that the temporal variation of fiber transfer functions
are quite slow compared to the temporal variation of fluorescence signal which
is due to either motion within the tissue, or motion of the probe along the tissue
during endomicroscopy procedure. We thus decide to apply our blind calibra-
tion method on temporal windows where transfer functions do not significantly
change, and to perform successive calibration updates as soon as possible. At
startup of the imaging system, the probe is in the air and laser illumination allows
to record the non-fluorescent background signal β0. Standard offline calibration
can be used as initial calibration. When the physician starts the acquisition at
time T0, successive frames are accumulated in a buffer until there is sufficient
data to make system inversion possible. Our intuition is that the more moving
fluorescent signal there is, the better linear regression results are, and so the
more chance there is to solve the system. We consider that there is sufficient
data if the following criterion C is satisfied: |{(i, j) ∈ E, gij ≥ g0}| ≥ 0.9|E|.
Regressions are performed until time T1 when C is satisfied, then we perform
system inversion and proceed to the first calibration update. At kth calibration
update, buffer is flushed at t = Tk + 1 and new frames are accumulated in the
buffer from t = Tk + 1 to t = Tk+1 when (k + 1)th calibration is possible. From

the gains α̂Tk and the offsets β̂
Tk

estimated at time Tk, we construct the new

calibrated signal as follows: ∀t ∈]Tk, Tk+1], ûi(t) = (vi(t)− β̂i
Tk
)/α̂i

Tk . This pro-
vides an estimate of the fluorophore concentration ui(t) seen by fiber i at time
t. Finally, interpolation of û is performed.

3 Evaluation and Results

Before method evaluation, we aim at validating the assumption A : β = qβ0.
For this purpose, we tested 4 probes having different numbers of fibers and
different optical properties. Each probe was used to acquire every minute a 10-
frame average image in the air. Laser illumination was continuously on during
the first 14 minutes in order to measure autofluorescence decrease. After 14
minutes, to highlight the phenomenon of autofluorescence recovery, illumination
was off except during acquisition of the images. We then calculated the Pearson
correlation between the background signal of all fibers at time t and those at
time t0 = 0. The results presented in Fig. 1 on the right, reveal that, for all 4
probe models the Pearson correlation coefficient is quite high, being superior to
0.98, therefore validating A.

Our database used for method evaluation is composed of 89 endomicroscopy
sequences acquired during clinical procedures in 6 different medical centers. Each
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Fig. 1. Left: Autofluorescence decrease (t ≤ 14min) and recovery (t > 14min), mea-
sured for 4 different probe models. Right: Corresponding Pearson correlation values
between fiber signal at time t and at time t0.

of these 89 sequences is complete in the sense that every single image from
startup to shutdown was recorded. We propose to evaluate first the ability of
our calibration method to recover the model parameters, then the impact of
the calibration on image reconstruction. Since it is impossible to get an uniform
medium with the same physical properties as a given observed living tissue,
validation cannot rely on flat-field images.

Our online pipeline implies that calibration applied on current data is only com-
puted from past data. This ensures unbiased performance evaluation on recon-
structed data. Given a temporal window ]Tk, Tk+1] where the calibration is static,
we define a static calibration quality CQk which measures the ability to align the
calibrated gains of two neighboring fibers from the model parameters estimated

on ]Tk−1, Tk]: CQk = |{(i, j) ∈ E, 1 − η < â
Tk+1

ij · α̂Tk

i /α̂Tk

j < (1 + η)−1}|/|E|,
where â

Tk+1

ij is the relative calibration estimated between fiber i and fiber j on
the temporal window ]Tk, Tk+1], and η is an arbitrary threshold set to 0.1. The

expression â
Tk+1

ij · α̂Tk
i /α̂Tk

j is basically an unbiased estimation of the residuals of
(6). CQk therefore provides an unbiased measure of how good we would be at re-
constructing a flat image from a flat signal with the same physical properties as
the observed medium. We then define the global calibration quality CQ of the
whole video sequence as the average of static calibration quality values.

According to the results presented in Fig. 2 on the left, online blind calibra-
tion yields statistically higher calibration quality than offline calibration (95%
confidence interval of [0.13, 0.19] using paired difference t-test). Visual inspection
of worst cases revealed that the sequences for which offline calibration performs
similarly or slightly better contains either mostly noise, static fluorescence sig-
nal, non-sufficient moving fluorescent signal or only thin fluorescent structures.
For all 89 sequences, the first online calibration succeeded after less than 30
seconds of moving fluorescent signal, a delay which is clearly compatible with
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clinical practice. Regarding the sequences acquired with a probe of n = 10, 000
fibers for example, computation time was less than 4 ms per frame in the buffer
for performing all regressions, and less than 300 ms for system inversion.

We then propose to evaluate the impact of the calibration on image recon-
struction by measuring the noise (static and dynamic) in a calibrated sequence.
For this purpose, we compute the average of the (Delaunay-based) total varia-

tion [6] on all T frames of the sequence:
∑T

t=1

∑
(i,j)∈E |ûi(t) − ûj(t)|/(|E|T ).

Results show that the measured noise is statistically lower after online blind
calibration than after offline calibration (95% confidence interval of [−55,−33]
using paired difference t-test). The improvement of image quality, from offline
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Fig. 2. Left: Calibration Quality (CQ) of 89 sequences processed by online versus
offline calibration. Right: Pipeline of online blind calibration, highlighted in gray boxes.
Dotted arrows show source input (top) and calibration update (bottom).

Fig. 3. Endomicroscopy image portions of Barrett’s Esophagus, from 3 sequences pro-
cessed by offline calibration (top) or online calibration (bottom). Bottom images ap-
pear much less noisy although no spatial smoothing is performed by online calibration.



646 N. Savoire, B. André, and T. Vercauteren

to online calibration, can be qualitatively appreciated on still images presented
in Fig. 3, and on two video sequences acquired on the bile duct and on the colon,
available as Supplemental Material (http://youtu.be/1WYEQysDBqQ).

4 Conclusion

We have presented an original method for online blind calibration of non-uniform
photodetectors, where only past signal is used to calibrate current signal in a
transparent way to the user. By performing robust linear regressions and regular-
izing an ill-posed inverse problem, our method is able to handle photodetectors
having both irregular spatial arrangement and individual slowly time-varying
photometric transfer functions. Using a relatively large database of complete
sequences acquired during clinical endomicroscopy procedures, we have demon-
strated that online blind calibration statistically outperforms standard offline
calibration. For future work, we plan to evaluate whether online blind calibra-
tion leads to higher perceived image quality and better diagnostic performance
for the physicians.
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Cotin, Stéphane I-50, I-91, I-553
Criminisi, Antonio III-75, III-369,

III-590
Cruz-Roa, Angel I-157
Csapo, Istvan III-280
Cuingnet, Rémi III-66
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