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Preface

The 15th International Conference on Medical Image Computing and Computer
Assisted Intervention, MICCAI 2012, was held in Nice, France, at the Acropolis
Convention Center during October 1–5, 2012.

Over the past 14 years, the MICCAI conferences have become a premier
international event with full articles of high standard, indexed by Pubmed, and
annually attracting leading scientists, engineers and clinicians working at the
intersection of sciences, technologies and medicine.

It is interesting to recall that the MICCAI conference series was formed in
1998 by the merger of CVRMed (Computer Vision, Virtual Reality and Robotics
in Medicine), MRCAS (Medical Robotics and Computer Assisted Surgery) and
VBC (Visualization in Biomedical Computing) conferences, and that the first
CVRMed conference was held in Nice in April 1995. At that time the CVRMed
conference was a single event and the proceedings, also published in Lecture
Notes in Computer Science (LNCS), consisted of a single volume of 570 pages.
In 2012 the MICCAI proceedings span three volumes and more than 2000 pages,
and the conference was complemented by 32 MICCAI satellite events (work-
shops, challenges, tutorials) publishing their own proceedings, several of them in
LNCS.

MICCAI contributions were selected through a rigorous reviewing process in-
volving an international Program Committee (PC) of 100 specialists coordinated
by a Program Chair and 2 Program Co-chairs from 3 continents. Decisions were
based on anonymous reviews made by 913 expert reviewers. The process was
double blind as authors did not know the names of the PC members/reviewers
evaluating their papers, and the PC members/reviewers did not know the names
of the authors of the papers they were evaluating.

We received 781 submissions and after the collection of over 3000 anonymous
review forms, the final selection was prepared during a 2-day meeting in Nice
(12–13 May 2012) attended by 50 PC members. They finalized the acceptation
of 252 papers (i.e., acceptance rate of 32%) and also prepared a short list of
candidate papers for plenary presentations. The accepted contributions came
from 21 countries and 5 continents: about 50% from North America (40% USA
and 8% Canada), 40% from Europe (mainly from France, Germany, the UK,
Switzerland and The Netherlands), and 10% from Asia and the rest of the world.

All accepted papers were presented during 6 poster sessions of 90 minutes
with the option, this year for the first time, of displaying additional dynamic
material on large screens during the whole poster session. In addition, a subset
of 37 carefully selected papers (mainly chosen among the short list of candidate
papers recommended by PC members) were presented during 7 single-track ple-
nary oral sessions.



VI Preface

Prof. Alain Carpentier, President of the French Academy of Sciences, was the
Honored Guest of MICCAI 2012 for his pioneering and visionary role in several
of the domains covered by MICCAI. Prof. Carpentier addressed the audience
during the opening ceremony along with Prof. Michel Cosnard, the CEO of
Inria, and introduced one the keynote lectures.

Prof. Jacques Marescaux, director of the Strasbourg IHU (Institut Hospitalo-
Universitaire) delivered the keynote lecture “Surgery for Life Innovation: Infor-
mation Age and Robotics” and Prof. Michel Häıssaguerre, director of the Bor-
deaux IHU, delivered the keynote lecture “Preventing Sudden Cardiac Death:
Role of Structural and Functional Imaging”. Both of these lectures were out-
standing and inspiring.

The conference would not have been possible without the commitment and
hard work of many people whom we want to thank wholeheartedly:

– The 100 Program Committee members and 913 scientific reviewers, listed in
this book, who worked closely with us and prepared many written reviews
and recommendations for acceptance or rejection,

– Xavier Pennec as the Chair for the organization of the 32 satellite events
(workshops, challenges, tutorials) with the assistance of Tobias Heimann,
Kilian Pohl and Akinobu Shimizu as Co-chairs, and all the organizers of
these events,

– Agnès Cortell as the Local Organization Chair, who successfully coordinated
all the details of the organization of the event with the support of a local orga-
nizing team (composed of Marc Barret, Grégoire Malandain, Xavier Pennec,
Maxime Sermesant and two of us), several Inria services (involving heavily
Odile Carron and Matthieu Oricelli), and the MCI company,

– Maxime Sermesant as MICCAI Website Chair,
– Grégoire Malandain for the new organization of posters including digital

screens,
– Isabelle Strobant for the organization of the PC meeting in Nice, the invita-

tions of the MICCAI guests, and her constant support during the preparation
of the event,

– Gérard Giraudon, director of Inria in Sophia Antipolis, for his constant sup-
port,

– Sebastien Ourselin for his help in coordinating industrial sponsorship,
– All students and engineers (mainly from Asclepios and Athena Inria teams)

who helped with the scientific and local organization,
– Emmanuelle Viau, who coordinated the team at MCI including in particular

Thibault Claisse and Thibault Lestiboudois,
– Jim Duncan as the President of the MICCAI Society and its board of direc-

tors who elected MICCAI 2012 to be held in Nice,
– Janette Wallace, Johanne Guillemette and Chris Wedlake for the liaison with

the MICCAI Society,
– James Stewart for his precious help with the Precision Conference System,
– All our industrial and institutional sponsors and partners for their fantastic

support of the conference.



Preface VII

Finally, we would like to thank all the MICCAI 2012 attendees who came
to Nice from 34 countries from all around the world, and we look forward to
meeting them again at MICCAI 2013 in Nagoya, Japan, at MICCAI 2014 in
Cambridge, Massachusetts, USA and at MICCAI 2015 in Munich, Germany.

October 2012 Nicholas Ayache
Hervé Delingette

Polina Golland
Kensaku Mori
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Barré, Arnaud
Basavanhally, Ajay
Batmanghelich, Nematollah
Bazin, Pierre-Louis
Beichel, Reinhard
Belongie, Serge
Ben Ayed, Ismail
Benajiba, Yassine
Benali, Habib
Bengtsson, Ewert
Bergeles, Christos
Berger, Marie-Odile
Bergtholdt, Martin
Berks, Michael
Bernal, Jorge Luis
Bernard, Olivier
Bernus, Olivier
Betrouni, Nacim
Bezy-Wendling, Johanne
Bhatia, Kanwal
Bhotika, Rahul
Biesdorf, Andreas
Bilgazyev, Emil
Bilgic, Berkin
Bishop, Martin
Bismuth, Vincent
Blaschko, Matthew
Bloch, Isabelle
Bloy, Luke
Blum, Tobias
Bogunovic, Hrvoje
Boisvert, Jonathan
Bosch, Johan
Bossa, Matias Nicolas
Bouarfa, Loubna
Bouix, Sylvain
Boukerroui, Djamal
Bourgeat, Pierrick
Bovendeerd, Peter

Brady, Michael
Breitenreicher, Dirk
Brock, Kristy
Brost, Alexander
Brun, Caroline
Burlina, Philippe
Butakoff, Constantine
Buvat, Irène
Caan, Matthan
Cahill, Nathan
Cai, Weidong
Cameron, Bruce
Camp, Jon
Cardenas, Valerie
Cardenes, Ruben
Cardoso, Manuel Jorge
Carmichael, Owen
Carson, Paul
Castaeda, Victor
Castro-Gonzalez, Carlos
Cathier, Pascal
Cattin, Philippe C.
Celebi, M. Emre
Cetingul, Hasan Ertan
Chakravarty, M. Mallar
Chan, Raymond
Chappelow, Jonathan
Chaux, Caroline
Chen, Elvis C. S.
Chen, Terrence
Chen, Ting
Chen, Xinjian
Chen, Yen-Wei
Chen, Yunmei
Cheng, Guang
Cheng, Jian
Cheriet, Farida
Chintalapani, Gouthami
Chinzei, Kiyoyuki
Chitphakdithai, Nicha
Chou, Yiyu
Chowdhury, Ananda
Christensen, Gary
Chu, Chia-Yueh Carlton
Chung, Moo K.



Organization XV

Chupin, Marie
Cinquin, Philippe
Ciofolo, Cybele
Ciompi, Francesco
Ciuciu, Philippe
Clark, Alys
Clarkson, Matthew
Cleary, Kevin
Clerc, Maureen
Clouchoux, Cédric
Cloutier, Guy
Combès, Benôıt
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Douglas, Tania
Douiri, Abdel
Dowling, Jason
Doyle, Scott
Drangova, Maria
Drechsler, Klaus
Drobnjak, Ivana
Duan, Qi
Duchateau, Nicolas
Duchesnay, Edouard
Duchesne, Simon
Duriez, Christian
Durrleman, Stanley
Dzyubachyk, Oleh
Eagleson, Roy
Ebbers, Tino
Ecabert, Olivier
Ehrhardt, Jan
Elad, Michael
El-Baz, Ayman
Elen, An
Eleonora, Fornari
Elhawary, Haytham
El-Zehiry, Noha
Ennis, Daniel
Enquobahrie, Andinet
Erdt, Marius
Eskandari, Hani
Eskildsen, Simon
Eslami, Abouzar



XVI Organization

Essert, Caroline
Fahrig, Rebecca
Fallavollita, Pascal
Fan, Yong
Farag, Aly
Fedorov, Andriy
Fei, Baowei
Felblinger, Jacques
Fenster, Aaron
Fetita, Catalin
Fiebich, Martin
Figl, Michael
Fischer, Gregory
Fishbaugh, James
Fitzpatrick, J. Michael
Fleig, Oliver
Florack, Luc
Fonov, Vladimir
Foroughi, Pezhman
Fouard, Céline
Fradkin, Maxim
Freiman, Moti
Friboulet, Denis
Fripp, Jurgen
Fritzsche, Klaus H.
Frouin, Frédérique
Frouin, Vincent
Funka-Lea, Gareth
Fuster, Andrea
Gagnon, Langis
Gangloff, Jacques
Ganz, Melanie
Gao, Mingchen
Gao, Wei
Gao, Yi
Garcia-Lorenzo, Daniel
Garvin, Mona
Gassert, Roger
Gatenby, Chris
Gee, Andrew
Georgescu, Bogdan
Georgii, Joachim
Geremia, Ezequiel
Ghanbari, Yasser
Gholipour, Ali

Ghosh, Aurobrata
Giannarou, Stamatia
Gibaud, Bernard
Gibson, Eli
Gilles, Benjamin
Gilson, Wesley
Giusti, Alessandro
Glaunès, Joan Alexis
Glocker, Ben
Gobbi, David
Goh, Alvina
Goksel, Orcun
Gonzalez Ballester, Miguel Angel
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Awards Presented at MICCAI 2011, Toronto

MICCAI Society Enduring Impact Award Sponsored by Philips: The Enduring
Impact Award is the highest award of the MICCAI Society. It is a career award
for continued excellence in the MICCAI research field. The 2011 Enduring Im-
pact Award was presented to Chris Taylor, Manchester University, UK.

MICCAI Society Fellowships: MICCAI Fellowships are bestowed annually on
a small number of senior members of the society in recognition of substantial
scientific contributions to the MICCAI research field and service to the MICCAI
community. In 2011, fellowships were awarded to:

– Christian Barillot (IRISA-CNRS, France)
– Gabor Fichtinger (Queens University, Canada)
– Jerry Prince (Johns Hopkins University, USA)

Medical Image Analysis Journal Award Sponsored by Elsevier: Ola Friman, for
the article entitled: “Probabilistic 4D Blood Flow Tracking and Uncertainty
Estimation”, co-authored by: Ola Friman, Anja Hennemuth, Andreas Harloff,
Jelena Bock, Michael Markl, and Heinz-Otto Peitgen

Best Paper in Computer-Assisted Intervention Systems and Medical Robotics,
Sponsored by Intuitive Surgical Inc.: Jay Mung, for the article entitled “A Non-
disruptive Technology for Robust 3D Tool Tracking for Ultrasound-Guided In-
terventions”, co-authored by: Jay Mung, Francois Vignon, and Ameet Jain.

MICCAI Young Scientist Awards: The Young Scientist Awards are stimulation
prizes awarded for the best first authors of MICCAI contributions in distinct
subject areas. The nominees had to be full-time students at a recognized uni-
versity at, or within, two years prior to submission. The 2011 MICCAI Young
Scientist Awards were given to:

– Mattias Heinrich for his paper entitled “Non-local Shape Descriptor: A New
Similarity Metric for Deformable Multi-modal Registration”

– Tommaso Mansi for his paper entitled “Towards Patient-Specific Finite-
Element Simulation of Mitral Clip Procedure”

– Siyang Zuo for his paper entitled “Nonmetalic Rigid-Flexible Outer Sheath
with Pneumatic Shapelocking Mechanism and Double Curvature Structure”

– Christof Seiler for his paper entitled “Geometry-Aware Multiscale Image
Registration via OBB Tree-Based Polyaffine Log-Demons”

– Ting Chen for her paper entitled “Mixture of Segmenters with Discriminative
Spatial Regularization and Sparse Weight Selection”
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Abstract. Model-based segmentation approaches have been proven to
produce very accurate segmentation results while simultaneously provid-
ing an anatomic labeling for the segmented structures. However, variations
of the anatomy, as they are often encountered e.g. on the drainage pattern
of the pulmonary veins to the left atrium, cannot be represented by a single
model. Automatic model selection extends the model-based segmentation
approach to handling significant variational anatomies without user inter-
action. Using models for the three most common anatomical variations of
the left atrium, we propose a method that uses an estimation of the local
fit of different models to select the best fitting model automatically. Our
approach employs the support vector machine for the automatic model se-
lection. The method was evaluated on 42 very accurate segmentations of
MRI scans using three different models. The correct model was chosen in
88.1 % of the cases. In a second experiment, reflecting average segmen-
tation results, the model corresponding to the clinical classification was
automatically found in 78.0 % of the cases.

1 Introduction

With a prevalence of 0.4% to 1%, atrial fibrillation (AF) is the most common
cardiac arrhythmia in the USA and in Europe [1] and can lead to severe, life-
threatening conditions like stroke. Catheter ablation procedures aim at the elec-
trical isolation of reentry pathways and ectopic foci that are causing AF in the
atrial tissue. Triggering foci are often found in the pulmonary veins (PVs) of
the left atrium (LA) [2]. The knowledge of the anatomy of the LA is crucial
for successful procedures as it enables accurate planning of ablation lines and
guidance during the procedure.

With the advent of ablation procedures to treat AF by the isolation of the
PVs, interest in the assessment of the PV configuration rose. Typically, the LA
is joined by two PVs on each side through individual ostia: left superior and left
inferior PV (LSPV, LIPV) on the left side of the LA; right superior and right
inferior PV (RSPV, RIPV) on the right. This, typical pattern is found in about
60 % of the patients [3]. The most frequent variation on the left side of the LA
is the common left trunk (CLT). Both left PVs merge into a single trunk in the
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proximity of the LA body. With a distance from the ostium to the bifurcation
shorter than 1 cm to 1.5 cm, depending on the study [3,4], it is called short CLT
and occurs in 10 % of the patients while the CLT is found in 4 % to 8 % of
the patients. Kaseno et al. suggest a typical configuration as well as the short
CLT to be normal [4]. On the right side, the right middle PV pattern (RMPV),
which is characterized by an accessory PV joining the LA body with a separate
ostium, is found in 13 % to 24 % of the patients. The presence of concurrent
variations on both sides of the LA is rarely reported.

Using model-based segmentation, very accurate segmentation results have
been demonstrated in the past for the heart [5,6,7] in general and the LA in
particular [8]. However, using only a single model, variations in the anatomy of
the LA cannot be reflected and thus, the segmentation is inaccurate. Different
approaches emerged from the necessity to account for the variational anatomy
while preserving the advantages of model-based segmentation. Zheng et al. pre-
sented a part based model approach, adapting the chamber with the LAA and
the four major PVs as individual parts on C-arm CT datasets [9]. In the adapted
state, the parts are joined, enabling the approach to represent both, two individ-
ual PVs on the left as well as the CLT pattern. Hanna et al. introduced a hybrid
method combining model-based segmentation and guided region growing for the
automatic detection of three PV patterns on the right side of the LA in CT im-
ages [10]. This approach, however, is unsuitable for MRI because of image noise,
lack of gray-level calibration, field inhomogeneities and artifacts due to patient
movement. Incorporating anatomical variations into model-based segmentation
remains a challenging and active area of research.

In our proposed approach, model-based segmentation as described in [11] is
carried out with multiple models. We define a measure of the local segmentation
fit in the areas where the models reflect the anatomical variations without the
availability of ground truth annotations. This measure is then used as the input
for a support vector machine (SVM) to automatically select the model resulting
in the most accurate segmentation.

2 Method

2.1 Used Image Database

The used database consists of 59 whole heart (WH) scans of individual patients
which were classified according to the anatomical variant by a clinical expert.
About 53 % of the atria had normal anatomy (typical or short CLT on the left
and two PVs on the right), 14 % the CLT and 25 % the RMPV pattern. The
scans were acquired on Philips Achieva 1.5T systems at Kings College London
using either contrast enhanced inversion recovery turbo field echo (IR-TFE) or
steady state free precession (SSFP) protocols, both with SENSE encoding for
shorter acquisition times. The same cardiac and breathing cycle was achieved
using a navigator technique. The image resolution ranged from 0.72 to 1.48 mm
in-plane and from 1.5 to 2.0 mm through-plane.
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2.2 Shape Models of the Left Atrium

To create models for the most frequent anatomical variations, 32 WH scans were
arbitrarily selected from the database: seven with typical anatomy, eleven with
short CLT, seven with CLT and seven with RMPV pattern. We used the left
atrium model described in [11] as the basis for the model generation. This model
has two PVs on each side and was complemented by the trunk of the left atrial
appendage (LAA). The model was manually adapted to one arbitrary dataset
and an initial feature training was carried out to allow for coarse automatic
segmentations of further datasets, which were manually refined to generate the
ground truth. Training was carried out on 18 datasets, having either typical
anatomy or short CLT on the left and two PVs on the right to represent the
normal anatomy (normal model). To generate a model for the most frequent
anatomical variation on the left side of the LA, the CLT, selective training on
seven CLT datasets was performed (CLT model). For the RMPVmodel, a generic
cylinder was manually merged to the original mesh, estimating its position, to
account for the accessory PV joining the LA. Using this mesh in ground truth
annotation for the RMPV-datasets and the following training led to the RMPV
model. The resulting mean meshes for all three models are depicted in Fig. 1.

(a) normal model (b) CLT model (c) RMPV model

Fig. 1. Resulting labeled mean meshes after training. The left atrial body is labeled
green. All pulmonary veins are colored in violet. The LAA is colored in mint green. A
special label was assigned to the CLT in dark violet (b).

2.3 Segmentation Framework

In order to generate a patient specific segmentation, consisting of a triangle
mesh with labeled triangles, the automatic model-based segmentation framework
described in [11] was used. In a nutshell, a hierarchical model of the organ with
boundary detection functions trained on reference data is adapted to the 3-D
image data. The attraction of the model to the image boundaries is realized by
the search for target points, which is carried out for every triangle center along
discrete positions on a search profile in the direction of the triangle normal.
Target points are selected at the position having the largest weighted feature
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response, reflecting the reliability of the found image feature (eg. gray-level or
gradient). The aim of the following adaptation steps is to successively minimize
the distance between triangle centers and target points. In the beginning, the
PVs and the LAA are inactive and only the LA body is adapted to the image. By
applying a single similarity transform, the pose is corrected. Further adaptation
is achieved by employing an affine transform to the whole mesh. Next, a multi-
affine adaption is performed. To enhance segmentation accuracy, we assigned an
extra transformation to the right side of the LA. In the last segmentation step
a deformable adaption is performed to allow the triangle mesh to fully adapt
to the patient’s anatomy. In this step, the LAA and the PVs are successively
activated and adapted to the image. Throughout the entire segmentation process,
an external energy term is used that represents the image forces pulling the
mesh towards image features. During deformable segmentation, the shape is
constrained by an internal energy term which maintains the similarity to the
original mean mesh.

For evaluation purposes, leave-one-out crossvalidation on the ground truth
data was employed. Segmentation with the four chamber heart model, described
in [11], previously trained on MRI, has been used to initialize the position of
the LA. Symmetric constrained point-to-surface (CPS) distances between the
automatically adapted meshes and the ground truth segmentations were com-
puted according to [11]. The mean CPS distances εmean are shown in Tab. 1.
The overall CPS distance of about 1.1 mm for all models is in the range of the
voxel resolution. Towards the more variable structures, like the LAA and the
PVs, the segmentation error rises but averages to less than 2 mm. Compared to
Ecabert et al. [11], who used CT-data with high resolution, the mean errors are
larger. This difference is mainly accounted to the coarser resolution of the image
data used in our work and the more challenging image characteristics of MRI.

Table 1. Mean constrained point-to-surface distances εmean [mm] resulting from the
leave-one-out crossvalidation for the three models

Model
εmean per region [mm]

LA body LSPV LIPV CLT RSPV RIPV RMPV LAA Whole mesh

Normal 0.87 1.56 1.81 – 1.41 1.11 – 1.70 1.14
CLT 0.81 1.17 1.73 1.18 1.17 1.16 – 1.25 1.01
RMPV 0.79 0.94 0.78 – 1.27 1.60 1.00 1.51 1.05

2.4 Automatic Model Discrimination

To improve the model-based segmentation the three models have to be automat-
ically selected for the respective datasets. The developed models possess differ-
ences only in certain regions, leading to different segmentation results in those
regions on the same dataset. Information about the segmentation fit is extracted
in these regions of interest (ROIs) (see Fig. 2) and used as input for the SVM.
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The classification problem is split into two binary classification sub-problems,
testing each variant against the normal model. In the first sub-problem the
left sides of the two models that are expected to result in different outcomes in
the region of the left PVs are considered. Thus, the ROIs of the nomal model and
the CLT model are chosen (Fig. 2a and 2b). Using the analogous argumentation
for the right side of the models, the ROIs in the normal model and the RMPV
model, highlighted in Fig. 2c and 2d, are selected for the second sub-problem.

(a) normal model (b) CLT model (c) normal model (d) RMPV model

Fig. 2. Regions of interest (ROIs) highlighted in red. For the first sub-problem, the
regions in (a) and (b) are considered. For the second sub-problem, the regions in (c)
and (d) are selected.

Assessment of the segmentation fit exploits the fact that the model is only
approximately adapted to the detected target points. To assess the segmentation
fit, the search for target points is started again after the segmentation process is
complete to get the distance to the target point and the corresponding feature
response for each triangle center. We considered two approaches to construct
the observation vectors for the SVM. Firstly, the vectors were constructed using
spatial coding, ordered after the triangle index. Secondly, the ROIs were sta-
tistically analyzed and the resulting histogram bins were used as the elements
of the observation vector. Considering different search profile lengths (2, 4 and
10 mm), we extracted 24 different kinds of SVM input vectors as candidates for
our discriminative measure. As input data for the SVM, the histograms of the
unsigned distances to the target point at a search profile length of 2 mm were
found to perform the best.

For the training of the SVM, the complete image database of 59 WH scans was
considered to raise the number of available data and at the same time reducing
the bias introduced on the datasets already used in the training of the models.
All datasets were automatically segmented with the three models and selected as
training data if one of the models yielded a very good segmentation result. For
the annotated 32 datasets a mean CPS distance in the area of all ostia of less than
2 mm was considered to be very good. The automatic segmentation results for
the remaining datasets were qualitatively evaluated and required to be similarly
accurate in the regions of the ostia. In total, 42 datasets, of which 23 have been
used in ground truth annotation, were selected for training of the SVM. To
optimize the kernel-parameters for the Gaussian kernel, we performed the grid
search approach with 5-fold crossvalidation according to [12] and adjusted the
class weights to reflect the distribution of the PV-patterns in the image data.
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3 Results

3.1 Discrimination Performance for Accurate Segmentations

The aim of the first experiment was to evaluate the automatic model discrim-
ination under optimal conditions. Leave-one-out crossvalidation was performed
on the 42 very good training datasets. The class distribution of the datasets
is as follows: 57 % normal anatomy, 31 % RMPV, 12 % CLT pattern. For the
first sub-problem in 40 of the 42 cases the model according to the clinical
classification was selected. For the second sub-problem the correct model was
chosen for 39 datasets (92.86 %). Combining the two sub-problems, the cor-
rect model was chosen for 88.1 % of the datasets, meaning that only five of 42
datasets were falsely classified. The confusion matrix summarizes the classifica-
tion results (Tab. 2). Examination of the automatically selected segmentations
of the five datasets revealed that in one case, the automatically selected model
(CLT model, yellow in Fig. 3a) yielded an absolutely comparable segmentation
result, despite not matching the clinical classification (short CLT), as indicated
by brackets in Tab. 2. Three datasets with a present third PV were not correctly
classified by the SVM. In two of the cases the third PV has an early branching
in the ROI of the RMPV model. In the other misclassified case the accessory PV
has very low contrast. Taking into account that in one case the model chosen
by the SVM yields a similar result, despite not matching the clinical classifica-
tion, an accurate automatic segmentation is achieved for 90.5 % of the datasets
which means an increase of 33.5 % compared to using a single model covering
the majority class.

3.2 Discrimination Performance for Average Segmentations

We evaluated the model discrimination method in a second experiment with the
17 remaining datasets which were previously excluded because the automatic
segmentation did not fulfill the criterion used to identify very accurate segmen-
tations. It is known a priori that five of the datasets cannot be segmented satis-
fyingly with either of the models because their variants are not considered. Seven
of the twelve remaining datasets can be segmented using the model of the major-
ity class. In nine of the twelve cases, the SVM chose the model corresponding to
the clinical classification for the first sub-problem, while only one dataset was
falsely classified in the second sub-problem. The confusion matrix in Tab. 3
includes the results of the previous experiment to reflect the performance on
average data. Summing it up, for the complete database, the model correspond-
ing to the clinical classification was automatically chosen in 78.0 % of the cases.
As in the first experiment, we further examined the segmentation results of the
misclassified cases. With the automatic model selection approach one dataset
with a normal PV configuration was classified in the CLT class which resulted
in an more accurate segmentation of the left PVs (see Fig. 3b). The RMPV
was detected in one of two cases while simultaneously classifying the left side
as CLT which yields a more accurate segmentation. In the other case the acces-
sory PV is surrounded by structures that are not visible in the other datasets.
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(a) (b) (c)

Fig. 3. Examples for successful selection of the better fitting model. Automatic seg-
mentation results with the normal model is shown in yellow, model CLT is shown in
green and model RMPV in blue.

Table 2. Confusion matrix for accurate
segmentations. Values in brackets indicate
false automatic classifications yielding an in-
creased segmentation accuracy.

Actual Prediction
Class normal CLT RMPV CLT+RMPV

normal 23 (1) 0 0
CLT 1 4 0 0
RMPV 3 0 10 0
other – – – –

Table 3. Confusion matrix for aver-
age segmentations

Prediction
normal CLT RMPV CLT+RMPV

29 (2) 0 0
2 6 0 0
4 0 10 (1)
2 1 2 0

Especially in the region of the ROI, model RMPV does not yield an accurate
segmentation. Considering the datasets that were classified falsely but result in
a more accurate segmentation with the automatically selected model, 10 of the
12 additional datasets were segmented correctly. For the complete database an
accurate segmentation has been achieved in 28.8 % more of the cases compared
to using only one model covering the majority class.

4 Conclusion

We present a new approach that enables multi-model-based segmentation by
comparing the local fit of different adapted models and automatically choosing
the best model using an SVM. Using the three created models, the method
achieved a correct clinical classification in 88.1 % of the cases and increased the
fraction of datasets that could be accurately segmented from 57 % to 90.5 %
under ideal conditions. If accurate segmentations are not achieved, the classifier
performs less reliably as shown in the second experiment. Further improvements
could be achieved by the generation of new models covering more variants.
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Abstract. Curvilinear structures are common in medical imaging, which
typically require dedicated processing techniques.We present a new struc-
ture to process these, that we call the polygonal path image, denoted P.
We derive fromP some curvilinear structure enhancement and analysis al-
gorithms. We show that P has some interesting properties: it generalizes
several concepts found in other methods; it makes it possible to control
the smoothness and length of the structures under study; and it can be
computed efficiently. We estimate quantitatively its performance in the
context of interventional cardiology for the detection of guide-wires in X-
ray images. We show that P is particularly well suited for this task where
it appears to outperform previous state of the art techniques.

Keywords: curvilinear structures, image segmentation, shortest path.

1 Introduction

Curvilinear structures appear naturally in the human body and thus in medical
images. Their segmentation is a specific but extensively studied topic that covers
a wide variety of naturally elongated biological structures and medical tools: vas-
cular and cerebral structures and interventional tools like catheters, guide-wires,
etc. In this paper, we propose a locally shortest path technique for the processing
of curvilinear structures. The proposed technique associates a generalization of
several state of the art techniques, an intuitive parameterization, and an effi-
cient computational scheme. We illustrate its performance for the difficult task
of guide-wire segmentation in X-ray fluoroscopy. We propose quantified results
on clinical data and comparison with other state of the art techniques.

2 Background

2.1 Guide-Wire Detection in X-Ray Fluoroscopy

Interventional radiology/cardiology therapies imply inserting guide-wires into
the vascular system of patients under the monitoring of X-ray video, called fluo-
roscopy. Such procedures are minimally invasive and have been used increasingly

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 9–16, 2012.
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often in recent years, in areas ranging from coronary angioplasty to tumor em-
bolization. Over the past years, guide-wire detection in fluoroscopic images has
gained interest and maturity among the image processing community [1,2,3,4]. A
large number of applications rely upon its characteristics, such as visualization
enhancement, 3D guide-wire reconstruction and respiratory motion tracking. In
X-ray images, guide-wires appear as thin, dark curves (see Fig. 1 (a)). The chal-
lenge in their detection arises from their low contrast to noise ratio and the
superposition with disturbing clutter and anatomical structures.

2.2 State of the Art

Curvilinear structure segmentation techniques and particularly guide-wire detec-
tion in X-ray fluoroscopy is often presented as a 3-step pipeline: (1) The local
building of a feature map representing the probability of presence of an elongated
structure at each pixel [2,3,4,5,6]. Its computation often involves considering the
neighborhood of each pixel, on which structures are assumed to be straight. (2)
A semi-local feature map reinforcement, typically enhancing responses aligned
along a pattern - e.g. 2nd order, circle or parabola [1], or tensor voting and co-
herence enhancing diffusion. (3) A global structure segmentation. At this stage,
simple operators like thresholding are generally not sufficient, and a higher level
process is invoked to segment the feature map. It may involve grouping [3,4] or
tracking [6].

However some techniques, like locally shortest paths [7] and geodesic path
voting [8] are exceptions to this framework. They discard complex curve models
(linear, 2nd order etc.) instead relying on the concept of path. Locally shortest
paths associate a locally optimal path to every pixel and use the cost of such
paths for segmentation. Geodesic path voting relies on a starting point on the
structure to segment from which a set of shortest paths are computed to a
large number of automatically determined endpoints in the image. The geodesic
density (number of paths passing through a pixel) is used to enhance lines.

3 Method

3.1 The Polygonal Path Image

Presentation: As noted above, most line enhancement techniques select at
each pixel a curve that best fits locally following a model: line segment, 2nd

order model or “arbitrary” smooth curves. We propose a single tunable model
that generalizes these steps. Our local curve model is a path, that is characterized
by length, and smoothness. Our aim is still to select at each pixel a best-fitting
curve of given smoothness and length. However, instead of assigning to each
pixel a measure associated to a local curve fitting, we propose to use the whole
set of locally fitted curves over the image to derive more comprehensive line
enhancement techniques.

The smoothness of the paths is controlled by considering regular polygonal
paths defined by two parameters: a total arclength L and a length l of every
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line segment. These two parameters have a simple intuitive meaning and are set
according to the properties of the structure to enhance. The polygonal constraint
is a generalization of the classical local path approach [7] (for l = 1) enabling the
encoding of the a-priori tortuosity of the structures to detect. From a higher level
perspective, L is equivalent to the steps of the previous section. Indeed a single
segment in the polygon is equivalent to the local step (i.e. segment matching).
Considering a few segments is like semi-local processing, reinforcing the aligned
responses of the local step. Finally a large number of segments takes into account
long paths as in the global step.

Definition of P: We consider a potential image I of strictly positive values,
with structures of interest exhibiting lower values. For each pixel p ∈ I, Φp is a
set of admissible paths. We assign to each such path P ∈ Φp a cost J(P) that is
the sum of the values of I along P (Eq. 1). The path yielding the lowest cost in
Φp is denoted the locally optimal path P∗

p at pixel p (Eq. 2). The set of admissible
paths is defined by some constraints: Paths shall be regular polygonal lines of
given length L, and shall have controlled curvature: at each pixel the path shall
be included inside a cone of given orientation and aperture [7]. These constraints
enforce locality, the smoothness that is often expected in medical images, and
basically defines a search range around each pixel. We call the “polygonal path
image” (noted P) the structure that contains a path and its cost for each pixel.

J(P) =
∑
p∈I

I(p).1P(p) (1) P∗
p = argmin

P∈ΦL
p

J(P) (2)

Complexity: The computation of P with a brute force approach has expo-
nential complexity with regard to L: O(LkL). Computing all the locally optimal
paths in the image for n polygonal segments before considering the optimal paths
of n+ 1 segments, allows us to achieve linear complexity O(L) by adapting the
original algorithm of Vincent [7]. This makes it possible to consider P with long
paths (e.g. one hundred pixels). For example, it takes approximately 10s to pro-
cess a 5122 image with such long paths. In terms of memory, we require the
initial image times the number of polygon segments to store the paths.

3.2 Structure of the Path Image

Some paths originating from random locations on a clinical image are shown on
Fig. 1 (b). We note that paths tend to converge into bundles around the main
linear structures, where the cost in the potential image is lower. Those origi-
nating outside of the linear structures take the shortest possible way to reach
them. Those that start directly on linear structures stay on them until the end
or until paths constraints are exceeded. High path density is thus characteristic
of the linear structures. Also, the set of paths intersecting at a pixel convey some
local geometry information on the linear structures. Fig. 1 (c) illustrates paths
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(a) (b) (c) (d)

Fig. 1. (a) X-ray fluoroscopy image from an angioplasty exam illustrating a guide-wire,
with a long smooth curve appearance and low contrast to noise ratio. (b): 500 locally
optimal paths originating from random locations. Observe their tendency to converge
to the linear structures of the image and especially to the guide-wire. (c,d) The set of
paths intersecting at one given point (belonging to the guide-wire, in (c), and to the
background in (d), in this case the point is indicated by the dark spot).

intersecting at a point on the guide-wire. We observe (i) a high number of paths
crossing at this point – nearly 11 000 in this case (ii) that they are aligned with
the guide-wire in a small neighborhood around the considered pixel.

3.3 Image Processing with P

PathVoting: Weobserved that paths formbundles around themain linear struc-
tures. Therefore we propose that each minimal path vote for all the pixels it passes
through, to reinforce path overlapping. This approach is similar to that of Carlotto
[9] and to geodesic voting [8], which also perform voting on sets of paths. Several
voting schemes are possible: e.g. each vote can count the same, which is equivalent
to counting the number of paths intersecting at one pixel (we note the resulting
image ϑ(P) - Eq. 3), or each vote can be weighted (with a value denoted ϑw(P) -
Eq. 4).We can also restrict voting to the paths thatmeet some a priori criteria, e.g.
preventing very tortuous paths from voting. Such paths occur in parts of the image
were there is little relevant linear structure and close to high contrast objects. To
this end, we define a tortuosity metric τ to penalize abrupt changes in direction,
i.e. 0 for a path with a change of π/2 rad and 1 for a perfectly straight path. τ(P) is
given by Eq. 5 (whereV(k) is the vector formed by two consecutive vertexes ofP).
The operation of votingwith a path smoothness constraint is denoted ϑτmin(P). Its
result is illustrated in Fig. 2 (b).

ϑ(P) =
∑
p∈I

1Pp (3) ϑw(P) = −
∑
p∈I

w(p)1Pp (4)

τ(P) = 1

l2(n−2)

n−2∏
k=1

V(k).V(k + 1) (5)
ϑτmin(P) =

∑
p∈I

τ(Pp)>τmin

1Pp (6)

Pruning in P: Another way exploiting the structure of the path image is to
prune paths so as to select only a small set of relevant and non-redundant locally
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(a) (b) (c) (d) (e)

Fig. 2. (a) Dark top-hat of Fig. 1 (a), used as potential image. (b) Result of ϑτmin=0.6.
Despite a low CNR the guide-wire is significantly enhanced. (c) Path pruning with
x = 50% and τmin = 0.75. Observe how the conjunction of pruning and constrained
path smoothness help segment the guide-wire. (d) Close-up on a guide-wire segment
in Fig. 1 (a) overlaid with the directions extracted from P. They indicate the direction
of the closest curvilinear structure. On the structure itself the direction of the arrow is
not relevant, but the orientation is accurate. (e) Same direction field overlaid on ϑτmin .

optimal paths. To do so, we define a neighborhood relationship between paths
based on the partial Hausdorff distance. Then, we select the path of minimal cost
in P and prune all the neighboring paths. We iterate this process in a greedy
fashion, selecting the path of minimal cost again and pruning its neighbors, until
there is no more path in P or some stopping criterion is reached. The remaining
set of paths (typically less than 100) describes the linear features in the image
(see Fig. 2 (c)).

Estimating Local Orientation: We have illustrated in Fig. 1 that, when
they reach a linear structure, paths tend to follow and align with it. Therefore
the set of paths intersecting at a pixel on a curvilinear structure can be used to
derive its orientation (an angle in [0, π[). Outside of the curvilinear structures
the paths follow the shortest path leading to a linear structure. Their direction
thus indicates the shortest path to line-like structures. To estimate it, let us
consider at a given pixel p, the set of the paths {Pi} intersecting at p. For each
of these paths, we compute the tangent unit vector at point p: {ti}. Then we
find the unit vector vp yielding the maximal sum of scalar products with the
{ti}. This method is illustrated in Fig. 2 (d, e).

3.4 Evaluating and Comparing Line Enhancement Methods

To quantify the performance of our line enhancement techniques, we use ROC
analysis to characterize their ability to assign larger values to the pixels of the
structure of interest rather than to the background pixels. The Area Under
the ROC Curve (AUC) is an estimate of the probability that a classifier will
rank a randomly chosen pixel of the structure higher than a randomly chosen
pixel of the background. When the number of background pixels far exceeds
the number of pixels of the structure of interest, the computation of the AUC
can be restricted to the low false positive rate range, in our case [0, 5%]. We
normalize the AUC by the range, i.e. 5% here. In this context a random guess
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would yield a performance of only 2.5% and a perfect detector 100%. This metric
is denoted the “partial AUC”. In order to illustrate further the performance of
the method we compute the false positive rate for a fixed true positive rate of
90%. Obviously, the better the method, the lower this metric. To compute these
metrics, a trained operator manually defined ground truth T for each image,
representing the centerline of the structure. We denote by D the set of points
detected in an image for a given threshold. In order to take into account the
real width of the curvilinear structure, we define true positives as the pixels of
T that lie closer to D than a pre-defined distance d (typically the radius of the
guide-wire). False positives are defined as the detected pixels that lie further
from T than d. To make our results unbiased w.r.t. the line-width parameter
of the line enhancement techniques, we skeletonize the detected pixels before
computing the detection rates. Finally, in order not to corrupt our assessment
of line enhancement techniques with the presence of other interventional tools
or similar curvilinear structures we also compute the metrics associated to false
positives in an ROI around the marked truth.

4 Results

Our clinical case database consists of 12 clinical sequences of 9 images each, for
a total of 108 images. These images depict angioplasty exams with the injection
catheter, the guide-wire, the angioplasty balloon, the anatomical background,
and occasionally, stents and sternal wires. We compared our technique to two
state of the art line enhancement techniques : Frangi’s Vesselness [5] and Rotated
Filter Bank (RFB) [2]. They were found in several recent publications [2,10] to
constitute the current state of the art for methods that compute in each pixel the
probability to lie in a linear structure. Note that we are aware of dedicated meth-
ods for guide-wire segmentation that return a high level object describing the
guide-wire [3,4]. However, these methods typically rely on low-level descriptors,
and so can benefit from the type of work we present here. We hand-optimized
the set of parameters for each technique independently. Regarding Vesselness, we
set α and β to the values proposed in Frangi’s article [5]. The scale factor σ was
set to 2 pixel: the approximate guide-wire radius. For the RFB we relied on a
study [10] that concluded that a length of 61 and a width of 3 pixels was optimal
for this application. For ϑ(P) and ϑτmin(P), we set : l = 21, L = 210, τmin = 0.6.
The potential image on which the path costs are computed was obtained with a
simple morphological dark top-hat.

We computed the mean (AUCμ) and standard deviation (AUCσ) of the AUC
over the database and the FPR for a given TPR of 90%. We report them graph-
ically in Fig. 3. We observe that the line enhancement techniques derived from
P performed significantly better. This is exemplified by greater AUR values
and lower FPR. The local descriptors RFB and Vesselness performed similarly,
within a few percents whereas P achieves more than twice their performance.
In order to illustrate the performance of the different techniques, we selected an
optimal threshold that minimizes the sum of the missed detection rate and the
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false detection rate. We illustrate the thresholded images obtained with the four
methods in Fig. 3. The outcomes are well aligned with the conclusions driven
from the partial AUC: P based methods perform significantly better. We observe
that the results are generally speaking quite satisfactory: most of the guide-wire
is segmented, and only a few false positives remain in the background. We can
observe how the smoothness constraints in ϑτmin(P) removes some anatomical
false positives that yield tortuous paths. However two problems remain: Over
the whole database, the guide-wire tip, which is very contrasted attracts too
many paths (creating false positives in its vicinity) and is too tortuous to be
accurately fitted by our detector with the same setting as the guide-wire body
- It must be detected separately. Secondly, some linear structures are detected
in the background that are not guide-wires. Since they satisfy all the properties
that we selected for guide-wires, a higher level processing, based on other criteria
can handle them. For instance the presence of a tip is very characteristic of the
guide-wire, as well as the motion that animates it.

Fig. 3. Top : Performance of the four line enhancement techniques over our database.
From left to right: AUC results, the height of the columns is AUCμ and the error bars
represent mean AUCμ ± AUCσ. FPR for TPR= 90%. In both graphs the red series
is computed over the whole image and the blue one only inside the ROI. The ROI
used for FP is a band around the ground truth (see right image). Bottom rows: 2
result examples for optimal thresholds. From left to right : input image, ground truth,
Vesselness, RFB, ϑ(P) and ϑτmin(P). Observe that traditional methods enhance a large
amount of non relevant structures in the background and fail to enhance some parts of
the guide-wire. These problems are not present with ϑτmin(P). Note these are the exact
results of the techniques, no pruning has been performed for the P based methods.

5 Conclusion and Further Work

We have presented a new curvilinear structure processing scheme, the polygo-
nal path image. We have demonstrated its suitability for the task of guide-wire
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detection in X-ray fluoroscopy. We showed that P has several interesting prop-
erties: (i) the ability to control the smoothness and length of the structures to be
analyzed, (ii) a unification of local, semi local, and global curvilinear structure
analysis in a single framework and (iii) an efficient computational scheme. This
structure is a rich descriptor of the curvilinear structures present in images from
which we derived several tools: line enhancement, segmentation and direction
field computation techniques. We have demonstrated the relevance of polygo-
nal path voting schemes for guide-wire segmentation quantitatively in the ROC
analysis formalism and compared it to state of the art techniques. Future work
may include some natural extensions of the usage/construction of P, including
enhancement and segmentation operators on the path image and the quantita-
tive evaluation of the direction fields and of path pruning. Regarding guide-wire
segmentation, P is a new approach to the problem that yields significant im-
provement over state of the art methods. We plan to study in the near future
the incorporation of P into a complete guide-wire segmentation algorithm.
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Abstract. Dynamic overlay of 3D models onto 2D X-ray images has
important applications in image guided interventions. In this paper, we
present a novel catheter tracking for motion compensation in the Tran-
scatheter Aortic Valve Implantation(TAVI). To address such challenges
as catheter shape and appearance changes, occlusions, and distractions
from cluttered backgrounds, we present an adaptive linear discriminant
learning method to build a measurement model online to distinguish
catheters from background. An analytic solution is developed to effec-
tively and efficiently update the discriminant model and to minimize
the classification errors between the tracking object and backgrounds.
The online learned discriminant model is further combined with an of-
fline learned detector and robust template matching in a Bayesian track-
ing framework. Quantitative evaluations demonstrate the advantages of
this method over current state-of-the-art tracking methods in tracking
catheters for clinical applications.

1 Introduction

Catheter tracking has found important applications in image guided interven-
tions [2,5]. In this work, we present the work of tracking pigtail for dynamic
motion compensation in the transcatheter aorta valve implantation (TAVI). A
pigtail catheter is a type of medical device that is inserted into the aorta or
heart chamber to inject dyes in TAVI. Tracking the motion of a pigtail catheter
tip, which is the loose circle at a catheter’s distal end, can provide real-time
motion information for dynamic model overlay in TAVI [5]. Fig. 1.(a) shows
the dynamic overlay of an aorta model (i.e., the solid contour), based on tracked
pigtail catheter positions. Compared with the static overlay (i.e., the dotted con-
tour), which does not move with breathing and cardiac motions, the dynamic
overlay can update clinicians the position of aorta valves in real-time, therefore
could help clinicians achieve high precision in TAVI.

Also shown in Fig. 1. (b)(c)(d), the dynamic and complex clinical environment
in TAVI presents great challenges to the catheter tracking. When X-ray images
are acquired at arbitrary angles under continuous breathing and cardiac motions,
a catheter may show a shape of a circle, an ellipse, or even a straight line in

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 17–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



18 P. Wang et al.

Fig. 1. (a): The dotted contour is a static aorta model projected on 2D, and the
solid contour is a dynamically overlayed model based on the tracked catheter (yellow
rectangle) ; (b)(c): pigtail catheters in X-ray images; (d): close-up images

a 2D image. Moreover, there also exist in X-ray images many devices, such
as other catheters, stents and probes, which could occlude a large part of the
pigtail catheter. In past years, there have been work on medical device detection
and tracking [2,5]. In [2], an ellipsoid model is used to fit and tracking a lasso
catheter. In [5], a SSD (sum of squared differences) based catheter tracking is
used. However, only 10 sequences have been tested in the experiments.

To address aforementioned challenges, we present in this paper an online dis-
criminant learning method to adapt the tracking method to dynamic X-ray im-
ages. The contribution of this method is that a closed-form analytical solution is
developed to efficiently update a discriminant function directly from online im-
ages without updating sample co-variance matrices and subspaces as in previous
methods [6,8]. The solution is effective and efficient in that it directly minimizes
the classification error between tracking objects and backgrounds. Compared
with existing online learning work [3,6], our online discriminant learning has
a probabilistic formalization that allows us to develop an efficient strategy to
adaptively update the discriminant model from online data, instead of selecting
from feature candidates [3] or updating scatter matrices and solving eigenvectors
as in [6,8]. To handle dynamic changes of pigtail catheters, we further introduce
a Bayesian based fusion of multiple measurement models, including the online
discriminant model, an offline learned object detection model, and a robust tem-
plate matching model.

We validate the presented framework on a set of clinical data containing 198
sequences with totally more than 14,000 frames that are captured in several hos-
pitals during cardiac surgeries. Quantitative evaluations and comparison with the
state of the art methods [4,8,1] demonstrate that the presented adaptive learn-
ing and measurement fusion significantly improve the accuracy and robustness
of tracking.
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2 Online Discriminant Learning for Catheter Tracking

In this section, we introduce an online discriminant learning method to separate
catheters from backgrounds and to handle dynamic environments that could
change from one sequence to another. We denote the catheter class as the “pos-
itive” class Ω+ and the background as the “negative” class Ω−. An observed
image is denoted as Z. A data vector extracted from an image patch is denoted
as x, and its associated class label is �x. �x = 1 indicates that x belongs to the
catheter class, while �x = −1 indicates that it is from the background.

2.1 Probabilistic Linear Discriminant Analysis

There are many statistical learning methods such as SVM, AdaBoost, k-NN,
and Neural Networks. For the consideration of simplicity and computational
efficiency, the linear discriminant analysis is used. In the linear discriminant
analysis, an original data vector is projected to a subspace of lower dimension-
ality where objects can be separated from the background. The projection is
represented as y = ΦTx, where Φ is the linear transformation vector (or a ma-
trix). Fisher discriminant analysis (FDA) is a commonly used linear discriminant
analysis method, which maximizes the ratio of between-class and within-class
variance. FDA can be solved as a generalized eigenvector problem:

(Σ−1
w Σb)Φk = λkΦk. (1)

where Σb and Σw are between- and within-class scatter matrices, respectively.
The transformation vector Φk is the eigenvector corresponding to the k-th eigen-
value. For a two-class problem, only one effective eigenvector can be extracted
from FDA. The FDA transformation vector is denoted as Af . Usually PCA is
applied before FDA to reduce the data dimensionality. The overall linear dis-
criminant analysis is the combination of PCA and FDA, as Eqn. (2):

yx = AT
f A

T
p x = ATx, (2)

where Ap is the PCA eigenspace projection matrix, and A = ApAf is the
overall linear discriminant vector. After learning the linear discriminant vector
A, a sigmoid function is used to model the posterior probability for the two-class
classification:

PA(x) = P (�x = 1|x) = 1

1 + e(ayx+b)
=

1

1 + e(aA
Tx+b)

(3)

The parameters a and b can be learned from training samples by regression.

2.2 Online Discriminant Learning

The probabilistic linear discriminant can be learned offline from collected train-
ing samples. However, the background, and sometimes the object itself, could
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(a) (b)

Fig. 2. Online discriminant learning. (a): positive samples (blue rectangles) and neg-
ative samples (purple rectangles) are extracted online; (b): the convergence of online
learning at a frame.

change from one tracking scenario to another, and may not be seen in train-
ing sets, therefore not available for offline learning. In dynamic environments,
the discriminant learning needs to adapt to different tracking scenarios. For this
purpose, we present an online method to efficiently and effectively update the
discriminant vector A.

Most statistical learning algorithm aims at the minimization of the Bayesian
error, i.e., Ef =

∫
(1−p(�x|x))p(x)dx. In the adaptive discriminant learning, we

also try to minimize the Bayesian error, which is equivalent to minimizing the
object function C(A) in Eqn. (4):

C(A) = −[
∑

xi∈Ω+

P (xi)PA(xi)−
∑

xj∈Ω−

P (xj)PA(xj)] =
∑
x

−�xP (x)

1 + e(aA
tx+b)

.(4)

With new online data available during tracking, to re-train the discriminant
analysis needs to access a large number of training samples, and involves re-
computation of co-variance metrics and eigenbases. In this method, we online
update the discriminant analysis using a gradient descent method. To minimize
the Bayesian error, the discriminant analysis is iteratively updated as Eqn. (5):

A(k) = A(k−1) − δk∇AC(A(k−1)), (5)

where δk is an updating step at the k-th iteration. The updating continues until
it converges. The gradient of the object function ∇AC(A) is given by

∇AC(A) =
∑
xi

∇A(
−�iP (xi)

1 + e(aA
t
ixi+b)

) =
∑
xi

�iP (xi)
ae(aA

txi+b)

(1 + e(aA
txi+b))2

xi. (6)

After A is updated, a and b are also updated by regression at every iteration.
The online discriminant needs a good starting point to converge to an optimal

solution, although a global optimum is not guaranteed. A starting point can
be the discriminant function learned offline from collected samples. Even if the
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initial discriminant vector may not fit a current environment, the online learning
can quickly converge to a good solution. An example is shown in Fig. 2, where
the greedy searching converges within a few iterations to achieve a Bayesian error
less than 10% for the initial error of 40%. To improve the learning robustness,
we keep a history of tracked objects from previous frames in a pool to prevent
the learning from being distracted by tracking errors at individual frames. The
Bayesian error estimated as Eqn. (4) is used as a criterion to decide if the learning
is converged to an optimal solution. For computational efficiency, the online
updating of discriminant vector can be performed once every several frames.

3 Bayesian Catheter Tracking Framework

The tracking is to infer unknown object states mt , i.e., the catheter position in
this paper, from an observed image sequence Z1:t. We formalize the parameter
inference in a sequential Bayesian inference framework. Assuming a commonly
used Markov property for tracking, the posterior probability P (mt|Z1:t) is given
in Eqn. (7).

P (mt|Z1:t−1) =

∫
P (mt|mt−1)P (mt−1|Z1:t−1)dmt−1

P (mt|Z1:t) ∝ P (mt|Z1:t−1)P (Zt|mt) (7)

The tracking result is the motion parameter corresponding to the maximal pos-
terior probability, i.e, m̂t = arg

mt

maxP (mt|Z1:t).

In Eqn. (7), P (mt|mt−1) is a dynamic model. We model the dynamic prob-
ability as a Gaussian model. The likelihood measurement model P (Zt|mt) is a
fusion of multiple measurements. Assuming that there areK measurement mod-
els for an object, i.e., P (k)(Zt|mt) = P (Zt|mt, k), k = 1, ...,K, a measurement
fusion based on the probability marginalization is given in Eqn. (8):

P (Zt|mt) =
∑
k

P (Zt|mt, k)P (k|mt) (8)

where P (k|mt) is the weight for the k-th measurement model.
The online learned discriminant model acts as one measurement model, de-

noted as P (Zt|mt, k = 1) = PA(xmt
) as in Eqn. (3), where xmt

is the data
vector extracted from observed images based on the object state mt. The sec-
ond measurement model used is an offline learned object detector. A probabilistic
boosting tree (PBT) [9] is trained with Haar features to build the catheter de-
tector offline. The probabilistic interpolation of an AdaBoost is used to provide
the second measurement model P (Zt|mt, k = 2). A robust template matching
method is used as the third measurement mode in our method. The template
matching takes the form in Eqn. (9):

P (Zt|mt, k = 3) ∝ G(D(xmt);σa), (9)
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where G is a one-dimensional Gaussian kernel with a zero mean and a bandwidth
of σa.D(xmt

) is a robust distance function [7] to compute the differences between
current observations xmt and a catheter appearance template, which is updated
from the tracking result at a previous frame.

4 Experiments

A set of clinical data has been acquired from TAVI procedures in several hospitals
to evaluate the catheter tracking. There are totally 198 sequences acquired at the
frame rate between 15fps and 30fps, and more than 14,000 frames in the data
set. Each image pixel represents a physical size between 0.154 mm and 0.308
mm. The data set well represents the real surgical scenarios, includes images of
poor quality, occlusions, dye injections, and motion blurs. Some exemplar frames
in the data set and corresponding tracking results are displayed in Fig. 3. To
establish ground truth for evaluation, we manually annotate the pigtail catheters
in all the frames. The annotation at the first frame of each sequence is used to
initialize the tracking, and the annotations at the remaining frames are used for
evaluations. The whole system runs at more than 10 frames per second at an
Intel Quad Core 2.5GHz CPU.

In our quantitative evaluation, we measure the tracking precision as the
Euclidean distance between tracked catheters and the ground truth. The nor-
malized error is the distance error divided by corresponding pigtail catheter
size (the maximum of the width and height of a catheter). The tracking suc-
cess rate is calculated to measure the percentage of successful tracking. The
frame success rate is defined as the percentage of the frames whose normal-
ized distance error is less than a threshold (e.g., set as 0.35 in our experiments).
The sequence success rate is defined as the percentage of sequences where
more than a certain percentage of frames (e.g., set as 70% in our experiments)
have been successfully tracked. For an unbiased evaluation, we perform a 4-fold
cross-validation to evaluate the tracking accuracy. During evaluation, the al-
gorithm parameters are kept the same for all the sequences, so the method is
not over-fitted to individual cases.

Some parameters of our method, such as covariance matrices in Gaussian
distributions, can be learned. A few other parameters, such as the weights in
Eqn.(8), need to be set empirically. Through our experiments, we found that the
accuracy of this method is consistent within a range of parameter settings. Due
to limited space, only the accuracy of a single set of parameters (i.e., the weights
are set as 0.35, 0.25 and 0.4 for the template based, online learned and offline
learned measurement models, respectively) is reported in Table 1.

The quantitative evaluation results in Table 1 show that the online models
perform better than offline learned detectors, i.e., 84.1% vs. 82.9% of frame
success rate and 79.4% vs 73.9% of sequence success rate. When combining all
the measurement models together, this method achieves a 91.0% frame success
rate and a 91.9% sequence success rate, respectively. The tracking precision, e.g.
the mean error of 1.10mm, further confirms the performance improvement with
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(a)

(b)

(c)

Fig. 3. Exemplar tracking results: (a) handling occlusion and dye injection; (b) recov-
ering from dye injection. The blue rectangle in the middle image shows the ground
truth;(c) more tracking results. Each image corresponds to one sequence.

this method. To understand the generalization capability of the method, we also
train an object detector with all the annotations and apply it to the tracking.
The evaluation, named as “full training”, shows that the tracking success rates
only drop by 3% with the cross-validation. The tracking failures of our methods
are mainly caused by contrast injection and image blurs. In practice, some of
tracking failures won’t affect the workflow if the tracking resumes correctly after
contrast injection, as shown in the example of Fig. 3 (b).

This method is compared with three representative state-of-the-art visual
tracking methods: the online boosting method [4], the incremental learning meth-
ods [8], and the multiple instant learning method [1], whose implementations are
available from authors’ homepages. For each algorithm for comparison, we care-
fully tune the parameters to achieve optimal tracking accuracy. The methods of
[4] and [8] can achieve ∼ 65% frame success rate. The multiple instant learning
method [1] can only succeed in less than 10% sequences with a mean error of more
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Table 1. Quantitative evaluation on 198 sequences

This method
Tracking success Tracking precision

rate (mean errors in mm/normalized errors)
Frame Sequence median mean

Using only offline detector(cross-validation) 82.9% 73.9% 1.37/0.08 5.12/0.27

Using only online models 84.1% 79.4% 1.38/0.08 3.23/0.18

Bayesian fusion (cross-validation) 91.0% 91.9% 1.10/0.06 3.19/0.17

Bayesian fusion (full training) 93.3% 94.9% 0.98/0.05 2.43/0.13

Existing methods

Grabner et. al. [4] 64.4% 52.7% 3.15/0.21 4.55/0.35

Ross et. al. [8] 65.1% 64.3% 2.91/0.17 5.56/0.40

than 10mm. The poor performance of existing methods shows the challenges of
pigtail catheter tracking in X-ray images, and demonstrates the advantages of
our method in handling such a challenging environment.

5 Conclusion

In summary, this paper presented a novel and robust method to track pigtail
catheters for dynamic motion compensation in TAVI. The validation on a set of
198 sequences demonstrated the performance for this tracking task.
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Abstract. Minimally invasive cardiac surgery is made possible by image
guidance technology. X-ray fluoroscopy provides high contrast images of
catheters and devices, whereas 3D ultrasound is better for visualising
cardiac anatomy. We present a system in which the two modalities are
combined, with a trans-esophageal echo volume registered to and over-
laid on an X-ray projection image in real-time. We evaluate the accuracy
of the system in terms of both temporal synchronisation errors and over-
lay registration errors. The temporal synchronisation error was found to
be 10% of the typical cardiac cycle length. In 11 clinical data sets, we
found an average alignment error of 2.9mm. We conclude that the ac-
curacy result is very encouraging and sufficient for guiding many types
of cardiac interventions. The combined information is clinically useful
for placing the echo image in a familiar coordinate system and for more
easily identifying catheters in the echo volume.

Keywords: Intervention guidance, image fusion, registration, X-ray flu-
oroscopy, 4D ultrasound.

1 Introduction

Minimally invasive cardiac interventions are becoming increasingly feasible with
developments in image guidance [1]. X-ray fluoroscopy is commonly used for
guidance, as it provides real-time images with excellent visualisation of catheters
and other devices. However, fluoroscopy provides only a two dimensional (2D)
projection image and has poor soft tissue contrast, and so is not sufficient to
guide complex procedures. The complementary technology of trans-esophageal
echo (TEE) provides real-time volumetric images with good contrast of cardiac
anatomy, but is susceptible to artefacts when imaging mechanical devices such

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 25–32, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



26 R.J. Housden et al.

as catheters. Also, TEE has a limited field of view and therefore requires a skilled
cardiologist to provide anatomical context. The combination of the information
in X-ray fluoroscopy and 4D TEE is potentially useful for procedure guidance.

We have developed a system in which the TEE volume is registered to and
overlaid on the X-ray, allowing simultaneous real-time visualisation of cardiac
anatomy and interventional devices. This concept has been proposed previously
and the various implementations differ mainly in the way the echo volume is
registered to the X-ray. Existing approaches include tracking the TEE probe
with an electromagnetic or mechanical tracking device [2,3] and tracking the TEE
probe head, or markers attached to the probe head, in the X-ray images [4,5]. In
this paper, we present a complete real-time clinical system for hybrid echo/X-ray
navigation that was developed from the proof-of-concept methodology in [4]. We
evaluate the temporal and spatial accuracy of our overlay alignment and present
initial clinical experience of our system used in atrial fibrillation (AF) catheter
ablation cases and trans-aortic valve implantation (TAVI) procedures.

2 Methods

2.1 System Overview

The scanning setup comprises a Philips Allura Xper FD10 C-arm X-ray system
and a Philips iE33 3D ultrasound system with an X7-2t 3D TEE probe. Data
is streamed from each system to a PC running the visualisation software and
displayed in real-time. The software displays a 2D projection view in X-ray image
coordinates, overlaid with a volume rendering of the echo volume.

The two views are registered using the projection image of the TEE probe in
the X-ray, following the method described in [4]. A 3D model of the TEE probe
head, acquired from a nano-CT scan, is registered to the X-ray. The registration
is initialised manually to approximately the correct position and orientation
before running an automatic 3D-2D registration algorithm. Following the initial
registration, the automatic registration is repeatedly rerun to track changes in
the probe position due to cardiac and respiratory motion. The automatic GPU-
accelerated registration updates in this way at a rate of 1–2Hz. Figure 1 shows
a typical X-ray view, the probe model and a registration of the two.

2.2 Temporal Synchronisation

The real-time X-ray and echo images are received from different sources and
are processed in different ways before being transmitted to the visualisation
software. It is important to determine the relative synchronisations of the two
data streams in the overlay view. We expect any delay in the X-ray stream to
be constant, but the processing applied to the echo volume in the ultrasound
machine may depend on various settings, such as imaging depth, which can be
changed several times during a clinical procedure.

The temporal synchronisation was determined by imaging a catheter with si-
multaneous X-ray and echo. The ultrasound machine was set to image in its live
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(a) (b)

right atrium

left atrium

(c)

Fig. 1. Automatic overlay registration. (a) TEE probe model from a nano-CT
scan of the probe head. (b) X-ray image with the projection of the TEE probe clearly
visible. This example is from an AF ablation case. (c) Echo overlay, with the probe
model registered to the X-ray by automatic 3D-2D registration.

3D mode. The catheter was given a sharp tap such that the resulting movement
was easily detectable in both the X-ray and echo images by sequentially differ-
encing the data. The time difference between the start of movement in the X-ray
and echo images provides the relative delay in the overlay view. The delay was
measured over the available range of depth settings of the ultrasound scanner
(3–26 cm) with 1–3 separate measurements at each depth.

2.3 Spatial Alignment Accuracy

As explained above, the overlay registration is achieved by aligning images of
the ultrasound probe. The alignment accuracy of the echo volume to the X-ray
image is affected by both the accuracy of this probe tracking and the accuracy
of the previously calibrated, fixed transformation from the probe to the echo
volume. The alignment is particularly susceptible to orientation errors, as even
small angular errors can be extrapolated to large misalignments. These alignment
errors were measured in phantom and in vivo experiments. The accuracy may
also depend on the probe orientation in the projected view. In this paper, the
analysis is restricted to probe views typically used in clinical practice.

The alignment error in an overlay view was calculated in terms of the 2D
projection error [6]. This error, e, is given by

e =
1

N

N∑
i=1

‖Pi,xray − Pi,echo ‖
Dsource →target

Dsource →detector
, (1)

where Pi,xray and Pi,echo are the locations of corresponding landmarks defined in
the X-ray and echo projections respectively and N is the number of these points
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in the image. The distances Dsource →target and Dsource →detector account for the
magnification in the projected image and their values are known from the C-arm
geometry, although the value for Dsource →target is known only approximately.
The error value is an average of the error at several landmarks in the image so
that each overlay view gives one error value. The final error is given in mm.

Phantom Experiment. The phantom comprises a water tank in which two
wires are suspended forming a cross. This was imaged by the TEE probe with
the ultrasound machine in full volume mode. Corresponding X-ray images were
acquired at four different C-arm positions (RAO 54, RAO 24, LAO 22 and PA
views) each at high and low dose (8 X-rays in total). From this data, alignment
errors were measured for two registration strategies. The first approach was
automatic registration following an approximate manual initialisation. This was
done on three different images in each X-ray sequence giving 24 overlay views in
which to measure errors. The second approach was a careful manual alignment.
Note that this manual alignment considered only the probe, not the echo volume,
when optimising the alignment. Again, this was done for 24 overlay views.

Landmarks were defined by manually fitting straight lines to the crossed wires
in the X-ray and echo projection image. The crossing points were detected au-
tomatically from these lines and landmarks were automatically defined in fixed
steps along the lines from the crossing point. This provided up to 13 landmarks
per overlay view (minimum 10 where the crossing point was near the edge of the
view). 2D projection errors were calculated between corresponding landmarks
and averaged according to (1). Figure 2(a) shows an example of this.

(a) (b)

Fig. 2. Error measurement in overlay views. (a) Phantom experiment overlay
example. Errors are measured between automatically defined landmarks on straight
line models of the crossed wires. (b) Porcine scan overlay example. Errors are measured
from landmarks on the echo catheter image to their nearest point on a spline model of
the X-ray catheter.
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In Vivo Accuracy. In vivo data to measure accuracy were acquired from a live
porcine experiment. Five echo volumes were acquired in full volume mode with
the probe in different positions. At each position, three X-ray sequences were
recorded in RAO 30, LAO 30 and PA positions with high X-ray dose setting
(15 X-ray views in total). Various catheters were inside the heart during the
acquisition and these provided convenient targets for measuring alignment errors.
Errors were again measured for automatic and manual registrations. These were
done at two separate frames in each X-ray sequence (30 measurements), manually
selected from the same cardiac and respiratory phases.

Corresponding catheters were manually defined in the echo and X-ray views
using Catmull-Rom spline curves. Equally spaced points along the echo curve
were automatically selected as echo landmarks. The corresponding X-ray land-
mark was defined as the closest point on the X-ray curve. The alignment error
for each overlay view was again taken as the average of the 2D errors between
landmarks according to (1). An example of these error measurements is given in
Fig. 2(b). Average errors were measured using between 3 and 6 landmark pairs
per overlay view, depending on the length of catheter visible in the echo image.
It should be noted that our approach of measuring to the closest point does
not necessarily capture the complete error as there can also be misalignment
tangentially to the catheters.

Clinical Cases. The system has been used alongside standard imaging tech-
nologies during two types of minimally invasive cardiac procedures: AF ablation
and aortic valve replacement (TAVI). During each case, X-ray and echo sequences
were recorded independently. Although real-time synchronised visualisation of
the live data stream was possible during the procedure, the post-procedure anal-
ysis for this paper required that the recorded X-ray and echo data were matched
up manually, resulting in only approximately synchronised sequences. 13 such
sequences were successfully reconstructed from seven of the nine patients un-
dergoing ablation procedures and six sequences were generated from two TAVI
procedures. The errors in each sequence were considered separately.

Unlike the phantom and porcine experiments, the clinical data were analysed
in sequences of overlay views over a period of time. There may therefore be
additional errors from the real-time probe motion tracking, which may not be
able to keep up with sudden or continuous probe movements. Alignment accuracy
was measured over the sequences by considering multiple images in each sequence
(between 5 and 21 images depending on the sequence length). Statistics for
the error over time were calculated for each sequence separately. Errors were
calculated using landmarks defined on the catheters and devices in the same
way as for the porcine data.

3 Results and Discussion

3.1 Temporal Synchronisation

Figure 3 shows the results of the time delay experiment. In general, the echo and
X-ray are synchronised to within 150ms. The results show a significant change
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(p < 0.01) at around 18 cm depth. At smaller depth settings, the echo lags the
X-ray by 46 ± 43ms. At larger depths, the echo leads by 82 ± 42ms. This
appears to be a sudden change rather than a gradual trend. Therefore, temporal
synchronisation could be substantially improved by using a simple pre-calibrated
time shift dependent on the depth cut-off value of 18 cm.

0 10 20
−200

−150

−100

−50

0

50

100

150

depth (cm)

ec
ho

 d
el

ay
 (

m
s)

Fig. 3. Relative delay of X-ray and echo. The plot shows the lag of the echo
relative to the X-ray over the full range of depth settings.

In terms of clinical implications, the relative delay in the two image streams
means that there is a time difference between the display of the catheter locations
(most clearly visible in the X-ray image) and the cardiac anatomy (only visible
in the echo volume). In a typical cardiac cycle (around 1 s), the time difference
is on average less than 10% of the cardiac cycle and at most is within 20%. The
visual impact of the delay will depend upon the frame rate of the data streams
(maximum 30 frames per second (fps)). For electrophysiology procedures, X-ray
frame rate can be as low as 3 fps to minimise radiation dose. The measured delay
is then likely to have no impact on ease of navigation using the hybrid approach.
The delay is also small compared to the update rate of the 3D-2D registration
(1–2Hz), although this is only significant when the probe moves substantially.

3.2 Overlay Alignment Accuracy

Figure 4 shows the results of the overlay alignment error measurements. Consid-
ering first the phantom experiment, the images of the crossed wires are clearly
best aligned when positioning the probe manually, which serves as a ground
truth. The errors for automatic registration were 6mm on average. These re-
sults included all registrations even though many would be visually deemed as
failures. Detection of registration failure, possibly by use of the similarity met-
ric, would substantially reduce these errors and make them approach the ground
truth result. Manual alignment in the porcine data shows similar results to the
automatic alignment with average errors of approximately 6mm. Part of this
error will be due to the X-ray and echo data not being recorded simultaneously.
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Fig. 4. Overlay alignment errors. The graphs show box plots for the alignment
error measurements. Percentiles are at 2.5, 25, 50, 75 and 97.5%. In the clinical results,
the first 13 box plots are for sequences taken from the AF ablation cases and the
remaining six are from the TAVI cases. Lines drawn at 5mm error are for reference.

The overall average error of the clinical data is 2.9mm, with a maximum error
of 10.9mm. The accuracy requirement for a clinically useful image guidance
system depends on many factors including the patient and the procedure being
performed, as discussed in [7]. In general, many of the errors are well below 5mm
with only a few cases that are worse. Again, detection of registration failures will
improve accuracy. The result of 2.9mm is very encouraging, especially since it
represents a measure of the overall system accuracy in the clinical setting.

A typical overlay from a clinical AF case is shown in Figure 1(c). The clinical
results show that the system is sufficiently accurate to guide many different types
of cardiac interventions. An advantage of the overlay view is that it helps in
interpreting low quality echo images. An echo volume on its own can be difficult
to interpret because of its limited field of view and lack of context for the echo
coordinate system relative to the patient. Also, catheters and devices tend to
produce artefacts in the ultrasound data reducing the clarity of the images. In
the overlay view, the echo volume is displayed in a coordinate system that can
be more easily related to the patient by the experience of cardiologists working
routinely with X-ray fluoroscopy. Also, the highly visible catheters in the X-ray
image help with identifying the catheters in the echo and so can be related to
the cardiac anatomy via the echo image. In this way, a registered overlay view
provides useful information for procedure guidance.
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4 Conclusions

In this paper, we have presented a platform for real-time hybrid X-ray flu-
oroscopy and 3D echo visualisation and have successfully demonstrated it in
phantom, animal and clinical experiments. The system exhibits a temporal syn-
chronisation that is less than 10% of a cardiac period on average. This will not
have a significant impact on guidance at the low fluoroscopy frame rates that
are often used to minimise radiation exposure. The average 2D registration error
in clinical data is 2.9mm which is encouraging for the system’s eventual use in
clinical guidance. The hybrid approach has the further advantages that it puts
the echo into a useful context by positioning it in a familiar coordinate system
and the background X-ray helps in identifying catheters and devices in the lower
quality echo image. Future work will focus on automatic detection of registration
failures in order to maximise clinical robustness.
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Abstract. Current treatments of heart rhythm troubles require careful
planning and guidance for optimal outcomes. Computational models of
cardiac electrophysiology are being proposed for therapy planning but
current approaches are either too simplified or too computationally in-
tensive for patient-specific simulations in clinical practice. This paper
presents a novel approach, LBM-EP, to solve any type of mono-domain
cardiac electrophysiology models at near real-time that is especially tai-
lored for patient-specific simulations. The domain is discretized on a
Cartesian grid with a level-set representation of patient’s heart geome-
try, previously estimated from images automatically. The cell model is
calculated node-wise, while the transmembrane potential is diffused us-
ing Lattice-Boltzmann method within the domain defined by the level-
set. Experiments on synthetic cases, on a data set from CESC’10 and on
one patient with myocardium scar showed that LBM-EP provides results
comparable to an FEM implementation, while being 10−45 times faster.
Fast, accurate, scalable and requiring no specific meshing, LBM-EP paves
the way to efficient and detailed models of cardiac electrophysiology for
therapy planning.

1 Introduction

Since the seminal work of Hodgkin and Huxley [5], a large variety of models have
been proposed to simulate the propagation of the action potential (AP) across
the heart muscle, with various degrees of complexity ([3]). Biophysical models
aim to capture the ion interactions and protein mechanisms that regulate the AP.
At a higher scale, phenomenological models have been developed to mimic the
AP without directly considering the underlying molecular mechanisms. Finally,
Eikonal models do not simulate the AP altogether but the propagation of the
electrical front directly. Since these models are generative, they may constitute
efficient tools for therapy planning. Phenomenological models provide a good
compromise between model details, being able to capture most of the patholog-
ical conditions, and complexity. Recent works demonstrated that those models
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can be personalised from clinical data [1]. However, because they solve stiff par-
tial differential equations (PDE), they are still too computationally demanding
for day-to-day clinical setups and intervention guidance. Another limitation is
the requirement of high-quality/high-resolution volume meshes, which can be
difficult to obtain from patient-specific anatomies.

In recent years, the lattice-Boltzmann method (LBM) [2] has developed as a
powerful technique for accurate simulation of a large class of partial-differential
equations. In particular, it has been successfully applied to pattern-forming
reaction-diffusion equations([4]). While originally developed from cellular au-
tomata models of fluid flows, the method has found a firm theoretical basis in
kinetic theory of weakly-compressible fluid flows. Some of the key strengths of
this method are, i) local nature of the computational algorithm, which provides
very high scalability on modern parallel computing architectures, ii) second-
order accuracy in space, and iii) simplicity of implementation on a uniform
Cartesian grid.

Motivated by the recent breakthrough in LBM, we present a novel framework,
henceforth called LBM-EP, for efficient patient-specific simulations of cardiac
electrophysiology models at near real-time. Although general, the method is
illustrated in this study on the Mitchell-Schaeffer model [6]. Sec. 2 presents
a description of the algorithms used to process the medical images, and the
lattice-Boltzmann algorithm used for propagating the action-potential. Sec. 3
compares the simulation results computed with the proposed LBM-EP with
an FEM implementation of Mitchell-Schaeffer model in synthetic scenarios, a
dataset of CESC’10 Grand Challenge and one patient with a myocardium scar,
showing an accuracy in the range of the variability reported in the literature and
a speed-up of about 10− 45× with respect to FEM. Sec. 4 concludes the paper.

2 Methods

2.1 Computational Domain Preparation from Medical Images

LBM-EP being solved on Cartesian grids (Sec. 2.3), its application to clinical
images is relatively immediate. Starting from a cardiac image (e.g. cine MRI),
the left endocardium, right endocardium and epicardium are automatically seg-
mented using a machine learning approach [11] and fused in one surface rep-
resenting the myocardium while preserving their anatomical label. A level-set
representation of that surface is then computed on an isotropic Cartesian grid.
Based on the labels, grid nodes lying at the heart endocardia are marked for
electrophysiology stimulation and synthetic fibers are computed by linearly in-
terpolating the elevation angle from −70◦ at the epicardium to +70◦ at the en-
docardium [3]. Scars can be reported in the domain through level set (Sec. 3.3).

2.2 Mitchell-Schaeffer Model of Action Potential

Mitchell-Schaeffer (M-S) model [6] is employed here although the method can
be extended to other mono-domain models. The model (Eq. (1)) relates the
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normalized transmembrane AP v(t) ∈ [0, 1] to an inward gated current Jin =
hv2(1 − v)/τin, which captures the fast acting currents using the gating vari-
able h(t), and an outward un-gated current Jout = −v/τout, which accounts for
transmembrane voltage decrease. A transient stimulus current Jstim is added to
the model to simulate electrical pacing.

∂v

∂t
= Jint + Jout + Jstim + c∇ ·D∇v (1)

The gating variable h(t) evolves according to dh
dt = 1−h

τopen
if v < vgate, otherwise

dh
dt = −h

τclose
where vgate is the change-over voltage, D = ρId + (1 − ρ)aaᵀ is the

anisotropic diffusion tensor along the fiber direction a with anisotropy ratio ρ, c
is the diffusion coefficient along the fibers. τin, τout, τopen and τclose are directly
related to the shape and duration of the AP ([6]), which makes their calibration
possible from clinical data.

2.3 Lattice-Boltzmann Model of Cardiac Electrophysiology

Eq. (1) is solved on the Cartesian grid (Sec. 2.1) using Lattice-Boltzmann method
with a 7-connectivity topology (6 connections + central position) and Neumann
boundary conditions. The gating variable h(t) is updated at every node of the
grid using a forward Euler scheme. The fundamental variable of LBM is the
vector of distribution functions f(x) = {fi(x)}i=1...7, where fi(x) represents the
probability of finding a particle travelling along the edge ei of node x. The
governing equation at x for the edge ei is composed of two successive steps:

f∗
i = fi −Aij (fj − ωjv) + δtωi(Jin + Jout + Jstim), (2)

fi(x+ ei, t+ δt) = f∗
i (x, t) (3)

where, the collision matrix A = (Aij)i,j∈�1,7� relaxes the distribution function fi
towards the local value of the potential, v, f∗

i is an intermediate, post-collision
state of the distribution function, and ωi is a weighting factor that depends
on lattice connectivity, here ωi = 1/8 for the edges to the six neighbors and
ωi = 1/4 for the central position. The transmembrane AP is related to the fi’s
through v(x, t) =

∑
i fi(x, t). For each time step δt, a strictly local collision rule

(Eq. (2)) is applied to the distribution functions at each node. Post-collision, the
distribution functions stream along their corresponding edges to the neighboring
nodes (Eq. (3)). In its simplest form, the collision matrix is diagonal with a
characteristic relaxation time τ , A = (1/τ)I, where I is the 7×7 identity matrix.

At the problem boundaries, the streaming step requires the specification of ad-
ditional incoming distribution functions to ensure proper boundary conditions. It
can be shown that the potential gradient at a node is related to the fi’s through
c∇v = (1−1/2τ)

∑
i fiei [4]. The Neumann boundary condition for potential on

a surface simplifies to
∑

i fiei · n = 0. If the boundary is normal to any edge of
the lattice, the Neumann boundary condition is automatically recovered if the
incoming distribution at the node is equal to the outgoing one. Complex geome-
tries can be handled easily by means of a level set formulation. The incoming
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distribution is calculated automatically from the distance to the wall at nodes
close to the boundary as provided by the level-set [10], thus enabling simulations
in complex domain without requiring advanced meshing algorithms.

Remarkably, this simplemodel can be shown to reproduce the reaction-diffusion
equation Eq. (1) with an isotropic diffusion coefficient of c = (2τ − 1)/8 (see [4]
for the proof). To extend the model for anisotropic diffusion, like in the heart, the
matrix A is replaced by A = M−1SM [9], where

M =

⎛⎜⎝
1 1 1 1 1 1 1
1 −1 0 0 0 0 0
0 0 1 −1 0 0 0
0 0 0 0 1 −1 0
1 1 1 1 1 1 −6
1 1 −1 −1 0 0 0
1 1 1 1 −2 −2 0

⎞⎟⎠S−1 =

⎛⎜⎝
τ1 0 0 0 0 0 0
0 τ11 τ12 τ13 0 0 0
0 τ21 τ22 τ23 0 0 0
0 τ31 τ32 τ33 0 0 0
0 0 0 0 τ5 0 0
0 0 0 0 0 τ6 0
0 0 0 0 0 0 τ7

⎞⎟⎠
The first row of M corresponds to v =

∑
i fi, while rows 2 − 4 are the three

components of the potential gradient. The relaxation times (τij)i,j∈�1,3� are re-
lated to the components of the diffusion tensor through τij = δij/2+4Dijδt/δx

2.
The relaxation times τ1 related to the potential and τ5, τ6 and τ7 related to the
higher order moments do not directly effect the diffusion solution, but effect the
stability of the method. In this work, we use τ1 = 1 and τ5 = τ6 = τ7 = 1.33.
Algo. 1 summarizes the main steps of the method.

Algorithm 1. LBM-EP: Lattice-BoltzmannModel of Cardiac Electrophysiology

Require: Cartesian grid, level-set domain boundaries, δt, nbIter, model parameters
1: for iter = 1 → nbIter do
2: t ← t+ δt
3: for every node x do
4: ∀i, compute post-collision distributions f∗

i (x) (Eq. 2)
5: Update h(x)
6: for every node x do
7: ∀i, stream fi(x) and apply boundary conditions (Eq. 3)
8: return v =

∑
i fi, h.

3 Experiments and Results

All experiments were executed on a standard Windows XP desktop machine (In-
tel Xeon, 2.40GHz octo-core, 4GB RAM). LBM-EP was implemented in Fortran
with no particular optimization. A semi-implicit, anisotropic finite element im-
plementation of M-S model, called FEM-EP, was used for comparisons. FEM-EP
was based on linear tetrahedra and parallel optimization (OpenMP).

3.1 Quantitative Evaluation on Synthetic Scenarios

We first compared the performance of LBM-EP with respect to FEM-EP in
two different scenarios representing the main pathological features. To that end,
a 10 × 10 × 0.5 cm slab was discretized into 401 × 401 × 3 nodes (1,920,000
tetrahedra for FEM-EP). For both LBM-EP and FEM-EP, we used δt = 0.1ms,
τclose = 150ms, τopen = 120ms, τin = 0.3ms, τout = 6ms, vgate = 0.13,
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c = 0.0003 cm2/ms and ρ = 1 (isotropic diffusion) [6]. An electrical stimulation
was applied at the nodes (x, y = 0, z) for 1ms duration by setting v = 1 at
these nodes. Grid resolution analysis (not reported here) showed that numerical
convergence was reached for both models at that spatial and temporal resolution.

We first tested the ability of LBM-EP to capture front-bending around a
scar. A scar region was simulated within the domain (Fig. 1, left panels) by:
setting the diffusion coefficient c = 0 for FEM-EP, defining Neumann boundary
conditions for LBM-EP. From the computed depolarization times (Fig. 1, left
panels), one can see that both models yielded very similar behavior. The AP
front calculated by LBM-EP correctly rotated around the scar. Where the front
was not perturbed by the scar, both models yielded nearly identical results,
as quantified by the AP at Point 2 (0.3ms difference in depolarization time,
Fig. 1, right panel). Near the scar, slight differences could be identified, which
resulted in a difference of 9.7ms in depolarization time at Point 1. However, this
cannot be interpreted as a limitation of LBM-EP, which captured perfectly the
Neumann boundary conditions around the scar, contrary to FEM-EP.

FEM EP LBM EP Action Potentials
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Fig. 1. Left panels: Computed depolarization times (in ms) in a homogeneous medium
with scar (in black). LBM-EP captured front rotation around the scar. Right panel : ac-
tion potential at points 1 and 2, showing consistent results between both models.

We then tested the ability of LBM-EP to simulate vortex formation due to pre-
mature stimulation. For that, we set the diffusion coefficient to 0.0012 cm2/ms,
removed the scar and applied a second stimulation at the nodes (x ≤ 0.5, y =
0.5, z) at t = 452ms for both methods. As shown in Fig. 2, the patterns obtained
with LBM-EP were similar to those obtained with FEM-EP. LBM-EP could be
used to simulate complex pathologies like fibrillation or tachycardia.

Computation Time. For all experiments, FEM-EP required ≈ 700ms per
iteration whereas LBM-EP required only ≈ 80ms, about 8.75× speed-up.

3.2 Comparison with Published Results on CESC’10 Data

We evaluated LBM-EP performance in a dataset distributed during CESC’10
MICCAI Grand Challenge with respect to FEM-EP and to a recently published
benchmark [1]. Our purpose being evaluation and not personalization, we did
not adjust the parameters locally. We thus compared our results with the generic
benchmark of the ionic ten Tusscher-Panfilov model only [1]. CESC’10 dataset
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LBM-EP FEM-EP

610 ms 1320 ms 610 ms 1320 ms

Fig. 2. LBM-EP succesfully captured vortex formation due to premature stimulation

consisted in an explanted porcine heart, and comprised optical fluorescence im-
ages of transmembrane potential and high-resolution diffusion-weighted (DW)
MRI images ([7]). The optical images contained the depolarization and repo-
larization phase of transmembrane potential under left endocardium and right
epicardium pacings at 1.1Hz. Finally, the mesh constructed from DW-MRI had
the fiber directions integrated, providing a complete model of the heart anatomy.

LBM-EP was computed on 0.5mm grid while FEM-EP was computed on
the provided tetrahedra mesh with 0.5mm average edge-length. The time steps
were set to δtLBM−EP = 0.1ms and δtFEM−EP = 0.5ms. Myocardium fibers
defined on the tetrahedra mesh were rasterized on the LBM lattice for simula-
tion. The generic M-S parameters were used for both models [6], with a diffusion
coefficient c = 0.0035 cm2/ms and anisotropy ratio ρ = 0.25. As it can be seen
from Fig. 3, LBM-EP simulation was qualitatively similar to FEM-EP for both
pacing conditions in terms of depolarization isochrone patterns. The difference
in absolute depolarization time was mostly due to the different computational
domain, in particular regarding the precise location of the excitation nodes and
the fiber orientation, which was locally altered by the rasterization. Compared
to the CESC’10 benchmark, LBM-EP provided similar depolarization patterns,
suggesting promising reproducibility and validity. Finally, while FEM-EP re-
quired ≈ 16 s per iteration, LBM-EP took only ≈ 0.35 s per iteration, which
corresponds to a speed-up of 45×. It should be noted that the computational
efficiency of our FEM implementation was similar to those reported in the liter-
ature, ≈ 1 s/iteration on the 1.5mm mesh provided by the challengers as in [8].

3.3 Real Case Example

We finally illustrate how LBM-EP can be used in a real clinical scenario on a
patient with myocardium scar due to previous surgery. Parameters were kept
generic as no electrophysiology data were available. Fast conductivity was mod-
eled on the endocardium to mimic the Purkinje fibers. The scar was represented
as a level-set to ensure Neumann boundary conditions. Fig. 4 shows the depo-
larization time isochrones, illustrating some delays at the apex due to the scar.
Elsewhere in the myocardium the isochrones presented with patterns similar to
what has been reported in the literature [3]. For this patient, one time step was
calculated in 0.2 s for a grid size of 1mm.
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Fig. 3. FEM-EP and LBM-EP simulations using Mitchell-Schaeffer model and
CESC’10 data using ten Tusscher-Panfilov model (see text for details)

Fig. 4. LBM-EP simulation on one patient with myocardium scar

4 Conclusion and Future Work

We have presented in this paper, to the best of our knowledge, the first ap-
plication of a near-real time lattice-Boltzmann model for general monodomain
models of cardiac electrophysiology. Node-based by construction, our framework
does not require advanced meshing and can be applied directly from images
by means of level-sets. Through comparisons with the traditional finite-element
method, we have empirically shown the applicability of LBM-EP to cardiac elec-
trophysiology. A comprehensive description of the theory along with detailed
studies of convergence and accuracy are being prepared as a larger contribution.
LBM-EP provides second order accuracy in space, can be easily extended to any
type of mono-domain cellular model, and, above all, offers between 10 − 45×
speed-up with respect to traditional FEM. Preliminary experiments on graphi-
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cal processing units (GPUs) showed the potential for another order-of-magnitude
improvement in computational speed. This is the first time, to the best of our
knowledge, that very fast simulations of cardiac electrophysiology is achieved
with a detailed model. Our method may thus constitute an ideal framework for
patient-specific simulations for therapy planning and real-time guidance.

Acknowledgement. We would like to thank Prof. Oscar Camara of PhySense
group at Information and Communication Technologies Department (DTIC) at
Universitat Pompeu Fabra, Barcelona, Spain for providing the CESC’10 bench-
mark results.
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Abstract. Patient-specific cardiac modelling can help in understanding
pathophysiology and predict therapy planning. However it requires to
personalize the model geometry, kinematics, electrophysiology and me-
chanics. Calibration aims at providing global values (space invariant) of
parameters before performing the personalization stage which involves
solving an inverse problem to find regional values. We propose an au-
tomatic calibration method of the mechanical parameters of the Bestel-
Clément-Sorine (BCS) electromechanical model of the heart based on
the Unscented Transform algorithm. A sensitivity analysis is performed
that reveals which observations on the volume and pressure evolution are
significant to characterize the global behaviour of the myocardium. We
show that the calibration method gives satisfying results by optimizing
up to 7 parameters of the BCS model in only one iteration. This method
was evaluated on 7 volunteers and 2 heart failure patients, with a mean
relative error from the real data of 11%. This calibration enabled fur-
thermore a preliminary study of the specific parameters to the studied
pathologies.

1 Introduction

Patient-specific cardiac modelling can provide additional guidance to cardiolo-
gists in understanding pathophysiology and predict therapy planning. Several
approaches for the past 20 years have been developed to describe and simulate
the cardiac function, including cardiac mechanics and electrophysiology [4,1].
They differ in their choice of hyperelastic material, electrophysiological prop-
erties or electromechanical coupling. In this paper the Bestel-Clement-Sorine
(BCS) model [1], further improved by [3] is used.

The simulation becomes patient-specific after several levels of personalization:
geometrical, kinematic, electrophysiological and mechanical. Mechanical person-
alization consists in optimizing mechanical parameters of the model so that the

� Note: This work was partially funded by the European Community’s euHeart project
under grant agreement 224495 and by the ERC advanced Grant MedYMA.
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simulation behaves in accordance to patient-specific datasets (images and other
signals).

This inverse problem has been tackled by different authors (for instance [12],
[7],[8] or [10]). However there is no guarantee that such algorithms will converge
toward a relevant solution due to their dependence on an initial range of param-
eter values. The choice of the parameters to estimate and their initial calibration
has therefore great impact for the personalization.

Our main contribution tackles this initialization issue: we propose a simple
and efficient method to automatically calibrate the parameters from the ven-
tricular volume or pressure evolution over the cardiac cycle. It has been applied
successfully for the calibration of mechanical parameters from 7 healthy cases
and has been tested in two heart failure cases. Our proposed method is based on
the Unscented Transform algorithm and requires only one iteration with multi-
ple simulations performed in parallel for calibrating up to 7 parameters selected
from a sensitivity analysis. Moreover, a comparison between the estimated pa-
rameters for control and heart failure cases enabled a preliminary specificity
study that aims at classifying the pathologies.

2 The Bestel-Clement-Sorine Electromechanical Model
of the Heart

Our approach is based on the Bestel-Clement-Sorine (BCS) model [1] further
improved by [3]. The model is composed of a passive isotropic visco-hyperelastic
component that accounts for the elasticity and the friction in the cardiac extra-
cellular matrix surrounding the fibres, described as a Mooney-Rivlin material.
The strain energy for a Mooney-Rivlin material is given as: We = c1(Ī1 − 3) +
c2(Ī2 − 3) + K

2 (J − 1)2, where c1, c2 are material parameters and K is the Bulk
modulus. The quantities Ī1 and Ī2 are the isochoric invariants of the Cauchy-
deformation tensor C.

In parallel, the stress along the cardiac fibre is composed of an active part
(contraction in the sarcomere) and a passive part corresponding to the elastic
bound (titin) between sarcomeres and Z-discs, having stress σs = Eses. The
contractile component having stress tensor σc, driven by the control variable u,
has a viscous part to account for the energy dissipated in the sarcomere due to
friction. This gives σc = τc + μėc. Fig. 1 shows a rheological representation of
this model.

At the nanoscopic scale, the binding and unbinding process of the actin and
myosin filaments in the sarcomere is described by Huxley’s filament model [5].
Statistical mechanics allows to describe its behavior at the macroscopic scale,
resulting in a differential equation that controls the active stress τc and the
sarcomere stiffness kc:{

k̇c = −(| u | +α | ėc |)kc + n0k0 | u |+
τ̇c = −(| u | +α | ėc |)τc + ėckc + n0σ0 | u |+

(1)

where α is a constant related to the cross-bridge release due to a high contraction
rate, k0 and σ0 are respectively the maximum stiffness and contraction. n0 is
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Fig. 1. Full electromechanical and circulation model. (Left) We is the strain energy
of the extracellular matrix considered here as an isotropic material, associated with a
dissipative term η. u is a control variable which is driven by changes in transmembrane
potential. It controls the contraction stress τc. μ deals with the friction in the sarcomere
while Es is a linear spring to enforce elasticity of the Z-discs (titin). (Right) Circulation
model in the filling phase for the left ventricle.

a reduction factor that allows to take into account the Starling effect by which
the maximum contraction depends on the fibre strain ec. The control variable
u is derived from the electrical activation model and is a function of the free
calcium concentration only. It is modeled using electrophysiological inputs such
as depolarization times (Td) and action potential durations (APD) and depends
on two parameters: kATP the rate of the myosin ATPase activity controlling the
contraction rate and kRS the rate of sarcoplasmic reticulum calcium re-uptake
controlling the relaxation rate.

The ventricles are filled with blood coming from the atria and ejected through
the arteries. A basic circulation model is represented in Fig. 1. A valve model
explained in [3] gives relationships between the outward flow and the various
pressures (ventricular, arteria and atria). The arteria pressure is modeled using
a four-element Windkessel model [9], that depends on four parameters: the pe-
ripheral resistance Rp, the characteristic time τ , the characteristic resistance Zc

and the total arteria inertance L.

3 Unscented Transform-Based Parameter Calibration

To calibrate the model, we use the algorithm derived from the Unscented Trans-
form [6]. We chose the ventricular volume curves as main observations to perform
the calibration as they are important physiological indices and can be captured
by few quantities: the minimum volume Vmin, the maximum and minimum of the
flow (qmax and qmin respectively). Moreover, if available, the maximum pressure
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Pmax, as well as the maximum and minimum of the derivative of the pressure
(dP/dtmax and dP/dtmin respectively) can be taken into account.

3.1 Unscented Transform Algorithm

The proposed algorithm finds a set of parameters that minimize the difference
between the measured observation Zobs and the predicted observation Z̄. It is
explained as follows: Let Z be the vector of observations and X the parameter
vector which has mean X0, covariance CX and dimension n. We set the covari-
ance as CX = Cov(X,X) by estimating the minimal and the maximal value of
each parameter with a trial and error approach on one volunteer. We compute
observations Ziε from the 2n+1 sets of parameters Xiε = [x1, x2, ..., xi + εsi, ...]
around the mean value X0 where ε ∈ {−1, 0, 1} and si is an uncertainty func-
tion of the covariance si = γ

√
CXi, with γ the scaling parameters. The mean

observation is set as Z̄ =
∑

i,ε ωiεZiε with some weights ωiε described by [11].
Finally we derive the covariance matrix as:

Cov(X,Z) =
∑
iε

ωiε(Xiε −X0) (Ziε − Z̄)T (2)

The new set of parameters Xnew found to match the observations Zobs is

(Xnew −X0) = Cov(X,Z) Cov(Z,Z)−1 (Zobs − Z̄) (3)

where

Cov(Z,Z) =
∑
iε

ωiε(Ziε − Z̄) (Ziε − Z̄)T . (4)

This algorithm is very simple to implement and runs in one iteration to give
Xnew. Another simulation is necessary to obtain the resulting observation Znew .

3.2 Parameter Selection

Fourteen parameters in total have to be estimated: (σ0, krs, katp, k0, α, μ, Es)
active parameters, (K, c1, c2) passive parameters and (Rp, τ, Zc, L) for the valve
model. Since it is not reasonable to try to estimate all of them at once, we
decide to fix some to a standard value and estimate others. A sensitivity analysis
was performed in order to select the main parameters. We chose the following
four parameters (σ0, μ,K,Rp) that we might be able to estimate from a volume
curve. This choice was confirmed by a Singular-Value-Decomposition (SVD) of
the covariance matrix Cov(X,Z) made from all fourteen parameters and the
three observations (Vmin, qmax and qmin). When pressure curves are available,
more parameters can be estimated. krs, katp as well as the stiffness parameter
c1 were chosen since they greatly influence the pressure slopes. Relevant curves
are presented in Fig. 2.
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(a) σ0 (MPa) (b) μ (MPa.s) (c) K (MPa) (d) Rp (MPa.m−3.s)

(e) σ0 (MPa) (f) μ (MPa.s) (g) krs (s−1) (h) Rp (MPa.m−3.s)

Fig. 2. Observations over time: (Top) Volume in mL, (Bottom) Pressure in kPa

4 Calibration Results on Healthy and Pathological Cases

We demonstrate the application of the proposed method on cardiac MRI data
on both volunteer and patient data acquired at the Division of Imaging Sciences
& Biomedical Engineering at King’s College London, UK. Initial parametersX0

and covariance matrix CX are the same for all cases. Each case was calibrated in
about 20 minutes that includes the time to run in parallel the 2n+1 simulations,
the calibration time and the final simulation with the calibrated parameters.

4.1 Volunteer Data: Calibration with Volume Curves

The study was performed on seven healthy hearts provided by the STACOM
challenge. The electrophysiological model was simulated with standard values
and healthy onset (see Fig.3 Left). From the kinematic personalization, we reg-
istered all images on the end diastolic image. Then, image transformations were
applied to the end-diastolic tetrahedral mesh to estimate the volume of the
ventricles over time and then the observation vector Zobs. Fig. 3 shows the mea-
sured, reference and estimated volume curves on case 3 and errors between the
real observations Zobs and the simulated observations Znew are given in Table 1.
Moreover, the calibration provided a consistent and plausible range of global
values for parameters that will be used in a specificity study (see Table 2).

4.2 Pathological Data: Calibration with Volume and Pressures

The proposed calibration approach was applied on two Left Bundle Branch Block
(LBBB)1 cases. Electrophysiological personalization (see Fig. 4 left) was enabled

1 LBBB cases are characterized by dyssynchronous electrophysiology.
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Table 1. Relative errors (in %) between simulated results Znew and real data Zobs on
the 7 healthy cases

Volunteers 1 2 3 4 5 6 7 Mean

Vmin 0.35 3.51 0.83 0.79 1.09 1.38 1.31 1.32
qmax 3.06 20.99 8.57 21.37 11.5 12.1 5.36 11.85
qmin 0.31 4.12 27.41 6.48 27.58 16.92 5.81 12.66

Table 2. Estimated parameters from the calibration

Volunteers 1 2 3 4 5 6 7 Mean

σ0 (MPa) 6.49 4.42 4.92 5.46 5.51 8.75 5.32 5.8
μ (MPa.s) 0.31 0.31 0.27 0.3 0.33 0.26 0.3 0.3
K (MPa) 14.22 10.44 12.72 13.24 14.12 12.72 12.82 12.9

Rp (MPa.m−3.s) 93.87 130.88 110.1 116.73 104.43 98.3 141.39 113.7
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Fig. 3. (Left) Electrophysiological and geometrical input. (Right) Results of the cali-
bration technique on real data for one healthy volunteer.

and pressure curves were available thanks to pressure sensors. Results on the two
LBBB cases are given in Fig. 4 and the comparison with the images is given in
Fig. 5. The mean relative error for both cases is about 16%. We noticed a much
higher passive stiffness (K = 19MPa) for LBBB case 2 which also suffers from
dilated cardiomyopathy, and a smaller contractility (σ0 < 4MPa) for both heart
failure cases. These results are in agreement with medical knowledge (see [2] for
instance). Therefore we can assess that a small contractility may be specific to
LBBB cases as a high myocardial stiffness may be to dilated cardiomyopathy.

4.3 Evaluation of Registration Error Influence

We tried to evaluate the error in the registration technique to understand whether
the model could actually match the data better than shown in Fig. 3. For this pur-
pose, we created synthetic images from a real sequence, using the deformedmeshes
resulting from a simulation. We then registered this new sequence with the same
registration technique as used for the kinematics personalization, and extracted
the volume curves from the resulting registered meshes. The comparison between



Cardiac Mechanical Parameter Calibration 47

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

time (s)
P

re
ss

u
re

 (
m

m
H

g
)

data
initial
calibration results

0 0.2 0.4 0.6 0.8 1
90

100

110

120

130

140

150

160

170

180

time (s)

V
o

lu
m

e 
(m

L
)

data
initial
calibration results

Fig. 4. (Left) Personalized electrophysiology. (Right) Results of the calibration tech-
nique on real data for LBBB case 1.

(a) t = 0 ms

(b) t = 410 ms

Fig. 5. Simulated mesh for LBBB case 1 Fig. 6. Comparison between the vol-
ume variation computed from the sim-
ulation and the one estimated from reg-
istered images

the initial simulated volume curve and the one computed after registration gives a
relative error of about 25% for both slopes (see Fig.6), which is of the same order
of magnitude as the one after model calibration.

5 Conclusion

In this paper we proposed an innovative calibration method of an electrome-
chanical cardiac model. The model depends on 14 parameters that act on the
active, passive and constraint components. The calibration based on the Un-
scented Transform allowed us to give a fast initialization of 4 or 7 parameters,
leaving the others fixed to standard values. The choice of these parameters was
made based on a sensitivity analysis on the volume and pressure variation and
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confirmed by a Singular-Value-Decomposition analysis. Since the calibration re-
quires only to run several simulations in parallel to estimate these parameters
followed by one additional simulated cycle to verify the results, it can easily be
used as a preprocessing step before the application of more sophisticated per-
sonalization algorithms. Moreover, the calibration performed on the 7 healthy
volunteers and 2 heart failure cases allowed us to compare parameters for patho-
logical cases versus healthy controls as a first step toward specificity analysis
to classify various pathologies. Additional heart failure cases and observations
quantities (global indices of the strain for instance) are required to further im-
prove the calibration and validate this specificity study. Finally, the impact of
the calibration on the personalization algorithm also needs to be investigated.
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Abstract. In this paper, we adapt spectral signatures for capturing morphological
changes over time. Advanced techniques for capturing temporal shape changes
frequently rely on first registering the sequence of shapes and then analyzing the
corresponding set of high dimensional deformation maps. Instead, we propose a
simple encoding motivated by the observation that small shape deformations lead
to minor refinements in the spectral signature composed of the eigenvalues of
the Laplace operator. The proposed encoding does not require registration, since
spectral signatures are invariant to pose changes. We apply our representation to
the shapes of the ventricles extracted from 22 cine MR scans of healthy controls
and Tetralogy of Fallot patients. We then measure the accuracy score of our en-
coding by training a linear classifier, which outperforms the same classifier based
on volumetric measurements.

1 Introduction

Capturing the shape and function of anatomy through volumetric measurements ex-
tracted from 4D medical scans has become of central importance in diagnosing dis-
eases. For example, cardiologists rely on ejection fraction extracted from ultrasound
or cine MR scans to assess patients. These volumetric measurements, however, are not
sensitive enough to aid the diagnosis of many focal or diffuse cardiac diseases. In this
paper, we introduce a new encoding of the shape and its temporal changes based on
the spectral signature and show that this encoding is more sensitive for comparing two
shapes and their temporal dynamics than volumetric measurements.

Advanced techniques for capturing the changes in shape over time frequently rely
on registering the sequence of images and then analyzing the corresponding set of de-
formation maps [1,2]. Examples of this type of analysis, specific to the heart, include
mappings motivated by biomechanical models [3] or mathematical properties [4], from
which statistical models of the cardiac ventricles can be extrapolated [5]. While promis-
ing, these approaches are susceptible to negatively biasing the analysis due to the un-
derlying assumptions and parameter settings of the registration framework, as well as
the accuracy in reducing high dimensional deformation maps to a few features.

An alternative avenue is to characterize the shape of each structure with a low-
dimensional set of parameters and use the latter for structure discrimination. Spectral
signatures, i.e. eigensystems of the Laplace and Laplace-Beltrami operators, have re-
cently gained popularity as powerful shape descriptors [6,7]. The eigenvalues of the
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Fig. 1. Our method. a: Right (RV) and left (LV) ventricle segmentations for each heart sequence
at three sample timepoints. b: Eigenvalue curves that encode temporal shape changes displayed
as a function of time. c: RV and LV reduced shape signatures learned by a low dimensional
embedding of these curves, while assuming no prior physical or statistical model of the data.

Laplace operator implicitly carry information on local shape invariants such as curva-
ture, surface area and volume, and allow to encode shape information with few param-
eters without need of prior registration [8]. In this paper, we specifically explore the
adaptation of this technology from capturing individuals shapes to capturing temporal
morphologic changes.

Our work is motivated by the observation that small shape deformations lead to mi-
nor refinements in the spectral signature. Spectral signatures are thus well suited for
capturing temporal shape changes of anatomical structures that vary slowly between
measurements, such as cardiac ventricles from cine MR scans. Our representation cap-
tures temporal shape changes by first computing the spectral signature for each time
point yielding a family of eigenvalue curves (Fig. 1b). We then encode temporal shape
changes by a low dimensional embedding of the eigenvalue curves (Fig. 1c). By doing
so, our simplistic representation assumes no prior physical or statistical model of the
data and only depends on two parameters, namely, the number of eigenvalues and the
dimension chosen for the lower dimension embedding.

We apply our representation to the shapes of the ventricles extracted from 22 cine
MR scans of 11 healthy controls and 11 Tetralogy of Fallot (TOF) patients. We choose
this specific scenario as there is no uncertainty, unlike with other diseases, about the
diagnosis, so that the labeling of individual data sets can be viewed as ground truth. In
addition, TOF is suitable for temporal analysis as it affects both RV shape and cardiac
function. We then measure the accuracy score of our encoding by training a linear clas-
sifier and recording the leave-one-out cross-validation accuracy in distinguishing these
two populations. Our representation outperforms the linear classifier based on volumet-
ric measurements of the ventricles. Before we describe our encodings and experiments
in further detail, we just note that we do not attempt to provide a representation tailored
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towards cardiac disease detection but rather derive a shape representation for implicitly
encoding temporal morphological changes that can be applied to the cardiac domain.

2 Temporal Shape Encoding

We now present in further detail the extension of the spectral signature of the Laplacian
operator to the temporal domain. Laplace operators and their spectra have been studied
in mathematics for a long time [9,10,11]. Their introduction in computational shape
analysis is, however, rather recent [12]. We start with an introduction to Laplace opera-
tors and then describe our spectral shape encoding for temporal shape deformations.

2.1 Spectrum of Laplace Operator

Our brief overview of the Laplace operators is meant to give the necessary background
to understand their role in temporal shape encoding. For a more thorough discussion,
we refer the reader to [11,12].

We denote an object as a closed bounded domain Ω ⊂ Rd with piecewise smooth
boundaries. With respect to medical imaging domain, Ω corresponds to the volume
extracted from the segmentation of an anatomical structure. The Laplace operator ΔΩ

on Ω is defined as ΔΩf �
∑d

i=1
∂2

∂x2
i
f for a twice differentiable function f , where

x � {x1, . . . xd} are the spatial coordinates. The importance of this operator for shape
analysis arises from its eigenvalues and eigenfunctions, which are the solutions of the
Helmholtz equation with Dirichlet type boundary conditions, ΔΩf + λf = 0, ∀x ∈
Ω and f(x) = 0, ∀x ∈ ∂Ω, where ∂Ω denotes the boundary of the object and λ ∈ R

is a scalar [11]. There are infinite pairs of {(λj , fj)}∞j=1 that satisfy this equation and
the ordered set of eigenvalues form a positive diverging sequence 0 < λ1 ≤ λ2 ≤ . . . ,
called the Dirichlet spectrum of ΔΩ , which we simply refer to as the ‘spectrum’.

The spectrum has several advantageous properties for shape analysis in medical im-
age analysis [11]. First, the spectrum encodes information regarding the intrinsic geom-
etry of the object. This information content is due to an identity called heat-trace and
its equivalent polynomial expansion Z(τ) �

∑∞
j=1 e

−λjτ =
∑∞

m=0 am/2τ
−d/2+m/2,

with τ > 0. The coefficients am/2 are given as sums of volume and boundary integrals
of some local invariants of Ω [13,11], such as its volume or its surface mean curvature.
The functional relation between {λj}∞j=1 and {am/2}∞m=0 links the geometry of an ob-
ject to its spectrum, and is the ingredient that makes the Laplace operator interesting
for shape analysis. Second, the eigenvalues are invariant to isometric transformations.
This invariance can be even extended to scaling [12], thus eliminating the need to align
the shapes to a common coordinate system for further analysis. Finally, the eigenvalues
change continuously with the deformations applied to the object’s boundary, i.e. there
is a continuous link between the differences in eigenvalues and the difference in shape.
This continuous link is a critical component for our encoding of temporal shape defor-
mation. For a deeper intuition, let us consider an object that changes its shape with time.
We represent the temporal dependence of the object’s shape with Ω(t) and the temporal
dependence of its spectra with Λ(t). Now, if we interpret the motion of an object as the
deformation between two time points, Λ(·) not only then captures the geometry of Ω(t)
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at a given t but it also provides information regarding the motion of Ω(·). In this paper,
we make use of both information when encoding 3D+t(ime) objects.

2.2 Learning Temporal Shape Changes

We now outline the framework for encoding 3D + t. Given a set of K 3D+t volumes
defined over T time points, we first compute for each volume i ∈ {1, . . . ,K} and time
point t ∈ {1, . . . , T } the first N eigenvalues of the spectrum (see also Fig. 1b), which
we denote with {λi1(t), λi2(t), . . . , λiN (t)}. We then construct temporal curves from the
eigenvalues across the N signatures of each volume, i.e. λij :=

{
λij(1), . . . , λ

i
j(T )

}
,

for j ∈ {1, . . . , N}, is the jth temporal (eigenvalue) curve of volume i. The final step
encodes the temporal shape deformations by learning a low dimensional embedding of
those curves across allK volumes. By doing so, further analysis of our encoding always
has to consider the subject specific matrix of eigenvalues defining curves across time
instead of viewing λij individually.

For dimensionality reduction, we apply Non-negative Matrix Factorization (NMF)
[14] to the N · K temporal curves. In general, the dimension of the data matrix V is
M × O where M is the number of measurements and O the number of objects. In our
temporal shape encoding, each column of the data matrix V represents a temporal curve
λij . Thus, the dimension of V becomes the (number of timepoints T ) ×(K ·N). NMF
then factorizes matrix V into a basis matrix H and coefficient matrix W so that

V ≈WH subject to minimizing F (W,H) �
N ·K∑
i=1

T∑
μ=1

[Viμ log(WH)iμ − (WH)iμ],

where V refers to the entries of the corresponding matrix. Setting the number of basis
vectors to B and b ∈ {1, . . . , B}, the optimal H and W are obtained by finding the
local minimum of F (·, ·) via the following iterative algorithm:

1: W ′
ib←Wib

T∑
μ=1

Viμ
(WH)iμ

Hbμ 2: Wib←
W ′

ib∑N·K
j=1 W

′
jb

3: Hbμ←Hbμ

N ·K∑
i=1

Wib
Viμ

(WH)iμ

All temporal curves can now be represented by the basis matrix H and the correspond-
ing B coefficients provided by W . These B coefficients across all the sequences of N
eigenvalues are then the temporal shape encodings of our 3D+t objects.

We note that one could have chosen any other dimensionality reduction method. We
simply choose NMF as it does not make any assumption of the underlying distribution,
unlike for example Principle Component Analysis as motivated by our experiments.

3 Experimental Setup

We evaluate our temporal shape encoding by applying it on ventricle segmentations
from short-axis cardiac MRI scans and comparing its accuracy score in a classification
problem to discriminate healthy individuals from patients who had Tetralogy of Fallot
(TOF) corrected surgery in infancy. Our dataset includes the cine MR scans of 11 TOF
cases and 11 healthy volunteers (K=22). TOF patients are post repair and age-matched
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to normal controls. The cine MR scans of each case are normalized to 23 timepoints. A
medical expert then semi-automatically segmented the blood pool of the right ventricle
and myocardium of the left ventricle at the end-diastole (ED) timepoint using ‘Segment’
[15] with manual corrections of the results. For simplicity, we refer to the blood pool
of the right ventricle just as right ventricle or RV, and to the myocardium of the left
ventricle as left ventricle or LV. We then propagate this segmentation to the other time
points via the non-rigid registration of [16]. We refine those segmentations via dilation
and erosion to remove possible holes, disconnections or topology changes caused by
registration errors. Sample segmentation sequences are shown in Fig. 1a.

For computing the Laplace spectrum, we define the shapes of LV and RV based
on the corresponding segmentations. We then compute the Dirichlet eigenvalues using
finite differences on the regular grid. While using a high order FEM method might pro-
vide more accurate eigenvalues, this is outside the scope of this article as our focus is to
apply the signature to the temporal domain, hence we use the simplest implementation.
Furthermore, one can also consider using Neumann eigenvalues however they would be
more sensitive to noisy segmentations e.g. isolated islands.

We analyze the accuracy of our new temporal shape encoding in describing the shape
changes of the RV and LV by first applying it as well as related representations to our
sequences of segmentations. We then measure the accuracy of a linear Support Vector
Machine (SVM) [17] in correctly labeling images based on those features via the leave-
one-out principle. Table 1 records the outcome when applying the classifier to LV and
RV separately as well as when we combine the eigencurves of both ventricles.

We start by extracting the volumes and computing the first eigenvalue of the RV and
LV. We view each volume or first eigenvalue as a feature so that classification of every
RV and LV is based on 23 features (given from the original 23 timepoints). When con-
catenating the ventricles (which we will denote by RV-LV), classification is based on 46
features instead. Classification results based on volume and based on the first eigenvalue
are shown in Table 1 (a) and (b) respectively. Simply using volume for distinguishing
shape changes between TOF and normal subjects only leads to an accuracy of approxi-
mately 60% for LV and RV separately and of 68% when combined. As mentioned in the
previous section, the functional relation between {λj}∞j=1 and {am/2}∞m=0 is the link
between the geometry of an object and its spectrum. In particular, the first eigenvalue
is directly proportional to the volume of object i since a0 = (4π)−3/2Vi. As predicted,
the results obtained using the first eigenvalue alone are comparable to the volume ones.

As shown in the rest of the experiments, increasing the number of eigenvalues adds
shape information, improving the overall recall. We start by considering the eigen-
value sequences λij individually. We do so by computing the eigenvalues for each of
the hearts, setting the spectrum cutoff at N = 100. For comparison to our new encod-
ing, the results of Table 1 (c) do not explicitly model temporal dependencies as we first
combine the 23 · N features for each ventricle (or 46 ·N for RV-LV). We then reduce
the M = 23 · N eigenvalues (or 46 · N for RV-LV) for the O = K hearts via NMF
(see Sec. 2.2) to B = 22 features. Parameters N and B are chosen empirically to be
minimum while maximizing classification accuracy. We experimented for N from 1 to
200 and for B from 2 to 200. Furthermore, B is set to the same for the LV, RV, and
RV-LV scenarios. The resulting classification scores (c) are higher compared to (a,b).
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Table 1. TOF classification results. For each experimental setup, we record precision (prec.),
recall and accuracy for LV, RV and RV-LV, obtained from our leave-one-out cross validation.
The first eigenvalue (b) alone performs similarly to the volume feature (a). Increasing number
of eigenvalues (c) improves the performance, especially recall. d-e) Our 3D+t shape signatures
method yields increased scores. f) Choosing PCA instead of NMF on the same eigencurves used
for (d) results in lower scores.

LV RV RV-LV
Prec. Recall Accuracy Prec. Recall Accuracy Prec. Recall Accuracy

a: volume 0.7727 0.5862 0.6136 0.9394 0.5741 0.6212 0.9301 0.6274 0.6888
b: λ1 0.8182 0.5625 0.5909 0.8636 0.6441 0.6932 0.8864 0.6290 0.6818
c: λ1:1:100 0.7143 0.5914 0.6104 0.7557 0.6425 0.6676 0.8182 0.7674 0.7851

d: λ1:1:100 (3D+t) 0.6970 0.8214 0.7727 0.7576 0.8065 0.7879 0.8788 0.8286 0.8485
e:λ1:10:100 (3D+t) 0.7879 0.8667 0.8333 0.8182 0.8438 0.8333 0.9545 0.8400 0.8864

f: PCA λ1:1:100 0.7273 0.6957 0.7045 0.7273 0.7500 0.7424 0.7879 0.7647 0.7727

We further improve the classification score by using our new 3D+t temporal shape
representation of Sec. 2.2 (Table 1 (d,e)). Here, we reduce the dimensionality of the
N · K eigencurves from T = 23 entries (respectively 46 for the RV-LV) to B = 4
after exploring the entire range from 2 to 23. Fig. 2a illustrates sample eigencurves. We
then feed B · C features to the classifier, where C is the number of curves selected for
the classification step. In line (d), we use all the eigencurves for classification, hence
setting C = N(= 100), while we subsample the eigencurves in (e) setting C = 10. The
3D+t encoding yields a higher precision and significantly improves recall, hence giving
an overall improved accuracy. As shown from the classification results in (e), selecting
a subset of the eigencurves, once all the eigencurves have already been used for the
learning step, allows to improve the outcome of the classifier, indicating that another
method for data compression or classification could improve even further the results of
our temporal shape descriptor as well as that of the other scores.

To motivate the use of NMF, we also applied PCA (f) to learn the temporal eigen-
curves using the same setup of (d). The accuracy scores drop to the level we measured
for the volumes scores indicating that the Gaussian assumption of PCA is violated by
these sets of temporal eigencurves. Our quantitative findings are also reflected in the
visual comparison of the basis vectors for B = 4 of the two dimensionality reduction
methods in Fig. 2b. While the bases obtained by PCA are very noisy, the NMF ones are
cleaner and better describe the smooth temporal changes observed in the eigencurves.

Summary. In this paper, we exploit the implicit local shape properties captured by spec-
tral signatures, i.e. eigensystems of the Laplace and Laplace-Beltrami operators, and
adapt them to capture morphological changes over time. We propose a fairly simple en-
coding based on the observation that small shape deformations lead to minor refinements
in the spectral signature. The shape analysis is independent of the original segmentation
used and, given initial segmentations, computing the spectral signature is independent
of registration. The accuracy obtained in the classifications demonstrate that that our
temporal-shape representation can be successfully used to classify TOF cardiac disease
patients. Our results indicate that our new temporal shape representation better incor-
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Fig. 2. Shape signatures. a: Sample eigencurves before reduction. b: Learned spectral signatures
reduced via NMF and PCA for RV and LV (over 23 timepoints), and for RV-LV (over 46 time-
points). In the absence of the correct initial statistical model, PCA results in a high level of noise
and does not capture the smooth temporal changes of the eigencurves.

porates the temporal relation of the data. Thus, we are able to better capture RV and
LV deformations in this population than scores capturing shape changes over time by
separately measuring the 3D shape at each timepoint.
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Abstract. We present an extension of the diffeomorphic Geometric
Demons algorithm which combines the iconic registration with geometric
constraints. Our algorithm works in the log-domain space, so that one can
efficiently compute the deformation field of the geometry. We represent
the shape of objects of interest in the space of currents which is sensitive
to both location and geometric structure of objects. Currents provides
a distance between geometric structures that can be defined without
specifying explicit point-to-point correspondences. We demonstrate this
framework by registering simultaneously T1 images and 65 fiber bundles
consistently extracted in 12 subjects and compare it against non-linear
T1, tensor, and multi-modal T1+ Fractional Anisotropy (FA) registration
algorithms. Results show the superiority of the Log-domain Geometric
Demons over their purely iconic counterparts.

Keywords: Registration, neural fibers, diffeomorphism, Demons Algo-
rithm, intensity-base registration, tensor-base registration, log-domain.

1 Introduction

Non-linear image registration is one of the most challenging tasks in medical im-
age analysis. For inter-individual comparison, registration should align images as
well as cortical and internal structures such as sulcal lines and fibers. Non-linear
registration algorithms can be categorized into iconic, geometric and hybrid.

Iconic, or image-based registration [13,3,10] finds a voxel-wise mapping be-
tween a source and a target image. Schematically, iconic registration is mainly
driven by the contours of the image, and without prior knowledge, it is difficult
to coregister regions with little contrast. For instance, brain white matter ap-
pears uniformly white in T1 images, giving no relevant information to the iconic
registration, while it is composed of neural fibers connecting cortical areas. Dif-
fusion Tensor Imaging (DTI) can be used to reveal the microscopic structure of
the white matter. Tensor-based registration was recently proposed to improve
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white matter alignment [17,15]. However, misregistration may persist in regions
where the tensor field appears uniform, as shown in [4].

Geometric registration specifically targets the alignment of Structures of In-
terest (SOI), such as in [16] for cortical surfaces, or [4] for fiber bundles. While
those clearly improve SOI registration, they are in general not suitable for align-
ing other structures than those used specifically during registration.

Hybrid techniques propose to jointly consider SOI and images during regis-
tration. For instance, [1,8] used the mathematical framework of measures and
currents to simultaneously register images and geometric descriptors, while [12]
proposed a Markovian solution to the same problem.

We present an hybrid registration algorithm based on the efficient framework
of Demons, where we combine iconic and geometric registration. The geometry
is represented in the space of currents which provides a metric sensitive to shape.

The rest of the paper is organized as follows. First, we propose a mathemati-
cally sound extension of the Geometric Demons(GD), the Log-domain Geometric
Demons (LGD), that relies in the log-domain framework for computation and
handles geometric constraints in the space of currents. Then, we evaluate the
LGD with bundles constraints on a dataset of 12 subjects and compare them
with a scalar [14], a tensor [15], and Ants [2] a multi-modal registration.

2 The Log-Domain Geometric Demons

2.1 The Diffeomorphic Demons

In image registration we search for a displacement field s between a fixed F
and moving M image, that maps as accurately as possible corresponding struc-
tures in both images. Ideally the displacement field s minimizes the distance
between the fixed and the moving image, while holding some properties such
as being diffeomorphic. In the Demons framework[13] a correspondence field c
was introduced to make the minimization of the functional energy tractable:
E(c, s) = 1

σ2
i
Sim(F,M ◦ c) + 1

σ2
x
dist(s, c)2 + 1

σ2
T
Reg(s) where Sim is a similar-

ity measure between images defined by the sum of square differences (SSD)
and Reg a regularization term chosen to be an harmonic energy. The amount
of regularization is controlled with σT while σi accounts for the image noise.
The term dist(s, c)2 imposes the displacement field s to be close to the corre-
spondence field c. σx weights the spatial uncertainty on the deformation. The
energy minimization is performed by alternating minimization w.r.t. c and s. In
[14], small deformations parametrized by a dense displacement field u are used:
c ← s ◦ exp(u), exp() being the exponential map in the Lie group sense, which
ensures that the result is diffeomorphic.

2.2 Geometric Demons

To incorporate geometric constraints in the Demons framework, in [11] the def-
inition of c was extended to carry information from both image and geometry.
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Let us denote by GF (resp. GM ) the fixed (resp. moving) geometric descriptors.
Therefore a new energy was defined:

E(c, s) =
1

σ2
i

[
SimI(F,M ◦ c) + SimG(c � GF ,GM )

]
+

1

σ2
x

dist(s, c)2 +
1

σT
Reg(s), (1)

where SimI is the image similarity measure, SimG the geometry similarity mea-
sure, and c � GF denotes the action of c on the geometry.

Following [14], c was parametrized by an update field, as the additive com-
bination of an image update field uI and a geometric update field uG. Non-
intersecting domains were defined, as ideally, one should use uG only where
geometric information is relevant and use uI elsewhere. In the case of fibers,
the geometric domain will remain within the white matter. Thus, let ΩG be the
definition domain of uG (where geometry is defined), and the definition domain
of uI be ΩI = Ω − ΩG. Then we can define c = exp(uI + uG). The following
relationships hold: c � GF = exp(uG) � GF and M ◦ c = M ◦ exp(uI).

Geometric Demons incorporates the following energy to calculate uG:

EG(s, uG) =
1

σ2
i

SimG(s ◦ exp(uG) � GF ,GM ) +
1

σ2
x

∫
ΩG

‖uG‖2, (2)

Being s the deformation field from F to M . Thus, the inverse of the s gives
the geometric deformation. In section 2.3 we show an efficient approximation for
obtaining the geometric deformation in the log-domain space.

2.3 Log-Domain Geometric Demons

The log-domain demons avoids the inversion of the deformation field by redefin-
ing s with the exponential map: s = exp(v). Then s ◦ exp(u) = exp(v) ◦ exp(u)
and the Baker-Campbell-Hausdorff(BCH) formula yields log(exp(v) ◦ exp(u)) ≈
v + u+ 1/2[v, u] + 1/12[v, [v, u]] + ... where [v, u] is the Lie bracket.

Then, the LogGeometric Demons algorithm is defined as follows:

1. Choose a starting spatial transformation s = exp(v)

2. Given s, uI , compute the update field uI as in [14]

3. Given s, uG, compute the update field uG by minimizing Eq. (2)

4. Let u← s ◦ exp(uI + uG)

5. v ← log(exp(v) ◦ exp(u)) using BCH approximation and exp(u) is efficiently
computed with a few compositions, look [14] for further details.

6. let v ← Kdiff � v where Kdiff is a Gaussian convolution kernel

7. s = exp(v) and s−1 = exp(−v)
8. Go to 2. until convergence

With this new definition we can efficiently compute the geometric deformation.
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Calculation of uG in the Space of Currents. In GD the closest point dis-
tance was proposed as it does not need explicit correspondences between points
and it can be a good approach for comparing single fiber bundles representatives
as in [11]. In contrast, by representing geometry in the space of currents, we have
a pose and shape-sensitive measure which permits to define a distance between
bundles containing different number of fibers.

Let G be a set of continuous curves. We define the sequence of discretized
points in G as G = (x1, ..., xN ), N being the number of points. We can associate
to this sequence a specific measure given by the vector valued Diracs: μG =∑n−1

i=1 τG,iδcG ,i where cG,i = (xi + xi+1)/2(center point) and τG,i = xi+1 − xi
(tangent vector) if xi and xi+1 belong to the same curve, otherwise τG,i = 0.

Following [6], let W be a reproducible kernel Hilbert space (r.k.h.s) of vector
fields with kernel KW

β isotropic and Gaussian of size β: vector fields in W are
convolutions between any square-integrable vector fields and the convolution
square root of the kernel. Then, the vector space of currents is a dense span of
the set of all the vector valued Diracs currents τδc for any τ, c ∈ R3. A Dirac
current may be seen as an oriented segment entirely concentrated at point c. The
scalar product between two sums of vector valued Diracs expresses conveniently
in terms of the kernel KW

β :

〈μ, μ′〉 = 〈
N∑
i=1

τiδci ,

M∑
j=1

τ ′jδc′j 〉 =
N∑
i=1

M∑
j=1

KW
β (ci, c

′
j)τi.τ

′
j (3)

Having a fixed and a moving geometric descriptor GF = (x1, ..., xN ) and GM =
(y1, ..., yM ) N,M being the number of points, the distance is defined as follows:

d2(GF ,GM ) = ||GF − GM ||2W∗ = ||GF ||2W∗ + ||GM ||2W∗ − 2〈GF ,GM 〉W∗ (4)

The distance measures geometrical differences both in pose and shape. With β
we define the kernel size, and points at distances much larger than β have a large
distance disregarding the shape. Also, when distances are much smaller than β,
they are taken as noise, and thanks to the smoothing effect of the kernel they
are not taken into account. So the distance captures first misalignment and then
shape dissimilarities until a noise level quantified by β is reached.

Let us define the action of the correspondence field c on G as: c � G = {s ◦
exp(uG)(xi)}i∈[1,N ] ≈ {s(xi)+uG(xi)}i∈[1,N ]. Since we are dealing with discrete
points, we choose to parametrize the dense update field uG by a finite set of
vectors uG,i using radial basis function interpolation: uG(x) =

∑N
i=1 h(‖x −

xi‖)λi. When h(x) = e−(r)2, λi are calculated such that uG(xi) = uG,i∀i. Let us
define the matrix A such that [A]i,j = h(‖xi−xj‖) ([A]i,j denotes the (i, j) entry
of A), H(x) the vector such that [H(x)]i = h(‖x−xi‖) and U = [uG,1, ..., uG,N ].
We can write: uG(x) = H(x)A−1U . Solving ∇EG(s, uG) = 0 w.r.t. uG narrows
down to optimization for the uG,i, ∀i. After differentiation, we obtain:

uG,i =
∇uG,i ||c � GF − GM ||2W∗

1 +
σ2
i

σ2
x
[H(s(xi))A−1]i

(5)
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Defining ΩG for Bundles. Since we want fibers to influence the deformation
near the definition domain, we define the domain as the union of γ−radius balls
B centered at each coordinate xi. We control the influence by varying γ and thus,
dilating the domain. We define a binary map Ωγ

G =
⋃N

i=1 B(xi, γ) . The domain
of the image correspondence field is the complementary of Ωγ

G: Ω
γ
I = Ω\Ωγ

G.

3 Joint T1 MRI and Brain Bundle Registration

3.1 Data Description

We used the NMR database of 12 healthy volunteers scanned with T1 (256×256×
124, .9375× .9375×1.2mm) and DW-MRI (128×128×60, 1.875×1.875×2mm)
[9]. 200 encoding gradients were used for the diffusion sequence. Using [7], we
obtained corresponding fiber bundles between several subjects. 100 bundles were
consistently identified in all subjects. The longest 65 bundles distributed in both
hemispheres were retained for the experiments. For each subject we obtained the
linear transformation from B0 to T1 to align bundles with T1 images.

3.2 Experiments

Two experiments were conducted. First, we exhaustively analyze the parameter γ
in ωγ

G defined in Sec. 2.3 to understand its effect on registration accuracy. Second,
we compared the performance between Symmetric Log Domain Demons (SLDD),
the Symmetric Tensor Demons (STD) and Ants. The inverted deformation field
was applied to the fibers to display the registration. Each algorithm was tested on
the 3-steps multi-scale approach with 15, 10 and 5 iterations at each scale (from
small to large). We set the currents kernel size β by using a robust estimator of
the maximum distance between bundles thresholded at 20mm.

Influence of γ. In the first experiment, the 11 subjects were registered onto
one, arbitrary chosen as the target subject. We varied γ from 0 to 4.5, where γ
is scaled by the smallest voxel size. We divided our bundles in 5 sets (13 bundles
each, with bundles of ∼ 3 fibers, each of 21 points), and used jointly 4 to train,
and the left one to test. The following results show the average of the 5 possible
permutations of choosing the test set. We show results over training set (a), test
set (b), and the image (c) for the increasing values of γ in Fig. 1. As expected,
fiber matching improves as γ increases(a) at the expense of image alignment(c).
Indeed, when fibers have a large influence on their neighborhood, image-driven
forces are discarded, leading to poor image registration. Also, comparing (a)
and (b) we note that γ = 4.5 is overfitting the fibers, misleading the overall
registration. γ = 3.0 largely improves fiber alignment, while keeping a good
match between images. In the sequel, a γ = 3.0 will be used. In some cases image
matching is slightly improved when using γ = 1.5 pointing out that geometry
may indeed help image registration to avoid local minima.
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(a) (b) (c)

Fig. 1. Influence of γ. Similarity measure average of the 5 training set permutations
with varying γ. Different color curves represent the 11 subjects.

Comparison with SLDD, STD and ANTS. For this experiment we register
all subjects to each subject for each permutation of the training set. For SLDD,
we registered 11 T1 images onto the 12 permuted target and applied the inverted
deformation field to the bundles. For STD, we extracted tensors using [5] and
registered each of them onto the 12 permuted target tensor image. Then, inverted
deformation fields were applied to each subject’s fibers in the DWI space. Finally,
the linear transformation calculated between the target B0 and T1 images was
used to carry fibers to the T1 space. For Ants, we extracted the FA from the
tensors obtained using [5], and aligned them to their T1 image. We use the cross
correlation setting with weighting equally image and FA. Then affine and non-
rigid resulting transformation were applied to images, while the inverse of the
non-rigid and the affine were applied to the fibers. We show the average metric
over training sets (i), test sets (j) and image (k) of registering all subjects to
each one with the methods mentioned above in Fig. 2.

As expected, LGD further improved fiber registration in (i) compared to the
other algorithms. However, the training set contains the fibers used during reg-
istration; we explicitly optimize a metric evaluated on those fibers. Analyzing
the results over the test set in (j) we see a similar performance compared to
Ants, and STD, which is remarkable as STD is using information from tensors
over the whole dense grid, and Ants does a cross correlation between the whole
FA grid and T1. By contrast, in LGD the deformation field was obtained using
only sparse information coming from selected fibers, which are not defined in the
regions tested in (j). Therefore having a similar performance is very promising.
We can also see in (k) the image registration for STD was extremely poor. We
time all algorithms with an Intel Xeon 8proc. 2.53GHz, 11.8Gb and obtained:
SLDD=19.61min, STD=10.75min, Ants=25.63min, and LGD=12.51min.

4 Discussion

We compared our algorithm against a scalar (SLDD), a tensor (STD), and a
multi-modal (Ants) registration. Results show that bundle alignment was highly
improved comparing to other algorithms. We get accurate results even for testing
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set fibers where no information was used from the support regions of the those
fibers, and STD and Ants were using information from the whole grid. This
shows that a small set of fibers might be sufficient for a proper registration of the
white matter across subjects. Moreover, while fiber alignment is improved, the
efficiency of the image alignment is maintained. When evaluating the algorithm
for the different γ values, we could see that γ = 1.5 better registers missing
structures than γ = 0 and than SLDD. However, we believe there is a trade-off
to make between image and fiber alignment, and γ = 3 notably improved fiber
alignment while still obtaining good image registration results. By using labeled

(d) Original (e) LGD (f) SLDD (g) STD (h) Ants

(i) (j) (k)

Fig. 2. Comparison of SLDD, STD, Ants and LGD Top: Target fibers over-
lapped with registered fibers from an arbitrary chosen registration. 29 fibers were ar-
bitrary preselected for clarity. Corresponding fibers in subjects share colors. Bottom:
Average of the metrics obtained from registering 11 subjects to the target subject.

bundles instead of purely tensor information, we add relevant features that were
previously extracted as prior such as region connection. Nevertheless, the efficacy
of trusting bundles is open to discussion, and bundles classification is an active
topic in research, so we believe this information should not be discarded.

5 Conclusion

We extended the GD algorithm to the log-domain space, and combined it with
currents to compare our geometric structures and respect their shape. Our algo-
rithm perfomed similarly as other competitive algorithms on image and showed
a large improvement in fiber alignment. A unique mapping for images and ge-
ometric structures is obtained, giving a consistent framework for analyzing and
comparing results between voxel-based morphometry and shape of SOI.

Having disjoint domains for geometry and iconic may potentially limit the
incorporation of new geometric structures such as sulcal lines or features. This
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choice was done to guarantee a closed-form solution when zeroing out the gradi-
ent of the criterion. Moreover, both update fields are eventually combined and
smoothed out, lowering the effect of the disjoint domains. Future work will fur-
ther address the remaining mathematical issues to allow overlapping domains.

Based on the efficiency of the algorithm, it would be interesting to combine
it with the clustering of fibers: increased fiber registration can help clustering
algorithms, which can in turn guide the registration.

Acknowledgements. This work was supported by the INRIA CapNeonates
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Abstract. This paper presents a novel skeleton based method for the
registration of head&neck datasets. Unlike existing approaches it is fully
automated, spatial relation of the bones is considered during their regis-
tration and only one of the images must be a CT scan. An articulated atlas
is used to jointly obtain a segmentation of the skull, the mandible and the
vertebrae C1-Th2 from the CT image. These bones are then successively
rigidly registered with the moving image, beginning at the skull, result-
ing in a rigid transformation for each of the bones. Linear combinations
of those transformations describe the deformation in the soft tissue. The
weights for the transformations are given by the solution of the Laplace
equation. Optionally, the skin surface can be incorporated. The approach
is evaluated on 20 CT/MRI pairs of head&neck datasets acquired in clin-
ical routine. Visual inspection shows that the segmentation of the bones
was successful in all cases and their successive alignment was successful in
19 cases. Based on manual segmentations of lymph nodes in both modal-
ities, the registration accuracy in the soft tissue was assessed. The mean
target registration error of the lymph node centroids was 5.33 ± 2.44 mm
when the registration was solely based on the deformation of the skeleton
and 5.00 ± 2.38 mm when the skin surface was additionally considered.
The method’s capture range is sufficient to cope with strongly deformed
images and it can be modified to support other parts of the body. The
overall registration process typically takes less than 2 minutes.

Keywords: Image Registration, Head&Neck, Multi-Modal, Multi-
Rigid.

1 Introduction

The registration of intra subject head&neck 3D datasets is required in many
clinical applications. In image guided radiation therapy it enables adapting a
previously generated plan to the patient’s pose during intervention. Furthermore,
it can be used for image fusion of different imaging modalities like Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI). Thus, the clinical
target volume and organs at risk can be delineated in the more suitable modality
and propagated to the other modality, thereby improving the treatment plan.
If spatial correspondence by the means of image registration is available, such a
plan can also be propagated to a follow up CT scan which facilitates the plan

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 66–73, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Skeleton Based Deformable Registration 67

adaption. Beyond that, computer aided diagnosis systems can benefit from such
an image fusion as they can incorporate different modalities for image feature
extraction from clinically relevant targets such as tumors or lymph nodes.

Whereas rigid registrationworks well for the head, it is not able to cope with the
neck due to possibly different positions of the spine. Intensity based deformable
registration techniques typically have a smaller capture range and may produce
poor results in regions with low contrast/signal or heavy imaging artifacts.

A popular approach to overcome these limitations is to exploit that the skele-
ton is the supporting structure of the soft tissue. The bones are treated as indi-
vidual rigid bodies and deformations are allowed in the soft tissue only. Originally
proposed by Little et al. [9], many other works are based on this principle. It
is mostly applied to the registration of the spine [7][6][15][14], but also to the
head&neck [5][1], the brain[3], the hand [10] and even to the whole body [8]. On
Micro-CTs it is used for the registration of the lower limbs [11] and the whole
body [4][13] of mice.

One of the key challenges of this principle is the identification of the individ-
ual rigid parts, i.e. the bones. Whereas most methods [1][3][5][9][11][15] depend
on manual or interactive segmentation, [6][7] pursue semi-automatic approaches
while [10][14] present very specific automatic heuristics. In [4], an articulated at-
las is used. Methods not requiring explicit segmentation [8][13] of the individual
bones can only be used if both images are CT scans from which the bone surface
can easily be extracted.

During the registration of the individual bones the articulation is only con-
sidered in a few cases [4][5][10][11]. The deformation of the surrounding soft
tissue can be computed solely based on the rigid transformations using thin
plate splines (TPS) [7], linear combinations of transformations [9][14][10], a Log-
Euclidean framework [3] or finite element methods (FEM) [5][1]. Alternatively,
the rigid parts can be incorporated as constraints [15] or serve as an initializa-
tion [13][8] for an overall deformable intensity based registration. Rarely, the
evaluation of the registration accuracy is carried out quantitatively. In [1], the
center of volume error and dice similarities are reported for manually delineated
targets whereas the distance of 20 landmarks is reported in [5]. Both evaluations
are based on only 4 pairs of images.

In this paper, we present a fully automated registration method based on
multi-rigid registration of the skeleton for 3D images of the head&neck. One of
the images must be a CT image – the fixed image – but the other one – the mov-
ing image – can be from a different modality for which rigid registration methods
exist or an image of the same subject acquired at a different point in time. After
an overall mutual information based rigid registration of the head, the articulated
atlas presented in [12] is used to obtain a segmentation of the individual bones
from the CT image. These bones are then successively rigidly registered with the
moving image resulting in a rigid transformation for each of them. Linear combi-
nations of those transformations describe the soft tissue deformation. Optionally,
the skin surface can be incorporated. The approach is quantitatively evaluated on
20 CT/MRI pairs of clinically acquired head&neck datasets.
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Fig. 1. Training of the articulated atlas for segmentation of bones from the fixed image

2 Methods

Articulated Atlas for CT Bone Segmentation. Due to its high contrast,
bone can easily be segmented in CT images. However, since different bones have a
similar appearance and are close to each other (e.g. the vertebrae), simple image
segmentation techniques like thresholding are not able to distinguish neighboring
bones from each other. Therefore, we use the articulated atlas presented in [12]. It
is capable of jointly segmenting the skull, mandible, the cervical vertebrae and
the two upper thoracic vertebrae. The atlas was created from head&neck CT
datasets of 15 patients for which all bones had been labeled manually. Assuming
bilateral symmetry of the bones, their right/left flipped versions were also used,
resulting in a total of 30 training instances.

Unlike Baiker et al.’s articulated atlas [4], the articulation of the rigid parts
is not explicitly modeled but learned from the training images. Therefore, par-
ticular attention was paid to cover a wide range of possible poses of the spine
when selecting the training images.

For each type of bone, the probability map indicating the membership to the
item along with the average intensities was computed in a coordinate system
normalized by translation, rotation and scaling. Each bone item has those 7
degrees of freedom. Based on Alexa’s Linear Combination of Transformations [2]
a 7-dimensional vector is used to uniquely describe the pose of an item with
respect to the model’s global translation and rotation as a linear combination
of 7 basis transformations. For a total of m bone items, the overall pose of each
training instance j is described by a 7m-dimensional vector xj .

The space of all possible articulations is then described by applying Principal
Component Analysis (PCA) on the training articulation X = (x1, ..,xn). An
arbitrary articulation x can be described with a k � 7m dimensional vector b
as x = x̄+A · b+ r, where x̄ is the average articulation of all training instances
xj and A is a matrix consisting of the eigenvectors of the covariance matrix. The
more likely an articulation x is, the smaller the magnitude of b and r will be.
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The atlas is adapted to a CT image by minimizing an energy functional de-
pending on the 6 dimensional vector t describing a global rigid transformation
and the 7m dimensional articulation parameter vector x:

E(x, t) = Eexternal(x, t) + λEinternal(x) . (1)

The external energy Eexternal ensures gray value similarity between the test
image and the trained intensities of the atlas items and that the atlas items are
close to high CT intensities (i.e. bones). The internal energy Einternal ensures
that the atlas is within or at least close to the trained articulation space. The
empirically determined parameter λ balances the external and internal energy. A
gradient descent optimizer first finds the global transformation parameters t and
then the articulation and external parameters x, t jointly. Once the articulated
model converged, the segmentations Sj for each bone item are extracted based
on the probability maps and the CT intensities. Please refer to [12] for details.

Successive Rigid Alignment of the Bones. Based on the segmentations Sj

of the bones in the CT image, they are rigidly aligned to the moving image by
maximizing mutual information with a gradient descent optimizer. In order to
incorporate not only the rather homogeneous part inside the bone, but also the
texture at its boundary, the fixed image samples are taken from a slightly (5 mm)
dilated version of Sj during the metric computation process as suggested in [14].
The success of local optimization techniques finding the desired local maximum
depends on an initialization close to that very maximum. For highly deformed
head&neck images, the same vertebra can be far away in both images and thus
an independent registration is not feasible. Therefore, we exploit the connectivity
of the bones expressed in the order in which the items are aligned. We start with
the skull and use its resulting rigid transformation to initialize the registration of
the mandible and the topmost vertebra (C1). The result of the latter is then used
to initialize the next vertebra (C2) and so on, resulting in a top-down strategy.
At the end, m rigid transformations Tj are obtained, one for each bone item
j. Effectively denoting an overall transformation as a concatenation of several
transformations enlarges the capture range.

Soft Tissue Motion Coupling. Two main constraints are applied when com-
puting the transformation field T (x) for each point in the fixed image: i) The
known transformations in the rigid parts shall be incorporated (i.e. T (x) = Tj ⇔
x ∈ Sj) and ii) the transformation field shall be continuous (i.e. T (x+ε) ≈ T (x)
for small |ε|). Note that not only the translational part but also the rotational
part shall be continuous, which is advantageous as argued in [9].

We denote the transformation at an arbitrary location x as a linear com-
bination of the known transformations Tj , again using the approach presented
in [2]: T (x) =

∑m
j=1 Φj(x)Tj . To achieve continuity, each component of the

m-dimensional coefficient field shall satisfy Laplace’s partial differential equa-
tion (PDE): ΔΦj = 0, where Δ is the Laplace operator. Dirichlet boundary
conditions Φj(x) = {1 ⇔ x ∈ ∂Sj ; 0 ⇔ x ∈ ∂Si	=j} are used at the bound-
aries of the bone items ∂Sj enforcing our first constraint. In a first step, the
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Fig. 2. Domain of the PDE in gray, registration order (left), deformed pattern (right)

domain Ω of the PDE is restricted to the body (gray region in Fig. 2) which
is obtained by global thresholding. This ensures that transformations are only
propagated within the body and undesired influences – such as from the chin
directly into the thorax – are prevented. Here, Neumann boundary conditions

are deployed (
∂Φj(x)
∂xi

⎪⎪⎪x∈∂Ω = 0). The solution of the PDE is found by solving
the linear equation system resulting from finite differences approximation. In a
second step, the domain is extended to the rest of the image (black region in
Fig. 2) and previously obtained transformations are used as boundary condition.

Further Refinement. Since the computation of the soft tissue deformation
solely depends on the rigid transformations of the bones, the continuity assump-
tion may not result in the desired accuracy, especially if large deformations are
present. One can imagine many different solutions to overcome this issue, such as
a potentially more realistic deformation model (e.g. finite element methods [5][1])
or the incorporation of soft tissue image intensities into the registration process
with rigidity constraints for the bones [15]. However, the approach we pursue
is including further landmarks – the body surface – as additional constraints.
Extracting the body surface in both images is done by simple thresholding. Since
only small differences between both surfaces are expected, correspondences are
found along the normal vectors of the fixed image’s surface which are then used
to correct the translational part of the deformation field in the entire soft tissue.

3 Experiments and Results

The presented fully automated registration method was evaluated on 20 intra-
subject pairs of CT/MRI head&neck images of oral cancer patients acquired in
clinical routine. The spacing between CT slices was 1− 2 mm. The MRI images
consist of T1 weighted, fat saturated sagittal slices with a slice gap of 3− 5 mm.
Some of the images showed heavy imaging artifacts.
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Fig. 3. Evaluation targets

Table 1. The minimum, maximum and average
target registration error of lymph node centroids
in mm

TRE Rigid Bone Bone+Skin

Avg. 7.69 ± 4.05 5.33 ± 2.44 5.00 ± 2.38
Min. 1.33 0.37 0.92
Max. 61.21 26.20 25.32

At first, the segmentation of the bones in the CT images was assessed. Since
the segmentation accuracy is not critical for the subsequent steps, visual inspec-
tion is sufficient to assess if all articulated atlas items ended up at the correct
target structures. This was the case for all 20 CT-Images, indicating the ro-
bustness of the deployed articulated atlas. The successive rigid alignment was
assessed in the same way. Except for one single MRI image, all rigid structures
were aligned correctly. The reason for the failure in that one case was a very
low MRI signal located directly in the spine. Thus, one vertebra converged to
the wrong local minimum, resulting in a design based misalignment of all sub-
sequently aligned vertebrae.

Then, in a second experiment, the soft tissue accuracy was assessed for the
19 successful aligned image pairs. Since the evaluation was based on clinical
images, neither a ground truth deformation field nor artificial corresponding
landmarks were available. Therefore, we chose to measure the target registra-
tion error (TRE). As target landmarks we used the centroid of lymph nodes,
which were manually delineated in both imaging modalities. On the average we
found 5.2 clearly corresponding targets per dataset. The reason we chose lymph
nodes is that they are clinically relevant, reasonably well distributed in the soft
tissue of the head&neck region (see Fig. 3), locally bound and visible in both
imaging modalities. Due to the images’ different resolutions and the resulting
segmentation differences the centroid appeared to be more robust than e.g. the
average surface distance. The average and maximum TRE was separately com-
puted for the bone-aligned and the surface-refined images as well as for the
rigidly head-aligned image for comparison. The results are presented in Table 1
and an example for a registration result for a strongly deformed pair of images
can be seen in Fig. 4. Whereas targets close to the bones resulted in high accu-
racies by design, the worst accuracy were achieved very far away from the head.
There, different positions of the shoulder – not part of the skeleton model – had
an impact, explaining the high maximum TREs. Further inaccuracies can be at-
tributed to inaccurate segmentations due to the low inter slice resolution of the
MRI images. Since only primitive image processing techniques were deployed to
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(a) rigid head alignment (b) bone only (c) bone and surface

Fig. 4. CT/MRI Registration of a strongly deformed neck (fixed CT colored)

detect the skin surface, this step was locally not successful for some MRI images,
resulting in geometric distortion. Model based approaches may be required.

To give a rough indication about the runtime performance of our method, we
measured the duration of our prototypical implementation for each individual
step on a Intel Core i7-2600K CPU, 3.4Ghz machine with 16GB memory. On the
average it took 107s to finish the overall registration, where the rigid registration
accounted for 14%, the bone segmentation for 32%, the successive alignment for
16%, the soft tissue motion coupling for 22% and the refinement step for 16%.
We are convinced that a considerable speedup is achievable with an optimized
implementation exploiting parallelization.

4 Conclusion

In this paper we presented a skeleton based deformable registration approach
and applied it to head&neck CT/MRI datasets. Unlike existing approaches, it is
fully automated, supports all modalities for which rigid registration techniques
exist, is able to cope with strong deformations and was evaluated quantitatively
on images acquired in clinical routine. The mean target registration error of the
lymph node centroids was 5.33 ±2.44 mm when the registration was solely based
on the deformation of the skeleton and 5.00 ± 2.38 mm when the skin surface was
additionally considered. Whereas the articulated atlas enables the automation,
the support of strongly deformed image pairs is ensured by the concatenation of
several transformations to a single transformation of greater magnitude during
the successive alignment of the individual bone structures. With a runtime of
less than 2 minutes it is suitable for the use in clinical routine.

Rebuilding the articulated atlas, the approach can be extended to other parts
of the body (e.g. the thorax or the pelvis). Without the refinement step, the
presented approach has another interesting property when applied to follow up
CT scans. Under the assumption that the bones remain constant over time, the
method does to some extent compensate for deformations induced by a change in
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position only, but not for changes in anatomy (e.g. tumor growth or surgery) be-
cause the soft tissue image intensities are not considered. Whereas rigid registra-
tion has this property as well, almost no deformable intensity based registration
approaches are able to distinguish between those two sources of deformation
at all. This may be disadvantageous in some applications (e.g. propagating a
radiation therapy plan), but it enables detecting differences in follow up images.

Future work includes increasing the robustness for images with imaging arti-
facts, deploying more realistic soft tissue motion coupling, applying the presented
scheme to other body parts and the automated detection of differences.
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Abstract. Accurate registration of human lungs in CT images is re-
quired for many applications in pulmonary image analysis and used for
example for atlas generation. While various registration approaches have
been developed in the past, the correct alignment of the interlobular
fissures is still challenging for many reasons, especially for inter-patient
registration. Fissures are depicted with very low contrast and their prox-
imity in the image shows little detail due to the lack of vessels. Moreover,
iterative registration algorithms usually require the objects to be over-
lapping in both images to find the right transformation, which is often
not the case for fissures.

In this work, a novel approach is presented for integrated lobe segmen-
tation and intensity-based registration aiming for a better alignment of
the interlobular fissures. To this end, level sets with a shape-based fissure
attraction term are used to formulate a new condition in the registra-
tion framework. The method is tested for pairwise registration of lung
CT scans of nine different subjects and the results show a significantly
improved matching of the pulmonary lobes after registration.

1 Introduction

Establishing correspondences between two thoracic CT images by intensity-
based non-linear registration is a frequent task in various clinical applications.
It is required for example for estimating the pulmonary lung motion of patients
using 4D image data or to align two scans of one patient in follow-up stud-
ies. Moreover, atlas generation techniques are generally based on registration
algorithms to match scans of different patients.

Various approaches for lung registration have been proposed in the past. To
compare their performance, extensive evaluation studies have recently been con-
ducted [1,2]. While they demonstrate a generally high accuracy of the different
algorithms, results also indicate that the interlobular lung fissures are often
not sufficiently aligned. Murphy et al. state in their study [2] that while “most
of the algorithms performed extremely well in terms of both singularities and
lung boundary alignment, [...] differences are much more apparent in the fis-
sure alignment category.” This has mainly two reasons: First, the fissures are
often depicted with very low contrast – especially in low-dose CT images – and
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intensity-based registration is therefore difficult. There are also few vessels in
the proximity of fissures, which leads to homogeneous greyvalues in this region.
Secondly, to steer iterative algorithms in the right direction, structures usually
have to be overlapping. While multi-scale approaches and regularization schemes
implicitly address these problems, small structures such as the fissures are not
visible on coarse scales and no forces are explicitly generated that align disjunct
structures as caused by large displacements or anatomical dissimilarities. This
is especially severe for inter-patient registration.

Several recent publications propose combining image registration and a seg-
mentation of the object-of-interest to improve registration in critical regions [3,4].
However, these methods use solely intensity-based segmentation methods that
are not applicable for lobe segmentation. A registration of distance maps gener-
ated from lung boundaries and fissure segmentations was therefore proposed in
[5], but image intensities are not considered.

In this work, we present an approach for including explicit fissure alignment
in intensity-based image registration algorithms. Assuming a known lobe seg-
mentation of one image (e.g. an atlas), automatic segmentation of the second
image and registration are incorporated in a joint approach. Their mutual de-
pendency is used to combine intensity- as well as shape information to guide the
registration. An integrated variational formulation of the problem is presented.
The approach is preliminarily evaluated for pairwise inter-patient registration
using nine thoracic CT images.

2 Methods

We proceed by briefly introducing an intensity-based non-linear registration
scheme (Section 2.1). An approach for automatic lobe segmentation based on
multi-object level sets was proposed in [6] and is summarized in Section 2.2. In
Section 2.3, these methods are then integrated in a joint framework.

2.1 Variational Lung Registration

Given two images IR and IT (called reference and template image) with I : Ω �→
R and the image domain Ω ⊂ R3, the registration problem can be formulated
as finding a plausible transformation ϕ : Ω �→ Ω that transforms the template
image to match the reference image by minimizing the energy functional

J Reg[ϕ] := D[IR, IT ;ϕ] + α1S[ϕ] . (1)

Here, D is a distance measure quantifying the (dis-)similarity between refer-
ence and transformed target image. The plausibility of the transformation is
controlled by the regularizer S, which smoothes the field and thereby avoids
discontinuities like gaps or folding, and α1 weights the amount of smoothing.

With regard to the Euler-Lagrange equation of the functional, the transfor-
mation ϕ can be optimized using a gradient descent according to

∂ϕ

∂t
= f(u) + α1Au , (2)
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where u(x) := ϕ(x) − x denotes the displacement field of the transformation,
A is a linear operator related to the regularizer and f a force term derived from
the distance measure. Without loss of generality, diffusion regularization and
normalized SSD-forces (NSSD) are used in this work [7].

2.2 Lobe Segmentation with Multi-object Level Sets

In level set segmentation, the boundary of an object Σ ⊂ Ω in the image is
represented implicitly as the zero-level curve of a level set function φ : Ω �→ R.
Here, φ is defined as the distance function to the boundary with φ(x) < 0, if
x ∈ Σ and φ(x) > 0, if x ∈ Ω \ Σ. The optimal level set is determined by
minimizing the energy functional

J Seg[φ] := E [I;φ] + α2I[φ] . (3)

The internal energy I is defined as in [6] and enforces a smooth surface. The
region-based external energy

E [I;φ] := −
∫
Ω

(1−H(φ(x))) log pin(I(x)) + H(φ(x)) log pout(I(x)) dx

integrates a-priori knowledge about intensity distributions pin inside and pout
outside the lungs, respectively, and draws the segmentation to the lung bound-
aries. The Heaviside function H is used to distinguish inside from outside.

For the minimization with respect to the level set function, the Euler-Lagrange
equation is derived and a gradient descent is performed according to

∂φ

∂t
= −δ(φ)

(
log

pin
pout

− α2∇
∇φ
‖∇φ‖

)
.

To simultaneously segment the pulmonary lobes, the level set framework is ex-
tended following Brox et al. [8] by employing N functions φi, i = 0, . . . , N − 1,
each representing one object Σi := {x : φi(x) < 0}. Front propagation is then
performed according to

∂φi

∂t
= −δ(φ)

(
ei − max

H(φj)<0,j 	=i
(ej , ei − 1)

)
with ek := log pk −

α2

2
∇ ∇φk

‖∇φk‖
.

(4)
Here, ei serves as a (mostly outwards-directed) force that affects the function φi.
The final update value is then determined by a competition of this force and the
maximal force of all adhering level set functions φj . For lobe segmentation, we
have N = 6 objects (background and five lobes) and set p0 := pout and pi := pin
for i = 1, . . . , 5.

Using the model described above, only smoothing is performed between two
lobes because pi equals pj in these cases. Therefore, we follow [6] and define an
additional term that draws the contour to the fissures. With this purpose, the
interlobular fissures are segmented employing the supervised enhancement filter
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(a) (b) (c) (d)

Fig. 1. Computation of the cost image for lobe segmentation: (a) the CT image I ; (b)
the fissure segmentation as computed by the supervised enhancement filter; (c) the
skeleton of the post-processed fissure segmentation (dilated by one voxel to enhance
visibility); (d) the cost image C, which is incorporated in the force term

proposed by van Rikxoort et al. [9], which uses intensity and shape information
to train a kNN classification for the detection of fissure voxels. To reduce false
positives, parameters are chosen aiming at a high specificity at the expense of
sensitivity. A cost image C : Ω �→ R is computed as distance transformation to
the skeleton K of the fissure segmentation (see Figure 1). With this, the force
term in (4) can be reformulated to incorporate a fissure-attraction force by

ek := log pk −
α2

2
∇ ∇φk

‖∇φk‖
− β

2
∇φk · ∇C . (5)

2.3 Integrated Lobe Segmentation and Registration

Registration and lobe segmentation are combined following the principle idea of
[4] and extending it by multi-object lobe segmentation. In the procedure, seg-
mentations φT

i of the lobes in the template image are assumed to be known. The
approach aims at simultaneously finding a transformation ϕ and a segmentation
φR
i of the reference image under the additional condition that the transformed

template segmentation resembles the segmentation of the reference image.
The integrated model is defined by the joint energy functional

J Joint[ϕ, φR] := J Reg[ϕ] + γJ Seg[φR] + γ1P [φT ;ϕ, φR] , (6)

where the segmentation- and registration-related terms are defined as before and
γ and γ1 weight the terms against each other. The shape prior term

P [φT ;ϕ, φR] :=
1

2

∫
Ω

N−1∑
i=0

δ(φR
i )
(
φT
i ◦ ϕ− φR

i

)2

dx

links segmentation and registration by penalizing large distances between the
zero level set of φR and the transformed template segmentation φT

i ◦ ϕ. It is
formulated exploiting the fact that the value of a level set function is defined to
be the distance to the closest boundary.
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Fig. 2. Reference images with lobe boundaries as color overlay. Red: manual refer-
ence segmentation; Blue: template segmentation after registration with J Reg; Yellow:
template segmentation after registration with J Joint. In the left lung (a), alignment is
improved for almost all patients. For the right lung, results depend on the initialization:
While fissures are well-aligned in (b), alignment fails with both algorithms in (c).

The joint energy term is alternately minimized in direction of the transfor-
mation and of the reference segmentation. Including the shape prior term, the
gradient descent equation (2) for the registration part reads

∂ϕ

∂t
= f(u) + α1Au+ γ1

N−1∑
i=0

δ(φR
i )
(
φT
i ◦ ϕ− φR

i

)
∇(φT

i ◦ ϕ) ,

where the last term corresponds to the Euler-Lagrange equation of P . It acts as
an additional force that affects ϕ to transform the template segmentation in the
direction of the reference segmentation. The segmentation is updated according
to (4) but using the force

ek := log pk −
α2

2
∇ ∇φR

k

‖∇φR
k ‖
− β

2
∇φR

k · ∇C +
γ2
2
(φT

k ◦ ϕ− φR
k )

with γ2 := γ1/γ for force computation. Here, the additional term prevents the
segmentation from diverging too far from the transformed template segmentation
and thus avoids leakage into neighboring structures.

3 Results

The approach is evaluated for inter-patient registration on a set of nine thoracic
normal dose CT images of different subjects (120 kVp, 450-750 mAs, 0.79×0.79×
0.7 mm spacing, cropped to lung region). For each image, lobe segmentations
S where generated for evaluation using a spline-based interpolation of manually
defined fissure points and a subsequent manual correction. To avoid a bias due
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Table 1. Lobe and fissure alignment after registration with common intensity-based
registration J Reg and the proposed registration with fissure alignment J Joint, averaged
over the results of all 72 image pairs. The mean fissure distance is given in millimeter.

Lobe
Dice coeff.

Fissure
Metric Fiss Mean dist.

J Reg J Joint J Reg J Joint J Reg J Joint

left superior 0.92 0.95
left 0.18 0.52 9.79 4.74

left inferior 0.93 0.95
right superior 0.88 0.90 right oblique 0.16 0.44 11.34 6.10
right middle 0.69 0.73

right horizontal 0.15 0.24 14.72 12.70
right inferior 0.91 0.94

to the choice of the reference image, a pairwise validation is employed, that
means each image is registered with the remaining eight images leading to 72
registrations. Parameters of the segmentation and registration components were
chosen as specified in [6,7]. The values for the additional parameters γ1 and
γ2 were optimized empirically. Since the segmentation converges faster than
the registration, five registration iterations are performed for each segmentation
iteration (this parameter can be seen as related to γ in (6)). In total, computation
time lies between 6min and 14min, which means a prolongation of approximately
48% in comparison to the standard registration.

For a quantitative evaluation, the Dice coefficient of the manual reference seg-
mentation SR and transformed template segmentation ST ◦ ϕ were calculated
after registration with the common approach using JReg and the presented reg-
istration with integrated lobe segmentation J Joint (see Table 1). Since the Dice
coefficient may be difficult to interpret due to the varying size of the individual
lobes, two additional metrics that quantify fissure alignment are considered: on
the one hand, the mean distance of fissure voxels in ST ◦ϕ to fissure voxels SR;
on the other hand, a metric inspired by Murphy et al. [2] that estimates the pro-
portion of the lobe boundaries in the reference image that lie in the proximity of
the lobes in the transformed template image. For this, let B(ST ◦ ϕ) be the set
of voxels in the transformed template segmentation ST that lie at the boundary
between two lobes. To incorporate some tolerance, this region is expanded by ±3
voxels in z-direction and denoted by B+. The proportion of correctly segmented
boundary voxel X can then be quantified by

Fiss(ST ◦ ϕ, SR) :=
|{X : X ∈ B+(ST ◦ ϕ) ∧X ∈ B(SR)}|

|{X : X ∈ B(SR)}| .

The results confirm a significantly better alignment of the lung fissures using
the proposed registration approach (paired t-test, p ≤ 0.05 for all metrics and
subjects serving as reference image). Averaged over all registrations, 40% of the
fissures are well aligned using the joint approach, compared to only 16% with
the standard method. Results are better for the left lung (52%) than for the
fissures in the right lung (44% and 24% for horizontal and oblique fissures). The
same observations hold for the mean fissure distance.
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Fig. 3. Transformed lobe segmentations of eight subjects dealing as atlas after regis-
tration with the remaining subject. The joint approach (b) produces a sharper and
therefore more consistent atlas segmentation than the standard registration (a).

The results are visualized in Figure 2. A much better alignment of the fissures
is observed in regions where fissures were segmented successfully. Furthermore, in
a proof-of-concept demonstration the application to atlas generation is explored
and illustrated in Figure 3. Here, lobe segmentations of eight subjects were
transformed to the remaining subjects and summed up. The joint registration
approach provides a much sharper segmentation of the reference image, which
indicates a superior matching of the lobes.

4 Discussion

The results show that integrating lobe information in intensity-based registration
can improve fissure alignment considerably. Employing level set methods for this
entails several advantages over – for example – directly considering the cost image
C. First, forces are only generated along the zero level set, that means only at the
fissures and not at places wrongly classified as fissures due to noise. Gaps in the
fissure segmentations are not exceedingly critical since they are automatically
bridged by the level set framework. If no fissure information is present in an
image region, no forces (beside smoothing) are generated that move φR away
from φT and thus only the standard registration is applied in this area. This
effect could be enhanced by truncating C to restrain the influence of the fissure
alignment to a smaller range, for example if segmentation is suffering from bad
image quality.

Problems arise in particular in the right lung between horizontal and oblique
fissures because the level set can be attracted by the wrong fissure if the initial-
ization is bad. Moreover, the fissure enhancement filter performs worse in this
region. A more precise initialization – for example using an anatomical atlas [6]
– could improve the results in this area.

Another interesting application of the approach would be the estimation of
breathing motion in 4D image data. While the displacement is smaller in this
case, fissure segmentation is very difficult in 4D images due to the often lower
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radiation dose per image as well as motion and reconstruction artifacts. These
aspects will be the focus of future investigations.

5 Conclusion

In this work, an approach is presented to include pulmonary lobe segmentation
in intensity-based registration with the aim of improving the alignment of the
interlobular fissures. Segmentation is done using multi-object level sets with an
additional shape-based fissure attraction term. This information is used in a new
condition in the registration framework to match the lobes to each other.

The approach was tested for inter-patient registration on nine thoracic CT
scans. A considerably better alignment of the fissures was observed but the
method depends on a reasonably good fissure segmentation. Moreover, huge
anatomical differences between the patients imply a bad initialization of the seg-
mentation, which may result in a misalignment of the fissures. This is especially
critical for the right lung, where horizontal and oblique fissures are close to each
other.

Acknowledgements. This work is supported by the German Research Foun-
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Abstract. Accurate real-time registration of intra-operative ultrasound (US) to 
computed tomography (CT) remains a challenging problem. In orthopedic appli-
cations, a recent promising approach proposed the use of Gaussian mixture mod-
eling for bone surface registration. Though relatively successful, the method relied 
on naïve and error prone subsampling of the surfaces registered to reduce compu-
tational cost and also heavily relied on heuristically-set parameters for bone sur-
face generation. In this paper, we present an improved approach employing a 
novel point simplification method that redistributes surface points to better 
represent the surface achieving near real-time registration with higher accuracy 
and robustness. We also present a framework for automating the parameter selec-
tion in the bone surface extraction step. For validation, we present extensive quan-
titative tests on phantom and clinical data obtained by scanning patients with  
pelvic ring fractures in the operating room.  We show an 89% average improve-
ment in target registration error over the recent GMM registration based method.  

Keywords: intra-operative volume registration, 3D ultrasound to CT registra-
tion, orhopaedic imaging, real-time registration. 

1 Introduction 

Registering tracked intra-operative US images with pre-operative CT data has been 
proposed as a mechanism for making pre-operative CT more readily available for a 
range of computer assisted orthopaedic surgery (CAOS) procedures. The most widely 
used registration method in CAOS applications is the iterative closest point (ICP) 
algorithm, but since the initial publication of the ICP, new methods and algorithms 
have been proposed to improve the robustness and speed of the standard ICP algo-
rithm [1]. Although relatively successful, ICP is susceptible to converging to local 
minima and therefore a close initial manual alignment is necessary. Moghari [2] pro-
posed a point-based registration method based on the Unscented Kalman Filter 
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(UKF).  Although successful registration results were achieved, with a mean registra-
tion error of 0.3mm, the registration time exceeded 20 seconds due to the higher com-
putational complexity of the method. The bone surfaces were also extracted manually 
from US images before the registration process, which would preclude direct use of 
this technique intraoperatively.  Penney et al. [3] used a normalized cross-correlation 
similarity metric to register bone probability images obtained from CT and US data 
sets. They reported a mean target registration error (TRE) of 2.3 mm for cadaver 
study where the registration time was between 2 and 10.5 min, which is well over the 
time needed for providing real-time guidance. Gill et al. [4] simulated US images 
from CT data for registering bone surfaces of the spine and achieved a registration 
accuracy of 1.44 mm for phantom scans and 1.25 mm for sheep cadaver scans. How-
ever their intensity-based registration took an average of 14 minutes on a central 
processing unit (CPU) and 11 seconds when implemented on a graphics processing 
unit (GPU).  This approach was later extended to register statistical shape models 
(SSMs) of the lumbar spine where a TRE less than 3mm for phantom scans was re-
ported [5]. Again, the registration time was on the order of hours. Recently, Brouns-
tein et al. [6] proposed a Gaussian Mixture Model-based (GMM) surface registration 
algorithm. The bone surfaces were automatically extracted using local phase image 
features obtained by convolving the US volumes with 3D Log-Gabor filters where the 
filter parameters were selected empirically [7]. In order to improve the speed of the 
proposed algorithm, the extracted point clouds were reduced using a simple down-
sampling approach that kept only 5% of the surface points [6].  The proposed method 
was evaluated on a phantom setup and three clinical scans. Although the early results 
were promising, some significant problems remained.  For example, while local 
phase-based techniques successfully extract the desired image features, they remain 
sensitive to the underlying filter parameters used. Furthermore, the registration could 
fail if key features were lost in the down sampling process.  

In this work, we propose and test several improvements to this work, including (1) 
extracting bone surfaces using automatically optimized 3D Log-Gabor filter parame-
ters, (2) using a novel point cloud simplification method that ensures fast run time and 
retains salient features needed to provide more robust and accurate registration re-
sults; and (3) introducing an optimization method that reduces the complexity of point 
simplification by 50%.  We present validation studies not only on phantom data but 
also on an extensive set of clinical scans obtained from 21 human subjects with pelvic 
fractures to assess registration accuracy and robustness in the presence of typical US 
imaging artifacts. 

2 Methods  

2.1 US-CT Registration Using Gaussian Mixture Models (GMMs) 

Gaussian Mixture Models (GMMs) are a way to replace a set of points in a  
multidimensional space with a (typically smaller) set of multi-dimensional Gaussian 
distributions (components) to describe sub-populations. Each component's density, φi, 
is characterized by its mean, μi, and its covariance matrix, Σi. By representing the 



84 I. Hacihaliloglu et al. 

 

point sets as GMMs, we can compute an L2 distance metric between two different 
GMMs without the need to solve a computationally challenging point-to-point corres-
pondence problem, which is normally required in many registration methods.  The 
registration algorithm then minimizes this L2 distance between the model, M(x) = 
pm(x), and the scene, S(x) = ps(x) over the set of possible rigid transformations, 
T(M(x), θ, t), where θ is a 6-vector representing a rigid transform and the L2 distance 
is given as: ݀ଶሺܯሺݔሻ, ܵሺݔሻ, ,ߠ ሻݐ ൌ න൫ܵሺݔሻ െ ܶሺܯሺݔሻ, ,ߠ (1) .ݔሻ൯ଶ݀ݐ

It should be noted that the scene model, S(x), is fixed during the optimization.  Since 
T(M(x), θ, t) and  ܶሺܯሺݔሻ, ,ߠ -are invariant for rigid transformations, mini ݔሻଶ݀ݐ
mizing the L2 distance given in Equation 1 becomes equivalent to solving: ܽ݊݅݉݃ݎఏ,௧ሾ݀ଶሺܯሺݔሻ, ܵሺݔሻ, ,ߠ ሻሿݐ ൌ ఏ,௧݊݅݉݃ݎܽ െ න ܵሺݔሻܶሺܯሺݔሻ, ,ߠ ൨ (2)ݔሻ݀ݐ

where  ,ଵߤ|࢞ሺ ∑ ሻଵ ,ଶߤ|࢞ሺ ∑ ሻ݀ݔ ൌଶ ଵߤ|ሺ0 െ ,ଶߤ ∑ ଵ ∑ ሻଶ .   A closed form ex-
pression for the L2 distance between GMMs can be found in [8]. In [6], this approach 
was used for registering CT scans to local phase bone surfaces extracted from US 
volumes using 3D Log-Gabor filters with empirical filter parameters. The CT vo-
lumes were segmented using a binary threshold at 200 H.U [6]. Ray-casting was then 
used to find the bone surface in these binary CT volumes resulting in extracted sur-
faces that are one voxel thick. In order to achieve real-time registration the extracted 
bone surfaces were reduced using a simple/naïve down sampling approach by keeping 
only 5% of the total surface points.  Finally, Gaussian curvature information was 
incorporated back into the reduced point clouds to provide correct registration along 
high curvature bone surface areas [6]. A critical consideration for successful local 
phase based feature extraction in medical images is the proper configuration of the 
different and highly sensitive parameters involved. Parameter values typically need to 
be scene-adaptive in order to accurately localize structures of interest in the scanned 
areas. This is especially important for extracting bone surfaces in US since in clinical 
scenarios the response of soft tissue interfaces can often resemble that of the bone.  
Furthermore, naïve down sampling can be problematic as it may not capture all the 
anatomical features the bone surface can offer, nor provide an even spread in the point 
cloud. Furthermore, it will allow outliers to influence the shape of the point cloud 
more and it is even possible for entire planes of the bone surface to be omitted, requir-
ing more points in each point cloud to represent the surface which dramatically in-
creases the runtime. In the next sections we provide solutions to these problems by 
proposing a framework for automatic point cloud optimization.  

2.2 Bone Surface Extraction Using Optimized 3D Log-Gabor Filters 

The use of 3D phase symmetry (3DPS) to automatically extract bone surfaces in US 
based on Log-Gabor filters was originally proposed in [7]. The transfer function of a 
3D Log-Gabor filter, 3DGij, in the frequency domain can be constructed as the prod-
uct of two components (3); a one dimensional Log Gabor function controlling the 



 3D Ultrasound-CT Registration in Orthopaedic Trauma Using GMM Registration 85 

 

frequencies to which the filter responds, and a rotational symmetric angular Gaussian 
function that controls the orientation selectivity of the filter [7]:  
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The subscripts i and j denote the number of scale and orientations of the filter, respec-
tively. α(øj, θj) is the angle between the azimuth (øj) and elevation (θj) angles. The 
angular bandwidth is determined by σα. κ is a scaling factor used to set the bandwidth 
of the filter in the radial direction. The scaling of the radial Log-Gabor function is 
controlled using different wavelengths that are based on multiples of a minimum wa-
velength, λmin, a user-defined parameter [7]. The filter scale i, and center frequency ω0 
are related as ω0i=2/ λmin×(δ)i-1 where δ is a scaling factor defined for computing the 
center frequencies of successive filters. In [9], Hacihaliloglu et al. proposed a frame-
work for automating the selection of 2D Log-Gabor filter parameters. However, 2D 
methods ignore the correlations between adjacent slices and are therefore subject to 
large spatial compounding errors as well as errors associated with the US beam thick-
ness effects [7]. Therefore, we have extended the automated filter parameter selection 
approach from slice-based 2D processing to fully 3D.Using this statistical approach 
we automatically selected all these filter parameters: frequency bandwidth (κ/ω0), 
orientation (azimuth (φj) and elevation (θj) angles), scale (λmin) and angular bandwidth 
(σα).The filter bandwidth in the radial direction, β= -2×(2/ln2)0.5×ln(κ/ω0), is related 
to both the speckle  and boundary responses in the US image. To determine the filter 
frequency bandwidth we analyzed US images with fully developed speckle in eleva-
tion direction. The speckle size is estimated as the full-width at half-maximum 
(FWHM) of the autocorrelations. The ratio, κ/ω0, is computed as κ/ω0=exp(-0.25× 
(2×ln(2))0.5 ×FWHM×r). Here r is the pixel size in mm. The strongest response oc-
curs when the 3D Log-Gabor filter is orientated orthogonally to the surface of the 
bone. The initial filter angles are obtained by clustering the 3D radon transform 
(3DRT) of the 3D B-mode US volume. The projection angles corresponding to the 
peak values of the 3DRT represent the angles perpendicular to the high intensity bone 
response and are chosen as the initial filter angles. These initial angles are used to 
determine the filter scale (λmin). Since our main interest here is localizing bone con-
tours, which generally appear as ridges in US images, we employ a metric that cap-
tures  the ‘ridgness’ which we calculate as: 3DRSγ=t2γ×(K1−K2)

2. Here t is the scale 
of the filter (t= λmin), K1=Trace(H(x))+(Trace(H(x))2-4×det(H(x)))0.5, and  K2=Trace(H(x))-
Trace(H(x))2-4×det(H(x)))0.5. H is the 3D Hessian matrix where 3D Log-Gabor filter was 
used during the construction of matrix. We analyze the intensity distribution of 3DRSγ 
over all possible scales and select the scale where the sum of intensities is maximized 
as the correct filter scale. The final filter orientations are obtained by recalculating the 
3DRT for the ridge strength image 3DRSγ, obtained using the optimized filter scale 
and initial filter orientation, and selecting the maximum value of the 3DRT. Finally, 
angular bandwidth (σα) is determined to be the peak kurtosis value of the Radon trans-
form of the ridge strength image over multiple angular bandwidth values because a 
greater kurtosis indicates the variance is due to infrequent high-intensity voxel values.  
The final bone surface that was used during the registration algorithm is determined 
as the maximum of the 3D PS value; calculated using optimized filter parameters, 
along the direction of the US probe.       
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2.3 Point Cloud Simplification Using Particle Simulation  

In this work we employ a modification of the particle simulations (PSim) method devel-
oped by Pauly et al. [10] to decrease the number of points. The first step in PSim is to 
randomly select n points from the original point cloud, PS, resulting in a smaller subset of 
points denoted as Ps. Each point, pi, in this subset is moved along the force Ft= Fin+Fex+Fj 

and projected back onto the bone surface extracted in Section 2.2finding the nearest 
neighbor in PS [10]. Fin is the internal force of each point in Ps acting on pi (4). 

ܨ ൌ  ݇ሺ݀ െ ԡ െ ԡሻ ൈ ሺ  െ ԡ െ ԡሻ
ୀଵ  (4)

Here d defines the size of the neighborhood used to calculate force calculations. PSim 
was originally proposed for closed surfaces [10]; however the bone surfaces have 
boundaries at the edges of the data. In order to avoid Fin forcing points towards low 
density areas, i.e. the edge of the surface, we have added Fex, implemented as a trough 
function, which acts as a force to push points away from the edge. Finally, to ensure 
that points do not overlap we included a small perturbance Fj. After the force has been 
calculated, each point is moved according to Ft. This step is called the relaxation of 
the point cloud as described by Pauly et al [10]. These steps are iteratively repeated 
until equilibrium is reached. The force calculation above was implemented by Pauly 
et al [10] with an O(n2) complexity. As this calculation must be computed multiple 
times in the algorithm, it significantly adds to the overall runtime. We instead optim-
ize the force calculations using the Barnes-Hut algorithm [11], modified to estimate 
Ft. The Barnes-Hut algorithm first models the point cloud as a hierarchical tree of; 
where each child node contains no more than one point. The tree is divided into oct-
node volumes, which are subdivisions of the parent node into eight equal parts. This 
tree is then used to estimate the distance of clusters of points from the point of inter-
est; if points are sufficiently far away (determined by a constant, θ, and the size of the 
octnode), the cluster can be modeled as a single point. This algorithm has a complexi-
ty of O(nlogn) and reduces the runtime by approximately 50%. 

2.4 Experimental Setup and Data Acquisition 

Our main clinical interest is to assess pelvis fractures, which include approximately 3% of 
all skeletal injuries [12]. Over 40% of patients requiring pelvic stabilization suffer long-
term complications, usually neurological, urological and non-specific pain [12]. Therefore, 
the acute management of pelvic ring injuries is complex and demands precise surgery.  

Phantom Study: We designed a phantom consisting of a high-resolution radio-
opaque Sawbone hemi-pelvis. The iliac crest region of the sawbone pelvis was cut 
and placed inside an open topped acrylic plastic cylindrical tube. The phantom was 
suspended in a PVC gel with sixty-one 1mm metal fiducials suspended approximately 
1-3 cm from the surface of the gel to ensure any US volume will contain between four 
and six fiducials (Fig.1.). This setup was scanned using a commercially available 
ultrasound machine (G.E. Voluson 730, GE Healthcare, Waukesha, WI) using a 3D 
RSP5-12 transducer. 49 US scans were acquired along the iliac spine of the phantom. 
The US volumes were 152x198x148 voxels with an isotropic resolution of 0.25mm. 
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The gold standard surface was provided by a high resolution CT machine (HRpQCT 
Xtreme CT, Scanco Medical, Wayne, Pennsylvania). The acquired CT volume size 
was a 482mm×482mm×402mm volume with a resolution of 0.25mm. The fiducials 
were omitted from registration and were only used for validation purposes.  

Clinical Study: The objective of the clinical study was to determine in a live operating 
room setting whether or not the proposed method could achieve successful registration 
results with the required accuracy. After obtaining all required ethics approvals, we 
obtained both CT and US scans from 21 consenting patients admitted to a Level 1 
Trauma Centre with pelvic fractures that required a CT scan. The US scans were col-
lected from the iliac crest regions. The voxel resolution for the CT volumes varied 
between 0.76 mm-0.83 mm in the x and y axes and 1 mm-2 mm in the z axis.  We also 
provide registration accuracy comparison results where local phase features were ob-
tained using empirical vs optimized 3D Log-Gabor filter parameters.   

 

(a) (b) 

Fig. 1. Phantom validation experiment. (a) Constructed phantom comprised an iliac crest saw-
bone inside an open-topped acrylic plastic cylindrical tube filled with PVC (cutting plane illu-
strated in the top left corner). (b) High resolution CT scan of the constructed phantom (white 
arrow pointing to one of the fiducials used). 

3 Results and Discussion 

The GMM registration algorithm and PSim was implemented in C++, whereas the 
curvature calculation and optimized 3DPS based bone surface extraction were imple-
mented in MATLAB. All experiments were run on a 2.67GHz Intel(R) Core™i7 cen-
tral processing unit (CPU) using 64-bit Windows 7 and a 4GB of RAM. The quality 
of the registration algorithm was evaluated by computing the root mean square error 
distance between the two registered surface representations, which we will denote as 
the surface registration error (SRE). We calculated target registration error (TRE) as 
the average distance between all corresponding fiducial pairs found in both volumes 
to validate the anatomical accuracy of our proposed method. The number of randomly 
selected points (n) for PSim calculation was chosen as n=500 to provide the optimal 
trade-off between speed and accuracy. The results of the phantom setup showed an 
average 0.77 mm (SD 0.29 mm) TRE with maximum TRE of 1.60 mm using the 
PSim point simplification method. The mean SRE for the phantom study using the 
proposed method was calculated as 0.31mm (SD 0.09 mm). For the naïve down sam-
pling approach [6] the mean TRE increased to 6.84 mm (SD 5.35 mm) with a maxi-
mum TRE value of 25.05 mm. The average SRE for naïve down sampling method 
was 0.28 mm (SD 0.07) (Table 1.). The average run times for PSim and naïve down 
sampling method were 1.40 s (SD 0.30 s) and 1.01s (SD 0.48 s) respectively. The 
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registration time decreased to 0.97 s (SD 0.55 s) when n was set to 300. However, the 
SRE increased to 0.55 mm (SD 0.24 mm), indicating using 500 points is more robust.  

There were no fiducials available for the clinical validation; therefore, only the 
SRE was measured.  The proposed method was able to register all 21 (100%) clinical 
scans with a mean SRE of 0.72 mm (SD 0.66 mm), while the naïve downsampling 
approach [6] was able to register only 10 scans (48%). The mean SRE for the naïve 
downsampling approach was over 3X higher at 2.48 mm (SD 1.66 mm). 

Table 1. Quantitative results comparing registration using PSim vs naive downsampling for 
phantom and clinical scans 

 

The success of registration is also affected by the extracted local phase features.  
Only 12 clinical scans (57%) were successfully registered when using empirically 
determined filter parameters [7]. The mean SRE for this case was 1.88 mm (SD 1.75 
mm). It should be noted that the SRE was lower for all cases, as it is calculated from 
the extracted outlines which are determined from the 3DPS. Qualitative results of the 
clinical study can be seen in Figure 2. The US volumes were acquired in a region of 
the iliac spine unaffected by the fracture. The optimized filter parameters result in the 
extraction of sharper and more continuous surfaces (Fig. 2c) when compared to em-
pirical method [7] (Fig. 2b). Investigating the registration result we can see that the 
proposed method successfully aligns the two volumes (Fig. 2d) where a close match 
between the surfaces is visible compared to the previous method (Fig. 2e).  

 
 

  
(a) (b) (c) (d) (e)  

Fig. 2. Qualitative results on clinical data. (a) B-mode US volume obtained by scanning a pa-
tient’s iliac crest. (b) 3D PS bone surface using empirical filter parameters. (c) Bone surface 
using our optimized filter parameters. (d) Registration using our proposed method. (e) Registra-
tion using naïve down sampling with empirical filter parameters.  In (d) and (e) yellow surface 
is the ROI surface from the iliac crest region. 

4 Conclusions 

Accurate, robust and fast image registration is essential in US-based image guided 
interventions in order to provide real-time guidance. The previously proposed me-
thods were either not robust enough to typical US artifacts or could not achieve the 
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required speed or accuracy to be used in a live operating room setting. We presented a 
novel method for near real-time 3D US-CT registration in bone imaging deploying a 
statistical point-based registration in combination with a point cloud optimization 
method (PSim) that better represents the surface. We reduced the run-time by a  
further 50% by optimizing the force calculations used during point simplification. 
Furthermore, we incorporated a novel data driven selection of 3D log-Gabor filter 
parameters in the context of local phase based bone feature extraction in 3D US. The 
improvements achieved in terms of registration accuracy and robustness compared to 
the previously proposed state-of-the-art method were up to 89% and 52% for the 
phantom and clinical data, respectively [6]. Our future work will focus on optimizing 
the algorithms proposed in this paper to run on a GPU to achieve essentially real-time 
registration results and on validating our findings with a cadaver study. 
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Abstract. Deformable registration has been widely used in neuroscience studies 
for spatial normalization of brain images onto a standard space. Due to high 
anatomical variances across individual brains, registration performance could 
be limited when trying to estimate entire deformation pathway either from tem-
plate to subject or subject to template. Symmetric image registration offers an 
effective way to simultaneously deform template and subject images towards 
each other until they meet at the middle point. Although some intensity-based 
registration algorithms have nicely incorporated this concept of symmetric  
deformation, the intensity matching between two images may not necessarily 
imply the correct matching of anatomical correspondences. In this paper, we in-
tegrate both strategies of hierarchical attribute matching and symmetric diffeo-
morphic deformation for building a new symmetric-diffeomorphic registration 
algorithm for MR brain images. The performance of our proposed method has 
been extensively evaluated and further compared with top-ranked image regis-
tration methods (SyN and diffeomorphic Demons) on brain MR images. In all 
experiments, our registration method achieves the best registration perfor-
mance, compared to all other state-of-the-art registration methods. 

1 Introduction 

Modern medical imaging technology provides a convenient way to perform clinical 
diagnosis and research, such as human brain development, aging, and disease-related 
abnormalities. In order to measure subtle anatomical or functional difference, accurate 
deformable registration plays an important role in dealing with confounding intra-
subject variability in the longitudinal studies and inter-subject variability in the cross-
sectional studies.  

A lot of deformable image registration methods have been proposed in the last 
decades. A comprehensive survey can be found in [1]. In general, the goal of deform-
able registration is to estimate the deformation field from template (fixed image) to 
subject (moving image) by maximizing a certain image similarity measurement be-
tween template and warped subject image. As a highly ill-posed problem, regularizing 
the deformation field is necessary for resolving the uncertainty in correspondence 
detection during the registration.  

Recently, 14 deformable registration methods have been comprehensively  
evaluated in [2] based on the registration performance on human brain MR images. 
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Interestingly, all of these 14 registration methods are intensity-based. However, the 
use of image intensity only is not sufficient to deal with the confounding inter-subject 
variations, due to the lack of specific features to establish reasonable anatomical  
correspondences. In [2], SyN [3] is recommended as the top deformable registration 
method, which uses the concept of symmetric registration by estimating the deforma-
tion pathway from two ends (template and subject) to the middle point.  

Inspired by this symmetric registration mechanism [3], we propose a feature-based 
symmetric registration method in this paper with three novel strategies. First, we de-
fine attribute vectors for detecting anatomical correspondences and key points with 
distinctive image feature for hierarchically driving the entire registration procedure in 
image registration. Specifically, the attribute vector on each voxel considers not only 
local image appearance but also edge information. The key points are randomly sam-
pled in the non-uniform and hierarchical fashion, assuring that they have distinctive 
features and cover the entire brain. Second, robust correspondence matching (by 
comparing attribute vectors) is performed in a symmetric way. We simultaneously 
optimize the deformations on the key points from both template and subject until they 
meet at the middle point of the whole deformation pathway (between template and 
subject). Since the correspondence matching is always performed between the key 
points on the deformed template and the deformed subject in the progress of image 
registration, the correspondence matching is relatively easier, compared to the case of 
directly finding correspondences between the original template and subject images. 
Hence, our method is able to handle large anatomical variations among individual 
brains under registration. Third, we adapt the registration procedure to a space of 
diffeomorphic transformation by following the efficient log-domain approach in [4]. 
Therefore, the estimated deformation field by our registration method is smooth and 
invertible, but the computation time can be greatly reduced, compared with other 
complicated diffeomorphic registration methods [3]. 

To compare the registration performance of our proposed registration method, we 
choose two state-of-the-art registration methods, i.e., SyN [3] and diffeomorphic De-
mons [4], as the references, since they achieve the top-ranked performance as eva-
luated in  [2] and are widely used in neuroscience study. The registration accuracy is 
comprehensively evaluated on real human brain MR images (elderly brains aged from 
65-85, LONI LBPA40 [5], and NIREP NA0 [6] datasets), all with manually-labeled 
ROIs. In all experiments, our proposed feature-based registration method achieves the 
best registration performance in terms of registration accuracy. 

2 Methods 

The goal of deformable registration is to find a transformation ܨ ൌ ሼ݂ሺݔሻ|݂ሺݔሻ ൌ ݔ ݄ሺݔሻ, ݔ א Ըଷሽ between template ܶ and subject ܵ, with displacement ݄ሺݔሻ defining 
the mapping of the point coordinates Ω்  of template ܶ  to ΩS  of subject ܵ . 
Here, Ω், Ωௌ ؿ Ըଷ. In this section, we will first present the overview of our registra-
tion method in Section 2.1. The energy function and its solution will be explained in 
Section 2.2 and Section 2.3, respectively.  
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2.1 Overview of Our Symmetric Feature-Based Registration Method 

The overview of our symmetric feature-based registration method is shown in Fig. 1. 
Instead of estimating the deformation field ܨ from template to subject, we estimate 
two deformation fields starting from template and subject, respectively. Thus, we can 
obtain the deformation fields ߶ଵ from template space and ߶ଶ from the subject. Both ߶ଵ and ߶ଶ point towards the common space in the middle of the pathway between 
template and subject. In the end, the deformation field from template to subject can be 
calculated by ܨ ൌ ߶ଵ ל ߶ଶି ଵ, where Ԣ ל Ԣ denotes the composition of two deformation 
fields. Similarly, the inverse deformation field ିܨଵ from subject to template can be 
obtained by ିܨଵ ൌ ߶ଶ ל ߶ଵି ଵ. 

As mentioned earlier, anatomical correspondence is very important in deformable 
image registration. Therefore, we define attribute vector റܽ on each voxel to establish 
the correspondence. To further improve the correspondence detection, we hierarchi-
cally select the key points (located at the salient regions in the MR brain images) to 
steer the deformation of registration, as well as to guide the deformation of other less-
distinctive points. As displayed in Fig. 1(a), only a small number of points located at 
the critical areas of brain image are selected as the key points (red points denote for 
key points of template and blue points for key points of subject) to drive the image 
registration. With the progress of registration as in the bottom of Fig. 1(a), more and 
more voxels are qualified as the key points to refine the deformation field, as it can 
seen in the bottom of Fig. 1(a) that ߶ଵ and ߶ଶ change from global deformation in the 
beginning to local deformation in the end of registration. The definition of attribute 
vector and hierarchical key point selection will be explained next.  
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(a) Overview of our symmetric registration method 
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(b) Non-uniform sampling 
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Fig. 1. The framework of our symmetric feature-based registration algorithm (a) and the key 
modules in our method, i.e., key point selection by non-uniform sampling (b).  

2.2 Energy Function in Our Symmetric Registration Method 

In our symmetric registration method, both template and subject will deform toward 
the middle point iteratively, as shown in Fig. 1.  (a). Thus, we use ܶ ൌ ܶሺ߶ଵሻ and ܵ ൌ ܵሺ߶ଶሻ to denote the tentatively-warped template and subject images w.r.t. the 
deformation fields ߶ଵ and ߶ଶ in the end of the ݇௧ iteration, respectively.   

Attribute Vector: Attribute vector is used as the morphological signature to characterize 
geometric information around each voxel. Although some rich image descriptors, e.g., 
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SIFT and SURF, work well on correspondence matching, they are computational expen-
sive and sensitive to the structural variations across individual brain images. For robust 
correspondence matching, we incorporate both local image appearance and edge infor-
mation in our registration method by arranging all image intensities and gradients in a 
neighborhood (with radius ݎ, e.g., ݎ ൌ 3mm) into the attribute vector റܽ. Normalized 
cross correlation is used as the similarity measure to evaluate the similarity between point ݔ in the deformed template ܶ and point ݕ in the deformed subject ܵ, which is de-
noted as ܰܥܥሺ റ்ܽሺݔሻ, റܽௌሺݕሻሻ . Furthermore, we define the feature discrepancy as ߟሺ റ்ܽሺݔሻ, റܽௌሺݕሻሻ ൌ ଵିேሺሬറೖሺ௫ሻ,ሬറೄೖሺ௬ሻሻଶ , which ranges from 0 to 1. Apparently, we eva-

luate the similarity not only on the single pair of points ݔ and ݕ, but also on their respec-
tive sub-volumes. Since we explicitly detect correspondences only on the key points, not 
every voxel in the image, our registration method is efficient, although the computation 
of normalized cross correlation is more expensive than simple intensity difference.  

Key Points Selection: Here, we use an importance sampling strategy to hierarchically 
select the key points in the image. Specifically, we first smooth, and normalize the gra-
dient magnitude values in the whole image domain. Then, these values are roughly 
considered as the importance of each voxel during the registration. It is worth noting 
that the gradient magnitude is selected as the importance of each voxel mainly because 
of its low computational cost, although other advanced methods can be also applied 
here. Based on the importance map, a set of key points can be sampled, with higher 
importance value indicating the higher likelihood of the underlying location being se-
lected in the non-uniform sampling. Fig. 1 shows the non-uniform sampling based on 
the importance map (Fig. 1(b1)). The initial subset of key points and also the key points 
selected in the later two stages of registration are displayed in blue, green, and red in 
Fig. 1(b2), respectively. It is clear from Fig. 1(b2) that the key points are more concen-
trated at areas with rich edge information, where the importance values are high. After 
we apply the non-uniform sampling to both ܶ and ܵ, we can obtain the template key 
points ܺ ൌ ൛ݔ|݅ ൌ 1, … , ்ൟ and the subject key points ܻܯ ൌ ൛ݕ|݅ ൌ 1, … ,  ௌൟ atܯ
the ݇௧ iteration of registration, where ܯ் and ܯௌ are the numbers of key points in 
the deformed template and deformed subject in the ݇௧ iteration. 

Energy Function: In ሺ݇  1ሻ௧ iteration, we will estimate the incremental deforma-
tion ߮ଵାଵ from ܶ  to ܵ  and ߮ଶାଵ  from ܵ  to ܶ . As we will explain later, the 
refined deformation fields ߶ଵାଵ and ߶ଶାଵ in the end of the ሺ݇  1ሻ௧ iteration can 
be obtained by integrating the incremental deformation fields ߮ଵାଵ and ߮ଶାଵ. 

Given the currently estimated incremental deformation ߮ଵାଵ൫ݔ൯ at key point ݔ, exhaustive search is performed to refine the correspondence w.r.t. each candidate 

point ݑ in a search neighborhood ݊ ቀ߮ଵାଵ൫ݔ൯ቁ, according to the two criteria: 1) the 

feature discrepancy should be as small as possible between റ்ܽ൫ݔ൯ א Ω்ೖ  and  റܽௌሺݑሻ א Ωௌೖ; 2) the spatial distance between candidate point ݑ and the tentatively 

estimated location ߮ଵାଵ൫ݔ൯, i.e., ฮ߮ଵାଵ൫ݔ൯ െ ฮଶݑ
, should be as close as possible.  

Since there are a lot of uncertainties in correspondence matching, encouraging 
multiple correspondences is proven effective to alleviate the ambiguity issue. For a 
particular template key point ݔ, a probability ߨ௨ (called as spatial assignment) is 
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assigned to each candidate point ݑ א ݊ሺ߮ଵାଵ൫ݔ൯ሻ during correspondence matching. 
For robust correspondence matching, the candidate points even with large discrepancy 
still might have the chance to contribute to the correspondence matching in the begin-
ning of registration. As the registration progresses, only the candidates with the most 
similar attribute vectors will be considered until the exact one-to-one correspondence 
is allowed in the end of registration for achieving the registration specificity. This 
dynamic procedure can be encoded with the entropy term on the probability, i.e., ߨ௨ · ௨ߨ݈݃ . Here, high degree of entropy implies the fuzzy assignment while low 
degree means almost binary matching. We use a scalar value ݐାଵ to act as the tem-
perature to enforce the dynamic change on correspondence assignment.  

The optimization of incremental deformation field ߮ଶାଵ follows the same way as 
discussed above, except we use ߬௩ to denote the assignment of each candidate point ݒ in the search neighborhood ݊ ቀ߮ଶାଵ൫ݕ൯ቁ. Thus, the total energy function in esti-

mating incremental deformation field ߮ଵାଵ and ߮ଶାଵ is given as:  

,ሺ߮ଵାଵܧ ߮ଶାଵሻ ൌ   ൛ߨ௨ · ൫ߟൣ റ்ܽሺݔሻ, റܽௌሺݑሻ൯  ԡ߮ଵାଵሺݔሻ െ ԡଶ൧ݑ  ାଵݐ · ሺߨ௨ · ൬ఝభೖశభቀ௫ೖቁ൰א௨ሻൟ௨ߨ݈݃
ெೖ
ୀଵ  

                              ቄ ߬௩ · ቂߟ ቀ റ்ܽሺݒሻ, റܽௌ൫ݕ൯ቁ  ฮ߮ଶାଵ൫ݕ൯ െ ฮଶቃݒ   ାଵݐ · ൫ ߬௩ · ݈݃ ߬௩൯ቅ௩א൬ఝమೖశభቀ௬ೕೖቁ൰
ெೄೖ
ୀଵ  

                             ߚ · ሼܤሺ߮ଵାଵሻ   ,ሺ߮ଶାଵሻሽܤ
(1)

where ܤሺ. ሻ measures the bending energy of incremental deformation fields [7]. ߚ in 
Eq. 1 is a scalar value to control the strength on deformation smoothness.  

2.3 Optimization of Symmetric Deformation Pathways 

First, the spatial assignment ߨ௩ can be calculated by minimizing ܧ in Eq. 1 w.r.t. ߨ௨:  

௨ߨ ൌ exp ቐെ ߟ ቀሬܽറܶ݇ሺ݇݅ݔ ሻ, ሬܽറܵ݇ሺݑሻቁ  ฮ߮1݇1ሺ݇݅ݔ ሻ െ ାଵݐฮ2ݑ ቑ. (2)

Similarly, the spatial assignment ߬௩ can be obtained as: 

߬௩ ൌ exp ൞െ ߟ ൬ሬܽറܶ݇ሺݒሻ, ሬܽറܵ݇ ቀ݆ܲݕ ቁ൰  ቛ߮2݇1 ቀ݆݇ݕ ቁ െ ାଵݐቛ2ݒ ൢ. (3)

It is clear that spatial assignment ߨ௨ and ߬௩  are penalized in the exponential way 
according to the discrepancy degree ߟ. Notice that the temperature ݐାଵ is the deno-
minator of the exponential function in Eqs. 2 and 3. Therefore, when ݐାଵ is very 
high in the beginning of registration, even though the discrepancy ߟ might be large or 
the candidate location is far away, the candidate point still might have the chance to 
be selected as the correspondence. As registration progresses, the specificity of cor-
respondence will be encouraged by gradually decreasing the temperature ݐାଵ to a 
small degree, until only the candidate point with the smallest discrepancy being se-
lected as the correspondence in the end of registration.  
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After obtaining ߨ௨ for each candidate ݑ, the estimated incremental deformation on 
key point ݔ can be computed by optimizing energy function ܧ in Eq. 1 w.r.t. ߮ଵାଵ:  ො߮ଵାଵ൫ݔ൯ ൌ  ௨ߨ · ቀఝభೖశభ൫௫ೖ൯ቁא௨ݑ  ቀఝభೖశభ൫௫ೖ൯ቁ൙א௨௨ߨ . (4)

Similarly, the incremental deformation of each ݕ can be updated as: 

ො߮ଶାଵ൫ݕ൯ ൌ  ߬௩ · ൬ఝమೖశభቀ௬ೕೖቁ൰א௩ݒ  ߬௩௩א൬ఝమೖశభቀ௬ೕೖቁ൰൙ . (5)

The estimated incremental deformation fields ො߮ଵାଵ and ො߮ଶାଵ are sparse which have 
the displacements only on the key points. Then TPS [7] is used to immediately inter-
polate the dense deformation fields ො߮ଵାଵ  and ො߮ଶାଵ  with the bending energy mini-
mized. In order to ensure the invertibility of output deformation fields, we follow an 
efficient non-parametric diffeomorphic approach [4] to adapt the optimization of ߶ଵାଵ and ߶ଶାଵ to the space of diffeomorphic transformation. The basic idea is to 
consider the incremental deformation fields ො߮ଵାଵ  and ො߮ଶାଵ  in the vector space of 
velocity fields and then map them to the space of diffeomorphism through the expo-
nentials, i.e., expሺ ො߮ଵାଵሻ or expሺ ො߮ଶାଵሻ.  

Specifically, the following steps will be applied to calculate the deformation field ߶ଵାଵ under the framework of diffeomorphism: 1) compute the exponential of incre-
mental deformation field expሺ ො߮ଵାଵሻ  by the scaling and squaring method [4]; 2) 
compose the exponential with the previously estimated deformation field by ߶ଵାଵ ൌ߶ଵ ל exp ሺ ො߮ଵାଵሻ; 3) the inverse deformation field can be computed by ൫߶ଵାଵ൯ିଵ ൌሺ߶ଵሻିଵ ל exp ሺെ ො߮ଵାଵሻ . Similarly, the deformation pathway ߶ଶାଵ  and its inverse ൫߶ଶାଵ൯ିଵ

 can be computed by performing these three steps.  
Finally, the latest estimated deformation pathway ߶ଵାଵ and ߶ଶାଵ will be used to 

deform the original template and subject images, and obtain ܶ௦ାଵ and ܵାଵ for the 
next iteration. The whole procedure (i.e., estimating the incremental deformation 
fields (߮ଵାଵ and ߮ଶାଵ) and updating the symmetric deformation pathways ߶ଵାଵ and ߶ଶାଵ) will be repeated until the template and subject images meet at the middle point. 

3 Experiments 

To evaluate the registration performance, we test our symmetric feature-based regis-
tration method on elderly brain images, as well as NIREP-NA0 and LONI-LPBA40 
datasets, by comparing it with the two state-of-the-art registration methods, i.e., SyN 
[3] and diffeomorphic Demons (D. Demons) [4], which demonstrate good perfor-
mance in [2]. For SyN and diffeomorphic Demons registration methods, we use their 
best parameters as listed in the supplementary document of [2].  

Registration Results on 18 Elderly Brains: In this experiment, 18 MR brain images 
of elderly subjects were used, each with image dimension 256 ൈ 256 ൈ 124 and 
resolution 0.9375 ൈ 0.9375 ൈ 1.5݉݉ଷ. After selecting one subject as the template, 
we registered all other 17 subjects onto the template by SyN, diffeomorphic Demons, 
and our proposed method, respectively. The mean images (averaging up all registered 
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Fig. 2. Demonstration of registration performance on 18 elderly MR brain images. The mean 
images upon all registered images by SyN, diffeomorphic demons, and our method are shown 
in (a), (c), and (e), respectively. To examine the registration consistency across different sub-
jects, the local entropy of tissue probability maps across all aligned images by SyN, diffeomor-
phic Demons, and our method are shown in (b), (d), and (f), respectively, indicating that our 
method has the least variation.  

subject images) by SyN, diffeomorphic Demos, and our registration method are 
shown in Fig. 2(a), (c), and (e), respectively.  

Since the images have been segmented into GM, WM, CSF and VN, we can calculate 
the voxel-wise overlap ratio between the warped subjects and the template (Table 1). 
Here, we set the target overlap ratio as the overlap measurement since it was used in [2] to 
evaluate all 14 registration methods. By masking out the background voxels, the averaged 
target overlap ratios between template and each aligned subject are 70.10% for SyN, 
70.88% by deformorphic Demons, and 74.13% by our proposed method, respectively. For 
further quantification of registration consistency, we computed the voxel-by-voxel entropy 
of tissue probability maps across all aligned subjects. High entropy value indicates less 
consistency. For our proposed method, the averaged entropy is 0.40, which is nearly 17% 
improvement compared to 0.48 obtained by deformorphic Demons, and 35% improve-
ment compared to 0.62 obtained by SyN. The respective 3D map of entropy value is 
shown in Fig. 2 by SyN (2b), deformorphic Demons (2d), and our method (2f). It is worth 
noting that the improvement on tissue overlap ratios between our method and other two 
methods are significant in paired t-test (0.05>). 

Table 1. Target overlap ratio of white matter, gray matter, ventricle on 18 elderly brains by 
SyN, diffeomorphic Demons (D. Demons), and our method. (unit: %) 

 White matter Gray matter Ventricle Overall 
SyN 71.28±3.33 56.63±3.58 82.40±3.35 70.10±3.42 
D. Demons 72.05±5.24 58.22±8.00 82.36±4.50 70.88±6.34 
Our method 75.22±3.22 62.36±3.92 84.82±1.86 74.13±2.86 

 

(a) Mean image by SyN (b) Variance image by SyN 

(c) Mean image by diffeomorphic demons (d) Variance image by diffeomorphic demons 

(e) Mean image by S-HAMMER (f) Variance image by S-HAMMER 
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NIREP NA0 Dataset: One of the 16 images is randomly selected as the template. 
Then we register the rest 15 images to the template image by SyN, diffeomorphic 
Demons, and our proposed method. After registration, the target overlap ratio can be 
calculated for each of the 32 manually delineated labels. We repeat this procedure for 
5 times by selecting different subject as template. The mean and standard deviation of 
target overlap ratios across all subjects and all ROIs are 60.25±1.67% by SyN, 
64.23±1.38% by diffeomorphic Demons, and 65.17±1.16% by our registration me-
thod, respectively. 

LONI LPBA40 Dataset: In this experiment, we use the LONI LPBA40 dataset [5] 
with 40 brain images and 54 manually labeled ROIs in each brain image. Similarly, 
we employ SyN, diffeomorphic Demons, and our method to align 39 brain images to 
a randomly selected template image. We repeat this procedure for 5 times as well. 
The overall tissue overlap ratio is 73.23±1.35% by SyN, 73.12±1.62% by diffeomor-
phic Demons, and 74.00±1.26% by our method, respectively. 

4 Conclusion 

In this paper, we proposed a new feature-based symmetric registration method for MR 
brain images. Compared with other intensity-based registration methods, our method 
achieves more accurate registration. Our symmetric feature-based registration method 
produces better registration results than the two top-ranked intensity-based registra-
tion methods (SyN and D. Demons) on all three experiments. 
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Abstract. We formulate the pigmented-skin-lesion (PSL) matching problem as
a relaxed labeling of an association graph. In this graph labeling problem, each
node represents a mapping between a PSL from one image to a PSL in the second
image and the optimal labels are those optimizing a high order Markov Random
Field energy (MRF). The energy is made up of unary, binary, and ternary en-
ergy terms capturing the likelihood of matching between the points, edges, and
cliques of two graphs representing the spatial distribution of the two PSL sets.
Following an exploration of various MRF energy terms, we propose a novel en-
tropy energy term encouraging solutions with low uncertainty. By interpreting the
relaxed labeling as a measure of confidence, we further leverage the high confi-
dence matching to sequentially constrain the learnt objective function defined on
the association graph. We evaluate our method on a large set of synthetic data as
well as 56 pairs of real dermatological images. Our proposed method compares
favorably with the state-of-the-art.

1 Introduction

The presence of a large number of pigmented skin lesions (PSL) is a strong predictor
of malignant melanoma [7]. Since detecting newly appearing, disappearing, and chang-
ing PSL is important for early detection of the disease, many dermatologists advocate
total-body photography for high-risk patients (Figure 1(a)). However, manual inspec-
tion and matching of PSLs is a subjective, tedious, and error prone task. A computer
vision system for tracking the corresponding PSLs greatly improves the matching pro-
cess, thereby easing the workload on dermatologists while also improving matching
accuracy and removing operator variability [7]. There exists limited works on automat-
ing the matching between lesions. Huang and Bergstresser developed a PSL matching
algorithm based on a Voronoi decomposition of the image space [3]. Yet, their method
does not deal with the presence of the newly appearing or disappearing PSLs. Prednia
and White performed affine registration between the two sets of PSLs [8]. However,
their method does not take into account the elastic deformation of the human back.
Roning and Riech defined a set of geometric properties as a similarity metric to find the
corresponding PSLs. Their method requires manually determining two initial matches

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 98–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. (a) Example back images of the same subject at two different times. The green and red
dots are overlaid at the PSL’s coordinates. The thickness and the color of the edges encode
the matching confidence between the connected points; the thicker and darker the line, the higher
the confidence (please refer to Section 2.3 for more details). The five rows in (b) and (c) represent
the output of five iterations of the learning step. (b) The probabilistic solutions. (c) The selected
high confidence matchings. The ground truth matching is shown in (d). (e) and (f) show the esti-
mated matching without and with the learning step. Wrong matches are shown in red on the back
images. It can be noticed that the unsupervised learning step improves the matching accuracy (i.e.
less red lines).

[9]. The authors in [7] computed the matching probabilities of the edges of two graphs
representing the spatial distribution of the two PSL sets. They then extracted pointwise
probabilities utilizing the marginalization matrix of the computed pairwise matchings.
However, they did not make use of high-order term to the PSL matching. Recently,
there have been several works on high order graph matching, combining both appear-
ance similarity and geometric compatibility [1,10,11,12].

Compared with the previous works on PSL matching, we present the first appli-
cation of high-order term to PSL matching. Our approach is most closely related to
the work of Zeng et. al [12], who formulate a non-rigid surface registration problem
as a high order graph matching problem and extract the matchings by solving a corre-
sponding pseudo-boolean function. Their matching cost function depends on the feature
appearance and geometric compatibility of the pair-wise and triplet-wise correspon-
dences (Section 2.1). To solve their non-convex optimization problem, they make use
of the dual-decomposition (DD) approach, similar to the work by Torresani et. al [10].
Our method differs from those in [10,12] in several ways. First, we relax the labels to
continuous variables. By interpreting the relaxed labeling as a measure of confidence,
we sequentially leverage the high confidence matchings via a self-learning approach to
learn the features of the association graph (Section 2.3). We further propose to add a
novel entropy energy term encouraging solutions with low uncertainty. We evaluate our
method on a large set of synthetic data (hundreds of pairs) as well as 56 pairs of real
dermatological images. The experimental results confirm the usefulness of adopting the
entropy term and the unsupervised learning procedure (Section 3).
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(a) G1, G2, and G (b) (c) (d)

Fig. 2. (a) Association graph G for graph matching between two graphs, G1 and G2. Each node
in G represents a connection between a point in G1 and a point in G2. The matching problem
between G1 and G2 is formulated as a labeling problem for G. (b-d) illustrate examples of the
unary, binary, and ternary terms used in the MRF-based labeling cost function in (1) (please refer
to Section 2.1 for further details).

2 Method

Let us denote the PSLs coordinates of the lth image by a graph Gl(Vl, El, Cl), l ∈
{1, 2}, consisting of a set of nodes Vl (|Vl| = Nl), edges El ⊂ Vl × Vl, and cliques
Cl ⊂ Vl × Vl × Vl. We define a set of intra and inter-edges between the graphs to
encode features related to the nodes connected by the edges and the cliques. An intra
edge Elm,ln ∈ Gl connects the mth vertex Vlm to the nth vertex Vln, where n �= m. An
inter-edge E1m,2n connects V1m to V2n. Our aim is to find a mapping Π(V1)→ V2.

The matching problem (i.e. finding the mapping Π) can be formulated as a graph
labeling problem. To this end, given Gl|l=1,2, we first construct their association graph
G(V,E,C), in which each vertex in V corresponds to an inter-edge, e.g. V1m,2n =
Vmn ↔ E1m,2n (|V| = N1N2) (Figure 2(a)). The matching problem can then be
solved by binary labeling, x, of G [10]. A correspondence Π(V1m) → V2n is active
iff x(Vmn) = 1 and 0 otherwise. The details describing the objective function for bi-
nary labeling is provided in Section 2.1.

Compared with [10], we solve the matching problem as a relaxed (fuzzy) labeling,
i.e. x ∈ [0, 1]. We interpret the fuzzy labels as a measure of confidence. The high
confidence matchings are then extracted for unsupervised learning of the features of the
association graph (Section 2.3).

Let us denote the label by � ∈ {0, 1}. Then, x(V) represents our confidence in V

having the label �. Since we have the following equality x0(V) = 1 − x1(V) in our
framework, we denote x1 by x for simplicity.

2.1 MRF-Based Binary Labeling

MRF-optimization seeks the labeling xp for each vertex Vp of graph G(V,E,C) by
optimizing an energy function of the form:

E (x) = wu

∑
p∈V

φx (xp) + wb

∑
(p,q)∈E

φxx (xp, xq) + wt

∑
(p,q,z)∈C

φxxx (xp, xq, xz) (1)

where φx is the unary term which measures the likelihood of labeling a vertex with a
specific label disregarding the labels of any of the neighbours; and φxx and φxxx are
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regularization terms penalizing different label configurations of neighboring vertices.
w’s are the weights of the different terms.

We define our unary term as a weighted sum of the two energy terms:

φx(xij) = w(1)
u φ(1)

x (xij) + w(2)
u φ(2)

x (xij). (2)

φ
(1)
x (xij) measures the dissimilarity between the appearance descriptors of V1i and V2j ,

denoted by FV1i and FV2j :

φ(1)
x (xij) = xijdu(V1i,V2j) + (1 − xij)(1− du(V1i,V2j)), (3)

du(A,B) =

R∑
r=1

|FA(αr)−FB(βr)|, α = [α1α2...αR], β = [β1β2...βR]

α, β are the indices of FA and FB , which are compared to each other in computing du
in (3), and are given by:

FVlm
= x(Vlm)11×Nl+1 − [0, x(Vl1), x(Vl2), ..., x(VlNl

)], l ∈ {1, 2}. (4)

where x2×1 is the normalized coordinate of the PSLs resulting from applying the skin
back-template proposed in [7]. In the first iteration, α and β in (3) are initialized with 1.

Therefore, du measures the Euclidean distance between V1i and V2j , i.e. du
(
FV1i(α =

1),FV2j(β = 1)
)
= |x(V1i)− x(V2j)|, and later on, as explained in Section 2.3, α and

β in (3) will be updated in a sequential learning step to include more entries of F in
computing du.
φ
(2)
x (xij) in (2) is our new entropy term, which is used to encourage the cost function

towards solutions with low entropy or low uncertainty:

φ(2)
x (xij) = −

(
xij log2 xij + (1− xij) log2(1 − xij)

)
≈ xij(1− xij). (5)

Equation (5) shows a quadratic approximation term achieved using a second order Tay-
lor expansion. We treat x as a probability when calculating Shannon’s entropy although
we didn’t present our method in a formal probabilistic framework. Nevertheless, the
intuition of having higher uncertainty as x nears 0.5 and lower uncertainty as x gets
close to 1 or 0 still holds.

To measure compatibility between pairwise correspondences, we use:

φxx(xij , xmn) = xijxmndb(
−−−−→V1iV1m,

−−−−→V2jV2n) + (1− xijxmn)(1− db(
−−−−→V1iV1m,

−−−−→V2jV2n))

−−−−→VliVlm =x(Vli)− x(Vlm), db(
−→
A,

−→
B ) = ω1

b |1−
−→
A.

−→
B

|−→A ||−→B |
|+ ω2

b ||
−→
A |− |−→B ||. (6)

db evaluates the length and direction agreement between the line segments
−→
A and

−→
B .

w1
b , w2

b weight the direction and length terms.
To measure the compatibility in corresponding triplets, e.g. triangles T1 =
̂V1iV1mV1p and T2 = ̂V2jV2nV2q, we use:
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Algorithm 1.1. Our proposed MRF-based point matching algorithm.

1: Input: Two point sets V1 and V2; the spatial coordinates of the points: x(V1) and x(V2).
2: Output: A mapping between the vertices: Π(V1) → V2.
3: Initialization: Construct G(V,E) (Section 2); construct FVlm (4); τ = 0.9; α = 1; β = 1;

w
(1)
u = 0.04; w(2)

u = 0.1; w(1)
b = w

(2)
b = 0.04; w(1)

t = w
(2)
t = 0.02.

4: Compute db (6), dt (7), and du
(
FV1i(α = 1),FV2j (β = 1)

)
= |x(V1i)− x(V2j)|.

5: Define the objective function E(x) = func(φ(1)
x , φ

(2)
x , φxx, φxxx) (Section 2.1).

6: Optimize E(x). � e.g. apply SP [11] or TIP [1] to maximize x = maxx E(x).
7: (A,B) = {(i, j)|xij > τ}. � A and B are the indices of the high confidence nodes in G.
8: if A+ 1 = α & B + 1 = β � The high confidence nodes do not change any more.
9: Π ← Hard matching obtained by discretizing X = [xij ].

10: else
11: α ← A+ 1, β ← B + 1.

12: Compute du
(
FV1i(α),FV2j (β)

)
=

|A|+1∑
r=1

|FV1i(αr)− FV2j (βr)|.
13: Go to step 5.

φxxx(xij , xmn, xpq) =xijxmnxpqdt(T1, T2) + (1− xij , xmn, xpq)(1 − dt(T1, T2)

dt(T1, T2) =w1
t |area(T1)− area(T2)|+

3∑
i=1

w2
t |�T i

1 − �T 2
2 | (7)

dt measures the difference between the area and the angles of the triangles. The weights
w1

t and w2
t encode the trade off between preserving areas vs. angles.

2.2 Solving for the PSL Matching via MRF Optimization

Since we bootstrap our PSL matching from the high confidence matches in Section 2.3,
we restrict our work to the relaxed version of the problem, while having the entropy term
discouraging high uncertainty. We explore: (i) tensor power iteration (TPI) [1], and (ii)
successive projection (SP)1 [11] optimization methods (Section 3). Both TPI and SP
provide a soft solution considering global constraints

∑
i xij ≤ 1 and

∑
j xij ≤ 1

to ensure partial matching and to avoid multiple matchings. Note that in Section 3 the
results are provided using TPI.

2.3 Self-Learning

As shown in [6], learning the parameters that control the graph matching is impor-
tant for improving the matching accuracy. The authors in [6] learn the weights w in
(1) using gradient descent-based approach. We instead learn an improved objective
function by encoding into the unary term new geometric information from the cur-
rent high confidence matching. In the learning step of our method, we update α and

1 The SP algorithm is applied to the marginalization matrix computed based on the probability
of matching the edges and the cliques [11].
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Table 1. Comparison between the different methods in terms of the optimization domain, energy
terms, and the self-learning (SL) characteristics

Method
Optimizer

φ
(1)
x φ

(2)
x φxx φxxx SL

Objective
Soft vs. Hard Function

CVPR09 [7] SP (Soft) � × � × × MRF1 MRF1 = func(φ(1)
x , φxx)

CVPR08 [11] SP (Soft) � × � � × MRF2 MRF2 = func(φ(1)
x , φxx, φxxx)

ECCV08 [10] DD (Hard) � × � × × MRF1 MRF1EN = func(φ(1)
x , φ

(2)
x , φxx)

CVPR10 [12] DD (Hard) � × � � × MRF2 MRF2EN = func(φ(1)
x , φ

(2)
x , φxx, φxxx)

PAMI11 [1] TPI (Soft) � × � � × MRF2
Proposed TPI (Soft) � � � � � MRF2EN

β in (3), which indicate the indices of F that should be considered in measuring du.
As shown in Algorithm 1.1, given the current high confidence matching x(VAB), i.e.
(A,B) = {(i, j)|xij > τ}, where τ is a confidence-threshold and |A| = |B| = R
and R is the total number of the high confidence points, α and β in (3) are updated:
α = A+ 1 and β = B + 1. Therefore,

du

(
FV1i(α),FV2j (β)

)
=

R+1∑
r=1

|FV1i(αr)−FV2j (βr)| (8)

The αr-th entry of FV1k
represents the distance between the vertex V1k and V1α. In

fact, we are effectively diffusing the binary term to the unary term, since this entry in F
is related to the length agreement between the edges. Figure 1 shows examples of the
selected high confidence mappings at different iterations.

3 Results

Given a ground truth matching Π∗, and an estimated mapping Π obtained by discretiz-
ing the estimated fuzzy solution X = [xij ] (e.g. applying simple thresholding or the
Hungarian algorithm [1,4], where Πij = 1 is interpreted as a mapping Π(V1i) = V2j),
we use the following error measurement to evaluate the quality of the estimated map-
ping: Δ =

∑
|Π− Π∗|/(N1N2). We evaluate our method on synthetic data as well as

56 pairs of real images [2]. Note that we identify the PSLs’ coordinates on our real data
manually and the number of PSLs in our dataset is varied between 3 and 60.

Our synthetic data follows a setup similar to [7]. A cloud of nc points are generated.
The corresponding points in the second set are constructed by perturbing the nc points.
Then, different number of outliers n1

o and n2
o (representing disappearing and newly

appearing PSLs) are added to the two sets.
In Table 1, we analyse our method and five state of the art point matching algorithms

in terms of different characteristics. In summary, CVPR09 [7], CVPR08 [11], ECCV08
[10], CVPR10 [12], PAMI11 [1], and our method, can be implemented by setting the
objective function in the form of MRF1, MRF2, or MRF2EN mentioned in Table 1,
and applying different optimization approaches. For example, we can arrive to PAMI11
[1] by setting the objective function to MRF2 and using the TPI optimizer. To study
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the effectiveness of the entropy term (5), we compare the matching errors resulting
from using a given function, with and without the entropy term; i.e. compare MRF1
vs. MRF1EN and MRF2 vs. MRF2EN. The results in Figure 3 indicate that adding the
entropy term can lead to lower error. The effect of applying different iterations of the
self-learning procedure is shown in Figure 4. The results confirm the usefulness of our
unsupervised learning from high confidence matches. Note that the errors are gradually
decreasing by increasing the number of the iterations.

A comparison between the point matching methods: CVPR09 [7], CVPR08 [11],
PAMI11 [1], and our method on the real data is shown in Figure 5. Note that all the
methods are fed with the normalized coordinates of the PSLs resulting from apply-
ing the skin back-template proposed in [7]. It can be seen that the lowest error is re-
sulting from MRF2EN+SL, i.e. the results of augmenting MRF2EN with the learning
procedure.
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Fig. 3. Usefulness of the entropy term in (5): the y-axis represents the matching error resulting
from applying different objective functions, without (orange bars) and with (green bars) the en-
tropy term ............................
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Fig. 4. Learning procedure: the y-axis represents the matching error. Different colors correspond
to different objective functions. The results indicate that iteratively applying the unsupervised
learning procedure (Section 2.3) leads to lower error.............................
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Fig. 5. Comparison between the point matching methods CVPR09 [7], CVPR08 [11], PAMI11
[1], and our method on the real data. Note that MRF2EN+SL has the lowest error.
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4 Conclusion

We formulate the PSL matching problem in dermoscopic images as the relaxed labeling
of the corresponding association graph in a high order MRF optimization framework.
We add a novel entropy term to the objective function encouraging the cost function
towards solutions with low uncertainty. We also propose to learn the objective function
in a sequential framework by leveraging the high confidence matching of the fuzzy
solutions. Although we evaluate the usefulness of the entropy term and the learning
procedure on a specific application, the same idea can be used to extend other existing
point matching algorithms.

This work can be extended in a number of ways. As mentioned in Section 2.3, for
example, the learning step can be generalized for the binary and ternary terms of the
matching objective function.
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Abstract. A method for categorizing landmark-local appearances extracted 
from computed tomography (CT) datasets is presented. Anatomical landmarks 
in the human body inevitably have inter-individual variations that cause diffi-
culty in automatic landmark detection processes. The goal of this study is to ca-
tegorize subjects (i.e., training datasets) according to local shape variations of 
such a landmark so that each subgroup has less shape variation and thus the 
machine learning of each landmark detector is much easier. The similarity be-
tween each subject pair is measured based on the non-rigid registration result 
between them. These similarities are used by the spectral clustering process. Af-
ter the clustering, all training datasets in each cluster, as well as synthesized in-
termediate images calculated from all subject-pairs in the cluster, are used to 
train the corresponding subgroup detector. All of these trained detectors com-
pose a detector ensemble to detect the target landmark. Evaluation with clinical 
CT datasets showed great improvement in the detection performance. 

Keywords: anatomical landmark, diffeomorphic demons, spectral clustering. 

1 Introduction 

Detection algorithms for anatomical landmark positions have a wide range of applica-
tions in medical image processing. For example, algorithms are frequently used to 
determine the initial condition of statistical shape models for the segmentation of 
various organs. A simple template matching technique has been frequently used in 
practice on the assumption that a landmark has sufficiently small inter-individual 
variations in its local appearance (i.e., the intensities of the voxels around the land-
mark point). However, many practically important anatomical landmarks in the hu-
man body, such as tips of bone structures or bifurcations of vessels, have considerably 
large inter-individual variations in appearance. Although difficult, detection of these 



 Automatic Cate

landmarks is a critical task 
tation of organs [1] or the
more reliable method for de

It is especially challengi
verse types of landmarks. O
mark-local appearance can
anatomical structure on w
individual variety in the len
ues of the local appearanc
interpolate the shapes—no
synthetically augmenting t
Developing a shape interpo

Fig. 1. An example of a landm
the 12th right rib in axial imag

Another problem is that 
is defined can be multimo
shape varieties. If the distr
distribution cannot be repr
problem arises if one tries t
tion (or any other concave 
and detecting landmarks, th
a case, standard modeling 
However, at least two diffe
1) sub-categorizing the app
al subsets, or 2) applying m
tion of concavity in the pr
develop a method to sub-ca

Up to now, a number of d
ty have been reported. Seife
that includes 1) key slice de
tic boosting tree with 3D H
predefined inter-landmark g
framework that consists of 
models, 2) false positive (FP
determination using prior kn
works use a boosting-base

egorization of Anatomical Landmark-Local Appearances 

in medical image processing, such as the precise segm
e identification of anatomical anomalies [2]. Therefore
etecting such landmarks is desired. 
ing to develop a general but reliable method to detect 

One problem is that the intensity of voxels within the la
n greatly change according to the various shapes of 
which the landmark is defined. For example, the in
ngth of the 12th rib tip significantly changes the voxel v
e (Fig. 1). To overcome this problem, a method that 

ot appearances—between two given training datasets 
the amount of the training datasets would be benefic

olator for this purpose is one of the goals of this study. 

 

mark difficult to detect due to inter-individual variety (the tip
ges from two datasets) 

the shape of the anatomical structure on which a landm
dal, which means, the structure has several subgroups
ribution of appearance has several local maxima (i.e., 
resented by a concave probability function), a signific
to approximate it by a multidimensional Gaussian distri
distribution). Unfortunately, in our experience in defin

his problem is not uncommon (as shown in Fig. 3). In s
with principal component analysis (PCA) is insuffici

erent approaches to solve this problem can be consider
pearances of training datasets and dividing them into sev
machine learning techniques that do not need any assum
robability distribution. The second goal of this study is
ategorize the appearances (the first of the two approache
detection methods for multiple landmarks with high reliab
fert et al. [1] reported a framework for detecting landma
etectors, 2) landmark point detectors that utilize a probabi
aar-like features, and 3) a belief propagation algorithm o

graph network. In a previous paper [3], we reported anot
1) single-landmark detectors with PCA-based appeara

P) reduction with MadaBoost-based classifiers, and 3) f
nowledge on inter-landmark distances. Both of these fram
ed approach to handle a wide variety of landmark-lo

107 

men-
e, a 

t di-
and-

the  
nter-
val-
can 
by 

cial. 

p of 

mark 
s of 
the 

cant 
ibu-
ning 
uch 
ent. 
red: 
ver-
mp-
s to 

es). 
bili-
arks 
ilis-
on a 
ther 

ance 
final 
me-
ocal  



108 S. Hanaoka et al. 

appearances. In our previous approach, however, it was assumed that the multimodal 
distribution problem described above affected the framework, because the framework 
relies on a PCA-based appearance model in the first step. 

In this study, we propose a novel method to 1) categorize the given subjects, i.e., 
training CT datasets, according to landmark-local shape variations of the anatomical 
structure, 2) synthesize an appearance (a local volume around the landmark) that has 
the intermediate anatomical shape between any given pair of training datasets, and 3) 
utilize them to improve the detection performance of landmark detectors through 
composing a “detector ensemble,” which consists of detectors, one of which is de-
signed for only a single subgroup of the local appearance of the target landmark. We 
used the detector proposed in our previous work [3] as a baseline and improved its 
performance by replacing the detector with a detector ensemble. 

2 Methods 

The proposed method consists of three components: 1) shape interpolation and simi-
larity evaluation using the diffeomorphic demons registration algorithm [4], 2) clus-
tering of the appearance variation by using the spectral clustering algorithm [5] and 3) 
training of subgroup-specific detectors (Fig. 2). 

2.1 Shape Interpolation and Similarity Evaluation 

2.1.1 Diffeomorphic Demons Registration between Each Appearance Pair 
The diffeomorphic demons algorithm is a non-rigid registration algorithm that ensures 
diffeomorphism of the resulting deformation field [4]. We chose this algorithm be-
cause of its invertibility and relatively low computational cost. Invertibility is critical 
in our application for synthesizing the intermediate shape image. 

Let ܫሺܘሻ, ܫሺܘሻ be image functions of the two images to be registered. The vec-
tor ܘ indicates an arbitrary point in the image. Suppose that a 3-D transformation ݏ 
is defined by a displacement vector field ܛሺڄሻ such that point ܘ   ሻ is warped toܘሺܛ
point ܘ. Then an image ܫ ל - by the transforܫ which is the deformed image of , ݏ
mation s, is defined as 

 ሺܫ ל  ሻܘሻሺݏ ൌ ܘ൫ܫ    ሻ൯. (1)ܘሺܛ

We modified the diffeomorphic demons algorithm to be symmetrical for our purpose. 
(Vercauteren et al. introduced another solution using the Baker-Campbell-Hausdorff 
(BCH) approximation [4], but we chose this modification because of its simplicity.) 
The algorithm is as follows: 

Algorithm 1 (Diffeomorphic demons with symmetric forces)  

1. Initialize the speed image ܝሺܘሻ to be ሺ0,0,0ሻT at any point ܘ in the image. 
2. Calculate a pair of the symmetrical deformation field cୟ, cୠ by calculating the  

exponential (in the sense of Lie algebra theory, as described in [4]) of the speed 
image as follows: 
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 ܿ ൌ expሺܝሻ , ܿ ൌ exp ሺെܝሻ (2) 

3. For diffusion-like regularization, apply Gaussian smoothing with kernel size σୢ୧ 
to the vector fields ܋ୟ and ܋. Let the smoothed results be ܛୟ and ܛୠ. 

4. Update the speed image by  

՜ ܝ  ܝ െ ூೌל௦ೌିூ್ל௦್ฮ۸ܘฮమା|ூೌלೌିூ್ל್|మ ڄ ܘ۸்  (3) 

Here, ሺܘሻ is omitted and ۸ܘ ൌ െభమ ቀ்ሺܫ ל ሻݏ  ܫ்ሺ ל  ሻቁ is a symmetrizedݏ

Jacobian of the current images. 

5. For fluid-like regularization, apply Gaussian smoothing with kernel size σf୪୳୧ୢ to 
the speed vector fields u. 

6. Iterate steps 2 through 5 for a sufficient number of times. 

This is a fully symmetric version of diffeomorphic demons which deforms each of 
two images simultaneously so as to fit to the other. Note that the deformation cୟ is 
an inverted version of cୠ, and vice versa, in the sense that ܿ ל ܿ ൌ  ܿ ל ܿ ൌ Id 
(the identity transformation). Finally, the intermediate image is calculated as a mean 

of two deformed images, or, 
ଵଶ ൫ሺܫ ל ሻܘሻሺݏ  ሺܫ ל  .ሻ൯ܘሻሺݏ

2.1.2 Calculating the Similarity Measure between Each Appearance Pair 
Prior to clustering the landmark-local appearances extracted from the given training 
datasets, the shape similarity measure must be calculated adequately. In this study, the 
shape similarity is estimated by the squared norm of the divergence of the deforma-
tion vector fields ܛୟ and ܛୠ calculated above. That is,  

 Simሺܫ, ሻܫ ൌ exp ቄെ ଵଶ ఙೞమ  ଵଶ Ωڄ ሺԡ ڄ ୟԡଶܛ  ԡ ڄ  ቅ, (4)ݒୠԡଶሻ݀ܛ

where Ω is the domain of the landmark-local appearance and dv is the volume ele-
ment. The parameter ߪ௦ was determined empirically in this study (the experimen-
tal data is omitted), as well as σf୪୳୧ୢ and σୢ୧ in 2.1.1. 

2.2 Clustering the Landmark-Local Appearances 

Spectral clustering methods are algorithms that cluster data samples using eigenvec-
tors of matrices derived from the data. In [5], Ng et al. presented a simple spectral 
clustering algorithm and the theoretical background. The following is a brief descrip-
tion of the algorithm to cluster n given datasets into k clusters: 

Algorithm 2 (Spectral clustering) 

1. Form an affinity matrix ۯ א Թൈ as its factor ܣ equals to the similarity meas-
ure between the i-th and j-th appearances. The diagonal elements ܣ are set as  
zero. 



110 S. Hanaoka et al. 

2. Define a diagonal matrix ۲  so that ܦ ൌ ∑ ୀଵܣ , and a matrix ۺ ൌ ۲ିଵ/ଶ۲ିۯ/.  
3. Find the k largest eigenvectors of L. Let them be ܠଵ, ,ଶܠ … , ܆ . Form a matrixܠ ൌ ሺܠଵ ܠଶ … ሻܠ א Թൈ. 
4. Form the matrix ܇  from ܆  by renormalizing each row of ܆ , i.e., ܻ ൌ

ܺ,/ට∑  ܺ,ଶୀଵ . 

5. Treat each row of ܇ as a sample point in Թ, then cluster these sample points into 
k clusters via the K-means algorithm. 

Here, the number of cluster k is a parameter determined in advance. In this study, 
we chose k from 2 to 6 for each landmark by the automatic cluster number determina-
tion method proposed by Zelnik-Manor et al [6]. 

 

Fig. 2. A diagram of non-rigid registration, clustering and training of category-specific detec-
tors. The images are sagittal cross-sections of the target landmark (left nipple). 

2.3 Training of Baseline Detectors and Detector Ensembles 

In this study, 50 training datasets were used to train the detector for each landmark. 
The positions of landmarks were input by a board-certificated radiologist. 

The baseline detector. As previously noted, we used the landmark detection frame-
work presented in [3] for evaluation of the proposed method. A detector is composed 
of two processes, A) PCA-based candidate detection and B) MadaBoost-based like-
lihood estimation. The detector outputs a list of candidate points with their estimated 
likelihoods. More details are available in [3]. Note that the proposed method is not  
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specific to our detector but can be applied to any detection system designed to output 
a list of candidates with likelihoods, because our algorithm only does clustering and 
augmenting of the training datasets prior to detector training. 

The detector ensemble. After the local appearances of each target landmark from all 
training datasets were divided into clusters (described in 2.2.), each subgroup 
(=cluster) detector was trained in the same manner as that of the baseline detector. In 
the training for candidate detection, not only the original datasets but also the synthe-
sized intermediate images in the cluster were used as the training datasets. 

2.4 Experimental Settings 

The proposed method was evaluated with 13 landmarks: inferior tip of the sternum, 
tip of the coccyx, tips of the left/right 12th ribs, umbilicus, superior tips of the 
right/left kidneys, first bifurcation of the intrahepatic portal vein, inferior tip of the 
liver, roots of the celiac and superior mesenteric arteries, and right/left nipples. Most 
of the landmarks were difficult to detect by the baseline detector. 

The evaluation was performed with 10 CT datasets (other than the training data-
sets) without intravenous contrast agent administration. The voxel size of all datasets 
was 0.977ൈ0.977ൈ1.250 mm. 

In the real landmark detection process, the outputs of the subgroup detectors within 
any ensemble were integrated as follows. 1) All subgroup detectors, as well as the 
baseline detector, were applied individually. 2) The resulting candidate lists were 
concatenated and sorted by likelihood. 3) Finally, only the 100 candidates with the 
largest likelihoods were used and the others were discarded. For comparison, the out-
puts of each baseline detector were also truncated to have 100 candidates. 

The performance of each detector (baseline or ensemble) was evaluated by a re-
ceiver operating characteristic (ROC) analysis by changing the cut-off threshold of 
the candidate likelihood. The performance was scored by the criterion of the area 
under the curve (AUC). Each detection result was judged as correct if the detected 
point was within the range of 2 cm from the manually inputted gold standard point. 

3 Experimental Results and Discussions 

The results are shown in Table 1. Examples of the clustering results and the ROC 
curves are shown in Figs. 3 and 4. The AUCs were improved in 11 landmarks 
(84.6%). The average and standard deviation of the improvements was 0.13 േ 0.12. 
Remarkable improvements were seen in landmarks even when corresponding base-
line detectors showed very poor performances. Therefore, we believe that our me-
thod successfully clustered and augmented the training datasets with multimodal 
variation. 

In a related study, Heckemann et al. [7] proposed an automatic segmentation me-
thod by non-rigidly registering multiple labeled images (atlases) into the given unseen  
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Table 1. The AUC (area under the curve) results of the baseline detector and the detector classifier 

 

4 Conclusion 

A method for clustering and augmenting landmark-local appearances prior to training 
of anatomical landmark detectors was presented. Ensembles of cluster-specific detec-
tors showed large improvements in detection performance, even when detection by 
the baseline detector was significantly difficult. 
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Abstract. A new approach to align 3D CT data of a segmented lung
object with a given prototype (reference lung object) using an affine
transformation is proposed. Visual appearance of the lung from CT im-
ages, after equalizing their signals, is modeled with a new 3D Markov-
Gibbs random field (MGRF) with pairwise interaction model. Similarity
to the prototype is measured by a Gibbs energy of signal co-occurrences
in a characteristic subset of voxel pairs derived automatically from the
prototype. An object is aligned by an affine transformation maximizing
the similarity by using an automatic initialization followed by a gradient
search. Experiments confirm that our approach aligns complex objects
better than popular conventional algorithms.

1 Introduction

Image registration aligns two or more images of similar objects taken at different
times, from different viewpoints, and/or by different sensors. The images are ge-
ometrically transformed to ensure their close similarity. Registration is a crucial
step in many applied image analysis tasks, e.g., early diagnosis of detected lung
nodules. One of the most compelling motivations for identifying a potentially
malignant nodule is to assess its growth rate. To quantify the growth rate of a
nodule, one must be able to measure the volume of nodules and identify cor-
responding nodules in a follow-up scans. The principal difficulty in estimating
the nodule growth rate is automatic identification and registration (alignment)
of the corresponding nodules in follow-up scans. Registration of the lung tissues
is a challenging task due to large displacements between them in successive CT
scans, which may be caused by variation in respiratory volumes and patient
positioning. For these reasons, the registration of the successive CT lung data
taken at different times is the main goal of this paper.

Most of the known registration methods fall into two main categories:
feature-based and area-based techniques [1]. Feature-based techniques use sparse
geometric features such as points, curves, and/or surface patches, and their

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 114–121, 2012.
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correspondences to compute an optimal transformation. Area-based methods,
such as the classical least square correlation, directly match image signals to
avoid feature extraction [2]. More powerful mutual information (MI) based image
registration [3] exploits a probabilistic similarity measure that allows for more
general types of signal deviations than correlation. The statistical dependency
between two data sets is measured by comparing a joint empirical distribution
of the corresponding signals in the two images to the joint distribution of the
independent signals (e.g., see [4,5] for more details about the existing approaches
for medical images registration).

In this paper, we consider a more general case of registering 3D segmented lung
data to a prototype (the reference data, usually the CT collected at the first visit of
the patient) with similar visual appearance under their relative 3D affine trans-
formations and monotone variations of signal correspondences. To suppress the
variations between the images, all test and training images were equalized to the
same signal ranges, thus having the same dimensions in their co-occurrence matri-
ces. Generally, any equalization scheme can be used. The co-registered equalized
images are described with a characteristic subset of signal co-occurrence statistics.
The description implicitly “homogenizes” the images, i.e., considers them as spa-
tially homogeneous patterns with the same statistics. Our approach differs from
the feature-based registration in that the statistics characterize the whole object,
and from conventional area-based techniques in that the similarities between the
statistics rather than pixel-to-pixel correspondences are measured.

2 MGRF Based Image Registration

2.1 Basic Notation

– Q = {0, . . . , Q− 1} – a finite set of scalar image signals (e.g., gray levels).
– R = [(x, y, z) : x = 0, . . . , X − 1; y = 0, . . . , Y − 1; z = 0, . . . , Z − 1] – a

3D arithmetic lattice supporting digital low dose CT (LDCT) image data
g : R→ Q.

– Rp ⊂ R – an arbitrary-shaped part of the lattice occupied by a prototype.
– N = {(ξ1, η1, ζ1), . . . , (ξn, ηn, ζn)} – a finite set of (x, y, z)-coordinate offsets

defining neighboring voxels, or neighbors {((x + ξ, y + η, z + ζ), (x − ξ, y −
η, z − ζ)) : (ξ, η, ζ) ∈ N} ∧ Rp interacting with each voxel (x, y, z) ∈ Rp.

– T – an indicator of vector or matrix transposition.

The setN yields a 3D neighborhood graph onRp describing translation invariant
pairwise interactions between the voxels with |N | families Cξ,η,ζ of the 2nd-order
cliques cξ,η,ζ(x, y, z) = ((x, y, z), (x+ ξ, y + η, z + ζ)) shown in Fig. 1.

Quantitative interaction strengths for the clique families are given by a vector

VT =
[
VT

ξ,η,ζ : (ξ, η, ζ) ∈ N
]
of potentials VT

ξ,η,ζ =
[
Vξ,η,ζ(q, q

′) : (q, q′) ∈ Q2
]

being functions of signal co-occurrences in the cliques.
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Data Normalization: To account for possible monotone (order-preserving)
changes of signals, e.g., due to different sensor characteristics, every LDCT data
set is equalized using the cumulative probability distribution of its signals.

Markov-Gibbs Random Field-Based Appearance Model: The main idea
of learning the appearance model using an MGRF is to find the neighborhood
system (i.e., the subsets of voxels which have strong relations with each current
voxel) and to estimate the interaction between each two voxels in this neighbor-
hood system (see Fig. 1).

Fig. 1. Pairwise voxel interaction sys-
tem

Fig. 2. Values of the Gibbs energy, MI, and
NMI at the successive steps of the gradient
ascent based search

In a generic MGRF with multiple pairwise interaction in Fig. 1 [6], the Gibbs
probability P (g) ∝ exp(E(g)) of an object g aligned with the prototype g◦ on
Rp is specified with the Gibbs energy E(g) = |Rp|VTF(g). Here,

– FT(g) is the vector of scaled empirical probability distributions of signal co-
occurrences over each clique family: FT(g) = [ρξ,η,ζF

T
ξ,η,ζ(g) : (ξ, η, ζ) ∈ N ];

– ρξ,η,ζ =
|Cξ,η,ζ|
|Rp| is the relative size of the family Cξ,η,ζ , and

– Fξ,η,ζ(g) is the vector of empirical probabilities for this family:
Fξ,η,ζ(g) = [fξ,η,ζ(q, q

′|g) : (q, q′) ∈ Q2]T where

• fξ,η,ζ(q, q
′|g) = |Cξ,η,ζ;q,q′ (g)|

|Cξ,η,ζ | are empirical signal co-occurrence probabil-

ities, and
• Cξ,η,ζ;q,q′(g) ⊆ Cξ,η,ζ is a subfamily of the cliques cξ,η,ζ(x, y, z) supporting
the co-occurrence (gx,y,z = q, gx+ξ,y+η,z+ζ = q′) in g.

The co-occurrence distributions and the Gibbs energy for the object are deter-
mined over Rp, i.e., within the prototype boundary after an object is affinely
aligned with the prototype. To account for the affine transformation, the initial
image is resampled to the back-projected Rp by bilinear interpolation.

The appearance model consists of the neighborhood N and the potential V
to be learned from the prototype. Below we will show how to estimate N and
V for the lung tissues from the LDCT images.
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Learning the Potentials: In the first approximation, the maximum likelihood
estimate (MLE) of V is proportional to the scaled and centered empirical co-
occurrence distributions for the prototype1:

Vξ,η,ζ = λρξ,η,ζ

(
Fξ,η,ζ(g

◦)− 1

Q2
U

)
; (ξ, η, ζ) ∈ N

whereU is the vector with unit components. The common scaling factor λ is also
computed analytically; it is approximately equal to Q2 if Q� 1 and ρξ,η,ζ ≈ 1
for all (ξ, η, ζ) ∈ N . In our case it can be set to λ = 1 because the registration
uses only relative potential values and energies.

Learning the Characteristic Neighbors: To find the characteristic neigh-
borhood set N , the relative energies Eξ,η,ζ(g

◦) = ρξ,η,ζV
T
ξ,η,ζFξ,η,ζ(g

◦), i.e., the
scaled variances of the corresponding empirical co-occurrence distributions for
the clique families, are compared for a large number of possible candidates.

Fig. 3. The 3D neighborhood sys-
tem estimated for the lung tissues

Table 1. Alignment errors (in mm)
for the expert-identified landmarks
over the 100 data sets, and the ex-
ecution times comparing the pro-
posed approach against MI- and
NMI-based methods. SD stands for
standard deviation.

Our MI NMI

Mean 1.9 5.1 4.8
SD 1.1 2.3 1.9

Time (min) 12 9.0 9.0

(A)

(C)

(S)
(a) (b) (c)

Fig. 4. 3D voxel-wise Gibbs energies projected
onto the 2D axial (A), coronal (C), and sagittal
(S) planes for visualization: 2D slices of the orig-
inal LDCT images (a) and the voxel-wise Gibbs
energies for |N | = 275 which is estimated us-
ing LCDG model (b) and |N | = 3927 which is
estimated using tradition EM algorithm (c)

To automatically select the characteristic neighbors, we consider an empirical
probability distribution of the energies as a mixture of a large “non-characteristic”
low-energy component and a considerably smaller characteristic high-energy com-
ponent: P (E) = πPlo(E)+(1−π)Phi(E). The components Plo(E) and Phi(E) are

1 For complete proof, please see: https://louisville.edu/speed/bioengineering/
faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials

https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
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of arbitrary shape and thus are approximated with linear combinations of positive
and negative Gaussians (LCDG) using efficient Expectation-Maximization-based
algorithms introduced in [7] (the latter estimate both the components and the
prior π). The intersection of the estimated mixture components using the LCDG
model gives an energy threshold θ for selecting the characteristic neighbors: N =
{(ξ, η) : Eξ,η(g

◦) ≥ θ} where Phi(θ) ≥ Plo(θ)π/(1 − π). The above example
results in the threshold θ = 28 producing 275 characteristic neighbors shown in
Fig. 3. Figure 4 presents the relative 3D voxel-wise Gibbs energies ex,y,z(g

◦) for
this system:

ex,y,z(g
◦) =

∑
(ξ,η,ζ)∈N

Vξ,η,ζ(g
◦
x,y,z, g

◦
x+ξ,y+η,z+ζ)

Appearance-Based Registration. The desired affine transformation of an
object g corresponds to a local maximum of its relative energy E(ga) = VTF(ga)
under the learned appearance model [N ,V]. Here, ga is the part of the object
image reduced to Rp by a 3D affine transformation a = [a11, . . . , a34]: x

′ =
a11x+a12y+a13z+a14; y

′ = a21x+a22y+a23z+a24; z
′ = a31x+a32y+a33z+a34.

Its initial step is a pure translation (a11 = a22 = a33 = 1; a12 = a13 = a21 =
a23 = a31 = a32 = 0) ensuring the most “energetic” overlap between the object
and prototype. In other words, the chosen initial position (a∗14, a

∗
24, a

∗
34) in Fig. 5

maximizes the energy. Then, the gradient ascent based search for the local energy
maximum closest to the initialization selects all the 12 parameters a. Note that
this gradient-based optimization was used for all tested registration methods to
estimate the goal parameters.

A

C

S

Fig. 5. Initialization of
the proposed global regis-
tration algorithm

A

C

S
(a) (b) (c) (d)

Fig. 6.Global registration results: our (a), MI-based (b),
NMI-based (c), and SIFT-based (d) algorithms. These
registration results were obtained from the segmented
lung data without any pre-processing steps.
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3 Experimental Results

The proposed registration approach has been tested on the clinical data sets that
have been collected from 100 patients at the end-expiration breath hold (EE-
BH). Each patient has two LDCT scans, with the three-month period between
each two successive scans. This clinical database was collected by the LDCT scan
protocol using a multidetector GE Light Speed Plus scanner (General Electric,
Milwuakee, USA) with the following scanning parameters: the slice thickness of
2.5 mm reconstructed every 1.5 mm; scanning pitch 1.5 mm; 140 KV; 100 MA;
and the field-of-view 36 cm.

Results of the proposed global alignment of two lungs are shown in Figs. 6
and 7. It is clear from Fig. 6 (a) and Fig. 7 (c,d) that there are small mis-
alignment at the lung surface, this is due to local deformation of lung tissues
which come from breathing and heart beats. This can be handle by applying
any local deformation transformation model (e.g., 3D cubic splines as a local
transformation model [8]) as shown in Fig. 7 (f).

(a) (b) (c) (d) (e) (f)

Fig. 7. 3D global and local registration: (a) the reference data, (b) the target data, (c)
the target data after a 3D affine transformation, (d) the checkerboard visualization to
show the motion of lung tissues, (e) non-rigid registration based using 3D cubic splines
as a local transformation model [8], and (f) the checkerboard visualization to show the
quality of the proposed local deformation model

To highlight the advantages of the proposed registration approach, we com-
pared, on segmented lung data, our global alignment to three popular conven-
tional techniques, namely, to the area-based registration by mutual information
(MI) [3] or normalized MI (NMI) [9] and to the feature-based registration that
establishes correspondences between the images with 3D scale-invariant feature
transform (SIFT) [10].

To clarify why the MI- or NMI-based alignment is less accurate, Fig. 2 com-
pares the MI/NMI and Gibbs energy values for a sequence of affine parameters
that appear at successive steps of the gradient ascent-based search for the max-
imum similarity in terms of mutual information or energy. Both the MI and
NMI have many outstanding local maxima that potentially hinder the search,
whereas the energy is much smoother and practically unimodal in these experi-
ments. The 3D SIFT-based alignment fails because it cannot establish accurate
correspondences between the similar lung areas.
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Fig. 8. Registration results of the proposed validation control study: (a) scan #1 before
the movement of the patient; (b) scan #2 after patients rotation and translation; (c)
the two scans superposed; (d) the registration results of the proposed approach; (e) su-
perposition of the registered scan #2 with the reference scan #1; and (f) checkerboard
visualization to show the quality of the proposed registration

Validation: To validate the proposed approach, we have performed a control
study using two subjects, each with one solid nodule. The CT data was collected
with the same scanning protocol described above. In this new control study, we
acquired two scans from the same patient at the EE-BH. The only difference
between the two scans was that the patient was asked to make a global rotation
and translation after the first scan. The purpose of this control study was to get
the data from the same patient with minimal local deformation by breathing
in order to test the proposed 3D global registration approach. Figure 8 illus-
trates the registration results of the proposed approach. We used scan #1 before
the patients movement as a reference image to register scan #2 after the pa-
tient movement. The superposition of the registered and reference data and the
checkerboard visualization in Fig. 8(e,f) demonstrates the high quality of the
proposed registration. The average registration error is 1.4 mm with standard
deviation ±0.7 mm. This estimated error is based on calculating the Euclidean
distance between 250 landmark points manually selected by a radiologist on the
reference and the registered target data.

Additionally, our registration approach was validated on the 100 data sets
based on using anatomical landmark correspondences selected by a radiologist.
After the target data is aligned to the reference data, 10 anatomical landmarks,
between both the reference and registered target data, are identified by the ra-
diologist. The registration accuracy is quantitatively assessed by calculating the
Euclidian distance for each expert-identified landmark on the registered data
and its correspondence on the reference data. The error statistics for this vali-
dation experiment as well as the average execution time for our approach and
the MI- and NMI-based methods are summarized in Table 1.
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4 Conclusions

In this paper we introduced a new approach to align 3D CT data of a lung object
with a given prototype whose appearance is modeled with a new 3D Markov-
Gibbs random field with pairwise interaction model. Experimental results con-
firm that lung registration based on our new Markov-Gibbs appearance model
is more robust and accurate than popular conventional algorithms. Moreover, it
is worth mentioning that the proposed registration approach is not limited only
to lung objects, but it is also suitable for registering any 3D texture medical
objects. Furthermore, the proposed approach can be integrated with any nonrigid
registration algorithm (e.g., cubic B-Splines based techniques). In our future
work will use the evaluation framework proposed by van de Kraats et al. [11] to
evaluate the performance of our registration approach against the MI- and NMI-
based approaches as well as higher-order MI-based techniques (e.g., [12] ).
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Abstract. Image registration is inherently ill-posed, and lacks a unique
solution. In the context of medical applications, it is desirable to avoid
solutions that describe physically unsound deformations within the pa-
tient anatomy. Among the accepted methods of regularizing non-rigid
image registration to provide solutions applicable to medical practice is
the penalty of thin-plate bending energy. In this paper, we develop an
exact, analytic method for computing the bending energy of a three-
dimensional B-spline deformation field as a quadratic matrix operation
on the spline coefficient values. Results presented on ten thoracic case
studies indicate the analytic solution is between 61–1371x faster than a
numerical central differencing solution.

Keywords: deformable registration, b-spline, analytic regularization,
thin-plate, bending energy

1 Introduction

B-spline based deformable registration has become a popular method for deriving
coordinate system transforms between image volumes exhibiting complex local
variations due to its compact local support, rapid computation, and applicability
to both single and multi-modalities. Such transforms allow non-rigid structures
to be mapped between images and provide quantitative measure of local mo-
tion and volumetric change over time. Consequently, deformable registration has
played an important role in advancing numerous fields of research and applied
medicine including Alzheimer’s disease [1], schizophrenia [2], generalized brain
development [3], image-guided surgery [4,5], image guided radiotherapy [6,7],
motion estimation [8] and time-evolution visualization [9].

Due to the inherent ill-posed nature of image registration, the existence of
a unique mapping is not guaranteed and the solution space must, therefore, be
confined to only physically meaningful transforms. To this end, several regular-
ization methods have been proposed: Rueckert et al. propose penalizing high
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thin-plate bending energy [10]. Rohlfing et al. propose penalizing local devia-
tions from a unity Jacobian determinate [11]. Miller et al. propose minimizing
linear elastic energy[12]. Li et al. enforce a maximum delta between adjacent B-
spline coefficients [13], whereas Chun and Fessler propose encouraging invertible
diffeomorphic transforms by placing more complex constraints upon coefficients.
This paper builds upon [10] by introducing a fast analytic method for computing
the thin-plate bending energy penalty via a set of static matrix operators.

2 Theory

Fig. 1. 2D region
supported by 16
control-points

Here we develop the necessary theory to compute the bend-
ing energy of a three-dimensional deformation field parame-
terized by a uniform cubic B-spline basis. Given a uniformly
spaced control-point grid as shown in Fig. 1, the bending
energy of the entire deformation may be expressed as a lin-
ear combination of the bending energies computed within
the individual regions of the grid. Therefore, our approach
is to develop an operator that computes the bending energy
within a region as a function of the B-spline control points
that support the region.

Given a three dimensional fixed image F with voxel coordinates θ = x, y, z
and voxel intensity f = F (θ) and moving image M with voxel coordinates
φ = x2, y2, z2 and voxel intensity m = M(φ) representing the same underlying
anatomy as F within the image overlap domain Ω, the two images F and M are
said to be registered when cost function

C =
∑

T(θ)∈Ω

Ψ (f,m) + λS (1)

is optimized according to the similarity metric Ψ under the coordinate mapping
T(θ) = θ + ν. Here ν is the dense vector field defined for every voxel θ ∈ Ω,
which is assumed capable of providing a good one-to-one mapping from F to M .
The smoothness S of ν is added to C with weight λ to drive T to a physically
meaningful coordinate map. When represented sparsely via the uniform cubic
B-spline basis, the vector field ν is parameterized by the set of B-spline basis
coefficients P i,j,k = px,py,pz, where:

px =

⎡⎢⎣ px,0,0,0...
px,I,J,K

⎤⎥⎦ ,py =

⎡⎢⎣ py,0,0,0...
py,I,J,K

⎤⎥⎦ ,pz =

⎡⎢⎣ pz,0,0,0...
pz,I,J,K

⎤⎥⎦ (2)

are defined for n = I × J × K control-points with real world spacing r =
rx, ry, rz . From this new basis, the vector field may be expressed at a point θ
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with Euclidean coefficients ν computed via the following tensor product using
the 64 B-spline coefficients supporting θ:

νx =

3∑
i=0

3∑
j=0

3∑
k=0

pi,j,k

3∑
a=0

Q(δx)
x (i, a)x(a)

3∑
b=0

Q(δy)
y (j, b)y(b)

3∑
c=0

Q(δz)
z (k, c)z(c)

(3)
for the x-dimension and similarly for the y- and z-dimensions. Here

x = [1 x x2 x3]T (4)

forms a Cartesian basis and y and z are defined similarly. The matrices Q
(δ)
x ,

Q
(δ)
y , and Q

(δ)
z are defined by

Q(δ)
x = BRxΔ

(δ) Q(δ)
y = BRyΔ

(δ) Q(δ)
z = BRzΔ

(δ) (5)

where B forms the cubic B-spline basis and Rx, Ry, and Rz confine the evalu-
ation of the B-spline basis to ∈ [0, 1]:

B =
1

6

⎡⎢⎢⎣
1 −3 3 −1
4 0 −6 3
1 3 3 −3
0 0 0 1

⎤⎥⎥⎦ , Rx =

⎡⎢⎢⎣
1 0 0 0
0 1

rx
0 0

0 0 1
r2x

0

0 0 0 1
r3x

⎤⎥⎥⎦ , (6)

The matrix Δ(δ) is defined thusly for δ ∈ [0,2]

Δ(0) =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , Δ(1) =

⎡⎢⎢⎣
0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

⎤⎥⎥⎦ , Δ(2) =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
2 0 0 0
0 6 0 0

⎤⎥⎥⎦ . (7)

and provides a convenient method for obtaining ν ′ and ν′′ w.r.t to the Euclidean
basis as required by the calculation of the smoothness penalty [10]:

S =

∫
Ω

(
∂2ν

∂x2

)2

+

(
∂2ν

∂y2

)2

+

(
∂2ν

∂z2

)2

+ 2

[(
∂2ν

∂xy

)2

+

(
∂2ν

∂xz

)2

+

(
∂2ν

∂yz

)2
]
dx.

(8)

We may obtain expressions for these derivative terms by referring to (3) and
expanding the triple summation over (i, j, k) to the 64× 1 vector:

γ(δx,δy,δz) =⎡⎢⎢⎢⎢⎢⎢⎣

(∑
a Q

(δx)
x (0, a)x(a)

)(∑
b Q

(δy)
y (0, b)y(b)

)(∑
c Q

(δz)
z (0, c)z(c)

)(∑
a Q

(δx)
x (1, a)x(a)

)(∑
b Q

(δy)
y (0, b)y(b)

)(∑
c Q

(δz)
z (0, c)z(c)

)
...(∑

a Q
(δx)
x (3, a)x(a)

)(∑
b Q

(δy)
y (3, b)y(b)

)(∑
c Q

(δz)
z (3, c)z(c)

)

⎤⎥⎥⎥⎥⎥⎥⎦
(9)
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leading to the expression

Γ(δx,δy,δz) = γ(δx,δy,δz) ⊗ γ(δx,δy,δz) (10)

which allows for the production of the polynomial expressions for the squared
second order partial derivatives by setting (δx, δy, δz) and operating directly on
the control-point coefficients. For example,(

∂2νx
∂x∂z

)2

= pT
x

(
Γ(1,0,1)

)
px . (11)

We can now devise a single matrix operator for computing (8) over any given
region supported by a set of 64 control-points. Fig. 1 provides a 2D visualiza-
tion. To later simplify computation, we separate the term Γ by B-spline basis
orientation such that:

Γ(δx,δy,δz) = Γ(δx)
x ⊗ Γ(δy)

y ⊗ Γ(δz)
z . (12)

By separating the 4 rows of Q
(δx)
x into unit vectors

Q(δx)
x =

⎡⎢⎢⎣
qT
x,0

qT
x,1

qT
x,2

qT
x,3

⎤⎥⎥⎦
(δx)

(13)

we may define the sixteen 4 × 4 matrices given by Ξx,a,b = qx,a ⊗ qx,b and
construct the 4× 4 matrix:

Γ(δx)
x (a, b) = Ξx,a,b . (14)

Grouping like order polynomials terms within Ξx,a,b yields the column vector
σx,a,b:

σx,a,b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ(0, 0)
Ξ(0, 1) +Ξ(1, 0)
Ξ(0, 2) +Ξ(1, 1) +Ξ(2, 0)
Ξ(0, 3) +Ξ(1, 2) +Ξ(2, 1) + Ξ(3, 0)
Ξ(1, 3) +Ξ(2, 2) +Ξ(3, 1)
Ξ(2, 3) +Ξ(3, 2)
Ξ(3, 3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
x,a,b

(15)

and by integrating the resulting 8th order Cartesian bases over r

ψx =
[
rx

1
2r

2
x

1
3r

3
x

1
4r

4
x

1
5r

5
x

1
6r

6
x

1
7r

7
x

]T
(16)

the integral of Γ
(δx)
x over a B-spline region may be expressed as a 4 × 4 matrix

of vector products

Γ̄(δx)
x (a, b) =

∫ rx

0

Γ(δx)
x (a, b)dx = σT

x,a,bψx (17)
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and similarly for Γy and Γz . This allows for the construction of the six desired
composite matrix operators

V(δx,δy,δz) =

{
Γ̄
(δx)
x ⊗ Γ̄

(δy)
y ⊗ Γ̄

(δz)
z for δx + δy + δz = 2

0 otherwise
(18)

which facilitate the rapid computation of the smoothness metric over a region
indexed by (l,m, n) as

Sl,m,n =
∑

(δx,δy,δz)

(
pT
x V

(δx,δy,δz)px + pT
y V

(δx,δy,δz)py + pT
z V

(δx,δy,δz)pz

)
(19)

with derivative w.r.t to a B-spline control-point P i,j,k

∂Sl,m,n

∂P i,j,k
=

∑
(δx,δy,δz)

(
2V(δx,δy,δz)px + 2V(δx,δy,δz)py + 2V(δx,δy,δz)pz

)
. (20)

The total penalty S and its gradient are expressable via the summations

S =
∑

(l,m,n)

Sl,m,n and
∂S

∂P i,j,k
=

3∑
l=0

3∑
m=0

3∑
n=0

∂Sl,m,n

∂P i,j,k
, (21)

where the summation for S indexed by (l,m, n) is over all regions and the sum-
mation for the gradient is over the 64 regions within the local support of the
control point P i,j,k.

3 Results

We assess the performance of our analytic method by comparison to a numerical
method that computes the squared second derivatives from (8) via direct central
differencing of the deformation field ν, which is accumulated over the overlap
domain Ω. Computational time required by such an approach is proportional
to the number of voxels within Ω. By contrast, the time required by the pro-
posed analytic method is proportional to the number of regions defined by the
B-spline control-point spacing; thus reducing the complexity. Furthermore, the

Table 1. Wall clock execution times and associated speed-ups for the proposed analytic
scheme vs numerical central differencing of the vector field

Processing Time
Volume Size Control-Point Spacing Numeric Analytic Speed-up

256× 256 × 256 10× 10× 10 91.746s 1.505s 61x
256× 256 × 256 30× 30× 30 90.238s 0.126s 722x
512× 512 × 512 10× 10× 10 758.902s 11.650s 65x
512× 512 × 512 30× 30× 30 762.041s 0.556s 1371x
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(a) Image difference (b) T for λ = 0 (c) T for λ = 0.007 (d) T for λ = 0.7

Fig. 2. Coronal slice of of deformation field T acquired by registering (a) exhaled and
inhaled thoracic CT images. T is computed with a 10× 10× 10 control-point spacing
for (b-d) different values of λ.

six V matrices may be pre-computed and reused throughout the optimization
of the B-spline coefficients P for a given control-point spacing r. As shown in
Table 1, our analytic method achieves a speed-up ranging between 61x–1371x,
dependent upon the voxel to region ratio for a given registration configuration.
Agreement between numerical and analytic solutions is within 2% [14]. The
effect of the bending-energy penalty factor λ on the transform T is qualita-
tively demonstrated by Fig. 2 where inhaled and exhaled thoracic volumes with
displacement shown by Fig. 2(a) are registered using a B-spline control-point
spacing of 10 × 10× 10 mm for λ varying over several orders of magnitude. As
expected, the resulting transforms T shown in Fig. 2(b-d) exhibit decreasing
bending energy for increasing λ. This single example is from one of ten case
studies performed to quantitatively explore the effectiveness of our analytic reg-
ularization as a function of control-point spacing r and penalty factor λ.

Each of the ten studies consists of an image volume taken at full inhalation
and a subsequent volume at full exhalation. Five of the ten studies have volumes
of 512 × 512 × 128 voxels with physical separations of 0.92 × 0.92 × 2.5 mm;
the remaining five studies have the same physical separations but volumes are
lower resolution at 256× 256 × 128 voxels. For each image, 300 landmarks are
placed within the lung by a medical expert. Registrations are performed using
the mean-squared error similarity metric penalized by S with weight λ as in
(1). The B-spline coefficients P describing the transform T are optimized via
the quasi-Newtonian method implemented by the L-BFGS-B optimizer using
an analytically computed cost function and gradient. Fig. 3(a) shows the mean
separation of corresponding landmarks between inhaled and exhaled volumes
as a function of control-point spacing and λ after application of the computed
transform T. The primary range of interest falls mostly within 10−1–102 where
increasing values of λ produce increasing mean separations between landmarks.
As shown in Fig. 3(c), the minimum Jacobian determinate of T reveals that
as λ increases through this range, the resulting transforms tend to increase
in smoothness until becoming nearly plastic as |∇T| approaches unity within
the range 1 < λ < 2. In the absence of regularization, control-point spacings
10–30mm tend to produce non-smooth local deformations due to the restricted
influence of the B-spline basis; however, the resulting increased parameterization
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Fig. 3. Average separation of corresponding landmarks as a function of B-spline
control-point spacing and the bending energy penalty factor λ over the 10 thoracic
cases.

of T allows for more complex local variations to be described. Small values
of λ less than 10−2 have little effect in this region and |∇T| deviates greatly
from unity. This is an indication of aggressive local expansion and compression
in T that is most likely physiologically unsound. Furthermore, the occurrence
of negative values for |∇T| indicate the presence of non-orientation preserving
local transforms within this range of λ. Consequently, increasing λ beyond 10−2

exhibits the unique quality of increasing registration accuracy as well as the
potential physiological applicability of T for such fine control-point spacings, as
shown by Fig. 3(a).

4 Conclusions

We have developed an analytically derived set of composite matrix operators
that operate directly on a set of 64 control-points to produce the bending en-
ergy within a given region of support. The behavior of our method has been
characterized by application to ten thoracic studies and it was demonstrated
that our method of bending energy computation provides a speed-up within the
range of 60–1371x depending on input volume resolution and B-spline control-
point spacing.

This algorithm has been implemented as part of Plastimatch and can be
downloaded under a BSD-style license from http://www.plastimatch.org.

This work was supported in part by NSF ERC Innovation Award
EEC-0946463, the Federal share of program income earned by MGH on
C06CA059267, and is part of the National Alliance for Medical Image Com-
puting (NAMIC), funded by the National Institutes of Health through the
NIH Roadmap for Medical Research, Grant 2-U54- EB005149. Information
on the National Centers for Biomedical Computing can be obtained from
http://nihroadmap.nih.gov/bioinformatics.
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Abstract. Locally affine (polyaffine) image registration methods
capture intersubject non-linear deformations with a low number of pa-
rameters, while providing an intuitive interpretation for clinicians. Con-
sidering the mandible bone, anatomical shape differences can be found
at different scales, e.g. left or right side, teeth, etc. Classically, sequential
coarse to fine registration are used to handle multiscale deformations,
instead we propose a simultaneous optimization of all scales. To avoid
local minima we incorporate a prior on the polyaffine transformations.
This kind of groupwise registration approach is natural in a polyaffine
context, if we assume one configuration of regions that describes an en-
tire group of images, with varying transformations for each region. In this
paper, we reformulate polyaffine deformations in a generative statistical
model, which enables us to incorporate deformation statistics as a prior
in a Bayesian setting. We find optimal transformations by optimizing the
maximum a posteriori probability. We assume that the polyaffine trans-
formations follow a normal distribution with mean and concentration
matrix. Parameters of the prior are estimated from an initial coarse to
fine registration. Knowing the region structure, we develop a blockwise
pseudoinverse to obtain the concentration matrix. To our knowledge, we
are the first to introduce simultaneous multiscale optimization through
groupwise polyaffine registration. We show results on 42 mandible CT
images.

1 Introduction

Mandibular fractures most commonly result from facial trauma, with close to
half of the patients requiring surgical repair [6]. A majority of 75% of fractures
occur in males aged between 20 and 30 [6], and are often caused by physical
assault. For these cases surgical repair proofs most effective, with the goal of re-
covering the anatomical structure prior to the injury and thus restoring normal
function. To reach this goal the surgeon places wires or implants at the frac-
ture site, so that the natural fusion of separated bone pieces restores the prior
structure as closely as possible. A correct repair aligns teeth for food intake,
and restores the patient’s aesthetics. In [12], the authors propose a classifica-
tion scheme for mandibles based on regions according to anatomical, functional
and aesthetic considerations. The online register www.aofoundation.org uses the

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 130–137, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Left: Subdivision of mandible into anatomical regions proposed by the AO
foundation to classify fractures for reconstructive surgery. Implants at four different
anatomical sites are shown. Images source: www.aofoundation.org. Right: Tree of
Gaussian weights. Each Gaussian weight represents one region and is visualized as
one ellipsoids at σ. The contours extracted from CT data in red and one slice of the
original CT image (to indicate that we work in the image domain and not only on the
contour) are shown.

same classification (Fig. 1) to guide surgeons through the major steps of mandible
reconstructive surgery ranging from diagnosis, selection of the optimal surgical
approach, to aftercare treatment. In addition to this classification scheme, the
mandible can be subdivided even further into smaller regions, e.g. one region for
each tooth. In the image space, this subdivision can theoretically be performed
up to the voxel level, where coarser levels enclose finer ones, representing a hi-
erarchy of regions that can be organized in a tree-like fashion. As the regions
become more fine, it is harder to find a consensus among clinicians on the size,
shape and location of the region.

Recent work on biomechanical analysis of implants indicates that geometry and
topology of implants are crucial to fracture stability [7]. Due to the high economi-
cal cost of patient specific implants current approaches focus on population-based
implant design. Common key steps to population-based design, e.g. [3], are regis-
tration to capture shape variability as encountered in a population and statistical
analysis of the registration results, performed subsequently and independently.

Due to region-based description of the mandible shape and the need for
volumetric information we focus on locally affine transformations, also called
polyaffine transformations. Polyaffine transformations fuse locally rigid and affine
transformations into a diffeomorphism [1]. An efficient registration algorithm
using approximations of polyaffine transformations was presented in [5]. To con-
sider more complex shapes and foster reusability, [4] presented a multiscale ap-
proach with affine regions defined using a data-driven approach. The method
splits rectangular shaped regions, which are aligned along the image directions,
only if certain conditions are met. The authors in [11] iteratively optimize be-
tween affine parameters and anchor positions (center of regions) estimation,

http://www.aofoundation.org


132 C. Seiler, X. Pennec, and M. Reyes

through an expectation maximization approach. Even though these methods
are very promising, the link between the clinical regions (Fig. 1) and the regions
found by these algorithms, is either constrained by aligned rectangular shaped
regions [4] or produce an intractable number (around 500) of regions [11]. In [10],
the authors introduced a hierarchical multiscale tree structure (called polyaffine
transformation trees, or PolyTree in short) that is motivated by the nature of
the mandible anatomy, where regions are ordered and interact with each other
in a way tractable for human understanding. Aforementioned polyaffine meth-
ods are pairwise registrations, and to our knowledge, no groupwise registration
(e.g. [9,8]) has been proposed in this context. We believe that transformations
on a groupwise level are crucial. This is motivated by the assumption that there
should be one configuration of regions that describes an entire group of images,
with varying transformations for each region. Furthermore, the multiscale prop-
erty of mandibles and other anatomical structures should be incorporated.

In [2], the authors presented a Bayesian approach for affine registration, in this
paper, we propose a Bayesian formulation of polyaffine registration across scales.
We reformulate PolyTrees in a probabilistic way. We introduce a generative
statistical model, which enables us to incorporate deformation statistics as a
prior in a Bayesian setting. We find optimal transformations by optimizing the
maximum a posteriori probability (MAP). In Section 2, we describe PolyTrees,
which were recently introduced in [10], to describe intersubject deformations.
In Section 3, we reformulate PolyTrees in a probabilistic way and show how to
find optimal transformations using MAP estimates with groupwise deformation
statistics as a prior. In Section 4, we show results on 42 mandible CT images.

2 Multiscale Description of Intersubject Deformations

In this section we reinterpret polyaffine transformation trees (PolyTree) recently
introduced in [10]. PolyTrees are parametric transformation that describe non-
rigid deformations with a low number of parameters and captures the shape
variability of multiscale structures. First, we introduce the tree structure, second
we define data-driven regions, and lastly, we show the estimation of transforma-
tions using the log-demons. The difference with [10] is that we reformulate the
equations in vectorized form: Vect is the column-wise vectorization of a matrix
m = Vect(M), where m is a vector and M a matrix. The motivation for this will
become evident in Section 3.

Structuring of Locally Affine Transformations in Trees. For N regions

let M =
[
M1 . . . MN

]T
be the 3 × 4N non null components of the matrix

logarithm of affine transformations and vM (x) be the parametrized polyaffine
stationary velocity field:

vM (x) = M(w(x) ⊗ x̃), log

([
Ai ti
0 1

])
=

[
Mi

0

]
, (1)

where x̃ =
[
x 1

]T
, x is the spatial position, w(x) =

[
w1(x) . . . wN (x)

]T
, ⊗

is the Kronecker product, Ai is the affine transformation matrix and ti is the
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translation vector. The weights are normalized, ∀x ∈ Ω :
∑n

i=1 wi(x) = 1, and
structured in a tree-like fashion as depicted in Fig. 1, this enables to describe
multiscale deformations.

Data-Driven Definition of Regions. The spatial weight functions wi(x)
are defined as multivariate Gaussian distributions, wi(x) = N (x̄i, Ξi). The pa-
rameters of the distributions are found by applying the oriented bounding box
algorithm (OBBTree) to the feature image, ψ(x) = log(1 + ||∇It||2), where
∇It is the gradient of template image. We take the logarithm of the gradi-
ent to be more robust against small changes in intensities due to noise. The
feature-weighted barycenter of region Ωi (discretized at voxel indices j), x̄i =
(
∑

j∈Ωi
ψ(xj))

−1
∑

j∈Ωl
i
ψ(xj)xj , and the feature-weighted covariance matrix

of the region, Ξi = (
∑

j∈Ωl
i
ψ(xj))

−1
∑

j∈Ωl
i
ψ(xj)(xj − x̄li)(xj − x̄li)

T . Follow-

ing the same strategy as in the original OBBTree algorithm, the region is split
at the feature-weighted mean point orthogonal to the first principle component
and the splitting procedure is recursively repeated in the two new created sub-
regions. This step is identical to the method proposed in [10].

Estimation of Transformations with the Log-Demons Algorithm. The
general form of the log-demons algorithm for stationary velocity fields (SVF)
was formulated in [13]. The goal is to find vM that warps the fixed image It into
the moving image Is (or resamples Is in It), by minimizing the cost functional,

C (It, Is, v, vM ) = σ−2
i Sim (It, Is, vM ) + σ−2

x dist (v, vM )2 + σ−2
T Reg (v), where

Sim, dist and Reg, are the similarity, the hidden and the regularization term,
respectively. Each term has a weighting parameter σi, σx and σT . As shown in
[13], C (It, Is, v, vM ) can be optimized alternatively over the variables v and vM .
Given v, the correspondence velocity field computed by the first optimization
part of the log-demons algorithm, we solve for M using linear least squares,
i.e. minimizing C(M) =

∫
Ω
λ(x)||v(x) −M(w(x) ⊗ x̃)||2dx, where λ is a binary

mask indicating background voxels (if no mask is available ∀x ∈ Ω : λ(x) = 1).
In contrast to the original formulation in [10] the transformations parameters
M are vectorized, and the Kronecker product is used. This reformulation is
necessary for the next section, where we present a generative statistical model,
which enables us to incorporate deformation statistics as a prior in a Bayesian
setting. We find optimal transformations by optimizing the MAP.

3 Incorporating Deformation Statistics

In this section we present the MAP to find optimal transformations with and
without prior for K patients. We denote m̂k as the kth transformation found
with registration without prior, and m̌k with prior. We denote [k] to consider all
patients.

Generative Statistical Model of Polyaffine Transformation Trees. Here
we make two assumptions: First, we assume that the velocities are independent
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at all voxel positions within the mask Ω. This is an approximation in the case
of the log-demons algorithm, where the voxels of correspondence field v are not
entirely independent due to the natural smoothness of the images used. Second,
we assume the independence of the velocities across subjects. This is only the
case if the template with which the patients are registered is unbiased. With these
assumption we end up with the log likelihood (modulo unnecessary constants),

L(v[k]|m[k]) = −
∑
k

log(P (vk|mk)) =
1

2σ2
v

K∑
k

∫
Ω

λ(x)||vk(x)− vMk (x)||2dx,

(2)
with the underlying Gaussian noise model vk(x) = vMk(x) +N (0, σ2

vI3), where
I3 is the 3× 3 identity matrix, and K subjects. For one patient, the probability
to observe vk given mk is,

P (vk|mk) ∝ exp

(
−1

2
(mk − m̂k)TΣ(mk − m̂k)

)
, (3)

where m̂k denotes the optimal transformation parameters without a prior onmk.
To find the optimal solution we take the derivative of L(vk|mk) with respect to
mk and set it to zero,

m̂k = Σ−1bk, (4)

Σ =
1

2σv2

∫
Ω

λ(x)
(
w(x)w(x)T

)
⊗ (x̃x̃T )dx⊗ I3,

bk =
1

2σv2

∫
Ω

λ(x) (w(x) ⊗ x̃)⊗ vk(x)dx,

where dx is a scalar.

Maximum Likelihood Estimation with Prior on the Transformations.
Now we show how to find m̌k transformations with a prior. Assume that mk ∼
N (m̄, Γ ), where m̄ is the mean and Γ the concentration matrix. The probability
of observing a transformation given the prior distribution of mk is,

P (mk|θ) = det(Γ )1/2

(2π)d/2
exp

(
−1

2
(mk − m̄)TΓ (mk − m̄)

)
, (5)

where d = 12N . Assume that we know θ = (m̄, Γ ) and that we want to register
with this prior, for this we optimize the MAP estimate,

P (mk|vk, θ) = P (vk|mk, θ)P (mk|θ)
P (vk|θ) , (6)

the optimal solution of L(mk|θ) (modulo the constant P (vk|θ)) is,

m̌k = (Σ + Γ )−1(Σm̂k + Γm̄). (7)

For our experiments on mandible CT images, we estimate Γ using a blockwise
pseudoinverse described in the next paragraph.
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Blockwise Pseudoinverse of Sample Covariance Matrix for Prior. To es-
timate Γ we take advantage of the region structure, which reflects as a blockwise
structure in the covariance matrix, Cov = 1

K

∑K
k (m̂k − m̄)(m̂k − m̄)T , where m̄

is the sample mean. We develop a blockwise pseudoinverse, Γ = diag(λ+i ⊗C−1),
where .+ is the pseudoinverse, λi is the variance of block i (i.e. region i), and C
is a 12× 12 matrix, representing the metric of the log affine parameters. We op-
timize, {Ĉ, λ̂i} = argminC,λi

=
∑N

i ||Covii−λiC||2, in two sequentially steps.
In step one, for C with fixed ∀i : λi = 1, and in step two for λi with fixed C
obtained from the previous step:

Step one: Ĉ =

∑N
i=1 λi Covii∑N

i=1 λ
2
i

, Step two: λ̂i =
Trace(Covii C)

Trace(C2)
. (8)

4 Experiments on Mandible CT Image Data

In this section, we register 42 mandible CT images to a randomly chosen tem-
plate and evaluate the resulting transformations. The noise parameter is set to
σv = 1.85 mm, and the number of affine components is N = 31 across 5 lev-
els. To evaluate the influence of the prior, we run five different experiments: no
prior, λi scaled by 1,0.1,0.01 and 0.001. For the evaluation of the robustness
we decompose the log affine transformations into three parts: rotation, expan-
sion and translation. The decomposition of the affine part into skew symmetric
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Fig. 2. In top row statistics on transformations obtained with registration without
prior and bottom row with prior for level 4 (i.e. 16 regions)
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and symmetric matrices (representing rotation and expansion, respectively) is,
Mi =

1
2 (Mi−MT

i )+ 1
2 (Mi+M

T
i ), and the Jordan or Schur decomposition to com-

pute the determinant of an affine part, is given by, det(Ai) = exp(Trace(Mi)).
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Fig. 3. Comparison of registration accuracy in terms of Dice coefficient, contour mean
distance and Hausdorff distance (both in mm) at level 4. The parameter λi was scaled
with five different factors to evaluate the influence of the prior.

The robustness results are shown for level 4 (i.e. 16 regions) in Fig. 2. The
registrations without prior show outliers and very high expansion of regions up
to a determinant of 10. In the registration with prior (the prior was scaled by
0.01), we observe robust expansion and shrinkage factors between 0.5 and 2. The
accuracy of the registration is measured in terms of Dice coefficient of the mask
images (semi-manual segmented mask are available for all 42 images), mean
contour distance, and Hausdorff distance on the mask contour. In Fig. 3, by
scaling the prior with 0.01 all accuracy measure show a favorable median value
compared to the without prior registration.

5 Conclusion

In this work, we presented a multiscale polyaffine registration method that simul-
taneously registers all scales. To avoid local solutions we incorporated deforma-
tions statistics. The results showed that the registration with prior improves the
accuracy while reducing the variability of estimated transformation parameters.

We believe that our approach is more than just an extension of [2]. By con-
sidering not only one affine component, but a mixture of components acting at
different scales, we are moving the discussion into structured learning, which
to our knowledge is a novelty in the medical registration community. In future
work, we plan to introduce a sparse representation of anatomical substructures
and their connection at different scales, which might uncover structures equiva-
lent to rigid articulated bodies.
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Abstract. Diffusion tensor imaging is widely used in brain connectivity
study. As more and more group studies recruit a large number of sub-
jects, it is important to design registration methods that are not only
theoretically rigorous, but also computationally efficient, for processing
large data sets. However, the requirement of reorienting diffusion tensors
complicates and slows down the registration, especially for those meth-
ods whose scalar-image versions have linear complexity, for example, the
Demons algorithm. In this paper, we propose an extension of the Demons
algorithm that incorporates exact reorientation and regularization into
the calculation of deforming velocity, yet preserving its linear complexity.
This method restores the computational efficiency of the Demons algo-
rithm to diffusion images, but does not sacrifice registration goodness.
In our experiments, the new algorithm achieved state-of-art performance
at a ten-fold decrease of computational time.

1 Introduction

Water molecules in biology tissue tend to diffuse faster along, relative to across,
obstacle structures. Diffusion tensor imaging (DTI) noninvasively measures this
anisotropy (approximated with second-order tensors), providing information
about structures such as neural fibers. As more and more large group stud-
ies, such as those sponsored by the Human Connnectome Project [1], require
nonlinear normalization of diffusion tensor images, it is important to design de-
formation registration methods that are not only theoretically rigorous, but also
computationally efficient, for processing large data sets.

Registration of diffusion tensor images is more complicated than scalar images,
because displacing a voxel to a new place does not only change its own diffusion
tensor value, but also reorients those of its adjacent voxels [2]. As a result, the
deformation force is no longer independent for adjacent voxels, but has a sparse
3D grid structure.
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Because reorientation significantly complicates the computation, methods
based on rotation-invariant features have been developed. Many of these methods
first extract scalar-valued or vector-valued features from tensors, for instance,
the fractional anisotropy (FA), and then register diffusion images by aligning
these features with multi-channel registration [3,4].

Some other methods directly work on tensors, with similarity metric defined
on tensors, and indirect or direct involvement of reorientation into velocity field
optimization. Alexander and Gee [5] reorientated tensors according to the new
displacement field after each iteration, though not directly accounted the reori-
entation into optimization. Zhang et al. [6] applied piece-wise affine registration
to image subblocks, and then fused these transformations together by smooth-
ing. Since finite-strain (FS) reorientation [2] can be analytically incorporated
into affine transformation, the method efficiently estimates the optimal local
affine parameters, but it is not clear how the fusion step affects the total reg-
istration energy. Cao et al. [7] extended the Large Deformation Diffeomorphic
Metric Mapping framework, to analytically embed the preservation-of-principal-
direction (PPD) reorientation [2] into the deforming force. In 2009, Yeo et al.
[8] embedded exact FS reorientation into the diffeomorphic Demons algorithm
[9,10], showing that exact reorientation considerably improved registration ac-
curacy.

Yeo et al.’s work [8] was based on the Demons algorithm, a fast algorithm with
O(n) complexity for scalar images, where n is the number of voxels. However,
because a large sparse linear system was solved at every iteration, the algorithm
became considerably slower. This effect becomes more exacerbated for such an
algorithm whose scalar-image version enjoys linear complexity. For example, for
our DTI images of size 128x128x128, the method took about 7 hours and more
than 20 Giga Bytes (GB) memory on a desktop with an Intel Xeon 2.80 GHz
CPU. On the other hand, the regularization on the displacement field was sepa-
rated as a Gaussian smoothing step after updating the displacement field. This
may not be always consistent with the diffeomorphic framework [10].

This raises the question “can the Demons algorithm still enjoy its O(n) com-
plexity when the deformation force is coupled between adjacent voxels and regu-
larization is incorporated?” Though this question is raised from diffusion tensor
images, it is generally applicable to other diffusion images, such as high-angular-
resolution diffusion images (HARDI) and diffusion spectrum images (DSI). We
are particularly interested in the Demons algorithm, because its original linear
complexity in [9,10] is well suited for processing large group data sets.

In this paper, we extend the Demons algorithm to incorporate both exact
reorientation and regularization into velocity calculation, but without directly
solving a large non-separable linear system. This method restores the O(n) com-
putational efficiency of the original Demons algorithm to diffusion images, but
does not sacrifice registration goodness, in comparison with solving a large linear
system at each iteration. In our experiments, it introduced a 10-fold reduction
of the computation time, and achieved state-of-art registration performance.
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2 Method

2.1 Diffeomorphic Demons Registration for Diffusion Tensors

Let F and M respectively denote the fixed and moving image, u and v respec-
tively denote the transformation field and velocity field, ◦ denote the compositive
operator, •(i) denote the image value at voxel i, •i and •x denote the velocity,
displacement or a certain value associated respectively with a voxel i or a point
x. The diffeomorphic Demons algorithm for scalar images in [10] is as follows:

Repeat until convergence

1. For each voxel i, at iteration k, given current transformation field uk:
(a) Define bi(v) = F (i) − M ◦ [uk ◦ exp(v)](i).
(b) Let bi = bi(v) |v=0= F (i) − M ◦ uk(i), and gi = ∂bi(v)

∂vi
|v=0 .

(c) Let vi = gibi

g′
igi+1/δ2

i
, where 1/δ2

i is the velocity regularizer at voxel i.
2. Update displacement field with the velocity field: uk+1 = uk ◦ exp(v) .

The algorithm minimizes the energy function

E(u) =
ˆ

[F (x) − M ◦ u(x)]2dx +
ˆ ∥∥∥∥vx

δx

∥∥∥∥2

dx (1)

with the displacement-velocity relationship v = du
dt = ∂u

∂t + (∇u)v (actually
discretized as uk+1 = uk ◦ exp(v)), and a discrete time interval τ = 1. Smooth-
ing can be applied to the displacement field or the velocity field, to impose
regularization. The minimization is by approximating the energy function as

E =
∑

i

∥∥∥(∑j
∂bi(v)

∂vj
vj) |v=0 −bi

∥∥∥2

+
∑

i

∥∥∥vi

δi

∥∥∥2

with the Gauss-Newton method.

For scalar images, ∂bi(v)
∂vj

|v=0 equals zero if i �= j, so the optimization can be
separated for each voxel as in Step (1) and has O(n) complexity at each iteration,
where n is the number of voxels. For details, please refer to [9,10].

For diffusion tensor images, tensors must be reorientated during transfor-
mation to align their directions with the transformed space. Consequently, the
displacement at a voxel not only changes its own warped tensor value, but also
reorientates those of its adjacent voxels, that is, ∂bi(v)

∂vj
|v=0 is not zero for ad-

jacent voxels i and j. In this case, the energy function cannot be separated for
each voxel. For details on the formulas of tensor reorientation, please refer to [2].

2.2 Regularization

Standard regularizers for displacement fields include the elastic, diffusion, and
curvature regularizers [11] which all can be formatted as the squared norm of a
certain derivative value of the displacement field. When discretized, these regu-
larizers can be formulated as

∑n
i=1 ‖Areg iu‖2 where Areg i is a differential opera-

tor at voxel i, represented as a matrix. In this paper, we used
∑

l

´ ‖Hlu‖2
dx as

the regularizer, where Hl is the Hessian operator applied to the lth dimensional
component of u. We call it affineness regularizer because the affine transforma-
tion is the only non-trivial kernel not punished by this regularizer.
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2.3 Local Gauss-Newton Optimization

As shown in Sections 2.1 and 2.2, the energy function of the Demons algorithm,
including both the dissimilarity and regularization terms, is the sum of squares
of many linear functions. Therefore, the energy function can be written as E =
‖Aimgv − bimg‖2 + ‖Aregv − breg‖2 = ‖Av − b‖2. Due to tensor reorientation, A
is not separable for adjacent voxels, and the optimization cannot be separated
as in Step (1) of the Demons algorithm for scalar images. In [8], Yeo minimized
the energy by solving this large sparse linear system at each iteration, excluding
the regularization term. Though the system is sparse, the computational cost
still goes up sharply as the image size increases. For images of size 128x128x128,
we observed 20 GB memory usage and about 7 hours computation. This raises
the question “can the Demons algorithm still have its O(n) complexity when the
deformation force is coupled between adjacent voxels?”

In this paper, we propose a method that incorporates both tensor reorientation
and displacement regularization into its optimization iterations, while restores
the O(n) complexity of the Demons algorithm. The algorithm is as follows, where
we rewrite the energy function as E = ‖Av − b‖2 = ‖(∑ Aivi) − b‖2 and Ai is
the columns of A related to the velocity at voxel i:

1. For each voxel i:

(a) If ‖A′
ib‖ < stop threshold, then let di = 0, else let di = argmin

z
‖Aiz − b‖2 =

(A′
iAi)

−1A′
ib.

2. Let d =

⎡
⎢⎣ d1

...
dn

⎤
⎥⎦ =

⎡
⎢⎣ (A′

1A1)

. . .

(A′
nAn)

⎤
⎥⎦

−1

A′b.

3. Let τ = argmin
t

(‖Adt − b‖2) = b′Ad
‖Ad‖2 = b′Ad

‖Aimgd‖2
+‖Aregd‖2 .

4. Let v = dτ .

This algorithm first chooses a descent direction d with local Gauss-Newton
optimizations at Step (1a), and then determines the step length τ with a higher-
level Gauss-Newton optimization of the energy function given direction d. The
algorithm can be understood as the following procedure. Each particle (or voxel)
tries to take the shortest path to minimize the global energy as much as possible
(Step (1a)), without knowing other particles’ movements. Because their move-
ments change the energy function jointly, rather than independently, a global
step length τ is used to coordinate their movement. This strategy is fully com-
patible with Thirion’s Demons algorithm [9] when A is separable.

At each optimization iteration, we do not choose as the descent direction
the steepest direction A′b, for the following reason. The steepest direction A′b
sometimes is dominated by large A′

ib at some voxels (as illustrated in Fig. 1),
suppressing other voxels from displacing. Theoretically this phenomenon will
disappear as A′

ib approaching zero. However, in practice, on a discrete grid, this
cannot be perfectly achieved. We noticed this phenomenon when we initially
tried to use the steepest descent optimization.
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This local Gauss-Newton strategy converges slower than the Gauss-Newton
strategy, but it takes much less computation at each iteration. As shown in Sec-
tion 2.4, its computational complexity is linear. In our experiments, it achieved
equal registration goodness as the Gauss-Newton algorithm in [8], but signifi-
cantly reduced the registration time and memory usage.

Though this local Gauss-Newton strategy is motivated to solve the problem
of diffusion-tensor image registration, its application is not limited to diffusion-
tensor images. Generally, it restores the O(n) complexity to the Demons algo-
rithm for situations where the gradient matrix is not separable. It also allows the
Demons algorithm to directly incorporate regularization without increasing com-
putational complexity. Application to HARDI image registration, a computation
intensive problem, is another interesting extension.
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Fig. 1. Descent Directions. The steepest can be dominated by certain components.

2.4 Computational Complexity

The computational complexity of the algorithm is O(n) where n is the number of
voxels of interest. For a particular voxel, its tensor reorientation as well as its local
energy function involves only the displacement of the voxels in its neighborhood,
so A has a block sparse structure and the number and size of the non-zero
blocks in Ai are constant numbers fully determined by image dimension and
the regularizer’s differential operator. Therefore, Step (1a) has O(1) complexity,
Step (3) has O(n) complexity and the total complexity is O(n).

3 Experiment

3.1 Data Acquisition and Preprocessing

Diffusion weighed images (DWI) of 120 pediatric subjects were collected with
30-direction isotropic DTI sequence (b = 1000s/mm2, voxel size= 2 x 2 x 2 mm3,
dimension = 128 x 128 x 128). FSL brain extraction tool (BET) was applied to
the B0 images to mask the brain region, with the “R” option turned. Due to
the long computation time (about 7 hours) and high memory demand (about
20 GB) of the algorithm in [8], we randomly selected 12 pairs of the subjects for
pair-wise registration.
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3.2 Image Registration

For the diffeomorphic Demons algorithm proposed by Yeo et al. in [8], its open
source implementation, the Tensor Toolkit (TTK) (https://gforge.inria.fr/
projects/ttk) was used, with the parameters recommended in [8]: three level
multi-scaling and each with ten iterations. For the Local Gauss-Newton Demons
algorithm, we applied the affineness regularization to the displacement field.
We adjusted the regularization weight to match the displacement smoothness of
TTK’s outputs. In Section 3.4, we evaluated the algorithms with three types of
harmonic energy, include those that our algorithm did not directly optimize.

3.3 Evaluation Metric

Tensor rooted-mean-square (RMS) difference, FA correlation coefficients (Corr.
Coef.), and MD Corr. Coef., between the fixed image and the transformed mov-
ing image, were used to indicate registration similarity. Three types of harmonic
energy, affineness, curvature and diffusion, were used to indicate displacement
smoothness. We used different harmonic energy to give a comprehensive evalu-
ation, avoiding the bias introduced by algorithms’ preference. All these metrics
were estimated within the brain masks.

3.4 Results

For each of the registration cases, the two algorithms achieved similar matching
between the fixed images and the warped images, with similar regularization
energy, while the Local Gauss-Newton algorithm took significantly less com-
putation time and memory usage, as shown in Table 1 and Figures 2 and 3.
Regarding FA Corr. Coef, both algorithms performed almost equally well; re-
garding MD Corr. Coef and tensor RMS, the Local Gauss-Newton algorithm
performed better, with smoother displacement fields.

Table 1. Summary Statistics of the Experiment

Euclidean RMS FA Corr. Coef. MD Corr. Coef. Time†

Local Gauss-Newton 0.700 ± 0.037 0.668 ± 0.027 0.707 ± 0.032 2272 ± 165

Gauss-Newton 0.741 ± 0.046 0.667 ± 0.033 0.656 ± 0.034 24441 ± 485

Affineness Curvature Diffusion Memory‡

Local Gauss-Newton 0.145 ± 0.008 0.108 ± 0.005 0.2680 ± 0.021 ≈2 GB

Gauss-Newton 0.165 ± 0.006 0.119 ± 0.005 0.3056 ± 0.029 ≈20 GB

†Computation time was estimated on an Intel Xeon 2.80 GHz CPU and single-threaded.
‡ Memory usage was manually monitored by using the Linux “top” command, during
the algorithms worked on the finest resolution of the multi-scale registration.

This experiment with twelve cases suggests that the Local Gauss-Newton
method can achieve similar goodness at similar harmonic energy as the method

https://gforge.inria.fr/projects/ttk
https://gforge.inria.fr/projects/ttk
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Tensor RMS Difference FA Corr. Coef. MD Corr. Coef.

Affineness, Rooted Curvature, Rooted Diffusion, Rooted

Time (sec.)

Fig. 2. Statistics of Each Registration Case. The two algorithms achieved similar
goodness with similar regularization energy for each of the registration cases while the
Local Gauss-Newton algorithm took much less computation time.

Fixed Moving Local Gauss-Newton Gauss-Newton

Fig. 3. Registration Results Example. Visually, the registration results of the
Gauss-Newton and the Local Gauss-Newton methods look similar. Since they opti-
mize the same energy function, as expected, they yield similar results.

in [8] does. However, the Local Gauss-Newton algorithm significantly reduced
the computation time from about 7 hours to about 45 minutes, and decreased
memory demand from 20 GB to 2 GB. The smoother displacement fields of the
Local Gauss-Newton algorithm was possibly achieved by directly incorporating
the affineness regularization into its optimization of the velocity fields.

4 Conclusion

As more and more brain-connectivity studies recruit a large number of subjects,
it is important to design registration methods that are not only theoretically



Fast Diffusion Tensor Registration 145

rigorous, but also computationally efficient, for processing large data sets. How-
ever, the requirement of reorienting diffusion tensors complicates the calculation
of deforming force, and significantly slows computation.

In this paper, we propose a method for the Demons algorithm to exactly incor-
porate both reorientation and regularization into deforming velocity calculation,
but without directly solving a large non-separable linear system. This method
restores the O(n) computational efficiency of the original Demons algorithm to
diffusion images, without sacrificing registration goodness, in comparison with
directly solving a large linear system at each iteration. In our experiments, the
new algorithm reduced the computation time and memory demand for ten times.
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Abstract. Adolescent Idiopathic Scoliosis (AIS) characterized by the 3D spine
deformity affects about 4% schoolchildren worldwide. Several studies have
demonstrated the malfunctioning of postural balance, proprioception, and equi-
librium control in patients with AIS. Since these functions are closely related to
structures in and around the brainstem, the morphometry of the brainstem sur-
face is of utmost importance. In this paper, we propose an effective method to
accurately compute the registration between brainstem surfaces. Four consistent
features, which describe the global geometry of the brainstem, are automatically
extracted to guide the surface registration. Using the discrete Ricci flow method,
brainstem surfaces are parameterized conformally onto the quadrilaterally-faced
hexahedron, through which the brainstem registration can be obtained. Our reg-
istration algorithm can guarantee the exact landmark correspondence between
brainstem surfaces. With the obtained registration, a shape energy can be defined
to measure the local shape difference between different brainstem surfaces. We
have tested our algorithms on 30 real brainstem surfaces extracted from MRIs of
15 normal subjects and 15 AIS patients. Experimental results show the efficacy of
the proposed algorithm to register brainstem surfaces, which matches landmark
features consistently. The computed registration can be used for the morphometry
of brainstems.

1 Introduction

Adolescent idiopathic scoliosis (AIS) is a three-dimensional structural deformity of the
spine that occurs during adolescence, and the prevalence is about 4% of the adolescent
population worldwide. Due to the lack of generally accepted scientific theory on the
etiology of AIS, the treatment and prognosis of AIS are limited [2]. Many experiments
and evidences point toward the nervous regulation of the postural balance in the idio-
pathic scoliosis patients. The brainstem and vestibular system are two key organs in the
balance control system. Significant anomalies of the balance function, proprioception
and oculomotor reflexes have been reported [3], and morphological difference has been
found in the vestibular system [4]. However, there is no reported work on studying the
morphological alterations in brain stems in the AIS subjects in an objective and quan-
titative way. Motivated by this, we are interested in developing mathematical models
which facilitate the morphometry of brainstem surfaces in AIS and normal controls.
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In order to perform shape analysis effectively, meaningful one-to-one correspon-
dences between different brainstems must be obtained. Such a process is called surface
registration. Landmark-matching based registration approaches have been commonly
applied, in which landmark features were required to be consistently matched to guide
the registration. Landmark-matching registration has shown to be effective in obtaining
accurate point-wise correspondences between 3D medical data. On brainstem surfaces,
there are no medical features defined by neuroscientists that can be used as a constraint
to establish good correspondences. Therefore, in order to register brainstems effectively,
meaningful landmark features that describe the global geometry of the brainstem sur-
faces must firstly be extracted. On brainstem surfaces, four consistent feature curves can
be observed, which are basically ridges and valleys with high curvatures. It motivates
us to extract out these features to guide for geometric matching brainstem registrations.
With these obtained features, landmark-matching registrations can be computed to ob-
tain an accurate point registration that matches geometry as much as possible.

In this paper, we introduce an algorithm to automatically register brainstem surfaces
based on the discrete Ricci flow method. Four consistent features are firstly extracted
automatically to guide the surface registration. These features effectively describe the
global geometry of the brainstem surfaces. Using the discrete Ricci Flow method, brain-
stem surfaces are parameterized conformally onto the quadrilaterally-faced hexahedron,
of which the extracted feature landmarks are mapped to the edges. Quadrilaterally-faced
hexahedron is chosen as the parameter domain since the geometry of the brainstem sur-
face is similar to a hexahedron. With that, the distortion under the parameterization
can be minimized so that registration can be obtained accurately. Surface registrations
between brainstems can then be obtained through the parameterization, which consis-
tently match the feature landmarks. With the obtained registration, a shape energy can
be defined to measure the local shape difference between different brainstem surfaces,
which is useful to study shape variation between brainstems for the purpose of disease
analysis. We tested our algorithm on real brainstem surfaces extracted from MRIs of
15 normal subjects and 15 AIS patients. Experimental results show the efficacy of the
proposed algorithms to register and detect the local shape difference between different
brainstem surfaces.

Our contributions are two-folded: first, we propose to delineate four salient features
on brainstems that describe the global geometry; second, by mapping the four detected
landmarks to the four side edges of a hexahedron, we propose an efficient algorithm
to conformally parameterize the brainstem surfaces, which naturally induces the reg-
istration among brainstem surfaces. Our registration algorithm can guarantee the exact
landmark feature correspondence.

2 Previous Work

Surface registration, which aims to find a meaningful 1-1 correspondence between dif-
ferent surfaces, has been studied extensively by different groups. Conformal surface
registration is commonly used [8][9], which gives a parameterization minimizing the
angular distortions. An advantage of this approach is that they preserve local geometry
very well. Conformal structure can also measure non-isotropic deformation effectively.
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Fig. 1. Landmark extraction. (A) and (B) show the computed ridge and valley lines respectively.
The two strongest ridge and valley lines are chosen as landmarks, as shown in (C). (D) shows the
four consistent features extracted on brainstems of a normal and an AIS subject.

However, conformal registrations generally cannot map landmark features, such as sul-
cal landmarks on brain surfaces, consistently. Landmark-based diffeomorphisms are
often used to compute, or adjust, cortical surface parameterizations [7,11]. For exam-
ple, Glaunes et al. [7] proposed to generate large deformation diffeomorphisms of the
sphere onto itself, given the displacements of a finite set of template landmarks. Leow
et al. [11] proposed a level-set based approach to match different types of features, in-
cluding points and 2D or 3D curves represented as implicit functions. These methods
provide good registrations when the corresponding landmark points on the surfaces can
be labeled in advance. On surfaces without well-defined landmarks, some authors have
proposed driving features into correspondence based on shape information. Lyttelton et
al. [13] computed surface parameterizations that match surface curvature. Fischl et al.
[6] improved the alignment of cortical folding patterns by minimizing the mean squared
difference between the average convexity across a set of subjects and that of the indi-
vidual. Lord et al. [12] matched surfaces by minimizing the deviation from isometry.

3 Algorithm

3.1 Overview

Given the brainstem surfaceM , we first detect four salient geometric features onM . We
then apply the discrete Ricci flow method to parameterize the brainstem surfaces onto
a quadrilaterally-faced hexahedron, through which the four feature curves on the brain-
stem are mapped to the four vertical sides of the hexahedron. As our parameterization
method naturally segments the brainstem surfaces into six patches, we can easily regis-
ter two different brainstems by finding a diffeomorphism between each corresponding
patches. In the following, we explain each step in details.

3.2 Landmark Extraction

On brainstem surfaces, four consistent features can be extracted, which are essentially
curves with high surface curvatures. We extract these features by computing the ridge-
valley lines [1], an effective shape descriptor on the surface along which the surface
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Fig. 2. The cut surface can be conformally embedded into the universal covering as shown in (A).
(B) shows the fundamental domain (one period) of the universal covering.The parameterization
naturally induces a segmentation of the brainstem surfaces into six patches as shown in (C). In
(D), the checkerboard texture on the parameter domain is mapped to the brainstem surface, which
mapping shows the parameterization is indeed conformal.

bends sharply. Figure 1(A) and (B) show the computed ridge-valley lines on a brain-
stem surface. After obtaining the ridge-valley lines, we smooth them using a Gaussian
filter (with kernel size 2% of the main diagonal of the object’s bounding box) to reduce
the artifacts caused by the noise and/or poor triangulation. The detected ridges or valleys
are merged, if their endpoints are close and their tangent directions are within the user-
specified threshold. In our implementation, we set the distance and direction thresholds
to 2% of the object’s main diagonal and 15 degree respectively. Next, we measure the
strength of each feature by computing the length of the detected ridge-valley line. The
longer the curve, the stronger the feature. We then find the two strongest ridges and val-
leys, which are chosen as landmark features. On brainstem surfaces, there are consistent
umbilic points and high-curvature points. These points are chosen as the endpoints of
the landmark features. Fig. 1(C) shows the strongest ridge and valley lines extracted.

Among the four landmarks, we observed the two feature lines in the valley γ2 and γ4
are quite robust and consistent, since their end points fall in regions with highly negative
mean curvatures. For the other two ridges γ1 and γ3, their locations are consistent, but
their end points may differ among the subjects. To solve this issue, we specify the
length of the ridges so that the tracing stops immediately when the landmark exceeds
the threshold. We also allow the users to specify the end points manually. Fig. 1(D)
shows the four consistent features extracted on brainstems of a normal and an AIS
subject.

3.3 Parameterization Using Discrete Ricci Flow

To ease the computation process, we parameterize the brainstem onto a domain in R2.
The ideal parameter domain for such surface is the quadrilaterally-faced hexahedron,
of which each landmark is mapped to an edge of the hexahedron. Discrete Ricci flow
method is used to obtain the parameterization.

Given a brainstem surface, we first cut it open along the detected feature lines. As a
result, the open brainstem surface is of genus 0 with 4 boundaries, denoted by γi, i =
1, ..., 4. We then set the target curvatures to be −π/2 at the end points of the landmarks
and zero elsewhere. Using the discrete Ricci flow method [10], we can parameterize the
brainstem surfaces onto the universal covering space embedded in R2.
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Fig. 3. Left: (A) Registration between two normal brainstems. (B) Registration between the brain-
stems of a normal and AIS subject. Landmark features are matched exactly. (C) shows the average
shape of 15 AIS brainstems using our registration. The sharp features are well-preserved after av-
eraging, meaning that our registration matches salient features well. (D) shows the average shape
using the curvature-based sphereical demons registration without landmarks [15]. Note that the
sharp features are smoothed out. Right:Computing the map φi : F

i
1 → F i

2 .

To visualize the parameterization, we cut the brainstem surface along the geodesics
(i.e. line segments) e11e

1
2, e12e

1
3, and e13e

1
4 (see Fig. 2(C)), under the new metric g. In-

tuitively speaking, we cut along the edges of the bottom face to make the hexahedron
open. Now the brainstem surface becomes a genus-0 surface with only one boundary.

We compute the layout of the parameterized mesh by isometrically embedding all
the triangles with the new metric g. Figure 2 shows the universal covering space of
the brainstem surface with the highlighted fundamental domain. One can see that each
landmark is mapped to the straight side of the hexahedron. This feature allows us to
easily compute the high quality registration with guaranteed exact landmark matching,
which will be described in the next subsection.

3.4 Registration

The above discrete Ricci flow method parameterizes each brainstem surface to a hexa-
hedron, such that the four landmarks are mapped to the four vertical edges. The hexa-
hedron naturally induces a segmentation of 6 patches. With these, we can easily register
two brainstem surfaces in a piecewise manner.

Let F i
1 (resp. F i

2), i = 1, · · · , 6, denote the six patches of M1 (resp. M2) induced
by the parameterization. We want to find a diffeomorphism (i.e., a C∞-smooth and
bijective map) φi : F i

1 → F i
2 between each pair of patches F i

1 and F i
2 . Let f1 (resp.

f2) denote the Ricci flow parameterization that maps F i
1 (resp. F i

2) to a quadrilateral
Di

1 (resp. Di
2). Let us also denote the corners of the 3D patch and 2D quadrilateral by

pj and qj , j = 1, · · · , 4, respectively. Then we map each quadrilateral Q to a unit disc
D by a harmonic function g : Q → D such that �g = 0 with Dirichlet boundary
condition g(∂Q) = ∂D = S1. Let rj = f(qj), j = 1, · · · , 4, denote the images of the
corners on the unit circle. Next, we compute another harmonic function h : Di

1 → Di
2

between the two unit discs Di
1 and Di

2, i.e., �h = 0. We set the boundary condition
h(∂Di

1) = ∂Di
2 by enforcing the exact feature correspondence, i.e., the corners rj1
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are mapped to corners rj2. Therefore, a map φi between the patches F i
1 and F i

2 can be
obtained by the composite map φi = f−1

2 ◦ g−1
2 ◦ h ◦ g1 ◦ f1 (See Fig. 3) right.

A homeomorphism φ : M1 → M2 can then be obtained by φ =
⋃6

i=1 φ. Note that
landmarks are exactly matched for each patches. So, our algorithm guarantees the exact
correspondence between the landmark features.

Proposition. The proposed brainstem surface registration algorithm produces a homeo-
morphism φ between M1 and M2, which guarantees the exact correspondence between
the landmarks φ(γj1) = γj2 , j = 1, · · · , 4.
Proof. We first show that the resulting map φ is a homeomorphism. Observe that the
discrete Ricci flow induced parameterization f1 and f2 are diffeomorphism [5]. Ac-
cording to the classical result [14], a harmonic function, which maps a Ω ⊂ R2 to some
convex region Ω′ and maps the the boundary ∂Ω homeomorphically into the boundary
∂Ω′, is diffeomorphic. AsQj andDj , j = 1, 2, are convex and the boundary conditions
in gj and h are homeomorphic, all the harmonic functions g1, g2 and h are diffeomor-
phic. Therefore, the map φi = f−1

2 ◦ g−1
2 ◦ h ◦ g1 ◦ f1 is a diffeomorphism (see Fig. 3)

right.
Although the maps φi’s are calculated individually, they can be glued seamlessly. We

use the arc-length parameterized boundary condition in computing the harmonic map
from each patch to the unit disk. Assume two patches Fa and Fb share a boundary γ,
and p ∈ γ is an arbitrary point on γ. When we compute the map g from Fa to the unit
disk, we set the Dirichlet boundary condition so that p’s image is given by the arc-length
parameterization. Similarly, the map from Fb to the unit disk also sends p to exactly the
same location on the circle. With this, our method can guarantee the boundaries of two
adjacent patches are mapped consistently and thus all patches are glued seamlessly in a
C0 manner. Thus, the global map, φ =

⋃6
i φi, is in fact a homeomorphism.

Second, we show that the map φ preserves the correspondence between the land-
marks. By setting the prescribed geodesic curvature on γj1 and γj2 to zero, j = 1, · · · , 4,
the metric g(∞) obtained by discrete Ricci flow can guarantee each landmark is mapped
to a line segment (see Fig. 2(b)). Then with harmonic functions, g1 and g2, each line
segment is mapped to an arc of the unit circle. Note that the exact feature correspon-
dence are set when computing the harmonic function h : D1 → D2 between two unit
disks. Therefore, the composite function φi maps the boundary ∂F1 homeomorphically
to ∂F2 and also sends each corner of F1 to the corresponding corner of F2. Thus, the
map φi sends the landmark of F1 to the corresponding landmark of F2. As a result,
the map φ preserves the exact correspondence between the landmarks φ(γj1) = γj2 ,
j = 1, · · · , 4.

Putting it together, the map φ : M1 → M2 is a homeomorphism with guaranteed
landmark correspondence. �

3.5 Shape Variation Detection

With the obtained registration between brainstems, we can define a shape energy which
detect local shape variations. According to Riemannian geometry theories, the local
geometry of a Riemann surface can be described by its mean curvature and Gaus-
sian curvature. Let B1 and B2 be two brainstem surfaces. Suppose f : B1 → B2
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Input: Two brainstem surfaces M1 and M2

Output: The homeomorphism φ : M1 → M2 with guaranteed landmark correspondence
1. Extract the four landmarks from the brainstem surfaces;
2. Cut the brainstem surfaces open along the detected landmarks;
3. Set the prescribed Gaussian and geodesic curvatures to each vertex and run Ricci flow;
4. With the resulting metric, embed the brainstem surfaces into quadrilaterally-faced
hexahedral, which naturally induces a segmentation of M1 and M2 into six patches.
5. For each pair of patches F i

1 ∈ M1 and F i
2 ∈ M2, find the bijective map φi : F

i
1 → F i

2

by computing harmonic functions with Dirichlet boundary conditions;
6. Output the map φ =

⋃6
i=1 φi.

Algorithm 1. Brainstem surfaces registration with guaranteed landmark corre-
spondence.

Fig. 4. (A)-(D): Grid texture is drawn on the control brainstem. It is mapped to three different
brainstems of the AIS subjects using our proposed registration algorithm. The grid pattern il-
lustrates that our registration result is indeed an homeomorphism. (E)-(H):Detection of shape
variations.

is the registration between B1 and B2. We can define a shape energy Eshape as fol-
lows: Eshape(f) = α

∫
B1
|H1 − H2(f))| + β

∫
B1
|K1 −K2(f))|, where H1 and K1

(resp. H2 and K2 ) are the mean curvature and Gaussian curvature of B1 (resp. B2).
Eshape(f) = 0 if and only if B1 and B2 are equal up to a rigid motion. Therefore,
Eshape measures the local shape difference between B1 and B2 effectively. This allows
us to examine the region of significant shape difference for the morphometry of the
brainstems.

4 Experimental Results

Subject and data acquisition: We tested our proposed algorithms on 30 brainstem sur-
faces, which are extracted from the MRIs. The MRI brain data were acquired from 15
AIS subjects and 15 age-matched normal controls using a 1.5T MRI scanner (Sonata,
Siemens, Erlanger, Germany) using a quadrature head-coil. The segmentation of the
brain stems was achieved automatically. Two experienced operators verified the seg-
mentation results.

Brainstem registration: Using our proposed algorithms, we compute the registration
between 30 brainstems of 15 normal subjects and 15 AIS patients. Experimental re-
sults show that our proposed method can compute the registration effectively with ex-
act landmark-matching. Figure 3(A) shows the registration results between two normal
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brainstems. The registration result between the brainstems of a normal and AIS subject
is shown in (B). Landmark features are exactly matched. In Fig. 4(A)-(D), grid texture
is drawn on the control brainstem. It is mapped to three different brainstems of the AIS
subjects using our proposed registration algorithm. Note that grid patterns have no over-
lapping, indicating the registration is indeed a homeomorphism. The whole registration
procedure can be computed efficiently. The feature landmarks (ridge and valley lines)
are computed in real-time for brainstem meshes with 20K vertices. The Ricci flow based
conformal parameterization for each brainstem mesh takes about 12 seconds, since the
Newton’s method with second order convergence rate is adopted in our implementation.
The registration between brainstems through the parameterization takes about 5 seconds
to compute. The whole process to obtain the landmark-matching brainstem registration
takes less than 20 seconds. Hence, our proposed registration algorithm is quite efficient.

Detection of shape variations: With the obtained registration f , the local shape dif-
ference between different brainstem surface can be detected from the shape energy
Eshape(f). Figure 4(E)-(H) shows the local shape differences of two brainstem (1 nor-
mal and 1 AIS subject) surfaces from the control. The color map is given by the shape
energy, which measures their local shape difference. The red (resp. blue) color indicates
a higher (resp. lower) degree of shape difference. The local shape difference of the AIS
brainstem from the control tends to be more obvious than that of the normal brainstem.
Figure 4(H) shows the statistical significance p-map measuring the local shape differ-
ence from the control between the normal (n = 15) and AIS (n = 15) groups, plotted
on a control brainstem. The deep red color highlights regions of significant statistical
difference. This method can be potentially used to study factors that influence shape
changes of brainstems in AIS.

Comparison: We also compare our registration algorithm with the curvature-based spher-
ical demons registration without landmarks [15]. The curvature-based registration with-
out landmarks generally cannot match salient features. Figure 3(C) shows the average
shape of 15 AIS brainstems using our registration. The sharp features are well-preserved
after averaging, meaning that our registration matches salient features well. (D) shows
the average shape using the curvature-based registration without landmarks. Note that
the sharp features are smoothed out. It indicates the mismatching of salient features.

5 Conclusion and Future Work

We present a rigorous algorithm to register brainstem surfaces for the disease analysis
of Adolescent Idiopathic Scoliosis. The basic idea is to extract four consistent features,
which describe the global geometry of the brainstem, to guide the surface registra-
tion. Using the Ricci Flow method, brainstem surfaces are parameterized conformally
onto quadrilaterally-faced hexahedron, which naturally induces the feature landmark-
matching brainstem registration. Our registration algorithm is a registration between
brainstem surfaces with exact matching of the extracted feature curves. A shape energy
can then be defined to measure the local shape variations between different brainstem
surfaces. Experiments on real brainstem surfaces of 15 normal subjects and 15 AIS pa-
tients show the efficacy of our proposed algorithms to register and detect local shape
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differences between different brainstem surfaces. The proposed algorithm can poten-
tially be used to study factors that influence shape changes of brainstems in AIS. For
future work, we will apply our proposed algorithms on more brainstem data to fur-
ther investigate the relationship between the postural balance control problem and the
occurrence of AIS. We would also like to point out that the proposed algorithm can be
naturally extended for registration of other anatomical structures, such as hippocampus,
cerebellum and the vestibular system, which will be investigated in our future work.
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Abstract. We present an extension of the symmetric ICP algorithm that
is unbiased for an arbitrary number (N ≥ 2) of shapes, using rigid trans-
formations and scaling. The method does not require the selection of a ref-
erence shape or registration order and hence it is unbiased towards any of
the registered shapes. The functional to be minimized is non-linear in the
transformation parameters and thus computationally complex. We there-
fore propose a first order approximation that estimates the transformation
parameters in a closed form, with computational complexity O(N2).

Using a set of wrist bones, we show that the least-squares minimiza-
tion and the proposed approximation converge to the same solution.
Experiments also show that the proposed algorithms lead to smaller reg-
istration errors than algorithms that select a reference shape or register
to an evolving mean shape. The low computational cost and trivial par-
allelization enable the alignment of large numbers of bones.

1 Introduction

Groupwise registration of multiple shapes (i.e. more than two) is a recurring
problem in a wide variety of medical applications. Although much interest has
been paid to non-rigid groupwise registration, especially intensity based such
as in atlas building, some applications, e.g. the groupwise alignment of bone
surfaces in orthopedics would benefit more from an unbiased rigid alignment.
Although such an alignment can be obtained using the correspondence obtained
with a non-rigid method, non-rigid registration results in general heavily depend
on the careful tuning of the regularization parameters.

Many methods for the alignment of multiple shapes select one target to which
all other shapes are registered or deformed, e.g. [7]. This, however biases the
registration result to the selected shape. To minimize this bias, [5] proposed a
strategy to select a shape that lies the closest the ‘mean’ shape, while others, e.g.
[3,2] proposed to evolve a mean shape. The first method still does not completely
remove the bias, while the latter methods add an extra layer of complexity, i.e.
estimating the correspondence between registered example shapes and the mean
shape.

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 155–162, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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(a) (b)

Fig. 1. (a) Examples of scaphoid bones from three individuals. (b) Three shapes with
correspondence relations.

In this paper we propose a new method for the rigid registration (including
isotropic scaling) of more than two objects that is inherently unbiased, i.e. it does
not depend on the selection of a target shape or the order in which the shapes
are processed. Moreover, the algorithm is stable and has a low computational
complexity. This method is an extension of the symmetric ICP algorithm [1] to
register more than two shapes. The direct extension yields a functional that is
nonlinear in its transformation parameters and minimization is computational
complex. To amend this we additionally introduce a method that involves sep-
arate closed-form estimations of the transformation parameters for each shape.
We prove that this method converges to the same minimum as the direct ICP
extension. Both algorithm variations are experimentally validated on a large
number of subsets of 50 scaphoid bones, a bone in the wrist (See Figure 1a).
These experiments demonstrate that the proposed algorithm leads to improved
registration results over selecting the ‘best’ target shape as well as over register-
ing to an evolving mean shape. Moreover, we will also show that the closed-form
based variant converges to the same result as the direct extension of the extended
ICP algorithm.

2 Methods

2.1 Unbiased ICP Algorithm for N Objects

We propose to extend the symmetric ICP algorithm to an unbiased algorithm for
N shapes. For the sake of clarity we will initially present this algorithm for three
shapes SA, SB and SC , represented by point clouds. However, it can be directly
generalised to N shapes with different representations. We define a set of control
points for each shape, denoted by A, B and C. For each set of control points, the
corresponding points on the other two shapes are determined using the minimum
Euclidean distance as the criterion. For example, the corresponding points from
SB and SC to A are BA and CA. A schematic representation of three shapes
and their correspondences is shown in Figure 1b.

The transformation between point sets is found by minimizing the average
squared Euclidean distance between corresponding point pairs. We extend the
symmetric ICP to include all directional pairwise correspondences:
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Jnicp(TA, TB, TC) = 1
nA

‖TA(A) − TB(BA)‖2 + 1
nA

‖TA(A) − TC(CA)‖2

+ 1
nB

‖TB(B) − TA(AB)‖2 + 1
nB

‖TB(B) − TC(CB)‖2

+ 1
nC

‖TC(C) − TA(AC)‖2 + 1
nC

‖TC(C) − TB(BC)‖2 (1)

in which TA, TB and TC are transformations from point set A, B or C. This
cost function is nonlinear in its transformations, since it contains products of the
transformation parameters. Therefore, a closed-form solution of the transforma-
tions does not exist. The minimization can be done using a nonlinear regression
technique, e.g. by the Levenberg-Marquardt algorithm.

Just as in the symmetric ICP algorithm, the minimization of (1) is mathe-
matically ill-posed. The constraint TA = T−1

B , however, cannot be generalised to
more than two transformations. Therefore, we choose the following constraints,
that follow a similar rationale:

1. A net scaling of one: ŝAŝB ŝC = 1
2. A zero net translation: t̂A + t̂B + t̂C = 0
3. A zero net rotation: r̂A + r̂B + r̂C = 0

in which ŝA, ŝB, ŝC are the scalings, t̂A, t̂B, t̂C the translations and r̂A, r̂B , r̂C

the rotations involved in the transformations TA, TB, TC . The rotations are rep-
resented by the vectors r̂A, r̂B, r̂C that contain the Rodrigues parameters: the
vectors r̂A, r̂B, r̂C are oriented parallel to the rotation axes (also called helical
axes) of A, B and C and have a length equal to the magnitude of the rota-
tion angle. These three constraints are included in the nonlinear least squares
optimization using Lagrange multipliers.

2.2 Closed Form Transformation Estimates

A direct minimization of (1) is computationally expensive, because its non-linear
form prevents finding the transformations TA, TB and TC using a closed-form
solution. We assume that the concurrent transformation of all clouds can be ap-
proximated by separate rigid registrations of each cloud that position the clouds
at time step k ‘in the middle’ of all three clouds at time step k− 1. ‘The middle’
is then defined as the position and orientation in which the sum of the quadratic
Euclidean distances between the points in a cloud and their corresponding points
in all clouds (including the transformed cloud at time step k − 1) in the set is
minimal. Accordingly, we define the functional Japprox (TA, TB, TC) = JA(TA)+
JB(TB) + JC(TC) with right-hand terms of the form:

JA(T (k)
A ) = 2

nA

∥∥∥T (k)
A (A) − T

(k−1)
A (A)

∥∥∥2

+ 1
nB

∥∥∥T (k)
A (AB) − T

(k−1)
B (B)

∥∥∥2

+ 1
nA

∥∥∥T (k)
A (A) − T

(k−1)
B (BA)

∥∥∥2

+ 1
nC

∥∥∥T (k)
A (AC) − T

(k−1)
C (C)

∥∥∥2

+ 1
nA

∥∥∥T (k)
A (A) − T

(k−1)
C (CA)

∥∥∥2

(2)
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It may be observed that each of the functionals JA(T (k)
A ), JB(T (k)

B ) and JC(T (k)
C )

depends on a single transformation, for which a closed-form solution exists. The
first term in (2) effectively imposes that all shapes are equally involved. In com-
parison to (1), one transformation maps one shape unidirectionally onto the
other shapes within each functional. The reverse mapping, i.e. mapping the other
shapes onto the one, is actually contained in the other functionals.

Enforcing the constraints in Section 2.1 would result in a nonlinear problem.
Instead, we opted to add a separate ‘normalization’ step after TA, TB and TC

are all updated.

For N shapes, N functionals as in (2) are needed, each with
(

N
2

)
terms.

Normalization of scalings and rotations. After each update of all transfor-
mations, the net scaling of all shapes combined is sAsBsC = s̄, where sA, sB, sC

represent the current scale estimates. We adopt the next normalization to retain
the ratio of the estimates:

ŝA = sA/sn, ŝB = sB/sn, ŝC = sC/sn (3)

in which sn = 3
√

s̄, such that ŝAŝB ŝC = 1. The rotations undergo a similar
normalization, so that the relative rotations between the three shapes is kept
constant, i.e. r̂A + r̂B + r̂C = 0. Let the sum of the Rodrigues parameters after
minimizing (2) be rA + rB + rC = rn. Then rotations are normalized as follows

r̂A = rA − 1
3rn, r̂B = rB − 1

3rn, r̂C = rC − 1
3rn (4)

If the rotation matrices that describe the updated rotations are R̂A, R̂B and
R̂C , the translations tA, tB and tC are updated to

t̂A = āT − ŝAR̂AāS , t̂B = b̄T − ŝBR̂Bb̄S , t̂C = c̄T − ŝCR̂C c̄S (5)

where āT , b̄T , c̄T and āS , b̄S , c̄S are the means of AT , BT , CT and AS , BS , CS ,
respectively. It may be noticed that the value of Japprox (TA, TB, Tc) is modi-
fied only due to the scale normalization, i.e. the normalization of rotation and
translation parameters has no effect if sn = 1.

2.3 Equivalence of Both Solutions

One may notice that when the algorithm in Section 2.2 has converged, it holds
for all transformations that T

(k)
X = T

(k−1)
X for all clouds X ∈ {A, B, C}. Thus,

comparing (1) and (2), it holds at convergence that Japprox = 2Jnicp. From this
one can see that there is a set of transformations for which the global minimum of
Jnicp can be obtained with Japprox. Furthermore, the same transformations that
lead to a global minimum of Jnicp, give a global minimum of Japprox: if the global
minimum of Jnicp would not be the global minimum of Japprox, then it would
be possible to find a set of transformations for which holds Japprox < 2Jnicp.
The latter is not possible, because for any choice of T

(k)
X = T

(k−1)
X it holds that

Japprox = 2Jnicp. It can be proven that Japprox decreases every iteration similar
to the pairwise ICP algorithm [1] and thus converges to a local minimum.
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Table 1. Average values and standard deviations of J for n = 400 points, normalized
to the results of Algorithm 3 and mean Target Registration Errors (mm).

N J̄1 J̄2 J̄4 mTRE1 mTRE2 mTRE4

2 1.006 (0.004) 1.288 (0.233) 1.000 (0.001) 1.4 (0.4) 1.4 (0.4) 1.4 (0.4)
4 1.069 (0.046) 1.544 (0.108) 1.005 (0.006) 1.4 (0.3) 1.5 (0.3) 1.5 (0.3)
8 1.146 (0.037) 1.573 (0.079) 1.003 (0.006) 1.6 (0.3) 1.7 (0.2) 1.5 (0.2)
16 1.177 (0.024) 1.576 (0.041) 1.000 (0.000) 1.7 (0.3) 2.1 (0.3) 1.4 (0.1)

3 Experiments

The performance of two existing algorithms (1) selecting the optimal mean shape
[5] and (2) evolving a mean shape [1,6] and the proposed algorithms (3) in Section
2.1 and (4) in Section 2.2 are assessed in terms of accuracy and precision, as well
as computational cost. These criteria are assessed as a function of the number of
shapes, N , and the number of sampling points, n. CT images of 50 scaphoid wrist
bones served as an application (See Figure 1a). Each scaphoid was represented
by a point cloud, uniformly sampled on the bone surface. Algorithm 1 selects
each of the N shapes as a target, registers all other shapes to this target and
selects the result with the smallest remaining registration cost. Algorithm 2 takes
one shape as initial mean and registers all shapes to this ’mean’. Subsequently
the mean is updated by averaging the coordinates of corresponding points.

3.1 Accuracy and Precision

A subset of N bones was selected from the total of 50 and registered by Al-
gorithms 1 to 4. For each outcome we evaluated Jnicp (1) in order to have
comparable measures (effectively the algorithm from Section 2.1, Algorithm 3,
serves as the reference standard). The resulting measures are J1, J2, J3 and
J4. Each obtained value was divided by J3 for normalization. The experiments
were repeated 10 times for different subset selections from the 50 objects and for
N ∈ {2, 4, 8, 16} shapes and n ∈ {200, 400, 600, 800} surface points. A maximum
of N = 16 was taken since the reference Algorithm 3 became impractically time
consuming for higher values. For the same reason a maximum of n = 400 points
was used to register N = 16 shapes. Each of the N shapes involved in an ex-
periment served as the target shape in Algorithm 2. The accuracies reported for
Algorithm 2 were obtained both by averaging over all target shapes and subsets.

The mean normalized values J̄1,...,4 of J1,...,4 for n = 400 and their standard
deviations are shown in Table 1. J̄4 always differs less than 1% from J̄3. As
expected, registering to a single target shape J̄1, for N > 2, leads to higher
values than J̄3. Moreover J̄1 increases with increasing N . This follows directly
from 1 as the registration in Algorithm 1 only has a (relatively decreasing)
subset of the minimized terms in 1. The initial registration to a target shape in
Algorithm 2 is by definition worse than Algorithm 1 as no selection of a shape
closest to the mean is involved. Surprisingly, we found that after the initial
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Fig. 2. (a) Registration results J̄1, J̄2, J̄3 and J̄4 as a function of the number of sample
points for N = 8 shapes. Error bars denote standard deviations. Results of J̄3 and J̄4

almost coincide. (b) Normalized average processing times per iteration for Algorithms
1 (×), 2 (�), 3 (◦) and 4 (∗) as a function of N for n = 400. The legend shows the
functions fitted to the measured times per iteration. Plotted times are normalized to
the numbers in the legend. Dashed: normalized theoretical times per iteration. Contin-
uous: order of computational complexity. Results for Algorithm 1 (×) and 4 (∗) almost
coincide.

registration to a target shape, J̄2 increased as the evolving mean was computed.
This indicates that the evolving mean differs more from the reference mean than
the selected target shape. The large standard deviations for Algorithm 2 are due
to variable, non-optimal target shape selections. In all experiments J2 was the
highest, J1 the second highest and J3 or J4 the lowest. The target shape that
gave the lowest value of J in Algorithm 1 typically, but not always, yielded the
lowest value of J in Algorithm 2. Registration differences between methods were
about 5 degrees with extremes to 15 degrees. An evaluation using non-fiducial
corresponding landmarks gave mean Target Registration Errors (mTRE) as in
Table 1. Only for Algorithm 4 was the mTRE constant for increasing N .

Figure 2a shows that for an increasing number of points J̄1 decreases, while
J̄4 has a negligible difference from J̄3. J̄2 seems to decrease too, for increasing
n, but makes a sudden jump for n = 800. Although the standard deviation of J̄2

is large for n = 800, this result was not due to outliers and we attribute these
results to convergence to local minima.

3.2 Computational Complexity

To assess the computational complexity of Algorithms 1 to 4, the execution time
and the numbers of iterations were measured. The algorithms were implemented
in MATLAB 7.4.0 on an AMD Opteron Quad Core Processor 250 at 2.0 GHz
with 64 GB of memory, using a single core, to assess the computational complex-
ity. The registration times were measered as the times needed until convergence
within 1% of the final outcome to reduce the influence of the stopping criterium.
Table 2 collates the mean registration times and their standard deviations for
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Table 2. Average times in seconds needed for convergence of the four registration al-
gorithms for n = 400. The standard deviations are between parentheses. For Algorithm
2, both the times for the initial registration to a target shape (I) and the registration
to the evolving mean (II) are given.

N Reg. 1 Reg. 2 (I)/(II) Reg. 3 Reg. 4
2 1.3 (0.4) 0.6 (0.2)/0.6 (0.1) 7.0 (5.2) 0.8 (0.3)
4 7.13 (0.9) 1.8 (0.2)/2.4 (0.5) 93.7 (30.6) 5.5 (1.5)
8 28.0 (4.3) 3.5 (0.5)/7.6 (0.5) 1202.5 (147.2) 33.8 (8.8)
16 142.1 (1.2) 8.9 (0.1)/16.3 (3.6) 11560.5 (1304.0) 159.4 (18.8)

n = 400 surface points. Algorithm 2 is clearly the fastest, while Algorithms 1
and 4 take approximately the same time to converge. Algorithm 3 is impracti-
cally slow for large numbers of shapes. Running the registration on three cores
(to leave one of the core available for the operating system), the registration
of 8 and 16 shapes with Algorithm 4 took 11.9 and 55.5 seconds on average, a
speedup of approximately 2.85. This shows that the algorithm can be efficiently
parallelized. During the optimization, J4 differed less than 1% from J3 at each
iteration, which is a strong indication that the computational scheme closely
approximates the direct minimization both far from and close to the solution.

To estimate computational complexity as a function of the number of shapes
N , the functions a1 ·N(N−1), a2 ·N , a3 ·N2(N−1) and a4 ·N(N−1) are fitted to
the processing times per iteration. These fit functions can be derived from iden-
tifying the most expensive steps in the four algorithms such as correspondence
finding and (in Algorithm 3) estimating the Jacobian. All four fits are shown in
the legend of Figure 2b. Although the processing times per iteration are compa-
rable between Algorithms 1 and 4, Algorithm 4 takes slightly longer for larger
numbers of shapes N because the number of iterations of Algorithm 4 increases
when N increases. The average processing times per iteration as a function of
the number of points n was O(n log n) for all four algorithms, corresponding to
the complexity of closest point search using a Delaunay triangularization.

4 Discussion

We proposed a novel approach to extend the symmetric ICP algorithm to the
unbiased registration of N ≥ 3 shapes. All estimated correspondences between
all shapes have equal weight in the cost functions (1) and the registration result
does not depend on the order of registration.

Experiments confirmed that the proposed approximate minimization Japprox

and a direct minimizationg of Jnicp converge to the same minimum. Assuming
Gaussian distributed point correspondences, just as with the symmetric ICP
algorithm, the proposed groupwise version gives optimal registration results since
(1) is the minimum variance estimator for Gaussian distributed coordinates.

When choosing the best registration to a single target (Algorithm 1), the
mean quadratic distance between shapes after registration, assessed by Jnicp

(1), were all higher than after a direct minimization of Jnicp, and increased with
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the number of shapes N . The difference, however, decreased with the number
of surface points n. Registering to an evolving mean shape (Algorithm 2) re-
sulted in a much higher mean quadratic distance between corresponding points.
While direct minimization of Jnicp is practically not feasible for large numbers
of shapes due to the order of time complexity O(N3 × n2), the proposed ap-
proximation has a time complexity of order O(N2 × n2). Thus this proposed
approximation combines optimal registration accuracy with an acceptable time
complexity. Furthermore, the algorithm was shown to be easily parallelizable,
allowing an additional reduction registration time.

For clarity of the discussion, the unbiased ICP algorithms in this work estimate
corresponding points in the same, separate step as the original ICP algorithm.
This can, however, easily be improved, e.g. with a weighted closest point average
as in [4], affecting only correspondence estimates such as BA and CA.

Using the proposed unbiased ICP algorithm and the approximation presented
in this paper, it is possible to perform an unbiased registration with a com-
putational complexity that allows the registration of a large number of bones.
The unbiased registration ensures that the estimated bone alignment does not
depend on the selection of a target or registration order.
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Abstract. We propose an iterative two-step method to compute a dif-
feomorphic non-rigid transformation between images of anatomical struc-
tures with rigid parts, without any user intervention or prior knowledge
on the image intensities. First we compute spatially sparse, locally op-
timal rigid transformations between the two images using a new block
matching strategy and an efficient numerical optimiser (BOBYQA).
Then we derive a dense, regularised velocity field based on these local
transformations using matrix logarithms and M-smoothing. These two
steps are iterated until convergence and the final diffeomorphic transfor-
mation is defined as the exponential of the accumulated velocity field.
We show our algorithm to outperform the state-of-the-art log-domain
diffeomorphic demons method on dynamic cervical MRI data.

1 Introduction

In medical image analysis, one is often confronted with the problem of registering
anatomical structures containing both hard, rigid (typically, bones) and soft,
non-rigid (most other tissues) parts. Such problems are met for instance when
following-up spinal cord lesions in MRI for the diagnosis of multiple sclerosis [1],
or when assessing cervical injuries using dynamic/kinematic MR imaging with
positional changes [2]. Many methods have been developed for both fully global
rigid registration and fully local non-rigid registration separately [3], but the
literature on hybrid methods, allowing for adequate registration of the structures
depending on the stiffness of their components, is still quite sparse.

The earliest work we know of is that of Little et al. [4], who showed how
to incorporate rigid structures into a deformation field, using radial basis func-
tions; this was later improved by others to make the field invertible and even
diffeomorphic [5,6,7]. However, these methods require the user to specify which
structures are rigid, which led to the development of semi-automated methods in
which rigidity can be locally favoured/enforced through a regularisation term in
the criterion to be minimised [8]. This idea was later improved to allow for this
term to be adaptively tuned to the structures to register, through prior segmen-
tation of the rigid parts or design of a stiffness map (typically computed from
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the image intensities; e.g. bones have high intensities in CT) [9,10,11]. Instead of
segmenting rigid parts, it was also proposed to define several anchors, to which
is attached an unknown polyaffine transformation, which can be subsequently
estimated using a modified EM-ICP algorithm [12].

In this paper, we propose an iterative two-step method to compute a diffeo-
morphic non-rigid transformation between images of structures with rigid parts,
without any user intervention or prior knowledge on the image intensities (to
compute rigid parts or anchors). First we compute spatially sparse, locally opti-
mal rigid transformations between the two images by adopting a new (as opposed
to classical, translation-based) block matching strategy, made possible by the use
of an efficient numerical optimiser (BOBYQA) (Sec. 2.1). The rationale behind
this original strategy is our hope to recover both large rotations and subvoxel
displacements. Then we derive a dense, regularised velocity field based on these
local transformations using matrix logarithms and M-smoothing (Sec. 2.2). The
floating image is then resampled and the two steps are iterated until conver-
gence; the final diffeomorphic transformation is defined as the exponential of the
accumulated velocity field. We finally compare our algorithm with the state-of-
the-art log-domain diffeomorphic demons method [13] on dynamic cervical and
multiple sclerosis MR images (Sec. 3).

2 Material and Methods

To compute a diffeomorphism T between a reference image I and a floating image
J , we iterate between two steps: computation of a sparse set of locally optimal
rigid transformations using block matching between I and J ◦ T l (Sec. 2.1)
and computation of a dense velocity field δLT l computed from these locally
estimated transformations (Sec. 2.2). Given that the transformation T is initially
set to the identity (T 0 = Id), and that the initial velocity field is set to LT 0 =
log T 0 = 0, the velocity field is then updated as LT l+1 = LT l + δLT l. This
two-step algorithm stops at the iteration l when δLT l is close to 0, and the final
diffeomorphism is computed as T = T l = exp(LT l). The complete algorithm is
outlined in Sec. 2.3. For the sake of clarity, we detail the two steps using the
simpler notations I, J and δLT (Sec. 2.1 and 2.2).

2.1 Computing a Sparse Set of Locally Optimal Rigid
Transformations

Classical block matching algorithm. In this approach, that we do not follow,
one first defines a set of blocks in each image, before matching each block in the
reference image I with the most similar block in the floating image J . Similarity
is typically computed using a measure on the voxel intensities, such as the sum of
squared differences or the squared correlation coefficient in monomodal problems,
or the mutual information or the correlation ratio in multimodal problems. The
most common approach to optimise the similarity measure (at least in medical
image analysis) is to perform an exhaustive search of the block with the highest
similarity in J , within a given neighbourhood of each block in I.
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This strategy implicitly assumes that the local motion between the images
can be well recovered by a discrete translation (i.e. defined on the discrete grid
of the image). Subvoxel displacements and large rotations are thus likely to be
missed. It is all the more true when registering piecewise rigid structures, be-
cause in this case there exists no single, global rigid movement, that could be
corrected before non-rigid registration.

Modified block matching algorithm. Recent advances in nonlinear opti-
misation allow for testing another strategy. We first define a set of blocks in
I (as in the standard strategy), and then we propose to directly compute the
rigid transformation best superposing each of these blocks with J , using a sim-
ilarity measure on the voxel intensities. As opposed to the standard, discrete
translation-based strategy, the computation of the similarity measure for a given
block in I and a given tested transformation implies resampling to build the block
in J . Given that the solution space is no longer finite, this leads to a potentially
much more computationally expensive algorithm.

We propose to use the recent BOBYQA algorithm [14] to implement this idea.
In essence, BOBYQA is a derivative-free, trust-region method which uses succes-
sive approximations of the similarity measure by quadratic functions, whose max-
ima can be computed analytically. It is very similar to the classical NEWUOA
algorithm except that bounds must be specified on the variables. We thus end up
with a set of blockwise-estimated optimal rigid transformations between I and
J . In practice, however, we do not estimate a transformation for the blocks in
I having a low variance σ2. The set of estimated transformations (R1, . . . , Rm)
is thus spatially sparse, due to these missing transformations, and also due to
the resolution of the grid of blocks in I, which is different from that of I. In
addition, we weigh each estimated transformation Ri with a weight wi set equal
to the similarity measure; here we use the squared correlation coefficient, to be
insensitive to local intensity changes, thus 0 ≤ wi ≤ 1.

2.2 Estimating a Dense Velocity Field

The set of estimated transformations (R1, . . . , Rm) is spatially sparse, but is
also noisy and likely to contain outliers (due to the noise in the images to be
registered and the potential errors in local registrations). How to estimate a
dense (n = card(I)) and smooth velocity field δLT from (R1, . . . , Rm)? We
propose to use the logarithms of these m transformations, defined in the space
of 4 × 4 real matrices (M4(R)) restricted to those whose last row contains only
zeros, and to estimate n intermediate matrices in the same space (that we name
log S1, . . . , log Sn by analogy) as the minimisers of a criterion C:

(log S1, . . . , log Sn) = arg min
log S1,...,log Sn

⎡⎣ n∑
i=1

∑
j∈Vi

wjρ(|| log Si − log Rj ||2)d(|vi − vj |2)
⎤⎦ ,
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where:

– ρ : R → R+ is a robust error norm,
– ||.|| is the Frobenius norm in M4(R), and |.| is the Euclidean norm in R3,
– vj is the coordinate of the central voxel of the block where Rj was estimated,
– vi is the coordinate of the voxel where Si is to be computed,
– Vi is a neighbourhood around the position vi; note that the sum over j ∈ Vi

must read: “the sum over all the points vj where a rigid transformation Rj

was estimated, and which are inside Vi”,
– wj is the weight defined in Sec. 2.1,
– d(.) : R3 → R+ is a (spatial) error norm.

It must be clear that we do not estimate Si and then its logarithm; we do esti-
mate log Si directly; we use this notation here only as a convention for the sake of
simplicity. Solving this minimisation problem is known as local M-smoothing [15],
due to the use of a robust error norm and of spatial neighbourhoods to design C;
C can be minimised using gradient descent, where each transformation can be es-
timated independently of the others. Using a particular adaptive, data-dependent
step size leads to an easy-to-interpret update formula for each log Si [15]:

log Sk+1
i =

∑
j∈Vi

wjρ
′(|| log Sk

i − log Rj ||2)d(|vi − vj |2) log Rj∑
j∈Vi

wjρ′(|| log Sk
i − log Rj ||2)d(|vi − vj |2)

It can be seen from this formula that ρ′ acts as a tonal kernel, while d acts
as a spatial kernel. After convergence, each finally estimated log Si is a linear
combination of the logarithms of the rigid transformations Rj ; following Arsigny
et al. [5], we define the final dense velocity field δLT as δLT (vi) = log(Si).vi,
∀i = 1, . . . , n. In practice, we define ρ as the Welsch function, which leads to
ρ′(a2) = exp(−a2/2λ2), and we define d as d(b2) = exp(−b2/2θ2); this leads
to two similar expressions for the two kernels (with different bandwidths). Vi is
spherical with radius 2θ (to achieve an approximate 95% confidence interval for
a Gaussian law). To initialise the gradient descent algorithm, S0

i is computed as
the solution of the update formula by setting ρ′(a2) = 1 (i.e. no tonal kernel).

2.3 Complete Algorithm

The final estimated transformation is a diffeomorphism [5]. We perform all the
update calculations on the velocity field, whose exponential is required only
once per iteration to resample the floating image. This is the same approxi-
mation as that done by Vercauteren et al., who showed experimentally that
exp(LT l−1)◦ exp(δLT ) could be approximated by exp(LT l−1 + δLT ) for a small
enough velocity field δLT [13].

2.4 Implementation Details

For the block matching: size of the blocks: 7 voxels; grid step size: 3 voxels;
minimal intensity variance in the blocks: 1/4 of the maximum squared intensity;
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Algorithm
1: Initialize T to identity: T 0 ← Id = exp(LT 0) and the velocity field to 0: LT 0 ← 0
2: for each pyramid level of the multiresolution scheme, do
3: repeat
4: Estimate local rigid transformations using block matching (Sec. 2.1):

R = (R1, . . . , Rm) ← block-matching(I, J ◦ T l−1)
5: Interpolate a dense velocity field using M-smoothing (Sec. 2.2):

δLT ← M-smooth(R)
6: Increment the velocity field: LT l = LT l−1 + δLT
7: Regularise (elastic-like) the velocity field: LT l ← Gν ∗ LT l

8: Compute T l = exp(LT l) to resample J
9: until δLT is sufficiently small

search radiuses within BOBYQA: 2 voxels (translation) and 5 degrees (rotation).
For the M-smoothing: kernel bandwidths: λ2 = medj �=h || log Rj − log Rh||2/2
(tonal), θ = 4 voxels (spatial); ν = 4 voxels in the elastic-like regularisation. We
use a 3-level multiresolution strategy, and the resampling of the floating image is
done using trilinear interpolation. Run-time of the algorithm (dual core Xeon 3.0
GHz PC): about 6 min (vs 2 min for the log-domain diffeomorphic demons [13]).

3 Validation and Results

We propose to assess our algorithm quantitatively on ten patients with traumatic
cervical cord injury, who got dynamic cervical MRI (T2-w, size 384 × 384 × 14,
voxel size 0.8 × 0.8 × 3 mm3) with two different positions each: either flex-
ion/neutral, or extension/neutral [2]. For each patient, we manually defined land-
marks on the cervical/thoracic vertebrae C1-C3-C6-T1 (and T4 when visible),
the pontomedullary junction, and the gnathion (lower border of the mandible)
on each of the two MRI. We considered the neutral position as the reference
image in the extension/neutral setting, and the flexion as the reference image
in the flexion/neutral setting. For a given patient, the registration accuracy was
evaluated as the root mean square error (RMSE) computed over the homologous
landmarks after registration using four different methods: global rigid registra-
tion (M1) [16], log-domain diffeomorphic demons (M2) [13], our algorithm (M3),
and M2 initialised using M3 (M4); both M2 and M3 are initialised using M1.
We also assessed our algorithm visually on two patients with MS lesions in the
spinal cord, and two other patients with tumours in the spinal cord, with two
time points each (T1-w, size 256 × 256 × 64, voxel size 1 × 1 × 1 mm3).

The box-and-whisker plot in Fig. 1 computed from the ten patients shows our
algorithm (M3) to significantly outperform both M1 (paired t-test: p = 3×10−4)
and M2 (paired t-test: p = 2×10−3), with much smaller error and much smaller
error dispersal. M3 is also slightly better than M4 (paired t-test: p = 5× 10−2).
This suggests that the log-domain diffeomorphic demons performs worse than
our algorithm even when properly initialised (using M3 instead of M1). The
results of M1, M2 and M3 on one of the ten patients are shown in Fig. 2, and
that of M1 and M3 are shown on one of the MS patients in Fig. 3.
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Fig. 1. Quantitative evaluation of registration accuracy. Box-and-whisker plot
of registration errors (unit: millimetres) for the 4 compared methods (M1 to M4). The
errors and the error dispersal are much smaller for M3 compared to M1 and M2; M4

is also slightly worse than M3, which suggests that M4 actually degrades the results
compared to M3 when initialised with M3.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Registration results on a patient with flexion/neutral positions. (a)
reference image; (d,b,c) floating image registered to the reference image with M1, M2,
M3 respectively; (e,f) same as (b,c) with deformation grids overlaid. The intersection
between the green and red lines shows the large error of M2 on the mandible; on the
contrary, M3 correctly matches this point. The ability of M3 to recover the flexion is
further illustrated by the deformation grid: the deformation visually appears as near-
rigid on the lower head and face, while it shows extension near the back of the neck
and contraction near the front of the neck; on the contrary, the deformation grid shows
that M2 outputs near rigid movement everywhere.
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(b) (c) (d)

(a)

(e) (f) (g)

(h)

Fig. 3. Registration results on a patient with MS lesions in the spinal cord.
(a) patient image at time point t0; (b) patient image at time point t1 registered with
M1 and (e) with M3; (d,g) zoom on (b,e); (h) zoom on (a); (c,f) zoom on the difference
(registered minus reference) image. Note that in this case M2 (not displayed) performs
as well as M3. These snapshots, and in particular the zoomed difference images, visually
show that M3 gives a better result than a simple global rigid registration.

4 Conclusion and Perspectives

It appears that our strategy for non-rigid registration, based on the computation
of locally optimal rigid transformations in the first place, allows us to recover
displacements and deformations of piecewise rigid structures (as seen e.g. in
dynamic cervical MRI) much better than standard methods which are implic-
itly based on locally optimal translations, such as the log-domain diffeomorphic
demons algorithm. This original strategy was made possible by (i) the use of an
up-to-date very efficient optimiser and (ii) the design of a specific regularising
procedure on the (sparse) set of locally estimated rigid transformations, based on
robust estimation techniques. A future line of research could be to combine our
regularisation technique with those previously proposed in this context [9,10,11].
Our intuition is also that our algorithm could perform very well in more gen-
eral problems, without necessarily rigid structures involved, and on other image
modalities; we will evaluate this in a near future.
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Abstract. Registration of Diffusion-weighted imaging (DWI) data emerges as an
important topic in magnetic resonance (MR) image analysis. As existing methods
are often designed for specific diffusion models, it is difficult to fit to the regis-
tered data different models other than the one used for registration. In this paper
we describe a diffeomorphic registration algorithm for DWI data in a large de-
formation setting. Our method generates spatially normalized DWI data and it is
thus possible to fit various diffusion models after registration for comparison pur-
poses. Our algorithm includes (1) a reorientation component, where each diffu-
sion profile (DWI signal as a function on a unit sphere) is decomposed, reoriented
and recomposed to form the orientation-corrected DWI profile, and (2) a large de-
formation diffeomorphic registration component to ensure one-to-one mapping
in a large-structural-variation scenario. In addition our algorithm uses a geodesic
shooting mechanism to avoid the huge computational resources that are needed
to register high-dimensional vector-valued data. We also incorporate into our al-
gorithm a multi-kernel strategy where anatomical structures at different scales
are considered simultaneously during registration. We demonstrate the efficacy
of our method using in vivo data.

1 Introduction

DWI registration presents a direct way of establishing correspondences for white mat-
ter micro-structures, which are often elusive in anatomical scans, such as T1- and T2-
weighted images. As it is required to deal with both spatial alignment of macro-structures
and reorientation of local angular structures, DWI registration is more challenging to de-
velop than traditional scalar-based image registration.

DWI data are often acquired in up to hundreds of diffusion-sensitizing gradient di-
rections so as to precisely delineate local angular structures. Various diffusion models
are often fitted to the acquired data for analytical purposes. However, analysis can not
yet be performed without aligning similar structures across different subjects. To this
end, a number of registration algorithms have thus been developed. Geng et al. [1] used
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a spherical harmonic (SH) representation of orientation distribution functions (ODFs)
to guide registration. Yap et al. [2] developed a hierarchical registration scheme where
the alignment is refined using features extracted from a SH-based representation with
gradually increasing order. Raffelt et al. [3] utilized a subject-template-symmetric dif-
feomorphic framework to align fiber orientation distribution (FOD) fields. Hong et al.
[4] performed registration with the help of T2-weighted images and applied the result-
ing deformation fields to the diffusion-weighted images with re-transformation—taking
into account rotation, scaling, and shearing effects of the spatial transformation of the
FOD. Du et al. [5] designed a large deformation framework to register the ODF data.

However, all of the above methods are designed for specific diffusion models, which
makes it difficult to fit other models to the registered data. In this paper we describe a
method that is able to generate spatially normalized DWI data so that one can fit any
diffusion model after registration. Key highlights of our method include:

1. DWI Reorientation: Our method can directly reorient DWI diffusion signal pro-
files.

2. Large Deformation: We use a large deformation diffeomorphic metric mapping
(LDDMM) framework [6] to tackle large structural variations. Spatial image align-
ment is achieved by optimizing over a spatio-temporally varying velocity field.

3. Geodesic Shooting: A major problem with the LDDMM algorithm [6] is the large
memory consumption. This is often aggravated for vector-valued and high dimen-
sional DWI data. We thus use a geodesic shooting algorithm [7] to avoid the storage
of the entire series of velocity fields, so that only an initial image and an initial mo-
mentum are needed to parameterize the full deformation path.

4. Multi-Kernel: We use multiple Gaussian kernels [8] to simultaneously register
anatomical structures at different scales.

Works on registering the raw DWI data are few. To the best of our knowledge, the only
closest work is that of Dhollander et al. [9], where they achieved the goal by using SHs
[3] as well as a diffeomorphic demons algorithm [10]. Our method differs fundamen-
tally from theirs in three aspects: (1) We achieve reorientation by using Watson distri-
butions instead of SHs. This avoids the computational complexity of SHs as well as the
loss of sharp directional information when SH basis functions of insufficient order are
used; (2) Our method can work with single-shell DWI data, whereas their method re-
quires multi-shell data acquisition, which might be clinically infeasible; (3) Our method
explicitly considers large deformation.

2 Methodology

Below we will first describe the approach to reorienting DWI data in Q-space. We will
then focus on the simplified shooting algorithm used for registration. Finally, a summary
of the proposed method will be given.

2.1 Reorientation of DWI Data

To reorient the DWI data in Q-space we first decompose the diffusion signal profile
into a series of fiber basis functions (FBFs), which are based on the Watson distribu-
tion function [11]. We then apply a local transformation, computed from the estimated



Large Deformation Diffeomorphic Registration of Diffusion-Weighted Images 173

Shearing

= +
Reorientation

+ =

Fig. 1. Two fiber populations (gray lines) are shown together with their individual diffusion signal
profiles. When the two fiber populations cross each other, the acquired diffusion signal profile is
a combination of the responses from both fiber populations. As each fiber population transforms
differently with respect to a local transformation (horizontal shearing in this example), the pro-
file at the crossing should be decoupled, reoriented individually, and then recombined to form a
reoriented diffusion signal profile.

map, to reorient each FBF independently. Finally, we recompose the reoriented FBFs
to obtain the orientation-rectified DWI profile. See Fig. 1 for an illustration.

Diffusion Profile Modeling. Let S(qi) be the diffusion signal measured in direction
qi (i = 1, . . . ,M ). Our goal is to represent S(qi) in terms of a series of FBFs. As we
use a set of Watson distributions [11] to realize the FBFs, we can write

S(qi) = w0f0 +

N∑
j=1

wjf(qi|μj , κ), κ < 0, (1)

where f(q|μ, κ) = C(κ) exp(κ(μTq)2) is the probability density function of the
Watson distribution [11], q and μ are unit vectors indicating the diffusion gradient
direction and the mean orientation respectively, κ is a constant, and C(κ) is the nor-
malization factor. wj is the weight associated with each FBF f(·). f0 ≡ C(0) is a con-
stant representing the isotropic diffusion component. Given the diffusion signal profile
S = [S(q1), . . . , S(qM )]T, we have S = Fw, where w = [w0, w1, . . . , wN ]T and

F =

⎡⎢⎣f0 f(q1|μ1, κ) · · · f(q1|μN , κ)
...

...
. . .

...
f0 f(qM |μ1, κ) · · · f(qM |μN , κ)

⎤⎥⎦ .
Since typically, M < N + 1, we have a set of underdetermined linear equations. We
solve this using a L1 regularized least-squares solver with a non-negative constraint.
The reader is referred to [12] for details of the algorithm and evaluation.

Transformation and Recomposition. To reorient the direction of each FBF, μj , we
apply a local affine transformation A estimated from the map resulting from registra-
tion, i.e. μ′

j = Aμj/‖Aμj‖. A matrix of rotated FBFs, F′, can be then computed
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based on μ′
j . The transformed DWI signal S′ is finally computed as S′ = F′w. Note

that the isotropic component is not rotated.

2.2 A Simplified Geodesic Shooting Algorithm

We now describe the registration method for a pair of DWI data. To avoid the com-
putational complexity of a full adjoint shooting method [13], we follow the simplified
shooting approach [7]. However, we modify it to allow for a gradient descent directly
on the initial Hamiltonian momentum (the co-adjoint variable to the transported image,
instead of the vector-valued momentum).

Below we use I to represent a vector-valued image of a diffusion profile S at each
voxel location, and Ii to denote the i-th channel of I . Let I0 be the source image and I1
be the target image. Our goal is to minimize

E(v, I) =
1

2

∫ 1

0

‖v‖2V dt+
1

σ2

M∑
i=1

‖Ii(1)−Ii1‖2L2, s.t. Iit+∇(Ii)Tv = 0, Ii(0) = Ii0,

(2)
where v is the sought-for time-dependent velocity field, σ > 0 is a constant and ‖v‖2V =
〈L†Lv, v〉L2 , where L is a proper differential operator. Instead of defining L we define
a desired smoothing kernel K = (L†L)−1. We use a multi-Gaussian kernel [8] to
introduce a natural multi-resolution property to the solution and to provide an intuitive
way of parameter tuning based on the desired scales that should be captured by the
registration. Note that we run our algorithm with multiple iterations to minimize (2). In
each iteration, I0 is spatially transformed and reoriented using the map estimated in the
previous iteration (see Sect. 2.3 for details).

The minimization of (2) leads to the following optimality and boundary conditions:⎧⎪⎨⎪⎩
Iit +∇(Ii)Tv = 0, Ii(0) = Ii0,

−pit − div(piv) = 0, pi(1) = − 2
σ2 (I

i(1)− Ii1),

L†Lv +
∑M

i=1 p
i∇Ii = 0.

(3)

Note that ∇vE = L†Lv +
∑M

i=1 p
i∇Ii. Hence, instead of solving (3) as a boundary

value problem [6] we follow a simplified shooting approach [7], performing the gra-
dient descent only for t = 0. In contrast to [7], here we perform the gradient descent
directly on the {pi(0)} by pulling the final conditions {pi(1)} back to t = 0. This can
be accomplished by computing a backward map (from t = 1 to t = 0) on the fly during
a forward integration (from t = 0 to t = 1). To obtain the gradient with respect to these
momentum variables note that at convergence (or on a geodesic in general) for all times
L†Lv +

∑M
i=1 p

i∇Ii = 0. Therefore at t = 0

L†Lδv(0) +
M∑
i=1

δpi(0)∇Ii(0) = 0 (4)

because I(0) = I0 is known.
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In the vector-valued version of the standard LDDMM scheme [6] (which, given a
velocity field v uses a forward sweep for Ii and a backward sweep for pi) the Hilbert
gradient at t = 0 is computed as

∇v(0)E = v(0) + (L†L)−1

(
M∑
i=1

p̂i(0)∇Ii(0)
)
,

where p̂i(0) is the adjoint at t = 0 obtained after the forward sweep for Ii, which
allows the computation of p̂i(1) followed by a backward sweep for pi. Since v(0) =

−(L†L)−1(
∑M

i=1 p
i(0)∇Ii(0)) is the initial velocity given the current initial momen-

tum pi(0) the gradient can be rewritten as

∇v(0)E = (L†L)−1

[
M∑
i=1

(
p̂i(0)− pi(0)

)
∇Ii(0)

]
.

Substituting into (4) we obtain

M∑
i=1

δpi(0)∇Ii(0) =
M∑
i=1

(
pi(0)− p̂i(0)

)
∇Ii(0).

Since this needs to hold for any initial image I(0) it follows that ∇pi(0)E = pi(0) −
p̂i(0). Given the (on-the-fly) computed map Φ which maps t = 1 to t = 0 the gradient
is then∇pi(0)E = pi(0)− |DΦ|p̂i(1) ◦ Φ.

2.3 Summary of the Approach

We first use the method described in Sect. 2.1 to decompose both I0 and I1, and then run
the above geodesic-shooting LDDMM to iteratively transform and reorient I0. Specifi-
cally, we first estimate a global affine transformationAg between the anisotropy images
of I0 and I1. And then at each iteration, we (1) reconstruct both I0 and I1 with a de-
creasing κ and an increasing number of diffusion directions. I0 is reconstructed using
the FBFs reoriented with the map estimated in the previous iteration together with Ag ,
while I1 is reconstructed using the original FBFs with an identity map; (2) weight each
reconstructed image using the associated anisotropy image; (3) estimate the map be-
tween the weighted images; and (4) compose the resulting map with the one estimated
in the previous iteration. At the end of the registration we will obtain the final map
between I0 and I1 as well as a transformed and reoriented source image I ′0.

3 Experiments

The DWI data were acquired from 11 adults using a Siemens 3T TIM Trio MR Scanner
with an EPI sequence. Diffusion gradients were applied in 120 non-collinear directions
with diffusion weighting b = 2000 s/mm2. The imaging matrix is 128×128 with rectan-
gular FOV of 256×256 mm2. 80 contiguous slices with a slice thickness of 2 mm cover
the whole brain.
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We randomly chose a subject and used the associated data as the target image, and
used the rest of the data as the source images. We computed the anisotropy images of
all data and used them to estimate a set of affine transformations {Ag}. We then warped
each source image to the target image using the associated Ag and computed the mean
image of the anisotropy images of the warped source (Fig. 2b). This blurred mean image
implies that the DWI data cannot be well aligned by affine transformation.

We then used our method (3 iterations) to register each source image to the target
image. After registration, we reconstructed each source in the original 120 directions
using the associated Ag together with the resulting map. Averaging the anisotropy im-
ages across the subjects leads to the mean image shown in Fig. 2d. Repeating the above
process with the map generated in the first iteration gives the mean in Fig. 2c. We
found that our method significantly outperforms affine registration by producing a much
crisper mean. Further improvement can be achieved by running the registration multiple
times.

To quantify the comparison, we computed the RMS error between the vector-valued
voxels at corresponding positions. This was done between the target and each source
image, warped either using {Ag} or the map estimated by our method. Averaging the
resulting RMS error images across the subjects leads to the mean images shown in Fig.
2e-g. The mean and standard deviation (s.d.) of these mean images are 13.5±6.2 for
affine registration, 11.0±4.8 for the first iteration, and 10.3±4.6 for the final iteration.
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Fig. 2. Comparison of registration accuracy between affine registration and our method
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Fig. 3. A region of interest is indicated by the yellow circle in the left figure and some typical
ODFs associated with this region are given on the right. (a) and (d): the ODFs of the target
image; (b) and (e): the ODFs of the mean image generated using affine registration; (c) and (f):
the ODFs of the mean image generated using our method.

Target Multi-kernel Single-kernel

Fig. 4. Comparison of registration results given by multiple Gaussian kernels and a single kernel

We also labeled a set of salient landmark points (around the lateral ventricles) on the
anisotropy images. For affine registration we used {Ag} to warp the landmarks of each
source to the target space, and computed the mean and s.d. of the Euclidean distances
(in mm) between the warped landmarks and the corresponding landmarks on the target.
For our method this was done by using {Ag} as well as the resulting maps. The results
for affine registration, the first iteration and the final iteration are 7.0±3.0, 4.4±2.4 and
3.6±2.2.

The results from these two quantitative comparisons are in agreement with our ob-
servations based on the mean anisotropy images.

Figure 3 shows that at voxel level the alignment of the DWI profiles across sub-
jects can greatly benefit from registration using the proposed method. The ODFs of the
average DWI data can deviate significantly when registration is inaccurate.

To demonstrate the advantage of using multiple Gaussian kernels, we repeated the
above experiment by using only one Gaussian kernel. Figure 4 clearly shows that a
single kernel is unlikely to capture all shape variations that are present in the data.
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4 Concluding Remarks

We have described a method for direct registration of DWI data. Our method is capable
of producing spatially normalized DWI data, based on which any diffusion model can
be fitted for comparison purposes. Future work includes unifying the registration and
reorientation steps for further improvement on alignment accuracy as well as comparing
the performance of different diffusion models within the proposed framework.
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Abstract. We present a new method for the estimation of the next brain
MR scan in a longitudinal tumor follow-up study. Our method effectively
incorporates information of the past scans in the time series to predict
the future scan of the patient. Its advantages are that it requires no user
intervention and does not assume any particular tumor growth model.
Instead, the patient-specific tumor growth parameters are estimated in-
dividually from the past patient scans. To validate our method, we con-
ducted an experimental study on four patients with Optic Path Gliomas
(OPGs) and four patients with glioblastomas multiforma (GBM), each
scanned at five time points. The tumor volumes in the predicted and ac-
tual future scans, both segmented by an expert radiologist, yield a mean
volume overlap difference of 13.65% for the OPG patients, and 34.23%
for the GBM patients.

1 Introduction

Brain tumor detection, characterization, and follow-up using CT and MR images
is the current standard of care in neuroradiology. The decision making process
takes into consideration previous scans of the patient, and aims at detecting
visual clues (markers) that indicate tumor progression, regression, or stable dis-
ease. However, the estimation of these trends is a difficult task due to tumor
inhomogeneity, inter-scans variations, and the lack of practical tools to estimate
the tumor volume consistently and reliably.

The prediction of tumor growth is a challenging task. The natural growth
of tumor cells does not always adhere to a specific growth model. Additionally,
changes in the tumor growth resulting from different therapies are still largely
unknown and unexplored, and therefore are not amenable to analytic modeling.
Thus, in practice, prediction methods aim at providing a coarse estimate of the
future involvement areas of the tumor, rather than predicting the exact future
spatial extent and volume of the tumor.

The current literature on tumor progression prediction consists of two main
approaches. The first one relies on tumor growth models. The models describe
the evolution of the tumor cells over time at a microscopic and/or macroscopic
level. Hogea et al. [1] propose a model that couples glioma growth with the
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subsequent deformation of the brain tissue. Clatz et al. [2] describe a model that
simulates the volumetric growth of glioblastomas multiforma (GBM). The model
is derived from two subsequent MRI scans of a patient acquired at six months
intervals. While promising, the model parameters are independently estimated
from a single scan without incorporating the other parameters related to the
natural history of the patient.

The second approach to tumor progression prediction assumes a model derived
from the tumor growth pattern from the patient scans. For example, [3] shows
how to predict response to therapy based on the derived apparent diffusion co-
efficients (ADCs) values computed from diffusion-weighted magnetic resonance
imaging (DWMRI). Loncaster et al. [4] use measured volumes and signal inten-
sities in T1 MRI scans to predict radiotherapy outcome. Note that these works
focus on the prediction of response to a specific treatment on a predefined area
of interest rather than aim at predicting an entire future scan.

We present a new algorithm to compute the predicted MRI scan of the entire
brain based on imaging markers trends derived from the past scans of the patient
in a longitudinal study (the second approach above). The method computes the
optical flow of the voxels over time, and uses past motion vectors to predict a
new deformable field, which is then used to estimate the next scan in the time
series. Two key advantages of our method are that it takes into account multiple
past scans of the patient and that it can be applied to a variety of brain tumors
types since the tumor growth model prediction parameters are estimated from
the scans of the patient itself instead of from tumor-specific growth models.

Since most tumor types do not have predictable growth patterns, clinical
implementation of the method would focus on providing a visual interpretation of
future involvement regions of the tumor, under the assumption that it continues
its trends from the past. This additional source of visual information can be very
helpful in determining a situation of stable disease and for the decision making
process of patients who undergo a long-term and non-invasive treatment.

Universally accepted gold standards for the validation of future predicted scan
have not been developed yet. To provide an error measure for our method, we con-
ducted a study in which experienced radiologists blindly manually segmented the
tumor regions in the current, predicted, andactual future scans.The study included
four patients with Optic PathGliomas (OPGs) and four with GBMs. The compar-
ison between the tumors segmented volumes in the predicted scans vs the actual
future scans yield amean surface distance error of 0.4mmand 0.83mm, and amean
volume overlap difference of 13.65% and 34.23% for the OPG and GBM patients,
respectively. To the best of our knowledge, this is the first method that estimates
a future scan based on patient specific tumor growth trends in previous scans.

2 Method

The inputs to our method are N + 1 consecutive rigidly registered (with the
method in [5]) T1-weighted contrast-enhanced pulse sequence MRIs of the same
patient acquired at roughly equal time intervals, It, It−1, ..., It−N . The output is
the estimation of the next scan of the patient in the time series.
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The method consists of two steps. In the first step, the optical flow over time
for every voxel in the current scan is computed. In the second step, the future
transformation fields are estimated with an autoregressive model for groups of
voxels. Fig. 1 shows a representative slice from the past, current, predicted, and
actual future scans.

2.1 Temporal Optical Flow Computation

In this step, we compute the spatial path of each voxel in the current scan
over time. First, we find the non-rigid transformation field between every two
consecutive scans of the patient. We use the method of Kroon et al. [6], itself
adapted from [7], to MRI scans. For every pair of consecutive scans, the method
computes three transformation fields, one for every axis. This results in N for-
ward and backward transformation fields. The forward transformation fields are
{Ft−i(r̄)}Ni=1, where Ft−i(r̄) is the 3-dimensional forward transformation field
from scan It−i to scan It−i+1, and r̄ = (x, y, z) represents the spatial location in
the scan. Similarly, {Bt−i(r̄)}Ni=1 are the backward transformation fields.

Next, we define the motion matrix optical flow for the patient’s scans. The
matrix Ṽ is a 5-dimensional matrix whose dimensions are (scan dimensions)×
3 × N , representing the 3D motions of every voxel in the scan over time. We
defineV = Ṽ(r̄, ·, ·) as a 3×N matrix, whereV(r̄, i) is a 3×1 vector representing
the motion of the voxel in location r̄ from time (t− i) to (t− i+1). The elements
of V(r̄, i) are recursively computed by:

V(r̄, i) = Ft−i(r̄t−i+1 +Bt−i(r̄t−i+1)) (1)

where

r̄t−i+1 =

{
r̄ when i = 1
r̄t−i+2 +Bt−i+1(r̄t−i+2) otherwise

(2)

and r̄ is the location of the voxel in the latest scan, It. V(r̄, ·) is the spatial path
over time of a voxel from the baseline scan It−N to the current scan It.

2.2 Estimation of Future Transformation Field

Next, we estimate the future motion of a voxel based on its past motions. To
have sufficient statistical predictive power, we estimate the model parameters
for every group of voxels assuming that voxels with similar past motion values
follow the same prediction model. For this, we cluster all the voxels in the image
into groups based on their past spatial flow.

We use the K-means clustering algorithm to group the voxels in the scan
spatial space into K clusters based on their spatial flow over time, V. We obtain
K groups of voxels, where Ck is the number of voxels in the k-th group.

To predict the future scan of the patient, we estimate V(r̄, t), i.e. we predict
the future motion optical flow for each voxel. For every voxels cluster, we model
the future motion as a linear combination of past motions, expressed by an
autoregressive (AR) model:
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(a) (b) (c) (d)

(e)

Fig. 1. Illustration of our method on a representative slice of T1-weighted pulse se-
quence of an OPG tumor and its internal components: (a) past scan; (b) current scan;
(c) predicted scan; (d) actual acquired future scan – the tumor components are solid
(red), enhancing (green) and cyst (blue), and; (e) estimated future transformation field
projected on the scan plane and overlaid on the dashed area of the current scan – the
yellow arrows indicate the local direction of the estimated future transformation field.
Observe in the bottom right region of the image in (e) that the algorithm successfully
predicted the expansion of the cyst component of the tumor.

v̄l(i) =

p∑
j=1

Ak(j) · v̄l(i− j) (3)

where v̄l(i) denotes the 3D optical flow motions from time (t− i) to (t− i+1) of a
voxel in the k-th group, and p is the model order, p ≤ N . Note that k is the index
over clusters and l is the index of voxels in the cluster. The 3× 3 matrices Ak(j)
include the AR coefficients of the process, each corresponding to a specific lag, for
the k-th cluster. This model describes aMultiple-Input-Multiple-Output (MIMO)
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system, where the same prediction coefficients are used for all the voxels in the k-
th group. Minimizing the forward prediction error in the least squares sense for
this model, we obtain the Yule-Walker equations [8] of the MIMO model:

p∑
j=1

Ak(j)Rv(i − j) = Rv(i) 1 ≤ i ≤ p (4)

Note that, unlike the traditional MIMO case where Rv(n) is the autocorrelation
of a multivariate process at lag n, here Rv(n) is the spatial mean of the temporal
autocorrelation functions of the vl at lag n, i.e.:

Rv(n) = El(Ei[(v̄l(i)) · (v̄l(i+ n))]) (5)

Assuming that (v1(n), v2(n), ..., vCk
(n)) are independent, identically distributed

(i.d.d) with zero mean for every n, the sample covariance is:

R̂v(n) =
1

Ck

Ck∑
l=1

1

N − n

N−n∑
j=1

v̄l(j) · v̄l(n+ j)T (6)

Substituting (6) in (4) yields a set of linear equations which are solved with the
Levinson-Durbin recursion [8].

The result is an estimation for the forward transformation field, Ft(r̄) =
V(r̄, t). Figs. 1(e) and 2(e) show examples of these fields. Finally, this transfor-
mation field is applied to the current image, It to obtain the estimation of the
next future scan in the time series, ˆIt+1.

3 Experimental Results

We conducted a retrospective quantitative evaluation of our method with clin-
ical gadolinium enhanced T1-weighted MRI scan series of eight patients. Pa-
tients did not undergo surgical interventions during the period of the research.
Patients were divided into two groups. The first group consisted of four Neurofi-
bromatosis (NF) patients, 3-7 years old subjects with OPGs which were scanned
at approximately 6-month intervals. The second groups consisted of four adult
GBM patients which were scanned at approximately 2-month intervals. All scans
were acquired by a General Electric Signa 1.5T HDXT scanner. Each scan has
512× 512× 90 voxels with isotropic voxel size of 1mm3.

Every patient was scanned five times at different time points. The first four
scans were used to predict the fifth scan with our method. Based on empirical
tests, we set the model order p to 3. We tested the method’s performance for
different values of K in the range 50-500 and we obtained the optimal results for
our datasets at K=100. An expert radiologists manually produced tumor seg-
mentations for the current, predicted, and the actual future scans using Analyze
Direct 7.0 (Mayo Clinic, Rochester, MN).

Figs. 1 and 2 show representative results of the method. Table 1 shows the
volume overlap error (VOE) and the mean surface distance (SD) of the manually
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segmented tumor volumes in the predicted scans vs. the actual future scans.
Detailed explanation about our validation measures can be found in [9]. For
comparison, the same validation metrics were also computed for the segmented
tumors in the current scan vs. the actual future scan. It can be seen that the
method provides better results on GBM than OPG. This phenomenon can be
explained by the fact the GBM is an aggressive tumor, that changes much more
rapidly than OPG.

(a) (b) (c) (d)

(e)

Fig. 2. Illustration of the method on a representative slice of T1-weighted pulse se-
quence of an GBM tumor and its internal components: (a) past scan; (b) current scan;
(c) predicted scan; (d) actual acquired future scan – the components are: enhancing
(green) and necrotic (blue); (e) estimated future transformation field projected on the
scan plane and overlaid on the dashed area of the current scan – the yellow arrows
indicate the local direction of the estimated future transformation field. Note how the
algorithm successfully predicted the regression of the enhancing part of the tumor and
the enlargement of the necrotic area.
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(a) (b) (c)

Fig. 3. A representative slice of T1-weighted pulse sequence from (a) current scan;
(b) predicted scan, and; (c) actual acquired future scan. The arrow points to a new
region of involvement of the tumor. Note that the new area of involvement is clearly
noticeable in the predicted scan, although it is barely seen in the current scan.

Table 1. Volumetric overlap and mean surface distance of manual segmentation results:
Current and predicted scans vs. actual future scan. The p-values were computed with
the Wilcoxon signed rank test.

Volumetric overlap error [%] Mean surface distance [mm]

Patient #
Predicted vs.
Actual future

Current vs.
Actual future

Predicted vs.
Actual future

Current vs.
Actual future

OPG
patients

1 32.9 32.8 1.21 1.15
2 9.4 13.1 0.13 0.2
3 8.3 23.3 0.22 0.75
4 4 5.8 0.03 0.05

Average (OPG) 13.65 18.75 0.4 2.15

p-value (OPG) 0.25 0.375

GBM
patients

5 21.2 84.7 0.73 51.88
6 25.1 65.1 0.18 1.47
7 54.3 65.3 1.35 1.68
8 36.3 38.5 1.038 1.29

Average (GBM) 34.23 63.4 0.83 14

p-value (GBM) 0.125 0.125

We conclude from Table 1 that the VOE between the predicted segmented
tumor vs. the actual future tumor is in many cases substantially lower that
the one between the current and actual future ones. This indicates that when
the method successfully estimated the future growing trend of the tumor, the
predicted scan is more similar to the actual future scan than the current scan is.

A key new feature of our method is its ability to expand and emphasize new
regions of tumor involvement during their early stage, in which they can be
easily missed by the radiologist. Consider for example Fig. 3, which shows a
representative slice from the current, predicted, and actual future scans. Note
that while the infiltration of the cystic component into the slice can hardly be
noticed in the current scan, this trend is emphasized in the predicted scan. This
provides a clear early indication for this future involvement area of the tumor.

4 Conclusions

We have presented a new method for the estimation of patient’s future MR scan
based on his/her past scans based on an auto-regression model of the voxel’s
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optical flow over time. Since our method does not rely on a tumor-specific growth
model, it can be used for a wide variety of tumor types. Experimental results
on two types of brain tumors, OPG and GBM, show the successful prediction of
the tumor growth, in terms of volumetric tumor overlap with the segmentation
of the actual future scan.

A key advantage of our method is that it is fully automatic and that it does
not require any user intervention for tumor localization. Furthermore, it predicts
a whole scan rather than a specific tumor region of interest. Therefore, it has
the potential to emphasize, in the predicted scan, tumor regions in their initial
stage, that can hardly be noticed in the current scan.

Our method has several limitations. First, it cannot handle a surgical inter-
vention performed between scans, as the prediction based on scans before the
surgery most likely will hamper the prediction process. Second, the autoregres-
sive assumption might not hold for all cases. In these cases, a specific tumor
growth model has to be taken into account for a better prediction. Finally, the
method would fail to predict substantial changes in tumor growth, which have no
evidence in the past, or cases where the future trend of tumor growth is opposite
to the one seen in the past.

The potential clinical significance of the brain tumor prediction is to provide
the clinicians with a better picture of the tumor growth trends. The predicted
scan can then be used to detect future involvement area of the tumor and to assist
the decision-making process. Our future work will include the generalization of
the method to include other MR sequences in the prediction process. In addition,
we will examine the methods’ performance on other types of tumors.
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Abstract. We propose a new method to parcellate the cerebral cortex
based on spatial dependancy in the fluctuations observed with functional
Magnetic Resonance Imaging (fMRI) during rest. Our surface-based ap-
proach uses a region growing method. In contrast to previous methods,
locally stable seed points are identified on the cortical surface and these
are grown into a (relatively large 1000 to 5000) number of spatially con-
tiguous regions on both hemispheres. Spatially constrained hierarchical
clustering is then used to further combine these regions in a hierarchi-
cal tree. Using short-TR resting state fMRI data, this approach allows
a subject specific parcellation of the cortex into anatomically plausible
subregions, identified with high scan-to-scan reproducibility and with
borders that delineate clear changes in functional connectivity.

1 Introduction

A subdivision of the human cerebral cortex into anatomically and functionally
distinct regions has long been a fundamental goal in the study of the human
brain. Measuring Blood Oxygen Level Dependant (BOLD) signal fluctuations
during rest using functional MRI (fMRI) techniques allows studies of such func-
tional subdivisions in the living human brain. We propose a novel automated
procedure to derive such a partition (or parcellation) for an individual subject
using resting state BOLD data. Not only is this single subject approach able to
uncover fundamental organisational principles, but is also anticipated to better
reveal subject specific variations in human functional brain anatomy. Further-
more, the robust specification of cortical parcellations is a fundamental first
step in the definition and study of functional brain networks [1], which model
statistical dependencies between the parcel’s characteristic time-courses.

2 Methodology

A wide range of statistical tools has been used over the years to derive cor-
tical parcellations from resting state fMRI data. Methods include those based
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on ICA, spectral clustering, hierarchical clustering, k-means (or fuzzy k-means)
clustering, mixture model based clustering and many more [2,3,4]. Region grow-
ing approaches for fMRI-based parcellation have previously been suggested in
[5,6,7]. Our approach uses the following steps:

1. We use ICA based automatic de-noising of the data set.
2. We perform our analysis on the cortical surface.
3. We define a fairly large number of ‘locally stable’ seeds.
4. The seeds are then grown into spatially contiguous regions.
5. A cluster tree is build using spatially constrained hierarchical clustering.

2.1 Subjects and Data Acquisition

We used data from a previous study [8]. For each of the 5 subjects (ages 18-25, 3
males and 2 females) six 10-miniute fMRI datasets were acquired in a single ses-
sion (eyes closed) using the accelerated protocol describe in [9], providing whole
brain coverage at a TR of 0.8 seconds and with an isotropic spatial resolution
of 3mm. Data was acquired on a 3 Tesla standard commercial scanner (Siemens
Trio) equipped with 40 mT/m gradients with a slew rate of 200 mT/m/ms. In
each scanning session, a single EPI reference image was acquired between each of
the 10 minute blocks. A 1x1x1 mm3 resolution structural image (T1-weighted)
was acquired to aid registration. One of the subjects was scanned 3 times, on
separate days, so the full data-set consisted of 42 10 minute sections. Of these, 36
were no-task resting-state paradigms (30 with eyes closed, 6 with eyes open). The
remaining 6 scans (eyes open) used a silent backwards counting task. The imag-
ing protocol used for human studies was approved by the institutional review
board at the University of Minnesota. Each of the subjects provided informed
written and verbal consent prior to participating in the research.

2.2 Preprocessing

FSL (FMRIB’s Software Library) [10] was used for 1) head motion correction 2)
full width 200s temporal high-pass filtering and 3) ICA de-noised with spatial-
ICA using MELODIC [11]. 4) T1 images were segmented using FreeSurfer [12]
and the functional data was projected onto the cortical surface using FreeSurfer’s
mri vol2surf functionality.

2.3 Defining Locally Stable Seeds

BOLD signal to noise ratio (SNR) is not uniform across the cortical surface. How-
ever, there are currently no methods that would allow us to estimate this varying
SNR reliably. Nevertheless, measures used to assess functional connectivity will
indicate a decreased connectivity if spatially independent noise is present, so that
brain areas with higher noise contamination will in general show lower connectiv-
ity.To partially address the SNRproblem,we therefore propose an approach that is
based on the estimation of cortical locations that can be assumed to be less noisy.
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A further constraint we would like to impose on these locations is that they are
placed well inside a functionally homogeneous brain region.We calculate a spatial
map that encodes both of these properties. We here computed the local standard
deviation ina 3mmradius, that iswe subtract theROI’smean time course fromeach
of the ROI’s time-courses and then calculate the standard deviation of the concate-
nated demeaned time-courses. Larger ROI radii gave similar results (though this
produced smoother maps and thus fewer seed points). Seed points were found to
be distributed approximately uniformly over the cortex.

To further reduce the variance of the estimated map (at the expense of spa-
tial resolution), we post-process the map using a surface based Gaussian kernel
smoother with a full width half max of 2.35mm (σ = 1mm). Seed voxels are
then found as the local minima within the smoothed map.

2.4 Growing the Seeds

Seeds are grown into different clusters using region growing. Pearson correla-
tion is calculated between the seed’s time-course and the time-courses of its
neighbouring vertices. Neighbouring vertices are then joined to a seed’s clus-
ter if their similarity measure is within 90% of the maximal similarity found
within this iteration. The 90% threshold was chosen to provide a good compro-
mise between speed (higher thresholds require more iterations) and performance
(lower thresholds increase the possibility of suboptimal assignment). This step
is repeated iteratively until all vertices are assigned. For each cluster, the neigh-
bouring vertices not yet assigned to a cluster are selected and their similarity
to the neighbouring cluster’s seed time-courses is calculated and vertices are
again assigned to clusters if their time-course similarity is within a fraction of
the maximum such similarity.

2.5 Clustering the Seed Regions Using a Spatial Constraint

The number of seeds depends to some extent on the size of the neighbourhoods
used to define the original stability map as well as on the amount of smoothing
used. The parameters described above led to a smoothness that produced ap-
proximately 1000 seeds on each cortical hemisphere, though we also tried less
smooth maps, which produced roughly 3000 seeds per hemisphere (final cluster-
ing results were marginally worse when using the larger number of seeds).

Whilst there is no ‘correct’ resolution, the number of seeds produced by the
above approach is still much larger than that used typically in functional con-
nectivity studies or expected from a cytoarchitectonic atlas. We thus devised
a spatially constrained hierarchical clustering approach to further combine re-
gions hierarchically. The spatial constraint ensured that at each resolution in the
cluster tree, the parcellation consists of spatially connected regions.

We calculated Pearson’s correlation between all of the regions time-courses
and also defined a neighbourhood structure between clusters. Clusters are then
joined iteratively by 1) joining two neighbouring clusters whose similarity was
maximal among all neighbouring clusters; 2) updating the similarity profile for



Resting-State FMRI Single Subject Cortical Parcellation 191

the joint clusters and their neighbours using a linkage rule. We use the linkage
function proposed by Ward [13], even though Ward’s method assumes Euclidean
distances instead of correlations. Importantly, this procedure produces an entire
cluster tree and not just a single parcellation. The tree can then be cut at a
desired resolution, depending on the application.

3 Results

Evaluating parcellation methods is difficult, as no ground truth is available. We
thus here look at several necessary conditions a good cortical parcellation should
satisfy. The first requirement is that the method should produce similar parcella-
tions when run on different data sets derived from the same subject. We will use
this as our main measure of the quality of the parcellation, though it is important
to realise that this measure is not sufficient to characterise neuro-anatomically
meaningful parcellations. For example a parcellation approach might be biased
in terms of the size or shape of parcels it returns and many of these biases would
also increase scan-to-scan reproducibility artificially.

3.1 Scan to Scan Reproducibility

In our data set we have two sets of 6 10-minute scans acquired from the same
subject under identical conditions. We used this data-set to generate two par-
cellations. To reduce potential variability in the results due to scanning day or
order effects, we used the first, third and fifth scan from session one together
with the second, fourth and sixth scan from session two to generate the first
parcellation. The second parcellation was derived from the remaining six scans.

Similarity between two parcellations was measured using the dice coefficient.
Instead of measuring the dice similarity between any two pairs of clusters in
two parcellations, we first matched clusters. This was done by matching the two
clusters that have the largest dice similarity. This process was repeated (with
already matched clusters removed from further comparison). Dice similarities
between matched pairs were then averaged to get a scalar measure of parcellation
similarity.

The left panel in Figure 1 plots the dice similarity (y-axis) for parcellations
obtained by cutting the hierarchical cluster tree at different resolutions (x-axis).
We also show the results we obtained with other approaches in Figure 1. See the
caption for details and references.

The only approach which we found to performed similarly to our method
was a locally constrained normalised cuts (NCUTS) spectral clustering method
where the similarity matrix was constrained to spatial neighbourhoods. How-
ever, looking at the parcellations found with this approach (shown in Figure
2(b)), it appears that this method produced clusters that are less anatomi-
cally convincing than those derived with our approach (shown in Figure 2(a)).
In particular, NCUTS completely failed to identify the sensory-motor cortex,
which is parcellated into body and face regions with the region growing method.
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Fig. 1. Dice similarity between matched parcellations vs. parcellation size calculated
for parcellations from different datasets of the same subject before (left) and after
(right) joining split clusters. Region growing approach with ∼1000 (RG1000, red) and
∼3000 (RG3000, orange) seeds outperforms all other tested approaches over a range of
parcellation resolutions. Also shown is a small subset of the results obtained with other
methods (including the next best performing methods NCUTS with a local correlation
similarity measure (NC LC, blue) [4] a spectral clustering approach to optimise network
modularity (MC LC, black) [14] and a hierarchical clustering approach using Ward’s
linkage rule (HW LC) [13], both again with a locally restricted correlation similarity
measure. For comparison, the results obtained by the same approaches with a different
similarity matrix (a correlation matrix in which values were thresholded so that only
1% of the entries in each column/row where non-zero [2]) are also shown ({NC, MC,
HW} t0.01C).)

The stark difference between the results obtained with our approach and those
found with NCUTS seems to be mainly due to NCUTS being strongly biased
towards a parcellation with clusters of similar size (compare the histogram inlays
in figure 2). Note that the effect of this bias in NCUTS reduces if the number of
parcels increases (hence the dice measure decreases for NCUTS in figure 1 with
increasing resolution, whilst dice incases for all other methods).

Due to noise effects, a region is sometimes split into two parcels in one parcel-
lation, whilst in another parcellation the regions have been joined. To account
for this effect, when comparing parcellations, we produced matched parcellations
in which any two clusters in one parcellation that each overlapped more than
50% with a cluster in the second parcellation, were joined iteratively. Dice sim-
ilarity after this joining operation is shown in the right panel of Figure 1. Also
note that the parcellations shown in Figure 2 are those found after this joining
operation and that colours were matched to ease comparison.
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(a) Our region growing approach

(b) NCUTS with locally constrained correlation [4]

Fig. 2. Same subject parcellation with joint clusters from data-set 1 (left) and dataset
2 (right). Histogram inlays show the distribution of parcel sizes. Parcel colours have
been matched to ease comparison.

3.2 Borders Represent Changes in the Connectivity Profile

Finally, to show that the borders of the derived parcellations indicate changes
in functional connectivity, we drew a path1 along the cortical surface (shown
on the left in Figure 3). Using a different data-set (from the same subject) to
that used to derive the parcellation itself. we calculated correlations between the
time-series of each vertex along the path (the correlation matrix (thresholded
at ±0.4) is the lower left part of the matrix on the right of Figure 3) and also
calculated a connectivity profile feature vector for each vertex along the path
(this feature vector was the r to z transformed correlation between the vertex
time-series and the time-series of 1000 randomly chosen but fixed target vertices
on the cortical surface). The correlation between these feature vectors is shown
as the upper triangular part of the matrix. Parcellation borders (black lines)
align with significant changes in the connectivity profile.

1 The path was chosen so that it roughly crosses parcellation borders at a right angle.
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Fig. 3. Path drawn on the cortical surface together with the parcels the path crosses
(left) and the correlation (lower left) and connectivity (upper right) profile along the
path with parcel borders shown as black lines (right).

4 Conclusions

A subject specific cortical parcellation based on resting state functional MRI
data has many applications in the study of functional neuro-anatomy and func-
tional brain connectivity. We have proposed an approach that shows high scan-
to-scan reproducibility and was able to derive parcellation borders that clearly
follow changes in the functional connectivity profile. Comparison to other ap-
proaches demonstrates the superiority of the proposed approach. Whilst single
subject based methods are desirable, they also remain limited in the quality
achievable with a single subject’s data set and even using 60 minutes of high
quality data as done here, parcellations do not yet reach the resolution and
reliability desirable for detailed anatomical study. To overcome this, we are cur-
rently working on approaches that stabilise single subject parcellations using
multi-subject data-sets in a more robust way than is achievable currently with
registration based on gross anatomical features.
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Abstract. We propose a framework for quantifying node-level commu-
nity structures between groups using anatomical brain networks derived
from DTI-tractography. To construct communities, we computed hierar-
chical binary trees by maximizing two metrics: the well-known modular-
ity metric (Q), and a novel metric that measures the difference between
inter-community and intra-community path lengths. Changes in commu-
nity structures on the nodal level were assessed between generated trees
and a statistical framework was developed to detect local differences be-
tween two groups of community structures. We applied this framework to
a sample of 42 subjects with major depression and 47 healthy controls.
Results showed that several nodes (including the bilateral precuneus,
which have been linked to self-awareness) within the default mode net-
work exhibited significant differences between groups. These findings are
consistent with those reported in previous literature, suggesting a higher
degree of ruminative self-reflections in depression.

1 Introduction

Modern imaging techniques have allowed us to construct anatomical (structural)
and functional networks of the human brain and a new term - the human “connec-
tome” [1] has been recently coined to describe their mathematical properties. A
brain connectivity network consists of nodes which represent gray matter regions
and edges connecting nodes which represent white matter fibers. Many tools and
metrics have been adapted from the field of graph-theory to help characterize and
analyse the human connectome [1-2]. It has been shown that brain networks are
sparse (networks having the number of nodes in the order of the number of edges)
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[3], thus allowing the investigationof their community structureproperties inwhich
nodesmaybegrouped intodifferent communities [4, 5] (in our context, “community
structure” is a property for sparse networks, which allows us to extract the topo-
logical organization of a network and to partition it into a set of non-overlapping
communities, sometimes also referred to as modules or clusters).

Studying the structural organization of the brain communities has lately shed
light on alterations related to aging [6, 7] as well as neuropsychiatric disorders
such as schizophrenia [8-12]. In this paper, we proposed a novel metric, with
which we extracted community structures in the form of top-down binary trees
(also known as dendrograms). This is followed by the computation of a node
“consistency metric”, designed to quantify differences between trees at each
node. To our best knowledge, we are the first group to propose a recipe for quan-
tifying node-level community differences between two groups of brain networks.
Lastly, statistical analyses were conducted to detect significant community al-
terations on the nodal level for group studies. We tested the proposed method
and compared the binary trees generated from the structural brain networks of
depressed versus normal control subjects. Significant changes were found on the
nodal level in the community structure in depression relative to controls.

2 Methods

2.1 Image Acquisition

We scanned 47 healthy subjects (20 male/27 female; age: 59.74±14.8)) and 42
subjects with major depression as defined by DSM-IV (18 male/24 female; age:
57.64±13.4). A Philips 3.0 T Achieva scanner supplied with 8-channel SENSE
head-coil located at the University of Illinois Medical Center Advanced Imaging
Center was used to acquire the brain MRI data. High resolution T1-weighted im-
ages were acquired with MPRAGE sequence (FOV=240 mm; TR/TE=8.4/3.9
ms; flip angle 8◦; voxel size 1.1x1.1x1.1mm). Diffusion weighted (DW) images
were acquired using SS-SE-EPI sequences (FOV = 240 mm; resolution 0.83X0.83
mm; TR/TE=6994/71 ms; flip angle = 90◦, 32 gradient directions, b= 700
s/mm2 and one minimally DW scan: b0 image). Parallel imaging was also used
with a SENSE factor of 2.5 to reduce scan time to ∼ 4 min.

2.2 Brain Network Construction

Structural brain networks were generated using a pipeline which integrates mul-
tiple image analysis techniques. First, DW images were eddy current corrected
using the automatic image registration (AIR) tool embedded in DtiStudio soft-
ware (http://www.mristudio.org) by registering all DW images to their corre-
sponding b0 images with 12-parameter affine transformations. This was followed
by the computation of diffusion tensors and deterministic tractography using the
DtiStudio program. T1-weighted images were used to generate label maps us-
ing the Freesurfer software (http://surfer.nmr.mgh.harvard.edu). Brain networks
formed by the 68 cortical regions were generated using an in-house program in
Matlab by counting the number of fibers connecting each pair of nodes.
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2.3 Hierarchical Trees Creation

Measuring community structure has been a scientifically important task in net-
work science. To this end, we note that nodes belonging to the same commu-
nity should exhibit stronger connections than those in different communities.
A well-known metric for such task is the Q modularity proposed in [13] and is
mathematically defined as:

Q (G) =
1

2m

∑
i	=j

(
Aij −

kikj
2m

)
δ (i, j) (1)

where Q is a function of a graph G, m is the total number of edges, Aij = 1 if
an edge links nodes i and j and 0 otherwise, δ(i, j) = 1 if nodes i and j are in the
same community and 0 otherwise, and ki is the node i’s degree (its number of
edges). Extracting the community structure of a network is obtained by finding
the set of non-overlapping modules that maximizes Q. Here, we further propose
an alternative maximization problem with respect to a novel metric. This new
metric is defined as the difference between the mean inter- and the mean intra-
modular path lengths (interPL/intraPL). For two communities Ci and Cj the
interPL and intraPL are defined as:

inter
Ci↔Cj

PL =

∑
n∈Ci,m∈Cj

dnm

NiNj
, intraCi

PL =

∑
n,m∈Ci;n>m dnm

(N2
i −Ni) /2

(2)

where Ni denotes the number of nodes in a community Ci, dnm denotes the
shortest path length connecting nodes n and m. In the case of two modules, for
example, the alternative metric ΨPL is defined as:

ΨPL = interC1↔C2

PL − 1

2

[
intraC1

PL + intraC2

PL

]
(3)

Here, notice that intraCi

PL can be considered the weighted characteristic path
length (a measure of global network integration) defined on the sub-network
formed by Ci. Thus, maximizing ΨPL is equivalent to searching for a set of
communities that exhibit stronger sub-network integration. Since path length is
based on the number of fibers, ΨPL may provide a more anatomical basis for
defining community structure.

There exist two main types of hierarchical clustering techniques: the agglom-
erative and the divisive. The agglomerative method starts bottom-up. At the
first level, every node is a community by itself. In each subsequent step (level),
two communities that are considered closest (with respect to a similarity mea-
sure) are merged into one, until all nodes are in one community. The divisive
method follows the opposite or a top-down approach. It starts with all nodes
belonging to one single community, and at each step each community is further
split into several sub-communities (unlike the agglomerative method, the divisive
clustering usually uses a dis-similarity measure). It should be noted that one may
choose to stop the clustering process at a pre-specified level (stopping criteria
can be a given number of communities or the optimization of a quality function
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[14]). Here, to maximize Q or ΨPL, we used a top-down hierarchical clustering
approach, as it has been suggested that agglomerative methods may fail to find
correct communities in networks where the community structures are known a
priori [13]. At the first level, brain regions were randomly assigned to one of two
communities, and optimal assignment was determined by maximizing Q or ΨPL

using the well-known simulated-annealing algorithm [15]. The process is repeated
at each level until a 4-level dendrogram is reached (a total of 16 communities).
One million random permutations were used at each optimization stage.

2.4 Community Structures Difference Assessment

In order to assess local differences between communities in different groups, we
first construct the mean binary tree for the control group (by maximizing Q or
ΨPL, with respect to the mean connectivity matrix for this group). All individual
subjects’ trees will then be compared to the mean control tree. To this end, a
local metric is needed to quantify how two trees differ. One candidate metric is
via the consistency metric assessment method introduced in [16], which yields a
consistency vector V of length equal to the number of nodes in the network (68
in our case). To compute V, we need to first construct a LxM similarity matrix
XR that compares any module in a test tree (i.e., the individual subject’s tree in
our framework) to any module in a reference tree (the mean tree for the control
group). Here L and M are the number of communities in the test and reference
trees; in our case L = M = 16. Mathematically, for any two communities Cp

and Cq belonging to the test tree and the reference tree respectively, the (p, q)th

entry XR(p, q) in XR is calculated using the following equation:

XR(p, q) =
N2

pq

NpNq
; p = 1, ..., L; q = 1, ...,M (4)

where Npq denotes the number of common nodes between the two communities
Cp and Cq, and Np and Nq the number of nodes in community Cp and Cq.
Values in XR range from 0 to 1, with 0 indicating no overlap between the two
communities and 1 identical communities (numerically, XR(p, q) thus represents
the similarity between community Cp in the test tree and community Cq in
the reference tree). With the computation of XR, the consistency vector V now
can be constructed as follows. First, we identify the maximum entry in each
column of the XR matrix. For the qth column corresponding to community Cq

in the reference tree, if the maximum exists in the pth row corresponding to
community Cp in the test tree, we assign this value to the kth element of V,
for all k ∈ {Cp ∩ Cq}. Although V provides a node-level measurement of how
“consistent” the test tree’s community structure is with respect to that of the
reference tree, it should be noted that with this definition, V may yield zero
values. We thus proposed a modified non-zero node-level consistency measure
(Vm) for each node k as follows:

V m(k) =
(Nc)

2

NpNq
, k = 1, ..., 68 (5)
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where Nc denotes the number of common nodes between the two communities
Cp and Cq, that contain this node k in the test and reference trees respectively.

2.5 Statistical Analysis

To statistically test group differences in community structures at the nodal
level, all individual subjects’ trees (both depressed and control) are compared
to the mean control reference tree, thus yielding 47 V or Vm vectors in the
healthy group, and 42 in the depressed group. Group differences on local com-
munity structures can now be assessed using node-wise 2-sample Mann-Whitney-
Wilcoxon (MWW) tests for V (due to the existence of zero values) or node-wise
2-sample T-tests for Vm followed by correcting for multiple comparisons. Alter-
natively, a more powerful test can be constructed via a multivariate distribution
for each community in the 4th level binary tree of the mean normal group (16
total modules), by concatenating the V or Vm vectors of all nodes in this com-
munity, on which 2-sample Hotelling’s T-squared tests can be conducted.

3 Results

3.1 Comparison of Modularity Measures

We first generated and compared the mean community structures of the normal
controls in this study, using both Q and ΨPL (figure 1). Note that in the first
level of the binary tree (partitioning the brain into two modules), the constructed
mean tree using the Q function exhibits an exact left/right separation while the
tree generated using ΨPL shows an anterior/posterior partition of the human
brain (the left-right separation represents the second level partitioning using
the proposed metric; the mean community structure of the studied depressed
subjects is shown in right panel of figure 1). The second level partitioning using
ΨPL also generated more unified communities compared to the Q function.

3.2 Group Difference

To detect community structure abnormalities in depression, we constructed the
Hotelling T-squared statistics as described in the method section for all 16 com-
munities in the reference tree. Results showed a significantly lower consistency
(p = 0.0079) in depression versus control for the community containing the
right precuneus, superior parietal gyrus, inferior parietal gyrus, inferior tempo-
ral gyrus, and isthmus cingulate (figures 2 and 3). On a node level, conducting
2-sample T-tests or the MWW-test on Vm or V confirmed such findings (ta-
ble 1). The right precuneus and superior parietal gyrus exhibited the lowest
node-level consistency (p < 0.01; uncorrected). Comparing the mean commu-
nity structures between two groups, we note that the right precuenus and right
superior parietal gyrus, while belonging to the same community in the healthy
controls, are assigned to different communities in the depressed group. Addi-
tionally, in depression the bilateral precuneus are assigned to one community,
suggesting a stronger structural integration between them (figure 3).
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Fig. 1. First two levels of modular or community structure via the Q modularity (left)
and ΨPL (right). Notice that at the first level, the constructed mean tree by maximizing
Q exhibits a left/right parcellation while the constructed mean tree using ΨPL exhibits
an anterior/posterior partitioning along the frontal-parietal junction.

Fig. 2. Hotelling’s T-Squared statistics are overlaid on the 16 communities of the ref-
erence tree, showing regional group differences in the community structure between
groups. The most significant differences are in the right precuenus and superior pari-
etal gyrus. This figure is showing a left/right lateral view (top), an axial view (middle)
and a left/right mid-line view (at the bottom). The community containing the right
precuneus and the right superior parietal gyrus is highlighted in red.
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Fig. 3. 4-level binary trees showing mean community structures via the proposed met-
ric ΨPL for the healthy controls (left) and the depressed subjects (right). Notice that
the right precuneus and right superior parietal gyrus belong to the same community
in the healthy controls but not in the depressed group. Additionally, in the depressed
group the right and left precuneus are assigned to one single community (which also
comprises bilateral isthmus cingulate).

Table 1. List of nodes which showed significantly lower node-level consistency in de-
pression relative to healthy controls at p < 0.01 (uncorrected). The table shows mean
and standard deviation values using both MWW (for V ) and 2-sample T-tests (for
Vm), and their corresponding p values.

Healthy Depressed p-value

right-precuneus
MWW-test 0.2373 ± 0.1815 0.1281 ± 0.1311 0.0044

T-test 0.2645 ± 0.1501 0.1784 ± 0.0908 0.0019

right-superiorparietal
MWW-test 0.2088 ± 0.1773 0.1007 ± 0.1376 0.0032

T-test 0.2374 ± 0.1475 0.1524 ± 0.1106 0.0033

4 Discussion and Conclusion

In this paper we presented a new approach to construct hierarchical community
structures from weighted structural brain networks. Our proposed metric took
into account the path lengths within and between communities, and we used
simulated annealing to construct top-down four-level binary trees. Moreover, we
are the first to develop a statistical framework that allows for the quantifica-
tion of node-level community structural differences between two groups of brain
networks, via the consistency vector metric. This framework was validated on
a sample of depressed patients. Results revealed local community differences in
parts of the default mode network (especially the right precuneus), which has
been previously linked to self-awareness and shown to exhibit abnormalities in
depression [17, 18].
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Abstract. In this paper, anatomical development is modeled as a collec-
tion of distinctive image patterns localized in space and time. A Bayesian
posterior probability is defined over a random variable of subject age,
conditioned on data in the form of scale-invariant image features. The
model is automatically learned from a large set of images exhibiting sig-
nificant variation, used to discover anatomical structure related to age
and development, and fit to new images to predict age. The model is
applied to a set of 230 infant structural MRIs of 92 subjects acquired at
multiple sites over an age range of 8-590 days. Experiments demonstrate
that the model can be used to identify age-related anatomical structure,
and to predict the age of new subjects with an average error of 72 days.

1 Introduction

The human brain undergoes dramatic developmental changes in the first years
of life. Structural MR imaging offers the potential to model these changes over
time and across the human population, in order to understand normal growth
patterns and assess potential disorders [1], for example neurodevelopmental dis-
orders relating to pre-term birth [2,3]. Anatomical development is closely tied
to chronological age, and computational tasks of interest include automatically
learning links between anatomical image structure and age, and predicting the
age or developmental stage of new subjects.

A number of methods are used to analyze aging in structural MRI of the adult
brain, e.g. group analysis via voxel-based morphometry (VBM) [4], growth pat-
terns of dilation and contraction [5], discriminative classifiers [6,7,8]. These meth-
ods generally require accurate intensity-based segmentation and registration,
tasks which remain research challenges in the context of the infant brain [9,1]
due to pronounced intensity changes over the course of development, e.g. the
contrast inversion of white/grey matter during myelination [10]. Infant tempo-
ral atlases are thus often treated as templates constructed over relatively narrow
age ranges via age-specific registration and segmentation methods [11,12,9], and
quantitative analysis has been largely limited to measures of growth, e.g. tis-
sue volume changes [2,3,13]. Modeling dynamic image measurements across the
infant developmental age range remains a challenge.
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This paper proposes modeling development as a collection of distinctive, con-
ditionally independent image features, localized in space and time. Anatomical
structure is modeled as persisting over limited spatial and temporal windows,
and as potentially only occurring in subsets of subjects. This provides a natural
means of describing phenomena such as the disappearance/emergence of struc-
ture, spatially varying developmental rates, natural inter-subject variability and
pathology. The model is based on scale-invariant features [14,15], distinctive
image patterns that can be robustly extracted in the presence of global image
deformations including scale changes, and that can therefore offer an informa-
tion source complementary to typical growth measures such as volume change.
Our model builds on the approach of [16], where local image features are used
to construct a binary classifier for Alzheimer’s disease in T1 MRI data. Here, a
posterior probability is defined over a continuous variable of age, conditioned on
feature data. Anatomical structure is modeled as a latent variable conditioned
on age, and hypothesis testing is used to identify features most informative
regarding age. The model is trained from combined cross-sectional and longitu-
dinal data, in order to identify age-informative anatomical structure, and age is
predicted via maximum a-posteriori estimation.

Experiments demonstrate several important advancements on the state-of-
the-art. The model can be automatically trained from a large set of infant T1-
weighted MRI data, acquired at multiple sites and scanners. Spatially-localized,
age-related anatomical patterns are discovered across the infant age range, in-
cluding white matter myelination. Cross-validation trials predict subject age
with an average error of 72 days, which to our knowledge is the first published
result for automatic infant age prediction from structural MRI data.

2 Feature-Based Developmental Model

The proposed model hypothesizes the existence of anatomical features that can
be localized in time and space, and used to represent development in structural
MRI data. Scale-space theory provides a framework for identifying both the
location and spatial extent of such features [14], and forms the basis for invari-
ant feature detection methods widely adopted in the computer vision commu-
nity [17,15]. So-called scale-invariant features are spherical image regions char-
acterizing the 3D location x and scale σ of distinctive image patterns. They can
be automatically extracted from images via Gaussian derivative operators, for
instance as extrema in the difference-of-Gaussian (DoG) scale space [15]:

{xi, σi} = local argmax
x,σ

{|G(σ) ∗ I(x) −G(κσ) ∗ I(x)|} , (1)

where I(x) is the image, G(σ) is a Gaussian kernel of variance σ2, and κ is a
constant defining the multiplicative sampling rate in scale. The DoG is a compu-
tationally efficient approximation to the Laplacian-of-Gaussian operator, which
is effective in identifying natural blob-like image structures. Once identified, im-
age content within each region (xi, σi) is cropped and rescaled to a fixed-size re-
gion, then encoded as an appearance descriptor for computing feature-to-feature
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correspondence. The gradient orientation histogram (GoH) descriptor has been
shown to be among the most effective for image-to-image matching [17], here a
3D variant with 8 orientation and 8 spatial bins is computed from 11× 11× 11
normalized voxel regions. Due to spatial normalization, the scale-invariant fea-
ture representation is independent of isotropic image scaling, and is thus partic-
ularly useful in characterizing local anatomy independently from global growth
or volume change.

2.1 Probabilistic Model

Let Ī = {Ij} represent a set of local features extracted in a subject image I,
and let A represent a random variable of age. The posterior probability of A
conditioned on data Ī can be expressed using Bayes rule as:

p(A|Ī) = p(Ī|A)p(A)/p(Ī), (2)

where p(Ī|A) is the likelihood of A associated with data Ī, p(A) is the posterior
probability of A, and p(Ī) is a constant as data Ī are fixed. Under the assumption
of conditionally independent local feature measurements, the likelihood can be
expressed as:

p(Ī|A) =
∏
j

p(Ij |A), (3)

where p(Ij |A) is the likelihood associated with an individual observed feature Ij
and age A.

An image set is naturally described in terms of distinctive local structure
shared across images, for instance the human brain can be described by cor-
pus callosum, ventricles, etc. The model here adopts a description based on a
code book of distinctive image features. Let F = {fi} represent discrete random
variable, where event fi indicates a distinct mode of feature appearance and ge-
ometry. Applying marginalization and Bayes rule, the likelihood in Equation (3)
is expressed as:

p(Ij |A) =
∑
i∈F

p(Ij , fi|A) =
∑
i∈F

p(Ij |fi, A)p(fi|A). (4)

In equation (4), p(Ij |fi, A) represents the likelihood of feature fi and age A
associated with Ij , which can generally be taken to be a unimodal Gaussian
density over feature parameters of location, log scale and appearance descriptor
elements. Factor p(fi|A) is the conditional probability of fi given age A, and is
modeled as a multinomial distribution.

2.2 Learning, Analysis, Fitting

The goal of model learning is to generate a code book F = {fi} of model
features characteristic of a training image set, and to estimate associated age-
related factors p(Ij |fi, A) and p(fi|A). Prior to learning, training images are
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normalized to a common reference space via a global coordinate transformation
to an atlas template, e.g. a similarity or affine transform. Scale-invariant features
are then extracted from each image, and a code book F = {fi} of model features
representative of the image data is generated. A number of approaches could be
used for this purpose, here we adopt a robust clustering strategy [16] similar
to the mean-shift algorithm [18], which identifies clusters of features that are
similar in terms of geometry and appearance across subjects. Each cluster fi is
characterized by a prototype feature, and cluster membership is defined by fixed
thresholds on geometrical distance (location, log scale) and learned thresholds on
appearance descriptor distance [16]. Note that this clustering procedure identifies
a large, arbitrary number of clusters, and is capable of robustly grouping features
despite imprecision in approximate inter-subject image alignment.

With model features defined, factors in Equation (4) are estimated from fea-
ture samples in clusters fi. Age A is defined as a discrete random variable over
K age categories. Gaussian mean and variance parameters of p(Ij |fi, A) are
estimated via maximum likelihood for each age category, probability mass pa-
rameters of p(fi|A) are determined via maximum a-posteriori (MAP) estimation
from co-occurrence counts of fi, A and a Laplace prior. While fi generally repre-
sents a distinctive anatomical structure, a special model feature f0 is reserved for
spurious features arising from background noise. As such features can vary ar-
bitrarily in geometry and appearance, p(Ij |f0, A)p(f0|A) is taken to be uniform
and constant.

Model fitting is used to interpret image data associated with a new subject in
terms of the entire code book F , and to estimate the age or developmental stage.
Fitting aims to identify the MAP age estimate AMAP maximizing the posterior
probability:

AMAP = argmax
A

{p(A|Ī)}. (5)

As in learning, the image is first spatially normalized via subject-atlas align-
ment. Image features are then extracted and matched to model features, where
a match occurs between image and model feature pair (Ij , fi) if the Euclidean
distance between their normalized geometry and appearance descriptors falls
within geometry and appearance thresholds associated with fi. Equation (5) is
then evaluated via Equation (4) at each discrete age value to identify AMAP .

3 Experiments

Experiments validate our model on infant brain development in T1-weighted
MRI data from the data set of [19], consisting of 92 healthy subjects imaged
from one to seven times over an age range of 8-590 days, for a total of 230
images. All subject images are robustly aligned to a single subject arbitrarily
selected as an atlas via a similarity transform (rigid + isotropic scaling). Align-
ment correctness is validated by inspection of resampled images and alignment
parameters. Scale-invariant features are extracted in individual aligned images,
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after which clustering is used to generate a code book F of model features for
analysis. Finally, age-conditional factors p(Ij |fi, A) and p(fi|A) are trained based
on F and subject age labels A, where A is discretized into 10 bins with equal
image counts and approximately equal age ranges. The prior p(A) can be set
according to expectations, here it is taken to be uniform.

3.1 Age-Related Structure

Distributions p(fi|A) quantify the probabilistic relationship between learned
anatomical features and age. A variety of criteria could be used to quantify
the informativeness of this relationship; we found that information-theoric mea-
sures such as entropy tend to overemphasize the importance of spurious, low
entropy distributions generated from small numbers of data samples. Here, we
consider a Fisher’s exact test computed from a 2x2 contingency table of the pres-
ence/absence of feature fi within/without a 2-category (120-day) age window.
The null hypothesis is that feature/age are statistically independent, in which
case their co-occurrence follows a hypergeometric distribution, which effectively
accounts for small sample sizes.

From a total of 6.5K learned model features, 36 are identified with a false dis-
covery rate [20] of 0.05. Figure 1 illustrates the 20 features bearing the most sig-
nificant relationship with age. Note that significant features show a high degree
of symmetry, out of 20 features, eight represent homologous structure identified
independently in opposite hemispheres with similar age distributions, another
three represent midbrain structure.

3.2 Age Prediction

Model fitting allows age prediction from individual subject images, which may
be potentially useful assessing developmental stage. A five-fold cross validation
paradigm is adopted, where subjects are randomly divided into 5 mutually ex-
clusive subsets of approximately the same number of images. For each subset,
age is predicted for all images based on a model trained on the remaining 4
subsets. Note that different images of the same subject are never present in both
testing and training subsets.

The infant brain increases in size, particularly during early weeks, and thus
an initial baseline for predicting age from structural MR would be based on
volume or size measurements [13]. For comparison, a linear predictor of age
based on isotropic subject scale relative to the atlas results in a mean error
of 102 days, random guessing results in a mean error of 200 days. Figure 2
illustrates the result of MAP age prediction, which results in a mean error of
72 days. Although this is lower than baseline methods, it is non-negligible, and
we hypothesize that error may be related to differences in developmental rates
between different subjects. Curves in Figure 2 plot predicted age trajectories
for 5 subjects, while a high degree of inter-subject variability is observed, 90%
of sequential age predictions follow a monotonically increasing trend. Thus, it
may be more accurate to interpret the predicted age as the stage of development
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Fig. 1. Top: distribution p(fi, A) for the 20 most significant age-related features over 10
age categories. Below: visual examples of features (white circles) in subject image slices
over age. Pairs (4, 8) and (1,19) represent symmetric white matter patterns appearing
at slightly different onsets. (7) and (9) represent distinct modes cerebellar anatomy
linked with vermian development and occurring exclusively in early life. (13) occurs
in the brain stem across the age range, more frequently in early life. Note the lack of
visible white matter under 100 days, e.g. corpus callosum.

with respect to the population, which may generally either lag or lead the actual
chronological age; we intend to investigate this possibility in future work.

4 Discussion

This paper presents a novel model describing anatomical development as a col-
lection of features localized over space and time. Validation on infant structural
MRI data demonstrates statistically significant age-related features can be au-
tomatically discovered across the infant age range, and the first results of infant
age prediction are presented. Numerous avenues for future investigation exist, in-
cluding modeling longitudinal feature-time trajectories or dependencies between
features, linking developmental changes other factors such as gender or disease,
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Fig. 2.MAP predicted age vs. subject age across subjects. Thick colored lines illustrate
age trajectories for five subjects with scans at 6 or more time points.

incorporating alternative image features such as affine invariant features, in-
vestigating alternative means of querying age-related model features. Modeling
based on a fixed reference coordinate system here is sufficient for infant brains,
an evolving coordinate system [21] will allow application of the modeling to
prenatal, fetal and embryonic stages of development.
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Abstract. Mild cognitive impairment (MCI) is difficult to diagnose due to its
subtlety. Recent emergence of advanced network analysis techniques utilizing
resting-state functional Magnetic Resonance Imaging (rs-fMRI) has made the
understanding of neurological disorders more comprehensively at a whole-brain
connectivity level. However, inferring effective brain connectivity from fMRI
data is a challenging task, particularly when the ultimate goal is to obtain good
control-patient classification performance. Incorporating sparsity into connectiv-
ity modeling can potentially produce results that are biologically more mean-
ingful since most biologically networks are formed by a relatively few number
of connections. However, this constraint, when applied at an individual level, will
degrade classification performance due to inter-subject variability. To address this
problem, we consider a constrained sparse linear regression model associated
with the least absolute shrinkage and selection operator (LASSO). Specifically,
we introduced sparsity into brain connectivity via l1-norm penalization, and en-
sured consistent non-zero connections across subjects via l2-norm penalization.
Our results demonstrate that the constrained sparse network gives better classifi-
cation performance than the conventional correlation-based network, indicating
its greater sensitivity to early stage brain pathologies.

1 Introduction

Mild cognitive impairment (MCI) is an intermediate stage of brain cognitive decline be-
tween normal aging and dementia. MCI is associated with increased risk of developing
Alzheimer’s disease (AD), especially when memory loss is the predominant symptom.
Some individuals with MCI remain stable or return to normal over time, but more than
half progress to dementia within 5 years [6]. According to a latest, long-term study
of nearly 4000 participants, cognitive impairment has a significant impact on life ex-
pectancy similar to chronic conditions such as diabetes or chronic heart failure [14].
Early detection is important for possible delay of the progression of mild MCI to mod-
erate and severe stages. However, diagnosis of MCI is difficult due to its mild symptoms
of cognitive impairment, causing most computer-aided diagnosis to achieve lower than
desired performance.

Constructing functional brain connectivity from neuroimaging data holds great pro-
mise for identifying image-based markers that are important for distinguishing between
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MCI and normal aging. A large body of work on functional connectivity modeling has
been proposed based on correlation analysis [18, 19]. However, correlation only cap-
tures pairwise information and is unable to provide an adequate and complete account
of the interaction between many brain regions. Inferring effective brain connectivity
from fMRI data for biologically more meaningful interpretation and better classifica-
tion performance is a challenging task. Many spurious connections arise due to the low
frequency (< 0.1Hz) spontaneous fluctuation of blood oxygen level dependent (BOLD)
signals and physiological noise such as cardiac and respiratory cycles. Recent work [16]
has shown that certain sparsity constraints can be imposed to elucidate robust connec-
tions from a set of noisy connections. The sparsity constraint correlates with the fact
that, neurologically, a brain region predominantly interacts only with a small number
of other regions. Sparse brain connectivity for fMRI data can be constructed through
penalizing the linear regression model with l1-norm as in the least absolute shrinkage
and selection operator (LASSO) [10].

However, sparse modeling is unable to deal with inter-subject variability since l1
penalization at an individual level will result in different network structures across
subjects [20], i.e., the non-zero connections are different for each subject. This will
inevitably make the comparison between subjects difficult and thus degrade general-
ization performance of trained classifiers. To address this issue, we propose to employ
a constrained sparse linear regression model that minimizes the effect of inter-subject
variability in network representation. By this approach, the connection topology is kept
identical among subjects, while at the same time allowing individual connection param-
eters to vary between subjects. This will allow better and more direct comparison among
subjects for patient identification. To the best of our knowledge, the current study is the
first attempt to construct functional brain network using constrained sparse linear re-
gression model for the purpose of MCI classification. We seek to validate whether this
new network modeling strategy can be used to improve classification performance. We
will also identify brain regions that contribute most to the classification performance.
This paper sheds new light on the effectiveness of applying constrained sparse func-
tional network for diagnosis of progressive neurodegenerative disorders.

2 Materials and Methods

Resting-state fMRI (rs-fMRI) scans of 12 MCI patients and 25 healthy controls were
acquired using a 3 Tesla (Signa EXCITE, GE) scanner with the following parameters:
TR/TE = 2000/32 ms, flip angle = 77◦, imaging matrix = 64 × 64, FOV = 256 ×
256 mm2, 34 slices, 150 volumes, and voxel thickness = 4 mm. During scanning, all
subjects were instructed to keep their eyes open and stare at a fixation cross in the
middle of the screen to prevent them from falling into sleep and the saccade-related
activation due to eyes-closed. Informed consent was obtained from all subjects, and the
experimental protocols were approved by the institutional ethics board. Confirmation
of diagnosis for all subjects was made via expert consensus panels. Demographic and
clinical information of the participants is provided in Table 1.
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Table 1. Demographic and clinical information of the participants

Group MCI Control p-value

No. of subjects (Male/Female) 6/6 9/16 -
Age (mean ± SD) 75.0 ± 8.0 72.9 ± 7.9 0.3598a

Years of education (mean ± SD) 18.0 ± 4.1 15.8 ± 2.4 0.0491a

MMSE (mean ± SD) 28.5 ± 1.5b 29.3 ± 1.1 0.1201a

a The p value was obtained by two-sample two-tailed t-test.
b One of the patients does not have a MMSE score.

Post-processing of the fMRI images including slice timing correction and head-
motion correction were performed using the Statistical Parametric Mapping (SPM81)
software package. The images were then masked with their respective gray matter (GM)
masks, created by segmenting the GM regions from their T1-weighted images to elim-
inate the physiological noise caused by cardiac and respiratory cycles in white matter
and cerebrospinal fluid [17]. Then, we parcellated the brain space into 116 ROIs by
warping the automatic anatomical labeling (AAL) template to the GM-masked fMRI
images. The mean time series of each ROI was computed for each subject. Temporal
band-pass filtering of frequency interval (0.025 ≤ f ≤ 0.100Hz) was then performed
to minimize the effects of low-frequency drift and high-frequency noise. This frequency
interval was further decomposed into 5 equal-length spectral, enabling a more fre-
quency specific analysis of the regional mean time series [19].

2.1 Constrained Sparse Functional Brain Connectivity

Suppose we have N training subjects and M ROIs, the mean time series of p-th ROI
for n-th subject, yn

p , can be regarded as a response vector that is modeled by a linear
combination of time courses of other ROIs as

yn
p = An

pα
n
p + enp , (1)

where enp is the noise, ynp = [ynp (1); y
n
p (2); . . . ; y

n
p (T )] with T being the number of time

points in the time series, An
p = [yn1 , . . . , yn

p−1, ynp+1, . . . , yn
M ] is data matrix of the p-th

ROI, and αn
p = [αn

1 ; . . . ;α
n
p−1;α

n
p+1; . . . ;α

n
M ] is the weight vector. The sparse brain

connectivity modeling of the n-th subject and p-th ROI can be considered as a standard
l1-norm regularized optimization problem with the following objective function

f(αn
p ) =

1

2

∥∥yn
p − An

pα
n
p

∥∥2
2
+ λ

∥∥αn
p

∥∥
1
, (2)

where λ > 0 is the regularization parameter controlling the “sparsity” of the model,
with a higher value corresponding to a sparser model, i.e., more elements in αn are
zero. Note the l1-norm penalization is imposed individually on different αn

p vectors.
For multiple subjects, the objective function in Eq. (2) can be modified as

f(αp) =
N∑

n=1

(1
2

∥∥ynp − An
pα

n
p

∥∥2
2

)
+ λ ‖αp‖2,1 (3)

1 http://www.fil.ion.ucl.ac.uk.spm

http://www.fil.ion.ucl.ac.uk.spm
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where ‖αp‖2,1 is the summation of l2-norms of non-overlapping
∥∥αn

p

∥∥
1
. Specifically,

the l2-norm penalization is imposed on the same elements across different matrices
αp which forces the weights corresponding to certain feature across different subjects
to be grouped together. This constraint promotes group-based sparsity by keeping the
topology to be identical among subjects, while at the same time allowing variation
between subjects. This reduces inter-subject variability and allows for better and more
consistent inter-subject comparison for patient identification. The nonzero coefficients
in α matrix are treated as an indicator of functional brain connectivity. We use the SLEP
toolbox [11] to solve Eq. (3).

2.2 Feature Extraction and Feature Selection

Weighted local clustering coefficient, a measure that quantifies the cliquishness of the
nodes, is extracted from all connectivity maps as

Cp =
2×

∑
q:q 	=p∈ζ ep,q

kp(kp − 1)
, (4)

where kp is the number of ROIs that are connected to the p-th ROI, ζ is the subnetwork
comprising nodes directly connected to the p-th ROI, and ep,q is the parameter value
between the p-th and q-th ROIs. A total of 116 features are obtained from each map,
producing a pool of 580 features for each subject.

After feature extraction, we utilized a hybrid method to select the most relevant fea-
tures for classification. Two filter-based approaches are initially used to reduce the
number of features, followed by a wrapper-based approach to further select a sub-
set of features that is favorable to MCI classification. Specifically, in the first filter-
based approach, only those features with p-values smaller than the predefined threshold,
measured via between-group t-test, will be retained for subsequent feature selection.
Then, the minimum redundancy and maximum relevance (mRMR) algorithm [4] was
employed to further exclude redundant features. Finally, the support vector machine
(SVM) recursive feature elimination [9], a wrapper-based method, was used to select a
subset of most discriminative features for MCI classification.

2.3 Classification

SVM with linear kernel was employed to evaluate the discriminative power of the se-
lected features derived from constrained sparse networks. The optimal SVM models
as well as an unbiased estimation of the generalization performance of the complete
framework were obtained via a nested cross-validation scheme. For N total number of
subjects involved in the study, one was left out for testing, and the remaining N − 1
were used for training. From these N − 1 samples, N − 1 different training subsets
were formed by each time leaving one more sample out, giving us N − 2 subjects in
each training subset. For each training subset, feature extraction and feature selection
were performed. The performance of each combination of SVM parameters along with
the selected features was evaluated using the second left out subject. The combination
that gives the best performance was used to construct the optimal SVM model for future
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classification. This procedure was repeated N − 1 times, once for each training subset.
When the completely unseen (totally left out during the entire training and parameter
optimization process) test sample was to be classified, all N − 1 classifiers were used,
and their outcomes were combined using an averaging operator to provide the final
classification decision. This process was repeated N times, each time leaving out a dif-
ferent subject, finally leading to an overall cross-validation classification accuracy. In
this study, the optimization of λ parameter in Eq. (3) was performed via grid search.

3 Experimental Results

Constrained sparse connectivity maps of one healthy control and one MCI patient are
shown in Figure 1. Spatial connection topology of our sparse networks and the fully-
connected correlation-based networks are shown in Figure 2. It can be clearly observed
that the generated connectivity networks are significantly sparser than the fully con-
nected correlation-based networks. There are a number of findings that are biologi-
cally interesting. First, the bilateral temporal lobes show a relatively smaller amount
of intra-lobe connections than other lobes, which has been extensively reported in the
literature [16, 18]. Second, there are significantly more inter-lobe connections between
parietal and occipital lobes than any other lobe pairs [16], possibly due to compensatory
effect. These selected non-zero elements in the constrained sparse matrices reflect the
connections that are crucial for discriminating MCI patients from healthy controls.

MCI classification performance of the proposed constrained sparse network was
compared with correlation-based connectivity using single and multi-spectral charac-
terization. In the single spectrum case, feature extraction was directly performed on
the band-pass filtered BOLD signal without further frequency sub-band decomposition.
Sub-band decomposition in the multi-spectral case enables more detailed characteri-
zation of subtle changes in BOLD signal, and hence better discriminative power [19].
During evaluation, SVM classifier with the same linear kernel but different hyperpa-
rameters was used in a leave-one-out fashion due to the limited number of available
samples. MCI classification performance for constrained sparse and correlation-based

Fig. 1. Constrained sparse connectivity maps with λ = 0.15. (Red = positive connection, blue =
negative connection, green = no connection)
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Fig. 2. Constrained sparse networks with λ = 0.15 (a) and the fully-connected correlation-based
networks (b), after excluding the cerebellum

networks are summarized in Table 2. The proposed constrained sparse network with
multi-spectral characterization yields the best classification performance with an accu-
racy of 86.49%, which is an increment of at least 10% from that of the correlation-
based approach. A cross-validation estimation of the generalization performance shows
an area of 0.8333 under the receiver operating characteristic curve (AUC), indicating
good diagnostic power. Note that λ = 0.15 was found to give the optimal performance.

The most discriminant regions that were selected in the classification process include
regions located in frontal lobes (e.g. orbitofrontal cortex [8], frontal gyri [1] and rectus
gyrus [5]), temporal lobes (e.g. temporal gyri [2, 5, 15] and temporal pole [13]), and
other regions such as cingulate gyri [7], amygdala [3], angular gyrus [15], and occipital
gyri [12], which is in line with the findings that AD, strongly related to episodic memory
impairment, causes atrophies in temporal and frontal lobes at the beginning stages of
the disease. The selected regions are shown graphically in Figure 3.

Table 2. Classification performance for constrained-sparse and correlation-based networks using
single and multi-spectral characterization. (ACC = Accuracy; SEN = SENsitivity; SPE = SPEci-
ficity)

Approach ACC (%) AUC SEN SPE

Correlation + Single Spectrum 67.57 0.6633 0.0833 0.9600
Sparse + Single Spectrum 72.97 0.6200 0.2500 0.9600
Correlation + Multi-Spectral 75.68 0.7070 0.4167 0.9200
Sparse + Multi-Spectral 86.49 0.8333 0.6667 0.9600
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Left Right

Fig. 3. Most discriminant regions that were selected during MCI classification

4 Discussions and Conclusion

We proposed a novel method to infer functional connectivity networks from rs-fMRI
data for the purpose of classification. By imposing group-based sparsity, we minimize
spurious connections and inter-subject variability. This is accomplished by considering
a constrained sparse linear regression model. Specifically, we incorporate sparsity into
brain connectivity estimation via l1-norm penalization, and ensure inter-subject stability
of network structure via l2-norm penalization. This constrained sparse representation
generates topologically consistent functional connectivity networks that allow for better
comparison between subjects for classification. The experiment results validate that the
proposed method yields markedly improved classification performance compared with
the correlation-based network.
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Abstract. For clinical evaluation, assessing amyloid deposition with
PiB-PET is desirable without requiring MR acquisition and associated
fusion/segmentation techniques. A useful clinical tool is to estimate PiB-
PET against the brain surface, which is however challenging using PET
alone because of the lack of structural information. We propose a method
to generate such estimate, where multiple atlases are selected and com-
bined with local weights in a Bayesian framework. Qualitative and quan-
titative comparison with and without MRI are presented. Using PET
only, the average error on the brain surface was around 13% compared
to MRI-dependant method.

1 Introduction

Beta-amyloid (Aβ) plaques found in gray matter are among the most prevalent
pathological characteristics of Alzheimer’s disease (AD), and can be imaged in
vivo by Positron Emission Tomography (PET) using 11C-PiB marker. Estimat-
ing and visualizing cortical gray matter (GM) Aβ deposition is important for
the diagnosis of the disease and the monitoring of plaque reducing therapy.

Because Aβ plaques are present mostly in the gray matter, visualisation on the
cortical surface would be a very valuable clinical tool. Such tools are widely used
for FDG-PET to assess hypo-metabolism, and a good example is Neurostat [1].
These tools benefit from the fact that the uptake of FDG in the white matter
(WM) is very low compared to that of the GM, and therefore a straightforward
sum or maximum projection in the GM on the cortical surface is possible. This
assumption is not valid for amyloid imaging as most markers, including PiB,
have significant retention in the WM, and therefore the 3D surface separating
WM and GM is not well-defined and has to be estimated. This is very challenging
as PET imaging lacks the anatomical details and the resolution to resolve this
surface. As a result, Magnetic Resonance Imaging (MRI) is required to segment
the brain into GM and WM, and extract the separating surface. This surface is
then registered to the PET scan where GM PiB retention can be measured and
displayed.

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 220–227, 2012.
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In standard clinical setup, when PET amyloid imaging is visually assessed,
MRI scans are not always available (e.g. different system, posterior scanning
time) and in a substantial number of cases not possible (e.g. presence of metallic
implant). This paper proposes a method to estimate PiB-PET on the cortical
surface without the need of an MRI scan. Our proposed “PET-only” approach
is compared to the best case scenario when an MRI is available, which we refer
to as the MRI-dependent method.

A PET-only method was reported in [2]. It employed a single MRI atlas with
segmented tissues and co-registered to a PET image from the same subject.
When a new subject PET was registered to the atlas PET, the atlas MRI could
be used to estimate the subject GM. The maximal PiB uptake within the subject
GM was measured along the normal direction of the brain surface. Although
no quantitative precision analysis of this method is reported, our experiments
found that its estimation accuracy highly depends on the atlas selection due to
i) different anatomy between the single atlas and the subject, and ii) using hard
PET tissue partitions simply copied from the single warped MRI atlas.

In this paper we address these problems by introducing a robust PET-only
method that significantly improved upon [2]. In particular we achieved this by
using 1) multiple possible GM-WM surfaces, 2) multiple likely GM tissue maps,
3) local and adaptive atlas selection customized for each subject and 4) a proba-
bilistic framework to combine the estimates from individual atlases. Our method
was evaluated both visually and quantitatively. Our experiments showed that the
estimate without MRI is about 13% different from that with MRI at each vertex,
and the intra-class correlation between these two methods is reached 0.94.

2 Method

2.1 Overview

Our proposed method directly estimates GM PiB-PET retention without an
explicit GM segmentation by using multiple atlases.

Twenty subjects (with both PET and MRI) were used as atlases, whose MRI
images were co-registered and segmented into GM, WM and CSF tissue maps.
These atlases were randomly selected to match the full range of disease progres-
sion and are reasonably representative. The 3D GM-WM surfaces of the atlases
were extracted and registered to a canonical space (arbitrary subject) to obtain
vertex correspondence (Section 2.2). For each new subject without MRI, the sub-
ject PET image was registered with the twenty atlas PET images (Section 2.3),
allowing the subject PiB to be estimated within the atlas GM tissue maps inde-
pendently. Finally, the most similar atlases for each subject were selected by local
and adaptive weighting (Section 2.4), and combined using a Bayesian framework
(Section 2.5) to generate the subject’s unique GM PiB estimate.

2.2 Surface Registration

To attain vertex correspondence, all atlas surfaces were registered using a multi-
scale EM-ICP [3]. Briefly, surface curvatures were obtained by geometric surface
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simplifications at different scales to reveal local structures. By controlling the
degree of surface simplification, only major sulci and gyri common to all the
subjects were kept for EM-ICP registration, while the subject-specific structures
were ignored. After registration, the atlas surfaces were resampled with the same
number of vertices (80,000).

2.3 Affine Registration for PET Images

The subject and atlas PET images were co-registered to transform i) the 20 atlas
surfaces and ii) the 20 sets of the tissue probability maps to the subject space.
Affine registration based on block matching of feature points in PET images was
employed [4] instead of non-rigid registration because of the limited resolution
and noise in the PET.

2.4 Local Subject-Specific Atlas Selection

For a given subject, not all 20 atlases were suitable for its GM PiB estimation.
Some atlases could be very different due to the variation of individual brain
shapes and the Aβ deposition that could be affected by atrophy. Therefore, an
optimal subset of atlases was selected for each subject. The selection number is
set as 10, which was experimentally found a suitable choice.

Our atlas selection was local and adaptive. “Local” means the selection of
atlases was determined by a local metric computed between small PET image
blocks. “Adaptive” means the selected subset of atlases was different from ver-
tex to vertex. Our atlas selection process was elaborated as follows. For a given
surface vertex, the PET image similarity between the subject and an atlas was
assessed in a 30 × 30 × 30 (voxels) neighborhood by normalized mutual infor-
mation (NMI) [5]. The neighborhood size should not be set too small to avoid
overfitting noise due to the low resolution of PET. The ten most similar atlas
PET images were selected to generate the final estimation at each vertex. We
found that local weighting provided superior results over global weighting. More-
over, keeping only a subset of the most similar atlases can further improve the
scenario where all atlases are used [6]. Our local adaptive atlas selection reduces
errors due to mismatches in the distribution of the plaques and GM shapes,
allowing it to successfully handle more unusual cases.

2.5 Surface-Based Measurement by Atlas Fusion

We propose a Bayesian fusion framework for PiB quantification by multi-atlases.
Given a PET image I(x), where x denotes an image voxel, our target is to

measure the mean PIB uptake in GM along the normal directions of the trans-
formed atlas surface ST . That equals to estimate the expectation E

x∈Δ
[δ(I, x, l)],

where δ(I, x, l) is an indicator function:

δ(I, x, l) =

{
I(x), for l = 1

0, elsewhere,
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and Δ denotes the line where the surface normal direction meets the image. The
symbol l is the tissue label at the voxel x, representing GM, WM and CSF with
the values of 1, 2 and 3, respectively. Taking discrete x, we have

E[δ(x, l)] =
∑
x∈Δ

δ(I, x, l)P (I, x, l)dx

=
∑
x∈Δ

I(x)P (l = 1|I, x)P (I, x)dx. (1)

Assuming that x is evenly sampled from Δ, the probability P (I, x) = 1/|Δ|,
where |Δ| is the length ofΔ. The posterior label probability P (l|I, x) is estimated
from the transformed atlases AT

i (i = 1 · · ·n, n is the number of atlases) by
maginalizing the joint probability P (l,AT

i |I, x):

P (l|I, x) =
n∑

i=1

P (l,AT
i |I, x) =

n∑
i=1

P (l|AT
i , I, x)P (AT

i |I, x). (2)

Here P (l|AT
i , I, x) represents the GM probability at the voxel x in the atlas AT

i ,
which was obtained in our case from the transformed atlas tissue maps. The
term P (AT

i |I, x) is the probability to be well aligned at the voxel x between the
target image I and the transformed atlas AT

i . In our approach, P (AT
i |I, x) was

set proportional to the reciprocal of the NMI metric estimated locally within the
neighborhood N(x) of x, i.e., P (AT

i |I, x) = P (AT
i |I, N(x)). As aforementioned,

the size of N(x) should be reasonably set to avoid overfitting noise. In our ap-
proach, N(x) covers all likely GM voxels along the line Δ. Thus, P (AT

i |I, N(x))
is constant to the variable x (x ∈ Δ). Combining (1) and (2), we have

E[δ(x, l)] =
1

|Δ|
∑
x∈Δ

I(x)P (l = 1|I, x)

=
1

|Δ|
∑
x∈Δ

I(x)

n∑
i=1

P (l = 1|AT
i , I, x)P (AT

i |I, N(x))

=

n∑
i=1

P (AT
i |I, N(x))

[
1

|Δ|
∑
x∈Δ

I(x)P (l = 1|AT
i , I, x)

]
(3)

Eqn. (3) shows an additive property: the estimation from multiple atlases can
be attained from each single atlas independently and then linearly combined
by local weights. Such a combination is nonlinear for the whole surface. This
additive property is important because it allows to refine the estimate with new
atlases without recomputing the whole set, thus being computationally efficient.

When estimating the PiB value I(x) from a single atlas P (AT
i |I, N(x)), the

weights were the GM probability at x. This implicitly defined a gray matter
region with a soft boundary, which reflected the variation observed in the training
population. Unlike [2] where hard GM segmentation in a single atlas was used,
we found our approach more robust to registration error between PET and MRI.



224 L. Zhou et al.

2.6 SUVR Normalization

In some applications, to ensure inter-subject comparisons, the PiB-PET uptake
values need to be normalized by standard uptake value ratio (SUVR) [7]. SUVR
is defined as the value of a region containing specific binding to one without spe-
cific binding (such as cerebellar gray matter). In such cases, the intensity values
I(x) in the original PET image are homogeneously scaled by a parameter k. As
NMI matches structures instead of intensity values, P (AT

i |I, N(x)) is invariant
to k, and so is the GM probability P (l = 1|AT

i , I, x). Thus,

E[δ(x, l)] = k

n∑
i=1

P (AT
i |I, N(x))

[
1

|Δ|
∑
x∈Δ

I(x)P (l = 1|AT
i , I, x)

]
, (4)

where k is determined by SUVR. Eqn. (4) shows that when SUVR changes, our
estimation (3) can be simply scaled by k.

PiB-only SUVR normalization is beyond the scope of this paper and several
methods have been proposed [8]. In the following, we set k = 1 to focus on evalu-
ating the pure performance of our method by comparing surface PiB estimation
with and without MRI.

2.7 Validation

The proposed method was validated on 143 subjects from the Australia Imag-
ing, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). Please note that,
the validation on our method does not require SUVR normalization that can be
computed without MRI. We nonetheless preprocessed SUVR using MRI cerebel-
lum just for the purpose of clinically relevant analysis (grouping subjects) and
display (Fig. 1). With a cutoff value of 1.5, these subjects were categorized into
73 PiB+ and 70 PiB− subjects.

To compare our method with the best case of senario, MRI-dependent method
was applied as ground truth. The estimation difference VAR (%) between the two
methods was measured in ratios and averaged over all subjects. It was computed
at both ROI and vertex levels. In addition to VAR, we also computed the Pearson
correlation and the intra-class correlation (ICC) between the two methods by
correlating the estimations at each vertex.

3 Experimental Results and Discussion

We compared the performance of the proposed method with i) the
MRI-dependent method (ground truth) and ii) the single-atlas based PiB-only
method.

3.1 Comparison with MRI-dependent Method

In Fig. 1, four typical examples are shown. MRI-dependent (top row) and our
PET-only (bottom row) methods present similar patterns and are visually very
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(a) (b) (c) (d)

Fig. 1. Surface-based PIB measurements from the MRI-dependent method (the top
row) and the proposed method (the bottom row) for four examples: (a) PiB+ AD, (b)
PiB+ NC, (c) PiB+ NC, and (d) PiB− NC.

close, for example, the asymmetric patterns in the left and right hemispheres for
subjects (a) and (d).

Table 1 summarizes the quantitative results between the MRI-dependent and
the PET-only methods. As shown, the PiB+ group had lower VAR (2.2±1.5% for
ROI, 13.1±1.5% for vertex) than the PiB− group (3.6±2.3% for ROI, 16.4±2.1%
for vertex), as well as attaining higher Pearson correlation / ICC (0.75 / 0.94)
than the PiB- group (0.42 / 0.73). This difference is expected, because the PiB−

group has minimal PiB retention, whose image signal is proportionally over-
whelmed by noise than that of the PiB+ group. The high estimation accuracy
of the PiB+ group in our method is promising as the PiB+ group is clinically
more interested due to its association with possible AD. Meanwhile, the esti-
mate accuracy for the PiB− group was sufficient for identifying visually similar
patterns to the MRI-dependent method (Fig. 1 (d)). We also found that our
estimation errors for both groups were close to the reported reproducible errors
of PiB quantification using only 30 min imaging [9] (cited in Table 1), which
reinforced the precision of our method. Finally, although PET-based SUVR es-
timation was not included in our method, we also tested the overall performance
with the SUVR method in [8]. It showed that the SUVR method would increase
the error per vertex by approximately 4% for both groups.

3.2 Comparison with Single Atlas Approach

To demonstrate the advantage of using multiple atlases, the VAR and the cor-
relations with the MRI-dependent method were compared between 10 randomly
selected single-atlas and the proposed multiple-atlas approach. The VAR and
correlations were compared subject by subject (averaged over all vertices within
each subject, Fig. 2 (a) and (b)), and ROI by ROI (averaged over PiB+ subjects1,
Fig. 2 (c) and (d)). In Fig. 2, the red line was the result from the multiple-atlas
approach, and the ten other lines corresponded to the ten single-atlas in compari-
son. As shown, the proposed approach exhibited significantly lower average VAR

1 Improvement on PiB− is similar to that of PiB+.
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Table 1. Comparison of estimations from the MRI-dependent and PET-only methods

PiB+ All Frontal Occipital Temporal Parietal Post-cingulate Putamen

ROI
VAR (%) 2.2 ± 1.5 2.3 ± 1.6 2.1 ± 1.5 2.1 ± 1.4 2.1 ± 1.5 2.4 ± 1.7 2.0 ± 1.4

cited VAR (%) - 3.9 3.7 3.3 3.7 4.9 5.1

Ver-

VAR (%) 13.1 ± 1.5 13.2 ± 1.6 13.1 ± 1.5 12.9 ± 1.5 13.2 ± 1.5 13.2 ± 1.6 13.3 ± 1.7

tex
P-Corr (R) 0.75 0.74 0.75 0.76 0.75 0.75 0.75

ICC 0.94 0.94 0.94 0.94 0.94 0.94 0.94

cited ICC - 0.95 0.94 0.97 0.94 0.88 0.89

PiB− All Frontal Occipital Temporal Parietal Post-cingulate Putamen

ROI
VAR (%) 3.6 ± 2.3 3.6 ± 2.4 3.4 ± 2.1 3.5 ± 2.2 3.5 ± 2.4 3.2 ± 2.3 3.8 ± 2.4

cited VAR (%) - 2.7 3.2 2.5 2.0 0.9 4.1

Ver-

VAR (%) 16.4 ± 2.1 16.4 ± 2.1 16.3 ± 2.0 16.2 ± 2.0 16.6 ± 2.2 16.4 ± 2.2 16.6 ± 2.1

tex
P-Corr (R) 0.42 0.42 0.43 0.42 0.41 0.43 0.41

ICC 0.72 0.73 0.73 0.72 0.72 0.76 0.68

cited ICC - 0.73 0.75 0.69 0.59 0.75 0.66
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Fig. 2. Comparison of the proposed multi-atlas approach with ten single-atlas ap-
proaches by error ratios for (a) each subject and (c) each ROI, and by correlations for
(b) each subject and (d) each ROI

and higher correlations over almost all subjects than any single atlas produced.
Consistently, when breaking the estimates into surface ROIs and averaged over
subjects, the proposed approach revealed an even more salient advantage than
any single-atlas in all the ROIs.
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4 Conclusion

In this paper, we propose to estimate amyloid deposition against brain surfaces
utilizing only PiB-PET images without MRI. The demonstrated accuracy of our
method suggests it could provide a CAD tool for evaluation of amyloid imaging.
In future, we will extend our approach to include the PiB-PET based SUVR
estimation.
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Abstract. In this study, we propose a framework to map functional MRI (fMRI) 
activation signals using DTI-tractography. This framework, which we term func-
tional by structural hierarchical (FSH) mapping, models the regional origin of 
fMRI brain activation to construct “N-step reachable structural maps”. Linear 
combinations of these N-step reachable maps are then used to predict the ob-
served fMRI signals. Additionally, we constructed a utilization matrix, which nu-
merically estimates whether the inclusion of a specific structural connection better 
predicts fMRI, using simulated annealing. We applied this framework to a visual 
fMRI task in a sample of body dysmorphic disorder (BDD) subjects and compa-
rable healthy controls. Group differences were inferred by comparing the  
observed utilization differences against 10,000 permutations under the null  
hypothesis. Results revealed that BDD subjects under-utilized several key local 
connections in the visual system, which may help explain previously reported 
fMRI findings and further elucidate the underlying pathophysiology of BDD. 

Keywords: DTI, HARDI, fMRI, network, Simulated Annealing. 

1 Introduction 

How the brain is organized into functional networks remains an elusive question. 
Despite widespread use of functional neuroimaging, inferences on network properties 
have largely been based on associative activation patterns; its limited temporal resolu-
tion hinders an understanding of dynamic interactions between spatially defined 
nodes. Advanced modeling techniques such as Dynamic Causal Modeling [1] provide 
estimates of complex neuronal dynamic interactions estimated from BOLD signal 
patterns, but may be practical for understanding only a small number of nodes.  

Inferences about network dynamical interactions on a larger scale could potentially 
be derived using strategies involving structural to functional mapping. This is based on 
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the assumption that a system’s structural connectivity pattern provides a framework for 
determining information available as inputs from certain regions and its outputs and 
potential influence on other regions [2]. Such an approach could utilize a combination 
of DTI-tractography to estimate brain white matter connectivity and functional magnetic 
resonance imaging (fMRI) to estimate the neuronal activity coupled to blood flow 
changes in anatomical regions that comprise nodes of the network. 

Several structural to functional mapping approaches have been proposed [2-9]. 
Some have focused on specific, limited regional activation patterns [2, 3] while others 
have developed models for understanding functional connections in larger sets of 
regions comprising networks or systems [4-11]. One study simultaneously modeled 
DTI-tractography and fMRI in individuals in the resting state [12]; however, to our 
knowledge no study has used structural to functional mapping to estimate information 
transfer on a system-wide level using task-based fMRI data. We therefore developed a 
model to parsimoniously explain overall observed activation patterns with the as-
sumption that the system is comprised of a set of interacting nodes.  

To test this approach, we applied it to understanding activation patterns within the 
visual system. The visual system has been well characterized in monkeys and humans 
and can be reliably activated with functional neuroimaging paradigms. In addition, 
previous studies have provided models for a temporal sequence of activation, particu-
larly for the “first wave” of information transfer (see, for example [13, 14]), from V1 
to V2 and other visual cortical areas, followed by temporal and parietal regions. This 
allows us to make several simplifying assumptions about direction of information 
transfer. We tested our model in a dataset consisting of healthy human controls and 
individuals with body dysmorphic disorder (BDD). Individuals with BDD have  
perceptual distortions in which they misperceived defects in their appearances [15]. 
Previous fMRI studies in BDD found abnormal visual processing in primary and sec-
ondary visual processing systems for face and inanimate object (house) stimuli [16-
18]. To better characterize these findings, we thus developed a strategy for functional 
by structural hierarchical mapping to estimate step-wise activation patterns in the 
visual system. Here, the word “hierarchical” refers to the n-step structural maps used 
for model fitting. The fMRI portion of this dataset, which utilized well-characterized 
house visual stimuli, was previously analyzed for group differences using the general 
linear model [16]. Here we demonstrate a model of hierarchical structural to function-
al mapping that, under several simplifying assumptions, elaborates on previous results 
by providing estimates of structural connection utilization within the visual system. 

2 Methods 

2.1 Data Collection 

Eleven unmedicated participants with BDD and 13 healthy controls, aged 20 to 48 
years, were scanned in a 3-T Siemens Allegra MRI scanner. Diffusion-weighted MR 
imaging (DWI) data were acquired using single-shot spin-echo echo-planar imaging 
(EPI) (field of view=240mm; voxel size=2.5x2.5x3.0mm, with 0.75 mm gap; 
TR/TE=7400/96ms; flip angle 9o). We collected 44 contiguous axial slices aligned to 
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the AC-PC line along 34 gradient-sensitizing directions with b=1000s/mm2 and one 
minimally diffusion-weighted scan. DWI data were corrected for eddy current arti-
facts using FSL toolbox (http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_eddy.html). fMRI data 
came from a previous object-processing fMRI study; subject selection, acquisition 
and preprocessing are as previously described [16]. fMRI stimuli consisted of photo-
graphs of houses that contained only low spatial frequency (LSF) information [19], in 
order to more sensitively probe configural and holistic visual processing.  

2.2 Brain Network Computation 

We computed whole-brain deterministic DTI tractography using Diffusion Toolkit 
with the Fiber Assignment by Continuous Tracking (FACT) algorithm [17] and a 
maximum turn angle of 35 degrees. Cortical regions of interest (ROIs) were defined 
using the Harvard Oxford Cortical probabilistic atlas. The masks were set to a liberal 
threshold of 10% to allow for the inclusion of tissue along the gray-white matter inter-
face, where DTI tractography estimates are most reliable [21]. To register these ROIs 
to each subject’s DTI space, we used FSL’s FLIRT program [22] to determine the 
optimal affine transformation between the MNI152 T1 average brain (in which the 
Harvard Oxford probabilistic atlases are based) and each subject’s unique FA image, 
using a mutual information-based cost function. We applied the resulting transforma-
tion to register the 26 visual pathway related ROIs to each subject’s DTI space. For 
each pair of ROIs, the number of fibers connecting them was counted to construct a 
structural connectivity matrix (a fiber was considered to connect two ROIs if it origi-
nated in the first ROI and terminated in the second, or vice versa). Thus, this matrix 
was symmetric, with the diagonal entries set to zero (no self connections).   

To generate functional MRI signals for each region of interest, we computed the 
percentage signal change using the Featquery tool in FSL to estimate BOLD signal 
differences between the house stimuli and baseline. 

2.3 Functional by Structural Hierarchical (FSH) Mapping 

Several assumptions and simplifications are needed in order to perform FSH map-
ping, outlined step-by-step as follows: 

1. A collection of cortical anatomical regions or “nodes” is determined to be  
activated during the fMRI task, and cortical fMRI activation is assumed to ori-
ginate in a specific region(s) (the “origin”), in this case the left and right intra-
calcarine cortices. 

2. N-step reachable structural maps, defined as regions reachable from the origin 
at the n-th step of structural connections, are computed by tracing the anatomi-
cal connectivity (according to the structural connectivity matrix C) from the 
origin. 

3. Nodes that are reached in the first n steps will be excluded from later steps. All 
connections between nodes are hypothesized to be excitatory. Moreover, feed-
back or interactions between nodes that have been reached is assumed to be 
numerically negligible. 
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4. The presence of an edge connecting any node pair in the structural connectivi-
ty matrix predicts the existence of neuroanatomical connections between re-
gions, which may are may not be “utilized” in the particular fMRI task of in-
terest. A connection between node i and j is considered “utilized” if including 
the anatomical connection between node i and node j better predicts the overall 
fMRI activation. This is modeled by a binary utilization matrix U (i.e., if 
U(i,j)=1, then the structural connection between nodes i and j are utilized in 
the fMRI task; zero otherwise) 

5. The observed fMRI activation pattern is assumed to be explained by linear 
combinations of n-step reachable structural maps. 

Now, we illustrate how to set up the FSH mapping using the BDD house processing 
example. In step 1, a total of 26 visual system ROIs were carefully selected from the 
group mean fMRI activation maps overlaid on the Harvard-Oxford cortical probabil-
istic atlas for house stimuli viewing vs. baseline, for combined BDD and healthy con-
trol groups. These 26 regions are the (bilateral) lateral occipital cortex superior divi-
sion (nodes 1,2), lateral occipital cortex inferior division (3,4), intracalcarine cortex 
(5,6), precuneus cortex (7,8), cuneal cortex (9,10), parahippocampal gyrus posterior 
division (11,12), lingual gyrus (13,14), temporal fusiform cortex anterior division 
(15,16), temporal fusiform cortex posterior division (17,18), temporal occipital fusi-
form cortex (19,20), occipital fusiform cortex (21,22), supracalcarine cortex (23,24), 
and occipital pole (25,26). 

As the fMRI task was a visual task, we thus assumed that cortical fMRI signals 
originated in the bilateral primary visual cortex (V1 or intracalcarine cortex; nodes 5 
and 6). Mathematically, this is represented by a 26-element “activation” column vec-
tor A, whose entries are all zeros except for bilateral V1 (where A takes values of 1).  

In steps 2-4, we first observe that 0-step reachable map is A itself, and define the 1-
step reachable map as  (here the circle operator denotes the entry-wise or 
Hadamard product of two matrices of the same dimension). The n-step reachable 
structural maps (An) were then determined by the iterative application of the follow-
ing procedure:   

 
Lastly, we fit the following linear equation so that the entire set of observed fMRI 
activations in the visual system, S, can be explained by linear combinations of An 

 

Here, S is the fMRI signal column vector (26x1) and e is the error term. The optimi-
zation of the FSH mapping is achieved in two parts. First, U was initialized as a 
26x26 matrix whose every entry took a value of 1 (i.e., all structural connections were 
utilized). We then fixed U and the linear equation above was fitted to determine the 
weights (w0, w1, w2, etc in the above equation) and to calculate the fitting errors.  
For the second part of the optimization, the weights were fixed, and data from all 
subjects in each group were pooled together to estimate a group-level optimal U using 

(U C)⋅ A

A0 = A, Co = C; for  n = 0, 1, ...,

1. initialize  Cn +1 = Cn;

2. compute  the  column  vector  An +1 = U  Cn( )⋅ An; for  all  i  such  that  An +1(i) > 0,

set  all  entries  in  the  i − th  column  and  i − th  row  of  Cn +1  to  zero.

S = w0A0 + w1A1 + w2A2 + ...wn An + e
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the simulated annealing algorithm (thus yielding two U matrices, one for the BDD 
and one for the control group). To this end, we perturbed U (from state i to state j) by 
randomly picking one element in U and changing its value (between 0 and 1). The 
acceptance criterion determined whether the new state j was accepted from the current 
state i by applying the following decision rule with respect to an artificial cooling 
temperature (c).  

ܲሼܽܿܿ݁ݐ ݆ሽ ൌ ቐ 1                                                ݂݅ ݁ሺ݆ሻ  ݁ሺ݅ሻexp ቆ݁ሺ݅ሻ െ ݁ሺ݆ሻܿ ቇ                     ݂݅ ݁ሺ݆ሻ  ݁ሺ݅ሻ     
Where e(i) and e(j) are the linear fitting residuals. This perturbation was repeated 
numerous times until the solution space was adequately sampled and the global min-
imum reached. 

2.4 Determining Statistical Significance for Observed Utilization Group 
Differences 

As structural connection strengths vary across edges, utilization differences for con-
nections that have on average higher fiber counts should be considered potentially 
more significant. As a result, we devised a statistic dU, by summing up all rows and 
columns of the difference matrix (subtracting the U of the control group from that of 

the BDD) weighted by the mean connectivity matrix  (structural connectivity 
matrices averaged across all study participants).  

 

Here, dU measures the overall group utilization differences, and permutation testing 
can be conducted to determine whether the observed dU reaches statistical signific-
ance. To this end, we performed 10,000 permutations by randomly re-assigning each 
subject’s diagnosis (into two groups of size 11 and 13). At each permutation, the test 
statistic dU was re-computed and recorded, and the observed dU was then ranked 
against the re-sampled dUs. If the observed dU was relatively extreme and ranked 
among the top 5%, then we determined that the observed utilization group difference 
has reached statistical significance at a p value of 0.05. 

3 Results 

Linear fitting errors vs. the level of n-step structural maps used for model fitting for 
one subject is shown in Figure 1. Figure 2 summarizes fitting results for all subjects in 
both groups. Linear combinations of 1-, 2-, and 3-step structural maps were tested. 
Three-level structural maps provided sufficient linear fitting, which was further im-
proved with simulated annealing.  

Group differences in the binary utilization matrices (BDD-control) weighted by the 
mean connectivity strength (note that this matrix is symmetrical, and thus its (i, j) and 

C


dU = U BDD −U control( ) oC[ ]

i, j =1

26
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(j,i) elements indicate the utilization difference for the same structural connection) are 
shown in Figure 3. According to this model, the control group utilized several more 
structural connections than the BDD group (the most significant differences, marked 
A, B, and C in Figure 3, are structural connections between the left intracalcarine 
cortex and left lingual gyrus, the right intracalcarine cortex and right lingual gyrus, 
and the right temporal occipital fusiform cortex and right temporal fusiform cortex, 
posterior division. These connections are visualized in Figure 4. Permutation tests 
confirmed that the observed utilization group difference reached statistical signific-
ance (p = 0.0329). 

 

Fig. 1. (a) Fitting errors vs. fitting levels in one study participant. (b-0 through b-3): functional 
by structural hierarchical (FSH) mapping results in the same subject using 0, 1, 2, and 3-level 
structural maps. The y axis indicates observed fMRI % signal change and the x axis the pre-
dicted fMRI % signal change (data points that are perfectly predicted by the proposed method 
would lie along the x=y line). (b-SA): the 3-level linear fitting in addition to the simulated 
annealing (SA) step. Visually, the SA step further improves data fitting.  

 

Fig. 2. Group fitting. This shows the fitting of data points, pooled from all subjects in each 
group, using the proposed 3-level fitting with simulated annealing. The y axis indicates ob-
served fMRI % signal change and the x axis the predicted fMRI % signal change. (Note that 
predicted values were set to be greater than zero as one of the simplifying assumptions of the 
model). 
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4 Discussions and Conclusions 
These results are consistent with previous fMRI results for house processing, which found 
relative hypoactivity in the BDD group vs. controls in the lingual gyrus, precuneus, and para-
hippocampal gyrus [16]. Moreover, the use of FSH mapping provides additional information 
about utilization of structural connections that may explain observed fMRI differences; an 
inference from this is that individuals with BDD may have abnormally low information transfer 
between both primary and secondary visual cortical regions, and within higher-order temporal 
lobe visual processing systems. Results must be considered in light of multiple simplifying 
assumptions made to aid in this initial model development, and in light of small sample size. 
Future models that account for feedback, inhibitory interactions, and deactivation are necessary 
for more accurate estimations. Nevertheless, FSH may serve as a useful tool for integrating 
structural connectivity with fMRI data for improved understanding of functional activation 
patterns.  

 

Fig. 3. Utilization matrices (left panel for BDD and middle panel for controls) and their differ-
ences (BDD – control; right panel) weighted by the mean edge strength (values in color bar). In 
the right panel, the most significant utilization differences (entries in blue; not utilized in BDD) 
represent connections between the following regions: (A) left intracalcarine cortex and left 
lingual gyrus, (B) right intracalcarine cortex and right lingual gyrus, (C) right temporal occipit-
al fusiform cortex and right temporal fusiform cortex, posterior division, (D) left intracalcarine 
cortex and right precuneus, (E) right intracalcarine cortex and left cuneus, and (F) right para-
hippocampal gyrus, posterior division and right temporal occipital fusiform cortex. 

 

Fig. 4. Additional anatomical connections (marked in blue) utilized in the control relative to the 
BDD group. Here, the centers of the 26 visual system ROIs are represented by red dots. (The 
centers of other nodes not used in this study are shown for reference and are represented as 
black dots). The thicker lines correspond to connections A, B, and C, and thinner lines D, E, 
and F in the right panel of Figure 3. L/R indicates left/right, and IC, LG, TOF, TFP, PCN, CN, 
PHP denotes the intracalcarine cortex, the lingual gyrus, the temporal occipital fusiform cortex, 
the temporal fusiform cortex posterior division, the precuneus, the cuneus, and the parahippo-
campal gyrus, respectively. 
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Abstract. Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) 
have been widely used to study the functional activities of the human brain 
during task-free and task-performance periods, respectively. However, due to 
the difficulty in strictly controlling the participating subject’s mental status and 
their cognitive behaviors during fMRI scans, it has been very challenging to tell 
whether or not an R-fMRI/T-fMRI scan truly reflects the participant’s 
functional brain states in task-free/task-performance. This paper presents a 
novel approach to characterizing the brain’s functional status into task-free or 
task-performance states. The basic idea here is that the brain’s functional state 
is represented by a whole-brain quasi-stable connectivity pattern (WQCP), and 
an effective sparse coding procedure was then applied to learn the atomic 
connectivity patterns (ACP) of both task-free and task-performance states based 
on training R-fMRI and T-fMRI data. Our experimental results demonstrated 
that the learned ACPs for R-fMRI and T-fMRI datasets are substantially 
different, as expected. However, a certain portion of ACPs from R-fMRI and T-
fMRI datasets are overlapping, suggesting that those subjects with overlapping 
ACPs were not in the expected task-free/task-performance states during R-
fMRI/T-fMRI scans. 

Keywords: DTI, fMRI, connectivity, cortical landmarks. 

1 Introduction 

In the brain imaging field, resting state fMRI (R-fMRI) [1, 2] and task-based fMRI 
(T-fMRI) [3] have been widely employed to investigate the functional activities of the 
human brain in task-free and task-performance periods. However, it has been rarely 
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studied (as far as we know) whether or not the R-fMRI/T-fMRI data was really 
reflecting the subject’s task-free/task-performance states, in that it is very difficult to 
strictly control the participating subject’s mental status and their cognitive behaviors 
during fMRI scan sessions. For instance, if a participating subject’s brain was active, 
e.g., in some active cognitive processes, during the R-fMRI scan, how different will 
this R-fMRI data be from other strict R-fMRI data acquired during task-free states? 
Similarly, if a participating subject’s brain was in resting state, e.g. not strictly 
following the administered task-performance paradigm [10], how different will this T-
fMRI data be from other strict T-fMRI data scanned during task-performance states? 
If these differences are substantial, can we quantitatively characterize and 
automatically differentiate those unreliable or false R-fMRI/T-fMRI data from strict 
R-fMRI/T-fMRI data? The answers and solutions to these questions can significantly 
enhance our understanding of the function mechanisms of the brain and enable us to 
detect and control the quality of R-fMRI/T-fMRI data in the subsequent quantitative 
analysis, e.g., inference of resting state networks (RSNs), functional connectivity 
analysis, and task-based functional region localization.   

In response to the above unanswered questions, this paper presents a novel 
computational framework to characterize the brain’s task-free and task-performance 
functional states by learning from both R-fMRI and T-fMRI datasets. The basic idea 
is that we represent the brain’s functional status by whole-brain quasi-stable 
connectivity patterns (WQCP), and then apply a sparse coding approach to learn the 
atomic connectivity patterns (ACP) of both task-free and task-performance states 
from large-scale temporally segmented WQCPs. Notably, the integration and pooling 
of many WQCPs from different brains are enabled by our recently developed and 
validated 358 consistent cortical landmarks, or regions of interests (ROIs), in [5], 
which provide intrinsic structural and functional correspondences across individuals 
and populations. Thus, the WQCPs from different temporal segments of multiple 
brains can be readily pooled and effectively compared via sparse coding and 
representation methods, which can learn the most descriptive atomic patterns in 
forming a meaningful dictionary to represent and discriminate those WQCPs. Our 
experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI 
datasets are substantially different, as expected, but the overlapping ACPs suggest 
that certain subjects were not in the expected task-free/task-performance states and 
should be considered as outliers in the following steps of data analysis.                                   

2 Materials and Methods 

2.1 Overview 

The flowchart of the proposed computational framework is summarized in Fig. 1. 
First, 358 cortical ROIs discovered and validated in our recent study in [5] are located 
in the brain using DTI data (green bubbles in the left panel of Fig. 1). Then, both 
resting state fMRI (R-fMRI) and visual-task fMRI (T-fMRI) time series for each ROI 
are extracted. By using a sliding time window, the dynamic functional connectivity 
time series between each pair of ROIs are measured and the cumulative connectivity 
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Fig. 1. The flowchart of our computational framework. (1) fMRI signal extraction for each 
ROI; (2) Measurement of dynamic functional connectivity strength; (3) Manual segmentation 
and collection of WQCP training samples; (4) FDDL sparse learning and classification.  

strength of each ROI at each time point is summed. It is observed that the functional 
connectivity strengths are relatively stable in a continuous time period, and then the 
dynamic functional connectivity time series are manually segmented into quasi-stable 
time periods (called WQCP above), which form a set of WQCP training samples. 
Finally, the WQCP samples from both R-fMRI and T-fMRI datasets were combined 
together for sparse representation learning via the Fisher discriminative dictionary 
learning (FDDL) method [4].   

2.2 Data Acquisition and Pre-processing 

Twenty-six healthy adolescent volunteers participated in this study under IRB 
approvals. Multimodal DTI and fMRI datasets were acquired on a 3T GE MRI 
scanner. Both resting state fMRI and block-based visual task fMRI scans were 
acquired for each volunteer. Acquisition parameters for the scans were as follows. 
fMRI: 64×64 matrix, 4mm slice thickness, 220mm FOV, 30 slices, TR=2s; Visual 
task design and imaging parameters are referred to our recent publication [7]. DTI: 
256×256 matrix, 3mm slice thickness, 240mm FOV, 50 slices, 15 DWI volumes, b-
value=1000. The pre-processing of the DTI data included brain skull removal and 
motion correction. Both resting state and visual task-based fMRI datasets were pre-
processed using the FSL FEAT.  

2.3 WQCP Extraction  

Based on the DTI data of each subject, we predicted the 358 cortical landmarks via 
the functional ROI prediction approaches in [5]. In brief, these 358 cortical landmarks 
were optimized to possess consistent group-wise structural connection patterns, and 
thus have structural and functional correspondences across individuals and 
populations. The left panel of Fig.1 shows an example of the distributions of the 358 
cortical landmarks on a cortical surface. In particular, these 358 cortical landmarks 
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stable, each WQCP segment is averaged among the time axis, resulting in a single 
WQCP vector. Two experts performed segmentation work and independently 
checked. Finally we obtained a collection of 1149 consistent WQCP vectors from the 
datasets in Section 2.2. Specifically, there are 474 WQCP vectors for resting state 
data and 675 WQCP vectors for visual task data. All these WQCP segments and 
vectors were pooled together as training samples and represented using the following 
methods. 

2.4 FDDL for Sparse Representation of WQCP  

Sparse representation has been widely demonstrated to exhibit very good performance 
in a variety of image analysis applications such as image classification [4, 9]. 
Typically, there are two steps in the sparse representation based image classification 
method: coding and classification. In sparse representation, learning the descriptive 
and representative dictionary is the key. Sparse dictionary learning has been used in 
the brain activity and function study [11]. This paper adopted the recently developed 
Fisher discriminative dictionary learning (FDDL) based sparse representation 
methodology [4] and tailored it for our functional brain state learning applications.  

Briefly, the FDDL method employs a Fisher discrimination criterion to learn a 
structured dictionary, based on which the classification is performed. Here, the 
learned dictionary is denoted by ܦ ൌ ሾܦଵ, ,ଶܦ … , ܦ ሿ, whereܦ  is the sub-dictionary 
corresponding to the class ݅, and c is the total number of classes learned. Also, ܣ ൌ ሾܣଵ, ,ଶܣ … ,   is theܣ ሿ represents the training WQCP vector samples, whereܣ
sub-set of the training WQCP vector samples belonging to the class i. In addition, ܺ ൌ ሾ ଵܺ, ܺଶ, … , ܺሿ represents the coding coefficient matrix of A over D. The FDDL 
model is represented as follows: ܬሺ,ሻ ൌ ,ܣሺݎሺ,ሻሼ݊݅݉݃ݎܽ ,ܦ ܺሻ  ଵԡܺԡଵ  ଶ݂ሺܺሻሽ           (2) 

where the first term on the right ݎሺܣ, ,ܦ ܺሻ is called the discriminative fidelity term; 
the second term ԡܺԡଵ is the sparsity constraint; and the last term ݂ሺܺሻ is a Fisher 
discrimination constraint imposed on the coefficient matrix. ଵ and ଶ are scalar 
parameters for trade-off between sparsity and discrimination capability. Here, 
ଵ=0.005 and ଶ=0.05. 

Specifically, there are two classifiers that can be used: global classifier (GC) and 
local classifier (LC) [4]. This study adopted the GC to perform the sparse coding 
learning and classification. For one input WQCP vector sample y, first, the sparse 
coding coefficients can be obtained by solving the following: 

ෝ ൌ ݕሼԡ݊݅݉݃ݎܽ െ ԡଶଶܦ  ԡԡଵሽ                    (3) 

where ෝ ൌ ሾෝଵ;ෝଶ; … ;ෝሿ and ෝ is the coefficient vector linked to the ܦ .  is a 
constant parameter. Then, the sample y is attributed to the class, associated with 
which the sub-dictionary has the minimum representation error defined by Eq. 4: ݁ ൌ ԡݕ െ ෝԡଶଶܦ  ݓ · ԡෝ െ ݉ԡଶଶ                    (4) 
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  In total, we found 11 WQCP samples 
in 8 task-free subjects and 2 WQCP 
samples in 2 task-based subjects that 
were classified into the uncertain ACP 
#10. This pattern (Fig. 4(10)) exhibits 
quite high global functional connectivity, 
and Fig. 5 shows two examples from both 
T-fMRI and R-fMRI WQCP samples. In 
addition to the shared ACP #10 in Figs.3-
4, we further investigated the potential 
outliers in both resting state and task-
performance WQCP samples. For 
instance, there is one WQCP sample in a 
task-free subject, but it was clustered into 
the ACP #4, which is considered as one 
task-performance ACP. Importantly, we 
found 37 WQCP segments (out of totally 
675 task-performance WQCP samples) in 
17 subjects that were clustered into the 
task-free ACPs, as shown by the red 
boxes in the right side of Fig. 3 (highlighted by the yellow arrows). The quantitative 
summaries are provided in Table 1. These results imply that the participants in our 
experiments exhibited relatively good resting performance for high quality R-fMRI 
data, but they did not perform equally well in visual task experiments, as 17 of them 
exhibited resting state ACP patterns during the task-performance scans, suggesting 
these subjects were not well following the administered tasks in certain periods. Thus, 
we should take additional caution when analyzing the task-based fMRI datasets of 
these 17 subjects.   

4 Discussion and Conclusion 

This paper presents a novel framework for quantitative characterization of task-free 
and task-performance functional brain states via sparse representation of whole-brain 
quasi-stable connectivity patterns (WQCP). Experimental results have demonstrated 
that though the learned ACPs for R-fMRI and T-fMRI datasets are substantially 
different, a certain portion of overlapping ACPs between the two datasets suggests 
that some subjects were not in the expected task-free/task-performance states during 
R-fMRI/T-fMRI scan sessions. This result has important implications in detecting and 
controlling R-fMRI/T-fMRI data quality for other data analysis tasks. In the future, 
we will examine the detailed functional connectivity patterns in all ACPs. For 
instance, the ACP #16 in Fig. 4 can be clustered into several functional sub-networks 
(Fig. 6), and it turns out that the widely replicated default mode network [1] is within 
 

Table 1. The numbers and percentages of 
subjects with detected outlier ACP patterns. 

ACP 
Rest 

Num/Percent
Task 

Num/Percent 
Pattern #1 0 - 
Pattern #2 0 - 
Pattern #3 0 - 
Pattern #4 1/3.8% - 
Pattern #5 0 - 
Pattern #6 0 - 
Pattern #7 0 - 
Pattern #8 0 - 
Pattern #9 0 - 

Pattern #10 8/30.8% 2/7.7% 
Pattern# 11 - 1/3.8% 
Pattern #12 - 4/15.4% 
Pattern #13 - 4/15.4% 
Pattern #14 - 3/11.5% 
Pattern #15 - 11/42.3% 
Pattern #16 - 3/11.5% 
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one clustered sub-network, as highlighted by the 
red lines in Fig. 6. This result suggests that we can 
possibly define and cluster resting state networks, 
e.g., the ones within the black boxes in Fig. 6, 
within each temporally quasi-stable ACP pattern, 
in which the temporal patterns of functional 
connectivities are much more homogeneous and 
stable than those in traditional RSN identification 
methods that consider the entire R-fMRI scan 
period [2].  
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Abstract. Modern statistical inference techniques may be able to improve the 
sensitivity and specificity of resting state functional MRI (rs-fMRI) connectivity 
analysis through more realistic characterization of distributional assumptions. In 
simulation, the advantages of such modern methods are readily demonstrable. 
However quantitative empirical validation remains elusive in vivo as the true 
connectivity patterns are unknown and noise/artifact distributions are challeng-
ing to characterize with high fidelity. Recent innovations in capturing finite  
sample behavior of asymptotically consistent estimators (i.e., SIMulation and 
EXtrapolation - SIMEX) have enabled direct estimation of bias given single da-
tasets. Herein, we leverage the theoretical core of SIMEX to study the properties 
of inference methods in the face of diminishing data (in contrast to increasing 
noise). The stability of inference methods with respect to synthetic loss of empir-
ical data (defined as resilience) is used to quantify the empirical performance of 
one inference method relative to another. We illustrate this new approach in a 
comparison of ordinary and robust inference methods with rs-fMRI.  

Keywords: fMRI connectivity analysis, validation, resampling, resilience. 

1 Introduction 

When the brain is at rest (i.e., not task driven), functional networks produce correlated 
low frequency patterns of activity that can be observed with resting state fMRI (rs-
fMRI). These correlations define one measure of functional connectivity which may 
be estimated by voxel-wise regression of activity in a seed region against that of the 
remainder of the brain [1]. The sensitivity and specificity of connectivity inference 
techniques hinge upon valid models of the noise in the observed data. Structured vi-
olations of the noise models due to local flow, bulk motion, distortions, or other arti-
facts can invalidate the methods traditionally used for inference [2]. Modern robust 
and non-parametric methods remain valid over a broader range of disturbances, but 
come with the cost of reduced power when the traditional methods would be appro-
priate. Therefore, a quantitative approach for comparing inference methods (and pre-
processing pipelines leading to inference) is an essential analytical tool.  

Several approaches for evaluating fMRI inference methods have been proposed. 
When repeated datasets are available, one can measure the reproducibility of  
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estimated quantities when inference is applied to each dataset separately [3]. In task-
based fMRI, cross-validation resampling procedures have been used to assess spatial 
patterns of reproducibility and temporal predictability for fMRI of task activities with 
the held-back samples [4]. More recent approaches for defining inference perfor-
mance have considered the inference procedure as a classifier between the patterns of 
task activity and image intensity [5]. Yet, these advanced approaches are not applica-
ble to rs-fMRI, and to date, no methods have been proposed to quantify relative per-
formance of rs-fMRI inference methods based on typically acquired datasets (i.e., 
without large numbers of repeated scans for a single subject).  

Herein, we propose a new inference comparison approach based on the resilience 
of the inference estimator. We apply this new technique to characterize ordinary and 
robust inference of rs-fMRI data. This approach does not require acquisition of addi-
tional data and is suitable for evaluation on isolated datasets as well as groups. 

2 Theory 

SIMEX is a statistical method that can be adapted to create resilience measures for 
inference in rs-fMRI. The principle behind SIMEX is that the expected value of an 
estimator diverges smoothly with increasing noise levels, therefore, the mean degree 
of corruption can be estimated by extrapolating a trend of divergence when synthetic 
noise is added to empirical data [6]. In our context, it is not reasonable to add noise 
because the noise distributions are uncertain — especially in the context of outliers. If 
we apply the SIMEX assumption of smooth convergence in this case, we can probe 
the marginal reduction in sensitivity of an estimator by removing data. 

We define resilience as the ability of an inference method to maintain a consistent 
connectivity estimate despite a reduction in data. Over the time course of an rs-fMRI 
experiment (5-10 mins), the active brain regions vary. Hence, reproducibility of infe-
rences based on sampled time periods is not meaningful. Therefore, we focus on de-
cimating the sampling rate (Fig 1). The resilience of t-value estimates is quantified by 
two summary metrics: (i) the average absolute value of change in t-value with deci-
mation level (i.e., slope), (ii) the average variance of the estimated metrics. The slope 
of t-value is computed by averaging the individual slopes between decimation levels. 

2.1 Regression Models 

rs-fMRI data can be analyzed with a first order autoregressive model, AR(1), for a 
weakly stationary time series [7], 

࢟  ൌ ࢼ܆  ,ࢋ ,~ܰሺࢋ  ሻ (1)܄ଶߪ

where ࢟ is a vector of intensity at voxel ݅, ܆ is the design matrix, ࢼ is a vector of 
regression parameters at voxel ݅, and ࢋ is a non-spherical error vector. The correla-
tion matrix ܄ is estimated using Restricted Maximum Likelihood (ReML) and ࢼ is 
estimated on the whitened data (i.e., the “OLS” approach). Alternatively, a robust 
estimator (e.g., the “Huber” M-estimator [8]) may be applied after whitening.  
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Fig. 1. Resilience features capture the stability of an inference method to data decimation. An 
rs-fMRI dataset (1) is temporally decimated into subsets; each inference method (2) is applied 
independently to each subset; voxel-wise statistics (3) are estimated; and the parameter maps 
(4) capture spatial dependencies. 

Both the OLS and Huber methods are available within the SPM software [9]. Herein, 
we used the Huber method with the tuning constant chosen for 95% asymptotic effi-
ciency when the distribution of observation error is Gaussian distribution [10]. 

3 Methods and Results  

3.1 One Voxel Simulation 

Resilience aims to capture the performance of statistical inference methods on empiri-
cal data where the true correlations are unknown. If the true correlations are known, 
one could directly calculate the type I and type II errors. To explore how our defini-
tion of resilience relates to the type I error and the type II error, we performed single 
voxel simulation using an AR(1) model, 

࢟  ൌ ߚ  ࢞ଵߚ  ,ሺܰ~ࢋ   ,ࢋ ܸሻ (2) 

where ࢞ was simulated as region of interest (ROI) time course containing 200 time 
points with an approximately uniform distribution between 10 and 20 (arbitrary 
units), ࢋ was distributed as zero mean autoregressive Gaussian noise with standard 
deviation equaling 10% of the mean ࢟ value and normalized correlation 0.2. The null 
hypothesis ܪ: ߚଵ ൌ 0 was tested using a t-test. In separate simulations, ߚଵ was as-
signed to 0 for specificity exploration and 0.8 for sensitivity exploration. The type I 
and type II errors are calculated based on p-value (p < 0.05). To simulate structured 
outliers, Rician distributed noise (ܴ݅ܿ݁ሺ0,25ሻ) was added to the y values correspond-
ing to ݔ values with the lowest or largest intensity. Rician noise is used to reflect the 
distribution of noise in MR magnitude images. The number of outliers was swept 
between 0 and 10 using 103 Monte Carlo repetitions each. The covariance matrix was 
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assumed to be known, and OLS and Huber inference were performed independently 
after whitening. Resilience metrics were calculated with three data partitions  
(degraded up to ¼ of the dataset). Fig. 2 compares type I error, type II error, and resi-
lience as a function of number of outliers; significant differences were evaluated us-
ing the Wilcoxon signed-rank test. 

Both OLS and Huber controlled the type I and type II errors when there were no 
outliers. For the resilience, the mean absolute slope and the mean variance of OLS 
and Huber are not significantly different when ߚଵ ൌ 0 without outliers. When ߚଵ ൌ 0.8 without outliers, the mean absolute slope from OLS is larger than Huber 
while the mean variance is smaller. These results are in agreement with the known 
behavior that robust methods are not as powerful as OLS when assumptions are met.  

When considering outliers, Huber resulted in lower mean absolute slope and mean 
variance than OLS (for ߚ ൌ 0). When ߚ ൌ 0.8, the mean absolute slope of Huber was 
was higher (due to higher t-statistics with all data), but Huber yield lower variance 
estimates. Hence, we must consider both the mean absolute slope and mean variance 
in consideration of estimator performance as these are complementary measures. The 
mean variance from OLS increases when outliers appear because some decimation 
samples include outliers while others do not. In contrast, Huber is more resistant to 
outliers so that the variances are relatively constant. The resilience results show less 
significance (e.g., last columns in the mean variance in Fig. 2) which is concordant 
with the decrease in the proportion of the differences in absolute errors. In summary, 
the resilience is strongly correlated with the type I and type II errors.  

3.2 Empirical 3T rs-fMRI Experiment 

Eleven rs-fMRI of healthy subjects were acquired at 3T using EPI (197 vol, FOV = 
192 mm, flip θ = 90°, TR/TE = 2000/25 ms, 3x3x3 mm, 64x64x39  voxels) [11]. Prior 
to analysis, all images were corrected for slice timing artifacts and motion artifacts 
using SPM8 (University College London, UK). All time courses were low pass 
filtered at 0.1 Hz using a Chebychev Type II filter, spatially normalized to Talairach 
space, spatially smoothed with an 8 mm FWHM Gaussian kernel, linearly detrended, 
and de-meaned. Two voxels inside the right primary motor cortex for each subject 
were manually selected as the ROI by experienced researchers through exploring the 
unsmoothed images and comparing with the standard atlas. The design matrix for the 
general linear model was defined as the ROI time courses, the six estimated motion 
parameters, and one intercept. To create whole-brain connectivity maps, every labeled 
brain voxel underwent linear regression using the design matrix followed by a one 
sided t-test on the coefficient for the ROI time courses. 

For each subject, the whole dataset (197 scans) was subsampled. First, the TR val-
ue was set to be 4 s (TR = 2 s in the original dataset), the 197 time series fMRI scans 
were divided into two subsamples, one containing 99 scans and the other containing 
98 scans. Similarly, the TR value was set to be 6 s to obtain three subsamples. This 
procedure was repeated with a TR value of 8 s. Thus, we have one original dataset 
and three collections of subsampled datasets for each subject. The resting state fMRI 
analysis was performed on each dataset in SPM8 using OLS and Huber inference. 
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Fig. 2. One voxel simulation. Y axes are indicated by panel titles. The first row shows the re-
sults when ߚଵ ൌ 0 and the second row shows the results when ߚଵ ൌ 0.8. When the number of 
outliers increases, the type I error and the type II error of OLS increases more rapidly than 
Huber M-estimator. The boxplots in the white background display the results from OLS and the 
boxplots in the gray background are the results from Huber M-estimator. 

To quantitatively compare the resilience of these two methods, the mean absolute 
slope and the mean variance are evaluated across the gray matter (GM), white matter 
(WM) and cerebrospinal fluid (CSF). To evaluate all subjects, we calculated the mean 
of the mean absolute slope value and the mean of the mean variance in each brain 
region for each subject. The significance of differences between the ordinary and the 
robust estimation method were tested using the Wilcoxon signed-rank test.  

The mean absolute slope and the mean variance from OLS are smaller than those 
of Huber (Fig. 3). Over the 11 subjects, the mean absolute slope of OLS is not signifi-
cantly different while the mean variance is significantly smaller. Thus, the resilience 
metrics confirm expectations that OLS is a superior inference technique for high qual-
ity empirical data (i.e., when distributional assumptions are appropriate). 

3.3 Empirical 3T rs-fMRI Experiments with Outliers 

To illustrate the use of resilience in the presence of outliers, a dataset with outliers 
was simulated by increasing the WM intensity of the empirical 3T rs-fMRI dataset 
described in section 3.2. The simulation results show that three outliers are enough to 
tell the difference between OLS and Huber estimation so we selected three scans with 
low ROI intensity and added random positive noisy images inside the WM region to 
simulate outlier scans. Noisy Rician images are created with σ at 10% of the mean 
intensity and spatially smoothed at 8 mm FWHM Gaussian kernel. One slice of an 
outlier image is displayed in Fig. 4 (compare with Fig. 3). 

We applied the same connectivity analysis method (OLS and Huber) and the same 
resilience calculation method (TR from 2s to 8s, mean absolute slope and mean va-
riance in GM, WM and CSF) described in section 3.2 (Fig. 4).  
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The connectivity maps illustrate that the OLS method lost substantial power in the 
vicinity of the seed voxels when outliers were introduced whereas the Huber method 
preserved detection. In terms of resilience, the Huber approach resulted in significant-
ly smaller mean absolute slope and mean variance in the WM. We also noted smaller 
mean absolute slope and smaller mean variance from the robust method than the ordi-
nary method in GM regions. The relative improvement of the Huber performance in 
GM may due to the spatially pooled covariance estimation. In CSF, the mean absolute 
slope from OLS is larger while the mean variance is smaller for the example subject 
and across subjects. Noting that there are no outliers in the CSF it is reasonable that 
the performance of Huber is not better than OLS. The resilience results here suggest 
that the robust estimation method outperforms the OLS method if outliers are present.  

 

Fig. 3. Resilience results for empirical 3T rs-fMRI analysis. The upper plots present results for 
a representative subject and the lower plots display the results across the 11 subjects. The first 
row shows the connectivity maps estimated by the OLS and Huber methods (p < 0.001, 5 vox-
els extent threshold to exclude noise). The blue crosshairs indicates one voxel inside the ROI. 
The right column displays one slice of the smoothed image from one scan (top) the difference 
of the mean absolute slope (middle), and the difference of the mean variance (bottom) for the 
same slice. The mean absolute slope and the mean variance from OLS (white background) and 
Huber (gray background) across GM, WM and CSF regions are shown in the second row. In 
the second half, the mean of the mean absolute slope and the mean of the mean variance across 
eleven subjects are displayed. Significant differences based on the Wilcoxon signed-rank test 
are indicated by the asterisks. 
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4  Discussion 

The proposed resilience metrics provide a quantitative basis on which to compare 
inference methods. The simulation results suggest that a comparison of methods 
based on resilience would yield similar conclusions as one based on the type I and 
type II errors. It is reassuring to see that resilience also indicates that OLS would out-
perform a Huber inference approach when the data quality is high (as in the publicly 
available dataset under study), whereas a Huber approach would outperform OLS in 
cases when outliers are present. As rs-fMRI is applied to ever more challenging ana-
tomical targets (i.e., those requiring high spatial and temporal resolution and/or using 
ultra-high field imaging), the achievable signal to noise ratio decreases and the pro-
pensity for artifacts increases [12]. Hence, it is becoming increasingly more important 
to quantitatively determine which inference methods are appropriate.  

 

Fig. 4. Resilience results for 3T resting state fMRI with simulated outliers. The upper plots 
present the results for the same subject shown in Fig. 3 and the lower plots display the results 
across the 11 subjects. The first row shows the connectivity maps estimated by the OLS and 
Huber methods (p < 0.001, 5 voxels extent threshold to exclude noise). The right column dis-
plays (top) one outlier image from one scan for the same slice shown in Fig. 3, (top) the differ-
ence of the mean absolute slope and (bottom) the difference of the mean variance. The mean 
absolute slope and the mean variance from the ordinary and the robust method across GM, WM 
and CSF regions are shown in the second row. Below, the mean of the mean absolute slope and 
the mean of the mean variance across eleven subjects are displayed. Significant differences 
calculated with the Wilcoxon signed-rank test are indicated by asterisks. 
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In summary, we have presented a novel approach for quantifying inference me-
thods based on empirical data. Herein, we evaluated the resilience of the ordinary 
(OLS) and a robust method (Huber) for both simulated and empirical data. Resilience 
provides a simple, but powerful method for comparing a proxy for accuracy of infe-
rence approaches in empirical data where the underlying true value is unknown. Con-
tinued exploration of metrics based on resilience criteria promises to provide a fruitful 
avenue for comparative characterization of inference stability and “quality.” 

Note that if two inference methods yield different t-values when all data are consi-
dered, the one that has a higher starting t-value will have a higher mean absolute slope 
even if both methods degrade at the same rate. Hence, in the regions of true associa-
tion (i.e., ߚ ് 0), the variance measure is likely of greater interest as it reflects de-
graded inference consistency. Yet, in regions that lack an association (i.e., ߚ ൌ 0), the 
slope measure would reflect on anonymous changes in t-value which could be attri-
buted to “non-robust” influences. Consideration of data-adaptive combinations of 
these metrics would be area of fruitful investigation. 
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Abstract. Pathologies like autism and schizophrenia are a broad set
of disorders with multiple etiologies in the same diagnostic category.
This paper presents a method for unsupervised cluster analysis using
multi-edge similarity graphs that combine information from different
modalities. The method alleviates the issues with traditional supervised
classification methods that use diagnostic labels and are therefore unable
to exploit or elucidate the underlying heterogeneity of the dataset under
analysis. The framework introduced in this paper has the ability to em-
ploy diverse features that define different aspects of pathology obtained
from different modalities to create a multi-edged graph on which cluster-
ing is performed. The weights on the multiple edges are optimized using a
novel concept of ‘holding power’ that describes the certainty with which
a subject belongs to a cluster. We apply the technique to two separate
clinical populations of autism spectrum disorder (ASD) and schizophre-
nia (SCZ), where the multi-edged graph for each population is created
by combining information from structural networks and cognitive scores.
For the ASD-control population the method clusters the data into two
classes and the SCZ-control population is clustered into four. The two
classes in ASD agree with underlying diagnostic labels with 92% accuracy
and the SCZ clustering agrees with 78% accuracy, indicating a greater
heterogeneity in the SCZ population.

1 Introduction

Classifying subjects based on their underlying pathology, brain structure, behav-
ior and cognition is an important step towards creating biomarkers. However,
pathologies like ASD and other neuropsychiatric disorders are defined over a
spectrum and the severity of the disease may vary within a population thus
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making the data highly heterogeneous. Different modalities, like imaging, neu-
rocognitive scores etc., may characterize different aspects of this heterogeneity
to different degrees. This paper presents a method for unsupervised cluster anal-
ysis of populations using multi-edge similarity graphs that combine information
of population heterogeneity from different modalities, producing classes that are
more representative of population variability.

Traditional superivised classification methods, utilize predefined diagnostic
labels for the subjects for training [1], [2], and hence new subjects can only be
classified into one of these diagnostic categories, thereby overlooking the under-
lying heterogeneity of the pathology. These also require a large sample size to
capture all the variability.

Unsupervised classification or clustering are powerful techniques for
self-organized categorization of the underlying data [3] without the use of di-
agnostic labels. Earlier studies have used various clustering algorithms in clas-
sifying tissue types or segmenting lesions in brain images [4]. However, with
diseases now being grouped into a variety of classes, population analysis using
such unsupervised methods is gaining interest in the neuroimaging community
[5]. Recently, one study by Filipovych et al. performed semi-supervised clustering
on datasets [6]. The method was limited to use information from single imaging
modality and thus overlooked other components of the pathology.

Ideally, for precisely grouping a subject into a certain category, information
from diverse imaging modalities, psychological scores, demographics as well as
genetic information can be combined together and clustered without utilizing
clinical diagnostic information. Such a technique will thus provide a comprehen-
sive grouping and aid in understanding the underlying patterns of pathology.

With such an aim, in this paper we present a novel method that employs unsu-
pervised clustering on multiple features to better understand the underlying data
structure and to identify coherent subpopulations if any. We define each subject
by its structural networks computed from DTI data and a battery of cognitive
scores. The nodes of the structural network are clustered and similarity between
subjects is computed using the variance of information metric between these
clusters. For the cognitive battery, the similarity is computed using Euclidean
distance. Thus we get a dual-edged similarity graph, in which subjects represent
the nodes and the similarities represent the edges. We then perform unsuper-
vised spectral clustering on the linear combination of these similarity graphs.
The optimal linear combination is defined via the concept of ‘holding power’
that provides a basis of certainty with which a subject belongs to a particular
cluster. The weights on the individual similarity graph quantify the participation
of that feature in the clustering process. We apply this method to two datasets,
with autism and schizophrenia pathologies, respectively, to determine the ability
of our method in identifying homogeneous subpopulations.

2 Methods

Here we describe the method of clustering on multi-edge graphs created on the
population with the edges defining inter-subject similarity based on different
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Fig. 1. This diagram depicts the technique used to create a multi-edge graph. Diverse
features (F1, ..., Fk) are extracted for each subject that may include information from
connectivity matrices, image intensity values, genomic data or cognitive scores. The
similarity matrices (S1, .., Sk) are then computed over all the subjects for each feature.
Together these matrices form the multi-edge graph which defines various facets of
similarity (edges) between the nodes (subjects).

modalities such as imaging and cognitive scores and define the concept of holding
power of each node in the multi-edge graph, which represents the power with
which the subject (represented by a node) belongs to a cluster.

2.1 Unsupervised Clustering on Multi-edge Graphs

Consider a similarity graph S = (V,E), created over a population where the sub-
jects are represented by the nodes V and the similarities based on the modalities
are defined by the edges E. Each edge e in the graph represents the connection
(similarity in our case) between two nodes with a weight w (w ∈ R). For a
multi-edge graph, with k number of linkages (each representing a modality) the
edges between any two nodes can be described by w ∈ Rk.

The goal of unsupervised clustering on such a graph is to partition the graph,
utilizing information from all possible linkages/modalities, such that nodes with
tighter connections (with high similarity) cluster together while nodes with loose
connections (low similarity) are placed in different clusters.

Clustering a multi-edge graph is a challenging problem as each edge type con-
veys different information and thus can cause the subjects to cluster differently.
We address this challenge by flattening the graph into a single edged graph by
employing a linear function where f =

∑
αiSi where i = (1, 2, ..k) and αi is

the weight on all the edges of Si. Our focus here is to obtain good clustering by
using information from all the available features. Therefore the problem trans-
lates to finding values of α that optimize the clustering quality. To quantify the
quality of clustering, we use the concept of pull and holding power as proposed
by Rocklin et al. [7].

We begin with flattening the multi-edge graph where the αi are chosen ran-
domly under the condition

∑
αi = 1. Unsupervised clustering is then applied
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to this linear combination (α1S1 + α2S2+, .., αkSk). Any type of unsupervised
clustering method can be applied (e.g. affinity clustering, graph clustering etc).
Since our goal here is to demonstrate the importance of multi-edge graph, we use
a standard spectral clustering algorithm [8] that clusters the nodes in M clus-
ters. For each node v ∈ V , the ‘pull’ to each cluster Cm in C = (C1, C2, . . . , CM )
is then defined as the average weights of edges between node v and the nodes
categorized in cluster Cm. Therefore, for a given set of coefficients α, the pull
on node v is defined by equation 1 where x is the number of nodes categorized
in cluster Cm.

Pα(v, Cm) =
1

x

∑
w=(u,v)∈E,u∈Cm

w(α) (1)

The holding power Hα(v) for each node, is then defined as the pull of the cluster
to which the node belongs minus the next largest pull among other clusters.
Thus, for a node v in cluster Cm, the holding power is defined by equation 2.

Hα(v) = P (v, Cm)− max
Ci∈C,Ci 	=Cm

P (v, Ci) (2)

If the holding power is positive, then we can say that the node is held in the right
cluster. Thus, to achieve superior clustering that justifies the position of each
node in that cluster, we can maximize the holding power as well as the number of
nodes with positive holding power. For easier implementation of holding power
in optimization routines, the function can be smoothed by using atan(Hα(v)).

2.2 Multi-edge Graphs from Structural Networks and Cognitive
Scores

In our study the two edge weights that we use are computed from the full brain
structural connectivity networks the cognitive scores of each subject.

The structural network is a n∗n connectivity matrix where n regions of interest
(ROI’s) in gray matter are defined and the edge computation between two nodes
is based on the density of white matter fibers between these nodes. Here, we
explain the similarity between the structural networks of two subjects via the
similarity between the community structures of the structural networks for the
two subjects. Obtaining communities in the structural network is essentially
equivalent to performing clustering on the nodes of the structural network. Here,
we use a standard unsupervised spectral clustering algorithm for obtaining the
community structure for each subject [8]. We then compute the distance between
two subjects or two clusterings by using a variation of information (VI) metric
[9] which is based on the mutual information between two clustering’s [9].

Consider Ci = (C1
i , C

2
i , ..., C

K
i ) to be a clustering on subject i and Cj =

(C1
j , C

2
j , ..., C

K‘
j ) to be the clustering on subject j and let n be the total number

of nodes. Then P (C, k) =
|Ck|
n is the probability that the node is in cluster Ck in

a clustering Ci and in clustering Cj is P (Ci, Cj , k, l) =
|Ck

i ∩Cl
j|

n . The entropy of
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information in Ci is defined by equation 3, while the mutual information shared
by Ci and Cj is given by equation 4.

H(Ci) = −
K∑

k=1

P (Ci, k) logP (Ci, k) (3)

I(Ci, Cj) =
K∑

k=1

K‘∑
l=1

P (Ci, Cj , k, l) logP (Ci, Cj , k, l) (4)

The variation of information metric that describes the distance between two
clusterings is then defined by equation 5.

dV I(Ci, Cj) = H(Ci) +H(Cj)− 2I(Ci, Cj) (5)

The similarity between the battery of cognitive scores creates the second edge
of the multi-edge graph. The edge ij of the similarity matrix is the Euclidean
distance between the cognitive scores of subject i and subject j. For a vector of
length r the Euclidean distance is computed by equation 6.

d(cogi, cogj) =

√√√√ r∑
l=1

(cogil − cogjl)
2

(6)

To convert the variation of information distance matrix as well as the distance
matrix of cognitive test scores, to similarity matrices, we use the negative ex-
ponential of the distance as proposed by Shepard [10]. Thus, we now have a
multi-edge similarity graph on which unsupervised spectral clustering can be
performed. For optimizing the holding power, optimizers such as gradient de-
scent can be applied. However, in our case, since it’s only a dual-edged graph,
a simple grid search performs reasonably. We then apply the weights computed
at the maximum holding power to obtain the final clustering on the population.

The clustering is then validated against the ground truth diagnosis. The val-
idation enables us to understand the performance of the technique as well as
provides insight into the heterogeneity of the dataset.

3 Results

3.1 Simulated Data

We consider a population of 8 subjects, described by 3 modalities. We simu-
lated three 8∗8 similarity matrices (S1, S2, S3) each representing the similarities
described by a specific modality. As can be seen from Fig 2, S1 and S3 were
designed to impose a clustering (with modality S3 characterizing the first 5 sub-
jects better and modality S1 characterizing the last 3 subjects better), while
S2 was diffuse. We then combined these matrices to create a 3 edged graph (as
described in section 2.1). The weights (α) on these similarity matrices were op-
timized using a grid search method, to maximize the total holding power and
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Fig. 2. Figure shows the simulated similarity matrices (S1, S2 and S3) which form the
multi-edge graph. S is the linear combination of S1, S2 and S3 with maximum holding
power and the 2 clusters in S are evident.

minimize the number of nodes (subjects) with negative holding power, that is,
nodes that are mis-clustered. The maximum holding power was achieved at 0.4
for S1 and 0.6 for S3, while the weight on S2 was zero since it did not add
anything to maximize the holding power, thereby establishing the feasibility of
the holding power concept. The optimization implicitly puts more weight on the
matrices with stronger connections, thus choosing S1 and S3 and removing S2.
Spectral clustering on the final similarity matrix S caused it to cluster into 2
classes with the first five nodes in one cluster and last three in other cluster
which matches the underlying clustering of the data.

3.2 Real Data

Two separate datasets were used in the unsupervised clustering:

– The SCZ dataset consisted of 29 female controls (CNT) and 23 female age
matched patients with schizophrenia. The DWI images were acquired on
Siemens 3T scanner with b=1000 s/mm2 and 64 gradient directions. Neu-
rocognitive testing was carried out on all the subjects and the speed and
accuracy of memory, emotion, reasoning, and executive functioning were
recorded.

– The ASD dataset consisted of 33 participants with ASD and 21 age matched
typically developing controls (TD’s). The DWI images were acquired on
Siemens 3T scanner with b=1000 s/mm2 and 30 gradient directions. The
cognitive and psychological tests included verbal IQ, Social Responsiveness
Scale (SRS), Social communication questionnaire (SCQ), Clinical evalua-
tion of language fundamentals (CELF), Full scale IQ and Autism diagnostic
observation schedule (ADOS) and perceptual reasoning index (PRI).

Computing the Structural Network. Cortical parcellation and sub-cortical
segmentation of all the subjects was obtained using Freesurfer [11] on structural
T1 images, and a total of 78 ROI’s were extracted to represent the nodes of the
structural network. These labels were then transferred to the diffusion space via
intrasubject affine transformation. Probabilistic fiber tracking [12] was employed
to determine the percentage of streamlines that exit ROI i and enter ROI j.
The conditional probability is given by pij =

Si→j

Si
, where Si→j denotes the

number of fibers reaching j, and Si is the number of streamlines seeded in i.
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We normalize pij by the active surface area Ri of the ROI i to get connectivity
measure Pij , which accounts for different sizes of the active seed region. This
measure quantifies connectivity such that Pij ≈ Pji which upon averaging, gives
an undirected weighted connectivity matrix.

We then perform clustering on the computed structural networks. We apply
spectral clustering to each subject and then compute the VI matrix (Section 2.2,
equation 5) for the two datasets. The similarity matrix from the cognitive scores
is computed using the Euclidean distance as described in Section 2.2. Figure
3 shows the similarity matrices for the two datasets. The red lines divide the
matrix to reveal patients and controls. The cognitive score of the ASD produces
a ‘visual clustering’ in the matrix (d), however the psychological testing scores
for SCZ (b), do not produce such a distinctive difference as is evident in the
color coding of the matrix. The structural connectivity similarity matrices, do
not impose such acute clustering.

Unsupervised Clustering on Multi-edge Graph. We performed spectral
clustering on the multi-edge graphs for both the datasets, such that the holding
power is maximized with minimum number of subjects having negative holding
power. The weights at maximum holding power for SCZ data were 0.55 for
structural network and 0.45 for the psychological scores, suggesting that the
combination of information aided in the clustering process. The entire dataset
was clustered into 4 groups with two clusters representing the SCZ patients and
2 clusters representing the controls with 78% accuracy.

For ASD data, the maximum holding power was achieved with a weight of 0.2
for structural and 0.8 for psychological scores. The spectral clustering on this
linear combination split the data into two clusters: one with ASD and other with
TD with 92% accuracy. This suggested that although DTI did not add much, the
combination of information was important to maximize the hold of each subject
in that cluster. When only psychological scores were used, the data was split
into 3 clusters, where the third cluster consisted 4 subjects (2 ASD and 2 TD).

(a) (b) (c) (d)

Fig. 3. (a) Similarity matrix computed from structural connectivity network for SCZ
(b) similarity matrix computed from cognitive scores in SCZ (c) Similarity matrix com-
puted from structural networks in ASD (d) Similarity matrix computed from cognitive
scores in ASD. The horizontal and vertical red lines show the control-patient division
in the group.
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4 Conclusion

In this paper, we have created a novel technique for unsupervised clustering
that creates population based multi-edged graphs using different modalities and
features. Spectral clustering on these graphs in conjunction with maximizing
the holding power of each subject in a cluster was used to identify population
subgroups. The method was validated on simulated data and then applied to
datasets with ASD and schizophrenia. We found two inherent clusters in the
ASD data while schizophrenia data was more heterogeneous with four inher-
ent clusters. A direct interpretation of such clusters is non-trivial, but it is our
working hypothesis that relevant features found using this methodology will map
onto the clinical space of cognitive scores. In future, we plan on expanding this
idea for defining the heterogeneity index over a patient population in a spectrum
disorder like ASD.
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Abstract. Homogenising the availability of manually generated infor-
mation in large databases has been a key challenge of medical imaging for
many years. Due to the time consuming nature of manually segmenting,
parcellating and localising landmarks in medical images, these sources
of information tend to be scarce and limited to small, and sometimes
morphologically similar, subsets of data. In this work we explore a new
framework where these sources of information can be propagated to mor-
phologically dissimilar images by diffusing and mapping the information
through intermediate steps. The spatially variant data embedding uses
the local morphology and intensity similarity between images to diffuse
the information only between locally similar images. This framework can
thus be used to propagate any information from any group of subject
to every other subject in a database with great accuracy. Comparison
to state-of-the-art propagation methods showed highly statistically sig-
nificant (p < 10−4) improvements in accuracy when propagating both
structural parcelations and brain segmentations geodesically.

1 Introduction

Since the advent of open imaging databases, researchers have struggled with the
fact that extra sources of clinical, structural and anatomical information are only
available on a small subset of the data. These sources of information (e.g. manual
parcelations, anatomical landmarks, tissue priors, pathological classification) are
usually scarce since they require large amounts of human interaction. Ideally, one
would like to be able to automatically extrapolate and propagate this information
to morphologically dissimilar datasets in a coherent manner.

In neuroimage analysis, the best example of information propagation is multi-
atlas segmentation. Many researchers have shown that propagating structural
parcelations from multiple sources, by mapping them to new unseen data us-
ing image registration and then fusing the candidate parcelations, provides a
good estimation of the true underlying parcelation [1,2]. However, in the case of
limited and morphologically clustered source of information, like the 30 young
control subjects with an associated parcelation of 83 key brain areas provided
by Hammers et al. [3], structural parcelation propagation can be problematic.
As these parcelations are defined only on young controls with normal anatomy,
it is non trivial to directly map this information to morphologically dissimilar
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and pathological subjects [4,5] without introducing large errors. More recently,
Wolz et al. [6] introduced the LEAP approach (learning embeddings for atlas
propagation) for brain segmentation. In LEAP, a low dimensional representation
of the data is used to find morphologically similar datasets. This morphological
similarity is then used to gradually diffuse the segmentation of the brain from
the 30 Hammers atlases [3] to pathological Alzheimer’s diseased patients via
morphologically similar intermediate datasets, greatly increasing the segmenta-
tion accuracy. However, as the region-of-interest size increases, the morphological
embedding becomes less localised, potentially resulting in a decrease in perfor-
mance. A similar framework, but for geodesic image registration, was also intro-
duced by Hamm et al. [7] with the GRAM (geodesic registration on anatomical
manifolds) method. This family of step-wise propagation algorithms will become
increasingly relevant with the availability of larger and larger databases. Ideally,
one would like to slowly diffuse any information from its source to all the other
images in a database in an unbiased manner.

This work presents an algorithm where information is propagated along the
geodesic path of the local data embeddings. These local embeddings are rep-
resented as a voxel-wise implicit undirected graph with a heat kernel based
information reconstruction weight that uses both the local image similarity and
local image morphology as a metric. The proposed algorithm not only allows in-
formation (structural parcelations, tissue atlases, etc.) to be transferred between
anatomically disparate images with great accuracy, but also allows the estima-
tion of geodesic distance maps that represent the local degree of confidence
and extrapolation of the propagated information. Overall, as the reconstruction
weights are both symmetric and inverse consistent, the framework can be used
to propagate any information from any subject (or group of subjects) to every
other subject in a dataset using an unbiased information flow.

2 Methods

This section will first introduce the mathematical framework and the undirected
graph for geodesic information flow, followed by the introduction of the distance
metric between images. Finally, the geodesic information propagation step is
presented for two types of information: numerical and label attributes.

2.1 The Implicit Local Data Embeding

Let a set Y with R images be the full set of observed grey-valued anatomical
data with the a-th image of this set denoted by Ya. Each image Ya is going to
be a vector of size Na, with its i-th voxel denoted by Ya,i.

In order to embed the observed data within a manifold, one normally starts
by finding a distance between each pair of images. This distance provides in-
sights about the global similarity between the images, and subsequently, about
the manifold structure of the data. Theoretically, this global embedding assumes
that one can represent the space spanned by the full data in a low dimensional



264 M.J. Cardoso et al.

space. However, due to the complexity of the data, the dimensions of the manifold
can lack interpretability and usefulness. For example, Gerber et al.[8] explored
the manifold structure of the space of brain images and concluded that the first
dimension of the manifold represents global ventricular expansion due to disease
and ageing, while the second dimension meaning is described as ”less obvious”.
Ideally, one would like to be able to capture the local manifold structure of
the brain on a spatially constrained neighbourhood and not the global brain
morphology. With one manifold representation per voxel, one would be able to
describe the local brain morphology and similarity as a measure of distance be-
tween two mapped locations, and respective neighbourhoods, in two different
images. However, due to computational and memory requirements, this prob-
lem is untractable. As an example, only to store a pairwise distance matrix for
one single image at every voxel and assuming a set of 120 neighbouring images
with average size 2003, one would need approximately 400GB of memory. Fur-
thermore, the memory requirements will grow proportionally to R2, where R
is the number of datasets. Thus, one cannot have an explicit representation of
the manifold at the voxel level. In this work, instead of constructing an explicit
representation of the manifold, we implicitly represent the manifold through the
local neighbourhood graph of each data point. This greatly reduces both com-
putational complexity and memory requirements, making the problem tractable
and linearly scalable with the number of datasets R in the database.

Let D be a set of distance matrices, with the a-th matrix of this set denoted
by Da. Here, Da will be an Na× (R− 1) matrix describing the distance between
the image a and each one of the remaining (R − 1) images at every sample
position i. More specifically, Da→b(i) will contain the distance between the i-th
sample of image Ya and its corresponding sample in image Yb. We now introduce
a threshold dt over these distances. By doing so, one can now build an undirected
graph where the neighbourhood of each data-point is restricted only to the data-
points with Da→b(i) < dt. Note that the graph is undirected only if the distances
are a semi-metric (subadditivity is not required).

In this work, one does not need to explicitly represent the full graph. In order
to solve the information diffusion problem at a given location, one only needs to
keep track of the graph neighbourhood at that specific location, visually shown
in Fig. 1 - right. Here, the realm of observations (the blue connections) from the
data point in bold is limited by its direct neighbouring nodes with distances
below dt. Under this undirected graph assumption, a heat kernel decay function
Wa→b(i) is then used to diffuse the information [9]. This kernel is defined as

Wa→b(i) =

{
e−

Da→b(i)

t Da→b(i) < dt
0 else

(1)

with t being a heat kernel temperature that will determine the speed and the
distance the information can diffuse. In this work, we set dt = t, meaning that the
choice of t will determine both the maximum distance traveled by the information
and the amount of information diffusion that occurs at each iteration.
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Source
Connected Datapoints
Disconnected Datapoint

Realm of observations
for one datapointGeodesic Information Flows

a

b

c

d

e
f

Da→c

Da→b
Da→d

Da→e
Da→f

Fig. 1. Left) Implicit manifold with the neighbourhood defined as all the data points
within a certain distance. Note that if the manifold is sparse, some data points might be
disconnected. Right) Diagram representing the observed and unobserved connections
(in blue and green respectively) and distances from the standpoint of the data point a.

2.2 The Distance Metric

The heat kernel decay function is based on the assumption that one can cal-
culate a distance between two nodes in the graph. This distance should be at
least a semi-metric, respecting both the coincidence and separation axioms and
symmetry. In a medical imaging framework the local distance between images
should take into account both local morphology and local image similarity. Ger-
ber et al. [8] proposed to use coordinate transformations as a distance metric.
These coordinate transformations map an image Ya to an image Yb by finding
the optimal transformation Ta→b that maximises some cost function. In order
to be a semi-metric, this coordinate transformation has to be symmetric, in-
verse consistent and diffeomorphic. In our work, we use a symmetric variant of
a non-rigid free-form registration algorithm as described in [10]. Under the sym-
metry and diffeomorphism constraints, the transformation Ta→b = T−1

b→a and
Ta→b ◦ Tb→a = Id, with T−1 being the inverse of the transformation, ◦ being
the composition operator and Id the identity transformation. In order to remove
the smoothly varying local affine component of the transformation that charac-
terises the global anatomical shape differences, the low frequency component of
the transformation is removed. From the high-frequency version of the transfor-
mation, one can then find the displacement field Fa→b that describes how much
a point i in Ya had to move to match the corresponding point j in Yb.

Even though this displacement field will describe the morphological differences
between the brains, we also combine it with an intensity similarity metric in order
to assess the local similarity between the images after transformation [11]. This
similarity term is necessary to characterise both the local differences in tissue
appearance due to pathology (e.g. damaged WM in dementia) and also some
possible local registration errors. The local similarity between an image Ya and
an image Yb transformed by Tb→a, denoted by La→b, can be calculated as the
local sum of squared differences (LSSD) between the intensity in these images,
using a cubic B-spline kernel as a local smoothing function. We combine the two
metrics together by setting Da(i, b) = αLa→b(i) + (1− α)Fa→b(i), with α being
a relative weight, meaning that both a low displacement and a low LSSD are
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necessary to obtain a low distance Da(i, b) between images. In this work α = 0.5.
Optimisation of α will be part of future work.

2.3 Geodesic Information Flows

The two previous sections have defined the neighbourhood graph and the dis-
tance metric. This section will make use of the graph structure to introduce the
concept of propagating information between neighbouring nodes of the graph.

Let I be a set of vectors, with the a-th vector of this set denoted by Ia.
Each vector Ia has its i-th element denoted by Ia,i, representing the associated
information at location i for image Ya. Assuming that the information to be
propagated is only available in a subset of images within the full database, only
some of the vectors Ia will be defined. Now, let an indicator vector Ka, indexed
by Ka,i, characterise the status of the information at location Ia,i. Here, Ka,i

is set to 2 if Ia,i is a source of information, set to 1 if the information has
diffused and reached the location Ia,i or 0 if the information does not exist at
location Ia,i. As the realm of observations at each spatial location is limited by its
closest neighbours, the best approximation for data flow is given by a normalised
weighted sum of the information available within the neighbourhood. Thus,

Ia,i =

∑
∀b∈Kb,j>0 Wa→b(j)Ib,j∑

∀b∈Kb,j>0Wa→b(j)
(2)

with j being the spatially transformed coordinate i into the space of image Ib,
mapped using the previously described transformation. The information flow is
thus governed by the heat kernel-derived weights Wa→b(i). If the set b ∈ (Kb,j >
0) is not empty, the information in Ib,j can then be propagated to Ia,i. In this
case, Ka,i is set to 1, else Ka,i is set to 0. Note that Eq. 2 is only valid for
floating point data propagation like a probabilistic atlas. The same equation
can be re-formulated in a weighted label fusion scheme, by making Ia,i equal
to p(Ia,i, l), representing the probability that location i in image a has label l,
and by making Ib,j equal to p(Ib,j , l), representing the probability that location
j has label l in image b. Eq 2 is solved iteratively for all samples where Ka,i < 2,
until all are marked as solved. The number of times Ia,i could not be solved
because Kb,j > 0 ∀ b is an empty set, represents the number of steps through
the graph’s geodesic path necessary to transport the information from its source.
The number of steps represent the amount of extrapolation of information, where
larger extrapolation should result in lower accuracy.

Finally, because the temperature t will determine the neighbourhood size and
consequently the existence of a connection from every information source to all
the targets, the geodesic information flow is solved multiple times for several
values of t. This temperature t is varied between 5 and 1 with decrements of
0.5. In a similar fashion to an annealing process, the information at the lowest
possible temperature is kept as the answer, as the distance traveled by each
extrapolation step is the lowest.
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3 Validation

The data used in this work, depicted in Fig. 2, is compromised of two sets: 30
young controls with associated structural parcelation of 83 key structures [3]
(http://www.brain-development.org); 90 subjects from the ADNI database
(http://adni.loni.ucla.edu), subdivided into 30 controls, 30 Mild Cognitive
Impairment (MCI) and 30 Alzheimer’s diseased (AD) patients with associated
manual segmentations of the brain. The current work aims at homogenising
databases under the assumption that extra information is only available on a
subset of the data. From these sources of information, measuring the information
extrapolation accuracy will always be limited by the anatomical and pathological
variability within the full dataset and by the range of available segmentations.
Furthermore, the most complex sources of information, like the 30 young controls
with full brain parcelations, are simply not available in pathological subjects.
This makes the validation anecdotal for untested morphologies. The proposed
validation will thus have two components. First, the overlap accuracy of multi-
label information propagation will be estimated and compared to MAPER [4]
using a leave one out approach on the 30 young controls. Then, the accuracy
of information extrapolation accuracy will be characterised by propagating the
brain segmentations from the elderly control group to the MCI and AD patients.

Multi-label Propagation Accuracy: The accuracy of propagating informa-
tion through a geodesic path was compared to MAPER [4], a direct information
fusion method based on majority voting. As the amount of parcelations available
for validation is limited, a leave-one-out cross validation was performed only on
the 30 young controls that have manual brain parcelations. One should note
that the limited availability of segmentations restricts the range of morpholog-
ical variability in the propagation, thus not representing the real performance
when segmenting morphologically dissimilar subjects.

In this paper, the Dice score was used as a measure of accuracy. The mean
Dice scores per structure for the the leave-one-out cross validation are shown in
Table 1. Out of 83 structures, 15 structures had a significantly higher Dice score
using the Geodesic information Flow when compared to MAPER, while only two
structures (lingual gyrus and superior parietal gyrus) where better segmented
in MAPER. The mean Dice score over all structures and all patients for the

Young Controls [#30]
- Structural 
Parcelation

Elderly Controls [#30]
- Brain segmentation

MCI Patients [#30]
       - Brain segmentation

AD Patients [#30]
- Brain segmentation

Fig. 2. Left) All the sets of data used in this work and their associated information.
Right) One dataset from the Hammers atlas overlayed with its associated structural
parcelation; an ADNI AD subject with the associated brain segmentation

http://www.brain-development.org
http://adni.loni.ucla.edu
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Table 1. Mean Dice coefficient for a set of key structures, comparing the proposed
method (GIF) with MAPER [4]. Statisticaly higher mean Dice is shown in bold font.
Only a limited number of structures are shown due to restrictive space availability.

Structure
Unilateral Structures

GIF MAPER p-value

All Structures 0.8179 0.8089 < 10−4

Corp. callos. 0.8802 0.8674 < 10−4

Brainstem 0.9534 0.9377 < 10−4

Structure
Left Side Right Side

GIF MAPER p-value GIF MAPER p-value

Hippocampus 0.8439 0.8335 0.0048 0.8251 0.8211 0.2036

Amygdala 0.8263 0.7922 < 10−4 0.8241 0.7830 < 10−4

Caudate nucl. 0.8983 0.8923 0.0380 0.9004 0.8955 0.0478

Nucleus acc. 0.7581 0.6834 < 10−4 0.7317 0.6707 < 10−4

Putamen 0.9069 0.8916 < 10−4 0.9107 0.8959 < 10−4

Thalamus 0.9210 0.8879 < 10−4 0.9205 0.8852 < 10−4

Pallidum 0.8562 0.7661 < 10−4 0.8554 0.7672 < 10−4

proposed method (0.8197) was significantly higher (p < 10−4) than in MAPER
(0.8089). An example of the propagation to a highly atrophied subject from the
ADNI database is shown in Fig. 3 (right).

Information Extrapolation Accuracy: In the previous subsection, the ac-
curacy of propagating information through a geodesic path was limited to a
morphologically similar set of subjects. Thus, the previous validation does not
capture the ability to extrapolate information to anatomically disparate sub-
jects. The information extrapolation accuracy is thus assessed by using only a
subset (the elderly control group) of all the manual brain segmentations. This
morphologically clustered set of data is then used to segment both the MCI
and AD groups. The proposed geodesic propagation algorithm is compared to a
direct propagation algorithm based on the locally weighted majority voting algo-
rithm [12]. The results are presented in Fig. 3 (left). The mean (std) Dice score
for the proposed geodesic method was 0.940(0.009) and 0.947(0.008) for the AD
an MCI groups respectively while for the direct method, the mean (std) Dice
score was 0.934(0.009) and 0.942(0.008) for the AD an MCI groups respectively.

MCI_Direct MCI_Geodesic AD_Direct AD_Geodesic

0.91

0.92

0.93

0.94

0.95

0.96

Fig. 3. Left) Dice scores for direct and geodesic propagation of brain mask. Right) An
example of the propagation of both the structural parcelation and brain segmentation
to an highly atrophied AD subjects (ID:1281) from the ADNI database. Note the
correct ventricle segmentation and the smooth deep grey matter parcelation.
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This represents a statistically significant (p < 10−4) increase in segmentation
accuracy when using a two-tailed paired t-test for statistical comparison. Note
that, due to the lack of post-processing and the limited size of the training set,
one should not compare these results with other brain segmentation methods.

4 Conclusion

This work presents an algorithm where information is geodesically propagated
through a local implicit neighbourhood graph. Application to structural parce-
lation and brain segmentation propagation has demonstrated the significant
(p < 10−4) advantages of the proposed framework when compared to state of
the art methods. Overall, the proposed framework can be used to propagate any
information from a group of subjects to every other subject in a dataset. All the
software and results used for this work is available at http://niftyseg.sf.org.
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Abstract. In-vivo parcellation of the cerebral cortex via non-invasive 
neuroimaging data has been in active research for years. A variety of model-
driven and/or data-driven computational approaches have been proposed to 
parcellate the cortex. However, two fundamental common issues in these 
parcellation methodologies are the features or attributes used to define 
boundaries between cortical regions and the establishment of correspondences 
of the parcellated regions across different brains. This paper uses a novel DTI-
derived fiber shape feature for the parcellation of cortical gyrus into fine-
granularity segments. The gyral parcellation is formulated and solved as a 
surface vertex clustering problem, in which fiber shape feature similarity is 
used to define the distances between vertices. Then, we designed and applied a 
novel multi-view spectral clustering algorithm to group the vertices into group-
wise consistent gyral segments across different brains. The experimental results 
showed that the precentral and postcentral gyrus, as two test-beds, can be 
consistently parcellated into 10 segments on both hemispheres across different 
subjects. Evaluation studies using benchmark task-based fMRI and cortical 
landmarks demonstrated the effectiveness and validity of the proposed methods.                   

Keywords: cortical parcellation, multi-view clustering, fiber shape, gyri. 

1 Introduction 

In-vivo parcellation of the human cerebral cortex based on neuroimaging data, e.g., 
MRI/DTI/fMRI, has been extensively studied because of its significant importance in 
basic and clinical neurosciences. In general, cortical parcellation result can be used 
for the definition of anatomically/connectionally/functionally meaningful structures 
and for measurement of their biological properties. Current approaches to cortical 
parcellation can be broadly categorized into two classes: model-driven and data-
driven methods. In model-driven methods, atlas-based warping methods [1]-[2] are 
widely used to parcellate a subject’s cortex by transforming an expert-labeled atlas to 
the subject’s space. In data-driven methods, geometrical, morphological, connectional 
or functional features can be used to guide the parcellation procedure, e.g., in [3], a 
sulcal parcellation algorithm was developed based on the cortical folding patterns. 
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In this paper, we propose a novel approach for fine-granularity cortical gyrus 
parcellation via group-wise multi-view spectral clustering of fiber shape patterns. The 
basic idea is that each cortical gyral region is represented by its DTI-derived fiber 
connection shape patterns, which is able to capture the global structural connectivity 
pattern and thus is predictive of brain function. Then, the representative nodes of each 
gyrus from different brains are roughly aligned and each subject represents a view. A 
novel multi-view spectral clustering algorithm is designed to cluster these gryal nodes 
into group-wise consistent segments with correspondences across individuals. Here, 
the similarity matrix of the gyral nodes in each subject is modeled and represented as 
a separate view in the context of multi-view clustering problems. The major 
methodological contribution of this work is that the proposed method achieved 
meaningful parcellation of the gyrus and the establishment of correspondences of the 
parcellated segments across individuals simultaneously. The neuroscience insight 
gained from this work is that the seemingly very variable cortical gyrus and its fiber 
connections can be consistently parcellated into meaningful and common segments. 
In the future, the derived consistent gyral segments can be used as common ROIs 
(regions of interests) for a variety of neuroscience applications, such as mapping of 
structural and functional connectivities in healthy brains and diseased ones.                                     

2 Methods 

The computational pipeline is summarized in Fig. 1. The major novel steps are in 
Figs. 1c and 1d. In Fig. 1c, the gyrus is represented by discrete nodes on its extracted 
crest line and each gyral node is described by rich and functionally meaningful DTI-
derived fiber connection patterns. In Fig. 1d, the gyral nodes from multiple brains are 
clustered into group-wise consistent segments by a novel multi-view spectral 
clustering algorithm. Finally, these DTI-derived consistent segments are validated by 
benchmark cortical landmarks and task-based fMRI activations on the gyri.      

 

Fig. 1. The computational pipeline of group-wise multi-view clustering of fiber shape patterns 
for gyral parcellation. (a) DTI raw data. (b) Pre-processing including tissue segmentation, 
surface reconstruction, and fiber tracking. (c) Extraction of gyral crest lines and corresponding 
fiber shape features. (d) Group-wise clustering based on multi-view spectral clustering. (e) 
Gyral parcellation result. (f) Functional activation map for validation. 
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2.1 Data Acquisition and Preprocessing 

Two separate datasets are used for this study. In the first dataset, 6 healthy volunteers 
were scanned with both DTI and task-based fMRI. The parameters of DTI is as 
follows: 128×128matrix, 2mm slice thickness, 256mm FOV, 60 slices, TR=15s, 
ASSET=2, 30 DWI gradient directions, 3 B0 images, b-value=1000. For fMRI scans, 
the motor tasks were designed using similar paradigms in [4], in which elbow, lip and 
ankle movements were performed respectively. The parameters are as follows: 2mm 
isotropic images at TR/TE=3000/25ms, FOV=256mm×256mm covering the motor 
cortex. 144 volumes (6 cycles) of fMRI were collected for each individual subject. In 
the second dataset, DTI was acquired from 10 healthy volunteers. The parameters of 
DTI are the same as the first dataset. The preprocessing steps are referred to [6]. 

2.2 Gyri Segmentation 

We performed semi-automatic segmentation of two gyri, including precentral gyrus 
and postcentral gyrus in each hemisphere on the above reconstructed cortical surfaces 
from DTI. The gyral crest line (Fig. 2b) is defined as the shortest geometric path 
weighted by a value that is inversely proportional to the maximum principal curvature 
of surface (Fig. 2a) between two gyral end points on the surface. After the crest line 
has been selected, we resampled the crest line with 100 nodes with constant distance 
(Fig. 2c). After resampling, each crest line is composed by a sequence of 100 gyral 
nodes. After this, a rough correspondence is established between gyri across subjects 
by their node index, as illustrated in Fig. 2d.  

 

Fig. 2. Illustration of gyral crest line and fiber shape feature. (a) Surface’s principal curvature. 
(b) Gyral crest line. (c) Resampled gyral crest line. (d) Correspondence between gyral nodes on 
the crest line. (e) Example of fiber bundle shape feature. 

2.3 Fiber Shape Feature 

We implemented a fiber shape descriptor that is akin to the recently published trace-
map model in [7]. Briefly, a fiber tract was divided into overlapping segments.  
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The principal direction of each segment was calculated using PCA and was 
represented by a point on a unit-sphere located at origin, as shown in Fig. 2e. The 
trace maps for each fiber of an ROI are accumulated and a density map was calculated 
and formulated as a 144-dimensional feature by discretizing the unit sphere and re-
arranging the values. Thus, each gyral node is represented by a 144-dimensional 
trace-map feature, which is quite descriptive in modeling different fiber shape 
patterns as shown in Fig. 2e. Notably, it has been widely reported that consistent 
structural connection patterns are predictive of brain function based on the general 
principle of “connectional fingerprint” introduced in [8], and thus it is expected that 
the used fiber shape descriptor is predictive of brain function, which will be verified 
by fMRI data later.   

2.4 Adaptive Multi-view Spectral Clustering (AMVSC) 

Spectral clustering is a technique that utilizes the properties of the Laplacian of the 
graph whose edges denote the similarity between the data points. The top c 
eigenvectors of the symmetric normalized graph Laplacian are the relaxations of the 
indicator matrix G which assigns each data point in the graph to one of the c clusters. 
To naturally integrate variable multi-view features of gyral nodes’ shape patterns, we 
propose a unified objective function to simultaneously optimize clustering results of 
each individual view and their combinations. In other words, we minimize both the 
summation of the weighted spectral clustering error of each view and the distances 
between the multi-view clustering indicator matrix and the clustering indicator matrix 
of each single view. Thus, our multi-view spectral clustering objective function is the 
following: 
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where kα is the normalized weight scalar for k-th view, which can be inferenced from 

the data directly. nnk RL ×∈ and cnk RG ×∈ , are the corresponding Laplacian matrix and 

clustering indicator matrix of each view respectively vk ,...,2,1=∀ . cnRG ×∈ is the 
multi-view clustering indicator matrix that we are interested in. λ is the regularization 
parameter which controls the tradeoff between the clustering error and consistency 
and r  is the parameter that we use to control the distribution of the weight for each 
view. Specifically, when ∞→r , we set up equal weight for each view; when 1→r , 
only one weight is non-zero. Therefore, given the Laplacian matrix of each single 
view, we utilize Eq. (1) to learn the clustering indicator matrix of each view, 
clustering indicator matrix for multi-view and weight for each view simultaneously. 
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2.5 Optimization Algorithms 

We will resort to the following approach to solve Eq. (1) alternatively and iteratively.  

The first step is fixing G , KG , solving kα .Then we need to solve the next problem, 
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Where Λ is the Laplacian multiplier. Setting the derivative of Eq. (4) with respective 

to kG to zero, then we get: GILG kk 1)
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which can be tackled by traditional spectral clustering algorithm [9]. Repeating the 

above two steps alternatively, we iteratively update kα (thus achieving adaptive 
MVSC) and G until the objective function converges. We summarize the whole 
algorithm in Algorithm 1 [10]. 
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Algorithm 1. The algorithm of AMVSC 
Input: 

1. The affinity matrix for each view .,...,2,1, vkRW nnk =∀∈ ×  
2. The number of clusters c , the regularization parameter λ and the parameter r . 
Output: 

1.The cluster indication matrix .cnRG ×∈  

2.The weight for each view .kα  
Initialization: 

1.Set t=0, and initialize the weight for each view, .
1

...21

v
v
ttt ==== ααα  

Procedure: 
1. Calculate the symmetric normalized graph Laplacian for each view 
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3 Experimental Results 

3.1 Gyral Parcellation Results 

Fig. 4 shows examples of parcellation results for the left pre-central gyrus and right 
post-central gyrus for 6 subjects, respectively. We set number of segments 10 which 
gives reasonable parcellation size (neither too small to obtain over segment, nor too 
large to cover multiple functional regions). By visual examination, the parcellated 
segments exhibit quite reasonably consistent patterns across different brains. In 
particular, the results in Figs. 3a and 3b and the results in Figs. 3c and 3d are from 
two separate datasets, suggesting that the proposed multi-view spectral clustering 
method really achieved reproducible and consistent parcellation results. To further 
verify our parcellation result, Figs. 4a and 4b show the fiber shape patterns for all of 
the gyral segments and Fig. 4c shows the fiber shape patterns of the same segment in 
10 brains. It is evident that the fiber shape patterns across different gyral segments are 
quite different, but the fiber shape patterns of the same gyral segment are quite 
consistent across individual brains. Quantitatively, the fiber shape similarities within 
the same corresponding gyral segment are much higher than those between different 
gyral segments, as shown in Fig. 5. On average, the within-segment similarity is 0.7, 
while the between-segment similarity is 0.42. 
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Fig. 3. The parcellation results of the left pre-central gyrus and right post-central gyrus of two 
datasets. (a) Left pre-central gyrus of subjects in the first dataset. (b) Left pre-central gyrus in 
the second dataset. (c) Right post-central gyrus in the first dataset. (d) Right post-central gyrus 
in the second dataset. 

 

Fig. 4. Examples of fiber shape patterns of each cluster. (a) Fiber shape patterns of the left post-
central gyrus of one subject from the first dataset. (b) Fiber shape patterns of the left post-
central gyrus of one subject from the second dataset. (c) Examples of fiber shape patterns of the 
left most segment in (a). 

 

Fig. 5. Average similarity between fiber shape patterns within the same gyral segment in the 
second dataset. Blue bars: the similarities between subjects of the same segment. Red bars: the 
similarities between fiber shape patterns of different segments. The horizontal axis is gyral 
segment ID. (a) Left pre-central gyrus. (b) Right pre-central gyrus. (c) Left post-central gyrus. 
(d) Right post-central gyrus. 
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Fig. 6. Evaluation and validation of the pre-central gyrus parcellation by motor task-based 
fMRI [6] and consistent structural cortical landmarks [11]. (a)-(c) Ankle motor activation. (d)-
(f) Elbow motor activation. (g)-(i) Lip motor activation map. (j) Validation by consistent 
structure cortical landmarks.  

3.2 Validation via Motor Task-Based fMRI and Cortical Landmarks 

We used benchmark motor task-based fMRI data to validate the functional meanings 
and correspondences of those structurally parcellated gyral segments. As shown in 
Figs. 6a-6i, the fMRI-derived activations in responses to ankle, elbow and lip motor 
tasks are located on the same corresponding segments of the left and right precentral 
gyri. This result demonstrated that the structurally parcellated gyral segments possess 
functional correspondences and meanings. In a separate validation study shown in 
Fig. 6j, two cortical landmarks (highlighted by white arrows) identified in our recent 
data-drive discovery procedure [11] are located on two corresponding gyral segments 
across different brains as well, further suggesting that the clustered segments have 
functional meanings and possess correspondences across individuals.      

4 Discussion and Conclusion 

This paper presents a novel framework for group-wise consistent parcellation of 
cortical gyri via multi-view spectral clustering of DTI-derived fiber shape patterns. In 
this framework, each gyrus’s nodes and their associated fiber shape patterns are 
considered as a separate view in the context of multi-view clustering framework, and 
gyral parcellation and their group-wise correspondences are achieved simultaneously 
via the novel multi-view spectral clustering algorithm. Our experimental results have 
shown that the precentral and postcentral gyri can be clustered into group-wise 
consistent and meaningful segments. Parts of the clustered results have been validated 
via benchmark cortical landmarks and task-based fMRI data. In the future, we plan to 
apply the similar methodology on other cortical gyri and validate the parcellation 
results via larger scale fMRI studies. The availability of fine-granularity parcellation 
of the cortex will enable many basic and clinical neuroscience applications [1].         
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Abstract. The ensemble average propagator (EAP) describes the 3D
average diffusion process of water molecules, capturing both its radial and
angular contents, and hence providing rich information about complex
tissue microstructure properties. Bessel Fourier orientation reconstruc-
tion (BFOR) is one of several analytical, non-Cartesian EAP reconstruc-
tion schemes employing multiple shell acquisitions that have recently
been proposed. Such modeling bases have not yet been fully exploited in
the extraction of rotationally invariant q-space indices that describe the
degree of diffusion anisotropy/restrictivity. Such quantitative measures
include the zero-displacement probability (Po), mean squared displace-
ment (MSD), q-space inverse variance (QIV), and generalized fractional
anisotropy (GFA), and all are simply scalar features of the EAP. In this
study, a general relationship between MSD and q-space diffusion signal is
derived and an EAP-based definition of GFA is introduced. A significant
part of the paper is dedicated to utilizing BFOR in a clinical dataset,
comprised of 5 multiple sclerosis (MS) patients and 4 healthy controls, to
estimate Po, MSD, QIV, and GFA of corpus callosum, and specifically,
to see if such indices can detect changes between normal appearing white
matter (NAWM) and healthy white matter (WM). Although the sample
size is small, this study is a proof of concept that can be extended to
larger sample sizes in the future.

1 Introduction

The aim of diffusion-weighted imaging (DWI) is to non-invasively estimate in-
formation about the diffusion of water molecules in biological tissues. The most
common form of DWI is diffusion tensor imaging (DTI) [4], which is a good
model of diffusion-weighted signal behavior at low levels of diffusion weighting.
Rotationally invariant measures can be derived from the eigenvalues of the diffu-
sion tensor, including fractional anisotropy (FA) and mean diffusivity (MD) [5],
that have proven clinical value. However, DTI is limited by the Gaussian assump-
tion, which is invalid at higher levels of diffusion weighting (b > 2000 s/mm2)
and its inability to resolve multiple fiber orientations within a voxel [12].

In order to recover complex white matter (WM) geometry, high angular res-
olution diffusion imaging (HARDI) [12], which reduces the diffusion signal sam-
pling to a single sphere (i.e. single level of diffusion weighting) within q-space,

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 280–287, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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was proposed. Many HARDI techniques [7, 11] seek to extract the orientation
distribution function (ODF), a probability density function describing the an-
gular distribution of water molecules during diffusion. However, the ODF only
retrieves the angular content of the diffusion process.

The ensemble average propagator (EAP) provides the full information about
the diffusion process in the tissue because it captures both the radial and angular
information contained in the diffusion signal. The ODF is simply an angular
feature of the EAP. Unlike the diffusion tensor, the EAP profiles illustrate and
recover crossing fibers. The significance of the EAP in diffusion MRI has led to
many reconstruction algorithms being proposed, some numerically based such
as diffusion specturm imaging (DSI) [13] and hybrid diffusion imaging (HYDI)
[16], and some analytically based such as diffusion propagator imaging (DPI)
[9], spherical polar Fourier imaging (SPFI) [3,8], and Bessel Fourier orientation
reconstruction (BFOR) [10].

With respect to analytical EAP reconstruction methods, one valuable though
overlooked use is in extracting rotationally invariant quantitative measures from
them. High angular resolution analogues of quantitative DTI indices such as gen-
eralized fractional anisotropy (GFA) [11] & mean squared displacement (MSD)
[2, 16] and other q-space metrics like zero-displacement probablity (Po) [2] &
q-space inverse variance (QIV) [17] are all scalar features of the EAP. Analytical
representations of the EAP (and hence diffusion signal) facillitate either analytic
computation of such features or numerical efficiency in estimating them. HYDI
has already been used to numerically estimate Po, MSD, and QIV [17].

In this paper, we derive analytical expressions for Po, MSD, & QIV using
BFOR, and introduce an EAP-based definition of GFA. These quantitative mea-
sures are then utilized in a HYDI-acquired clinical dataset, comprising a healthy
control group and multiple sclerosis (MS) patients, to see if they detect any
differences in the corpus callosum between the normal appearing white watter
(NAWM) of MS patients and healthy WM.

2 Theory

Let P (p) and E(q) be the EAP and normalized q-space diffusion signal, respec-
tively. We denote q = q u(θ, φ) and p = p r(θ′, φ′), where u and r are 3D
unit vectors. Under the narrow pulse assumption, E(q) and P (p) are Fourier
Transform (FT) pairs [6]:

P (p) =

∫
E(q)e−2πiq·pd3q (1)

The BFOR signal basis and EAP are, respectively,

E(q, t) =

N∑
n=1

R∑
j=1

Cnje
−α2

nl(j)
t

τ2 jl(j)(
αnl(j)q

τ
)Yj(u) (2)
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and

P (p, t) = 2τ
√
2π3

N∑
n=1

R∑
j=1

(−1)
l(j)
2 Cnje

−α2
nl(j)

t

τ2 Yj(r)

√
αnl(j)Jl(j)−1/2(αnl(j))jl(j)(2πτp)(

4π2p2 −
α2
nl(j)

τ2

) ,

(3)

where e
−α2

nl(j)
t

τ2 is the smoothening term, Cnj are the expansion coefficients, and
αnl(j) is n

th root of lth order spherical Bessel function of first kind jl [10].

2.1 Rotationally Invariant Quantitative q-Space Indices

Po = P (p = 0) is the probability density of water molecules that minimally dif-
fuse within the diffusion time [2,16], and hence a measure of restricted diffusion.
In a healthy adult brain, Po is greater in white matter (WM) than gray matter
(GM) because WM has more restricting barriers including multi-layer myelin
sheaths, axonal membranes, and microtubules. Several studies have shown Po
to be sensitive to brain pathology, and suggesting that changes in myelin are the
primary mechanism for differences in Po [1, 18].

Po can be evaluated either numerically or analytically. The authors in [17]
computed Po by numerically summing the normalized diffusion signal E(q) over
all diffusion measurements in q-space, and then correcting the sum by the sam-
pling density. Analytical formulations of Po were derived for the SPFI and DPI
signal bases [8, 9]. The BFOR Po can be computed analytically by evaluating
Eq. (3) at p = 01:

Po = 2
√
πτ3

N∑
n=1

Cn1
(−1)n+1

α2
n0

(4)

The MSD, which we will denote as 〈p2〉, is simply the second moment of the EAP
[16]: 〈p2〉 =

∫
p2P (p)d3p. It is related to the MD, which in the case of Gaussian

diffusion is given by the well-known Einstein relation 〈p2〉 = 6(Δ−δ/3)MD. Thus
far, an analytical formulation of MSD exists only within the DTI framework. It
is calculated numerically in q-space imaging, either by extracting the full width
at half maximum of the EAP [2] or taking the geometrical mean of the diffusion
signal over all directions on a HYDI shell [17]

A general relationship between the MSD and q-space diffusion signal has not
yet been formulated to the authors’ knowledge. Such a relationship is derived in
the Supplementary Section:

〈p2〉 = −1
4π2

 2 E(q)|q=0 (5)

According to Eq. (5), DPI, which models the diffusion signal as  2E(q) = 0,
predicts the MSD to be zero which is unrealistic. Using Eq. (5), an analytic MSD

1 For all derivations, see http://brainimaging.waisman.wisc.edu/~ameer/Suppl.pdf

http://brainimaging.waisman.wisc.edu/~ameer/Suppl.pdf
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expression can be computed for BFOR because the BFOR signal basis, Eq. (2),
is an eigenfunction of the Laplacian operator. Hence, it can be shown that

〈p2〉BFOR =
1

8π
5
2 τ2

N∑
n=1

Cn1α
2
n0 (6)

The MSD measure is quite sensitive to noise [16]. The authors in [17] proposed
an alternative measure to MSD called the QIV, which is a pseudo-diffusivity

measure. Mathematically, the QIV is defined as QIV =
[∫

q2E(q)d3q
]−1

. The
QIV is not an arbitrary meausre, but related to the EAP in a manner analogous
to which the MSD is related to the diffusion signal-in Suppl. Section, we will
show that QIV −1 = −1

4π2  2 P (p)|p=0. The QIV within the BFOR framework is

QIVBFOR =
1

2
√
πτ5

∑N
n=1(−1)nCn1

(6−α2
n0)

α4
n0

(7)

Tuch in [11] introduced the concept of GFA and defined it as std(ODF)/
rms(ODF). Since ODF is only a feature of the EAP, the subsequent GFA map
is derived soley from the angular content of the diffusion profile. Incorporating
both the angular and radial contents of the diffusion profile into the definition of
GFA will result in a radial dial of GFA maps, illustrating how anisotropy varies
with diffusion displacement p. Therefore, we define a new GFA:

GFA(p = po) =
std [P (p = po, r)]

rms [P (p = po, r)]
(8)

Another advantage of Eq. (8) is that it is better suited for multiple diffusion
weighted MR experiments, unlike Tuch’s definition, which is HARDI-based.

3 Materials and Methods

The in vivo dataset uses a hybrid, non-Cartesian sampling scheme [16], shown
in Table 1. Since EAP reconstruction is sensitive to angular resolution, the num-
ber of encoding directions is increased with each shell to increase the angular
resolution with the level of diffusion weighting. The number of directions in the
outer shells were increased to better characterize complex tissue organization.

HYDI was performed on five MS patients and four healthy volunteers using
a 3.0 T GE-SIGNA whole body scanner. MR parameters were TE = 99 ms, TR
2300 ms, FOV = 24 cm, matrix = 96 x 96, voxel size = 2.5 x 2.5 mm2, 15 slices
with slice thickness = 5 mm, and scan time = 10 min. Diffusion parameters were
Δ = 45 ms, δ = 34 ms, field of view of the diffusion displacement space FOVp

= (1/Δq) = 71.4 μm, and resolution of the diffusion displacement space Δp =
(1/2qmax) = 7.1 μm [6].

DTI analysis was performed using the data in the second HYDI shell, in
order to obtain the FA and MD, with the FSL software package [15]. BFOR
was then used to compute Po, MSD, QIV, and GFA, with model parameters
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(a) T2W (b) Po

Fig. 1. Axial slice of T2W and corre-
sponding BFOR Po map illustrating cor-
pus callosum ROI (red) and MS lesion
(red arrow).

Table 1. HYDI Encoding Scheme for Hu-
man Dataset

Shell Ne q (mm−1) Δq (mm−1) b (s/mm2)

2 0 0

1st 6 14 14 260

2nd 21 28 14 1040

3rd 24 42 14 2340

4th 24 56 14 4160

5th 50 70 14 6500

set to {L = 4, N = 6, τ = 84 mm−1, λl = 10−6, λn = 10−6, t = 0}. Using
the T2W (b = 0 volume) and BFOR Po maps as references, ROIs of the genu
and splenium of corpus callosum were then manually drawn for each subject,
as shown in Fig. 1, which were also applied to the other quantitative maps. An
unpaired two-sample t-test (one-tailed), assuming unequal variances, was then
used to test whether the mean value of each index in the corpus callosum for
the NAWM group was lower (FA, GFA & Po) or higher (DTI/BFOR MSD &
QIV) than those from control group at 0.05 level.

4 Results

Fig. 4 displays axial slices of the BFOR computed Po, QIV, & MSD indices.
Note that the QIV exhibits GM/WM contrast, unlike MSD. Within the CSF
regions in QIV map, some voxels were zeroed out because they blew up upon
the division operation in computing QIV. Fig. 3 shows axial slices of the GFA
estimated at p = 5, 10, and 15 μm, illustrating how the anisotropy of different
WM regions, such as the corpus callosum and capsules, varies with diffusion
displacement p. CSF regions in the GFA map at p = 15 μm are more noisy than
at 5 & 10 μm.

Fig. 2 displays the mean and standard deviation of GFA, MSD, QIV, Po,
FA, and DTI MSD for each subject. The t-test yielded a statistically significant
p-value between the mean value of each index in NAWM and healthy WM at
0.05 level for GFA(5) & GFA(10) and Po, implying a reduction in GFA and
Po of NAWM in corpus callosum with respect to controls. Such findings are
consistent with previous DTI [14] and q-space [1] MS studies that showed signif-
icant reductions in FA and Po of NAWM with respect to controls, respectively.
Although the DTI FA was also statistically significant, the p-values for GFA(5)
& GFA(10) are much smaller than for FA, suggesting that GFA may be more
sensitive to pathologically induced changes in WM than normal FA. The BFOR
MSD was not a statistically significant indicator of pathological changes in WM,
which goes against the results of [1,14] that showed MD/MSD to be significantly
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0 1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
FA of Corpus Callosum

 

 

Patient
Control

(f) DTI FA; p-value=0.020
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(g) DTI MSD; p-value=0.035

Fig. 2. Mean and stdv. of measures in corpus callosum for each subject, with the
p-value of the unpaired two-sample t-test (one-tailed)
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Fig. 3. Axial slices of BFOR GFA maps at p = 5, 10, and 15 μm for a control

(a) Po (b) MSD (c) QIV

Fig. 4. Axial slices of BFOR estimated Po, MSD, and QIV maps for a control

higher in NAWM with respect to controls. The DTI MSD, however, was found
to be statistically significant, and the disparity in results between the DTI and
BFOR MSD may be due to the high b-value (BFOR) MSD being very sensitive
to noise [16]. The QIV, however, was found to be significantly higher in NAWM
with respect to controls, and both it and GFA(10) had the highest statistical
significances among all metrics. In general, the BFOR computed measures vali-
date the main finding of [1], being that q-space indices suggest abnormalities in
the MS brain are not only confined to hyerintense lesions visible in T2 images,
but may also affect the surrounding NAWM.

5 Conclusion

This is the first study to date to utilize an analytical, hybrid, and non-Cartesian
EAP framework for the computation of rotationally invariant quantitative mea-
sures in a clinical dataset. Although the study was limited by the small sample
size, it demonstrates the potential that EAP-derived q-space indices have in as-
sessing brain pathology. In the future, the same study should be repeated using
a larger sample size, with measurements being made in other WM regions in
addition to the corpus callosum. Future work also includes estimating the axial
and radial diffusivities using an analytical EAP framework.
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Abstract. Diffusion spectrum imaging (DSI) from multiple diffusion-
weighted images (DWI) allows to image the complex geometry of water
diffusion in biological tissue. To capture the structure of DSI data, we
propose to use sparse coding constrained by physical properties of the
signal, namely symmetry and positivity, to learn a dictionary of diffu-
sion profiles. Given this estimated model of the signal, we can extract
better estimates of the signal from noisy measurements and also speed
up acquisition by reducing the number of acquired DWI while giving
access to high resolution DSI data. The method learns jointly for all the
acquired DWI and scales to full brain data. Working with two sets of
515 DWI images acquired on two different subjects we show that using
just half of the data (258 DWI) we can better predict the other 257 DWI
than the classic symmetry procedure. The observation holds even if the
diffusion profiles are estimated on a different subject dataset from an
undersampled q-space of 40 measurements.

1 Introduction

Diffusion-weighted imaging offers a way to non-invasively image the diffusion of
water molecules in biological tissue. The ensemble average propagator (EAP)
formalism provides a powerful framework to describe and predict the diffusion
behavior of water molecules in complex materials. Under the narrow pulse as-
sumption, there is a Fourier relationship between the measured DWI signal and
diffusion propagator, P (R),

P (R) =

∫
q∈R3

E(q)e−2πiq·Rdq, (1)

with E(q) = S(q)/S0, where S(q) is the diffusion signal measured at position q
in q-space, and S0 is the baseline image acquired without any diffusion sensitiza-
tion (q = 0). We denote q = |q| and q = q u, R = r r, where u and r are 3D unit
vectors. The norm of the wave vector, q, is related to the diffusion weighting
factor (the b-value), b = 4π2q2τ , where τ is the effective diffusion time.

Diffusion Spectrum Imaging (DSI) reconstruct the EAP. The original DSI
protocol [1] measures S(q) on a Cartesian grid inscribed in a sphere of radius

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 288–296, 2012.
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5, resulting in 515 q-space discrete measurements S(q). Then, a Hanning filter
is applied on the raw S(q)’s to reduce truncation errors and boundary artifacts
before a simple 3D Fast Fourier Transform (FFT) is applied to recover the EAP
at every imaging voxel. Finally, the diffusion orientation distribution function
(ODF), Ψ , can be extracted by numerically computing the radial integral over

r ∈ [0, 5], as Ψ(u) =
∫ 5

0 P (ru)r2dr. DSI is a long acquisition (approximately 1h45
min for a full brain with 2mm isotropic voxels). Because diffusion is symmetric,
one can cut the acquisition time in half if only one hemi-plane is acquired, result-
ing in 258 directions [2]. DSI has regained popularity in the last years because
successful connectomics studies [2] and the human brain connectome project has
brought back DSI as the central DWI protocol before fiber tractography.

As any experimental data, DSI data is corrupted by noise, especially because
of the large b-values used in the protocol. At these larger b-values, most of the
signal is near the noise floor (see Fig. 3). A first challenge is therefore to be able
to improve the quality of DSI with denoising algorithms. Another key challenge
is the ability to reduce the acquisition time while offering high resolution data
required to estimate complex fiber crossings. Hence the goals of this paper are
twofold: 1) Denoising of DSI data. 2) Fast DSI acquisition for clinical applica-
tions. In particular, can we subsample q-space while keeping good high spectral
resolution, i.e. perform DSI at the price of HARDI?

The intuition behind this paper is that the DSI acquisition on 258 points
hemi-plane or the full 515 sampling contains redundant information that one
can learn to denoise or accelerate DSI acquisition. We propose to use sparse
coding to estimate a dictionary of prototypical DSI profiles that well model the
structure of the DSI signal. We show that the estimated dictionary of DSI profiles
captures the geometry of white matter brain structures and can thus be used
to improve the data quality while keeping a small sampling of the q-space. It
can be used for 2 things: i) intra-subject studies for denoising purposes and ii)
inter-subject studies by using a lower DSI sampling acquisitions to recover the
full DSI using a learned dictionary of DSI profiles.

Notations We write vectors in bold, a ∈ Rn, matrices with capital bold letters,
A ∈ Rn×n. A scalar a is positive if a ∈ R+. We denote ‖A‖Fro the Frobenius
norm, ‖A‖2Fro =

∑n
i,j=1 A

2
ij , and ‖A‖1 =

∑n
i,j=1 |Aij | the �1 norm. Column i of

a matrix is written Ai. If I is a list of |I| indices, AI is the matrix A restricted
to the rows in I. I stands for the identity matrix. Quantities estimated from the
data are written Â. A matrix with non-negative elements is denoted A � 0.

2 Learning a Dictionary of DSI Profiles with Sparse
Coding

Let S ∈ R
d×p
+ denote acquired DWI at p voxels over a set of d directions (d = 258

in the results section below). We consider the following generative model for the
DWI data at voxel i: Si = DWi + ei, where D ∈ Rd×k

+ is a dictionary of DSI

profiles and W ∈ R
k×p
+ are the coefficients of the data decomposition over the
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dictionary. The integer k is the size of the dictionary. The noise ei ∈ Rd
+ is known

to have a Rician distribution and non-central χ-distribution when using parallel
imaging [3,4]. However, for the current contribution, it will be assumed Gaussian
with mean μ ∈ Rd and diagonal covariance Σ = diag((σ2

j )j=1,...,d) ∈ Rd×d. We

denote it ei ∼ N (μ,Σ). This modeling assumption is valid for images with SNR
above 4 [3], which is the case for the DSI data used in this paper.

The estimation procedure detailed below requires that the additive noise to
be Gaussian with unit variance. To meet this constraint, we define the whitened
data Si

w = Σ−1/2(Si − μ) so that Si
w ∼ N (DwW

i, I) where Dw = Σ−1/2D. In
practice, μ and Σ are estimated from voxels with weak diffusion (e.g. the skull).

In order to learn the dictionary D one needs to set priors on both D and W.
The positivity of DWI data imposes that D � 0 and W � 0. The dictionary is a
good model for the entire white matter but the data at a given voxel should only
be formed by a linear combination of a few DSI profiles: W should be sparse,
i.e. contain many zeros. This leads to the following minimization:

(D̂w,Ŵ) = argmin
D,W

1

2d
‖Sw −DwW‖2Fro + λ‖W‖1 (2)

s.t. ‖Dk‖22 � 1, D � 0, W � 0

The parameter λ balances the reconstruction error and the �1 regularization term
which promotes sparse coefficients W. Columns of D have unit norm to avoid
scaling ambiguity. Following [5], we use an online cyclic descent to minimize (2).

The estimated dictionary D̂ is then given by D̂ = Σ1/2D̂w.

Denoising and subsampling. Given a learned dictionary D, one can estimate the
coefficients of a decomposition for a new dataset, with possibly less directions
than the original dataset used to learn D, i.e. using only a limited set of rows
of D. Let us denote I a list of sampling directions (|I| � d). Given a set of
whitened subsampled data SIw, the coefficients W can be obtained by solving:

Ŵ = argmin
W

1

2|I|‖SIw −DIwW‖2Fro + δ‖W‖1 s.t. W � 0

where δ > 0. The full signal can then be obtained as: Ŝ = DŴ ∈ Rd×p.

Model selection and choice of parameters. The estimation procedure involves
a few parameters, λ to learn a dictionary and δ to estimate the coefficients
given the dictionary. In order to tune these parameters we use cross-validation
exploiting the symmetry of the signal.

Given half of the directions H (d=258 directions), a good model should be
able to predict the other half by applying a simple symmetry to the data. This
observation also allows us to estimate a full dictionary of 2d−1 = 515 directions
using only half of the data. The minimization of (2) restricted to the data SH
gives D̂H ∈ Rd×k which leads to D̂ ∈ R2d−1×k by applying a symmetry.
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a)

b)

Fig. 1. In green are the 258 directions H used to estimate a dictionary. a) For intra-
subject cross-validation, in red are the directions L used to estimate the coefficients
and in blue the left out directions T used to evaluate the model parameters. The white
directions V are only used for validation. b) For inter-subject cross-validation the same
color code applies. There is no validation set in this case, as the validation data is
obtained from the other subject.

In order to assess the quality of the model without overfitting, the model selec-
tion involves two other sets of directions: L to learn Ŵ and T to test the recon-
struction error. The best parameters minimize this error. It is quantified with the
average root mean square error (RMSE): RMSE = 1

p|T |‖ST − D̂T Ŵ‖2Fro. This
procedure is a principled way of choosing the parameters. Once they are set, the
model estimated can be tested on new DWI V for validation. As V has not been
used for training, RMSE obtained by different algorithms can be compared.

In the following experiments, the parameter λ was set in a range of 5 values
(1, 0.1, 0.01, 0.001) and δ in a logarithmic grid of 15 values between 0 and 1e−6. In
order to quantify the performance of our method, we use as baseline the solution
that consists in applying a simple symmetry to the data, as done classically [2].
We denote RMSEsym the error obtained. We report the quality of our solution as
a ratio between the two quantities: ρRMSE = RMSEsym/RMSE. A ratio above
1 indicates an improvement with respect to a symmetrization.

The following results involve two setups. An intra-subject denoising procedure
and an inter-subject procedure where a dictionary learned on a subject is used
to estimate a full resolution DSI dataset for a new subject from only a few DWI.
See Fig. 1 for details on H, L, T and finally V used to estimate ρRMSE .

The data consists of 2 subjects. A standard DSI acquisition mimicking [1]
was done with isotropic 2 mm spatial resolution and d = 515 DWI were ac-
quired sampling the q-space on a cubic lattice within the sphere of radius 5,
TE/TR=147ms/11.5s, BW=1680Hz/pixel, 96x96 matrix, and 60 axial slices
with a parallel reduction factor of 2, δ and Δ were 41 and 45 ms, resulting
in a maximum q-value of qmax = 70.4 mm−1, bmax = 6000 s/mm2. The SNR
of the b = 0 image was 36 and the SNR of the DWI for the b = 960, 3360,
and 6000 s/mm2 datasets were estimated to 12, 7.5, and 6.5 respectively. For
the rest of this paper, acquisition of 258 directions with simple symmetry will
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be abbreviated HALF, as opposed to the FULL acquisition. Different symmetry
completion procedure are also included for comparison, either using Gaussian
smoothing with σ = 0.35 (optimal σ in our experiments) and state-of-the-art
non-Local (NL) means denoising [6]. Finally, ODFs are computed as described
above and visualized as deformed spheres with the radius proportional to Ψ(u).

3 Results

Figure 2 shows the ODFs of the learned dictionaries with 100 atoms on both
subjects. Atoms are ordered from left to right, starting at the bottom left corner
based on the variance they explain on the data. We see that most important
atoms are isotropic profiles and several single fiber structures. After approxi-
mately 30 atoms, crossing profiles appear. At the end of the dictionary, more
complex ODF profiles are also present. This behavior of the learned dictionary
is similar if we increase its size k.

Intra-subject denoising Table 1 shows how sparse DSI reconstruction is able
to accurately reconstruct the un-measured 257 directions. It has lower RMSE
than the usual symmetry and, Gaussian and NL means denoising. Increasing
the number of atoms in the dictionary only slightly improves the accuracy on
subject 2. Moreover, Fig. 3 confirms that denoising, in general, improves the raw
DSI data. However, it can be seen that NL means and Gaussian denoising seem
to over-smooth and blur the structure of the raw data, as opposed to sparse DSI
that appear to denoise but also enhance structure. Finally, Fig. 4 overlays ODFs
in a zoom region of this slice, corresponding to the centrum semiovale where
corpus callosum (CC) crosses with the corticospinal tract (CT) and superior
longitudinal fasciculus (SLF). Single, two and three fiber crossings can be seen.
One can appreciate how sparse DSI is able to recover ODF profiles as sharp as
the FULL raw and NL means/Gaussian denoised DSI.

Inter-subject undersampling One can push sparse DSI and attempt to perform
DSI estimation and ODF reconstruction from undersampled q-space data. The
compressed sensing literature teaches us that the ”sensing” strategy is crucial for
optimal reconstructions. It is beyond the scope of this paper to explore optimal
undersampling strategies. Here, we undersampled 1 measurement out of N from
the Cartesian direction indices, which preserves a uniform Cartesian sampling.

Fig. 2. ODFs computed from the learned dictionaries on the 2 subjects (100 atoms
and inter-subject cross-validation). Left (resp. right) is for subject 1 (resp. 2).
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Table 1. Intra-subject denoising. ρRMSE between simple DSI symmetry, Gaussian
smoothing, NL means and sparse DSI denoising. Sparse DSI reconstruction gives the
best performance on the validation data.

Methods Gaussian NL means Sparse DSI
σ = 0.35 k = 100 k = 169 k = 225 k = 400 k = 900 k = 1600

Subject 1 1.16 1.19 1.31 1.31 1.31 1.31 1.31 1.31

Subject 2 1.13 1.16 1.28 1.25 1.23 1.30 1.30 1.29

Sparse DSI Raw DSI NL means Gaussian
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Fig. 3. Denoising the raw data DSI with our sparse DSI technique versus state-of-the-
art non-local means (NLM) and Gaussian (optimal σ = 0.35) denoising.

Figure 5 shows the RMSE ratio between simple HALF DSI with symmetry
and sparse DSI as a function of number of measurements. We also show the ODF
field in Fig. 6 as a function of number of measurements. First, it is amazing to see
that a learned DSI dictionary of a subject can be used to perform undersampled
DSI on a different subject. It means that both dictionaries in Fig. 2 look similar
and quantitatively yield comparable performances. Of course, as undersampling
decreases, the overall field of ODF seems more noisy but the overall RMSE
remains acceptable. At a total of 37, 29, and 21 measurements, we become worst
than NL means, Gaussian smoothing and simple symmetry DSI in terms of
RMSE. On the other hand, we observe that ODF profiles are degraded sooner
as a function of undersampling. Note that the structured voxels with single fiber
orientation in the CC, CT and SLF are well preserved all the way down to
29 measurements. However, although crossings are found for all undersampling,
ODF peaks in crossing areas become less accurate below 58 measurements.
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Sparse DSI (k=100) FULL DSI FULL NL means FULL Gauss

Sparse DSI (k=400) HALF DSI HALF NL means HALF Gauss

Fig. 4. Full (d = 515) DSI vs. Half DSI (d = 258) with respect to simple symmetry,
Gaussian (σ = 0.35), NL means and sparse DSI denoising of subject 1 (k atoms).
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Fig. 5. Reconstruction error ratios for intra and inter-subject settings as a function
of the number of measurements (k=100 atoms). brain1/brain1 is for the intra-subject
case while brain1/brain2 is the inter-subject (Atoms learned on subject 1 and used the
estimate the full DSI data of subject 2 using only a few measurements).
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258 129 58

43 37 29

Fig. 6. Undersampled sparse DSI using learned dictionary from subject 1 to reconstruct
DSI signal and diffusion ODFs of subject 2. In white is the number of measurements.

4 Discussion and Conclusion

Sparse coding applied to DSI data reveals the latent structure of the white mat-
ter. Sparse coding is however not compressed sensing (CS), as done for DSI
in [7]. Although our technique attempts to infer full DSI data from undersam-
pled acquisitions, there is no “sensing” in the technique. The idea is to learn the
structure of raw DWI from a full DSI acquisition to either, denoise the DSI data,
or use the learned dictionary of DSI profiles to perform undersampled DSI acqui-
sitions and reconstructions. While [7,8,9] fix a priori the sparse representation of
the data (e.g. spherical ridgelets) we propose here to estimate it. The technique
proposed is attractive thanks to its little modeling assumptions and its limited
number of parameters that can be estimated by cross-validation.

The key benefit of our method is its ability to perform denoising across all the
DWI channels jointly, consequently enhancing the image quality in particular
for noisy high b-values. While the technique of [10] uses DW images within a
certain cone around the DW image being denoised, we propose to estimate the
underlying structure from all directions and b-values. This is made possible by
a proper whitening of the data in order to combine in the estimation multiple
images corrupted by different noise levels.

Results have showed that with just half of the data (258 DWI), we can better
predict the other 257 DWI than the classic symmetry procedure. This statement
also holds even if we use as little as 40 q-space measurements. Our sparse DSI
technique performs better than symmetrizing, Gaussian denoising or state-of-
the-art NL means. Finally, beyond denoising, we have showed that learning the
dictionary from one subject can be used to reconstruct full DSI dataset from an
undersampled acquisition of a different subject. From now on, we could acquire
around 40 measurements on new subjects and use the learned dictionaries to
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reconstruct a full DSI data. Hence, we can have fast acquisitions to obtain high
resolution DSI data. Therefore, DSI can be done at the price of HARDI!

Future work will be dedicated at optimizing the dictionary learning to enhance
ODF reconstruction and also to find optimal sub-sampling strategies.
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Abstract. Diffusion-sensitized magnetic resonance imaging provides informa-
tion about the fibrous structure of the human brain. However, this information is
not sufficient to reconstruct the underlying fiber network, because the nature of
diffusion provides only conditional fiber densities. That is, it is possible to in-
fer the percentage of bundles that pass a voxel with a certain direction, but the
absolute number of fibers is inaccessible. In this work we propose a conserva-
tion equation for tensor fields that can infer this number up to a factor. Simula-
tions on synthetic phantoms show that the approach is able to derive the densities
correctly for various configurations. In-vivo results on 20 healthy volunteers are
plausible and consistent, while a rigorous evaluation is difficult, because conclu-
sive data from both MRI and histology remain elusive even on the most studied
brain structures.

1 Introduction

The representation of neuronal fibers is of major interest in neuroscience and medicine.
Diffusion weighted magnetic resonance imaging (DWI) has the potential to visualize
non-invasively these fiber [1]. The quantitative reconstruction of the underlying fiber
architecture is a great challenge, as DWI gives only indirect measures for the presence
of neuronal fibers. One of the main problems is that the ordinary DWI measurement can
only provide relative information. For each voxel one can infer a probability distribution
of directions (fiber or diffusion orientation distributions), but these distributions do not
give information about the total number of fibers within the voxel. There are attempts
to measure fiber density directly, e.g. by determining the myelinization degree with
bound pool fraction imaging [2] or with optimized diffusion measurements and multi-
compartement models [3]. On the other hand, fiber tracking approaches can be used to
infer tract-density maps [4,5], but the inferred maps are usually correlated closely with
fractional anisotropy (FA) [6]. This work attempts to formulate a fiber conservation
law, which is able to derive fiber density maps from ordinary (clinical suitable) DWI
by employing the global coherence of the data. The idea is inspired by fluid dynamics,
where mass conservation is expressed by a partial differential equation. A similar equa-
tion is formulated for tensor fields representing the underlying diffusion measurement.
While in fluid dynamics the divergence equation can be derived from a strict integral
formulation, our derivation remains ‘empirical’, but simulations show that the obtained
solutions work well. The proposed equation is solved via a finite element method on a
standard PC in a few minutes.
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2 Method

In fluid dynamics, the mass conservation is expressed by the equation ∂i(vi(r)ρ(r)) =
0, where v = (v1, v2, v3) and ρ are the velocity field and the particle density at a
point r = (r1, r2, r3), respectively, and ∂i = ∂/∂ri. (We use Einstein’s summation
convention throughout this paper, all indices appearing more than once are implicitly
summed). In fluid flows each point r is assigned a unique velocity v(r). The case of
fibers is different. At a finite resolution it is possible that several fibers with different
directions cross a volume element. Detailed information about the fiber orientations
is thus provided by the absolute joint fiber distribution p(n, r) that depends on the
unit vector n ∈ S2 defining the fiber direction and position r. This function is not
directly accessible with DWI. The DWI observable quantity is rather the conditional
distribution of directions p(n|r), which does not provide any information about the
absolute density of fibers ρ(r). These quantities are related as p(n, r) = p(n|r)ρ(r)
provided the normalization

∫
S2

p(n|r) dn = 1. So, our goal is to is to find a ‘fiber
density’ ρ(r) for a given conditional orientation density p(n|r). However note, that
we can infer ρ only up to a global normalization factor, that is, we cannot infer an
’absolute’ fiber density map. This problem is ill-posed, which can be illustrated with an
example of isotropic p(n|r). Such a distribution can result from fibers with any density.
We thus need some additional prior knowledge to regularize the problem. We seek for a
cost functional that favors reasonable configurations. The cost functional is constructed
by using the principle of fiber continuity [7], which assumes that fibers appear to be
locally straight. The main idea is to require ni∂ip(n, r) to be small in magnitude. The
term ni∂ip(n, r) is the change in the number of fibers with direction n when moving
in direction n. However, this assumption is too restrictive not being able to cope with
curved fibers. Thus, we want to build costs that are more selective. Therefore, consider
the vector field ninj∂jp(n, r). This vector points in an arbitrary selected direction n
and its magnitude equals the gradient of the fiber density in this direction. We sum this
vector over all fiber directions to obtain an integral characteristics of a voxel:

ki(r) =

∫
S2

ninj∂jp(n, r) dn = ∂j

∫
S2

ninj p(n, r) dn = ∂jPij(r) (1)

Note that this vector field k = (k1, k2, k3) only depends on the projection Pij(r) =∫
ninjp(n, r), which is an ordinary Cartesian rank-2 tensor. As we know that p(n, r) =

p(n|r)ρ(r), the tensor Pij can also be expressed in terms of the projection of the con-
ditional Tij(r) =

∫
ninjp(n|r) as follows:

Pij(r) = ρ(r)

∫
S2

ninjp(n|r) dn = ρ(r) Tij(r). (2)

Considering the example of parallel fibers, it is clear that k = 0 expresses the fact that
the fibers do not terminate. So, a non-zero k has to be suppressed in this case. On the
other hand, k defines the curvature field for bending fibers1 and should not be penalized

1 For simplicity we give a 2D example. The bending configuration is given by (nfib
1 , nfib

2 ) =

(−r2, r1)/|r| from which we have (Pij) = 1
|r|2

(
r22 −r1r2

−r1r2 r21

)
. Computing the partial

derivatives we get kj = ∂iPij = −(r1, r2)/|r|2 and hence |k| = 1/|r| which was to show.
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in that case. To implement such a selected suppression of k, we use the fact that the
curvature vector of a fiber is orthogonal to its tangent. Instead of looking for ρ’s that
minimize the squared norm of the field k, we use the tensor Tij as a metric tensor to
project out the pure curvature contributions. That is, we look for a fiber density that
minimizes the cost functional

JTD(ρ) =

∫
Ω

kiTijkj dr =

∫
Ω

(∂aPia)Tij(∂bPjb)dr (3)

We used Tij instead of Pij as metric tensor, because this keeps our objective quadratic
in ρ, and hence, we can solve the problem by inverting a linear system. Note that for a
constant isotropic field Tij = δij our equation reduces to the integral over the gradient
magnitude of ρ which is equivalent to Laplace’s equation. Thus, more isotropic tensors
Tij lead to more spatially homogeneous fiber densities.

2.1 Boundary Conditions and Implementation via Finite Elements

As the objective as given in equation (3) is of differential nature we have to keep care
what happens at the boundary ∂Ω of the white matter domain. The weakest assumption
is a Neumann boundary condition, that is vj∂jρ(r) = 0 for r ∈ ∂Ω and v orthogonal to
the boundary. However, in this setting our minimization problem is solved by the trivial
solution ρ = 0, hence we need additional assumptions to keep the solution away from
being zero. The simplest way is to set ρ on the boundary (in the transition area of white
and gray matter) to a specific value (Dirichlet condition). Unfortunately, we need an
idea of the amount of fiber terminals to set ρ to reasonable values. Of course, a uniform
distribution is an option. Another way is to modify the objective. We figured out two
ways: one can subtract the total number of fibers J(ρ) = JTD(ρ) −

∫
Ω
ρ such that

the consistency term JTD is minimized and simultaneously the total number of fibers∫
Ω
ρ is maximized. Secondly, one can add a quadratic deviation from an initial guess

ρ0, that is J(ρ) = JTD(ρ) + λ
∫
Ω |ρ − ρ0|2. If ρ0 = 1 and λ sufficiently small, this

approach converges towards the first option. We will discuss the different options in the
experiments.

To solve the minimization problem we followed a finite element (FEM) discretiza-
tion which is ideally suited for our problem. We cannot give here a complete introduc-
tion to FEM and refer to [8], but shortly propose which element we used and what
is important during discretization. To stay as close as possible to the initial Carte-
sian discretization of the data we use a trilinear finite element, that is, the elements
are cubes with corners in the center of each voxel, where the interpolation function
within this cube is the ordinary trilinear one frequently used in computer graphics.
Thus, the unknown variables are just the density values at the voxel positions. The
advantage is that we can treat the tensor field Tij(r) in the same manner. The val-
ues of Tij are known at the voxel centers and the value within the finite element
can also be computed by trilinear interpolation. Each unknown variable is associated
with a basis function. The density ρ is a linear combination of all basis functions
ρ(r) =

∑
β aβφβ(r) where β runs over all voxels, aβ are the unknowns and φβ are the

basis functions. In FEM we have to compute for all pairs of basis function φμ, φβ the
integral Mμ,β =

∫
Ω(∂aTiaφμ)Tij(∂bTjbφβ)dr, which forms the matrix which one has
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to invert2. For the computation of the integrals we used the MATLAB symbolic tool-
box. Assembling the matrix with a standard desktop PC needs about 3 minutes for half
a million unknowns. Solving the problem by an iterative method is in the same time
range (we used the MATLAB minres algorithm with a tolerance of 10−5).

3 Experiments

We start with simulations on synthetic data to show that the solutions of our equations
give quantitative results. Three configurations are considered: a fanning, a bending and
a crossing. The fanning was generated by parabolas, where the opening degree varies
with the y-axis section 3. For the crossing we varied the angle and the relative density of
the tracts. To generate the tensor field Tij we followed the approach described above,
i.e. Tij = nfib

i nfib
j . Of course, the field is always normalized such that Tii = 1. The

configurations were rendered on a 128× 128× 3 matrix. Finally, we smoothed the field
Tij with a Gaussian of width 1 voxel. We investigated the three different boundary as-
sumption discussed above: using Dirichlet boundaries in the regions where the fibers
terminate (DIR), or modifying the objective by subtracting the total number of fibers
(LIN), or adding the quadratic deviation from a uniform density ρ0 = 1 (QUAD). In
Figure 1 we show densities inferred with DIR/LIN/QUAD assumptions. The Dirich-
let (DIR) boundaries are the ’easiest’ case, as the most prior knowledge is put in. All
three configurations are well resolved in this case. For the fanning we checked the fiber
number conservation by integrating the density along the y-axis. Ideally, it should be
a constant value. And, in fact, up to some fluctuation due to discretization it is a con-
stant. During the narrowing the packing is getting dense, and during the widening the
density decreases. The two crossing tracts (crossing angle of 60 degrees) are assumed
to have a density ratio 2:1. For an orthogonal crossing this is expressed by the fact that
the eigenvalues of Tij in the crossing region have also the ratio of 2:1. Also the DIR
boundary values were set to this ratio. Obviously the crossing is nicely resolved, also
quantitatively the values within the crossing regions are the sum of the values of the
two inflowing tracts. Finally, the result for the bending is, as desired, a constant density.
For the LIN approach the results are a bit different. For the crossing the results do not
change, which is encouraging. Without putting any prior knowledge about the in- and
out-flowing fibers the equation is able to infer the relative densities perfectly. For the
bending case (Figure 1f),g)) we get different results, tracts with high curvature are pe-
nalized, although we have shown above that for a perfect bending Tij∂jPaj = 0. That
is, curved fibers should not be penalized. We found that this is basically a discretization
artifact. The sharper the bending the higher the errors in the discretized computation of
Tij∂jPaj . However, it is not astonishing that the solution is so sensitive. Theoretically,

2 For the computation of Mμ,β there is an important note. To compute the product Tjbφβ within
an element one has to first multiply the values of Tjb and φβ at the element corners and then in-
terpolate within the element. We found that it is not possible to interpolate both independently
and then multiply the interpolants.

3 The fanning is represented by a family of parabolas ya(x) = a(1 + bx2) where a ∈
(−d/2, d/2) and d is the thickness of the bundle. The parameter b controls the degree of
fanning
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Fig. 1. Fiber densities of the synthetic phantoms. The blue bars in a,e,h) indicate the Dirichlet
boundaries. a) The fanning with DIR boundary. b) The sum along the y-axis of the densities
in (a) to show the fiber number preservation. c) Fanning with LIN approach: the central, non-
curved fibers are emphasized. d) For the QUAD approach there is nearly no difference to DIR.
e) The crossing is well resolved for all three boundary approaches, the density values in the
indicated regions have the desired ratio 1:2:3. f,g) The LIN approach tends to give lower density
to curved fibers, which is a discretization artifact. h) for the DIR and QUAD approach the density
is constant over the bending. i) density of complex configuration with annotated ratios. j) the
eigenvectors of the tensor Tij representing the experimental data.

there is huge family of solutions to the LIN based equation. Any density profile is a
valid solution as long as the profile do not change along the bundle. The situation is
similar like in fluid dynamics: imagine a non-viscous compressible fluid flowing in a
tube with constant velocity v = (v0, 0, 0). Any density profile ρ(x, y, z) = ρ0(y, z)
is a solution to the equation ∂i(viρ) = 0. The QUAD approach resolves this ambi-
guity, which can be seen in Figure 1h). Actually, the QUAD approach can be seen as
a small Tikhonov-regularization with λ

∫
ρ2 to make the equation less sensitive to the

discretization artifact, because
∫
|ρ−1|2 =

∫
ρ2−2

∫
ρ+const. We found a regulariza-

tion parameter of λ = 1/n to work well, where n is the number of unknown variables.
The discretization artefacts disappear and for all configurations (Figure 1d,e,h) the den-
sities stay quantitative, i.e. the densities of the crossing keep the assumed ratios, for the
fanning the fiber number stays constant and for the bending we get a uniform density.
In a further experiment (Figure 1i,j) we found that the results also generalize: a com-
bination of a fanning, crossing and bending. Each of the crossing tracts has a density
of 2 at its most narrow location, while the ’circle’ configuration has density 1. Up to
some small discretization artifacts the densities are well inferred. We want to emphasize
that although our approach soley relies on a tensor representation, the densities for the
threefold crossing are predicted well.
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3.1 In-Vivo Data

To investigate our approach on real DTI data we considered 20 scans of healthy vol-
unteers at a b-value of 1ms/μm2 with 61 diffusion directions and an isotropic reso-
lution of 2mm3. A white matter probability map was generated with SPM (Version
5, http://www.fil.ion.ucl.ac.uk/spm/ ) on a T1-weighted scan, which was co-registered
to the b0-scan of the diffusion sequence. The probability maps are thresholded at 0.1
to get the simulation domain Ω. The diffusion weighted images were up-sampled to a
1mm3-resolution. We decided to base the conditional distribution p(n|x) purely on the
diffusion tensor, thus the following experiments are also appropriate in a clinical setting

with low diffusion weighting. We used the formula p(n|x) ∝ e−niD
−1
i,j njr

2
0/(2t), where

D−1 is the inverted diffusion tensor, r0 a distance and t the diffusion time. That is,
p(n|x) is the probability that a particle is displaced by an amount of r0 in direction n
within the time t. It is important to control the sharpness (entropy) of the distribution. A
high entropy will lead to more uniform fiber densities than a low entropy. The parameter
r20/t controls this sharpness. We found a value of r20/t = 25μm2/ms appropriate. Of
course, a more detailed investigation is needed at this point. The tensor Tij is computed
via Tij(r) =

∫
ninjp(n|r) numerically and normalized such that Tii = 1. To get a

non-vanishing solution the above introduced QUAD approach was used.
In Figure 2a-f) the fiber density found by our approach (FD) is compared to fractional

anisotropy (FA) and tract densities (TD) computed by a global fiber tracking approach
[5]. While TD is closely correlated to FA the proposed densities are different and do not
show the expected [9] picture: FD does not have the maximal dense regions in the Cor-
pus Callosum (CC) and along the cortical spinal tract. The densest regions are around
crossing areas and the superior longitudinal fascicle. However note, that the angular
maximum map ma(r) = maxn p(n, r) = ρ(r)maxn p(n|r) (not shown) resembles
much more closely TD or FA, respectively. To get a better impression of the distribution
over the whole brain Figure 2g-j) shows cortical projections of FD. At each point of the
white matter isosurface the local average (a neighborhood of 5 voxels) of the fiber den-
sity is displayed. While the frontal and parietal lobe show an increased FD, the temporal
and occipital lobes appear to be less dense. To get a quantitative picture over the whole
group of subjects the WFU pickatlas (http://fmri.wfubmc.edu/software/PickAtlas) was
employed to segment in Talairach Daemon Level 2 (lobes) regions. A statistical anal-
ysis over the mean FD in the regions is shown in Figure 3,left). For comparison we
normalized FD such that the total fiber number

∫
ρ is the same for all subjects. The

density for the different regions is stable over the group and differences between the
regions are significant. It is apparent that frontal/parietal regions are more dense than
the occipital/temporal regions. Figure 3 shows histograms over the whole white matter
area for all 20 subjects. Finally, in Figure 3 (bottom) the CCs of all 20 subjects are
shown. The Splenium and Genu appear to have the highest densities while the region
around the Isthmus the lowest. There is a small trend of more dense packings towards
the anterior part of the CC body, which seems to be consistent with bound pool imaging
[2] and axon density indices [3].
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Fig. 2. a,d) A coronal (at the level of the mid-body of the Corpus Callosum) and saggital section
of the fiber densities obtained from the proposed approach. b,e): Tract-densities inferred by global
fiber tracking. c,f): Fractional Anisotropy. g-j) Cortical projections of the fiber densities obtained
from the proposed approach. The temporal and occipital regions appear to be less populated.

Fig. 3. Top: Statistics over 20 healthy subjects. Top left: mean densities in different regions with
group-deviations. Top right: Distribution of densitites over the whole brain of all 20 subjects.
Bottom: Fiber densities of the Corpus Callosum for 20 healthy subjects with Genu on the left
and Splenium on the right.
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4 Conclusion

The main contribution of this work is the proposal of a PDE for tensor-fields, which
reflects the fiber conservation law: fibers are not allowed to end somewhere in the white
matter. The PDE was implemented with a FEM approach and is solved in a few minutes
on a standard PC. Simulations on synthetic data show that the results are quantitative
even in the absence of boundary conditions. Although our approach relies on tensor
information only, we were able to show that phantoms with a threefold crossing can
be resolved. On real DTI data the derived fiber densities appear partially to be consis-
tent with other findings [3,2], while a rigorous evaluation with histological findings [9]
remains challenging.
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Abstract. Diffusion MRI measures micron scale displacement of water
molecules, providing unique insight into microstructural tissue architec-
ture. However, current practical image resolution is in the millimeter
scale, and thus diffusivities from many tissue compartments are averaged
in each voxel, reducing the sensitivity and specificity of the measurement
to subtle pathologies. Recent studies have pointed out that eliminating
the contribution of extracellular water increases the sensitivity of the
diffusion measures to tissue architecture. Moreover, in brain imaging,
estimation of the extracellular volume appears to indicate pathological
processes such as atrophy, edema and neuroinflammation. Here we study
the free-water method, which assumes a bi-tensor model. We add low b-
value shells to a regular DTI acquisition and present methods to improve
the estimation of the model parameters using the extra information. In
addition, we define a Laplace-Beltrami regularization operator that fur-
ther stabilizes the multi-shell estimation.

1 Introduction

Diffusion MRI (dMRI) measures the displacement of water molecules, which in
a typical brain imaging experiment displace a few tens of microns. This makes
dMRI sensitive to normal and pathological architecture in the cellular scale. In-
deed, dMRI based sequences, such as diffusion tensor imaging (DTI), have been
found extremely useful in identifying subtle changes, especially in white-matter,
that occur in normal development, as well as in many types of diseases, abnormal-
ities and disorders [1]. Nevertheless, current image resolution is in the millimeter
scale, introducing partial volume of different tissue types - white matter, gray
matter, glia cells, cerebrospinal fluid (CSF) - which reduces the sensitivity and
specificity of most indices derived from dMRI and DTI [2].

Correcting for extracellular water is required to eliminate CSF contamina-
tion, thus improving DTI’s sensitivity in the vicinity of the ventricles [3] and
important for the delineation of fibers such as the fornix [4,5]. Moreover, the
fractional volume of the extracellular water, relative to the remaining hindered
or restricted water molecules, appears to provide important information with

� Grant support: NIH R01MH074794, R01MH092862, P41RR013218, P41EB015902;
Department of Defense X81XWH-07-CC-CSDoD; VA Merit Award.
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regard to pathological processes that modify the interstitial extracellular space,
such as edema [4], neuroinflammation [6] and atrophy [7]. Indeed, the extracel-
lular volume was shown to be sensitive to pathologies that appear in aging [7],
schizophrenia [8], Multiple-Sclerosis [6], and Alzheimer’s disease [9].

In this work we present a method to estimate the extracellular volume and
the diffusivities of the remaining tissue using a multi-shell dMRI acquisition.
Motivated by increasingly more designs that already choose multi-shell for clin-
ical studies, we enable estimation of free-water from such acquisitions in a novel
way that utilizes the additional information instead of discarding it.

2 The Free-Water Model

The free-water model estimates and corrects for the contribution of the extracel-
lular space [4]. The model assumes that the diffusion signal originates from two
molecular compartments, co-existing within a voxel, with slow exchange between
the compartments [4]:

Ai(D, f) = f exp(−biqTi Dqi) + (1− f) exp(−bid) . (1)

Here, Ai is the signal (normalized by the b0) of the ith applied diffusion gradient
with orientation qi, and b-value bi. The first term reflects the tissue compart-
ment, where D is the diffusion tensor of this compartment and f is the relative
contribution of the compartment. The second term reflects an isotropic com-
partment, with a fixed diffusion coefficient, d, set to the diffusion coefficient of
water in body temperature, 3 × 10−3mm2/s. Thus, the isotropic compartment
models free-water, i.e., molecules that do not experience hinderance. In a cellu-
lar environment such as brain tissue, free-water can only be in the extracellular
space.

The free-water model adds only one more parameter, f , to the DTI model.
However, unlike DTI, the fitting of this bi-exponential model is highly unstable
[10]. Pierpaoli et al., proposed to stabilize the fit by measuring multiple b-shells
that achieve high b-values, requiring a large number of measurements [11]. How-
ever, this approach required lengthy scans, and moreover, at high b-values the
tissue compartment is no longer adequately described by a single exponent [10].
Pasternak et al., introduced a regularization framework that allowed the estima-
tion of the free-water model from a single-shell DTI acquisition [4]. However, this
method requires smoothing, which may reduce the sensitivity to subtle details
or pathologies.

In our work we combine principles from these two approaches. Similar to [11],
we acquire multi-shell data. However, our approach only requires lower b-valued
shells. We present a novel way of estimating the free-water model parameters by
separating the higher shells from the lower shells. We then use these estimates to
initialize a spatial tensor regularization refinement step similar to [4], to result
with the final estimates.
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3 Multi-shell Free-Water Estimation

Our approach has three steps. In the first step (Sec. 3.1) the diffusion tensor
of the tissue compartment is estimated from the higher b-valued shells. In the
second step (Sec. 3.2) the estimated tensors along with the lower b-valued shells
are used to estimate the extracellular volume. In the final step (Sec. 3.3) we use
these estimates as an initial guess to a regularized minimization process that
takes in account the entire scope of the data.

3.1 Estimation of Free-Water Eliminated Tensors

The diffusivities of white and gray matter are considerably lower than those
of free-water or CSF. Typically, in single shell DTI with a b-value around 1000
s/mm2, healthy brain tissue has a quite homogeneous mean diffusivity of around
0.8mm2/sec, 3-4 times slower than free-water. Therefore, the free-water signal
is expected to decay faster than tissue, e.g., with a b-value of 900mm2/sec the
tissue decays to 49% of the signal while free-water decays to 7% of the signal.
Figure (1) shows an example of a multi-shell acquisition for a range of b-values.
This range is achieved by modifying the diffusion gradient amplitude for fixed
diffusion times. As expected, the free-water signal (mainly seen in the ventricles
and around the parenchyma) attenuates faster than other brain tissue. The free-
water signal diminishes completely into the noise floor for the higher b-values.

Also dependent on the b-value is the apparent diffusion coefficient of a par-
tially volumed voxel, which can be expressed as [5]:

D′ = b−1
i log(f exp(−biqTi Dqi) + (1 − f) exp(−bid)) . (2)

This means that D′ is not the average of the diffusivities of the two compart-
ments, but is closer to D as b increases. Therefore, we suggest that a tensor
estimated only from the higher b-valued shells (at least two shells are required),
will minimize the contribution of the free-water and will be a good estimation for
the tissue compartment tensor D. However, these shells cannot have a too-high
b-value, for two reasons: (1) Sensitivity is reduced to tissue with high diffusivi-
ties, such as along axons, where the signal has already diminished in the higher

Fig. 1. Multi-shell acquisition. Diffusion signal for increasing b-values of (left to
right) 0, 200, 900 and 1400 mm2/sec in a mid-sagittal plane. The signal from free-
water, such as in the ventricles (red arrow), decays into the noise floor faster than the
signal of brain tissue.
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b-values; (2) Since cellular tissue is heterogenous, the assumption of an expo-
nential decay no longer holds for higher b-values [10], potentially biasing the
estimated tensor.

We calculate DH , the apparent diffusion tensor for the high b-valued shells,
as an estimator for D by minimizing:∑

i∈GH

||b̃0 exp(−biqTi DHqi)− Ê(qi)|| , (3)

where GH are the indexes of all the applied gradients within the high b-valued
shells, and Ê(qi) is the signal (not normalized by the acquired b0) of these images.
The acquired b0 reflects the contribution of all spins within the voxel, including
from free-water. Therefore, the estimation of DH requires the estimation of b̃0,
which is the baseline image that would have been acquired in the case that the
tensor DH was the only component in the voxel. We minimize equation (3) using
a linear least square (LLS) approach with ln(b̃0) as one of the free parameters [3].

3.2 Estimation of Extracellular Volume

We estimate f , which reflects the extracellular relative volume in a voxel, using
the low b-valued shells, which are in the range that still has signal from free-
water. Given DH as an estimate for D, we can calculate fL as an estimate for f
using LLS by defining:

fL = (yT y)−1yTx , (4)

where x = Ai/A0−exp(−bid) and y = exp(−biqTi DHqi)−exp(−bid), and i ∈ GL

being the indexes of the applied gradients in the low b-valued shells. Ai are the
attenuation images defined in Eq. (1). Unlike our approach here, the single-shell
free-water map estimation is initialized by the b0 image alone, normalized by
baseline values that assumed knowledge of voxels that have no tissue, and voxels
that have no free-water [4]. This implicitly assumes that the T2 weighted images
behave similarly across the entire brain, and that there are such baseline voxels.
These assumptions are no longer required if using fL and DH as initialization.

3.3 Regularization of the Fitting

The initialization of the extracellular volume, fL, and the tensor of the tissue
compartment, DH , were designed to be close to the real values, D and f , but
could be biased due to either residuals of the free-water signal that remains
in the higher b-valued shells, or due to high diffusivity within the tissue, the
signal of which could disappear when using the higher b-valued shells. To avoid
this potential bias we introduce a third step in which the entire information
from all shells is fitted to the model. The fitting is initialized with the estimates
provided in the previous two steps, and is stabilized by regularization. We use
a regularization method based on the one proposed in [4] by minimizing the
following functional:

L(D, f) =

∫
Ω

∑
i∈G

||Ai − Âi||+ α
√
|γ(D)| . (5)
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Here, Ω includes all voxels of interest, G are the indexes of all applied gradients
and Ai are their signal normalized by the b0. The parameter α scales the con-
tribution of the Polyakov action regularization term (typically α = 1 [4]), with
|γ(D)| as the determinant of the induced metric. Using the Einstein summation
convention this metric has the form γμν(x) = ∂μX

i∂νX
jhij(X). Differing from

the implementation in [4] and following the findings in [12] we do not use an
affine-invariant metric to describe distances between tensors but rather use a
Euclidean metric and the canonical tensor representation. In a regularization
scheme the effect of metric selection is minimal [12], yet here the Euclidean met-
ric simplifies the calculations considerably. As a result the vector X has the ele-
ments X = [Dxx, Dyy, Dzz, 2Dxy,

√
2Dyz,

√
2Dxz, x, y, z]. The matrix H = {hij}

is the spatial-feature metric that for a Euclidean tensor space is simply a 9× 9
diagonal matrix, with 1 for the last three diagonal entries (the spatial domain)
and a constant for the remaining 6 diagonal entries. This leads to the motion
equations for the six unique tensor elements, Dj with j ∈ {1, 2, ..., 6}:

Dj
t =

∑
i∈G

bi(Ai − Âi) exp(−biqTi Dqi)

(
qTi

∂D

∂Xj
qi

)
+

α√
| γ |

∂μ
√
| γ |(γμν∂νX

j)

(6)
and for the fractional volume parameter:

ft =
∑
i∈G

−bi(Ai − Âi)
(
exp(−biqTi Dtqi)− exp(−bid)

)
. (7)

Importantly, due to the use of the Euclidean metric, and unlike the motion
equations derived in [4], equation (6) does not have any Christoffel numbers, and
therefore its calculation is simpler and faster. The second term in equation (6)
is the Laplace-Beltrami operator, which is a piece-wise smooth, edge preserving
tensor regularization operator [4]. The final result is thus the parameters f and
D that best fit the data while maintaining continuous tissue representation.

4 Experiments and Results

Multi-shell Acquisition Schemes. We test the multi-shell estimation on two
types of data sets that were obtained with multi-shells. The first data uses an
acquisition optimized for the free-water estimation, having a single b=0, 3 ×
b=50, 6 × b=200, 10 × b=500, 30 × b=900 and 16 × b=1400, with gradient
orientations designed as nested platonic solids, which means that each shell is
rotationally invariant, and the shells complement each other to a rotationally
invariant scheme. Data was acquired on a 1.5T scanner with 2.5mm isotropic
voxels and takes 9:20 minutes. We use the b=1400 and b=900 shells to estimate
DH , and the remaining shells to estimate fL. The second data set demonstrates
adding lower shells to an existing DTI gradient scheme with b=900 and the
scanner default 64 gradient orientations. We added a shell at b=400 with 10
measurements and a shell at b=100 with 6 measurements, adding 2:40 minutes
to the acquisition time. We use the b=900 and b=400 shells to estimate DH .
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We use b=100 and b=400 to estimate fL. This data was acquired on a 3T
scanner with 2mm isotropic voxels.

Implementation. All data was motion and eddy-current corrected. We used
3D-Slicer’s tensor estimation to calculate DH by first omitting all images in GL,
including the b0. We used Matlab (Natick, MA) to calculate fL. The optimization
was done using a Matlab code that was provided in [4]. The code was changed
to accept multiple b-values, to regularize using a Euclidean metric, and to use
DH and fL as initialization. The complete analysis for a whole brain takes less
than 15 minutes on a 64-bit Linux machine with Xeon-E5530 processors, without
taking advantage of multiple cores.

Optimized Multi-Shell Acquisition. Both the multi-shell (Fig. 2[A]) and
single-shell (using the b=900 shell ; Fig. 2[B]) estimations provide similar free-
water maps, showing high values in the ventricles, and low values in the brain
tissue, nicely depicting the extracellular volume. The color by orientation maps
are similar as well. To better evaluate the differences between the maps, we
plot free-water maps using a color-scale that increases the visibility of the lower
values. We can then see that the multi-shell maps are not as smoothed as the
single-shell maps, although both estimations used the same Laplace-Beltrami
regularization operator. As a result the multi-shell map is more detailed, al-
lowing to better distinguish cortical structures. For this acquisition scheme, the

[A] – Multi-shell 

[B] – Single-shell 

Multi-shell 

Single-shell 

[C] – Histogram comparison  

Multi-shell 
initialization 

Fig. 2. Optimized multi-shell. Our multi-shell regularized fitting provides a more
detailed extracellular volume and tissue tensor maps [A], comparing with the regu-
larized single-shell fitting [B]. Small details are preserved and there are less artifacts
(white arrows). The initialization fL is very close to the final convergence as can be
seen in the histogram of the images [C].



Estimation of Extracellular Volume 311

initialization, fL is very similar to the final multi-shell free-water map. Subtle
changes between the maps can be seen in the histogram comparison (Fig. 2[C]).
This means that in this case fL is a good estimator for the extracellular volume.
The histogram also demonstrated that most brain voxels have extracellular vol-
ume around the 0.2 value.

Shells Added to a DTI Acquisition. This option suits cases where on-going
DTI studies exist, but there is the opportunity to improve the acquisition by
adding images to the existing protocol. In this case adding only lower shells
is allowed, to prevent from changes in important imaging parameters such as
echo time, repetition time and diffusion time that are required to accommodate
the higher b-values. However, as can be seen in Fig. 3, the convergence point is
no longer similar to the initialization point. The maps following regularization
are smoother, but unlike the single-shell case, the details are better preserved
during the regularization. The quality of the regularized images suggests that
when the separability between shells is not sufficient, using the full proposed
pipeline, including the regularization step is preferred.

[A] Initialization [B] Regularized 

Fig. 3. Modified DTI acquisition. When there are residuals of free-water in the
higher shells, the initialized free-water map [A] is different than the converged map
following regularization [B]. The final map is less noisy and structures are accented.
The higher quality of the regularized maps suggests that using the full proposed pipeline
is preferred for this type of acquisition.

5 Discussion and Conclusions

Fitting the free-water model instead of the DTI model adds the extracellular
volume as a new estimated biological parameter and provides tensor images
that are more tissue specific [3,4,5,6]. We demonstrate that with a multi-shell
data we can relax assumptions and dependency on regularization that is re-
quired when fitting the model from a single-shell data. We were able to estimate
the extracellular volume from multi-shell data, achieving more detailed maps
than single-shell maps. Although the difference is subtle, it could be important
for studies of pathologies that slightly affect the extracellular space, such as
neuroinflammation. For an optimized spread of a relatively small number of ac-
quisitions in b-value shells within the DTI b-value range we can estimate the
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model parameters directly from the data, avoiding regularization. Future studies
could further explore optimized scheme designs, and investigate the integration
with other HARDI methods that acquire multiple-shells, in which case further
parameters such as the diffusivity of the isotropic compartment, can be added.
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Abstract. In High Angular Resolution Diffusion Imaging (HARDI), Orientation
Distribution Function (ODF) and Ensemble Average Propagator (EAP) are two
important Probability Density Functions (PDFs) which reflect the water diffusion
and fiber orientations. Spherical Polar Fourier Imaging (SPFI) is a recent model-
free multi-shell HARDI method which estimates both EAP and ODF from the
diffusion signals with multiple b values. As physical PDFs, ODFs and EAPs are
nonnegative definite respectively in their domains S2 and R3. However, existing
ODF/EAP estimation methods like SPFI seldom consider this natural constraint.
Although some works considered the nonnegative constraint on the given discrete
samples of ODF/EAP, the estimated ODF/EAP is not guaranteed to be nonneg-
ative definite in the whole continuous domain. The Riemannian framework for
ODFs and EAPs has been proposed via the square root parameterization based
on pre-estimated ODFs and EAPs by other methods like SPFI. However, there
is no work on how to estimate the square root of ODF/EAP called as the wave-
funtion directly from diffusion signals. In this paper, based on the Riemannian
framework for ODFs/EAPs and Spherical Polar Fourier (SPF) basis represen-
tation, we propose a unified model-free multi-shell HARDI method, named as
Square Root Parameterized Estimation (SRPE), to simultaneously estimate both
the wavefunction of EAPs and the nonnegative definite ODFs and EAPs from
diffusion signals. The experiments on synthetic data and real data showed SRPE
is more robust to noise and has better EAP reconstruction than SPFI, especially
for EAP profiles at large radius.

1 Introduction

Diffusion MRI (dMRI) is the unique technique to explore the complex microstructure of
white matter non-invasively, by modelling the diffusion of water molecules. The water
diffusion is fully characterized by the diffusion Probability Density Function (PDF)
called as the Ensemble Average Propagator (EAP). Under the narrow pulse assumption,
the signal attenuation E(q) is the Fourier transform of the EAP denoted by P(R) [2]:

E(q) =
∫
R3

P(R) exp(−2πiqT R)dR (1)

where q = qu is the wavevector in imaging q-space, and R = Rr is the displacement
vector in spatial R-space, and u and r are unit vectors. Since Diffusion Tensor Imag-
ing (DTI) cannot handle the complex fiber configuration, a category of reconstruction

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 313–321, 2012.
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methods, named as High Angular Resolution Diffusion Imaging (HARDI), were pro-
posed to avoid the Gaussian EAP assumption in DTI [11,7,8,1,5,10]. In HARDI, EAP
and two kinds of the Orientation Distribution Functions (ODFs) defined as Φ0(r) =
1
Z

∫ ∞
0

P(Rr)dR, Φ2(r) =
∫ ∞

0
P(Rr)R2dR, are normally used to infer fiber directions,

where Z in Φ0(r) is the normalization factor to make Φ0(r) as a PDF.
Spherical Polar Fourier Imaging (SPFI) is a recent multi-shell HARDI method, which

represents the signal by Spherical Polar Fourier (SPF) basis [1] and analytically obtains
EAP via the Fourier dual SPF basis [5] and the ODFs via Spherical Harmonic (SH) ba-
sis [3]. Although SPFI works well for the data with low SNR and non-exponential de-
cay [3,5], the estimated ODF/EAP may have negative values. As physical PDFs, EAPs
and ODFs should be nonnegative definite in R3 and S2 respectively. However, to our
knowledge the existing ODF/EAP estimation methods like the classical Q-ball Imaging
(QBI) [11,7] and the recent SPFI [1,5] seldom consider this constraint. Some works
considered this constraint only on the given discrete PDF samples in S2 for ODFs [8]
and in R3 for EAPs [10]. However, the discrete constraint only can ensure the esti-
mated ODF/EAP is nonnegative on the given samples, while it may be negative in other
samples. Moreover it is impractical for EAPs to consider the constraint on exhaustive
samples in unbounded R3 [10]. To our knowledge, there is still no work to estimate
nonnegative definite ODFs/EAPs in the whole continuous domains.

The Riemannian framework has been proposed for tensor processing, e.g. the posi-
tive definite tensor estimation [9]. Recently the Riemannian framework has been gener-
alized to ODF and EAP processing [4,6] by representing the square root of ODF/EAP
called as the wavefunction with some orthonormal bases, and the wavefunction is cal-
culated from the pre-estimated ODF/EAP by other methods like SPFI [1,5]. However
since SPFI with the least square estimation does not consider the nonnegative con-
straint [1,5], the negative values of pre-estimated ODF/EAP must be forced to zero for
the wavefunction estimation [6], which results in some numerical errors.

In this paper, we propose a model-free multi-shell HARDI method, named as Square
Root Parameterized Estimation (SRPE), to estimate simultaneously the wavevector of
EAP denoted as ψ(R), the nonnegative EAP and ODFs from the diffusion signal sam-
ples. SRPE naturally guarantees the estimated ODF/EAP nonnegative definite in the
continuous domain, not just in some discrete samples in [8,10]. The wavefunction es-
timated by SRPE can be used in the Riemannian framework without the numerical
error introduced by negative values. Compared to SPFI, the experiments demonstrate
the EAPs obtained in SRPE is more robust to noise especially at large radius.

2 Square Root Parameterized Estimation (SRPE)

2.1 Analytical Relation between the Wavefunction ψ(R) and the Signal E(q)

SPF basis is a complete orthonormal basis which can sparsely represent Gaussian-like
function with the first several basis functions [1,5], Motivated by the square root pa-
rameterization used in the Riemannian framework [4,6], we represent the wavefunc-
tion of EAP P(R) as a linear combination of SPF basis in (2), where Gn(R|ζ)Ym

l (r)
is the SPF basis with the Gaussian-Laguerre function Gn(R|ζ) in radial part and the
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Spherical Harmonic (SH) basis Ym
l (u) in spherical part [1,5], and the coefficient vector

c = (c000, . . . , cNLL)T has unit norm because
∫
R3 P(R)dR = 1 [6].

ψ(R) =
N∑

n=0

L∑
l=0

l∑
m=−l

cnlmGn(R|ζ)Ym
l (r), ‖c‖ = 1, P(R) = (ψ(R))2 (2)

Gn(R|ζ) = κn(ζ) exp

(
−R2

2ζ

)
L1/2

n

(
R2

ζ

)
, κn(ζ) =

[
2
ζ3/2

n!
Γ(n + 3/2)

]1/2

(3)

How to set the scale ζ will be discussed in 2.4. Please note that [6] represented ψ(R)
with Fourier dual SPF basis, while we use SPF basis. Actually different basis obtains
the equivalent Riemannian framework as demonstrated in [6], however it is convenient
for the analytical ODF and EAP estimation in 2.3 if ψ(r) is represented by SPF basis.

By substituting the plane wave equation in (4) [5] into (1), where jα(x) is the α-th
order spherical Bessel function, the signal E(q) in (1) can be written as a function with
respect to c in (5), where the Fourier integration inR3 is separated into radial integration
Inn′α(q) and spherical integration Qmm′β

ll′α in (7).

e−2πiq·R = 4π
∞∑
α=0

α∑
β=−α

(−1)α/2 jα(2πqR)Yβ
α(u)Yβ

α(r) (4)

E(q|c) =
∫
R3

⎛⎜⎜⎜⎜⎜⎝
N∑

n=0

L∑
l=0

l∑
m=−l

cnlmGn(R|ζ)Ym
l (r)

⎞⎟⎟⎟⎟⎟⎠
2

e−2πiqT RdR

=
∑
nlm

∑
n′ l′m′

∑
αβ

4π(−1)
α
2 cnlmcn′ l′m′ Inn′α(q|ζ)Qmm′β

ll′α Yβ
α(u) = cT K(q|ζ)c (5)

Kn′ l′m′
nlm (q|ζ) =

2L∑
α=0

α∑
β=−α

4π(−1)
α
2 Inn′α(q)Qmm′β

ll′α Yβ
α(u) (6)

Inn′α(q|ζ) =
∫ ∞

0
Gn(R|ζ)Gn′ (R|ζ) jα(2πqR)R2dR, Qmm′β

ll′α =

∫
S2

Ym
l (r)Ym′

l′ (r)Yβ
α(r)dr (7)

The spherical integration Qmm′β
ll′α is the integration of three SHs, which can be calculated

by Wigner 3-j symbol. Please note that the summation over α in (5) is up to 2L, because
if α > 2L, then α > 2L ≥ l+ l′ violates the triangle inequality and Qmm′β

ll′α = 0. The radial
integration in Eq. (7) can be written in (8),

Inn′α(q|ζ) = κn(ζ)κn′ (ζ)
ζ1.25

2
√

q

∫ ∞

0
x1.5 exp(−x2)L0.5

n (x2)L0.5
n′ (x2)Jα+0.5(2πqx

√
ζ)dx (8)

where Jα+0.5(x) =
√

2x
π

jα(x) is the Bessel function. Consider L0.5
n (x) =

∑n
i=0 linxi, lin =

(−1)i
(
n+0.5
n−i

)
1
i! , then L0.5

n (x2)L0.5
n′ (x2) =

∑n+n′
i=0 hi

nn′ x
2i, hi

nn′ =
∑min(n,i)

j=0 l j
nli− j

n′ δ(i − j ≤ n′)
Thus the radial integration can be solved based on the property of Bessel function [5],

Inn′α(q|ζ) = κn(ζ)κn′ (ζ)
ζ0.5α+1.5πα+0.5qα

4Γ(α + 1.5)

n+n′∑
i=0

hi
nn′Γ(

1
2
α+ i+

3
2

)1F1(
2i + α + 3

2
;α+

3
2

;−π2q2ζ) (9)
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where 1F1 is the confluent hypergeometric function. The final quadratic relation E(q|c) =
cT K(q|ζ)c is quite compact, where the kernel K(q|ζ) is a N(L+1)(L+2)/2 dimensional
symmetric matrix for each fixed q and ζ, and K(q|ζ) is independent of data E(q).

2.2 Estimation of the Wavefunction Directly from the Signal

With the analytical relation in (5), we propose to estimate the coefficient c from the
signal samples {Ei}Ns

i=1 by minimizing the cost function M(c) in (10), where the regular-
ization matrix Λ is the diagonal matrix with the elementsΛnlm = λnn2(n+1)2+λll2(l+1)2

which is motivated by QBI [7] and has been successfully used in SPFI [1,5,3].

c = arg min
‖c‖=1

M(c), M(c) =
1
2

Ns∑
i=1

(
cT K(qi|ζ)c − Ei

)2
+

1
2

cTΛc (10)

The minimization must be performed in a high dimensional sphere because of the con-
straint ‖c‖ = 1. The Riemannian gradient ∇M(c) on the sphere is

∇M(c) =
∂M(c)
∂c

−
(
cT ∂M(c)

∂c

)
c,

∂M(c)
∂c

=

Ns∑
i=1

2
(
cT K(qi|ζ)c − Ei

)
K(qi|ζ)c + Λc (11)

Then we propose a gradient descent method in (12), where c(k) means c in k-th step, dt is
the step size from the standard line search method, Expc(v) is the exponential map [6].
See Algorithm 1.1 for the details, where we initially set c(0) = (1, 0, . . . , 0)T to represent
a typical isotropic Gaussian EAP, and dt0 = 0.1 experimentally, considering ‖c‖ = 1.
Note that c(k) in each step satisfies ‖c(k)‖ = 1 thanks to the Riemannian framework [6].

c(k+1) = Expc(k)

(
−dt

∇M(c(k))
‖∇M(c(k))‖

)
, where Expc(v) = c cos ‖v‖ + v

‖v‖ sin ‖v‖ (12)

2.3 Estimation of the Nonnegative Definite EAP and ODFs

After the coefficient c is estimated from signal samples {Ei}, the EAP P(R) = (ψ(R))2

is naturally nonnegative definite in R3, and
∫
R3 P(R)dR = 1 because ‖c‖ = 1 is forced in

each estimation step. For given radius R0, the EAP profile can be represented by product
of SH basis or SH basis, considering Ym

l (r)Ym′
l′ (r) =

∑
αβ Yβ

α(r)Qmm′α
ll′α .

P(R0r) = (ψ(R))2 =

2L∑
α=0

α∑
β=−α

⎛⎜⎜⎜⎜⎜⎝
∑
nlm

∑
n′ l′m′

cnlmcn′ l′m′Gn(R0)Gn′ (R0)Qmm′β
nn′α

⎞⎟⎟⎟⎟⎟⎠ Yβ
α(r) (13)

Two kinds of ODFs Φ0(r) and Φ2(r) are also nonnegative definite in S2 because they
are radial integrations of nonnegative P(R). The ODFs can be analytically represented
by product of SH basis or SH basis with the estimated coefficient c. For Φ2(r), we have

Φ2(r) =
∫ ∞

0
(ψ(R))2 R2dR =

∑
nlm

∑
n′l′m′

( ∫ ∞

0
Gn(R)Gn′ (R)R2dR

)
cnlmcn′l′m′Ym

l (r)Ym′
l′ (r) (14)

=
∑
nlm

∑
l′m′

cnlmcnl′m′Y
m
l (r)Ym′

l′ (r) =
2L∑
α=0

α∑
β=−α

(∑
nlm

∑
l′m′

cnlmcnl′m′Q
mm′β
ll′α

)
Yβ
α(r) (15)
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Algorithm 1.1. Unified Estimation of Wavefunction, EAP and ODFs
Input: DWI samples {Ei}.
Output: Coefficient c of ψ(R|c) and the coefficients of EAP profile, ODFs under SH basis.
begin

initialization: c(0) = (1, 0, ..., 0)T , k = 0 ; // typical isotropic Gaussian EAP
repeat

calculate v = ∇M(c(k)) in (11) ;
if ‖v‖ < ε1 then break;
choose step size dt ∈ (0, dt0] via line search;
c(k+1) = Expc(k) (−dt v

‖v‖ );
k ← k + 1;

until M(c(k−1))−M(c(k))
M(c(k−1))

< ε2;
P(R0r) = Eq.(13), Φ2(r) = Eq.(15), Φ0(r) = Eq.(17)

end

Here we use the orthogonality
∫ ∞

0
Gn(R)Gn′(R)R2dR = δnn′ [1]. It is clear in (15) that∫

S2 Φ2(r)dr =
∑

nlm c2
nlm = 1, because of the orthogonality of SHs. So the estimated

Φ2(r) from SRPE is indeed the nonnegative definite marginal EAP. For Φ0(r), we have

Φ0(r) =
1
Z

∫ ∞

0
(ψ(R))2 dR =

1
Z

∑
nlm

∑
n′ l′m′

( ∫ ∞

0
Gn(R)Gn′ (R)dR

)
cnlmcn′l′m′Ym

l (r)Ym′
l′ (r) (16)

∫ ∞

0
Gn(R)Gn′ (R)dR = κn(ζ)κn′ (ζ)

√
ζ

2

∫ ∞

0
exp(−x)

n+n′∑
i=0

hi
nn′ x

i−0.5dx = κn(ζ)κn′ (ζ)

√
ζ

2

n+n′∑
i=0

hi
nn′Γ(i +

1
2

)

where Γ(·) is the Gamma function. Then Φ0(r) is represented as

Φ0(r) =

√
ζ

2Z

2L∑
α=0

α∑
β=−α

(∑
nlm

∑
n′l′m′

κn(ζ)κn′ (ζ)cnlmcn′ l′m′Q
mm′β
ll′α

n+n′∑
i=0

hi
nn′Γ(i +

1
2

)

)
Yβ
α(r) (17)

2.4 Implementation

The implementation of SRPE has two steps. The first step is to estimate coefficient
vector c of ψ(R) from signal samples {Ei}. The second step is to obtain EAP and ODFs
analytically from formulae (13) (15) (17), which is independent of the first step. The
whole estimation error is only in the first step, because the second step is analytical.

In SPFI, the artificial shell at q = 0 needs to be considered for the prior E(0) = 1 [5],
which largely improves the results of SPFI. However, in SRPE E(0) = 1 is naturally
satisfied because ‖c‖ = 1 =

∫
R3 P(R)dR = E(0) is forced in estimation, which can be

seen as an advantage over SPFI, thanks to the Riemannian framework [6]. Similarly
with SPFI, the scale ζ needs to be chosen in the first step. SPFI proposed to set ζ
using a typical Apparent Diffusion Coefficient (ADC) value D0 = 0.7× 10−3mm2/s [5].
Motivated by SPFI, we propose to set ζ by two ways. The first way is to set ζ = 4τD0

such that the first SPF basis G0(R)Y0
0 (r) ∝ exp(− R2

8τD0
) can represent typical isotropic

signal E(q) = exp(−4π2τq2D0) with the typical isotropic Gaussian EAP N(R|2τD0). τ
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is the diffusion time to calculate q from b value, i.e. b = 4π2τq2. In this way ζ is shared
by all voxels, thus the kernels {K(qi|ζ)}Ns

i=1 need to be calculated only once on samples
{qi}. However the typical ADC value D0 may be not appropriate for the voxels with the
ADC far from D0. Thus the second way is to adaptively estimate the isotropic tensor
with ADC Diso from signal {Ei}Ns

i=1 in each voxel, which can be done by a standard least
square estimation in DTI. Then we set ζ = 4τDiso. The isotropic EAP N(R|2τDiso) may
better approximate the signal samples than the EAP N(R|2τD0) provided by D0. In this
way ζ is adaptively set for each voxel, thus the kernel {K(qi|ζ)}Ns

i=1 needs to be calculated
for each voxel, which can be accelerated by reusing the pre-calculated {K(qi|ζ)}Ns

i=1 with
the close scale. Note that the adaptive Diso can be also used in SPFI. The used special
functions are implemented in GSL, which is very efficient. The computation burden is
in the calculation of the kernel K and the summation in (11) for many times. With our
C++ codes in ordinary PC, for 10000 voxels, it takes about 7 minutes with fixed scale
and 20 minutes with adaptive scale.

3 Experiments

In practice we found that the ODFs estimated by many HARDI methods normally have
only a small number of negative values close to zero when the SNR is very low, however
even with high SNR, the negative values are serious for the estimated EAPs especially
for large radius R. Thus we focus on EAP estimation in experiments.

Synthetic Data. The synthetic data were generated from mixture of tensor model [7]
where two tensors cross with a given angle in [45◦, 90◦]. Three shells (b=500,1500,3000
s/mm2) were used, 60 samples per shell. EAP profiles with radius R0 = 15μm were es-
timated by SPFI and SRPE. The Normalized Mean Square Error (NMSE) between the
ground truth EAP profile P(R0r) and the estimated EAP profile P̃(R0r) is defined as√∫

S2
|P̃(R0r)−P(R0r)|2dr√∫
S2
|P(R0r)2dr

. In the noise-free experiment, the signal was generated from two

tensor configurations with eigenvalues T1 = (1.7, 0.3, 0.3) × 10−3mm2/s and T2 =

(0.9, 0.3, 0.3) × 10−3mm2/s. We set N = 2, L = 4, λl = λn = 0 and considered both
typical scale and adaptive scale for SPFI and SRPE . Fig. 1(A2,A3) recorded the NMSE
when two maxima were detected. SRPE generally obtains lower NMSE and has better
angular resolution than SPFI. The adaptive scale obtains lower NMSE in two methods
when T2 is used, which is because the ADC in tensor T1 is much close to the typical D0,
while the ADC in T2 is not. Fig. 1(A1) shows the ground truth EAP and the estimated
EAPs by two methods when T1 and crossing angle of 55◦ are used. SRPE has better
angular resolution and avoids the negative values around the original point in the EAP
by SPFI. Note that the EAP profile estimated by SPFI in (A1) has more than 20% neg-
ative values showed in the blue square, although only 1% points are negative and have
absolute values larger than one tenth of the maximal value of the EAP profile. In the
experiment with Rician noise, T1 and adaptive scale were used. We set λl = λn = 10−8

for SPFI suggested in [5]. Since the coefficient c in SRPE has different range (‖c‖ = 1)
from coefficients in SPFI, in order to perform a fair comparison, we still set λl = λn = 0
for SRPE without any regularization. The estimation was performed for 1000 trials with
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Fig. 1. A1: ground truth EAP and estimated EAPs from two methods, where the EAP by SPFI
has negative values in the blue square. The long thin sticks and short thick sticks are the ground
truth directions and the detected maxima respectively. A2, A3: NMSE in noise free experiment
for two tensor configurations T1, T2. B1, B2, B3: success ratio, MDA and the mean of NMSE in
the experiments with S NR = 10, 30.

S NR = 10, 30, where the success ratio was recored when two maxima were detected,
the Mean Difference of Angle (MDA) was calculated in the successful trials, and the
mean of NMSE was calculated over all trials. See Fig. 1(B1,B2,B3). It is clear that
SRPE generally has higher success ratio, lower MDA and lower NMSE than SPFI.

Real Monkey Data. We perform SRPE and SPFI in a real monkey data with three b
values (b = 500, 1500, 3000s/mm2), 30 gradients per shell. N = 2, L = 4 λn = λl =

10−8 were set for SPFI. In order to perform a fair comparison, we set N = 2, L = 4,
λn = λl = 0 for SRPE. See Fig. 2 for the estimated EAPs and ODFs in an enlarged area.
The fifth column demonstrates that the ODFs Φ2(r) by two methods are similar. It is
probably because the estimated ODFs by SPFI in this area only have averagely 0.03%

Fig. 2. The first four columns are the EAP profiles at 15, 25μm estimated by SRPE and SPFI with
adaptive and typical scales. The last column shows the ODF Φ2(r) estimated by SRPE and SPFI
with adaptive scale. The EAP profiles and ODFs are colored by generalized FA (GFA) [11].
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negative values. The EAP profiles at radius 25μm and 15μm were estimated by two
methods with both adaptive and typical scales. For both scale settings, the SPFI obtains
very noisy EAP profiles at 25μm, while SRPE obtains cleaner results. That’s probably
because the EAP profiles at 25μm by SPFI in this area have averagely more than 20%
negative values, while the EAPs by SRPE are always nonnegative. Note that the EAP
profiles by SRPE with adaptive scale is sharper than the EAPs obtained by typical scale,
and both SPFI and SRPE obtain isotropic EAP profile in grey matter areas, which is an
important advantage over other methods like QBI.

4 Conclusion

In this paper, we propose a unified model-free multi-shell HARDI method, named as
SRPE, to estimate simultaneously the wavefunction of EAP, the nonnegative definite
EAP and two kinds of ODFs from the diffusion signals. To the best of our knowledge,
this is the first work on nonnegative definite EAP and ODFs estimation in the continu-
ous domains, although some other methods have considered the nonnegative constraint
on some given discrete samples. SRPE generalizes the positive definite tensor estima-
tion based on the Riemannian framework for tensors to the nonnegative definite EAP
and ODFs estimation by considering the Riemannian framework for EAPs. The exper-
iments on synthetic data and real data demonstrated that the negative values happen in
reconstruction methods like SPFI even without noise. This phenomenon is more serious
for EAP profiles with larger radius. SRPE can improve the estimation results by avoid-
ing the negative values, and it generally has better EAP estimation than SPFI especially
for the EAP profile with large radius. The ODFs by SRPE and SPFI seem to be similar,
probably because the estimated ODFs by most HARDI methods are so smooth that they
seldom have negative values or have the negative values with small absolute values.
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Eigenvalue Distribution of Spherical Functions
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Abstract. Current methods in high angular resolution diffusion imag-
ing (HARDI) estimate the probability density function of water diffu-
sion as a continuous-valued orientation distribution function (ODF) on
the sphere. However, such methods could produce an ODF with nega-
tive values, because they enforce non-negativity only at finitely many
directions. In this paper, we propose to enforce non-negativity on the
continuous domain by enforcing the positive semi-definiteness of Toeplitz-
like matrices constructed from the spherical harmonic representation of
the ODF. We study the distribution of the eigenvalues of these
matrices and use it to derive an iterative semi-definite program that
enforces non-negativity on the continuous domain. We illustrate the per-
formance of our method and compare it to the state-of-the-art with ex-
periments on synthetic and real data.

Keywords: diffusion imaging, orientation distribution functions, spher-
ical harmonics, Toeplitz matrices, eigenvalue distribution theorem.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) uses the properties of water diffu-
sion in biological tissues to reconstruct the 3-dimensional architecture of anatom-
ical structures. Recent advances in this field, such as high angular resolution
diffusion imaging (HARDI), have been able to compute the anisotropy of water
molecules in the brain by measuring diffusion along multiple directions. This al-
lows one to characterize the diffusion properties of biological tissues in terms of
a probability density function on the sphere, otherwise known as the orientation
distribution function (ODF).

In theory, an ODF must obey the axioms of a probability distribution, which
include being non-negative and integrating to 1 over the sphere. However, existing
ODF estimation methods based on a spherical harmonic (SH) representation of
the ODF [1–9] do not enforce the non-negativity constraint. As a consequence, due
to noise and low order SH representation, the estimated ODFs may contain nega-
tive values. This is a problem in population studies, where one is interested in ap-
plying statistical methods to ODFs to differentiate between healthy and diseased
populations, which cannot be accurately done without axiomatically correct dis-
tributions. To address this problem, [10] enforces non-negativity at finitely many
directions on the sphere, but ODF interpolation and registration methods may
require evaluating ODFs outside discrete grids. [11] uses a non-ODF constrained

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 322–330, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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spherical deconvolution method that reduces the occurrence of negative values,
but does not completely eliminate them.

In this paper, we propose an algorithm that enforces non-negativity for all di-
rections on the sphere. To do this, we extend the relationship between continuous
functions and their companion Toeplitz forms of Fourier coefficients to spheri-
cal functions. This leads to a positive semi-definiteness constraint on matrices
constructed from the SH coefficients of the ODF. Since these constraints cannot
be directly enforced, we study the distribution of the eigenvalues of these matri-
ces to predict their smallest eigenvalue given an estimate of the SH coefficients.
This prediction can in turn be used to improve the SH coefficients. This leads
to an iterative semi-definite program (SDP) that enforces non-negativity of the
ODF on the continuous domain. We illustrate the performance of our method in
comparison to the state-of-the-art with experiments on synthetic and real data.

2 Estimating ODFs Using Spherical Harmonics

2.1 Standard and Modified SH Basis Representations

Recent ODF estimation methods have adopted the SH representation for HARDI
signals. The (standard) SH basis elements are complex-valued functions de-
fined as

Y m
l (θ, φ) =

√
2l+ 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ , l = 0, 1, 2, . . . , − l ≤ m ≤ l, (1)

where Pm
l is the associated Legendre polynomial of degree l and order m, θ ∈

[0, π], and φ ∈ [0, 2π). In practice, the signals we want to reconstruct are real.
Hence, it is more convenient to use the modified SH basis functions, which are
defined as

Yj =

⎧⎪⎨⎪⎩
√
2Re(Y

|m|
l ) if − l ≤ m < 0,

Y 0
l if m = 0,√
2(−1)m+1Im(Y m

l ) if 0 < m ≤ l,

(2)

where Re(·) and Im(·) are the real and imaginary parts, respectively, and j
.
=

j(l,m) = l2+l+2
2 +m for l = 0, 2, 4, . . . and −l ≤ m ≤ l. Notice that, for degree

up to L, there are R = (L+1)(L+2)
2 basis elements. Often it suffices to consider

the modified SH basis of degree up to L = 4 correlating to R = 15. Notice also
that

∫
S2
Y1(θ, φ) =

∫
S2

1
2
√
π
= 2

√
π and

∫
S2
Yj(θ, φ) = 0 for j > 1. Consider a real

continuous function f : S2 → R. Then we can write it as f =
∑∞

j=1 cjYj using the
modified basis in (2), where c = [cj ] are the real SH coefficients that parameterize
f . This is equivalent to writing f =

∑∞
l,m cl,mY m

l using the standard SH basis in
(1), where we define c̄ = [cl,m] as the vector of standard SH coefficients. Given

a real vector c, we can obtain c̄ by the inverse mapping of j(l,m) = l2+l+2
2 +m,

where l = 0, 2, 4, . . . , −l ≤ m ≤ l with cl,m = 0 for l > 0 odd. This gives the
degree lj and order mj of Yj and defines a one-to-one mapping between the
vectors c and c̄. For example, c̄0,0 = c1, c̄2,−2 = c2, c̄2,−1 = c3 and so forth.
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2.2 ODF Estimation Problem and Prior Work

Let S0 be the baseline MRI signal and let S(θ, φ) be the HARDI signal along
(θ, φ). Following [7], we define the ODF as p(ϑ, ϕ) = 1

4π + 1
16π2FRT {∇2

b ln(− ln

(S(θ,φ)
S0

))}, where FRT is the Funk-Radon transform, ∇2
b is the Laplace-Beltrami

operator on S
2, ϑ ∈ [0, π] and ϕ ∈ [0, 2π). Let s(θ, φ)

.
= ln(− ln(S(θ,φ)

S0
)) =∑∞

j=1 cjYj(θ, φ). Since ∇2
b(Yj(θ, φ)) = −lj(lj + 1)Yj(θ, φ), and FRT (Yj(θ, φ)) =

2πPlj (0)Yj(ϑ, ϕ), where Plj (0) is the Legendre polynomial of degree lj at 0, we
have

p(ϑ, ϕ) =
1

4π
+

1

16π2

∞∑
j=1

(−2πPlj (0))lj(lj + 1)cjYj(ϑ, ϕ) =

∞∑
j=1

c̃jYj(ϑ, ϕ), (3)

where c̃1 = 1
2
√
π
and c̃j = − 1

8πPlj (0)lj(lj + 1)cj for j > 1. Therefore, to recon-

struct p, it suffices to compute the SH coefficients c̃
.
= [c̃j ] that parameterize

the signal s, or equivalently, the standard SH coefficients ¯̃c
.
= [c̃l,m], such that∫

S2
p = 1 and p(ϑ, ϕ) ≥ 0 for all ϑ ∈ [0, π] and ϕ ∈ [0, 2π). To that end, assume

that the HARDI signals are measured at G gradient directions (θi, φi)
G
i=1. If we

use an R-dimensional approximation of s ≈
∑R

j=1 cjYj , we have s ≈ Bc, where

s
.
= [ln(− ln(S(θ1,φ1)

S0
)), . . . , ln(− ln(S(θG,φG)

S0
))]T , B is the G×R SH basis matrix

whose i-th row is Bi = [Y1(θi, φi), ..., YR(θi, φi)], and c = [c1, c2, . . . , cR]
T ∈ R

R.
With the above notation, we define the following ODF estimation problem:

Problem 1 (Continuous Domain ODF Estimation). Fix L and let c ∈ R
R. Solve

minc ||Bc− s||22 s.t. pL(ϑ, ϕ)
.
=

∑R
j=1 c̃jYj(ϑ, ϕ) ≥ 0 for all ϑ ∈ [0, π], ϕ ∈ [0, 2π).

Perhaps the simplest approach to recovering c is to solve the least-squares
problem minc

1
2 ||Bc − s||22, as proposed in [5]. However, disregarding the non-

negativity constraints could result in negative values for p(ϕ, ϑ). To address this
issue, [10] proposes to enforce the non-negativity constraints at finitely many

directions (ϑi, ϕi)
M
i=1, with (ϑi, ϕi) possibly different from (θi, φi).

1 To solve
this problem, [10] defines the discrete ODF p ∈ R

M whose i-th entry is pi =
pL(ϑi, ϕi). Then p = 1

4π1+
1

16π2CLPc, where 1 is the M×1 vector of ones, C is
the M ×R SH basis matrix whose i-th row is Ci = [Y1(ϑi, ϕi)... YR(ϑi, ϕi)], L is
the R×R diagonal matrix of Laplace-Beltrami eigenvalues with Ljj = −lj(lj+1),
and P is the R×R diagonal Funk-Radon transform matrix with Pjj = 2πPlj (0).
Thus, to enforce the non-negativity of p, [10] solves the optimization problem
minc ||Bc− s||22 subject to CLPc ≥ −4π1. This method enforces pL(ϑi, ϕi) ≥ 0
for i = 1, . . . ,M but not for all ϑ ∈ [0, π], ϕ ∈ [0, 2π).

3 Estimating ODFs with Non-negativity Constraints

In this section, we propose an algorithm for solving Problem 1. In §3.1 we show
that b

.
= minϑ,ϕ pL(ϑ, ϕ) = lim�→∞ λ�

1, where λ�
1 is the smallest eigenvalue of

1 Typically we consider M = 162 with G ≈ 100 HARDI measurements.
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a matrix T� constructed from the SH coefficients, ¯̃c, of pL. Therefore, enforcing
b ≥ 0 is equivalent to enforcing λ�

1 ≥ 0 for all � ≥ L. Unfortunately, we cannot
solve an optimization problem with infinitely many constraints. Also, enforcing
λ�
1 ≥ 0 for a finite � ≥ L is a necessary but not a sufficient condition. To

circumvent this problem, in §3.2 we show that the sequence {λ�
1}�≥L is decreasing

and that b can be predicted by fitting a curve to the first few {λ�
1}N�=L. In §3.3,

we show that given b, one can estimate c̄ by solving an SDP. We thus propose
an iterative SDP that alternates between computing c̄ given b and predicting b
given ¯̃c.

3.1 Toeplitz Form Analogue for Spherical Harmonic Basis

In [12], results are developed which relate the range of the values of a function
to the eigenvalues of a Toeplitz matrix (or form) constructed from finitely many
Fourier coefficients of the function. One can develop analogue results for the SH
coefficients. We follow [13] in constructing a matrix T� that serves as the SH
analogue of the Toeplitz form in the Fourier case.

Consider a spherical function f =
∑∞

j=1 ciYi and let c̄ = [cl,m] be its standard
SH coefficients of infinite length. Let T�(f), � = 0, 1, . . . , be a matrix whose rows
and columns are indexed by the pair (l1m1, l2m2) = (l1(l1 +1)+m1, l2(l2 +1)+
m2), where li = 0, 1, 2, . . . , � and −li ≤ mi ≤ li, for i = 1, 2. The entry of T� at
position (l1m1, l2m2) is defined as

T�(f)l1m1;l2m2 =

l1+l2∑
l=|l1−l2|

c̄l,m1−m2G(l, l2, l1;m1 −m2,m2,m1), (4)

where G(l1, l2, l3;m1,m2,m3) is a real constant Gaunt Coefficient (See [13] Ap-
pendix A). The size of T� is (� + 1)2 × (� + 1)2 because there are (� + 1)2 SH
coefficients of degree less than or equal to �. The following result proved in [13]
relates the extremal eigenvalues of T� to the range of the values of the function
f and in particular the behavior as � → ∞.

Theorem 1. (Eigenvalue Distribution Theorem in S
2) Let f(u) ∈ L1(S2) be an

absolutely integrable real valued function on the 2-sphere. Let b and B be the
essential lower and upper bounds of f(u), respectively and let λ�

i , i = 1, . . . , (�+
1)2, be the ascending eigenvalues of the matrix T�(f). Then we have

b ≤ λ�
1 ≤ . . . ≤ λ�

(�+1)2 ≤ B, lim
�→∞

λ�
1 = b, and lim

�→∞
λ�
(�+1)2 = B. (5)

This theorem shows that the smallest eigenvalue of T�(f) in the limit converges
to the minimum of f on S

2. Therefore, enforcing that minϑ,ϕ f(ϑ, ϕ) ≥ 0, is
equivalent to enforcing that λ�

1 ≥ 0 for all � ≥ 0.

3.2 Predicting the Smallest Eigenvalue

Since we cannot enforce infinitely many constraints, let us first understand the
behavior of the smallest eigenvalue of T�(fL) for � ≥ L, where fL belongs to the

class of functions expressed by SH of degree up to L, i.e., fL =
∑R

j=1 cjYj .
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Theorem 2. Let fL =
∑R

i=1 ciYi, where R = (L+1)(L+2)
2 . Let T�(fL) be defined

as in (4) and let λ�
1 be its smallest eigenvalue. Then λ�+1

1 ≤ λ�
1 for all � ≥ L.

Proof. By [13], T�(fL) is Hermitian for every � ≥ 0. Then, by interlacing [14, p.
189], λ�

1 will be less than or equal to the minimum eigenvalue of every principal
submatrix of T�(fL). Thus it suffices to show that T�(fL) is a principal submatrix
of T�+1(fL) for all � ≥ L. T�(fL) is of size (�+1)2×(�+1)2 and T�+1(fL) is of size
(�+2)2× (�+2)2. If we restrict our matrix T�+1(fL) to the first (�+1)2 columns
and rows, we denote this principal submatrix by P�+1(fL). In (4) for T�+1(fL), l1
and l2 each range from 0 to �+1 and so the upper limit l1+ l2 of the summation
over l will range from 0 to 2� + 2. But from the zero-padding construction of
T�+1(fL) we see that coefficients after 2� equal 0. Thus this summation reduces
to the range 0 to 2� which is exactly equal to T�(fL). So T�(fL) is a principal
submatrix of T�+1(fL) for all � ≥ L. 
�

This result guarantees monotone decrease of λ�
1. However, to predict lim�→∞ λ�

1

we need the rate of convergence, which is not straightforward to analyze. In the
1D Fourier case, one can argue that this rate is roughly proportional to 1

�+2 [12,
pp. 65-67 and p. 72]. However, there are technical difficulties in carrying this
argument over to S

2. Nevertheless, in the 2D Fourier case one could argue that
the rate is proportional to 1

(�+2)2 . We use this intuition [12, 13] to obtain a good

estimate of the rate of convergence. Given a sequence of eigenvalues, λ�
1, we fit

functions of the form q 1
(�+d)r + b, with free parameters q, r, b for different values

of d and small values of � > L. In addition we compare them to an exponential
curve of the form qe−r� + b. Table 1 shows the R2 goodness of fit value and
exponent r for different values of d averaged over 100 samples of synthetic ODFs
for � = 4, . . . , 15. We found that d ≈ 2 and 1 ≤ r ≤ 2 yield a satisfactory fit and
support our intuition. In our experiments we chose d = 2 and let r be free.

3.3 Iterative Semi-definite Programming Optimization Algorithm

In this section, we formulate Problem 1 in terms of constraints on T�(pL). Ideally,
the optimization problem we want to solve is:

min
c

‖Bc− s‖22 s.t. T�(pL)  0, ∀� ≥ L, (6)

where c ∈ R
R. By Theorem 1, constraining T�(pL)  0 for all � ≥ L enforces

pL(ϑ, ϕ) =
∑R

j=1 c̃jYj(ϑ, ϕ) ≥ 0 for all ϑ ∈ [0, π], ϕ ∈ [0, 2π). It is important to

note here that since pL has SH coefficients c̃, T�(pL) will be built from ¯̃c = [c̃l,m].

Table 1. Rate of Convergence Parameters and Performance

d 0 1 2 2.5 3 qe−r� + b

R2 0.9989 0.9990 0.9991 0.9991 0.9991 0.4522

r 0.7678 1.0162 1.2606 1.3819 1.5026 4.0142
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Algorithm 1. Iterative T� Construction and SDP Optimization

Given a signal vector s, a precomputed modified SH basis matrix B, and for a fixed L
and fixed extension degree N ≥ L+ 3,

1. Initialization. Set k = 0.
a. Calculate initial SH coefficient vector c0 = argmin ‖Bc− s‖22 .
b. Construct T�(p

0
L) as in (4) for � = L, . . . , N , fit curve q 1

(�+2)r
+ b to {λ�,0

1 }N�=L,
with free parameters q, r, b and set b0 ← b.

2. Until bk non-negative,
a. Calculate γk, and solve (8) using SDP solver to get ck+1.
b. Construct T�(p

k+1
L ) as in (4) for � = L, . . . , N , fit curve q 1

(�+2)r
+ b to

{λ�,k+1
1 }N�=L, with free parameters q, r, b, set bk+1 ← b and set k ← k + 1.

Notice that we cannot solve the problem in (6), because it has infinitely many
constraints. Notice also that enforcing T�(pL)  0 for finite � does not guarantee
the non-negativity of pL. To address this issue, we propose an iterative algorithm,
(see Alg. 1) that solves an approximation of (6) at each iteration. Let ck be the

estimate of c at iteration k and define pkL =
∑R

j=1 c̃
k
jYj . Let λ

�,k
1 be the minimum

eigenvalue of T�(p
k
L) and let bk be the prediction of lim�→∞{λ�,k

1 } obtained by
the curve fitting method described in §3.2. At iteration k, we solve:

ck+1 = argmin
c

‖Bc− s‖22 s.t. TL(p
k
L)  γkI(L+1)2 , (7)

where γk
.
= λL,k

1 −bk and I(L+1)2 is the identity matrix of size (L+1)2. Alg. 1 was
implemented in MATLAB utilizing the Coder Toolbox to speed up construction
of T�. The optimization problem was solved using CVX, a MATLAB software for
specifying and solving convex programs [15, 16]. Within the CVX environment
(7) is reformulated using the Shur complement of the constraint ‖Bc− s‖22 ≤ z
as:

min
c

z s.t.

[
IR Bc− s

[Bc− s]T z

]
 0 and TL(p

k
L)  γkI(L+1)2 (8)

for z ∈ R. In Alg. 1, we begin with a given measured signal s and modified
SH basis matrix B as described in §2.2. To initialize the algorithm, we fix L
and start with a least squares approximation for c as in step 1a. From the
initial optimal value c0 we can calculate ¯̃c0, by the mapping in §2, in order to
construct TL(p

0
L) by (4). We can optimize over any T� so we choose the smallest

� = L for computational simplicity. For a fixed integer N ≥ L + 3 we fit the
curve to {λ�,0

1 } for � = L, . . . , N as in §3.2 in order to calculate the approximate
minimum b = b0 of the function p0L. If b0 < 0 we then solve the problem in (8),

which will increase the expected minimum of the sequence {λ�,k+1
1 }, generated

from the optimal coefficients of the optimization, closer to 0. Alg. 1 repeats until
we arrive at a bk ≥ 0, which means we have a function pkL ≥ 0 on the continuous
domain.
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4 Experiments

We conducted a number of experiments on real and synthetic datasets to compare
our continuous non-negativity (CN) method against the discrete non-negativity
(DN) method [10] and the unconstrained least squares (LS) method. Our al-
gorithm uses (DN) as initialization. We used the multi-tensor method in [4] to
generate a field of 100 synthetic ODFs with 1, 2, and 3 fibers with varying angles.
We added complex Gaussian noise with a signal-to-noise ratio (SNR) of 5, 10 and
20 dB. Alg. 1 takes on avg. 2-3 iterations to converge. Each iteration in MATLAB

takes about 70s for N = 15 and 159s for N = 20, thus we choose N = 15 in our
experiments. This is about two orders of magnitude more than the method of
[10], which takes 1s per ODF. The runtime of our method could be reduced by us-
ing a more efficient implementation than CVX. The computational complexity of
our SDP is almost O(L6). Fig. 1 offers a closeup investigation of a synthetic sin-
gle fiber ODF with SNR 5 dB, using each method. Notice that CN more closely
estimates the true ODF. To quantify the error, we used the Riemannian distance
between ODFs, distRie [17]. All experiments are calculated over a very fine mesh
of 1.002 million points on S

2. The left plot in Fig. 2 shows the avg. Riemannian
error between the true and estimated ODFs for each SNR value. The avg. error
of CN is consistently lower than that of DN. Further analysis in the righthand
plot in Fig. 2 presents the avg. percentage of negative values on S

2 for each SNR
level for LS, DN, and DN with two passes of spatial regularization (DN-S) [10].
The number of negative values decreases but is not eliminated, while in CN 0%
of the ODFs have negative values over the fine mesh, and in theory for all points
on S

2. Finally, we validate our methods on a 128×128 real HARDI human brain
dMRI dataset measured at 94 gradient directions. Fig. 3 compares DN and CN
on a sample of the real dataset. Using the same mesh as in the synthetic experi-

(a) LS (b) DN (c) CN (d) True

Fig. 1. Single fiber ODF with SNR 5 dB Fig. 2. Quantitative comparison

Fig. 3. Real HARDI brain ODF field. Left: DN, Right: CN
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ments, we found that over 99% of the ODFs estimated by DN had on avg. 0.04%
of negative values, while 0% of the ODFs estimated by CN had negative values.

5 Conclusion

We have proposed a novel method to enforce non-negativity in the estimation
of ODFs. We not only eliminate the negative values of existing estimation meth-
ods, but also improve the estimated ODFs, as demonstrated with synthetic and
real experiments. Future work includes using our axiomatically correct ODFs to
demonstrate improvement in statistical analysis for population studies.
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Abstract. Registration of DWI data, unlike scalar image data, is complicated
by the need of reorientation algorithms for keeping the orientation architecture of
each voxel aligned with the rest of the image. This paper presents an algorithm for
effective and efficient warping and reconstruction of diffusion-weighted imaging
(DWI) signals for the purpose of spatial transformation. The key idea is to decom-
pose the DWI signal profile, a function defined on a unit sphere, into a series of
weighted fiber basis functions (FBFs), reorient these FBFs independently based
on the local affine transformation, and then recompose the reoriented FBFs to
obtain the final transformed DWI signal profile. We enforce a sparsity constraint
on the weights of the FBFs during the decomposition to reflect the fact that the
DWI signal profile typically gains its information from a limited number of fiber
populations. A non-negative constraint is further imposed so that noise-induced
negative lobes in the profile can be avoided. The proposed framework also explic-
itly models the isotropic component of the diffusion signals to avoid undesirable
reorientation artifacts in signal reconstruction. In contrast to existing methods,
the current algorithm is executed directly in the DWI signal space, thus allowing
any diffusion models to be fitted to the data after transformation.

1 Introduction

Spatial normalization of diffusion-weighted (DW) images often requires more than per-
forming spatial mapping between image domains. The diffusion profile (the diffusion
signals represented as a spherical function) encapsulated by each image voxel often has
to be transformed to correctly align local fiber orientations. For the case of diffusion
tensor imaging (DTI), this task is reduced to the reorientation of the diffusion pro-
file based on the principal diffusion direction. For the case of high angular resolution
diffusion imaging (HARDI), where the preservation of fiber crossing information is es-
sential, the problem becomes more complicated, since the transformation has to now
cater to multiple local fiber orientations in each voxel due to the existence of multiple
fiber populations.

For this purpose, a decent reorientation framework was proposed by Raffelt et al. [6].
In their framework, the fiber ODF [8] is decomposed into a series of weighted spherical-
harmonics-based point spread functions (PSFs), which are then reoriented individually
and recomposed to form the reoriented fiber ODF. This approach was later extended in [1]
for direct reorientation in theQ-space. It is further demonstrated in [1] that it is important

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 331–338, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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to take into account the isotropic component in modeling the diffusion to avoid the danger
of turning an isotropic diffusion-attenuated signal profile to an anisotropic profile.

This paper proposes an algorithm for direct reorientation of the diffusion-attenuated
signal profile in the Q-space by using a sparse representation framework with the DWI
signal profile modeled as a combination of Watson distribution functions [10]. The pro-
posed algorithm:

1. Avoids the computation complexity of spherical harmonics, especially that required
by the associate Legendre polynomials. Although it can be argued that the spheri-
cal harmonics can be computed once and stored for subsequent computations, this
strategy is generally not applicable to the case of registration, where very often the
basis functions have to be computed a significant number of times, with respect to
transformations that cannot be known a priori, as the registration algorithm iterates
to refine correspondence matching;

2. Avoids the smoothing nature of spherical harmonics. When spherical harmonic ba-
sis functions of insufficient order are used, loss of sharp directional information
occurs;

3. Explicitly models the isotopic diffusion component so that the isotropic content of
the signal profile will not be reoriented; and

4. Incorporates an efficient non-negative L1-regularized least-squares solver,
which is guaranteed to converge to the global solution in a finite number of iter-
ative steps. This will allow us to obtain a sparse representation of the signal profile,
reflecting the fact that the DWI signals at each voxel are essentially generated by a
limited number of fiber populations. This is not explicitly considered in [1, 6].

While employing sparse representation for diffusion modeling has been well docu-
mented (see [4] for an excellent example), the application of such framework to DWI
reorientation has not been sufficiently studied. We will demonstrate that using such
sparse representation framework will allow one to naturally deal with all voxels, irre-
spective of whether they are isotropic or highly anisotropic.

2 Approach

The proposed algorithm entails first decomposing the DWI signal profile into a series
of fiber basis functions (FBFs) that are based on the Watson distribution function [10].
Given a local affine transformation, which can be computed from the local Jacobian of
a deformation field estimated by any deformable registration algorithms, the FBFs are
then reoriented independently and recomposed to obtain the final orientation-corrected
DWI profile.

2.1 Fiber Basis Functions (FBFs)

Fig. 1. The Watson distribution func-
tions for κ = −5,−1, 1, 5

The core of our algorithm lies in the effective
decomposition of the DWI signal profile into a
combination of FBFs. For better understanding
of the present work, we first consider the single
tensor model, with which ellipsoidal, planar and
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spherical directional functions can be reasonably approximated. A diffusion tensor D
can be decomposed as D = UKUT, where U is a rotation matrix and K is a diag-
onal matrix of eigenvalues {λ1, λ2, λ3}. The eigenvalues determine the shape of the
tensor. For principal diffusion along a particular direction μ (i.e., the ellipsoidal case,
λ1 � λ2 = λ3), one can approximate the exponent in the diffusion tensor model
S(ĝ) = S0 exp(−bĝTDĝ) as −bĝTDĝ ≈ −bλ1ĝ

T(μμT)ĝ = −bλ1(μ
Tĝ)2. Thus, we

have the approximation S(ĝ) ≈ S0 exp(−bλ1(μ
Tĝ)2). This equation takes a form that

is identical to the probability distribution function (PDF) of the bipolar Watson distri-
bution [10]:

f(ĝ|μ, κ) = C(κ) exp(κ(μTĝ)2). (1)

The Watson distribution function hence has tensor-like properties and is especially
suited for modeling the diffusion profile. The parameter μ is a unit vector called the
mean orientation and κ is a constant called the concentration parameter. C(κ) is a nor-
malizing constant to ensure that the density function integrates to unity over the unit
sphere. Here we note that the concentration parameter κ can take both positive and
negative values, giving very different shapes for the PDF. As shown in Fig. 1, negative
κ values result in donut-shaped function, which is typically the shape of the diffusion
profile of a fiber population with one dominant orientation. Based on this important
observation, the upcoming subsections will detail how the DWI signal profile can be
decomposed into a series of FBFs of different orientations for achieving the purpose of
orientation correction.

2.2 Decomposing the Diffusion-Attenuated Signal Profile

Denoting the diffusion signals measured in direction ĝi (i = 1, . . . ,M ) by S(ĝi), our
aim is to represent this spherical function based on a FBF series, which in our case is
realized by a combination of Watson distribution functions:

S(ĝi) = w0f0 +

N∑
j=1

wjf(ĝi|μj , κ) (2)

where κ < 0 and wj are the weights for the FBFs f(·). f0 = C(0) is a constant term
representing the isotropic diffusion component. The directions of the FBFs, μj , can
be set to distribute uniformly on a sphere. In matrix form, the above equation can be
rewritten as S = Fw, where

S =

⎡⎢⎢⎢⎣
S(ĝ1)
S(ĝ2)

...
S(ĝM )

⎤⎥⎥⎥⎦ , w =

⎡⎢⎢⎢⎣
w0

w1

...
wN

⎤⎥⎥⎥⎦ , F =

⎡⎢⎣f0 f(ĝ1|μ1, κ) . . . f(ĝ1|μN , κ)
...

...
. . .

...
f0 f(ĝM |μ1, κ) . . . f(ĝM |μN , κ)

⎤⎥⎦ . (3)

Assuming M < N + 1, we have a set of underdetermined linear equations, solution to
which involves solving a least L2-norm problem:

min
w
||w||2 s.t. Fw = S, (4)
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where || · ||p denotes the p-norm. However, to better harness the fact the DWI signals
at each voxel is due to the response from a limited number of fiber populations, we
compute the solution to (2) by means of a non-negative L1-regularized least-squares
problem:

min
w

{
||S− Fw||22 + β||w||1

}
s.t. w ≥ 0 (5)

where β ≥ 0 is a tuning parameter. The above problem can be solved using an active-
set-based algorithm that is modified from the feature-sign algorithm presented in [5] to
incorporate the non-negative constraint. The algorithm can be proven to always con-
verge to the global optimum in a finite number of iterations.

Sparse Representation and the Isotropic Term. Determining the weight for the iso-
tropic term by solving the least-norm problem (4) can be ambiguous. When the FBFs
are distributed dense enough uniformly on a sphere, giving equal weights to all FBFs
can result in an isotropic diffusion profile, hence defeating the purpose of including an
isotropic term in (2) in modeling the signal profile. The sparse representation problem
(5) helps avoid this pitfall by choosing the sparsest representation. In particular, in the
case of an isotropic profile only w0 will have a nonzero value.

2.3 Transformation and Recomposition

For signal profile correction in relation to spatial normalization, the directions of the
FBFs, μj , are reoriented independently based on the local affine transformation matrix

A, i.e., μ′
j =

Aμj

||Aμj ||
. Based on the reoriented FBFs, a new matrix in replacement of F

can be computed as

F′ =

⎡⎢⎣f0 f(ĝ1|μ′
1, κ) . . . f(ĝ1|μ′

N , κ)
...

...
. . .

...
f0 f(ĝM |μ′

1, κ) . . . f(ĝM |μ′
N , κ)

⎤⎥⎦ . (6)

The transformed DWI signal profile S′ is finally obtained as S′ = F′w. Note that the
isotropic component is not reoriented.

3 Experimental Results

We will first describe how the ODF and the orientations of the ODF peaks can be
computed for the purpose of evaluation. We will then describe our evaluation based on
simulated and in vivo data. For all experiments, we set β = M/N and κ = −κ′ =
−bλ1. For the in vivo data, λ1 was estimated from the corpus callosum. A total of 501
orientations generated by optimizing the covering algorithm (see [2]) were used as the
mean orientations of the FBFs. T = 1281 orientations [2] were used to locate the ODF
peaks.
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Fig. 2. Orientational discrepancy of the fiber orientations detected after reorientation with respect
to the ground truth orientations

Fig. 3. Estimated fiber orientations after profile reorientation for the proposed method (top) and
SH8 (bottom). Red: estimated orientations; Blue: ground truth orientations. The results from left
to right correspond to shearing factor α = 0.0, 0.1, . . . , 0.9.

3.1 Computing the ODF and the ODF Peaks

The ODF associated with a Watson distribution function can be written as [7]
O[f(ĝi|μj , κ)] ∝ f(ĝi|μj , κ

′) with κ′ > 0. We can hence write O [S(ĝi)] = w0f0 +∑N
j wjf(ĝi|μj , κ

′). A concentration κ′ = −κ/2 will give results similar to that de-
rived in [7], which is based on the method suggested by Tuch [9]. A larger value of κ′

will give results closer to the sharper fiber ODF [8]. For simplicity, we used κ′ = −κ
for all experiments. To extract the orientations of the ODF peaks, which represent the
local fiber orientations, the following steps were performed:

1. Sample the ODF with sufficient density at orientations ŵ1, . . . ŵT .
2. Remove orientations associated with ODF values less than the mean value.
3. Locate orientations with values greater than their neighboring orientations.
4. Compute the mean orientations of the orientations in the neighborhood of the ori-

entations with the maximal values. This can be done by computing the eigenvec-
tor corresponding to the largest eigenvalue of the dyadic tensor Ddyadic(ŵi) =

1
|N (ŵi)|

∑
v∈N (ŵi)

vvT for ŵi satisfying O [S(ŵi)] > O [S(v)], ∀v ∈ N (ŵi).
N (ŵi) denotes the neighborhood of ŵi. Return the mean orientations as the
output.
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Fig. 4. Preservation of isotropy after reorientation. A greater c.v. value indicates higher
anisotropy. Note that the values given by the proposed method is consistently zero for all cases;
therefore, they are not visible.

Fig. 5. Reorientation results for the proposed method (top) and SH8 (bottom) using shearing
factor α = 0.0, 0.1, . . . , 0.9. With the proposed method, the isotropy of the profile is faithfully
preserved.

3.2 Simulated Data

Assuming 2 crossing fiber populations, we used a mixture of diffusion tensors to gen-
erate a diffusion profile representing a fiber crossing for the evaluation of the proposed
method. Each fiber population is represented by a tensor with λ1 = 5 × 10−3mm2/s,
λ2 = λ3 = 5 × 10−4mm2/s and b = 1000s/mm2. The (120) gradient directions were
taken from the in vivo dataset. One tensor is oriented in the horizontal (x-axis) direction
and the other in the vertical (y-axis) direction.

Reorientation Accuracy. The diffusion profile was sheared in the horizontal direction
using the transformation matrix A = [1 α 0; 0 1 0; 0 0 1], where α is the shearing
factor, increment of which will result in a greater degree of shearing. We set α =
0.1, 0.2, . . . , 0.9. The ground-truth orientations were computed by reorienting directly
the orientations of the individual tensors, i.e., [1, 0, 0] and [0, 1, 0]. We evaluated the
accuracy of the reorientated diffusion profile by comparing fiber orientations detected
from it with respect to the ground truth. Assuming that U is the set of ground truth ori-
entations and V is the corresponding set of estimated orientations, the orientational dis-

crepency is defined as 1
2

[
1

|U|
∑

u∈Uminv∈V dθ(u,v) +
1

|V|
∑

v∈V minu∈U dθ(v,u)
]
,

where dθ(u,v) gives the angle difference between u and v, i.e., dθ(u,v) = cos−1(|u ·
v|). The absolute value is taken since diffusion is assumed to be antipodal symmetric.
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Fig. 6. Reorientation accuracy evaluated using
in vivo data

The results are shown quantitatively in
Fig. 2 and qualitatively in Fig. 3. The
results generated using Raffelt et al.’s
method [6], applied directly to the ODF
using spherical harmonics up to order 8
(SH8), 10 (SH10), and 12 (SH12), are also
included for comparison. Note that for the
proposed algorithm the ODFs were com-
puted based on the reoriented DWI sig-
nal profiles, whereas for the comparison
method reorientation was performed di-
rectly on the ODF. The results indicate that
the proposed method 1) yields lesser error
in the estimated orientations, and 2) affects less the diffusion profile in the horizontal
direction, which is to be expected, since shearing is applied in the horizontal direction.

Preservation of Isotropy. We also evaluated the proposed method on whether it can
successfully preserve the isotropy of an isotropic profile. For this purpose, we measured
the anisotropy of the reoriented ODFs using the coefficient of variation c.v. = std(O[S])

〈O[S]〉 ,
recalling that O[·] is the ODF operator previously defined. A larger c.v. value indicates
a greater degree of anisotropy.

We generated an isotropic diffusion profile with constant signal magnitude
exp(−bλ), where b = 1000s/mm2 and λ = 5 × 10−3mm2/s, in all directions. This
profile was then subject to the different degree of shearing identical to the experiment
using simulated data. The c.v. values of the reoriented ODFs were then measured as an
indication of whether the reorientation algorithm unnecessarily distorts the originally
isotropic profile. The results, shown in Fig. 4, demonstrate the importance of explicitly
modeling the isotropic diffusion component. Neglecting this will cause the originally
isotropic profile to become anisotropic after reorientation, which cannot be physically
true. Visual results for comparison are shown in Fig. 5, where it can be seen that the
distortion for the representative case of SH8 is quite apparent.

3.3 Real Data

Diffusion-weighted images were acquired for an adult subject using a Siemens 3T TIM
Trio MR Scanner with an EPI sequence. Diffusion gradients were applied in 120 non-
collinear directions with diffusion weighting b = 2000s/mm2. The imaging matrix was
128× 128 with a rectangular FOV of 256× 256mm2. 80 contiguous slices with a slice
thickness of 2mm covered the whole brain.

We extracted DWI signal profiles from the voxels located in the pons, since this lo-
cation of the brain was found to contain a significant amount of fiber crossings [3].
The profiles were randomly transformed using the matrix A = [1 α 0; 0 1 0; 0 0 1]R,
where R = RxRyRz is composed by matrices of rotations around the x, y, and
z axes. The local orientations prior to profile reorientation were estimated and trans-
formed using the corresponding matrix A to serve as ground truth for evaluation of the
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reorientation algorithms. The reorientation accuracy was measured by computing the
orientational discrepancy of the estimated orientations with respect to the ground truth.
The results, shown in Fig. 6, again confirms that the proposed method yields markedly
improved results.

4 Conclusion

We have presented in this paper a novel algorithm for the transformation of raw DWI
data directly in the Q-space. The algorithm takes into account of the isotropic diffu-
sion component and can therefore be applied to any voxels without requiring explicitly
masking out gray matter and cerebospinal fluid voxels. The capability of working di-
rectly with the diffusion signal profiles implies that the transformed outcome will allow
the plethora of diffusion models to be fitted after the fact. It is not difficult to envision
that future works involving registration, segmentation, and voxel-based analysis using
diffusion-weighted images will benefit fundamentally from the current work.

Acknowledgment. This work was supported in part by a UNC start-up fund and NIH
grants (EB006733, EB008374, EB009634, MH088520, and AG041721).
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Abstract. It’s well known that in diffusion MRI (dMRI), fibre cross-
ing is an important problem for most existing diffusion tensor imaging
(DTI) based tractography algorithms. To overcome these limitations,
High Angular Resolution Diffusion Imaging (HARDI) based tractogra-
phy has been proposed with a particular emphasis on the the Orientation
Distribution Function (ODF). In this paper, we advocate the use of the
Ensemble Average Propagator (EAP) instead of the ODF for tractogra-
phy in dMRI and propose an original and efficient EAP-based tractogra-
phy algorithm that outperforms the classical ODF-based tractography,
in particular, in the regions that contain complex fibre crossing configu-
rations. Various experimental results including synthetic, phantom and
real data illustrate the potential of the approach and clearly show that
our method is especially efficient to handle regions where fiber bundles
are crossing, and still well handle other fiber bundle configurations such
as U-shape and kissing fibers.

1 Introduction

At the current resolution of diffusion-weighted (DW) magnetic resonance imag-
ing (MRI), research groups agree that there are between one and two thirds
of imaging voxels in the human brain white matter that contain fibre crossing
bundles [8]. We know that in these locations, the diffusion is non-Gaussian and
the diffusion tensor (DT) [3] is limited due to its intrinsic Gaussian diffusion
assumption. Hence, DT-based tractography algorithms can follow false tracts
and produce unreliable tracking results. To overcome limitations of the DT,
new HARDI techniques have been proposed to estimate the diffusion orienta-
tion distribution function (ODF) [10,5,1,9] of water molecules. These HARDI
techniques were developed to deal with non-Gaussian diffusion processes and
because the maxima of the ODF are aligned with the underlying fibre popula-
tions, deterministic and probabilistic ODF-based tractography algorithms have
been proposed [5] that outperform classical DT-based tractography algorithms.
In this paper, we mainly advocate the use of the Ensemble Average Propagator
(EAP) instead of the ODF for tractography in dMRI and propose an original
and efficient streamline EAP-based tractography algorithm that outperforms
the classical ODF-based tractography, in particular in the regions that contain
complex fiber crossing congurations.
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2 Analytical Signal Estimation and Diffusion Features

Recent works [2,7,4] propose to analytically estimate the normalized diffusion
signal E(qu) as a linear combination of 3D functions Ψnlm,

E(qu) =
∑N

n=0

∑L
l=0

∑l
m=−l cnlmΨnlm(qu) , where q is the norm of the effective

gradient, u a unitary vector, and n,l are respectively the radial and angular order
of the associated 3D function.

In [2,7,4] the authors also propose analytical formulas to estimate some dif-
fusion features. In particular, they enable to compute the EAP P at any radius
R, i.e. P (Rr) with r a 3D unit vector. In our paper, we are especially inter-
ested in this feature. Moreover, they give analytical formulas to estimate the
normalized ODF Υ expressed as the integration of the EAP over a solid angle
[1,9], Υ (r) =

∫∞
0

P (R.r)R2dR. The ODF will be used, as comparison, in order
to perform the well-known ODF based streamline algorithm [5]

3 Motivations and Challenges

Here, we motivate the use of the EAP instead of the ODF in order to characterize
fiber orientations. Several challenges arise when dealing with the whole EAP
information that must be taken into consideration. We illustrate this section by
an example confronting ODF and EAP based estimation of the fiber orientations.

The ODF is known to well represent the angular structure of the diffusion
phenomenon. However, it has some limitations. First, the radial integration over
a solid angle is done all over the EAP, and thus is likely to catch unwanted
artifact that lead to false orientation detection. The next problem arises when
fiber bundles with large differences in anisotropy are crossing. We illustrate this
with a synthetic data example. We consider two crossing fiber bundles, a high
anisotropy fiber bundle (the curved one) and a low anisotropy fiber bundle (the
diagonal one). We estimate the ODF Υ (r) and the EAP P (Rr) with radii R =
5, 10, 15, 18μm via the SHORE method [7]. Then, we extract the maxima of
each spherical function using a discrete approach. These maxima are represented
by the red line. Because the diffusion in direction of the curved bundle highly
predominates, we don’t manage to resolve this crossing region using the ODF Υ
(see Fig. 1.a ). However, we see that the EAPs manage to catch some angular
information where the ODFs fail. In particular, the whole crossing structure is
caught at a radius R = 18μm (see Fig. 1.e ).

The EAP has also some disadvantages. Even, if it can catch more complex
structure than the ODF, we need to know where the significant information is
localized. Considering the EAP is near isotropic for low radii, and becomes more
anisotropic for higher radii, it would be natural to consider only high EAP radii.
However, this is not done for several reasons : 1) a physical reason and 2) a
technical reason. First,the trajectory of water molecules can be described by a
random walk, i.e. each molecule follows a random path in a 3D space. However,
when looking at a set of molecules, one can see that, in a free medium, the
averaged displacement follows a Gaussian distribution. It means that most of the
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Fig. 1. ODF Υ (r) (a) and the EAP P (Rr) with radii R = 5, 10, 15, 18μm (respectively
b, c, d, e) estimated via the SHORE method in a synthetic crossing configuration, and
extracted maximas. The curved fiber bundle has a high anisotropy and the diagonal
bundle a low anisotropy.

molecules remain confined around their initial positions. At the scale of a voxel,
the EAP represents this averaged displacement of molecules and because of its
Gaussian particular nature, the EAP values decrease while moving away from its
center until falling to zero and, then, the EAP return to an isotropic state. Beside
physical reasons, the maximum b-value authorized by the acquisition protocol,
makes the signal band limited i.e. the high frequency component are discarded.
It results in a smoothing of the EAP and a loss of details. This phenomenon
emphasizes the return to an isotropic state.

Because of these two reasons, we know the significant angular information is
localized away from the EAP center but not too far because of the signal de-
crease. Beside the difficulty to find an optimal radius, we know as well that the
water molecule diffusion is likely to vary between different voxel, and the angular
information we want to catch is not always localized at the same radius. There-
fore, we cannot consider the EAP at only one radius for the whole tractography.
Hence, the challenge is to find the optimal radius R at each voxel, on which the
EAP P (Rr) optimally represents the orientation of the current fiber.

4 EAP Based Tractography

The main problem in recovering the fiber bundle orientations, comes from the
fact that we don’t know at which EAP radius R is localized the information.
The challenge, as explained in section 3 is to find the optimal EAP radius R, on
which we are able to catch the orientation of the current fiber.

We could proceed as follow : Starting from an initial radius, we authorize to
switch to the radius R where the local maxima of P (Rr) has the largest similarity
with the current fiber direction. However, if we force the fiber to find a maxima
direction similar to the current fiber direction, we would take the risk to always
follow the same direction (not suitable for curved fibers). This is especially true
if false local maxima are detected due to noise. Our idea is to encourage the
switching between close radii by inserting a penalty function, which penalizes
the radii far from the current radius. It enables to obtain consistent fibers, which
are more robust to noise. Then, we define the penalty function as wRc(R), which
measure the amount of penalty between the current radius Rc and the radius
R. We propose to use a exponential penalty function, i.e. wRc(R) = exp(−β ×
|Rc−R|

Rc
) where β is a scale parameter.
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Before continuing with the complete tracking algorithm, we need to clarify the
fiber orientation detection step. Considering that we have an estimation of the
EAP P , we define a procedure ”ExtractAngularInformation”, whose the input
is vc ∈ R3 (the current fiber direction), Rc ∈ R (the current EAP radius), and
β ∈ R (the penalty scale parameter), and returns the next direction vn ∈ R3 and
the corresponding EAP radius Rn ∈ R. We also need a function Extractmax(P),
which return the list lR of directions lR(j) along each maxima of P (Rr). The
procedure is described in Alg. 1.

Algorithm 1. ExtractAngularInformation

Require: vc ∈ R
3, Rc ∈ R, β ∈ R, the EAP P

1. Compute wRc (R) = exp(−β × |Rc−R|
Rc

) for R ∈ R

2. Compute lR =extractMax(P)
3. Set R∗, j∗ = argmaxR,j 〈lR(j) · vc〉 × wRc (R)
4. Rn = R∗, vn = lR∗(j∗)
return Rn, vn

Now we have defined a way to detect fiber orientations, we describe our deter-
ministic tractography algorithm based on the EAP. For the purpose we extend
the streamline method based on multiple ODF maxima [5]. At first, we de-
note p(s) as the curve parameterized by its arc-length. This curve can be com-
puted as a 3D path adapting its tangent orientation locally according to vector
field v. Hence, for a given starting point p0, we solve p(t) = p0 +

∫ t

0
v(p(s))ds.

The integration is typically performed numerically with Euler or Runge-Kutta
schemes of order 2 or 4. In the Euler case, we have the discrete evolution equation
pn+1 = pn + v(pn)Δs, where Δs is a small enough step size to obtain subvoxel
precision. A continuous linear, cubic, spline interpolation of the vector field can
be done at each step for the subvoxel points. For our algorithm, we need a start-
ing seed p0 ∈ R3, a starting radius R0, a curvature threshold tθ ∈ [0, 90◦].The
algorithm is described in Alg. 2. For the rest of the paper, ODF-tract refers to
the ODF based streamline tractography [5], and EAP-tract refers to our EAP
based tractography algorithm (Alg. 2).

Algorithm 2. EAP based fibers tracking algorithm

Require: p0 ∈ R
3, R0 ∈ R, tfa ∈ [0, 1], tθ ∈ [0, 90◦]

1. Estimate field of analytical EAP estimation P
2. vp0 = argmaxu Pp0 (R0u)
3. Set i = 0, Ri = R0 and do

pi+1 = pi + Δvpi
Update the fiber f according to pi

Ri+1,vpi+1
= ExtractAngularInformation(vpi

, Ppi
, Ri, β)

if

〈
vpi

·vpi+1

〉

‖vpi
‖‖vpi+1

‖ then stop;

i = i + 1
return f
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5 Experiments

Synthetic data : We start by validating our method on synthetic data. For this
purpose, we consider the EAP and ODF of Fig. 1. In this example, two bundles,
a high anisotropy fiber bundle (the curved bundle) and a low anisotropy fiber
bundle (the diagonal bundle) are crossing. Let us remind that, the EAP and
ODF were estimated via the SHORE method. We first compare the EAP-tract
and ODF-tract methods in case of noiseless measurements (see fig. 2 a,b). In
both algorithms, we set the step Δs = 0.5 and the curvature threshold tθ = 75◦.
The scale parameter of the penalty function in Alg. 1 is set to β = 0.5. In Fig. 2.a,
we see that the diagonal fibers from the ODF-tract method fail to pass through
the crossing region because the diffusion constrained by the curved fiber pre-
dominates in this area. This is not surprising while looking at Fig. 1.a, in which
the ODF maxima are not sufficiently large to detect the diagonal fibers in the
crossing area. However, if we look at Fig. 1.b,c,d,e, the maxima extracted from
the EAP at the different radii, catch the crossing structure. Then, exploiting the
angular information at any radius, our EAP-tract method efficiently resolves the
crossing region where the ODF-tract fails. Only, few fibers do not follow the right
path, whereas all the fibers from ODF-tract follow the wrong path. We see in the
next experimental section that our method enables, as well, to recover fibers from
other configurations such as U-shape and kissing. We also present EAP-tract re-
sults measurements contaminated with Rician noise with SNR=30,20,10 to the
measurements (respectively Fig. 2.c,d,e). Nearly all the fibers pass through the
crossing area, which shows the robustness of the EAP-tract to noise. On this ex-
ample, we also want to show the robustness to the choice of the initial radius R0

used to start the EAP tract algorithm. Hence, we launch the EAP-tract method
with five different initial radii, i.e. R0 = 5, 10, 15, 20, 25μm. Then we plot in
Fig. 4-left the evolution of radii each track follows during the tractography(Ri

in Alg. 2). In Fig. 4-left we perceive the crossing region, when all the curves
converge, in the notified area (red circle). The radii from all the track converge
approximately to the range [16 − 18μm]. This is not surprising, if we look at
figure 1.b,c,d,e, where the whole angular structure appears at radius 18μm. Via
this example, we see that our EAP-tract method is robust to the choice of the
initial radius.

Fig. 2. Tracking on a synthetic crossing region. a,b) are respectively the ODF-tract
and EAP-tract in case of noiseless measurements. c,d,e) EAP-tract with measurements
contaminated with rician noise (respectively with a SNR=30,20,10).
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ODF EAP
F.P. T.P. F.P. T.P.

seed 1 4 0 3 17
seed 8 0 21 0 12
seed 7 17 2 2 13
seed 11 5 1 0 4
seed 14 0 22 0 25
seed 15 11 5 5 12

Fig. 3. Left : Convergence of the radius in the EAP-tract method on synthetic data
tractography. Right : Quantitative results associated to the phantom tracking.

Phantom data : We also validate our method on the phantom data used in the
contest, the ”fiber cup” [6] in MICCAI 2009. The ground truth is available and
enables to correctly compare tractography algorithms. This phantom contains
realistic fibers configurations such as crossing, kissing and bending.

Data pre-processing was allowed for the contest. However, in our experiments,
we consider the raw data set. We perform our validation as following : 1) We
choose a starting voxel v within the seed proposed for the contest. 2) We launch
our algorithm onNs points taken at random in the voxel v. This step results inNs

fiber tracks. 3) Within these Ns fibers, we keep only the fibers with a minimum
length �min, and discard the fibers that do not stop outside the phantom. 4)
Within the remaining fibers, we count : a) the number of fibers following the
ground truth, i.e. the true positive (TP); and b) the number of fibers following
another track, i.e. the false positive (FP). We launch the validation with Ns = 30,
lmin = 20. We use the same algorithm parameters than in sec. 5. The EAP field is
estimated via SHORE method. Fig. 4 shows the fiber tracks for 6 configurations
corresponding to several seeds given in the fiber cup: A kissing (Purple fibers,
seed 8), a U-shape bundle with high curvature (Blue light fibers, seed 14), and
four different crossing configurations (Blue curve, seed 1; green curve, seed 7;
yellow curve, seed 11; red curve, seed 15). We also write in Tab. 4-right, the
number of true and false positive (respectively TP and FP) for each configuration
of the two compared methods (EAP-tract and ODF-tract).

Fig. 4. Phantom of the ”Fiber cup”. a) ODF-tract fibers, b) EAP-tract fibers. On the
left we show the ground truth fiber bundles and the spatial position of the seeds.
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First, we note that the EAP-tract fibers are much in-line with the ground truth
than the ODF-tract fibers. The ODF-tract method has difficulties to go through
the crossing region whereas the EAP-tract method well resolve these crossing
regions. These qualitative remarks are confirmed by quantitative results, while
considering the Tab. 4-right. All the fibers involved in crossing bundles (seed
1,7,11,15) have a large number of FP compared to the number of TP using the
ODF tract method, whereas most of the fibers from the EAP-tract method are
TP. In particular, 90% of the ODF-tract fibers from seed 7 do not follow the
right path, whereas only 10% of the EAP-tract fibers from seed 7 do not follow
the right path. This improvement of the EAP tract over the ODF tract is huge
considering the crossing region. In our study we also consider an U-shape (seed
11, light blue curve) and a kissing configuration (seed 8, purple curve). There
is no large difference between the two methods for the U-shape configuration.
Both efficiently handle high curvature fibers. Considering the kissing case (seed
8, purple curve), there is a small advantage of the ODF-tract method. However,
we do not see any FP in both method, which means they can handle kissing
fiber configurations efficiently.

To conclude this section, we see that the EAP-tract method efficiently re-
solve crossing fibers where the ODF-tract fails. Considering other fiber bundle
configurations (U-shape and kissing), both methods are equivalent. Hence the
advantage of the EAP-tract method lies in its great efficiency to pass trough
crossing regions.

Fig. 5. Tractography from the corticospinal fiber bundle (blue), parts of the corpus
callosum fiber bundles (red), and the superior longitudinal fasciculus (green). The
figure on the right is a zoom on the crossing region between the three bundles.

Real data : We present results on a in vivo human cerebral dataset in Fig. 5.
This figure shows the corticospinal fiber bundle (CST, in blue), parts of the cor-
pus callosum fiber bundles (CC, in red), and the superior longitudinal fasciculus
(green, SLF). These bundles agree with anatomical atlases of the white matter
and our EAP-tract method allows a complete distinction between these three
white matter fiber bundles.The zoom (Fig. 5 on the right) shows the crossing
region between the CST, the CC and the SLF. Again, the EAP-tract method
well resolve this crossing area.
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6 Conclusions

In this paper, we proposed and motivated the use of the Ensemble Average
Propagator for tractography in dMRI. To the best of our knowledge, it is the
first attempt to use the directional information of the EAP at different radii.
We illustrated the great potential of the EAP-tract method on synthetic, phan-
tom and real data. These experiments showed that our method is especially
efficient to resolve regions where fiber bundles are crossing, and still well handle
other fiber bundle configurations such as U-shape and kissing. We also presented
numerous examples showing the advantage of the EAP-tract method over the
common ODF-tract method. Furthermore, by tracking from seeds in the CC,
CST, and SLF, we were able to correctly trace through regions where all three
fiber bundles cross.
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Abstract. Segmentation of lungs with large tumors is a challenging
and time-consuming task, especially for 4D CT data sets used in radia-
tion therapy. Existing lung segmentation methods are ineffective in these
cases, because they are either not able to deal with large tumors and/or
process every 3D image independently neglecting temporal information.
In this paper, we present a approach for model-based 4D segmentation of
lungs with large tumors in 4D CT data sets. In our approach, a 4D statis-
tical shape model that accounts for inter- and intra-patient variability is
fitted to the 4D image sequence, and the segmentation result is refined by
a 4D graph-based optimal surface finding. The approach is evaluated us-
ing 10 4D CT data sets of lung tumor patients. The segmentation results
are compared with a standard intensity-based approach and a 3D version
of the presented model-based segmentation method. The intensity-based
approach shows a better performance for normal lungs, however, fails in
presence of large lung tumors. Although overall performance of 3D and
4D model-based segmentation is similar, the results indicate improved
temporal coherence and improved robustness with respect to the seg-
mentation parameters for the 4D model-based segmentation.

1 Introduction

Breathing-induced tumor motion represents a major challenge in radiation ther-
apy of lung cancer. Patient-specific information about the respiratory dynamics,
estimated by using spatio-temporal 4D CT data sets and non-linear image reg-
istration techniques, can therefore help to optimize the treatment planning and
the delivery process [1]. To confine motion estimation and subsequent analysis
steps (e.g., tumor detection and tracking) to the lungs, segmentations of the lung
tissue in all 3D images of a 4D sequence are needed.

Many approaches dealing with the automatic segmentation of healthy lungs
in 3D CT images have been proposed (e.g., [2,3]). These methods mainly take
advantage of the large density difference between the air-filled lungs and sur-
rounding tissue and therefore frequently fail to include areas of high density
abnormalities (e.g., tumors) into the segmentation. As a consequence, several
groups have suggested algorithms specifically designed to handle CT images of
pathological lungs by incorporating prior knowledge to guide the segmentation
process. For example, Sluimer et al. [4] and van Rikxoort et al. [5] employed
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atlas-based techniques for the segmentation of lungs with arbitrary pathologic
abnormalities. They were able to significantly increase segmentation accuracy,
but the required non-linear atlas-to-image registration process was very time con-
suming. Sun et al. presented a time-efficient method especially aimed to segment
lungs with large tumors using a robust active shape model [6]. Their results are
very promising, but their approach, like other approaches, can only handle single
3D images. In the case of 4D data sets, methods processing all individual 3D im-
ages separately ignore the temporal information included in spatio-temporal 4D
data: We hypothesize that including temporal information improves robustness
of the segmentation process and temporal consistency of the results.

The aim of this work is the temporally consistent segmentation of lungs with
large tumors in 4D CT data sets. Our method is based on the work of Perperidis
et al. [7], who used a 4D statistical shape model (4D-SSM) for 4D cardiac image
segmentation. This 4D-SSM accounts for both changes of the organ shape caused
by inter-patient variability and shape changes due to cardiac (or in our case,
respiratory) dynamics (intra-patient variability). We present a novel 4D fitting
algorithm for this 4D-SSM and refine the segmentation results by using 4D
graph-based optimal surface finding. In an evaluation, the results of our 4D
approach are compared to segmentations obtained by using standard 3D-SSMs,
as well as results of a standard intensity-based lung segmentation algorithm.

2 Method

First, we generate a 4D-SSM for each lung based on Np segmented 4D CT im-
age sequences of different patients (Section 2.1). Each image sequence is assumed
to consist of Nj 3D image volumes Ip,j : Ω → R (Ω ⊂ R3), reconstructed at
corresponding phases j of the breathing cycle, e.g. end-expiration (EE), mid-
inspiration (MI), end-inspiration (EI), and mid-expiration (ME). For segmen-
tation, the generated model is simultaneously adapted to all 3D images of an
unseen 4D CT data set (Section 2.2). Afterwards, all segmentations are refined
using a graph-based post-processing method (Section 2.3).

2.1 Building a 4D Statistical Shape Model

The first step in building a statistical shape model (SSM) based on a training
set of N = NpNj complete lung shapes obtained from segmented 4D CT image
sequences is to establish correspondence between all shapes. This is achieved by
propagating M pseudo-landmarks from an automatically landmarked atlas to
all other shapes of the training set. After the generation and landmarking (by
means of a surface triangulation and curvature-based mesh simplification) of
an average lung shape atlas, landmark propagation is done by using non-linear
transformations obtained from atlas-patient and intra-patient registrations of
the images performed with a non-linear diffeomorphic registration method [8].

Let {qp,j ∈ R3M |p = 1, . . . , Np; j = 1, . . . , Nj} denote the set of N aligned
training shapes. Each shape vector qp,j = [pT

p,j,1, . . . ,p
T
p,j,M ]T consists of a



A 4D Statistical Shape Model for Automated Segmentation of Lungs 349

concatenation of M landmarks pp,j,k ∈ Ω. Principal component analysis (PCA)
performed on this shape vectors yields a common 3D-SSM

S3D(b, ϕ) = ϕ(q + Pb) ,with q =
1

N

Np∑
p=1

Nj∑
j=1

qp,j , (1)

where P denotes a matrix whose columns are orthonormal eigenvectors ei of

covariance matrix C = 1/N
∑Np

p=1

∑Nj

j=1(qp,j − q)(qp,j − q)T with eigenvalues
λi < λi+1 [9]. The model is parameterized by shape parameter vector b and
similarity transformation ϕ. As a consequence of using all shapes of all patients
to estimate C, the resulting eigenmodes explain both inter- and intra-patient
variability. This leads to Nj different and independent sets of model parameters
{b, ϕ} to describe a lung’s shape during a breathing cycle, making the model
unsuitable for 4D segmentation. We therefore propose the application of a so-
called 4D-SSM based on the work of Perperidis et al. [7] and defined by

S4D(binter , b
j
intra, ϕ) = ϕ(q + Pinterbinter + Pintrab

j
intra) , (2)

which describes a patient’s lung shape as a combination of a fixed patient-specific
part (given by binter and ϕ) and a varying part depending on the breathing
phase j (weighted by bjintra). Pinter and Pintra denote matrices of orthonormal
eigenvectors defining subspaces of R3M accounting for inter- and intra-patient
variability, respectively. Separate PCAs performed on the covariance matrices
Cinter and Cintra yield the eigenvectors defining both subspaces. Cinter explains
the variability across the different patients and is given by

Cinter =
1

Np

Np∑
p=1

(qp − q)(qp − q)T ,with qp =
1

Nj

Nj∑
j=1

qp,j . (3)

Accordingly, Cintra describes the shape differences across the respiratory cycle
as deviations from the mean shape of each patient p:

Cintra =
1

NpNj

Np∑
p=1

Nj∑
j=1

(qp,j − qp)(qp,j − qp)
T . (4)

2.2 Fitting the Model to an Image Sequence

The simultaneous lung segmentation in all Nj 3D images Ij , j ∈ {1 . . . , Nj},
of a 4D CT data set using a 4D-SSM (eq. 2) consists of finding parameters

{b̃inter, b̃1intra, . . . , b̃
Nj

intra, ϕ̃}, such that r̃j = S4D(b̃inter , b̃
j
intra, ϕ) is a good ap-

proximation of lung shape rj ∈ R3M implicitly encoded in Ij . When using the
common sum of squared distances between corresponding model landmarks and
image points as a measure, this can be formulated as the optimization problem

Nj∑
j=1

‖rj − S4D(binter , b
j
intra, ϕ)‖2 −→ min , (5)
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which we divide into

(b̃inter , ϕ̃) = argmin
binter ,ϕ

‖ 1

Nj

Nj∑
j=1

rj − S4D(binter , 0, ϕ)‖2 and (6)

(b̃jintra) = argmin
bj
intra

‖rj − S4D(b̃inter , b
j
intra, ϕ̃)‖2 . (7)

Eq. (6) is motivated by the assumption that patient-specific shape properties
independent of the breathing motion can be described by the patient’s mean
shape (eq. (3)). In contrast to [7], both problems are minimized by an alternating
iterative optimization scheme based on the active shape model (ASM) algorithm
[9] without a heuristic pre-initialization of the intra-patient parameters bjintra:

1. Initial placing of mean shape S4D(0, 0, ϕ). The initial ϕ is determined by a
heuristic based on the detected bronchial tree [10].

2. For all j ∈ {1 . . . , Nj}: Displace each landmark pj,k of model instance

S4D(b̃inter , b̃
j
intra, ϕ̃) to better match the corresponding lung surface in Ij .

The displaced landmarks p̂j,k form a candidate shape vector rj ∈ R3M .

3. The mean candidate shape vector r = 1/Nj

∑Nj

j=1 rj is used to determine

ϕ̃ and b̃inter (see eq. (6)) by the minimization of ‖r − ϕ(q)‖2, and b̃inter =
P T

inter(ϕ̃
−1(r)− q).

4. Repeat step 2. Each new rj is used to determine a corresponding breathing-

related b̃jintra. Solving (7) yields b̃jintra = P T
intra(ϕ̃

−1(rj)−q−Pinterb̃inter).

5. Steps 2-4 are repeated until convergence.

A displaced landmark’s position p̂j,k = pj,k+nj,kδsj,k is determined by choosing
the optimal position

sj,k = argmin
l=−L,...,+L

Fj,k(pj,k + nj,kδl) (8)

on a sampled 1D intensity profile of 2L+1 points at intervals of δ along the unit
surface normal nj,k. Each sampling point is evaluated by

Fj,k(x) =

{
1 if Ij(x) > −100HU
1− max{0,nT

j,k∇Ij(x)}
gmax,j

otherwise
(9)

where gmax,j is the maximum gradient magnitude in Ij . The value Fj,k(x) is
inversely related to the likelihood that x is a point on the lung’s surface.

Success of the model fitting largely depends on the selected displaced land-
marks. If many landmarks are detected at positions representing transitions from
healthy lung parenchyma to tumor tissue, the outlined least squares approach
will fail to recover the true lung shape. We try to avoid this by assuming an
initial position close to the lung shape, and therefore use only short profiles.
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2.3 Optimal Surface Finding

The final part of our segmentation approach aims at integrating patient-specific
shape variations, not described by 4D-SSMs built from usually small training
sets. Therefore, the Nj shapes {r̃j} resulting from the model fitting step are de-
formed to better match the image data, while maintaining the established spatial
and temporal consistency (optimal surface finding). Let R̃j = (Vj , Ej) denote
the triangulated surface mesh of shape vector r̃j with vertex set Vj and edge set
Ej . The deformation of all surfaces is, as in Sec. 2.2, achieved by displacing every
vertex pj,k ∈ Vj along its surface normal to a position p̂j,k = pj,k +nj,kδsj,k. In
contrast to the model fitting step, where all displacements {sj,k ∈ [−L.. + L]}
are detected independently, globally optimal solutions are needed to preserve
the consistencies mentioned above. The task of determining spatially consistent
refined segmentations can be defined as the optimization problem

Nj∑
j=1

M∑
k=1

Fj,k(pj,k + nj,kδsj,k) +

Nj∑
j=1

∑
[pj,k,pj,m]∈Ej

a|sj,k − sj,m|
{sj,k}−→ min (10)

subject to ∀j ∈ {1, . . . , Nj} ∀[pj,k,pj,m] ∈ Ej : |sj,k − sj,m| ≤ Δ3D

where Δ3D is the parameter of a hard smoothness constraint specifying how
many steps adjacent vertices are allowed to shift against each other on their
sampled profiles, while constant a penalizes every shift (soft smoothness con-
straint). Both constraints aim to prevent large deviations from the prior shapes
{r̃j}. A globally optimal solution of eq. (10) can be obtained by computing
the minimum-closed-set of a directed arc-weighted graph build from all sam-
pled profiles using a max-flow/min-cut algorithm [11]. For our 4D segmentation
approach, we also try to maintain the established temporal consistency by in-
corporating an additional hard smoothness constraint into eq. (10), where Δ4D

limits the shifting of temporally corresponding vertices:

∀m ∈ {1, . . . , Nj} ∀n ∈ {m, . . . , Nj} ∀k ∈ {1, . . . ,M} : |sm,k − sn,k| ≤ Δ4D .

3 Experiments and Results

12 4D CT data sets of healthy lungs with Nj = 10 phases are used to build 3D-
SSMs (eq. (1)) and 4D-SSMs (eq. (2)) for left and right lung separately (N = 120
shapes withM ≈ 2000 landmarks). The most significant inter -patient eigenmode
of the 4D-SSM describes lung shapes from high and thin to low and broad, while
the most significant intra-patient mode explains most of the breathing-related
volume changes.

10 4D CT data sets of lung cancer patients (each containing 7-14 3D images)
are used for the evaluation. All images had a size of 512 × 512 × 126-467 voxel
with a voxel size between 0.94×0.94×1.5mm3 and 0.97×0.97×3.0mm3. Out of
the 20 different lungs, 8 were without abnormalities (normal lungs), 7 contained
small tumors < 13 cm3, and 5 contained large tumors > 13 cm3 adhering to non-
lung structures. Manual segmentations were available for the breathing phases



352 M. Wilms, J. Ehrhardt, and H. Handels

Table 1. Performance comparison between 4D-Seg, 3D-Seg, standard intensity-based
(Conv), and combined (Comb) segmentation approaches. Results averaged over all pro-
cessed lungs of each group (normal & small tumors, large tumors), given as μ±σ. Error
metrics: Jaccard coefficient J(A,B), symmetric mean surface distance D(A,B), and
the symmetric Hausdorff distance H(A,B). A and B are the automatically estimated
lung region and the corresponding manual segmentation serving as ground truth.

Measures/Methods 4D-Seg 3D-Seg Conv Comb

Normal lungs/Lungs with small tumors < 13 cm3

J(A,B) 0.92± 0.03 0.92 ± 0.03 0.95 ± 0.02 0.95± 0.02

D(A,B) [mm] 1.32± 0.48 1.30 ± 0.51 0.91 ± 0.52 0.85± 0.31
H(A,B) [mm] 25.06 ± 9.53 24.89 ± 8.67 22.68 ± 8.98 22.98 ± 8.86

Lungs with large tumors > 13 cm3

J(A,B) 0.92± 0.03 0.92 ± 0.03 0.89 ± 0.04 0.95± 0.02

D(A,B) [mm] 1.45± 0.49 1.46 ± 0.52 2.12 ± 1.26 0.91± 0.30
H(A,B) [mm] 21.57 ± 6.02 21.69 ± 5.93 36.65 ± 11.03 19.64 ± 3.63

(a) 4D-Seg (b) 3D-Seg (c) Conv (d) Comb

Fig. 1. Segmentation results for a right lung with a tumor adhering to the chest wall.
Results generated with different segmentation methods. Depicted is an axial slice of one
breathing phase (EI) of a 4D CT image sequence. Results of the automatic methods
are displayed in red, the manually obtained segmentation in green.

(a) EE (b) MI (c) EI (d) ME

Fig. 2. Left lung segmentation results for 4 different respiratory phases of a 4D CT im-
age sequence obtained by employing 3D-Seg (white contour) and 4D-Seg (red contour)
method. Results of 3D-Seg are partially influenced by the gas-filled bowel resulting in
temporally inconsistent segmentations. The errors in (c) and (d) are mainly introduced
in the 3D-SSM fitting stage. Results of 4D-Seg were computed using all 10 phases of
the 4D data set.
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of EE, MI, EI, and ME. In total, 80 segmentations (normal and small tumors:
60, large tumors: 20) were used as ground truth for the evaluation. The accuracy
of the proposed model-based 4D segmentation approach (4D-Seg) was compared
to three other approaches: 1) standard intensity-based lung segmentation similar
to [3] (Conv), 2) standard 3D-SSMs (see eq. (1)) and ASM fitting with spatially
consistent optimal surface finding (3D-Seg), and 3) combined results of 4D and
standard segmentation (Comb=4D-Seg ∪ Conv). Three error metrics were uti-
lized for the comparison: Jaccard coefficient, symmetric mean surface distance,
and the symmetric Hausdorff distance. The parameters of method 4D-Seg were
fixed for all test cases (L = 20, δ = 1.0mm, Δ3D = Δ4D = 10, a = 0.01). For the
3D-Seg method, we were unable to determine common parameter values suitable
for all test cases (L = 15-30, δ = 1.0mm, Δ3D = 10, a = 0.01-0.015).

Table 1 summarizes the quantitative results of our evaluation grouped into
two categories (normal and small tumors, large tumors). It can be observed
that standard segmentation (Conv) leads to better results for normal lungs and
lungs with small tumors than the model-based approaches 4D-Seg and 3D-Seg.
As shown in Fig. 1, in the case of lungs with large tumors adhering to non-
lung structures, Conv is outperformed by 4D-Seg and 3D-Seg, which give nearly
equivalent overall accuracy. The small differences between them reported in Tab.
1 are not statistically significant (paired t-test, p < 0.05). However, despite that,
Fig. 2 depicts an exemplary case where only the 3D approach is partially influ-
enced by the gas-filled bowel resulting in temporally inconsistent segmentations.
Using 3D-Seg with a single set of parameters for all patients (L = 30, a = 0.01)
leads to two additional cases with temporal inconsistencies.

Due to the globally chosen smoothness constraints and the small training set
used for model building, both model-based approaches are prone to cause over-
and under-segmentation in higly curved areas of the lungs. Therefore, combining
the results of 4D and standard segmentation (Comb) yields the best accuracy for
lungs with large tumors, because under-segmentation is considerably reduced.

4 Conclusion

In this paper, we present an automatic model-based method to simultaneously
segment the lungs in all 3D images of 4D CT data sets of lung cancer patients.
This method combines the fitting of a 4D-SSM with a 4D graph-based refinement
step, taking into account spatio-temporal consistency. An intrinsic characteristic
of the 4D-SSM is that differences within a 4D sequence are restricted to intra-
patient variations and therefore temporal consistency is achieved without explicit
temporal regularization. In contrast to [7], our novel 4D model fitting algorithm
works without a heuristic pre-initilization of the intra-patient variation parame-
ters. Thus, no assumptions about number and ordering of the breathing phases to
be segmented are needed. Furthermore, the 4D-SSM can also be used to segment
breathing phases not included in the model’s training data set. Experimental re-
sults demonstrate the potential of the proposed 4D model-based approach, which
performs better than standard intensity-based segmentation in the presence of
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large tumors adhering to non-lung structures. Under-segmentations in highly
curved areas of the lungs can be reduced by combining 4D and conventional
segmentation algorithms. While the mean overall accuracy of 3D and 4D model-
based segmentation is nearly identical, improvements in temporal coherence and
robustness with respect to the segmentation parameters can be achieved by us-
ing the 4D approach. Summing up, there is no reason to use a 3D approach for
lung segmentation in 4D data sets in the presence of large tumors. This is also
supported by the nearly identical running times of both model-based methods
(≈40 min. for a 4D data set with 14 phases). In future work, the training and test
data sets will be significantly enlarged, and we intend to improve the robustness
of the least-squares model fitting by adding an outlier detection step.
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Abstract. While Markov random fields are very popular segmentation
models in medical image processing, the associated maximum a posteriori
(MAP) estimation problem is usually solved using iterative methods that
are prone to local maxima. We show that a variant of the random walker
algorithm can be seen as a relaxation method for the MAP problem
under the Potts model. The key advantage of this technique is that it
boils down to a sparse linear system with a uniquely defined explicit
solution. Our experiments further demonstrate that the resulting MAP
approximation can be used to improve the classical mean-field algorithm
in terms of MAP estimation quality.

1 Introduction

Many image segmentation problems can be conveniently formulated using Mar-
kov random fields (MRF), however the associated task of computing the maxi-
mum a posteriori (MAP) segmentation is combinatorial NP-hard. Early MRF-
MAP tracking methods include the ICM algorithm [1] known to be fast but
highly prone to local maxima, and simulated annealing [2] which may be hope-
lessly slow in practice. Over the past two decades, several approaches have been
proposed to work around these limitations.

One such approach, which stems from classical optimization theory, is relax-
ation. The basic idea is to substitute the combinatorial optimization problem
with a continuous one which, in image segmentation context, involves extending
the MAP search to the space of probabilistic assignments from voxels to classes.
An approximation to the MAP is found by binarizing the optimal such assign-
ment. Relaxation for MRF-MAP has been implemented using convex program-
ing [3,4,5], which guarantees a unique solution but tends to be computationally
expensive as it relies on constrained optimization.

Meanwhile, message-passing algorithms have emerged from the machine learn-
ing community for inference on probabilistic graphical models [6]. In particu-
lar, the variational expectation-maximization (VEM) algorithm, also known as
mean-field algorithm, has long been used in brain imaging, though sometimes
through ad-hoc variants [7,8,9,10]. Other message-passing schemes used in com-
puter vision include belief propagation and tree-reweighted message-passing [11].
Message-passing can be viewed as a special kind of relaxation for MRF-MAP,
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which is rather fast as it does do not require handling explicit inequality con-
straints, but is initialization-dependent since the underlying objective function
is typically non-convex.

Another research trend has been to apply methods from deterministic graph
theory to image segmentation. Nowadays, graph cuts [12] are widely regarded as
the most robust methods for MRF-MAP [11]. In the binary segmentation case
where MRF-MAP amounts to a max-flow min-cut problem, they are guaranteed
to find the global maximum if unique. However, conventional graph cut meth-
ods such as the expansion and swap algorithms iterate over labels or pairs of
labels when more than two labels are involved, and thus become prone to local
convergence in addition to being slower.

A method that closely relates with graph cuts is the random walker (RW)
algorithm of Grady [13,14], which was previously exposed in a different and less
general form by Marroquin et al [15]. In this work, we show how to re-tune RW
to yield a powerful MRF-MAP relaxation method that boils down to solving a
sparse linear system. Although RW stems from a variational problem similar to
the min-cut in the two-label case [16], its deep connections with MRF-based seg-
mentation have been somewhat overlooked so far. We further advocate a method
that combines the proposed relaxation with the traditional VEM algorithm.

2 MRF-MAP Segmentation

The MRF-MAP problem under the Potts model for labeling an image Y in
K classes amounts to minimizing the following energy [17]:

L(δ, θ) = −
∑
i

δ�i log �i(θ) + β
∑
i,j

wij(1− δ�i δj), (1)

where δ = (δ1, δ2, . . .) is a collection of “delta-distributions”, that is, for each
voxel i, δi is a K-dimensional vector with a single non-zero component δik = 1
corresponding to the voxel label. The weights wij encode spatial interactions be-
tween voxels and are usually symmetric, equal to one if voxels i and j are neigh-
bors according to a given discrete topology, and zero otherwise. The first term
in the right hand side involves the likelihood �ik(θ) = p(yi|k, θ) of the labels at
voxel i, where θ is a nuisance parameter vector to be estimated. Under the usual
Gaussian noise model, p(yi|k, θ) = N(yi;μk, σk) and θ = (μ1, σ1, . . . , μK , σK) is
the concatenation of mean intensities and standard deviations over classes. Note,
however, that the likelihood can be substituted with any external field without
changing the analysis that follows.

2.1 Free Energy Relaxation

A known relaxation method to approximate the minimization of (1) is to mini-
mize the so-called free energy function over arbitrary probability masses qi,

L̃(q, θ) = −
∑
i

q�i log �i(θ) + β
∑
i,j

wij(1− q�i qj) +
∑
i

q�i log qi, (2)
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which defines a continuous extension of (1) in the sense that L̃(δ, θ) and L(δ, θ)
coincide on the space of delta-distributions. While the global minimization of
(2) is intractable, one may resort to a greedy approach based on an alternate
minimization along the qi’s, yielding explicit updates [10]:

qi ∝ �i(θ)e
2β

∑
j wijqj

Applying this equation iteratively by cycling through the voxels corresponds to
the E-step of a VEM algorithm and is guaranteed, under broad conditions, to
converge to a local minimum of free energy. In the VEM algorithm, probability
updates are interleaved with minimizations along θ to concurrently refine in-
tensity parameters. The VEM algorithm is nevertheless dependent on starting
values for both q and θ, and there is no theoretical warranty as to the accuracy
of the resulting MAP approximation even at fixed θ.

2.2 Laplace Relaxation

We now describe another MAP relaxation approach that yields a convex problem
unlike (2). Let us start with defining a surrogate MAP energy function:

Ls(δ, θ) =
∑
i

(1 − δ�i πi(θ)) + β
∑
i,j

wij(1− δ�i δj)−
∑
i

log zi(θ),

where πi(θ) = �i(θ)/zi(θ) is the likelihood at voxel i normalized to unit sum and
zi(θ) is the associated partition function. Using the inequality log(x) ≤ x − 1,
we see that Ls(δ, θ) ≤ L(δ, θ) for any delta-distribution, with equality iff πi is a
delta-distribution and δi = πi at each voxel. Moreover, we have:

‖δ‖2 = 1, 1− δ�v =
1

2
‖δ − v‖2 + 1

2
− 1

2
‖v‖2,

for any delta-distribution δ and vector v. Therefore, the following function defines
a continuous extension of Ls over arbitrary distributions:

L̃s(q, θ) =
1

2

∑
i

‖qi − πi(θ)‖2 +
β

2

∑
i,j

wij‖qi − qj‖2 + C(θ), (3)

where C(θ) =
∑

i(− log zi(θ) +
1
2 −

1
2‖πi(θ)‖2). Clearly, L̃s is quadratic and

strictly convex in q. Minimizing it at fixed θ yields the first-order condition:

∀k, (I+ λL)Qk = Πk, with λ = 2β, (4)

which is a set of sparse linear systems, where L is the Laplacian matrix of
the image grid considered as a graph with weights wij and I is the identity
matrix with size equal to the number of voxels. Qk stands for the probability
image associated with class k, i.e. Qki = qik, and Πk similarly represents the
normalized likelihood image for class k.
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Equation (4) turns out to be a vector-valued discrete Laplace equation and is
equivalent to the method proposed by Marroquin et al [15] as an approximation
to the same MAP problem. The key property is that the unique solution is a
probability map without the need to incorporate explicit equality or inequality
constraints, which provides a massive computational advantage over other relax-
ation approaches [3,4,5]. In [15], the smoothing parameter λ was not related to
the MRF parameter β and was tuned empirically. We showed here that setting
λ = 2β ensures that the surrogate energy Ls is uniformly upper bounded by the
MAP objective (1), therefore (4) qualifies as a relaxation method for the MAP
problem.

A generalization of (4) is the multilabel RW algorithm [13,14]. Our strategy
should however be expected to differ significantly from the original RW in prac-
tice, since both the weights wij and the “diagonal matrix” (here, the identity)
are chosen in different ways, independently from the data in our case.

Owing to the inequality Ls(δ, θ) ≤ L(δ, θ), the MAP may be bracketed using
the Laplace relaxation solution q� and its binarization δ�:

L̃s(q�) ≤ min
δ

L(δ) ≤ L(δ�),

hence providing some confidence bounds on the MAP approximation. Note that
such a lower bound is not available for the VEM output as it may not be a global
minimizer of free energy (2).

Also, we shall note that there is no explicit solution to minimizing (3) with
respect to θ, unlike the case of free energy. Therefore, Laplace relaxation does
not come with a simple built-in method for intensity parameter estimation.

3 Experiments

This section compares both relaxation methods presented above in brain
tissue classification. We used a subset of 248 brain MR T1-weighted im-
ages from the Alzheimer’s Disease Neuroimaging Initiative database (ADNI,
adni.loni.ucla.edu) acquired on both 1.5 Tesla and 3 Tesla scanners from
different manufacturers, with voxel volume ranging from 1 to 1.9 mm3. The
dataset includes 163 healthy controls and 85 diagnosed AD patients (55% males,
45% females) with mean age 77± 7 years. As a pre-processing, the images were
corrected for bias field using the N3 method [18] and skull-stripped by non-rigid
registration with a template [19].

We here focus on further classifying the skull stripped data into cerebrospinal
fluid (CSF), gray matter (GM), and white matter (WM). To this end, we used a
4-class Potts prior model using a 6-neighborhood system with two classes repre-
senting GM to account for the usually rather large intensity variations between
cortical GM and deep GM in T1-weighted images. The spatial regularization
parameter was set to β = 0.5 based on previous tests. No external field was
incorporated to the model at this stage to avoid biasing tissue classification to-
wards an atlas [20]. This model was found to yield high overlap with ground

adni.loni.ucla.edu
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truth segmentation on Brainweb data [21] using the conventional VEM algo-
rithm (Jaccard indices larger than 0.88).

The VEM algorithm was mainly implemented in Python based on the Scien-
tific Python package (www.scipy.org) with a subroutine in C for higher per-
formance. Laplace relaxation was implemented in pure Python inspired by the
random walker implementation by E. Gouillart (github.com/emmanuelle) using
a smoothed aggregation solver [22]. The θ parameter supplied to each method
was computed using a simple moment matching technique [10].

The computation time on a single processor Intel Core i7-975 CPU 3.33GHz
was about 1.5 seconds per iteration for VEM (including update of θ), and about
15 seconds for Laplace relaxation. The VEM algorithm was run for 50 iterations,
which achieved satisfactory convergence in all cases (relative variations of free
energy lower than 2.5×10−4), resulting in a total computation time of 75 seconds
per image.

Fig. 1. Comparison of MAP estimates found by Laplace relaxation (middle) and the
VEM algorithm (right) for a skull-stripped MR T1-weighted image (left). Label colors
are red for CSF, blue and green for GM, and yellow for WM.

Figure 1 illustrates that MAP estimates found by Laplace relaxation generally
look very similar from visual inspection to those provided by the VEM algorithm.
To quantify this, we computed minimum Jaccard overlap coefficients,

J = min
k

|Ak ∩Bk|
|Ak ∪Bk|

,

where Ak and Bk denote the sets of voxel labeled as k in the respective clas-
sifications. Overlap coefficients ranged from 0.33 to 0.87 on the whole dataset
with mean 0.64 and standard deviation 0.13. They were found from ANOVA to
correlate negatively with voxel volume (p-value < 10−10) and, to a lesser extent,
with pathology (p-value < 10−2), the agreement between both segmentation
methods being higher for AD patients. Correlations with age and gender were
not significant.

www.scipy.org
github.com/emmanuelle
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While the VEM algorithm was slower than Laplace relaxation, it converged
to a solution of lower energy (1) in all of the 248 cases and was therefore more
accurate at tracking the MAP despite being theoretically prone to local min-
ima. To further investigate the benefit of Laplace relaxation, we tested a VEM
variant, hereafter referred to as LR-VEM, where the class probability map q
is initialized as the binarized solution of Laplace relaxation, as opposed to the
standard initialization with a uniform distribution over labels.

Fig. 2. Comparison between standard VEM and LR-VEM algorithms: plot of final
relative MAP energy values against Jaccard indices for 248 ADNI subjects

Figure 2 plots a relative measure of MAP estimation quality of LR-VEM
versus VEM, defined as LVEM

final/L
LR-VEM
final − 1, where Lfinal denotes the energy

level reached after 50 iterations, against the overlap indices computed between
the respective corresponding MAP estimates. In 83.5% cases, LR-VEM achieved
lower energy than VEM, while the converse happened in 16.5% cases. Segmenta-
tion results showed non-negligible differences in 10% cases as shown by overlap
indices lower than 0.95. In all such cases, the MAP estimate from LR-VEM
had the lower energy. Conversely, when VEM achieved lower energy than LR-
VEM, the respective MAP estimates were almost identical. This provides some
evidence that initialization with Laplace relaxation makes the VEM algorithm
more robust in tracking the MAP.

ANOVA revealed that overlap indices correlate strongly with pathology (p-
value < 10−6) and age (p-value < 10−5) in the sense that differences between
VEM and LR-VEM are reduced for diseased or aged subjects. A slight negative
correlation with voxel volume (p-value < 10−2) was found in this case, and again
no significant correlation with gender.
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Moreover, the LR-VEM algorithm required an average of 7±10 iterations less
than VEM to achieve the same tolerance on free energy variations as in the last
VEM iteration, meaning that the computational overhead of Laplace relaxation
is compensated for by faster convergence.

4 Discussion

Laplace relaxation offers a fast alternative to the VEM algorithm for MRF-MAP
classification that is independent from an initial label probability assignment. In
our brain tissue classification experiments, Laplace relaxation produced results
quite similar to the VEM algorithm (as shown by minimum Jaccard indices of
0.64±0.13). The MAP classifications output by VEM were, however, more accu-
rate. In a different scenario, Laplace relaxation can be used as an initialization
step for the VEM algorithm, leading to noticeable improvements in MAP es-
timation in about 10% cases without significant overhead in computation time
due to faster convergence.

We did not expect massive improvements in the whole-brain classification
setting where the VEM algorithm has previously been reported to be robust.
We anticipate that the effect of Laplace relaxation may be more substantial in
segmentation applications that target specific anatomical structures since local
volume or shape assessments are likely to be sensitive to small variations in tissue
probability maps. The benefit of Laplace relaxation in brain morphometry is thus
to be further investigated.

Laplace relaxation is currently applicable to a subclass of MRF models that in-
cludes extensions of the Potts model that involve non-stationary scalar-weighted
interactions and addition of any external field. Future work will aim to extend
the methodology to other MRF models for which iterative methods such as the
VEM algorithm may have serious local convergence issues, in particular models
that incorporate strong topological constraints via tissue-dependent interaction
potentials.

Acknowledgements. This work was partly supported by the CIBM of the
UNIL, UNIGE, EPFL, HUG and CHUV and the Jeantet and Leenaards Foun-
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Abstract. Fuzzy boundaries of anatomical structures in medical images
make segmentation a challenging task. We present a new segmentation
method that addresses the fuzzy boundaries problem. Our method maps
the lengths of 3D rays cast from a seed point to the unit sphere, estimates
the fuzzy boundaries location by thresholding the gradient magnitude of
the rays lengths, and derives the true boundaries by Laplacian interpo-
lation on the sphere. Its advantages are that it does not require a global
shape prior or curvature based constraints, that it has an automatic stop-
ping criteria, and that it is robust to anatomical variability, noise, and
parameters values settings. Our experimental evaluation on 23 segmenta-
tions of kidneys and on 16 segmentations of abdominal aortic aneurysms
(AAA) from CT scans yielded an average volume overlap error of 12.6%
with respect to the ground-truth. These results are comparable to those
of other segmentation methods without their underlying assumptions.

1 Introduction

Patient-specific models of anatomical structures and pathologies generated from
volumetric CT/MRI medical images play an increasingly central role in all as-
pects of patient care, from the initial diagnosis through the planning, delivery,
and evaluation of patient treatment. A key task in the generation of these models
is the segmentation of anatomical structures and pathologies of interest.

Anatomical structures and pathologies segmentation is a challenging task. Ex-
perience shows that each anatomical structure, pathology, and imaging modality
has unique characteristics that may lead to significant segmentation errors in a
non-negligible number of cases. Correcting faulty segmentations often requires
extensive user interaction, trial-and-error parameter tuning, and/or developing
custom algorithms, all of which are impractical in a clinical environment.

One of the main reasons that segmentation is challenging is the existence of
fuzzy boundaries between the structure of interest and its neighboring structures
(Fig. 1a). This occurs when the voxels intensity gradient magnitudes of the target
and its neighboring structures boundaries are small, i.e., when their tissue imag-
ing characteristics are similar and when partial volume effect, and/or imaging
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(a) (b) (c)

Fig. 1. Illustration on an AAA axial CT slice: (a) original slice – the arrows show
sharp (yellow) and fuzzy (cyan) boundaries; (b) result of conservative intensity-based
background (red) thresholding to the image; (c) rays cast from a seed point (purple
circle) stop at the true boundary (yellow rays) or at a false boundary (cyan rays). Note
that for two neighbor rays, their length difference is large when one ray stops at the
true boundary and the other ray does not.

noise blurs the image. As a result, the segmentation volume may expand outside
the target structure boundary into neighboring structures, thus producing what
is termed as segmentation leaks. Fuzzy boundaries cause segmentation leaks in
nearly all segmentation methods. In intensity-based thresholding methods, the
thresholding classification rule is based on statistically significant intensity differ-
ences between neighboring structures, so leaks will appear in fuzzy boundaries.
In adaptive region growing [1] and ray casting methods [2], leaks occur when
the intensity based stopping criteria does not apply for the fuzzy boundaries
voxels. Intensity-based graph-cut methods may produce leaks because the min-
cut is unlikely to separate voxels with similar intensities, as this penalizes the
global energy function. Energy-based methods, including snakes and level-set
active contours, may also produce leaks since they move away the evolving seg-
mentation contour in low-gradient regions because the image term in the energy
equation yields a higher overall energy.

Various methods have been proposed to address the fuzzy boundaries problem.
The most popular ones incorporate global shape priors [3,4] and curvature-based
constraints [5,6] into the segmentation. While global shape priors are useful, they
have the following limitations: 1) they can not handle pathologies that have no
representative shape; 2) they may not converge for far-from-average cases, and;
3) they are difficult to acquire, since they depend on the availability of a delin-
eated atlas. Adding curvature-based constraints into energy-based segmentation
methods helps to avoid segmentation leaks when the leak region has a narrow
bottleneck shape. However, since the stopping criteria has to be tailored anew
for each specific structure, the user often needs to actively stop the segmentation
process, which may be inaccurate and inconsistent, and is thus undesirable.

Dodin et al. [2] describe a 2D ray casting method for the segmentation of
knee bones in MRI scans. Their rays stopping criteria is based on the Laplacian
zero-crossing, so their method will produce segmentation leaks in structures with
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extended fuzzy boundaries caused by adjacent structures with similar intensity
values. Moreover, 2D ray casting requires at least one seed point for each scan
slice, which may be impractical.

In this paper we present a new seeds-based 3D ray casting segmentation
method that handles fuzzy boundaries without shape priors or curvature con-
straints. Its advantages are that: 1) it does not require a global shape prior; 2)
it does not assume a bottleneck-like shape of leaks; 3) it requires a few seeds;
4) it does not rely on the user to actively stop the segmentation; 5) it is ro-
bust to anatomical variability, noise and segmentation parameters; and, 6) it
is applicable to a variety of anatomical structures. Our experimental study on
segmentations of 23 kidneys and 16 abdominal aortic aneurysms (AAA) from
CT scans yielded an average volume overlap error of 12.6% with respect to their
ground-truth segmentations. These results are comparable to other segmenta-
tion methods which require shape priors or curvature penalties, but without
parameters adjustment and underlying assumptions.

2 Method

The algorithm inputs are one or more seeds located inside the target structure
– the seeds are either provided by the user or generated automatically. For each
seed point, a segmentation is generated in three steps: 1) initial segmentation
by spherical 3D ray casting; 2) identification of correct/incorrect segmentation
regions by spherical discontinuation computation; and 3) correction of the faulty
boundaries by Laplacian interpolation on the unit sphere. The segmentation
results for each seed are combined to produce the final segmentation.

2.1 Initial Segmentation by Spherical 3D Ray Casting

Let I = {Ii} be a volumetric image consisting of n voxels Ii. Let T = {Ti} be a
target structure of interest in I, and let S = {Si} be the unknown surface of T .
We divide the image I into two disjoint subsets based on a surface thresholding
criteria: the sharp voxels set C = {Ci}, and the fuzzy voxels set F = {Fi} (Fig.
1b). The thresholding can be based on gray-level values, gradient magnitudes,
the output of an edge detector, or any other suitable criteria.

The inputs to the algorithm are k predefined seed points p1, ..., pk located
inside the target structure (Fig. 2a). For each seed point, the initial segmentation
is computed as follows. For each angle 0 ≤ θi ≤ 2π and 0 ≤ φi ≤ π, a 3D ray
emanating from the seed in the direction defined by θi and φi is cast until it hits
a voxel in C. The resulting segmentation is the total volume covered by the rays.
Note that this initial segmentation includes both parts of the true boundary S
and also faulty boundary segments resulting from fuzzy boundaries and/or noise
(Figs. 2b,3e,3g). We choose this segmentation method because it enables us to
automatically estimate and correct the segmentation errors in the next steps.
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Fig. 2. Illustration of the algorithm: (a) AAA CT axial slice with a seed point (red
dot); (b) initial mesh generated by spherical 3D ray casting segmentation; (c) rays
length mapping to the sphere – warm (red) colors indicate long rays; (d) rays length
gradient magnitude; (e) gradient magnitude thresholding – nodes with large gradient
values are red; (f) rays length on the largest connected component; (g) estimation of
the unknown boundaries by Laplacian interpolation; (h) final corrected segmentation

2.2 Errors Estimation by Spherical Discontinuation Computation

Next, we classify the cast rays into those that stopped at the true boundary S
and those that did not. The estimation is based on the following observation.
For each orientation (θi, φi), the rays will stop at the true boundary S with
the exception of orientations where there exist a voxel that belongs to C in the
interior of T or for directions where the boundary S is fuzzy, i.e. when it does
not belong to C. In the first case, the rays will stop before the true boundary,
while in the second case the rays will stop after the true boundary (Fig. 1c). As
a result, the rays length difference for two voxels in sequential orientations will
be relatively large when one of the voxels belongs to the true boundary S and
the other does not. In contrast, this difference will be much smaller when both
voxels belong to the true boundary.

We formalize this observation to identify the incorrect boundaries of the initial
segmentation as follows. Let f : [0, 2π]× [0, π]→ %+ be a scalar function on the
unit sphere such that f(i, j) = lij where lij is the length of the ray cast in the
direction (θi, φj).

Following [7], we sample f uniformly by constructing a triangulated mesh ap-
proximation of the unit sphere by icosahedron subdivision [8] centered around the
origin. The result is a geodesic sphere whose nodes are equidistant from each other
and have no interpolation singularities around the sphere poles. We associate to
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each node its matching f values, f(Spi) = ljk, where Spi is a node in the generated
meshSp and ljk is the length of the ray cast in the direction defined bySpi spherical
coordinates (θj , φk) relative to the seed point (Fig. 2c).

Next, we find the sharp changes in f by computing for each mesh node Spi
its gradient magnitude:

|∇f(Spi)| =
√ ∑

Spj∈Ni

(f(Spi)− f(Spj))2 (1)

where Ni are the neighboring nodes of Spi (Fig. 2d). Based on the previous
observation, we compute the set of nodes B ⊆ Sp that match to the interface
between the correct and faulty initial segmentation by thresholding:

B = {Spi : |∇f(Spi)| > t} (2)

where t > 0 is a preset constant with a fixed value for every image (Fig. 2e).
Finally, we isolate the sphere nodes that correspond to orientations with cor-

rect initial segmentation by choosing the largest nodes connected component
that are separated by nodes in B (Fig. 2f).

2.3 Correct Boundaries Detection by Laplacian Spherical
Interpolation

This step detects the true boundaries in the directions where the initial segmen-
tation was incorrect (Fig. 2g). For this we use Laplace interpolation, which min-
imizes the integrated square of the gradients of f , and thus yields the smoothest
surface with respect to this criteria. The Laplace interpolation with Dirichlet
boundary condition is formulated as:

∇2f(Spi) = 0, subject to: f(Spj) = f∗(Spj) (3)

for each unknown node Spi on the mesh and for each node Spj on the boundaries
of the interpolation domain with a known value f∗(Spj), where ∇2f(Spi) =∑

Spk∈Ni
(f(Spi)− f(Spk)) is the discrete graph Laplacian operator [9], and Ni

are the neighbors of node Spi on the sphere mesh Sp. The unknown values f(Spi)
are then computed by solving the resulting sparse system of linear equations.

We generate the final segmentation with the following classification rule to
each image voxel Il at orientations (θi, φj) relative to seed point pk:

Lk(Il) =

{
1 if d(pk, Il) ≤ f̂ij
0 if d(pk, Il) > f̂ij

(4)

where Lk(Il) is the label for voxel Il for seed pk, d(pk, Il) is the Euclidean distance

between the voxel Il and the seed point pk, and f̂ij is the distance interpolation
solution for orientations (θi, φj). Figs. 2h,3f,3h show examples of the results.

The key advantage of this new estimation by interpolation method is that any
remaining false positive estimation of a leak region caused by choosing to lower
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the thresholding parameter t in (2) will be set to its original, correctly estimated
value.

Note that the segmentation by ray-casting just described applies to voxels
that are visible from the seed point pk, i.e. to a convex or star-shaped objects.
We directly extend the method to general shapes by taking the union of the
segmentations Li obtained for each seed pi:

Lfinal(Il) =

k∨
i=1

Li(Il) (5)

The number of seeds required for the structure segmentation depends on the
number of its star-shaped components. For the structures of interest, a few seed
points are sufficient to segment the structure appropriately.

3 Experimental Results

To quantify the scope, accuracy, and robustness of our method, we designed
and conducted the following experimental study. We retrospectively selected 28
CT scans of two different structures, kidneys (organ) and aortic arch aneurysms
(AAA – vascular pathology). These structures are different in shape, intensity
homogeneity, and surrounding structures. For the kidney study, we included
12 clinical CT datasets (2 kidneys per scan) of size 512 × 512 × 350 − 500
voxels, each of size 0.5 − 1.0 × 0.5 − 1.0 × 1.0 − 1.5mm3, with and without
contrast agent, acquired with a Brilliance 64-row CT scanner (Phillips Health-
care, Cleveland, OH). Ground-truth segmentations of the kidneys were obtained
from three manual segmentations of experts with STAPLE [10]. For the AAA,
we included 16 clinical CT scans of size 512 × 512 × 500 voxels, each of size
0.7− 1.2× 0.7− 1.2× 0.7− 1.2mm3 from the same scanner. Imaging streaking
artifacts caused by implanted stents were present in several scans (Fig. 3c). An
expert radiologist manually generated the ground-truth segmentations.

The method internal parameters values where fixed for all scans to constant
values. The background thresholding level was set from the intensity levels, where
each voxel with gray-value < 0 HU is a surface candidate. The rays lengths
gradient thresholding constant was set to t = 3 mm. We found empirically that
these values minimize the false negative leaks detection rate. Note that with these
parameters setup up to 50% of the target surface was considered as ”fuzzy”. The
number of the icosahedron subdivisions was set to 6. The program runs on a 64-
bit quad-core 2.80GHz processors and 6GB memory PC. The seeds were placed
interactively by the user: after each seed placement the volume that is seen by
the seed was marked on the image until the entire target volume was covered.
The mean number of seeds required for the segmentation was 3 (std=0.69) and
1.33 (std=0.5) for the kidney and the AAA. The mean running time was 35.7
(std=2.7) secs and 41.1 (std=10.7) secs for the kidney and the AAA.

To quantify the accuracy of our method, we used both volumetric and surface
based metrics. For the kidney, the mean absolute volume difference was 6.02%
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a-d): representative results of our segmentation method (red) and manual
ground truth (blue): (a) kidney axial CT slice; (b) kidney coronal slice; (c) AAA axial
slice; (d) AAA coronal slice; (e-h): 3D meshes of kidney (e-f) and AAA (g-h): (e,g)
3D meshes generated by spherical 3D ray casting; (f,h) final meshes after applying our
leaks correction method

(std=4.07%), the mean volumetric overlap error was 12.65% (std=2.46%) and
the average symmetric surface distance was 1.12 (std=0.4) mm. For the AAA,
the absolute volume difference was 7.99% (std=8%), the mean volumetric over-
lap error was 12.63% (std=4.35%), and the average symmetric surface distance
was 1.29 (std=0.3) mm. Fig. 3 shows a representative example. These results
are comparable to previously reported methods [11,12,13,14] without their un-
derlying assumptions and with a significant improvement in the running time.

4 Conclusion

We have developed a new method for the segmentation of anatomical structures
in medical images. Our method is based on 3D spherical ray casting and segmen-
tation leaks correction by editing the gradients of the cast rays lengths mapped
to the unit sphere. Our experimental study on segmentations of 23 kidneys and
16 abdominal aortic aneurysms from CT scans yielded a mean volume overlap
error of 12.6% with respect to the ground-truth. This was deemed clinically ac-
ceptable for diagnosis and surgery planning by the co-author expert radiologist.

The advantages of our method are that it does not require a global shape prior,
that it does not assume bottleneck-like shape of the leak, that it does not rely
on the user to actively stop the segmentation, that it is robust to anatomical
variability, noise and segmentation parameters, and that it is applicable to a
variety of anatomical structures. Its limitation is that it requires a predefined
seed point for each star-shaped component of the target structure. However, for



370 A. Kronman, L. Joskowicz, and J. Sosna

structures such as the kidney and the AAA, only a few (1-4) seeds are needed
in practice. Ongoing and future work includes the evaluation of the method on
additional anatomical structures.
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Abstract. Pectoral muscle segmentation is an important step in auto-
matic breast image analysis methods and crucial for multi-modal image
registration. In breast MRI, accurate delineation of the pectoral is im-
portant for volumetric breast density estimation and for pharmacokinetic
analysis of dynamic contrast enhancement. In this paper we propose and
study the performance of atlas-based segmentation methods evaluating
two fully automatic breast MRI dedicated strategies on a set of 27 man-
ually segmented MR volumes. One uses a probabilistic model and the
other is a multi-atlas registration based approach. The multi-atlas ap-
proach performed slightly better, with an average Dice coefficient (DSC)
of 0.74, while with the much faster probabilistic method a DSC of 0.72
was obtained.

Keywords: pectoral muscle, breast MRI, atlas-based segmentation.

1 Introduction

Automatic identification of pectoral muscle is an important step in methods for
automatic breast cancer assessment in most image modalities. For instance, in
mammography, the most used image modality in screening programs, the detec-
tion and removal of the pectoral muscle is often used to remove false positive
marks of Computer Aided Detection (CAD) systems [3]. In Magnetic Resonance
Imaging (MRI) of the breast, the image modality employed in the presented
work, the importance of the pectoral muscle detection has recently been recog-
nized in two applications. Firstly, breast tissue density has been identified as
an important risk factor for developing breast cancer, being four times larger in
women with a breast density higher than 75%, compared to those with little or no
density [2]. Breast MRI provides a good tissue contrast between fibroglandular
and fatty tissues and a three-dimensional characterization of breast composi-
tion. These good properties in the breast tissue have been a strong reason to
use breast MRI in breast density measurement [9,8,5]. However, the contrast
between pectoral muscle and dense tissue is poor. Hence, a first step to separate
the breast from the body is commonly essential. This separation is not trivial
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due to the large shape and intensity variations in the pectoral muscle of different
patients. Some solutions are present in the literature: boundary tracing or spline
fitting without [10] and with manual intervention [9,8] and delineation of the
whole breast using breast models [4], but none of them completely delineates
the pectoral muscle.

Secondly, MRI is often used with a contrast agent for lesion detection. For a
better interpretation of contrast enhancement lesions, researchers have tried to
incorporate pharmacokinetic modeling to the interpretation of the MRI. Some
of these models require calibrations with respect to reference tissues and make
use of the signal intensity of specific regions for determining physiological mea-
sures [11]. In breast MRI, the pectoral muscle can be used as a reference tissue
given its properties.

Atlas-based segmentation has been shown to be a powerful technique for auto-
matic delineation of anatomical structures in different 3D image modalities [1,6].
Multi-atlas and probabilistic approaches are the most commonly used strategies.
By definition, the former is supposed to obtain more precise segmentations than
the latter. However, multi-atlas approach is far more time consuming. There has
been only one initial attempt that uses an atlas strategy for breast MRI segmen-
tation [5], but the segmentation of the pectoral muscle was not the main interest
of the work. Moreover, the method followed a probabilistic approach using one
reference atlas, which could have some limitations. As shapes are highly variable,
the reference choice affects final results.

The novelty of this paper consist in the study of fully automatic atlas-based
methods for pectoral muscle segmentation in breast MRI in terms of performance
and complexity. A dedicated multi-atlas approach based on [6] is proposed (see
section 3.3) and compared to the probabilistic approach of [5] (see section 3.2).
An original breast MRI registration framework focused on the body has been
also defined and used in both methods (see section 3.1). To our knowledge, no
similar studies are found in the literature. Advantages and inconveniences of
both strategies are discussed in sections 4 and 5 and a solution to obtain a
reasonable time-accuracy trade-off is proposed.

2 Material

The data set used to evaluate the segmentation results and build the atlases
consists of 27 pre-contrast T1-weighted MR breast scans obtained from different
patients. Breast MRI examinations were performed on a 1.5 T system (Siemens
1.5T, MagnetomVision), with a dedicated breast coil (CP Breast Array, Siemens,
Erlangen). The pixel spacing differed between volumes with values ranging from
0.625 mm to 0.722 mm. The slice thickness was 1.3 mm and the volume size was
512 x 256 x 120 voxels. Patients were scanned in prone position.

Three experienced observers performed manual segmentations. Two of them
manually segmented only the pectoral muscles of 8 cases. The third one manually
segmented each of the 27 MR volumes into 7 classes: background, fatty tissue,
glandular tissue, pectoral muscles, lung area and the heart. The seventh class
is the ”other” class and refers the previous non-labeled voxels of the thorax.
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Annotations were done every 5-10 slices and linear interpolation was applied
to obtain the complete labeling. When needed, and especially for heart, lungs
and pectoral muscles, accurate manual delineation was performed with a smaller
slice interval. For the manual segmentation of background, fatty and fibroglan-
dular tissue, thresholding was applied over regions of interest provided by the
reader. Fig. 1 shows an example of a MRI slice on an axial view and the manual
delineation of the mentioned classes. One should note the complexity of perform-
ing such ground truth annotations, where each volume takes approximately 45
minutes in a dedicated breast MRI annotation environment.

Fig. 1. Breast MR scan on an axial slice with the manual annotation of the different
structures

3 Methods

Atlas-based strategies are characterized by the use of prelabeled images, usually
manually obtained, to perform the automatic segmentation of new images, also
called targets. They employ registration algorithms, which play an important
role for the final segmentation. Section 3.1 explains the mapping algorithm used
by the two atlas-based approaches evaluated in this paper. Section 3.2 briefly
describes the construction and the use of a probabilistic atlas in a Bayesian
framework segmentation [5]. Finally, in section 3.3 we report the proposed multi-
atlas segmentation algorithm based on [6] for the delineation of the pectoral
muscle in breast MRI.

3.1 Registration

Registration is an important step in atlas-based segmentation algorithms. With-
out an accurate transformation between the structures we aim to segment, the
segmentation can not perform accurately. For this reason we developed a regis-
tration framework focused on the body area. We observed that the sternum is
always localized between pectoral muscles. Hence, by accurately localizing the
sternum the pectoral muscles can be aligned. Our registration approach is ini-
tialized by detecting the sternum of the subjects. Automatic sternum detection
is based on [5]. Then, the volumes are cropped at 2 cm distance anterior to the
sternum position to focus the registration on the area of the body. By doing so,
most breast tissue is removed and can not negatively bias the final mapping of
body structures. The 2 cm distance anterior to the sternum ensures that pectoral
muscle voxels are not discarded.
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The registration process is composed by two stages. First, a translation trans-
form is performed, where translation along the y axis is defined by the distance
between y-coordinates of both sternums. Translation along x and z axis is found
by optimizing the similarity measure. The second stage is a non-rigid transform
based on B-Splines registration in a multi-resolution scheme using a stochastic
gradient descent optimizer. Three resolutions were defined. B-Splines grid spac-
ing was set to 32, 16 and 8 mm for each of the resolutions taking the size of the
pectoral muscle into account. The similarity measure maximized by the whole
framework was normalized cross correlation (NCC) as all the datasets were ac-
quired with the same modality. Elastix [7] was used for the implementation.

3.2 Method 1: Probabilistic Atlas-Based Segmentation

In the presented atlas-based segmentation method, a probabilistic atlas is used
in a Bayesian framework to provide an accurate probability distribution for the
pectoral an the thoracic area. Following a leave-one-out evaluation strategy, for
each patient segmentation, a full probabilistic atlas was built offline with the 26
remaining patients. These 26 patients and their segmentations were mapped us-
ing the registration method explained previously into the same reference space.
The probabilistic atlas was created by computing the frequency with which each
location was labeled as a specific organ. A common reference space was used for
all the experiments by visually selecting an extra patient which has normal ap-
pearance. The reference case, or anatomical image of the atlas, was not included
in the evaluation set.

Figure 2 shows the general schema of the segmentation framework with
Bayesian voxel classification algorithm incorporating the use of the probabilistic
atlas. From the top to bottom, the probabilities of the atlas are mapped by reg-
istration of section 3.1 onto target image space {T} using the anatomical image

Fig. 2. Probabilistic atlas segmentation approach overview
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of the atlas. The probabilistic atlas, the tissue models (previously built from the
scans and manual segmentations of the data set) and the target are provided
to the Bayesian framework as a prior probability P (X), conditional probability
P (Y |X) and set of intensity values Y , respectively. The Bayesian framework
estimates the segmentation X that maximizes P (X)P (Y |X) and also includes a
Markov Random Field (MRF) regularization to smooth the segmentation taking
neighborhood information into account [5].

3.3 Method 2: Multi-atlas Segmentation

Multi-atlas segmentation approaches consider all the volumes of the dataset and
their manual segmentations as individual atlases. The term atlas is defined as
the pair of the anatomical image (MRI volume) and its manual segmentation
or label. The process to obtain an automatic segmentation for a target volume
is illustrated in figure 3. First, given the target volume T , all the atlases are
mapped onto the target space using the registration algorithm of section 3.1.
Subsequently, the deformed anatomical images are compared to the target to
perform a selection of the most similar atlases. The selection is based on the
Normalized Cross Correlation similarity measure and a ratio defined as follows:

ri =
NCC(T,Ai ◦Mi)

maxj NCC(T,Aj ◦Mj)
, (1)

where M refers to the mapping between the target and an atlas and j refers to
the deformed atlas with maximum similarity. An atlas Ai is selected if it satisfies
ri ≥ ϕ. A value of ϕ = 0.9 empirically appeared to be the best value for our
results.

Fig. 3. Multi-atlas segmentation approach overview

Finally, the selected deformed atlas labels are fused to yield a single final
segmentation of the patient or target image. This step is called decision fusion
and defines how the deformed segmentations of the selected atlas are combined.
In this work we have made use of majority voting method, which was proven to
give good results in [6].

4 Results

In a leave-one-out experiment we evaluated the probabilistic and the multi-atlas
segmentation frameworks on 27 patients. Each segmented case was not included
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for the construction of the probabilistic atlas or within the set of individual
atlases respectively. The quality of the segmentation was measured by deter-
mining the similarity of the segmentation with the ground truth using the Dice
Similarity Coefficient (DSC). DSC was chosen as it is commonly used in the
literature [6,5]. For all cases we manually discarded initial and last slices which
do no contain relevant information or are clearly affected by noise. Figure 4(a)
shows a box plot with DSC values for each method. Segmentation results are
similar (DSC median of 0.76 for both and DSC mean ± sd of 0.72 ± 0.09 and
0.74 ± 0.06 for probabilistic and multi-atlas respectively), but multi-atlas frame-
work slightly outperforms the probabilistic. These results can be better seen in
figure 4(b), where DSC values of each case using both methods are shown.
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Fig. 4. (a) Box plot with segmentation DSC for pectoral segmentation and (b) DSC
segmentation results for each of the 27 cases using probabilistic (P) and multi-atlas
(M) approaches

Lower DSC values are mainly due to the registration process not being able
to compensate the differences between volumes. This is more the case of the
probabilistic approach as the method uses only one registration with a single
reference. In those cases (see case 7 for instance), the multi-atlas approach per-
forms better as it includes multiple registrations and selects the best ones. Only
in one case (number 20) the probabilistic approach obtains results much better
than multi-atlas, where pectoral muscle segmentation in initial slices is not really
precise (labeled as thorax instead). However, accurate delineations in interme-
diate slices are obtained for both methods as it is illustrated in figure 5, where
three examples of automatic and manual segmentations are shown.

Finally, since no previous works performed pectoral segmentation in breast
MRI, inter-observer variability was computed by 3 viewers over 8 manual seg-
mentations. DSC mean of 0.70 ± 0.12 and median of 0.72 were obtained, lower
than the DSC values achieved by the automatic atlas-based approaches.

All the tests have been launched on Intel(R) Core(TM)2 Quad CPU Q9550
2.83GHz. Starting with the common step, registration between two volumes takes
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Fig. 5. Intermediate slices from 3 different cases and their segmentations

tr ≈ 12 min. The complexity time for multi-atlas segmentation is explained as
tmulti−atlas ≈ N × (tr + ta) + n × tf , where N is the number of individual at-
lases (N = 26), ta the time to compute the mapping and the comparison of an
individual anatomical atlas (ta ≈ 4 min.), n the number of selected atlases and
tf the time to propagate and fuse an atlas labeled image (tf ≈ 3 min.). In the
best scenario, being only one atlas selected (n = 1), the computation time to
obtain a segmentation using a multi-atlas approach is tmulti−atlas ≈ 419 min-
utes (7 hours). The complexity time for the probabilistic approach is defined as
tprobabilistic ≈ tr+tp+tb, where tp is the time to map the probability distributions
to the target space (tp ≈ 8 min) and tb the time to perform the segmentation
based on Bayesian theory (tb ≈ 10 min). Approximately, tprobabilistic ≈ 30 min.

5 Discussion

In this work, the atlas-based methodology has been studied to perform the com-
plete delineation of the pectoral muscle in breast MRI, which has not been done
previously. Fully automatic and dedicated multi-atlas and probabilistic frame-
works have been proposed and tested on 27 different patients.

The obtained results are satisfactory in both frameworks, with DSC values
higher than the computed inter-observer variability. It proves the high reliability
of atlas-based segmentation methods to perform pectoral delineations. However,
we are aware that the evaluation and the construction of the atlases were per-
formed with annotations from a single viewer, as obtaining 3-dimensional manual
segmentations is a time consuming task. The low inter-observer DSC value ex-
plains the difficulty and subjectivity to delineate the pectoral muscle. Its shape
has high-variability and cartilage, intercostal muscles and fatty tissue also appear
in the area. The inclusion of these tissues depends on the observer opinion.

As it was expected, multi-atlas segmentation appears to be more consistent
than probabilistic. This is explained by the fact that multi-atlas approach in-
cludes an atlas selection step to choose the most similar atlas compared to the
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segmented volume. In the probabilistic framework, when the target differs con-
siderably from the reference atlas and the registration can not compensate the
differences, the final segmentation becomes affected with slightly poorer results.
However, the computation time for a multi-atlas segmentation is 14 times larger.

Considering the influence of atlas selection, in future work we will study a
multi-probabilistic atlas framework. A larger dataset will be created with anno-
tations from different observers. We will group different breast MRI populations
based on shape. For each population, a probabilistic atlas will be built. The most
similar atlas to the image at hand will be chosen for segmentation.
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Abstract. The detection of gad-enhancing lesions in brain MRI of Mul-
tiple Sclerosis (MS) patients is of great interest since they are important
markers of disease activity. However, many of the enhancing voxels are
associated with normal structures (i.e. blood vessels) or noise in the
MRI, making the detection of gad-enhancing lesions a challenging task.
Furthermore, these lesions are typically small and in close proximity to
vessels. In this paper, we present an automatic, probabilistic Hierarchi-
cal Conditional Random Field (HCRF) framework for detection of gad-
enhancing lesions in brain images of patients with MS. In the first level, a
CRF with unary and pairwise potentials is used to identify candidate le-
sion voxel. In the second level, these lesion candidates are grouped based
on anatomical and spatial features, and feature-specific lesion based CRF
models are designed for each group. This lesion level CRF incorporates
higher order potentials which account for shape, group intensities and
symmetries. The proposed algorithm is trained on 92 multimodal clinical
datasets acquired from Relapsing-Remitting MS patients during multi-
center clinical trials and is evaluated on 30 independent cases. The ex-
perimental results show a sensitivity of 98%, a positive predictive value
of 66% and an average false positive count of 1.55, outperforming the
CRF and MRF frameworks proposed in [1].

1 Introduction

Multiple Sclerosis (MS) is a disorder of the central nervous system which is
characterized by focal, inflammatory lesions of the white matter (WM) which
appear hyperintense on T2-weighted MRI (i.e. T2w lesions.) A subset of MS le-
sions showing active inflammation can be identified in T1-weighted (T1w) scans
acquired after injection of gadolinium-based contrast agents (i.e. gad-enhancing
lesions). The number and volume of gad-enhancing lesions are important
biomarkers of disease activity and can be used in the development of drugs for
MS. Gad-enhancing lesions are generally segmented manually, a laborious task
subject to intra- and inter-rater variability. As clinical trials for MS treatments
usually involve enormous amounts of data from multiple centers, it is desirable
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(a) T1c (b) Binary mask(c) Manual labels (d) Active lesion(e) Manual labels

Fig. 1. (a), (b) and (c) respectively show the post-contrast T1w (T1c), the binary mask
of the voxels having sufficient enhancement to be considered as lesions and the manual
labels (in green). In (b), red and green color mark some non-lesional and lesional
enhancements respectively. (d) and (e) show zoomed in images of one of the active
lesions without and with the label, respectively.

to have an automatic segmentation method that is robust to data variability
due to different scanners and protocols. Unfortunately, automatic identification
of enhancing lesions is very challenging. This is due, in part, to variability in
size (as small as 3 voxels), texture, intensity and location across patients. Fur-
thermore, the majority of the enhancing voxels are associated with non-lesional,
normal structures (e.g. mostly blood vessels) and MRI noise (Fig.1). These fac-
tors make the clinical objective of detecting all of the gad-enhancing lesions
while maintaining low False Positive (FP) counts very difficult. Existing meth-
ods for gad-enhancing lesion segmentation are either not fully automatic [2,3],
depend on non-standard MRI acquisition sequences [3,4], or require the prior seg-
mentation of T2w lesions in order to remove FPs [4,5]. A Conditional Random
Fields (CRF) [1] classifier was recently developed for this task, without rely-
ing on the pre-segmentation of T2w lesions and using only commonly acquired
MRI sequences (i.e. pre- and post-contrast T1w, T2w, PDw and FLAIR). The
CRF was shown to outperform standard MRF, SVM and linear regression mod-
els in terms of FPs, virtually eliminating the number of False Negative (FN)
lesions. However, although some shape information was used, this model used
mainly local, voxel-level unary and pairwise potentials for classification, and
was not powerful enough to remove all the FP lesions. Higher order potentials
can express more complex image features [6]. However, incorporating them is
computationally expensive when considering all enhancing voxels.

In this work, we introduce a probabilistic Hierarchical CRF (HCRF) model
for the automatic detection of gad-enhancing lesions which allows context to
be incorporated at multiple levels sequentially. In particular, our framework
includes: (1) a voxel level CRF with unary and pairwise potentials to obtain
lesion candidates through a voxel-based classification, and (2) a regional, lesion
level CRF incorporating higher order potentials, allowing for the integration
of shape based features (e.g. elongation indicating vessels), groupwise intensity
characteristics and global features (e.g. symmetry).
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The experimental results of applying the HCRF classifier on real, multi-centre
clinical trial images acquired from 122 patients with Relapsing Remitting MS
(RRMS) yields a 98% sensitivity rate, 0.66 positive predictive value (PPV) and
an average of 1.55 FP counts per patient when compared to a set of “silver
standard” manual labels attained by expert consensus1. The results also show
that the new HCRF method outperforms standard MRF and previous CRF
methods.

2 Method

The goal of image classification is to assign to each voxel in the image a label.
Let us denote xi ∈ %d as the observation vector at the voxel i and yi ∈ {1, 0} as
the label of the ith instance. We now describe the 2 main levels of inference in
our framework.

2.1 Voxel Level CRF

At the first level of inference, we develop a Conditional Random Field (CRF) [7]
classifier at the voxel level. A CRF is a discriminant graphical model that directly
estimates the parameters of the conditional posterior, p(Y |X), by learning a
mapping from observations to class labels, generally formulated as:

p(Y |X) =
1

Z
exp(

n∑
i=1

φv(yi|X) +
∑

i,j,i	=j

ϕv(yi, yj |X)) (1)

where X = {xi}n1 and Y = {yi}n1 . n and Z indicate the total number of pixels
and the normalization term, respectively. φv and ϕv are the unary and the
pairwise potentials at the voxel level, evaluating the likelihood of a voxel taking
a particular label and a pair of neighbouring voxels taking on different labels,
respectively. The unary potential is modeled as:

φv(yi|X) = log p(yi|xi) = log(σ(g(xi))) (2)

where xi is the observation vector at voxel i (e.g. intensity values from different
MRI sequences) and σ denotes the sigmoid function. Similar to [1], we use a
Relevance Vector Machine (RVM) classifier to model p(yi|xi).

The pairwise potential in a CRF model permits learning the relationships be-
tween the labels of neighbouring nodes given the observed data. This potential
is usually modeled based on the absolute difference in neighbouring observa-
tions. In this work, we incorporate the sign of the difference as well in order
to account for the directional relationship between the enhancing lesion voxels
and the surrounding non-enhanced voxels (e.g. lesion voxels should typically be
hyper intense in T2w and hypo intense in T1w pre-contrast comparing to the
surrounding non-enhanced voxels). Therefore, to evaluate the likelihood of an

1 It is important to note that errors in manual labeling are very likely present.
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observed edge, not only should the gradient in the associated observations be
high but the sign of the gradient should also support the labelling configuration.
We model the pairwise potential as:

ϕv(yi, yj|xi,xj) = −[αyiyjfyiyj (xi,xj) + βyiyj ](1− δ(yi − yj)) (3)

where αyiyj and βyiyj are model parameters and δ is the Kronecker delta func-
tion. The function fyiyj is the data dependant term.

Training at the voxel level of inference is adapted to eliminate the possibility
of having any FNs, at the expense of additional FPs. A lesion level CRF will
now be developed to remove the remaining FPs based on higher level spatial and
structural information.

2.2 The Regional Lesion-Based CRF

After the first level of CRF, voxels with the same label are grouped together
to form lesion candidates (each lesion candidate is surrounded by a bounding
box, B). As lesion characteristics are highly non-homogeneous throughout the
image volume, lesion candidates are grouped in accordance with their spatial
and anatomical characteristics. Features are specifically chosen in order to per-
form this grouping. Once grouped, a feature specific CRF model with the in-
corporation of higher order potentials is learned for each grouping to optimally
distinguish false positive lesion candidates from true lesions.

The spatial and anatomical features used for the grouping includes: average
location of each lesion candidate along the axis perpendicular to the axial plane
(z-axis), average WM and partial volume (PV) values of each region obtained
from spatial probabilistic atlases registered to each patient. The range of these
three features are divided to three parts yielding 27 groups overall. Empirically,
it was observed that these features are able to efficiently represent the diversity
of lesion candidates. After grouping lesion candidates based on these features,
we then learn a feature specific CRF model for each group as follows:

p(Y |X) =
1

Z
exp(

n∑
i=1

φr(yi|X) +
∑

i,j,i	=j

ϕr(yi, yj |X) +
∑
b∈B

ψr(yb|X)) (4)

where φr and ϕr are modeled similar to Eq. 2 and 3, respectively. The higher
order potential takes the form of the robust PN model (for details on model, see
[6]):

ψr(yb|X) =

{
N(yb)

1
Qγmax if N(yb) ≤ Q .

γmax otherwise.
(5)

where b denotes the voxels within the bounding box, B, and N(yb) denotes the
number of voxels in B not taking on the dominant label. Q is the truncation
parameter which controls the rigidity of the higher order potential. γmax is de-
termined by evaluating the quality of the lesion candidate within each bounding
box and is based on the average intensity values of the region, the shape of the
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underlying enhanced structure (to distinguish enhancing lesions from vessels)
and assessing if the enhanced region has any symmetrical pair (to distinguish
FPs causing from the enhancements at the choroid plexus regions). For lesion
candidates where the assessed quality of the candidate is high, γmax has a lower
value allowing for the voxels within the bounding box to take on different labels.
Otherwise, γmax is high and the model favours all voxels within the bounding
box to take on the same label (i.e. we favoured label zero to eliminate FPs).

We use the piecewise learning approach, to learn the parameters of themodel [8].
This technique makes the computation tractable by breaking the model into dis-
joint pieces, each of which is trained independently and integrated afterwards. The
parameters of the unary potential at both levels are learned within a Bayesian in-
ference, while the parameters of the pairwise model are learned within a cross vali-
dationmethod. The parameters of the higher order potential aremanually selected
to minimize the error on the training set. In the inference stage, considering the
CRF model at each level and its learned parameters, we seek the most probable
labelling that maximizes the conditional probability of Eq. 1 and 4. Graph Cuts
are chosen to solve this optimization problem primarily because of their ability to
find globally optimal solutions for binary classifications [9]2.

3 Experiments and Results

3.1 Data Pre-processing

The data was acquired from 122 patients with RRMS as part of a multi center
clinical trial (31 centers). The patients had varying levels of gad-enhancing lesion
loads, located in different areas of the brain WM, and showed varying amounts
of brain atrophy. All MRI volumes consist of 3mm thick axial slices with 1mm
× 1mm intra-plane resolution. Each acquisition was composed of five sequences:
pre- and post-contrast T1w, T2w, PDw and FLAIR. For the particular data
set that we had access to, the “silver standard” manual labels were determined
using a protocol where two trained experts label the data separately, followed
by consensus agreement. Prior to classification, pre-processing steps including
bias-field inhomogeneity correction as well as removal of non-brain regions from
the MRI are performed. Furthermore, all intra-subject sequences are registered
to a common coordinate space and the intensity histogram of all sequences is
normalized [10].

The HCRF classifier is trained on 92 randomly selected MRI volumes and
tested on the remaining 30 cases. There is at least one patient from each center
in the training set3. Fig. 2 shows an example of the performance of the various
components of the HCRF framework. While the classification results obtained
from the unary potential and unary + pairwise potentials at the voxel level show
many FPs, the proposed HCRF model in (2(e)) successfully captured all four
enhancing lesions without any FPs.

2 We used the Matlab wrapper for robust higher order potentials by Shai Bagon:
http://www.wisdom.weizmann.ac.il/$\sim$bagon/matlab.html.

3 We had insufficient data from each center to provide a statistical analysis per center.

http://www.wisdom.weizmann.ac.il/$\sim $bagon/matlab.html.
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(a) T1c (b) Binary mask (c) φv (d) φv + ϕv (e) HCRF

Fig. 2. The performance of the different components of the proposed HCRF classifier.
The shown images are: the post contrast T1w (a), the binary mask (b), the classification
results of using only the unary potential, φv(yi|X) (c), using both the unary and
pairwise potentials, φv(yi|X) + ϕv(yi, yj |X) (d), and the HCRF model (e). Green and
cyan show TP and FP regions respectively.

We compare the performance of the HCRF model with the MRF and CRF
models described in [1]. Here, the MRF is modeled similar to the CRF model at
the voxel level where the pairwise potential is modeled as: ϕMRF

v (yi, yj) = βyiyj
and β is the Ising parameter. In [1], a post-processing step is used to remove
any regions with fewer than 3 connected voxels. We found that this can result
in missing small lesions, specifically when only 1 or 2 voxels of the lesion are
captured by the model. Therefore, there is no post-processing step in our HCRF
model. Instead, we try to effectively learn the neighbourhood characteristics of
small lesions through the higher order potentials to better distinguish between
lesional enhancements and FPs. Fig. 3 shows a qualitative example of the results
for a case with one small enhancing lesion in the shown slice, which only the
HCRF framework successfully captures. It is missed by the MRF due to the
over-smoothing effect of the Ising model, and because it does not consider the
interaction of neighbouring observations. For CRF [1], even though 2 voxels of
the lesion were captured, the aforementioned post-processing step has removed
the lesion.

The performance of our HCRF model is also quantitatively evaluated against
the MRF and CRF [1] in Table 1. For a fair comparison, the CRF [1] without the
aforementioned post-processing step (CRF [1]no post) is also included. Compar-
isons are based on: the sensitivity rate ( TP

TP+FN for each scan), the average FP

number and the average PPV ( TP
TP+FP for each scan). Note that the goal is high

lesion detection rates and not the exact delineation of lesion boundaries. Hence,
if only one voxel of an enhancing lesion is captured, that is counted as a TP4.
If all of the voxels of an enhancing lesion are missed, that is counted as an FN
and any candidate that does not correspond to an enhancing lesion is counted
as an FP. The results show that the HCRF model has the lowest FP count and
the highest sensitivity rate over all methods. The pairwise potential in the first

4 For the detected lesions, 70% of the area of enhancing lesions were captured on
average.
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(a) T1c (b) Binary mask (c) MRF (d) CRF [1] (e) HCRF

Fig. 3. Comparison of the performance of the HCRF classifier against the MRF and
CRF [1] models. The shown images are: the post-contrast T1w (a), the binary mask
(b), the classification results of the MRF (c), CRF (d) and HCRF (e). Red and green
show FN and TP regions respectively.

Table 1. Quantitative comparisons of the performance of different models. The first
and second columns show the voxel-level classification results for the CRF using
only the unary (CRFv(φ)) and the combination of the unary and pairwise poten-
tials (CRFv(φ, ϕ)) respectively. The third column (HCRF) is the proposed hierarchical
model. The forth and fifth columns show results using the CRF model found in [1], with
(CRF[1]) and without post processing (CRF[1]no post) respectively. The last column
shows the classification result using an MRF model.

CRFv(φ) CRFv(φ,ϕ) HCRF CRF[1] CRF[1]no post MRF

Sensitivity 0.98 0.98 0.98 0.88 0.92 0.81

Avg FPs 22.29 9.13 1.55 1.58 12.03 2.45

PPV 0.13 0.27 0.66 0.58 0.27 0.48

CRF level has decreased the average FP count by 59% (while maintaining high
sensitivity) over using the unary potential alone. For the complete HCRF, in-
corporation of the higher order potential in the second level has decreased the
average FPs by 83%. The low sensitivity rate in CRF [1] is due to missed le-
sions or the 1 or 2 lesion voxels filtered by post-processing. It should be noted
that even though the average FP count is almost the same for the CRF [1] and
HCRF, no post-processing is performed in HCRF to remove the small regions
(and the sensitivity is much higher). As we see for CRF [1]no post, the FP count
increases drastically without any post-processing step. The Ising parameter for
the MRF model was set to give an average FP count close to that of the HCRF
model. Even with a higher FP count, the MRF has lower sensitivity as a result
of oversmoothing.

4 Discussion

In this paper, we propose a new a Hierarchical CRF model to detect gad-
enhancing lesions in brain MRI that embeds contextual information at multiple
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levels. At the first level, a CRF model with up to pairwise potentials are used
to detect the lesion candidates. In the second level, we group the similar lesion
candidates according to features. For each group, a new CRF model embeding
higher order potentials is learned, allowing for the integration of high level fea-
tures (e.g. shape and symmetry) and boosting the discrimination power of our
model. Our classifier is tested on 30 multi-centre clinical data set from RR MS
patients with varying loads of gad-enhancing lesions. The experimental results
show the advantage of the method, showing higher sensitivity rate while main-
taining a very low false positive rate over other approaches. In the future, a
full cross validation will be performed to precisely study the sensitivity of the
parameters to different training sets. More sophisticated models for the higher
order potential and investigation of the performance of the CRF classifier for
other contexts are among the future works as well.
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Abstract. Image segmentation plays a crucial role in many medical
imaging applications by automatically locating the regions of interest.
Typically supervised learning based segmentation methods require a
large set of accurately labeled training data. However, thel labeling pro-
cess is tedious, time consuming and sometimes not necessary. We pro-
pose a robust logistic regression algorithm to handle label outliers such
that doctors do not need to waste time on precisely labeling images
for training set. To validate its effectiveness and efficiency, we conduct
carefully designed experiments on cervigram image segmentation while
there exist label outliers. Experimental results show that the proposed
robust logistic regression algorithms achieve superior performance com-
pared to previous methods, which validates the benefits of the proposed
algorithms.

1 Introduction

To assist doctors locate pathologies, automatic segmentation of different regions
of medical images is very useful. Supervised learning based segmentation method,
which use manually segmented training data as references, has superior perfor-
mance. Those methods perform well as long as the feature space sufficiently
distinguishes each label. They are relatively computationally efficient and not
sensitive to parameters. Many popular learning methods have been applied to
solve challenging medical problems, such as, but not limited to support vector
machine (SVM) [1], neural network [2,3], conditional random field (CRF) [4],
logistic regression (LR) [5].

One disadvantage of the learning-based segmentation is the requirement of
manual interaction for obtaining training data. Manual segmentation by dif-
ferent people are subjective due to the lack of standard when performing the
manual segmentation. In reality, the segmentation training data may not per-
fectly labeled. However, all the previous methods ignored the imperfection of
training data. In such cases the training set is misleading, the guidance given
by the labels may not be reliable. Consequently learning results may not totally
reliable. On the other hand, the precisesly labeling prcess is time consuming,

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 387–394, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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laborious and herpaps not necessory. In this paper, we take the advantage of
learning methods handling label outliers and propose a simplified lableing pro-
cess. The proposed simplified labeling process could significantly reduce doctors
time and effort in labeling the training data. And the proposed learning methods
would handle the labeling errors introduced by the new labeling process. While
learning in the idealized setting has been thoroughly studied, learning in the
presence of labeling errors has not been well explored. And nothing has been
done for medical image segmentation with labeling error.

According to the practical consideration mentioned above, we are the first
to systematically study logistic regression and sparse logistic regression method
with outliers and apply it on cervigram image segmentation. Logistic regres-
sion (LR) is a classical method for classification and has been widely used
in many applications. Sparse logistic regression, which is the logistic regres-
sion with l1-norm regularization, is a very effective method for classification on
large scale data with high dimension. Both methods could be adopted in image
segmentation.

In this paper, we propose a robust sparse logistic regression method to handle
the classification problem with label outliers. In our method, a latent variable
is introduced for the true correct labels, and then we estimate the probability
of labels being flipped. Conjugate gradient method and Lassplore algorithm [6]
are used respectively to minimize the loss function under the noise assumption.
After optimization, the probability of the flipped labels is updated using the
new classification estimation. The algorithm can quickly converge after several
iterations.

To demonstrate the effectiveness of the proposed algorithm, we apply the
proposed method on the task of automatically segmenting the biomarker Ace-
toWhite (AW) regions in an archive of 60, 000 images of the uterine cervix [7].
The most important observation in a cervigram image is the AW region, which is
caused by whitening of potentially malignant regions of the cervix epitheliuem,
following application of acetic acid to the cervix surface. Since the texture, size
and location of AW regions have been shown to correlate with the pathologic
grade of disease severity, accurate identification and segmentation of AW regions
in cervigrams have significant implications for diagnosis and grading of cervical
lesions. Carefully designed experiments on the cervigram images with label out-
liers demonstrate the superior performance of the proposed method and validate
the benefits of the proposed algorithm in practical applications.

2 Related Work

In this section, we briefly review logistic regression and sparse logistic regression.
Logistic regression is a conditional probability of the label y, given a sample

x ∈ Rn, and a weight vector w ∈ Rn:

p(y = 1 | x,w) = σ(wT x) =
1

1 + e−wT x
. (1)
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Given a set of training examples D = {(x1, ŷ1, ..., (xi, ŷi), ..., (xm, ŷm)}, we want
to learn a classifier y = f(x). Here xi ∈ Rn denotes a sample, and ŷi is the
corresponding observed class label. The likelihood function associated with these
m samples is defined as

f(w) =log

m∏
i=1

p(ŷi | xi, w)

=

m∑
i=1

ŷi + 1

2
log(p(ŷi = 1 | xi, w)) +

1− ŷi
2

log(p(ŷi = −1 | xi, w)),

which is a smooth and convex function. We can determine w by minimizing the
logistic loss:

ŵ = argmin
w

f(w). (2)

This is a smooth convex optimization problem. Regularization is usually used to
avoid the overfitting problem. The l2-norm regularization leads to a smooth and
differentiable unconstrained convex optimization problem. Standard optimiza-
tion algorithm such as Newton method and conjugate gradient method can be
applied for solving such optimization problem [8,9].

The l1-norm regularization is used to obtain a sparse model. However, the l1-
norm regularization term is non-differentiable. There are many algorithms pro-
posed in the past for solving the l1 regularized logistic regression [10,11]. Liu et
al. proposed the Lassplore algorithm for solving large scale sparse logistic regres-
sion. They formulate the problem as the l1-ball constrained logistical regression
formulation, in which the objective function is continuously differentiable, and
the problem domain set is closed and convex [6].

3 Proposed Algorithm

We propose a new simplified labeling process. Doctors would label a bounding
box around the region of interest rather than precisely label the boundaries.
Please see Figure 2 (a,b,c) as illustration of the proposed labeling process. Fig-
ure 2(a) is the image for segmentation. As we can see from (b), the groundtruth,
the boundary of the region of interest in nontrivial and complicated. Our la-
beling process is illustration in (c), which would roughtly include the region of
interest in a bounding box. The simplified labeling process would significantly
save time and effort of doctors in labeling the training data.

Considering the new labeling process, which introduces some labeling noise,
none of the previous work has been able to handle label outliers. In this paper, we
propose a robust logistic regression method to handle the classification problem
on large scale data with label outliers.

3.1 Robust Logistic Regression

If there exists some label noise, Eq. 2 is no longer valid. We introduce a latent
variable yi, which represents the true label. The probability of the observed label
p(ŷi | xi, w) is written as the following:
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Table 1. Probabilistic relationship between observed label and true label

Observed Label
−1 1

True −1 γ00 γ01
Label 1 γ10 γ11

Sk
i

.
= p(ŷi = k | xi, w)

=

K∑
i=0

p(ŷi = k | yi = j)p(yi = j | xi, w).
(3)

Here p(ŷi = k | yi = j) represents the probability that the label has flipped
from the true label j to the observed label k. The probability relationship be-
tween observed label and true label is represented in Table 1. By expanding the
terms in Eq. 3 we find that,

S0
i = p(ŷi = −1 | xi, w)

= p(ŷi = −1 | yi = −1)p(yi = −1 | xi, w) + p(ŷi = −1 | yi = 1)p(yi = 1 | xi, w)

= γ00(1− σ(wTx)) + γ10σ(w
Tx)

S1
i = p(ŷi = 1 | xi, w)

= p(ŷi = 1 | yi = −1)p(yi = −1 | xi, w) + p(ŷi = 1 | yi = 1)p(yi = 1 | xi, w)

= γ01(1− σ(wTx)) + γ11σ(w
Tx).

(4)

By substituteing Eq. 4 into Eq. 2, we find:

f(w) =

m∑
i=1

ŷi + 1

2
log(S1

i ) +
1− ŷi

2
log(S0

i ). (5)

This formulation remains smooth and differentiable. It can be solved using stan-
dard optimization algorithm such as conjugate gradient method [9,8].

3.2 Robust Sparse Logistic Regression

To handle outliers in sparse logistic regression, we need to optimize Eq. 5 subject
to the l1-ball constrain. We use the Lassplore algorithm to solve the sparse
logistic regression problem [6]. The Lassplore algorithm is a first-order black-
box method that evaluates the function value and the gradient at each iteration.
The gradient of Eq. 5 is the following:

∇wf(w) =

m∑
i=1

ŷi + 1

2S1
i

∇wS
1
i +

1− ŷi
2S0

i

∇wS
0
i ,

(6)
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where ∇wS
0
n and ∇wS

1
n are:

∇wS
0
i = (γ10 − γ00)σ(w

T xi)(1 − σ(wTxi)) · xi,

∇wS
1
i = (γ11 − γ01)σ(w

T xi)(1 − σ(wTxi)) · xi,
(7)

σ(wT xn) is the conditional probability of ŷi given a sample xi.
An initial estimation of the label flipping probability can be given to start the

optimization. After solving the Lassplore algorithm, label flipping probability is
updated as the following:

ei = σ(wTxi),

γ00 =
(ei < 0.5)&(ŷi = −1)

ei < 0.5
, γ01 = 1− γ00,

γ11 =
(ei > 0.5)&(ŷi = 1)

ei > 0.5
, γ10 = 1− γ11,

(8)

To conclude, an iterative framework is proposed to update the label-flipping
probability. First given an initialization of the label-flipping probability, the
Lassplore method is used to minimize the loss function. Then, the label-flipping
probability is estimated again using the new classification results. Using this
scheme we iteratively update the label-flipping probability and solve the opti-
mization problem.

4 Experimental Results and Discussion

We first use a synthetic dataset to illustrate the effectiveness of our algorithm.
The examples are sampled from two multivariate normal distributions differing in
mean and covariance. Here we focus on the non-uniform flipping of labels, where
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Fig. 1. (a) shows the samples with true labels and use Logistic Regression (LR) for
separation. (b) shows the samples with observed labels, where about 20% labels from
negative class are flipped to the positive class. Robust algorithms push the classification
line to the true boundary line on true labels.
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Table 2. Trained on the corrupted training labels, tested on true labels. The proposed
methods show better performance.

Method Sensitivity Specificity DSC

LR 0.9307 ± 0.0207 0.9987 ± 0.0027 0.9570 ± 0.0158
rLR 0.9920 ± 0.0040 0.9687 ± 0.0031 0.9809 ± 0.0013
SLR 0.9153 ± 0.0248 0.9987 ± 0.0027 0.9508 ± 0.0158
rSLR 0.9840 ± 0.0033 0.9807 ± 0.0020 0.9833 ± 0.0015

(a) Image for segmentation (b) The groundtruth (c) Roughly labeled data

(d) LR using groundtruth (e) LR (f) rLR

(g) SLR (h) rSLR

Fig. 2. (d) uses the groundtruth and LR in training for comparison. The simplifiled
labeling data, as shown in (c) are used for training for robust algorithm. (f) and (h)
include lots of negative points since we use some of the negative points in training. Use
the robust algorithms, the result expelled many negative points.
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Table 3. Testing errors on segmenting the cervigram data

Method Sensitivity Specificity DSC

LR using groundtruth 0.8351 0.8820 0.8157
LR 0.9486 0.5660 0.6950
rLR 0.8175 0.8825 0.8058
SLR 0.9354 0.5931 0.7012
rSLR 0.7121 0.8986 0.7517

there are negative data being labeled as positive ones. This setting is to imitating
the proposed labeling process in medical images. All the data are training on
the corrupted data and then tested on the true labels. We quantitatively eval-
uate the classification results in Table 2. Compared to logistic regression (LR)
and sparse logistic regression (SLR) methods, both robust logistic regression
(rLR) and robust sparse logistic regression (rSLR) perform better on sensitivity
but worse on specificity. Dice similarity coefficient(DSC), which is defined as
(2 ∗ true positive)/(2 ∗ true positive + false positive + false negative), measures
the consistency of results and groundtruth. DSC is a more comprehensive mea-
surement of the coinicdence of the classification result with the groundtruth.
The proposed methods perform better on this measurement.

We apply the proposed algorithm to classify pixels in optical cervigram
images into two classes, namely normal and abnormal tissues while not given
accurate segmentation training labels. The experiment is designed as the fol-
lowing: We have experts precisely labeled the segmentation, which is considered
as groundtruth. We also have experts roughly labeled the segmentation, using
our proposed simplified labeling method. The roughly labeled data is used for
training, and then we test our segmentation results against the precisely labeld
segmentation. Our proposed labeling process and segmentation results would
achieve competitive results compared to using the the groundtruth for training.
In our experiments, HSV feature is chosen for classification because it achieves
the best performance.

Table 3 shows the results of different classifiers measured by sensitivity, speci-
ficity and DSC. Our method consistently achieves significantly better perfor-
mance in terms of DSC. The results from our method also compares favorably
with other state-of-the-art methods in this application [12].

5 Conclusion

This paper proposed a novel method on handling labeling noise. The proposed
method has been demonstrated on cervigram segmentation problem. Using a
bounding box around the region of interest as labels other than accurate labels,
we can still get comparable results. In the future, we want to extend our work
using group sparsity [13].
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Abstract. In this paper, we present a liver segmentation approach. In
which, the relation between neighboring slices in CT images is utilized to
estimate shape and statistical information of the liver. This information
is then integrated with the graph cuts algorithm to segment the liver
in each CT slice. This approach does not require prior models construc-
tion, and it uses single phase CT images; even so, it is talented to deal
with complex shape and intensity variations. Moreover, it eliminates the
burdens associated with model construction like data collection, manual
segmentation, registration, and landmark correspondence. In contrast,
it requires a low user interaction to determine the liver landmarks on a
single CT slice only. The proposed approach has been evaluated on 10
CT images with several liver abnormalities, including tumors and cysts,
and it achieved high average scores of 81.7 using MICCAI-2007 Grand
Challenge scoring system. Compared to contemporary approaches, our
approach requires significantly less interaction and processing time.

1 Introduction

In liver CAD systems, the liver segmentation is the first and essential process,
and its accuracy is of special significance. However, this process is difficult be-
cause of low contrast between the liver and surrounding tissues , great differences
in liver shape and intensity , and the existence of liver abnormalities. In liter-
ature, there are many attempts to solve the liver segmentation problem and
various approaches have been proposed, including intensity or texture based ap-
proaches, deformable and statistical model-based approaches, and probabilistic
atlases based approaches. Survey and comparison of different liver segmentation
approaches have been presented in [1,2].

In the intensity based approaches, one or multiple intensity thresholds, region
growing, or watershed methods are applied to extract an initial binary volume
which consequently refined using morphological filters or knowledge-based ap-
proaches. Recent approaches of this category have been proposed in [3,4], and
by Beck and Aurich in [2]. In the deformable model-based approaches, an initial
contour or surface is deformed to minimize a predefined energy function. In [5,6],
deformable models have been coupled with shape models and intensity thresh-
olding to perform liver segmentation. Additionally, Gradient vector flow (GVF)

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 395–403, 2012.
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active contour [7] has been utilized for liver segmentation by R. S. Alomari et al.
in [8] and by Chi et al. in [2]. The implicit deformable models, also called implicit
active contours or level sets [9], have been utilized for liver segmentation as well.
The statistical models have been received high interest from the investigators
of liver segmentation approaches. They construct linear or non-linear models to
represent the variation in liver shape and appearance like the approaches pre-
sented in [10,11,12]. In addition to statistical shape models, probabilistic atlases
have been integrated into different liver segmentation approaches [13].

Despite this prosperous literature, we can conclude that the intensity- and
deformable-based approaches were highly affected by the liver abnormalities.
The statistical model- and probabilistic atlas-based approaches could enhance
the results; however, they added a burden of model construction and match-
ing. In this paper therefore, we present a knowledge-based liver segmentation
approach. In this approach, we benefit from the high correlation between conse-
quent slices of the same patient to define the shape constrains, and to estimate
the statistical parameters of the liver and non-liver tissues. For initialization,
the user segment one slice in the volume to define these constrains, and con-
sequently they automatically updated from the nearby slices. A graph cuts al-
gorithm based on the defined constrains is applied in a slice-by-slice manner
to automatically segment the whole volume. Additionally, to reduce the com-
putational time, we build the graph in a narrow band area defined from the
adjacent slice. This proposed approach share the concept of constrains propaga-
tion with the method of Lee et al. [14]. However, the segmentation is performed
from large to small liver cross sections which increases the ability of capturing
separated and damaged liver parts. Moreover, shape and intensity constrains
are integrated directly into the graph cuts segmentation algorithm and they are
updated based on the segmentation results of the slices that have been processed
so far.

The rest of this paper is organized as follows: in Sect. 2, the proposed approach
is described. The evaluation results of the proposed approach are presented and
discussed in Sect. 3. Finally, the paper is concluded in Sect. 4.

2 Proposed Segmentation Approach

The proposed segmentation approach mimics the human methodology in deter-
mining the boundary of liver. In this methodology, the correspondence between
adjacent slices in CT image helps in alleviating the ambiguity of the liver bound-
ary and in detecting the liver abnormalities. The whole procedure of the proposed
approach is as follows:

Step-1: Performing image normalization in soft tissue window and then ap-
plying nonlinear diffusion filter to each slice.
Step-2: Selecting one slice containing nearly the largest liver cross section as
the start slice and then define the liver object on it.
Step-3: Estimating initial shape, intensity, and graph cuts constrains from the
start slice.
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for all lower slices, starting from the start slice to the last one. do
Step-4: Define a narrow band around the liver object.
Step-5: Performing slice segmentation using shape-based graph cuts algo-
rithm.
Step-6: Adding the segmentation results of this slice to the output volume.
Step-7: Updating shape, intensity, and graph cuts constrains according to
the segmentation results of the current slice.

end for
for all upper slices, starting from the start slice to the first one. do
Repeat Step-4 and Step-5.
if the segmented object contains multiple parts then
Step-8: Selecting the left most one as the liver object.

end if
Repeat Step-6 and Step-7.

end for
Step-9: Applying the postprocessing procedure to the output volume.

2.1 Preprocessing

The first aim of this process is to map the raw CT data encoded in either
twelve or sixteen bits to gray scale data encoded in eight bits. The mapping or
normalization is performed in a soft tissue window determined by selecting the
lower (Lo) and upper (Hi) bounds of the right distribution in the histogram of
the raw CT data. This mapping is performed according to (1).

Ig(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if Io(x, y) ≤ Lo

255(Io(x,y)−Lo)

Hi−Lo
if Lo ≤ Io(x, y) ≤ Hi,

255 if Io(x, y) ≥ Hi

(1)

where, Io is the raw CT image, Ig is the produced gray level image.
After mapping the whole CT volume to a gray scale volume, a nonlinear

diffusion filter [15] is applied to each 2D slice in the volume to reduce the noise
and increase the liver homogeneity.

2.2 Estimation of the Shape and Intensity Constrains

The shape constrains are applied as a prior probability of the liver location,
and the intensity constrains are defined as the probability of the liver intensity
model at each pixel. These constrains are automatically determined for each slice
according to the segmented liver in the previous slice. The estimation process is
performed according to the following procedure.

1. Define; the binary image of liver segmentation in the start slice as Tempstr,
the binary liver object in this slice as objectinTempstr, the binary image of
liver segmentation in the previous slice as Tempprv, the binary liver object in
this slice as objectinTempprv, the pixels belonging to the liver in the previous



398 A. Afifi and T. Nakaguchi

(a) (b) (c) (d)

Fig. 1. Constrains estimation, (a) sample previous slice (liver contour in red and the
minor axis in green), (b) the contour of the estimated shape template shown on the
current slice, (c) the estimated constrains for graph cut (object in green and background
in red), and (d) the slice after applying the narrow band constrain

slice as Liverprv, and the pixels not belonging to the liver in the pervious
slice as non− Liverprv.

2. Determine the minor axis of the ellipse that fit the object in Tempprv and
denote it as max (Fig. 1a).

3. Erode the Tempprv with a disk structuring element of radius round(0.02×max)

and considering the result as the shape template of the current slice (Fig. 1b).
This erosion value has been decided after studying the average change of the
minor liver axes in different cases.

4. If Area(objectinTempprv) ≥ 0.1×Area(objectinTempstr),calculate the histogram
of Liverprv and non− Liverprv as the intensity model; else, use the previously
used intensity model.

5. Erode Tempprv with a disk structuring element of radius round(0.1 × max)

and the result is considered as the object hard constrains in the graph cuts
algorithm (Fig. 1c).

6. Dilate the Tempprv with a disk structuring element of radiusmax(2, round(0.1×
max)). Then, the edge of the resulting binary template is determined and
dilated with a disk structuring element of radius 1. The result of this step
is considered as the background hard constrains in the graph cuts algorithm
(Fig. 1c).

7. Define a narrow band window surrounding the liver object as the smallest
rectangle fitting the dilated object calculated in Step 5 (Fig. 1d).

2.3 Segmentation Using Graph Cuts

The aim of this process is to find a labeling A = {A1, A2, , Ap, , A|P |} which minimize
the the total energy function considering the estimated constrains as in (2).

ET (A) = (1− λ)RD(A) + λRs(A) + μB(A), (2)

where, μ determines the relative importance of the boundary term ,B(A), versus
the regional term and λ determines the relative importance of the data penalty,
RD(A), versus the shape penalty ,Rs(A). The data penalty reflects on how the
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intensity of a pixel fits into the intensity model of the object (liver) and back-
ground (non liver tissues). The shape penalty is encoded as the prior probability
of a pixel to be inside or outside the liver object. The data, shape, and boundary
penalties are calculated as in (3), (4), and (5), respectively.

RD (Ap) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

log(pr(Ip∈”obj”))
log(pr(Ip∈”obj”))+log(pr(Ip∈”bkg”))

if Ap = 1

log(pr(Ip∈”bkg”))
log(pr(Ip∈”obj”))+log(pr(Ip∈”bkg”))

if Ap = 0

(3)

Rs (Ap) =

⎧
⎨

⎩

1− shapetemp if Ap = 1

shapetemp if Ap = 0
(4)

Bpq = e
− |Ip−Iq|2

2σ2 × 1

d(p, q)
, (5)

where, shapetemp is the estimated shape template of the objected (liver) in the
current slice, Ip is the intensity value of a pixel p, pr (Ip ∈ “obj”(“bkg”)) is the
probability of p to be an object(”obj”) or background (”bkg”) pixel, and d(p, q) is
the Euclidian distance between pixels p and q.

This total energy function can be minimized efficiently using the graph cuts
algorithm [16]. To achieve this goal, a graph with cut cost equaling the value of
ET (A) is constructed using the edge weights defined in (6), (7), and (8). Further-
more, the hard constrains defined in Sect. 2.2 are implemented via infinity cost
edges.

wsp =

⎧
⎪⎪⎨

⎪⎪⎩

∞ if p ∈ ”obj”

0 if p ∈ ”bkg”

(1− λ)RD (Ap = 0) + λRs (Ap = 0) otherwise

(6)

wpt =

⎧
⎪⎪⎨

⎪⎪⎩

0 if p ∈ ”obj”

∞ if p ∈ ”bkg”

(1− λ)RD (Ap = 1) + λRs (Ap = 1) otherwise

(7)

wpq = Bpq(p, q), (8)

wsp, wpt are the weight of the links to terminal nods, and wpq is the weight of the
link between two adjacent pixels.

2.4 Postprocessing

In this process, any tissue surrounded by the segmented liver tissue is added to
the final segmentation which smoothed using a 3D filter. To achieve this goal
the following procedure has been applied.

1. Perform hole filling to each 2D slice.
2. Perform binary image closing to the whole 3D volume using a ball structuring

element of radius 3.
3. Perform hole filling to each 2D slice again.
4. Smooth the final volume by applying a binary median filter of 3× 3× 3 size..
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3 Results and Discussion

Data Sets: The data set used for evaluation is the MICCAI2007 grand challenge
test set [17]. This test set contains 10 CT images acquired using variety of CT
scanners. In some cases, the entire anatomy is rotated around the z-axes. Most
images in this data set have liver abnormalities, including tumors, metastasis,
and cysts of different sizes.

Parameter Setting: All parameters have been adjusted using 5 CT images
having different characteristics; 3 from MICCAI2007 training data set and 2 from
a local data set. Graph cuts parameter μ was set to 2. The parameter λ was set
to 0.2. The parameter σ in the boundary term was dynamically selected from
each slice as the average absolute intensity difference between the neighboring
pixels (σ = 1

|P |
∑

p∈P,q∈Np
|Ip − Iq|).

Evaluation Metrics: The proposed approach has been evaluated using the scor-
ing system of MICCAI-2007 Grand Challenge workshop [2] which includes five
metrics; Volumetric Overlap Error (VOE), Relative Volume Difference (RVD),
Average Symmetric Surface Distance (ASD), Root Mean Square Symmetric Sur-
face Distance (RMD), Root Mean Square Symmetric Surface Distance (RMD),
and Maximum Symmetric Surface Distance (MSD). Moreover, the final precision
score has been calculated according to themethod presented byHeimann et. al. [2].

3.1 Experiments on Clinical Data

The segmentation approach has been implemented using Matlab environment on
Windows-based personal computer with a Corei7(2.8GHz) processor and 6GB of
memory. The evaluation results of the segmentation approach which calculated
by the committee of the ”3D Segmentation in the Clinic: A Grand Challenge”
workshop of MICCAI2007 are shown in Table 1.

Comparative results of the proposed approach, the best automatic method
(Kainmüller et al.) and all interactive methods reported by T. Heimann et.
al. in [2] are shown in Table 2. As in [2], All approaches has been classified
according to the time required for interaction. Less than 1 min was regarded
as low interaction, less than 5 min as medium interaction, and more than 5
min as high interaction. Referring Table 2, the proposed approach share the
best position with Beichel et. al. MBR. Additionally by referring the recent
results on sliver07.org database [17], the proposed approach is in the third place
of all methods. However, the proposed approach is significantly faster, requires
less amount of interaction, and does not require extensive manual refinement.
The automatic method of Kainmüller et. al. achieved this results by using an
extensive training set of 112 liver shapes to build a statistical shape model (SSM)
consists of around 7.000 landmarks. The total score of the same method was 73

when the number of training shapes used to build the SSM was 43 [10].
Since the shape and intensity constrains are estimated in a case-specific man-

ner, the proposed approach is robust for liver shape variations and existence
of liver abnormalities. Fig. 2 show that, the proposed approach can efficiently
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Table 1. Evaluation results of the proposed approach

Case VOE RVD ASD RMD MSD Total Score Time (sec.)
[%] Score [%] Score [mm] Score [mm] Score [mm] Score Initial Total

#1 5.2 80 2.4 87 0.7 82 1.4 81 14.7 81 82 35 221
#2 5.9 77 5.0 74 0.8 80 1.7 76 19.4 74 76 40 223
#3 3.9 85 2.2 88 0.7 83 1.1 84 14.0 82 84 37 218
#4 5.0 80 2.5 86 0.7 81 1.4 80 10.4 86 83 36 122
#5 6.1 76 1.2 94 1.0 76 1.9 74 21.5 72 78 36 118
#6 5.8 78 0.7 96 0.8 79 1.8 74 20.1 74 80 37 204
#7 3.8 85 1.5 92 0.5 87 1.2 84 16.0 79 85 38 170
#8 6.2 76 1.1 94 1.0 75 2.3 68 22.2 71 77 35 113
#9 4.2 84 1.2 94 0.5 87 1.2 83 16.0 79 85 37 284
#10 4.5 82 0.5 98 0.6 86 1.2 84 11.5 85 87 36 108
Average 5 80 1.8 90 0.7 82 1.5 79 16.6 78 81.7 36.7 178.1
Std. Dev. 0.9 3.6 1.3 7.0 0.18 4.3 0.4 5.5 4.1 5.3 3.8 1.5 60.8

Table 2. Comparative results of the proposed segmentation approach

Method VOE RVD ASD RMD MSD Final Runtime
[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score [min]

Beichel et. al. MBR(high) 5.2 80 1.0 91 0.8 80 1.4 80 15.7 79 82 36
Proposed approach(low) 5 80 1.8 90 0.7 82 1.5 79 16.6 78 82 3
Kainmüller et. al.(Automatic) 6.1 76 −2.9 85 0.9 76 1.9 74 18.7 75 77 15
Beck and Aurich(high) 6.6 74 1.8 88 1.0 74 1.9 73 18.5 76 77 7
Dawant et. al.(med) 7.2 72 2.5 86 1.1 73 1.9 74 17.1 77 76 20
Second rater 6.4 75 4.7 75 1.0 75 1.8 75 19.3 75 75
Lee et. al.(low) 6.9 73 1.3 88 1.1 73 2.1 71 21.3 72 75 7
Beichel et. al. CBR(med) 6.5 74 1.1 90 1.1 72 2.5 66 23.4 69 74 31
Wimmer et. al.(med) 8.1 68 6.1 68 1.3 67 2.2 69 18.7 75 69 4 − 7
Slagmolen et. al.(med) 10.4 59 3.7 70 2.0 50 5.0 34 40.5 47 52 60
Beichel et. al.(low) 14.3 48 3.1 62 3.6 34 7.9 24 49.2 38 41 30

(a) (b) (c) (d)

Fig. 2. Segmentation results of cases containing large and dense liver tumors

extract the liver in different cases containing large and dense tumors. Referring
Table 1, the average performance of the proposed approach (81.7) cab be regarded
as closer to the reference manual segmentation than the human performance (75)
[2]. Small deviation of these scores shows the ability of the proposed approach to
deal with extreme cases as well as easy and moderate cases. The processing time
required to segment a CT volume ranges from 2−5 minutes and it is significantly
less than the manual or other conventional segmentation methods. In general,
the proposed approach can efficiently utilize the anatomical knowledge of the
liver to achieve accurate segmentation results.
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4 Conclusion

In this work, we proposed a novel shape-based approach for liver segmentation
in portal-venous CT images using a case-specific knowledge. In which, the re-
lation between consequent slices of the same image is exploited to estimate the
shape and intensity information of the liver. Then, this information is integrated
into the graph cuts algorithm to segment the whole CT image. Unlike the other
shape-based segmentation approaches which use training data to build a statis-
tical model, the proposed technique does not require prior model construction.
Accordingly, it is not restricted to the trained model, and it can be applied when
there is no training data available. The evaluation results demonstrated the high
precision of the proposed approach. It efficiently estimates the liver boundary
even with the existence of large and dense liver abnormalities. The utilization
of a case-specific knowledge increases the ability of the proposed approach to
deal with difficult and atypical liver shapes. Additionally, it removes the bur-
den of model construction and matching. A low processing time required by the
proposed approach makes it suitable for clinical application.
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Furst, J.D., Furukawa, D., Grenacher, L., Hornegger, J., Kainmüller, D., Kitney,
R.I., Kobatake, H., Lamecker, H., Lange, T., Lee, J., Lennon, B., Li, R., Li, S.,
Meinzer, H.P., Németh, G., Raicu, D.S., Rau, A.M., van Rikxoort, E.M., Rousson,
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Abstract. An emerging topic is to build image segmentation systems that can 
segment hundreds to thousands of objects (i.e. cell segmentation \ tracking, full 
brain parcellation, full body segmentation, etc.). Multi-object Level Set 
Methods (MLSM) perform this task with the benefit of sub-pixel precision. 
However, current implementations of MLSM are not as computationally or 
memory efficient as their region growing and graph cut counterparts which lack 
sub-pixel precision. To address this performance gap, we present a novel 
parallel implementation of MLSM that leverages the sparse properties of the 
algorithm to minimize its memory footprint for multiple objects. The new 
method, Multi-Object Geodesic Active Contours (MOGAC), can represent N 
objects with just two functions: a label mask image and unsigned distance field. 
The time complexity of the algorithm is shown to be O((M^d)/P) for M^d pixels 
and P processing units in dimension d={2,3}, independent of the number of 
objects. Results are presented for 2D and 3D image segmentation problems. 

Keywords: active contours, segmentation, level set, parallel. 

1 Introduction 

The Level Set Method (LSM) [1, 2] is popular in computer vision systems for 
segmenting images [3]. LSM solves PDEs to produce image segmentations with sub-
pixel accuracy. The multi-object version is capable of segmenting adjacent structures 
without gaps or overlaps [4-10].  However, current implementations of the Multi-
object Level Set Method (MLSM) are slow and require a large memory footprint 
compared to their region growing [11] and graph cut counterparts [12], which lack 
sub-pixel accuracy. A modern challenge is to develop MLSM implementations that 
have competitive computational and memory efficiency with region growing and 
graph cut methods. 

Several methods have been proposed for segmenting ܰ objects with ܰ level set 
functions [4, 6, 8]  that are stored as images. Storage of these level set images is 
intractable for tasks such as cell tracking in microscopy images [13] where there are 
potentially hundreds to thousands of objects. The Multi-phase LSM [7] reduces the 
number of level sets to ݈݃ଶሺܰሻ, and the Multi-compartment LSM [5, 9] reduces the 
number of functions to 4 in 2D and 6 in 3D. Even with these advancements, some 
segmentation tasks are still intractable because the time complexity for existing 
MLSMs is dependent on the number of objects. By comparison, region growing 
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techniques require only one function to represent ܰ objects, and the computation time 
can be independent of the number of objects.  

All previous MLSMs use implementations of the narrow-band method [1], which 
requires periodic re-initialization of the signed distance field. One notable exception 
is the work by Lie et al. [10], but their method does not have sub-pixel precision. The 
fast-marching method [1] for distance field re-initialization is a computational 
bottleneck whose complexity is ܱሺܯௗ݈ܯ݃ሻ for ܯௗ pixels in dimension ݀ א ሼ2,3ሽ. 
A more efficient approach is to use the sparse-field method [14] that has ܱሺܯௗିଵሻ 
time complexity. The sparse-field LSM stores only the minimum narrow-band needed 
for finite difference calculations and maintains an approximation to the signed 
distance field at every time step. The sparse-field LSM is competitive with region 
growing methods and will be extended in this work to create a new MLSM.  

To develop LSMs that run at faster, real-time speeds, implementations must 
leverage parallelism now abundant on modern GPUs and CPUs. There has been work 
on parallel implementations of single object LSMs [15] that achieve substantial 
speed-up. Memory consumption is a concern for parallel implementations because 
GPUs generally have access to less memory than CPUs; and at real-time speeds, 
memory latency and access patterns become a major performance concern. These 
concerns complicate development of a parallel Multi-object Level Set Method, which 
has yet to be proposed in literature. 

The contributions of this work are two-fold. First, we describe how to represent ܰ 
level sets with only a label mask and distance field. Second, we describe a parallel 
algorithm for segmenting ܰ objects in 2D and 3D. Properties of the sparse-field LSM 
are leveraged to represent and evolve ܰ level sets with the "label mask + distance 
field" data structure. Results are presented for 2D/3D segmentation of multiple, 
potentially overlapping, objects. The scalability of the algorithm is analyzed, and the 
computational complexity of the algorithm is discussed and juxtaposed with other 
MLSM implementations. We regard parallelism as a necessary consideration when 
proposing a new algorithm because computing hardware is becoming more parallel as 
opposed to faster. The algorithm is implemented in OpenCL and runs on the GPU, but 
the focus of this work will be on the algorithm, not GPU performance. Source code is 
available at http://code.google.com/p/imagesci/. 

2 Method 

Representation. The following LSM, which we refer to as Multi-Object Geodesic 
Active Contours (MOGAC), segments a gray level image ܫ: Ω  ࣬ with domain Ω ؿ ࣬ௗ in dimension ݀ א ሼ2,3ሽ into at most ܰ object regions represented by signed 
distance fields ߮: Ω  ࣬ for labeled regions ݊ ߳ ࣦ ൌ ሼ1, ڮ , ܰሽ. The segmentation 
is compressed into a label function ߯: Ω  ࣦ and unsigned distance field ߰: Ω  ࣬ 
via ߰ሺ࢞ሻ ൌ min|߮ሺ࢞ሻ|. An approximation to ߮ሺ࢞ሻ is computable from  ߯ሺ࢞ሻ and ߰ሺ࢞ሻ at the boundary of region ݊: Λ ൌ ሼࣨ߳࢟ |࢞ሺ࢞ሻ s.t. ߪሺ࢞ሻ ് ሻሽ (1)࢟ሺߪ

where ࣨሺ࢞ሻ is the connected neighborhood of pixel ࢞ and the sign ߪሺ࢞ሻ is indicated 
by, 
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ሻ࢞ሺߪ ൌ ቄെ1 ߯ሺ࢞ሻ ൌ ݊1 (2) .݁ݏ݅ݓݎ݄݁ݐ

The partially reconstructed level set ߮   Λ  ࣬ is given by ߮ሺ࢞ሻ ൌ  ሻ. ߮࢞ሻ ߰ሺ࢞ሺߪ
accurately measures the signed distance at the boundary of two objects. At the shared 
boundary of more than two objects, this measurement is approximate. ߮ provides enough 
information to extract an iso-surface with marching cubes [16] or recover the entire signed 
distance field with fast-marching [1]. As previously mentioned, we want to avoid fast-
marching to save time and memory. Therefore, the level set evolution scheme must restrict 
its computational domain to Λ for each level set ߮. The sparse-field LSM [14] has 
exactly this property. Fig. 1 depicts both the unsigned distance field and label image 
representing 5 objects that overlap to create a total of ܰ ൌ 8 object regions. 
 

 
(a) (b) (c) (d) 

Fig. 1. (a) Distance field ߰ሺ࢞ሻ, (b) label image ߯ሺ࢞ሻ, (c) initial segmentation overlaid on "X" 
image, and (d) final segmentation of "X" image 

Level Set Evolution. The ܰ objects represented by ܰ level sets ሬ߮Ԧ ൌ ሼ߮ଵሺ࢞ሻ, ڮ , ߮ேሺ࢞ሻሽ are evolved through time by solving the differential equation డఝሬሬԦሺ࢞,௧ሻడ௧ ൌ Ԧ݂ሺ࢞, ൫ࢾሻݐ ሬ߮Ԧሺ࢞, ,࢞ሻ൯ where Ԧ݂ሺݐ ሻݐ א ࣬ே is the speed function and ࢾሺ·ሻ is an ܰ ൈ ܰ diagonal matrix whose diagonal entries are compactly supported 
approximations to the dirac delta ߜሺ·ሻ. The ݅௧ diagonal entry ࢾሺ ሬ߮Ԧሻ ൌ  .ሺ߮ሻߜ 
Subsequent examples use speed functions of the following form: 

݂ሺ࢞ሻ ൌ ሻԡ࢞ሺ߮ሻԡ࢞ሺߩఘߣ  జߣ Ԧ߭ሺ࢞ሻ · ሻ࢞ሺ߮  ሻԡ, (3)࢞ሺ߮ሻԡ࢞ሺߢߣ

where ߩሺ࢞ሻ א ࣬ is a pressure force that drives the object's boundary towards a 
particular image intensity, Ԧ߭ሺ࢞ሻ א ࣬ௗ is an external velocity field that drives the 
boundary towards edges in the image, and ߢሺ࢞ሻ א ࣬  is the mean curvature for 
object ݊. Relative contributions of each force are controlled by weights ߣఘ, ߣజ, and ߣ. Forces are computed with first-order upwind finite differences [1] on either a 3 ൈ 3 or 3 ൈ 3 ൈ 3 stencil in 2D or 3D respectively. A first-order solution to 

డఝሬሬԦሺ࢞,௧ሻడ௧  

yields the following iterative scheme: ሬ߮Ԧሺ࢞, ݐ  ሻݐ∆ ൌ ሬ߮Ԧሺ࢞, ሻݐ  ݐ∆ Ԧ݂ሺ࢞, ൫ࢾሻݐ ሬ߮Ԧሺ࢞, ሻ൯. (4)ݐ

The evolution process changes the location of the zero iso-level for each object, thereby 
moving object boundaries in accordance with the speed function ࢌሬԦ. After computing 
updates for all level sets ࣐ሬሬԦሺ࢞ሻ, the result must be stored in the label and unsigned 
distance images ࣑ሺ࢞ሻ and ࣒ሺ࢞ሻ respectively. To do this, we use the projection method 
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proposed by Losasso et al. (See Fig. 2,4,5 in [8]) . New level set values are sorted to 
find the smallest two ࢇ࣐ሺ࢞ሻ and ࢈࣐ሺ࢞ሻ s.t. ࢇ࣐ሺ࢞ሻ ൏  for  ሻ among those labels࢞ሺ࢈࣐
which ࢞ ࣕ . The label and unsigned distance images are updated via: ߯ሺ࢞, ሻݐ ൌ ቄܾ ߮ሺ࢞, ሻݐ ൌ ߮ሺ࢞, ሻ andݐ ܾ ൏ ܽܽ ݁ݏ݅ݓݎ݄݁ݐ  (5)

and  ߰ሺ࢞, ሻݐ ൌ ଵଶ |߮ሺ࢞, ሻݐ െ ߮ሺ࢞, ሻ|. (6)ݐ

This projection technique has several useful properties. First, it reduces the complexity 
of topological relationships between ܰ objects in any finite dimension to just two 
objects in one dimension. Second, it insures objects within a distance of 1 pixel from 
each other do not overlap or have air-gaps. Third, it couples forces between adjacent 
objects so that the shared boundary can move without creating gaps or overlaps.  

The initial segmentation may have overlaps even though the final image 
segmentation should not. One goal of level set evolution is to remove these overlaps. 
For this task, overlapping object regions in the initial segmentation are treated as 
different objects. It is then necessary to define forces that contract overlapping object 
regions so that the final segmentation contains only distinct objects.  

To evolve ߮ሺ࢞ሻ, we evaluate eq. 3 on the subset Γ ൌ ሼ࢞|െ0.5  ߮ሺ࢞ሻ  0.5, Ωሽ ߳ ࢞ ك Λ , by windowing ߜሺ·ሻ to have support ሾെ0.5,0.5ሿ pixels. The CFL condition is enforced by choosing ∆ݐ s.t. ∆ݐ  0.5 ݂௫⁄  

where ݂௫ ൌ max,࢞ห ݂ሺ࢞ሻߜ൫߰ሺ࢞, ,࢞ሻ൯ห. To compute Ԧ݂ሺݐ ࢞ If .࢞ ሻ must be known in the neighborhood around࢞ሻ with finite differences, ߮ሺݐ א Λ and ߯ሺ࢞ሻ ൌ ݊, it is 
true that ࢟ א ࣨሺ࢞ሻ, ߮ሺ࢟ሻ ൌ ሻ࢟ሻ because either ߯ሺ࢟ሻ ߰ሺ࢟ሺߪ ് ߯ሺ࢞ሻ which 
implies ࢟ א Λ, or ߯ሺ࢟ሻ ൌ ߯ሺ࢞ሻ which implies ࢟  is inside object ݊, so ߰ሺ࢟ሻ must be 
a measurement to object ݊. If ࢞ א Λ but ߯ሺ࢞ሻ ൌ ݉ and ߯ሺ࢟ሻ ൌ ݈ s.t. ݊, ݉, and ݈ are 
all different, ߰ሺ࢟ሻ could be a measurement to object ݈ instead of ݊. The problem can 
be resolved by setting ߮ሺ࢟ሻ ൌ ሺ߰ሺ࢞ሻ  1ሻߪሺ࢟ሻ if  ࢟ ב Λ. To address the problem 
in general for larger neighborhoods, we recommend the  Multi-compartment LSM [5, 
9]. A solution is not implemented in this work because the problem is unnoticeable in 
practical examples. Future work will implement a solution.  

The level set evolution process is described by Algorithm 1. The unsigned distance 
field ߰ is rebuilt within a distance of ܮ ൌ 3 pixels via the fast approximation 
described in [14]. Evolve is straightforward to parallelize because each for-loop 
over Ω is dependent on only the connected neighborhood around each pixel. The only 
step that is non-trivial to parallelize is computation of ݂௫, which can be done with a 
parallel reduction. This computation can be avoided by crafting (rescaling) Ԧ݂ s.t. ݂ሺ࢞, ሻݐ א ሾെ1,1ሿ or clamping ߬ሺ࢞ሻ to the range ሾെ1,1ሿ. Clamping is an acceptable 
shortcut in image segmentation problems because forces do not have to be physically 
accurate. Furthermore, forces only need to be evaluated for objects that compete for a 
particular pixel, which is at most ሺ2݀  1ሻ. The computational complexity of 
Evolve is then ܱሺܯௗ ܲ⁄ ሻ for ܯௗ pixels and ܲ processing units. Details of the 
implementation are contained in the open-source release, which does compute ݂௫. 
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Algorithm 1. Evolve 

foreach ࢞ א  Ω do //Compute speeds 
if ݊ s.t. ࢞ א Γthen 

foreach ࢟߳ሺࣨሺ࢞ሻ  ሼ࢞ሽሻ  ݊ ൌ  ߯ሺ࢟, ሻ࢞ሻ; ߬ሺݐ ൌ ݂ሺ࢞, ,࢞൫߮ሺߜሻݐ ሻ࢞ሻ൯; ݈ሺݐ ൌ ݊ ݂௫ ൌ max,࢞ |߬ሺ࢞ሻ| 
if ݂௫  1 then ∆ݐ ൌ 0.5/ ݂௫ else ∆ݐ ൌ 0.5 //Determine time step 
foreach ࢞ א  Ω do //Update level sets 

if ݊ s.t. ࢞ א Γthen ܼ ൌ  ;
for ݇ ൌ 1: ሺ2݀  1ሻ do  ݊ ൌ ݈ሺ࢞ሻ;ݖ ൌ ߮ሺ࢞, ሻݐ  ܼ   ሻ࢞ሺ߬ݐ∆ ൌ ܼ  ሼሺݖ, ݊ሻሽ 
Sort ܼ by ݖ to find ߮ሺ࢞ሻ and ߮ሺ࢞ሻ 

Compute ߯ሺ࢞, ݐ  ,࢞ሻ and ߰ሺݐ∆ ݐ   ሻݐ∆
for ݈ ൌ 1:  do //Rebuild distance field ܮ
 foreach ࢞ א  Ω do 

if ߰ሺ࢞, ሻݐ  0.5 and ߰ሺ࢞, ݐ  ሻݐ∆  ሺ݈ െ 0.5ሻ  then ߰ሺ࢞, ݐ  ሻݐ∆ ൌ min࢟ఢࣨሺ࢞ሻหߪఞሺ࢞ሻሺ࢟, ݐ  ,࢟ሻ ߰ሺݐ∆ ݐ  ሻݐ∆ െ 1ห 
3 Results 

Image Segmentation 2D. Multi-Object Geodesic Active Contours (MOGAC) were 
applied to segmentation of 2D images into multiple compartments. The following 
segmentation example of a 512 ൈ  512 “X” image (Fig. 1c) was constructed to 
evaluate the performance of the algorithm. In the first experiment, the image was 
segmented into 5 objects (i.e. compartments). Objects overlap in the initial 
segmentation for a total of ܰ ൌ 8 labeled object regions. The 5 objects were evolved 
with pressure and curvature forces [2]. Overlapping object regions were assigned a 
constant inward pressure force to cause their contraction. The final segmentation 
contains only the 5 objects with no gaps or overlaps (Fig. 1d).  

To evaluate scalability of the algorithm, the problem size was increased by 
horizontally and vertically tiling the “X” image and initial segmentations. The 
algorithm was executed on a PC with dual Intel E5630s and NVIDIA Quadro 4000. 
Fig. 2a shows the computation time per iteration averaged over the 2000 iterations 
required to segment each image. The original image took 4.9 sec. to segment on the 
GPU, and the computation time scaled almost linearly as a function of image size.  

A second experiment was conducted to evaluate the algorithm’s performance as a 
function of the number of objects. Segmentation of the original image was initialized 
with between 1 and 16 randomly placed circles. Results are depicted in Fig. 2b. 
Computation time is almost constant as a function of the number of objects. 

MOGAC was applied to cell tracking in a 1024 ൈ 1024 microscopy image 
acquired from the Cell Centered Database (CCDB) [17]. The image was first 
automatically segmented with Medical Image Processing And Visualization (MIPAV)  
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       (a)      (b) 

Fig. 2. Segmentation of “X” image as a function of (a) image size and (b) number of objects 

[18] through gray-level morphology and thresholding techniques  (Fig. 3a). The 
segmentation was then refined with MOGAC to better localize boundaries on the 138 
detected objects (Fig. 3b). The segmentation was driven by pressure forces and 
external velocity field produced by Gradient Vector Flow (GVF) [19]. The GPU 
implementation of MOGAC ran for 250 iterations for 3.03 sec. total. 

 

(a) (b) 

Fig. 3. (a) Initial segmentation of microscopy image and (b) MOGAC segmentation refinement 
of 138 objects. Cells appear blue in this imaging modality 

Image Segmentation 3D. The 3D version of MOGAC is almost identical to the 2D 
version, except that a 6-connected 3D neighborhood is used and finite difference 
calculations are evaluated on a 3 ൈ 3 ൈ 3 stencil. MOGAC was used to clean-up 
manual segmentations of MR images. In the first experiment, MOGAC was initialized 
with a manual segmentation of the epicardium in an 128 ൈ 256 ൈ 128 MR image that 
contains small gaps and overlaps between structures (Fig. 4a,b). MOGAC was used to 
remove these gaps and overlaps to produce a sub-voxel segmentation that is a proper 
partition of the epicardium into 4 structures (Fig. 4c,d). The MOGAC clean-up required 
50 iterations (2.5 sec. total). In the second experiment, a whole brain was segmented 
into 10 structures with TOADS [20] on a 256 ൈ 256 ൈ 256 MR image from the 
OASIS database [21]. The hard classification (Fig. 5a) was smoothed with MOGAC for 
10 iterations (2.3 sec. total) to produce the segmentation shown in Fig. 5b. 
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(a) (b) (c) (d) 

Fig. 4. (a,b) Initial heart segmentation and (c,d) MOGAC segmentation. Epicardium showing 
right ventricle and atrium (green), myocardium (blue), left ventricle (pink), and left atrium (red).  

(a) (b) 

Fig. 5. (a) Initial hard segmentation (voxel precision) of 10 brain structures. (b) Segmentation  
after mean curvature smoothing with MOGAC (sub-voxel precision). It is common and 
beneficial to use voxel precision methods (a) for speed and follow them with sub-voxel 
precision methods (b) for smoothness. The Multi-compartment LSM [5, 9] is reported to 
require 22.5 sec per iteration to perform this same task. MOGAC is approximately 100x faster. 

4 Discussion 

A Multi-object LSM has been presented that can segment any number of objects with 
the same small memory footprint. The "label mask + distance field" data structure 
does not have to be "decompressed" into individual level sets either before, during, or 
after segmentation. Table 1 summarizes the theoretical performance for each Multi-
object LSM. MOGAC is theoretically faster and uses less memory than existing 
methods. Because the MOGAC algorithm is structurally similar to single object LSM, 
GPU accelerated LSM techniques described in other works are applicable [15].  

Algorithm 1 spends a lot of computation time checking if ݊ s.t. ࢞ א Γ. To avoid 
traversing the entire volume, a more work-efficient approach is to index Γ. A parallel 
algorithm for indexing Γ has already been described [15], and a variant of that 
algorithm is included in the public release (Work-efficient MOGAC). 

Table 1. Algorithm complexity for Multi-object LSMs based on ܯௗ pixels, ܰ objects, and ܲ 
processing units in dimension ݀ ൌ ሼ2,3ሽ 

Methods Time Memory ܰ level set methods [4, 6, 8]   ܱሺܰܯௗ log  ௗሻܯሻ ܱሺܰܯ
Multi-phase [7] ܱሺܯௗ log ܯ log ܰሻ ܱሺܯௗ log ܰሻ 
Multi-compartment [5, 9] ܱሺܯௗ logሺܯ ܰ⁄ ሻሻ ܱሺܯௗሻ 
MOGAC ܱሺܯௗ ܲ⁄ ሻ ܱሺܯௗሻ 
Work-efficient MOGAC ܱሺܯௗିଵ ܲ⁄ ሻ ܱሺܯௗሻ 
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Abstract. Zonal segmentation of the prostate into the central gland and
peripheral zone is a useful tool in computer-aided detection of prostate
cancer, because occurrence and characteristics of cancer in both zones
differ substantially. In this paper we present a pattern recognition ap-
proach to segment the prostate zones. It incorporates three types of fea-
tures that can differentiate between the two zones: anatomical, intensity
and texture. It is evaluated against a multi-parametric multi-atlas based
method using 48 multi-parametric MRI studies. Three observers are used
to assess inter-observer variability and we compare our results against
the state of the art from literature. Results show a mean Dice coefficient
of 0.89 ± 0.03 for the central gland and 0.75 ± 0.07 for the peripheral
zone, compared to 0.87 ± 0.04 and 0.76 ± 0.06 in literature. Summa-
rizing, a pattern recognition approach incorporating anatomy, intensity
and texture has been shown to give good results in zonal segmentation
of the prostate.

Keywords: prostate, MRI, segmentation, voxel classification, atlas.

1 Introduction

Prostate cancer is a major health problem in the Western world, with one in
six men affected during their lifetime [1]. Multi-parametric magnetic resonance
imaging (MPMR) has been shown to play an important role in the diagnosis of
prostate cancer [2]. A typical MR exam contains T2-weighted, dynamic-contrast-
enhanced and diffusion-weighted imaging. Interpretation of MPMR prostate
studies is challenging, and therefore the use of computer-aided diagnosis tech-
niques has been investigated [3]. For correct interpretation of MPMR knowledge
about the zonal anatomy of the prostate is required, because the occurrence and
appearance of cancer is dependant on its zonal location [4]. From a radiological
point of view the prostate is usually considered to have two visible zones on
MRI, the central gland (CG) and the peripheral zone (PZ) [5]. We are exploring
options to integrate knowledge about the zonal anatomy into CAD systems. For
this automated segmentation of the zones is the first step. The availability of
zonal segmentation is also mandatory for those CAD methods in literature that
focus on the PZ only, as for example in [3].
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Although much research has been done on prostate segmentation [6,7], only
recently the first study on segmentation of the individual zones was published
by Makni et al. [8]. In their study they investigated the use of an evidential C-
means clustering (ECM) approach to cluster voxels into their respective zones.
In addition, they extended the ECM approach to incorporate the spatial relation
between voxels. Using this method they obtained good results on their data set
(0.87 ± 0.04 mean Dice coefficient for the central gland compared to a simulta-
neous truth and performance level estimation (STAPLE) obtained ground truth
[9]). To the best of the authors knowledge their paper remains the only published
paper evaluating prostate zonal segmentation.

The purpose of this paper was to investigate a pattern recognition algorithm
to segment the prostate zones. The pattern recognition approach uses several
image features with a voxel classifier to detect the zones. This is a method that
has been explored in many other segmentation problems. We compare it to a
multi-parametric multi-atlas approach which is used to simultaneously segment
the prostate and the prostate zones. Additionally, we will compare our results
to inter-observer variability and the results obtained by Makni et al.[8]

2 Methods

2.1 Multi-parametric Multi-atlas Segmentation

Multi-atlas segmentation is an accurate method for prostate segmentation, as
has been shown by Klein et al. [6] We have chosen a similar approach, but
extended it to use multi-parametric data. We evaluated the atlas method with
both majority voting and STAPLE [9] to obtain the final binary segmentation.

The registration of the atlases to the new case is performed using the elastix
software package [10]. For the registration we use local normalized mutual in-
formation as a similarity metric. We register both the T2-weighted image and
the quantitative apparent diffusion coefficient (ADC) map simultaneously. We
chose to add the ADC map to the registration because it contains additional
information on the zonal distribution within the prostate. In a previous experi-
ment we investigated the added value of the ADC in zonal segmentation and we
noticed that it improved performance. The cost function we then optimize can
be expressed as

C(Tμ; IF , IM ) =
1∑N

i=1 ωi

N∑
i=1

ωiC(Tμ; I
i
F , I

i
M ) (1)

were C is the cost function, Tμ is the registration transformation, IF is the fixed
(the unknown case) and IM the moving image (the atlas). Furthermore, ωi is the
weight for each of the multi-parametric images i were i = 1 is the T2-weighted
image and and i = 2 is the ADC map. We chose ω to be 0.5 for both i.

The registration consists of two distinct steps. In the first step we register
using only a translation transform to align the images to the new case. The
second step is an elastic registration using a b-spline transformation. After the
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(a) T2-Weighted image (b) Apparent diffusion coefficient map

(c) Central gland observer segmenta-
tion (Red, cyan and green for observer
1,2 and 3)

(d) Peripheral zone observer segmenta-
tion (Red, cyan and green for observer
1,2 and 3)

(e) Central gland automatic segmen-
tation (Red, cyan and green for at-
las (voting), atlas (STAPLE) and
voxel classification), the STAPLE con-
structed ’true’ segmentation is over-
layed in yellow

(f) Peripheral zone automatic seg-
mentation (Red, cyan and green for
atlas (voting), atlas (STAPLE) and
voxel classification), the STAPLE con-
structed ’true’ segmentation is over-
layed in yellow

Fig. 1. Example data set with T2-W image and ADC map in a and b and segmentation
results in c, d, e and f
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registration the obtained transformation is used to transform the known binary
segmentations to the target image space. These can subsequently be used to
construct the unknown binary segmentation. Several approaches exist in litera-
ture, of which majority voting is the simplest and best known method [6]. We
compare this approach with optimizing the segmentation by using STAPLE [9].

2.2 Voxel Classification Segmentation

For the voxel classification segmentation we determined a set of features that
represent the difference between the two zones. These features can be separated
into three categories: anatomy (positional), intensity and texture.

For the anatomy features we use the information we know from the normal
prostate composition. The peripheral zone is usually situated at the dorsal side of
the prostate, getting thicker towards the apex of the prostate. We chose to model
this by developing a set of three relative position and distance features. Given
the whole prostate mask we can calculate a relative position in each direction for
each voxel, resulting in a value between 0 and 1. We calculate this feature in the
ventrodorsal direction and the craniocaudal direction. In addition, the relative
distance (also between 0 and 1) to the prostate boundary is given as a feature.

Two intensity features are included in the voxel classification step. The first
intensity feature we use is the apparent diffusion coefficient (ADC) for each
voxel, which itself should be a quantitative feature. The second intensity feature
we use is a calculated T2 value for each voxel. Using the T2 relaxation time
instead of the T2-weighted voxel values will make this feature much more robust
to changes in scan parameters. To this end we used the following signal model
equation for turbo-spin-echo sequences:

T2p = −TE
(
log e

−TE
T2m

SPD
m ST2W

p

ST2W
m SPD

p

)−1

(2)

Here T2 is the estimated T2 relaxation time, TE is the echo time for the MR pulse
sequence, S the signal intensity. The superscript PD and T2W represent either
the proton density weighted image or the T2-weighted image. The subscript p
and m denote prostate and muscle respectively. Using this equation and a region
of interest placed in a skeletal muscle we can calculate the true T2 relaxation
time for each voxel given the proton density and T2-weighted images.

The muscle ROI is automatically selected using a search method. Starting
from the bottom slice of the T2-weighted image an Otsu threshold is performed
to separate the dark areas (including the muscles) from the bright areas. We are
looking for the two muscles alongside the prostate, so we suppress the center
of the image with a rectangular block. Then a connected component analysis is
used to find individual dark components in the image. The two largest connected
components should correspond to the left and right muscle. We make sure this is
the case by investigating the shape and symmetry of the two connected compo-
nents. The muscle are less wide than long and they should have approximately
the same shape on the left and right. We mirror the left connected component
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and investigate the Jaccard index with the right connected component. The min-
imum value for width divided by the length is 0.75 and the threshold for the
Jaccard index is 0.5. The resulting connected components are eroded to ensure
that the ROI is completely in the muscle.

The third set of features consists of five texture features. The first two features
are homogeneity and correlation calculated using the co-occurrence matrix [11].
We used 16 gray value bins for the histogram and took the average over all 2D
directions. The third and fourth feature are entropy and texture strength, based
on the Neighborhood Gray-Tone Difference Matrix [12]. Here also 16 gray level
bins were used, in combination with an evaluation distance of 1. For all of these
features the kernel size was 10x10x1 voxels. The fifth feature was the local binary
pattern at each voxel [13], which was calculated over a 3x3x1 voxel neighborhood.
For this feature the images were down-sampled using Gaussian re-sampling such
that a 3x3x1 neighborhood corresponded to a 12x12x1 neighborhood.

After calculating the features a balanced training set is constructed. Hard
classification using a linear discriminant classifier is performed to obtain a bi-
nary segmentation of the central gland. To smoothen the initial boundary some
post-processing is performed. Firstly, connected component analysis is used to
select the largest connected component. Erosion and dilation are then performed
to remove small objects attached to the segmentation. Finally the edge voxels
between the central gland and the peripheral zone are selected and a thin plate
spline is fitted through these voxels. This results in our final segmentation.

3 Validation

For validation we used 48 multi-parametric MR studies with manual segmen-
tations of the whole prostate. For each case the transversal T2-weighted scan
(resolution 0.6x0.6x4 mm) and the apparent diffusion coefficient map (2x2x4
mm) were used. In addition, for the voxel classification step, the proton density
weighted image was used to calculate the T2 values. The ADC and proton den-
sity images were inspected to assess the alignment with the T2-weighted image.
If needed, they were corrected to obtain good alignment.

The ground truth was constructed by STAPLE [9] to merge the manual seg-
mentations done by three observers. The observers made manual segmentations
by indicating the zonal boundary on each T2-weighted image slice given the man-
ual whole prostate segmentation. We validated the automatic segmentations by
calculating three similarity measures: the Jaccard index (JI), the Dice similarity
coefficient (DSC) and the volume difference (VD). The Jaccard index is given

as J = |V1∩V2|
|V1∪V2| , were V1 and V2 are the automated segmentation and the STA-

PLE ground truth respectively. The Dice coefficient is similar to the Jaccard

index and can be expressed as D = 2|V1∩V2|
|V1|+|V2| . Lastly, the volume difference can

be expressed as VD = |V1| − |V2|. Validation was performed in a leave-one-out-
manner, thus the case to be segmented was removed from the set of atlases for
the atlas method and from the training data for the voxel classification.
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4 Results

In figures 2a, 2c and 2e the results of the segmentations of the central gland
are presented. An example case is also shown in figure 1. We can see that the
observers all perform well with respect to the STAPLE ground truth. For the
segmentation methods the voxel classification approach outperforms the atlas
based methods (mean DSC 0.89 ± 0.03 vs 0.80 ± 0.013 for majority voting and
0.80 ± 0.17 for STAPLE), although it is not as good as the human observers
(mean DSC’s 0.95 ± 0.06, 0.97 ± 0.05, 0.96 ± 0.06). The JI and VD (figure 2b
and figure 2c) show similar results. The VD results show that our methods in
general under-segment the central gland. If we compare our results to those in
Makni et al. [8] we perform slightly better using our voxel classification approach,
as they report a mean DSC of 0.87 ± 0.04. For the peripheral zone we see similar
results (figures 2b, 2d and 2f). Our pattern recognition approach outperforms
the atlas based method and is relatively close to the observer scores. Here the
pattern recognition approach has a mean DSC of 0.75 ± 0.07 compared to 0.82
± 0.15, 0.89 ± 0.12 and 0.86 ± 0.11 for the observers. The atlas methods both
perform poorly with respect to the peripheral zone with a mean DSC of 0.57
± 0.19 and 0.48 ± 0.22. Compared to the state of the art we perform slightly
worse, with a mean DSC of 0.76 ± 0.06 compared to our 0.75 ± 0.07.

5 Discussion

In this paper we investigated a pattern recognition approach to zonal segmen-
tation of the prostate. We compared our method to an atlas based method and
to the method published by Makni et al. Our results show that the voxel clas-
sification method outperforms the atlas based method. It also shows similar
performance compared to the method published by Makni et al. We believe the
pattern recognition approach outperforms the atlas-based method because it is
less restrictive than an atlas, which is limited to the shapes available within the
atlases. Additionally, pattern recognition allow for non-linear combination of all
features, including texture features.

This study also has limitations. A true comparison with the results from
Makni et al. is difficult, mostly due to differences in the data used, for example
in resolution. Additionally, for the atlas method we did not use the manual whole
prostate segmentations because this method segments the whole prostate and
the zones at the same time. This might cause some bias compared to the voxel
classification approach were we did use the whole prostate manual segmentation.
We did investigate using the manual whole prostate mask for the atlas method
by only evaluating the registration metric within the mask. However, this ap-
proach gave worse results than not using the whole prostate mask at all. Both
methods performed worst when the peripheral zone is very thin, then partial
volume effects and unclear boundaries between the zones make it difficult to
segment them. Finally, our voxel classification approach might be improved by
incorporating additional texture features (e.g. Gaussian or Gabor based texture
features) or by incorporating global information like prostate volume [8].
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(f) Volume difference (PZ)

Fig. 2. Results of the segmentation methods. The captions on the x-axes correspond
to observers 1, 2 and 3, the atlas method using majority voting, the atlas method using
STAPLE and the voxel classification approach.



420 G. Litjens et al.

Summarizing, a new pattern recognition approach to segment the prostate
zones was presented, incorporating anatomical, intensity and texture features.
It outperforms an atlas based method, is relatively close to the inter-observer
performance and shows similar performance compared to the state of the art.
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Abstract. Cochlear implant (CI) surgery is considered standard of care treat-
ment for severe hearing loss. CIs are currently programmed using a one-size-
fits-all type approach. Individualized, position-based CI programming schemes 
have the potential to significantly improve hearing outcomes. This has not been 
possible because the position of stimulation targets is unknown due to their 
small size and lack of contrast in CT. In this work, we present a segmentation 
approach that relies on a weighted active shape model created using microCT 
scans of the cochlea acquired ex-vivo in which stimulation targets are visible. 
The model is fitted to the partial information available in the conventional CTs 
and used to estimate the position of structures not visible in these images. 
Quantitative evaluation of our method results in Dice scores averaging 0.77 and 
average surface errors of 0.15 mm. These results suggest that our approach can 
be used for position-dependent image-guided CI programming methods. 

Keywords: Spiral ganglion, modiolus, cochlear implant, weighted active shape 
model segmentation. 

1 Introduction 

Cochlear Implants (CIs) are considered standard of care treatment for severe-to-
profound sensory-based hearing loss. CIs restore hearing by applying electric poten-
tial to neural stimulation sites in the cochlea with an implanted electrode array. An 
audiologist programs the CI by determining how it maps the spectrum of detected 
sound frequencies to the set of electrodes for each recipient. Programming is per-
formed based solely upon patient response to judgments of perceived loudness for 
individual electrodes. This process can be difficult and time intensive, and the  
majority of potentially adjustable parameters are typically left at the default settings 
determined by the manufacturer. Because of this one-size-fits-all approach, standard 
programming methods may not result in optimal hearing restoration for all recipients.  

In the natural hearing process, ear anatomy mechanically translates sound into vi-
brations of the basilar membrane, which separates the two principal cavities of the 
cochlea, the scala tympani and the scala vestibuli (see Figure 1). These vibrations 
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stimulate nerve cells connected to the spiral ganglion (SG) and, eventually, the audi-
tory nerve. Researchers have extracted the tonotopic mapping between the frequency 
of the sound and the SG nerve cells that are stimulated, i.e., higher frequencies lead to 
stimulation of more basal SG nerve cells, whereas, lower frequencies stimulate more 
apical SG nerve cells [1]. CIs exploit this natural tonotopy by applying an electric 
field to more apical (basal) SG nerve cells to induce perceived lower (higher) fre-
quency sounds. It is widely believed that programming schemes that use more explicit 
knowledge of electrode position hold great promise for improving hearing outcomes 
and could potentially be transformative to the field of CI audiology.  

Since methods for identifying the position of implanted electrodes have already 
been established [2], the major obstacle for position-dependent programming is that 
there have been no techniques for accurately identifying the stimulation targets – the 
SG nerve cells. Identifying the SG in vivo is difficult because the nerve bundles have 
diameter on the order of microns and are too small to be visible in CT, which is the 
preferred modality for cochlear imaging due to its otherwise superior resolution (see 
Figure 1). However, the external walls of the cochlea are well contrasted in CT. Since 
the cochlea wraps around the SG, and, as shown in [3], external cochlear anatomy can 
be used to estimate the location of intra-cochlear anatomy using a statistical shape 
model (SSM); it is possible that a similar external anatomy driven SSM can be used to 
estimate the SG. In this work, we test such an approach for automatic segmentation 
and frequency mapping of the SG for computer assisted CI programming. The rest of 
this paper presents our approach.  

2 Methods 

The data set we have used in this study consists of images of six cadaveric cochlea 
specimens. For each specimen, we have acquired one μCT image volume with a 
SCANCO μCT. The voxel dimensions in these images are 36 μm isotropic. We also 

18k 

50 
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Fig. 1. Shown in (a) and (d) are a slice of a μCT and a CT of a human cochlea. In (b) and (e), 
the scala tympani (red), scala vestibuli (blue), and bundle of nerve cells of the SG (green) are
delineated in the same slice. These structures are shown similarly in 3D in (c). In (f), the active
region of the SG is colormapped with its tonotopy (Hz), and the positions of implanted elec-
trodes are shown (gray spheres). 

(a) (b) (c) 

(f) (d) (e) 
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have acquired CTs of the specimens with a Xoran xCAT® fpVCT scanner. In these 
volumes, voxels are 0.3 mm isotropic. In each of the μCT volumes, the scala vestibu-
li, scala tympani, and SG were manually segmented. Figure 1 shows an example of a 
conventional CT image and its corresponding μCT image.  

2.1 Overview 

Since the SG lacks any contrast in CT, we cannot segment it directly. The goal with 
our approach is to use the location of external cochlear features to predict the position 
of the SG. To do this, we have constructed a SSM of cochlear anatomy that includes 
the SG. Prior to constructing the SSM, we identify which points in the model will 
correspond to strong cochlear edges in CT. To those points we arbitrarily assign an 
importance weighting of 1. To all others we assign a lesser weighting of 0.01. These 
weights are used to construct a point distribution model (PDM) for weighted active 
shape model (wASM) segmentation [4]. The SSM is built as a standard PDM com-
puted on the registered exemplar point sets. To segment a new image, the SSM is 
iteratively fitted in a weighted-least-squares sense to features in the target image. The 
edge points with their weight of 1 are fitted to strong edges in the CT. The non-edge 
points with low weight are fitted to the positions determined by non-rigid registration 
with an atlas image. With the weights that we have chosen, the non-edge points pro-
vide enough weak influence on the optimization to ensure that the wASM stays near 
the atlas-based initialization position, while the edge points strongly influence the 
whole wASM towards a local image gradient-based optimum for a highly accurate 
result. During model construction, the set of SG points in the model that interface 
with intra-cochlear anatomy were also identified. These points are referred to as the 
active region (AR) since they correspond to the region most likely to be stimulated by 
an implanted electrode. The tonotopic mapping of each point in the AR in the refer-
ence volume is computed based on angular depth using known equations [1]. Once a 
segmentation is completed, the tonotopic frequency labels from the model can be 
transferred to the target image. The following sub-sections detail these methods.  

2.2 Model Creation 

To model cochlear structures, we: (1) establish a point correspondence between the 
structures’ surfaces, (2) use these points to register the surfaces to each other with a 7 
degrees of freedom similarity transformation (rigid plus isotropic scaling), and (3) 
compute the eigenvectors of the registered points’ covariance matrix. Point corres-
pondence is determined using the approach described in [3]. Briefly, non-rigid regis-
tration is used to map each of the training volumes to a reference volume, and any 
errors seen in the results are manually corrected. Then, a correspondence is estab-
lished between each point on the reference surface with the closest point in each of 
the registered training surfaces. Once correspondence is established, each of the train-
ing surfaces is point registered to the reference surface. Since the cochlear edge points 
will be the highest weighted points for the wASM segmentation, identical weights are 
used to register the training shapes in a weighted-least-squares sense using standard 
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point registration techniques [5] prior to computation of the eigenspace so that the 
model will best capture the shape variations at these points. 

To build the model, the principal modes of shape variation are extracted from the 
registered training shapes. This is computed according to the procedure described by 
Cootes et. al. [6]: First, the covariance matrix of the point sets’ deviation from the 
mean shape is computed as 

ܥ  ൌ ଵே ∑ ൫ݒԦ െ ҧ൯ேୀଵݒ ൫ݒԦ െ  ҧ൯T, (1)ݒ

where the ݒԦ’s are the individual shape vectors and ݒҧ is the mean shape. The shape 
vectors are constructed by stacking the 3D coordinates of all the points composing 
each structure into a vector. The modes of variation in the training set are then com-
puted as the eigenvectors ൛ݑሬԦൟ of the covariance matrix,  

 ൛ߣ, ሬԦݑߣ     :    ሬԦൟୀଵேିଵݑ ൌ  ሬԦ. (2)ݑܥ

These modes of variation are extracted for the combined shape of the scala tympani, 
scala vestibuli, and SG for all the samples in the training set. 

2.3 Weighted Active Shape Segmentation 

The procedure we use for segmentation with a wASM follows the traditional ap-
proach, i.e., (1) the model is placed in the image to initialize the segmentation; (2) 
better solutions are found while deforming the shape using weighted-least-squares 
fitting; and (3) eventually, after iterative shape adjustments, the shape converges, and 
the segmentation is complete. Initialization is performed using the atlas-based me-
thods proposed in [3].  

Once initialized, the optimal solution is found using an iterative searching proce-
dure. At each search iteration, an adjustment is found for each model point, and the 
model is fitted in a weighted-least-squares sense, as described below, to this set of 
candidate adjustment points. To find the candidate points, two approaches are used. 
For cochlear edge points, candidates are found using line searches to locate strong 
edges. At each external point ݕԦ, a search is performed along the vector normal to the 
surface at that point. The new candidate point is chosen to be the point with the larg-
est intensity gradient over the range of -1 to 1 mm from ݕԦ along this vector. For all 
other points, it is impossible to determine the best adjustment using local image fea-
tures alone because there are no contrasting features at these points in CT. Therefore, 
the original initialization positions for these points, which were provided by atlas-
based methods, are used as the candidate positions. The atlas-based result, as our 
results will show, is sufficiently accurate to provide this useful information to the 
segmentation process. 

The next step is to fit the shape model to the candidate points. We do this in the 
conventional wASM manner. A standard 7 degree of freedom weighted point registra-
tion is performed, creating similarity transformation T, between the set of candidate 
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points {ݕԦԢ} and the mean shape ሼݒҧሽ, where ݒҧ are the 3D coordinates of the ith point 
in the mean shape. Then, the residuals 

 Ԧ݀ ൌ ܶሺݕԦԢሻ െ  ҧ (3)ݒ

are computed. To obtain the weighted-least-squares fit coordinates in the SSM’s ei-
genspace, we compute, 

 ሬܾԦ ൌ ሺ்்ܷܹܹܷሻିଵ்்ܷܹܹ Ԧ݀, (4) 

where Ԧ݀ is composed of ൛ Ԧ݀ൟ stacked into a single vector, ܷ ൌ ሾݑሬԦଵ ሬԦଶݑ …  ሬԦேିଵሿݑ
is the matrix of eigenvectors, and ܹ is a diagonal matrix with the importance point 
weightings in the appropriate entries along the diagonal. This equation results in a 
vector ሬܾԦ that represents the coordinates in the SSM space corresponding to a 
weighted-least-squares fit of the model to the candidate points. The final approxima-
tion to the shape is computed by passing the sum of the scaled eigenvectors plus the 
mean shape through the inverse transformation, equivalently, 

Ԧݕ  ൌ ܶିଵ൫ݓഥ  ∑ ܾݑሬԦ,ேିଵୀଵ ൯, (5) 

where ݑሬԦ, is the ith 3D coordinate of the jth eigenvector. As suggested by Cootes, the 
magnitude of the bj’s are constrained such that  

 ඨ∑ ೕమఒೕேିଵୀଵ  3, (6) 

which enforces the Mahalanobis distance between the fitted shape and the mean shape 
to be no greater than 3.  

At each iteration, new candidate positions are found and the model is re-fitted to 
those candidates. The wASM converges when re-fitting the model results in no 
change to the surface. The tonotopic mapping of the SG points in the model, com-
puted when the model was built, are directly transferred to the target image via the 
corresponding points in the converged solution. A result of this is shown in Figure 1f.  

Validation. Segmentation was performed on CT’s of the cochlea specimens using a 
leave-one-out approach, i.e., the volume being segmented is left out of the model. For 
one of the six specimens a CT was not available, and it was used as the model refer-
ence volume to simplify the leave-one-out validation study. Thus, the validation study 
measures segmentation error on the remaining five specimens when using PDMs with 
four modes of variation. Because these samples were excised specimens, rather than 
whole heads, the atlas-based initialization process required manual intervention—
however, in practice the approach is fully automatic. To validate the results, we again 
exploit the set of corresponding μCT volumes. Each CT was rigidly registered to the 
corresponding μCT of the same specimen. The automatic segmentations were then 
projected from the CT to μCT space. Finally, Dice index of volume overlap [7] and 
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surface errors were computed between the registered automatic segmentations and the 
manual segmentations to validate the accuracy of our results. The distributions of 
surface error we report include distances in the forward (automatic-to-manual) direc-
tion as well as the reverse (manual-to-automatic) direction. A smaller distance be-
tween the automatic and manually segmented surfaces indicates higher accuracy. 

3 Results 

Quantitative comparisons between manual and automatic segmentations of the SG are 
shown in Figure 2. The Dice index and bi-directional mean/max surface distances 
were computed between each pair of automatic and manual segmentations. Figure 2 
shows the overall distributions of these recorded values. Surface errors were recorded 
between the whole SGs (WSG) and also between the active regions (AR). Dice indic-
es were not computed for the AR because it is not a closed surface and does not 
represent a volumetric region. The green bars, red bars, blue rectangles, and black I-
bars denote the median, mean, one standard deviation from the mean, and the overall 
range of the data set, respectively. As can be seen in the figure, the wASM achieves 
mean dice indices of approximately 0.77. For typical structures, a Dice index of 0.8 is 
considered good [8]. Here, we consistently achieve Dice indices close to 0.8 for seg-
mentation of a structure that is atypically small and lacks any contrast in the image. 
Mean surface errors are approximately 0.15 mm for both the WSG and the AR, which 
is about a half a voxel’s distance in the segmented CT. Maximum surface errors are 
above 1 mm for the WSG but are all sub-millimetric for the AR.  

Segmentations for all 5 experiments are shown color encoded with surface error in 
Figure 3. It can be seen that the wASM results in mean surface errors under 0.15 mm 
for the majority of the SG with average maximum errors of about 0.7 mm (<3 voxels). 
As can be seen in the figure, errors in the AR above 0.5 mm are rare and highly  
localized. Shown in Figure 4 are contours of a representative automatic segmentation 
overlaid with the CT (the volume on which segmentation was performed) and the cor-
responding registered μCT. It can be seen from the figure that the contours achieved by 
automatic segmentation of the CT are in excellent agreement with contours manually 

Fig. 2. Segmentation error distributions of Dice similarity scores for the whole SG (WSG) and
mean and max symmetric surface error distributions for the WSG and in the active region (AR) 
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delineated in the high resolution μCT, especially in the AR. Localization errors that are 
apparent in the μCT are less than 2 voxels width in the CT.  

4 Conclusions 

In this work, we have presented a weighted active shape based approach for identify-
ing the SG, which lacks any contrast in conventional CT. In this approach, we rely on 
high resolution images of cadaveric specimens to serve two functions. First, they 
provide information necessary to construct an SSM of the structure, permitting seg-
mentation of the structure in conventional imaging. Second, the high resolution im-
ages are used to validate the results. This is performed by transferring the automati-
cally segmented structures from the conventional images to the corresponding high 
resolution images and comparing those structures to manual segmentations.  

This work has shown that it is possible to accurately identify the location of the SG 
in conventional CT because the position of the SG varies predictably with respect to 
the cochlea. The approach we present accurately locates the SG by attracting the exte-
rior walls of the models of intra-cochlear anatomy towards the edges of the cochlea. 
This approach achieves dice indices of approximately 0.77 and sub-millimetric max-
imum error distance in the active region, which represents the region of interest for CI 
stimulation. These results suggest that our segmentation approach is accurate enough 
to be used for position-dependent, image-guided CI programming methods.  

Testing of computer assisted CI programming approaches using the presented me-
thods has begun and has been completed on one patient thus far. The fully-
automatically identified positions of the electrode and tonotopically mapped SG for 

Fig. 4. Delineations of the automatic (red/blue) and manual (green) segmentation of the SG in 
the CT (a) and μCT (b) slice from Figure 1. The active region is shown in blue 
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Fig. 3. Automatic (top row) and manual (bottom row) segmentations of the active region of the
SG in the 5 test volumes (left-to-right) color encoded with error distance (mm) 
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this patient are shown in Figure 1f. For that patient, the settings that were originally 
considered optimal by the audiologist were modified using image-based information. 
Improvements in the patient’s hearing were statistically significant using a binomial 
distribution statistic for the individual speech perception metrics tested [9-10]. The 
patient’s monosyllabic word recognition scores (a quantitative measure of hearing 
performance) jumped from 33% to 84%, and sentence recognition performance in 
noise at +10 dB signal-to-noise ratio increased from 46% to 83%. Further, the patient 
reported significant improvement in hearing and overall sound quality. While very 
preliminary, these results indicate that image-based programming, enabled by the 
approach described herein, may significantly improve hearing restoration for CI users. 
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Guiding Automatic Segmentation

with Multiple Manual Segmentations

Hongzhi Wang and Paul A. Yushkevich�

Department of Radiology, University of Pennsylvania

Abstract. Most image segmentation algorithms are designed to esti-
mate a single segmentation for each image, where the gold standard
segmentation is often labeled by a human expert. However, it is common
that multiple manual segmentations are available for some images, e.g.
independently labeled by different experts. For efficient usages of manual
segmentations, we propose to simultaneously produce automatic estima-
tions for each expert. The key advantage of this proposal is that it al-
lows to incorporate the correlations between different experts to improve
the accuracy of automatic segmentation. In a brain image segmentation
problem, where for each image six manual segmentations are available,
we show that jointly estimating several manual segmentations produces
significant improvement over independently estimating each of them.

1 Introduction

Image segmentation is the primary mechanism for quantifying the properties of
anatomical structures and pathological formations using imaging data. Given the
often prohibitive cost of manual segmentation, accurate automatic segmentation
is highly desirable. To mimic manual segmentation, automatic segmentation is
often guided and evaluated against manual segmentations. However, segmenta-
tions labeled by different experts are often inconsistent.

Existing inconsistent manual segmentations not only reveals the significant
difficulty in performing manual segmentation, but also poses challenges on how to
develop automatic segmentation algorithms. Most automatic algorithms produce
a single solution for each image. When evaluated against inconsistent manual
segmentations, the automatic solution is either separately compared with each
of the manual segmentations or directly compared with the consensus manual
segmentation, e.g. derived by STAPLE [11]. Either way the automatic algorithm
is biased to produce solutions close to the consensus of all manual segmentations.

Employing consensus manual segmentation simplifies the evaluation process,
therefore makes the task of developing automatic methods more straightfor-
ward. However, it also sacrifices the rich information contained in the original
set of manual segmentations. Our contribution is to propose a novel scheme to
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Alliance grant 10295 and NIH awards K25 AG027785, R01 AG010897.
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incorporate multiple manual segmentations to guide automatic segmentation.
To maximize the usage of the valuable manual segmentations, we propose to si-
multaneously produce automatic estimations for all manual segmentations. The
key advantage of this proposal is that the label correlations between different
human experts can be incorporated to improve automatic segmentation.

We apply our method to segment the hippocampus in magnetic resonance
images (MRI) and show significant improvement over independently producing
estimations for each manual segmentation segmentation.

2 Jointly Estimating Multiple Manual Segmentations

Image segmentation can be addressed via estimating the conditional probability
p(SF |F ), where F is an image and SF is a segmentation for F . Assuming that
labeling different voxels is conditionally independent given the image patches
located on the voxels, we have p(SF |F ) =

∏
i p(SF (i)|F (N (i))), where i indexes

through image voxels. N (i) represents a neighborhood centered at i. F (N (i))
is the intensity patch located on the region. To estimate this probability, dis-
criminative learning techniques learn the label distribution p(l|F (N (i))) from
training data, e.g. [7], [8], which can be addressed by most classification algo-
rithms. l indexes through all possible labels. The segmentation is then obtained
via maximum a posterior inference, i.e. SF (i) = argmaxlp(l|F (N (i))).

Motivation for jointly estimating multiple manual segmentations. In the context
of clinical imaging studies involving segmentation, it is common to generate
repeat manual segmentations by multiple raters in order to establish inter-rater
and intra-rater reliability for a manual segmentation protocol. To handle the
inconsistency between multiple manual segmentations, one approach attempts
to infer the “ground truth” segmentation with the consideration of the reliability
of each rater [11]. However, the inferred “ground truth” loses the rich information
in the original manual segmentations and the errors in deriving the hard decision
of “ground truth” will affect the performance of automatic segmentation.

We advocate an alternative solution that produces a separate estimation for
each manual segmentation1. The key advantage of this strategy is that it allows
to incorporate the correlations between manual segmentations to improve the
accuracy of automatic segmentation. In our experiment, we observed that some
raters consistently produced larger volumes than others when segmenting the
hippocampus in MRI (see section 3.1). With such correlations, observing the
segmentation labeled by one rater provides meaningful information to estimate
the segmentation labeled by the other. Even if only one most reliable manual
segmentation is selected for one study, which is common is practice, as we show
below, incorporating manual segmentations labeled by less reliable raters helps
improving the automatic segmentation accuracy for the selected rater.

1 A unique manual segmentation is defined as consistently labeled by one human
expert in one segmentation trial.
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Formulation of jointly estimating multiple manual segmentations. Jointly esti-
mating multiple manual segmentations can be solved via estimating the following
joint conditional probability p(S1

F , ..., S
m
F |F ) ∝ p(F |S1

F , ..., S
m
F )p(S1

F , ..., S
m
F )

∝

⎡⎣ m∏
j=1

p(F |Sj
F )

⎤⎦ p(S1
F , ..., S

m
F ) ∝

⎡⎣ m∏
j=1

p(Sj
F |F )

⎤⎦ p(S1
F , ..., S

m
F ) (1)

where S1
F , ..., S

m
F estimate m manual segmentations, respectively. Given any

manual segmentation for an image, we assume conditional independence be-
tween the image and any other manual segmentations for the image. The last
equation is obtained by dropping the term p(F )/p(Sj

F ), where p(S
j
F ) is the prior

for observing a segmentation labeled by rater j. Since it is hard to approxi-
mate this prior, we treat it as a constant and focus on optimizing the remaining
terms. The first term in (1) can be estimated by separately applying discrimi-
native learning to estimate each manual segmentation. The second term is the
joint probability of observing all manual segmentations for one image, which
captures their correlations. Estimating this term is difficult as well, but a good
approximation can be obtained by applying pseudolikelihood [2]. We have:

p(S1
F , ..., S

m
F |F ) ∝

m∏
j=1

p(Sj
F |F )p(Sj

F |{S1
F , ..., S

m
F }\S

j
F ) (2)

In summary, each manual segmentation is estimated based on two constraints: 1)
image information, which directly captures the correlation between the manual
segmentation and an image; and 2) the segmentations estimated for the remain-
ing manual segmentations, which enforces the estimated segmentations to respect
the mutual correlations between different raters. As in (2), assuming assigning
labels to different voxels are conditionally independent given the patches located
on the voxels, we have the final approximation as p(S1

F , ..., S
m
F |F )

∝
m∏
j=1

∏
i

p(Sj
F (i)|F (N (i)))p(Sj

F (i)|{S1
F (N (i)), ..., Sm

F (N (i))}\Sj
F (N (i))) (3)

2.1 Discriminative Learning

Here, we describe in detail how we estimate the conditional probabilities in (3).

Learning to approximate one manual segmentation. For each manual segmenta-
tion, to estimate p(l|F (N (i))), i.e. the first term in (3), we train one segmentation
classifier using the modified AdaBoost algorithm [4],[9] for each label l to identify
voxels assigned to label l in the target manual segmentation.

For better performance, we apply the corrective learning technique [8]. This
method applies learning as an error correction tool to improving the segmenta-
tion produced by a host segmentation method. It was shown that it significantly
improved the performance of the learning algorithm and the host segmentation
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method [8]. In our experiments, we apply multi-atlas label fusion as the host
method (see detail in section 3). Note that multi-atlas segmentation can be ap-
plied alone to estimate each manual segmentation. Applying corrective learning
improves the performance. The region of interest and the features used in [8],
including spatial, appearance and contextual, joint spatial-appearance and joint
spatial-contextual features, are applied to train the classifiers, where the contex-
tual features are extracted from the initial segmentation produced by the host
method. To transfer the output of an AdaBoost classifier to a probability, we
apply the logistic transform, i.e. p(x) = ex

ex+e−x .

Learning the correlations between manual segmentations. To estimate the sec-
ond term in (3), we train correlation classifiers for each manual segmentation
to capture the correlation between this manual segmentation and the remain-
ing manual segmentations. For this task, we apply spatial, contextual and joint
spatial-contextual features, as in [8], to train one classifier for each label l to iden-
tify the voxels assigned to label l in the target manual segmentation. The con-
textual features are extracted from all the remaining manual segmentations. To
effectively handle the contextual features provided by multiple manual segmen-
tations, we merge the contextual features from different manual segmentations
into one label distribution Dj

l for each label l, Dj
l (i) =

1
m−1

∑
k 	=j I(S

k
F (i) = l),

where I(·) is an indicator function. The contextual features used in the correla-
tion classifier for rater j and label l are constructed based on Dj

l .

Segmentation Algorithm. The algorithm is summarized below:

1. Given a test image F , apply a host method to produce an initial segmentation
S for it. When applicable, produce one initial segmentation for each rater.

2. For j = 1, ...,m
• Apply the segmentation classifier(s) learned for jth manual segmentation
to produce an improved estimation, Sj

F , based on image F and the initial
segmentation S produced for the rater.

3. For j = 1, ...,m
• Apply the correlation classifier(s) learned for jth manual segmentation
to update Sj

F such that (3) is maximized, i.e. selecting the label with the
largest probability produced by the classifiers at each voxel.

4. If none of the automatic estimations is changed or the maximal iteration is
reached, then output the estimations. Otherwise, goto 3.

3 Experiments

3.1 Imaging Data and Experiment Setup

Data and manual segmentations. For 10 images (5 controls and 5 patients with
mild AD) from the Open Access Series of Imaging Studies (OASIS) [5], we
produced six manual hippocampal segmentations for each image. These manual
segmentations were labeled by three trained experts in two trials.
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Table 1. Left: Inter-rater and intra-rater segmentation overlaps (in Dice 2|A∩B|
|A|+|B| ) be-

tween the three raters. The intra-rater overlaps are between the two segmentation
trails labeled by the same rater. The inter-rater overlaps are averaged over the two
segmentation trials. Right: Hippocampal volume (in voxel) produced by each rater.

raters R1 R2 R3

R1 0.902±0.020 0.872±0.024 0.847±0.032

R2 0.872±0.024 0.915±0.020 0.846±0.043

R3 0.847±0.032 0.846±0.043 0.836±0.046

raters R1 R2 R3

trial 1 1615±267 1787±316 1731±319

trial 2 1683±285 1811±261 1461±232

Table 1(left) summarizes the inter-rater and intra-rater reproducibility of the
manual segmentation. Table 1(right) shows the hippocampal volume labeled by
each rater. Note that R2 consistently labeled larger hippocampi than R1 in
both trials. The segmentations labeled by R3 in the second trial are significantly
smaller than those produced by the same rater in the first trial. Such strong
correlation can be easily seen in most individual subjects, as shown in Fig. 1.

Fig. 1. Illustration of correlation between raters. First row: segmentations produced
by R1(blue) and R2(red) in the first trial. Pink is the overlapped region. Second row:
segmentations produced by R3 in the first (blue) and second trial (red).

For each image, we derived one consensus segmentation using STAPLE [11]
for the three manual segmentations produced in each trial. To incorporate the
correlations between the two trials, we jointly estimate the 6 manual segmenta-
tions and the two inferred segmentations by STAPLE.

Experiment setup. For cross-validation, we randomly selected five images for
training and the remaining 5 images for testing. The experiment was repeated
10 times. In each cross-validation, a different set of training and testing images
were selected. The results reported below are averaged over the 10 experiments.

Details on learning segmentation classifiers. Since the state-of-the-art hippocam-
pus segmentation are all produced by multi-atlas label fusion (MALF), e.g.
[6],[3],[10], we applied MALF as the host segmentation method to produce the
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Fig. 2. Segmentation accuracy (in Dice) at each iteration for all raters. The results
are averaged over 10 cross-validation experiments. The performance of independently
applying error correction to estimate each manual segmentation is given at iteration 0.

initial hippocampus segmentation for corrective learning to learn the segmenta-
tion classifier for each manual segmentation.

Through deformable registration,MALFwarpsmultiple atlases, i.e. pre-labeled
images, to a target image, and uses a “label fusion” strategy to derive a consen-
sus segmentation. To implement MALF, image guided registration is performed
by the Symmetric Normalization (SyN) algorithm implemented by ANTS [1] be-
tween each pair of the atlas image, i.e. the training image, and the test image.
For label fusion, we apply image similarity based local weighted voting technique,
which is shown to be the most effective label fusion techniques in recent studies
[6],[10]. The voting weights were computed based on image patches of size 5×5×5
by using the joint label fusion algorithm [10].

To produce the initial segmentation used in corrective learning for one manual
segmentation, we use the segmentation labeled by the corresponding rater to
define the atlas. For each cross-validation, we also apply MALF to produce an
initial segmentation for each training image by using the remaining training
images as atlases and use the segmentation produced by MALF for training
images to train the segmentation classifiers for each manual segmentation. For
each cross validation, learning all segmentation classifiers and all correlation
classifiers took about 1 hour and 30 minutes on a 2GHz CPU, respectively.

3.2 Results

Convergence. Fig. 2 shows the average segmentation performance produced by
MALF, MALF + corrective learning (iteration 0), and our joint segmentation
algorithm at different iterations. Typically, the iterative optimization converges
within only a few iterations, with the first iteration producing the maximal
performance improvement and dramatic diminishing performance gains in later
iterations. In our experiment, we set the maximal iteration to be 10.

Quantitative comparison. Table 2 compares the performance between ourmethod
with separately estimating each manual segmentation. Corrective learning
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substantially improved the accuracy produced byMALF. Our method further im-
proved the accuracy to the level greater than inter-rater accuracy for each rater.
The improvements for each rater are statistically significant, with p < 0.001 on
the paired Students t-test. Fig. 3 shows some segmentation results produced by
applying corrective learning alone and by our method, respectively.

Table 2. Segmentation accuracy (in Dice) with respect to each manual segmentation.
Rj

k is the segmentation produced by rater Rj in the kth segmentation trial. STPk is
the consensus segmentation produced by STAPLE for the kth segmentation trial.

rater MALF MALF+learning MALF+jointSeg

R1
1 0.865±0.021 0.878±0.014 0.890±0.015

R2
1 0.852±0.020 0.869±0.018 0.881±0.018

R3
1 0.833±0.032 0.837±0.025 0.859±0.022

STP1 0.869±0.023 0.888±0.016 0.900±0.014

R1
2 0.859±0.023 0.864±0.018 0.880±0.021

R2
2 0.861±0.018 0.877±0.017 0.887±0.016

R3
2 0.829±0.035 0.840±0.024 0.857±0.023

STP2 0.871±0.022 0.886±0.016 0.900±0.017

image MALF MALF+learning MALF+JointSeg

Fig. 3. Sagittal views of hippocampus segmentation results. Red: one of the manual
segmentations for the image; Blue: automatic segmentation; Pink: overlap between
manual and automatic.

Our results compare well to the state-of-the-art hippocampus segmentation
performance. For example, [6] reported average ∼0.87 (Dice) for hippocampus
using 29 atlases. [3] reported average 0.887 (Dice) using 79 atlases. Our final
results for R1 and R2 are >0.880 (Dice)2, but we only used 5 training images,
which is only a small fraction of those used by the competing work.

4 Conclusion

As an important evaluation target, manual segmentation is crucial in the de-
velopment of automatic segmentation algorithms. We developed a technique to

2 Our results for R3 are lower due to the poor intra-rater performance.
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incorporate multiple inconsistent manual segmentations to improve the perfor-
mance of automatic segmentation. Via experiments on hippocampus segmenta-
tion in MRI, we showed the advantage of our method over traditional approaches.
Note that including the segmentations produced by less reliable raters helped to
better estimate the segmentations by more reliable raters. Our work offers a new
perspective on how to more effectively use the valuable manual segmentations.
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Abstract. In this paper we propose an atlas-aided probabilistic model-based 
segmentation method for estimating the fibroglandular tissue in breast MRI, 
where a novel fibroglandular tissue atlas is learned to aid the segmentation. The 
atlas represents a pixel-wise likelihood of being fibroglandular tissue in the breast, 
which is derived by combining deformable image warping, using aligned breast 
contour points as landmarks, with a kernel density estimation technique. A 
mixture multivariate model is learned to characterize the breast tissue using MR 
image features, and the segmentation is subsequently based on examining the 
posterior probability where the learned atlas is incorporated as the prior 
probability. In our experiments, the algorithm-generated segmentation results of 
10 cases are compared to the manual segmentations, verified by an experienced 
breast imaging radiologist, to assess the accuracy of the algorithm, where the 
Dice’s Similarity Coefficient (DSC) shows a 0.85 agreement. The proposed 
automated segmentation method could be used to estimate the volumetric amount 
of fibroglandular tissue in the breast for breast cancer risk estimation. 

1 Introduction 

Breast magnetic resonance imaging (MRI) provides 3D scanning and has emerged as 
an effective modality for breast cancer risk assessment for high-risk population [1, 2]. 
Studies indicate that the percentage of fibroglandular tissue (FT%) computed in breast 
MRI is related to breast cancer risk [2, 3]. To estimate the FT% in breast MRI, 
accurate segmentation of the fibroglandular tissue from the breast is a fundamental 
step. Fibroglandular tissue segmentation is challenging in several aspects. First, 
segmenting the breast as an organ from the remaining parts of the MR image is 
critical [4]. Second, fibroglandular tissue may be present anywhere in the breast with 
varying amounts, shapes, and patterns, which is challenging to model by simple 
geometric descriptors. In addition, the bias field is common in breast MRI where the 
intensity inhomogeneity may considerably affect the appearance of tissue properties.  

The problem of automated fibroglandular tissue segmentation has received little 
attention in the literature to date [4, 5]. In addition to the qualitative estimation of the 
fibroglandular tissue by visual assessment [3], most previous studies rely on semi-
automated segmentation methods such as interactive thresholding [1] or clustering [2, 6]. 
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Fuzzy C-means (FCM) has been used where usually the number of clusters either relies on 
user’s determination [2] or based on intensity range assumptions followed by interactive 
adjustments [6]. Visual assessment and interactive methods are subjective and introduce 
inter- and intra-reader variability [1-3, 6]. An automatic method is reported in [4] to 
simultaneously segment heart, pectoral, lung, and breast, in which the fibroglandular tissue 
is also processed in the axial view of breast MRI. In dealing with intensity inhomogeneity, 
FCM, N3 [7], and CLIC [8] have been recently tested for breast MRI [5], where 
segmentation performance of different combinations of these algorithms is reported based 
mainly on the visual evaluation by radiologists. 

We propose an atlas-aided probabilistic model-based method for fibroglandular 
tissue segmentation, where a likelihood atlas is constructed to aid the segmentation. 
The breast tissue is characterized by a mixture model and segmentation is based on 
posterior probability evaluation by incorporating the likelihood atlas as a prior. Our 
major contributions include i) constructing the novel fibroglandular tissue likelihood 
atlas and ii) proposing an atlas-aided probabilistic model-based method to address the 
challenging problem of fibroglandular tissue segmentation in breast MRI. 

2 Methods 

The proposed segmentation method includes two preprocessing steps. First, the 
outline of the breast is segmented in the breast MR images, implemented based on 
[9]. This step is critical to the fibroglandular tissue estimation because it precludes the 
interferences coming from the non-breast regions. Second, we further process the 
segmented breast by applying the nonparametric non-uniform intensity normalization 
(N3) algorithm [7] to reduce bias field. After that, our atlas-aided model-based 
segmentation method consists of three major modules, i.e., 1) likelihood atlas 
construction, 2) model learning, and 3) segmentation, as described in the following. 

2.1 Fibroglandular Likelihood Atlas Learning 

We construct a fibroglandular tissue likelihood atlas to aid the segmentation. The atlas 
represents a statistical likelihood of being fibroglandular tissue for each pixel on a 
standard breast template and it is derived by deformable breast image warping and 
kernel density estimation techniques. Our atlas is similar in principle to shape/organ 
atlases in the notion of “statistical atlas” but differs in that it describes the likelihood 
of breast tissue type rather than the anatomy/structure of a shape or organs [4, 10]. In 
our approach, we choose not to treat fibroglandular tissue as a well-defined structure 
in the image (e.g., the shape of the fibroglandular tissue can vary largely between 
cases), but rather model its spatial distribution to construct the likelihood atlas. 

The likelihood atlas is derived based on “ground truth” segmented fibroglandular 
tissue (e.g., provided by an expert), from a set of training samples of 3D breast MRI 
scans, and processing is performed separately at the intra-case and inter-case levels.  

Intra-case Learning: For a given 3D scan, the first step is to create a case-specific 
2D breast template in the form of a closed contour of the breast. To do so, the slices 
of the given scan are aligned via rigid registration [11] to the center slice. Then, the 
breast contour for each slice is extracted [9] and interpolated into equidistantly 
distributed points of a fixed number (200 in our settings) (Fig. 1(a)(b)). The points of 
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breast contours across the different slices are then matched by the non-linear dynamic 
time warping (DTW) algorithm [12] to establish point-correspondence (Fig. 1(c)), 
from which a breast contour is produced by averaging the corresponding matched-
points across different slices. The averaged contour delineates a 2D mean shape of the 
breast defined as the case-specific 2D breast template for the given scan (Fig. 1(c)).  

 

Fig. 1. Intra-case fibroglandular likelihood atlas construction. (a) (b) Two representative slices 
of a 3D MRI scan where the breast contours are plotted in red. (c) The DTW-based matching of 
the breast contours between (b) (red) and the generated case-specific 2D breast template (blue). 
(d) Based on the built point-correspondence in (c), the breast in (b) is deformed to the breast 
template (blue). (e) The learned case-specific 2D likelihood atlas where the colorbar indicates 
pixel-wise likelihood of being fibroglandular tissue within the breast template. 

Next, pixel-wise likelihood is learned for each point in the case-specific 2D breast 
template. For each of the training slice, we take its breast contour points as original 
landmarks and warp the whole slice to align it with the case-specific breast template 
whose breast contour points are taken as the corresponding target landmarks (Fig. 
1(d)). Here the warping is implemented in a deformable manner by the Delaunay 
triangulation and cubic interpolation [13]. In this way we transfer all slices and the 
associated segmented fibroglandular tissues into the same coordinate space. 
Subsequently, we project the segmented fibroglandular tissues for each slice into the 
case-specific breast template space where a 2D spatial distribution of the accumulated 
projected points is formed. Let ሼܼሽୀଵே  represent the ܰ accumulated points where ܼ ൌ ሾݔ, ݅ ሿ encodes the 2D coordinates for pointݕ , we apply the following 2D 
kernel density estimation [14] to derive a continuous distribution function, 

ு݂ሺܼሻ ൌ ଵே ∑ ுሺܼܩ െ ܼሻேୀଵ  ,                       (1) 

where Gaussian kernel is selected for ܩு  and the bandwidth ܪ  is automatically 
determined according to [14]. Function ு݂ሺܼሻ represens a pixel-wise likelihood of 
being fibroglandular tissue in the breast template, which yields the case-specific 
fibroglandular likelihood atlas for the given MRI scan (Fig. 1(e)). 

Inter-case Learning: By repeating the above intra-case processing for multiple 3D 
scans we obtain multiple case-specific likelihood atlases (Fig. 2(a)-(c)). At the inter-
case level, we apply similar processes as described above to generate the likelihood 
atlas over the entire training set. First, an overall 2D breast template is generated from 
averaging the DTW-matched contour points extracted from multiple case-specific 2D 
atlases. Then all the case-specific atlases are deformed by the Delaunay triangulation 
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and cubic interpolation [13] to the overall breast template space to average out an 
overall fibroglandular likelihood atlas (denoted by ܣଵ ; Fig. 2(d)). Since a breast 
primarily consists of fibroglandular tissue and fat, a fat likelihood atlas ܣଶ can be 
obtained simultaneously as ܣଶ ൌ 1 െ  .ଵ. The two atlases will be used in Section 2.3ܣ

 

Fig. 2. Inter-case fibroglandular likelihood atlas construction. Three case-specific likelihood 
atlases derived from three different cases are shown in (a), (b), and (c), respectively, and (d) 
shows an overall atlas (denoted by ܣଵ) learned over 9 different cases. The colorbar for (a)-(d) 
indicates pixel-wise likelihood of being fibroglandular tissue. 

2.2 Fibroglandular Tissue Model Learning  

A mixture model of Gaussian distribution is employed to model the fibroglandular 
tissue and fat, respectively, using image-derived features of the tissue appearance. For 
more efficient model learning, we choose to work at the superpixel [15] rather than 
pixel level (note here a pixel essentially represents a voxel). We adapt a publicly 
available code in [15] to over-segment to a set of superpixels (superpixel number is 
initially set to 300 by referring to [16]) in which the superpixels in the non-breast 
regions are filtered out (Fig. 3(a)). Then tissue feature vectors (ܺ) are computed at the 
superpixel level including, mean intensity, intensity variance, skewness, and kurtosis 
[17]. For each class of tissue, the following multivariate mixture model Θ is learned, ܲሺܺ | ߆ሻ ൌ ∑ ω୩ ڄ ଵሺଶሻ/మ|ஊౡ|భ/మK୩ୀଵ ڄ ݁ሾିଵ/ଶ·ሺିµౡሻஊౡషభሺିµౡሻሿ ,       (2) 

where ݀ ൌ 4, ߱, ߤ and ߑ represent the weight, mean, and covariance matrix of 
the k-th Gaussian component, respectively. The integrated expectation–maximization 
(EM) and iterative pairwise replacement algorithm (IPRA) [12] are adapted to learn 
the model, in which the mixing component number K is automatically determined. 
Briefly, the EM algorithm performs an initial estimation of the components and a 
refinement process is followed by the IPRA algorithm. The learned two models are 
denoted by ߆ ൌ ሼሼ߱, ࣨሺߤ, ሻሽୀଵߑ ሽୀଵଶ  where ߆ଵ  is for fibroglandular tissue 
and ߆ଶ for fat, respectively. 

2.3 Fibroglandular Tissue Segmentation 

We formulate the segmentation of a test breast (i.e., the set of 2D slices) as the atlas-
aided posterior probability assessment after incorporating the likelihood atlases as prior 
probability. To do so, the correspondence between each of the test slices (Fig. 3(a)) and 
the atlas (i.e., the breast template; Fig. 3(b)) needs to be established. We utilize a similar 
warping process as described in the atlas construction to deform the likelihood atlas to 
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align with a test slice by the Delaunay triangulation and cubic interpolation [13] (Fig. 
3(c)). For segmenting a single test slice, we compute pixel-wise posterior probability. 
Note that the atlas gives pixel-wise likelihood but the test image features are extracted in 
terms of superpixels. Therefore, in computing the pixel-wise posterior probability for 
each pixel within a superpixel region, the same set of image features is repeatedly used 
for each pixel belonging to that superpixel (refer to equation (4)). This way the 
segmentation can benefit both from the robustness of superpixels to noise and the 
sensitivity to small blobs of fibroglandular tissue. For each pixel ݍ of a superpixel ܵ in 
the test slice  ܫ (assume ܫ  is a gray level image and ܫሺݍሻ א ሾ0,255ሿ), the posterior 
probability (Fig. 3(f)) w. r. t the learned models ሼ߆ሽୀଵଶ  is computed by: ܲሺ߆ | ݍሻ ן ܲሺ߆ | ݍሻ · ܲሺ߆ሺݍሻሻ ,                     (3) 

where ܲሺ߆ | ݍሻ (Fig. 3(e)) is calculated at its superpixel level using equation (2): ܲሺ߆ | ݍሻ ൌ ܲሺܵ | ߆ሻ ൌ ሾെlog ∑ ߱ ڄ ࣨሺܵ; ߤ, ሻୀଵߑ ሿିଵ ,     (4) 
and ܲሺ߆ሺݍሻሻ (Fig.3d) is based on atlas ܣ weighted by a regularization item ܴ:  ܲሺ߆ሺݍሻሻ ൌ ܴሺݍሻ  · ሻݍሻ, where ܴଵሺݍሺܣ ൌ 1 െ ሺሻమఱఱ; ܴଶሺݍሻ ൌ 1 െ ܴଵሺݍሻ.  (5) 
In equation (5), ܣሺݍሻ is the corresponding likelihood value of the aligned atlas and ܴሺݍሻ (ܴଵ  for fibroglandular tissue and ܴଶ  for fat) is a regularization/weighting  
 

 

Fig. 3. Fibroglandular tissue segmentation by examining posterior probability. The colorbar is 
for (b)-(f) and indicates the likelihood of being fibroglandular tissue. (a) Test slice in terms of 
superpixel representation. (b) A training-set learned fibroglandular likelihood atlas (ܣଵ). (c) 
The atlas in (b) is warped to align with the test slice. (d) Regularized atlas (ܲሺ߆ଵሺݍሻሻ). (e) 
Superpixel-wise probability profile of ܲሺܵ | ߆ଵሻ. (f) Pixel-wise posterior probability profile ܲሺ߆ଵ | ݍሻ. (g) Segmentation contour. (h) Segmented fibroglandular tissue. 
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coefficient based on the intensity properties of the test slice. The term ܴ  is 
considered as a further regularization to the magnitude of the a priori learned atlas to 
better fit the given test case for improved segmentation. Fibroglandular tissue is 
segmented (Fig. 3(g)(h)) as the pixels that satisfy ܲሺ߆ଵ | ݍሻ  ܲሺ߆ଶ | ݍሻ. 

3 Results 

In our experiments we use 10 3D bilateral MRI cases randomly selected from a high-
risk screening population [18], with cancer-unaffected, T1-weighted, non-fat-
suppressed imaging in the sagittal view. Three cases fall in the Breast Imaging-
Reporting and Data System (BI-RADS) density category III and 7 in category IV. 
There are 56 slices for each scan, resulting in a total of 10×56=560 2D MRI slices 
used in our experiments. Women were imaged prone in a 1.5T scanner with dedicated 
surface breast coil; matrix size: 256×256; slice thickness: 2-3.5mm; flip angle: 20°. 
The fibroglandular tissue for each case (after bias correction) is manually segmented 
by a 10-year experienced breast imaging radiologist, who estimates the fibroglandular 
regions in the breast by adapting a previously-suggested intensity thresholding 
approach [1]. The radiologist has the option to first select a rough region of 
fibroglandular tissue by outlining a closed contour prior to operating the thresholding. 
This manual segmentation is considered as our ground truth for validation.  

Our experiments are based on leave-one-out cross validation: in each loop 9 cases 
are used for model training and atlas learning and the left one is used for testing. The 
segmentation accuracy is based on assessing agreement of the 3D volume between the 
algorithm- and manual-generated segmentation by the Dice's Similarity Coefficient 
(DSC). We also compare our segmentation against the intensity-based FCM 
clustering algorithm [19], which has previously been used for fibroglandular tissue 
segmentation in breast MRI. In our implementation we also apply the two 
preprocessing steps (e.g., the breast boundary segmentation and bias field correction) 
and we fix the number of cluster to 2 to guide the FCM to divide the breast into two 
broad intensity-based clusters: fibroglandular tissue and fat. Finally, we also compare 
our proposed method to a conventional (e.g., without atlas prior) Gaussian mixture 
model (GMM) where ܲሺ߆ሻ is set to 0.5 for equal occurrence frequency for the two 
breast tissue classes. 

Table 1. Segmentation performance (DSC) comparison for the 10 cases 

Case #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average 

Atlas-GMM 0.80 0.81 0.82 0.89 0.88 0.87 0.88 0.83 0.84 0.85 0.85 

GMM 0.57 0.47 0.62 0.79 0.73 0.71 0.79 0.74 0.70 0.77 0.69 

FCM 0.66 0.68 0.73 0.87 0.79 0.80 0.82 0.70 0.79 0.79 0.76 

Table 1 lists the volumetric DSC performance comparison for each of the 10 cases. 
Overall we achieved an average segmentation accuracy of DSC=0.85. As can be seen, 
our proposed atlas-aided method brings a significant improvement in segmentation 
accuracy over FCM and the conventional GMM method (the corresponding p values 
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are 0.0009 and 0.004 for comparing our atlas-aided method against the GMM and 
FCM, respectively, using a paired t-test), which suggests a benefit from incorporating 
the constructed fibroglandular tissue likelihood atlases in the segmentation process. 
Segmentation examples are shown in Fig. 4 with the comparison to the corresponding 
manual segmentations.  

As a preliminary validation of the dependency of our method on the pre-selected 
number of superpixels, we also experiment with initializing the superpixel algorithm 
[15] by 1000 superpixels. We observe that the atlas-aided segmentation accuracy 
remains relatively stable, with a slight increase of ~ 0.3% relative to 300 superpixels.  

 

Fig. 4. Segmentation examples and the comparison to manual segmentation. Each row shows 
one case example. (a) Segmented and bias corrected breast. (b) Manual segmentation. (c) Atlas-
aided GMM segmentation. (d) GMM segmentation (without atlas). (e) FCM segmentation. 

4 Discussion and Conclusion 

We propose an atlas-aided probabilistic model-based approach for fibroglandular 
tissue segmentation in breast MRI. The constructed statistical atlases serve as an 
effective prior of fibroglandular tissue likelihood in posterior probability assessment 
for segmentation. Experiment results demonstrate superior segmentation accuracy for 
our approach, compared to other commonly used approaches, suggesting a benefit of 
incorporating the constructed atlases in the proposed segmentation method. This work 
is performed to establish proof-of-concept and feasibility for our algorithm. Based on 
the segmentation, it is straightforward to derive a volumetric percentage of the 
fibroglandular tissue (FT%), which could ultimately be used for breast cancer risk 
estimation. In addition, the computed posterior probabilities could essentially be 
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translated into voxel-wise percentages of fibroglandular tissue to alleviate partial 
volume effects [2] and provide aggregated relative measures of fibroglandular tissue.  

Future work will include further validation with a larger dataset including different 
vendors and protocols, extending the atlas construction in the 3D space, and 
employing additional image features (e.g., textures) to characterize the tissue 
properties. Multi-reader variability study on the manual segmentation will also be 
considered. Further testing of performance dependence on the number of superpixels 
is also warranted to fully validate our method’s robustness. 
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Hubert Labelle3, and Mohammed Benjelloun1

1 Computer Science Dept., Faculty of Engineering, University of Mons, Belgium
Fabian.Lecron@umons.ac.be

2 Information and Communications Technologies,
National Research Council, Canada
Jonathan.Boisvert@nrc-cnrc.gc.ca

3 Sainte-Justine Hospital, Montréal, Canada

Abstract. Severe cases of spinal deformities such as scoliosis are usually
treated by a surgery where instrumentation (hooks, screws and rods) is
installed to the spine to correct deformities. Even if the purpose is to ob-
tain a normal spine curve, the result is often straighter than normal. In
this paper, we propose a fast statistical reconstruction algorithm based
on a general model which can deal with such instrumented spines. To
this end, we present the concept of multilevel statistical model where
the data are decomposed into a within-group and a between-group com-
ponent. The reconstruction procedure is formulated as a second-order
cone program which can be solved very fast (few tenths of a second).
Reconstruction errors were evaluated on real patient data and results
showed that multilevel modeling allows better 3D reconstruction than
classical models.

Keywords: 3D reconstruction, spine, statistical shape model, multilevel
modeling.

1 Introduction

Three-dimensional reconstruction of the spine is a valuable process to study
spinal deformities such as scoliosis. It allows to determine clinical indices helping
diagnosis and treatment. It normally needs to be performed based on radiographs
to allow a natural standing position for the patient and to reduce as much as
possible the exposition of young patients to ionizing radiations.

Usual approaches to reconstruct the spine from two radiographs consists in
manually identifying corresponding landmarks on the views and matching them
in a three-dimensional space. These methods required to locate at least six points
per vertebra [1]. Other authors proposed to increase the number of points to
be located by considering landmarks that are only visible in one radiograph
[8]. These methods are very time-consuming and are hardly transposable to a
medical practice.
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In order to reduce the amount of manual intervention, statistical reconstruc-
tions methods later appeared. In those methods, a reduced set of input is pro-
vided by the user and the rest of the model is inferred with the help of a statistical
shape model. For example, Humbert et al. [5] proposed to evaluate a parametric
model based on the spinal centerline, Moura et al. [9] inferred an articulated
model of the spine based on splines, and Boisvert et al. [2] formulated the esti-
mation of the spine shape as a second-order cone program.

Patients with spinal deformities can be treated in various ways depending on
the severity of the deformation. For severe cases, surgery can be recommended.
All the methods we have just described are valuable, but are always focused
on patients who have not undergone any surgery. Surgical treatment of scoliosis
consists in applying instrumentation to the spine in order to redress the spine and
maintain the correction. Even if the purpose is to obtain a normal spine curve,
the result is often neither a normal spinal curve nor a scoliotic one (see Fig. 1
for instance). Therefore, it is difficult to capture these specific deformations with
a classical statistical model. In this context, we propose to use a more general
model adapted to hierarchical structures like the spine: a multilevel statistical
shape model. The advantage of such a model is to represent the dependency
between one vertebra and the others. As a result, several sub-models are built
and can be treated separately, each level characterizing one sub-model. In the
literature, the inter-vertebra dependence between pairs of vertebræ has already
been modeled in [3]. Our multilevel framework is however more generic since
various group structures can be selected. We can, for instance, represent the
dependence between individual vertebra, between duos of vertebræ, between
triplets, etc.

To the best of our knowledge, this paper is the first report of an interactive
and fast 3D reconstruction method of the spine when surgical instrumentation
is present. Furthermore, our approach introduces the use of the multilevel sta-
tistical shape modeling to the problem of 3D shape reconstruction. We will show
that our method provides better results than classical statistical models.

2 Method

2.1 Multilevel Statistical Shape Model

While principal component analysis (PCA) is usually required to build a statis-
tical shape model, multilevel component analysis (MCA) is the basis to design a
multilevel statistical shape model. The concept of MCA was introduced in [10]
as an extension of PCA for hierarchical structures. If we consider a model with 2
levels, the idea is to decompose the data into a within-individual and a between-
individual component. Let us assume a sample with N items, divided into K
groups of size Kk. An item i belonging to the group k according to the variable
j is denoted by: xijk , with i ∈ [1, . . . ,Kk], k ∈ [1, . . . ,K], and j ∈ [1, . . . , J ].
Based on the Cronbach and Webb’s model [4], xijk can be decomposed into a
within-group and a between-group term, such as:
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Fig. 1. Radiographs of a postoperative patient and the associated reconstruction. Left:
Lateral view. Center: Postero-anterior view. Right: 3D reconstruction based on our
approach.

xijk = x•j• + (x•jk − x•j•) + (xijk − x•jk), (1)

where x•j• = 1
N

∑K
k=1

∑Kk

i=1 xijk, and x•jk = 1
Kk

∑Kk

i=1 xijk. In the relation (1),

(x•jk − x•j•) is the between-group term, while (xijk − x•jk) is the within-group
one.

Based on the decomposition of the equation (1), a multilevel model is defined
as several sub-models that can be treated separately. Let us consider the spine
as a hierarchical structure such as in Fig. 2.

Let us assume a sample of I patients characterized by K vertebræ. In [7], the
authors proposed a multilevel modelization of the vertebræ. Here, we develop
a deformable model that can represent all the spine. As a consequence, in the

Fig. 2. Multilevel representation of the spine for a sample of patients
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proposed modelization, each patient of the hierarchical structure can be viewed
as a group at the first level. As a consequence, the within-group part of the
model represents the variability between vertebræ while the between-group part
concerns the inter-patient variability. If we assume that a patient (a spine) is
represented according to J variables, a deformable model of a given vertebra xi

with i ∈ [1, . . . ,K] is defined by:

xi = x̄+ φW,idW + φBdB, (2)

where x̄ is a column-vector of size J standing for the mean computed over all the
objects in the sample, φW,i denotes the lines of φW , a J×RW matrix containing
the within-group principal components, dW is a RW × 1 vector representing the
weights controlling the deformation of the within-group term, φB stands for the
J ×RB matrix representing the between-group principal components, dB is the
RB×1 vector of weights controlling the deformation of the between-group term.

The interest of MCA is that the parameters of the equation (2) can be deter-
mined separately (the demonstration can be found in [10]).

Let X , be a N×J matrix including all the vertebræ of the sample (N = KI).
First, the within-group parameters are obtained after a particular decomposition
of the matrix X . This decomposition consists in mean-centering all the sub-
matrices Xi of size K × J , where Xi is the partition of the matrix X belonging
to the group i. Let Xc,i be the resulting matrix. Xc,i actually represents the
within-patient variability. Therefore, each line of the matrix defines a vertebra.
To obtain a global representation of the spine, matrices Xc,i are transformed
in a column-vector by concatenating the lines of Xc,i. Let Xc be the matrix
built from the vertical concatenation of the resulting column-vectors. The matrix
φW is composed of the eigenvectors of the covariance matrix related to Xc.
Furthermore, the variance of the weight dW , which limits the deformation of
the within-group sub-model, is determined by the eigenvalues of the covariance
matrix related to Xc.

In order to determine the between-group parameters of the model, let us
subtract the overall mean of the matrix X . Let X̃ be this matrix. Let us note
X̃i, the partition of the matrix X̃ belonging to the group i. Moreover, let us
consider the I vectors m̃i, each of them representing the mean of the associated
matrix X̃i. In fact, these vectors characterize the between-patient differences.
Therefore, we note M , the matrix resulting from the vertical concatenation of
the vectors m̃i. As a consequence, the matrix φB of the between-group principal
components is built by the eigenvectors of the covariance matrix related to M .
In addition, the deformation limits of the between-group sub-model are given by
the eigenvalues of the covariance matrix related to M .

These concepts can naturally be extended to a greater number of hierarchical
levels. Since we want to represent the variability between the vertebræ (i.e.
within-patient), the extra levels are within-group terms. We can generalize the
relation (2) in accordance with:
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xi = x̄+

L−1∑
l=1

φWl,idWl
+ φBdB , (3)

where L is the number of levels and il is the index of the group to which the
object belongs at the level l.

2.2 Reconstruction Algorithm

The principle of the reconstruction algorithm is to deform a 3D shape of the
spine so that it matches the multiple views of the object to be reconstructed.
In our case, two views are available: a posteroanterior (PA) and a lateral (LAT)
radiograph. However, the final solution needs to be in conform to the model
defined in section 2.1. In other words, the model constitutes a statistical a priori
that the reconstruction algorithm has to take advantage of. A common metric
to determine the degree of similarity between a shape and a shape model is the
Mahalanobis distance.

The minimization of the Mahalanobis distance during the reconstruction pro-
cess allows that the final shape fits the statistical distribution of the model. An-
other constraint needs to be met in the optimization problem. In order to match
the 3D shape with the PA and LAT views, the Euclidean distance between the
projection of a 3D point xi and its theoretical location on the radiograph has to
be minimized. Authors showed [2] that this distance can be computed given:
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where P
j

i is the ith line of the matrix P
j

and uj
i is the projection of the point xi.

These authors also proposed to limit this error to a given constant emax while
optimizing for the point position. They formulated the problem as a second-order
cone optimization program, just as it is demonstrated in [6]. Since second-order
cone programming expects to operate with the norm of expressions, the Maha-
lanobis distance requires to be formulated with L, a Cholesky decomposition of
Σ−1, the inverse covariance matrix of the sample [2].

The second-order cone program is expressed by minimizing the Mahalanobis
distance while constraining the solution to result in a projection error smaller
than emax using:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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To reduce the number of variables, it is possible to optimize MCA weights instead
of point coordinates. To this end, let us define some specific notations. Let xik

be a point k belonging to the vertebra xi. Equation (3) allows to express:

xik = x̄k +
L−1∑
l=1

φWl,ikdWl
+ φB,kdB, (6)

where x̄k, φWl,ik and φB,k are respectively the lines of x̄, φWl,i, and φB , associ-
ated to the point xik. Let us also consider σ2

Wl
and σ2

B, the variances associated
to, respectively, the within-group and the between-group sub-models. Moreover,
for simplicity of writing, let us define:

ψ(dWl
, dB)k = x̄k +

L−1∑
l=1

φWl,ikdWl
+ φB,kdB. (7)

Finally, the second-order cone programming optimization problem to match a
multilevel statistical model with radiographic views is formulated as:
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3 Results

In order to process a reconstruction, two radiographs are presented to the user.
He then has to point out some anatomical landmarks on the images to initiate
the optimization of the problem (8). To validate our approach, we used a sample
of 307 scoliotic patients for building the multilevel model. We considered 17
vertebræ of the spine: T1 to L5. Each vertebra is represented by 6 points of
reference, i.e. the center of inferior and superior endplates, and the inferior and
superior extremities of pedicles. 3D reconstructions based on a 2-level and a 3-
level model have been performed for 25 post-operative patients whose spine was
previously reconstructed following a reference method [1]. Let us note that tests
were performed on an Intel Core 2 Duo 2.53 GHz.

We first present at Table 1 the decomposition of the total variability for a 2-
level and a 3-level model. These values are computed in the same way as for the
variance decomposition in ANOVA. Results of Table 1 show that the magnitude
of the within-group and the between-group variability is sufficient to use a 2-level
and a 3-level model in the reconstruction algorithm.

Mean RMS reconstruction error has been evaluated as a function of the num-
ber of points per radiograph (see Fig. 3). The parameter emax was set to 8 pixels.
The reconstruction of pedicles and plates are distinguished. One can remark that
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Table 1. Decomposition of the total variability

Levels Var. With. (%) Var. Between (%)

2 88.83 11.17

3 23.12 65.71 11.17

plates reconstruction is better than pedicles reconstruction. This observation is
actually similar in the case of reconstruction of the spine with no instrumenta-
tion [9]. Moreover, the reconstruction error decreases as the number of points
per radiograph increases. However, this effect is reduced after approximatively
6 to 7 points per radiograph. Finally, Fig. 3 indicates that, both for plates and
pedicles, the 3-level model converges more slowly than the 2-level model or the
1-level model. Adding extra levels in the model requires more constraints in the
optimization problem. As a consequence, more control points per radiograph
are needed. We have also compared the mean reconstruction error based on
the 2-level model with a classical statistical model (with only one level) for 17
control points. A mean error of 2.12mm for endplates and 4.02mm for pedicles
was obtained. For the 2-level model, these values are, respectively, 2.05mm and
3.70mm. A paired t-test shows that these differences are significant (at level
α = 0.05). Actually, when a few control points are considered, the difference
between the mean error of the 2-level model and the 1-level model is low. This
difference increases with the number of control points. Furthermore, if we only
consider instrumented vertebræ, the difference between the 2-level model and
the classical model is increased. In this context, the 2-level model shows a mean
error of 2.09mm for endplates and of 3.64mm for pedicles. The classical model
is characterized by a mean error of 2.19mm for endplates and of 4.37mm for
pedicles. This demonstrates that our approach based on a multilevel model is to
be preferred in the case of 3D reconstruction of the post-operative patient spine.

Finally, we propose at Fig. 3 the execution times for a reconstruction based on
a PCAmodel, a 2-level and a 3-level model. Since more constraints are considered

Fig. 3. Left: Evolution of the mean RMS 3D reconstruction error as a function of the
number of points per radiograph. Right: Evolution of the elapsed time as a function of
the number of points per radiograph
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for the 3-level model, computing times are logically higher. Nevertheless, the
results are an order of magnitude fast than most current methods, for example
Humbert et al. [5] take about 4000ms to generate a reconstruction and Moura
et al. [9] about 3000ms. These results tend to show that our approach could be
used interactively in the clinic.

4 Conclusion

In this manuscript, we proposed an algorithm to perform 3D reconstructions of
the spine from bi-planar radiographs when surgical instrumentation is present.
Our approach is based on a multilevel statistical model. Results showed that
this model allows better reconstruction than classical models. The separation
into several levels allows to deal with discontinuities characterizing the spine
of post-operative patients. Since 3D spine reconstructions are obtained in real-
time, preliminary results tend to show that our approach could be transposable
to medical practice.
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Abstract. Intravascular ultrasound (IVUS) is a catheter-based medical imaging
technique that produces cross-sectional images of blood vessels. In this paper,
we present a method for the segmentation of the luminal border using IVUS ra-
dio frequency (RF) data. Specifically, we parameterize the lumen contour using
Fourier series. This contour is deformed by minimizing a cost function that is
formulated using a probabilistic approach in which the a priori term is obtained
using the prediction confidence of a Support Vector Machine classifier using fea-
tures extracted from the RF signal. We evaluated the performance of our method
by comparing our results with manual segmentations from two expert observers
on 280 frames from eight 40 MHz IVUS sequences from rabbits and pigs. The
performance was evaluated using the Dice similarity coefficient, coefficient of
determination, and linear regressions of the lumen area for each frame. Our re-
sults indicate the feasibility of our method for the segmentation of the lumen from
IVUS RF data.

1 Introduction

Intravascular ultrasound (IVUS) is a catheter-based imaging technique that provides
high-resolution, cross-sectional images of the interior of blood vessels in real time. The
IVUS system consists of a transducer which transmits pulses and receives a reflected
radio frequency (RF) signal (i.e., A-line) at a discrete set of angles. These signals are
then processed to reconstruct an image that is meaningful to the physicians (i.e., B-
mode image). Accurate segmentation of IVUS images is important in order to assess
vessel characteristics (e.g., the lumen and wall diameters), and for other applications
(e.g., the study of mechanical properties of the vessel wall and the characteristics of
the plaque, 3D reconstruction of the vessel). However, manual segmentation of IVUS
data can be very expensive considering that one typical sequence may be composed of
thousands of frames. Therefore, methods for automatic segmentation of IVUS data are
needed.

Early IVUS systems operated at frequencies in the range of 10 to 20 MHz. At these
frequencies, the blood presents a low acoustic impedance and therefore these systems
produce IVUS images in which the lumen has low intensity, no texture, and a high
contrast with respect to the vessel wall tissues. For this reason, many approaches for
IVUS segmentation were based on the use of local properties of the image such as pixel
intensity and gradient information. Modern IVUS systems operate at high frequencies
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(i.e., 30 to 40 MHz) and produce images with high resolution. In these images, the lu-
men presents some texture due to speckle, and lower contrast with respect to the vessel
wall tissues. For these images, edge information is not sufficient and therefore, later ap-
proaches incorporated prior knowledge using region and global information such as tex-
ture [1], gray level variances [2,3], statistical properties of the intensities [4], temporal
information (3D segmentation) [5], and discrete wavelet decomposition [6]. Most recent
approaches include the use of nonparametric probability densities with global measure-
ments [7], multilevel discrete wavelet frame decomposition [8], discrete wavelet packet
transform [9], machine learning classification methods [10], a combination of gray level
probability density functions and the intensity gradient [11], linear-filtered gradient vec-
tor flow which drives the deformation of a balloon snake [12], and binary morphological
object reconstruction [13].

A common characteristic of these methods is that the segmentation is performed us-
ing the reconstructed B-mode images. This poses a limitation considering that, apart
from the frequency of operation, the appearance of the B-mode images depends on
the reconstruction settings (e.g., time gain compensation (TGC), dynamic range com-
pression, brightness, contrast and scaling) [14] (Figs. 1(a) and 1(b)). These settings are
subjectively selected by the interventionist, and may change from one intervention to
the next, or even during the same acquisition [15].

One solution to overcome these limitations is to perform the segmentation employ-
ing the raw IVUS RF signal since it is not affected by transformation parameters or
visualization settings. RF-based approaches include methods for the characterization of
different regions of interest such as plaque or blood (e.g., [16,17]).

In this work, we present a probabilistic method for the segmentation of the lumen
from IVUS RF data. Our main contribution is a novel approach for the computation
of the a priori terms necessary for a probabilistic segmentation by the analysis of the
RF signal instead of the B-mode image. We evaluated the performance of our method
by comparing our segmentation results with the manual segmentation from two expert
observers on 280 frames from eight 40 MHz IVUS sequences from rabbits and pigs.
Our results indicate the feasibility of our method for the segmentation of lumen.

The rest of the paper is organized as follows: Section 2 presents the steps of our
segmentation method, Section 3 presents the results obtained with our method, and
Sections 4 and 5 present our discussion and conclusion, respectively.

2 Methods

The proposed method is a significant improvement of our method presented in [18].
In that work, the segmentation of the lumen was achieved by the minimization of a
probabilistic cost function formulated using a Bayesian approach:

U(C) =
∑
r

∑
θ

Pl(r, θ,C)[−log(vl(r, θ))]+ [1−Pl(r, θ,C)][−log(vn(r, θ))] , (1)

where r and θ represent the polar coordinates of each pixel (i.e., radius and angle,
respectively),Pl is the probability of each pixel to belong to the lumen class, and vl(r, θ)
and vn(r, θ) represent to the a priori information (i.e., likelihood of the pixel to belong
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to the lumen and non-lumen, respectively). The probability of a pixel to belong to lumen
class is defined by its radial distance from the lumen curve S(θ,C) using a sigmoid

function: Pl(r, θ,C) =
(
1 + exp−λ(S(θ,C)−r)

)−1
.

Using this formulation, those pixels far above the contour will have a higher prob-
ability of belonging to the lumen, while the pixels far below the contour will have
probability close to zero. For the pixels near the contour, depending on the value of λ,
the probability of belonging to lumen will be close to 0.5.

The two major limitations of our previous method [18] are the number of parameters
to be tuned for the parameterization of the curve which uses a mixture of Gaussians,
and the simple method for estimating the a priori information models using gray-level
histograms which limited the method for the segmentation of 20 MHz IVUS sequences
exclusively. The proposed method has two significant differences with respect to that
work: (i) we propose a parameterization which requires less parameters to be tuned
and that suits better to the characteristics of the segmentation problem, and (ii) the
computation of the a priori terms is based on the analysis of the RF signal.

The RF IVUS data corresponding to a cross section of a vessel consist of a set of
one-dimensional signals. Each of these signals corresponds to the acoustic echoes ac-
quired at a particular angle using a single-rotating transducer or a circular array of trans-
ducers. Therefore, the data can be analyzed using polar coordinates where the radius
corresponds to the penetration of the ultrasound beam measured from the transducer
(Fig. 1(d)). In this context, the lumen contour can be represented as a one-dimensional
periodic curve. In this work, we have chosen to define the lumen curve using one-
dimensional Fourier series instead of other parameterizations due to its simplicity and
because this parameterization provides a periodic curve for which the smoothness can
be controlled by the number of harmonics (i.e., number of coefficients Nk). The lumen
contour is defined by:

S(θ,C) =
a0
2

+

Nk∑
k=1

[
ak cos

(
k2πθ

Nθ

)
+ bk sin

(
k2πθ

Nθ

)]
, (2)

where Nθ represents to the number of A-lines in a frame (i.e., width of the polar B-
mode image), and C = [a0, a1, ..., aNk−1, b1, ..., bNk−1]

T are the Fourier coefficients
that control the shape of the curve.

For the computation of the a priori terms, we employ features extracted from the
IVUS RF signal using our blood detection method proposed in [17]. In that work, the
structures present in the vessel are modeled as a distribution of random positioned scat-
terers for which the acoustic power scattered in the direction of the ultrasound trans-
ducer is defined by the differential backscattering cross section (DBC) of the scatterer.
The RF signal corresponding to each A-line is divided into NP non overlapping par-
titions of constant width. The DBC of the scatterers that generates the signal of each
partition is computed by minimizing the difference between the root mean square power
of the real RF signal and the modeled RF signal computed with the model. In this work,
we employ the DBC and the radial distance of the partition as features to detect the
blood and non-blood regions using a machine learning method for classification.

In summary, our method consists of six steps: (i) divide the RF signal corresponding
to each A-line of a frame into NP non-overlapping partitions; (ii) compute the DBC
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values for all the partitions using the method described in [17]; (iii) construct a feature
vector vp ∈ R2 for each partition p by concatenating the DBC computed for that par-
tition and its radial distance from the transducer; (iv) classify each partition as blood
or non-blood according to the prediction of a classifier; (v) use the confidence of the
classification results as the a-priori term in the Bayesian optimization function; and
(vi) minimize the cost function that guides the position and shape of the lumen contour
using a line-search method.

In this work, we chose to use a Support Vector Machines (SVM) classifier in order
to take advantage of its ability of mapping the data to a higher dimensional space on
which the problem becomes linearly separable. The training and deployment steps for
the SVM model are described next.

Training: In the training step, the user to provides examples of lumen and non-lumen
regions by manual annotations of these regions on the first frame B-mode reconstruction
of the sequence to be segmented (Figs. 1(b) and 1(c)). Next, the DBC of the scatterers
that generate the signal of each partition corresponding to the regions provided as ex-
amples is computed. A two-dimensional feature vector vp ∈ R2 is constructed for each
partition. A training set is defined by associating each vector with its corresponding
class and then used to generate an SVM model that is trained using a Gaussian kernel.
The optimal parameters c and γ for the SVM model are computed using grid search and
5-fold cross validation.

Deployment: For each of the frames to be segmented, the DBC of the scatterers for
each partition of every A-line is computed, and the feature vector is constructed in the
same way as in the training step. The classification of each partition is performed using
the SVM model giving as a result a class and an associated confidence Ps (Fig. 1(e)).
This classification confidence is then used as the likelihood for blood and non-blood as
vl(r, θ) = Ps(r, θ) and vn(r, θ) = 1− Ps(r, θ), respectively. Finally, the segmentation
is performed by the minimization of the cost function of Eq. (1) using the steepest
descent method.

3 Results

We use the proposed method to perform segmentation on selected frames from eight
40 MHz IVUS sequences, four were acquired from rabbits and the other four from
pigs. For each sequence, we selected five groups of seven consecutive frames from dif-
ferent periods of time for a total of 35 frames per sequence. The parameters used for
the computation of the DBC are σ = 5.3e−8 for the width of the envelope of the im-
pulse function, μ = 0.08276 dB/mm corresponding to the attenuation coefficient of
blood, c = 1, 540× 103 mm/s corresponding to the speed of sound in biological tissue,
�P = 0.05 mm for the size of partition, D = 400 scatterers/mm−2 for the scatterer
density, and δ = 3 for the cardinality of neighbors according to [17]. The number of
coefficients used for the contour parameterization was Nk = 5. The parameter for the
probabilistic segmentation was experimentally set to λ = 0.4. The initial point for the
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(a) (b) (c)

(d) (e)

Fig. 1. Example depicting (a) the first frame of a sequence in Cartesian B-mode representation
using logarithmic dynamic range compression, (b) the same frame using linear dynamic range
compression with a compression factor of 0.4, (c) the corresponding user annotation for blood
and non-blood (red and blue, respectively), (d) the polar B-mode representation of the frame,
and (e) the probability of each partition to belong to blood according to the SVM model in polar
representation (color figure).

steepest descent optimization was empirically set to a0 = 1, ai = 0.1 and bi = 0.1
∀ i > 0. The method was implemented in MATLAB and the average time for training
the SVM for each sequence was 12 s and the segmentation time per frame was 5.4 s on
an Intel i7 at 2.67 GHz 12GB RAM.

We evaluated the performance of our method by comparing our segmentation re-
sults (A) with the manual segmentation from two expert observers (O1 and O2). We
computed the Dice similarity coefficient for the comparison of segmentations of (O1

vs. O2), (O1 vs. A), and (O2 vs. A) for each frame. Figure 2 depicts the results of this
analysis for each sequence and for the total number of frames. Note that our segmen-
tation results are similar to the segmentation provided by the two expert observers. In
addition, we evaluated the agreement between the areas defined by each segmentation
by computing the coefficient of determination and using linear regressions (Fig. 3). Al-
though there exists a good agreement between the areas, a tendency of our method to
under-segment the areas can be observed. Finally, Figure 4 depicts examples of the seg-
mentation results along with the manual segmentations from the two expert observers.
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(a) (b)

Fig. 2. Mean Dice similarity coefficient for (a) each sequence, and (b) the total number of frames

(a) (b) (c)

Fig. 3. Linear regression and coefficient of determination for the comparisons of (a) (O1 vs. O2),
(b) (O1 vs. A), and (c) (O2 vs. A)

Fig. 4. Examples of segmentation results (yellow) and their qualitative comparison with manual
segmentations
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4 Discussion

The main advantage of our method when compared with other existing IVUS segmenta-
tion methods is that our method is not affected by the B-mode reconstruction parameters
since it is based on the use of the RF signal. While there may be a concern regarding
the availability of such data, note that recent IVUS systems available in the clinic are
capable of providing the RF signal. The selected dataset included frames with moderate
guidewire artifacts and did not include frames with strong guidewire artifacts, plaque,
stents and side branches as this is subject for future work. In this work, we do not eval-
uate the accuracy of the classification method in the classification of a frame since this
data is not used as a direct result of the segmentation method but instead as a likeli-
hood of a pixel to belong to a certain class. The final class assigned to each pixel is
determined by the segmentation curve. Real-time segmentation may be achieved by an
implementation in a lower level language and by segmenting frames in parallel. Addi-
tionally, the proposed method may be fully automated by creating an SVM model using
samples from a large dataset of sequences instead of training for each sequence. The
main limitation of our method is the requirement of user initialization. Additionally,
our method may provide an incorrect segmentation in the presence of side branches for
which expert knowledge is required. Improvements on the classification performance,
the use of other classification methods, different parameterizations of the lumen curve,
exploration of additional features, including additional classes apart from blood and
non-blood (e.g., guidewire, shadow, plaque.), segmentation of the media/adventitia in-
terface, the use of temporal information (i.e., 3D-approach), and comparison with other
existing methods are subjects of future research.

5 Conclusion

We have presented a novel approach for the segmentation of the luminal border using
IVUS RF data. Our results indicate the feasibility of our method for the segmentation
of lumen in real time applications.
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Abstract. In this paper, we present a novel method by incorporating informa-
tion theory into the learning-based approach for automatic and accurate pelvic
organ segmentation (including the prostate, bladder and rectum). We target 3D
CT volumes that are generated using different scanning protocols (e.g., contrast
and non-contrast, with and without implant in the prostate, various resolution and
position), and the volumes come from largely diverse sources (e.g., diseased in dif-
ferent organs). Three key ingredients are combined to solve this challenging seg-
mentation problem. First, marginal space learning (MSL) is applied to efficiently
and effectively localize the multiple organs in the largely diverse CT volumes.
Second, learning techniques, steerable features, are applied for robust boundary
detection. This enables handling of highly heterogeneous texture pattern. Third,
a novel information theoretic scheme is incorporated into the boundary inference
process. The incorporation of the Jensen-Shannon divergence further drives the
mesh to the best fit of the image, thus improves the segmentation performance.
The proposed approach is tested on a challenging dataset containing 188 volumes
from diverse sources. Our approach not only produces excellent segmentation
accuracy, but also runs about eighty times faster than previous state-of-the-art so-
lutions. The proposed method can be applied to CT images to provide visual guid-
ance to physicians during the computer-aided diagnosis, treatment planning and
image-guided radiotherapy to treat cancers in pelvic region.

1 Introduction

Automated segmentation of medical images has increasingly become a valuable tool for
medical image analysis. Pelvic region analysis plays an important role in the medical
diagnosis and treatment planning for prostate cancer and bladder cancer. Segmentation
of prostate as well as bladder and rectum from a three dimensional computed tomogra-
phy (CT) volume often serves as the first step in image-based radiotherapy studies and
continuously attracts research attention [1,2,3,4,5,6,7]. Though intensive research has
been performed, accurate segmentation of 3D soft tissue structures in pelvic region is
still a challenging problem, due to the large variations in organ shapes and in the texture
pattern inside and along organ boundaries.
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Fig. 1. Examples of CT volumes in our dataset. Note the variance in the image size, position of
prostate / bladder / rectum, and volume dimensions. (c) also presents a challenging case that the
patient is undergoing brachytherapy, with implanted metal seeds in the prostate.

Unlike in previous work, the CT volumes in our study are scanned under largely
diverse protocols. Specifically, there are several diversities in our dataset: 1) The vol-
ume dimension and organ position in the volume substantially vary; 2) Some volumes
are enhanced by contrast agent while some are not; 3) Some volumes come from the
patients undergoing brachytherapy with implanted metal seeds in the prostate; 4) The
inter-slice resolution changes from 0.8 mm to 5.0 mm. Some examples are shown in
Figure 1. These diversities increase the variability of the key organs in both shape and
texture patterns, and therefore render the problem more challenging. Furthermore, the
automatic detection (or localization) is made more difficult especially because of 1).
Albeit important, automatic object detection is largely ignored in previous work.

In this paper, we propose an automatic segmentation approach that addresses all the
challenges mentioned above. Figure 2 illustrates the flowchart of the proposed method.
There are three major contributions in our system. First, the system uses a marginal
space learning strategy, which efficiently and effectively solves the organ detection
problem. Second, a learning-based boundary localization technique is utilized. By using
this technique, the system not only achieves accurate boundary responses, but also be-
comes reliable to the heterogeneous texture patterns. Third, an information theory based
module is incorporated into the framework and the Jensen-Shannon divergence-based
uncertainty measures are used for further improvement.

Fig. 2. Diagram for the proposed method
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2 Organ Detection and Mesh Initialization - Hierarchical
Detection Network

We represent the shape of an organ by a dense collection of mesh points on its bound-
ary, therefore, by a closed triangle mesh. In our work, the prostate is constructed with
602 points, while the bladder and rectum are represented using 1202 and 962 points,
respectively.

We initialize the multi-organ segmentation from an existing learning-based detection
framework. In the first stage, we performed a hierarchical bounding box detection sys-
tem based on Marginal Space Learning [8] in connection with Probabilistic Boosting
Trees [9]. The latter yields bounding box estimates for the prostate, the bladder, and the
rectum.

After automatic object localization, we align the mean shape with the estimated pose
onto the 3D volume, which is used as the initialization for mesh detection. An illustra-
tion of mesh initialization for bladder is presented in Figure 3.

Fig. 3. Mesh initialization after pose detection for the bladder. (a)(b)(c) show the sagittal, coronal
and axial view, respectively.

3 Boundary Refinement

After initialization, we then perform the boundary refinement to accurately fit the object
boundary. Active shape models (ASM) are widely used to deform an initial estimate of
a deformable shape under the guidance of the image evidence and the shape prior. How-
ever, the generic boundary detector in the original ASM does not work in our applica-
tion due to the complicated background and weak edges. There are two key components
in our refinement method: probabilistic boundary response, and information theoretic
measure (Jensen-Shannon divergence).

3.1 Learning-Based Boundary Detection

A key issue in boundary refinement is boundary localization, which usually involves
locally searching around current shape boundaries. Specifically, for a current boundary
point p ∈ P , a candidate point set Qp is formed by including points along the nor-
mal direction at p and within some distance. Then the point in Qp with the maximum
boundary probability (response) is used to replace p, i.e.,

p← arg max
q∈Qp

Pr(boundary|q, vol). (1)
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Previous work usually approximates the boundary response by simple checking gradi-
ents or intensity distribution along surface normals. However, the information gathered
this way is not enough for our task because the texture pattern in the pelvic region
has a large variability. When dealing with data from different scanning protocols, the
variability is even larger.

In order to attack this problem, we decide to learn Pr(boundary|q, vol) from the
training set. In this paper, we train a boundary detector using our efficient steerable
features and PBT, similarly to [8]. The same approach is used to train a boundary
detector using the PBT [9] and steerable features. According to our experiments, the
learning-based approach provides a robust boundary inference and it is reliable to the
heterogeneous texture patterns, however, there is still large potential for improving the
precision.

3.2 Information Theory Incorporation

In soft-tissue segmentation, there is often no clear boundary information. The inten-
sity gradient at the interface of adjacent tissues is also low. To overcome the diffi-
culty, besides the learning-based method, we also incorporate the information theory
based class-uncertainty information into our boundary refinement work, using Jensen-
Shannon divergence measure.

Jensen-Shannon (JS) divergence, first introduced in [10], serves as a measure of co-
hesion between multiple probability distributions. It has been used as a dissimilarity
measure for image registration with promising results. It has several desirable prop-
erties, to name a few, 1) The square root of JS-divergence is a metric [11]; 2) JS-
divergence relates to other information theoretic functionals, such as the relative en-
tropy or the Kullback divergence, and hence it shares their mathematical properties as
well as their intuitive appeal; 3) The compared distributions using the JS-divergence can
be weighted, which allows one to take into account the different sizes of the point set
samples from which the probability distributions are computed; 4) the JS-divergence is
bounded by 0 and 1.

In this paper, the JS-divergence is the main measure that we incorporate into the
boundary refinement framework. Given a priori knowledge of intensity probability dis-
tributions of each object, the JS-divergence can be computed for each intensity value,
which yields the uncertainty level of the classification. Suppose the image is divided
into m objects, denoted by oi, i ∈ [0, 1, ...,m−1]. For any candidate point q in Qp with
image intensity I(q), the posteriori probability p(oi|I) is obtained from the training set
using Bayes rules:

Pi(I) = p(oi|I) =
p(I|oi) · p(oi)

p(I)
, (2)

where p(I|oi), p(oi), and p(I) are learned from the training set.
The JS-divergence of each intensity I is defined by:

JS(I) = JS(P1(I), P2(I), ..., Pi(I)) = H(ΣπiPi(I))−ΣπiH(Pi(I))

= H(Σπip(oi|I)) +Σ(πi · p(oi|I) log(p(oi|I))),
(3)
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where π = {π1, π2, ..., πn|πi > 0, Σπi = 1} are the weights of the probability distri-
butions Pi, and H(x) is the Shannon entropy, i.e., H(x) =

∫
−p(x) log p(x)dx. The

two terms on the right hand side are the entropy of P = ΣπiPi(I) (the π-convex com-
bination of the Pis ) and the same convex combination of the respective entropies.

In [12], the authors defined a simple uncertainty measure, which is a specific case of
our general Jensen-Shannon divergence, but the mathematical properties demonstrated
in [12] still hold for JS divergence. Intensities with high JS-divergence measures tend to
appear close to object boundaries rather than inside homogeneous regions. Combined
with the gradient information, the JS-divergence measure is expected to provide an
enhanced on-surface cost at the locations absent a clear boundary. Let ∇(q) denote the
gradient magnitude at a candidate point q, our information theoretic measure has the
following form:

p← arg max
q∈Qp

C(I(q), vol)

= arg max
q∈Qp

[∇(q) + αJS(q)] ,
(4)

where α is a constant parameter. Here we set α = 0.5 according to the experiments on
the training set. For simplicity, we choose πi = p(oi), and in this paper, the volume is
divided into four parts: prostate, bladder, rectum and the background. It is straightfor-
ward to see that Σπi = 1.

After performing the control point adjustment described above, the mesh points fit
the boundary well, but the contour may not be smooth. Then, we project the deformed
shape onto a shape subspace. In all our experiments, to determine the dimension of the
subspace, we demand it to capture 95% variations. As shown in previous work [8], the
statistical shape model is very effective to enforce the prior shape constraint.

4 Experiments

4.1 Dataset

Our database contains 188 3D CT volumes, each with three annotated groundtruth
dense meshes for prostate, bladder and rectum, respectively. As mentioned in the in-
troduction, the dataset is very challenging in that the volumes come from largely di-
verse sources. This heterogeneity causes a large variation in both shape deformation
and texture patterns of the organs. Moreover, diagnosis of different diseases often re-
quest different contrast agent to be injected into the patient, or no contrast at all.

4.2 Evaluation

We conducted the evaluation using a four-fold cross validation. Errors are measured
using the average symmetric surface distance. The average running time for one vol-
ume, including all steps, is around 1.06 seconds for the prostate, 1.51 seconds for the
bladder and 2.53 seconds for the rectum (on an Intel 8-Core 2.00 GHz processor, with
16G RAM).
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Figure 4 illustrates a difficult case that the patient is undergoing brachytherapy in
prostate. The learning-based approach cannot lock on the edge of prostate while the
proposed method produces satisfying result. The comparison of bladder segmentation
is also shown in Figure 4.

Fig. 4. Segmentation of the prostate and bladder, using (a)(c) the learning-based approach only,
and (b)(d) the proposed method

To give a thorough evaluation, in this paper, we use four-fold cross validation to
evaluate our algorithm. Specifically, the whole dataset (188 cases) is divided to four
sets, each containing 47 volumes. Each time one set is chosen as the testing set and the
rest as the training set (for both the shape model and boundary classifiers). This is done
for four times and the average performance is reported.

The evaluation results for cross validation are summarized in Table 1. The mean error
measured in the average symmetric surface distance is 2.37 mm for the prostate, and
the median is 2.15 mm. For the bladder, the mean and median error are 2.81 mm and
2.24 mm, respectively. The rectum achieves an accuracy of 4.23 mm and 4.09 mm for
the mean and median, respectively.

Table 1. Cross Validation for the Proposed Method (mm)

Method Mean STD Median Minimum Maximum 80th percentile
Prostate Learning-based [8] 3.53 2.23 3.00 1.52 13.06 5.01

Proposed Method 2.37 0.89 2.15 1.10 5.58 2.96
Bladder Learning-based [8] 3.89 1.89 3.70 0.87 10.39 5.53

Proposed Method 2.81 1.86 2.24 0.82 8.76 3.38
Rectum Learning-based [8] 6.44 1.71 6.19 3.65 12.46 7.86

Proposed Method 4.23 1.46 4.09 1.81 8.19 5.24

It is difficult to directly compare different segmentation approaches due to the use
of different datasets as well as different annotations. However, it is worth summarizing
the previous experiments to comprehend the status of the study. Table 2 provides a
brief summary of recent works on automatic pelvic region segmentation with reported
average surface distances along with datasets used. The table shows clearly that our
precision is among the the best reported. Compared to the method [1] with similar
reported precisions, our approach have two apparent strengths. First, the dataset used in
our experiments has more diversities than previous tested datasets. Second, our method
is more efficient, i.e. runs more than eighty times faster.
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Table 2. Comparison with Recent Work on Prostate Segmentation

Method Mean Error Speed Data set Auto? Interslice Res. Implanted? Organs
Freedman et al. [5] 3.91 mm NA 48 Yes NA No P, R
Rousson et al. [3] 4 to 5 mm 12 s 16 Semi 3 mm No P, B

Feng et al. [1] 2.47 mm 96 s 24 Semi 3 mm No P
Proposed Method 2.37 mm 1.06 s 188 Yes Varies Mixed P, B, R

Some typical segmentation results are shown in Figure 5 from three orthogonal
views, with segmented prostate in yellow, bladder in blue and rectum in green.

Fig. 5. Examples of pelvic-region multiple organ segmentation, with yellow for the prostate, blue
for the bladder, and green for the rectum. From left to right: sagittal, coronal, and axial slices.

5 Conclusion

In this paper, we proposed a novel approach that incorporates information theory with
the learning-based approach, for automatic pelvic-region multiple organ segmentation
from a 3D CT volume. We target on general data from patients with different diseased
organs and scanned under different protocols. Despite the challenges, our approach
demonstrates robust performance in accuracy and runs more efficiently than state-of-
the-art solutions. Using the techniques described above, it is possible for the physicians
to efficiently delineate the key pelvic organs for diagnosis and treatment planning, and
also precisely guide the interventional devices toward the organs during image-guided
radiotherapy.
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A Study on Graphical Model Structure for Representing
Statistical Shape Model of Point Distribution Model

Yoshihide Sawada and Hidekata Hontani
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Abstract. In this article, the authors demonstrate that you can improve the per-
formance of the registration of a point distribution model (PDM) by accurately
estimating the structure of an undirected graphical model that represents the sta-
tistical shape model (SSM) of a target surface. Many existing methods for con-
structing SSMs determine the structure of the graphical model without analyzing
the conditional dependencies among the points in PDM, though an edge in the
PDM should link two nodes if and only if they are conditionally dependent. In
this study, the authors employed four popular methods for estimating the struc-
ture of graphical model and obtained four different SSMs from an identical set of
training surfaces. The registration performances of the SSMs were experimentally
compared, and the results showed that the graphical lasso, which could estimate
more accurate structure of the graphical model by avoiding the overfitting to the
training data, outperformed the other methods.

Keywords: Registration, Point Distribution Model, Graphical Model, Graphical
lasso.

1 Introduction

It is an important step for automated image analysis to register a surface model of a
target organ with given 3D medical images [1]. A point distribution model (PDM) is
widely used for representing the surface model [2,3,4]. A PDM represents the surface
using a set of points distributed on the surface, and is registered to images by estimating
the coordinates of each of the points. The statistical shape model (SSM) of PDM plays
an important role in this registration [1].

The SSM of a target organ is constructed from a set of training surfaces. A set of
corresponding points is generated on each of the surfaces, and the SSM is constructed
based on the distributions of the corresponding points. One of the most popular SSMs is
the active shape model (ASM) [1,5], which represents the statistics of the target surface
by using a linear low-dimensional subspace obtained by applying PCA to the corre-
sponding points. When ASM is employed, one can register the model by iteratively
projecting target points to the subspace. This projection is an ML estimation of the lo-
cation of the model surface. Another popular SSM for PDM is an undirected graphical
model [3,4]. In the graphical model, each node represents the coordinates of each of
the points in the PDM. When the undirected graphical model is employed, one can reg-
ister the model by inferring the coordinates on the graphical model by means of, e.g.,
MCMC [3]. The strength of this latter approach is that not only the coordinates of each
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point but also its posterior marginal distribution can be obtained [4]. In other words, the
confidence of the estimated location of each point can also be evaluated. In this study,
we employ the undirected graphical model for representing the SSM of PDM.

The aim of this study was to investigate the relationship between the structure of the
graphical model and the performance of the registration. In the graphical model, the
nodes represent the variables and the edges represent the conditional dependencies of
the variables: an edge links two nodes if and only if the corresponding two variables are
conditionally dependent [6]. Few methods for registering PDM, though, determine the
structure of the graphical model based on the analysis of the conditional dependencies.
For example, many existing methods employing the undirected graphical model deter-
mine the structure based on the geodesic distances [4,7]: Two nodes are linked by an
edge if the geodesic distance between the corresponding two points are enough short
[4]. It is sure that the locations of such two points are conditionally dependent together,
but is not sure that only such two points are conditionally dependent. The ASM, on
the other hand, implicitly represents the SSM using a complete graph: All nodes are
linked together. It is known that the exact structure of the graphical model can be de-
termined based on the precision matrix of the variables if they obey the Gaussian: The
precision matrix is the inverse of the covariance matrix, and the non-zero off-diagonal
entries of the precision matrix correspond to the edges [8]. The subspace representation
in ASM is constructed from the covariance matrix, and its inverse is dense in general.
This means that all points on a target surface are implicitly assumed to be conditionally
dependent each other. It looks too strong assumption. The performance of the regis-
tration is improved when the SSM represents the statistics of the target surface more
accurately.

There have been proposed some approaches for estimating the structure of a graphi-
cal model based on a set of training data [8,9]. The authors employ a graphical lasso [8],
which estimates the precision matrix of a given set of training data with sparse regular-
ization. Applying the graphical lasso, you can explicitly estimate the sparse structure of
the graphical model, which represents the SSM of the PDM.

Employing different approaches for the estimation of the graphical model structure,
one obtains different SSMs from an identical set of training data. In this study, four dif-
ferent approaches are employed for determining the structure of the graphical model:
(1) the graphical lasso, (2) the ASM, (3) the canonical correlation-based approach, and
(4) the geodesic distance-based one. In the canonical correlation-based approach, two
nodes are linked by an edge if the canonical correlation between the corresponding
two points is strong enough [3]. Obtained four different SSMs of a target organ, each
model was registered to an identical set of test images and the accuracy of the resul-
tant registration was compared. Then, we experimentally found that the graphical lasso
constructed the best model structure among them.

2 Surface Registration Based on Inference on Graphical Model

In this article, we use a non-rigid surface registration method proposed in [3,4]. The
outline of the method is described in this section.
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2.1 Surface Model Construction

A surface is represented with a set of N points {Pj|j = 1, 2, · · · , N}. Let xj denote the
3D coordinates of Pj . A statistical model of the points is constructed based on a set of
M training images. Let I = {Ii|i = 1, 2, · · · ,M} denote the set of the training images.
These images are normalized based on the body shape in advance. Let Si denote the
surfaces of the target organ extracted from Ii manually.

For constructing the statistical model, a set of N corresponding points, {Pj |j =
1, 2, · · · , N}, are distributed on Si. For distributing the corresponding points, the
entropy-based particle system [10] is used. Let Iij denote the local appearance in a L×
L × L cube centered at P i

j . Given a set of {P i
j , I

i
j |i = 1, 2, · · · ,M, j = 1, 2, · · · , N},

the method estimates the following three distributions: p(xj), p(Ij |xj), and p(xj ,xk).
p(xj) denotes the prior distribution of Pj , p(Ij |xj) denotes the conditional probabil-
ity of the local appearance and is used for obtaining the likelihood distribution of Pj ,
and p(xj ,xk) denotes the probability distribution of the relative location. Using these
probabilities, the simultaneous probability distribution is represented as follows:

p({xj}, {Ij}) =
1

Z

∏
j

p(xj)p(Ij |xj)
∏

ej,k∈E
p(xj ,xk), (1)

where ej,k denotes an edge in the graphical model that links Pi and Pj , and E de-
notes a set of the edges. In this article, p(xj) is represented by a pillbox distribution
and p(Ij |xj) and p(xj ,xk) are represented by the Gaussian. The estimation of these
probability distributions is straightforward when the training set, {P i

j , I
i
j}, is given. The

only problem is to determine the set of the edges, E .
As mentioned in the previous section, four approaches for determining E are em-

ployed for the investigation. Each of them is described in the followings.

Graphical Lasso (GL). It often happens that the empirical precision matrix overfits
to the training data especially when the number of the data is small. The graphi-
cal lasso avoids this overfitting by means of the L1-norm regularization. Let Xi =
[xi�

1 ,xi�
2 , · · · ,xi�

N ]�. Given a set of X ≡ {Xi|i = 1, 2, · · · ,M}, the graphical lasso
estimates the sparse precision matrix, Θ̂, of X by maximizing the following criterion
[8].

Θ̂ = argmax
Θ
{log detΘ − tr(SΘ)− ρ||Θ||1}, (2)

where ||.||1 denotes the L1-norm, and S denotes the empirical covariance matrix of X .
Once Θ̂ is obtained, ej,k is added to E if and only if the (j, k) entry of Θ̂ is non-zero.
The parameters of p(xj ,xk) can also be determined based on Θ̂. The value of ρ will
be determined based on the performance of the registration.

Active Shape Model (ASM). Let Θ′ ≡ S−1. In this study, all eigen vectors of S are
used for constructing the subspace representation. Then, ej,k is added to E if and only
if (j, k) entry of Θ′ is non-zero. In general, all off-diagonal entries in Θ′ are non-zero
when the number of training surfaces, M , is small, because the precision matrix overfits
to the training data. This means that E represents a set of the edges of the complete
graph.
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(A) (B)

Fig. 1. An example of given images, Ij (A) and the likelihood distribution of Pj computed by
p(Ij|xj) (B). The white arrow in (A) points at the location of Pj .

Canonical Correlation-Based Approach (CC). Let cj,k denote the canonical corre-
lation [3] between xj and xk computed from {(xi

j ,x
i
k)|i = 1, 2, · · · ,M}. In this

approach, ej,k is added to E if and only if cj,k > T , where T is a threshold, which will
be determined based on the performance of the registration. It should be noted that Pj

and Pk are not always conditionally dependent, even if cj,k is large.

Geodesic Distance Based Approach (GD). Let dj,k denote the average geodesic dis-
tance betweenP i

j andP i
k. In this appraoch [4], ej,k is added to E if and only if dj,k < D,

where D is a threshold.

2.2 Registration of Surface Model

Given a new X-CT image, the method registers the surface model to the image by
inferring the marginal posterior distribution p(xj |I). For this inference, we can use
the Gibbs sampling (GS) [3]. It should be noted that p(Ij |xj) is represented by the
Gaussian, but the likelihood distirbution of xj does not obey the Gaussian, as shown in
Fig. 1. This is why we apply the nonparametric GS for the inference. The registration
algorithm is as follows [3]:

1. Normalize the body shape in a given image [4].
2. Compute p(xj)p(Ij |xj).
3. Apply nonparametric GS for inferring the marginal posterior distribution, p(xj |I),

based on the simultaneous distribution in (1).

The MAP estimate of xj is obtained as x∗
j ≡ argmaxxj

p(xj |I), and the expectation of
xj is computed as E[xj ] =

∫
xj

p(xj |I)dxj . In this study, the error of the registration

at Pj is defined as |E[xj ] − Qj |, where Qj is the closest point to Pj on the answer
surface extracted manually for the error evaluation [3].

3 Experimental Results

We selected the arch of aorta for the target organ. Given a set of M = 12 non-
contrast enhanced CT images, of which resolution is 0.98mm × 0.98mm × 4.25mm,
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Fig. 2. Examples of corresponding points, P i
j . Each color indicates the number j.
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Fig. 3. Examples of the estimated structures of the graphical model. The graphs were estimated by
the graphical lasso (A), the canonical correlation-based approach (B), and the geodesic distance-
based one (C), respectively.

we constructed four different graphical models of the aorta by using the four different
approaches described in sec.2.1. The registration accuracy of them was evaluated by
means of the leave-one-out cross validation. Each model had N = 300 points for the
representation. Figure 2 shows examples of the points.

Figure 3 shows three graphical models estimated by (A) the graphical lasso (GL), (B)
the canonical correlation-based approach (CC), and (C) the geodesic distance-based one
(GD), respectively. The model obtained by the ASM is omitted because the graph has
too many edges to indicate clearly. As shown in the figure, many pairs of distant two
points were linked by edges in the models obtained by the GL and by the CC. Some
characteristics of the models are shown in Table 1. As indicated in this table, the model
constructed by GL had smaller number of edges than that by CC. The maximum degree

Table 1. Characteristics of the structures
of the models obtained by GL (graphi-
cal lasso), ASM (active shape model), CC
(canonical correlation-based approach) and
GD (geodesic distance based approach).

# of degrees
# of edges minimum average maximum

GL 7834 11 52 94
ASM 44850 299 299 299
CC 10029 25 66 298
GD 545 3 3 7

Table 2. The registration errors (mm) ob-
tained by each of the models. The mini-
mum, the average, and the maximum values
of the errors are indicated.

minimum average maximum
GL 1.67 3.26 5.40

ASM 1.88 3.48 5.27
CC 1.76 3.46 5.43
GD 2.05 3.77 6.37
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Fig. 4. (A) The histograms of the geodesic distance between two points linked by an edge in
the graphical model. Red: graphical lasso. Green: Canonical correlation-based approach. (B) The
change of the registration error (mm) with respect to the number of edges in the graphical model.

(A) (B) (C)

Fig. 5. Examples of the distributions of the registration errors. Each was obtained by registering
the model constructed (A) by the graphical lasso, (B) by the ASM, and (C) by the canonical
correlation-based approach.

in the model made by CC was 298, which was almost same with that in the ASM (299).
This means that there was at least one node that was connected with almost all other
nodes. The maximum degree was relatively small in the model made by the GL.

The difference between the two models constructed by the graphical lasso and by
the canonical correlation analysis is demonstrated in Fig.4 (A). The x-axis shows the
geodesic length between two points linked by an edge, and the y-axis shows the num-
ber of the edges. The graphical model constructed by the graphical lasso had more short
edges than that by the canonical correlation. The reason of this difference is as follows.
The deformation of the aorta made by the normalization of the body shape was approx-
imately symmetry with respect to the median line of the aorta [4]. This deformation
generated strong correlations between two distant points located at opposite sides of
the aorta, hence these two distant points were more easily linked by edges.

As mentioned in sec.2.1, the graphical lasso and the canonical correlation-based
method have parameters that control the sparseness of the graphical model. We inves-
tigated the change of the registration accuracy with respect to the parameters. Figure 4
(B) shows the result. The x-axis in the graph shows the number of edges in the model
and the y-axis shows the registration error (mm) evaluated by the leave-one-out cross
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(A) (B) (C)

Fig. 6. (A) An example of the distribution of the variance σi
j , which denotes the standard deviation

of the posterior marginal distribution along the normal of the surface. The region pointed by the
black arrow has larger values of σi

j and that pointed by the white arrow has smaller values of σi
j .

(B) The slice image that contains the point indicated by the black arrow in (A). No edge of the
aorta can be observed. (C) The slice image that contains the point indicated by the white arrow
in (A). The wall of the aorta can be clearly observed.

validation. As shown in the graph, the model constructed by the graphical lasso was
superior to the model constructed by the canonical correlation analysis. We determined
the values of the parameters based on this experiment, and selected the model for each
that demonstrated the best performance. The selected models are indicated by a blue
dots in the graph.

Table 2 shows the comparison of the four models with respect to the registration er-
ror. As shown in the table, the model constructed by the graphical lasso was the best
among them. We applied the Wilcoxson rank-sum test and the null hypothesis was
rejected (p < 0.05): In this case, we can surely decide that the graphical lasso out-
performed other methods. It should be reminded that the graphical lasso estimates the
structure of the graphical model based on the conditional dependencies among the vari-
ables and that the overfitting of the precision matrix is avoided by means of the L1-norm
regularization. The authors believe that the superiority of the graphical lasso came from
its ability to analyze the statistics of the training surfaces more accurately. Some ex-
amples of the distributions of the registration error are shown in Fig.5. The red color
density indicates the magnitude of the error. As shown in this figure, the distributions
of the error were not uniform.

As mentioned earlier, the confidence of the registration can also be estimated based
on the variance of the marginal posterior distribution along the normal direction of
the surface. Let the variance be denoted by σi

j . Figure 6 (A) shows an example of the
distribution of σi

j . The black arrow points at unconfident point at which σi
j is larger, and

the white one points at more confident point where σi
j is smaller. Figure 6(B) shows a

slice image containing the point indicated by the black arrow in (A). As shown in the
image, the edge was not observed because of the contact with neighboring organs, and
the method successfully judged that the registration at the location was unconfident. On
the other hand, the point indicated by the white arrow in Fig.6(A) was located on the
high-contrasted edge in the image as shown in Fig.6(C), and the method automatically
judged that the registration result was confident.
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4 Summary

An undirected graphical model is widely used for representing the SSM of a PDM, and
its structure represents the conditional dependencies among the variables. In this study,
the authors applied four different methods to a given set of the training data for esti-
mating the structure of the graphical model, and obtained four different SSMs from an
identical set of the training data. Then, these four SSMs were compared with respect to
the accuracy of the registration and the experimental results showed that the graphical
lasso outperformed the other methods. The graphical lasso determines the structure by
estimating the precision matrix with the L1-norm regularization in order to avoid its
overfitting to the training data. When the SSM of the PDM is represented by an undi-
rected graphical model, you can improve the registration performance by determining
the structure of the graphical model based on the statistical analysis of the conditional
dependencies among the variables. In this study, the value of the parameter that controls
the sparseness of the precision matrix was determined based on the registration accu-
racy, and this process was very time consuming. The future works include to develop
an effective method for determining the value of the parameter.
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Abstract. This paper presents a method for automatically estimating
the quality of Parasternal Long AXis (PLAX) B-mode echocardiograms.
The purpose of the algorithm is to provide live feedback to the user on
the quality of the acquired image. The proposed approach uses Gen-
eralized Hough Transform to compare the structures derived from the
incoming image to a representative atlas, thereby providing a quality
metric (PQM). On 133 PLAX images from 35 patients, we show: 1)
PQM has high correlation with manual ratings from an expert echocar-
diographer 2) PQM has high correlation with contrast-to-noise ratio, a
traditional indicator of image quality 3) on images with high PQM, error
in automatic septal wall thickness measurement is low, and vice versa.

1 Introduction

Standard views in transthoracic echo are well established. But, quality of images
and correct tomographic planes for accurate clinical interpretation and measure-
ments are dependent on operator skills. Algorithms that can automatically detect
quality of ultrasound images have tremendous potential to 1) standardize imag-
ing 2) reduce scan time for users by providing real-time feedback, and 3) provide
automatic mechanism to reject data of poor quality.

Assessment of image quality prior to complex post-processing is common in
the field of human identification using biometric data [1]. Our contribution ex-
tends this philosophy to medical ultrasound images. Note that our work is dif-
ferent from image quality testing of imaging systems [2] in that we propose an
approach to compute image quality during live imaging rather than on phan-
toms.

We propose an algorithm to automatically determine the quality of Paraster-
nal Long AXis (PLAX) B-mode echocardiograms. At the right scan plane, and
with optimal instrument settings, the long axis of the left ventricle is oriented
horizontally in a standard PLAX view (See Fig. 1(a)). The posterior wall, the
pericardium and the septum are approximately parallel to each other. Any devi-
ation from this is a result of an incorrect acquisition or sub-optimal instrument
settings. For example, the poor quality image shown in Fig. 1(b) could be due
to sub-optimal instrument settings such as gain, dynamic range, or time-gain
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(a) (b) (c) (d) 

Fig. 1. Examples of good (a) and bad (b,c,d) quality Parasternal Long Axis (PLAX)
images. Key: LV - left ventricle, MV - mitral valve, PW - posterior wall.

Original image Contrast-enhanced 
image 

Segmented image GHT 

(b) (c) (d) (a) 

Fig. 2. Flow chart illustrating the proposed methodology to compute the quality metric

compensation. The non-parallel septum and pericardium in Fig. 1(c) tells us
that the imaging plane did not pass through the center of left ventricle. In Fig.
1(d), the pericardium is missing, thereby, complicating the measurement of the
thickness of posterior wall and diagnosis of pericardial effusion.

The intuition behind our algorithm is to check for the presence of three promi-
nent tube-like structures corresponding to septum, mitral valve and pericardium.
As visualized in Fig. 2, the proposed approach comprises of the following three
steps. 1) A pre-processing step that enhances the contrast of thick tube-like
structures. 2) A global thresholding step, that outputs a binary image which
includes the three structures of interest: septum, mitral valve and pericardium.
3) A search algorithm based on Generalized Hough Transform (GHT) [3] [4],
that best matches a pre-defined atlas with the binary image. The GHT outputs
an accumulator image, whose maximum value is output as the PLAX Quality
Metric (PQM).

2 Methodology

In the following, we present an algorithm that searches for septum, mitral valve,
and the pericardium, and outputs PQM, which is indicative of how prominently
these structures appear in the image.

Contrast Enhancement and Segmentation: As noted by Boukerroui et
al. [5], segmentation algorithms based only on global information such as thresh-
olding techniques, intensity dependent clustering and edge detection schemes
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give poor results on ultrasound images. The reason being, the echo amplitude
varies according to the orientation of the reflected structure and the image set-
tings such as gain, dynamic range, or time-gain compensation. This is commonly
referred to as the intensity inhomogeneity problem.

To mitigate intensity inhomogeneity, we filter the input echo image using
Frangi vesselness filter [6] to obtain an intermediate image as shown in Fig.
2(b). The filtered image has less intensity inhomogeneity, and we have observed
that global thresholding schemes are more successful on this intermediate rep-
resentation.

Frangi’s vessel enhancement filter is based on the eigen analysis of the Hessian
matrix of image intensity at each pixel location of the image. The eigen analysis
of the Hessian directly gives the direction of smallest curvature (along the tubular
structure). The mutual magnitude of eigenvalues is indicative of the shape of
the underlying object. Frangi et al. noted that if a pixel were to lie on a tubular
structure, then, one of the eigenvalues has much higher magnitude than the
other. If the pixel was from a background region, then both eigenvalues will
have low magnitudes.

Let λ1 and λ2 denote the two eigenvalues the Hessian Ho,s, computed at scale
s at pixel xo. Frangi et al. propose the following equation to obtain a vesselness
image (V).

Vo =

{
0 if λ2 > 0

exp
(
−R2

B

2β2

)(
1− exp

(
− S2

2c2

))
otherwise

Here RB = λ1/λ2, S =
√
λ2
1 + λ2

2, β and c are constants which we set to 1 and
0.5, respectively. We experimentally observed that by thresholding V at 0.02,
one obtains a binary image as illustrated in Fig. 2(c).

Commonly, depth parameter of the echocardiogram is set such that the peri-
cardium is at the bottom of the image for PLAX images. We resized all PLAX
images to 50 × 50 pixels, and we noted that the thickness of pericardium, mi-
tral value, septum does not vary much. Therefore, we chose to detect vessels at
one scale (s = 6 pixels). Although vascular enhancement at multi-scales might
produce better images, we chose a single scale to reduce the processing time.

Note that the underlying theory behind this preprocessing step is not specific
to vessels. A popular extension of Frangi’s technique by Antiga [7] is capable of
enhancing contrast of blob-like and plate-like structures.

Generalized Hough Transform (GHT): It is essentially a method to detect
the presence of an arbitrary object (described with its model/atlas) in a binary
image [3] [4]. In our case, the atlas is illustrated in Fig. 3(b), and the image
to be searched for is the binary image obtained after thresholding the Frangi
vesselness image (Fig. 2(c)).

The GHT uses a lookup table that encodes the relationship between the atlas
and the Hough parameters. This lookup table is called the R-Table, and the
Hough parameters, r, and α are computed during the training phase. See Algo-
rithm 1 for details. The parameter r encodes the distance between a pixel and
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Algorithm 1. GHT-based training

Input: Binary training image (atlas) of size m× n: I
Input: Reference point {(xc, yc) | 1 < xc < m, 1 < yc < n}
Output: R-table: R
foreach x = {(x, y) | I(x) = 1} do

Compute following parameters:
r =

√
(xc − x)2 + (yc − y)2

α = atan2 (yc − y, xc − x).
gradient direction φ

φ = arctangent

(
∂It/∂y

∂It/∂x

)
R(φ) ← (r, α)

end

the reference point (which is chosen arbitrarily within the image). The parame-
ter α encodes the angle, in radians, between the positive x-axis and the vector
spanning a pixel and the reference point. During the matching phase, as shown
in Algorithm 2, one attempts to find the most probable location of the atlas on
a test image. The accumulator A is a 2D array that holds the votes received for
the most probable location of the reference point. The pixel with the maximum
intensity in A is the most probable location of the reference point. The maximum
value of A is output as PLAX Quality Metric (PQM).

Although correlation based techniques [8] are a viable alternative to GHT-
based matching, the choice of GHT was based on the interest in speeding up
the search procedure. If the atlas and the segmented image have n pixels, then
the correlation based procedure, in spatial domain, has the complexity O(n2).
In contrast, the GHT-based procedure has the complexity O(m2) (m << n),
where m is the number of white pixels in atlas and the segmented image.

PLAX Atlas: As mentioned above, GHT matching procedure (Algorithm 2)
uses an atlas that defines the structures of interest in PLAX images. The atlas
was generated via the following steps.

1. Manual segmentation of the regions of interest in PLAX images. An example
is shown in Fig. 3(a).

2. Average representation of the structures of interest was obtained using
Shape-Based Averaging (SBA) algorithm [9].

Several independent binary images result from the manual segmentation process,
which must be somehow combined into a single final segmentation. Majority
voting is the generally used rule to fuse the segmentations, but better methods,
such as SBA, have been proposed. SBA consists of averaging Euclidean distance
maps computed for all structures for each candidate manual segmentation. The
method was shown to keep structure regularity and contiguity better than ma-
jority voting. From 89 manually segmented frames, we obtain a PLAX atlas as
illustrated in Fig. 3(b).
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Algorithm 2. GHT-based matching

Input: Binary test image of size k × l: It

Input: R-table (output of Algorithm 1): R
Output: PLAX quality metric: PQM
A(xc, yc) ← 0:∀xc ∈ {1. . . k}, ∀yc ∈ {1. . . l}
foreach x = {(x, y) | It(x, y) = 1} do

Compute gradient direction φ

φ = arctangent

(
∂It/∂y

∂It/∂x

)
Using φ, retrieve corresponding (r, α) values from R
foreach (r, α) do

Compute candidate reference points:
xc = x+ rcos(α)
yc = y + rsin(α)
Increment accumulator (voting):
A(xc, yc) = A(xc, yc) + 1

end

end
PQM = max

xc∈[1. . . k],yc∈[1. . . l]
A

SBA 

(a) 
(b) 

Fig. 3. A total of 89 manually segmented images (a) belonging to distinct patients
were used to obtain the PLAX atlas (b)

3 Results

A total of 35 subjects with varied clinical background, normal chamber dimen-
sions and normal systolic function underwent routine echocardiography (com-
mercially available Vivid 7, GE) with electrocardiogram gating. The patient
data used in our validation included normal and hypertrophic patients. The
data was acquired by both echo-cardiologist and an echo-technician at a clinical
site. PLAX images with 3 cardiac cycles were analyzed by an expert sonographer
for grading image quality.

Comparison with Manual Ratings: The purpose of this experiment was to
verify whether PQM correlates with an expert echocardiographist’s ratings. The
expert manually rated the quality of septum, mitral valve and pericardium on 133
PLAX echocardiograms belonging to 35 patients. Each of these components was
given a rating between 0 and 3, with 0 signifying poor visibility and 3 signifying
good visibility. The final manual score for an image was obtained as the average
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Fig. 4. Comparison with Contrast-to-Noise ratio. Scatter plot between Contrast-to-
Noise (CNR) ratio and PQM. Scatter plot between error in septum thickness measure-
ment and PQM.

of the individual scores. Thus, the manual score for an image varies between
0 and 3. To facilitate comparison with automatic ratings, we applied min-max
normalization to the automatic ratings such that the value of PQM is between
0 and 3. Fig. 4(a) shows a plot between manual rating and PQM. As observed,
PQM seems to correlate well (Pearson’s correlation coefficient, ρ = 0.84) with
an echocardiographist’s manual ratings.

Comparison with Contrast-to-Noise Ratio: Contrast-to-noise ratio (CNR)
has been traditionally used in medical imaging community to quantify the quality
of acquired images. This metric removes the subjectivity factor from the manual
ratings. CNR measures the ability to distinguish between an object of interest

and its surroundings. The CNR can be defined as: CNR = |μo−μs|
σ . Here, μo

and μs are the mean pixel intensities in the object and surrounding regions,
respectively. The quantity σ is the standard deviation of the intrinsic noise of
the imaging system.

Using manual segmentations of septum, mitral valve and pericardium (See
Fig. 3(a) for an illustration), we obtained masks over the regions of interest, and
thus, we could compute μo for each image. The immediate surrounding areas of
the mask were used to compute μs. The noise parameter, σ, can be effectively
ignored for our experiments because all the images were acquired using the same
ultrasound machine.

On 133 PLAX echocardiograms, the CNR metric and the PQM were com-
puted. The results are shown as a scatter plot between the two quantities in Fig.
4(b). We observed a Pearson’s correlation coefficient, ρ, of 0.83.

Comparison with Error in Septum Thickness Measurement: Subrama-
nian et al. [10] proposed a snakes-based approach that automatically measures
septal wall thickness according the existing clinical guidelines [11]. In an at-
tempt to verify if PQM can be used to predict accuracy of septal wall thickness
measurement algorithm, we visualized the error in thickness measure and PQM
as a scatter plot in Fig. 4(c). We observed that on images with low PQM, the
probability of error in septum thickness measurement will be high and vice versa.
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Fig. 5. PQM, illustrated as vertical bars, computed on few test images. The height of
the bar is proportional to PQM. Note that PQM is low for (a), (b), and (c), which repre-
sent the bad quality PLAX images illustrated in Fig. 1. As the anatomical components
of the heart become progressively more visible, PQM increases.

Thus, one could deploy automatic segmentation algorithms only when PQM
is greater than a preset threshold, thereby, providing an upper bound on the
segmentation error.

Visual Assessment of PQM: Fig. 5 visualizes PQM as vertical bars. The
height of the bar is proportional to the PQM computed for an image. Typical
poor quality PLAX echocardiograms are shown in sub-figures (a), (b) and (c).
The contrast between the blood pool and the structures of interest is low in (a).
Pericardium is not visualized in (b). Sub-figure (c) illustrates the case where
septum and pericardium are not parallel to each other, and this signifies an
incorrect scan plane. Note that PQM is low for all three cases. For images with
better quality, one sees an increase in PQM.

4 Conclusions and Discussion

In this paper, we proposed a solution to the previously unstudied problem of
computing a quality metric for Parasternal Long AXis (PLAX) view echocardio-
grams. Our algorithm checks for the presence of expected anatomical structures
in a PLAX image (Septum, mitral valve and pericardium) using Generalized
Hough Transform (GHT). Based on the evidence GHT accumulates during the
search, we output PQM that seems to correlate well with an expert’s rating and
CNR metric. We also observe that for images with high PQM, error in septum
thickness measurement algorithm decreases.

Because the expected structures in a PLAX image are relatively large, we
observed that we could subsample the image to 50× 50 pixels, and still see the
structures of interest. At this resolution, we could obtain a processing speed of
35 frames a second in a Intel i7 2.67 GHz processor. The implementation was
done in C++ using the Insight Segmentation and Registration Toolkit [12]. The
results illustrated in this paper have been performed by resizing images to 50×50
pixels.
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The proposed quality metric is the first step in guiding the user into acquiring
the right scan plane. The user will receive real-time feedback to the acquired
image, thereby, motivating the user to acquire a better quality image. Although,
the proposed method is specific for PLAX images, we perceive easy extension to
other anatomies using an appropriate atlas and a suitable contrast enhancement
technique.
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Abstract. Coarctation of the aorta (CoA), is a congenital defect
characterized by a severe narrowing of the aorta, usually distal to the
aortic arch. The treatment options include surgical repair, stent im-
plantation, and balloon angioplasty. In order to evaluate the physio-
logical significance of the pre-operative coarctation and to assess the
post-operative results, the hemodynamic analysis is usually performed
by measuring the pressure gradient (�P ) across the coarctation site via
invasive cardiac catheterization. The measure of success is reduction of
the (�P > 20mmHg) systolic blood pressure gradient. In this paper, we
propose a non-invasive method based on Computational Fluid Dynamics
and MR imaging to estimate the pre- and post-operative hemodynamics
for both native and recurrent coarctation patients. High correlation of
our results and catheter measurements is shown on corresponding pre-
and post-operative examination of 5 CoA patients.

1 Introduction

Coarctation of the aorta (CoA) accounts for 5 − 8% of the 8/1, 000 congenital
heart disease (that is 4−6/10, 000) live births [1] in the USA. CoA is a congenital
defect characterized by a severe narrowing of the aorta, usually distal to the
aortic arch. Patients born with CoA require lifelong medical/surgical care, that
includes invasive and non-invasive imaging, drug therapy and if the CoA recurs,
invasive catheterization or surgical intervention to reduce the blood pressure in
the ascending aorta.

Pre-operative evaluation of CoA severity relies predominately on non-invasive
arm/leg blood pressure gradients or if anatomy makes that comparison not
feasible, estimation by Doppler ultrasonography. The clinical gold-standard is
obtained by invasive cardiac catheterization to measure (�P ) across the coarc-
tation site. Recently, Doppler and phase contrast (PC) MRI based methods
have been proposed for a non-invasive estimation of �P [2] by using simplified
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relationships (e.g. modified Bernoulli equation) between flow and pressure. How-
ever, such approaches often overestimate the pressure difference and do not pro-
vide other hemodynamic parameters (such as wall-shear stress, vorticity, etc.)
that characterize the complex flow-field associated with CoA, which could po-
tentially be used for diagnosis and treatment planning.

Fig. 1. Left: Overlay of angiogram and PC-MRI Left Middle: Bounding boxes for
parts of the vessel tree, retrieved by learning based detection Right Middle: Seg-
mented vessel tree and delineated aortic flow profiles Right: Overview of boundary
conditions applied, measured flow profile at AAo, Windkessel model at carotid and
descending outlets

Multiple groups have investigated CoA hemodynamics through simulation.
Coupling the aorta with a lumped parameter model of the left ventricle, [3] ap-
plies realistic inflow boundary conditions, but only studies two patients. Outlet
conditions are treated in [4], but employing simple heuristics at the supra aor-
tic branches, also pre-operative simulation is not compared with post repair of
the same patient. [5] applies detailed boundary conditions and accurate simu-
lation procedure, but imaging data was specifically acquired for the study, and
potentially difficult to reproduce in standard exams.

To address these issues, we propose an MR image-based pre-processing and
hemodynamics simulation pipeline for thoracic aortic investigation. A patient-
specific model of the aorta and supra-aortic arteries is automatically estimated
using a discriminative learning-based method. Based on the lumen geometry,
we introduce a CFD setup employing personalized boundary conditions. The
simulation provides dense 3D+time velocity and pressure maps. We applied the
method to existing data of CoA patients of multiple hospitals enrolled in a FDA
authorized clinical trial [1]. Blood pressure computation is validated against
invasive catheterization on 5 cases. Strengths of our method are 1) end-to-end
computational pipeline that may be integrated within the clinical workflow, 2)
the ability to work on clinical images acquired within existing protocols and 3)
reproducible simulation results of good initial agreement.
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2 Proposed Method

2.1 Estimation of the Patient-Specific Lumen

An accurate geometrical representation of the lumen boundaries is essential for
subsequent simulations. To facilitate reproducibility of our computation, we de-
veloped a robust learning-based method to estimate a model of the aorta and
supra-aortic arteries from contrast enhanced MR angiograms (CE-MRA). The
thoracic aorta and main branches are represented as multiple parts: aortic root,
aortic arch, walls of ascending and descending aorta, and the supra-aortic arter-
ies (SAoA) - brachiocephalic trunk, left common carotid artery, left subclavian
artery (illustrated on Fig. 1, Left Middle).

In a first step, the pose of each part is estimated following a hierarchical
scheme that allows for the utilization of anatomical constraints. In image I,
each pose θ is parametrized as a 3D affine transformation. We formulate the
estimation as a multi-object detection problem and learn the posterior proba-
bility p(θ|I) using the Probabilistic Boosting Tree [6]. As the aortic arch pose
estimation produced most accurate results, we exploit its anatomical proxim-
ity to the SAoA, and constrain the pose estimation of the former by learning
the variation in their relative distances from the available training set. Con-
strained by the estimated poses, each part is initialized with a corresponding
mean model constructed by employing statistical shape analysis [7]. A lumen
detector is trained using the PBT and Haar-like features to drive the deforma-
tion of the initial model towards the actual boundary in the image. The final
model is obtained by merging the separately estimated parts using a sequence
of forward and backward projection to/from Eulerian representation to retrieve
the composited Lagrangian arterial tree geometry.

2.2 Estimation of the Patient-Specific Blood Flow from PC-MRI

To quantify the subject’s measured blood flow conditions, patient-specific flow
profiles over the entire cardiac cycle are extracted at the aortic in- and outflow
from the velocity encoded 2D PC-MRI Cine images. These sequences contain
through-plane blood flow measurements in an oblique arrangement, intersecting
the aorta twice: at the ascending aorta (AAo) above the valve and in the re-
gion of the descending aorta (DAo). Given a centerline of the aorta calculated
from the segmentation, delineation of the lumen boundary on the MR image is
initialized using graph cuts, and physiological radii constraints. The single time
point segmentation is then tracked throughout the cardiac cycle similar to [8].
Inside each patch, sampling of the PC-MR image is performed at the pixel cen-
ters to obtain velocity values over the entire cardiac cycle. This velocity field is
integrated over the area of the segmented contour to estimate the aortic blood
flow rate.
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2.3 Non-invasive Estimation of Personalized Boundary Conditions

In order to perform a patient-specific simulation, the inlet and outlet boundary
conditions are personalized based on the non-invasive measurements. Given the
high computational cost associated with unsteady 3D flow simulations, we use an
axisymmetric reduced-order model of aortic hemodynamics for a quick estima-
tion of patient-specific parameters that are subsequently used for a personalized
3D flow simulation.

The inlet boundary condition is specified by imposing the time-varying flow
rate in the ascending aorta obtained from the PC-MRI data. For the outlet
boundary condition, we use a 3-element Windkessel model to specify the down-
stream resistance and compliance of the vessels that are not explicitly modeled
in the flow computations. At each of the four outlets (SAoA and DAo), the wind-
kessel model consists of two resistances (Rp and Rd) and one compliance (C).
Rp is proximal resistance, Rd the distal resistance and C the total compliance of
the downstream circulation for each outlet. At each outflow, the total resistance
Rt, (where Rt = Rp + Rd) is estimated from the mean arterial pressure (PMA)
and average flow (Q) by using the relation: Rt = PMA

Q . For the non-invasive
estimation of PMA in the AAo, we use the systolic and diastolic cuff pressures,
together with the heart rate: PMA = PDB +

[
1
3 + (Hr · 0.0012)

]
(PSB − PDB),

where PDB and PSB are the diastolic and systolic blood pressures and Hr is the
heart rate.

The average flows at the ascending (QAAo) and the descending aorta (QDAo)
are obtained from the PC-MRI data. Hence, the total flow in the three remaining
outflow vessels (Qup) can be obtained by: Qup = QAAo − QDAo. As has been
shown previously [9], the total flow in the first few branches, starting from the
aortic root, is distributed proportionally to the square of the vessel radius, i.e.

Qi =
Qup·r2i∑

3
i=1 r2i

where ri is the vessel radius at the outflow of upper branch i.

Since the pressure difference between the ascending aorta and the three upper
branches is insignificant, we use the same average pressure to estimate the total
resistance at each upper outlet branch: (Rt)i =

PMA

Qi
. For the descending aorta,

the assumption that PMA is the same as for the ascending aorta does not hold
true, since the coarctation induces a significant pressure drop. The coarctation
introduces a flow-dependent resistance (Rs(Q)) and thus, the total resistance,
which represents the sum of the resistance of the coarcation and of the outflow
model, is estimated as follows: (Rt)DAo + Rs(Q) = PMA

QDAo
. The resistance of

the coarctation is estimated with a semi-empirical model: Rs(Q) = μ·Kv

2·π·r30
+

ρ·Kt

2·A2
0

(
A0

As
− 1

)2

QDAo where r0 is the proximal radius of the coarctation, A0

and As are the proximal and minimum cross-sectional areas, μ is the dynamic
viscosity, ρ is the blood density andKv andKt are two constants which represent
the viscous and turbulent losses of energy. QDAo, the measured average flow rate
through the descending aorta. Using the last two equations the total resistance
at the descending aorta is then computed. After the computation of the total
resistances, the last step is to compute Rp and Rd. Rp at each outflow is equal to
the characteristic resistance of the vessel (in order to minimize the reflections),
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which is computed by the expression (Rp)i =
1

Π·r2i

√
2·ρ·E·h
3·ri , as described in [10].

Rd is then computed by Rd = Rt −Rp. For estimating the total compliance we
use the method in [11] and redistribute the individual compliances at each outlet.
Once the windkessel parameters are estimated, no further tuning is performed
to run the simulations.

2.4 Patient-Specific 3D CFD Simulations

To obtain comprehensive flow information in three dimensions we solve the full
3D Navier-Stokes equations in the luminal aortic domain calculated, using the
personalized outflow boundary conditions for pressure. We use an embedded
boundary method for automatic transfer of the tagged STL triangular lumen
mesh into a cartesian domain. The embedding function is a signed-distance
function computed using the Closest Point Transform [12]. The computational
domain cells are tagged based on their relation with the inlet triangular mesh
as follows: Exterior (no computation is taking place), Interior (computation is
taking place), Inlet, Outlet and Wall (appropriate boundary conditions are im-
posed). The Inlet and Wall cells are all interior to the domain, while the Outlet
cells are situated on the domain boundaries, by extending the lumen of each
vessel in its centerline direction [13] until it reaches the cartesian boundary.
Our embedded boundary Navier-Stokes solver uses a fractional step method [14]
that computes in a first step an intermediate velocity field, using the nonlinear
advection-diffusion equation for velocity, and then projects the intermediate ve-
locity onto the field of divergence free and tangent to the vessel boundary vector
fields. For the velocity advection we use second-order upwind, Van-Leer slope
limiting methods, while for the diffusion force components we use a semi-implicit
approach as in [15] which is first order accurate and unconditionally stable in
3D. We solve the pressure projection Poisson equation using an efficient implicit
multi-grid preconditioned conjugate gradient solver. The boundary conditions
for the velocity are Dirichlet in the Inlet cells, no-slip (Dirichlet) in the Wall
cells, and Neumann in the Outlet cells [16]. We use a variable-in-time flat inlet
velocity profile, and outlet pressure boundary conditions provided by the axi-
symmetric 1D simulations. The blood density and viscosity are set to literature
based values for healthy individuals (1.05g/cm3 and 4mPa · s).

3 Experiments and Validation

3.1 Segmentation

The accuracy of our method is demonstrated on a set of 212 3D images with wide
range of morphological and pathological variations. Data was retrospectively
collected from multiple hospitals participating in the COAST Trial [1], acquired
using heterogeneous MR protocols/sequences with scanners from all three major
vendors. Each volume in the data set is associated with an annotation (from
manual operators) which is considered as ground truth for training and testing.
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The fused aortic vessel tree segmentation accuracy was evaluated by using the
point-to-mesh metric (Table 1a). Average detection time for all parts is in the
range of 2− 3 minutes on an Intel Core i7 laptop.

From a clinical perspective, the quantitative capabilities of our system are
demonstrated on 32 patients with aortic anomalies (age: 5-36 years, 17 with
CoA and 15 with bicuspid aortic valve and dilated AAo) by comparing a set of
morphological measurements[17] automatically derived from our segmentation to
measurements manually performed by our cardiologist collaborators. The aortic
min and max diameter were measured at five location: aortic sinus (AS), sino-
tubular junction (STJ), ascending aorta (AAO), transverse arch (TA), and
descending aorta (DA). Statistical results correlated (p < 0.001, r = 0.94)
between model-based and manually measured min and max diameters. Table 1b
summarizes the mean measurement errors for each segment separately.

3.2 Parameter Estimation, Simulation Results and Validation

In order to demonstrate the proposed method for non-invasive hemodynamic as-
sessment, we investigated 5 patient datasets with native and/or recurrent coarc-
tation that involved the aortic isthmus. The stenoses received repair through
balloon angioplasty and stenting.

Using the above methods the patient-specific geometric vessel wall model
and corresponding time-resolved flow profiles were estimated from MR images.
To make sure that segmentation errors (e.g. results of image quality due to
MR signal drop-out inside the metallic stent for post-op) do not influence the
simulation outcomes, the vessel tree geometry was reviewed by a manual operator
in all experiments.

Given the patient-specific anatomy, measured flow rates at the AAo and DAo,
and systolic and diastolic blood pressures and heart rate, we performed a non-
invasive parameter estimation of the boundary conditions for each patient. The
results obtained for the non-invasive pressure gradients are summarized in Ta-
ble 1c, together with the invasive pressures obtained from cardiac catheterization.
The pressure differences between the AAo-DAo and TAA-DAo are determined at
the time-instant when the flow rate through the descending aorta is maximal.

Table 1. a) Segmentation accuracy (mm) and b) comparison between manual and
model-based clinical measurements (mm). c) Comparison of the pressure obtained from
invasive catheterization and our proposed non-invasive method: systolic blood pressure
gradients (mmHg) between AAo-DAo and transverse aortic arch (TAA)-DAo.

(a)

Mean (Std) Median

aorta 2.29± 1.74 1.95

brachiocephalic 3.40± 1.89 2.90

left common 4.59± 3.58 3.16

left subclavian 4.64± 3.33 3.06

supra-aortic 4.21± 2.90 3.04

complete model 3.24± 2.32 2.49

(b)

AS STJ AAO

min 1.61 ± 0.9 2.07 ± 1.5 1.61 ± 1.9

max 1.56 ± 1.3 1.28 ± 1.0 1.56 ± 1.3

TA DA

min 1.70 ± 1.2 0.8 ± 0.5

max 1.34 ± 1.1 0.92 ± 0.6

(c)

Pati �P �P
ent AAo-DAo TAA-DAo

#1 55/58.5 53/56

#3 8/6.9 8/7.7

#4 30/17.3 28/24.3

#5 14/15 18/13.2

#6 39/6.7 43/6.1
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4 Discussion

As can be seen from the results, the proposed method performs well for most of
the cases. For patients #1, #3 and #5 the simulation reproduces the catheteri-
zation within an acceptable margin. During the review of our results for case #6
we observed that an incorrect PC-MR acquisition plane (intersecting the aortic
valve and left ventricular outflow tract instead of the AAo) that results in an
erroneous inflow initialization, thus we just included the results for consistency.
The discrepancy in #4 is due to aortic compliance as the DAo peak flow phase
is delayed compared to AAo peak blood pressure.

The results from the 3D simulations for two patients are presented in Figure
2. There is a significant pressure gradient across the coarctation at peak systole,
which gradually disappears towards the end of diastole. A volumetric visual-
ization of the velocity magnitude at peak systole, late systole and end diastole
are shown in the three figures at the right. The high velocity jet in the stenosis
region is clearly visible as expected. Similar methodology can also be applied to
the post-operative data, by taking into consideration the modified wall-stiffness
introduced from the stent implantation. This is part of the ongoing work, and
the preliminary results are shown in the bottom row of Figure 2. Here, the pres-
sure gradients between AAo-DAo and TAA-DAo have been partially restored to
normal values. A similar effect can also be noticed in the flow patterns: highest
velocity in the aortic arch, and reduced Reynolds number.

Fig. 2. Left:Blood pressure mapped on lumen boundary, Right:Volume rendered ve-
locity magnitude (for cases pre-operative #5, post-operative #6)
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Abstract. Purpose: Various methods exist for interpolating diffusion
tensor fields, but none of them linearly interpolate tensor shape at-
tributes. Linear interpolation is expected not to introduce spurious
changes in tensor shape. Methods: Herein we define a new linear invariant
(LI) tensor interpolation method that linearly interpolates components
of tensor shape (tensor invariants) and recapitulates the interpolated ten-
sor from the linearly interpolated tensor invariants and the eigenvectors
of a linearly interpolated tensor. The LI tensor interpolation method
is compared to the Euclidean (EU), affine-invariant Riemannian (AI),
log-Euclidean (LE) and geodesic-loxodrome (GL) interpolation methods
using both a synthetic tensor field and three experimentally measured
cardiac DT-MRI datasets. Results: EU, AI, and LE introduce significant
microstructural bias, which can be avoided through the use of GL or LI.
Conclusion: GL introduces the least microstructural bias, but LI ten-
sor interpolation performs very similarly and at substantially reduced
computational cost.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) [1] is a technique that
permits the non-destructive evaluation of the self-diffusion tensor (D) of water
within small volumes of soft tissues. The measured diffusion tensor can be used to
characterize local microstructural tissue properties, including diffusive shape and
microstructural orientation. Diffusion tensor shape and orientation properties
are important components of computational models of cardiac mechanics and
electrophysiology that require closely spaced nodes that do not necessarily lie
at lattice points. DT-MRI data are, however, acquired at lattice points within
a three-dimensional imaging volume, therefore tensor interpolation methods are
needed.

Each diffusion tensor is a three-dimensional rank-2 symmetric, positive defi-
nite tensor that can be decomposed into a system of eigenvalues (λi) and eigen-
vectors (ei), which correspond to tensor shape and orientation respectively.
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In particular, tensor shape can be described by families of tensor invariants
[2, 3], which saliently decompose tensor shape into the magnitude-of-isotropy
(tensor trace, determinant or norm), magnitude-of-anisotropy (fractional or rel-
ative anisotropy) and mode-of-anisotropy (transversely isotropic vs. orthotropic)
components. The primary eigenvector corresponds to the direction of fastest dif-
fusion, which has been shown to align with the long axis of the myocytes that
comprise the heart [4]. The secondary and tertiary eigenvectors correspond to the
crossfiber-within-sheet direction and the sheet normal direction, respectively [4].
Because these shape and orientation characteristics directly correspond to mi-
crostructural features that are observed with histology, it is judicious to linearly
interpolate all of these tensor properties directly.

The simplest tensor interpolation method is the Euclidean (EU) method, but
it suffers from the swelling effects due to non-monotonic interpolation of tensor
determinant (DET), and does not preserve the positive definiteness of diffusivity.
The Riemannian approaches [5–8] overcome this problem, and more recently the
log-Euclidean (LE) method [9] has been shown to be a computationally efficient
approximation to the affine-invariant (AI) Riemannian approach [8]. Kindlmann
et al. [10] proposed a geodesic-loxodrome (GL) approach that guarantees mono-
tonic interpolation of orthogonal tensor invariants, and demonstrated that the
EU, AI and LE approaches fail to monotonically interpolate all the tensor invari-
ants including tensor trace (TR), fractional anisotropy (FA) and tensor mode
(MODE). The geodesic-loxodrome approach, however, is computationally expen-
sive, and monotonic interpolation of the tensor invariants needs to be evaluated
using experimentally measured DT-MRI data.

Recent studies have examined different methods to interpolate separately ten-
sor shape and orientation [11, 12]. Bi et al. [11] proposed a method to linearly
interpolate eigenvalues and rotation angles between tensor orientations. This re-
sults in monotonic interpolation only for TR. Bi et al. did not provide a way
to resolve the sign ambiguity of the eigenvectors. Yang et al. [12] proposed a
method to resolve the sign ambiguity problem by finding the minimum rotation
path between tensor orientations, but the minimum rotation path may not be
the best way to resolve the sign ambiguity problem.

Firstly, we propose a new linear invariant (LI) tensor interpolation method,
which linearly interpolates components of tensor shape (tensor invariants). We
also define for the first time the necessary mathematics for converting the ten-
sor invariants to eigenvalues, which enables recapitulation of the interpolated
tensor from the linearly interpolated tensor invariants and the eigenvectors of
a linearly interpolated tensor. The LI tensor interpolation method is simple to
implement, fast, and perfectly commutative. Secondly, we determine which ten-
sor interpolation scheme introduces the least microstructural bias to the shape
and orientation of the interpolated tensors. To do so the LI tensor interpolation
method is compared to the EU, AI, LE and GL methods of tensor interpolation
using both a synthetic tensor field that reflects important myocardial tensor field
attributes, and three experimentally measured DT-MRI datasets from rabbit, pig
and human hearts.
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2 Theory

A tensor invariant set composed of TR (K1, magnitude-of-isotropy), FA (R2,
magnitude-of-anisotropy) and MODE (R3, mode-of-anisotropy) fully decompose
the shape of a tensor D defined by [2, 3]:

K1(D) = tr(D), R2(D) =
√

3
2 |D|/|D̃|, R3(D) = 3

√
6 det(D̃/|D̃|) , (1)

where tr() and det() are the trace and determinant operators respectively, |D|
represents the magnitude (Frobenius norm) of D defined by |D| =

√
tr(DDT ),

and D̃ represents the anisotropic (deviatoric) part of D defined by D̃ = D −
tr(D)I/3. Linear invariant (LI) interpolation of tensor CLI from tensors A and
B with weighting coefficient t ∈ [0, 1] starts by linearly interpolating the tensor
invariants:

K1(CLI) = (1− t)K1(A) + tK1(B), Rj(CLI) = (1− t)Rj(A) + tRj(B) , (2)

for j = 2, 3. Without derivation we define the mathematics for converting the
tensor invariants into the eigenvalues by solving the cubic characteristic polyno-
mial for a tensor:

λi =
1
3K1 +

2K1R2

3
√
3− 2R2

2

cos

(
arccos (R3) + Pi

3

)
, (3)

where Pi = 0,−2π, 2π for i = 1, 2, 3. Then Eq. 3 permits converting the tensor
invariants of CLI into the eigenvalues λi(CLI).

To define the eigenvectors for CLI, we use linear (EU) tensor interpolation
CEU = (1− t)A+ tB, then decompose CEU into the eigenvector and eigenvalue
matrices REU and ΛEU where CEU = REUΛEUR

T
EU. We can use AI, LE or GL

tensor interpolation, but EU is the simplest and fastest, and introduces a similar
bias in tensor orientation recovery, as will be shown later in Section 4.

Finally the interpolated tensor CLI is constructed using the eigenvalue matrix
ΛLI = diag (λi(CLI)) from the linearly interpolated tensor invariants, and the
eigenvector matrix REU from the linearly interpolated tensor :

CLI = REUΛLIR
T
EU . (4)

3 Methods

Synthetic Tensor Field. Using the EU, LE, GL and LI tensor interpolation
methods, bilinear interpolation was performed between tensors that approxi-
mate the sheet shape of (K1, R2, R3) = (7, 0.6, 0.5) and fiber shape of (6, 0.7, 1)
observed in cardiac DT-MRI data, and range of tensor orientations.

Real Cardiac DT-MRI Acquisition. The rabbit heart DT-MRI data was ac-
quired in a formalin fixed rabbit heart using a 7T Bruker Biospin scanner and a
3D fast spin echo sequence. Five non-diffusion weighted and twenty-five diffusion
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weighted (b-value = 1000 s/mm2) imaging volumes were used to estimate the lo-
cal D without zero padding and with linear regression. The imaging parameters
were TE/TR = 29.1/550ms, RARE factor two, FOV = 35× 35× 35mm, and a
96×96×72 encoding matrix – resulting in 365×365×528μm spatial resolution.
The porcine heart DT-MRI data was acquired using 2D multislice readout seg-
mented EPI, similar encoding directions and reconstruction method with the fol-
lowing imaging parameters: TE/TR = 80/6800ms, FOV = 150× 150× 129mm,
and an 150×150×43 encoding matrix – resulting in 1×1×3mm spatial resolution.
The high-resolution human heart DT-MRI data was downloaded from Johns
Hopkins University [13]. The FOV was 110×110×110mm, the encoding matrix
size was 256× 256× 134, and the spatial resolution was 0.430× 0.430× 1.0mm.

Interpolation Evaluation. Each DT-MRI volume was segmented to identify
the myocardium using thresholding and morphologic operations on the non-
diffusion weighted image volume. To evaluate each interpolation method the
measured (“truth”) tensor volume was first downsampled in each direction by
a factor of 2 for the rabbit and porcine heart data, and by a factor of 4 for the
high-resolution human heart data. Subsequently tensors were trilinearly inter-
polated at the positions of the removed tensors using the remaining data. This
permits a direct, paired comparison of the interpolated tensors to the “truth”
tensors using data de-correlation and bootstrap statistics (see below). This com-
parison was made for six tensor scalar measures (TR, FA, MODE, DET, angle
difference between primary eigenvectors, and log-Eugclidean tensor distance [9])
computed at each location of the interpolated tensors using each of the tensor
interpolation methods.

Tensor Statistics. The distributions of the six tensor scalar measures contain
correlated data, are non-Gaussian, and have non-uniform variances. The use of
ANOVAand t-test statistics, however, requires that the data in eachpopulation are
not correlated, are Gaussian distributed (negligible skewness, kurtosis, etc.), and
have similar variances; hence de-correlation and bootstrap methods are required.

De-correlation. The population of each tensor scalar measure was spatially
decorrelated by computing the autocorrelation (AC) length for every dimen-
sion using the fully sampled data and the mask. For each of the x−, y− and
z−directions, all lines having at least four continuous myocardial points were
found within the mask. For each line, the data values of the line were subtracted
from their average, and then the AC sequence was computed. The AC length,
which is the lag value at the first zero-crossing of the AC curve, was computed.
The interpolated and original tensor data were conservatively decimated by the
minimum integer value greater than or equal to all the median AC lengths for
the tensor scalar measures in every dimension in order to spatially de-correlate
the data.

Bootstrap Statistics. A paired comparison of each scalar tensor measure
between the de-correlated interpolated tensors and the de-correlated original
“truth” tensors was made using bootstrap methods. The population of paired dif-
ferences between the scalar tensor measures (interpolated minus “truth” values)
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(a) EU interpolation (b) LE interpolation
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Fig. 1. Superquadric glyph rendering of the tensor field obtained from Euclidean (a),
log-Euclidean (b), geodesic-loxodrome (c), and linear invariant (d) bilinear interpola-
tion between the four myocardial tensors at the vertices. Maps of tensor trace (e), FA
(f), tensor mode (g), and tensor determinant (h) from the resultant interpolated tensor
fields are shown for each interpolation method. The front left edge in the tensor glyph
images corresponds to the bottom of the tensor invariant images.

was computed, and 1000 randomly resampled populations with replacement were
constructed from the paired difference dataset. From each randomly resampled
population the median was calculated. The 1000 median measures were sorted,
and the asymmetric 95% confidence interval (CI) about the median was com-
puted from the distribution for each tensor scalar measure. When this method
is applied to paired angle differences between the primary eigenvectors or log-
Euclidean tensor distances, only unsigned differences or distances can be com-
puted. The median of the scalar tensor measure differences and the bootstrapped
95% CI of the median were compared to the zero-bias line (null hypothesis). If
the paired differences are not significant, then the 95% Cl will overlap with the
zero-bias line. When the paired difference CI does not overlap with the zero-bias
line, then the respective tensor interpolation method introduces a significant bias
to the tensor field.
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4 Results

Synthetic Example. Fig. 1 shows an example of bilinear interpolation between
the four myocardial tensors at the vertices using the EU, LE, GL and LI methods.
The tensors are visualized using superquadric glyphs [14]. Each edge represents a
microstructural transformation that can be observed both histologically and with
DT-MRI. EU only monotonically interpolates TR. EU negatively biases FA and
positively biases DET (i.e. the so-called tensor swelling effect [9]). LE negatively
biases TR and FA, and only monotonically interpolates DET. Both EU and LE
heterogeneously bias MODE. GL monotonically and LI linearly interpolate all
the tensor invariants including DET. In order to establish that monotonic or
linear interpolation of the tensor invariants is the best interpolation method, we
evaluated each tensor interpolation method using the experimentally measured
DT-MRI datasets as follows.

Autocorrelation. The AC procedure resulted in AC lengths of 3 in all the
directions for the rabbit heart data; 4 in the x− and y−directions, and 2 in the
z−direction for the porcine heart data; and 8 in the x− and y−directions, and
6 in the z−direction for the human heart data. To ensure that the data was
de-correlated, the data was decimated by the AC length in each dimension.

Bootstrap Statistics. Figure 2 shows that EU does not introduce a significant
bias to TR nor DET, but it does negatively bias FA and positively bias MODE.
AI and LE are nearly identical and show a negative bias for TR, FA, and DET;
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Fig. 2. Bootstrap statistics for tensor measures. The upper row corresponds to the
rabbit heart data, the middle row to the porcine heart data, and the lower row to the
human heart data. Results of the paired comparison for tensor trace (a), FA (b), tensor
mode (c), tensor determinant (d), angle difference between primary eigenvectors (e),
and log-Euclidean tensor distance (f) are shown for each interpolation method. Each
black horizontal line represents the median of each measure, and each box represents
the bootstrapped 95% confidence interval of the median. The light gray horizontal lines
at zero represent the zero bias.
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and a positive bias for MODE. GL shows no significant bias for TR, FA, MODE,
nor DET. LI does not introduce a significant bias for TR, FA, nor DET, but it
does negatively bias MODE. All of the tensor interpolation methods produce an
equivalent and positive bias for the primary eigenvector and the log-Euclidean
tensor distance metric.

5 Conclusion

The bootstrap comparison results demonstrate that GL and LI outperform EU,
LE and AI in terms of tensor shape recovery. The bias introduced by AI and LE
for recovery of TR and DET is a small (≈ 2%) change relative to the absolute
measures. Furthermore, current models do not make use of the TR information
from the DT-MRI data because the conductivity tensor’s eigenvalues have to be
rescaled, hence this bias is not likely to be significant. The bias in FA introduced
by EU, AI and LE is larger (≈ 8%), and may significantly impact simulations
when this data is incorporated into the computational model to rescale the
conductivity tensor in regions of fibrosis and scar. Hence, accurate recovery of
FA is important.

The magnitude of the bias in MODE by EU, AI, LE, and LI is similar (≈ 4%).
Only GL shows a distinct advantage as it interpolates MODE with no bias.
Both electrophysiologic activation and mechanical tissue properties are known
to be orthotropic, therefore accurate interpolation of MODE (lower bias) is likely
beneficial.

For computational electrophysiology and mechanical modeling of the heart,
orientation recovery is very important because the primary eigenvector (myofiber
direction) strongly governs the direction of electrical activation and active con-
traction. All of the tested tensor interpolation methods introduce a ≈ 5◦ − 8◦

bias, which may introduce notable fiber “disarray” into computational models.
A tensor interpolation method that better recovers tensor orientation is still
needed.

The path interpolated by LI (respectively, GL) between two tensors lies in the
6-dimensional nonlinear manifold of tensors; this path has a projection onto the
3-manifold of tensor invariants (losing the directionality information). Here we
interpolate on the 3-manifold, to linearly (respectively, monotonically) preserve
the tensor shape attributes. The use of direct linear interpolation does not imply,
nor is it motivated by, assumptions about global linearity, but naturally follows
by considering the small neighborhood around a point to be homeomorphic to
Euclidean space (valid for short distances), as given by the manifold structure.
The paths are demonstrably close approximations of each other, and our fun-
damental ignorance of the true physical path on the tensor manifold makes it
difficult to describe either LI or GL as “more meaningful.” We therefore tested
all the methods on real data.

In conclusion, if MODE recovery is important then GL should be used despite
the computational cost. If MODE recovery is not critical then LI interpolation is
an otherwise equivalent tensor interpolation method with reduced computational
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cost, which is important when interpolating tensors to the coordinates of 5 to 25
million computational nodes found in whole heart electrophysiology models. EU,
AI, and LE tensor interpolation have no distinct advantage for the interpolation
of tensor shape and orientation information based on the comparisons presented
herein.
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10. Kindlmann, G., San José Estépar, R., Niethammer, M., Haker, S., Westin, C.-F.:
Geodesic-Loxodromes for Diffusion Tensor Interpolation and Difference Measure-
ment. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS,
vol. 4791, pp. 1–9. Springer, Heidelberg (2007)

11. Bi, C., Takahashi, S., Fujishiro, I.: Interpolating 3D Diffusion Tensors in 2D Pla-
nar Domain by Locating Degenerate Lines. In: Bebis, G., Boyle, R., Parvin, B.,
Koracin, D., Chung, R., Hammoud, R., Hussain, M., Kar-Han, T., Crawfis, R.,
Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010, Part I. LNCS, vol. 6453, pp.
328–337. Springer, Heidelberg (2010)

12. Yang, F., Zhu, Y.M., Magnin, I.E., Luo, J.H., Croisille, P., Kingsley, P.B.: Feature-
Based Interpolation of Diffusion Tensor Fields and Application to Human Cardiac
DT-MRI. Med. Image Anal. 16(2), 459–481 (2012)

13. Helm, P.A., Raimond, L.: Winslow at the Center for Cardiovascular Bioinformat-
ics and Modeling and Dr. Elliot McVeigh at the National Institute of Health for
provision of data

14. Ennis, D.B., Kindlmann, G., Rodriguez, I., Helm, P.A., McVeigh, E.R.: Visual-
ization of Tensor Fields using Superquadric Glyphs. Mag. Res. Med. 53, 169–176
(2005)



 

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 502–510, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Morphological Analysis of the Left Ventricular 
Endocardial Surface and Its Clinical Implications 

Anirban Mukhopadhyay1, Zhen Qian2, Suchendra M. Bhandarkar1, Tianming Liu1, 
Sarah Rinehart2, and Szilard Voros3 

1 Department of Computer Science, The University of Georgia, Athens, GA, USA 
2 Piedmont Heart Institute, Atlanta, GA, USA 

3 Stony Brook University Medical Center, Stony Brook, NY, USA 

Abstract. The complex morphological structure of the left ventricular 
endocardial surface and its relation to the severity of arterial stenosis has not yet 
been thoroughly investigated due to the limitations of conventional imaging 
techniques. By exploiting the recent developments in Multirow-Detector 
Computed Tomography (MDCT) scanner technology, the complex endocardial 
surface morphology of the left ventricle is studied and the cardiac segments 
affected by coronary arterial stenosis localized via analysis of Computed 
Tomography (CT) image data obtained from a 320-MDCT scanner. The non-
rigid endocardial surface data is analyzed using an isometry-invariant Bag-of-
Words (BOW) feature-based approach. The clinical significance of the analysis 
in identifying, localizing and quantifying the incidence and extent of coronary 
artery disease is investigated. Specifically, the association between the 
incidence and extent of coronary artery disease and the alterations in the 
endocardial surface morphology is studied. The results of the proposed 
approach on 15 normal data sets, and 12 abnormal data sets exhibiting coronary 
artery disease with varying levels of severity are presented. Based on the 
characterization of the endocardial surface morphology using the Bag-of-Words 
features, a neural network-based classifier is implemented to test the 
effectiveness of the proposed morphological analysis approach. Experiments 
performed on a strict leave-one-out basis are shown to exhibit a distinct pattern 
in terms of classification accuracy within the cardiac segments where the 
incidence of coronary arterial stenosis is localized. 

Keywords: Ventricular endocardial surface, cardiovascular CT, non-rigid shape 
analysis, Bag-of-Words. 

1 Introduction 

The clinically observed relationship between the incidence and severity of Coronary 
Artery Disease (CAD) and the structural alterations in the left ventricular endocardial 
surface has not yet been formally studied due to inherent limitations of conventional 
cardiovascular imaging technologies. Since CAD is a leading cause of morbidity and 
mortality worldwide, techniques that improve diagnostic and prognostic effectiveness 
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have a potentially significant clinical impact. X-Ray Coronary Angiography (XRA) is 
an invasive technique that is a clinically accepted standard for assessment of vascular 
morphology and for quantifying the extent of vessel stenosis due to artherosclerotic 
plaque deposition. However, a comprehensive assessment of CAD necessitates a 
study of both, vascular morphology and cardiovascular function. Conventional 
myocardial functional assessment is based on a stress test that uses radionuclide or 
magnetic resonance (MR) perfusion imaging techniques. Since vascular morphology 
and cardiovascular function are imaged using separate modalities, the time and cost 
associated with a comprehensive assessment of CAD and the potential health risk to 
the patient associated with higher radiation doses are all significantly increased.  

Computed Tomography Coronary Angiography (CTCA) is a non-invasive imaging 
technique that allows for robust quantification of vascular morphology and also has 
the potential for characterizing the atherosclerotic plaque composition [1]. When 
performed using a 320 Multirow-Detector Computed Tomography (MDCT) scanner, 
CTCA can yield images with an isotropic spatial resolution of 0.5 mm in a volumetric 
fashion. The resulting CTCA images, in addition to providing vascular morphology 
information, are capable of providing significant details about the endocardial surface 
structure, in particular, the structure of the trabeculae and papillary muscles.  

We hypothesize that certain changes in the endocardial surface morphology bear a 
direct relationship to changes in cardiovascular function, i.e., the incidence and extent 
of stenosis in a specific coronary artery can be localized via analysis of morphological 
changes in the endocardial surface. The only known previous work along these lines 
is our previous work [11] which tackled this problem using two basic shape 
descriptors under the assumption that the endocardial surface could be treated as rigid, 
since all the images were taken at a relatively steady phase of the cardiac cycle. 
Although this work produced significant results, it had some inherent problems with 
regard to the selection of the shape descriptors. The two shape descriptors were 
proposed under the assumption of rigidity of the endocardial surface as observed in 
the MDCT images, i.e., the endocardial surface was assumed to be free of global 
deformation. Although the data was collected at 75% in the R-R cardiac cycle, i.e., at 
a relatively steady phase, the continuous motion of Left Ventricle (LV) demanded a 
more robust shape descriptor, i.e., one that is invariant to global deformation [9, 10]. 
In recent years, descriptors that are invariant to isometric deformations of an 
underlying surface have been studied in the context of shape-based retrieval in image 
databases. However, the problem in directly using existing shape descriptors 
developed for content-based image retrieval is that, these shape descriptors are 
designed with the goal of differentiating between two distinct classes of objects, e.g., 
“humans” with different poses versus “dogs” with different poses. In contrast, our 
goal is to differentiate between pathologies within the same class of objects, e.g., 
classify a particular LV segment as “normal” or “diseased”, using its surface 
morphological properties.     

Interest point feature-based methods have been used extensively in various 
computer vision algorithms [13] owing to the success of the Scale Invariant Feature 
Transform (SIFT) features [12] and Speeded Up Robust Features (SURF) [15]. The 
most advantageous aspect of interest point feature-based approaches is their treatment 
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of images as a collection of primitive elements, i.e., “visual words”, and their natural 
progression to the use of well-developed methods from text search. The two 
prominent implementations of visual words as a backbone for shape description are 
Shape Google- a technique for shape-based search in large collections developed by 
Ovsjanikov et.al. [8] and, the work of Toldo et.al. [14]. By computing the frequency 
of the geometrical word occurrences in an image, a representation referred to as Bag-
of-Features (BOF) is constructed for non-rigid shape description. As an extension to 
the BOF approach, we propose a novel shape analysis-based approach, termed as 
Bag-of-Words (BOW), to quantify the relationship between the incidence, severity 
and localization of CAD and the structural alterations in the LV endocardial surface.  

Various computer vision applications have shown that visually similar images tend 
to share similar BOF descriptors. This property is useful for detection and description 
of similar images in a large-scale image database. The shape analysis community, on 
the other hand, has taken a long time to adopt BOF- or BOW-based approaches due to 
the lack of efficient and robust feature descriptors similar to SIFT. Some of the 
important properties of SIFT features include their inherent discriminative power 
combined with robustness to various image transformations. While several works in 
the research literature have proposed feature-based techniques for characterization of 
rigid shapes, very few are capable of dealing with non-rigid shape deformations [16]. 
To the best of our knowledge, this paper represents one of the first attempts, within 
the cardiovascular imaging community, to employ a BOW feature-based approach to 
compare non-rigid deformable shapes.   

 
(a)                        (b)                                     (c)                                             (d)         

Fig. 1. Illustration of the sequence of steps in the morphological analysis of the LV endocardial 
surface: (a) accurate mesh segmentation, (b) generation of a 17-segment LV surface model with 
demarcation of coronary arterial territories (red: LAD, green: LCX, blue: RCA), (c) feature 
vector generation and (d) generation of the BOW histogram via vector quantization (K-means 
clustering). 

We have proposed and implemented a BOW feature-based approach to encapsulate 
the local and global geometry as well as the local orientation information of the LV 
endocardial surface within a robust feature vector for the purpose of morphological 
analysis. The experimental results show successful localization of coronary arterial 
stenosis and thereby serve to strengthen the clinically observed relationship between 
the incidence and severity of CAD and alterations in the LV endocardial surface. The 
sequence of steps in the proposed approach for morphological analysis of the LV 
endocardial surface is depicted in Figure 1.    

The remainder of the paper is organized as follows. In Section 2, the proposed LV 
surface segmentation and LV shape analysis procedures are detailed; in Section 3, 
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experimental results on the MDCT data sets are presented; in Section 4, the paper is 
concluded with a brief discussion of the proposed approach and an outline of 
directions for future work. 

2 MDCT Image Segmentation and LV Shape Analysis 

2.1 Left Ventricle Segmentation and Meshing 

Three types of trabeculae morphologies are observed along the LV endocardial 
surface: (a) those that lie along the entire length of the ventricular wall forming 
prominent ridges; (b) those that are fixed at their extremities but free in the middle; 
and (c) those that connect the root of the papillary muscles and the ventricular wall. 
These trabeculae morphologies result in a complex endocardial surface topology. In 
order to adapt to the topological changes caused by the complex trabeculation 
structure, a 3D level set approach is employed to segment the LV endocardial surface. 
In order to suppress noise while still retaining the edges in the MDCT images, a 
median filter-based denoising procedure is employed on the 3D MDCT data prior to 
segmentation. The size of the median filter is empirically set to 7×7 based on the 
MDCT data set. A level set-based segmentation procedure without reinitialization, as 
proposed by Li et al. [5], is applied to the median-filtered 3D image data set followed 
by the marching cubes procedure [17] to generate the surface meshes. The surface 
meshes are subsequently denoised via a mean face normal filtering procedure 
proposed by Zhang and Hamza [7] to obtain the smooth shape of the myocardial 
surface of the left ventricle. 

2.2 Data Preparation 

In order to facilitate better understanding and localization of cardiac anatomy and 
pathology, the American Heart Association (AHA) has published recommendations 
for standardized myocardial segmentation [6]. We have adapted the AHA-approved 
17-segment cardiac model [2] to divide the LV into 17 segments for more accurately 
localized shape analysis. The long axis of the LV is first computed, followed by 
division of the LV into 4 main parts, i.e., apex, apical, mid-cavity and basal along the 
longitudinal orientation. Division of the endocardial surface in the short axis view is 
tackled by exploiting knowledge of cardiac anatomy. Three landmark points are 
considered across the septum based on which the apical is divided into four parts and 
the mid-cavity and basal into six parts. Finally, the LV endocardial surface is divided 
into 17 segments. 

2.3 Feature Description 

500 surface points are randomly sampled from each of the 17 LV endocardial surface 
segments. Four types of surface descriptors are considered, inspired by Toldo et.al. 
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[14], to represent each sampled point. The first three descriptors are local whereas the 
fourth is a contextual descriptor. The descriptors are: 

Shape Index ( pI ): The shape index pI of a surface point p, as originally proposed 

by Koenderink [3] and subsequently modified by Zaharia and Preteux [4], is defined 

as a function of the two local principal surface curvatures 
1
pk  and 

2
pk associated with 

surface point p and formulated as follows:  
 

……………

BoW Histograms for each 
segment
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Point 
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Fig. 2. Illustration of Bag-of-Words shape description and vector quantization 
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The range of the pI values is [0, 1]. The value of pI is not defined for planar 

surfaces. The shape index pI provides a scale for representing basic elementary 

surface shapes such as convex, concave, rut, ridge and saddle [4]. The pI value is 

invariant to scale and 3D rigid-body transformations (i.e., translation and rotation) in 
Euclidean space.  
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Curvedness(ܥ): The curvedness ܥ of a surface point p, as proposed by Koenderink 

[3], is defined as a function of the two local principal surface curvatures 
1
pk  and 

2
pk

associated with surface point p and formulated as follows:  

 = ටሺ݇ଵଶܥ     ݇ଶଶሻ/2 

where,
21
pp kk > . 

Normal Orientation (θ): The normal orientation θ at surface point p is defined as 
the angle between the unit normal vector at surface point p and the XZ-plane.  

Geodesic Contextual Descriptor (ܦܥܩଶ): The geodesic contextual descriptor, 
denoted byܦܥܩଶ, is a contextual descriptor that depends on the relative position of 
the surface point p vis-à-vis the other points on the surface segment. It is 
characterized by a 20-bin histogram which is generated by computing the normalized 
geodesic distance between the surface point p and 499 other sampled points on the 
surface segment. The geodesic contextual descriptor ܦܥܩଶ is scale-invariant. 

The feature extraction procedure described above results in a 23-tuple feature vector 

for each surface point p denoted by ܨ= ( pI   .ଶ) as depicted in Figure 2ܦܥܩ,,θܥ,

2.4 Construction of Visual Vocabularies 

The feature vectors Fp at each surface point are clustered in order to obtain the visual 
words. Assuming that the local descriptors are computed for a set of stable surface 
points, we quantize the feature vector space to obtain a compact representation for the 
vocabulary of visual words, in a manner similar to the Shape-Google approach [8]. A 
vocabulary is defined as a set of representative vectors in the descriptor/feature space, 
obtained by means of unsupervised learning, i.e., vector quantization via k-means 
clustering. More formally, a vocabulary is defined as a collection V = { ݒଵ, … ,  {ݒ
where ݒ  is the centroid of the ith cluster and the clusters represent the visual words. 
Here, we have chosen k = 20 in the k-means clustering algorithm for generating the 
final histogram.  

3 Experimental Results 

We employed the proposed methods for segmentation, meshing and endocardial 
surface shape description on 27 MDCT data sets consisting of 12 data sets from 
cardiac patients and 15 data sets from normal subjects. Incidence of single- or multi-
vessel obstructive CAD was found in the three major coronary arteries using XRA, 
which was further confirmed by myocardial perfusion and fractional flow reserve 
tests performed on the patients.  
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The cardiac patients and normal subjects were subject to a contrast-enhanced 
CTCA scan on a 320-MDCT scanner using a standard CT angiography protocol with 
ECG gating. The resulting images were reconstructed at 75% in the R-R cardiac cycle 
to ensure minimal ventricular motion, so that the subsequent shape analysis is 
minimally affected by cardiac motion. The segmentation method described in Section 
2.1 was used to generate topologically correct and geometrically accurate data.    

3.1 Segmentation Results 

The results of the LV segmentation have already been proven to be reasonably 
accurate [11]. Additionally, the spatial distribution of the trabeculation was observed 
to vary with the location within the LV; thus providing the rationale for using the 17-
segment AHA model to perform localized shape analysis. Furthermore, the proposed 
segmentation approach has already shown a visually observable distinction in 
trabeculation between normal and diseased hearts, yielding classification accuracy 
greater than 80% with simple rigid shape descriptors and a nearest-neighbor classifier 
[11]. Our previous work has demonstrated the accuracy of the proposed segmentation 
method as well as its applicability for subsequent quantitative shape analysis. 

3.2 Localization Results     

A coronary artery is considered as diseased or stenotic if the extent of stenosis is 50% 
or greater. The LV myocardial segments are labeled as diseased by a cardiologist if 
they are supplied by stenotic arteries. An artificial neural network (ANN), employing 
a multilayer perceptron (MLP) architecture with a single hidden layer and a learning 
rate of 0.3, is used for the purpose of classification of the LV segments. The 20-bin 
histograms, generated via the vector quantization procedure (Section 2.3), for a 
particular LV segment from all the LV datasets are used as the inputs to the ANN. 
The classification procedure is carried out within a strictly leave-one-out setting. The 
output of the ANN is whether a particular LV segment can be classified as “normal” 
or “diseased”. 

The success rate for detection of stenosis in a specific coronary artery is shown in 
Figure 3. The classification results depict a clinically observed and intriguing 
relationship between the coronary arterial stenosis and the affected segment in the 17-
segment AHA model. The lower classification accuracy in the basal area (segments 1-
6) may be explained by the clinical observation that many of the coronary arterial 
stenoses in this study are located in the mid to distal portion of the coronary arteries 
that only effect the mid-cavity (segments 7-12) and apical portions (segments 13-16) 
of the LV endocardial surface. Furthermore, another probable reason for the lower 
classification rate in the basal area is that the apical and mid-cavity segments exhibit 
greater endocardial trabeculation structure than the basal segments, which translates 
to more reliable endocardial surface morphology information that can be used for the 
purpose of classification. 
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Fig. 3. Illustration of the classification accuracy for detection of coronary artery stenosis based 
on the change of surface morphology in the 17 LV segments in the AHA model. Higher gray 
values denotes higher classification accuracy and vice versa. 

4 Discussion and Conclusions 

To the best of our knowledge, this paper is one of the earliest works that studies the 
relationship between coronary artery stenosis and the morphological alterations in the 
LV endocardial surface using high-resolution MDCT data, and demonstrates its 
potential predictive value for the incidence and severity of CAD. This investigation 
also sheds new light on the localization of LV regions that are the most affected by 
coronary artery stenosis, a phenomenon which is yet to be fully explained. This 
association between the morphological features of the endocardial surface and cardiac 
functionality will be further explored in our future work. In particular, we aim to 
investigate the correlation between the endocardial surface morphology and the 
results of myocardial perfusion and fractional flow reserve tests in addition to the 
coronary arterial stenosis results obtained via XRA.  
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Abstract. In current clinical practice, examinations of the carotid
artery bifurcation are commonly carried out with Computed
Tomography Angiography (CTA) or contrast-enhanced Magnetic Res-
onance Angiography (ceMRA). Quantitative information about vessel
morphology, extracted from segmentations, is promising for diagnosis of
vessel pathologies. However, both above-mentioned techniques require
the administration of contrast media. In contrary, non-ce MRA methods
such as Time-of-Flight (TOF) provide fully non-invasive imaging with-
out any exogenous contrast agent. The diagnostic value of TOF MRA,
however, for assessment of the carotid bifurcation area can be hampered
due to its susceptibility to irregular blood flow patterns. Conventional
methods for lumen segmentation are very sensitive to such signal voids
and produce inaccurate results. In this work, a novel, fully automatic 3D
segmentation algorithm is proposed which uses prior knowledge about
irregular flow patterns. The presented technique has been successfully
tested on eleven volunteer datasets as well as in a patient case, offering
the comparison to CTA images. The sensitivity could be increased by
29.2% to 85.6% compared to standard level set methods. The root mean
squared error in diameter measurements was reduced from 4.85mm to
1.44mm.

1 Introduction

Stroke is one of the world leading causes of premature death [1] and shows in-
creasing incidence numbers. Fast and reliable diagnosis of its cause is essential for
treatment decisions. A common stroke source is stenosis in the internal carotid
artery (ICA). Although CTA and Digital Subtraction Angiography (DSA) are
still the gold standard for the carotid arteries, the risk for complications [2] and
the exposition to ionizing radiation lead to a growing use of MRA. Besides the
already widely used contrast-enhanced MR techniques, non-ce MR methods such
as TOF allow contrast-agent-free, non-invasive imaging.

TOF relies on the inflow of blood perpendicular to the imaging plane to gen-
erate contrast between the vessel lumen and surrounding static tissue. Signal

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 511–518, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Representative TOF dataset: (a) (b) Axial slices
showing signal voids (indicated by arrows). (c) (d)
Zoomed views. (e) Coronal MIP, (f),(g) sagittal MIPs.

Fig. 2. (a) CTA and (b)
MRA segmentation of
the same patient

loss is observed in regions with irregular, fluctuating or reverse flow, which leads
to intravoxel signal dephasing. In Fig. 1, typical TOF data of the carotids shows
the characteristic artifacts pointed at by arrows. This susceptibility to irregular
flow patterns [1] limits the usage for diagnosis as stenoses cannot be robustly
identified. In critical regions, the lumen can show lower intensity close to the
noise level, and strong signal gradients may occur inside. Though the true vessel
delineation is still recognizable for the trained human eye, both effects constitute
major problems for classical segmentation approaches as the sharp signal bor-
ders can easily be misinterpreted as the vessel wall. Especially the widely used
Maximum Intensity Projection (MIP) visualization (Fig. 1 (e)-(g)) suffers from
the weak differentiation between the vessel signal and the surrounding signal.

Existing approaches can roughly be divided in stochastic and level-set or ac-
tive contour based methods. There are algorithms specifically designed for non-
ceMRA [3–8] as well as some focusing on the carotid arteries [3],[6],
[9–12]. But only very few methods [3],[6] address the specific problem of vi-
sualizing the challenging bifurcation region in non-ce MRA.

In this work, we propose a method that accounts for the special properties of
the MRA TOF acquisition and uses knowledge about regions prone to artifacts
to identify even low intensity lumen regions. Contrary to most of the stated
methods, our proposed method works fully automatically.

2 Segmentation

Comparison of the segmentations for both a CTA (Fig. 2 (a), done with ITK-
SNAP [13]) and a TOF (Fig. 2 (b), done with a standard level set approach)
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Fig. 3. Division of the ROI. Ir-
regular flow zones are shaded

Fig. 4. (a) Ellipsoid fitting. (b) Detection of
outer wall areas in BU.

scan reveals problems of conventional MRA TOF segmentation methods. Seg-
mentation problems in the lower part of the ICA are indicated by arrows. Use
of this segmentation for any quantitative evaluation would lead to significant
underestimation of the vessel lumen. This problem is addressed by our fully
automatic algorithm consisting of the following three steps.

2.1 MIP Generation and Threshold-Based Pre-Segmentation

In a first step, sagittal and transversal MIPs are generated from the slices of the
3D TOF scan. The regions of interest (ROI) are identified by adaptive thresh-
olding. Noisy regions are eliminated as candidates by searching connected areas
in slice direction. This leads to reduced computational effort as well as a more
stable segmentation.

2.2 Detection of the Vessel Tree Skeleton and the Bifurcation

The common carotid artery (CCA) is differentiated from the vertebral artery in
the first caudal slice based on the MIP pre-segmentation by size and connectiv-
ity to the bifurcation. The skeleton, consisting of center point localizations and
bifurcation slices, is extracted as follows: The threshold result of the preceding
slice k− 1 is analyzed using ellipsoid fitting. This yields the major axis e1k−1,v,
the minor axis e2k−1,v, the area ak−1,v and the center mk−1,v for each detected
vessel segment v, where v = 0 indicates the largest segment (see Fig. 4 (a)). Vox-
els on the major axis are used as seed points for the region-growing segmentation
in slice k.

For each slice f(k) = e(k) + a(k) is calculated and the bifurcation slice b is
determined as the slice with maximal value of f(k). The ellipsoid-similarity
measure e(k) favors elongated ellopsoids, like those which occur just under the
bifurcation. The area ratio a(k) helps to differentiate the main ICA-ECA bifur-
cation, where both vessels have generally close area values, from small ascending
branches:

e(k) =
‖e1k−1,0‖
‖e2k−1,0‖

and a(k) =
minv ak,v
maxv ak,v

. (1)
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The extracted information is used to find regions that are potentially sensitive
to flow artifacts. Theoretical and computational fluid dynamic studies show that
these irregular flow zones are located at the outer walls at the origins of ICA
and ECA [14],[15] (Fig. 3, shaded regions).

Geometric Information. The volume is subdivided into four regions as illus-
trated in Fig. 3: The CCA part L, the lower bifurcation part BL where the CCA
has a fully ellipsoidal form, BU above the bifurcation, and the upper part U.
The distant parts L and U remain uncorrected, BL is fully corrected. Special at-
tention is paid to BU where the region of the outer walls is critical. These regions
are determined by identifying the outer halves of ICA and ECA. Therefore, their
center points mi and me (see Fig. 4 (b)) are connected (c = mi−me = (c1, c2)

T)
and the normal direction is computed as n = (−c2, c1)T = (n1, n2)

T. Then the
normal equations through the center points ni(x) :R �→R and ne(x) :R �→R are

ni(x) =
n1

n2
x+mi,2 −

n1

n2
mi,1 , ne accordingly. (2)

2.3 Level Set Evolution Using Prior Information

After these preprocessing steps, a full 3D level set evolution is applied. A contour
of an open set ω is represented as the zero level of the higher dimensional scalar
function Φ(x) : R3 �→ R with x = (x1, x2, x3)

T ∈ R3. Φ(x) < 0 holds for points
inside the borders. The distance regularized level set evolution as proposed by Li
et al. [16] is used, which enforces the level set function to keep the desired shape
by the distance regularization term without the need for re-initializations. Also,
the C1 approximation of the Heaviside function Happ(Φ) and the approximated
Dirac function δapp(Φ) are used.

The speed term F (Φ) consists of the regularization term R(Φ) and an external
energy term E(Φ,x) pushing the level set evolution in the desired direction based
on the image intensities I(x):

F (Φ) = μR(Φ) + E(Φ,x). (3)

A standard method to minimize the functional F is the steady state solution of
the gradient flow which equals to

∂Φ

∂t
= −μ∂R

∂Φ
− ∂E

∂Φ
. (4)

The external energy term E(Φ,x) is composed of the edge term FE(Φ), the area
term FA(Φ) and the additional prior knowledge term FP (Φ,x):

E(Φ,x) = λFE(Φ) + αFA(Φ) + νFP (Φ,x), (5)

where λ, α and ν > 0 are the coefficients regulating the weight of the correspond-
ing terms. The prior knowledge term FP (Φ,x) consists of intensity deviations
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from the mean background intensity level u0, a weighting function w(x) and the
actual contour:

FP (Φ,x) =

∫
Ω

P (x)Happ(−Φ)dx =

∫
Ω

(I(x)− u0)
2w(x)Happ(−Φ)dx. (6)

A novel key element in PASCAL is the weighting term w(x) which depends on
the regions as explained in Fig. 3 and Sect. 2.2. Contrary to approaches such
as Scherl et al. [11], which uses integrated intensity deviations to differentate
plaque from lumen in CTA images, extracted skeleton information and physical
knowledge about flow irregularities is included with w(x):

w(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x3 < bl,

1, if bl ≤ x3 < b,

max(ni(x1)− x2, 0) ·max(x2 − ne(x1), 0), if b ≤ x3 ≤ bu,

0, if x3 > bu.

(7)

The most important case is b ≤ x3 ≤ bu, which limits the regularization to the
region close to the outer vessel wall just above the bifurcation by using the pre-
calculated normals ni and ne. Using the variational principle and the relation
∂Happ

∂Φ = δapp, the gradient descent flow equals to:

∂Φ

∂t
= μ div(dp(‖∇Φ‖2)∇Φ)+ δapp(Φ(x))

(
λdiv(g

∇Φ
‖∇Φ‖2 )+αg+ νP (x)

)
, (8)

where g = 1/(1 + ‖∇I‖2) and dp as described in [16]. The level set equation is
spatially discretized by using central differences for the spatial derivatives and
temporally using finite differences with a time step Δt. The pre-segmentation
serves as initial value Φ0(x).

3 Experiments and Results

3.1 Experimental Setup

TOF data was acquired in eleven volunteers (FOV 180mm× 180mm, imaging
matrix 512× 512, 3 slabs resulting in 51 slices, flip angle 25◦, slice thickness
0.5mm, TE=3.76ms, TR=23ms) on a clinical scanner at 3T (MAGNETOM
Verio, Siemens Healthcare). Clinical data was acquired from a patient under-
going in addition a CTA examination (SOMATOM Definition AS+, Siemens
Healthcare, rotation time 0.3 s, increment 0.4mm, injection of 50mL iodinated
contrast agent, slice thickness 0.6mm, matrix size 512× 512, 196 slices, in-plane
resolution 0.46mm × 0.46mm).

Two segmentations have been performed. The standard level set (SLS) seg-
mentation corresponds to the method proposed by Li et al. [16] with the following
parameters: λ = 20.0, α = −10, Δt = 0.2 and μ = 0.1. The parameters for our
proposed new method (PASCAL) have been identically chosen. The additional
parameter ν was set to 0.08. The same threshold initialization and the same
number of iterations were used for both methods.
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3.2 Quantitative Evaluation

Segmentation Accuracy Study. For all twelve datasets, manual segmenta-
tions of a subset of slices were created by three independent readers including
an experienced radiologist and MR scientists familiar with TOF data as gold
standard. For the evaluation of the proposed segmentation method, sensitivity,
specificity, accuracy, the positive predictive value (PPV) and the Dice coefficient
were calculated both for the reference level set segmentation SLS and our novel
PASCAL method. Only detail patches around the vessel have been used for this
quantitative evaluation to ensure meaningful values especially for the specificity.
Furthermore, five people manually detected the bifurcation point in the TOF
image and the mean of the results was compared with the fully automatically
detected positions.

Vessel Diameter. A clinical experiment was carried out with the acquired
CTA and MRA patient dataset concentrating on quantitative measurements of
the bifurcation and ICA diameter, which is used to quantify stenoses, for example
with the NASCET criterion [2]. The diameter was measured at five positions in
the bifurcation (B1-B5) and three in the ICA (I1-I3) both in the CTA dataset
and the obtained MRA segmentation result.

3.3 Results

Segmentation results of the volunteer study are shown in Fig. 5 and Table 1,
comparing a standard level set approach and the PASCAL method. Our ap-
proach significantly outperforms the conventional segmentation. In particular in
the critical regions close to the bifurcation sensitivity values of 85.6% in com-
parison to 66.2% for the state of the art approach were achieved. The very high
specificity of over 99% as well as a stable high PPV valueof above 97% for both
approaches is particularly important to offer a reliable diagnosis of stenoses in
this region. The proposed algorithm was furthermore able to detect the skeleton
and the bifurcation region in all volunteer datasets. The root mean squared error
between the automatically and manually detected positions was 0.4mm, which
is below the slice thickness of the used data. The quantitative measurements in
the clinical dataset (Table 2) yield diameters very close to the corresponding
CTA measurements. The root mean squared error of the diameter was reduced
from 4.85mm to 1.44mm.

Table 1. Evaluation of the segmentation results in comparison the gold standard

Bifurcation region (BL, BU) Distant regions (L, U)
[%] Sens. Spec. Acc. Dice PPV Sens. Spec. Acc. Dice PPV

SLS 66.2 99.8 95.7 78.8 98.7 69.9 99.9 97.8 81.8 99.3
PASCAL 85.6 99.6 97.8 90.7 97.1 79.5 99.8 98.5 87.8 98.4
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Fig. 5. (a) and (c) Two adjacent TOF slices. (b) and (d) Segmentation results. The
yellow border demarcates the gold standard, the orange line the SLS and the green line
shows the improved segmentation using PASCAL.

Table 2. Diameter of the carotis interna and the bifurcation in a clinical data set

B1 B2 B3 B4 B5 I1 I2 I3
CTA SLS [mm] 18.5 15.5 13.8 11.3 9.0 8.3 8.4 7.7
MRA SLS [mm] 18.0 13.1 10.4 9.0 7.4 7.6 7.5 7.5

MRA PASCAL [mm] 18.1 14.9 13.2 11.0 8.1 8.1 7.9 7.8

4 Discussion and Conclusions

A novel fully automatic segmentation approach for MRA TOF has been shown,
especially adapted to the challenging drawback of this method: irregular flow
patterns in dedicated regions. By including this knowledge and the segmented
vessel skeleton into the level set formulation stable and reliable segmentation
results in the carotid bifurcation region have been shown. The achieved segmen-
tation result is an essential basis for simulation of hemodynamics as well as for
quantitative measurements of stenosis degree or bifurcation angles which can
be used as essential factors in computer aided diagnostics. With this algorithm,
the use of standard TOF acquisitions, providing contrast-agent and ionizing ra-
diation free imaging, in the clinical diagnosis and treatment decision workflow
becomes feasible. Experimental data including the datasets and ground-truth
segmentations are available online at http://www5.cs.fau.de/data/pascal.
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11. Scherl, H., Hornegger, J., Prümmer, M., Lell, M.: Semi-automatic level-set based
segmentation and stenosis quantification of the internal carotid artery in 3D CTA
data sets. Med. Image Anal. 11(1), 21–34 (2007)

12. Suinesiaputra, A., de Koning, P.J.H., Zudilova-Seinstra, E., Reiber, J.H.C., van
der Geest, R.J.: Automated quantification of carotid artery stenosis on contrast-
enhanced MRA data using a deformable vascular tube model. Int. J. Cardiovasc.
Imaging (2011)

13. Yushkevich, P.A., Piven, J., Cody Hazlett, H., Gimpel Smith, R., Ho, S., Gee, J.C.,
Gerig, G.: User-Guided 3D Active Contour Segmentation of Anatomical Structures:
Significantly Improved Efficiency and Reliability. Neuroimage 31(3), 1116–1128
(2006)

14. Perktold, K., Peter, R.O., Resch, M., Langs, G.: Pulsatile non-Newtonian blood
flow in three-dimensional carotid bifurcation models: a numerical study of flow
phenomena under different bifurcation angles. J. Biomed. Eng. 13(6), 507–515
(1991)

15. Marshall, I., Zhao, S., Papathanasopoulou, P., Hoskins, P., Xu, Y.: MRI and CFD
studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J.
Biomech. 37(5), 679–687 (2004)

16. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its
application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254
(2010)



 

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 519–526, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

A Convex Relaxation Approach to Fat/Water Separation 
with Minimum Label Description 

Abraam S. Soliman, Jing Yuan, James A. White,  
Terry M. Peters, and Charles A. McKenzie 

University of Western Ontario, London, ON, Canada 
Robarts Research Institute, London, ON, Canada 

Abstract. While Magnetic Resonance Imaging is capable of separating water 
and fat components in the body, mapping of magnetic field inhomogeneities is 
essential for the successful application of this process. In this study, we address 
the problem of field map estimation using a convex-relaxed max-flow method. 
We propose a novel two-stage approach that leads to the global optimum of the 
proposed problem. The first stage minimizes the signal residuals via a convex-
relaxed minimum description length (MDL)-based approach. The MDL-based 
labeling model penalizes the total number of appearing labels, which helps to 
avoid field map errors when abrupt changes in field homogeneity exist. By  
exploring the whole range of possible frequency offsets, this stage ensures li-
miting the estimated field offset within certain boundaries where the global 
minimum resides. The second stage employs the output of the labeling model in 
a commonly used gradient-descent based method (known as IDEAL) to con-
verge to the exact global minimum, i.e. the required value of the field offset. 
Experimental results for cardiac imaging, where challenging field inhomogenei-
ties exist, showed that our method significantly outperforms over a widely-used 
technique for fat/water separation in terms of robustness and efficiency. 

1 Introduction 

The ability to separate fat from water in a magnetic resonance (MR) image is an im-
portant problem for a number of clinical applications. Bright fat signal can obscure 
underlying pathology and therefore suppression of the fat signal is required. In other 
cases, fat is considered an important diagnostic marker, and hence a clearer depiction 
of its signal, rather than its suppression, is desired. Common clinical applications of 
the latter include the diagnosis of non-alcoholic fatty liver diseases (NAFLD) [1], as 
well as a variety of bone marrow diseases [2]. However, expanding interest in the 
evaluation of myocardial fat infiltration and pericardial fat volume [3] justifies its 
optimization for cardiac imaging. 

Among various available MR techniques, chemical-shift based (or Dixon-based) 
techniques have become the most commonly used methods to obtain a quantitative fat 
measurement [4]. Chemical-shift based methods are characterized by their unique 
ability to extract a fat-only image with positive contrast, unlike other techniques that 
either tend to suppress the fat signal, making the process of identifying fat voxels 
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ambiguous, or apply fat selective excitation which is sensitive to B0 and B1 inhomo-
geneities.  

Unfortunately, a successful fat/water separation with Dixon-based techniques relies 
largely on the homogeneity of the magnetic field. In other words, the mapping of the 
magnetic field inhomogeneities – so called field map, cannot be decoupled from the 
fat/water separation process (see Sec 2.1). The field map estimation problem there-
fore, leads to a non-linear non-convex optimization problem, which has multiple local 
minima. An error in estimating the field map would propagate to the resultant water 
and fat images, causing what we term fat/water swaps. A “swap” is defined as assign-
ing the main signal in a water-dominant voxel as fat, or vice-versa - an example of 
fat/water swaps is shown in Fig.1. 

    

Fig. 1. Left to right: Fat/water swaps appearing in field map, water and fat components 

A commonly-used technique in fat/water separation is the “Iterative Decomposition 
of water and fat with Echo Asymmetry and Least square estimation”, abbreviated as 
IDEAL [5]. IDEAL is a Dixon-based method that acquires at least three echoes to esti-
mate the field map, water and fat components. However, IDEAL is a local optimization 
method that heavily depends on the initialization process, and hence, convergence to the 
global optimum is not guaranteed. Moreover, it is a voxel-independent optimization, i.e. 
it does not enforce any global smoothness prior to the estimated field map. Yu et al. [6] 
proposed a region-growing technique1 to address the flaws of IDEAL. This method 
implicitly imposes a spatial smoothness on the field map; however, it does not account 
for the abrupt changes in magnetic field that might exist at tissue/air interfaces, which 
might cause fat/water swaps. Although several techniques have been proposed in the 
literature [6-10] to address the field map estimation problem, only a few have been con-
sidered sufficiently robust for clinical use [8, 11].  Further, their application has been 
limited to 1.5 Tesla [11] where B0 field inhomogeneities are modest compared to higher 
field strengths. 

In this work, we propose a novel field map estimation approach that can withstand 
abrupt changes in field homogeneity at higher field strengths, particularly at 3.0 Tesla, 
while guaranteeing smoothness of the estimated field map. Our method relies on prior 
knowledge of the periodic variation of signal residuals with the field map values [6-
8]. We use a two-stage approach to reach the global minimum solution, and provide a 
high resolution mapping of the field inhomogeneities. First, a label-cost prior max-
flow approach [12] is performed on the signal residues to converge near the global 

                                                           
1 This nomenclature should not be confused with the conventional “region-growing” method 

used in general image processing applications. 



 A Convex Relaxation Approach to Fat/Water Separation           521 

 

optimum. The output is employed as an initial guess to the second stage, where a 
conventional gradient-descent IDEAL is applied to reach the exact field offset. Our 
method is tested for cardiac as well as abdominal images obtained at 3.0 Tesla, where 
challenging B0 field inhomogeneities commonly exist. Comparing to the region 
growing method [6], our approach has significantly improved the robustness of field 
map estimation process and has efficiently removed fat/water swaps.  

2 Theory and Methodology 

In the following sections, we first derive the signal equation to be minimized; then we 
introduce the multi-labeling convex relaxation model and its dual continuous max-
flow formulation along with the minimum description length (MDL) principle, which 
are applied in the first stage of our approach. The proposed MDL-based labeling 
model penalizes the number of “appearing” labels, which helps to avoid the small 
regional fat/water swaps that might appear in the presence of severe and rapid 
changes of magnetic field. In other words, such MDL prior smooth out small-scale 
partitions, which usually correspond to regional fat/water swaps. The MDL-based 
labeling model results in a coarse estimation of the field map. This step guarantees a 
global minimization by labeling each pixel with a field map value located near its 
global optimum solution. The coarse estimate of field map serves as an initial guess 
for the second stage that consists of applying the IDEAL iterative process [5, 13]. A 
stopping criterion of < 1 Hz was used for the iterative process, in order to provide a 
field map with a sufficient resolution for clinical applications, particularly pericardial 
fat quantification. Once the final field map is obtained, water and fat components can 
be directly computed from Eq.2. 

2.1 Signal Equation 

Let ܵሺ. ሻ denote the signal acquired from a voxel  ݒ , containing a mixture of water and 
fat, such that: ܵ௩ሺݐሻ ൌ ൭ߩௐ,௩  . ி,௩ߩ  .ߙ ݁ଶగ ఋ ௧ெ

ୀଵ ൱ . ݁ଶగ ఝೡ ௧ ,               ሺ1ሻ 

where ݐ denotes the echo-time (TE) shift ሺ݊ ൌ 1, … , ܰሻ of the acquired signal;  ߩௐ,௩  
and  ߩி,௩ are the water and fat components at voxel ݒ, respectively; ܯ is the number 
of fat peaks in the fat spectrum;  ߜ  is the frequency of the ݉-th peak with its corre-
sponding amplitude ߙ (Hz), such that ∑ ெୀଵߙ ൌ 1; ߮௩ (Hz) is the local frequency 
offset at voxel ݒ (i.e. the  field map).  We used a calibrated fat spectrum model as 
shown in [14], where ܯ ൌ 6 and the main fat peak is at ~ 420 Hz, relative to the wa-
ter peak at 3.0 Tesla. Having three or more echo-times (TE) acquired (as described 
above), Eq.1 can be reformulated as follows: S௩ሺݐሻ ൌ Ψሺ߮௩,  ሻ .  Ρ௩  ,                                             ሺ2ሻݐሻ .  Aሺݐ
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where    

Ψሺ߮௩ሻ ൌ ݁ଶగ ఝೡ ௧భ 0 00 ڰ 00 0 ݁ଶగ ఝೡ ௧ಿ൩ , A ൌ 1 ∑ .ߙ ݁ଶగ ఋ ௧భெୀଵڭ 1ڭ ∑ .ߙ ݁ଶగ ఋ ௧ಿெୀଵ  , 
S௩ሺݐሻ ൌ ሾܵ௩ሺݐଵሻ, … ܵ௩ሺݐሻሿ் , Ρ௩ ൌ ,ௐ,௩ߩൣ ி,௩൧்ߩ

. To estimate the required water and 
fat components ൫ߩௐ,௩,  .ி,௩൯, the frequency offset ߮௩ should be demodulated firstߩ
Hence, dropping the known echo-time shift  ሺݐሻ, a non-linear least-squares cost func-
tion can be derived from (2) as follows: Γሺ߮௩ሻ ؔ ฮA . Ρ௩  െ Ψ ିଵሺ߮௩ሻ . S௩ฮଶ Γሺ߮௩ሻ ؔ ฮሺAAற െ ሻ  Ψܫ  ିଵሺ߮௩ሻ. S௩ฮଶ  ,                                  ሺ3ሻ 

where Ρ௩   and Ψሺ߮௩ሻ are the estimated values of  Ρ௩  and  Ψሺ߮௩ሻ  respectively, ܫ is the 
identity matrix, and ற denotes the pseudo-inverse, ݏ. .ݐ Aற ൌ ሾA்AሿିଵA் . However, 
two main problems are encountered when minimizing  Γሺ߮௩ሻ: first, the non-convex 
property of the function, and second, it does not impose a priori smoothness on the 
estimated field map, as it is a voxel-by-voxel based strategy, and global minimization 
is not guaranteed. We address these problems by using a convex-relaxation approach 
that guarantees the global minimization, and implicitly includes the required smooth-
ness of the field map. 

It is important to note that, to maximize the signal-to-noise performance, the im-
ages are acquired at equally-spaced echo-time shifts (i.e. TE୬ െ TE୬ିଵ ൌ  ∆TE) [7]. 
In this case,   Γሺ߮௩ሻ is periodic with a period of  1/∆TE [6, 7]. This allows us to de-
termine the lower and upper bounds, which are set to ሾ േ1/ሺ2∆TEሻሿ, necessary for the 
max-flow model used in the first stage. The whole range is divided into ~20 equally-
spaced values, which are used to label the input cost function, as described below. 

2.2 A Continuous Max-Flow Approach to MDL-Based Potts Model 

The Potts Model: In image processing, a multi-labeling problem assigns the optimal 
label ߮ א ߮ଵ … ߮   to each voxel. The Potts model is a labeling approach that mini-
mizes the total perimeter of all one-label regions, without assuming any prior order 
for the labels. It results in a partition of the continuous domain  Ω  into  ܮ  disjoint 
subdomains  ሼΩሽୀଵ , as follows: 

minሼΩሽసభಽ  න  Γሺ߮,    ݔ݀ ሻݔ
Ω


ୀଵ ߣ |߲Ω|

ୀଵ                                      ሺ4ሻ 

.ݏ .ݐ ራ Ω
ୀଵ ൌ Ω,   and  Ω ሩ Ω ൌ ߶, ݇ ് ݉ 
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where Γሺ߮, , as defined in Eq.3, and |߲Ω| measures the perimeter of each subdomain Ω ,ݔ  ሻ is the cost of assigning label ߮ to locationݔ ݅ ൌ 1, … ,  .ܮ
The Potts model in Eq.4 can be efficiently solved by its convex-relaxation model 

as follows [15]: 

min௨ א ௌ ൝Εሺݑሻ ؔ  ቆන ,ሻ Γሺ߮ݔሺݑ   ݔ݀ ሻݔ
Ω  ߚ න  |ݑ|

Ω ቇݔ݀ 
ୀଵ ൡ                    ሺ5ሻ 

where ܵ is the convex constrained set of  ݑሺݔሻ ؔ ൫ݑଵሺݔሻ, … ,  :ሻ൯ݔሺݑ
ܵ ൌ ൝ݑሺݔሻ |  ሻݔሺݑ ൌ 1,

ୀଵ ݔ    א Ω ;    ݑሺݔሻ א ሾ0, 1ሿ,     ݅ ൌ 1, … ,  .ൡ ܮ
Minimum Description Length (MDL)-Based Potts Model: The minimum descrip-
tion length (MDL) principle penalizes the number of appearances or labels in image 
labeling problems. It naturally leads to the use of fewer partitions or labels to describe 
the given image, without simultaneously over smoothing the underlying domain [12]. 
The MDL cost is introduced by adding the term ܼߛ to the Potts model, where ܼ ൌ #ሼ1  ݅  Ω | ܮ ്  ሽ gives the number of non-empty labels, i.e. a label-cost
prior. Yuan et al. [12] showed that adding the label-cost prior to Eq.5 leads to the 
following convex-relaxed MDL-based Potts model, used here: 

min௨ א ௌ ൝Εሺݑሻ ؔ  ቆන ,ሻ Γሺ߮ݔሺݑ   ݔ݀ ሻݔ
Ω  ߚ න  |ݑ|

Ω ቇݔ݀ 
ୀଵ ൡ  γ  max௫ ఢ Ω ሻݔሺݑ

ୀଵ        ሺ6ሻ 

Fast Continuous Max-Flow Approach: The continuous max-flow approach [15, 16] 
to the MDL-based Potts model (Eq.6) used in this study is summarized below: 

Let Ω be a continuous 2D image domain, ܮ  the number of labels, and Ω, ݅ ൌ1, … .ݏ , to a labeled copy  Ω ݏ  ሻ is streaming from the source nodeݔ௦ሺߩ Ω , a source flow ߳ ݔ  a copy of Ω assigned to the ݅௧ label. For each location  ܮ ,Ω  .ݐ ݅ ൌ1, … ,ܮ -is as  ݐ Ω , a sink flow to the sink ߳ ݔ  ሻ is the same. Similarly for eachݔ௦ሺߩ
signed. However, ߩሺݔሻ, ݅ ൌ 1, … ݅ ሻݔሺݍ  may differ. A spatial flow  ܮ ൌ 1, …  is  ܮ
also defined for each location. The continuous max-flow model can be formulated as 
follows: maxఘೞ,ఘ,   ቊܲሺߩ௦, ,ߩ ሻݍ ؔ  න  ݔ݀ ௦ߩ

Ω ቋ ,                                             ሺ7ሻ 

subject to the constraints: 

a. ሺdiv ݍ െ ߩ௦  ߩ െ ሻݔ ሻሺݎ ൌ 0,         ݅ ൌ 1, … ,  ܮ

b. |ݍ ሺݔሻ|  ሻݔሺߩ   ,ሻݔሺܥ  Γሺ߮, ,ሻݔ  Ω ݔ݀ |ሻݔሺݎ|  ݅         ߛ ൌ 1, … ,  , ܮ
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Abstract. This study investigates regional heartmotion abnormality de-
tectionviamultiview fusion in cine cardiacMR images. In contrast toprevi-
ous methods which rely only on short-axis image sequences, the proposed
approach exploits the information from several other long-axis image se-
quences, namely, 2-chamber, 3-chamber and 4-chamber MR images. Our
analysis follows the standard issued by American Heart Association to
identify 17 standardized left ventricular segments. The proposed method
first computes an initial sequence of correspondingmyocardial points using
a nonrigid image registration algorithm within each sequence. Then, these
points were mapped to 3D space and tracked using UnscentedKalman Fil-
ter (UKS). We propose a maximum likelihood based track-to-track fusion
approach to combine UKS tracks from multiple image views. Finally, we
use a Shannon’s differential entropy of distributions of potential classifiers
obtained from multiview fusion estimates, and a naive Bayes classifier al-
gorithm to automatically detect abnormal functional regions of the my-
ocardium. We proved the benefits of the proposed method by comparing
the classification results with andwithout fusion over 480 regional myocar-
dial segments obtained from 30 subjects. The evaluations in comparisons
to the ground truth classifications by radiologists showed that the proposed
fusion yielded an area-under-the-curve (AUC) of 95.9%, bringing a signif-
icant improvement of 3.8% in comparisons to previous methods that use
only short-axis images.

1 Introduction

Accurate detection of motion abnormality of regional myocardial segments in
MRI is essential in the diagnosis and treatment of coronary heart disease [7,11,15],
the leading cause of death worldwide. The problem has attracted a recent re-
search attention recently [7,11,15]. Unfortunately, existing MRI-based methods
rely only on short-axis sequences [7,11,15]. However, the actual LV motion is
a complicated combination of motions in 3D space. Little or no through-plane
motion information is available from standard single view 2D sequences, which

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 527–534, 2012.
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severely limits the accuracy of 3D motion estimation. Therefore, exploiting in-
formation from other orthogonal image sequences can lead to a more accurate
assessment of cardiac motion.

The purpose of our study is to develop a regional heart motion abnormal-
ity detection algorithm via multiview fusion, thereby exploiting the information
from both short- and long-axis MRI sequences, namely, 2-chamber, 3-chamber
and 4-chamber images. The proposed algorithm is based on a novel, multiview
3D motion estimation technique which consists of two main components, pre-
processing and track-to-track fusion, both depicted in Fig. 1(a). Our 3D motion
estimation is fundamentally different from existing 3D motion estimation meth-
ods, e.g., those based on incompressible models [2], deformable models [5,14],
3D harmonic phase [10] or short- and long-axis image registration [9], among
others. Furthermore, it uses only standard clinical data (i.e., cine MRI1), unlike
most of existing methods which either use data that are not available in regular
clinical routine, such as displacement encoding with stimulated echoes (DENSE)
MR images [14], or data that increase the scan time, such as myocardial tagging
[5,10].

The proposed method first computes an initial sequence of corresponding
myocardial points using a nonrigid image registration algorithm [4] within each
2D sequence, long- and short-axis, given a user-provided segmentation of the first
frame. In order to provide a temporal smoothing to the dataset, we used a 3D
extension of the nonlinear state transition model in [11]. Then, we propose to use
an unscented Kalman smoother (UKS), a recursive nonlinear Bayesian approach,
to obtain the state estimates and the corresponding covariance estimates. The
state vector consists of position and velocity information of endo- and epi-cardial
points over a cardiac cycle.

The main contributions of this study is a track-to-trackmultiview fusion based
on a maximum-likelihood formulation which combines the UKS estimates from
different views from short- and long-axis image sequences, thereby obtaining
accurate 3D motion estimates. Track-to-track fusion problems are common in
the multisensor fusion literature [1] but, to the best of our knowledge, were not
investigated previously in medical imaging.

We prove the benefits of the proposed fusion in regional cardiac motion abnor-
mality detection following a standard issued by the American Heart Association
[3], and comparing the results with ground truth classifications by radiologists.
The evaluations in comparisons to the ground truth classifications showed that
the proposed fusion brings a significant improvement of 3.8% in area-under-the-
curve (AUC) accuracy. The experimental analysis was carried over 480 regional
myocardial segments obtained from 30 subjects (20 normal and 10 abnormal).
We evaluated the classifier ability of Shannon’s differential entropies (SDE)
of normalized radial distance and endocardial segment volume with and with-
out fusion. The classifier ability of these features were measured using receiver
operating characteristic (ROC) curves with the corresponding AUCs, and the

1 Cardiac cine MRI is the most widely used MR acquisition protocol in clinical routine
due to its low processing time and complexity over other MR acquisition methods.
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Fig. 1. (a) The proposed 3D motion estimation algorithm using 2D long and short-axis
image fusion. (b) Illustration of a track-to-track maximum likelihood fusion sML using
long- and short-axis state estimates sl and ss.

Bhattacharyya distance metric [6]. We assessed the performance a via leave-one-
subject-out approach. The proposed method yielded an AUC of 95.9%, whereas
the method without multiview fusion (i.e. using only short-axis images as is the
case in [11]) yielded an AUC of 92.1%.

2 Track-to-Track Fusion

Let ss and sl be the motion estimates obtained from, respectively, short- and
long-axis images using UKS [12] and the registration algorithm [4]. The state
vectors ss, sl ∈ {[x̄ x ẋ ȳ y ẏ z̄ z ż ω]T }, where (x, y, z) is a myocardial point on
the 3D reference coordinate system corresponds to a pixel (i, j) in the image co-
ordinate system. (x, y, z) is computed using a transformation matrix constructed
based on the information from DICOM header. [ẋ ẏ ż] is the velocity vector,
(x̄, ȳ, z̄) the mean position of (x, y, z) over a cardiac cycle, and ω the angular
frequency.

Having obtained state estimates ss and sl corresponding to the same tissue
from different views, we now have to combine these estimates. In this study, we
propose a Maximum Likelihood (ML) criterion (Refer to Fig. 1(b) for illustra-
tion) to compute a combined estimate sML. We define the likelihood function as
follows:

L(s) = − ln p(ss, sl|s)

∝
([

ss

sl

]
−
[
I
I

]
s

)T

P−1

([
ss

sl

]
−
[
I
I

]
s

)
(1)

where

P =

[
P s P sl

P ls P l

]
(2)

P s and P l are the covariances of ss and sl, respectively, and P sl is the cross-
covariance between ss and sl. I is an identity matrix. We compute the maximum



530 K. Punithakumar et al.

likelihood solution,
sML = argmax

s
L(s), (3)

by solving ∇sL(s) = 0. This yields:

sML =

(
[I I]P−1

[
I
I

])−1

[I I]P−1

[
ss

sl

]
(4)

Let A = P s, B = P sl and C = P l. From inversion of a partitioned matrix, we
have

P−1 =

[
A B
BT C

]−1

=

[
E F
FT G

]
(5)

where

E = (A− BC−1BT )−1 (6)

F = −EBC−1 (7)

G = C−1 + C−1BTEBC−1 (8)

Substituting for P−1 in (4), we have

sML = (E + FT + F + G)−1(E + FT )ss + (E + FT + F + G)−1(F + G)sl (9)

Substituting for E , F and G from (6)-(8) and applying matrix inversion lemma
(refer to Appendix for derivation details), we get

sML = (C −BT )(A+D − B − BT )−1ss + (A− B)(A+ C − B − BT )−1sl (10)

Substituting P s, P sl and P l, we get

sML = (P l − P ls)(P s + P l − P sl − P ls)−1ss

+ (P s − P sl)(P s + P l − P sl − P ls)−1sl (11)

We assume that cross-covariance P sl, P ls between short- and long-axis observa-
tions are zeros. Thus, we have

sML = P l(P s + P l)−1ss + P s(P s + P l)−1sl (12)

3 Experiments

The data contains 30×3 short-axis image datasets (i.e., apical, mid-cavity and
basal), each consisting of 20 functional 2D images acquired from 20 normal and
10 abnormal hearts. The data were acquired on 1.5T MRI scanners with fast
imaging employing steady state acquisition (FIESTA) mode. In Fig. 2(a) and
(b), we give a representative sample of the fusion results for end-diastolic and
end-systolic phase of the cardiac cycle plotted against long-axis cine MR images.
For each subject, three slices were respectively chosen from apical, mid-cavity
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and basal frames. In Fig. 2(c), (d) and (e), we give a representative sample of the
segmentation results for apical, mid-cavity and basal frames. The frames were
automatically segmented following the standard issued by the AHA [3], given
anatomical landmarks on the first frame. The results of 480 myocardial segments
were compared with a single ground truth classification. We classify a segment
as abnormal if that segment is hypokinetic, akinetic or dyskinetic.

We used two independent criteria to measure the performance of each classi-
fier features, namely, the ROC curves with corresponding AUCs [8], and Bhat-
tacharyya measure [6] to assess the discriminative power of each classifier fea-
tures. Furthermore, we assessed the performance of the proposed approach via
a leave-one-subject-out method.

(a) End-diastole (b) End-systole (c) Apical (d) Mid-cavity (e) Basal

Fig. 2. (a) and (b): Representative examples showing the obtained fusion estimates
plotted against long-axis MR images; (c), (d) and (e): Representative examples of
segmented myocardium using the proposed approach. Apical, mid-cavity and basal
frames were segmented, respectively, into 4, 6 and 6 segments following the standard
in [3].

ROC, AUC and Bhattacharyya Measure: The ROC curves for classifier
features SDEs of radial distance, segment area and segment volume are shown
in Fig. 3. We used the same threshold for all segments and all slices. The ROC
curves were obtained by varying such threshold. The AUCs corresponding to
the ROC curves in Fig. 3 are reported in Table 1. The reported AUC values
demonstrate that multiview fusion significantly improves the classifiers’ ability
in discriminating normal and abnormal heart motions.

We used the Bhattacharyya distance metric to evaluate the overlap between
the distributions of classifier features over normal and abnormal motions. The

Bhattacharyya metric [6] is given by B =
√
1−

∑
y∈R

√
fN (y)fA(y), where fN

and fA are the distributions over, respectively, normal and abnormal motions.
The higher B, the lesser the overlap and, therefore, the better the discriminative
ability of the classifier. The Bhattacharyya distance metrics reported in Table 1
demonstrate that the multiview fusion significantly improve the discriminative
ability of the classifier features in detecting abnormal heart motion.

Classification Performance: The evaluations of classification performance in
terms of accuracy, sensitivity and specificity are given by accuracy = (TP +
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Table 1. Comparison of the area under the ROC curve and Bhattacharyya distance
metric for the methods with and without fusion (short-axis images only) [11].

The proposed method Without fusion [11]
(with multiview fusion) (short-axis only)

AUC Bhattacharyya AUC Bhattacharyya

SDE of segment volume/area 97.1 0.74 94.3 0.66
SDE of radial distance 95.9 0.70 92.1 0.61
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Fig. 3. Receiver operating characteristics of classifier features. The closer the curve to
the left hand top corner, the better the classification performance.

TN)/(P + N), specificity = TN/N, sensitivity = TP /P, where TP is true posi-
tives (number of segments correctly classified as “Abnormal”) and TN true neg-
atives (number of segments correctly classified as “Normal”). The number of
“Abnormal” and “Normal” segments are P and N , respectively. Table 2 com-
pares the classification performance of correctly classified hearts with the pro-
posed method and the method that uses only short-axis images [11], using a
leaving-one-subject-out method. In this approach, a naive Bayes classifier algo-
rithm [13] is constructed from the SDEs of the segment area and normalized ra-
dial distance. Fig. 4 shows the quadratic decision boundary for normal/abnormal
classification with the proposed method (with the UKS), where blue circles repre-
sent the normal function and red triangles the abnormal. The decision boundaries
were constructed separately for apical, mid-cavity and basal slices learning from
the remaining 29 subjects. The overall classification accuracy for the proposed
method with multiview fusion is equal to 91.9%, with a sensitivity of 96.5% and
specificity of 90.5%.
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Table 2. The percentage of classification accuracy using a leaving-one-subject-out ap-
proach for the proposed track-to-track multiview fusion. The proposed method achieved
an overall classification accuracy of 91.9%.

Accuracy (%) Sensitivity (%) Specificity (%)

Apex 90.8 96.9 88.6
Mid-cavity 95.0 95.3 94.9
Base 89.4 97.4 87.3
Overall 91.9 96.5 90.5
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Fig. 4. Decision boundary for normal and abnormal regional myocardial functions
using a Bayesian classifier

4 Conclusions

This study investigated a track-to-track multiview fusion approach to 3D LV
motion estimation and regional abnormality detection. The proposed method
uses several 2D cine MR image sequences, and yields state estimates in 3D space
representing position and velocity information of myocardial points. A nonrigid
image registration is used to obtain sequence of corresponding points and the
UKS to track these points. Then, a track-to-track fusion method is proposed to
combine UKS estimates from multiple images obtaining 3D state estimates. We
show by an experimental evaluation that the proposed approach significantly
improves the detection of regional abnormal motions in comparisons to previous
approaches that use only the short-axis images.
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Abstract. The cardiac ejection fraction (EF) depends on the volume variation of
the left ventricle (LV) cavity during a cardiac cycle, and is an essential measure
in the diagnosis of cardiovascular diseases. It is often estimated via manual seg-
mentation of several images in a cardiac sequence, which is prohibitively time
consuming, or via automatic segmentation, which is a challenging and computa-
tionally expensive task that may result in high estimation errors. In this study, we
propose to estimate the EF in real-time directly from image statistics using ma-
chine learning technique. From a simple user input in only one image, we build
for all the images in a subject dataset (200 images) a statistic based on the Bhat-
tacharyya coefficient of similarity between image distributions. We demonstrate
that these statistics are non-linearly related to the LV cavity areas and, therefore,
can be used to estimate the EF via an Artificial Neural Network (ANN) directly. A
comprehensive evaluation over 20 subjects demonstrated that the estimated EFs
correlate very well with those obtained from independent manual segmentations.

1 Introduction

One of the most important observations in diagnosing cardiovascular diseases, the car-
diac ejection fraction (EF), may decrease in the case of a heart attack or other problems
related to the heart valves or muscles. Furthermore, EF is an important indicator of
long-term prognosis for patients with coronary artery disease. Because the left ventricle
(LV) is the main pumping chamber of the heart, EF is usually measured using informa-
tion from the LV [7]. In routine clinical use, it is often estimated from several images in
a cardiac sequence using manual segmentation of the LV cavity, which is prohibitively
time consuming. While automatic LV segmentation can be used to compute the EF,
automatic LV segmentation is still acknowledged as a challenging, computationally ex-
pensive task, which has attracted impressive research attention in recent years. Existing
LV segmentation algorithms are based on traditional techniques, such as thresholding,
region-growing, edge detection and clustering [8,9,11], and energy minimization tech-
niques such as graph cuts [4, 13], active contours/level sets [2, 6], as well as active
appearance and shape models [1]. In general, segmentation algorithms require a care-
ful user initialization, intensive training, and a heavy computational load. Furthermore,
the ensuing segmentation results depend significantly on the choice of a set of ad hoc
parameters and training data, which may yield high errors in the computation of the
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EF. These difficulties, inherent to segmentation algorithms, impede the automatic es-
timation of the EF in routine clinical use. A recent comprehensive review of cardiac
image segmentation and its challenges can be found in [12]. While existing techniques
are labor intensive, we believe that there are other characteristics of the images that can
be computed with less effort, but that nevertheless correlate strongly with the EF. One
such technique that we describe below is based on machine learning, which removes the
need for image segmentation. From a simple user input in one single image, we build for
all the images in a subject dataset (200 images) a statistic based on the Bhattacharyya
coefficient [3] of similarity between image distributions. We demonstrate that these
statistics are non-linearly related to the LV cavity areas (cf. Fig. 3) and therefore can be
used to estimate the EF directly via an Artificial Neural Network (ANN). The proposed
method consists of four main steps: (1) Image acquisition, (2) Building Image Statis-
tics, (3) Applying Artificial Neural Network, and (4) Estimating Ejection Fraction. A
comprehensive quantitative evaluation over 20 subjects demonstrates that the estimated
EFs correlated very well with those obtained from manual segmentations.

2 Estimating Left Ventricle Volumes from Image Statistics

2.1 Building Image Statistics

Let I be a cardiac MRI sequence containing J frames1, each comprising I slices2,
Ii, j: Ω ⊂ ℜ2 → ℜ+ with (i, j) ∈ [1 . . . I]× [1 . . .J]. To introduce our methodology for
building an image statistic related to the LV cavity area for each image Ii, j, (i, j) ∈
[1 . . . I]× [1 . . .J], let us consider the following definitions. (1) Let I be a reference image
which we use for a simple user input (refer to the middle image in Fig. 1 b). For instance,
in the experiments of this study, we used image I7,1 in each subject dataset. (2) Let
Γin,Γout : [0,1]→Ω denote two simple planar closed curves (e.g. squares) superimposed
by the user on the reference image3 I (refer to the middle image in Fig. 1 b), one placed
within the cavity (the blue curve in Fig. 1 b) and the other enclosing the cavity (the red
curve). Let us now superimpose systematically (without additional user effort) Γout onto
each of the images in the subject dataset, as shown in Fig. 1. Then, we compute for each
image a statistic based on the Bhattacharyya coefficient of similarity between image
distributions (refer to Fig. 2), and demonstrate that the obtained statistics are related
to the areas of the LV. Let RΓ ⊂ Ω be the region enclosed within Γ , Γ ∈ {Γin,Γout},
and PRΓ ,I the kernel density estimate of the distribution of an image I ∈Ii, j, (i, j) ∈
[1 . . . I]× [1 . . .J], within region RΓ :

PRΓ ,I(z) =

∫
RΓ

K(z− I)dx

aRΓ
, aRΓ =

∫
RΓ

dx, K(y) =
1√

2πσ2
exp

− y2

2σ2 (1)

where aRΓ is the area inside region RΓ and K is the Gaussian kernel [10]. We con-
sider the distribution of the image within the region enclosed by the blue curve in the

1 The number of frames J is typically equal to 20 or 25.
2 The number of slices I is typically equal to 10.
3 The reference image is a mid-cavity slices at the end-diastolic time.
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(a) (b)

Fig. 1. (a) frame 1 (slices 1,7, and 10); (b) Γin (the blue curve within the cavity) and Γout (the red
curve enclosing the cavity) are given by the user in the reference image (the middle image). Γin is
used solely in the reference image to compute PRΓin ,I

, whereas Γout is superimposed systematically
(without additional user effort) to all the other images to compute PRΓout ,Ii, j

.

reference image (PRΓin ,I
) as an approximation of the distribution within the cavity, and

the distribution of the region enclosed by the red curve in each image Ii, j (PRΓout ,Ii, j )
as an approximation of the distribution of the entire left ventricle. Now consider the
following measure of similarity between these two distributions in each image Ii, j,
(i, j) ∈ [1 . . . I]× [1 . . .J]:

β i, j = B(PRΓin
,I,PRΓout ,Ii, j); B( f ,g) =

∫
R+

√
f gdz (2)

where the Bhattacharyya coefficient B( f ,g) measures the amount of overlap (similarity)
between two distributions f and g. The range of the Bhattacharyya coefficient is [0; 1],
with 0 indicating no overlap between the distributions and 1 being a perfect match.
The fixed [0; 1] range of the Bhattacharyya coefficient affords a conveniently practical
appraisal of the similarity. More importantly, we expect the measure β i, j to be related to
the cavity area in the corresponding image Ii, j. This is demonstrated experimentally by
the typical example in Fig. 2, and the corresponding variations of the cavity areas and
the Bhattacharyya statistics in Fig. 3. Note the strong similarity between the variations
of the cavity areas and those of the Bhattacharyya statistics (Fig. 3). Such similarity is
reasonable since the more the distributions of the cavity and the LV overlap, the higher
the cavity area.

2.2 Artificial Neural Network (ANN) Estimation of LV Cavity Areas

We constructed an Artificial Neural Network (ANN) to determine the nonlinear relation
between the Bhattacharyya coefficients and the corresponding LV cavity areas (refer to
Fig. 3 for an illustration of such non-linear relation). Following a back propagation
ANN, a powerful machine learning technique [5], our feed-forward network consists of
five layers, three hidden, one input, and one output (refer to Fig.4 (a) for an illustration).
Let P1,200 be the input of the network, a single row matrix containing the Bhattacharyya
statistics, and let T1,200 an output matrix containing the LV cavity areas:
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I = I7,1 . . . I7,7 (End-systolic) . . . I7,19 (End-diastolic)
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β 7,1 = 0.9188 . . . β 7,7 = 0.8754 . . . β 7,19 = 0.9609

Fig. 2. Computing image statistics for the frames of slice 7 (middle slice): (a) reference image
(red curve: Γout , blue curve: Γin); (b): frame 7 (end-systolic) and (c) frame 19 (end-diastolic); (d),
(e), and (f) the corresponding distributions and Bhattacharyya measures (β i j). We observe that
the variations of β i j are similar to the variations of the LV cavity areas. For instance at the end
of systole (the middle column), the smallest cavity area coincides with the lowest Bhattacharyya
measure.
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Fig. 3. (a) A typical example which shows the variations of LV cavity areas obtained from manual
segmentations; (b) A typical example which shows the variations of the Bhattacharyya image
statistics

P1,200 = [P1, ...,P j, ...,P10] with P j =
[

β 1, j . . . β i, j . . . β 20, j
]

(3)

T1,200 = [T 1, ...,T j, ...,T 10] with T j =
[

a1, j . . . ai, j . . . a20, j
]

(4)

To reduce the dimensionality of the inputs and outputs, we used principal component
analysis (PCA) to transform 200 possibly correlated variables into a smaller set of
uncorrelated variables (the first five components in our case):

IN1,5 = PCACOV(P1,200) OUT1,5 = PCACOV(T1,200), (5)
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where PCACOV is the PCA transform function, IN1,5 and OUT1,5 denote the trans-
ferred inputs and outputs respectively.

The next step is to train the network using the transferred inputs (IN1,5) and outputs
(OUT1,5). The network we built estimates the following non-linear mapping: OUT1,5 =
F(IN1,5) where F is a nonlinear transfer function consisting of two hyperbolic tangent
functions and a linear function, a common choice in the neural network literature [5].
As illustrated in Fig 4 (a), the resulting network consists of five layers, one input and
one output containing 5 neurons each, both based on the linear function ( f (x) = x), as
well as three hidden layers containing 50, 25 and 50 neurons and based on the hyper-
bolic tangent, hyperbolic tangent and linear functions respectively. Let INPUT5,19 and
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Fig. 4. (a) The ANN consists of one input layer, three hidden layers, and one output layer, (b)
Variation of the volume of the LV cavity in each heart beat

OUTPUT5,19 denote the training input and output of the neural network respectively:

INPUT5,19 = [(IN1)−1, ...,(INa)−1, ...,(IN19)−1] st. INa
1,5 = PCACOV(P1,200)

(6)

OUT PUT5,19 = [(OUT 1)−1, ...,(OUT a)−1, ...,(OUT 19)−1] (7)

st. OUT a
1,5 = PCACOV(T1,200)

To validate this procedure, we employ a leave-one subject-out approach, where the test
dataset was excluded from the training data. For the current testing subject dataset, the
LV cavity areas were estimated using the transferred subject Bhattacharyya statistics
and the learned non-linear mapping F as depicted in Fig. 5 (b).

OUTtest 1,5 = F(INtest 1,5) Ttest 1,200 = PCACOV−1(OUTtest 1,5) (8)
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Fig. 5. (a) The training phase; (b) The testing phase: the estimated Bhattacharyya statistics are
fed to the network and the corresponding LV cavity areas are predicted

2.3 Estimating the Cardiac Ejection Fraction from Image Statistics

Let Vs and Vd denote the smallest (end-systolic) and largest (end-diastolic) volumes of
the LV in a cardiac cycle, respectively ( Fig. 4(b)). The cardiac ejection fraction, EF , is
given by: EF = Vd−Vs

Vd
. The numerator measures the blood volume pumped by the left

ventricle. We computed Vs and Vd by integrating the computed LV cavity areas in the
sagittal direction.

3 Experimental Evaluations and Comparisons

A set of 2D short-axis cine magnetic resonance (MR) images of 20 subjects were ac-
quired through the cardiac cycle on a 1.5T scanner with fast-imaging employing steady-
state acquisition (FIESTA) image sequence mode. The acquisition parameters were as
follows: TR=2.98 ms, TE=1.2 ms, flip angle=30 degree, and slice thickness=10 mm.
Each subject’s dataset consists of 20 frames throughout the cardiac cycle, each com-
prising 10 slices.

We used the proposed method to automatically compute the LV cavity areas, thereby
estimating the LV cavity volumes and ejection fractions in each of the 20 subjects4. We
proceeded to a leave-one subject-out validation approach, where the training used to
compute the volumes of each subject is based on the other 19 subjects. The obtained
volumes and ejection fractions were evaluated quantitatively by comparing them with
those obtained from independent manual segmentation by an expert. Fig. 6 (a) depicts
the computed LV cavity volumes for all 20 patients versus those obtained from the
independent manual segmentations, as well as the identity line, which indicates an ex-
cellent correlation between manually and automatically computed volumes. In the next

4 The dataset contains normal and abnormal cases.
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Fig. 6. (a) Automatic versus manual cavity volumes; (b) Automatic and manual EFs in 20
subjects

step, the estimated cavity volumes were used to estimate the EFs for all 20 subjects.
Let EFA be a vector containing the 20 automatically estimated EFs and EFM a vector
of the same size containing the EFs obtained form manual segmentations. Fig. 6 (b)
depicts EFA and EFM, and confirms that the EFs computed with the proposed method
are very close to those obtained from independent manual segmentations. We evaluated
the conformity between the manually and automatically computed EFs (Table 1). First
we evaluated the correlation coefficient, CorrCoe f f , which measures the correlation
between EFA and EFM. The range of CorrCoe f f is [0,1], where 1 indicates a perfect
fit between the vectors. The proposed method yielded a CorrCoe f f of 0.9635, which
indicates a high conformity between manual and automatic ejection fractions. We then
evaluated the mean and standard deviation of the norm of the difference between EFA

and EFM: Di f f EF = ‖EFA−EFM‖. The very low mean and standard deviation (std)
of Di f f EF (Table 1) indicates a high conformity between manual and automatic ejec-
tion fractions. We used a parametric test (two-tailed t-test) to estimate the conformity

Table 1. Statistical measures of the conformity between automatically and manually computed
EFs and computation time (in seconds)

CorrCoe f f (EFA, EFM) mean(Di f f EF) std(Di f f EF) CPU(s) P− value(t− test)
0.9635 0.0160 0.0163 0.2087 0.1778

between manually and automatically estimated ejection fractions that indicated the dif-
ferences between EFA and EFM were not statistically significant (P = 0.178).

Figs 7 depicts automatically and manually computed volumes for three subjects.
Fig. 7 (a) shows the best estimation in the 20 subjects, which corresponds to the lowest
error, i.e., the lowest absolute difference between manually and automatically computed
volumes. Fig. 7 (b) corresponds to the medium error (the medium estimation in the 20
subjects), and Fig. 7 (c) to the highest error (the worst estimation in the 20 subjects).
The computation time is reported in Table 1. On a 2.2 GHz machine, a non-optimized
MATLAB implementation took 0.2087 seconds to estimate the EF per subject.
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Fig. 7. Automatic versus manual cavity volumes: (a) the best case in the 20 subjects; (b) the
medium case in the 20 subjects; (c) the worst case in the 20 subjects

4 Conclusion

This study investigated a real-time method for computing the cardiac EF directly (with-
out segmentation) from image statistics via machine learning. These image statistics
were based on the Bhattacharyya coefficients of similarity between image distributions,
which were shown to be non-linearly related to the LV cavity areas. An ANN was used
to find the relation between the image statistics and the corresponding LV cavity ar-
eas in each subject dataset. A comprehensive experimental evaluation over 20 subjects
demonstrated an excellent conformity of the automatically estimated EFs to those com-
puted from manual segmentations.
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Abstract. New minimal-invasive interventions such as transcatheter valve pro-
cedures exploit multiple imaging modalities to guide tools (fluoroscopy) and vi-
sualize soft tissue (transesophageal echocardiography (TEE)).  Currently, these 
complementary modalities are visualized in separate coordinate systems and on 
separate monitors creating a challenging clinical workflow. This paper proposes 
a novel framework for fusing TEE and fluoroscopy by detecting the pose of the 
TEE probe in the fluoroscopic image. Probe pose detection is challenging in 
fluoroscopy and conventional computer vision techniques are not well suited. 
Current research requires manual initialization or the addition of fiducials. The 
main contribution of this paper is autonomous six DoF pose detection by com-
bining discriminative learning techniques with a fast binary template library. 
The pose estimation problem is reformulated to incrementally detect pose pa-
rameters by exploiting natural invariances in the image. The theoretical contri-
bution of this paper is validated on synthetic, phantom and in vivo data. The 
practical application of this technique is supported by accurate results (< 5 mm 
in-plane error) and computation time of 0.5s. 

1 Introduction 

Percutaneous and minimally-invasive cardiac procedures are progressively replacing 
conventional open-heart surgery for the treatment of structural and rhythmological 
heart disease. Catheters are used to access target anatomy through small vascular 
access ports. This greatly reduces recovery time and the risk of complications asso-
ciated with open surgery. Without direct access and visualization, the entire procedure 
is performed under imaging guidance. There are two established modalities currently 
used in operating rooms to provide real-time intra-operative images: X-ray fluorosco-
py (Fluoro) and transesophageal echocardiography (TEE).  Fluoro provides high 
quality visualization of instruments and devices, which are typically radiopaque, 
while TEE and more recently 3D TEE can image soft-tissue with great detail. Never-
theless, the complementary nature of TEE and Fluoro is barely exploited in today’s 
practice where the real-time acquisitions are not synchronized and images are visua-
lized separately in misaligned coordinate systems. 

Recently, the fusion of Fluoro and TEE has been proposed using either hardware or 
image based methods. Hardware based approaches [1],[2] attach additional devices to 
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the ultrasound probe such as electromagnetic [1] or mechanical [2] trackers and align 
the device and Fluoro coordinates systems through calibration. Image based methods 
[3],[4],[5] attempt to use the appearance of the TEE probe in the Fluoro image to 
estimate the pose of the probe in the Fluoro coordinate system. These methods are 
attractive because they do not require the introduction of additional equipment into 
the theatre which may disrupt clinical workflow.   

Image based pose estimation is well studied and the problem may be considered 
solved when the correspondence between 2D image points and a 3D model are 
known. Unfortunately, the appearance of the TEE probe in the Fluoro image makes 
establishing the correspondence challenging. The probe’s appearance lacks texture or 
clear feature points and can be homogenous under low dose or close to dense tissue. 
To alleviate this problem, markers [5] may be retro fitted to the TEE probe. The pose 
of the probe is estimated using well established computer vision techniques, however, 
the addition of markers increases the overall size of the probe. Alternatively the natu-
ral geometry of the probe may be used to estimate its pose [3],[4]. The authors use a 
2D/3D registration technique to refine the probe’s pose estimation and optimal results 
are obtained using two biplane images. The method is robust for small pose changes 
(10 mm / 10°), however, it requires manual initialization and does not update the reg-
istration in real-time, both of which are important in the clinical setting. 

In the paper we propose a robust and fast learning-based method for the automated 
detection of the TEE probe pose, with six degrees of freedom, from Fluoro images. A 
probabilistic model-based approach is employed to estimate candidates for the in-
plane probe position, orientation and scale parameters. Digitally reconstructed radio-
graphy (DRR) in combination with a binary template library is introduced for the 
estimation of out-of-plane rotation parameters (pitch and roll). The approach does not 
require manual initialization, is robust over the entire pose parameter space, and inde-
pendent of specific TEE probe design / manufacturer. The performance of the algo-
rithm is demonstrated on a comprehensive dataset of in vivo Fluoro sequences and 
validated on simulated and phantom data. 

2 Fusion Framework 

Information from a TEE volume can be visualized in a Fluoro image by aligning the 
TEE and C-arm Fluoro coordinate systems. A point in the ultrasound volume TEEQ
can be visualized in the Fluoro image at coordinate 

FluoroQ using the following trans-
formation 
 

( )FluoroImage W TEE W

projection xz d TEE TEEQ P R T R R R Q Tγ α= +
 

 
where projectionP  is the projection matrix, xzR  and dT are the transformation from 
detector to world coordinate system, Rγ and Rα are the angulations of the C-arm and 

W
TEER  and W

TEET are the rotation and position of the TEE probe in the world coordinate 
system such that 1 1 1W FluoroDetector

TEE xz TEER R R R Rα γ
− − −=  and 1 1 1 1W FluoroDetector

TEE d xz TEET R R T R Rα γ
− − − −= . 
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The TEE volume and Fluoro image can be aligned if position ( , , )FluoroDetector
TEE x y zT =  

and orientation , ,( )FluoroDetector
TEE r p yR θ θ θ= of the TEE probe are known in the Fluoro 

detector coordinate system.  
                                           

 

Fig. 1. Detecting the pose of a TEE probe from a single Fluoro image 

2.1 TEE Probe Pose Detection  

At the heart of our approach is the separation of the pose parameters into in-plane 
( , , )x y z  and ( )yθ  and out-of-plane ( , )r pθ θ  parameters (shown in Fig. 1). By 
marginalizing the estimation problem, in-plane parameters can be efficiently esti-
mated directly from the Fluoro images FluoroI , while being invariant to the out-of-
plane parameters that are more challenging to determine.  

The in-plane parameters can be computed from the probe’s position ( , )u v , size 
( )s and orientation ( )yθ  in the Fluoro image, the projection transformation 

projectionP  of the Fluoro device and the physical dimensions of the TEE probe. To 
detect the in-plane parameters ( , )u v , ( )s , ( )yθ  from a Fluoro image FluoroI  we use 
discriminative learning methods as described in the next section.  

The out-of-plane parameters are more challenging to estimate. The visual appear-
ance in Fluoro of the probe varies greatly making it challenging to learn a compact 
classifier. This requires the problem to be treated in a fundamentally different way. A 
template library is created of the probe’s appearance under out-of-plane orientations
( , )r pθ θ . Each template has an associated ( , )r pθ θ  and by matching the Fluoro 
image to the template the out-of-plane parameters can be estimated. 
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Detecting In-plane Parameters 
The in-plane parameters are estimated using discriminative learning methods. A clas-
sifier is trained to detect the position ( , )u v , size ( )s and orientation ( )yθ  of the 
TEE probe in the Fluoro image. The classifiers are trained using manually annotated 
Fluoro data. They are trained and applied sequentially such that first, candidates are 
detected for ( , )u v , then the orientation ( )yθ  is detected for each candidate and 
finally the size of the probe is detected ( )s . Each detector is trained using a Probabil-
istic Boosting Tree (PBT) with Haar-like and steerable features [6]. 

The position ( , )u v  detector is trained on manual annotations and negative exam-
ples taken randomly from the Fluoro image. The Fluoro image is resized to 128 128×     
and a window of 35 35× is centered at the annotation.  A pool of 100,000 Haar fea-
tures are used to train the PBT. The appearance of the probe varies greatly and to 
avoid over fitting a classifier is created which is less discriminative but highly proba-
bly to detect the tip of the probe.  

The orientation ( )yθ  detector is trained on manually annotated data and the false 
positives from the position detector. Additional negative training data is created, cen-
tered on the annotation but with incorrect orientation parameters. The PBT is trained 
with five features including the relative intensity and the difference between two 
steerable filters [6]. The orientation detector is trained at intervals of 6° with 360° 
coverage. This detector is more discriminative than the position detector and therefore 
removes outliers as well as estimating the orientation.  

The size ( )s  detector is trained to detect two points where the tip of the probe meets 
the shaft. The PBT is trained using Haar features. During detection the orientation and 
position of the probe are used to constrain the search area for the size detector.  

 
Detecting Out-of-plane Parameters 
The appearance of the probe under roll and pitch ( , )r pθ θ  varies significantly in the 
Fluoro image and cannot generally be accounted for in the image space using the 
same techniques as the in-plane parameters. The out-of-plane parameters must be 
treated in a fundamentally different way. The proposed solution is to build a template 
library containing Fluoro images of the probe under different ( , )r pθ θ . The 
( , )r pθ θ  parameters are estimated by matching an image patch in FluoroI  (norma-
lized for the in-plane parameters) with the template library.   

A comprehensive template library should contain a wide variety of orientations. It 
is not feasible to build this library from in vivo data as it is challenging to manually 
annotate ( , )r pθ θ  and the data may not contain complete coverage of the parameter 

space. The library is constructed using DRR. DRR’s simulate x-ray Fluoro by tracing 
light rays through a 3D volume. In this work a DynaCT of the TEE probe is acquired 
( 512 512 488× × 0.2225 mm resolution). The orientation and position of the probe was 
manually annotated and ( , )r pθ θ rotations are applied to the volume.  

Searching a large template library can be computationally expensive. The size of 
the library is limited to reduce the search space. The probe is not free to move in all 
directions due to the physical constraints of the tissue. In addition the X-ray image, 
formulated by integrating light, makes objects appear the same under symmetrical 
poses. This is exploited to reduce the size of the template library. The library is built 
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with pitch ( )pθ from -45° to 45° and roll ( )rθ  from -90° to 90° at 2° intervals. This 
subsample library is still large and expensive to store and search. To make the prob-
lem computationally tractable a binary template representation is used [7],[8]. Binary 
templates are an efficient way of storing discriminative information for fast matching.  

The image patch is divided into sub-regions and features are extracted for each re-
gion. The dominant orientation [7] of the gradient in the sub-region is used as a fea-
ture. This has been shown to work well on homogenous regions and objects which 
lack texture as is the case for the TEE probe in the Fluoro image. The orientations are 
discretized into 8 orientation bins. Each sub-region can be represented as a single byte 
which corresponds to the 8 orientation bins. The bit is set to 1 if the orientation exists 
in the sub-region and 0 if it does not. The binary template for the image patch is com-
prised of a set of bytes corresponding to the sub-regions. The resulting template is a 
compact and discriminative representation of the image patch.  

Input templates extracted from the Fluoro image ( )FluoroF I are matched to tem-
plates in the library ( )F O  using  

( )1( , , ) ( , ( , ) ) ( , )Fluoro Fluoro

r

I O c F I u v r F O rε δ= + =  

where ()δ is a binary function which returns true if the features in two regions match,  
( , ( , ) )FluoroF I u v r+ is the input template centered on candidate ( , )u v in image FluoroI , 
( , )F O r is a template in the library and r is the sub-region. The function counts how 

many sub-regions in two templates are the same. The template in the library with the 
highest count is taken to be the best match and the associated ( , )r pθ θ  as the out-of-
plane parameters. This function can be evaluated very quickly using a bitwise AND 
operation followed by a bit count enabling the library to be searched efficiently.  

3 Results 

The proposed method for probe pose detection was validated on synthetic, phantom and 
in vivo datasets. Throughout our experiments a GE TEE Transducer was used. The syn-
thetic dataset includes 4050 simulated Fluoro images (DRR) from a 3D C-arm Volume 
(DynaCT - 512 512 488× ×  0.2225 mm pixel spacing) of the TEE probe. The ground-
truth was generated by annotating the 3D probe position in the DynaCT volume. The 
phantom dataset includes a volumetric DynaCT of the TEE probe inserted into a silicon 
phantom, and a total of 51 Fluoro ( 960 960×  0.184 mm pixel spacing) images captured 
by rotating the C-arm and with the TEE probe remaining static. 

The position of the C-arm is known from the robotic control, which enabled ground-
truth to be computed for each Fluoro image using the 3D probe annotation. The in vivo 
dataset was acquired during several porcine studies and includes 50 Fluoro sequences 
comprising of around 7,000 frames (  0.345 mm pixel spacing). The data 
contains images with background clutter, catheter tools and variety in the pose of the 
probe, C-arm angulations, dose and anatomy. The pose parameters were manually anno-
tated in all frames and assumed as ground-truth for training and testing.  
 

512 512×
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Fig. 2. Fluoroscopic images illustrating probe detection and estimation of in-plane parameters 

In the first experiment the quantitative and qualitative performance evaluation of 
the in-plane parameter ( , , )yu v θ detection was performed on all three datasets. The 

detector was trained on 75% of the in vivo dataset (36 sequences of 5,363 frames) and 
tested on the entire synthetic, phantom and remaining 25% of the in vivo dataset. The 
results are summarized in Table 1. 

For the in vivo data the average in-plane position ( , )u v  error was 2.2 and 3.7 mm 

and the in-plane orientation error was 6.69°. Errors in the position estimation are caused 
by false detections along the shaft of the probe. False position detections contribute to 
errors in the orientation estimation. The true positive rate is 0.88 and the false positive 
rate is 0.22. The detection and accuracy is affected by dose level, proximity to dense 
tissue and background clutter. The detection framework performs best when the probe is 
clearly distinguishable from its background. Fig. 2 illustrates detection examples and 
nature of in vivo images with cluttered background and low textured probe.   

The results for the phantom and synthetic data are provided in Table 1 where de-
tection was performed at a fixed scale. The Fluoro data from the phantom experiment 
appears different from the in vivo data used to train the detectors making it challeng-
ing. The true positive rate was 0.95 and false positive rate 0.05. False detections were 
caused by the density of the silicon phantom, which obscures the probe in three im-
ages.  The true positive and false positive rates for synthetic data were 0.99 and 0.01 
respectively. The visual appearance of the synthetic DRR is similar to the training 
data and the probe is clearly distinguishable causing high true positive rate. 

 

Table 1. Quantitative validation of the 
in-plane position ( , )u v  and orientation
( )yθ . 

 

Fig. 3. Error analysis (degrees) of ( , )r pθ θ over 

search space 

 

  Average Error 
Data u (mm) v(mm) ( )yθ

Synthetic 1.1 (1.1) 2.2 (3.9) 2.6 (3.2) 

Phantom 1.6 (1.4) 2.0 (1.2) 3.0 (3.4) 

In Vivo 2.2 (5.1) 3.7 (8.0) 6.6 (16.7) 
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Fig. 4. Top - Fluoro images showing the detected pose of probe. Bottom: Left- Fluoro image. 
Center – mitral valve detected in 3D TEE. Right – Valve model visualized in Fluoro.  

The out-of-plane ( , )r pθ θ  detectors are analyzed on the synthetic data to evaluate 

the accuracy of the binary template matching. Fig. 3 plots the ( , )r pθ θ error over the 

search space (degrees) and illustrates stable detection with a single outlier. 
The framework is evaluated with respect to all parameters (Table 2). Quantitative 

validation was performed on synthetic and phantom data (in vivo ground truth data 
was not available). The largest error is in the Z axis, which corresponds to the optical 
axis of the Fluoro device. It is expected that this is the largest error because estimating 
distance along the optical axis is challenging from a monocular Fluoro image. Fortu-
nately, the goal of the framework is to visualize anatomy in the Fluoro image, there-
fore errors in Z has little effect on the final visualization. Initial clinical feedback 
suggests errors of up to 15° and 10 mm (excluding Z) are acceptable for some visuali-
zations, however accuracy requirements are application specific. Qualitative evalua-
tion (Fig. 4 top) is performed on in vivo Fluoro images.  

Table 2. Quantitative validation of TEE probe detection 

   Error    
Data X (mm) Y(mm) Z(mm) ( )rθ  ( )pθ  ( )yθ  

Synthetic 0.82 (0.79) 0.97 (2.1) 64.0(13.9) 4.2 (10.5) 4.6 (9.0) 2.6(3.2) 
Phantom 1.1 (0.8) 0.7(0.6) 19.04(1.6) 11.5(12.0) 11.8(9.8) 3.0(3.4) 

The computational performance was evaluated (Intel 2.13GHz single core, 3.4GB 
RAM). The average detection time is 0.53 seconds. The computational cost can be 
reduced by incorporating temporal information to reduce the search space.  

To illustrate the clinical relevance of this work an anatomical model of the mitral 
valve is detected [9] in 3D TEE and visualized in Fluoro (Fig. 4 bottom). The data is 
not synchronized and is manually fused. A catheter is visible in both modalities.   
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4 Conclusions 

This paper presents a novel method for automated fusion of TEE and Fluoro images to 
provide guidance for cardiac interventions. The proposed system detects the pose of a 
TEE probe in a Fluoro image. Discriminative learning is combined with fast binary 
template matching to address the challenges of pose detection. Validation has been per-
formed on synthetic, phantom and in vivo data. The method is capable of detecting in 
0.5s with an in-plane accuracy of less than 5 mm. Future work will focus on incorporat-
ing temporal information, using the initial detected pose as a starting estimate for pose 
refinement and visualization of anatomically meaningful information. 
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Abstract. Interventional guidance systems require surgical navigation systems 
to register different tools and devices together. Standard navigation systems 
have various drawbacks leading to target registration errors (TRE) of around 
3mm. The aim of this work is to introduce the photoacoustic (PA) effect as a di-
rect 3D ultrasound (US) to video registration method. We present our experi-
mental setup and demonstrate its feasibility on both a synthetic phantom and an 
ex vivo tissue phantom. We achieve an average TRE of 560 microns and stan-
dard deviation of 280 microns on a synthetic phantom. Also, an average TRE of 
420 microns and standard deviation of 150 microns on the ex vivo tissue phan-
tom are obtained. We describe a roadmap to bring this system into the surgical 
setting and highlight possible challenges along the way. 

Keywords: Instrument & Patient Localization and Tracking, Registration, 
Planning and image guidance of interventions, Visualization, Abdominal imag-
ing, Oncology Applications, Optical imaging, Ultrasound. 

1 Introduction 

Interventional guidance systems are commonly used in modern surgical procedures, 
including open surgery, laparoscopic surgery, and robotic surgery [1]. The guidance 
systems are used because it is often difficult to locate tumors both due to its move-
ment during the procedure and the camera’s limited field of view. Guidance systems 
typically provide a fusion of video and other imaging modalities to reduce the diffi-
culty in locating regions of interest. Before they can be used, these guidance systems 
must be registered with a number of surgical tools and devices. To accomplish this 
registration, several guidance systems are equipped with electromagnetic (EM) or 
optical surgical navigation systems [2], [3].  

Stolka et al. [3] present an EM-based laparoscopic intra-operative ultrasound naviga-
tion system similar to standard EM-based systems shown in Figure 1A. These systems 
typically have several drawbacks including the number of EM sensors that must be 
placed on all tools in order to be tracked by the navigation system and the need to indi-
rectly transform from one coordinate frame to another. An indirect transformation is 
defined to be one where the transformation to the coordinate frame of interest cannot be 
obtained without computing a chain of transformations via intermediate coordinate 
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frames. As an example, to obtain the transformation from EM space to the US image 
space, the transformation from the EM frame to the marker on the US probe and the 
transformation from the marker to the US frame are needed. Determining this second 
transformation presents another problem of calibration. A number of authors [4], [5] 
have presented research on specific calibration processes, attempting to minimize the 
error. Typically, they have demonstrated errors of around 3mm [4], [6], [7]. 

Yip et al. [8] have demonstrated a registration method that utilizes a tool serving as 
both fiducials in the US space and markers in the stereo camera (SC) space. Some 
drawbacks for this system include the need to have a custom registration tool touching 
the surface and the segmentation of fiducials from noisy US images. 

Vyas et al. [9] demonstrated proof of concept for a direct registration method with 
the PA effect. For this paper, a direct registration method is defined to be one that 
only requires a single transformation between frames as opposed to a chain of trans-
formations. The method addresses each of the drawbacks above. A marker is not ne-
cessary to generate a coordinate transformation between the tracker frame and the US 
transducer frame. Previous work [10], [11] shows that a pulsed laser source can effec-
tively generate the photoacoustic (PA) signal in tissue, resulting in an acoustic wave 
that can be detected by conventional US transducers [12], [13]. Other than the US 
transducer, nothing else needs to touch the surface. Each laser point projection can be 
seen as a green spot in the SC space and as a PA signal in the US space. Segmentation 
of the PA signal is also simpler in a PA image because the laser spot is the only 
acoustic source. Finally, the calibration process is unnecessary since the coordinate 
transformation from the SC frame to the US frame can be computed directly with the 
two 3D point sets based on rigid registration algorithms [2], [16].  

 

Fig. 1. A) Standard EM-based Navigation System, B) PA Navigation System 

Our work introduces the PA effect and PA imaging as a new medical tracking 
technology and is a step towards realizing the system shown in Figure 1B. We aim to 
present a direct 3D US to video registration method and to demonstrate its feasibility 
on ex vivo tissue. Improving on [9], we use a 3D US transducer instead of a 2D US 
transducer to detect the PA signal. Using a 3D transducer allows this registration me-
thod to function for a non-planar set of 3D points. This is a significant advantage 
because we aim to deploy this method in a laparoscopic environment and organ sur-
faces will rarely form a planar surface. We also improve significantly on the point 
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finding algorithms used in [9] for both SC images and US volumes. In addition to 
using a synthetic phantom with excellent light absorption characteristics, we also use 
a piece of resected ex vivo porcine liver tissue embedded in a gelatin phantom to 
demonstrate this method’s feasibility in a practical environment and eventual dep-
loyment in our intended applications of laparoscopic tumor resections. 

This paper will detail the experimental procedure and algorithms to validate this 
method on a synthetic phantom and an ex vivo liver phantom using a 3D US transduc-
er. We will present target registration error (TRE) results. Possible challenges in 
bringing this system into the surgical setting will also be discussed. 

2 Methods 

To perform our experiment, we use a Q-switched neodymium-doped yttrium alumi-
num garnet (Nd:YAG), Brilliant (Quantel Laser, France) laser frequency doubled to 
532nm wavelength at approximately 6mJ/cm2 to generate a PA effect on the synthetic 
phantom and approximately 19mJ/cm2 on the ex vivo tissue phantom. At this wave-
length, most of the laser energy is absorbed at the superficial surface of the tissue. 
However, there is slight penetration into the tissue, creating a source of error that will 
be discussed. Our stated energy is lower than the maximum permissible exposure of 
19.5mJ/cm2 as calculated from the IEC 60825-1 laser safety standard [14] based on a 
0.25s exposure time, a 4ns pulse width, and a frequency of 10Hz.  Alternate tests 
showed that a lower energy was also able to generate a PA effect on ex vivo tissue. 
We use a SonixCEP US system along with a 4DL14-5/38 US transducer developed by 
Ultrasonix Medical Corporation (Richmond, Canada) to scan the volume of interest. 
The motor actuation of this transducer induces angular movement around an internal 
pivot point. The Sonix DAQ device, developed in collaboration between the Universi-
ty of Hong Kong and Ultrasonix, and the MUSiiC toolkit [15] is used to acquire pre-
beamformed radiofrequency (RF) data directly from the US machine. We use the k-
wave toolbox [16] in MATLAB (Mathworks Inc. Natick, MA) designed for recon-
structing PA images based on RF data. A custom-built SC system containing two 
CMLN-13S2C cameras (Point Grey Research, Richmond, Canada) is used to capture 
images to be used for 3D triangulation. The synthetic phantom is made using plastisol 
and black dye. The ex vivo liver phantom is made using a gelatin solution and a fresh-
ly resected porcine liver. The surface of the liver is partially exposed and not covered 
by gelatin. Alternate tests with other surfaces such as porcine kidney tissue and fat 
were also successful in generating a PA signal. 

Our experiment can be split into a data collection phase and a data processing 
phase. The data collection phase outputs SC image pairs, five frames for each camera, 
and a 3D RF US volume for each projected laser spot. The number of frames is arbi-
trary. The data processing phase uses the data and generates a coordinate transforma-
tion from the SC frame to the US frame. Figure 2A shows the experimental setup and 
an overlay of a US image representation using the inverse of the transformation. 

Figure 3A shows the workflow of the data collection phase. First a laser spot is pro-
jected onto the exposed surface of the ex vivo liver phantom. There will be inaccuracies 
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in SC spot triangulation if the laser spot is projected at or near the liver gelatin inter-
face because the laser spots become irregularly shaped when projected onto clear mate-
rials. Second, several images are taken for each camera. The laser spot projected onto 
the phantom must be visible in at least one image per camera for triangulation to be 
possible. Our cameras have a faster capture rate than our laser’s repetition rate, so 
some of the frames will be devoid of the laser signal. We will exploit this during data 
processing. Steps 3 and 4 show that the 3D US transducer motor actuation and RF data 
are intermittently collected from the DAQ device to scan and acquire the RF data of 
the volume of interest. The volume’s field of view is 14.7o for the ex vivo tissue phan-
tom, 19.6 o for the synthetic phantom and the motor step size is 0.49o. This iterative 
process is manual, but an automatic process is in development. This workflow is re-
peated for each of the thirty laser spots. 

 

Fig. 2. A) Experimental Setup and Video Overlay, B) PA Signal within an US image 

 

Fig. 3. Workflow for A) Data Collection, B) SC Segmentation, and C) US Segmentation 

The data processing phase involves the segmentation of the SC images into 3D SC 
points, the segmentation of the 3D RF US volume data into 3D US points, and the 
computation of the transformation from the SC frame to the US frame. 

Figure 3B shows the workflow for SC segmentation. For each camera, we pick a 
SC image with the laser spot and without the laser spot. Next, the background images 
without the laser spot are subtracted from the images with the laser spot. This step 
makes it significantly easier to segment the laser spot. We then apply an appropriate 
intensity and pixel size thresholds such that the laser spot is segmented out.  
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These thresholds are selected based on the laser beam diameter and the phantom’s 
reflectance. Next, we fit an ellipse to the segmented region and compute the intensity 
weighted centroid. Calibration files for our specific SC allow us to triangulate the 
segmented point from each camera and obtain a single 3D point in the SC frame. This 
workflow is repeated for each laser spot projection. We use thirty sets of SC images. 

The workflow for the segmentation of the 3D RF US volume is shown in Figure 
3C. First, for each slice of a 3D RF US volume, the RF data is beamformed using the 
k-wave toolbox [16] in MATLAB. The dynamic range of the image is normalized 
with respect to the volume to decrease the size of the PA signal seen in each volume. 
Figure 2B shows the the k-wave beamformed PA signal image. Next, we project the 
volume onto the lateral-elevational plane by taking the mean along each axial ray. An 
appropriate intensity and pixel size threshold is then applied to this image. An ellipse 
is fitted on the segmented region and an intensity-weighted centroid is computed re-
sulting in lateral and elevational coordinates. As described earlier, the PA signal ori-
ginates from the surface and any penetration into the surface. Since air cannot gener-
ate a PA signal in our setup, we can exploit that the high intensity pixels farthest away 
in the axial direction are from the surface. Thus, we obtain the axial coordinate cor-
responding with a lateral-elevational coordinate as the axial-most high intensity pixel. 
This step is particularly important because the penetration of the laser pulse is much 
deeper for the ex vivo tissue phantom than the penetration for the synthetic phantom. 
We use bilinear interpolation to obtain axial coordinates between sampled points. 
These three coordinates are converted to 3D US coordinates based on transducer spe-
cifications. This workflow is repeated for each of our thirty 3D RF US volumes. 

The transformation from the SC frame to the US frame can be computed with the 
3D SC and 3D US point sets. Any registration method for computing the transforma-
tion between two 3D point sets can be used. We use the coherent point drift algorithm 
[17] in our experiment. One of the main reasons for using coherent point drift is that it 
allows for data points to be missing from either dataset. An assumption that we have 
made is that each laser spot will be visible in the SC images and each PA signal will 
be visible in the US volume. This assumption is valid for our experiment, but may not 
hold in the surgical setting due to SC or transducer movement. The coherent point 
drift registration algorithm allows us to acquire a registration as long as there are 
enough corresponding points in the SC images and the US volume. 

The transformation from the SC frame to the US frame is used to transform the 3D 
SC points to the US frame for validation. The inverse transformation is used to dis-
play a representation of an US image into the SC frame as shown in Figure 2A. 

3 Results 

The results of our experiment on the synthetic phantom and on the ex vivo tissue 
phantom are validated using the target registration error (TRE) metric defined in equ-
ation 1. FSC_US is the transformation from the SC frame to the US frame and is com-
puted with all of SC and US points except for one. The TRE is the resulting difference 
between the actual US test point and the transformed SC test point in the US frame. 
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ሬሬሬሬሬሬሬሬറܧܴܶ   ൌ ࡿࢁ_ࡿࡲ  כ  ሬሬሬሬറ௧௦௧ܥܵ   െ ܷܵሬሬሬሬሬറ௧௦௧    (1) 

Twenty-nine of the thirty points are used to compute the transformation from the SC 
frame to the US frame. The remaining point is used as a test point to compute the 
TRE. This computation is repeated with each of the thirty points as test points. Table 
1 shows the average and standard deviation of the TRE results for the thirty cases in 
the synthetic phantom and the ex vivo tissue phantom experiment respectively. 

Table 1. Average TRE Results for Leave One Out Registration Experiments 

n = 30 Synthetic Phantom Ex vivo Tissue Phantom 
Lateral (mm) 0.21 ± 0.17 0.22 ± 0.16 
Axial (mm) 0.21 ± 0.13 0.24 ± 0.15 

Elevational (mm) 0.41 ± 0.31 0.18 ± 0.10 
Euclidean Norm (mm) 0.56 ± 0.28 0.42 ± 0.15 

4 Discussion 

There are several considerations when discussing this system’s deployment in our 
intended applications of laparoscopic tumor resections. The first is the placement of 
the transducer. In our experiments, we use a relatively large 3D US transducer that 
would be near impossible to put inside the body during a laparoscopic procedure. 
However, the transducer is often placed externally [3], [8] in these procedures, so the 
size of the probe is not an issue. Naturally, there are disadvantages of placing the 
transducer externally and farther from the region or organ of interest. The quality of 
ultrasound images degrades as the depth increases, which would likely lead to errors 
in localizing fiducials or, in our case, the PA signal. However, since the PA signal 
only has to travel in one direction, as opposed to traditional US, our PA images will 
have better quality than US images of equivalent depth.  

Another issue with our 3D US transducer is the acquisition speed. There are certain 
applications where an acquisition speed of a volume per several seconds is sufficient, 
but a real-time implementation would require a higher acquisition rate. We anticipate 
using 2D array US transducers for a real-time implementation. These transducers 
would provide an acquisition rate on the order of twenty volumes per second. The 2D 
array transducer could also be miniaturized and placed closer to the region of interest. 

A third issue deals with the laser delivery system. As shown in our experimental 
setup, a laser would have to be fired at the organ in free space. This occurrence is 
unlikely in practical situations. We are developing a fiber delivery tool that will allow 
us to safely guide the laser beam into the patient’s body. This tool will also be able to 
project concurrent laser spots, greatly enhancing our registration acquisition rate. 

At the level of error measurements shown in table 1, it is likely that the calibration 
of the SC system is a significant contributor. They are able to locate point sources at 
sub-millimeter accuracy [6], [7]. This error is usually negligible in comparison with 
the 3mm errors from calibration. Since our results are 0.56mm and 0.42mm errors 
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respectively, the SC system’s error becomes significant. We use a custom SC system, 
so its errors are likely greater than a finely tuned commercial SC system. 

The experimental results in table 1 show that our system achieves sub-millimeter 
TRE measurements for both the synthetic phantom and the ex vivo tissue phantom. 
There is a slight difference in the results, and it is entirely due to the elevational error. 
This is likely due to the larger field of view in the synthetic phantom experiment as 
well as normal variation across experiments. More experiments must be performed to 
obtain an average error across multiple experiments. 

There are a couple of factors that will affect these errors as we move from a bench-
top setup to in vivo experiments. When our SC system is replaced with a stereo en-
doscopic camera, the errors may increase. This is because our SC system has a larger 
disparity than standard stereo endoscopic cameras. Further work will be done to quan-
tify the effects of this change. Also, the errors are reported based on surface points. 
Since the region of interest is often subsurface, our reported TRE will be biased for 
subsurface target errors. We believe that the bias will be fairly small since the PA 
spots are being detected in the same modality as any subsurface regions. 

5 Conclusion 

We have proposed an innovative 3D US to video direct registration medical tracking 
technology based on the PA effect and demonstrated its feasibility on an ex vivo tissue 
phantom. The results have been shown to have higher accuracy than state of the art 
surgical navigation systems. Future work will include the development of a fiber deli-
very tool, spot finding algorithms to support concurrent spot projection, and subse-
quent in vivo animal experiments. Integration of this direct registration method into 
laparoscopic or robotic surgery environments will also be a point of emphasis. 
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Abstract. Despite increased use of robotic catheter navigation systems
for endovascular intervention procedures, current master-slave platforms
have not yet taken into account dexterous manipulation skill used in tra-
ditional catheterization procedures. Information on tool forces applied by
operators is often limited. A novel force/torque sensor is developed in this
paper to obtain behavioural data across different experience levels and
identify underlying factors that affect overall operator performance. The
miniature device can be attached to any part of the proximal end of the
catheter, together with a position sensor attached to the catheter tip,
for relating tool forces to catheter dynamics and overall performance.
The results show clear differences in manipulation skills between expe-
rience groups, thus providing insights into different patterns and range
of forces applied during routine endovascular procedures. They also pro-
vide important design specifications for ergonomically optimized catheter
manipulation platforms with added haptic feedback while maintaining
natural skills of the operators.

Keywords: endovascular intervention, catheter manipulation, skill as-
sessment, robotic catheterization, force sensing.

1 Introduction

Robotically controlled steerable catheter navigation systems have seen a grow-
ing interest in the field of endovascular surgery. These systems offer potential
advantages over manual catheterization, including reduced radiation exposure,
increased precision and stability of motion, and added operator comfort [1].
However, most of these systems have been designed with little consideration of
underlying perceptual cues, operator-tool force interaction and behavioural pat-
terns, thus not fully utilizing natural ergonomic skills used during conventional
catheterization that are obtained through experience. A clear understanding of
these force and motion patterns and manipulation skills is crucial for design-
ing next generation intuitive catheter navigation systems by maximizing natural
bedside catheterization skills of operators.

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 560–567, 2012.
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In practice, manual catheterization is based on 2D visual guidance (fluo-
roscopy) and haptic cues to sense small axial forces and torques at the fingertips
while manipulating catheters and guidewires. This is achieved using a combina-
tion of pushing, pulling, and twisting at the proximal end of the tools in different
directions based on an implicit model of the catheter acquired through experi-
ence and a mental picture of the 3D anatomy augmented with 2D real-time
image data. Understanding the forces and torques that are applied during a pro-
cedure is important to avoid injuries that can be caused by the interactions of
catheters and guidewires with the vessel walls, especially in high risk areas and
lesions that may lead to perforation or thrombosis.

Thus far, one of the main commercial interventional robots is the Sensei
robotic navigation system (Hansen Medical, Mountain View, CA, USA), which
has been successfully used in different clinical applications including cardiac ab-
lation and endovascular aneurysm repair [2, 3]. While its efficacy in reducing
radiation exposure and fluoroscopy time has been validated [2], its limitations
include its large size, high cost, and longer setup times. In the research domain,
different groups have also focused on telerobotic master and slave systems for
catheter navigation, with added proximal or distal force sensing and haptic force
feedback to the operator [4–7]. For most of these systems, the master takes the
shape of a joystick or a haptic device (e.g. Novint’s Falcon, Phantom Omni),
therefore forgoing the natural catheter/guidewire manipulation skills and haptic
cues used during bedside practice. Studies show that clinical success is highly
dependent on operator experience, and endovascular procedures are associated
with steep learning curves [8]. This highlights the importance of maintaining
operator skills and dexterity for successful robotic catheter navigation. It also
motivates the development of remote catheter navigation systems that maintain
the conventional manipulation skills through the replication of motion, force and
sensation during the manipulation of a local catheter.

To date, few studies have looked at operator behavioural data and catheter
dynamics by mostly focusing on finger motion patterns, or measuring catheter
kinematics and forces to overcome introducer sheath friction [7, 9]. Direct mea-
surement of proximal tool forces applied to the catheter and relating these to
catheter tip motion can provide critical information on endovascular manipula-
tion skills and present useful design characteristics for improved catheter navi-
gation systems.

The purpose of this paper is to propose an endovascular navigation platform
for assessing detailed navigation cues of different operators. A novel force and
torque sensor attached to the proximal end of the catheter is developed together
with a position sensor attached to the tip, in order to directly relate tool forces
applied by operators to catheter tip motion and path length. Performance results,
including subject-specific manipulation strategies, are compared over different
experience levels in a realistic endovascular setting so as to gain an understanding
of force and torque patterns, haptic cues, and underlying skills that contribute to
overall operator performance. The study provides important design specifications
for the future development of ergonomically optimized catheter manipulation
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platforms with added haptic feedback, whilst taking full advantage of natural
skills of the operators for endovascular intervention.

2 Materials and Methods

2.1 Force Sensor Design

The proposed force-torque (F/T) sensor measures the axial (push and pull) and
torsional (clockwise and counterclockwise) loads exerted on to the catheter by the
operator (Fig. 1). The sensor is miniaturized and designed to be as unobtrusive
as possible to minimize the effects on catheter dynamics and operator skills;
this was confirmed by the experienced operators. Instead of manipulating the
catheter directly, the operator manipulates a co-axial over-tube and the force
measurements are made between the over-tube and the catheter. The over-tube
transmits axial and torsional loads on to a transmission component, which is
seated in low friction polymer bearings within the sensor casing. The load is
then transmitted on to four force sensors within the casing. A spring-loaded
clamp affixes the catheter to the casing which allows the F/T measurement to
be made between the over-tube and catheter. The clamp is designed so as to
avoid catheter bending which would increase the friction between over-tube and
catheter. By depressing the clamp, the sensor can be positioned anywhere along
the length of the catheter that is comfortable to the operator.

The over-tube was chosen to have a bending, torsional stiffness, and outer
diameter similar to that of the catheter so that the operator would feel as if
they were manipulating the catheter directly. Additionally, to avoid errors in
the measurements, the over-tube was chosen to have low friction and to have a
high crush resistance, so that the user could not squeeze the catheter through
the over-tube. The force sensors (FSS1500NS, Honeywell) were chosen for their
compact size, low weight and linearity and were calibrated against a Nano 17
F/T sensor (ATI Industrial Automation Inc., USA).

Fig. 1. Experimental setup (left) and force and torque sensor mounted on catheter
with exploded view of transmission component showing the four force sensors (right)
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2.2 Experimental Setup

A phantom study was performed to obtain tool force and torques applied by
operators with varying endovascular skills, and to relate catheter tip motions and
velocities to forces applied at the proximal end. It was also designed to extract
skill related patterns and underlying factors that affect catheter navigation and
overall performance within different steps of an endovascular procedure.

To obtain information on catheter tip position, velocity, and path length, a
six degree of freedom electromagnetic position sensor (Aurora, ND technologies)
was attached to the tip of the catheter. A silicone-based, transparent, anthro-
pomorphic phantom (Elastrat Sarl, Geneva, Switzerland) representing a type I
aortic arch was used for this study (Fig. 1). Eight subjects of varying endovascu-
lar experience were recruited and separated into two groups: experienced (n=3,
more than 100 endovascular procedures) and inexperienced (n=5, 0 endovascular
procedures). All operators were right-handed. Each operator was asked to can-
nulate the right common carotid artery of the phantom three times. Each trial
was considered an independent test, thereby providing sufficient experiments for
comparing the two distinct skill sets. In order to simulate 2D fluoroscopy guid-
ance in the OR, a laparoscopic camera was mounted above the model, with the
2D image projected on a monitor to be used by operators for navigation. All
operators underwent a short training session to familiarize themselves with the
use of the force sensor before commencing the study. Appropriate endovascular
tools, including wires and 5F shaped catheters, were available. Force measure-
ments were read into Labview using an acquisition card (NI-USB6009, National
Instruments Corp., USA) at 25 Hz.

Depending on the location of the catheter within the vasculature, force val-
ues and tip movements can vary significantly, therefore the procedure path was
divided into three sections as shown in Fig. 2a : traversing the descending aorta
(section A), passing through the aortic arch (section B), and finally cannulating
the right common carotid artery (RCCA)(section C). Results were compared
over each phase of the procedure for different experience levels.

Ten performance metrics were measured for each section of each procedure.
These included median and maximum tip velocity, mean proximal forces in each
axial direction, mean torques in each rotational direction, mean tip distance
from the origin (catheter path length), sum of catheter tip displacements (mo-
tion efficiency), number of twists applied at the proximal end, and procedure
time. To identify underlying factors that explain causalities and patterns of cor-
relation between these observed variables, factor analysis was performed on six
of these variables for each experience group. The factor loadings were extracted
with a maximum likelihood estimate (MLE) for two common factors using a
Varimax factor rotation. Differences between experienced and inexperienced op-
erators were also assessed with a non-parametric Mann-Whitney U significance
test on all the metrics over each section of the procedure (P < 0.05). Skill-
related patterns of behaviour can be extracted by comparing graphs of proximal
forces, torques, and catheter tip displacement between operators. Dynamic time
warping was used to analyze the similarities of these parameters between an
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experienced and inexperienced operator over the three different sections of the
procedure. The range of forces and torques applied over all procedures are also
reported for the two experience groups. Statistical analysis was performed with
the SPSS software (SPSS Inc., Chicago, Il) and Matlab’s statistical toolbox.

3 Results

Fig. 2 depicts the path of the catheter within a mesh of the vascular model,
guided by an experienced (b) vs. inexperienced (c) operator. The color gradient
depicts the magnitude of the torque applied by the operator at the proximal end
of the catheter, over the catheter path.

Fig. 2. Vascular phantom depicting the three sections of the procedure (a), catheter
path inside the model for experienced (b) and inexperienced (c) operator, with color
gradient depicting the magnitude of torque measured at the proximal end

Table 1 shows the result of the factor analysis with two extracted factors, at
each section of the procedure. Each value represents the correlation between the
variable and the underlying factor (the largest loadings are highlighted). For the
descending aorta, mean catheter tip displacement, number of twists, and time
are highly correlated for experienced operators as opposed to inexperienced op-
erators, therefore the underlying factor could be a measure of operator efficiency
and gain in motion to advance the catheter inside the aorta. In the aortic arch
section, there is a high loading on torque, twisting and catheter motion for expe-
rienced operators, as compared to push force for inexperienced operators. This
emphasizes trained catheter manipulation skills of operators in high-risk areas
to avoid damage to the vessels. Results for the common carotid artery also de-
pict the reliance of experienced operators on torque (rather than force) for tip
displacement, in order to avoid contact with the narrow walls of the artery.

The results of the non-parametric test between experienced and inexperienced
groups depict significant differences for mean displacement (P = 0.02), number
of twists (P = 0.02) and time (P = 0.05) in the first part of the procedure
(descending aorta). In the arch section, average torque was the more significant
variable (P = 0.01), while for the RCCA section median speed (P = 0.04) and
mean displacement (P = 0.03) showed significant differences between operators.

Table 2 shows the difference in performances for these significant metrics in
each section of the procedure. For the descending aorta, the median values for
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Table 1. Factor analysis with 2 common factors over each section of the procedure for
experienced and inexperienced operators. Highly correlated factors are highlighted.

Descending aorta Aortic arch RCCA

Exp. Inexp. Exp. Inexp. Exp. Inexp.

1 2 1 2 1 2 1 2 1 2 1 2

Median speed 1.00 0.01 0.53 0.84 -0.14 -0.98 -0.59 -0.06 -0.76 0.27 -0.65 -0.60
Mean displacement 0.23 0.85 -0.26 -0.01 -0.90 0.33 0.58 0.0 0.12 0.64 0.64 -0.05
Mean push force 0.55 -0.46 0.21 -0.55 0.01 -0.31 0.37 0.47 0.33 0.19 -0.83 -0.27
Mean torque CCW -0.87 0.05 0.17 0.20 0.44 0.82 0.04 0.35 0.13 -0.99 0.92 0.38
Number of twists -0.19 0.63 0.75 0.13 0.68 0.33 0.05 0.93 1 0.04 0.51 0.78
Time -0.18 0.91 0.92 0.07 0.86 0.50 0.86 0.40 0.96 0.12 -0.03 1.00

catheter displacement and number of twists show that experienced operators are
more ergonomic by using less repetitious movements while achieving a higher
gain in tip displacement. The difference in torque in the second part of the
procedure proves our previous results that experienced operators rely much more
on manipulation skills and torque when maneuvering the catheter through high-
risk areas such as the arch. The difference in speed for the last section of the
procedure shows cautious and smooth navigation skills of experienced operators
to achieve slower yet more efficient catheter motion through narrow arteries.

Table 2. Median values of statistically significant parameters for the two experience
groups at each section of the procedure

Descending aorta Aortic arch RCCA

Displacement Number Time Torque-ccw Speed Displacement
(mm) twists (s) (N.mm) (mm/s) (mm)

Experienced 32.2 29 25 1.36 2.6 90.2
Inexperienced 20.3 70 37 0.48 5.5 82.5

Fig. 3 shows the result for force, torque and displacement of an experienced
vs. inexperienced operator over the whole procedure. Distinct patterns can be
detected, especially over the more complex parts of the anatomy (aortic arch and
RCCA). Experienced operators rely on torque and small forces for maneuvering
through these areas, and maximum torque is applied when transitioning from the
arch to the artery. Overall forces applied by the experienced user are smaller and
more uniform, and large forces are only used for specific controlled maneuvers
such as advancing the catheter up the aorta or entering the aortic arch. Catheter
displacements for experienced operators are also much smoother and contain less
back and forth movement, while depicting difficulties for inexperienced operators
when entering the arch as well as forcing the catheter from the arch into the
narrow artery.

The similarity cost values obtained from dynamic time warping between the
experienced and inexperienced operators for the three sections of the procedure
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Fig. 3. Force, torque and displacement signals for experienced vs. inexperienced oper-
ator, with different colours showing the different sections of the procedure

show large differences in displacement in the first and last part of the procedure
(1.55e3, 1.27e3, 1.92e3), highlighting the movement efficiency of experienced op-
erators. Differences in torque are higher in the aortic arch and the carotid artery
sections (441.18, 563.09, 894.29). There are also high differences between pull
forces in the first and last part of the procedure (747.28, 351.32, 671.94), related
to the back and forth movement of inexperienced operators. These findings di-
rectly map with the factor analysis results presented above.

The maximum force values (on average) in the axial direction over all pro-
cedures, for each of the three sections are 2.09 N, 3.03 N, and 2.93 N for ex-
perienced operators. The corresponding values for inexperienced operators are
2.86 N, 3.16 N, and 2.80 N. The maximum torque values for experienced opera-
tors over these sections are 2.84 N.mm, 5.26 N.mm, and 6.05 N.mm as compared
to 1.87 N.mm, 2.00 N.mm and 6.71 N.mm for inexperienced users.

4 Discussion and Conclusion

A novel miniaturized proximal sensing platform is proposed to non-intrusively
measure forces and torques applied during endovascular procedures and provide
information on catheter dynamics and force and motion patterns used by oper-
ators over different levels of experience. A user study was performed to relate
catheter tip motion to forces applied at the proximal end over different steps
of a typical endovascular procedure. Different performance metrics related to
catheter dynamics, proximal forces and torques, manipulation skills, and proce-
dure time were compared for two groups of operators and patterns of correlation
were extracted. It should be noted that the forces applied by the operator include
forces to overcome friction from the introducer sheath as well as the vasculature.
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The results highlight the importance of underlying factors and experience re-
lated skills that affect the efficiency, success and ergonomics of catheterization.
Understanding these can also improve assessment and training of catheterization
skills. The outcome of this research provides important insight into the percep-
tual cues used for optimized design of robotic catheter navigation systems while
maintaining natural operator skills required for conventional catheter navigation.
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Abstract. In the context of retinal microsurgery, visual tracking of in-
struments is a key component of robotics assistance. The difficulty of
the task and major reason why most existing strategies fail on in-vivo
image sequences lies in the fact that complex and severe changes in in-
strument appearance are challenging to model. This paper introduces a
novel approach, that is both data-driven and complementary to existing
tracking techniques. In particular, we show how to learn and integrate
an accurate detector with a simple gradient-based tracker within a ro-
bust pipeline which runs at framerate. In addition, we present a fully
annotated dataset of retinal instruments in in-vivo surgeries, which we
use to quantitatively validate our approach. We also demonstrate an
application of our method in a laparascopy image sequence.

1 Introduction

Retinal microsurgery (RM) is one of the few available treatments options for
many blinding eye conditions. During surgery, the operating surgeon uses a stereo
microscope to visualize the retina and manipulates a set of surgical instruments
(i.e. tipped forceps or picks) to perform the procedure, as depicted in Fig. 1.

Given its importance and the demanding nature of the surgery, a number
of new technologies have focused on improving aspects of RM. Some of these
technologies have included a steady-hand robot [1] or an instrument capable
of visualizing anatomical structures below the surface of the retina via optical
coherence tomography [2]. Yet, for these technologies to fully develop and ulti-
mately be incorporated into clinical environments, one missing component is the
ability to accurately and reliably estimate the location of an instrument when
in the camera field of view. With this in mind, this paper focuses on real-time
visual tracking of instruments in in-vivo RM monocular image sequences.

A major difficulty with this task is that instrument appearance is difficult to
model well over time. Most existing methods have relied instead on knowing the
instrument geometry beforehand to solve complex optimization problems [3,4], or
have constructed sophisticated and robust objective functions within more tra-
ditional gradient-based frameworks to deal with appearance change [5,6]. Typ-
ically, these methods have extremely simple appearance models that combine
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geometry with colour or edge-based features, and ultimately work well only in
limited conditions such as in eye phantoms. For example, using the method of [6],
tracking is often lost after only 5 frames in the in-vivo sequence of Fig. 1. Note
that a similar observation can also be made regarding tool tracking techniques
for laparoscopic surgery [7].

In short visual tracking of instruments in in-vivo RM is characterized by com-
plex appearance changes that existing approaches fail to handle. In contrast, this
paper introduces an alternative approach, one that is data-driven and comple-
mentary to the aforementioned methods. In particular, we show how to integrate
the framework of [8], which constructs accurate classifiers, for the task of instru-
ment detection. Coupled with simple gradient-based tracking, our pipeline is
extremely robust and runs at video framerate. In addition, we present a fully
annotated dataset of retinal instruments in human in-vivo surgeries and quanti-
tatively validate our pipeline on this dataset. Finally, we also demonstrate how
our approach performs on a laparoscopy image sequence.

The remainder of this paper is organized as follows: We begin by describing
our pipeline and its components in Sec. 2. In Sec. 3 we validate our method
experimentally and conclude with final remarks in Sec. 4.

2 Method

To motivate our approach and pipeline, we begin with the following observations:

1. To work reliably, gradient-based trackers [6,9] need continuous template up-
dating to maintain accurate position estimation when changes in the target
appearance are severe.

2. Using reasonable amounts of training data (e.g. 500 positive examples), clas-
sifiers as in [8] provide excellent methods to detect the 2D location of a
deformable target irrespective of its orientation.

3. Given that tracking is a sequential estimation problem, detection of targets
can be restricted to promising locations provided by fast and moderately
accurate methods.

Based on these observations, we propose a detection based scheme to track the
2D instrument tip position in in-vivo RM image sequences. Once initialized, our
pipeline operates as follows: we first use a gradient based tracker to provide an
approximate estimate of the target’s new location. We then exhaustively evaluate
a detector to predict the presence of an instrument in a reduced region of the
image space, which is parametrized by tracker’s estimate from the previous step.
Finally, we use spatial and score weighting of the detector responses to provide
accurate instrument position, and update the tracker template. This process is
depicted in Fig. 1, and the following sections describe each component in detail.
Note that, initialization of the instrument position, and reinitialization when the
instrument is not found, is achieved by using the constructed detector and hence
no user input is required in our pipeline.
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Fig. 1. Pipeline Diagram: First, an updated template and the previous frame instru-
ment position (yellow cross) are used to initialize a gradient based tracker. The new
position estimate, p̂ (green cross) serves as the center of the region of interest (green
box), that the detector evaluates at every location. At each location, positions and
scores {pi, si} are computed and weighted to provide the final instrument position, P
(black cross).

2.1 Tracking

In order to provide an approximate location for the instrument position, we first
compute the displacement of a window centered at the previous tool tip loca-
tion using a gradient-based tracking method. The method is based on Efficient
Second-Order Minimization [9]. Assuming that no large illumination variations
occur between sequential images, SSD was adopted as similarity measure. The
reference template used in this step is updated at every new image using the tool
tip position estimated from the previous image. In our experiments, we maintain
a fixed template size: 50× 50 pixels. This process results in a tool tip estimate,
which we denote as p̂. Fig. 1 shows an example of p̂ (green cross) on a given
frame. Note that alternative similarity measures could be substituted instead.

2.2 Detector

The strong appearance changes of tools during RM severely complicate the de-
tection task. Standard learning based detection methods can only cope with
deformations and rotations via a detailed labeling of training data and an ex-
haustive exploration of these parameters when evaluating the classifier. This lat-
ter point makes detection of targets particularly slow, which helps explain their
lack of use so far. Recently however, a framework was presented in [8] which
overcomes these difficulties. The authors design a set of so-called pose-estimator
features which modulate feature extraction according to various image cues. The
result is a deformable detector which can learn the deformations and rotations
present in the training data. The method, based on AdaBoost, does not require
an exploration of the pose parameters at test time and is thus well-suited for the
task at hand.
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We therefore use this framework along with the proposed set of deformable
features, which compute sums of oriented edges in various image areas. To train
this detector, positive and negative examples must be provided (i.e. instrument
and non-instrument images, respectively). Here, we use square bounding boxes
of the instruments indicating the location and spatial extent of the instrument
for positive samples. Negative samples are randomly selected from the remainder
of the images. One additional difficulty, not considered in [8], is how to efficiently
train such a deformable detector of fixed size r × r from an image sequence ex-
hibiting multi-scale data. To this end, we compute a Gaussian Pyramid for each
image by successive smoothing and downsampling. For each positive example,
its bounding box is replaced by an appropriately located box of size r × r at
the Gaussian Pyramid level l which results in the best r × r approximation of
the original sample. Detection proceeds in a similar fashion with each image de-
composed into a Gaussian Pyramid and our r× r detector exhaustively visiting
every location in the Pyramid.

Given the approximate instrument position provided by the tracker, we only
evaluate the classifier at each location in a 50× 50 region of the image, centered
on the position estimate provided by the tracker. This results in a set of pixel
positions and associated unsigned classifier score, {pi, si}.

2.3 Estimating Instrument Position

Given the position estimate of the tracker, p̂ and the set of detection scores
{pi, si}, we now describe how to combine these estimates to provide the final
instrument location.

We first perform a weighting of the classifier scores with regard to their spatial
placement. In particular, we favour locations that are near the position estimate
provided by the tracker. That is, we first compute spatially adjusted scores, s̃,

s̃i = sie
− 1

2σ2 (pi−p̂)2 , where σ is half the radius of the search window (σ = 50
2 = 25

in our experiments). Then, instead of doing non-maximum suppression as in [8],
we estimate the final position of the instrument, P , by averaging the weighted

scores, s̃i, P =
∑N

i s̃ipi∑
N
i s̃i

. This effectively reduces the effect of extreme scores

and outlier influence by weighted voting. We consider a detection valid if the
score associated with the location P is above a threshold (in practice it is set
to provide a 80% true positive rate). When no instrument is found in a frame,
then detector is then evaluated at all locations of subsequent images, until a new
instrument location is found.

3 Experiments and Results

The presented pipeline is implemented in C++, and all experiments were per-
formed on a MacBook Pro, 2.5 GHz Quad core computer with 4GB RAM. Our
pipeline runs at 15fps and should run even faster implemented on a GPU.
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Fig. 2. Example of instrument detections (red) in our in-vivo dataset with annotated
ground truth (white cross). The pixel distance error for each example are: 8, 7, 11, 25
and 18. See Video 1 for full detection and tracking sequence.

3.1 Retina Microsurgery Dataset

We begin by introducing a fully annoted dataset for RM instrument detection
and tracking. This image set consists of 4 sequences of in-vivo vitreoretinal
surgery, containing a total of 1500 images (640 480 pixels). Fig. 2 shows rep-
resentative images from the dataset, illustrating variations in illumination type
and quantity, light source position and the presence of blur and shadows. Dif-
ferent types of cameras were used to acquire the images but in each case the
video was collected directly from the surgical microscope. Calibration data was
not available since the surgeon frequently varies the focal length during the pro-
cedure. Each image contains at most one instance of a tool, with some images
being tool free. The tool tip of each instrument has been annotated by hand.
This dataset is publicly available online via the corresponding authors website,
at https://sites.google.com/site/sznitr/.

Full Dataset Evaluation. In our first experiment, we trained our classifier
by using the first half of each sequence in the above dataset and evaluated our
method on the remaining sequence halves. The result of our pipeline can be
seen in Video 1, with some snapshots shown in Fig. 2 (see above website for
associated videos). In general, consistent tracking is achieved even in cases of
strong appearance changes.

To provide some quantitative validation of our method we plotted the propor-
tion of frames where the instrument tip was determined correctly, as function
of sensitivity of the detection criteria. More specifically, we defined a correct
detection to be any pixel estimation that is within δ pixels of the groundtruth
annotation. Fig. 3(left) show this plot when varying δ between 15 and 40. 15
pixel may appear as a large starting threshold, but consider that the average
tool shaft diameter in the dataset is of 20 pixels, and due to blurring and illumi-
nation changes throughout the sequences, the annotations themselves are noisy
(see Fig. 2). Hence, smaller threshold results are not particularly meaningful
here.

We compare our approach to three existing gradient based trackers on the
same set of images: the Mutual Information of [6], the SCV of [10] and the SSD
tracker used in this pipeline. To allow a fair comparison, when any of these
trackers provided false detections they were re-initialized with the ground truth,

https://sites.google.com/site/sznitr/
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Fig. 3. Tracking Accuracy. (left) we show the percent of correctly detected instruments
as function of the accuracy threshold. In red, our approach clearly outperforms state-
of-the-art gradient-based trackers. (right) Proportion of frames for each number of
consecutive correct detections.

and we report the proportion of frames where re-initialization is not required.
From the figures, we clearly see that our approach outperforms that all three
trackers. For example, for δ = 20 our approach detects over 70% more than [6]
and over 40% more than [10]. This corresponds to 449 and 309 more correct
instrument detections, respectively. We also show in Fig. 3(right) the proportion
of time where a certain number of consecutive correct detections (δ = 20) took
place. In particular, we see that the SCV and MI can only track for 1 frame
over 35% and 65% of the time, while this only occurs 11% of the time for our
approach. On average our method tracks for 25 consecutive frames while the
SCV and MI achieve 2 and 5 frames, respectively. Also, in the cases where our
method did lose tracking, correct reinitialization occurred on average after 1.5
frames.

Generalization: Detection-based methods as this one are often criticized for
needing large amounts of training data and only working well on images similar
to those found in the training set. To demonstrate, that this can be avoided,
we show that even when training our classifier on three sequences, and testing
on an unseen fourth, reliable tracking is achieved. As in typical cross-validation
protocols, we trained our classifier on 3 sequences, and tested on the remaining
set. We did this for 3 different sets (the 4th set was not usable in this case, since it
contains no instruments in it). Fig. 4 shows training and testing image examples
for each experiment (i.e. Exp.2a through c). Videos 2a though 2c show the tested
sequences for these experiments. As in the previous case, we plotted detection
accuracy against the detection criteria, showing that our method significantly
outperforms [6] and [10] on all three sequences.

3.2 Laparoscopy Sequence

Finally, we briefly show how our approach can work for laparoscopic instrument
tracking. Here, we downloaded a video sequence from Youtube1, extracted im-
ages and hand labeled the locations of instruments in 1000 images. This provided
roughly 2000 instrument locations (two instruments per image). From this, we

1 http://www.youtube.com/watch?v=IVp1sgjQ5To

http://www.youtube.com/watch?v=IVp1sgjQ5To
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Fig. 4. Generalization experiments by training on 3 image sequences and tested on an
unseen fourth sequence. Accuracy plots are also shown for each experiment.

trained our classifier on the first 500 images and evaluated our pipeline on the
remaining images. Given, that two instruments are present in frames, we pro-
ceeded as in the RM case, found an instrument, suppressed it from the image,
and repeated this process for the second tool. Otherwise, the pipeline is identical
to that of the previous experiments.

Video 5 shows the result of our pipeline, of which a few frames are shown in
Fig. 5. In summary, tracking is maintained for a substantial number of frames.
However, two main failing points can be seen: 1) Extreme changes in instrument
structure, that were not observed in the training sequences, are poorly handled
by our system (as shown in Fig. 5(right)), 2) occluded instruments are not found
given that there is no geometrical model to help with such situations. A pos-
sible alternative to overcome this may be to integrate our approach with more
elaborate prior instrument knowledge (as in [3,4,7]).

Fig. 5. Example of our approach tracking two instruments during Laparoscopic surgery

4 Conclusion

We presented an alternative approach for visual detecting and tracking retinal
instruments during in-vivo retinal microsurgery. Our technique involves training
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a highly accurate instrument detector, coupled with a simple gradient based
tracker to produce reliable tracking. Soft weighting of both classifier scores and
locations are fused to produce accurate position estimates even in challenging
cases. We extensively validated our method on a fully annotated in-vivo dataset,
where we showed consistent tracking. We also demonstrated the applicability of
our approach on a laparoscopy image sequence.
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Abstract. Over the last years, range imaging (RI) techniques have been
proposed for patient positioning and respiration analysis in motion com-
pensation. Yet, current RI based approaches for patient positioning em-
ploy rigid-body transformations, thus neglecting free-form deformations
induced by respiratory motion. Furthermore, RI based respiration anal-
ysis relies on non-rigid registration techniques with run-times of several
seconds. In this paper we propose a real-time framework based on RI to
perform respiratory motion compensated positioning and non-rigid sur-
face deformation estimation in a joint manner. The core of our method
are pre-procedurally obtained 4-D shape priors that drive the intra-
procedural alignment of the patient to the reference state, simultaneously
yielding a rigid-body table transformation and a free-form deformation
accounting for respiratory motion. We show that our method outper-
forms conventional alignment strategies by a factor of 3.0 and 2.3 in
the rotation and translation accuracy, respectively. Using a GPU based
implementation, we achieve run-times of 40 ms.

1 Introduction

Accurate patient positioning and respiratory motion analysis are key issues for
the success of medical procedures. For example, in fractionated radiotherapy,
the patient must be aligned with respect to planning data and continuously
monitored to account for respiratory motion and spontaneous movements [1].
Recently, techniques based on real-time range imaging (RI) have been proposed
for positioning and respiration analysis [2–6]. Compared to commonly employed
imaging techniques, RI sensors are marker-less, non-intrusive and do not im-
ply radiation exposure. However, current RI based positioning systems employ
rigid registration techniques neglecting free-form deformations induced by respi-
ratory motion. In this context, recent work reported an error scale of non-rigid
motion up to 25 mm [5],[6]. Another motivation for non-rigid registration of
respiration-induced surface deformations arises from observations that an analy-
sis of multiple surface regions allows for an improved prediction of internal organ
movement compared to a single external surrogate [7]. Apart from applications
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in radiotherapy, the prediction of internal movement from external surrogates
also holds potential for statistical lung motion modelling [8] or 4-D CT recon-
struction and sorting [9]. However, current surrogates based on RI techniques
rely on heuristic surface partitioning strategies based on points and patches [7]
or manually selected bounding boxes of anatomical regions [4]. Though dense
non-rigid surface registration techniques to generate respiration surrogates were
recently proposed [6],[10], run-times of several seconds are not acceptable in
clinical practice.

In this paper we propose a framework that by design allows to perform respira-
tory motion compensated patient positioning and non-rigid surface deformation
estimation in a joint manner. Our method is based on pre-procedurally ob-
tained patient-specific 4-D shape priors derived from statistical analysis of non-
rigidly registered 3-D RI patient surface data from different respiration states.
The intra-procedural alignment of the patient to the reference state is then
driven by the shape priors, simultaneously yielding a rigid-body table transform
and a free-form deformation accounting for respiratory motion. With real-time
constraints in mind, our framework outsources the computationally expensive
task of non-rigid surface registration to a pre-procedural training phase. Intra-
procedurally, this allows to employ real-time algorithms taking advantage of
the pre-procedurally obtained priors. In particular, we designed our method to
support parallel computation on many-core architectures such as GPUs.

2 Method

Our method relies on RI devices that deliver dense and metric surface infor-
mation of the captured body in real-time. Clinically available systems are for
example AlignRT (Vision RT, London, UK) or Catalyst (C-RAD AB, Uppsala,
Sweden). We denote x (ξi) ∈ R3 the world coordinate associated with ξi in a
2-D sampling domain Ω ⊂ R2 discretized with N ×M pixels. We denote a point
cloud or surface as S = {x (ξ1) , . . . ,x (ξN ·M )} which can be linearized as:

S ≡ s =
[
x (ξ1)

� , . . . ,x (ξN ·M )�
]�
∈ R3NM . (1)

We now briefly explain the general steps of our method. Pre-procedurally, we
non-rigidly register RI surfaces {S1, . . . ,ST } acquired at different respiration
states t = 1 . . . T to a reference surface SRef. The reference can be acquired
using RI sensors or imported from volumetric planning data by (i) segmenting
the body from the background, (ii) isosurface extraction, and (iii) rendering
the surface mesh to a z-buffer representation and sample it from Ω. We obtain
T displacement fields U = {u1, . . . ,uT } , ut ∈ R3NM that are used to build a
deformable modelM (b) representing the priors of our method. Here, b denotes a
parameter vector to control the model. The intra-procedural respiratory motion
compensated alignment of the patient to the reference state is then computed
by finding a rigid-body transformation (R̂, t̂) with rotation R̂ and translation t̂

and the parameters b̂ such that the corresponding model instanceM(b̂) fits the
patients instantaneous state. An illustration is given in Fig. 1.
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Fig. 1. Respiratory motion compensated patient alignment. The reference state (left

gray shape) is deformed according to M(b̂) and transformed by (R̂, t̂) to fit the instan-

taneous state SI (right shape). The displacement field corresponding to M(b̂) is color
coded with red tones denoting large and blue tones denoting small displacements.

2.1 Non-rigid Surface Registration

Training a deformable surface model requires a set of displacement fields U that
describe the elastic deformation φt matching a patient reference surface SRef and
patient surface data St captured at different respiration states t. We represent
the deformation φt by a displacement field ut defined on Ω with

φt (x (ξ)) = x(ξ) + ut(ξ), x (ξ) ∈ SRef . (2)

Now, the goal is to estimate φt in a sense that φt(SRef) ≈ St. For this purpose,
we represent St at time t by its corresponding signed distance function dt(x) :=
±dist(x,St), where the sign is positive outside the body and negative inside.
Further, ∇dt(x) is the outward pointing normal on St and |∇dt(x)| = 1. Based
on dt(x), we can define the projection P (x) := x − dt(x)∇dt(x) of a point
x ∈ R3 in a neighborhood of St onto the closest point on St. Thus, we quantify
the closeness of a displaced reference surface point φt(x),x ∈ SRef to St using
|P (φt(x))−φt(x)| = |dt(φt(x))| as a point-wise measure. Based on this closeness
measure, we use a variational formulation for estimating ut as a minimizer of
the functional

E [ut] = Ematch[ut] + αEreg[ut] =

∫
Ω

(
dt
(
x(ξ) + ut(ξ)

)2
+ α‖Dut(ξ)‖2F

)
dξ (3)

where Du(ξ) denotes the Jacobian of u(ξ) and α the regularization weight. The
matching term Ematch ensures that φt(SRef) ≈ St. As a smoothness prior, we
took a quadratic regularization term on the Jacobian of the displacement into
account. For numerical minimization of Eq. 3, we considered a Finite Element
approximation on a uniform rectangular N × M grid covering Ω for spatial
discretization and applied a multi-scale gradient descent scheme, c.f. [10].

2.2 Deformable Model Generation

Based on the patient-specific set of non-rigidly registered surfaces St we apply a
principal component analysis (PCA) to the training set V = {sRef ,v1, . . . ,vT }
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with vt = sRef + ut. The P ≤ T eigenvectors ei with the largest non-zero
eigenvalues of the covariance matrix of the centered version of V define the
model’s modes of variation as

Φ = [e1, . . . , eP ] ∈ R3NM×P . (4)

A linear combination of the P principal modes of variation spans a subset of RI
surfaces S composed of the given modes of variation as

S ≡M (b) = v +Φb, v =
1

T + 1

(
sRef +

T∑
t=1

vt

)
. (5)

Here, b ∈ RP is a parameter vector holding the coefficients for the modes of
variation, thus accounting for the model’s inherent free-form deformations.

2.3 Respiratory Motion Compensated Patient Alignment

The intra-procedural alignment of the patient is performed by fitting the de-
formable modelM to the patient’s instantaneous respiration state SI:

R̂, t̂, b̂ = argmin
R,t,b

dist (SI,R (v +Φb) + t) . (6)

The rotation matrix R̂ and translation vector t̂ define the rigid-body table trans-
formation whereas the model parameter vector b̂ accounts for non-rigid defor-
mations induced by respiratory motion. Furthermore, dist (Si,Sj) quantifies the
distance between two surfaces and may for example denote a point-to-point or
point-to-plane measure. In this work we employ a model fitting strategy derived
from the iterative closest point (ICP) algorithm [11]. In each iteration k, the cur-
rent model instance Sk is aligned to the instantaneous surface SI via a rigid-body
transformation (Rk, tk) estimated by a closest-point relationship. Based on the
estimated transformation, the model’s closest points Y k on the instantaneous
surface SI are then projected onto the model basis Φ to update the parameters
bk. See Algorithm 1 for details.

A benefit of this model fitting scheme is the inherent high degree of paral-
lelism in each iteration of Algorithm 1, thus allowing for a real-time capable
implementation on many-core systems such as GPUs. In particular, we employ
the recently proposed random ball cover for efficient closest point search [12].

2.4 Non-rigid Deformation Estimation Using 4-D Shape Priors

By design, our method allows for efficient estimation of respiration induced defor-
mations. For two surfaces (Si,Sj) and its associated estimated model coefficients
(bi, bj), the estimation of a dense displacement field ui,j between these surfaces
breaks down to a linear mapping as ui,j = Φ (bi − bj). This follows directly
from Eq. (5). We further note that the computational complexity of non-rigid
deformation estimation is therefore decoupled from the actual non-rigid regis-
tration technique creating the priors contained in Φ. Inherently, this allows to
employ computational expensive non-rigid registration techniques as proposed
by Schaerer et al. [6] or Bauer et al. [10] in the model generation stage.
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Algorithm 1. Algorithm for Model Fitting

Input: Instantaneous surface SI and deformable model v,Φ
Input: Initial guess for table transformation R0, t0 and model parameters b0
for k = 1, . . . , Niter do

Sk = Rk−1 (v +Φbk−1) + tk−1

Y k ⇐ closestPoints (Sk,SI)
(Rk, tk) ⇐ estimateTransformation (Sk,Y k,Rk−1, tk−1)
bk = Φ� (

R−1
k (Y k − tk)− v

)
end for
Output: Estimated table transformation

(
R̂, t̂

)
and model coefficients b̂

3 Evaluation and Results

For our experiments we captured RI data from six subjects using a structured
light sensor (30 Hz, 640 × 480 px) in a clinical environment. RI data were en-
hanced using edge-preserving filtering, cropped to a region of interest covering
the subject and re-sampled in the sampling domain Ω to a resolution of 128×128
pixels. For model generation, the subjects were instructed to perform thoracic
and abdominal breathing subsequently. For each breathing mode we then ex-
tracted surface data St from T = 8 phases covering one respiration cycle. We
found that more cycles did not improve accuracy. For all subjects, the body sur-
face at full abdominal expiration was chosen as the reference SRef for non-rigid
registration of the remaining 15 shapes to form the training set V . PCA was then
performed on the training set V with the number of modes P chosen such that
99% of the input variance is explained. This resulted in four variation modes for
all subjects. To validate the extrapolation ability of our model to unseen data,
the subjects were asked to perform regular breathing over several respiration
cycles. Surfaces for validation were generated from 32 RI frames sampled every
10th frame, starting at an arbitrary phase.

Patient Positioning. The accuracy of our method for respiratory motion com-
pensated patient positioning is assessed by evaluating the difference between
the estimated table transforms (Ri, ti) for validation frame i and the corre-
sponding ground truth (GT) transform RGT ≡

{
r1GT, r

2
GT, r

3
GT

}
and tGT ≡{

t1GT, t
2
GT, t

3
GT

}
. The superscripts 1, 2, 3 denote rotation around or translation

along the x, y and z axis, respectively. The GT transform was derived from the
identity transform as the subjects did not change position between the training
and testing phase. For each subject, the average rotation error Δri and transla-
tion error Δti for validation frame i is computed according to:

Δri =
1

3

3∑
j=1

∣∣∣rjGT − rji

∣∣∣ , Δti =
1

3

3∑
j=1

∣∣∣tjGT − tji

∣∣∣ . (7)

For comparison, we oppose our method to a conventional ICP-based rigid align-
ment strategy as used in [5]. For both methods, the initial estimate for the table
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Fig. 2. Table transform error of our method (shaded) compared to conventional ICP-
based alignment (not shaded) for subjects S1-S6. The left figure depicts the mean
rotation errorΔr in [◦], the right figure the mean translation errorΔt in [mm] compared
to the ground truth transform.

transform was set to 10 mm and 5◦ off from the GT position. Fig. 2 shows
quantitative results for the average rotation and translation error over all 32
validation frames. Note that our motion compensated positioning method sig-
nificantly reduces that table transform error. Over all subjects, the rotation and
translation error decreases by a factor of 3.0 and 2.3, respectively.

Deformation Estimation. The capability of our method for non-rigid de-
formation estimation is assessed by computing the absolute error in terms of
surface mismatch between the transformed estimated model instance and the
instantaneous surface as |dist (R(M (b)) + t,SI)| using a point-to-plane mea-
sure. In order to account for boundary effects such as edges, we restricted the
evaluation to a center region on the subjects surface. For comparison, we again
oppose our method to a conventional ICP-based rigid alignment strategy. Fig. 3
exemplarily illustrates the surface mismatch for subject S1. In Fig. 4 left, the
surface mismatch is shown for subject S4 and a subset of validation frames. The
right plot in Fig. 4 depicts the surface mismatch for the individual subjects over
all validation frames. We note the large residual displacements with ICP-based
alignment that can be reduced significantly with our model-based deformation
estimation. Over all subjects, our method reduces the surface mismatch by a
factor of 1.9.

Performance Evaluation. We implemented the model fitting routine as de-
scribed in Algorithm 1 on an NVIDIA GTX570 GPU using the CUDA architec-
ture. For performance reasons, we employed a sparse fitting scheme, e.g. a subset
of uniformly sampled points in the modelM as well as the instantaneous surface
SI where used. For 4 · 103 model points, 1.6 · 104 surface points and N = 100
iterations that proved to be sufficient to achieve the accuracy reported above,
our method runs at 40 ms.
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Fig. 3. Color-coded surface mismatch for ICP-based alignment (left) and our method
(right). Average misalignment error is 1.3 mm with ICP and 0.5 mm with our method.

Fig. 4. Surface mismatch for our method (shaded) and ICP-based alignment (not
shaded). The left figure shows the surface mismatch for an individual subject over
several frames. The right figure depicts the surface mismatch for the individual sub-
jects over all frames.

4 Conclusion

In this paper we have proposed a real-time capable range imaging based frame-
work for joint respiratory motion compensated patient positioning and non-rigid
surface deformation estimation. Both tasks are achieved by the main contribu-
tion of this paper, namely to employ 4-D patient-specific shape priors obtained
from statistical analysis of non-rigidly registered surfaces. In experiments we
showed that, in comparison to conventional positioning strategies, our method
reduces the average alignment error by a factor of 3.0 and 2.3 for the rota-
tional and translational components, respectively. We further demonstrated that
a GPU-based implementation of our method allows to estimate dense surface de-
formations at a run-time of 40 ms.
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Abstract. We propose novel methods for (a) detection of a catheter
in fluoroscopic images and (b) reconstruction of this catheter from two
views. The novelty of (a) is a reduced user interaction and a higher
accuracy. It requires only a single seed point on the catheter in the fluo-
roscopic image. Using this starting point, possible parts of the catheter
are detected using a graph search. An evaluation of the detection using
66 clinical fluoroscopic images yielded an average error of 0.7 mm ± 2.0
mm. The novelty of (b) is a better ability to deal with highly curved
objects as it selects an optimal set of point correspondences from two
point sequences describing the catheters in two fluoroscopic images. The
selected correspondences are then used for computation of the 3-D re-
construction. The evaluation on 33 clinical biplane images yielded an
average backprojection error of 0.4 mm ± 0.6 mm.

1 Introduction

Radio-frequency catheter ablation can be used to treat atrial fibrillation, cur-
rently being the most common heart arrhythmia. Ablation is usually performed
under fluoroscopic guidance using a C-arm system. Unfortunately, in many cases
physicians can only see the catheters, while the left atrium remains invisible. Of-
ten a 3-D overlay is used to outline the structure of the heart [6]. In contrast to
electro-anatomical mapping systems, C-arm systems provide only 2-D projection
images but no direct 3-D information of the catheters. Physicians need to derive
the respective catheter positions from fluoroscopic imaging mentally. Currently,
point localization from two views is the only way to verify a catheter position.
Electro-anatomical mapping systems provide a 3-D visualization of the catheters
inside a pre-operative data set. To provide the same functionality, we propose a
novel semi-automatic method to reconstruct a catheter used in electrophysiol-
ogy (EP) procedures from two views. In addition, multiple reconstructions of the
mapping catheter at different pulmonary veins (PVs) or at different positions
at one PV can be used for registration. Previously, a method for initial regis-
tration using the catheter in the coronary sinus was proposed [5]. Our proposed
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method would help to use these methods in clinical practice. Furthermore, the 3-
D catheter model could be used as input for other algorithms used for catheter
tracking [2] or motion compensation [4]. Previous methods dealed only with
guide wires or catheters with low curvature [3,10]. Blob detection can be used to
detect the electrodes of the catheter, but not its entirety [8]. Our novel method
provides the capability to achieve a 3-D reconstruction of a complex catheter
such as the circumferential mapping catheter by requiring only minimal user
input. User interaction is limited to a single click on the catheter in each of the
imaging frames. This contribution is structured as follows. In the second section,
details on the catheter detection are provided. In the third section, the catheter
reconstruction is presented. Our evaluation and results are presented in section
four. In the final section, we discuss our results and draw some conclusions.

2 Catheter Detection

Catheter detection is performed in three steps: (i) a seedpoint on the transition
from the shaft to the catheter tip is marked. Based on image pre-processing,
possible parts of the catheter are identified, and (ii) combined to a graph. (iii) a
set of edges of the graph is selected. This provides us with a final estimate for the
overall catheter. In step (i), a medialness filter [9] is applied to the image. Then a
binary image is generated using a dynamic threshold. Before the skeletonization
of the binary image is computed, an opening and closing operation is performed
to close small gaps. The search space for the catheter is then reduced by selecting
the 150,000 pixels from the 1,024× 1,024-image that are nearest to the seedpoint
and the skeleton. The skeleton contains the parts of the image which belong most
likely to the catheter. In step (ii), the skeleton is transformed into a graph to
obtain an analytical representation for a catheter model. The edges of the graph
are point sequences that basically follow the skeleton. The nodes of this graph
are the points where a point sequence starts or meets another point sequence. An
example of such a graph is given in Fig. 1(b). For the computation of this graph,
a cost function is defined using the filtered image and a distance transformation
of the skeleton. Using this cost function, the shortest paths from all pixels to
the seedpoint are computed by Dijkstra’s algorithm. The circles and lines of the
skeleton are then integrated in the graph. Since the skeleton is not continuous
but may contain gaps, the above computed shortest paths from certain feature
points to the seedpoint are used as edges for the new graph. The feature points
are computed such that the shortest paths from these points to the seedpoint
form the circles and lines of the skeleton as well as certain additional connections
between parts of the skeleton. For the circles of the skeleton, the two points on
the circle which are farthest away from the seedpoint are used as feature points.
These points can easily be found by searching for points on the skeleton which
have only neighboring skeleton pixels with a lower distance to the seedpoint,
see Fig. 1. The shortest paths from these points to the seed point will either
run in clockwise or counterclockwise direction, respectively. The remaining lines
of the skeleton are inserted into the graph by including the edges belonging
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(a) (b)

Fig. 1. (a) Circles can be found by considering pixels at which two paths from different
directions meet. The color indicates the distance to the seedpoint. The two neighboring
pixels of p are closer to the seedpoint than p itself. In such a case, two paths from
different directions meet at pixel p. By selecting p and n2 as feature points, the circle
is given by their respective paths to s (b) An example of the generated graph. Each path
from a feature point to a node is given in a different color to make them distinguishable.

to the shortest paths from endpoints of the skeleton to the seedpoint. Finally,
connections between parts of the skeleton are added to overcome gaps in the
skeleton. The connections are found similarly to the circles but this time the
points with higher distance to all neighboring points do not need to be part of
the skeleton. For each connection, the distance lb in pixels to the existing graph
is computed as well as the distance lc to the meeting point. Finally, the endpoints
of edges in the graph which are neighbored in the image are connected such that
circles arise. In step (iii), the above computed graph serves as search space for the
catheter. With the seedpoint, some information is given by the physician. The
search for the catheter is split up into the search for the catheter shaft and the
catheter tip. Due to the standard setups of the C-arm used in electrophysiology
procedures, prior knowledge of the image orientation can be taken into account.
The shaft of the catheter is considered to enter the image at the bottom edge.
Therefore all shortest paths on the graph from the seedpoint to points in the
lower half of the image are considered as candidates for the shaft. They are
examined with respect to their length, curvature, direction and ending angle.
The best shaft candidate maximizes the length while minimizing the curvature.
Its direction as well as its ending angle are as vertical as possible. The elliptical
catheter tip is determined by considering all possible paths starting from the
seedpoint that were not used for the shaft. For selecting the best path, an ellipse
is fitted to the path and the ellipse that approximates the elliptical part best is
chosen, according to their response to the medialness filter. We also try to make
sure that the shape of the path is as elliptical as possible. This is measured by
considering the average distance from the ellipse to the path and vice versa.
Additionally, the size of the approximated ellipse is used to reject candidates for
which the ellipse is not plausible with respect to the known catheter shape. Since
the search space for the ellipse search is very large, a population based search
strategy is used [1]. In this strategy, an initial population of short paths starting
from the seedpoint is evaluated. In each iteration the offspring which continues
the paths from the previous generation is evaluated as described above. If a
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(a) (b) (c)

Fig. 2. The spline in (a) is sampled and for each sampling point, possible point cor-
respondences are compute by intersecting the epipolar line with the spline in (b). For
each possible point correspondence, the spline parameters are stored (c). A correspon-
dence function that computes for each spline point CA(tA) the corresponding spline
point CB(tB) has to be monotonic. The optimal correspondence function interpolates
as much as possible correspondence candidates.

population limit is reached, the paths with the worst fitness value drop out of
the population. The search stops, if in the previous three generations no better
solution was found. The final result is a 2-D spline along the detected catheter.

3 Catheter Reconstruction

The catheter is reconstructed in 3-D from the two 2-D splines, CA(tA) and
CB(tB), in image plane A and B. They run from bottom to top, i.e. CA(0) denotes
the lowest point at the shaft, CA(1) is the last point at the tip. Reconstruction
is performed by triangulation of corresponding points. To find them, CA(tA)
is equidistantly sampled and for each point, potential corresponding points are
computed by intersecting the epipolar line with the spline CB(tB) in image B.
For objects with high curvature, a point in A might yield multiple intersections
in B. So, a strategy for selecting one of those intersections has to be established.
Due to inaccuracies in a practical scenario, the epipolar line might intersect the
spline not at the actual corresponding point. As shown by the solid green line
in Fig. 2, intersections can, however, occur at other points. A greedy selection
strategy as proposed by Baert et al. [2] might yield wrong results in such a case.
It selects the intersection point next to the previous one as corresponding point.
If one point would be chosen incorrectly, all subsequent points would be incorrect
as well, due to the linearity constraint. To avoid such a problem, the selection
process is performed after the computation of all correspondence candidates.
This is achieved by computing an optimal correspondence function f : tA → tB
that takes all possible point correspondences (tA, tB) into account. It should map
the first spline parameter to the second and be able to deal with missing points.
The monotonic function that contains as many as possible correspondence pairs
is selected, see Fig. 2. It might be necessary to skip some points in order to include
following points with regard to the monotony constraint. An estimate of missing
correspondence points can be computed by interpolating f . The computation
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(a) (b)

Fig. 3. (a) The optimal correspondence function can be found by computing a shortest
path in a graph. The nodes of the graph are the correspondence candidates and the
edges connect them such that monotony constraint is preserved. The cost of an edge
is equal to the number of skipped points. (b) An example of the graph, the edges are
visualized only for node (t3, t3,1).

of this function can be considered as a shortest path problem. A node of the
graph corresponds to a possible point correspondence pairs (ti, ti,j). ti denotes
the spline parameter of the i-th sample point of CA. For a fixed point CA(ti), the
possible corresponding points are then given by CB(ti,1), . . . , CB(ti,m), assuming
m intersection points with the spline in image plane B. All nodes with the
same index i form a group Gi. The edges are designed such that the monotony
constraint is preserved. The node (ti, ti,j) is connected by a directed edge to a
single node of each group Gi+l with a group jump l > 0. The target node of
the edge is the node with the smallest index ti+l,k that fulfills the constraint
ti+l,k > ti,j . Including an edge from group Gi to a group Gi+l, l ≥ 2 means
that the possible point correspondences for the sample points in between are
neglected. As only as few points as possible should be omitted, skipping a group
is penalized by a cost of 1, so the cost of an edge is l − 1.

4 Evaluation and Results

For the evaluation of the detection, clinical data consisting of 33 biplane se-
quences from 27 patients were used. For each of the resulting 66 monoplane
sequences, a detection was computed and compared with a gold standard seg-
mentation. The error was measured as the distance from detected catheter pixels
to the gold standard center line. For the generation of the search graph, it turned
out to be sufficient to include only those circles in the graph for which the piece
from a feature point to the meeting point is longer than 75 pixels. For the con-
nections between parts of the skeleton, taking only those with lc > 75 pixels and
lc/lb > 10 was a good choice. The search for the catheter tip started with a path
length of 100pixel and stopped at latest if a length of 600 pixel was reached.
A possible detection result is given in Fig. 4. For the whole catheter, the mean
error of the detection is 0.7mm± 2.0mm and the min and max error is 0.0mm
and 19.9mm. The pixel spacing is 0.1725mm, so, the mean error corresponds to
4.1 pixels in the 2-D images. For the tip only, the mean error is 0.4mm± 0.3mm,
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(a) (b)

Fig. 4. (a) Manual initialization of the catheter detection. The seedpoint of the pro-
posed method is set by the physician at the transition between the shaft and the
catheter tip. (b) Resulting spline after detection of the catheter.

(a) (b)

Fig. 5. Mean detection errors for each sequence, the thin bars denote the maximal
and minimal error. In (a) the detection error for the whole catheter is given. The total
mean error is 0.7 mm ± 2.0 mm. (b) shows the error for the catheter tip. The total
mean error is 0.4 mm ± 0.3 mm.

the min and max error is 0.0mm and 3.1mm, see Fig. 5. As the catheter tip is the
important part for the physician, our results meet current clinical requirements.
The average percentage of undetected pixels was 6.0%± 10.2%. The min and
max percentage of undetected pixels were 0.0% and 44%, respectively. The av-
erage percentage of false positive pixels was 1.3%± 7.1% The min and max per-
centage of false positives were 0.0% and 47%, respectively. The evaluation of the
reconstruction was performed using clinical data. Since no clinical 3-D data was
available as ground truth, the result of the 3-D reconstruction was backprojected
into the image planes and the error of the reprojected points to a gold standard
segmentation was computed. The resulting mean error was 0.4mm± 0.6mm
and 2.3 pixels, respectively, for the whole catheter, and 0.7mm± 0.7mm for the
catheter tip. The min and max error was 0.0mm and 4.8mm in both cases.
Using the results of the detection for reconstruction, the result differed to the
reconstruction using the gold-standard by 1.5mm ± 2.5mm, the min and max
difference was 0.0mm and 15.7mm. Fig. 6 shows the results for each biplane
pair. The detection requires on average 8.7 sec and the reconstruction 0.15 sec
on an Intel i7 with 2,67 GHz and 4GB RAM. The medialness filter computation
was performed on a NVIDIA Quadro FX 880M GPU.
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Fig. 6. (a) shows the mean error of the reprojected 3-D reconstruction for each se-
quence. The overall mean error is 0.4 mm ± 0.6 mm. (b) shows the deviation of the
reconstruction using the detection results to the reconstruction using the gold standard
segmentation. The mean deviation is 1.5 mm ± 2.5 mm.
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Fig. 7. Reconstruction result using the previous approach (a) and our new method
(b). While both methods perform well for the linear part of the catheter, the previous
approach fails for the curved catheter tip.

5 Discussion and Conclusions

The results of the catheter detection show that detection of the whole catheter
is possible if only a single seedpoint is provided. The mean error is 0.7 mm and
therefore sub-millimeter accuracy can be reached for catheter parts that were
detected by the algorithm, thus, enabling catheter localization for EP applica-
tions [7]. The percentage of undetected catheter parts is with 6.0 % lower than
the methods proposed by Honnorath et al. [10] and Franken et al. [8]. Also the
number of false positive pixels is lower when compared to [10]. Compared to the
previous approach by Baert [2], our new approach can deal better with curved
catheters as shown in Fig. 7. In some cases, two catheters may be overlapping
and the wrong catheter is selected as shaft. In such cases, the physician could
manually adjust the detection result before performing the 3-D reconstruction.
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Abstract. Tool tracking is an accepted capability for computer-aided surgical in-
tervention which has numerous applications, both in robotic and manual
minimally-invasive procedures. In this paper, we describe a tracking system which
learns visual feature descriptors as class-specific landmarks on an articulated tool.
The features are localized in 3D using stereo vision and are fused with the robot
kinematics to track all of the joints of the dexterous manipulator. Experiments are
performed using previously-collected porcine data from a surgical robot.

Keywords: Tool Tracking, Surgical Robotics, Learning, Features, Fusion.

1 Introduction

Robotic surgery has become widely used in recent years as it has enhanced the inherent
abilities of the human surgeon. For example, there are more than 1800 da Vinci R© [1]
surgical systems working in operating rooms all over the world that performed about
360,000 surgical procedures in 2011. High definition stereo vision helps the surgeon
see the anatomy and interact with the surgical tools with great clarity. Augmenting the
surgeon’s vision with other relevant information in the form of graphical overlays can
further help the surgeons/patients in a different dimension.

Knowledge of the locations of tools in the endoscopic video can enable a wide spec-
trum of applications. Virtual measurements can be utilized to provide accurate measure-
ment of sizes of various anatomical structures. Virtual overlays indicative of the status
of the tool (e.g., the firing status of an electro-cautery tool) can be placed at the tip of
the instrument which is close to the surgeon’s visual center of attention, enhancing the
safety of using such tools. It is also useful in managing the tools that are off the screen,
increasing patient’s safety, or for visual servoing of motorized cameras.

The joints of a robotic surgical system are usually equipped with encoders so that
the pose of the end effectors can be computed using forward kinematics. On one hand,
the kinematics chain between the camera and the tool tip involves 18 joints and more
than 2 meters in cumulative length, which is challenging to the accuracy of absolute
position sensing. On the other hand, a master-slave system does not require high abso-
lute accuracy because surgeons are in the control loop. As a result, we have observed
up to 1-inch of absolute error, which is too large for most of the applications that are
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mentioned above. Therefore, detecting and tracking the tools from images is a practical
way to achieve the accuracy requirements of the applications.

Previous approaches to tool tracking have employed specialized fiducial markers
to locate the tool [2,3,4]. Effective as they are, there are practical challenges such as
manufacturability and cost. Alternatively, marker-less techniques have used: color seg-
mentation to label pixels in the image as tool against the background [5,6,7]; geometric
priors to confine the search space from the abdominal wall [8,9,10]; or combining dif-
ferent features together to detect the tool in the image [11,12,13]. Most prior work
emphasizes the shaft, however in robotic surgery surgeons tend to work very close to
the anatomy and the small visible part of the shaft may cause these algorithms to work
poorly. This has motivated us to investigate the features on the tip of the tools.

In this paper we present a tracking system which learns the appearances of natu-
ral landmarks on an articulated tool by training an efficient multi-class classifier on a
discriminative feature descriptor. We run the classifier on an image frame to detect all
extrema representing the location of each feature type, where confidence values help
reject false positives. We stereo match in the corresponding camera to recover 3D lo-
cations. By also knowing these landmark locations on the tool CAD model, we recover
a pose offset of the kinematics using an Extended Kalman Filter. This fusion of vision
and kinematics fills in the gap of missed vision detections and the articulations that are
not estimated by vision, making the estimation of the tool pose available at all times.

2 Materials and Methods

2.1 Training Data Collection

We begin by collecting data to train our classifier. We use five different video sequences
which span various in-vivo experiments, to best cover a range of appearance and light-
ing scenarios. We concentrate on the Large Needle Driver (LND) tool, keeping in mind
this technique may be applied to any other types of tools. Seven visually salient and
stable landmarks are manually selected and shown on the left of Fig. 1. The features
chosen are of the pins that hold the distal clevis together, the IS logo in the center, and
the wheel and wheel pin. We also know these locations on the tool’s CAD model, which
will be used for association to compute the final articulated pose.

For each frame in the labeling procedure, we manually drag a bounding-box around
each feature of interest, being careful to avoid contamination from pixels which don’t
belong to the tool. Overall, we use ∼ 15,000 training samples across the 7 classes.

2.2 Feature Descriptor

There has been a large amount of prior work on visual feature detection and matching
in the computer vision community. Scale and affine invariant feature descriptors [15]
have been very successful in matching planar features. However, we found that they
work poorly for features on metal surfaces with lighting changes, as in the case of
surgical tools with varying poses and light directions. The right-side of Fig. 1 shows
example appearance changes typically encountered of the IS Logo feature. We require
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Fig. 1. [Left] The feature classes we detect on the LND tool. We concentrate on 7 different types
of naturally-occurring landmarks. [Right] Examples appearance changes of the IS Logo feature.

a discriminative and robust descriptor for our feature classes as each is fairly small (e.g.,
17-25 pixels wide), and so we chose the Region Covariance Descriptor [16], where the
covariance matrix of d features in a small image region serves as the feature descriptor.
Given an image I, we extract d=11 features, resulting in the feature image F:

F = [x y H S L Ix Iy Ixx Iyy

√
I2
x + I2

y arctan(Iy/Ix)] (1)

where x,y are the pixel locations; H,S,L are the hue, saturation, and luminance values
at pixel location (x,y); Ix, Iy are the 1st-order spatial derivatives; Ixx, Iyy are the 2nd-
order spatial derivatives; and the latter two features are the gradient magnitude and
orientation, respectively. The covariance matrix CR ∈ Rd×d of an arbitrary rectangular
region R within F then becomes our feature descriptor.

Each CR can be computed efficiently using integral images. We compute the sum of
each feature dimension as well as the sum of the multiplication of every two feature
dimensions. Given these first and second order integral image tensors, it can be shown
that the covariance matrix of any rectangular region can be extracted in O(d2) time
[16]. Using the ground truth data from Sec. 2.1, we extract covariance descriptors of
each feature and store the associated feature label for training a classifier.

2.3 Feature Classification

There are several multi-class classifiers which may suit this problem. We adapt a method
called Randomized Trees (RTs) [17] due to its computational efficiency. In addition to
providing feature labels, we would like to retrieve confidence values for the classifica-
tion task which we use to construct class-conditional likelihood images for each class.

RTs naturally handle multi-class problems very efficiently while retaining an easy
training procedure. The RT classifier Λ is made up of a series of L randomly-generated
trees Λ = [γ1, . . . ,γL], each of depth m. Each tree γi, for i ∈ 1, . . . ,L, is a fully-balanced
binary tree made up of internal nodes, each of which contains a randomly-generated
test that splits the space of data to be classified, and leaf nodes which contain estimates
of the posterior distributions of the feature classes.
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To train, the training features are dropped down the tree, performing binary tests at
each internal node until a leaf node is reached. Each leaf node contains a histogram
of length equal to the number of feature classes b. The histogram at each leaf counts
the number of times a feature with each class label reaches that node. At the end of
the training session, the histograms are normalized into probabilities using the total
number of hits at that node. A feature is then classified by dropping it down the trained
tree, again until a leaf node is reached, and is assigned the probabilities of belonging to
a feature class depending on the posterior distribution stored at the leaf from training.

Because it’s computationally infeasible to perform all possible tests of the feature,
L and m should be chosen so as to cover the search space sufficiently and avoid ran-
domness. Although this approach has been very successful for matching keypoints [17],
traditionally the internal node tests are performed on a small patch of the gray image by
randomly selecting 2 pixel locations and applying a binary operation (≤) to determine
which path to take to a child. In our problem, we are using feature descriptor vectors
rather than image patches, and so we must adapt the node tests to suit our problem.

To this end, we use a similar approach to [18] for the node tests. For each internal
tree node we construct a random linear classifier hi(x) on feature vector x to split:

hi(x) =
{

nTx+ z≤ 0 go to right child
otherwise go to left child

(2)

where n is a randomly generated vector of the same length as feature x with values in
the range [−1,1] and z ∈ [−1,1] is also random. We found that this node test allows
for robust splitting of the data and is computationally efficient. In this way, we build
up probability distributions at the leaf nodes with the training descriptors. The results
from each γi are averaged across the L trees. However, the d-dimensional nonsingular
covariance matrices cannot be used as is to perform this task directly because they do
not lie on a vector space, but rather on a connected Riemannian manifold. Due to space
limitations, we refer the reader to [19] for a mathematical overview on post-processing
the covariance descriptors to a Euclidean vector-space for use with a classifier. In the
end, our [d× d] dimensional matrices CR are mapped to vectors c j ∈ Rd(d+1)/2.

2.4 Feature Class Labeling and Reconstruction

Labeling. Given our trained classifier Λ , we detect features for each label in an image
by computing covariances CR, each of which is mapped to a vector space, producing
c j. We drop each c j through the trees γi and average the probabilities at the obtained
leaf nodes to get a probability distribution pL, representing the probability of c j belong-
ing to each of the L feature classes, resulting in L class likelihood images. To get the
pixel locations, we perform non-maximal suppression in each class likelihood image.
Example detections and likelihoods are shown in Figs. 2(a) and 2(c)-2(i), respectively.

Although the integral images afford efficient extractions of the covariances, we can
reduce the computations further by initially segmenting the pixels of the image to iden-
tify areas of interest to classify. Using the method in [11], we train a Gaussian Mixture
Model of several color and texture features to classify pixels into 1 of 3 groups (metal,
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(a) Class Extrema (b) Mask Prior (c) iDot (d) IS Logo (e) Pin1

(f) Pin3 (g) Pin4 (h) Wheel (i) Wheel Pin

Fig. 2. Example likelihood images along with 6/7 successfully detected feature classes correctly
located as extrema in (a). The Pin3 (f) feature is incorrectly localized (white circle). The color-
coding for the circles in (a) is: Blue for iDot, Green for IS Logo (d), Red for Pin1 (e), Orange for
Pin4 (g), Purple for Wheel (h), and Cyan for Wheel Pin (i). A mask prior is shown in (b) which
detects pixels on the metal part of the tool to reduce the number of pixels needing classification.

shaft, and background) and use the metal likelihood to produce a binary image of pixels
to run through our classifier Λ . Fig. 2(b) shows a mask prior for the video image in 2(a).

3D Reconstruction. Now that we have candidate pixel locations for each feature class,
we retrieve the 3D locations by stereo matching the feature tracks in the corresponding
stereo camera using normalized cross-correlation checks along the epipolar line and
triangulating the features. These feed into our fusion stage, described next.

2.5 Vision and Kinematics Fusion

The robot kinematics data can be fused with the vision to fill in the gap of the missed
detections and to facilitate rejection of outliers. Many surgical robots like the da Vinci R©

need to maintain a stationary insertion point (also termed remote center of motion, or
RCM). The errors in the passive setup joints accumulate at the RCM, resulting in a
pose offset between the actual pose of the RCM and the pose computed using forward
kinematics. This pose offset should be constant or slowly changing for a given surgical
setup. Therefore, we can fuse vision and kinematics by solving this 6-DOF pose offset.

We denote RCS as the coordinate system of the true RCM and KCS as the coor-
dinate system of the RCM according to the kinematics. The coordinates of a point p
in both coordinate systems are associated by pK = RK

R pR + cK
R . We use an Extended

Kalman Filter (EKF) to estimate the rigid transformation RK
R ,c

K
R due to its adaptive

nature, computational efficiency and the ability for uncertainty propagation. The infor-
mation form of the filter is chosen to easily deal with a varying number of detected
features. Also, the filter does not require the solution to be fully determined in a single
frame. We omit the details of the implementation due to space limitations and refer the
interested reader to [20] for more details.

It is possible that the output of the feature classification contains outliers. We employ
RANSAC to enforce the rigid transformation using a sliding window approach and so
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Fig. 3. Examples from our fusion tracker with the overlays for both the raw (yellow) and corrected
(blue) kinematics. A visual inspection shows the tracker fixing the kinematics quite accurately.

only the inliers are fed into the EKF. We require a minimum of ∼ 30− 50% inliers to
begin the filtering procedure.

3 Results

We experimented on previously collected porcine data from a da Vinci R© surgical robot.
The data which was used to test was specifically not included in the training proce-
dure. After the off-line training of our RT classifier Λ (Sec: 2.3) using the seven feature
classes shown in Fig. 1, we detected features (Sec. 2.4) and performed 3D reconstruc-
tion. These point locations were fed into the fusion module (Sec. 2.5) and the final
kinematics joint overlay is drawn in the original image frame.

Six sample results are shown in Fig. 3, in which the yellow lines represent the raw
kinematics projected into the image frames and the blue lines show the fixed kinematics
resulting from our tracker. Notice the significant errors in some cases, motivating the
need for the ideas presented in this paper. A visual inspection yields a fairly accurate
correction of the kinematics overlaid on the right-most tool. The bottom-row middle-
column shows a case where no features are visible, yet the EFK can predict because
the remote center bias was previously accounted for correctly and remained static. This
affords longer overall tracking times. On average it required ∼ 10− 12 frames for the
fusion module to collect enough evidence to lock on to the true instrument kinematics.

Accuracy. The accuracy requirements for tool tracking depends on the application.
Some applications, such as virtual measurement, may require ≤ 1mm accuracy while
others such as status overlay can be more tolerant. It is regarded as acceptable if the
estimated tool centerline is within the tool shaft, so it is not confused with another
tool. This has motivated our evaluation method shown in Fig. 4, without being able to
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Fig. 4. To evaluate our kinematics estimates, the projected overlays must fall within the bound-
aries labeled as dotted blue lines here.

obtain ground truth in-vivo. The dotted blue lines define an acceptable boundary for
the camera-projection of the kinematics. We manually inspect each frame of the test
sequences, and resulted in a 93% accuracy rate over 1600 test frames. We attribute the
incorrect estimates to the initial time necessary to lock on to the tool while the fusion
module gathers evidence and occasional poor localization of the 2D features.

Occasionally we notice that the estimate is accurate on the tool tip, but slightly offset
on the shaft. This occurs because we only include one feature on the shaft (Pin4), but in
the future we will look to include more shaft information. Concurrent with this work we
performed a study [21] on the feature detection accuracy, where we obtained an average
localization accuracy of 86%, although this varies depending on the feature type. We
also note that although some feature types are not always detected, we need only∼ 3−4
on a given frame because of the fusion, and so across the 7 chosen landmarks our
experiments show that the percent correct achieved is sufficient for long-term tracking.

Timing. The tracker runs at∼ 1.2 secs/frame, where the feature detection takes most of
the processing. This is dependent on: number of trees in Λ (90) , depth of each tree γi

(10), number of features used in CR (11), and the quality of the initial segmentation. It
is also worth mentioning that we are estimating a pose offset that changes very slowly,
therefore it is not critical that the estimation runs at frame-rate. Future speed-ups can
come from GPU enhancements, because many parts of the algorithm are inherently par-
allel, and tracking of the features (between consecutive frames, the features shouldn’t
move far and so we only need to classify small windows around previous detections).

4 Conclusion

In this paper we have presented a method to learn to detect naturally-occurring land-
marks on an articulated surgical tool to track it over time. We showed robustness in
both feature detection and fusion of the vision observations with the inaccurate robot
kinematics. Future work includes testing on different types of tools as well as tracking
multiple tools in the scene simultaneously.
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Abstract. We present image-based methods for tracking teeth in a
video image with respect to a CT scan of the jaw, in order to enable
a novel light-weight augmented reality (AR) system in orthodontistry.
Its purpose is guided bracket placement in orthodontic correction. In
this context, our goal is to determine the position of the patient maxilla
and mandible in a video image solely based on a CT scan. This is suit-
able for image guidance through an overlay of the video image with the
planned position of brackets in a monocular AR system. Our tracking al-
gorithm addresses the contradicting requirements of robustness, accuracy
and performance in two problem-specific formulations. First, we exploit
a distance-based modulation of two iso-surfaces from the CT image to
approximate the appearance of the gum line. Second, back-projection of
previous video frames to an iso-surface is used to account for recently
placed brackets. In combination, this novel algorithm allowed us to track
several sequences of three patient videos of real procedures, despite dif-
ficult lighting conditions. Paired with a systematic evaluation, we were
able to show practical feasibility of such a system.

1 Introduction

This paper suggests a novel solution for guidance in orthodontic applications
with a light-weight monocular video see-through Augmented Reality (AR) sys-
tem. It targets the guided placement of brackets onto individual teeth in order to
improve efficacy and reduce chair time of bracket placement and re-adjustments
for dental braces in orthodontic correction, therefore allowing to incorporate
pre-procedure simulation and planning. The state of the art for this procedure
relies solely on the experience of the orthodontist for both placement of the
brackets and the choice of the wire tension between the brackets. In dentistry,
low-dose cone-beam CT reconstructions of the jaw are typically obtained with
modern digital volume tomography (DVT) devices, with an acceptable dose limit
even for teenagers. Related research [1] has developed simulations based on fi-
nite element methods from such CT data of teeth and bone. Those simulations
could be used in a pre-procedural planning of the optimal bracket placement and
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wire tension, such that patient teeth move in an ideal manner while minimiz-
ing rotation. While much less accuracy is needed than for example in implant
placement, a realization of the pre-procedure plan requires guided placement of
the brackets. Augmentation of a patient video showing a superimposition of the
newly placed bracket with its planned position would suffice. Potential benefits
include higher efficacy due to a reduction in chair time with fewer follow-up
visits for corrections, as well as reduced probability of relapse. Therefore, this
routine procedure could be improved with a light-weight monocular augmented
reality system, while avoiding the cost and complexity of a full-scale medical AR
solution.

2 Related Work

One of the central choices which had to be made in realizing this system, is
the choice of tracking algorithm [7]. There are several approaches commonly
employed for optical tracking, such as marker-based tracking, template-based
tracking [2], feature-based tracking [8] and edge-based tracking [5] as well as
combinations of these methods. However, due to the nature of our tracking tar-
get not all methods can be used. Marker-based tracking is not relevant, because
we do not want to augment the scene. When using external tracking systems,
a disadvantage besides their high cost is the challenge to keep overall tracking
error low, particularly in scenarios such as dental implant placement [12]. This
is because the overall system accuracy is limited by the accumulated errors from
the tracking system itself, patient registration, hand-eye calibration, synchro-
nization, etc. In order to avoid such an accumulation of errors (as well as ad-
ditional, expensive equipment) we employ solely image-based tracking methods,
which track the patient jaw directly in the video used for the overlay. Template-
based tracking by itself is too unstable due to illumination variations, occlusions
and the need for an initially textured model of the scene, which we don’t have.
Feature-based tracking is also not feasible since our scene is mostly textureless
and feature-point extractors will not find enough reliable features. This only
leaves edge-based tracking methods for use in our system. As can be seen in
Fig. 1 edges are a very dominant and a stable feature in the input image. We
therefore chose to use edges as our primary tracking modality which is augmented
by template-based tracking methods for increased robustness.

3 Methods

In our chosen scenario, a DVT volume of the jaw is always available, since it is the
basis of the numerical simulation for planning. Therefore, we investigate methods
to automatically align a DVT volume with a video image feed, which relates our
problem to medical 2D-3D registration [9] and tracking [11]. For an impression
of the scenario see figure Fig. 1. We attempt to use all information available from
these two modalities and we present a method consisting of two complementary
steps. One step provides a good overall alignment, the other step ensures robust
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Fig. 1. Photograph of a prepared patient (left), a high-quality volume rendering of the
jaw from a DVT volume (center) and schematic of distance-based modulation of two
iso-surfaces (right)

tracking even in light of changing conditions. The underlying 2D-3D registration
problem is solved through an iterative optimization of a similarity metric over a
6 DOF pose.

3.1 Dual Iso-Surfaces

In order to compute image similarity, we need a fast method of generating a 2D im-
age from the DVT volume for comparison with the 2D video image. While direct
volume rendering is able to create close to photo-realistic images, overly complex
methods are too slow for real-time registration. Simpler methods, such as non-
polygonal iso-surfaces can be computed extremely efficiently, since they represent
only one intensity threshold in the data set. In the patient videos, the shape of the
teeth and the gum line contain the most reliable geometric information. Unfortu-
nately, in theDVTvolume the gum line itself is an interface between two intensities,
i.e. enamel and gum. It can therefore not be retrieved by single iso-surface render-
ing. We suggest using a modulation based on normal distances of two iso-surfaces
for the visualization of the gum line. Related work in “Focus and Context“ visu-
alization [6] addressed a similar problem for context modulation, where one iso-
surface is shown transparent when close to a second one.

While the teeth are easily visualized as the highest CT intensities (i.e. X-
Ray attenuation or Hounsfield units), different types of tissue, including the
tongue, cheeks, lip and gum all have almost identical attenuation values. Thus,
the lip folding over the gum cannot be separated, and therefore the actual gum
line cannot be visualized reliably. As an alternative solution, we visualize the
interface between enamel and bone or dentin (i.e. the roots of the teeth). This
line approximately follows the course of the gum line and we could verify in
experiments that this approximation is bias-free with respect to the registration.
Please see Fig. 3 (right) for a direct comparison of the dual iso-surface and the
textured iso-surface, in particular the course of the gum line.

We efficiently implement this in a single pass of a GPU ray-caster, with a
speed close to single iso-surface rendering. As a ray from the camera center
into the scene hits the outer surface representing gum (or dentin instead), its
direction is changed to the normal of that surface. The ray then is followed for
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only a few millimeters more, possibly hitting the second surface for enamel. See
Fig. 1 for three example points on the outer surface (blue) and their relation
to the inner surface for enamel (green) in a cross section. If the enamel surface
is not found (case (c) in Fig. 1 (right)), the gum surface is fully opaque. If the
enamel surface is right next to the outer surface (Fig. 1 (right, a)), the outer
surface is fully transparent. Otherwise, the surfaces are blended based on their
distance (Fig. 1 (right, b)).

3.2 Dissimilarity Metric

Once the DVT volume is rendered, we compare it to the video image. We apply
an edge-based similarity metric between the video image and the dual iso-surface
rendering. This is based on weighting the distance to the closest edge in the video
image with the gradient magnitude of the dual iso-surface rendering. Lower
results of this metric indicate that the edges are well-aligned. For efficiency, we
compute a distance map from the output of a Canny edge filter [3] of the video
frame, since the video image stays constant during the pose optimization. The
measure then becomes

Fig. 2. Plot of the dissimilarity metric
d for translations parallel to the image
plane with a clear minimum for perfect
visual alignment at the center

d =

∑
x,y

(d(x, y) · g(x, y))∑
x,y

g(x, y)

where d(x, y) is the distance map of the
video edges and g(x, y) = ‖∇(x,y)J‖2 is
the squared image gradient magnitude of
the dual iso-surface rendering J at pixel
coordinates (x, y). We use an exponent
of two, since we put more emphasis on
regions with large gradients (i.e. edges),
while reducing the weight of areas with
only small variations in gradient caused
by noise. Fig. 2 shows a plot of the dissim-
ilarity metric against x and y translations
parallel to the image plane. Millimeters
are measured at the depth of the jaw. Notice a clear minimum at the center
of the plot, which represents perfect visual alignment such as seen in Figure 3.
Dissimilarity increases more quickly in y-direction, since the dominant occlusion
edges of the teeth are in x-direction in the image. We use an elliptical region of
interest, defined by two focal points as the projections of the canines.

3.3 Initial Alignment

In order to increase capture range and speed up the process, we propose another
step complementing this edge-based approach. Note that there is a variety of
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Fig. 3. Video image overlaid with an aligned iso-surface (left) and examples of the
rendering methods suggested in Sections 3.3 and 3.1 (center) and a flowchart of the
prototype system (right)

established tracking techniques that can be used to achieve such a pre-alignment,
some may not even need knowledge of the CT.

Since in our scenario the CT is available, we can reproject video pixels into
arbitrary views based on the surface shape from the CT and correct alignment on
any one video image. If we choose a texture wrapping of a 2D texture for the iso-
surface, we can also project this color information directly to the surface. With
a textured model of the jaw, we obtain a much simpler mono-modal registration
problem, which can be solved using a simple mono-modal similarity metric. We
use a simple frontal linear projection of the texture image to the surface. This is
acceptable for this application, since both patient motion and changes in view
direction are small, as the orthodontist remains on the same side of the patient.

The system can be initialized manually, by asking the orthodontist to move
their head and roughly align a transparent view of the CT with his own vision.
The system uses edge based registration to get an initial alignment, which in turn
is used to initialize the model texture. In the course of the procedure brackets will
be placed onto individual teeth. As the difference between the iso-surface model
and the reality increases, tracking will become less reliable. To account for these
changes, we suggest updating and progressively refining a textured model of the
jaw. This however is susceptible to the template update problem (i.e. drift) [10].
In combination with the edge-based approach we are able to exploit the accuracy
of the edge-based registration with a quick but reliable pre-alignment using the
textured model. The result is a robust alignment with a large capture range,
despite challenging image data.

4 Experiments

For the evaluation of the proposed system, we created a prototype to study
practical feasibility. In cooperation with orthodontic partners we acquired data
for the real procedure of three teenage patients. The three videos each are about
20 minutes long and show the whole procedure from the perspective of a camera



606 A. Aichert et al.

mounted to the orthodontist’s head. In each case DVT image data is available.
In the following, we examine both the registration for single frames and the
behavior for short video sequences.

4.1 Random Studies
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Fig. 4. Pixel error of a random
study sorted by initial offsets

In a scenario where tracking is performed
with the goal of a scene overlay, errors in im-
age pixels are more relevant than in transfor-
mation parameter space. We therefore choose
interest points on the surface of the teeth and
compute the average projection errors. While
2D-3D point correspondences at significant
edges and corners between the teeth were de-
fined, they generally resulted in poor visual
alignment due to the limited accuracy of plac-
ing those landmarks (i.e. target localization
error TLE of over 5 pixels). Therefore, a quasi
ground truth registration was defined based
on the optimal visual alignment by the ex-
pert. In several random studies, we perturbed
this ground truth alignment for all 6 pose pa-
rameters. The parameters were chosen, such
that the x and y axis are parallel to the im-
age plane and z is facing the camera with the

origin at the center of the jaw. In Fig. 4 (left) we present a random study of 500
iterations as a typical representative. Translation was randomized in a range of
±20 mm in x and y direction and ±10 mm in z, while rotation in all three axes
was randomized in a range of ±10 degrees, enough to observe a failure of the
algorithm in some instances. In the specific view of of the patient, similar to the
one shown in Fig. 3 (left), this corresponds to an average pixel offset of 37.2 pix-
els on the 640 × 480 video image, which is well beyond expected inter-frame
motion. After removal of 10% outliers, we were able to recover from an average
error of 35.4 pixels to just 2.7 pixels, or an average of 2.1 mm and 4 degrees.
In Fig. 4 (left) you can see the results of the random study including outliers,
sorted by initial pixel error (red). Observe that the algorithm was successful in
each case with offsets of less than 40 pixels, which is marked with a blue line in
the plot, with the error after registration (blue) well below the red line. Even
beyond that threshold, correct alignment is recovered in about 75% of the cases.

4.2 Image Sequences

We successfully tracked several sequences of all three patient videos. Visual align-
ment appeared accurate and reliable, especially around the incisors. Despite the
dental prop, patients are moving their jaw during the procedure, which forced us
to track upper and lower halves of the jaw independently. We believe that this
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Fig. 5. Comparison of ground truth and our tracking results for a synthetic sequence

motion can be modeled with few parameters and included in one optimization,
ultimately making alignment more stable, especially at the molars. Separation
of mandible and maxilla can be performed automatically by fitting a plane.

In order to quantify behavior over a sequence of frames, we created a synthetic
sequence using a textured model. While this experiment is simpler than real
patient data, it allows us to compare the computed poses to ground truth. We
chose a linear in-plane translation of x and y, as well as rotation about these
axes and a motion returning to the starting position in 50 frames as a test case.
See Fig. 5 (three plots on the left) for plots of the translation components of the
resulting poses. Although the in-plane translation was recovered up to about
5 mm, there is an error in the z-translation by as much as 15 mm, which is
expected for 2D-3D registration. As the z-axis is facing the viewer, translations
in that direction have little effect on the image (and hence also on the final
superimposition). The error in target points was 6.7 pixels average over the
whole sequence.

5 Conclusion

We presented a tracking solution and novel guidance system for orthodontic cor-
rection. We focused on the feasibility of a tracking system based on a CT volume
and the patient color video sequence. A multi-step algorithm was devised to use
several aspects of the data. The proposed approach includes a dual iso-surface
rendering method with distance based modulation to produce fast high-quality
images of the gum line, paired with a textured model based pre-alignment and
update step. In extensive random studies we could show correct registration of
single images; more importantly, several sequences of real procedures were suc-
cessfully tracked. In conclusion, we enabled a novel application of augmented
reality in an orthodontics routine procedure. Future work could focus on a pa-
rameterization of jaw movement for concurrent tracking of both halves, as well
as better handling of occlusion by the orthodontist’s tool. While this work fo-
cused on recursive tracking for high accuracy, detection of the prop or the teeth
could complement the current method (e.g. using an advanced approach such as
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[4]). In the future our prototype has to be integrated with simulation and plan-
ning capabilities in order to create a fully practical solution, and a systematic
quantitative evaluation of tracking accuracy performed.
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Abstract. The alignment of the lower limb in high tibial osteotomy
(HTO) or total knee arthroplasty (TKA) must be determined intraop-
eratively. One way to do so is to deform the mechanical axis deviation
(MAD), for which a tolerance measurement of 10mm is widely accepted.
Many techniques are proposed in clinical practice such as visual inspec-
tion, cable method, grid with lead impregnated reference lines, or more
recently, navigation systems. Each has their disadvantages including reli-
ability of the MAD measurement, excess radiation, prolonged operation
time, complicated setup and high cost. To alleviate such shortcomings,
we propose a novel clinical protocol that allows quick and accurate in-
traoperative calculation of MAD. This is achieved by an X-ray stitching
method requiring only three X-ray images placed into a panoramic image
frame during the entire procedure. The method has been systematically
analyzed in a simulation framework in order to investigate its accuracy
and robustness. Furthermore, we validated our protocol via a preclini-
cal study comprising 19 human cadaver legs. Four surgeons determined
MAD measurements using our X-ray panorama and compared these val-
ues to a gold-standard CT-based technique. The maximum average MAD
error was 3.5mm which shows great potential for the technique.

1 Introduction and Related Work

Patients with a condition known as knee osteoarthritis experience unfavorable
wear and tear on the menisci and articular cartilage. These degenerative pro-
cesses can cause the knee’s protective tissues to wear on one side more than the
other in a repetitive cycle of damage. A partial or total knee replacement can
correct this condition when joint damage is beyond repair. A procedure known
as a high tibial osteotomy (HTO), wedges open the upper tibia to reconfigure
the knee joint. The weight-bearing part of the knee is shifted from degenera-
tive or worn tissue onto healthier tissue. This procedure is typically reserved for
younger patients with pain resulting from instability and malalignment. A high
tibial osteotomy is generally considered to prolong the time before a total knee
replacement, otherwise known as total knee arthroplasty (TKA), is required.
During knee replacement surgery, the bone cuts and ligament balancing are
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done in such a way as to produce a straightened, mechanically improved lower
extremity. The challenge for surgeons in the operating room is to accurately
and efficiently evaluate the mechanical axis of the lower extremity. The medial
mechanical axis deviation (MAD), in which the mechanical axis of the lower
extremity lies more than 10 mm medial to the knee joint center, is considered a
failed procedure [1]. MAD is measured as the distance from the knee joint center
to the line connecting the joint center of the hip and ankle (Figure 1(a)).

Recently, there has been increased interest in total knee arthroplasty with
use of computer-assisted surgical (CAS) systems [2,3]. These systems are de-
signed to increase the precision of implantation of the components. The studies
have found a clear tendency toward improved alignment of the limb and the
component position with use of computer-assisted surgical navigation. Another
study indicated that there is no significant difference between TKA with use
of computer-assisted surgical navigation and conventional TKA using X-ray [3].
Most of the complications are surgery related and not due to computer nav-
igation except for the cases of system down or software failure. Nevertheless,
limitations far exceeded the positive attributes, which include a learning curve
for surgeons using the CAS systems, hefty cost, a cumbersome system setup
including line of sight for tracking and on-site calibration, and difficult system
registration [2,3]. Apart from using navigation systems that determine the axis,
the most popular method in clinical practice is electrocautery cord and X-ray
grid (Figure 1(b)), consisting of reference lines, which were proposed to verify
the mechanical axis alignment [4,5]. With this process, a large number of X-ray
images and consequently, exposure, are required to achieve recommended MAD
measures. All necessary data for calculating the axis model is collected during
the operation. Of critical importance, the joint centers must be located at the
center of the X-ray image. This enables the surgeon to mentally assess and es-
timate lower limb axis alignment. The leg bones are repositioned and several
other X-ray images are re-acquired to reassess axis alignment. This iterative
process is repeated until there is surgeon satisfaction with respect to MAD tol-
erance. A postoperative radiograph is then acquired to verify a positive outcome
of the surgery. In order to alleviate radiation exposure from these conventional
methods, authors in [6] considered MRI, however they claim a significantly un-
derestimated MAD measurement.

We propose a clinical protocol that has the potential to offer robust intraop-
erative assessment of MAD to the surgeon. Our protocol requires that the X-ray
images cover the femoral head, the knee and the ankle for MAD measurements.
These anatomical landmarks do not require central location in the image. The
registration of the three X-ray images to the panorama is realized by an optical
video camera attached to the C-arm fluoroscope gantry viewing a visual marker
pattern underneath the operating table [7]. Thanks to a one-time calibration
between the camera and the X-ray source [8], our system allows for real-time,
radiation-free C-arm motion estimation. This low cost solution can be translated
seamlessly in the current clinical setting and does not require additional hard-
ware or calibration during surgery. The method has been systematically analyzed
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(a) (b)

Fig. 1. (a) The mechanical axis deviation, MAD, is defined as the perpendicular dis-
tance between knee center and the line joining hip and ankle center. The left and right
images show varus deformity and neutral position of the leg; (b) One standard in clin-
ical practice is X-ray grid method for intraoperative axis alignment. The left image
shows the X-ray grid board and the right image shows centres of the femoral head
and of the ankle joint aligned with the reference lines of the board. Image courtesy of
Liodakis et al. [9].

in a simulation framework in order to investigate its accuracy and robustness
against potential error sources. we evaluate our new protocol by presenting re-
sults comparing the MAD measurements of 4 surgeons between ground-truth
CT and X-ray panorama images obtained from 19 cadaver legs.

2 Methodology

2.1 X-ray Panorama Using Only 3 Images

The key step of image stitching is the estimation of the planar transformation for
aligning images. Let a rotation Ri ∈ R3×3 and a translation ti ∈ R3 be defined
from the coordinate system of the i-th camera view to the first camera view.
In [10], the planar homography that aligns the i-th camera image to the first
camera image is defined by

Hi = KRiK
−1 +

1

di
Ktin

T
i K

−1 (1)

where K ∈ R3×3 is the intrinsic matrix of the camera. Hi is valid for all image
points whose corresponding space points are on the same plane, i.e., stitching
plane, defined by the normal vector ni ∈ R3 and distance di to the origin in the
coordinate system of the i-th camera view.

Metric measurements are possible for the 3D space plane whose plane pa-
rameters in the camera coordinate system are known [7]. The coordinate of a
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3D space point P ∈ R3 in the first camera view can be derived from its image
projection mi ∈ R3 (expressed in homogeneous coordinates) of the i-th camera
view by,

P =
d1K

−1(KRiK
−1 + 1

tiTn1+d1
Kti(Rin1)

T
K−1)mi

n1
TK−1(KRiK−1 + 1

tiTn1+d1
Kti(Rin1)

T
K−1)mi

(2)

With the estimated coordinates of the 3D points, the metric measurements be-
tween the points can be calculated.

2.2 The Limb Model Using Frontal Parallel Setup

We define the coordinate systems for the limb and C-arm, and then specify the
frontal parallel setup for the limb and the C-arm. The limb coordinate system
is first defined and its origin is at the knee center (see Figure 1(a)). Z-axis is
the neutral AP vector for the front knee. The femoral mechanical axis is aligned
with the X axis. Let the knee frontal plane (i.e. bone plane) be the XY plane.
In the limb coordinate system, the knee center and femoral head center are
fixed, while the ankle center locates differently on the XY plane depending on
the hip-knee-ankle (HKA) angle. The coordinate system of the C-arm X-ray is
expressed so that the origin is at the X-ray source center, the Z axis is pointing
and perpendicular to the detector, and X and Y axes are along the image width
and height (see Figure 2). Frontal parallel setup, i.e. the bone plane is parallel

to the C-arm detector plane, defines the norm as
[
0 0 1

]T
and distance as the

translation along the Z axis of the C-arm. This setup is a commonly required
clinical setup for enabling metric measurement in evaluating the frontal plane
knee alignment [4,5] and X-ray image stitching [7,10]. It is usually verified by
one control X-ray image showing the patella facing upwards [4,5].

2.3 Simulation Study

In the simulation study, let the C-arm coordinate system of acquiring the control
X-ray image be the world coordinate system, whereby the control X-ray image
defines the reference panorama frame. We set femur length (from the femoral
head center to the knee center) and tibia length (from the knee center to the ankle
center) to be 421mm and 355mm. We set HKA to be 5◦ and the true value of
the corresponding MAD is accordingly 16.8 mm. The limb is positioned relative
to the first C-arm view (the world coordinate system), such that it satisfies
the frontal parallel setup. A frontal parallel setup constrains the norm of the
frontal knee plane, i.e. no rotation around X and Y axes in the world coordinate
system. In the frontal parallel setup, the distance of the bone plane to the origin
is the translation along Z axis in the world coordinate system. The distance is
unknown and can be arbitrary. General C-arm open space between the X-ray
gantry and the detector is typically 1000 mm, and the patient is positioned close
to the center nearer to the C-arm intensifier to achieve a larger field of view for
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Fig. 2. Limb coordinate system definition. Its origin is at the knee center. Z axis is the
neutral AP vector for the front knee. The femoral mechanical axis is aligned with the
X axis. The knee frontal plane (i.e. bone plane) is defined be the XY plane.

the surgeon. For this reason, we choose 700mm for the distance. We initially set
rotations and translation about XYZ to be zero. The above parameter settings fix
the transformation from the limb to the world coordinate system, which defines
the frontal parallel setup used in our simulation. Measurement errors are always
a possibility during a typical surgery primarily due to the distance of the bone
plane not being accurately calculated or not being in the frontal parallel setup.
To correct for these [7] require a manual estimation of the distance between the
bone plane and marker pattern plane. Alternatively, [10] proposed to align the
contours of the bone plane in two X-ray images for recovering the measurement
error caused by the incorrect distance. We choose the former option as our
solution does not require the overlapping area between the X-ray images in
order to further reduce radiation exposure.

For clarity, we use the term estimated setup to represent the frontal parallel
setup, since it is not the true actual setup. We make estimated setup constant in
our simulation study, since most clinical methods for panorama generation and
measurements are based on the assumption of frontal parallel setup. The actual
pose of the limb is obtained by adding deviations to the estimated setup. To
simulate the image projections of the three anatomical points in the individual
images and the C-arm motions between image acquisitions, the actual pose of
the limb is applied. To stitch the images (i.e. computing the coordinates of the
imaged points in the panorama frame) and perform the measurements, we use
the estimated pose of the limb. For each of following simulation experiments, we
perform 1000 trails to compute the difference between the estimated and true
MAD values as the final MAD errors.
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2.4 Preclinical Study

19 human cadaver legs were used and manually bent to introduce a random
valgus or varus misalignment while keeping the knee fully extended. Each indi-
vidual leg was positioned in a wooden box and placed on a carbon table with a
visual marker pattern of 2378 x 1682 mm rigidly attached underneath it. The leg
positioning was such that the patella faced upwards (i.e. confirmed by an X-ray
image). The Siemens Powermobile C-arm (Erlangen, Germany) was translated
along the carbon table in a PA gantry position for acquiring the three X-ray
images. Three X-ray images of femoral head, the knee and the ankle were ac-
quired and subsequently stitched together. A CT scan of the leg was conducted
immediately after (i) to ensure that we have the same leg position between X-ray
stitching and CT, and (ii) as ground truth reference comparison. Four clinicians
with different experience levels (i.e. 2 expert surgeons, 1 resident surgeon, and 1
last year medical student) were involved in our study. The anatomical landmarks
defining the mechanical axis and the knee center were manually determined by
each observer individually for all of the CT images and panoramic X-ray images
in order to allow MAD calculation. For the CT measurement we used the K-Pacs
Software v.1.6.0.

3 Results and Discussion

A 10 mm MAD value is a typical range of the healthy patients [1]. In clinical
practice, a successful operation of lower limb correction is confirmed by a 0mm
of MAD after operation. Therefore, we use 10mm as the MAD error tolerance
to ensure the actual value of MAD is less than 10mm when its measured value
is 0mm.

Simulation Study Results: We simulate the inaccurate frontal parallel setup
by adding random errors within ±5◦ to the rotations around XYZ axes of the
limb pose. The mean MAD error calculated is: 0.52 ± 0.51 mm. The image co-
ordinates of the anatomical points are manually selected by surgeons in clinical
practice. The incorrect determination of the image coordinates, depending on
experience of the surgeon, is simulated by adding random errors within ±10
pixels to the true image coordinates of hip-knee-ankle. The mean MAD error
calculated is: 1.56± 1.07 mm. To assess the influence of the inaccurate distance
of the bone plane on the MAD measurements, we add distance errors to ruler
readings between -100 mm to 100 mm with the increments of 20 mm to the true
distance. For each distance error, we compute MAD errors using 1000 trails with
and without applying random errors of the rotations and image coordinates. Fig-
ure 3 shows the results and indicates that it is important to accurately estimate
distance of bone to source.

Preclinical Results: CT-based measurement is regarded as gold-standard. The
change in measured MAD values between CT and the proposed method is the
MAD error. First a t-test was performed; using CT data MAD values of 14.75±
9.16 mm were achieved compared to 13.25 ± 7.66 mm when using the C-arm
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Fig. 3. Average and standard deviation MAD errors, in millimeters, for (Left), distance
errors on ruler reading alone, and (Right) both distance errors on rulers coupled with
pixel errors in the X-ray images

stitching data. From this, there is no significant difference in the measured data
(p > 0.1). Secondly, we performed a Pearson Correlation that displayed a highly
significant correlation between CT and our method (r = 0.96). We performed
an error analysis of 100 trials for each of the 19 cadaver legs by calculating the
mean and standard deviations of mechanical axis deviation when adding random
errors described in Figure 4. Results for each participant compared to ground-
truth CT show that the MAD error is well below the recommendation of 10mm
[1] for HTO and TKA procedures guaranteeing axis alignment. The MAD errors
between all the examiners are below 1mm. The student is slightly better. This
is another proof that the proposed method is reliable against inter-observers.
Our maximum 3.5mm MAD error shows our method robustness. Note that Leg
alignment involves multiple MAD measurements. For the entire procedure, the
effect of our proposed MAD measurement method will be multiplied. As agreed
upon by our three expert surgeons, an average of 8-12 X-ray images are typically
acquired for one MAD measurement compared to our 3.

Fig. 4. An average MAD error of at most 3.5 mm for the mechanical axis deviation
compared to ground-truth CT shows the robustness of our protocol. 1- errors only
added to hip-ankle-knee pixel coordinates in X-ray; 2- errors added to ruler height; 3-
the combination of both errors in X-ray and ruler.

4 Conclusion

Existing methods and solutions for MAD intraoperative calculation demand a
high level of surgeon experience since both hip and ankle centers have to be
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brought on a common grid or reference line and be located in the center of the
X-ray [4,5]. This results in a complex procedure and many X-ray shots. Our pro-
posed technique requires only three X-ray images to be acquired showing the hip
center, the knee center and the ankle center, thereby reducing procedural time.
Via a one-time ruler measurement of the distance between marker pattern and
knee, we always achieve accurate intraoperative MAD measurements enabling
our protocol to become a potential alternative to standard clinical practice. Fur-
thermore, our protocol can be generalized to any standard C-arm worldwide as
long as the C-arm pose is available. We await ethics board approval for a patient
study evaluation.
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Abstract. In this article an ultrasound elastography technology is re-
ported which provides quantitative images of tissue elasticity from deep
soft tissue. The technique is analogous to Magnetic Resonance Elastog-
raphy in the use of external mechanical vibrations which can penetrate
deep tissue. Multifrequency steady-state mechanical vibrations are ap-
plied to the tissue at the skin and tissue displacements are measured
by a conventional ultrasound system. Absolute values of tissue elastic-
ity are computed in real-time for each frequency and displayed to the
physician. The quantitative elasticity images produced by the technol-
ogy are validated with magnetic resonance elastography images as the
gold standard on standard elasticity phantoms. Preliminary in-vivo data
from healthy volunteers are presented which show the potential of the
technology for clinical use. The system is currently being used in differ-
ent clinical studies to image kidney fibrosis, liver fibrosis, and prostate
cancer.

1 Introduction

Elastography has emerged as an imaging modality providing new information to
the clinician about the mechanical properties of tissue [1]. It has found a place
in the imaging of breast lesions [2], liver fibrosis [3], and is being investigated
in many other clinical areas such as targeting of prostate cancer for biopsy and
focal therapy [4].

The first generation of elastography technology was developed on ultrasound
machines [5] and created images of relative elasticity of tissue. The clinician
applied a manual compression with the probe to deform the tissue, and the
elastography system measured the tissue strain. Under certain assumptions, the
tissue strain is inversely proportional to the tissue stiffness, and therefore strain
images can show the contrast in tissue stiffness. The first generation elastography
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is now available on many medium to high-end ultrasound systems under different
brand names such as elastography, strain imaging, real-time elastography, etc.

The general trend in radiology towards quantitative imaging, together with
the difficulties in applying the manual compression, called for more innovation
and through the efforts of different groups, second generation elastography tech-
nologies were born [6, 7]. A second generation elastography technique creates
quantitative elasticity images where the contrast in the image is the absolute
elasticity of the tissue.

Elastography has been developed primarily with ultrasound or magnetic res-
onance imaging [8] as the underlying imaging device to track tissue displace-
ments. To cause tissue displacements, different methods have been devised with
mechanical transient excitation [2], mechanical steady-state excitation [8,9], and
acoustic radiation force (shear wave) transient excitation [6, 7] to name a few.

The majority of the magnetic resonance imaging techniques use a steady-
state mechanical excitation to image the tissue elasticity [8, 10, 11]. The idea
is to measure the wavelength of the steady-state wave patterns in the tissue
from which the wave speed can be estimated. The wave speed depends on the
mechanical properties of tissue, and is generally higher in stiffer tissue compared
to softer tissue.

The reported technology uses analogous techniques as used in magnetic res-
onance elastography for ultrasound elastography. A steady-state mechanical vi-
bration is applied to the tissue while the tissue is imaged by the ultrasound.
From the sequence of ultrasound images, the tissue displacements and wave pat-
terns are computed. The local wavelength of the wave pattern is then estimated
to create a map of the tissue stiffness which is displayed in real-time.

This article gives an overview of the technology and reports the most recent
advances. In particular we report the first direct comparison of the technique
with MRE on a standard quality assurance phantom. Steady-state excitation
was first used in sonoelasticity to image tissue stiffness [12]. It has also been
used before to produce MRE-type elasticity images [13]. However this is the first
report of an implementation for “real-time” operation with “free-hand” conven-
tional ultrasound. Two novel ideas which have enabled these advances are the
use of a “thin-slice” consisting of a few planes for 3D data acquisition, and the
fast implementation of all the image processing pipeline on a graphics processing
unit (GPU). These advances are reported for the first time in this article. Based
on these qualities, the technology holds promise for ultrasound guided proce-
dures, such as biopsies, by providing additional quantitative information to the
clinician.

2 Methods

The system has been implemented on a SonixTouch platform (Ultrasonix Med-
ical Corp., Richmond, BC, Canada) (Fig. 1 (a)). Two prototype systems have
been developed based on the Texo and Ulterius software development kits. A
mechanical vibration source (LDS V203, LDS/B&K, Norcross, GA) has been
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mounted on the flexible arm of the SonixTouch. The hardware of the system
has been upgraded with a CUDA supporting graphics card (GTX 580 GPU,
NVIDIA, Santa Clara, CA). The SonixTouch collects the RF-data which are
then transferred to the memory of the graphics card. All the computational al-
gorithms for absolute elastography have been implemented in CUDA and run
on the GPU in real-time. The absolute elasticity images are transferred back to
the CPU memory and displayed.

(a) (b)

Fig. 1. (a) A photo of the actual elastography system with the vibration source
mounted on the SonixTouch arm (b)The 4DL14-5 3D probe and the thin volume of
displacement data acquired from 7 planes

The image processing pipeline of the system is shown in Fig. 2. The RF-data
are processed by the speckle tracking block to find the time-domain displace-
ments, which are then converted to frequency-domain displacements or phasors
by a Fourier transform for each frequency in the excitation. The phasors are
then passed through the inversion algorithm. An algorithm used for the speckle
tracking is described in [14] and different algorithms for the inversion are com-
pared in [15]. Here we used the Local Frequency Estimation method [8]. Average
computational times are compared in table 1 for CPU vs. GPU on test data sets.

The system can be used with 2D and 3D probes to perform absolute elastog-
raphy. With 2D probes, the variations of the waves in the elevational direction
cannot be observed and measured. As a result, the elasticity images obtained
with 2D probes suffer some over-estimation in the elasticity values (10 to 60

Fig. 2. Image processing pipe-line
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Table 1. Comparison of computational time between CPU and GPU implementations
of the elastography algorithms

CPU time (ms) GPU time (ms)
Core i5 660@3.33GHZ GTX 480

Speckle Tracking 1600 50

Fourier Transform 110 9

Inversion 1800 12

percent is typical). The error has some dependency on the placement of the vi-
bration source. The major benefit of 2D probes, however, is the faster acquisition
of US data which results in a higher frame rate.

The elastograms obtained with 3D probes are more accurate and robust, but
they suffer from a lower frame rate. A thin volume (typically consisting of 5
to 7 planes) is acquired to capture the variation of the wave in the elevational
direction (see Fig. 1 (b)). Currently the system generates elasticities at a rate of
1 image every 2 seconds with a 4DL14-5 3D probe and 80mm depth of imaging.

Fig. 3 shows variation of the wave pattern (real part of the displacement
phasor) in the elevational direction as measured by a 3D probe in two different
configurations. By comparing the two cases, it can be observed that by changing
the placement of the excitation source relative to the probe, the variation of
the displacement in the elevational direction can be minimized. In this case a
relatively accurate estimate of the elasticity can be obtained by using a 2D probe.

(a) (b)

Fig. 3. The variation of displacement in the elevational direction depends on the place-
ment of the excitation source (a) more variation (b) less variation in the elevational
direction

3 Validation with MRE

The mechanism of creating waves in the tissue by steady-state mechanical vi-
bration is analogous in the reported system and MRE. The methods which are
used to invert the wave patterns and compute the elasticities are also analogous.
Therefore, one would expect that an absolute elastogram produced by the re-
ported system should have the same appearance and values as an MRE absolute
elastogram, as a gold standard.



Real-Time Quantitative Elasticity Imaging 621

To prove this hypothesis, experiments were performed with a standard elas-
ticity phantom; The elasticity quality assurance phantom model 049 (CIRS Inc,
Norfolk, VA, USA) was imaged using a 3T Achieva MRI system (Philips Inc,
Netherlands). This phantom includes different spherical inclusions of varying
stiffness and sizes. The frequency of excitation was 200Hz. The elastogram ob-
tained for a horizontal plane passing through the larger inclusions is shown in
Fig 4(a).

The same phantom was imaged using a 4DL14-5 linear 3D probe (Ultra-
sonix Medical Corp., Richmond, BC, Canada) with the system. The probe was
mounted on a linear stage and moved along the long axis of the phantom to
image a larger area covering multiple inclusions. The vibration was applied with
the arm mounted voice coil of the system at 200Hz. At each location of the linear
stage, a slim volume of ultrasound data was acquired and used to reconstruct
a single plane of elasticity (mid-plane of the slim volume). By moving the 3D
probe to a new position, another elasticity plane was produced and so forth. By
putting these single plane elasticity images together a whole volume elasticity
map was produced. The result is shown in Fig. 4(b). A comparison of Figs 4(a)
and 4(b) provides some evidence for the validity of hypothesis. The elasticity
values obtained from the two methods are reported in table 2 as well as the
manufacturer values.

(a) (b)

Fig. 4. (a) Magnetic Resonance Elastography and (b) Ultrasound elastography images
acquired by the system

Table 2. Comparison of average elasticity values between MRE, ultrasound elastog-
raphy, and manufacturer values

MRE (kPa) US/E (kPa) Man. (kPa)

Softest Inclusion 8 9.5 6

Soft Inclusion 17 17 17

Hard Inclusion 42 40 54

Hardest Inclusion 54 45 62

Background 24 24 29

4 In Vivo Results

The system has been used to image different tissue in-vivo and ex-vivo with
different probes. In this section, a sample of the data collected so far is reported.
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The 4DL14-5 linear 3D transducer was used to image the liver of consenting
healthy volunteers in-vivo to a depth of 80mm. The transducer was placed on
the side of the patient and images were obtained intercostally. A multi-frequency
excitation, consisting of 50, 80, and 100 Hz components was applied via the
external vibrator. As with MRE studies, we observe that the elasticity increases
as a function of frequency [16]. The trend can be seen in the elastograms of a
volunteer, at the three frequencies, shown in Fig. 5. In all the images, a stiffer
layer corresponding to intercostal muscle can be observed near the skin, while
the liver has a fairly homogeneous appearance in the elastogram.

Fig. 5. The frequency dependence of elasticity from a healthy volunteer liver (a) B-
mode image (b) elastogram at 50 Hz, (c) elastogram at 80 Hz, (d) elastogram at 100
Hz

Fig. 6. Top: MRI image and MRE image at 56 Hz, Bottom: B-Mode and elastogram
from a healthy volunteer liver averaged between 55 and 60 Hz, obtained with a low
frequency curved 3D transducer
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In another experiment, a comparison was made between MRE and the pro-
posed system. The 4DC7-3 curved transducer was used to image the liver of a
consenting healthy volunteer at 55 Hz and 60 Hz down to a depth of 150mm.
The transducer was placed on the side of the volunteer and images were obtained
intercostally. The B-mode and average elasticity images are shown in Fig. 6 as
well as the MRE data of the same volunteer collected at 56 Hz. The range of
values observed are similar in both elastograms. However, a more carefully de-
signed experiment is needed with registration of the ultrasound and MRI images
before a conclusion can be made.

5 Conclusion

In this article an ultrasound elastography technology is reported which is analo-
gous to magnetic resonance elastography in the type of excitation and inversion
algorithms used. The absolute elasticity values obtained by the system are val-
idated against MRE values as a gold standard on a quality assurance elasticity
phantom. At low frequencies (30-100 Hz) the mechanical vibrations can pene-
trate deep tissue, and provide the necessary displacements for measurement of
tissue elasticity at depths of 150mm. Typical in vivo elastograms obtained by
imaging healthy volunteer livers with different transducers are reported. The
values reported are similar to the values reported in the literature from MRE
studies.
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Abstract. The ability to find image similarities (feature matching) be-
tween laparoscopic views is essential in many robotic-assisted Minimally-
Invasive Surgery (MIS) applications. Differently from feature tracking
methods, feature matching does not make any restrictive assumption
about the sequential nature of the two images or about the organ mo-
tion, and could then be used, e.g., to recover tracked features that were
lost due to a prolonged occlusion, a sudden endoscopic-camera retraction,
or a strong illumination change. This paper provides researchers in the
medical-imaging computing community with an extensive comparison of
the most up-to-date feature-matching algorithms over a large (and anno-
tated) data set of 100 MIS-image pairs obtained from real interventions.
The accuracy of these methods, as well as their ability to consistently
retrieve as many good matches as possible, are evaluated for popular fea-
ture detectors. In addition, the dataset and the software implementations
of these methods are made freely available on the Internet.

1 Introduction

In robotic-assisted Minimally-Invasive Surgery (MIS), the ability to find image
similarities (feature matching) between laparoscopic views of the same scene is an
essential need in many applications, such as shape recovery [1,2], calibration [3],
structure and camera-motion estimation [4, 5], augmented reality [6, 7], etc.

Thus far, some algorithms have addressed the similarity-search problem in
MIS video sequences only in the case that the two views are consecutive frames
of a video1, or when the organ motion is periodic [8, 9].

On the contrary, feature-matching algorithms [10–13] make very limited (or
no) assumptions about the observed scene, or about the two given images. These
algorithms have thus the potential to become a core-component in each of the
aforementioned MIS applications, as they could be used to recover tracked fea-
tures lost due to a prolonged occlusion, a sudden endoscopic-camera retraction,
or a strong illumination change.

It is then of primary importance to provide researchers in the medical-imaging
computing community with a comparative study of the accuracy of each of the
aforementioned algorithms, and to evaluate their ability to consistently retrieve

1 This problem is usually known as feature tracking.
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as many good matches as possible. Existing works in the computer-vision field
have thus far examined only the performance of feature detection [14–16], while
other works have compared matching strategies in MIS [17, 18] based only on
local appearance of descriptors, which are not robust to ambiguities.

In this work we present an extensive comparison of the aforementioned state-
of-the-art feature-matching techniques [10–13] over a large (and annotated) data
set of 100 MIS-image pairs obtained from real interventions. In particular, we
measure both the ability of the methods to establish correct correspondences,
as well as their accuracy in a tracking-recovery scenario. To the best of our
knowledge, this is the first work that thoroughly compares and analyzes feature-
matching algorithms; in addition, we make available on the Internet the dataset
and the software implementations of these methods.2

The paper is organized as follows: Sect. 2 provides a brief overview and dis-
cussion of the above feature-matching algorithms. Sect. 3 illustrates the results
of our extensive experimental evaluation and discusses the algorithms’ perfor-
mance. Finally, Sect. 4 draws conclusions and illustrates future extensions.

2 Overview of Feature-Matching Algorithms

We consider a pair of images, It (training, e.g., before occlusion) and Iq (query,
e.g., after occlusion), and two corresponding sets of image features (e.g., SIFT [10],
SURF [14], ASIFT [19], etc.) F t and Fq, extracted from It and Iq, respectively.
Each image feature consists of a keypoint [10] (with pixel position, x � [x, y]T ,
scale σ, and orientation θ), and of a descriptor vector, which captures the local
appearance around the keypoint position.

The main goal of a feature-matching algorithm is to retrieve pairs of similar
features (correspondences) among two images. Existing strategies, first find a set
of initial (or candidate) matches, M, by using appearance-based criteria that
relies on the similarity between descriptors [15, 17]. Among the most common
criteria: simple thresholding, Nearest Neighbor (NN) distance ratio, etc.

Existing feature-matching algorithmsmostlydiffer for their geometric-constraint
phase, which is adopted to reduce the number of ambiguous matches originated by
image regions with similar appearance.

Lowe’s [10]: This method estimates a single Affine Transformation (AT) [20],
A, which maps keypoints, xt and xq, from It to Iq.

Among the initial matches,M, only those that obey to such a geometric AT
will be considered as inliers, Min. In particular, these inliers consist of those
matches with a low symmetric keypoint reprojection error, es. For a pair of
generic points, ut ∈ It and uq ∈ Iq, es is defined as follows3,

es(u
t,uq,A) = 0.5‖ũq −Aũt‖2 + 0.5‖A−1ũq − ũt‖2. (1)

2 Web: http://ranger.uta.edu/%7egianluca/feature%5fmatching.
3 ũ represents the extension to homogeneous coordinates of u.
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Discussion: The approach in [10] works well for matching features on planar
objects. However, since the majority of features in a MIS scenario lie on non-
planar (or deformable) surfaces, this method can only recover few matches. For
example, from our experimental results, we observed that the refined matches
(inliers) that better support A will only be those at the intersection of the object
surface and of its (single) tangent plane. The other matches, distributed over the
rest of the surface, will be considered as outliers.

Adaptive Multi-Affine (AMA) [11]: AMA relaxes the assumption of [10]
by estimating a set ofmultiple ATs. Each AT is associated to a cluster of matches;
as a result, the inliers (matches) detected by AMA will be distributed along the
entire organ’s surface. In AMA a set of clusters are first estimated as in [10],
which are then sent to a cascade of RANSAC-based affine estimators. For each
cluster, this estimation phase computes those features supporting a single AT
Ai. These clusters are then adaptively quantized by k-means, and each trans-
formation is estimated, together with their inliersMi.

Discussion: AMA extracts more inliers than Lowe’s approach. The final inliers
in the image are spatially distributed over the entire organ’s surface.

Agglomerative Correspondence Clustering (ACC) [12]: ACC deter-
mines the set of refined matches by employing a hierarchical clustering algo-
rithm based on an agglomerative (bottom-up) strategy. This strategy iteratively
merges pairs of matches (or clusters of matches) into a single cluster based on a
dissimilarity measure between matches (or clusters). This dissimilarity measure
consists of both geometric and appearance constraints. Finally, the algorithm
iteratively merges clusters according to both their dissimilarity measure and a
linkage criteria, to generate the final clusters.

Discussion: ACC automatically detects similar portions in the two images
without requiring previous knowledge of the scene. However, ACC requires the
user to specify a larger number of (non-intuitive) parameters than [10, 11].

Del Bimbo’s Local Homography Mapping (DBA) [13]: DBA gener-
ates a set of n synthetic images, Iti , i = 1, . . . , n, obtained by applying to It
a set of known random homographies Ht

i [20]. From the set, F ′, of all the ex-
tracted features, a geometric constraint is used to remove repeated ones. The
homography Hi and the associated inliers are then estimated by weighting each
synthetic homography according to the remaining features. A final appearance-
based phase (e.g., NCC) is used to removes the remaining outliers.

Discussion: DBA requires a large number of random (thus uncontrolled) syn-
thetic images. As a result, DBA can only detect a low number of matches.

3 Experimental Results and Discussion

We compared the performances of the above algorithms (Sect. 2), in two scenar-
ios: i) a highly controlled in-lab test with a non-planar object, and ii) a large
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MIS image dataset (100 image pairs) acquired from six surgical videos (with
many cases of occlusions, large camera motion, specular reflections, etc.)

In each scenario, the performances of each algorithm have been assessed by
measuring both the efficiency in detecting correct matches (matching perfor-
mance), and the accuracy in mapping corresponding points between image pairs
(mapping performance). For each image pair, a set of manually-labelled matches
has been used to evaluate the matching performance by comparing the Receiver
Operating Characteristic (ROC) curves [21], which depict the relative trade-off
between the sensitivity (algorithm’s capability to successfully retrieve correct
matches, i.e., benefits), and the 1-specificity (i.e., algorithm’s proficiency to er-
roneously retrieve wrong matches, i.e, costs). The mapping performance is mea-
sured by using a set of manually-labelled (ground-truth) corresponding points,
and by measuring statistics on the symmetric reprojection error [20].

Similarly to [12,15,17,18], our database consists of a set of manually-labelled
(ground-truth) SIFT matches captured by an expert user. Each match was man-
ually labeled as ‘correct’ or ‘wrong’ by carefully observing their position on the
two images (note that only the most certain matches were labelled as ’correct’).
In addition, our database contains a set of manually-selected correspondences
between each image pair. Our database also includes sets of initial SURF and
ASIFT matches, however they are not labeled due to the large number of their
initial matches and the associated complex labelling process4. Note that we have
chosen to avoid to limit our datasets only to the strongest SURF and ASIFT
features in order not to alter the performance (e.g., the percentage of correct
matches) of these feature detectors.

Note that, for a fair comparison, all the aforementioned algorithms use the
same sets of initial matches obtained by using NN distance ratio with threshold
values5 in the range of 0.8 and 0.9. The parameters and thresholds of each
algorithm were chosen to maximize efficiency. In particular, we used a threshold
for the affine model of 5 pixels for both AMA and Lowe; a cutoff value of 5
was chosen for the ACC’s linkage function, and a normalized cross correlation
coefficient of 0.7 for DBA.

3.1 In-Lab Experiments

Two views of a non-planar object were used as a highly-controlled in-lab exper-
iment (resolution 640 × 480). The initial 354 SIFT matches (220 were labelled
as correct), while the SURF, and the ASIFT initial matches are 330, and 4903,
respectively. In addition, 41 corresponding corners were manually selected.

Fig. 1 shows the ROC curves for each of the four algorithms parametrized
by their score values6. In Lowe and AMA the scores represent the negative

4 For example, ASIFT can produce more than 4000 initial matches per image, thus
rendering the ground-truth (manual) labelling almost unfeasible.

5 These thresholds were chosen to maximize the number of initial matches. This choice
does not affect our analysis since the initial matches are common to all the methods.

6 Algorithm’s quantitative measure for the classification task.
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symmetric-reprojection errors; for ACC the scores are the dissimilarity measure
of the matches, which is also based on the symmetric reprojection error. For
DBA, the scores represent the absolute value of the normalized cross-correlation
coefficients. The square markers in Fig. 1(a), represent different score values,
{5, 20, 50, 70} for Lowe, AMA, ACC, and {0.9, 0.8, 0.7, 0.5} for DBA. Fig. 1(b)
depicts a more focused comparison of the sensitivity values for Lowe, AMA and
ACC7. The marked points have each an associated score value.
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Fig. 1. In-lab experiment - Matching performance: (a) Query and Training images; (b)
ROC curves of the four algorithms. AMA, ACC and Lowe are very competitive, being
AMA slightly superior (c.f., inset); (b) Sensitivity comparison.

Table 1. In-lab experiment - Mapping performance

Alg. Avg.Err. Time Sen/1-Sp Avg.Err. Time %Inl. Avg.Err. Time %Inl.
SIFT (pix) SIFT SIFT SURF (pix) SURF SURF ASIFT (pix) ASIFT ASIFT

Lowe 22.1±23.7 0.22 0.28/0 20.8±22.5 0.16 17.3 19.3±21.0 5.1 15.3

DBA 32.9±64.7 120 0.22/0.045 17.4±27.2 661 21.5 20.2±50.4 721 25.9

AMA 5.06±6.09 1.26 0.98/0.001 5.35±7.73 1.48 60.0 2.62±2.81 36.1 65.3

ACC 6.33±8.9 0.5 0.96/0.015 7.46±8.13 0.52 33.9 4.58±4.96 433 42.3

Table 1 provides statistical results for the mapping performance. The even
columns show the mean and standard deviation of the symmetric reprojection
error. The odd columns show the (SIFT) Sensitivity/1-specificity of Lowe, AMA,
ACC (less than 5 pixels) and DBA (correlation coefficient greater than 0.7). For
SURF and ASIFT, these columns contain the percentage of inliers with respect
to the total number of matches, which indicate the detection power of each
algorithm.

Discussion: The ROC curves in Fig. 1(a) show that Lowe, AMA and ACC,
differently from DBA, have high matching performance. However, for the same
threshold of 5 pixels, AMA has better performance than ACC and Lowe (c.f.,
Fig. 1(b)). An increase in the threshold value will provide an improved sensitivity
for Lowe, AMA, and ACC, without compromising the 1-specificity.

7 We did not include a comparison over 1-specificity because of space limits.
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The results in Table 1 show that AMA has superior mapping performances
than the other methods, when using either SIFT, SURF, and ASIFT. This in-
dicates that AMA (multiple ATs) can consistently detect as inliers many fea-
tures lying on non-planar organs’ surface. ACC achieves comparable results than
AMA. However, AMA is computationally more expensive, than Lowe, and ACC
(except when ASIFT features are used). Lowe (single AT) is the fastest method,
but can only capture few matches. ACC exhibits a higher computational com-
plexity when a large number of features is used (e.g., ASIFT), and DBA shows
poor mapping performances caused by the random (thus uncontrolled generation
of the synthetic images. We also observed that the mapping accuracy cannot be
improved by simply increasing the AT-fitting thresholds for Lowe and AMA,
since this could make the algorithms more sensitive to outliers.

3.2 Surgical-Images Dataset

Our MIS dataset consists of 100 images with a resolution of 704×480 pixels. The
set of ground-truth correspondences has an average of 20 points. For SIFT fea-
tures, the corresponding average ROC curves for each algorithm are illustrated
in Fig. 2(a). The vertical lines indicate the confidence intervals of the mean
with respect to different score values8, with a significance level of 95%. Fig. 2(b)
shows the comparison of the sensitivity among pairs of (the most competitive)
methods.
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Fig. 2. MIS dataset - matching performance: (a) Average ROC curves. The vertical
lines show the 95% confidence intervals. (b) Comparison of the algorithms’ sensitivity.

Table 2 summarizes the average results for the algorithms’ mapping perfor-
mance for fixed threshold and for different types of features.

Discussion: AMA shows superiority in both metrics, followed by Lowe and ACC,
with similar performances (see inset), while DBA is again far behind due to its
incapability to filter out image similarities present in the MIS images. Observe
that Lowe is significantly the fastest algorithm. Note that ACC’s is faster than
AMA and DBA for SIFT and SURF, while it becomes dramatically slower than

8 Same scores values are used: {5, 20, 50, 70}, and {0.9, 0.8, 0.7, 0.5}.
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AMA with ASIFT. Differently from Lowe and ACC, AMA achieves good perfor-
mances within the given threshold (5 pixels). AMA’s best-mapping performance
is attained when ASIFT features are used. We also observed that AMA cannot
reliably detect isolated matches in the case of textureless regions.

ACC has similar sensitivity than AMA, but at a slightly larger 1-specificity.
We observed that ACC dissimilarity function, which is not fully geometrical, is
more flexible than Lowe’s or AMA constraints. This flexibility allows ACC to
capture matches even if they do not satisfy the affine map, but have similar
appearance. However, this can produce an increased number of false positives
and, thus, a larger mapping error. In addition, ACC has a large number of (non-
intuitive) parameters to tune.

Table 2. MIS dataset: mapping performance

Alg. Avg.Err. Time Sen/1-Sp. Avg.Err. Time %Inl. Avg.Err. Time %Inl.

SIFT SIFT SIFT SURF SURF SURF ASIFT ASIFT ASIFT

Lowe 3.8±3.6 0.3±0.1 0.72/.001 3.6±2 0.2±0.2 39.6 3.6±3.4 2.5±1.2 42.3

DBA 21±37 122±14 0.52/.098 23.3±30.3 406±62 25.1 21.6±30 519±23 38.3

AMA 3.1±3.1 1.0±0.6 0.9/.002 3±3.1 1.2±1.1 59.4 3.3±3.1 13.9±13.5 54.5

ACC 5.3±4.7 0.3±0.1 0.61/.015 7.1±8 0.3±0.3 59.0 10.4±13 140±228 53.5

Fig. 3 shows an example of the matching performance of the four algorithms
for given thresholds. Note that DBA has problems to filter out the ambiguities;
Lowe and ACC obtain similar results, being AMA capable of retrieving a larger
number of matches (covering most of the organ’s surface).

L

It Iq

Lowe D

It Iq

DBA

AAMA CACC

Fig. 3. Matching performances (better seen in color). Lowe only detects few matches
limited to a portion of the organ. AMA, ACC and DBA retrieve matches distributed
over all the organ. ACC and DBA are more sensitive to ambiguities.

4 Conclusions

This work presented for the first time a comparison of four state-of-the-art
feature-matching algorithms. Differently from existing works, the four meth-
ods were compared among several types of popular feature descriptors, by using
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a large and manually-annotated MIS data set. We compared their performance
based on two metrics to assess each algorithm’s proficiency to detect correct
correspondences, as well as the accuracy in mapping corners between images.
Lowe, AMA, and Cho’s exhibit competitive results, while AMA has superior
performance at for the same threshold levels, because of its better adaptation
to non-planar surfaces and higher robustness to outliers. The software imple-
mentations of these algorithms and our dataset are made freely available on the
Internet. As future work we plan to add more types of features, and to increase
the MIS dataset.
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Abstract. In this paper we present the first solution to 3D reconstruc-
tion in monocular laparoscopy using methods based on Photometric
Stereo (PS). Our main contributions are to provide the new theory and
practical solutions to successfully apply PS in close-range imaging condi-
tions. We are specifically motivated by a solution with minimal hardware
modification to existing laparoscopes. In fact the only physical modifi-
cation we make is to adjust the colour of the laparoscope’s illumination
via three colour filters placed at its tip. Once calibrated, our approach
can compute 3D from a single image, does not require correspondence
estimation, and computes absolute depth densely. We demonstrate the
potential of our approach with ground truth ex-vivo and in-vivo experi-
mentation.

1 Introduction

An important computer vision task in Minimally Invasive Surgery (MIS) is to re-
cover the 3Dstructure of organsandtissues viewed in endoscopic images andvideos.
A general solution to this has many important applications, including enhanced
intra-operative surgical guidance, depth perception, 3D motion estimation and
compensation, novel-view synthesis and improving pre-operative/intra-operative
data registration. In the literature, the main practical monocular reconstruction
approaches so far are based on Structure-from-Motion (SfM). However, since this
is correspondence based, it is error prone and at textureless regions 3D cannot be
recovered. SfM also requires very strong assumptions on surface motion (e.g. rigid
or periodic motion), and requires sufficient motion baseline. By contrast, PS offers
a very different approach for 3D which is based on photometric constraints using
three or more light sources [2,16,9]. PS is attractive since it provides dense 3D esti-
mates, does not require correspondence estimation, andcancompute 3D fromjust a
single colour image.However, to date PS has not been applied to 3D reconstruction
in MIS. Our main contributions are to provide the theory and practical solutions
to successfully apply PS to the very close-range imaging conditions of MIS. In this
paper we focus on laparoscopy.On the hardware side, our solution takes a standard
monocular laparoscope,modifiedonlywith three colour filters (red, greenandblue)
placed at its tip. This corresponds to a practical and very inexpensivemodification.
The physical dimensions remain unchanged and it does not require any strobing or
synchronised triggering between the camera and light source.

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 634–642, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Modification made to a standard laparoscope (a,b) to facilitate practical in-vivo
photometric stereo by fitting three colour filters at its tip (c). Photograph of in-vivo
tests (d).

3D Reconstruction in MIS. Several different research directions for 3D recon-
struction in MIS have emerged over the recent years. These differ in the sensing
hardware required to compute 3D. At one end of the spectrum are dedicated
3D sensing devices. These have included Structured Light (SL) setups [1] and
Time-of-Flight (ToF) cameras [12]. SL requires additional instruments, which
may clutter the scene and to date, neither SL nor ToF sensors have proved
sufficiently reliable in practice. Stereo endoscopes have also been tried for 3D
reconstruction [14,4,8]. While promising, these are limited by fixed camera con-
vergence angles and stereo baseline, and perform poorly at textureless regions.
At the other end of the spectrum are passive monocular methods. These re-
quire no additional instruments and compute 3D using the raw video feed. This
however is an extremely challenging computer vision problem. Some progress
has been made using SfM and Simultaneous Localisation And Mapping (SLAM)
[3,6,11]. These have been tried in several domains including reconstructing the
abdominal cavity [5] and heart [7]. However standard SfM and SLAM assume
the 3D scene is rigid, which is unrealistic during intervention. Nonrigid-SLAM
extensions have been proposed, yet these require strong motion models, such
as cyclic deformation [11], learned low-rank shape bases [7] or conformal surface
extension [10]. Shape-from-Shading (SfS) is another passive method tried [13,17]
that exploits the relationship between geometry, pixel intensity and scene illu-
mination. In contrast to SfM it can return dense 3D, but it currently has major
limitations. These include the inability to handle surface discontinuities, and
inherent unreliability due to SfS being a very weakly constrained problem.

3D Reconstruction with Distant Light Photometric Stereo. PS can be consid-
ered the generalisation of SfS to multiple light sources. In prior work, the dis-
tant light source model is nearly always used [2,16,9]. This serves as a basis for
us, but is unsuitable at close-range where illumination attenuation is signifi-
cant. A given point q = (u, v) in an image projects out into 3D according to
an (unknown) depth function z (u, v) : R2 → R+. Its 3D position is given by

p = K−1 (u, v, 1)
�
z (u, v), where K denotes the camera’s perspective intrinsics

(which implies image distortion effects have been undone.) It is assumed that p
is lit by K ≥ 3 lights whose directions are given by the vectors lk. For an RGB
camera, we have effectively three light sensors, with each channel sensitive to
different parts of the light spectrum. Denote ci (u, v) to be the radiometrically



636 T. Collins and A. Bartoli

corrected image intensity of the pixel for the ith colour channel. In standard
distant-light PS, 3D shape at p is constrained by lambertian reflectance accord-
ing to: ci (u, v) =

∑
k lk · n (u, v)Aik. Here, n (u, v) denotes the surface normal.

A is a 3 × k matrix where Aik ≥ 0 holds the illumination response of the irh

channel as a function of surface albedo and the kth light’s power spectrum [2].
Distant Light PS involves using these constraints to solve for n (u, v). This is
a small, quadratically-constrained Linear Least Squares (LLS) problem. Once
estimated, dense 3D shape is recovered by integrating n (u, v) in a second opti-
misation phase. Note however that absolute depth is not recoverable, and shape
is given up to an unknown scale factor.

2 Close-Range Photometric Stereo

In this section we generalise the PS problem to handle close range light condi-
tions. We present a new low-parameter illumination model which models very
well a laparoscope’s light source and give a method for quick and practical light
calibration. We retain the lambertian model in this work, and handle specular-
ities via saturation detection. This simplified model allows for tractable dense
3D reconstruction. We further advocate lambertian constraints in another im-
portant respect. By placing polarizing filters over the light and camera, specular
reflection can be hugely reduced, leaving mostly only the lambertian term. Thus,
with filters, the lambertian model is arguably a good one to use (for reconstruc-
tion purposes) even if the viewed surface comprises specular reflections. We start
by extending the PS constraints to the following general form:

ci(u, v) = lk(p (u, v)) · n (u, v)wk(p (u, v))Aik, p (u, v) = K−1 (u, v, 1)� z (u, v) (1)

Here lk(·) : R3 → R3 is now not a constant, but a spatially varying light vector
function. wk(·) ∈ [0 : 1] is also a spatially varying function that gives the amount
of light attenuation from the kth light source to a point in 3D space. We say
that the light model is calibrated if lk(·) and wk(·) are known. Close-range PS
then involves solving the following variational least squares system:

argmin
z(u,v)

´
(u,v)∈Ω

∑K
k=1

∑3
i=1 (lk(p(u, v)) · n(u, v)wk(p(u, v))Aik − ci(u, v))

2 +

λ
´
(u,v)∈Ω

‖∇z(u, v)‖22
(2)

Here the domainΩ denotes an image region bounded by the surface. The first line
enforces the PS constraints, and the second enforces surface smoothness weighted
by λ. Let us now step back and compare close-range PS to the distant-light case.
Firstly (2) cannot be broken down into two convex problems (normal estimation,
followed by depth estimation). This is because the PS constraints depend on both
depths and normals. As such, it is a harder optimisation problem. However, it is
the fact that (2) depends on depths that allows us to recover absolute distances
to the camera (in mm), unlike distant-light PS.
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2.1 Illumination Modelling

We now turn to modelling and calibrating the light source functions lk(·) and
wk(·). Our goal is to have accurate models, yet which can be calibrated easily and
optimally. We propose using an attenuating point light source, with a bivariate
polynomial which can model light fall-off caused by both distance and angular
attenuation. This is a flexible model and a generalisation of the inverse-squared
fall-off model [17], which we have found to be rather poor. The model’s param-
eters comprise firstly a light source centre: uk ∈ R3. The illumination vector at
any 3D point p is given by the unit direction lk(p) = (p − uk)/||p − uk||2.
The attenuation function is a joint function of the distance from p to uk:
d (p,uk) = ‖p− uk‖2, and the angular attenuation w.r.t. the light’s princi-
pal direction vk: ψ(p) = ∠(lk(p),vk). This angular attenuation is important to
model the spotlight characteristics of the light source. Here ∠ (·.·) denotes taking
the angle between two vectors. The attenuation function then writes as:

w−1
k (p) =

∑S

s=1

∑T

t=1
Wk

std(p,uk)
sψ(p,vk)

t (3)

Here Wk holds the kth light’s polynomial coefficients up to order (S, T ).

2.2 Light Calibration

Light calibration involves finding, for each coloured light source, the values
{uk,vk,Wk}. Typically for endoscopes the light sources remain rigidly fixed
in the camera’s coordinate frame, which means that calibration can be done in a
one-time offline process. We divide the calibration problem into first determining
the light centres {uk}, and then using these to determine the attenuation terms
{vk,Wk}. This 2-stage approach gives a convex solution to light calibration, and
so global optimality is guaranteed. The light centres uk can be found easily by
detecting and triangulating their positions on a reflective calibration target [15]
(Fig. 2(a)). To calibrate {vk,Wk} we use Eq. (1) to optimise these terms using
ground-truth training samples. The data is acquired using images of a diffuse
planar calibration target with a checker pattern printed on one side (Fig. 2(b)).
The pattern gives us the plane’s pose in each image. For each colour filter, we
gather a large set of training samples {(cr, cg, cb,n,p)}. Now, for a given value
of vk, Wk can be optimised via LLS. We thus calibrate by densely sampling vk

over the unit sphere, solving for Wk, and retaining the solution with minimal
least-squares error w.r.t. Eq. (1). We can select the best (S, T ) by minimising
the fitting error on a separate validation set. In practice it is usually unnecessary
to go beyond 4th order.

2.3 Reflectance Model Learning

For any tissue we wish to recover we also need an estimate ofA. ForK = 3 lights
this is only a small 3×3 matrix and can be determined with training data. There
are two main approaches one could take for this. The first is to learn A prior to
intervention for a range of tissue classes. The second is to assume the training
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Fig. 2. Calibration of light source centres using specular reflection (a) and light source
attenuation using views of a lambertian planar target (b). For the pixel marked at
the cross, there may exist multiple depths which locally satisfy the close-range PS
constraints.

data can be acquired during intervention by some other means. Currently we
adopt this second approach, and place a small marker on the tissue (e.g. Fig. 4
(a-e)). By computing the marker’s pose, and sampling tissue intenities close to
the marker, we have the necessary data to compute A from Eq. (1).

3 3D Reconstruction

The 3D reconstruction problem involves solving (2) which is a challenging non-
convex problem. Here we present an effective 2-stage approach to find a good
minimum. In stage 1 we first solve for depth at each pixel locally using only
that pixel’s colour information. When computed in isolation from other pixels
these solutions are however usually non-unique. In stage 2 these local solutions
are then resolved by solving depth globally across the image. At any pixel (u, v),
the intensities cr (u, v) , cg (u, v) , cb(u, v) provide us with 3 constraints on shape
according to Eq. (1). Locally, we have three unknowns, one for z (u, v) and two
for n (u, v). This is a polynomial optimisation problem whose number of solutions
depends foremost on the order of wk(·). We propose a fast method to find these
solutions as follows. We regularly sample depth in the range z̃ (u, v) ∈ [0 : zmax],
where zmax denotes the maximum working distance of the laparoscope (typically
150mm). Using Eq. (1), each sample is used to solve for a putative surface normal
ñ (u, v), which is a small convex sub-problem. We can then evaluate the solution
pair (ñ (u, v) , z̃ (u, v)) against the measured intensities predicted by Eq. (1), and
retain the solutions which are optimal. We illustrate this approach in Fig. 2(b-c).
In Fig. 2(b) a planar surface is 34.5mm from the camera’s optical centre. For
the pixel marked at the cross, we show in 2(c) on the x-axis the depth along the
pixel’s viewing ray. In green we show the angular error of the surface normal
estimated at that depth using Eq. (1). In blue we plot the prediction error of the
pixel’s intensity. Clearly, there is a 4-fold solution ambiguity, marked by red dots
with zero prediction error. The rightmost solution is closest to the true depth,
marked by a black line.

The sets of solutions computed at each pixel can be resolved in a second
process by enforcing surface continuity between pixels. This can be achieved
by constructing a Markov Random Field (MRF), whose nodes correspond to
pixels and edges connect neighbouring pixels. These edges enforce consistency
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between pixels’ normal and depth estimates, and form a graph with sub-modular
pairwise interaction terms. We have found the MRF’s energy can be minimised
well with belief propagation and the solution gives us a reasonable initial solution
to the depth map. This is then refined by optimising the original problem (2). In
practice we discretised Ω using the pixel grid and iteratively refine z (u, v) with
nonlinear Gauss-Newton iterations.

4 Experimental Results

Ex-Vivo Experimentation. We have tested our approach ex-vivo using two or-
gans; a section of pig liver and a pig kidney. We have performed ground truth
evaluation by first scanning these surfaces with a Structured Light Scanner
(SLS). In Fig. 3(a,g) we show the kidney and liver ground truth surfaces. To
learn the organs’ reflectance models, we attached a small planar checker marker
to the organ to give us depth and normal information (Fig. 3(b,h)), and used
the non-specular tissue colour around the marker as the intensity training data.
We handled external laparoscope tracking using a mounted calibration target,
giving us the coordinate transform from the laparoscope’s view to the 3D SLS
surface. We then imaged the organs with the laparoscope at varying positions
(Fig. 3(c,d,i,j)). For each image, we manually segmented the organ from the
background to obtain Ω. In these experiments we did not use polarizing fil-
ters and specularities were handled with simple methods by detection based on
colour saturation. For any specular region, its pixel data does not contribute to
the first term in Eq. (2). 3D reconstruction was then performed. With our cur-
rent Matlab implementation this takes approximately 30s to process an image.
However, much can be parallelised so a GPU implementation would be signif-
icantly faster. We used the same value of λ for all images (which was set by
hand) and measured the absolute error in depth against ground truth. We show
the results for the four images below in Fig. 3(e,f,k,l). In general the surfaces
are reconstructed quite faithfully. Greater errors occur towards some boundaries
of the surface, which is due to surface inter-reflection from the background and
slight mis-alignments of the ground truth scan. Note in Fig. 3(l) the larger error
occurs at a region where the red channel becomes saturated, which corresponds
to losing a PS constraint.

In-Vivo Experimentation. We have also obtained some preliminary in-vivo ex-
perimental results by testing reconstruction on the liver of a live pig under
anesthetic. To acquire ground truth data our surgeon placed 5 4.5mm wide
checker-markers on the liver using surgical graspers1. This gives a sparse set of
ground truth depths and surface normals. Fig. 4(a-e) show a selection of im-
ages of the markers taken by the laparoscope. We used one of these markers to
learn in-vivo the liver’s surface reflectance model by sampling pixel intensities at
tissue locally surrounding the marker. To perform reconstruction, we took the
image domains Ω to be the entire image, but excluding the marker locations.

1 We thank Dr. Revaz Botchorishvili for his kind help in acquiring the in-vivo data.
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Fig. 3. Ex-vivo experimental validation of close-range PS

Fig. 4. In-vivo experimental validation of close-range PS

The 3D reconstructions are shown in Fig. 4(f-j), each corresponding to the input
image shown above it. We also render the laparoscope’s tip, indicating its abso-
lute distance to the surface. In green we mark the predicted surface normal at
each marker, computed from the gradient of the reconstructed surface. In total,
we have performed reconstruction for 30 images. Quantitative performance has
been studied by measuring the error in the predicted depths and normals of the
markers. In Fig. 4(k-l) we show the error distribution in both depth (in mm)
and surface orientation (in degrees).
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5 Conclusion and Future Work

In this paper we have aimed to answer an important open question: can PS be
used to successfully reconstruct surfaces in the close-range conditions of MIS?
Our preliminary results suggest yes. Focusing on laparoscopy we have extended
distant light PS to handle short-range lights, developed methods for calibration,
and an optimisation framework to achieve good solutions to depth. In contrast
to other active methods tried in MIS, our approach can be used with an existing
laparoscope with only minor modification. Unlike SfM, the approach handles tex-
tureless surfaces and does not require motion constraints. Unlike SfS, the method
is stable and we can compute absolute depth. There is still further research to
be done before it can handle unconstrained clinical conditions. Open challenges
include handling spatially varying reflectance, handling time-varying illumina-
tion caused by changes in brightness or exposure, to learn different reflectance
classes a priori, to handle tool occlusions, and to handle depth discontinuities
with robust smoothing priors. We will also investigate how the recovered 3D can
help solve the challenging problem of pre-operative/intra-operative registration.
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Abstract. Image registration is an important tool for imaging valida-
tion studies investigating the effect of underlying focal disease on the
imaging signal. The strength of the conclusions drawn from these anal-
yses is limited by statistical power. Based on the observation that in
this context, statistical power depends in part on uncertainty arising
from registration error, we derive a power calculation formula relating
registration error, sample size, and the minimum detectable difference
between normal and pathologic regions on imaging. Statistical mappings
between target registration error and fractional overlap metrics are also
derived, and Monte Carlo simulations are used to evaluate the derived
models and test the strength of their assumptions.

Keywords: imaging validation, registration error, statistical power.

1 Introduction

Registration of medical images can enable complex analyses of medical data as
well as image-guided diagnosis and treatment, provided the registration is per-
formed with sufficient accuracy. There can be tradeoffs associated with achieving
higher accuracy [1], including greater human interaction to guide registration
algorithms to correct solutions, higher required image quality, and higher com-
putational cost. Thus, for each study, it is important to identify the maximum
acceptable level of registration error. This threshold is application-dependent [2],
and establishing application-specific thresholds for maximum acceptable error
has been identified as a key challenge in the field [1,2].

In image-guided interventions (IGI), registration can be used to guide a tool
tip to a target region. Studies of such systems usually involve quantifying either
the distance from the tool tip to the target or the overlap of the tool’s treatment
volume with the target. In some IGI applications (e.g. aortic aneurysms [3] and
prostate cancer biopsy [4]), acceptable registration error thresholds have been
identified for specific anatomy and imaging modalities. However, in some IGI
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contexts (e.g. keyhole brain surgery for ablation of epileptogenic foci [5]), it
is currently unclear how to localize the targets on preoperative imaging. This
motivates the need for studies to address this question.

In studies of the utility of medical imaging for disease localization (henceforth,
imaging validation studies), registration can be used to align images of the medi-
cal imaging modality to be studied (study images) with reference images wherein
ground truth regarding localized disease is defined (e.g. on pathologist-contoured
digital pathology images). Such studies involve the measurement of the effect of
the presence of disease features of interest (e.g. cancerous tissue) on image inten-
sity (or other derived quantities) on the corresponding region of interest on the
study image. Each ground truth delineation of disease features of interest on the
reference image is mapped by an ideal (0 error) registration to a region of inter-
est on the study image (denoted as R hereafter). We denote as R̃ such a region
determined by a non-ideal (> 0 error) registration. Thus, in contrast to the IGI
scenario, for imaging validation studies, the fidelity of the R− R̃ regional overlap
is paramount. Mapping errors that result in smaller overlap may lead to larger
required sample sizes to achieve a given minimum detectable difference (MDD)
on imaging between pathologic and benign regions. This observation leads to
three key questions affecting study design. (1) What is the maximum ac-
ceptable registration error? For a fixed sample size and desired MDD, what
is the maximum acceptable image registration error? (2) How many subjects
are needed? For a known image registration error and desired MDD, what is
the required sample size? (3) What is the minimum detectable difference?
For a fixed sample size and known image registration error, what is the MDD?
To the best of our knowledge, there has been no previous work in the literature
addressing these questions in the context of imaging validation studies based on
image registration.

As a first step toward fully answering these questions, in this paper, we pro-
vide a derivation that yields the relationship between image registration error,
sample size, and MDD, where image registration is used to determine whether
the presence of particular anatomy, pathology or other features of interest in the
underlying tissue is reflected in a change in the mean intensity of study image
voxels containing the features of interest. The derivation of a statistical power
calculation that incorporates uncertainty due to registration error yields a set
of three equations that can be used to answer the three questions enumerated
above. Statistical power is a measure that describes the probability of a study
finding a statistically significant result when there is an underlying difference to
be found. Thus, for studies to determine whether focal disease affects study im-
age intensity, the acceptable registration error is defined relative to the study’s
statistical power. The statistical power is a relationship between the size of the
study, the acceptable levels of type I error (false positive results from the study)
and type II error (false negative results from the study), the intensity distribu-
tions in R and in the background, and the registration error. This statistical
power is commonly expressed in the form of a sample size calculation that re-
lates how many subjects to recruit for a particular study design or an MDD
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calculation that relates how small a difference can be detected for a particular
study design. To the best of our knowledge, this work represents the first deriva-
tion of a statistical power calculation for medical imaging validation studies that
incorporates uncertainty in the overlap of R and R̃ due to registration error.

The remainder of this paper outlines the derivation of the relationship between
registration error and statistical power for one study design (Section 2), describes
simulations used to validate components of the derivation (Section 3), presents
the results of these simulations (Section 4) and discusses the implications of
these relationships (Section 5).

2 Derivation of MDD and Sample Size Relative to
Registration Error

The statistical power calculation depends in part on the type of statistical anal-
ysis used in the study. In this paper, we addressed a specific analysis that statis-
tically compares a pool of samples drawn from multiple identified R̃ to another
pool drawn from background regions B using a t-test on the sample intensities.
For imaging validation studies, image registration error is preferably measured
as the target registration error (TRE), since a post-registration comparison of
accurate segmentations is not feasible due to the absence of knowledge of the
boundary of R on the study image. To derive the relationship between the TRE
and inferential power, we utilize an intermediate metric, fractional overlap (FO),
which is the ratio of the volume of the intersection of R and R̃ to the volume
of R̃. The following two sections will derive the relationships between the MDD,
sample size and the FO, and the relationship between TRE and FO.

2.1 Mapping Registration Error to Fractional Overlap

Fractional overlap (
|R̃∩R|
|R̃| ) of two registered spherical regions R and R̃ can be

expressed as a function of the radius of the regions r and the 3D registration

error x between their centers: f = π(4r+ry)(2r−ry)2/12
4πr3/3 = (y3 − 12y + 16)/16 for

y ≤ 2 otherwise f = 0, where y = ||x||/r is the relative error.
The probability density function (PDF) F of FO can be derived as a function

of the PDF Y of the relative error under certain assumptions: (1) each R and R̃
are spherical and of a fixed size, and (2) the registration error can be modeled
as a 3D Gaussian. For f = 0, p(F = 0) = p(Y >= 2). For f > 0, we use the
relation for functions of random variables, p(F = f) = p(Y = y(f))/|f ′(y(f))|.
The derivative df

dy = (3y2−12)/16. As (y3−12y+16)/16−f = 0 has 3 real roots
for 0 ≤ f ≤ 2, we can express the inverse using the trigonometric expressions
for cubic roots. There is one solution in the range 0 ≤ y ≤ 2: f−1(y) = y(f) =

4cos(acos(1−f)+π
3 ). Combining these intervals,

p(F = f) = δ(f)p(Y >= 2) +
16p(Y = 4cos(acos(1−f)+π

3 ))

|3(4cos(acos(1−f)+π
3 ))2 − 12|

. (1)
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For a registration error vector x that is distributed as a 3D Gaussian with
component-wise variance a2, (i.e. X ∼ N3(0, a

2I)), the registration error x =
||x|| has a Maxwell-Boltzmann distribution. By a change of variables, p(Y =
y) = rp(X = yr), and, p(Y > 2) = p(X > 2r), which can be substituted into
Equation 1, yielding the FO as a function of registration error

p(F = f) = δ(f)(1− (erf(
2r√
2a

)−
√

2

π

2rexp(− (2r)2

2a2 )

a
))+

16r
√

2
π (4cos(

acos(1−f)+π
3 )r)2exp(−(4cos(acos(1−f)+π

3 )r)2/(2a2))/a3

|3(4cos(acos(1−f)+π
3 ))2 − 12|

. (2)

For FO, the mean μF (
a
r ) =

∫ 1

0
fp(F = f)df and standard deviation σ2

F (
a
r ) =∫ 1

0 (f − μF (
a
r ))

2p(F = f)df vary with the ratio of the TRE scaling parameter
to the radius of R, and are invariant to specific choices of a and r. Integrating
numerically yields the relationships shown in Figure 1.
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Fig. 1. Mean (left) and std. (right) fractional overlap as a function of the ratio a/r of
the target registration error scaling factor to the radius of R.

2.2 Relationship between MDD, Sample Size and Fractional
Overlap

The derivation is made under assumptions that (1) intensities of voxels con-
taining the features of interest and background are independently distributed
as IR ∼ N(μR, σ

2
R) and IB ∼ N(μB, σ

2
B), respectively; (2) statistical analysis

will be performed by an unpaired two-sample heteroscedastic T-test of the null
hypothesis that μR = μB against the alternative hypothesis that μR �= μB; (3)
the number of measurements from each R̃ is constant across samples; (4) the
number n of regions R̃ is large enough that the mean FO approximates a normal
distribution (by the central limit theorem); and (5) the number of voxels v in
each R̃ is large enough that discretizing error can be ignored.

When there is no registration error, the minimal detectable difference
μd between μR and μB using a two sample t-test can be expressed as μd =
T
√
(σ2

R + σ2
B)/(nv), where T is a statistical threshold tα{2},nv + tβ{1},nv, where

tα{2},nv and tβ{1},nv are taken from two- and one-tailed t-tables with nv degrees
of freedom, constraining type I error to α and type II error to β.

When there is misregistration of the i-th region, the measurements in R̃
may contain samples from the background. Given FO fi, the sample mean is
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∑
i(
∑fiv

j=1(Ij,i,R)+
∑(1−fi)v

j=1 (Ij,i,B))/(vn). As each Ij,i,R and Ij,i,B is a Gaussian
random variable, the distribution of the mean is:

N(
∑
i

(fiμi,R + (1− fi)μi,B)/n, (
∑
i

(fiσ
2
i,R + (1− fi)σ

2
i,B)/(n

2v)), (3)

or, by substituting μd = μR − μB and σ2
d = σ2

R − σ2
B ,

N(μd

∑
i

(fi)/n+ μB, (σ
2
d

∑
i

(fi)/n+ σ2
B)/(nv)). (4)

Because the FOs fi are random variables contributing to both the mean and
standard deviation of the distribution, the mean distribution is not Gaussian.
To simplify the model, we introduce two approximations. First, we approxi-
mate

∑n
i=1(fi)/n with a random variable ∼ N(μF , σ

2
F /n) in the mean, using

the central limit theorem approximation for sufficiently high n. Second, we ap-
proximate

∑n
i (fi)/n as μF in the standard deviation. The resulting distribution

N(μdN(μF , σ
2
F /n) + μB, (μFσ

2
d + σ2

B)/(nv)) can be simplified to N(μdμF +
μB, (μFσ

2
d + σ2

B)/(nv) + μ2
dσ

2
F /n).

Because this model for the distribution of the mean is Gaussian, as in the er-
rorless case, we can incorporate this into the normal power analysis framework
by constructing a hypothetical population that would have the same mean distri-
bution: N(μdμF +μB, μFσ

2
d+σ2

B+μ2
dσ

2
F v). The pooled variance for this analysis

will be (σ2
B + μFσ

2
d + σ2

B + μ2
dσ

2
F v)/2 or, simplified, μFσ

2
d/2 + σ2

B + σ2
Fμ

2
dv/2.

The MDD between the R̃ and background can be expressed in terms of μd as

μdμF + μB − μB =

√
μFσ2

d + 2σ2
B + σ2

Fμ
2
dv

nv
T. (5)

Solving for mean FO μF yields

μF =
σ2
dT

2 ± T
√
σ4
dT

2 + 8nσ2
Bμ

2
dv + 4nv2μ4

dσ
2
F

2μ2
dnv

. (6)

Solving for the sample size yields

n = T 2

(
2σ2

B + μFσ
2
d

μ2
dvμ

2
F

+
σ2
F

μ2
F

)
. (7)

Solving for the MDD yields

μd =

√
2σ2

B + μFσ2
d

nv(μ2
F − T 2σ2

F /n)
T. (8)

3 Simulations

We performed Monte Carlo simulations to assess the accuracy of the derived
statistical model, and the sensitivity of the model to assumption violations.
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Table 1. Power simulation parameters. Values were specified as [a,b,c], ranges as [a..b],
and values sampled once per R̃ from a normal distribution as N(mean, std.).

IR − IB n v a/r α β σ2
R σ2

B

S1 MDD 30 30 [0.1,0.5,1] 0.05 0.8 [1..100] [1..100]
S2 MDD [1..30] 30 1 0.05 0.8 10 10
S3 MDD 30 [1..30] 1 0.05 0.8 10 10
S4 MDD 30 N(30,[0..10]) 1 0.05 0.8 10 10

To assess the model relating MDD, sample size and FO, we sampled N sets
of image intensities from the background and R̃ intensity distributions and per-
formed two sample T-tests of the null hypothesis that sample mean intensities
were equal. In each simulation, μR − μB was set to the MDD predicted by the
model, and N=160,000 samples were taken (to yield a 95% confidence interval of
width 0.5% on β). The proportion of positive t-test results from the simulation
should match the model’s type II error of 1− β. We assessed (S1) the accuracy
of the model under the assumptions, as well as the sensitivity of the model to
violations of the assumptions regarding (S2) the number of regions R̃ sampled,
(S3) the number of voxels per R̃, and (S4) the constancy of the R̃ volume. The
parameters varied in these simulations are described in Table 1.

To assess the model relating FO to registration error, we sampled error vectors
x from a 3D Gaussian distribution and calculated the FO ofR and R̃ with centers
offset by x. The resulting empirical PDF was compared to the PDF predicted
by our model. We assessed (S5) the accuracy of the model under the given
assumptions, with a ranging from 2

100 to 350
100 and r = 10.

4 Results

Simulation results from S1 through S4 are summarized in Fig. 2(a-d). The y-
axes indicate the difference between the power predicted by the model and the
simulations. A value of 0% indicates that the model exactly predicted the sim-
ulation results. Values of −x% and +x% indicate that the model under- and
overestimated the power, respectively. Fig. 2(a) shows that when registration
error is large (i.e. high a/r), the model underestimates power, particularly with
small sample sizes. Fig. 2(b) shows that for small sample sizes, the model under-
estimates power, particularly with large registration errors. Fig. 2(c) shows that
the model’s estimate of power is reliable except in cases where small numbers
(< 5) of point samples (e.g. voxels) are taken from each R̃. Fig. 2(d) shows that
the model’s estimate of power is accurate and robust to variance in the number
of point samples taken from each R̃. In simulation S5, the model predicted the
simulated mean and std. FO as a function of a/r (Fig. 1) to within 0.0006.
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Fig. 2. (a) S1: Power vs. registration error a/r for several sample sizes. (b) S2: Power
vs. sample size. (c) S3: Power vs. number of samples (e.g. voxels) / R̃. (d) S4: Power
vs. variance in number of samples (e.g. voxels) / R̃.

5 Discussion

This work provides a derivation of a statistical power calculation incorporat-
ing image registration uncertainty and addressing three central questions in the
design of imaging validation studies. (1) Eq. (6): What is the maximum ac-
ceptable registration error? (2) Eq. (7): How many subjects are needed? (3)
Eq. (8): What is the MDD between normal and pathologic image regions? We
derived the relationship between the scaling parameter of a 3D Gaussian TRE
and the distribution of FO of spherical tumours. We also derived an approxi-
mate relationship between an arbitrary distribution of FO and the statistics of
a study design. The combination of these derivations elucidated a relationship
between registration error, sample size and statistical power, yielding a set of
three equations that are central to the design of imaging validation studies.

These relationships could be used in several applications. During study design,
Eq. (7) or (8) could be used to evaluate or control the power, after estimating
imaging properties and registration errors, while Eq. (6) could be used to guide
the selection of registration algorithms under the constraint of a study design.
During algorithm development, Eq. (6) could be used to assess whether an al-
gorithm has sufficient accuracy for a particular application.

We ran Monte Carlo simulations to test the fidelity of our model both when
our assumptions were met and when some of them were relaxed. Our results
showed that (1) the model predicts statistical power reliably for reasonable reg-
istration error (i.e. not larger than 50% of the radius of R) and the sample size
> 30 (Fig. 2(a-b)); (2) the model predicts power reliably when > 5 samples
(e.g. voxels) are obtained from within each R̃ (Fig. 2(c)); (3) the model predicts
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power reliably regardless of the variability in the number of samples obtained
from within each R̃ (Fig. 2(d)); and (4) the model accurately predicted the FO
as a function of registration error.

The limitations of this work lie mainly in the strong assumptions made by
the derivations. Although we have tested the robustness of the model to the
relaxation of some of these assumptions, our testing in this regard is not exhaus-
tive. Furthermore, extensions of these models may allow some assumptions to
be relaxed (e.g., assumptions of spherical regions, isotropic 3D Gaussian regis-
tration error, and no correlation of voxels within each R). Also, our derivation
is based on a relatively simple (albeit useful) statistical design; because analysis
of statistical power depends on the statistical designs used, it would be valuable
to extend the presented derivations to account for paired tests (to account for
voxel intensity correlations within subjects), cluster randomization (to allow for
intensity correlations within each R), regression (for longitudinal analyses) and
multivariate data.
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Abstract. In this paper we propose a novel graph-based concurrent
registration and segmentation framework. Registration is modeled with
a pairwise graphical model formulation that is modular with respect to
the data and regularization term. Segmentation is addressed by adopt-
ing a similar graphical model, using image-based classification techniques
while producing a smooth solution. The two problems are coupled via a
relaxation of the registration criterion in the presence of tumors as well
as a segmentation through a registration term aiming the separation be-
tween healthy and diseased tissues. Efficient linear programming is used
to solve both problems simultaneously. State of the art results demon-
strate the potential of our method on a large and challenging low-grade
glioma data set.

1 Introduction

The automatic evaluation of the evolution of brain tumors, that are often moni-
tored through MRI imaging, is of growing interest. The methods currently used
to evaluate precisely the position, size and evolution of a tumor, involve a com-
plete 3D manual segmentation by an expert. It is, however, extremely time con-
suming and highly dependent on the expert, particularly in the case of the
diffusively infiltrative low grade gliomas, that have fuzzy boundaries and inho-
mogeneous appearances [1]. As it has been shown that low-grade gliomas tend
to appear in preferential locations [2], the construction of statistical atlases en-
ables the study of location dependent behaviour of tumors. As a result, both
automatic segmentation and registration with a healthy atlas of tumor-bearing
images are of great interest for the study of brain tumors.

State of the art segmentation methods combine efficient classification tech-
niques [3] with low level segmentation methods [4]. From such perspective, tu-
mor detection is addressed as a classification problem where one aims at separat-
ing healthy from diseased tissues at the voxel level, while imposing smoothness
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constraints. Despite promising performance, these methods suffer from modu-
larity and scalability. Visual and geometric appearance of tumors depend on
organs, contrast agent, hardware acquisition device. The use of segmentation-
by-deformable registration of anatomical atlases [5] can be an answer to the
aforementioned limitations due to their ability to include global consistency and
deal with isolated erroneous measurements. This kind of method however suf-
fers from the inherent link between the two problems, making the segmentation
dependent on the registration quality and vice versa. A common approach to
deal with the presence of tumors for registration is to mask the pathology after
segmentation [6]. Another strategy is atlas seeding and simulating the tumor
induced deformation in the atlas using growth models [7].

The aim of this paper is to perform tumor segmentation and registration with
missing correspondences in a one shot optimization approach. Concurrent seg-
mentation and registration is a not a new objective [8,9], however the problem
becomes far more challenging in the presence of tumors. This is due to the fact
that modeling tumor appearance and geometry is not as trivial as modeling
anatomical regions, while at the same time registration is violated in the tumor
area. [10] proposes registration of an atlas, deformed using a complex tumor
growth model, to the patient’s space. The parameters are learned using the Ex-
pectation Maximization algorithm which can be very computationally expensive
and sensitive to initialization. Our approach aims at combining the modeling of
both problems where the unknown variables correspond to a two layer graphical
model, one that represents the 3D deformation field and another that refers to
the 3D binary segmentation map. This graphical model is superimposed to the
volume domain. The deformation is obtained using the discrete formulation in-
troduced in[11]. Segmentation is obtained through a conventional graph-based
formulation [12] where tumors and healthy tissues are separated through the use
of boosting. In order to reduce complexity we adopt a reduced label grid that
estimates segmentation likelihoods in the whole image domain through inter-
polation of the associated variables. The two layers are interconnected with a
combined cost that relaxes the registration in the presence of tumors, while at
the same time performs a segmentation-by-registration using the segmentation
costs as criterion. Linear programming and duality [13] are used to determine
the optimal solution of the combined problem. The proposed formulation is
modular with respect to the registration criterion and the segmentation likeli-
hoods, scalable since the segmentation/registration grid can be adapted to the
application domain and computationally efficient. The remainder of this paper
is organized as follows, section 2 describes the combined registration and seg-
mentation method, while experimental validation is presented in the following
section. Discussion and future directions conclude the paper.

2 Graph-Based Image Registration and Segmentation

Let us now first introduce the individual components of the method and then
conclude the methodological part of the paper with their coupling. The resulting
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formulation refers to a two-layer interconnected graph where both the segmenta-
tion labels on the atlas space and the deformable registration field are determined
through a one shot optimization. Such a formulation seeks both maximization
of the posterior statistical likelihoods of the tumor versus healthy voxels, and
optimal similarity matching between the atlas and the observed volume that is
relaxed in the tumor area.

2.1 Graph-Based Image Registration

In the task of image registration, we seek to align a source image A to a target
image I defined on a domain Ω ⊂ R3. To this end, we seek to estimate a
geometric deformation T (x) that will map A to I.

Let us consider a sparse grid G ⊂ Ω superimposed to the image. The deforma-
tion is evaluated on the grid’s control points p as T (x) = x+

∑
p∈G η (‖x− p‖)dp,

where dp is the displacement vector of the control point p. The idea is to deform
the source image by moving the grid’s control points. The displacement of a voxel
x of the image will be determined by the control point’s displacements and the
influence of each control point on x, which is given by the projection function η.
A typical example of projection function would be cubic B-splines. The optimal
deformation field should minimize the distance between the target image I(x)
and deformed image A(T (x)), that is evaluated by a similarity function ρ:

E(T ) = 1

|G|
∑
p∈G

∫
Ω

η̄ (‖x−p‖) ρ (I(x) , A(T (x))) dx (1)

The similarity function being defined on the image domain Ω, a function η̄
is introduced to back project the voxel wise information on the grid’s control
points. It determines how much voxel x influences the control point p.

We adopt the discrete approach described in [11], in which problem (1) is
reformulated as a labeling problem. To this end, we define a set of labels L =
{l1, ..., lk} and a discrete displacement set Δ = {d1, ...,dk}. Each label corre-
sponds to a specific displacement vector so that assigning a label lp ∈ L to a
control point p imposes the corresponding displacement di of the node. The
deformation field can be reformulated as: Tl(x) = x +

∑
p∈G η (‖x− p‖)dlp .

This enables to pose the problem as a discrete Markov Random Field (MRF)
optimization with respect to the labeling l, where the goal is to minimize the
following energy:

Edef (l) =
1

|G|
∑
p∈G

Vp(lp) + λ
∑
p∈G

∑
q∈N (p)

Vpq(lp, lq) (2)

Vp(lp) can be approximated as Vp(lp) ≈
∫
Ω
η̄ (‖x−p‖) ρ

(
I(x) , A

(
x+ dlp)

))
dx,

Vpq is a pairwise constraint that imposes local smoothness of the deformation
field and λ is a constant parameter balancing the single and pairwise costs. This
formulation is not sufficient in the case of lacking correspondences between the
images. In these areas, the source image will be heavily deformed and information
will be lost.
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2.2 Graph-Based Image Segmentation

In order to automatically segment tumor voxels, we seek to construct a classi-
fier that will describe the likelihood that each voxel belongs to a tumor. One
simple and efficient way to do so is to learn the classifier based on a vector of
image features and boosting. We use the Gentle Adaboost algorithm [3], that is
known to be more robust to noise and outliers than other boosting algorithms.
We adopt three feature spaces. First, we rely on the intensity values in the voxel
of interest xi and its neighborhood. We include in the feature vector an intensity
patch centered on xi, the median, entropy and standard deviation of patches of
variable sizes. Second, we use Gabor features [14] on 2 scales and 10 orientations.
Last, the tumor’s presence will introduce some lack of symmetry between the
hemispheres. Assuming we know an approximate symmetry plane Π , we com-
pute a symmetry feature as Sym(xi) =

1
k

∑
N (xi)

I(xi)− 1
k

∑
N (xi)

I(xiΠ), xiΠ

being the symmetric of xi with respect to Π , and N a neighborhood around
xi introduced to reduce the approximation error. The classifier’s output can
be converted into a tumor ptm(x) and a background probability pbg(x). Both
probabilities are fixed after training.

The problem of tumor segmentation can be cast as an MRF optimization on
the whole volume I, where each voxel gets a label l ∈ {0, 1} identifying it as
tumor or background:

Eseg(l) =
∑
x

Vx(l(x)) + λseg

∑
x

∑
y∈N (x)

Vxy(l(x), l(y)) (3)

The single costs impose a labeling according to the classification likelihoods:
Vx(l(x)) = −log (pbg(x))(1−l((x)))− log (ptm(x)) l((x)). Vxy is a pairwise cost
added to impose local consistency of the segmentation and λseg balances the
single and pairwise costs. The segmentation task could also benefit from the
registration, since existing correspondences between the atlas and the image to
be segmented could eliminate false detections of the classifier.

2.3 Combined Registration and Segmentation

Let us now describe the main contribution of this paper: the joint segmentation-
registration framework. Let us consider that the source image A, a healthy brain
image, is to be registered to a target brain image I featuring a low-grade glioma.
In the method presented in section 2.1, the tumor’s presence leads to heavy
deformation of the brain and loss of structural information. The aim of our
method is to amend this problem by detecting the tumor’s position and not
taking it into account during registration, while at the same time obtaining a
precise segmentation of the tumor.

We seek to evaluate the geometric deformation T (x) and the tumor’s position
S(x) through the same optimization. We adopt a discrete MRF formulation in
which each grid node p is assigned a label l ∈ L = {l1, ..., l2k}. Each label cor-
responds to a pair {s,d} ∈ {0, 1} × {d1, ...,dk}. The first term slp will simply
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characterize the node as tumor or background, while the second one dlp deter-
mines the node’s displacement. The segmentation and displacement information
is propagated to the whole image by cubic B-spline interpolation:

T (x) = x+
∑
p∈G

η(‖x− p‖)dlp and S(x) = H(
∑
p∈G

η(‖x− p‖)slp − 0.5) (4)

Due to the interpolation, the segmentation map S(x) is not binary. We deal with
this issue by thresholding the map using the heaviside function H.

Let us now proceed with the definition of the singleton cost Vp(lp). In the case
of healthy voxels, the evaluation of the deformation is still based on a similarity
measure between the source and target image. In the tumor area (slp = 1), we
cannot rely on the similarity measure and therefore introduce a constant cost
Ctm as suggested in [15] for stereo matching:

Vdef (lp) =

∫
Ω

η̄ (‖x−p‖)
((
1−slp

)
ρ
(
V (x), A(x + dlp)

)
+ slpCtm

)
dx (5)

This potential enables registration without taking into account the area detected
as tumor (highly dissimilar points in the image). While part of the tumor can be
detected using this single potential, the lack of similarity alone is not sufficient to
efficiently segment the tumor. Only tumors voxels with high contrast enhance-
ment will be detected. Furthermore, dissimilarity doesn’t necessarily correspond
to a tumor. To enhance the segmentation and prevent false positives, we make
use of the classifier built in section 2.1. We couple the deformation potential
with a second one acting mainly on the segmentation space:

Vseg(lp)=

∫
Ω

η̄ (‖x−p‖)
(
−log

(
pbg(x+ dlp)

)(
1−slp

)
− log

(
ptm(x+ dlp)

)
slp

)
dx

(6)
This potential imposes that voxels with a high probability of being tumor (ptm)
are labeled accordingly. It takes the deformation into account since the classifier’s
score is defined on the target image: the better the source image is aligned to the
target image, the more precise becomes the tumor’s position. We can now define
the singleton cost as Vp(lp) ≈ αVdef (lp) + (1− α)Vseg(lp), where α is a constant
coefficient of key importance balancing the 2 potentials’ influence. If α is high,
the registration will be prioritized, resulting in a good registration (except in the
tumor area) and poor segmentation. On the contrary, imposing a low α yields
a good segmentation (assuming the classifier is efficient), while the registration
quality will be deteriorated. As for the pairwise cost, it is set as:

Vpq(lp, lq) = αλ

∥∥dlp − dlq
∥∥

‖p− q‖ + (1− α)
|slp − slq |
‖p− q‖ (7)

In order to recover the optimal labeling solution, we use Fast-PD[13], an efficient
MRF optimization method based on linear programming.
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3 Experimental Validation

We adopt a multi-scale incremental approach (both on the image and grid reso-
lutions) were the tumor presence will have an increasing impact on the process.
We evaluated the deformation and segmentation on 3 image levels and 4 grid
levels (9 × 9 × 5 to 65 × 65 × 37). The parameter Ctm was increased at each
level, from 5 to 10 times the mean value of the similarity measure, while the
parameter α is progressively reduced from 1 to 0.015. λ and λseg were set at 20
and 3 respectively. At each level t, new deformation and segmentation fields are
estimated w.r.t. the source image deformed in level t− 1. The deformation field
T t(x) is updated by composition with the one obtained at level t−1. Since false
positives are less likely to appear in the coarse levels, we add a penalty term as
V t
pen(lp) =−

∫
Ω
η̄ (‖x−p‖) (1 − slp) exp(−t)dx to voxels labeled as background

(St−1(x) = 0). We use the Sum of Absolute Differences as similarity criterion.
The healthy brain template used for registration was a 3D MRI FLAIR image,

of size 256 × 256 × 24, and resolution 0.9 × 0.9 × 5.45mm3. All images in our
data-set (93 images) were 3D FLAIR images of different patients with low-grade
gliomas that have been manually segmented by an expert. Their sizes ranged
from 256×256×24 to 512×512×33, and resolution from 0.4×0.4 to.9×0.9mm2

in the (x,y) plane and 5.3 to 6.4 mm in the z plane. The smallest tumor was
3.5 cm3, and the largest was 230cm3. Preprocessing involved skull stripping and
intensity regularization. In order to avoid losing tumor vs healthy tissue contrast,
we simply set all images to the same median and interquartile range as the
reference pose, without taking into account background voxels. Eventually, all
images were rigidly registered to the reference pose, which permitted to use the
template’s symmetry plane to evaluate the symmetry feature for the boosting
classifier. 36 randomly selected volumes were used for boosting learning. The
patches sizes for intensity statistics were k × k × 3, with k = {3, 5, 7}.

We tested our framework on the 57 remaining images. Overall computational
time was approximately 6 minutes. The registration was compared qualitatively
to individual registration where the pathology is masked using the manual seg-
mentation masks (enabling comparison to a sequential approach). Some visual
registration results, along with the corresponding deformation maps are shown
in Fig.[2]. We observe high visual correspondences between the target and reg-
istered images outside the tumor area for both methods. As shown by the indi-
vidual registration’s deformation maps, deformations inside the tumor area are
very important and excessively unnatural. Using our method, the deformations
are much smoother and the deformed image’s anatomy is respected, showing
that our method performs significantly better in the tumor area. The automatic
segmentation (A) was evaluated w.r.t the manual segmentation (M) using the

Dice coefficient, the rate of false positives (FP = ‖A‖−‖M∩A‖
‖A‖ ) and the Mean

Absolute Distance (MAD) between contours. Results were compared to the voxel
wise individual segmentations. Comparative boxplots are shown in Fig. [1]. The
median dice increases from 77% to 80%, while false positives significantly dimin-
ished (median 30% to 20%) and MAD values also diminished.
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Fig. 1. Boxplots of the (a) Dice values, (b) false positive rates and MAD (c) for the
joint framework (1) and the individual segmentation method (2)

(a) (b) (c) (d) (e)

Fig. 2. Visual registration and segmentation results. (a) Segmented target image (man-
ual (red) and automatic (blue) segmentations), (b) Individual registration, (d) our
framework, (c,e) associated deformation fields.

4 Discussion

In this paper we have proposed a novel, efficient and principled method for com-
bined tumor segmentation and dense registration. This was achieved through
a two-layer interconnected graphical model that was optimized using a single
shot approach towards optimal recovery of both variable spaces. Extensive vali-
dation concerning the case of low-grade gliomas was considered to evaluate the
performance of the method, leading to very promising results. Introducing prior
knowledge in the reference space as suggested in [2] is a straightforward exten-
sion of the proposed formulation which could further improve the performance of
the method while allowing the characterization of tumors. Another possible ex-
tension of the method is the use of recent advances in MRF learning [16] towards
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encoding prior knowledge using spatially varying coefficients of the correspond-
ing segmentation framework that could be learned from training examples.
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Abstract. Non-rigid image registration using free-form deformations
(FFD) is a widely used technique in medical image registration. The
balance between robustness and accuracy is controlled by the control
point grid spacing and the amount of regularization. In this paper, we
revisit the classic FFD registration approach and propose a sparse rep-
resentation for FFDs using the principles of compressed sensing. The
sparse free-form deformation model (SFFD) can capture fine local de-
tails such as motion discontinuities without sacrificing robustness. We
demonstrate the capabilities of the proposed framework to accurately
estimate smooth as well as discontinuous deformations in 2D and 3D
image sequences. Compared to the classic FFD approach, a significant
increase in registration accuracy can be observed in natural images (61%)
as well as in cardiac MR images (53%) with discontinuous motions.

1 Introduction

The classic free-form deformation registration model (FFD) [1] is widely used
for medical image registration. Several improvements of the method have been
proposed including different optimization strategies [2, 3]. Despite its popularity,
little effort has been devoted to improve the accuracy of the formulation com-
pared to other registration methods such as optical flow [4–7] and the Demons
approach [8, 9].

In this paper, we address one main difficulty of the classic FFD approach,
namely the conflict between the robustness of the registration and the ability
to model discontinuous deformations. This conflict stems from the fact that the
FFD uses a smooth B-spline basis to model the contribution of each control point
to the deformation. To model global and smooth deformations a coarse control
point spacing is typically used. To allow for very localized deformations a fine
control point spacing is required, making the method less robust. A conventional
approach to address this issue uses a coarse-to-fine approach in which the initial
coarse control point mesh is successively subdivided [1].

The standard smoothness constraints for different registration methods [1, 4,
8] assume that the transformation within a neighbourhood changes gradually
since it is caused by a smooth motion. Combining the implicit smoothness of
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 1. (a) Target image; (b) source image; (c-d) coefficients of the B-spline basis for
two levels (out of seven). Most coefficients are close to zero thus the sparsity assumption
is valid; (e) deformation field induced by the FFD φ in x-direction; (f-i) FFD at four
different levels.

the B-spline basis and explicit smoothness constraint in the regularization, the
transformation model will produce smooth deformations.

As mentioned above, the control point grid spacing has a significant impact on
the resulting transformation’s ability to capture motion discontinuities robustly.
Previous research focussed on the adaptive parametrization of the B-spline con-
trol point grid [10–12] driven by the intensity information in the images. An
improved model should enable more control points to be placed in the area of
the motion discontinuity.

Many other approaches to image registration have been proposed to overcome
the conflict between robustness and discontinuity of the estimated motion in the
field of optical flow [5–7]. Most recently, sparse coding methods have been pro-
posed to evaluate the patch similarity between two images [13] and to constrain
the transformation [14]. However there is no work ever reported to our best
knowledge focused on motion discontinuity for the automatic FFD registration.

In this paper, we introduce a sparse representation for free-form deformations
to estimate the transformation inspired by [13, 14]. This simple model uses
the standard smoothness constraints and only imposes one assumption on the
deformation, namely that the basis of the deformation is sparse in the parametric
space. The assumption is generally true because the deformation between images
is usually simpler than the actual images themselves. We use a multi-level FFD to
represent the deformations in a parametric form. As can be seen from Figure 1,
the sparsity assumption holds in general for multi-level FFDs with different
control point spacings. Based on this assumption, we formulate the registration
of two images using a sparse multi-level FFD representation of the control points.
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We introduce a regularization term to impose smoothness at each level and a
sparsity term to enforce coupled multi-level sparsity.

The novelty and contributions of this paper are the introduction of a sparsity
model that avoids the a priori selection of an appropriate control point grid
spacing. Furthermore, the approach reduces the conflict between global smooth-
ness and local detail of the transformation by optimizing over the different FFD
levels simultaneously with a sparsity constraint. These advantages allow for the
robust estimation of deformation fields in the presence of discontinuous motion.
We refer to this new approach as sparse free-form deformation model (SFFD).
In the evaluation, we demonstrate that the proposed method can consistently
capture localized motion with high accuracy.

2 Classic Free-Form Deformation Model

In the classic FFD registration [1], a non-rigid deformation φ = [X Y Z]T is
represented using a B-spline model in which the deformation is parameterized
using a set of control points ψ = [U V W ]T such that

φ =

⎡⎣B 0 0
0 B 0
0 0 B

⎤⎦ψ , (1)

where B denotes the matrix of the B-spline basis functions. To find the op-
timal deformation between two images, the registration minimizes an energy
functional E written as a function of ψ, which is typically a combination of two
terms E(ψ) := ED(It, Is ◦φ)+ER(ψ). The term ED is a data constraint measur-
ing the similarity between the target image It and the transformed source image
Is ◦ φ. The term ER is a regularization constraint that enforces a smooth trans-
formation. The energy function is typically minimized using gradient descent
approaches [2] or discrete optimization approaches [15].

3 Sparse Free-Form Deformation Model

To be able to deal with large, global deformations and to improve the robustness,
the classic FFD registration uses a multi-level approach: First, the optimal reg-
istration parameters are determined for a control point grid with large spacing.
The grid is then successively subdivided to capture local deformations [1]. This
requires an a-priori choice of the initial and final control point spacing. Further-
more, each level is optimized separately and once a level has been optimized it
is no longer updated, leading to suboptimal registration results as can be seen
in Figure 2. It was suggested in [14] that a realistic transformation can be easily
embedded into a sparse representation. We postulate that an automatic selection
of control points across different levels can be achieved by optimizing all FFD
levels simultaneously while using a sparsity constraint.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 2. Visual comparison between the classic FFD and the proposed SFFD using
the colour scheme from [16]. The colour range corresponds to different direction and
magnitude of the transformation. (a) and (g) show the rubber whale image from the
Middlebury dataset and a frame from the cardiac B experiment, respectively;(f) and
(l) display the ground truth transformations with noticeable motion discontinuities; (b-
d) and (h-j) show the estimated motion with the classic FFD approach for 512/8mm,
256/4mm, and 64/1mm control point spacing; (e) and (k) exhibit the estimated motion
with the proposed SFFD approach where λN

S = 0.04.

3.1 Sparse Free-Form Representation of Transformation

In this section, we propose to estimate the transformation φ with a sparse rep-
resentation of the control points ψ. We use a m level FFD representation [10],
ψ = [U1...Um V 1...V m W 1...Wm]T , as it is well suited for sparse representa-
tions. Accordingly, we utilize a multi-level B-splines basis B = [B1...Bm]. The
transformation φ is computed as in eq. (1) with the above redefinitions of ψ
and B. As illustrated in Figure 1, a typical FFD is likely to be sparse in this
representation.

Basis pursuit denoising [17] is a mathematical optimization problem that bal-
ances the trade-off between sparsity and reconstruction fidelity. In the context
of image registration, the problem can be formulated as:

argmin
ψ

E(ψ) := ||It − Is ◦ φ||22 + ||ψ||1 , (2)

where the first term corresponds to the sum of squared differences (SSD) between
the target and the transformed source. The second term enforces sparsity of the
solution ψ. In general, an arbitrary (dis)similarity measure can be utilised in
the data term ED(It, Is ◦ φ), including information theoretic measures such as
mutual information (MI) or its normalized counterparts (NMI) [18].

Following these principles, we propose a novel registration approach, namely
the sparse free-form deformation (SFFD) model as

argmin
ψ

E(ψ) := ED(It, Is ◦ φ) + λR

∑
i∈[1,m]

ER(ψ
i) + λS ||ψ||1 , (3)
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with constants λR, λS ∈ IR+ weighting the regularization term and the sparsity
term, respectively. Note that the regularization term imposes smoothness at each
level of the multi-level FFD independently, while the sparsity term enforces cou-
pled multi-level sparsity. This allows us to actively determine the importance of
the control points across all levels in a joint manner, not independently as in the
classic FFD framework. This strategy allows us to estimate deformations fields
robustly and to preserve motion discontinuities, as it will be seen in the exper-
imental validation. The SFFD model has the same computational complexity
order as the classic FFD model.

We optimize eq. (3) using the interior point method of [19] that uses a log
barrier function to make the sparsity term differentiable. The parameter λS is
normalized between the data and the sparsity terms using the finite conver-
gence to zero property. That is, for the L1-regularized least squares problem,
convergence is achieved for a finite value λmax of λS . The value of λmax can be
determined using eq. (10) in [19]. In our experiments we use:

λN
S = λS/λmax . (4)

For completeness, the reader will find the partial derivatives of the similarity
measures with respect to ψ in [20] for the SSD and in [2] for the NMI.

4 Results

4.1 Datasets

In this work, we have evaluated the proposed SFFD against the classic FFD
model on four different datasets. The datasets we have used for evaluation include
the Middlebury benchmarking dataset, 2D cardiac MR images with synthetic
smooth (cardiac A) and discontinuous motion (cardiac B), and 3D cardiac MR
image sequences (cardiac C).

For basic benchmarking we have used six pairs of 2D greyscale natural images
from the Middlebury benchmark’s training dataset [16]. The Middlebury bench-
mark’s dataset contains deformations with multiple independently moving rigid
objects and background. For the dataset the ground truth deformation between
each pair of images is available.

In addition, we have tested our approach using 2D and 3D cardiac MR im-
ages. For the 2D cardiac MR images a synthetically generated transformation
has been applied to the images using sin function as proposed in [21]. A single
sin function is used to generate a group of 10 data with smooth motion using
different magnitudes and frequencies. Also, a set of 10 discontinuous motions
is generated where multiple sin functions are fused into a discontinuous motion
using segmentation information which can be seen in Figure 2l. The registration
recovers the synthetic motion between the original image and the transformed
image. For the above datasets, average error between the ground truth deforma-
tion and the deformation obtained after registration is measured.
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We have also used 3D cardiac cine MR images from 13 normal volunteers to
assess the proposed registration framework. The image resolution is 1.25×1.25×
8mm. We estimate the accuracy based on the tracking of myocardial boundaries
of the left ventricle. Manual segmentation of endo- and epicardial surfaces are
provided at both end-diastolic and end-systolic phases by a clinician. We then
register the end-systolic (ES) phase directly to the end-diastolic (ED) phase. We
evaluate surface distance between propagated myocardial surface and manual
myocardial surface at end-systolic phase.

4.2 Implementation Details

During the optimization of the classic FFD, we use seven different levels of image
resolution. The coarsest level has a size of around 64 voxels in each dimension. We
use B-spline interpolation as evidence suggests that B-spline based interpolation
is superior than linear interpolation [7, 2]. The coefficient for the smoothness
penalty λR is set to 0.001 as in the original paper [1] for the NMI and 1 for the
SSD due to the magnitude of the similarity metric.

One of most crucial parameters of the classic FFD registration is the control
point grid spacing. We create a spacing at each image pyramid level by sub-
dividing previous level’s FFD. We have evaluated different initial control point
spacings at the coarsest level varying from 512mm to 64mm where the final
spacings at the final level varies from 8mm to 1mm. For the SFFD, we use a
multi-level FFD with the coarsest level having a control point grid spacing of
64mm and finest level having a spacing of 1mm. The coarsest level should be
reasonable according to data and the finest level should be around voxel size
to embed a dense deformation. The number of image pyramid levels and the
smoothness penalty are the same for both methods. Finally, NMI is used as sim-
ilarity measures for the 3D cardiac MR images and SSD is used for the 2D cardiac
MR images with simulated motion as well as for the Middlebury benchmark.

4.3 Evaluation

For the classic FFD, different spacing leads to significantly different results as
showed in Table 1. Moreover, different datasets require different initial spacings
to achieve best performances. It can be seen from the final column in Table 1 that
the SFFD is robust against the choice of λN

S compare to the choice of spacing
in FFD. There is little need to adjust λN

S across datasets to achieve near very
good performance for individual data.

The median results using the multi-level FFD representation without sparsity
constraint where λN

S = 0 are 0.68mm,0.025mm,0.072mm and 1.74mm for Mid-
dlebury and cardiac A,B,C datasets respectively. Thus all datasets benefit from
the sparsity constraint with a consistent increase in registration accuracy. More-
over, the SFFD exhibits a significant improvement against the best results from
the classic FFD where discontinuous motion presents. The improvement is most
significant against ground-truth from the Middlebury dataset and from the 2D
cardiac MR image dataset with synthetic discontinuous motion. An increasing
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Table 1. Median of accuracies and standard deviation of median from the classic FFD
with different initial and final spacing and from the SFFD with different normalized
sparsity constraint λN

S . The units of the accuracy metrics are in the bracket. For the
results, n/a means that the image is not large enough to contain the initial control point
grid spacing, bold font means the best result and * means statistically significantly
different from the best result of the classic FFD using ttest with p-value 0.05. Final
column is the median of the standard deviations of the results.

Initial/final spacing (FFD) 64/1 mm 128/2 mm 256/4 mm 512/8 mm STD

Middleburry (mm) 0.69 ± 0.30 0.62± 0.27 0.61± 0.22 0.67 ± 0.33 0.108

Cardiac A (mm) .033 ± .020* .017± .010* .015± .012 .012± .010 0.014

Cardiac B (mm) .067 ± .042* .045± .016 .048± .011 .059 ± .024* 0.034

Cardiac C (mm) 1.68± 0.28 1.86± 0.32* 1.94± 0.40* n/a 0.619

λN
S (SFFD) 0.01 0.02 0.04 0.08 STD

Middleburry (mm) 0.25 ± 0.27* 0.25± 0.28* 0.24± 0.27* 0.25 ± 0.28* 0.010

Cardiac A (mm) .010 ± .006 .008± .001 .007± .001* .006± .001* 0.001

Cardiac B (mm) .023 ± .005* .022± .005* .021± .005* .021± .005* 0.001

Cardiac C (mm) 1.57 ± 0.32 1.55± 0.31 1.54± 0.32 1.64 ± 0.32 0.091

ability to capture discontinuous motion while maintain robustness over smooth
regions can be confirmed from a visual comparison in Figure 2.

Finally, in the 3D cardiac MR image sequences, we witness a limited improve-
ment, 1.54 ± 0.32 vs 1.68 ± 0.28, in the result. Due to the lack of an objective
ground truth, we measured the errors only on the LV myocardial surfaces, and
hence it can only partially demonstrate the registration accuracy.

5 Conclusion

In this paper, we have developed a sparse free-formdeformationmodel for registra-
tionwhich addresses somemost important short-comings of the original FFDregis-
trationmodel.Control points across differentFFD levels has been optimized simul-
taneously using a sparse representation. Compared to the classic FFD, the SFFD
requires less parameter tuning across different datasets.The user no longer needs to
choose an appropriate control point spacing a-priori. Our experiments have shown
a consistent improvement compared to the original FFD aproach. The most signif-
icant improvement can be observed in Middlebury dataset (0.61± 0.22 vs 0.24±
0.27) and Cardiac B experiment (0.045± 0.016 vs 0.021± 0.005) where the defor-
mation field exhibits both smooth and discontinuous motion.
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Abstract. We propose a novel method for registration of 3D fetal brain
ultrasound and a reconstructed magnetic resonance fetal brain volumes.
The reconstructed MR volume is first segmented using a probabilistic
atlas and an ultrasound-like image volume is simulated from the seg-
mentation of the MR image. This ultrasound-like image volume is then
affinely aligned with real ultrasound volumes of 27 fetal brains using a
robust block-matching approach which can deal with intensity artefacts
and missing features in ultrasound images. We show that this approach
results in good overlap of four small structures. The average of the co-
aligned US images shows good correlation with anatomy of the fetal brain
as seen in the MR reconstruction.

Keywords: Fetal 3D ultrasound, ultrasound and MR registration, fetal
ultrasound template, block matching.

1 Introduction

Fetal ultrasound (US) is the imaging modality of choice for assessing fetal de-
velopment in clinical practice. Recently, fetal brain magnetic resonance imaging
(MRI) has become an important modality for assessing fetal brain development
thanks to development of fast-spin-echo sequences for acquisition of 2D slices
which can deal with unpredictable and fast fetal motion. Emerging volumetric
fetal brain MRI reconstruction and segmentation techniques can now support
quantitative studies of fetal brain development [1]. Recent advances in US tech-
nology allow 3D acquisitions of the fetal brain which can potentially facilitate
volumetric assessment of fetal brain. US, compared to MRI, has a well demon-
strated safety, a lower cost and causes less stress to the patients. Models of fetal
brain anatomy constructed from fetal brain MRI can facilitate development of
image analysis methods for fetal 3D ultrasound and their validation.

In this we paper we propose a method for 3D alignment of fetal brain MRI
to US, which is one of the important tools with potential to facilitate automatic
image analysis of 3D brain fetal US. Registration of brain MRI and US was
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previously proposed for image guided neurosurgery in adults to non-rigidly cor-
rect for brain-shift during surgery [2] as well as for rigid alignment of adult or
neonatal brain [3]. The major challenge in aligning MR and US images is that
there does not exist a simple intensity mapping between the two modalities, as
they visualize complementary features. While MRI offers good contrast between
soft tissues, especially white matter (WM), grey matter (GM) and cerebro-spinal
fluid (CSF), US depicts surfaces of the structures with superior spatial resolu-
tion compared to MRI, while the WM-GM boundary does not appear in US at
all. Roche at al. [3] suggested to estimate a non-linear relationship between MR
and US image intensities and used a generalized correlation ratio as a similarity
measure. Arbel et al. [2] proposed to perform segmentation of the brain MRI
followed by simulation of an US-like image which is then registered with the US
image using local normalized cross-correlation (NCC) as a similarity measure.
As the relationship of MR and US intensities in fetal brain is difficult to describe,
we propose to simulate US-like image from the segmented MRI, similar to [2].
Features of fetal brain visible in 3D US in relation to the anatomy have been
described in the clinical literature [4]. We can therefore build on this knowl-
edge and convert a segmentation of the anatomical structures in fetal brain MRI
to into features which appear in fetal US (Sec. 2). US images are corrupted by
intensity artefacts, such as shadows and attenuation. Compared to cranial sonog-
raphy in adults and neonates, where radiographer can position the probe next
to the opening in the skull, such artefacts are significantly more pronounced in
US of the fetal head, due to difficulties with positioning of the probe and inter-
ference with maternal tissues. Additionally, partly calcified and not completely
fused fetal skull causes uneven loss of signal strength. Wein et.al. [5] suggested to
estimate the attenuation from knowledge of physical properties of the scanned
organ, however, these are not well described for fetal head and brain. Therefore
in this paper we propose to apply a robust block-matching strategy [6] with lo-
cal CC as a similarity measure (Sec. 3) to overcome the limitations of a global
similarity measure [3] and gradient descent optimisation [2] in presence of sig-
nificant intensity artefacts in fetal brain US. The method has been applied to
align 27 3D US images at gestational ages (GA) 18 to 22 weeks with an MRI
of a single subject of GA 23 weeks (Sec. 4). In spite of a relatively significant
GA difference between subjects we achieved good volume overlaps for four small
structures. The estimated transformations were used to coalign the US images
with the MRI template. The average of the coaligned US images depicts the
near-complete anatomy of the fetal brain as visible in 3D US.

2 Construction of US-Like Template Image from MRI

2.1 Reconstruction of Fetal Brain MRI

We constructed the US-like template from MRI of a single fetus. As US depicts
structures of small scale compared to spatial resolution of MRI (e.g. septi pel-
lucidi), it was essential to perform a high quality reconstruction of the MRI.
To achieve this, the fetal brain volume was reconstructed from stacks of thin
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Fig. 1. Overview of the segmentation of the MR template and conversion into US-like
image

slices (2.5mm) using a super-resolution approach [7]. High signal to noise ratio
was achieved by carefully choosing the point-spread-function (PSF) to match
the real acquisition. The PSF was approximated by a 3D Gaussian with full
width at half maximum (FWHM) equal to slice thickness in through-plane di-
rection to approximate the slice selection profile (truncated sinc function) and
1.2×resolution for in-plane direction to approximate the sinc function. The re-
constructed volume is presented in Fig. 3a.

2.2 Segmentation of Brain Structures in MRI

The reconstructed MR volume of a single fetus with GA 23 weeks was segmented
and converted to the US-like image, see overview in Fig. 1. First, we performed
an automatic segmention using the EM algorithm [8] into six brain structures -
WM, cortex, CSF, deep grey matter (DGM), brainstem and cerebellum. As there
are no fetal probabilistic atlases publicly available at present, we used a spatio-
temporal neonatal probabilistic atlas [9]. The youngest time-point in this atlas is
29 weeks GA. The difference in shape and cortical folding for these GA requires a
flexible non-rigid registration and for this we used non-rigid B-spline registration
with final control point spacing 2.5mm and normalized mutual information. We
found that registration of a blurry probabilistic template with such resolution
is unstable, but subject-to-subject registration across such age-range produces
good results for the kind of structures we are interested in. We therefore first
segmented the brain MR volume of another fetus with GA 28 weeks. This image
was then registered with the MR template (23 weeks GA) The segmentation of
the older fetus was then used as a prior during EM segmentation of the younger.
The cortex prior was slightly blurred before segmentation to account for cortical
folding of the older subject. Though the cortex-WM separation still had some
errors this was not an issue as their boundary is not visible in US and these
two tissues were joined together. At this gestation, the cerebellum does not
appear as one homogeneous structure in US, but high fluid content of cerebellar
hemispheres gives it appearance of two dark cysts surrounded by bright tissue
[10], see Fig. 3. The cerebellar cysts were therefore manually excluded from the
automatic segmentation of the cerebellum.
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2.3 Segmentation of Non-brain Structures in MRI

Some of the most echogenic landmarks in fetal US depict the non-brain struc-
tures, especially the skull, choroid plexus, septi pellucidi and membrane of the
falx in brain midline (see Fig. 3). We therefore performed semi-automatic or
manual segmentation of these four structures in the MR template.

Segmentation of the skull in MRI is a difficult task as it appears dark and
often borders other tissues also appearing dark on T2w MRI. Additionally, the
fetal skull is rather thin compared to the resolution during acquisition, making
it difficult to delineate due to the partial volume effect. The skull was therefore
estimated from the brain mask created by joining automatic segmentations of five
brain tissues and CSF. A distance transform from this brain mask was calculated,
and it was visually determined that the voxels with distance up to 2mm can be
labeled as the skull. The segmentation of the skull was then manually corrected.

In fetal brain US, the brain tissue (with exception of the corpus callosum) is
clearly divided into a right and left hemisphere. This however is only partially
visible in MRI due to insufficient resolution and partial volume effects along the
midline. We therefore artificially separated the WM segmentation into two parts
(by removing the voxels closer than 1.5mm to the WM surface) and calculated
distance transforms from these two WM cores. All the brain structures (except
for WM) were separated into right or left by removing voxels with the roughly
same distance from the two WM cores (the midline voxels). The midline was
then added as another structure to simulate the falx visible on fetal brain US.
Additional two structures which are significant landmarks on fetal brain US -
choroid plexus and septum pellucidum - were segmented manually.

The segmentation pipeline described here included manual steps, however
this template will be used for inter-subject registration and therefore does not
need to be repeatedly segmented. Additionally, it can be used for atlas-based
segmentation of MRI of new subjects.

2.4 Converting the Segmentation into US-Like Image

US B-mode images are created by reflections of tissue surfaces with difference in
acoustic impedance and speckle patterns produced by interference of tissue mi-
crostructure with the sound waves. These intensity patterns are further affected
by intensity attenuation (or signal loss along the beam direction) and shadows,
which occur when beam is fully reflected by a strong reflector. In this work we
assume that the fetal brain US is mainly composed of echogenicity of the tis-
sues and neglect the reflections at the tissue boundaries and intensity artefacts.
The visibility of brain surface is also due to a presence of a highly echogenic
thin tissue layer [4] not visible in MRI. We therefore convert the segmentation
to artefact-free US-like image in which each region of interest is assigned uni-
form intensity representing the average echogenicity of this region. We did not
include a model of speckle in the US-like image, as it is not useful for guid-
ing inter-subject alignment. The US-like image is then registered with real US
images using a method robust to the artefacts and missing features (Sec. 3).
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The segmented anatomical structures were assigned a visually determined
intensity value in order from brightest to darkest: 1. skull, 2. choroid plexus, septi
pellucidi and midline, 3. brain surface, 4. cerebellum, 5. DGM and brainstem,
6. cerebral hemispheres. As we use local NCC as similarity measure, the exact
value of tissue intensity is not important, but the correctness of the order of
brightness is essential. The US-like image is shown in Fig. 2c.

3 Alignment of MRI and US

The block-matching algorithm [6] iteratively estimates the alignment T between
two images by alternating between two stages. In the first stage, for each block
in the source image biS , the most similar (homologous) block bjT is found in the
corresponding exploration neighborhood (determined by the latest estimate of
the transformation T ) in the target image. We use NCC to find the most similar
blocks, as the construction of US-like image from MRI effectively changes our
registration problem from multi-modal to mono-modal. NCC is calculated inde-
pendently for each pair of blocks, ensuring low sensitivity to intensity artefacts.
The centroids of the pairs of the homologous blocks define a displacement field
which is regularized in the second stage. All the blocks with variance smaller
than a pre-defined threshold are excluded in the first stage so that only blocks
carrying features are used for estimation of the transformation T , thus improving
robustness towards missing features.

In the second stage, the rigid or affine transformation is estimated from the
displacement field using least trimmed squared regression (LTS) [11]. The LTS
estimator reduces the influence of outliers by minimizing the sum of a given
number (h) of smallest squared residuals. A residual error is obtained as the
difference between the displacement di at centroid Ci

S and the one obtained by
applying the estimated transformation to it. Such robust estimation of trans-
formation is essential to remove influence of displacements for the source blocks
which have no corresponding target block due to missing features in US images.

T ∗ = argmin

h∑
1

‖(Ci
S + d(i))− T [Ci

S ]‖2

4 Results

The proposed registration method was applied to 27 US volumes of the fetal
head, with GA 18-22 weeks. Images were acquired with a Philips HD9 or iU22
machine using a 3D transabdominal probe with mechanical steer. The images
were first consistently re-oriented and scaled to a similar size using a scaling
factor derived from the age of the subject. The block-matching algorithm was
then used to align the US-like image derived from the MR template with each US
image. We determined the rigid alignment first followed by the affine alignment.
The block-matching was applied in two resolution levels (isotropic voxel size
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Fig. 2. A 2D view of 3D US of three fetuses before (a) and after (b) alignment with
the MR template. After alignment the view shows transventricular plane in all three
cases. Compare to US-like image (c). Note that the difference in cortical folding in the
area around hippocampus stems from differences in GA.

2mm and 1mm). We used blocks of 3 × 3 × 3 voxels and neighbourhoods with
7 voxels in each direction. The variance threshold used to exclude blocks was
0.04× intensity range. The LTS transformation was estimated using 75% of the
displacements. Figs. 2a,b show US images before and after alignment with the
US-like image (Fig. 2c).

In each of the 27 ultrasound images, four small structures - choroid plexus
(CP), cavum septi pellucidi (CSP), posterior ventricular cavity (VC) and cere-
bellar hemisphere (CH) - were manually delineated by a clinical expert. All
these structures were also delineated in the MR template. The average volume
(Dice) overlaps for these four structures are presented in Table 1 (fourth row). We
achieved average volume overlaps around 0.5 which we consider very good, as the
residual differences in brain shape between subjects and ages are still expected
to be significant after global affine alignment. In all cases, all four structures
were overlapping after alignment and therefore none of the registrations failed.
To further illustrate the quality of alignment, Fig. 3c presents the average of all
27 US volumes aligned using the inverse of the estimated transformations.

To demonstrate that converting MRI to US-like image is essential we com-
pared our proposed method with two recognized approaches which can perform
multimodal registration of original MRI with US images: 1. Registration using
normalized mutual information using IRTK1; 2. Block-matching method using
correlation ratio (CR). In the second method the similarity measure had to be
changed compared to our proposed approach because NCC is not suitable for
multimodal registration and CR is a suitable multimodal similarity measure to
be used in conjunction with block-matching [6]. CR can be implemented as a
statistical measure or the functional relationship between intensities of the tar-
get and source image can be defined by a parametric model. Due to the small
size of the blocks in our approach we consider affine relationship of the intensi-
ties a reasonable assumption. In this case CR is equivalent to squared NCC. In
the first multimodal approach the average volume overlaps were much smaller

1 http://www.doc.ic.ac.uk/~dr/software/

http://www.doc.ic.ac.uk/~dr/software/


Registration of 3D Fetal Brain US and MRI 673

Table 1. Average volume overlaps and their standard deviations after registration of
the source image (second column) to US images. The last column shows number of
failed cases.

Registration Similarity Source CP VC CH CSP failed

Gradient descent NMI MRI 0.18±0.24 0.12±0.20 0.12±0.16 0.13±0.16 14

block-matching CR MRI 0.47±0.15 0.41±0.18 0.48±0.16 0.37±0.15 0

block-matching CR US-like 0.56±0.12 0.39±0.15 0.54±0.13 0.40±0.10 0

block-matching NCC US-like 0.57±0.10 0.42±0.14 0.56±0.09 0.43±0.10 0

Fig. 3. Axial, coronal and sagittal view of (a) brain MRI of a single fetus used as
a template; (b) brain 3D US of a single fetus after alignment with MR template;
(c) average of the 27 fetal brain 3D US aligned with the MR template. Highlighted
structures: Choroid plexus (CP), septi pellucidi (SP), falx (mid), deep grey matter
(DGM), cerebellum (cer), posterior ventricular cavity (vent), skull.

and in a number of the cases the registration failed on the criterion that at
least three out of four segmented structures have non-zero overlap (see Table 1,
first row). In the multimodal block-matching approach none of the registrations
failed but average overlaps were significantly smaller (see Table 1, second row).
This demonstrates that US-like image offers better correspondences with US
images than original MRI. The third experiments demonstrates, that the more
constrained NCC yields better performance for the block-matching of the US-
like image with real US images than the less constrained CR (see Table 1, third
row).
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5 Discussion and Conclusion

In this paper we have presented a novel method for affine registration of fetal
brain MR and US volumes. The method succeeded in all 27 cases and we achieved
good volume overlaps for four small structures. The average of the co-aligned US
volumes revealed near-complete anatomy of the fetal brain. The results suggest
that 3D US in conjunction with MR prior has potential for development of new
medical image analysis tools for assessment fetal brain development.
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Ferré, Jean-Christophe III-542
Feulner, J. III-590
Feusner, Jamie D. II-196, II-228
Field, Aaron S. II-280
Fillard, Pierre II-57
Fishbaugh, James I-731
Fleming, John O. II-280
Fletcher, Daniel III-345
Fletcher, P. Thomas I-132, III-189
Fleury, Gilles I-223
Foncubierta–Rodriguez, Antonio

III-517
Forbes, F. III-180
Fournier, Marc III-172
Fox, Nick C. II-262, III-289
Fragkiadaki, Katerina III-631
Frangi, Alejandro F. III-99
Freiman, M. I-1
Fripp, Jurgen II-220
Fua, Pascal I-585, II-568, III-337
Fuerst, B. III-566

GadElkarim, Johnson J. II-196, II-228
Gahm, Jin Kyu II-494
Galaro, Joseph I-157
Gallia, Gary L. I-471
Gambarota, Giulio I-231
Gao, Fei I-675, III-558
Gao, Mingchen II-387
Gao, Yaozong III-385, III-451
Gaonkar, Bilwaj I-723
Gardiazabal, José III-42
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Kirişli, Hortense I-667
Kirschbaum, Sharon W. I-667
Kiselev, Valerij G. II-297
Klein, T. I-422
Kleiner, Melanie I-206
Klinder, T. I-198
Klug, William S. II-494
Knott, Graham I-585, III-337
Koch, Martin II-584
Kohlberger, Timo I-528, II-462
Kongolo, Guy III-172
Kontos, Despina II-437
Konukoglu, Ender II-49, III-75, III-369,

III-590
Korenberg, Julie R. III-223
Kowal, Jens III-599
Krawtschuk, Waldemar II-486
Kronman, A. II-363
Krueger, Martin W. II-1
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